Sample records for order wavelet-based multiresolution

  1. Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms

    NASA Technical Reports Server (NTRS)

    Kurdila, Andrew J.; Sharpley, Robert C.

    1999-01-01

    This paper presents a final report on Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms. The focus of this research is to derive and implement: 1) Wavelet based methodologies for the compression, transmission, decoding, and visualization of three dimensional finite element geometry and simulation data in a network environment; 2) methodologies for interactive algorithm monitoring and tracking in computational mechanics; and 3) Methodologies for interactive algorithm steering for the acceleration of large scale finite element simulations. Also included in this report are appendices describing the derivation of wavelet based Particle Image Velocity algorithms and reduced order input-output models for nonlinear systems by utilizing wavelet approximations.

  2. Segmentation-based wavelet transform for still-image compression

    NASA Astrophysics Data System (ADS)

    Mozelle, Gerard; Seghier, Abdellatif; Preteux, Francoise J.

    1996-10-01

    In order to address simultaneously the two functionalities, content-based scalability required by MPEG-4, we introduce a segmentation-based wavelet transform (SBWT). SBWT takes into account both the mathematical properties of multiresolution analysis and the flexibility of region-based approaches for image compression. The associated methodology has two stages: 1) image segmentation into convex and polygonal regions; 2) 2D-wavelet transform of the signal corresponding to each region. In this paper, we have mathematically studied a method for constructing a multiresolution analysis (VjOmega)j (epsilon) N adapted to a polygonal region which provides an adaptive region-based filtering. The explicit construction of scaling functions, pre-wavelets and orthonormal wavelets bases defined on a polygon is carried out by using scaling functions is established by using the theory of Toeplitz operators. The corresponding expression can be interpreted as a location property which allow defining interior and boundary scaling functions. Concerning orthonormal wavelets and pre-wavelets, a similar expansion is obtained by taking advantage of the properties of the orthogonal projector P(V(j(Omega )) perpendicular from the space Vj(Omega ) + 1 onto the space (Vj(Omega )) perpendicular. Finally the mathematical results provide a simple and fast algorithm adapted to polygonal regions.

  3. Multiresolution With Super-Compact Wavelets

    NASA Technical Reports Server (NTRS)

    Lee, Dohyung

    2000-01-01

    The solution data computed from large scale simulations are sometimes too big for main memory, for local disks, and possibly even for a remote storage disk, creating tremendous processing time as well as technical difficulties in analyzing the data. The excessive storage demands a corresponding huge penalty in I/O time, rendering time and transmission time between different computer systems. In this paper, a multiresolution scheme is proposed to compress field simulation or experimental data without much loss of important information in the representation. Originally, the wavelet based multiresolution scheme was introduced in image processing, for the purposes of data compression and feature extraction. Unlike photographic image data which has rather simple settings, computational field simulation data needs more careful treatment in applying the multiresolution technique. While the image data sits on a regular spaced grid, the simulation data usually resides on a structured curvilinear grid or unstructured grid. In addition to the irregularity in grid spacing, the other difficulty is that the solutions consist of vectors instead of scalar values. The data characteristics demand more restrictive conditions. In general, the photographic images have very little inherent smoothness with discontinuities almost everywhere. On the other hand, the numerical solutions have smoothness almost everywhere and discontinuities in local areas (shock, vortices, and shear layers). The wavelet bases should be amenable to the solution of the problem at hand and applicable to constraints such as numerical accuracy and boundary conditions. In choosing a suitable wavelet basis for simulation data among a variety of wavelet families, the supercompact wavelets designed by Beam and Warming provide one of the most effective multiresolution schemes. Supercompact multi-wavelets retain the compactness of Haar wavelets, are piecewise polynomial and orthogonal, and can have arbitrary order of approximation. The advantages of the multiresolution algorithm are that no special treatment is required at the boundaries of the interval, and that the application to functions which are only piecewise continuous (internal boundaries) can be efficiently implemented. In this presentation, Beam's supercompact wavelets are generalized to higher dimensions using multidimensional scaling and wavelet functions rather than alternating the directions as in the 1D version. As a demonstration of actual 3D data compression, supercompact wavelet transforms are applied to a 3D data set for wing tip vortex flow solutions (2.5 million grid points). It is shown that high data compression ratio can be achieved (around 50:1 ratio) in both vector and scalar data set.

  4. Application of multi-scale wavelet entropy and multi-resolution Volterra models for climatic downscaling

    NASA Astrophysics Data System (ADS)

    Sehgal, V.; Lakhanpal, A.; Maheswaran, R.; Khosa, R.; Sridhar, Venkataramana

    2018-01-01

    This study proposes a wavelet-based multi-resolution modeling approach for statistical downscaling of GCM variables to mean monthly precipitation for five locations at Krishna Basin, India. Climatic dataset from NCEP is used for training the proposed models (Jan.'69 to Dec.'94) and are applied to corresponding CanCM4 GCM variables to simulate precipitation for the validation (Jan.'95-Dec.'05) and forecast (Jan.'06-Dec.'35) periods. The observed precipitation data is obtained from the India Meteorological Department (IMD) gridded precipitation product at 0.25 degree spatial resolution. This paper proposes a novel Multi-Scale Wavelet Entropy (MWE) based approach for clustering climatic variables into suitable clusters using k-means methodology. Principal Component Analysis (PCA) is used to obtain the representative Principal Components (PC) explaining 90-95% variance for each cluster. A multi-resolution non-linear approach combining Discrete Wavelet Transform (DWT) and Second Order Volterra (SoV) is used to model the representative PCs to obtain the downscaled precipitation for each downscaling location (W-P-SoV model). The results establish that wavelet-based multi-resolution SoV models perform significantly better compared to the traditional Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN) based frameworks. It is observed that the proposed MWE-based clustering and subsequent PCA, helps reduce the dimensionality of the input climatic variables, while capturing more variability compared to stand-alone k-means (no MWE). The proposed models perform better in estimating the number of precipitation events during the non-monsoon periods whereas the models with clustering without MWE over-estimate the rainfall during the dry season.

  5. Multiresolution motion planning for autonomous agents via wavelet-based cell decompositions.

    PubMed

    Cowlagi, Raghvendra V; Tsiotras, Panagiotis

    2012-10-01

    We present a path- and motion-planning scheme that is "multiresolution" both in the sense of representing the environment with high accuracy only locally and in the sense of addressing the vehicle kinematic and dynamic constraints only locally. The proposed scheme uses rectangular multiresolution cell decompositions, efficiently generated using the wavelet transform. The wavelet transform is widely used in signal and image processing, with emerging applications in autonomous sensing and perception systems. The proposed motion planner enables the simultaneous use of the wavelet transform in both the perception and in the motion-planning layers of vehicle autonomy, thus potentially reducing online computations. We rigorously prove the completeness of the proposed path-planning scheme, and we provide numerical simulation results to illustrate its efficacy.

  6. SHORT-TERM SOLAR FLARE PREDICTION USING MULTIRESOLUTION PREDICTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Daren; Huang Xin; Hu Qinghua

    2010-01-20

    Multiresolution predictors of solar flares are constructed by a wavelet transform and sequential feature extraction method. Three predictors-the maximum horizontal gradient, the length of neutral line, and the number of singular points-are extracted from Solar and Heliospheric Observatory/Michelson Doppler Imager longitudinal magnetograms. A maximal overlap discrete wavelet transform is used to decompose the sequence of predictors into four frequency bands. In each band, four sequential features-the maximum, the mean, the standard deviation, and the root mean square-are extracted. The multiresolution predictors in the low-frequency band reflect trends in the evolution of newly emerging fluxes. The multiresolution predictors in the high-frequencymore » band reflect the changing rates in emerging flux regions. The variation of emerging fluxes is decoupled by wavelet transform in different frequency bands. The information amount of these multiresolution predictors is evaluated by the information gain ratio. It is found that the multiresolution predictors in the lowest and highest frequency bands contain the most information. Based on these predictors, a C4.5 decision tree algorithm is used to build the short-term solar flare prediction model. It is found that the performance of the short-term solar flare prediction model based on the multiresolution predictors is greatly improved.« less

  7. A study on multiresolution lossless video coding using inter/intra frame adaptive prediction

    NASA Astrophysics Data System (ADS)

    Nakachi, Takayuki; Sawabe, Tomoko; Fujii, Tetsuro

    2003-06-01

    Lossless video coding is required in the fields of archiving and editing digital cinema or digital broadcasting contents. This paper combines a discrete wavelet transform and adaptive inter/intra-frame prediction in the wavelet transform domain to create multiresolution lossless video coding. The multiresolution structure offered by the wavelet transform facilitates interchange among several video source formats such as Super High Definition (SHD) images, HDTV, SDTV, and mobile applications. Adaptive inter/intra-frame prediction is an extension of JPEG-LS, a state-of-the-art lossless still image compression standard. Based on the image statistics of the wavelet transform domains in successive frames, inter/intra frame adaptive prediction is applied to the appropriate wavelet transform domain. This adaptation offers superior compression performance. This is achieved with low computational cost and no increase in additional information. Experiments on digital cinema test sequences confirm the effectiveness of the proposed algorithm.

  8. A novel rail defect detection method based on undecimated lifting wavelet packet transform and Shannon entropy-improved adaptive line enhancer

    NASA Astrophysics Data System (ADS)

    Hao, Qiushi; Zhang, Xin; Wang, Yan; Shen, Yi; Makis, Viliam

    2018-07-01

    Acoustic emission (AE) technology is sensitive to subliminal rail defects, however strong wheel-rail contact rolling noise under high-speed condition has gravely impeded detecting of rail defects using traditional denoising methods. In this context, the paper develops an adaptive detection method for rail cracks, which combines multiresolution analysis with an improved adaptive line enhancer (ALE). To obtain elaborate multiresolution information of transient crack signals with low computational cost, lifting scheme-based undecimated wavelet packet transform is adopted. In order to feature the impulsive property of crack signals, a Shannon entropy-improved ALE is proposed as a signal enhancing approach, where Shannon entropy is introduced to improve the cost function. Then a rail defect detection plan based on the proposed method for high-speed condition is put forward. From theoretical analysis and experimental verification, it is demonstrated that the proposed method has superior performance in enhancing the rail defect AE signal and reducing the strong background noise, offering an effective multiresolution approach for rail defect detection under high-speed and strong-noise condition.

  9. Wavelet-based 3-D inversion for frequency-domain airborne EM data

    NASA Astrophysics Data System (ADS)

    Liu, Yunhe; Farquharson, Colin G.; Yin, Changchun; Baranwal, Vikas C.

    2018-04-01

    In this paper, we propose a new wavelet-based 3-D inversion method for frequency-domain airborne electromagnetic (FDAEM) data. Instead of inverting the model in the space domain using a smoothing constraint, this new method recovers the model in the wavelet domain based on a sparsity constraint. In the wavelet domain, the model is represented by two types of coefficients, which contain both large- and fine-scale informations of the model, meaning the wavelet-domain inversion has inherent multiresolution. In order to accomplish a sparsity constraint, we minimize an L1-norm measure in the wavelet domain that mostly gives a sparse solution. The final inversion system is solved by an iteratively reweighted least-squares method. We investigate different orders of Daubechies wavelets to accomplish our inversion algorithm, and test them on synthetic frequency-domain AEM data set. The results show that higher order wavelets having larger vanishing moments and regularity can deliver a more stable inversion process and give better local resolution, while the lower order wavelets are simpler and less smooth, and thus capable of recovering sharp discontinuities if the model is simple. At last, we test this new inversion algorithm on a frequency-domain helicopter EM (HEM) field data set acquired in Byneset, Norway. Wavelet-based 3-D inversion of HEM data is compared to L2-norm-based 3-D inversion's result to further investigate the features of the new method.

  10. Multi-resolution analysis for ear recognition using wavelet features

    NASA Astrophysics Data System (ADS)

    Shoaib, M.; Basit, A.; Faye, I.

    2016-11-01

    Security is very important and in order to avoid any physical contact, identification of human when they are moving is necessary. Ear biometric is one of the methods by which a person can be identified using surveillance cameras. Various techniques have been proposed to increase the ear based recognition systems. In this work, a feature extraction method for human ear recognition based on wavelet transforms is proposed. The proposed features are approximation coefficients and specific details of level two after applying various types of wavelet transforms. Different wavelet transforms are applied to find the suitable wavelet. Minimum Euclidean distance is used as a matching criterion. Results achieved by the proposed method are promising and can be used in real time ear recognition system.

  11. Experimental Studies on a Compact Storage Scheme for Wavelet-based Multiresolution Subregion Retrieval

    NASA Technical Reports Server (NTRS)

    Poulakidas, A.; Srinivasan, A.; Egecioglu, O.; Ibarra, O.; Yang, T.

    1996-01-01

    Wavelet transforms, when combined with quantization and a suitable encoding, can be used to compress images effectively. In order to use them for image library systems, a compact storage scheme for quantized coefficient wavelet data must be developed with a support for fast subregion retrieval. We have designed such a scheme and in this paper we provide experimental studies to demonstrate that it achieves good image compression ratios, while providing a natural indexing mechanism that facilitates fast retrieval of portions of the image at various resolutions.

  12. Correlative weighted stacking for seismic data in the wavelet domain

    USGS Publications Warehouse

    Zhang, S.; Xu, Y.; Xia, J.; ,

    2004-01-01

    Horizontal stacking plays a crucial role for modern seismic data processing, for it not only compresses random noise and multiple reflections, but also provides a foundational data for subsequent migration and inversion. However, a number of examples showed that random noise in adjacent traces exhibits correlation and coherence. The average stacking and weighted stacking based on the conventional correlative function all result in false events, which are caused by noise. Wavelet transform and high order statistics are very useful methods for modern signal processing. The multiresolution analysis in wavelet theory can decompose signal on difference scales, and high order correlative function can inhibit correlative noise, for which the conventional correlative function is of no use. Based on the theory of wavelet transform and high order statistics, high order correlative weighted stacking (HOCWS) technique is presented in this paper. Its essence is to stack common midpoint gathers after the normal moveout correction by weight that is calculated through high order correlative statistics in the wavelet domain. Synthetic examples demonstrate its advantages in improving the signal to noise (S/N) ration and compressing the correlative random noise.

  13. Adjusting Wavelet-based Multiresolution Analysis Boundary Conditions for Robust Long-term Streamflow Forecasting Model

    NASA Astrophysics Data System (ADS)

    Maslova, I.; Ticlavilca, A. M.; McKee, M.

    2012-12-01

    There has been an increased interest in wavelet-based streamflow forecasting models in recent years. Often overlooked in this approach are the circularity assumptions of the wavelet transform. We propose a novel technique for minimizing the wavelet decomposition boundary condition effect to produce long-term, up to 12 months ahead, forecasts of streamflow. A simulation study is performed to evaluate the effects of different wavelet boundary rules using synthetic and real streamflow data. A hybrid wavelet-multivariate relevance vector machine model is developed for forecasting the streamflow in real-time for Yellowstone River, Uinta Basin, Utah, USA. The inputs of the model utilize only the past monthly streamflow records. They are decomposed into components formulated in terms of wavelet multiresolution analysis. It is shown that the model model accuracy can be increased by using the wavelet boundary rule introduced in this study. This long-term streamflow modeling and forecasting methodology would enable better decision-making and managing water availability risk.

  14. Design and application of discrete wavelet packet transform based multiresolution controller for liquid level system.

    PubMed

    Paul, Rimi; Sengupta, Anindita

    2017-11-01

    A new controller based on discrete wavelet packet transform (DWPT) for liquid level system (LLS) has been presented here. This controller generates control signal using node coefficients of the error signal which interprets many implicit phenomena such as process dynamics, measurement noise and effect of external disturbances. Through simulation results on LLS problem, this controller is shown to perform faster than both the discrete wavelet transform based controller and conventional proportional integral controller. Also, it is more efficient in terms of its ability to provide better noise rejection. To overcome the wind up phenomenon by considering the saturation due to presence of actuator, anti-wind up technique is applied to the conventional PI controller and compared to the wavelet packet transform based controller. In this case also, packet controller is found better than the other ones. This similar work has been extended for analogous first order RC plant as well as second order plant also. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Characterizing and understanding the climatic determinism of high- to low-frequency variations in precipitation in northwestern France using a coupled wavelet multiresolution/statistical downscaling approach

    NASA Astrophysics Data System (ADS)

    Massei, Nicolas; Dieppois, Bastien; Hannah, David; Lavers, David; Fossa, Manuel; Laignel, Benoit; Debret, Maxime

    2017-04-01

    Geophysical signals oscillate over several time-scales that explain different amount of their overall variability and may be related to different physical processes. Characterizing and understanding such variabilities in hydrological variations and investigating their determinism is one important issue in a context of climate change, as these variabilities can be occasionally superimposed to long-term trend possibly due to climate change. It is also important to refine our understanding of time-scale dependent linkages between large-scale climatic variations and hydrological responses on the regional or local-scale. Here we investigate such links by conducting a wavelet multiresolution statistical dowscaling approach of precipitation in northwestern France (Seine river catchment) over 1950-2016 using sea level pressure (SLP) and sea surface temperature (SST) as indicators of atmospheric and oceanic circulations, respectively. Previous results demonstrated that including multiresolution decomposition in a statistical downscaling model (within a so-called multiresolution ESD model) using SLP as large-scale predictor greatly improved simulation of low-frequency, i.e. interannual to interdecadal, fluctuations observed in precipitation. Building on these results, continuous wavelet transform of simulated precipiation using multiresolution ESD confirmed the good performance of the model to better explain variability at all time-scales. A sensitivity analysis of the model to the choice of the scale and wavelet function used was also tested. It appeared that whatever the wavelet used, the model performed similarly. The spatial patterns of SLP found as the best predictors for all time-scales, which resulted from the wavelet decomposition, revealed different structures according to time-scale, showing possible different determinisms. More particularly, some low-frequency components ( 3.2-yr and 19.3-yr) showed a much wide-spread spatial extentsion across the Atlantic. Moreover, in accordance with other previous studies, the wavelet components detected in SLP and precipitation on interannual to interdecadal time-scales could be interpreted in terms of influence of the Gulf-Stream oceanic front on atmospheric circulation. Current works are now conducted including SST over the Atlantic in order to get further insights into this mechanism.

  16. Perceptual compression of magnitude-detected synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Gorman, John D.; Werness, Susan A.

    1994-01-01

    A perceptually-based approach for compressing synthetic aperture radar (SAR) imagery is presented. Key components of the approach are a multiresolution wavelet transform, a bit allocation mask based on an empirical human visual system (HVS) model, and hybrid scalar/vector quantization. Specifically, wavelet shrinkage techniques are used to segregate wavelet transform coefficients into three components: local means, edges, and texture. Each of these three components is then quantized separately according to a perceptually-based bit allocation scheme. Wavelet coefficients associated with local means and edges are quantized using high-rate scalar quantization while texture information is quantized using low-rate vector quantization. The impact of the perceptually-based multiresolution compression algorithm on visual image quality, impulse response, and texture properties is assessed for fine-resolution magnitude-detected SAR imagery; excellent image quality is found at bit rates at or above 1 bpp along with graceful performance degradation at rates below 1 bpp.

  17. Hydrometeorological variability on a large french catchment and its relation to large-scale circulation across temporal scales

    NASA Astrophysics Data System (ADS)

    Massei, Nicolas; Dieppois, Bastien; Fritier, Nicolas; Laignel, Benoit; Debret, Maxime; Lavers, David; Hannah, David

    2015-04-01

    In the present context of global changes, considerable efforts have been deployed by the hydrological scientific community to improve our understanding of the impacts of climate fluctuations on water resources. Both observational and modeling studies have been extensively employed to characterize hydrological changes and trends, assess the impact of climate variability or provide future scenarios of water resources. In the aim of a better understanding of hydrological changes, it is of crucial importance to determine how and to what extent trends and long-term oscillations detectable in hydrological variables are linked to global climate oscillations. In this work, we develop an approach associating large-scale/local-scale correlation, enmpirical statistical downscaling and wavelet multiresolution decomposition of monthly precipitation and streamflow over the Seine river watershed, and the North Atlantic sea level pressure (SLP) in order to gain additional insights on the atmospheric patterns associated with the regional hydrology. We hypothesized that: i) atmospheric patterns may change according to the different temporal wavelengths defining the variability of the signals; and ii) definition of those hydrological/circulation relationships for each temporal wavelength may improve the determination of large-scale predictors of local variations. The results showed that the large-scale/local-scale links were not necessarily constant according to time-scale (i.e. for the different frequencies characterizing the signals), resulting in changing spatial patterns across scales. This was then taken into account by developing an empirical statistical downscaling (ESD) modeling approach which integrated discrete wavelet multiresolution analysis for reconstructing local hydrometeorological processes (predictand : precipitation and streamflow on the Seine river catchment) based on a large-scale predictor (SLP over the Euro-Atlantic sector) on a monthly time-step. This approach basically consisted in 1- decomposing both signals (SLP field and precipitation or streamflow) using discrete wavelet multiresolution analysis and synthesis, 2- generating one statistical downscaling model per time-scale, 3- summing up all scale-dependent models in order to obtain a final reconstruction of the predictand. The results obtained revealed a significant improvement of the reconstructions for both precipitation and streamflow when using the multiresolution ESD model instead of basic ESD ; in addition, the scale-dependent spatial patterns associated to the model matched quite well those obtained from scale-dependent composite analysis. In particular, the multiresolution ESD model handled very well the significant changes in variance through time observed in either prepciptation or streamflow. For instance, the post-1980 period, which had been characterized by particularly high amplitudes in interannual-to-interdecadal variability associated with flood and extremely low-flow/drought periods (e.g., winter 2001, summer 2003), could not be reconstructed without integrating wavelet multiresolution analysis into the model. Further investigations would be required to address the issue of the stationarity of the large-scale/local-scale relationships and to test the capability of the multiresolution ESD model for interannual-to-interdecadal forecasting. In terms of methodological approach, further investigations may concern a fully comprehensive sensitivity analysis of the modeling to the parameter of the multiresolution approach (different families of scaling and wavelet functions used, number of coefficients/degree of smoothness, etc.).

  18. Multiresolution Wavelet Based Adaptive Numerical Dissipation Control for Shock-Turbulence Computations

    NASA Technical Reports Server (NTRS)

    Sjoegreen, B.; Yee, H. C.

    2001-01-01

    The recently developed essentially fourth-order or higher low dissipative shock-capturing scheme of Yee, Sandham and Djomehri (1999) aimed at minimizing nu- merical dissipations for high speed compressible viscous flows containing shocks, shears and turbulence. To detect non smooth behavior and control the amount of numerical dissipation to be added, Yee et al. employed an artificial compression method (ACM) of Harten (1978) but utilize it in an entirely different context than Harten originally intended. The ACM sensor consists of two tuning parameters and is highly physical problem dependent. To minimize the tuning of parameters and physical problem dependence, new sensors with improved detection properties are proposed. The new sensors are derived from utilizing appropriate non-orthogonal wavelet basis functions and they can be used to completely switch to the extra numerical dissipation outside shock layers. The non-dissipative spatial base scheme of arbitrarily high order of accuracy can be maintained without compromising its stability at all parts of the domain where the solution is smooth. Two types of redundant non-orthogonal wavelet basis functions are considered. One is the B-spline wavelet (Mallat & Zhong 1992) used by Gerritsen and Olsson (1996) in an adaptive mesh refinement method, to determine regions where re nement should be done. The other is the modification of the multiresolution method of Harten (1995) by converting it to a new, redundant, non-orthogonal wavelet. The wavelet sensor is then obtained by computing the estimated Lipschitz exponent of a chosen physical quantity (or vector) to be sensed on a chosen wavelet basis function. Both wavelet sensors can be viewed as dual purpose adaptive methods leading to dynamic numerical dissipation control and improved grid adaptation indicators. Consequently, they are useful not only for shock-turbulence computations but also for computational aeroacoustics and numerical combustion. In addition, these sensors are scheme independent and can be stand alone options for numerical algorithm other than the Yee et al. scheme.

  19. Wavelet bases on the L-shaped domain

    NASA Astrophysics Data System (ADS)

    Jouini, Abdellatif; Lemarié-Rieusset, Pierre Gilles

    2013-07-01

    We present in this paper two elementary constructions of multiresolution analyses on the L-shaped domain D. In the first one, we shall describe a direct method to define an orthonormal multiresolution analysis. In the second one, we use the decomposition method for constructing a biorthogonal multiresolution analysis. These analyses are adapted for the study of the Sobolev spaces Hs(D)(s∈N).

  20. Interest rate next-day variation prediction based on hybrid feedforward neural network, particle swarm optimization, and multiresolution techniques

    NASA Astrophysics Data System (ADS)

    Lahmiri, Salim

    2016-02-01

    Multiresolution analysis techniques including continuous wavelet transform, empirical mode decomposition, and variational mode decomposition are tested in the context of interest rate next-day variation prediction. In particular, multiresolution analysis techniques are used to decompose interest rate actual variation and feedforward neural network for training and prediction. Particle swarm optimization technique is adopted to optimize its initial weights. For comparison purpose, autoregressive moving average model, random walk process and the naive model are used as main reference models. In order to show the feasibility of the presented hybrid models that combine multiresolution analysis techniques and feedforward neural network optimized by particle swarm optimization, we used a set of six illustrative interest rates; including Moody's seasoned Aaa corporate bond yield, Moody's seasoned Baa corporate bond yield, 3-Month, 6-Month and 1-Year treasury bills, and effective federal fund rate. The forecasting results show that all multiresolution-based prediction systems outperform the conventional reference models on the criteria of mean absolute error, mean absolute deviation, and root mean-squared error. Therefore, it is advantageous to adopt hybrid multiresolution techniques and soft computing models to forecast interest rate daily variations as they provide good forecasting performance.

  1. Multi-time-scale hydroclimate dynamics of a regional watershed and links to large-scale atmospheric circulation: Application to the Seine river catchment, France

    NASA Astrophysics Data System (ADS)

    Massei, N.; Dieppois, B.; Hannah, D. M.; Lavers, D. A.; Fossa, M.; Laignel, B.; Debret, M.

    2017-03-01

    In the present context of global changes, considerable efforts have been deployed by the hydrological scientific community to improve our understanding of the impacts of climate fluctuations on water resources. Both observational and modeling studies have been extensively employed to characterize hydrological changes and trends, assess the impact of climate variability or provide future scenarios of water resources. In the aim of a better understanding of hydrological changes, it is of crucial importance to determine how and to what extent trends and long-term oscillations detectable in hydrological variables are linked to global climate oscillations. In this work, we develop an approach associating correlation between large and local scales, empirical statistical downscaling and wavelet multiresolution decomposition of monthly precipitation and streamflow over the Seine river watershed, and the North Atlantic sea level pressure (SLP) in order to gain additional insights on the atmospheric patterns associated with the regional hydrology. We hypothesized that: (i) atmospheric patterns may change according to the different temporal wavelengths defining the variability of the signals; and (ii) definition of those hydrological/circulation relationships for each temporal wavelength may improve the determination of large-scale predictors of local variations. The results showed that the links between large and local scales were not necessarily constant according to time-scale (i.e. for the different frequencies characterizing the signals), resulting in changing spatial patterns across scales. This was then taken into account by developing an empirical statistical downscaling (ESD) modeling approach, which integrated discrete wavelet multiresolution analysis for reconstructing monthly regional hydrometeorological processes (predictand: precipitation and streamflow on the Seine river catchment) based on a large-scale predictor (SLP over the Euro-Atlantic sector). This approach basically consisted in three steps: 1 - decomposing large-scale climate and hydrological signals (SLP field, precipitation or streamflow) using discrete wavelet multiresolution analysis, 2 - generating a statistical downscaling model per time-scale, 3 - summing up all scale-dependent models in order to obtain a final reconstruction of the predictand. The results obtained revealed a significant improvement of the reconstructions for both precipitation and streamflow when using the multiresolution ESD model instead of basic ESD. In particular, the multiresolution ESD model handled very well the significant changes in variance through time observed in either precipitation or streamflow. For instance, the post-1980 period, which had been characterized by particularly high amplitudes in interannual-to-interdecadal variability associated with alternating flood and extremely low-flow/drought periods (e.g., winter/spring 2001, summer 2003), could not be reconstructed without integrating wavelet multiresolution analysis into the model. In accordance with previous studies, the wavelet components detected in SLP, precipitation and streamflow on interannual to interdecadal time-scales could be interpreted in terms of influence of the Gulf-Stream oceanic front on atmospheric circulation.

  2. Parallel object-oriented, denoising system using wavelet multiresolution analysis

    DOEpatents

    Kamath, Chandrika; Baldwin, Chuck H.; Fodor, Imola K.; Tang, Nu A.

    2005-04-12

    The present invention provides a data de-noising system utilizing processors and wavelet denoising techniques. Data is read and displayed in different formats. The data is partitioned into regions and the regions are distributed onto the processors. Communication requirements are determined among the processors according to the wavelet denoising technique and the partitioning of the data. The data is transforming onto different multiresolution levels with the wavelet transform according to the wavelet denoising technique, the communication requirements, and the transformed data containing wavelet coefficients. The denoised data is then transformed into its original reading and displaying data format.

  3. Multiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speech.

    NASA Astrophysics Data System (ADS)

    Campo, D.; Quintero, O. L.; Bastidas, M.

    2016-04-01

    We propose a study of the mathematical properties of voice as an audio signal. This work includes signals in which the channel conditions are not ideal for emotion recognition. Multiresolution analysis- discrete wavelet transform - was performed through the use of Daubechies Wavelet Family (Db1-Haar, Db6, Db8, Db10) allowing the decomposition of the initial audio signal into sets of coefficients on which a set of features was extracted and analyzed statistically in order to differentiate emotional states. ANNs proved to be a system that allows an appropriate classification of such states. This study shows that the extracted features using wavelet decomposition are enough to analyze and extract emotional content in audio signals presenting a high accuracy rate in classification of emotional states without the need to use other kinds of classical frequency-time features. Accordingly, this paper seeks to characterize mathematically the six basic emotions in humans: boredom, disgust, happiness, anxiety, anger and sadness, also included the neutrality, for a total of seven states to identify.

  4. Wavelet synthetic method for turbulent flow.

    PubMed

    Zhou, Long; Rauh, Cornelia; Delgado, Antonio

    2015-07-01

    Based on the idea of random cascades on wavelet dyadic trees and the energy cascade model known as the wavelet p model, a series of velocity increments in two-dimensional space are constructed in different levels of scale. The dynamics is imposed on the generated scales by solving the Euler equation in the Lagrangian framework. A dissipation model is used in order to cover the shortage of the p model, which only predicts in inertial range. Wavelet reconstruction as well as the multiresolution analysis are then performed on each scales. As a result, a type of isotropic velocity field is created. The statistical properties show that the constructed velocity fields share many important features with real turbulence. The pertinence of this approach in the prediction of flow intermittency is also discussed.

  5. Automated transformation-invariant shape recognition through wavelet multiresolution

    NASA Astrophysics Data System (ADS)

    Brault, Patrice; Mounier, Hugues

    2001-12-01

    We present here new results in Wavelet Multi-Resolution Analysis (W-MRA) applied to shape recognition in automatic vehicle driving applications. Different types of shapes have to be recognized in this framework. They pertain to most of the objects entering the sensors field of a car. These objects can be road signs, lane separation lines, moving or static obstacles, other automotive vehicles, or visual beacons. The recognition process must be invariant to global, affine or not, transformations which are : rotation, translation and scaling. It also has to be invariant to more local, elastic, deformations like the perspective (in particular with wide angle camera lenses), and also like deformations due to environmental conditions (weather : rain, mist, light reverberation) or optical and electrical signal noises. To demonstrate our method, an initial shape, with a known contour, is compared to the same contour altered by rotation, translation, scaling and perspective. The curvature computed for each contour point is used as a main criterion in the shape matching process. The original part of this work is to use wavelet descriptors, generated with a fast orthonormal W-MRA, rather than Fourier descriptors, in order to provide a multi-resolution description of the contour to be analyzed. In such way, the intrinsic spatial localization property of wavelet descriptors can be used and the recognition process can be speeded up. The most important part of this work is to demonstrate the potential performance of Wavelet-MRA in this application of shape recognition.

  6. A new wavelet transform to sparsely represent cortical current densities for EEG/MEG inverse problems.

    PubMed

    Liao, Ke; Zhu, Min; Ding, Lei

    2013-08-01

    The present study investigated the use of transform sparseness of cortical current density on human brain surface to improve electroencephalography/magnetoencephalography (EEG/MEG) inverse solutions. Transform sparseness was assessed by evaluating compressibility of cortical current densities in transform domains. To do that, a structure compression method from computer graphics was first adopted to compress cortical surface structure, either regular or irregular, into hierarchical multi-resolution meshes. Then, a new face-based wavelet method based on generated multi-resolution meshes was proposed to compress current density functions defined on cortical surfaces. Twelve cortical surface models were built by three EEG/MEG softwares and their structural compressibility was evaluated and compared by the proposed method. Monte Carlo simulations were implemented to evaluate the performance of the proposed wavelet method in compressing various cortical current density distributions as compared to other two available vertex-based wavelet methods. The present results indicate that the face-based wavelet method can achieve higher transform sparseness than vertex-based wavelet methods. Furthermore, basis functions from the face-based wavelet method have lower coherence against typical EEG and MEG measurement systems than vertex-based wavelet methods. Both high transform sparseness and low coherent measurements suggest that the proposed face-based wavelet method can improve the performance of L1-norm regularized EEG/MEG inverse solutions, which was further demonstrated in simulations and experimental setups using MEG data. Thus, this new transform on complicated cortical structure is promising to significantly advance EEG/MEG inverse source imaging technologies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    I. W. Ginsberg

    Multiresolutional decompositions known as spectral fingerprints are often used to extract spectral features from multispectral/hyperspectral data. In this study, the authors investigate the use of wavelet-based algorithms for generating spectral fingerprints. The wavelet-based algorithms are compared to the currently used method, traditional convolution with first-derivative Gaussian filters. The comparison analyses consists of two parts: (a) the computational expense of the new method is compared with the computational costs of the current method and (b) the outputs of the wavelet-based methods are compared with those of the current method to determine any practical differences in the resulting spectral fingerprints. The resultsmore » show that the wavelet-based algorithms can greatly reduce the computational expense of generating spectral fingerprints, while practically no differences exist in the resulting fingerprints. The analysis is conducted on a database of hyperspectral signatures, namely, Hyperspectral Digital Image Collection Experiment (HYDICE) signatures. The reduction in computational expense is by a factor of about 30, and the average Euclidean distance between resulting fingerprints is on the order of 0.02.« less

  8. WaveJava: Wavelet-based network computing

    NASA Astrophysics Data System (ADS)

    Ma, Kun; Jiao, Licheng; Shi, Zhuoer

    1997-04-01

    Wavelet is a powerful theory, but its successful application still needs suitable programming tools. Java is a simple, object-oriented, distributed, interpreted, robust, secure, architecture-neutral, portable, high-performance, multi- threaded, dynamic language. This paper addresses the design and development of a cross-platform software environment for experimenting and applying wavelet theory. WaveJava, a wavelet class library designed by the object-orient programming, is developed to take advantage of the wavelets features, such as multi-resolution analysis and parallel processing in the networking computing. A new application architecture is designed for the net-wide distributed client-server environment. The data are transmitted with multi-resolution packets. At the distributed sites around the net, these data packets are done the matching or recognition processing in parallel. The results are fed back to determine the next operation. So, the more robust results can be arrived quickly. The WaveJava is easy to use and expand for special application. This paper gives a solution for the distributed fingerprint information processing system. It also fits for some other net-base multimedia information processing, such as network library, remote teaching and filmless picture archiving and communications.

  9. Wavelet-based hierarchical surface approximation from height fields

    Treesearch

    Sang-Mook Lee; A. Lynn Abbott; Daniel L. Schmoldt

    2004-01-01

    This paper presents a novel hierarchical approach to triangular mesh generation from height fields. A wavelet-based multiresolution analysis technique is used to estimate local shape information at different levels of resolution. Using predefined templates at the coarsest level, the method constructs an initial triangulation in which underlying object shapes are well...

  10. Automatic brain tumor detection in MRI: methodology and statistical validation

    NASA Astrophysics Data System (ADS)

    Iftekharuddin, Khan M.; Islam, Mohammad A.; Shaik, Jahangheer; Parra, Carlos; Ogg, Robert

    2005-04-01

    Automated brain tumor segmentation and detection are immensely important in medical diagnostics because it provides information associated to anatomical structures as well as potential abnormal tissue necessary to delineate appropriate surgical planning. In this work, we propose a novel automated brain tumor segmentation technique based on multiresolution texture information that combines fractal Brownian motion (fBm) and wavelet multiresolution analysis. Our wavelet-fractal technique combines the excellent multiresolution localization property of wavelets to texture extraction of fractal. We prove the efficacy of our technique by successfully segmenting pediatric brain MR images (MRIs) from St. Jude Children"s Research Hospital. We use self-organizing map (SOM) as our clustering tool wherein we exploit both pixel intensity and multiresolution texture features to obtain segmented tumor. Our test results show that our technique successfully segments abnormal brain tissues in a set of T1 images. In the next step, we design a classifier using Feed-Forward (FF) neural network to statistically validate the presence of tumor in MRI using both the multiresolution texture and the pixel intensity features. We estimate the corresponding receiver operating curve (ROC) based on the findings of true positive fractions and false positive fractions estimated from our classifier at different threshold values. An ROC, which can be considered as a gold standard to prove the competence of a classifier, is obtained to ascertain the sensitivity and specificity of our classifier. We observe that at threshold 0.4 we achieve true positive value of 1.0 (100%) sacrificing only 0.16 (16%) false positive value for the set of 50 T1 MRI analyzed in this experiment.

  11. Wavelet and adaptive methods for time dependent problems and applications in aerosol dynamics

    NASA Astrophysics Data System (ADS)

    Guo, Qiang

    Time dependent partial differential equations (PDEs) are widely used as mathematical models of environmental problems. Aerosols are now clearly identified as an important factor in many environmental aspects of climate and radiative forcing processes, as well as in the health effects of air quality. The mathematical models for the aerosol dynamics with respect to size distribution are nonlinear partial differential and integral equations, which describe processes of condensation, coagulation and deposition. Simulating the general aerosol dynamic equations on time, particle size and space exhibits serious difficulties because the size dimension ranges from a few nanometer to several micrometer while the spatial dimension is usually described with kilometers. Therefore, it is an important and challenging task to develop efficient techniques for solving time dependent dynamic equations. In this thesis, we develop and analyze efficient wavelet and adaptive methods for the time dependent dynamic equations on particle size and further apply them to the spatial aerosol dynamic systems. Wavelet Galerkin method is proposed to solve the aerosol dynamic equations on time and particle size due to the fact that aerosol distribution changes strongly along size direction and the wavelet technique can solve it very efficiently. Daubechies' wavelets are considered in the study due to the fact that they possess useful properties like orthogonality, compact support, exact representation of polynomials to a certain degree. Another problem encountered in the solution of the aerosol dynamic equations results from the hyperbolic form due to the condensation growth term. We propose a new characteristic-based fully adaptive multiresolution numerical scheme for solving the aerosol dynamic equation, which combines the attractive advantages of adaptive multiresolution technique and the characteristics method. On the aspect of theoretical analysis, the global existence and uniqueness of solutions of continuous time wavelet numerical methods for the nonlinear aerosol dynamics are proved by using Schauder's fixed point theorem and the variational technique. Optimal error estimates are derived for both continuous and discrete time wavelet Galerkin schemes. We further derive reliable and efficient a posteriori error estimate which is based on stable multiresolution wavelet bases and an adaptive space-time algorithm for efficient solution of linear parabolic differential equations. The adaptive space refinement strategies based on the locality of corresponding multiresolution processes are proved to converge. At last, we develop efficient numerical methods by combining the wavelet methods proposed in previous parts and the splitting technique to solve the spatial aerosol dynamic equations. Wavelet methods along the particle size direction and the upstream finite difference method along the spatial direction are alternately used in each time interval. Numerical experiments are taken to show the effectiveness of our developed methods.

  12. Multiscale wavelet representations for mammographic feature analysis

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Song, Shuwu

    1992-12-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet coefficients, enhanced by linear, exponential and constant weight functions localized in scale space. By improving the visualization of breast pathology we can improve the changes of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).

  13. An innovative approach for characteristic analysis and state-of-health diagnosis for a Li-ion cell based on the discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Kim, Jonghoon; Cho, B. H.

    2014-08-01

    This paper introduces an innovative approach to analyze electrochemical characteristics and state-of-health (SOH) diagnosis of a Li-ion cell based on the discrete wavelet transform (DWT). In this approach, the DWT has been applied as a powerful tool in the analysis of the discharging/charging voltage signal (DCVS) with non-stationary and transient phenomena for a Li-ion cell. Specifically, DWT-based multi-resolution analysis (MRA) is used for extracting information on the electrochemical characteristics in both time and frequency domain simultaneously. Through using the MRA with implementation of the wavelet decomposition, the information on the electrochemical characteristics of a Li-ion cell can be extracted from the DCVS over a wide frequency range. Wavelet decomposition based on the selection of the order 3 Daubechies wavelet (dB3) and scale 5 as the best wavelet function and the optimal decomposition scale is implemented. In particular, this present approach develops these investigations one step further by showing low and high frequency components (approximation component An and detail component Dn, respectively) extracted from variable Li-ion cells with different electrochemical characteristics caused by aging effect. Experimental results show the clearness of the DWT-based approach for the reliable diagnosis of the SOH for a Li-ion cell.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiolo, M., E-mail: massimo.maiolo@zhaw.ch; ZHAW, Institut für Angewandte Simulation, Grüental, CH-8820 Wädenswil; Vancheri, A., E-mail: alberto.vancheri@supsi.ch

    In this paper, we apply Multiresolution Analysis (MRA) to develop sparse but accurate representations for the Multiscale Coarse-Graining (MSCG) approximation to the many-body potential of mean force. We rigorously framed the MSCG method into MRA so that all the instruments of this theory become available together with a multitude of new basis functions, namely the wavelets. The coarse-grained (CG) force field is hierarchically decomposed at different resolution levels enabling to choose the most appropriate wavelet family for each physical interaction without requiring an a priori knowledge of the details localization. The representation of the CG potential in this new efficientmore » orthonormal basis leads to a compression of the signal information in few large expansion coefficients. The multiresolution property of the wavelet transform allows to isolate and remove the noise from the CG force-field reconstruction by thresholding the basis function coefficients from each frequency band independently. We discuss the implementation of our wavelet-based MSCG approach and demonstrate its accuracy using two different condensed-phase systems, i.e. liquid water and methanol. Simulations of liquid argon have also been performed using a one-to-one mapping between atomistic and CG sites. The latter model allows to verify the accuracy of the method and to test different choices of wavelet families. Furthermore, the results of the computer simulations show that the efficiency and sparsity of the representation of the CG force field can be traced back to the mathematical properties of the chosen family of wavelets. This result is in agreement with what is known from the theory of multiresolution analysis of signals.« less

  15. Deep learning for classification of islanding and grid disturbance based on multi-resolution singular spectrum entropy

    NASA Astrophysics Data System (ADS)

    Li, Tie; He, Xiaoyang; Tang, Junci; Zeng, Hui; Zhou, Chunying; Zhang, Nan; Liu, Hui; Lu, Zhuoxin; Kong, Xiangrui; Yan, Zheng

    2018-02-01

    Forasmuch as the distinguishment of islanding is easy to be interfered by grid disturbance, island detection device may make misjudgment thus causing the consequence of photovoltaic out of service. The detection device must provide with the ability to differ islanding from grid disturbance. In this paper, the concept of deep learning is introduced into classification of islanding and grid disturbance for the first time. A novel deep learning framework is proposed to detect and classify islanding or grid disturbance. The framework is a hybrid of wavelet transformation, multi-resolution singular spectrum entropy, and deep learning architecture. As a signal processing method after wavelet transformation, multi-resolution singular spectrum entropy combines multi-resolution analysis and spectrum analysis with entropy as output, from which we can extract the intrinsic different features between islanding and grid disturbance. With the features extracted, deep learning is utilized to classify islanding and grid disturbance. Simulation results indicate that the method can achieve its goal while being highly accurate, so the photovoltaic system mistakenly withdrawing from power grids can be avoided.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liakh, Dmitry I

    While the formalism of multiresolution analysis (MRA), based on wavelets and adaptive integral representations of operators, is actively progressing in electronic structure theory (mostly on the independent-particle level and, recently, second-order perturbation theory), the concepts of multiresolution and adaptivity can also be utilized within the traditional formulation of correlated (many-particle) theory which is based on second quantization and the corresponding (generally nonorthogonal) tensor algebra. In this paper, we present a formalism called scale-adaptive tensor algebra (SATA) which exploits an adaptive representation of tensors of many-body operators via the local adjustment of the basis set quality. Given a series of locallymore » supported fragment bases of a progressively lower quality, we formulate the explicit rules for tensor algebra operations dealing with adaptively resolved tensor operands. The formalism suggested is expected to enhance the applicability and reliability of local correlated many-body methods of electronic structure theory, especially those directly based on atomic orbitals (or any other localized basis functions).« less

  17. Wavefront reconstruction method based on wavelet fractal interpolation for coherent free space optical communication

    NASA Astrophysics Data System (ADS)

    Zhang, Dai; Hao, Shiqi; Zhao, Qingsong; Zhao, Qi; Wang, Lei; Wan, Xiongfeng

    2018-03-01

    Existing wavefront reconstruction methods are usually low in resolution, restricted by structure characteristics of the Shack Hartmann wavefront sensor (SH WFS) and the deformable mirror (DM) in the adaptive optics (AO) system, thus, resulting in weak homodyne detection efficiency for free space optical (FSO) communication. In order to solve this problem, we firstly validate the feasibility of liquid crystal spatial light modulator (LC SLM) using in an AO system. Then, wavefront reconstruction method based on wavelet fractal interpolation is proposed after self-similarity analysis of wavefront distortion caused by atmospheric turbulence. Fast wavelet decomposition is operated to multiresolution analyze the wavefront phase spectrum, during which soft threshold denoising is carried out. The resolution of estimated wavefront phase is then improved by fractal interpolation. Finally, fast wavelet reconstruction is taken to recover wavefront phase. Simulation results reflect the superiority of our method in homodyne detection. Compared with minimum variance estimation (MVE) method based on interpolation techniques, the proposed method could obtain superior homodyne detection efficiency with lower operation complexity. Our research findings have theoretical significance in the design of coherent FSO communication system.

  18. Wavelets and molecular structure

    NASA Astrophysics Data System (ADS)

    Carson, Mike

    1996-08-01

    The wavelet method offers possibilities for display, editing, and topological comparison of proteins at a user-specified level of detail. Wavelets are a mathematical tool that first found application in signal processing. The multiresolution analysis of a signal via wavelets provides a hierarchical series of `best' lower-resolution approximations. B-spline ribbons model the protein fold, with one control point per residue. Wavelet analysis sets limits on the information required to define the winding of the backbone through space, suggesting a recognizable fold is generated from a number of points equal to 1/4 or less the number of residues. Wavelets applied to surfaces and volumes show promise in structure-based drug design.

  19. Wavelet processing techniques for digital mammography

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Song, Shuwu

    1992-09-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Similar to traditional coarse to fine matching strategies, the radiologist may first choose to look for coarse features (e.g., dominant mass) within low frequency levels of a wavelet transform and later examine finer features (e.g., microcalcifications) at higher frequency levels. In addition, features may be extracted by applying geometric constraints within each level of the transform. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet representations, enhanced by linear, exponential and constant weight functions through scale space. By improving the visualization of breast pathology we can improve the chances of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).

  20. Multiresolution analysis of Bursa Malaysia KLCI time series

    NASA Astrophysics Data System (ADS)

    Ismail, Mohd Tahir; Dghais, Amel Abdoullah Ahmed

    2017-05-01

    In general, a time series is simply a sequence of numbers collected at regular intervals over a period. Financial time series data processing is concerned with the theory and practice of processing asset price over time, such as currency, commodity data, and stock market data. The primary aim of this study is to understand the fundamental characteristics of selected financial time series by using the time as well as the frequency domain analysis. After that prediction can be executed for the desired system for in sample forecasting. In this study, multiresolution analysis which the assist of discrete wavelet transforms (DWT) and maximal overlap discrete wavelet transform (MODWT) will be used to pinpoint special characteristics of Bursa Malaysia KLCI (Kuala Lumpur Composite Index) daily closing prices and return values. In addition, further case study discussions include the modeling of Bursa Malaysia KLCI using linear ARIMA with wavelets to address how multiresolution approach improves fitting and forecasting results.

  1. Multiscale computations with a wavelet-adaptive algorithm

    NASA Astrophysics Data System (ADS)

    Rastigejev, Yevgenii Anatolyevich

    A wavelet-based adaptive multiresolution algorithm for the numerical solution of multiscale problems governed by partial differential equations is introduced. The main features of the method include fast algorithms for the calculation of wavelet coefficients and approximation of derivatives on nonuniform stencils. The connection between the wavelet order and the size of the stencil is established. The algorithm is based on the mathematically well established wavelet theory. This allows us to provide error estimates of the solution which are used in conjunction with an appropriate threshold criteria to adapt the collocation grid. The efficient data structures for grid representation as well as related computational algorithms to support grid rearrangement procedure are developed. The algorithm is applied to the simulation of phenomena described by Navier-Stokes equations. First, we undertake the study of the ignition and subsequent viscous detonation of a H2 : O2 : Ar mixture in a one-dimensional shock tube. Subsequently, we apply the algorithm to solve the two- and three-dimensional benchmark problem of incompressible flow in a lid-driven cavity at large Reynolds numbers. For these cases we show that solutions of comparable accuracy as the benchmarks are obtained with more than an order of magnitude reduction in degrees of freedom. The simulations show the striking ability of the algorithm to adapt to a solution having different scales at different spatial locations so as to produce accurate results at a relatively low computational cost.

  2. On the Effective Construction of Compactly Supported Wavelets Satisfying Homogenous Boundary Conditions on the Interval

    NASA Technical Reports Server (NTRS)

    Chiavassa, G.; Liandrat, J.

    1996-01-01

    We construct compactly supported wavelet bases satisfying homogeneous boundary conditions on the interval (0,1). The maximum features of multiresolution analysis on the line are retained, including polynomial approximation and tree algorithms. The case of H(sub 0)(sup 1)(0, 1)is detailed, and numerical values, required for the implementation, are provided for the Neumann and Dirichlet boundary conditions.

  3. On analysis of electroencephalogram by multiresolution-based energetic approach

    NASA Astrophysics Data System (ADS)

    Sevindir, Hulya Kodal; Yazici, Cuneyt; Siddiqi, A. H.; Aslan, Zafer

    2013-10-01

    Epilepsy is a common brain disorder where the normal neuronal activity gets affected. Electroencephalography (EEG) is the recording of electrical activity along the scalp produced by the firing of neurons within the brain. The main application of EEG is in the case of epilepsy. On a standard EEG some abnormalities indicate epileptic activity. EEG signals like many biomedical signals are highly non-stationary by their nature. For the investigation of biomedical signals, in particular EEG signals, wavelet analysis have found prominent position in the study for their ability to analyze such signals. Wavelet transform is capable of separating the signal energy among different frequency scales and a good compromise between temporal and frequency resolution is obtained. The present study is an attempt for better understanding of the mechanism causing the epileptic disorder and accurate prediction of occurrence of seizures. In the present paper following Magosso's work [12], we identify typical patterns of energy redistribution before and during the seizure using multiresolution wavelet analysis on Kocaeli University's Medical School's data.

  4. Fingerprint recognition of wavelet-based compressed images by neuro-fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Liu, Ti C.; Mitra, Sunanda

    1996-06-01

    Image compression plays a crucial role in many important and diverse applications requiring efficient storage and transmission. This work mainly focuses on a wavelet transform (WT) based compression of fingerprint images and the subsequent classification of the reconstructed images. The algorithm developed involves multiresolution wavelet decomposition, uniform scalar quantization, entropy and run- length encoder/decoder and K-means clustering of the invariant moments as fingerprint features. The performance of the WT-based compression algorithm has been compared with JPEG current image compression standard. Simulation results show that WT outperforms JPEG in high compression ratio region and the reconstructed fingerprint image yields proper classification.

  5. Hexagonal wavelet processing of digital mammography

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Schuler, Sergio; Huda, Walter; Honeyman-Buck, Janice C.; Steinbach, Barbara G.

    1993-09-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through overcomplete multiresolution representations. We show that efficient representations may be identified from digital mammograms and used to enhance features of importance to mammography within a continuum of scale-space. We present a method of contrast enhancement based on an overcomplete, non-separable multiscale representation: the hexagonal wavelet transform. Mammograms are reconstructed from transform coefficients modified at one or more levels by local and global non-linear operators. Multiscale edges identified within distinct levels of transform space provide local support for enhancement. We demonstrate that features extracted from multiresolution representations can provide an adaptive mechanism for accomplishing local contrast enhancement. We suggest that multiscale detection and local enhancement of singularities may be effectively employed for the visualization of breast pathology without excessive noise amplification.

  6. Multiresolution Wavelet Analysis of Heartbeat Intervals Discriminates Healthy Patients from Those with Cardiac Pathology

    NASA Astrophysics Data System (ADS)

    Thurner, Stefan; Feurstein, Markus C.; Teich, Malvin C.

    1998-02-01

    We applied multiresolution wavelet analysis to the sequence of times between human heartbeats ( R-R intervals) and have found a scale window, between 16 and 32 heartbeat intervals, over which the widths of the R-R wavelet coefficients fall into disjoint sets for normal and heart-failure patients. This has enabled us to correctly classify every patient in a standard data set as belonging either to the heart-failure or normal group with 100% accuracy, thereby providing a clinically significant measure of the presence of heart failure from the R-R intervals alone. Comparison is made with previous approaches, which have provided only statistically significant measures.

  7. A new fractional wavelet transform

    NASA Astrophysics Data System (ADS)

    Dai, Hongzhe; Zheng, Zhibao; Wang, Wei

    2017-03-01

    The fractional Fourier transform (FRFT) is a potent tool to analyze the time-varying signal. However, it fails in locating the fractional Fourier domain (FRFD)-frequency contents which is required in some applications. A novel fractional wavelet transform (FRWT) is proposed to solve this problem. It displays the time and FRFD-frequency information jointly in the time-FRFD-frequency plane. The definition, basic properties, inverse transform and reproducing kernel of the proposed FRWT are considered. It has been shown that an FRWT with proper order corresponds to the classical wavelet transform (WT). The multiresolution analysis (MRA) associated with the developed FRWT, together with the construction of the orthogonal fractional wavelets are also presented. Three applications are discussed: the analysis of signal with time-varying frequency content, the FRFD spectrum estimation of signals that involving noise, and the construction of fractional Harr wavelet. Simulations verify the validity of the proposed FRWT.

  8. Vector coding of wavelet-transformed images

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Zhi, Cheng; Zhou, Yuanhua

    1998-09-01

    Wavelet, as a brand new tool in signal processing, has got broad recognition. Using wavelet transform, we can get octave divided frequency band with specific orientation which combines well with the properties of Human Visual System. In this paper, we discuss the classified vector quantization method for multiresolution represented image.

  9. Multi-resolution Gabor wavelet feature extraction for needle detection in 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Pourtaherian, Arash; Zinger, Svitlana; Mihajlovic, Nenad; de With, Peter H. N.; Huang, Jinfeng; Ng, Gary C.; Korsten, Hendrikus H. M.

    2015-12-01

    Ultrasound imaging is employed for needle guidance in various minimally invasive procedures such as biopsy guidance, regional anesthesia and brachytherapy. Unfortunately, a needle guidance using 2D ultrasound is very challenging, due to a poor needle visibility and a limited field of view. Nowadays, 3D ultrasound systems are available and more widely used. Consequently, with an appropriate 3D image-based needle detection technique, needle guidance and interventions may significantly be improved and simplified. In this paper, we present a multi-resolution Gabor transformation for an automated and reliable extraction of the needle-like structures in a 3D ultrasound volume. We study and identify the best combination of the Gabor wavelet frequencies. High precision in detecting the needle voxels leads to a robust and accurate localization of the needle for the intervention support. Evaluation in several ex-vivo cases shows that the multi-resolution analysis significantly improves the precision of the needle voxel detection from 0.23 to 0.32 at a high recall rate of 0.75 (gain 40%), where a better robustness and confidence were confirmed in the practical experiments.

  10. Multi-resolution Shape Analysis via Non-Euclidean Wavelets: Applications to Mesh Segmentation and Surface Alignment Problems.

    PubMed

    Kim, Won Hwa; Chung, Moo K; Singh, Vikas

    2013-01-01

    The analysis of 3-D shape meshes is a fundamental problem in computer vision, graphics, and medical imaging. Frequently, the needs of the application require that our analysis take a multi-resolution view of the shape's local and global topology, and that the solution is consistent across multiple scales. Unfortunately, the preferred mathematical construct which offers this behavior in classical image/signal processing, Wavelets, is no longer applicable in this general setting (data with non-uniform topology). In particular, the traditional definition does not allow writing out an expansion for graphs that do not correspond to the uniformly sampled lattice (e.g., images). In this paper, we adapt recent results in harmonic analysis, to derive Non-Euclidean Wavelets based algorithms for a range of shape analysis problems in vision and medical imaging. We show how descriptors derived from the dual domain representation offer native multi-resolution behavior for characterizing local/global topology around vertices. With only minor modifications, the framework yields a method for extracting interest/key points from shapes, a surprisingly simple algorithm for 3-D shape segmentation (competitive with state of the art), and a method for surface alignment (without landmarks). We give an extensive set of comparison results on a large shape segmentation benchmark and derive a uniqueness theorem for the surface alignment problem.

  11. On the wavelet optimized finite difference method

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1994-01-01

    When one considers the effect in the physical space, Daubechies-based wavelet methods are equivalent to finite difference methods with grid refinement in regions of the domain where small scale structure exists. Adding a wavelet basis function at a given scale and location where one has a correspondingly large wavelet coefficient is, essentially, equivalent to adding a grid point, or two, at the same location and at a grid density which corresponds to the wavelet scale. This paper introduces a wavelet optimized finite difference method which is equivalent to a wavelet method in its multiresolution approach but which does not suffer from difficulties with nonlinear terms and boundary conditions, since all calculations are done in the physical space. With this method one can obtain an arbitrarily good approximation to a conservative difference method for solving nonlinear conservation laws.

  12. Towards discrete wavelet transform-based human activity recognition

    NASA Astrophysics Data System (ADS)

    Khare, Manish; Jeon, Moongu

    2017-06-01

    Providing accurate recognition of human activities is a challenging problem for visual surveillance applications. In this paper, we present a simple and efficient algorithm for human activity recognition based on a wavelet transform. We adopt discrete wavelet transform (DWT) coefficients as a feature of human objects to obtain advantages of its multiresolution approach. The proposed method is tested on multiple levels of DWT. Experiments are carried out on different standard action datasets including KTH and i3D Post. The proposed method is compared with other state-of-the-art methods in terms of different quantitative performance measures. The proposed method is found to have better recognition accuracy in comparison to the state-of-the-art methods.

  13. Morphological filtering and multiresolution fusion for mammographic microcalcification detection

    NASA Astrophysics Data System (ADS)

    Chen, Lulin; Chen, Chang W.; Parker, Kevin J.

    1997-04-01

    Mammographic images are often of relatively low contrast and poor sharpness with non-stationary background or clutter and are usually corrupted by noise. In this paper, we propose a new method for microcalcification detection using gray scale morphological filtering followed by multiresolution fusion and present a unified general filtering form called the local operating transformation for whitening filtering and adaptive thresholding. The gray scale morphological filters are used to remove all large areas that are considered as non-stationary background or clutter variations, i.e., to prewhiten images. The multiresolution fusion decision is based on matched filter theory. In addition to the normal matched filter, the Laplacian matched filter which is directly related through the wavelet transforms to multiresolution analysis is exploited for microcalcification feature detection. At the multiresolution fusion stage, the region growing techniques are used in each resolution level. The parent-child relations between resolution levels are adopted to make final detection decision. FROC is computed from test on the Nijmegen database.

  14. An improved wavelet-Galerkin method for dynamic response reconstruction and parameter identification of shear-type frames

    NASA Astrophysics Data System (ADS)

    Bu, Haifeng; Wang, Dansheng; Zhou, Pin; Zhu, Hongping

    2018-04-01

    An improved wavelet-Galerkin (IWG) method based on the Daubechies wavelet is proposed for reconstructing the dynamic responses of shear structures. The proposed method flexibly manages wavelet resolution level according to excitation, thereby avoiding the weakness of the wavelet-Galerkin multiresolution analysis (WGMA) method in terms of resolution and the requirement of external excitation. IWG is implemented by this work in certain case studies, involving single- and n-degree-of-freedom frame structures subjected to a determined discrete excitation. Results demonstrate that IWG performs better than WGMA in terms of accuracy and computation efficiency. Furthermore, a new method for parameter identification based on IWG and an optimization algorithm are also developed for shear frame structures, and a simultaneous identification of structural parameters and excitation is implemented. Numerical results demonstrate that the proposed identification method is effective for shear frame structures.

  15. 3-D surface profilometry based on modulation measurement by applying wavelet transform method

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Chen, Feng; Xiao, Chao; Wei, Yongchao

    2017-01-01

    A new analysis of 3-D surface profilometry based on modulation measurement technique by the application of Wavelet Transform method is proposed. As a tool excelling for its multi-resolution and localization in the time and frequency domains, Wavelet Transform method with good localized time-frequency analysis ability and effective de-noizing capacity can extract the modulation distribution more accurately than Fourier Transform method. Especially for the analysis of complex object, more details of the measured object can be well remained. In this paper, the theoretical derivation of Wavelet Transform method that obtains the modulation values from a captured fringe pattern is given. Both computer simulation and elementary experiment are used to show the validity of the proposed method by making a comparison with the results of Fourier Transform method. The results show that the Wavelet Transform method has a better performance than the Fourier Transform method in modulation values retrieval.

  16. Wavelet feature extraction for reliable discrimination between high explosive and chemical/biological artillery

    NASA Astrophysics Data System (ADS)

    Hohil, Myron E.; Desai, Sachi V.; Bass, Henry E.; Chambers, Jim

    2005-03-01

    Feature extraction methods based on the discrete wavelet transform and multiresolution analysis are used to develop a robust classification algorithm that reliably discriminates between conventional and simulated chemical/biological artillery rounds via acoustic signals produced during detonation. Distinct characteristics arise within the different airburst signatures because high explosive warheads emphasize concussive and shrapnel effects, while chemical/biological warheads are designed to disperse their contents over large areas, therefore employing a slower burning, less intense explosive to mix and spread their contents. The ensuing blast waves are readily characterized by variations in the corresponding peak pressure and rise time of the blast, differences in the ratio of positive pressure amplitude to the negative amplitude, and variations in the overall duration of the resulting waveform. Unique attributes can also be identified that depend upon the properties of the gun tube, projectile speed at the muzzle, and the explosive burn rates of the warhead. In this work, the discrete wavelet transform is used to extract the predominant components of these characteristics from air burst signatures at ranges exceeding 2km. Highly reliable discrimination is achieved with a feedforward neural network classifier trained on a feature space derived from the distribution of wavelet coefficients and higher frequency details found within different levels of the multiresolution decomposition.

  17. An Automated Parallel Image Registration Technique Based on the Correlation of Wavelet Features

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Campbell, William J.; Cromp, Robert F.; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    With the increasing importance of multiple platform/multiple remote sensing missions, fast and automatic integration of digital data from disparate sources has become critical to the success of these endeavors. Our work utilizes maxima of wavelet coefficients to form the basic features of a correlation-based automatic registration algorithm. Our wavelet-based registration algorithm is tested successfully with data from the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) and the Landsat/Thematic Mapper(TM), which differ by translation and/or rotation. By the choice of high-frequency wavelet features, this method is similar to an edge-based correlation method, but by exploiting the multi-resolution nature of a wavelet decomposition, our method achieves higher computational speeds for comparable accuracies. This algorithm has been implemented on a Single Instruction Multiple Data (SIMD) massively parallel computer, the MasPar MP-2, as well as on the CrayT3D, the Cray T3E and a Beowulf cluster of Pentium workstations.

  18. Semi-Lagrangian particle methods for high-dimensional Vlasov-Poisson systems

    NASA Astrophysics Data System (ADS)

    Cottet, Georges-Henri

    2018-07-01

    This paper deals with the implementation of high order semi-Lagrangian particle methods to handle high dimensional Vlasov-Poisson systems. It is based on recent developments in the numerical analysis of particle methods and the paper focuses on specific algorithmic features to handle large dimensions. The methods are tested with uniform particle distributions in particular against a recent multi-resolution wavelet based method on a 4D plasma instability case and a 6D gravitational case. Conservation properties, accuracy and computational costs are monitored. The excellent accuracy/cost trade-off shown by the method opens new perspective for accurate simulations of high dimensional kinetic equations by particle methods.

  19. Wavelet Filter Banks for Super-Resolution SAR Imaging

    NASA Technical Reports Server (NTRS)

    Sheybani, Ehsan O.; Deshpande, Manohar; Memarsadeghi, Nargess

    2011-01-01

    This paper discusses Innovative wavelet-based filter banks designed to enhance the analysis of super resolution Synthetic Aperture Radar (SAR) images using parametric spectral methods and signal classification algorithms, SAR finds applications In many of NASA's earth science fields such as deformation, ecosystem structure, and dynamics of Ice, snow and cold land processes, and surface water and ocean topography. Traditionally, standard methods such as Fast-Fourier Transform (FFT) and Inverse Fast-Fourier Transform (IFFT) have been used to extract Images from SAR radar data, Due to non-parametric features of these methods and their resolution limitations and observation time dependence, use of spectral estimation and signal pre- and post-processing techniques based on wavelets to process SAR radar data has been proposed. Multi-resolution wavelet transforms and advanced spectral estimation techniques have proven to offer efficient solutions to this problem.

  20. Spectral information enhancement using wavelet-based iterative filtering for in vivo gamma spectrometry.

    PubMed

    Paul, Sabyasachi; Sarkar, P K

    2013-04-01

    Use of wavelet transformation in stationary signal processing has been demonstrated for denoising the measured spectra and characterisation of radionuclides in the in vivo monitoring analysis, where difficulties arise due to very low activity level to be estimated in biological systems. The large statistical fluctuations often make the identification of characteristic gammas from radionuclides highly uncertain, particularly when interferences from progenies are also present. A new wavelet-based noise filtering methodology has been developed for better detection of gamma peaks in noisy data. This sequential, iterative filtering method uses the wavelet multi-resolution approach for noise rejection and an inverse transform after soft 'thresholding' over the generated coefficients. Analyses of in vivo monitoring data of (235)U and (238)U were carried out using this method without disturbing the peak position and amplitude while achieving a 3-fold improvement in the signal-to-noise ratio, compared with the original measured spectrum. When compared with other data-filtering techniques, the wavelet-based method shows the best results.

  1. Steerable dyadic wavelet transform and interval wavelets for enhancement of digital mammography

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Koren, Iztok; Yang, Wuhai; Taylor, Fred J.

    1995-04-01

    This paper describes two approaches for accomplishing interactive feature analysis by overcomplete multiresolution representations. We show quantitatively that transform coefficients, modified by an adaptive non-linear operator, can make more obvious unseen or barely seen features of mammography without requiring additional radiation. Our results are compared with traditional image enhancement techniques by measuring the local contrast of known mammographic features. We design a filter bank representing a steerable dyadic wavelet transform that can be used for multiresolution analysis along arbitrary orientations. Digital mammograms are enhanced by orientation analysis performed by a steerable dyadic wavelet transform. Arbitrary regions of interest (ROI) are enhanced by Deslauriers-Dubuc interpolation representations on an interval. We demonstrate that our methods can provide radiologists with an interactive capability to support localized processing of selected (suspicion) areas (lesions). Features extracted from multiscale representations can provide an adaptive mechanism for accomplishing local contrast enhancement. By improving the visualization of breast pathology can improve changes of early detection while requiring less time to evaluate mammograms for most patients.

  2. Multiscale Support Vector Learning With Projection Operator Wavelet Kernel for Nonlinear Dynamical System Identification.

    PubMed

    Lu, Zhao; Sun, Jing; Butts, Kenneth

    2016-02-03

    A giant leap has been made in the past couple of decades with the introduction of kernel-based learning as a mainstay for designing effective nonlinear computational learning algorithms. In view of the geometric interpretation of conditional expectation and the ubiquity of multiscale characteristics in highly complex nonlinear dynamic systems [1]-[3], this paper presents a new orthogonal projection operator wavelet kernel, aiming at developing an efficient computational learning approach for nonlinear dynamical system identification. In the framework of multiresolution analysis, the proposed projection operator wavelet kernel can fulfill the multiscale, multidimensional learning to estimate complex dependencies. The special advantage of the projection operator wavelet kernel developed in this paper lies in the fact that it has a closed-form expression, which greatly facilitates its application in kernel learning. To the best of our knowledge, it is the first closed-form orthogonal projection wavelet kernel reported in the literature. It provides a link between grid-based wavelets and mesh-free kernel-based methods. Simulation studies for identifying the parallel models of two benchmark nonlinear dynamical systems confirm its superiority in model accuracy and sparsity.

  3. Adaptive Numerical Dissipative Control in High Order Schemes for Multi-D Non-Ideal MHD

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjoegreen, B.

    2004-01-01

    The goal is to extend our adaptive numerical dissipation control in high order filter schemes and our new divergence-free methods for ideal MHD to non-ideal MHD that include viscosity and resistivity. The key idea consists of automatic detection of different flow features as distinct sensors to signal the appropriate type and amount of numerical dissipation/filter where needed and leave the rest of the region free of numerical dissipation contamination. These scheme-independent detectors are capable of distinguishing shocks/shears, flame sheets, turbulent fluctuations and spurious high-frequency oscillations. The detection algorithm is based on an artificial compression method (ACM) (for shocks/shears), and redundant multi-resolution wavelets (WAV) (for the above types of flow feature). These filter approaches also provide a natural and efficient way for the minimization of Div(B) numerical error. The filter scheme consists of spatially sixth order or higher non-dissipative spatial difference operators as the base scheme for the inviscid flux derivatives. If necessary, a small amount of high order linear dissipation is used to remove spurious high frequency oscillations. For example, an eighth-order centered linear dissipation (AD8) might be included in conjunction with a spatially sixth-order base scheme. The inviscid difference operator is applied twice for the viscous flux derivatives. After the completion of a full time step of the base scheme step, the solution is adaptively filtered by the product of a 'flow detector' and the 'nonlinear dissipative portion' of a high-resolution shock-capturing scheme. In addition, the scheme independent wavelet flow detector can be used in conjunction with spatially compact, spectral or spectral element type of base schemes. The ACM and wavelet filter schemes using the dissipative portion of a second-order shock-capturing scheme with sixth-order spatial central base scheme for both the inviscid and viscous MHD flux derivatives and a fourth-order Runge-Kutta method are denoted.

  4. Automatic multiresolution age-related macular degeneration detection from fundus images

    NASA Astrophysics Data System (ADS)

    Garnier, Mickaël.; Hurtut, Thomas; Ben Tahar, Houssem; Cheriet, Farida

    2014-03-01

    Age-related Macular Degeneration (AMD) is a leading cause of legal blindness. As the disease progress, visual loss occurs rapidly, therefore early diagnosis is required for timely treatment. Automatic, fast and robust screening of this widespread disease should allow an early detection. Most of the automatic diagnosis methods in the literature are based on a complex segmentation of the drusen, targeting a specific symptom of the disease. In this paper, we present a preliminary study for AMD detection from color fundus photographs using a multiresolution texture analysis. We analyze the texture at several scales by using a wavelet decomposition in order to identify all the relevant texture patterns. Textural information is captured using both the sign and magnitude components of the completed model of Local Binary Patterns. An image is finally described with the textural pattern distributions of the wavelet coefficient images obtained at each level of decomposition. We use a Linear Discriminant Analysis for feature dimension reduction, to avoid the curse of dimensionality problem, and image classification. Experiments were conducted on a dataset containing 45 images (23 healthy and 22 diseased) of variable quality and captured by different cameras. Our method achieved a recognition rate of 93:3%, with a specificity of 95:5% and a sensitivity of 91:3%. This approach shows promising results at low costs that in agreement with medical experts as well as robustness to both image quality and fundus camera model.

  5. Survey and analysis of multiresolution methods for turbulence data

    DOE PAGES

    Pulido, Jesus; Livescu, Daniel; Woodring, Jonathan; ...

    2015-11-10

    This paper compares the effectiveness of various multi-resolution geometric representation methods, such as B-spline, Daubechies, Coiflet and Dual-tree wavelets, curvelets and surfacelets, to capture the structure of fully developed turbulence using a truncated set of coefficients. The turbulence dataset is obtained from a Direct Numerical Simulation of buoyancy driven turbulence on a 512 3 mesh size, with an Atwood number, A = 0.05, and turbulent Reynolds number, Re t = 1800, and the methods are tested against quantities pertaining to both velocities and active scalar (density) fields and their derivatives, spectra, and the properties of constant density surfaces. The comparisonsmore » between the algorithms are given in terms of performance, accuracy, and compression properties. The results should provide useful information for multi-resolution analysis of turbulence, coherent feature extraction, compression for large datasets handling, as well as simulations algorithms based on multi-resolution methods. In conclusion, the final section provides recommendations for best decomposition algorithms based on several metrics related to computational efficiency and preservation of turbulence properties using a reduced set of coefficients.« less

  6. Multiresolution forecasting for futures trading using wavelet decompositions.

    PubMed

    Zhang, B L; Coggins, R; Jabri, M A; Dersch, D; Flower, B

    2001-01-01

    We investigate the effectiveness of a financial time-series forecasting strategy which exploits the multiresolution property of the wavelet transform. A financial series is decomposed into an over complete, shift invariant scale-related representation. In transform space, each individual wavelet series is modeled by a separate multilayer perceptron (MLP). We apply the Bayesian method of automatic relevance determination to choose short past windows (short-term history) for the inputs to the MLPs at lower scales and long past windows (long-term history) at higher scales. To form the overall forecast, the individual forecasts are then recombined by the linear reconstruction property of the inverse transform with the chosen autocorrelation shell representation, or by another perceptron which learns the weight of each scale in the prediction of the original time series. The forecast results are then passed to a money management system to generate trades.

  7. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals.

    PubMed

    Li, Suyi; Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji; Diao, Shu

    2017-01-01

    The noninvasive peripheral oxygen saturation (SpO 2 ) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO 2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis.

  8. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals

    PubMed Central

    Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji

    2017-01-01

    The noninvasive peripheral oxygen saturation (SpO2) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis. PMID:29250135

  9. Analyzing gene expression time-courses based on multi-resolution shape mixture model.

    PubMed

    Li, Ying; He, Ye; Zhang, Yu

    2016-11-01

    Biological processes actually are a dynamic molecular process over time. Time course gene expression experiments provide opportunities to explore patterns of gene expression change over a time and understand the dynamic behavior of gene expression, which is crucial for study on development and progression of biology and disease. Analysis of the gene expression time-course profiles has not been fully exploited so far. It is still a challenge problem. We propose a novel shape-based mixture model clustering method for gene expression time-course profiles to explore the significant gene groups. Based on multi-resolution fractal features and mixture clustering model, we proposed a multi-resolution shape mixture model algorithm. Multi-resolution fractal features is computed by wavelet decomposition, which explore patterns of change over time of gene expression at different resolution. Our proposed multi-resolution shape mixture model algorithm is a probabilistic framework which offers a more natural and robust way of clustering time-course gene expression. We assessed the performance of our proposed algorithm using yeast time-course gene expression profiles compared with several popular clustering methods for gene expression profiles. The grouped genes identified by different methods are evaluated by enrichment analysis of biological pathways and known protein-protein interactions from experiment evidence. The grouped genes identified by our proposed algorithm have more strong biological significance. A novel multi-resolution shape mixture model algorithm based on multi-resolution fractal features is proposed. Our proposed model provides a novel horizons and an alternative tool for visualization and analysis of time-course gene expression profiles. The R and Matlab program is available upon the request. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Inferring Species Richness and Turnover by Statistical Multiresolution Texture Analysis of Satellite Imagery

    PubMed Central

    Convertino, Matteo; Mangoubi, Rami S.; Linkov, Igor; Lowry, Nathan C.; Desai, Mukund

    2012-01-01

    Background The quantification of species-richness and species-turnover is essential to effective monitoring of ecosystems. Wetland ecosystems are particularly in need of such monitoring due to their sensitivity to rainfall, water management and other external factors that affect hydrology, soil, and species patterns. A key challenge for environmental scientists is determining the linkage between natural and human stressors, and the effect of that linkage at the species level in space and time. We propose pixel intensity based Shannon entropy for estimating species-richness, and introduce a method based on statistical wavelet multiresolution texture analysis to quantitatively assess interseasonal and interannual species turnover. Methodology/Principal Findings We model satellite images of regions of interest as textures. We define a texture in an image as a spatial domain where the variations in pixel intensity across the image are both stochastic and multiscale. To compare two textures quantitatively, we first obtain a multiresolution wavelet decomposition of each. Either an appropriate probability density function (pdf) model for the coefficients at each subband is selected, and its parameters estimated, or, a non-parametric approach using histograms is adopted. We choose the former, where the wavelet coefficients of the multiresolution decomposition at each subband are modeled as samples from the generalized Gaussian pdf. We then obtain the joint pdf for the coefficients for all subbands, assuming independence across subbands; an approximation that simplifies the computational burden significantly without sacrificing the ability to statistically distinguish textures. We measure the difference between two textures' representative pdf's via the Kullback-Leibler divergence (KL). Species turnover, or diversity, is estimated using both this KL divergence and the difference in Shannon entropy. Additionally, we predict species richness, or diversity, based on the Shannon entropy of pixel intensity.To test our approach, we specifically use the green band of Landsat images for a water conservation area in the Florida Everglades. We validate our predictions against data of species occurrences for a twenty-eight years long period for both wet and dry seasons. Our method correctly predicts 73% of species richness. For species turnover, the newly proposed KL divergence prediction performance is near 100% accurate. This represents a significant improvement over the more conventional Shannon entropy difference, which provides 85% accuracy. Furthermore, we find that changes in soil and water patterns, as measured by fluctuations of the Shannon entropy for the red and blue bands respectively, are positively correlated with changes in vegetation. The fluctuations are smaller in the wet season when compared to the dry season. Conclusions/Significance Texture-based statistical multiresolution image analysis is a promising method for quantifying interseasonal differences and, consequently, the degree to which vegetation, soil, and water patterns vary. The proposed automated method for quantifying species richness and turnover can also provide analysis at higher spatial and temporal resolution than is currently obtainable from expensive monitoring campaigns, thus enabling more prompt, more cost effective inference and decision making support regarding anomalous variations in biodiversity. Additionally, a matrix-based visualization of the statistical multiresolution analysis is presented to facilitate both insight and quick recognition of anomalous data. PMID:23115629

  11. Data Mining and Optimization Tools for Developing Engine Parameters Tools

    NASA Technical Reports Server (NTRS)

    Dhawan, Atam P.

    1998-01-01

    This project was awarded for understanding the problem and developing a plan for Data Mining tools for use in designing and implementing an Engine Condition Monitoring System. From the total budget of $5,000, Tricia and I studied the problem domain for developing ail Engine Condition Monitoring system using the sparse and non-standardized datasets to be available through a consortium at NASA Lewis Research Center. We visited NASA three times to discuss additional issues related to dataset which was not made available to us. We discussed and developed a general framework of data mining and optimization tools to extract useful information from sparse and non-standard datasets. These discussions lead to the training of Tricia Erhardt to develop Genetic Algorithm based search programs which were written in C++ and used to demonstrate the capability of GA algorithm in searching an optimal solution in noisy datasets. From the study and discussion with NASA LERC personnel, we then prepared a proposal, which is being submitted to NASA for future work for the development of data mining algorithms for engine conditional monitoring. The proposed set of algorithm uses wavelet processing for creating multi-resolution pyramid of the data for GA based multi-resolution optimal search. Wavelet processing is proposed to create a coarse resolution representation of data providing two advantages in GA based search: 1. We will have less data to begin with to make search sub-spaces. 2. It will have robustness against the noise because at every level of wavelet based decomposition, we will be decomposing the signal into low pass and high pass filters.

  12. Wavelet multiresolution analyses adapted for the fast solution of boundary value ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Jawerth, Bjoern; Sweldens, Wim

    1993-01-01

    We present ideas on how to use wavelets in the solution of boundary value ordinary differential equations. Rather than using classical wavelets, we adapt their construction so that they become (bi)orthogonal with respect to the inner product defined by the operator. The stiffness matrix in a Galerkin method then becomes diagonal and can thus be trivially inverted. We show how one can construct an O(N) algorithm for various constant and variable coefficient operators.

  13. Multispectral Image Enhancement Through Adaptive Wavelet Fusion

    DTIC Science & Technology

    2016-09-14

    13. SUPPLEMENTARY NOTES 14. ABSTRACT This research developed a multiresolution image fusion scheme based on guided filtering . Guided filtering can...effectively reduce noise while preserving detail boundaries. When applied in an iterative mode, guided filtering selectively eliminates small scale...details while restoring larger scale edges. The proposed multi-scale image fusion scheme achieves spatial consistency by using guided filtering both at

  14. A stethoscope with wavelet separation of cardiac and respiratory sounds for real time telemedicine implemented on field-programmable gate array

    NASA Astrophysics Data System (ADS)

    Castro, Víctor M.; Muñoz, Nestor A.; Salazar, Antonio J.

    2015-01-01

    Auscultation is one of the most utilized physical examination procedures for listening to lung, heart and intestinal sounds during routine consults and emergencies. Heart and lung sounds overlap in the thorax. An algorithm was used to separate them based on the discrete wavelet transform with multi-resolution analysis, which decomposes the signal into approximations and details. The algorithm was implemented in software and in hardware to achieve real-time signal separation. The heart signal was found in detail eight and the lung signal in approximation six. The hardware was used to separate the signals with a delay of 256 ms. Sending wavelet decomposition data - instead of the separated full signa - allows telemedicine applications to function in real time over low-bandwidth communication channels.

  15. Weighted least squares phase unwrapping based on the wavelet transform

    NASA Astrophysics Data System (ADS)

    Chen, Jiafeng; Chen, Haiqin; Yang, Zhengang; Ren, Haixia

    2007-01-01

    The weighted least squares phase unwrapping algorithm is a robust and accurate method to solve phase unwrapping problem. This method usually leads to a large sparse linear equation system. Gauss-Seidel relaxation iterative method is usually used to solve this large linear equation. However, this method is not practical due to its extremely slow convergence. The multigrid method is an efficient algorithm to improve convergence rate. However, this method needs an additional weight restriction operator which is very complicated. For this reason, the multiresolution analysis method based on the wavelet transform is proposed. By applying the wavelet transform, the original system is decomposed into its coarse and fine resolution levels and an equivalent equation system with better convergence condition can be obtained. Fast convergence in separate coarse resolution levels speeds up the overall system convergence rate. The simulated experiment shows that the proposed method converges faster and provides better result than the multigrid method.

  16. Wavelet multiresolution complex network for decoding brain fatigued behavior from P300 signals

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Wang, Zi-Bo; Yang, Yu-Xuan; Li, Shan; Dang, Wei-Dong; Mao, Xiao-Qian

    2018-09-01

    Brain-computer interface (BCI) enables users to interact with the environment without relying on neural pathways and muscles. P300 based BCI systems have been extensively used to achieve human-machine interaction. However, the appearance of fatigue symptoms during operation process leads to the decline in classification accuracy of P300. Characterizing brain cognitive process underlying normal and fatigue conditions constitutes a problem of vital importance in the field of brain science. We in this paper propose a novel wavelet decomposition based complex network method to efficiently analyze the P300 signals recorded in the image stimulus test based on classical 'Oddball' paradigm. Initially, multichannel EEG signals are decomposed into wavelet coefficient series. Then we construct complex network by treating electrodes as nodes and determining the connections according to the 2-norm distances between wavelet coefficient series. The analysis of topological structure and statistical index indicates that the properties of brain network demonstrate significant distinctions between normal status and fatigue status. More specifically, the brain network reconfiguration in response to the cognitive task in fatigue status is reflected as the enhancement of the small-worldness.

  17. Multi-resolutional shape features via non-Euclidean wavelets: Applications to statistical analysis of cortical thickness

    PubMed Central

    Kim, Won Hwa; Singh, Vikas; Chung, Moo K.; Hinrichs, Chris; Pachauri, Deepti; Okonkwo, Ozioma C.; Johnson, Sterling C.

    2014-01-01

    Statistical analysis on arbitrary surface meshes such as the cortical surface is an important approach to understanding brain diseases such as Alzheimer’s disease (AD). Surface analysis may be able to identify specific cortical patterns that relate to certain disease characteristics or exhibit differences between groups. Our goal in this paper is to make group analysis of signals on surfaces more sensitive. To do this, we derive multi-scale shape descriptors that characterize the signal around each mesh vertex, i.e., its local context, at varying levels of resolution. In order to define such a shape descriptor, we make use of recent results from harmonic analysis that extend traditional continuous wavelet theory from the Euclidean to a non-Euclidean setting (i.e., a graph, mesh or network). Using this descriptor, we conduct experiments on two different datasets, the Alzheimer’s Disease NeuroImaging Initiative (ADNI) data and images acquired at the Wisconsin Alzheimer’s Disease Research Center (W-ADRC), focusing on individuals labeled as having Alzheimer’s disease (AD), mild cognitive impairment (MCI) and healthy controls. In particular, we contrast traditional univariate methods with our multi-resolution approach which show increased sensitivity and improved statistical power to detect a group-level effects. We also provide an open source implementation. PMID:24614060

  18. Gradient-based multiresolution image fusion.

    PubMed

    Petrović, Valdimir S; Xydeas, Costas S

    2004-02-01

    A novel approach to multiresolution signal-level image fusion is presented for accurately transferring visual information from any number of input image signals, into a single fused image without loss of information or the introduction of distortion. The proposed system uses a "fuse-then-decompose" technique realized through a novel, fusion/decomposition system architecture. In particular, information fusion is performed on a multiresolution gradient map representation domain of image signal information. At each resolution, input images are represented as gradient maps and combined to produce new, fused gradient maps. Fused gradient map signals are processed, using gradient filters derived from high-pass quadrature mirror filters to yield a fused multiresolution pyramid representation. The fused output image is obtained by applying, on the fused pyramid, a reconstruction process that is analogous to that of conventional discrete wavelet transform. This new gradient fusion significantly reduces the amount of distortion artefacts and the loss of contrast information usually observed in fused images obtained from conventional multiresolution fusion schemes. This is because fusion in the gradient map domain significantly improves the reliability of the feature selection and information fusion processes. Fusion performance is evaluated through informal visual inspection and subjective psychometric preference tests, as well as objective fusion performance measurements. Results clearly demonstrate the superiority of this new approach when compared to conventional fusion systems.

  19. Automatic Image Registration of Multimodal Remotely Sensed Data with Global Shearlet Features

    NASA Technical Reports Server (NTRS)

    Murphy, James M.; Le Moigne, Jacqueline; Harding, David J.

    2015-01-01

    Automatic image registration is the process of aligning two or more images of approximately the same scene with minimal human assistance. Wavelet-based automatic registration methods are standard, but sometimes are not robust to the choice of initial conditions. That is, if the images to be registered are too far apart relative to the initial guess of the algorithm, the registration algorithm does not converge or has poor accuracy, and is thus not robust. These problems occur because wavelet techniques primarily identify isotropic textural features and are less effective at identifying linear and curvilinear edge features. We integrate the recently developed mathematical construction of shearlets, which is more effective at identifying sparse anisotropic edges, with an existing automatic wavelet-based registration algorithm. Our shearlet features algorithm produces more distinct features than wavelet features algorithms; the separation of edges from textures is even stronger than with wavelets. Our algorithm computes shearlet and wavelet features for the images to be registered, then performs least squares minimization on these features to compute a registration transformation. Our algorithm is two-staged and multiresolution in nature. First, a cascade of shearlet features is used to provide a robust, though approximate, registration. This is then refined by registering with a cascade of wavelet features. Experiments across a variety of image classes show an improved robustness to initial conditions, when compared to wavelet features alone.

  20. Automatic Image Registration of Multi-Modal Remotely Sensed Data with Global Shearlet Features

    PubMed Central

    Murphy, James M.; Le Moigne, Jacqueline; Harding, David J.

    2017-01-01

    Automatic image registration is the process of aligning two or more images of approximately the same scene with minimal human assistance. Wavelet-based automatic registration methods are standard, but sometimes are not robust to the choice of initial conditions. That is, if the images to be registered are too far apart relative to the initial guess of the algorithm, the registration algorithm does not converge or has poor accuracy, and is thus not robust. These problems occur because wavelet techniques primarily identify isotropic textural features and are less effective at identifying linear and curvilinear edge features. We integrate the recently developed mathematical construction of shearlets, which is more effective at identifying sparse anisotropic edges, with an existing automatic wavelet-based registration algorithm. Our shearlet features algorithm produces more distinct features than wavelet features algorithms; the separation of edges from textures is even stronger than with wavelets. Our algorithm computes shearlet and wavelet features for the images to be registered, then performs least squares minimization on these features to compute a registration transformation. Our algorithm is two-staged and multiresolution in nature. First, a cascade of shearlet features is used to provide a robust, though approximate, registration. This is then refined by registering with a cascade of wavelet features. Experiments across a variety of image classes show an improved robustness to initial conditions, when compared to wavelet features alone. PMID:29123329

  1. Evaluation of a 3D local multiresolution algorithm for the correction of partial volume effects in positron emission tomography.

    PubMed

    Le Pogam, Adrien; Hatt, Mathieu; Descourt, Patrice; Boussion, Nicolas; Tsoumpas, Charalampos; Turkheimer, Federico E; Prunier-Aesch, Caroline; Baulieu, Jean-Louis; Guilloteau, Denis; Visvikis, Dimitris

    2011-09-01

    Partial volume effects (PVEs) are consequences of the limited spatial resolution in emission tomography leading to underestimation of uptake in tissues of size similar to the point spread function (PSF) of the scanner as well as activity spillover between adjacent structures. Among PVE correction methodologies, a voxel-wise mutual multiresolution analysis (MMA) was recently introduced. MMA is based on the extraction and transformation of high resolution details from an anatomical image (MR/CT) and their subsequent incorporation into a low-resolution PET image using wavelet decompositions. Although this method allows creating PVE corrected images, it is based on a 2D global correlation model, which may introduce artifacts in regions where no significant correlation exists between anatomical and functional details. A new model was designed to overcome these two issues (2D only and global correlation) using a 3D wavelet decomposition process combined with a local analysis. The algorithm was evaluated on synthetic, simulated and patient images, and its performance was compared to the original approach as well as the geometric transfer matrix (GTM) method. Quantitative performance was similar to the 2D global model and GTM in correlated cases. In cases where mismatches between anatomical and functional information were present, the new model outperformed the 2D global approach, avoiding artifacts and significantly improving quality of the corrected images and their quantitative accuracy. A new 3D local model was proposed for a voxel-wise PVE correction based on the original mutual multiresolution analysis approach. Its evaluation demonstrated an improved and more robust qualitative and quantitative accuracy compared to the original MMA methodology, particularly in the absence of full correlation between anatomical and functional information.

  2. Evaluation of a 3D local multiresolution algorithm for the correction of partial volume effects in positron emission tomography

    PubMed Central

    Le Pogam, Adrien; Hatt, Mathieu; Descourt, Patrice; Boussion, Nicolas; Tsoumpas, Charalampos; Turkheimer, Federico E.; Prunier-Aesch, Caroline; Baulieu, Jean-Louis; Guilloteau, Denis; Visvikis, Dimitris

    2011-01-01

    Purpose Partial volume effects (PVE) are consequences of the limited spatial resolution in emission tomography leading to under-estimation of uptake in tissues of size similar to the point spread function (PSF) of the scanner as well as activity spillover between adjacent structures. Among PVE correction methodologies, a voxel-wise mutual multi-resolution analysis (MMA) was recently introduced. MMA is based on the extraction and transformation of high resolution details from an anatomical image (MR/CT) and their subsequent incorporation into a low resolution PET image using wavelet decompositions. Although this method allows creating PVE corrected images, it is based on a 2D global correlation model which may introduce artefacts in regions where no significant correlation exists between anatomical and functional details. Methods A new model was designed to overcome these two issues (2D only and global correlation) using a 3D wavelet decomposition process combined with a local analysis. The algorithm was evaluated on synthetic, simulated and patient images, and its performance was compared to the original approach as well as the geometric transfer matrix (GTM) method. Results Quantitative performance was similar to the 2D global model and GTM in correlated cases. In cases where mismatches between anatomical and functional information were present the new model outperformed the 2D global approach, avoiding artefacts and significantly improving quality of the corrected images and their quantitative accuracy. Conclusions A new 3D local model was proposed for a voxel-wise PVE correction based on the original mutual multi-resolution analysis approach. Its evaluation demonstrated an improved and more robust qualitative and quantitative accuracy compared to the original MMA methodology, particularly in the absence of full correlation between anatomical and functional information. PMID:21978037

  3. The nexus between geopolitical uncertainty and crude oil markets: An entropy-based wavelet analysis

    NASA Astrophysics Data System (ADS)

    Uddin, Gazi Salah; Bekiros, Stelios; Ahmed, Ali

    2018-04-01

    The global financial crisis and the subsequent geopolitical turbulence in energy markets have brought increased attention to the proper statistical modeling especially of the crude oil markets. In particular, we utilize a time-frequency decomposition approach based on wavelet analysis to explore the inherent dynamics and the casual interrelationships between various types of geopolitical, economic and financial uncertainty indices and oil markets. Via the introduction of a mixed discrete-continuous multiresolution analysis, we employ the entropic criterion for the selection of the optimal decomposition level of a MODWT as well as the continuous-time coherency and phase measures for the detection of business cycle (a)synchronization. Overall, a strong heterogeneity in the revealed interrelationships is detected over time and across scales.

  4. Multiresolution Distance Volumes for Progressive Surface Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laney, D E; Bertram, M; Duchaineau, M A

    2002-04-18

    We present a surface compression method that stores surfaces as wavelet-compressed signed-distance volumes. Our approach enables the representation of surfaces with complex topology and arbitrary numbers of components within a single multiresolution data structure. This data structure elegantly handles topological modification at high compression rates. Our method does not require the costly and sometimes infeasible base mesh construction step required by subdivision surface approaches. We present several improvements over previous attempts at compressing signed-distance functions, including an 0(n) distance transform, a zero set initialization method for triangle meshes, and a specialized thresholding algorithm. We demonstrate the potential of sampled distancemore » volumes for surface compression and progressive reconstruction for complex high genus surfaces.« less

  5. Multiresolution MAP despeckling of SAR images based on locally adaptive generalized Gaussian pdf modeling.

    PubMed

    Argenti, Fabrizio; Bianchi, Tiziano; Alparone, Luciano

    2006-11-01

    In this paper, a new despeckling method based on undecimated wavelet decomposition and maximum a posteriori MIAP) estimation is proposed. Such a method relies on the assumption that the probability density function (pdf) of each wavelet coefficient is generalized Gaussian (GG). The major novelty of the proposed approach is that the parameters of the GG pdf are taken to be space-varying within each wavelet frame. Thus, they may be adjusted to spatial image context, not only to scale and orientation. Since the MAP equation to be solved is a function of the parameters of the assumed pdf model, the variance and shape factor of the GG function are derived from the theoretical moments, which depend on the moments and joint moments of the observed noisy signal and on the statistics of speckle. The solution of the MAP equation yields the MAP estimate of the wavelet coefficients of the noise-free image. The restored SAR image is synthesized from such coefficients. Experimental results, carried out on both synthetic speckled images and true SAR images, demonstrate that MAP filtering can be successfully applied to SAR images represented in the shift-invariant wavelet domain, without resorting to a logarithmic transformation.

  6. An Application of Rotation- and Translation-Invariant Overcomplete Wavelets to the registration of Remotely Sensed Imagery

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Zavorine, Ilya

    1999-01-01

    A wavelet-based image registration approach has previously been proposed by the authors. In this work, wavelet coefficient maxima obtained from an orthogonal wavelet decomposition using Daubechies filters were utilized to register images in a multi-resolution fashion. Tested on several remote sensing datasets, this method gave very encouraging results. Despite the lack of translation-invariance of these filters, we showed that when using cross-correlation as a feature matching technique, features of size larger than twice the size of the filters are correctly registered by using the low-frequency subbands of the Daubechies wavelet decomposition. Nevertheless, high-frequency subbands are still sensitive to translation effects. In this work, we are considering a rotation- and translation-invariant representation developed by E. Simoncelli and integrate it in our image registration scheme. The two types of filters, Daubechies and Simoncelli filters, are then being compared from a registration point of view, utilizing synthetic data as well as data from the Landsat/ Thematic Mapper (TM) and from the NOAA Advanced Very High Resolution Radiometer (AVHRR).

  7. An Application of Rotation- and Translation-Invariant Overcomplete Wavelets to the Registration of Remotely Sensed Imagery

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Zavorine, Ilya

    1999-01-01

    A wavelet-based image registration approach has previously been proposed by the authors. In this work, wavelet coefficient maxima obtained from an orthogonal wavelet decomposition using Daubechies filters were utilized to register images in a multi-resolution fashion. Tested on several remote sensing datasets, this method gave very encouraging results. Despite the lack of translation-invariance of these filters, we showed that when using cross-correlation as a feature matching technique, features of size larger than twice the size of the filters are correctly registered by using the low-frequency subbands of the Daubechies wavelet decomposition. Nevertheless, high-frequency subbands are still sensitive to translation effects. In this work, we are considering a rotation- and translation-invariant representation developed by E. Simoncelli and integrate it in our image registration scheme. The two types of filters, Daubechies and Simoncelli filters, are then being compared from a registration point of view, utilizing synthetic data as well as data from the Landsat/ Thematic Mapper (TM) and from the NOAA Advanced Very High Resolution Radiometer (AVHRR).

  8. The Wavelet Element Method. Part 2; Realization and Additional Features in 2D and 3D

    NASA Technical Reports Server (NTRS)

    Canuto, Claudio; Tabacco, Anita; Urban, Karsten

    1998-01-01

    The Wavelet Element Method (WEM) provides a construction of multiresolution systems and biorthogonal wavelets on fairly general domains. These are split into subdomains that are mapped to a single reference hypercube. Tensor products of scaling functions and wavelets defined on the unit interval are used on the reference domain. By introducing appropriate matching conditions across the interelement boundaries, a globally continuous biorthogonal wavelet basis on the general domain is obtained. This construction does not uniquely define the basis functions but rather leaves some freedom for fulfilling additional features. In this paper we detail the general construction principle of the WEM to the 1D, 2D and 3D cases. We address additional features such as symmetry, vanishing moments and minimal support of the wavelet functions in each particular dimension. The construction is illustrated by using biorthogonal spline wavelets on the interval.

  9. Progressive Precision Surface Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duchaineau, M; Joy, KJ

    2002-01-11

    We introduce a novel wavelet decomposition algorithm that makes a number of powerful new surface design operations practical. Wavelets, and hierarchical representations generally, have held promise to facilitate a variety of design tasks in a unified way by approximating results very precisely, thus avoiding a proliferation of undergirding mathematical representations. However, traditional wavelet decomposition is defined from fine to coarse resolution, thus limiting its efficiency for highly precise surface manipulation when attempting to create new non-local editing methods. Our key contribution is the progressive wavelet decomposition algorithm, a general-purpose coarse-to-fine method for hierarchical fitting, based in this paper on anmore » underlying multiresolution representation called dyadic splines. The algorithm requests input via a generic interval query mechanism, allowing a wide variety of non-local operations to be quickly implemented. The algorithm performs work proportionate to the tiny compressed output size, rather than to some arbitrarily high resolution that would otherwise be required, thus increasing performance by several orders of magnitude. We describe several design operations that are made tractable because of the progressive decomposition. Free-form pasting is a generalization of the traditional control-mesh edit, but for which the shape of the change is completely general and where the shape can be placed using a free-form deformation within the surface domain. Smoothing and roughening operations are enhanced so that an arbitrary loop in the domain specifies the area of effect. Finally, the sculpting effect of moving a tool shape along a path is simulated.« less

  10. Cointegration and Nonstationarity in the Context of Multiresolution Analysis

    NASA Astrophysics Data System (ADS)

    Worden, K.; Cross, E. J.; Kyprianou, A.

    2011-07-01

    Cointegration has established itself as a powerful means of projecting out long-term trends from time-series data in the context of econometrics. Recent work by the current authors has further established that cointegration can be applied profitably in the context of structural health monitoring (SHM), where it is desirable to project out the effects of environmental and operational variations from data in order that they do not generate false positives in diagnostic tests. The concept of cointegration is partly built on a clear understanding of the ideas of stationarity and nonstationarity for time-series. Nonstationarity in this context is 'traditionally' established through the use of statistical tests, e.g. the hypothesis test based on the augmented Dickey-Fuller statistic. However, it is important to understand the distinction in this case between 'trend' stationarity and stationarity of the AR models typically fitted as part of the analysis process. The current paper will discuss this distinction in the context of SHM data and will extend the discussion by the introduction of multi-resolution (discrete wavelet) analysis as a means of characterising the time-scales on which nonstationarity manifests itself. The discussion will be based on synthetic data and also on experimental data for the guided-wave SHM of a composite plate.

  11. Singularity analysis based on wavelet transform of fractal measures for identifying geochemical anomaly in mineral exploration

    NASA Astrophysics Data System (ADS)

    Chen, Guoxiong; Cheng, Qiuming

    2016-02-01

    Multi-resolution and scale-invariance have been increasingly recognized as two closely related intrinsic properties endowed in geofields such as geochemical and geophysical anomalies, and they are commonly investigated by using multiscale- and scaling-analysis methods. In this paper, the wavelet-based multiscale decomposition (WMD) method was proposed to investigate the multiscale natures of geochemical pattern from large scale to small scale. In the light of the wavelet transformation of fractal measures, we demonstrated that the wavelet approximation operator provides a generalization of box-counting method for scaling analysis of geochemical patterns. Specifically, the approximation coefficient acts as the generalized density-value in density-area fractal modeling of singular geochemical distributions. Accordingly, we presented a novel local singularity analysis (LSA) using the WMD algorithm which extends the conventional moving averaging to a kernel-based operator for implementing LSA. Finally, the novel LSA was validated using a case study dealing with geochemical data (Fe2O3) in stream sediments for mineral exploration in Inner Mongolia, China. In comparison with the LSA implemented using the moving averaging method the novel LSA using WMD identified improved weak geochemical anomalies associated with mineralization in covered area.

  12. Texture feature extraction based on wavelet transform and gray-level co-occurrence matrices applied to osteosarcoma diagnosis.

    PubMed

    Hu, Shan; Xu, Chao; Guan, Weiqiao; Tang, Yong; Liu, Yana

    2014-01-01

    Osteosarcoma is the most common malignant bone tumor among children and adolescents. In this study, image texture analysis was made to extract texture features from bone CR images to evaluate the recognition rate of osteosarcoma. To obtain the optimal set of features, Sym4 and Db4 wavelet transforms and gray-level co-occurrence matrices were applied to the image, with statistical methods being used to maximize the feature selection. To evaluate the performance of these methods, a support vector machine algorithm was used. The experimental results demonstrated that the Sym4 wavelet had a higher classification accuracy (93.44%) than the Db4 wavelet with respect to osteosarcoma occurrence in the epiphysis, whereas the Db4 wavelet had a higher classification accuracy (96.25%) for osteosarcoma occurrence in the diaphysis. Results including accuracy, sensitivity, specificity and ROC curves obtained using the wavelets were all higher than those obtained using the features derived from the GLCM method. It is concluded that, a set of texture features can be extracted from the wavelets and used in computer-aided osteosarcoma diagnosis systems. In addition, this study also confirms that multi-resolution analysis is a useful tool for texture feature extraction during bone CR image processing.

  13. Accurate reconstruction in digital holographic microscopy using Fresnel dual-tree complex wavelet transform

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Zhang, Xiangchao; Yuan, He; Zhang, Hao; Xu, Min

    2018-02-01

    Digital holography is a promising measurement method in the fields of bio-medicine and micro-electronics. But the captured images of digital holography are severely polluted by the speckle noise because of optical scattering and diffraction. Via analyzing the properties of Fresnel diffraction and the topographies of micro-structures, a novel reconstruction method based on the dual-tree complex wavelet transform (DT-CWT) is proposed. This algorithm is shiftinvariant and capable of obtaining sparse representations for the diffracted signals of salient features, thus it is well suited for multiresolution processing of the interferometric holograms of directional morphologies. An explicit representation of orthogonal Fresnel DT-CWT bases and a specific filtering method are developed. This method can effectively remove the speckle noise without destroying the salient features. Finally, the proposed reconstruction method is compared with the conventional Fresnel diffraction integration and Fresnel wavelet transform with compressive sensing methods to validate its remarkable superiority on the aspects of topography reconstruction and speckle removal.

  14. Multiresolution edge detection using enhanced fuzzy c-means clustering for ultrasound image speckle reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsantis, Stavros; Spiliopoulos, Stavros; Karnabatidis, Dimitrios

    Purpose: Speckle suppression in ultrasound (US) images of various anatomic structures via a novel speckle noise reduction algorithm. Methods: The proposed algorithm employs an enhanced fuzzy c-means (EFCM) clustering and multiresolution wavelet analysis to distinguish edges from speckle noise in US images. The edge detection procedure involves a coarse-to-fine strategy with spatial and interscale constraints so as to classify wavelet local maxima distribution at different frequency bands. As an outcome, an edge map across scales is derived whereas the wavelet coefficients that correspond to speckle are suppressed in the inverse wavelet transform acquiring the denoised US image. Results: A totalmore » of 34 thyroid, liver, and breast US examinations were performed on a Logiq 9 US system. Each of these images was subjected to the proposed EFCM algorithm and, for comparison, to commercial speckle reduction imaging (SRI) software and another well-known denoising approach, Pizurica's method. The quantification of the speckle suppression performance in the selected set of US images was carried out via Speckle Suppression Index (SSI) with results of 0.61, 0.71, and 0.73 for EFCM, SRI, and Pizurica's methods, respectively. Peak signal-to-noise ratios of 35.12, 33.95, and 29.78 and edge preservation indices of 0.94, 0.93, and 0.86 were found for the EFCM, SIR, and Pizurica's method, respectively, demonstrating that the proposed method achieves superior speckle reduction performance and edge preservation properties. Based on two independent radiologists’ qualitative evaluation the proposed method significantly improved image characteristics over standard baseline B mode images, and those processed with the Pizurica's method. Furthermore, it yielded results similar to those for SRI for breast and thyroid images significantly better results than SRI for liver imaging, thus improving diagnostic accuracy in both superficial and in-depth structures. Conclusions: A new wavelet-based EFCM clustering model was introduced toward noise reduction and detail preservation. The proposed method improves the overall US image quality, which in turn could affect the decision-making on whether additional imaging and/or intervention is needed.« less

  15. Multiresolution edge detection using enhanced fuzzy c-means clustering for ultrasound image speckle reduction.

    PubMed

    Tsantis, Stavros; Spiliopoulos, Stavros; Skouroliakou, Aikaterini; Karnabatidis, Dimitrios; Hazle, John D; Kagadis, George C

    2014-07-01

    Speckle suppression in ultrasound (US) images of various anatomic structures via a novel speckle noise reduction algorithm. The proposed algorithm employs an enhanced fuzzy c-means (EFCM) clustering and multiresolution wavelet analysis to distinguish edges from speckle noise in US images. The edge detection procedure involves a coarse-to-fine strategy with spatial and interscale constraints so as to classify wavelet local maxima distribution at different frequency bands. As an outcome, an edge map across scales is derived whereas the wavelet coefficients that correspond to speckle are suppressed in the inverse wavelet transform acquiring the denoised US image. A total of 34 thyroid, liver, and breast US examinations were performed on a Logiq 9 US system. Each of these images was subjected to the proposed EFCM algorithm and, for comparison, to commercial speckle reduction imaging (SRI) software and another well-known denoising approach, Pizurica's method. The quantification of the speckle suppression performance in the selected set of US images was carried out via Speckle Suppression Index (SSI) with results of 0.61, 0.71, and 0.73 for EFCM, SRI, and Pizurica's methods, respectively. Peak signal-to-noise ratios of 35.12, 33.95, and 29.78 and edge preservation indices of 0.94, 0.93, and 0.86 were found for the EFCM, SIR, and Pizurica's method, respectively, demonstrating that the proposed method achieves superior speckle reduction performance and edge preservation properties. Based on two independent radiologists' qualitative evaluation the proposed method significantly improved image characteristics over standard baseline B mode images, and those processed with the Pizurica's method. Furthermore, it yielded results similar to those for SRI for breast and thyroid images significantly better results than SRI for liver imaging, thus improving diagnostic accuracy in both superficial and in-depth structures. A new wavelet-based EFCM clustering model was introduced toward noise reduction and detail preservation. The proposed method improves the overall US image quality, which in turn could affect the decision-making on whether additional imaging and/or intervention is needed.

  16. iSAP: Interactive Sparse Astronomical Data Analysis Packages

    NASA Astrophysics Data System (ADS)

    Fourt, O.; Starck, J.-L.; Sureau, F.; Bobin, J.; Moudden, Y.; Abrial, P.; Schmitt, J.

    2013-03-01

    iSAP consists of three programs, written in IDL, which together are useful for spherical data analysis. MR/S (MultiResolution on the Sphere) contains routines for wavelet, ridgelet and curvelet transform on the sphere, and applications such denoising on the sphere using wavelets and/or curvelets, Gaussianity tests and Independent Component Analysis on the Sphere. MR/S has been designed for the PLANCK project, but can be used for many other applications. SparsePol (Polarized Spherical Wavelets and Curvelets) has routines for polarized wavelet, polarized ridgelet and polarized curvelet transform on the sphere, and applications such denoising on the sphere using wavelets and/or curvelets, Gaussianity tests and blind source separation on the Sphere. SparsePol has been designed for the PLANCK project. MS-VSTS (Multi-Scale Variance Stabilizing Transform on the Sphere), designed initially for the FERMI project, is useful for spherical mono-channel and multi-channel data analysis when the data are contaminated by a Poisson noise. It contains routines for wavelet/curvelet denoising, wavelet deconvolution, multichannel wavelet denoising and deconvolution.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espinosa-Paredes, Gilberto; Prieto-Guerrero, Alfonso; Nunez-Carrera, Alejandro

    This paper introduces a wavelet-based method to analyze instability events in a boiling water reactor (BWR) during transient phenomena. The methodology to analyze BWR signals includes the following: (a) the short-time Fourier transform (STFT) analysis, (b) decomposition using the continuous wavelet transform (CWT), and (c) application of multiresolution analysis (MRA) using discrete wavelet transform (DWT). STFT analysis permits the study, in time, of the spectral content of analyzed signals. The CWT provides information about ruptures, discontinuities, and fractal behavior. To detect these important features in the signal, a mother wavelet has to be chosen and applied at several scales tomore » obtain optimum results. MRA allows fast implementation of the DWT. Features like important frequencies, discontinuities, and transients can be detected with analysis at different levels of detail coefficients. The STFT was used to provide a comparison between a classic method and the wavelet-based method. The damping ratio, which is an important stability parameter, was calculated as a function of time. The transient behavior can be detected by analyzing the maximum contained in detail coefficients at different levels in the signal decomposition. This method allows analysis of both stationary signals and highly nonstationary signals in the timescale plane. This methodology has been tested with the benchmark power instability event of Laguna Verde nuclear power plant (NPP) Unit 1, which is a BWR-5 NPP.« less

  18. Lattice functions, wavelet aliasing, and SO(3) mappings of orthonormal filters

    NASA Astrophysics Data System (ADS)

    John, Sarah

    1998-01-01

    A formulation of multiresolution in terms of a family of dyadic lattices {Sj;j∈Z} and filter matrices Mj⊂U(2)⊂GL(2,C) illuminates the role of aliasing in wavelets and provides exact relations between scaling and wavelet filters. By showing the {DN;N∈Z+} collection of compactly supported, orthonormal wavelet filters to be strictly SU(2)⊂U(2), its representation in the Euler angles of the rotation group SO(3) establishes several new results: a 1:1 mapping of the {DN} filters onto a set of orbits on the SO(3) manifold; an equivalence of D∞ to the Shannon filter; and a simple new proof for a criterion ruling out pathologically scaled nonorthonormal filters.

  19. Heuristic-driven graph wavelet modeling of complex terrain

    NASA Astrophysics Data System (ADS)

    Cioacǎ, Teodor; Dumitrescu, Bogdan; Stupariu, Mihai-Sorin; Pǎtru-Stupariu, Ileana; Nǎpǎrus, Magdalena; Stoicescu, Ioana; Peringer, Alexander; Buttler, Alexandre; Golay, François

    2015-03-01

    We present a novel method for building a multi-resolution representation of large digital surface models. The surface points coincide with the nodes of a planar graph which can be processed using a critically sampled, invertible lifting scheme. To drive the lazy wavelet node partitioning, we employ an attribute aware cost function based on the generalized quadric error metric. The resulting algorithm can be applied to multivariate data by storing additional attributes at the graph's nodes. We discuss how the cost computation mechanism can be coupled with the lifting scheme and examine the results by evaluating the root mean square error. The algorithm is experimentally tested using two multivariate LiDAR sets representing terrain surface and vegetation structure with different sampling densities.

  20. OpenCL-based vicinity computation for 3D multiresolution mesh compression

    NASA Astrophysics Data System (ADS)

    Hachicha, Soumaya; Elkefi, Akram; Ben Amar, Chokri

    2017-03-01

    3D multiresolution mesh compression systems are still widely addressed in many domains. These systems are more and more requiring volumetric data to be processed in real-time. Therefore, the performance is becoming constrained by material resources usage and an overall reduction in the computational time. In this paper, our contribution entirely lies on computing, in real-time, triangles neighborhood of 3D progressive meshes for a robust compression algorithm based on the scan-based wavelet transform(WT) technique. The originality of this latter algorithm is to compute the WT with minimum memory usage by processing data as they are acquired. However, with large data, this technique is considered poor in term of computational complexity. For that, this work exploits the GPU to accelerate the computation using OpenCL as a heterogeneous programming language. Experiments demonstrate that, aside from the portability across various platforms and the flexibility guaranteed by the OpenCL-based implementation, this method can improve performance gain in speedup factor of 5 compared to the sequential CPU implementation.

  1. Theory of wavelet-based coarse-graining hierarchies for molecular dynamics.

    PubMed

    Rinderspacher, Berend Christopher; Bardhan, Jaydeep P; Ismail, Ahmed E

    2017-07-01

    We present a multiresolution approach to compressing the degrees of freedom and potentials associated with molecular dynamics, such as the bond potentials. The approach suggests a systematic way to accelerate large-scale molecular simulations with more than two levels of coarse graining, particularly applications of polymeric materials. In particular, we derive explicit models for (arbitrarily large) linear (homo)polymers and iterative methods to compute large-scale wavelet decompositions from fragment solutions. This approach does not require explicit preparation of atomistic-to-coarse-grained mappings, but instead uses the theory of diffusion wavelets for graph Laplacians to develop system-specific mappings. Our methodology leads to a hierarchy of system-specific coarse-grained degrees of freedom that provides a conceptually clear and mathematically rigorous framework for modeling chemical systems at relevant model scales. The approach is capable of automatically generating as many coarse-grained model scales as necessary, that is, to go beyond the two scales in conventional coarse-grained strategies; furthermore, the wavelet-based coarse-grained models explicitly link time and length scales. Furthermore, a straightforward method for the reintroduction of omitted degrees of freedom is presented, which plays a major role in maintaining model fidelity in long-time simulations and in capturing emergent behaviors.

  2. Windowed and Wavelet Analysis of Marine Stratocumulus Cloud Inhomogeneity

    NASA Technical Reports Server (NTRS)

    Gollmer, Steven M.; Harshvardhan; Cahalan, Robert F.; Snider, Jack B.

    1995-01-01

    To improve radiative transfer calculations for inhomogeneous clouds, a consistent means of modeling inhomogeneity is needed. One current method of modeling cloud inhomogeneity is through the use of fractal parameters. This method is based on the supposition that cloud inhomogeneity over a large range of scales is related. An analysis technique named wavelet analysis provides a means of studying the multiscale nature of cloud inhomogeneity. In this paper, the authors discuss the analysis and modeling of cloud inhomogeneity through the use of wavelet analysis. Wavelet analysis as well as other windowed analysis techniques are used to study liquid water path (LWP) measurements obtained during the marine stratocumulus phase of the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment. Statistics obtained using analysis windows, which are translated to span the LWP dataset, are used to study the local (small scale) properties of the cloud field as well as their time dependence. The LWP data are transformed onto an orthogonal wavelet basis that represents the data as a number of times series. Each of these time series lies within a frequency band and has a mean frequency that is half the frequency of the previous band. Wavelet analysis combined with translated analysis windows reveals that the local standard deviation of each frequency band is correlated with the local standard deviation of the other frequency bands. The ratio between the standard deviation of adjacent frequency bands is 0.9 and remains constant with respect to time. This ratio defined as the variance coupling parameter is applicable to all of the frequency bands studied and appears to be related to the slope of the data's power spectrum. Similar analyses are performed on two cloud inhomogeneity models, which use fractal-based concepts to introduce inhomogeneity into a uniform cloud field. The bounded cascade model does this by iteratively redistributing LWP at each scale using the value of the local mean. This model is reformulated into a wavelet multiresolution framework, thereby presenting a number of variants of the bounded cascade model. One variant introduced in this paper is the 'variance coupled model,' which redistributes LWP using the local standard deviation and the variance coupling parameter. While the bounded cascade model provides an elegant two- parameter model for generating cloud inhomogeneity, the multiresolution framework provides more flexibility at the expense of model complexity. Comparisons are made with the results from the LWP data analysis to demonstrate both the strengths and weaknesses of these models.

  3. Wavelet and receiver operating characteristic analysis of heart rate variability

    NASA Astrophysics Data System (ADS)

    McCaffery, G.; Griffith, T. M.; Naka, K.; Frennaux, M. P.; Matthai, C. C.

    2002-02-01

    Multiresolution wavelet analysis has been used to study the heart rate variability in two classes of patients with different pathological conditions. The scale dependent measure of Thurner et al. was found to be statistically significant in discriminating patients suffering from hypercardiomyopathy from a control set of normal subjects. We have performed Receiver Operating Characteristc (ROC) analysis and found the ROC area to be a useful measure by which to label the significance of the discrimination, as well as to describe the severity of heart dysfunction.

  4. Time Domain Propagation of Quantum and Classical Systems using a Wavelet Basis Set Method

    NASA Astrophysics Data System (ADS)

    Lombardini, Richard; Nowara, Ewa; Johnson, Bruce

    2015-03-01

    The use of an orthogonal wavelet basis set (Optimized Maximum-N Generalized Coiflets) to effectively model physical systems in the time domain, in particular the electromagnetic (EM) pulse and quantum mechanical (QM) wavefunction, is examined in this work. Although past research has demonstrated the benefits of wavelet basis sets to handle computationally expensive problems due to their multiresolution properties, the overlapping supports of neighboring wavelet basis functions poses problems when dealing with boundary conditions, especially with material interfaces in the EM case. Specifically, this talk addresses this issue using the idea of derivative matching creating fictitious grid points (T.A. Driscoll and B. Fornberg), but replaces the latter element with fictitious wavelet projections in conjunction with wavelet reconstruction filters. Two-dimensional (2D) systems are analyzed, EM pulse incident on silver cylinders and the QM electron wave packet circling the proton in a hydrogen atom system (reduced to 2D), and the new wavelet method is compared to the popular finite-difference time-domain technique.

  5. Hierarchical Volume Representation with 3{radical}2 Subdivision and Trivariate B-Spline Wavelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linsen, L; Gray, JT; Pascucci, V

    2002-01-11

    Multiresolution methods provide a means for representing data at multiple levels of detail. They are typically based on a hierarchical data organization scheme and update rules needed for data value computation. We use a data organization that is based on what we call n{radical}2 subdivision. The main advantage of subdivision, compared to quadtree (n = 2) or octree (n = 3) organizations, is that the number of vertices is only doubled in each subdivision step instead of multiplied by a factor of four or eight, respectively. To update data values we use n-variate B-spline wavelets, which yields better approximations formore » each level of detail. We develop a lifting scheme for n = 2 and n = 3 based on the n{radical}2-subdivision scheme. We obtain narrow masks that could also provide a basis for view-dependent visualization and adaptive refinement.« less

  6. Bimodal Biometric Verification Using the Fusion of Palmprint and Infrared Palm-Dorsum Vein Images

    PubMed Central

    Lin, Chih-Lung; Wang, Shih-Hung; Cheng, Hsu-Yung; Fan, Kuo-Chin; Hsu, Wei-Lieh; Lai, Chin-Rong

    2015-01-01

    In this paper, we present a reliable and robust biometric verification method based on bimodal physiological characteristics of palms, including the palmprint and palm-dorsum vein patterns. The proposed method consists of five steps: (1) automatically aligning and cropping the same region of interest from different palm or palm-dorsum images; (2) applying the digital wavelet transform and inverse wavelet transform to fuse palmprint and vein pattern images; (3) extracting the line-like features (LLFs) from the fused image; (4) obtaining multiresolution representations of the LLFs by using a multiresolution filter; and (5) using a support vector machine to verify the multiresolution representations of the LLFs. The proposed method possesses four advantages: first, both modal images are captured in peg-free scenarios to improve the user-friendliness of the verification device. Second, palmprint and vein pattern images are captured using a low-resolution digital scanner and infrared (IR) camera. The use of low-resolution images results in a smaller database. In addition, the vein pattern images are captured through the invisible IR spectrum, which improves antispoofing. Third, since the physiological characteristics of palmprint and vein pattern images are different, a hybrid fusing rule can be introduced to fuse the decomposition coefficients of different bands. The proposed method fuses decomposition coefficients at different decomposed levels, with different image sizes, captured from different sensor devices. Finally, the proposed method operates automatically and hence no parameters need to be set manually. Three thousand palmprint images and 3000 vein pattern images were collected from 100 volunteers to verify the validity of the proposed method. The results show a false rejection rate of 1.20% and a false acceptance rate of 1.56%. It demonstrates the validity and excellent performance of our proposed method comparing to other methods. PMID:26703596

  7. Bimodal Biometric Verification Using the Fusion of Palmprint and Infrared Palm-Dorsum Vein Images.

    PubMed

    Lin, Chih-Lung; Wang, Shih-Hung; Cheng, Hsu-Yung; Fan, Kuo-Chin; Hsu, Wei-Lieh; Lai, Chin-Rong

    2015-12-12

    In this paper, we present a reliable and robust biometric verification method based on bimodal physiological characteristics of palms, including the palmprint and palm-dorsum vein patterns. The proposed method consists of five steps: (1) automatically aligning and cropping the same region of interest from different palm or palm-dorsum images; (2) applying the digital wavelet transform and inverse wavelet transform to fuse palmprint and vein pattern images; (3) extracting the line-like features (LLFs) from the fused image; (4) obtaining multiresolution representations of the LLFs by using a multiresolution filter; and (5) using a support vector machine to verify the multiresolution representations of the LLFs. The proposed method possesses four advantages: first, both modal images are captured in peg-free scenarios to improve the user-friendliness of the verification device. Second, palmprint and vein pattern images are captured using a low-resolution digital scanner and infrared (IR) camera. The use of low-resolution images results in a smaller database. In addition, the vein pattern images are captured through the invisible IR spectrum, which improves antispoofing. Third, since the physiological characteristics of palmprint and vein pattern images are different, a hybrid fusing rule can be introduced to fuse the decomposition coefficients of different bands. The proposed method fuses decomposition coefficients at different decomposed levels, with different image sizes, captured from different sensor devices. Finally, the proposed method operates automatically and hence no parameters need to be set manually. Three thousand palmprint images and 3000 vein pattern images were collected from 100 volunteers to verify the validity of the proposed method. The results show a false rejection rate of 1.20% and a false acceptance rate of 1.56%. It demonstrates the validity and excellent performance of our proposed method comparing to other methods.

  8. Adaptive multi-resolution 3D Hartree-Fock-Bogoliubov solver for nuclear structure

    NASA Astrophysics Data System (ADS)

    Pei, J. C.; Fann, G. I.; Harrison, R. J.; Nazarewicz, W.; Shi, Yue; Thornton, S.

    2014-08-01

    Background: Complex many-body systems, such as triaxial and reflection-asymmetric nuclei, weakly bound halo states, cluster configurations, nuclear fragments produced in heavy-ion fusion reactions, cold Fermi gases, and pasta phases in neutron star crust, are all characterized by large sizes and complex topologies in which many geometrical symmetries characteristic of ground-state configurations are broken. A tool of choice to study such complex forms of matter is an adaptive multi-resolution wavelet analysis. This method has generated much excitement since it provides a common framework linking many diversified methodologies across different fields, including signal processing, data compression, harmonic analysis and operator theory, fractals, and quantum field theory. Purpose: To describe complex superfluid many-fermion systems, we introduce an adaptive pseudospectral method for solving self-consistent equations of nuclear density functional theory in three dimensions, without symmetry restrictions. Methods: The numerical method is based on the multi-resolution and computational harmonic analysis techniques with a multi-wavelet basis. The application of state-of-the-art parallel programming techniques include sophisticated object-oriented templates which parse the high-level code into distributed parallel tasks with a multi-thread task queue scheduler for each multi-core node. The internode communications are asynchronous. The algorithm is variational and is capable of solving coupled complex-geometric systems of equations adaptively, with functional and boundary constraints, in a finite spatial domain of very large size, limited by existing parallel computer memory. For smooth functions, user-defined finite precision is guaranteed. Results: The new adaptive multi-resolution Hartree-Fock-Bogoliubov (HFB) solver madness-hfb is benchmarked against a two-dimensional coordinate-space solver hfb-ax that is based on the B-spline technique and a three-dimensional solver hfodd that is based on the harmonic-oscillator basis expansion. Several examples are considered, including the self-consistent HFB problem for spin-polarized trapped cold fermions and the Skyrme-Hartree-Fock (+BCS) problem for triaxial deformed nuclei. Conclusions: The new madness-hfb framework has many attractive features when applied to nuclear and atomic problems involving many-particle superfluid systems. Of particular interest are weakly bound nuclear configurations close to particle drip lines, strongly elongated and dinuclear configurations such as those present in fission and heavy-ion fusion, and exotic pasta phases that appear in neutron star crust.

  9. On wavelet analysis of auditory evoked potentials.

    PubMed

    Bradley, A P; Wilson, W J

    2004-05-01

    To determine a preferred wavelet transform (WT) procedure for multi-resolution analysis (MRA) of auditory evoked potentials (AEP). A number of WT algorithms, mother wavelets, and pre-processing techniques were examined by way of critical theoretical discussion followed by experimental testing of key points using real and simulated auditory brain-stem response (ABR) waveforms. Conclusions from these examinations were then tested on a normative ABR dataset. The results of the various experiments are reported in detail. Optimal AEP WT MRA is most likely to occur when an over-sampled discrete wavelet transformation (DWT) is used, utilising a smooth (regularity >or=3) and symmetrical (linear phase) mother wavelet, and a reflection boundary extension policy. This study demonstrates the practical importance of, and explains how to minimize potential artefacts due to, 4 inter-related issues relevant to AEP WT MRA, namely shift variance, phase distortion, reconstruction smoothness, and boundary artefacts.

  10. Using discrete wavelet transform features to discriminate between noise and phases in seismic waveforms

    NASA Astrophysics Data System (ADS)

    Forrest, R.; Ray, J.; Hansen, C. W.

    2017-12-01

    Currently, simple polarization metrics such as the horizontal-to-vertical ratio are used to discriminate between noise and various phases in three-component seismic waveform data collected at regional distances. Accurately establishing the identity and arrival of these waves in adverse signal-to-noise environments is helpful in detecting and locating the seismic events. In this work, we explore the use of multiresolution decompositions to discriminate between noise and event arrivals. A segment of the waveform lying inside a time-window that spans the coda of an arrival is subjected to a discrete wavelet decomposition. Multi-resolution classification features as well as statistical tests are derived from these wavelet decomposition quantities to quantify their discriminating power. Furthermore, we move to streaming data and address the problem of false positives by introducing ensembles of classifiers. We describe in detail results of these methods tuned from data obtained from Coronel Fontana, Argentina (CFAA), as well as Stephens Creek, Australia (STKA). Acknowledgement: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  11. Investigation of the scaling characteristics of LANDSAT temperature and vegetation data: a wavelet-based approach

    NASA Astrophysics Data System (ADS)

    Rathinasamy, Maheswaran; Bindhu, V. M.; Adamowski, Jan; Narasimhan, Balaji; Khosa, Rakesh

    2017-10-01

    An investigation of the scaling characteristics of vegetation and temperature data derived from LANDSAT data was undertaken for a heterogeneous area in Tamil Nadu, India. A wavelet-based multiresolution technique decomposed the data into large-scale mean vegetation and temperature fields and fluctuations in horizontal, diagonal, and vertical directions at hierarchical spatial resolutions. In this approach, the wavelet coefficients were used to investigate whether the normalized difference vegetation index (NDVI) and land surface temperature (LST) fields exhibited self-similar scaling behaviour. In this study, l-moments were used instead of conventional simple moments to understand scaling behaviour. Using the first six moments of the wavelet coefficients through five levels of dyadic decomposition, the NDVI data were shown to be statistically self-similar, with a slope of approximately -0.45 in each of the horizontal, vertical, and diagonal directions of the image, over scales ranging from 30 to 960 m. The temperature data were also shown to exhibit self-similarity with slopes ranging from -0.25 in the diagonal direction to -0.20 in the vertical direction over the same scales. These findings can help develop appropriate up- and down-scaling schemes of remotely sensed NDVI and LST data for various hydrologic and environmental modelling applications. A sensitivity analysis was also undertaken to understand the effect of mother wavelets on the scaling characteristics of LST and NDVI images.

  12. A novel neural-wavelet approach for process diagnostics and complex system modeling

    NASA Astrophysics Data System (ADS)

    Gao, Rong

    Neural networks have been effective in several engineering applications because of their learning abilities and robustness. However certain shortcomings, such as slow convergence and local minima, are always associated with neural networks, especially neural networks applied to highly nonlinear and non-stationary problems. These problems can be effectively alleviated by integrating a new powerful tool, wavelets, into conventional neural networks. The multi-resolution analysis and feature localization capabilities of the wavelet transform offer neural networks new possibilities for learning. A neural wavelet network approach developed in this thesis enjoys fast convergence rate with little possibility to be caught at a local minimum. It combines the localization properties of wavelets with the learning abilities of neural networks. Two different testbeds are used for testing the efficiency of the new approach. The first is magnetic flowmeter-based process diagnostics: here we extend previous work, which has demonstrated that wavelet groups contain process information, to more general process diagnostics. A loop at Applied Intelligent Systems Lab (AISL) is used for collecting and analyzing data through the neural-wavelet approach. The research is important for thermal-hydraulic processes in nuclear and other engineering fields. The neural-wavelet approach developed is also tested with data from the electric power grid. More specifically, the neural-wavelet approach is used for performing short-term and mid-term prediction of power load demand. In addition, the feasibility of determining the type of load using the proposed neural wavelet approach is also examined. The notion of cross scale product has been developed as an expedient yet reliable discriminator of loads. Theoretical issues involved in the integration of wavelets and neural networks are discussed and future work outlined.

  13. Multispectral multisensor image fusion using wavelet transforms

    USGS Publications Warehouse

    Lemeshewsky, George P.

    1999-01-01

    Fusion techniques can be applied to multispectral and higher spatial resolution panchromatic images to create a composite image that is easier to interpret than the individual images. Wavelet transform-based multisensor, multiresolution fusion (a type of band sharpening) was applied to Landsat thematic mapper (TM) multispectral and coregistered higher resolution SPOT panchromatic images. The objective was to obtain increased spatial resolution, false color composite products to support the interpretation of land cover types wherein the spectral characteristics of the imagery are preserved to provide the spectral clues needed for interpretation. Since the fusion process should not introduce artifacts, a shift invariant implementation of the discrete wavelet transform (SIDWT) was used. These results were compared with those using the shift variant, discrete wavelet transform (DWT). Overall, the process includes a hue, saturation, and value color space transform to minimize color changes, and a reported point-wise maximum selection rule to combine transform coefficients. The performance of fusion based on the SIDWT and DWT was evaluated with a simulated TM 30-m spatial resolution test image and a higher resolution reference. Simulated imagery was made by blurring higher resolution color-infrared photography with the TM sensors' point spread function. The SIDWT based technique produced imagery with fewer artifacts and lower error between fused images and the full resolution reference. Image examples with TM and SPOT 10-m panchromatic illustrate the reduction in artifacts due to the SIDWT based fusion.

  14. Image characterization by fractal descriptors in variational mode decomposition domain: Application to brain magnetic resonance

    NASA Astrophysics Data System (ADS)

    Lahmiri, Salim

    2016-08-01

    The main purpose of this work is to explore the usefulness of fractal descriptors estimated in multi-resolution domains to characterize biomedical digital image texture. In this regard, three multi-resolution techniques are considered: the well-known discrete wavelet transform (DWT) and the empirical mode decomposition (EMD), and; the newly introduced; variational mode decomposition mode (VMD). The original image is decomposed by the DWT, EMD, and VMD into different scales. Then, Fourier spectrum based fractal descriptors is estimated at specific scales and directions to characterize the image. The support vector machine (SVM) was used to perform supervised classification. The empirical study was applied to the problem of distinguishing between normal and abnormal brain magnetic resonance images (MRI) affected with Alzheimer disease (AD). Our results demonstrate that fractal descriptors estimated in VMD domain outperform those estimated in DWT and EMD domains; and also those directly estimated from the original image.

  15. Segmentation of Polarimetric SAR Images Usig Wavelet Transformation and Texture Features

    NASA Astrophysics Data System (ADS)

    Rezaeian, A.; Homayouni, S.; Safari, A.

    2015-12-01

    Polarimetric Synthetic Aperture Radar (PolSAR) sensors can collect useful observations from earth's surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR) are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT). Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM) and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  16. Applications of squeezed states: Bogoliubov transformations and wavelets to the statistical mechanics of water and its bubbles

    NASA Technical Reports Server (NTRS)

    Defacio, Brian; Kim, S.-H.; Vannevel, A.

    1994-01-01

    The squeezed states or Bogoliubov transformations and wavelets are applied to two problems in nonrelativistic statistical mechanics: the dielectric response of liquid water, epsilon(q-vector,w), and the bubble formation in water during insonnification. The wavelets are special phase-space windows which cover the domain and range of L(exp 1) intersection of L(exp 2) of classical causal, finite energy solutions. The multiresolution of discrete wavelets in phase space gives a decomposition into regions of time and scales of frequency thereby allowing the renormalization group to be applied to new systems in addition to the tired 'usual suspects' of the Ising models and lattice gasses. The Bogoliubov transformation: squeeze transformation is applied to the dipolaron collective mode in water and to the gas produced by the explosive cavitation process in bubble formation.

  17. Improving 3D Wavelet-Based Compression of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew; Kiely, Aaron; Xie, Hua; Aranki, Nazeeh

    2009-01-01

    Two methods of increasing the effectiveness of three-dimensional (3D) wavelet-based compression of hyperspectral images have been developed. (As used here, images signifies both images and digital data representing images.) The methods are oriented toward reducing or eliminating detrimental effects of a phenomenon, referred to as spectral ringing, that is described below. In 3D wavelet-based compression, an image is represented by a multiresolution wavelet decomposition consisting of several subbands obtained by applying wavelet transforms in the two spatial dimensions corresponding to the two spatial coordinate axes of the image plane, and by applying wavelet transforms in the spectral dimension. Spectral ringing is named after the more familiar spatial ringing (spurious spatial oscillations) that can be seen parallel to and near edges in ordinary images reconstructed from compressed data. These ringing phenomena are attributable to effects of quantization. In hyperspectral data, the individual spectral bands play the role of edges, causing spurious oscillations to occur in the spectral dimension. In the absence of such corrective measures as the present two methods, spectral ringing can manifest itself as systematic biases in some reconstructed spectral bands and can reduce the effectiveness of compression of spatially-low-pass subbands. One of the two methods is denoted mean subtraction. The basic idea of this method is to subtract mean values from spatial planes of spatially low-pass subbands prior to encoding, because (a) such spatial planes often have mean values that are far from zero and (b) zero-mean data are better suited for compression by methods that are effective for subbands of two-dimensional (2D) images. In this method, after the 3D wavelet decomposition is performed, mean values are computed for and subtracted from each spatial plane of each spatially-low-pass subband. The resulting data are converted to sign-magnitude form and compressed in a manner similar to that of a baseline hyperspectral- image-compression method. The mean values are encoded in the compressed bit stream and added back to the data at the appropriate decompression step. The overhead incurred by encoding the mean values only a few bits per spectral band is negligible with respect to the huge size of a typical hyperspectral data set. The other method is denoted modified decomposition. This method is so named because it involves a modified version of a commonly used multiresolution wavelet decomposition, known in the art as the 3D Mallat decomposition, in which (a) the first of multiple stages of a 3D wavelet transform is applied to the entire dataset and (b) subsequent stages are applied only to the horizontally-, vertically-, and spectrally-low-pass subband from the preceding stage. In the modified decomposition, in stages after the first, not only is the spatially-low-pass, spectrally-low-pass subband further decomposed, but also spatially-low-pass, spectrally-high-pass subbands are further decomposed spatially. Either method can be used alone to improve the quality of a reconstructed image (see figure). Alternatively, the two methods can be combined by first performing modified decomposition, then subtracting the mean values from spatial planes of spatially-low-pass subbands.

  18. Filtering and left ventricle segmentation of the fetal heart in ultrasound images

    NASA Astrophysics Data System (ADS)

    Vargas-Quintero, Lorena; Escalante-Ramírez, Boris

    2013-11-01

    In this paper, we propose to use filtering methods and a segmentation algorithm for the analysis of fetal heart in ultrasound images. Since noise speckle makes difficult the analysis of ultrasound images, the filtering process becomes a useful task in these types of applications. The filtering techniques consider in this work assume that the speckle noise is a random variable with a Rayleigh distribution. We use two multiresolution methods: one based on wavelet decomposition and the another based on the Hermite transform. The filtering process is used as way to strengthen the performance of the segmentation tasks. For the wavelet-based approach, a Bayesian estimator at subband level for pixel classification is employed. The Hermite method computes a mask to find those pixels that are corrupted by speckle. On the other hand, we picked out a method based on a deformable model or "snake" to evaluate the influence of the filtering techniques in the segmentation task of left ventricle in fetal echocardiographic images.

  19. Reliable structural information from multiscale decomposition with the Mellor-Brady filter

    NASA Astrophysics Data System (ADS)

    Szilágyi, Tünde; Brady, Michael

    2009-08-01

    Image-based medical diagnosis typically relies on the (poorly reproducible) subjective classification of textures in order to differentiate between diseased and healthy pathology. Clinicians claim that significant benefits would arise from quantitative measures to inform clinical decision making. The first step in generating such measures is to extract local image descriptors - from noise corrupted and often spatially and temporally coarse resolution medical signals - that are invariant to illumination, translation, scale and rotation of the features. The Dual-Tree Complex Wavelet Transform (DT-CWT) provides a wavelet multiresolution analysis (WMRA) tool e.g. in 2D with good properties, but has limited rotational selectivity. Also, it requires computationally-intensive steering due to the inherently 1D operations performed. The monogenic signal, which is defined in n >= 2D with the Riesz transform gives excellent orientation information without the need for steering. Recent work has suggested the Monogenic Riesz-Laplace wavelet transform as a possible tool for integrating these two concepts into a coherent mathematical framework. We have found that the proposed construction suffers from a lack of rotational invariance and is not optimal for retrieving local image descriptors. In this paper we show: 1. Local frequency and local phase from the monogenic signal are not equivalent, especially in the phase congruency model of a "feature", and so they are not interchangeable for medical image applications. 2. The accuracy of local phase computation may be improved by estimating the denoising parameters while maximizing a new measure of "featureness".

  20. Texture segmentation of non-cooperative spacecrafts images based on wavelet and fractal dimension

    NASA Astrophysics Data System (ADS)

    Wu, Kanzhi; Yue, Xiaokui

    2011-06-01

    With the increase of on-orbit manipulations and space conflictions, missions such as tracking and capturing the target spacecrafts are aroused. Unlike cooperative spacecrafts, fixing beacons or any other marks on the targets is impossible. Due to the unknown shape and geometry features of non-cooperative spacecraft, in order to localize the target and obtain the latitude, we need to segment the target image and recognize the target from the background. The data and errors during the following procedures such as feature extraction and matching can also be reduced. Multi-resolution analysis of wavelet theory reflects human beings' recognition towards images from low resolution to high resolution. In addition, spacecraft is the only man-made object in the image compared to the natural background and the differences will be certainly observed between the fractal dimensions of target and background. Combined wavelet transform and fractal dimension, in this paper, we proposed a new segmentation algorithm for the images which contains complicated background such as the universe and planet surfaces. At first, Daubechies wavelet basis is applied to decompose the image in both x axis and y axis, thus obtain four sub-images. Then, calculate the fractal dimensions in four sub-images using different methods; after analyzed the results of fractal dimensions in sub-images, we choose Differential Box Counting in low resolution image as the principle to segment the texture which has the greatest divergences between different sub-images. This paper also presents the results of experiments by using the algorithm above. It is demonstrated that an accurate texture segmentation result can be obtained using the proposed technique.

  1. Short-term wind speed prediction based on the wavelet transformation and Adaboost neural network

    NASA Astrophysics Data System (ADS)

    Hai, Zhou; Xiang, Zhu; Haijian, Shao; Ji, Wu

    2018-03-01

    The operation of the power grid will be affected inevitably with the increasing scale of wind farm due to the inherent randomness and uncertainty, so the accurate wind speed forecasting is critical for the stability of the grid operation. Typically, the traditional forecasting method does not take into account the frequency characteristics of wind speed, which cannot reflect the nature of the wind speed signal changes result from the low generality ability of the model structure. AdaBoost neural network in combination with the multi-resolution and multi-scale decomposition of wind speed is proposed to design the model structure in order to improve the forecasting accuracy and generality ability. The experimental evaluation using the data from a real wind farm in Jiangsu province is given to demonstrate the proposed strategy can improve the robust and accuracy of the forecasted variable.

  2. Development of a low cost test rig for standalone WECS subject to electrical faults.

    PubMed

    Himani; Dahiya, Ratna

    2016-11-01

    In this paper, a contribution to the development of low-cost wind turbine (WT) test rig for stator fault diagnosis of wind turbine generator is proposed. The test rig is developed using a 2.5kW, 1750 RPM DC motor coupled to a 1.5kW, 1500 RPM self-excited induction generator interfaced with a WT mathematical model in LabVIEW. The performance of the test rig is benchmarked with already proven wind turbine test rigs. In order to detect the stator faults using non-stationary signals in self-excited induction generator, an online fault diagnostic technique of DWT-based multi-resolution analysis is proposed. It has been experimentally proven that for varying wind conditions wavelet decomposition allows good differentiation between faulty and healthy conditions leading to an effective diagnostic procedure for wind turbine condition monitoring. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Impact of multi-resolution analysis of artificial intelligence models inputs on multi-step ahead river flow forecasting

    NASA Astrophysics Data System (ADS)

    Badrzadeh, Honey; Sarukkalige, Ranjan; Jayawardena, A. W.

    2013-12-01

    Discrete wavelet transform was applied to decomposed ANN and ANFIS inputs.Novel approach of WNF with subtractive clustering applied for flow forecasting.Forecasting was performed in 1-5 step ahead, using multi-variate inputs.Forecasting accuracy of peak values and longer lead-time significantly improved.

  4. Analysis of Visual Illusions Using Multiresolution Wavelet Decomposition Based Models

    DTIC Science & Technology

    1991-12-01

    1962). 22. Hubel , David H. "The Visual Cortex of The Brain," Scientific American, 209(5):54-62 (November 1963). 23. Hubel , David H. and Torsten N...model the visual system. In 1990, Oberndorf, a masters student at the Air Force Institrt, of Technology, tested the Gabor theo y on visual illusion...represento d by x2 + y2 = r 2 in Cartesian space is now more easily expressed by p = r in polar space. The coordinates x and y or p and 0 provide alternate

  5. Using sparse regularization for multi-resolution tomography of the ionosphere

    NASA Astrophysics Data System (ADS)

    Panicciari, T.; Smith, N. D.; Mitchell, C. N.; Da Dalt, F.; Spencer, P. S. J.

    2015-10-01

    Computerized ionospheric tomography (CIT) is a technique that allows reconstructing the state of the ionosphere in terms of electron content from a set of slant total electron content (STEC) measurements. It is usually denoted as an inverse problem. In this experiment, the measurements are considered coming from the phase of the GPS signal and, therefore, affected by bias. For this reason the STEC cannot be considered in absolute terms but rather in relative terms. Measurements are collected from receivers not evenly distributed in space and together with limitations such as angle and density of the observations, they are the cause of instability in the operation of inversion. Furthermore, the ionosphere is a dynamic medium whose processes are continuously changing in time and space. This can affect CIT by limiting the accuracy in resolving structures and the processes that describe the ionosphere. Some inversion techniques are based on ℓ2 minimization algorithms (i.e. Tikhonov regularization) and a standard approach is implemented here using spherical harmonics as a reference to compare the new method. A new approach is proposed for CIT that aims to permit sparsity in the reconstruction coefficients by using wavelet basis functions. It is based on the ℓ1 minimization technique and wavelet basis functions due to their properties of compact representation. The ℓ1 minimization is selected because it can optimize the result with an uneven distribution of observations by exploiting the localization property of wavelets. Also illustrated is how the inter-frequency biases on the STEC are calibrated within the operation of inversion, and this is used as a way for evaluating the accuracy of the method. The technique is demonstrated using a simulation, showing the advantage of ℓ1 minimization to estimate the coefficients over the ℓ2 minimization. This is in particular true for an uneven observation geometry and especially for multi-resolution CIT.

  6. A wavelet based method for automatic detection of slow eye movements: a pilot study.

    PubMed

    Magosso, Elisa; Provini, Federica; Montagna, Pasquale; Ursino, Mauro

    2006-11-01

    Electro-oculographic (EOG) activity during the wake-sleep transition is characterized by the appearance of slow eye movements (SEM). The present work describes an algorithm for the automatic localisation of SEM events from EOG recordings. The algorithm is based on a wavelet multiresolution analysis of the difference between right and left EOG tracings, and includes three main steps: (i) wavelet decomposition down to 10 detail levels (i.e., 10 scales), using Daubechies order 4 wavelet; (ii) computation of energy in 0.5s time steps at any level of decomposition; (iii) construction of a non-linear discriminant function expressing the relative energy of high-scale details to both high- and low-scale details. The main assumption is that the value of the discriminant function increases above a given threshold during SEM episodes due to energy redistribution toward higher scales. Ten EOG recordings from ten male patients with obstructive sleep apnea syndrome were used. All tracings included a period from pre-sleep wakefulness to stage 2 sleep. Two experts inspected the tracings separately to score SEMs. A reference set of SEM (gold standard) were obtained by joint examination by both experts. Parameters of the discriminant function were assigned on three tracings (design set) to minimize the disagreement between the system classification and classification by the two experts; the algorithm was then tested on the remaining seven tracings (test set). Results show that the agreement between the algorithm and the gold standard was 80.44+/-4.09%, the sensitivity of the algorithm was 67.2+/-7.37% and the selectivity 83.93+/-8.65%. However, most errors were not caused by an inability of the system to detect intervals with SEM activity against NON-SEM intervals, but were due to a different localisation of the beginning and end of some SEM episodes. The proposed method may be a valuable tool for computerized EOG analysis.

  7. S2LET: A code to perform fast wavelet analysis on the sphere

    NASA Astrophysics Data System (ADS)

    Leistedt, B.; McEwen, J. D.; Vandergheynst, P.; Wiaux, Y.

    2013-10-01

    We describe S2LET, a fast and robust implementation of the scale-discretised wavelet transform on the sphere. Wavelets are constructed through a tiling of the harmonic line and can be used to probe spatially localised, scale-dependent features of signals on the sphere. The reconstruction of a signal from its wavelets coefficients is made exact here through the use of a sampling theorem on the sphere. Moreover, a multiresolution algorithm is presented to capture all information of each wavelet scale in the minimal number of samples on the sphere. In addition S2LET supports the HEALPix pixelisation scheme, in which case the transform is not exact but nevertheless achieves good numerical accuracy. The core routines of S2LET are written in C and have interfaces in Matlab, IDL and Java. Real signals can be written to and read from FITS files and plotted as Mollweide projections. The S2LET code is made publicly available, is extensively documented, and ships with several examples in the four languages supported. At present the code is restricted to axisymmetric wavelets but will be extended to directional, steerable wavelets in a future release.

  8. A sparse reconstruction method for the estimation of multi-resolution emission fields via atmospheric inversion

    DOE PAGES

    Ray, J.; Lee, J.; Yadav, V.; ...

    2015-04-29

    Atmospheric inversions are frequently used to estimate fluxes of atmospheric greenhouse gases (e.g., biospheric CO 2 flux fields) at Earth's surface. These inversions typically assume that flux departures from a prior model are spatially smoothly varying, which are then modeled using a multi-variate Gaussian. When the field being estimated is spatially rough, multi-variate Gaussian models are difficult to construct and a wavelet-based field model may be more suitable. Unfortunately, such models are very high dimensional and are most conveniently used when the estimation method can simultaneously perform data-driven model simplification (removal of model parameters that cannot be reliably estimated) andmore » fitting. Such sparse reconstruction methods are typically not used in atmospheric inversions. In this work, we devise a sparse reconstruction method, and illustrate it in an idealized atmospheric inversion problem for the estimation of fossil fuel CO 2 (ffCO 2) emissions in the lower 48 states of the USA. Our new method is based on stagewise orthogonal matching pursuit (StOMP), a method used to reconstruct compressively sensed images. Our adaptations bestow three properties to the sparse reconstruction procedure which are useful in atmospheric inversions. We have modified StOMP to incorporate prior information on the emission field being estimated and to enforce non-negativity on the estimated field. Finally, though based on wavelets, our method allows for the estimation of fields in non-rectangular geometries, e.g., emission fields inside geographical and political boundaries. Our idealized inversions use a recently developed multi-resolution (i.e., wavelet-based) random field model developed for ffCO 2 emissions and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of 2. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less

  9. A sparse reconstruction method for the estimation of multi-resolution emission fields via atmospheric inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, J.; Lee, J.; Yadav, V.

    Atmospheric inversions are frequently used to estimate fluxes of atmospheric greenhouse gases (e.g., biospheric CO 2 flux fields) at Earth's surface. These inversions typically assume that flux departures from a prior model are spatially smoothly varying, which are then modeled using a multi-variate Gaussian. When the field being estimated is spatially rough, multi-variate Gaussian models are difficult to construct and a wavelet-based field model may be more suitable. Unfortunately, such models are very high dimensional and are most conveniently used when the estimation method can simultaneously perform data-driven model simplification (removal of model parameters that cannot be reliably estimated) andmore » fitting. Such sparse reconstruction methods are typically not used in atmospheric inversions. In this work, we devise a sparse reconstruction method, and illustrate it in an idealized atmospheric inversion problem for the estimation of fossil fuel CO 2 (ffCO 2) emissions in the lower 48 states of the USA. Our new method is based on stagewise orthogonal matching pursuit (StOMP), a method used to reconstruct compressively sensed images. Our adaptations bestow three properties to the sparse reconstruction procedure which are useful in atmospheric inversions. We have modified StOMP to incorporate prior information on the emission field being estimated and to enforce non-negativity on the estimated field. Finally, though based on wavelets, our method allows for the estimation of fields in non-rectangular geometries, e.g., emission fields inside geographical and political boundaries. Our idealized inversions use a recently developed multi-resolution (i.e., wavelet-based) random field model developed for ffCO 2 emissions and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of 2. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less

  10. Use of multiresolution wavelet feature pyramids for automatic registration of multisensor imagery

    NASA Technical Reports Server (NTRS)

    Zavorin, Ilya; Le Moigne, Jacqueline

    2005-01-01

    The problem of image registration, or the alignment of two or more images representing the same scene or object, has to be addressed in various disciplines that employ digital imaging. In the area of remote sensing, just like in medical imaging or computer vision, it is necessary to design robust, fast, and widely applicable algorithms that would allow automatic registration of images generated by various imaging platforms at the same or different times and that would provide subpixel accuracy. One of the main issues that needs to be addressed when developing a registration algorithm is what type of information should be extracted from the images being registered, to be used in the search for the geometric transformation that best aligns them. The main objective of this paper is to evaluate several wavelet pyramids that may be used both for invariant feature extraction and for representing images at multiple spatial resolutions to accelerate registration. We find that the bandpass wavelets obtained from the steerable pyramid due to Simoncelli performs best in terms of accuracy and consistency, while the low-pass wavelets obtained from the same pyramid give the best results in terms of the radius of convergence. Based on these findings, we propose a modification of a gradient-based registration algorithm that has recently been developed for medical data. We test the modified algorithm on several sets of real and synthetic satellite imagery.

  11. Investigations of homologous disaccharides by elastic incoherent neutron scattering and wavelet multiresolution analysis

    NASA Astrophysics Data System (ADS)

    Magazù, S.; Migliardo, F.; Vertessy, B. G.; Caccamo, M. T.

    2013-10-01

    In the present paper the results of a wavevector and thermal analysis of Elastic Incoherent Neutron Scattering (EINS) data collected on water mixtures of three homologous disaccharides through a wavelet approach are reported. The wavelet analysis allows to compare both the spatial properties of the three systems in the wavevector range of Q = 0.27 Å-1 ÷ 4.27 Å-1. It emerges that, differently from previous analyses, for trehalose the scalograms are constantly lower and sharper in respect to maltose and sucrose, giving rise to a global spectral density along the wavevector range markedly less extended. As far as the thermal analysis is concerned, the global scattered intensity profiles suggest a higher thermal restrain of trehalose in respect to the other two homologous disaccharides.

  12. Multi-focus image fusion based on area-based standard deviation in dual tree contourlet transform domain

    NASA Astrophysics Data System (ADS)

    Dong, Min; Dong, Chenghui; Guo, Miao; Wang, Zhe; Mu, Xiaomin

    2018-04-01

    Multiresolution-based methods, such as wavelet and Contourlet are usually used to image fusion. This work presents a new image fusion frame-work by utilizing area-based standard deviation in dual tree Contourlet trans-form domain. Firstly, the pre-registered source images are decomposed with dual tree Contourlet transform; low-pass and high-pass coefficients are obtained. Then, the low-pass bands are fused with weighted average based on area standard deviation rather than the simple "averaging" rule. While the high-pass bands are merged with the "max-absolute' fusion rule. Finally, the modified low-pass and high-pass coefficients are used to reconstruct the final fused image. The major advantage of the proposed fusion method over conventional fusion is the approximately shift invariance and multidirectional selectivity of dual tree Contourlet transform. The proposed method is compared with wavelet- , Contourletbased methods and other the state-of-the art methods on common used multi focus images. Experiments demonstrate that the proposed fusion framework is feasible and effective, and it performs better in both subjective and objective evaluation.

  13. Wavelet investigation of preferential concentration in particle-laden turbulence

    NASA Astrophysics Data System (ADS)

    Bassenne, Maxime; Urzay, Javier; Schneider, Kai; Moin, Parviz

    2017-11-01

    Direct numerical simulations of particle-laden homogeneous-isotropic turbulence are employed in conjunction with wavelet multi-resolution analyses to study preferential concentration in both physical and spectral spaces. Spatially-localized energy spectra for velocity, vorticity and particle-number density are computed, along with their spatial fluctuations that enable the quantification of scale-dependent probability density functions, intermittency and inter-phase conditional statistics. The main result is that particles are found in regions of lower turbulence spectral energy than the corresponding mean. This suggests that modeling the subgrid-scale turbulence intermittency is required for capturing the small-scale statistics of preferential concentration in large-eddy simulations. Additionally, a method is defined that decomposes a particle number-density field into the sum of a coherent and an incoherent components. The coherent component representing the clusters can be sparsely described by at most 1.6% of the total number of wavelet coefficients. An application of the method, motivated by radiative-heat-transfer simulations, is illustrated in the form of a grid-adaptation algorithm that results in non-uniform meshes refined around particle clusters. It leads to a reduction of the number of control volumes by one to two orders of magnitude. PSAAP-II Center at Stanford (Grant DE-NA0002373).

  14. Multispectral image sharpening using a shift-invariant wavelet transform and adaptive processing of multiresolution edges

    USGS Publications Warehouse

    Lemeshewsky, G.P.; Rahman, Z.-U.; Schowengerdt, R.A.; Reichenbach, S.E.

    2002-01-01

    Enhanced false color images from mid-IR, near-IR (NIR), and visible bands of the Landsat thematic mapper (TM) are commonly used for visually interpreting land cover type. Described here is a technique for sharpening or fusion of NIR with higher resolution panchromatic (Pan) that uses a shift-invariant implementation of the discrete wavelet transform (SIDWT) and a reported pixel-based selection rule to combine coefficients. There can be contrast reversals (e.g., at soil-vegetation boundaries between NIR and visible band images) and consequently degraded sharpening and edge artifacts. To improve performance for these conditions, I used a local area-based correlation technique originally reported for comparing image-pyramid-derived edges for the adaptive processing of wavelet-derived edge data. Also, using the redundant data of the SIDWT improves edge data generation. There is additional improvement because sharpened subband imagery is used with the edge-correlation process. A reported technique for sharpening three-band spectral imagery used forward and inverse intensity, hue, and saturation transforms and wavelet-based sharpening of intensity. This technique had limitations with opposite contrast data, and in this study sharpening was applied to single-band multispectral-Pan image pairs. Sharpening used simulated 30-m NIR imagery produced by degrading the spatial resolution of a higher resolution reference. Performance, evaluated by comparison between sharpened and reference image, was improved when sharpened subband data were used with the edge correlation.

  15. WAKES: Wavelet Adaptive Kinetic Evolution Solvers

    NASA Astrophysics Data System (ADS)

    Mardirian, Marine; Afeyan, Bedros; Larson, David

    2016-10-01

    We are developing a general capability to adaptively solve phase space evolution equations mixing particle and continuum techniques in an adaptive manner. The multi-scale approach is achieved using wavelet decompositions which allow phase space density estimation to occur with scale dependent increased accuracy and variable time stepping. Possible improvements on the SFK method of Larson are discussed, including the use of multiresolution analysis based Richardson-Lucy Iteration, adaptive step size control in explicit vs implicit approaches. Examples will be shown with KEEN waves and KEEPN (Kinetic Electrostatic Electron Positron Nonlinear) waves, which are the pair plasma generalization of the former, and have a much richer span of dynamical behavior. WAKES techniques are well suited for the study of driven and released nonlinear, non-stationary, self-organized structures in phase space which have no fluid, limit nor a linear limit, and yet remain undamped and coherent well past the drive period. The work reported here is based on the Vlasov-Poisson model of plasma dynamics. Work supported by a Grant from the AFOSR.

  16. Wavelets in music analysis and synthesis: timbre analysis and perspectives

    NASA Astrophysics Data System (ADS)

    Alves Faria, Regis R.; Ruschioni, Ruggero A.; Zuffo, Joao A.

    1996-10-01

    Music is a vital element in the process of comprehending the world where we live and interact with. Frequency it exerts a subtle but expressive influence over a society's evolution line. Analysis and synthesis of music and musical instruments has always been associated with forefront technologies available at each period of human history, and there is no surprise in witnessing now the use of digital technologies and sophisticated mathematical tools supporting its development. Fourier techniques have been employed for years as a tool to analyze timbres' spectral characteristics, and re-synthesize them from these extracted parameters. Recently many modern implementations, based on spectral modeling techniques, have been leading to the development of new generations of music synthesizers, capable of reproducing natural sounds with high fidelity, and producing novel timbres as well. Wavelets are a promising tool on the development of new generations of music synthesizers, counting on its advantages over the Fourier techniques in representing non-periodic and transient signals, with complex fine textures, as found in music. In this paper we propose and introduce the use of wavelets addressing its perspectives towards musical applications. The central idea is to investigate the capacities of wavelets in analyzing, extracting features and altering fine timbre components in a multiresolution time- scale, so as to produce high quality synthesized musical sounds.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudgins, L.H.

    After a brief review of the elementary properties of Fourier Transforms, the Wavelet Transform is defined in Part I. Basic results are given for admissable wavelets. The Multiresolution Analysis, or MRA (a mathematical structure which unifies a large class of wavelets with Quadrature Mirror Filters) is then introduced. Some fundamental aspects of wavelet design are then explored. The Discrete Wavelet Transform is discussed and, in the context of an MRA, is seen to supply a Fast Wavelet Transform which competes with the Fast Fourier Transform for efficiency. In Part II, the Wavelet Transform is developed in terms of the scalemore » number variable s instead of the scale length variable a where a = 1/s. Basic results such as the admissibility condition, conservation of energy, and the reconstruction theorem are proven in this context. After reviewing some motivation for the usual Fourier power spectrum, a definition is given for the wavelet power spectrum. This `spectral density` is then intepreted in the context of spectral estimation theory. Parseval`s theorem for Wavelets then leads naturally to the Wavelet Cross Spectrum, Wavelet Cospectrum, and Wavelet Quadrature Spectrum. Wavelet Transforms are then applied in Part III to the analysis of atmospheric turbulence. Data collected over the ocean is examined in the wavelet transform domain for underlying structure. A brief overview of atmospheric turbulence is provided. Then the overall method of applying Wavelet Transform techniques to time series data is described. A trace study is included, showing some of the aspects of choosing the computational algorithm, and selection of a specific analyzing wavelet. A model for generating synthetic turbulence data is developed, and seen to yield useful results in comparing with real data for structural transitions. Results from the theory of Wavelet Spectral Estimation and Wavelength Cross-Transforms are applied to studying the momentum transport and the heat flux.« less

  18. Reliable classification of high explosive and chemical/biological artillery using acoustic sensors

    NASA Astrophysics Data System (ADS)

    Desai, Sachi V.; Hohil, Myron E.; Bass, Henry E.; Chambers, Jim

    2005-05-01

    Feature extraction methods based on the discrete wavelet transform and multiresolution analysis are used to develop a robust classification algorithm that reliably discriminates between conventional and simulated chemical/biological artillery rounds via acoustic signals produced during detonation utilizing a generic acoustic sensor. Based on the transient properties of the signature blast distinct characteristics arise within the different acoustic signatures because high explosive warheads emphasize concussive and shrapnel effects, while chemical/biological warheads are designed to disperse their contents over large areas, therefore employing a slower burning, less intense explosive to mix and spread their contents. The ensuing blast waves are readily characterized by variations in the corresponding peak pressure and rise time of the blast, differences in the ratio of positive pressure amplitude to the negative amplitude, and variations in the overall duration of the resulting waveform. Unique attributes can also be identified that depend upon the properties of the gun tube, projectile speed at the muzzle, and the explosive burn rates of the warhead. The algorithm enables robust classification of various airburst signatures using acoustics. It is capable of being integrated within an existing chemical/biological sensor, a stand-alone generic sensor, or a part of a disparate sensor suite. When emplaced in high-threat areas, this added capability would further provide field personal with advanced battlefield knowledge without the aide of so-called "sniffer" sensors that rely upon air particle information based on direct contact with possible contaminated air. In this work, the discrete wavelet transform is used to extract the predominant components of these characteristics from air burst signatures at ranges exceeding 2km while maintaining temporal sequence of the data to keep relevance to the transient differences of the airburst signatures. Highly reliable discrimination is achieved with a feedforward neural network classifier trained on a feature space derived from the distribution of wavelet coefficients and higher frequency details found within different levels of the multiresolution decomposition the neural network then is capable of classifying new airburst signatures as Chemical/Biological or High Explosive.

  19. Single Channel EEG Artifact Identification Using Two-Dimensional Multi-Resolution Analysis.

    PubMed

    Taherisadr, Mojtaba; Dehzangi, Omid; Parsaei, Hossein

    2017-12-13

    As a diagnostic monitoring approach, electroencephalogram (EEG) signals can be decoded by signal processing methodologies for various health monitoring purposes. However, EEG recordings are contaminated by other interferences, particularly facial and ocular artifacts generated by the user. This is specifically an issue during continuous EEG recording sessions, and is therefore a key step in using EEG signals for either physiological monitoring and diagnosis or brain-computer interface to identify such artifacts from useful EEG components. In this study, we aim to design a new generic framework in order to process and characterize EEG recording as a multi-component and non-stationary signal with the aim of localizing and identifying its component (e.g., artifact). In the proposed method, we gather three complementary algorithms together to enhance the efficiency of the system. Algorithms include time-frequency (TF) analysis and representation, two-dimensional multi-resolution analysis (2D MRA), and feature extraction and classification. Then, a combination of spectro-temporal and geometric features are extracted by combining key instantaneous TF space descriptors, which enables the system to characterize the non-stationarities in the EEG dynamics. We fit a curvelet transform (as a MRA method) to 2D TF representation of EEG segments to decompose the given space to various levels of resolution. Such a decomposition efficiently improves the analysis of the TF spaces with different characteristics (e.g., resolution). Our experimental results demonstrate that the combination of expansion to TF space, analysis using MRA, and extracting a set of suitable features and applying a proper predictive model is effective in enhancing the EEG artifact identification performance. We also compare the performance of the designed system with another common EEG signal processing technique-namely, 1D wavelet transform. Our experimental results reveal that the proposed method outperforms 1D wavelet.

  20. Fifth SIAM conference on geometric design 97: Final program and abstracts. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-31

    The meeting was divided into the following sessions: (1) CAD/CAM; (2) Curve/Surface Design; (3) Geometric Algorithms; (4) Multiresolution Methods; (5) Robotics; (6) Solid Modeling; and (7) Visualization. This report contains the abstracts of papers presented at the meeting. Proceding the conference there was a short course entitled ``Wavelets for Geometric Modeling and Computer Graphics``.

  1. Performance of the Wavelet Decomposition on Massively Parallel Architectures

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek A.; LeMoigne, Jacqueline; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    Traditionally, Fourier Transforms have been utilized for performing signal analysis and representation. But although it is straightforward to reconstruct a signal from its Fourier transform, no local description of the signal is included in its Fourier representation. To alleviate this problem, Windowed Fourier transforms and then wavelet transforms have been introduced, and it has been proven that wavelets give a better localization than traditional Fourier transforms, as well as a better division of the time- or space-frequency plane than Windowed Fourier transforms. Because of these properties and after the development of several fast algorithms for computing the wavelet representation of any signal, in particular the Multi-Resolution Analysis (MRA) developed by Mallat, wavelet transforms have increasingly been applied to signal analysis problems, especially real-life problems, in which speed is critical. In this paper we present and compare efficient wavelet decomposition algorithms on different parallel architectures. We report and analyze experimental measurements, using NASA remotely sensed images. Results show that our algorithms achieve significant performance gains on current high performance parallel systems, and meet scientific applications and multimedia requirements. The extensive performance measurements collected over a number of high-performance computer systems have revealed important architectural characteristics of these systems, in relation to the processing demands of the wavelet decomposition of digital images.

  2. Exact reconstruction with directional wavelets on the sphere

    NASA Astrophysics Data System (ADS)

    Wiaux, Y.; McEwen, J. D.; Vandergheynst, P.; Blanc, O.

    2008-08-01

    A new formalism is derived for the analysis and exact reconstruction of band-limited signals on the sphere with directional wavelets. It represents an evolution of a previously developed wavelet formalism developed by Antoine & Vandergheynst and Wiaux et al. The translations of the wavelets at any point on the sphere and their proper rotations are still defined through the continuous three-dimensional rotations. The dilations of the wavelets are directly defined in harmonic space through a new kernel dilation, which is a modification of an existing harmonic dilation. A family of factorized steerable functions with compact harmonic support which are suitable for this kernel dilation are first identified. A scale-discretized wavelet formalism is then derived, relying on this dilation. The discrete nature of the analysis scales allows the exact reconstruction of band-limited signals. A corresponding exact multi-resolution algorithm is finally described and an implementation is tested. The formalism is of interest notably for the denoising or the deconvolution of signals on the sphere with a sparse expansion in wavelets. In astrophysics, it finds a particular application for the identification of localized directional features in the cosmic microwave background data, such as the imprint of topological defects, in particular, cosmic strings, and for their reconstruction after separation from the other signal components.

  3. A Rigid Image Registration Based on the Nonsubsampled Contourlet Transform and Genetic Algorithms

    PubMed Central

    Meskine, Fatiha; Chikr El Mezouar, Miloud; Taleb, Nasreddine

    2010-01-01

    Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise. PMID:22163672

  4. A rigid image registration based on the nonsubsampled contourlet transform and genetic algorithms.

    PubMed

    Meskine, Fatiha; Chikr El Mezouar, Miloud; Taleb, Nasreddine

    2010-01-01

    Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise.

  5. Mortar and artillery variants classification by exploiting characteristics of the acoustic signature

    NASA Astrophysics Data System (ADS)

    Hohil, Myron E.; Grasing, David; Desai, Sachi; Morcos, Amir

    2007-10-01

    Feature extraction methods based on the discrete wavelet transform and multiresolution analysis facilitate the development of a robust classification algorithm that reliably discriminates mortar and artillery variants via acoustic signals produced during the launch/impact events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants. Distinct characteristics arise within the different mortar variants because varying HE mortar payloads and related charges emphasize concussive and shrapnel effects upon impact employing varying magnitude explosions. The different mortar variants are characterized by variations in the resulting waveform of the event. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing techniques can employed to classify a given set. The DWT and other readily available signal processing techniques will be used to extract the predominant components of these characteristics from the acoustic signatures at ranges exceeding 2km. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feed-forward neural network classifier trained on a feature space derived from the distribution of wavelet coefficients, frequency spectrum, and higher frequency details found within different levels of the multiresolution decomposition. The process that will be described herein extends current technologies, which emphasis multi modal sensor fusion suites to provide such situational awareness. A two fold problem of energy consumption and line of sight arise with the multi modal sensor suites. The process described within will exploit the acoustic properties of the event to provide variant classification as added situational awareness to the solider.

  6. A sparse reconstruction method for the estimation of multiresolution emission fields via atmospheric inversion

    DOE PAGES

    Ray, J.; Lee, J.; Yadav, V.; ...

    2014-08-20

    We present a sparse reconstruction scheme that can also be used to ensure non-negativity when fitting wavelet-based random field models to limited observations in non-rectangular geometries. The method is relevant when multiresolution fields are estimated using linear inverse problems. Examples include the estimation of emission fields for many anthropogenic pollutants using atmospheric inversion or hydraulic conductivity in aquifers from flow measurements. The scheme is based on three new developments. Firstly, we extend an existing sparse reconstruction method, Stagewise Orthogonal Matching Pursuit (StOMP), to incorporate prior information on the target field. Secondly, we develop an iterative method that uses StOMP tomore » impose non-negativity on the estimated field. Finally, we devise a method, based on compressive sensing, to limit the estimated field within an irregularly shaped domain. We demonstrate the method on the estimation of fossil-fuel CO 2 (ffCO 2) emissions in the lower 48 states of the US. The application uses a recently developed multiresolution random field model and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of two. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less

  7. Anatomy assisted PET image reconstruction incorporating multi-resolution joint entropy

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Rahmim, Arman

    2015-01-01

    A promising approach in PET image reconstruction is to incorporate high resolution anatomical information (measured from MR or CT) taking the anato-functional similarity measures such as mutual information or joint entropy (JE) as the prior. These similarity measures only classify voxels based on intensity values, while neglecting structural spatial information. In this work, we developed an anatomy-assisted maximum a posteriori (MAP) reconstruction algorithm wherein the JE measure is supplied by spatial information generated using wavelet multi-resolution analysis. The proposed wavelet-based JE (WJE) MAP algorithm involves calculation of derivatives of the subband JE measures with respect to individual PET image voxel intensities, which we have shown can be computed very similarly to how the inverse wavelet transform is implemented. We performed a simulation study with the BrainWeb phantom creating PET data corresponding to different noise levels. Realistically simulated T1-weighted MR images provided by BrainWeb modeling were applied in the anatomy-assisted reconstruction with the WJE-MAP algorithm and the intensity-only JE-MAP algorithm. Quantitative analysis showed that the WJE-MAP algorithm performed similarly to the JE-MAP algorithm at low noise level in the gray matter (GM) and white matter (WM) regions in terms of noise versus bias tradeoff. When noise increased to medium level in the simulated data, the WJE-MAP algorithm started to surpass the JE-MAP algorithm in the GM region, which is less uniform with smaller isolated structures compared to the WM region. In the high noise level simulation, the WJE-MAP algorithm presented clear improvement over the JE-MAP algorithm in both the GM and WM regions. In addition to the simulation study, we applied the reconstruction algorithms to real patient studies involving DPA-173 PET data and Florbetapir PET data with corresponding T1-MPRAGE MRI images. Compared to the intensity-only JE-MAP algorithm, the WJE-MAP algorithm resulted in comparable regional mean values to those from the maximum likelihood algorithm while reducing noise. Achieving robust performance in various noise-level simulation and patient studies, the WJE-MAP algorithm demonstrates its potential in clinical quantitative PET imaging.

  8. Material model for physically based rendering

    NASA Astrophysics Data System (ADS)

    Robart, Mathieu; Paulin, Mathias; Caubet, Rene

    1999-09-01

    In computer graphics, a complete knowledge of the interactions between light and a material is essential to obtain photorealistic pictures. Physical measurements allow us to obtain data on the material response, but are limited to industrial surfaces and depend on measure conditions. Analytic models do exist, but they are often inadequate for common use: the empiric ones are too simple to be realistic, and the physically-based ones are often to complex or too specialized to be generally useful. Therefore, we have developed a multiresolution virtual material model, that not only describes the surface of a material, but also its internal structure thanks to distribution functions of microelements, arranged in layers. Each microelement possesses its own response to an incident light, from an elementary reflection to a complex response provided by its inner structure, taking into account geometry, energy, polarization, . . ., of each light ray. This model is virtually illuminated, in order to compute its response to an incident radiance. This directional response is stored in a compressed data structure using spherical wavelets, and is destined to be used in a rendering model such as directional radiosity.

  9. Use of zerotree coding in a high-speed pyramid image multiresolution decomposition

    NASA Astrophysics Data System (ADS)

    Vega-Pineda, Javier; Cabrera, Sergio D.; Lucero, Aldo

    1995-03-01

    A Zerotree (ZT) coding scheme is applied as a post-processing stage to avoid transmitting zero data in the High-Speed Pyramid (HSP) image compression algorithm. This algorithm has features that increase the capability of the ZT coding to give very high compression rates. In this paper the impact of the ZT coding scheme is analyzed and quantified. The HSP algorithm creates a discrete-time multiresolution analysis based on a hierarchical decomposition technique that is a subsampling pyramid. The filters used to create the image residues and expansions can be related to wavelet representations. According to the pixel coordinates and the level in the pyramid, N2 different wavelet basis functions of various sizes and rotations are linearly combined. The HSP algorithm is computationally efficient because of the simplicity of the required operations, and as a consequence, it can be very easily implemented with VLSI hardware. This is the HSP's principal advantage over other compression schemes. The ZT coding technique transforms the different quantized image residual levels created by the HSP algorithm into a bit stream. The use of ZT's compresses even further the already compressed image taking advantage of parent-child relationships (trees) between the pixels of the residue images at different levels of the pyramid. Zerotree coding uses the links between zeros along the hierarchical structure of the pyramid, to avoid transmission of those that form branches of all zeros. Compression performance and algorithm complexity of the combined HSP-ZT method are compared with those of the JPEG standard technique.

  10. Terascale Visualization: Multi-resolution Aspirin for Big-Data Headaches

    NASA Astrophysics Data System (ADS)

    Duchaineau, Mark

    2001-06-01

    Recent experience on the Accelerated Strategic Computing Initiative (ASCI) computers shows that computational physicists are successfully producing a prodigious collection of numbers on several thousand processors. But with this wealth of numbers comes an unprecedented difficulty in processing and moving them to provide useful insight and analysis. In this talk, a few simulations are highlighted where recent advancements in multiple-resolution mathematical representations and algorithms have provided some hope of seeing most of the physics of interest while keeping within the practical limits of the post-simulation storage and interactive data-exploration resources. A whole host of visualization research activities was spawned by the 1999 Gordon Bell Prize-winning computation of a shock-tube experiment showing Richtmyer-Meshkov turbulent instabilities. This includes efforts for the entire data pipeline from running simulation to interactive display: wavelet compression of field data, multi-resolution volume rendering and slice planes, out-of-core extraction and simplification of mixing-interface surfaces, shrink-wrapping to semi-regularize the surfaces, semi-structured surface wavelet compression, and view-dependent display-mesh optimization. More recently on the 12 TeraOps ASCI platform, initial results from a 5120-processor, billion-atom molecular dynamics simulation showed that 30-to-1 reductions in storage size can be achieved with no human-observable errors for the analysis required in simulations of supersonic crack propagation. This made it possible to store the 25 trillion bytes worth of simulation numbers in the available storage, which was under 1 trillion bytes. While multi-resolution methods and related systems are still in their infancy, for the largest-scale simulations there is often no other choice should the science require detailed exploration of the results.

  11. Lifting wavelet method of target detection

    NASA Astrophysics Data System (ADS)

    Han, Jun; Zhang, Chi; Jiang, Xu; Wang, Fang; Zhang, Jin

    2009-11-01

    Image target recognition plays a very important role in the areas of scientific exploration, aeronautics and space-to-ground observation, photography and topographic mapping. Complex environment of the image noise, fuzzy, all kinds of interference has always been to affect the stability of recognition algorithm. In this paper, the existence of target detection in real-time, accuracy problems, as well as anti-interference ability, using lifting wavelet image target detection methods. First of all, the use of histogram equalization, the goal difference method to obtain the region, on the basis of adaptive threshold and mathematical morphology operations to deal with the elimination of the background error. Secondly, the use of multi-channel wavelet filter wavelet transform of the original image de-noising and enhancement, to overcome the general algorithm of the noise caused by the sensitive issue of reducing the rate of miscarriage of justice will be the multi-resolution characteristics of wavelet and promotion of the framework can be designed directly in the benefits of space-time region used in target detection, feature extraction of targets. The experimental results show that the design of lifting wavelet has solved the movement of the target due to the complexity of the context of the difficulties caused by testing, which can effectively suppress noise, and improve the efficiency and speed of detection.

  12. Multiscale asymmetric orthogonal wavelet kernel for linear programming support vector learning and nonlinear dynamic systems identification.

    PubMed

    Lu, Zhao; Sun, Jing; Butts, Kenneth

    2014-05-01

    Support vector regression for approximating nonlinear dynamic systems is more delicate than the approximation of indicator functions in support vector classification, particularly for systems that involve multitudes of time scales in their sampled data. The kernel used for support vector learning determines the class of functions from which a support vector machine can draw its solution, and the choice of kernel significantly influences the performance of a support vector machine. In this paper, to bridge the gap between wavelet multiresolution analysis and kernel learning, the closed-form orthogonal wavelet is exploited to construct new multiscale asymmetric orthogonal wavelet kernels for linear programming support vector learning. The closed-form multiscale orthogonal wavelet kernel provides a systematic framework to implement multiscale kernel learning via dyadic dilations and also enables us to represent complex nonlinear dynamics effectively. To demonstrate the superiority of the proposed multiscale wavelet kernel in identifying complex nonlinear dynamic systems, two case studies are presented that aim at building parallel models on benchmark datasets. The development of parallel models that address the long-term/mid-term prediction issue is more intricate and challenging than the identification of series-parallel models where only one-step ahead prediction is required. Simulation results illustrate the effectiveness of the proposed multiscale kernel learning.

  13. Data Mining and Optimization Tools for Developing Engine Parameters Tools

    NASA Technical Reports Server (NTRS)

    Dhawan, Atam P.

    1998-01-01

    This project was awarded for understanding the problem and developing a plan for Data Mining tools for use in designing and implementing an Engine Condition Monitoring System. Tricia Erhardt and I studied the problem domain for developing an Engine Condition Monitoring system using the sparse and non-standardized datasets to be available through a consortium at NASA Lewis Research Center. We visited NASA three times to discuss additional issues related to dataset which was not made available to us. We discussed and developed a general framework of data mining and optimization tools to extract useful information from sparse and non-standard datasets. These discussions lead to the training of Tricia Erhardt to develop Genetic Algorithm based search programs which were written in C++ and used to demonstrate the capability of GA algorithm in searching an optimal solution in noisy, datasets. From the study and discussion with NASA LeRC personnel, we then prepared a proposal, which is being submitted to NASA for future work for the development of data mining algorithms for engine conditional monitoring. The proposed set of algorithm uses wavelet processing for creating multi-resolution pyramid of tile data for GA based multi-resolution optimal search.

  14. Remote visual analysis of large turbulence databases at multiple scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pulido, Jesus; Livescu, Daniel; Kanov, Kalin

    The remote analysis and visualization of raw large turbulence datasets is challenging. Current accurate direct numerical simulations (DNS) of turbulent flows generate datasets with billions of points per time-step and several thousand time-steps per simulation. Until recently, the analysis and visualization of such datasets was restricted to scientists with access to large supercomputers. The public Johns Hopkins Turbulence database simplifies access to multi-terabyte turbulence datasets and facilitates the computation of statistics and extraction of features through the use of commodity hardware. In this paper, we present a framework designed around wavelet-based compression for high-speed visualization of large datasets and methodsmore » supporting multi-resolution analysis of turbulence. By integrating common technologies, this framework enables remote access to tools available on supercomputers and over 230 terabytes of DNS data over the Web. Finally, the database toolset is expanded by providing access to exploratory data analysis tools, such as wavelet decomposition capabilities and coherent feature extraction.« less

  15. Remote visual analysis of large turbulence databases at multiple scales

    DOE PAGES

    Pulido, Jesus; Livescu, Daniel; Kanov, Kalin; ...

    2018-06-15

    The remote analysis and visualization of raw large turbulence datasets is challenging. Current accurate direct numerical simulations (DNS) of turbulent flows generate datasets with billions of points per time-step and several thousand time-steps per simulation. Until recently, the analysis and visualization of such datasets was restricted to scientists with access to large supercomputers. The public Johns Hopkins Turbulence database simplifies access to multi-terabyte turbulence datasets and facilitates the computation of statistics and extraction of features through the use of commodity hardware. In this paper, we present a framework designed around wavelet-based compression for high-speed visualization of large datasets and methodsmore » supporting multi-resolution analysis of turbulence. By integrating common technologies, this framework enables remote access to tools available on supercomputers and over 230 terabytes of DNS data over the Web. Finally, the database toolset is expanded by providing access to exploratory data analysis tools, such as wavelet decomposition capabilities and coherent feature extraction.« less

  16. Adaptive multiscale processing for contrast enhancement

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Song, Shuwu; Fan, Jian; Huda, Walter; Honeyman, Janice C.; Steinbach, Barbara G.

    1993-07-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through overcomplete multiresolution representations. We show that efficient representations may be identified from digital mammograms within a continuum of scale space and used to enhance features of importance to mammography. Choosing analyzing functions that are well localized in both space and frequency, results in a powerful methodology for image analysis. We describe methods of contrast enhancement based on two overcomplete (redundant) multiscale representations: (1) Dyadic wavelet transform (2) (phi) -transform. Mammograms are reconstructed from transform coefficients modified at one or more levels by non-linear, logarithmic and constant scale-space weight functions. Multiscale edges identified within distinct levels of transform space provide a local support for enhancement throughout each decomposition. We demonstrate that features extracted from wavelet spaces can provide an adaptive mechanism for accomplishing local contrast enhancement. We suggest that multiscale detection and local enhancement of singularities may be effectively employed for the visualization of breast pathology without excessive noise amplification.

  17. Bayesian wavelet PCA methodology for turbomachinery damage diagnosis under uncertainty

    NASA Astrophysics Data System (ADS)

    Xu, Shengli; Jiang, Xiaomo; Huang, Jinzhi; Yang, Shuhua; Wang, Xiaofang

    2016-12-01

    Centrifugal compressor often suffers various defects such as impeller cracking, resulting in forced outage of the total plant. Damage diagnostics and condition monitoring of such a turbomachinery system has become an increasingly important and powerful tool to prevent potential failure in components and reduce unplanned forced outage and further maintenance costs, while improving reliability, availability and maintainability of a turbomachinery system. This paper presents a probabilistic signal processing methodology for damage diagnostics using multiple time history data collected from different locations of a turbomachine, considering data uncertainty and multivariate correlation. The proposed methodology is based on the integration of three advanced state-of-the-art data mining techniques: discrete wavelet packet transform, Bayesian hypothesis testing, and probabilistic principal component analysis. The multiresolution wavelet analysis approach is employed to decompose a time series signal into different levels of wavelet coefficients. These coefficients represent multiple time-frequency resolutions of a signal. Bayesian hypothesis testing is then applied to each level of wavelet coefficient to remove possible imperfections. The ratio of posterior odds Bayesian approach provides a direct means to assess whether there is imperfection in the decomposed coefficients, thus avoiding over-denoising. Power spectral density estimated by the Welch method is utilized to evaluate the effectiveness of Bayesian wavelet cleansing method. Furthermore, the probabilistic principal component analysis approach is developed to reduce dimensionality of multiple time series and to address multivariate correlation and data uncertainty for damage diagnostics. The proposed methodology and generalized framework is demonstrated with a set of sensor data collected from a real-world centrifugal compressor with impeller cracks, through both time series and contour analyses of vibration signal and principal components.

  18. Storm Motion Tracking Over The Arno River Basin Through Multiscale Radar Reflectivity Classification and Correlation

    NASA Astrophysics Data System (ADS)

    Facheris, L.; Tanelli, S.; Giuli, D.

    A method is presented for analyzing the storm motion through the application of a nowcasting technique based on radar echoes tracking through multiscale correlation. The application of the correlation principle to weather radar image processing - the so called TREC (Tracking Radar Echoes by Correlation) and derived algorithms - is de- scribed in [1] and in references cited therein. The block matching approach exploited there is typical of video compression applications, whose purpose is to remove the temporal correlation between two subsequent frames of a sequence of images. In par- ticular, the wavelet decomposition approach to motion estimation seems particularly suitable for weather radar maps. In fact, block matching is particularly efficient when the images have a sufficient level of contrast. Though this does not hold for original resolution radar maps, it can be easily obtained by changing the resolution level by means of the wavelet decomposition. The technique first proposed in [2] (TREMC - Tracking of Radar Echoes by means of Multiscale Correlation) adopts a multiscale, multiresolution, and partially overlapped, block grid which adapts to the radar reflec- tivity pattern. Multiresolution decomposition is performed through 2D wavelet based filtering. Correlation coefficients are calculated taking after preliminary screening of unreliable data (e.g. those affected by ground clutter or beam shielding), so as to avoid strong undesired motion estimation biases due to the presence of stationary features. Such features are detected by a previous analysis carried out as discussed in [2]. In this paper, motion fields obtained by analyzing precipitation events over the Arno river basin are compared to the related Doppler velocity fields in order to identify growth and decay areas and orographic effects. Data presented have been collected by the weather radar station POLAR 55C sited in Montagnana (Firenze-Italy), a polarimetric C-band system providing absolute and differential reflectivity maps, mean Doppler velocity and Doppler spread maps with a resolution of 125/250 m [3]. [1] Li L. Schmid W. and Joss J., Nowcasting of motion and growth of precipitation with radar over a complex orography Journal of Applied Meteorology, vol. 34, pp. 1286-1300, 1995. [2] L.Facheris, S. Tanelli, F. Argenti, D.Giuli, SWavelet Applica- & cedil;tions to Multiparameter Weather Radar AnalysisT, to be published on SInformation & cedil;Processing for Remote SensingT, Prof. C.H. Chen Ed. for World Scientific Publish- 1 ing Co., pagg. 187-207, 1999 [3] Scarchilli G. Gorgucci E. Giuli D. Facheris L. Freni A. and Vezzani G., Arno Project: Radar System and objectives., Proceedings 25th In- ternational Conference on Radar Meteorology, Paris, France, 24-28 June 1991, pp. 805-808 2

  19. Analyze the dynamic features of rat EEG using wavelet entropy.

    PubMed

    Feng, Zhouyan; Chen, Hang

    2005-01-01

    Wavelet entropy (WE), a new method of complexity measure for non-stationary signals, was used to investigate the dynamic features of rat EEGs under three vigilance states. The EEGs of the freely moving rats were recorded with implanted electrodes and were decomposed into four components of delta, theta, alpha and beta by using multi-resolution wavelet transform. Then, the wavelet entropy curves were calculated as a function of time. The results showed that there were significant differences among the average WEs of EEGs recorded under the vigilance states of waking, slow wave sleep (SWS) and rapid eye movement (REM) sleep. The changes of WE had different relationships with the four power components under different states. Moreover, there was evident rhythm in EEG WEs of SWS sleep for most experimental rats, which indicated a reciprocal relationship between slow waves and sleep spindles in the micro-states of SWS sleep. Therefore, WE can be used not only to distinguish the long-term changes in EEG complexity, but also to reveal the short-term changes in EEG micro-state.

  20. Characterization of large-scale fluctuations and short-term variability of Seine river daily streamflow (France) over the period 1950-2008 by empirical mode decomposition and the Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Massei, N.; Fournier, M.

    2010-12-01

    Daily Seine river flow from 1950 to 2008 was analyzed using Hilbert-Huang Tranform (HHT). For the last ten years, this method which combines the so-called Empirical Mode Decomposition (EMD) multiresolution analysis and the Hilbert transform has proven its efficiency for the analysis of transient oscillatory signals, although the mathematical definition of the EMD is not totally established yet. HHT also provides an interesting alternative to other time-frequency or time-scale analysis of non-stationary signals, the most famous of which being wavelet-based approaches. In this application of HHT to the analysis of the hydrological variability of the Seine river, we seek to characterize the interannual patterns of daily flow, differenciate them from the short-term dynamics and eventually interpret them in the context of regional climate regime fluctuations. In this aim, HHT is also applied to the North-Atlantic Oscillation (NAO) through the annual winter-months NAO index time series. For both hydrological and climatic signals, dominant variability scales are extracted and their temporal variations analyzed by determination of the intantaneous frequency of each component. When compared to previous ones obtained from continuous wavelet transform (CWT) on the same data, HHT results highlighted the same scales and somewhat the same internal components for each signal. However, HHT allowed the identification and extraction of much more similar features during the 1950-2008 period (e.g., around 7-yr, between NAO and Seine flow than what was obtained from CWT, which comes to say that variability scales in flow likely to originate from climatic regime fluctuations were much properly identified in river flow. In addition, a more accurate determination of singularities in the natural processes analyzed were authorized by HHT compared to CWT, in which case the time-frequency resolution partly depends on the basic properties of the filter (i.e., the reference wavelet chosen initially). Compared to CWT or even to discrete wavelet multiresolution analysis, HHT is auto-adaptive, non-parametric, allows an orthogonal decomposition of the signal analyzed and provides a more accurate estimation of changing variability scales across time for highly transient signals.

  1. Wavelet analysis for the study of the relations among soil radon anomalies, volcanic and seismic events: the case of Mt. Etna (Italy)

    NASA Astrophysics Data System (ADS)

    Ferrera, Elisabetta; Giammanco, Salvatore; Cannata, Andrea; Montalto, Placido

    2013-04-01

    From November 2009 to April 2011 soil radon activity was continuously monitored using a Barasol® probe located on the upper NE flank of Mt. Etna volcano, close either to the Piano Provenzana fault or to the NE-Rift. Seismic and volcanological data have been analyzed together with radon data. We also analyzed air and soil temperature, barometric pressure, snow and rain fall data. In order to find possible correlations among the above parameters, and hence to reveal possible anomalies in the radon time-series, we used different statistical methods: i) multivariate linear regression; ii) cross-correlation; iii) coherence analysis through wavelet transform. Multivariate regression indicated a modest influence on soil radon from environmental parameters (R2 = 0.31). When using 100-days time windows, the R2 values showed wide variations in time, reaching their maxima (~0.63-0.66) during summer. Cross-correlation analysis over 100-days moving averages showed that, similar to multivariate linear regression analysis, the summer period is characterised by the best correlation between radon data and environmental parameters. Lastly, the wavelet coherence analysis allowed a multi-resolution coherence analysis of the time series acquired. This approach allows to study the relations among different signals either in time or frequency domain. It confirmed the results of the previous methods, but also allowed to recognize correlations between radon and environmental parameters at different observation scales (e.g., radon activity changed during strong precipitations, but also during anomalous variations of soil temperature uncorrelated with seasonal fluctuations). Our work suggests that in order to make an accurate analysis of the relations among distinct signals it is necessary to use different techniques that give complementary analytical information. In particular, the wavelet analysis showed to be very effective in discriminating radon changes due to environmental influences from those correlated with impending seismic or volcanic events.

  2. Use of Multi-Resolution Wavelet Feature Pyramids for Automatic Registration of Multi-Sensor Imagery

    NASA Technical Reports Server (NTRS)

    Zavorin, Ilya; LeMoigne, Jacqueline

    2003-01-01

    The problem of image registration, or alignment of two or more images representing the same scene or object, has to be addressed in various disciplines that employ digital imaging. In the area of remote sensing, just like in medical imaging or computer vision, it is necessary to design robust, fast and widely applicable algorithms that would allow automatic registration of images generated by various imaging platforms at the same or different times, and that would provide sub-pixel accuracy. One of the main issues that needs to be addressed when developing a registration algorithm is what type of information should be extracted from the images being registered, to be used in the search for the geometric transformation that best aligns them. The main objective of this paper is to evaluate several wavelet pyramids that may be used both for invariant feature extraction and for representing images at multiple spatial resolutions to accelerate registration. We find that the band-pass wavelets obtained from the Steerable Pyramid due to Simoncelli perform better than two types of low-pass pyramids when the images being registered have relatively small amount of nonlinear radiometric variations between them. Based on these findings, we propose a modification of a gradient-based registration algorithm that has recently been developed for medical data. We test the modified algorithm on several sets of real and synthetic satellite imagery.

  3. Homogenization via Sequential Projection to Nested Subspaces Spanned by Orthogonal Scaling and Wavelet Orthonormal Families of Functions

    DTIC Science & Technology

    2008-07-01

    operators in Hilbert spaces. The homogenization procedure through successive multi- resolution projections is presented, followed by a numerical example of...is intended to be essentially self-contained. The mathematical ( Greenberg 1978; Gilbert 2006) and signal processing (Strang and Nguyen 1995...literature listed in the references. The ideas behind multi-resolution analysis unfold from the theory of linear operators in Hilbert spaces (Davis 1975

  4. Application of wavelet multi-resolution analysis for correction of seismic acceleration records

    NASA Astrophysics Data System (ADS)

    Ansari, Anooshiravan; Noorzad, Assadollah; Zare, Mehdi

    2007-12-01

    During an earthquake, many stations record the ground motion, but only a few of them could be corrected using conventional high-pass and low-pass filtering methods and the others were identified as highly contaminated by noise and as a result useless. There are two major problems associated with these noisy records. First, since the signal to noise ratio (S/N) is low, it is not possible to discriminate between the original signal and noise either in the frequency domain or in the time domain. Consequently, it is not possible to cancel out noise using conventional filtering methods. The second problem is the non-stationary characteristics of the noise. In other words, in many cases the characteristics of the noise are varied over time and in these situations, it is not possible to apply frequency domain correction schemes. When correcting acceleration signals contaminated with high-level non-stationary noise, there is an important question whether it is possible to estimate the state of the noise in different bands of time and frequency. Wavelet multi-resolution analysis decomposes a signal into different time-frequency components, and besides introducing a suitable criterion for identification of the noise among each component, also provides the required mathematical tool for correction of highly noisy acceleration records. In this paper, the characteristics of the wavelet de-noising procedures are examined through the correction of selected real and synthetic acceleration time histories. It is concluded that this method provides a very flexible and efficient tool for the correction of very noisy and non-stationary records of ground acceleration. In addition, a two-step correction scheme is proposed for long period correction of the acceleration records. This method has the advantage of stable results in displacement time history and response spectrum.

  5. Adaptive Numerical Dissipation Control in High Order Schemes for Multi-D Non-Ideal MHD

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjoegreen, B.

    2005-01-01

    The required type and amount of numerical dissipation/filter to accurately resolve all relevant multiscales of complex MHD unsteady high-speed shock/shear/turbulence/combustion problems are not only physical problem dependent, but also vary from one flow region to another. In addition, proper and efficient control of the divergence of the magnetic field (Div(B)) numerical error for high order shock-capturing methods poses extra requirements for the considered type of CPU intensive computations. The goal is to extend our adaptive numerical dissipation control in high order filter schemes and our new divergence-free methods for ideal MHD to non-ideal MHD that include viscosity and resistivity. The key idea consists of automatic detection of different flow features as distinct sensors to signal the appropriate type and amount of numerical dissipation/filter where needed and leave the rest of the region free from numerical dissipation contamination. These scheme-independent detectors are capable of distinguishing shocks/shears, flame sheets, turbulent fluctuations and spurious high-frequency oscillations. The detection algorithm is based on an artificial compression method (ACM) (for shocks/shears), and redundant multiresolution wavelets (WAV) (for the above types of flow feature). These filters also provide a natural and efficient way for the minimization of Div(B) numerical error.

  6. A new approach to global seismic tomography based on regularization by sparsity in a novel 3D spherical wavelet basis

    NASA Astrophysics Data System (ADS)

    Loris, Ignace; Simons, Frederik J.; Daubechies, Ingrid; Nolet, Guust; Fornasier, Massimo; Vetter, Philip; Judd, Stephen; Voronin, Sergey; Vonesch, Cédric; Charléty, Jean

    2010-05-01

    Global seismic wavespeed models are routinely parameterized in terms of spherical harmonics, networks of tetrahedral nodes, rectangular voxels, or spherical splines. Up to now, Earth model parametrizations by wavelets on the three-dimensional ball remain uncommon. Here we propose such a procedure with the following three goals in mind: (1) The multiresolution character of a wavelet basis allows for the models to be represented with an effective spatial resolution that varies as a function of position within the Earth. (2) This property can be used to great advantage in the regularization of seismic inversion schemes by seeking the most sparse solution vector, in wavelet space, through iterative minimization of a combination of the ℓ2 (to fit the data) and ℓ1 norms (to promote sparsity in wavelet space). (3) With the continuing increase in high-quality seismic data, our focus is also on numerical efficiency and the ability to use parallel computing in reconstructing the model. In this presentation we propose a new wavelet basis to take advantage of these three properties. To form the numerical grid we begin with a surface tesselation known as the 'cubed sphere', a construction popular in fluid dynamics and computational seismology, coupled with an semi-regular radial subdivison that honors the major seismic discontinuities between the core-mantle boundary and the surface. This mapping first divides the volume of the mantle into six portions. In each 'chunk' two angular and one radial variable are used for parametrization. In the new variables standard 'cartesian' algorithms can more easily be used to perform the wavelet transform (or other common transforms). Edges between chunks are handled by special boundary filters. We highlight the benefits of this construction and use it to analyze the information present in several published seismic compressional-wavespeed models of the mantle, paying special attention to the statistics of wavelet and scaling coefficients across scales. We also focus on the likely gains of future inversions of finite-frequency seismic data using a sparsity promoting penalty in combination with our new wavelet approach.

  7. Hydrological response of karst systems to large-scale climate variability for different catchments of the French karst observatory network INSU/CNRS SNO KARST

    NASA Astrophysics Data System (ADS)

    Massei, Nicolas; Labat, David; Jourde, Hervé; Lecoq, Nicolas; Mazzilli, Naomi

    2017-04-01

    The french karst observatory network SNO KARST is a national initiative from the National Institute for Earth Sciences and Astronomy (INSU) of the National Center for Scientific Research (CNRS). It is also part of the new french research infrastructure for the observation of the critical zone OZCAR. SNO KARST is composed by several karst sites distributed over conterminous France which are located in different physiographic and climatic contexts (Mediterranean, Pyrenean, Jura mountain, western and northwestern shore near the Atlantic or the English Channel). This allows the scientific community to develop advanced research and experiments dedicated to improve understanding of the hydrological functioning of karst catchments. Here we used several sites of SNO KARST in order to assess the hydrological response of karst catchments to long-term variation of large-scale atmospheric circulation. Using NCEP reanalysis products and karst discharge, we analyzed the links between large-scale circulation and karst water resources variability. As karst hydrosystems are highly heterogeneous media, they behave differently across different time-scales : we explore the large-scale/local-scale relationships according to time-scales using a wavelet multiresolution approach of both karst hydrological variables and large-scale climate fields such as sea level pressure (SLP). The different wavelet components of karst discharge in response to the corresponding wavelet component of climate fields are either 1) compared to physico-chemical/geochemical responses at karst springs, or 2) interpreted in terms of hydrological functioning by comparing discharge wavelet components to internal components obtained from precipitation/discharge models using the KARSTMOD conceptual modeling platform of SNO KARST.

  8. A numerical study on dual-phase-lag model of bio-heat transfer during hyperthermia treatment.

    PubMed

    Kumar, P; Kumar, Dinesh; Rai, K N

    2015-01-01

    The success of hyperthermia in the treatment of cancer depends on the precise prediction and control of temperature. It was absolutely a necessity for hyperthermia treatment planning to understand the temperature distribution within living biological tissues. In this paper, dual-phase-lag model of bio-heat transfer has been studied using Gaussian distribution source term under most generalized boundary condition during hyperthermia treatment. An approximate analytical solution of the present problem has been done by Finite element wavelet Galerkin method which uses Legendre wavelet as a basis function. Multi-resolution analysis of Legendre wavelet in the present case localizes small scale variations of solution and fast switching of functional bases. The whole analysis is presented in dimensionless form. The dual-phase-lag model of bio-heat transfer has compared with Pennes and Thermal wave model of bio-heat transfer and it has been found that large differences in the temperature at the hyperthermia position and time to achieve the hyperthermia temperature exist, when we increase the value of τT. Particular cases when surface subjected to boundary condition of 1st, 2nd and 3rd kind are discussed in detail. The use of dual-phase-lag model of bio-heat transfer and finite element wavelet Galerkin method as a solution method helps in precise prediction of temperature. Gaussian distribution source term helps in control of temperature during hyperthermia treatment. So, it makes this study more useful for clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Scalability of a Low-Cost Multi-Teraflop Linux Cluster for High-End Classical Atomistic and Quantum Mechanical Simulations

    NASA Technical Reports Server (NTRS)

    Kikuchi, Hideaki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Shimojo, Fuyuki; Saini, Subhash

    2003-01-01

    Scalability of a low-cost, Intel Xeon-based, multi-Teraflop Linux cluster is tested for two high-end scientific applications: Classical atomistic simulation based on the molecular dynamics method and quantum mechanical calculation based on the density functional theory. These scalable parallel applications use space-time multiresolution algorithms and feature computational-space decomposition, wavelet-based adaptive load balancing, and spacefilling-curve-based data compression for scalable I/O. Comparative performance tests are performed on a 1,024-processor Linux cluster and a conventional higher-end parallel supercomputer, 1,184-processor IBM SP4. The results show that the performance of the Linux cluster is comparable to that of the SP4. We also study various effects, such as the sharing of memory and L2 cache among processors, on the performance.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Jaideep; Lee, Jina; Lefantzi, Sophia

    The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. To that end, we construct a multiresolution spatial parametrization for fossil-fuel CO2 emissions (ffCO2), to be used in atmospheric inversions. Such a parametrization does not currently exist. The parametrization uses wavelets to accurately capture the multiscale, nonstationary nature of ffCO2 emissions and employs proxies of human habitation, e.g., images of lights at night and maps of built-up areas to reduce the dimensionality of the multiresolution parametrization.more » The parametrization is used in a synthetic data inversion to test its suitability for use in atmospheric inverse problem. This linear inverse problem is predicated on observations of ffCO2 concentrations collected at measurement towers. We adapt a convex optimization technique, commonly used in the reconstruction of compressively sensed images, to perform sparse reconstruction of the time-variant ffCO2 emission field. We also borrow concepts from compressive sensing to impose boundary conditions i.e., to limit ffCO2 emissions within an irregularly shaped region (the United States, in our case). We find that the optimization algorithm performs a data-driven sparsification of the spatial parametrization and retains only of those wavelets whose weights could be estimated from the observations. Further, our method for the imposition of boundary conditions leads to a 10computational saving over conventional means of doing so. We conclude with a discussion of the accuracy of the estimated emissions and the suitability of the spatial parametrization for use in inverse problems with a significant degree of regularization.« less

  11. Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation

    NASA Technical Reports Server (NTRS)

    Liandrat, J.; Tchamitchian, PH.

    1990-01-01

    The Burgers equation with a small viscosity term, initial and periodic boundary conditions is resolved using a spatial approximation constructed from an orthonormal basis of wavelets. The algorithm is directly derived from the notions of multiresolution analysis and tree algorithms. Before the numerical algorithm is described these notions are first recalled. The method uses extensively the localization properties of the wavelets in the physical and Fourier spaces. Moreover, the authors take advantage of the fact that the involved linear operators have constant coefficients. Finally, the algorithm can be considered as a time marching version of the tree algorithm. The most important point is that an adaptive version of the algorithm exists: it allows one to reduce in a significant way the number of degrees of freedom required for a good computation of the solution. Numerical results and description of the different elements of the algorithm are provided in combination with different mathematical comments on the method and some comparison with more classical numerical algorithms.

  12. Built-Up Area Detection from High-Resolution Satellite Images Using Multi-Scale Wavelet Transform and Local Spatial Statistics

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Zhang, Y.; Gao, J.; Yuan, Y.; Lv, Z.

    2018-04-01

    Recently, built-up area detection from high-resolution satellite images (HRSI) has attracted increasing attention because HRSI can provide more detailed object information. In this paper, multi-resolution wavelet transform and local spatial autocorrelation statistic are introduced to model the spatial patterns of built-up areas. First, the input image is decomposed into high- and low-frequency subbands by wavelet transform at three levels. Then the high-frequency detail information in three directions (horizontal, vertical and diagonal) are extracted followed by a maximization operation to integrate the information in all directions. Afterward, a cross-scale operation is implemented to fuse different levels of information. Finally, local spatial autocorrelation statistic is introduced to enhance the saliency of built-up features and an adaptive threshold algorithm is used to achieve the detection of built-up areas. Experiments are conducted on ZY-3 and Quickbird panchromatic satellite images, and the results show that the proposed method is very effective for built-up area detection.

  13. State University of New York Institute of Technology (SUNYIT) Summer Scholar Program

    DTIC Science & Technology

    2009-10-01

    COVERED (From - To) March 2007 – April 2009 4 . TITLE AND SUBTITLE STATE UNIVERSITY OF NEW YORK INSTITUTE OF TECHNOLOGY (SUNYIT) SUMMER SCHOLAR...Even with access to the Arctic Regional Supercomputer Center (ARSC), evolving a 9/7 wavelet with four multi-resolution levels (MRA 4 ) involves...evaluated over the multiple processing elements in the Cell processor. It was tested on Cell processors in a Sony Playstation 3 and on an IBM QS20 blade

  14. Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barreira Luz, R. J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlín, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rogozin, D.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento, C. A.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Tapia, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Torri, M.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.

    2017-06-01

    We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 80o and energies in excess of 4 EeV (4 × 1018 eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional information on any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding p-values obtained after accounting for searches blindly performed at several angular scales, are 1.3 × 10-5 in the case of the angular power spectrum, and 2.5 × 10-3 in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.

  15. Multiresolution analysis over graphs for a motor imagery based online BCI game.

    PubMed

    Asensio-Cubero, Javier; Gan, John Q; Palaniappan, Ramaswamy

    2016-01-01

    Multiresolution analysis (MRA) over graph representation of EEG data has proved to be a promising method for offline brain-computer interfacing (BCI) data analysis. For the first time we aim to prove the feasibility of the graph lifting transform in an online BCI system. Instead of developing a pointer device or a wheel-chair controller as test bed for human-machine interaction, we have designed and developed an engaging game which can be controlled by means of imaginary limb movements. Some modifications to the existing MRA analysis over graphs for BCI have also been proposed, such as the use of common spatial patterns for feature extraction at the different levels of decomposition, and sequential floating forward search as a best basis selection technique. In the online game experiment we obtained for three classes an average classification rate of 63.0% for fourteen naive subjects. The application of a best basis selection method helps significantly decrease the computing resources needed. The present study allows us to further understand and assess the benefits of the use of tailored wavelet analysis for processing motor imagery data and contributes to the further development of BCI for gaming purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Hammerstein system represention of financial volatility processes

    NASA Astrophysics Data System (ADS)

    Capobianco, E.

    2002-05-01

    We show new modeling aspects of stock return volatility processes, by first representing them through Hammerstein Systems, and by then approximating the observed and transformed dynamics with wavelet-based atomic dictionaries. We thus propose an hybrid statistical methodology for volatility approximation and non-parametric estimation, and aim to use the information embedded in a bank of volatility sources obtained by decomposing the observed signal with multiresolution techniques. Scale dependent information refers both to market activity inherent to different temporally aggregated trading horizons, and to a variable degree of sparsity in representing the signal. A decomposition of the expansion coefficients in least dependent coordinates is then implemented through Independent Component Analysis. Based on the described steps, the features of volatility can be more effectively detected through global and greedy algorithms.

  17. Continuous EEG signal analysis for asynchronous BCI application.

    PubMed

    Hsu, Wei-Yen

    2011-08-01

    In this study, we propose a two-stage recognition system for continuous analysis of electroencephalogram (EEG) signals. An independent component analysis (ICA) and correlation coefficient are used to automatically eliminate the electrooculography (EOG) artifacts. Based on the continuous wavelet transform (CWT) and Student's two-sample t-statistics, active segment selection then detects the location of active segment in the time-frequency domain. Next, multiresolution fractal feature vectors (MFFVs) are extracted with the proposed modified fractal dimension from wavelet data. Finally, the support vector machine (SVM) is adopted for the robust classification of MFFVs. The EEG signals are continuously analyzed in 1-s segments, and every 0.5 second moves forward to simulate asynchronous BCI works in the two-stage recognition architecture. The segment is first recognized as lifted or not in the first stage, and then is classified as left or right finger lifting at stage two if the segment is recognized as lifting in the first stage. Several statistical analyses are used to evaluate the performance of the proposed system. The results indicate that it is a promising system in the applications of asynchronous BCI work.

  18. Artificial Intelligence (AI) Center of Excellence at the University of Pennsylvania

    DTIC Science & Technology

    1989-10-01

    34Multiresolution Representations and Wavelets" Advisor: Bajcsy Aug 88 Wayne Snyder "General E-Unification" Assistant Professor, Boston University Advisor: Collier ...Val Breazu- Tannen and Thierry Coquand MS- CIS-88-25 LINC LAB 109 This is a slightly revised version of MS-CIS-87- 75/LINC LAB 81. We present a...information can be used to tailor and explanation. Domain Theoretic Models of Polymorphism Thierry Coquand, Carl A. Gunter, and Glynn Winskel MS-CIS-88-)38

  19. Image Segmentation Using Affine Wavelets

    DTIC Science & Technology

    1991-12-12

    accomplished by tile the matrixtoascii. c prograimi. TIl’ i’ rlage file is theim processed by the wave2 prograli which u ilizes MaIllat’s algo- 5-2 CLASS...1024 feet Figure 5.3. Frequency Content of Multiresolution Levels rithm. Details of the wave2 program can be found in the Appendix. One of the resulting...which comprise the wave2 program. 1. mainswave.c - The main driver program for wave. 2. loadimage.c - A routine to load the input image from an ascii

  20. Rough-Fuzzy Clustering and Unsupervised Feature Selection for Wavelet Based MR Image Segmentation

    PubMed Central

    Maji, Pradipta; Roy, Shaswati

    2015-01-01

    Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of brain magnetic resonance (MR) images. For many human experts, manual segmentation is a difficult and time consuming task, which makes an automated brain MR image segmentation method desirable. In this regard, this paper presents a new segmentation method for brain MR images, integrating judiciously the merits of rough-fuzzy computing and multiresolution image analysis technique. The proposed method assumes that the major brain tissues, namely, gray matter, white matter, and cerebrospinal fluid from the MR images are considered to have different textural properties. The dyadic wavelet analysis is used to extract the scale-space feature vector for each pixel, while the rough-fuzzy clustering is used to address the uncertainty problem of brain MR image segmentation. An unsupervised feature selection method is introduced, based on maximum relevance-maximum significance criterion, to select relevant and significant textural features for segmentation problem, while the mathematical morphology based skull stripping preprocessing step is proposed to remove the non-cerebral tissues like skull. The performance of the proposed method, along with a comparison with related approaches, is demonstrated on a set of synthetic and real brain MR images using standard validity indices. PMID:25848961

  1. A Robust Zero-Watermarking Algorithm for Audio

    NASA Astrophysics Data System (ADS)

    Chen, Ning; Zhu, Jie

    2007-12-01

    In traditional watermarking algorithms, the insertion of watermark into the host signal inevitably introduces some perceptible quality degradation. Another problem is the inherent conflict between imperceptibility and robustness. Zero-watermarking technique can solve these problems successfully. Instead of embedding watermark, the zero-watermarking technique extracts some essential characteristics from the host signal and uses them for watermark detection. However, most of the available zero-watermarking schemes are designed for still image and their robustness is not satisfactory. In this paper, an efficient and robust zero-watermarking technique for audio signal is presented. The multiresolution characteristic of discrete wavelet transform (DWT), the energy compression characteristic of discrete cosine transform (DCT), and the Gaussian noise suppression property of higher-order cumulant are combined to extract essential features from the host audio signal and they are then used for watermark recovery. Simulation results demonstrate the effectiveness of our scheme in terms of inaudibility, detection reliability, and robustness.

  2. Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aab, A.; Abreu, P.; Andringa, S.

    2017-06-01

    We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 80{sup o} and energies in excess of 4 EeV (4 × 10{sup 18} eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providingmore » directional information on any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding p -values obtained after accounting for searches blindly performed at several angular scales, are 1.3 × 10{sup −5} in the case of the angular power spectrum, and 2.5 × 10{sup −3} in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.« less

  3. Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aab, A.; Abreu, P.; Aglietta, M.

    We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 80(o) and energies in excess of 4 EeV (4 × 10 18 eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional information onmore » any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured, while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding p-values obtained after accounting for searches blindly performed at several angular scales, are 1.3 × 10 -5 in the case of the angular power spectrum, and 2.5 × 10 -3 in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.« less

  4. Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection.

    PubMed

    Li, Baopu; Meng, Max Q-H

    2012-05-01

    Tumor in digestive tract is a common disease and wireless capsule endoscopy (WCE) is a relatively new technology to examine diseases for digestive tract especially for small intestine. This paper addresses the problem of automatic recognition of tumor for WCE images. Candidate color texture feature that integrates uniform local binary pattern and wavelet is proposed to characterize WCE images. The proposed features are invariant to illumination change and describe multiresolution characteristics of WCE images. Two feature selection approaches based on support vector machine, sequential forward floating selection and recursive feature elimination, are further employed to refine the proposed features for improving the detection accuracy. Extensive experiments validate that the proposed computer-aided diagnosis system achieves a promising tumor recognition accuracy of 92.4% in WCE images on our collected data.

  5. Computer Science Techniques Applied to Parallel Atomistic Simulation

    NASA Astrophysics Data System (ADS)

    Nakano, Aiichiro

    1998-03-01

    Recent developments in parallel processing technology and multiresolution numerical algorithms have established large-scale molecular dynamics (MD) simulations as a new research mode for studying materials phenomena such as fracture. However, this requires large system sizes and long simulated times. We have developed: i) Space-time multiresolution schemes; ii) fuzzy-clustering approach to hierarchical dynamics; iii) wavelet-based adaptive curvilinear-coordinate load balancing; iv) multilevel preconditioned conjugate gradient method; and v) spacefilling-curve-based data compression for parallel I/O. Using these techniques, million-atom parallel MD simulations are performed for the oxidation dynamics of nanocrystalline Al. The simulations take into account the effect of dynamic charge transfer between Al and O using the electronegativity equalization scheme. The resulting long-range Coulomb interaction is calculated efficiently with the fast multipole method. Results for temperature and charge distributions, residual stresses, bond lengths and bond angles, and diffusivities of Al and O will be presented. The oxidation of nanocrystalline Al is elucidated through immersive visualization in virtual environments. A unique dual-degree education program at Louisiana State University will also be discussed in which students can obtain a Ph.D. in Physics & Astronomy and a M.S. from the Department of Computer Science in five years. This program fosters interdisciplinary research activities for interfacing High Performance Computing and Communications with large-scale atomistic simulations of advanced materials. This work was supported by NSF (CAREER Program), ARO, PRF, and Louisiana LEQSF.

  6. Wavelet-based identification of DNA focal genomic aberrations from single nucleotide polymorphism arrays

    PubMed Central

    2011-01-01

    Background Copy number aberrations (CNAs) are an important molecular signature in cancer initiation, development, and progression. However, these aberrations span a wide range of chromosomes, making it hard to distinguish cancer related genes from other genes that are not closely related to cancer but are located in broadly aberrant regions. With the current availability of high-resolution data sets such as single nucleotide polymorphism (SNP) microarrays, it has become an important issue to develop a computational method to detect driving genes related to cancer development located in the focal regions of CNAs. Results In this study, we introduce a novel method referred to as the wavelet-based identification of focal genomic aberrations (WIFA). The use of the wavelet analysis, because it is a multi-resolution approach, makes it possible to effectively identify focal genomic aberrations in broadly aberrant regions. The proposed method integrates multiple cancer samples so that it enables the detection of the consistent aberrations across multiple samples. We then apply this method to glioblastoma multiforme and lung cancer data sets from the SNP microarray platform. Through this process, we confirm the ability to detect previously known cancer related genes from both cancer types with high accuracy. Also, the application of this approach to a lung cancer data set identifies focal amplification regions that contain known oncogenes, though these regions are not reported using a recent CNAs detecting algorithm GISTIC: SMAD7 (chr18q21.1) and FGF10 (chr5p12). Conclusions Our results suggest that WIFA can be used to reveal cancer related genes in various cancer data sets. PMID:21569311

  7. Multiresolution analysis of the spatiotemporal variability in global radiation observed by a dense network of 99 pyranometers

    NASA Astrophysics Data System (ADS)

    Lakshmi Madhavan, Bomidi; Deneke, Hartwig; Witthuhn, Jonas; Macke, Andreas

    2017-03-01

    The time series of global radiation observed by a dense network of 99 autonomous pyranometers during the HOPE campaign around Jülich, Germany, are investigated with a multiresolution analysis based on the maximum overlap discrete wavelet transform and the Haar wavelet. For different sky conditions, typical wavelet power spectra are calculated to quantify the timescale dependence of variability in global transmittance. Distinctly higher variability is observed at all frequencies in the power spectra of global transmittance under broken-cloud conditions compared to clear, cirrus, or overcast skies. The spatial autocorrelation function including its frequency dependence is determined to quantify the degree of similarity of two time series measurements as a function of their spatial separation. Distances ranging from 100 m to 10 km are considered, and a rapid decrease of the autocorrelation function is found with increasing frequency and distance. For frequencies above 1/3 min-1 and points separated by more than 1 km, variations in transmittance become completely uncorrelated. A method is introduced to estimate the deviation between a point measurement and a spatially averaged value for a surrounding domain, which takes into account domain size and averaging period, and is used to explore the representativeness of a single pyranometer observation for its surrounding region. Two distinct mechanisms are identified, which limit the representativeness; on the one hand, spatial averaging reduces variability and thus modifies the shape of the power spectrum. On the other hand, the correlation of variations of the spatially averaged field and a point measurement decreases rapidly with increasing temporal frequency. For a grid box of 10 km × 10 km and averaging periods of 1.5-3 h, the deviation of global transmittance between a point measurement and an area-averaged value depends on the prevailing sky conditions: 2.8 (clear), 1.8 (cirrus), 1.5 (overcast), and 4.2 % (broken clouds). The solar global radiation observed at a single station is found to deviate from the spatial average by as much as 14-23 (clear), 8-26 (cirrus), 4-23 (overcast), and 31-79 W m-2 (broken clouds) from domain averages ranging from 1 km × 1 km to 10 km × 10 km in area.

  8. Multimodal fusion framework: a multiresolution approach for emotion classification and recognition from physiological signals.

    PubMed

    Verma, Gyanendra K; Tiwary, Uma Shanker

    2014-11-15

    The purpose of this paper is twofold: (i) to investigate the emotion representation models and find out the possibility of a model with minimum number of continuous dimensions and (ii) to recognize and predict emotion from the measured physiological signals using multiresolution approach. The multimodal physiological signals are: Electroencephalogram (EEG) (32 channels) and peripheral (8 channels: Galvanic skin response (GSR), blood volume pressure, respiration pattern, skin temperature, electromyogram (EMG) and electrooculogram (EOG)) as given in the DEAP database. We have discussed the theories of emotion modeling based on i) basic emotions, ii) cognitive appraisal and physiological response approach and iii) the dimensional approach and proposed a three continuous dimensional representation model for emotions. The clustering experiment on the given valence, arousal and dominance values of various emotions has been done to validate the proposed model. A novel approach for multimodal fusion of information from a large number of channels to classify and predict emotions has also been proposed. Discrete Wavelet Transform, a classical transform for multiresolution analysis of signal has been used in this study. The experiments are performed to classify different emotions from four classifiers. The average accuracies are 81.45%, 74.37%, 57.74% and 75.94% for SVM, MLP, KNN and MMC classifiers respectively. The best accuracy is for 'Depressing' with 85.46% using SVM. The 32 EEG channels are considered as independent modes and features from each channel are considered with equal importance. May be some of the channel data are correlated but they may contain supplementary information. In comparison with the results given by others, the high accuracy of 85% with 13 emotions and 32 subjects from our proposed method clearly proves the potential of our multimodal fusion approach. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Developing a New Computer-Aided Clinical Decision Support System for Prediction of Successful Postcardioversion Patients with Persistent Atrial Fibrillation.

    PubMed

    Sterling, Mark; Huang, David T; Ghoraani, Behnaz

    2015-01-01

    We propose a new algorithm to predict the outcome of direct-current electric (DCE) cardioversion for atrial fibrillation (AF) patients. AF is the most common cardiac arrhythmia and DCE cardioversion is a noninvasive treatment to end AF and return the patient to sinus rhythm (SR). Unfortunately, there is a high risk of AF recurrence in persistent AF patients; hence clinically it is important to predict the DCE outcome in order to avoid the procedure's side effects. This study develops a feature extraction and classification framework to predict AF recurrence patients from the underlying structure of atrial activity (AA). A multiresolution signal decomposition technique, based on matching pursuit (MP), was used to project the AA over a dictionary of wavelets. Seven novel features were derived from the decompositions and were employed in a quadratic discrimination analysis classification to predict the success of post-DCE cardioversion in 40 patients with persistent AF. The proposed algorithm achieved 100% sensitivity and 95% specificity, indicating that the proposed computational approach captures detailed structural information about the underlying AA and could provide reliable information for effective management of AF.

  10. Spatially adaptive bases in wavelet-based coding of semi-regular meshes

    NASA Astrophysics Data System (ADS)

    Denis, Leon; Florea, Ruxandra; Munteanu, Adrian; Schelkens, Peter

    2010-05-01

    In this paper we present a wavelet-based coding approach for semi-regular meshes, which spatially adapts the employed wavelet basis in the wavelet transformation of the mesh. The spatially-adaptive nature of the transform requires additional information to be stored in the bit-stream in order to allow the reconstruction of the transformed mesh at the decoder side. In order to limit this overhead, the mesh is first segmented into regions of approximately equal size. For each spatial region, a predictor is selected in a rate-distortion optimal manner by using a Lagrangian rate-distortion optimization technique. When compared against the classical wavelet transform employing the butterfly subdivision filter, experiments reveal that the proposed spatially-adaptive wavelet transform significantly decreases the energy of the wavelet coefficients for all subbands. Preliminary results show also that employing the proposed transform for the lowest-resolution subband systematically yields improved compression performance at low-to-medium bit-rates. For the Venus and Rabbit test models the compression improvements add up to 1.47 dB and 0.95 dB, respectively.

  11. EEG analysis using wavelet-based information tools.

    PubMed

    Rosso, O A; Martin, M T; Figliola, A; Keller, K; Plastino, A

    2006-06-15

    Wavelet-based informational tools for quantitative electroencephalogram (EEG) record analysis are reviewed. Relative wavelet energies, wavelet entropies and wavelet statistical complexities are used in the characterization of scalp EEG records corresponding to secondary generalized tonic-clonic epileptic seizures. In particular, we show that the epileptic recruitment rhythm observed during seizure development is well described in terms of the relative wavelet energies. In addition, during the concomitant time-period the entropy diminishes while complexity grows. This is construed as evidence supporting the conjecture that an epileptic focus, for this kind of seizures, triggers a self-organized brain state characterized by both order and maximal complexity.

  12. Long-term forecasting of internet backbone traffic.

    PubMed

    Papagiannaki, Konstantina; Taft, Nina; Zhang, Zhi-Li; Diot, Christophe

    2005-09-01

    We introduce a methodology to predict when and where link additions/upgrades have to take place in an Internet protocol (IP) backbone network. Using simple network management protocol (SNMP) statistics, collected continuously since 1999, we compute aggregate demand between any two adjacent points of presence (PoPs) and look at its evolution at time scales larger than 1 h. We show that IP backbone traffic exhibits visible long term trends, strong periodicities, and variability at multiple time scales. Our methodology relies on the wavelet multiresolution analysis (MRA) and linear time series models. Using wavelet MRA, we smooth the collected measurements until we identify the overall long-term trend. The fluctuations around the obtained trend are further analyzed at multiple time scales. We show that the largest amount of variability in the original signal is due to its fluctuations at the 12-h time scale. We model inter-PoP aggregate demand as a multiple linear regression model, consisting of the two identified components. We show that this model accounts for 98% of the total energy in the original signal, while explaining 90% of its variance. Weekly approximations of those components can be accurately modeled with low-order autoregressive integrated moving average (ARIMA) models. We show that forecasting the long term trend and the fluctuations of the traffic at the 12-h time scale yields accurate estimates for at least 6 months in the future.

  13. Time-frequency feature representation using multi-resolution texture analysis and acoustic activity detector for real-life speech emotion recognition.

    PubMed

    Wang, Kun-Ching

    2015-01-14

    The classification of emotional speech is mostly considered in speech-related research on human-computer interaction (HCI). In this paper, the purpose is to present a novel feature extraction based on multi-resolutions texture image information (MRTII). The MRTII feature set is derived from multi-resolution texture analysis for characterization and classification of different emotions in a speech signal. The motivation is that we have to consider emotions have different intensity values in different frequency bands. In terms of human visual perceptual, the texture property on multi-resolution of emotional speech spectrogram should be a good feature set for emotion classification in speech. Furthermore, the multi-resolution analysis on texture can give a clearer discrimination between each emotion than uniform-resolution analysis on texture. In order to provide high accuracy of emotional discrimination especially in real-life, an acoustic activity detection (AAD) algorithm must be applied into the MRTII-based feature extraction. Considering the presence of many blended emotions in real life, in this paper make use of two corpora of naturally-occurring dialogs recorded in real-life call centers. Compared with the traditional Mel-scale Frequency Cepstral Coefficients (MFCC) and the state-of-the-art features, the MRTII features also can improve the correct classification rates of proposed systems among different language databases. Experimental results show that the proposed MRTII-based feature information inspired by human visual perception of the spectrogram image can provide significant classification for real-life emotional recognition in speech.

  14. PULSAR SIGNAL DENOISING METHOD BASED ON LAPLACE DISTRIBUTION IN NO-SUBSAMPLING WAVELET PACKET DOMAIN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenbo, Wang; Yanchao, Zhao; Xiangli, Wang

    2016-11-01

    In order to improve the denoising effect of the pulsar signal, a new denoising method is proposed in the no-subsampling wavelet packet domain based on the local Laplace prior model. First, we count the true noise-free pulsar signal’s wavelet packet coefficient distribution characteristics and construct the true signal wavelet packet coefficients’ Laplace probability density function model. Then, we estimate the denosied wavelet packet coefficients by using the noisy pulsar wavelet coefficients based on maximum a posteriori criteria. Finally, we obtain the denoisied pulsar signal through no-subsampling wavelet packet reconstruction of the estimated coefficients. The experimental results show that the proposed method performs better when calculating the pulsar time of arrival than the translation-invariant wavelet denoising method.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, A.B.; Clothiaux, E.

    Because of Earth`s gravitational field, its atmosphere is strongly anisotropic with respect to the vertical; the effect of the Earth`s rotation on synoptic wind patterns also causes a more subtle form of anisotropy in the horizontal plane. The authors survey various approaches to statistically robust anisotropy from a wavelet perspective and present a new one adapted to strongly non-isotropic fields that are sampled on a rectangular grid with a large aspect ratio. This novel technique uses an anisotropic version of Multi-Resolution Analysis (MRA) in image analysis; the authors form a tensor product of the standard dyadic Haar basis, where themore » dividing ratio is {lambda}{sub z} = 2, and a nonstandard triadic counterpart, where the dividing ratio is {lambda}{sub x} = 3. The natural support of the field is therefore 2{sup n} pixels (vertically) by 3{sup n} pixels (horizontally) where n is the number of levels in the MRA. The natural triadic basis includes the French top-hat wavelet which resonates with bumps in the field whereas the Haar wavelet responds to ramps or steps. The complete 2D basis has one scaling function and five wavelets. The resulting anisotropic MRA is designed for application to the liquid water content (LWC) field in boundary-layer clouds, as the prevailing wind advects them by a vertically pointing mm-radar system. Spatial correlations are notoriously long-range in cloud structure and the authors use the wavelet coefficients from the new MRA to characterize these correlations in a multifractal analysis scheme. In the present study, the MRA is used (in synthesis mode) to generate fields that mimic cloud structure quite realistically although only a few parameters are used to control the randomness of the LWC`s wavelet coefficients.« less

  16. Image denoising via fundamental anisotropic diffusion and wavelet shrinkage: a comparative study

    NASA Astrophysics Data System (ADS)

    Bayraktar, Bulent; Analoui, Mostafa

    2004-05-01

    Noise removal faces a challenge: Keeping the image details. Resolving the dilemma of two purposes (smoothing and keeping image features in tact) working inadvertently of each other was an almost impossible task until anisotropic dif-fusion (AD) was formally introduced by Perona and Malik (PM). AD favors intra-region smoothing over inter-region in piecewise smooth images. Many authors regularized the original PM algorithm to overcome its drawbacks. We compared the performance of denoising using such 'fundamental' AD algorithms and one of the most powerful multiresolution tools available today, namely, wavelet shrinkage. The AD algorithms here are called 'fundamental' in the sense that the regularized versions center around the original PM algorithm with minor changes to the logic. The algorithms are tested with different noise types and levels. On top of the visual inspection, two mathematical metrics are used for performance comparison: Signal-to-noise ratio (SNR) and universal image quality index (UIQI). We conclude that some of the regu-larized versions of PM algorithm (AD) perform comparably with wavelet shrinkage denoising. This saves a lot of compu-tational power. With this conclusion, we applied the better-performing fundamental AD algorithms to a new imaging modality: Optical Coherence Tomography (OCT).

  17. Multiresolution Approach for Noncontact Measurements of Arterial Pulse Using Thermal Imaging

    NASA Astrophysics Data System (ADS)

    Chekmenev, Sergey Y.; Farag, Aly A.; Miller, William M.; Essock, Edward A.; Bhatnagar, Aruni

    This chapter presents a novel computer vision methodology for noncontact and nonintrusive measurements of arterial pulse. This is the only investigation that links the knowledge of human physiology and anatomy, advances in thermal infrared (IR) imaging and computer vision to produce noncontact and nonintrusive measurements of the arterial pulse in both time and frequency domains. The proposed approach has a physical and physiological basis and as such is of a fundamental nature. A thermal IR camera was used to capture the heat pattern from superficial arteries, and a blood vessel model was proposed to describe the pulsatile nature of the blood flow. A multiresolution wavelet-based signal analysis approach was applied to extract the arterial pulse waveform, which lends itself to various physiological measurements. We validated our results using a traditional contact vital signs monitor as a ground truth. Eight people of different age, race and gender have been tested in our study consistent with Health Insurance Portability and Accountability Act (HIPAA) regulations and internal review board approval. The resultant arterial pulse waveforms exactly matched the ground truth oximetry readings. The essence of our approach is the automatic detection of region of measurement (ROM) of the arterial pulse, from which the arterial pulse waveform is extracted. To the best of our knowledge, the correspondence between noncontact thermal IR imaging-based measurements of the arterial pulse in the time domain and traditional contact approaches has never been reported in the literature.

  18. Classification of EEG Signals Based on Pattern Recognition Approach.

    PubMed

    Amin, Hafeez Ullah; Mumtaz, Wajid; Subhani, Ahmad Rauf; Saad, Mohamad Naufal Mohamad; Malik, Aamir Saeed

    2017-01-01

    Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a "pattern recognition" approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher's discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven's Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90-7.81 Hz). Accuracy rates for MLP and NB classifiers were comparable at 97.11-89.63% and 91.60-81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy.

  19. Classification of EEG Signals Based on Pattern Recognition Approach

    PubMed Central

    Amin, Hafeez Ullah; Mumtaz, Wajid; Subhani, Ahmad Rauf; Saad, Mohamad Naufal Mohamad; Malik, Aamir Saeed

    2017-01-01

    Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a “pattern recognition” approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher's discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven's Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90–7.81 Hz). Accuracy rates for MLP and NB classifiers were comparable at 97.11–89.63% and 91.60–81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy. PMID:29209190

  20. On the Daubechies-based wavelet differentiation matrix

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1993-01-01

    The differentiation matrix for a Daubechies-based wavelet basis is constructed and superconvergence is proven. That is, it will be proven that under the assumption of periodic boundary conditions that the differentiation matrix is accurate of order 2M, even though the approximation subspace can represent exactly only polynomials up to degree M-1, where M is the number of vanishing moments of the associated wavelet. It is illustrated that Daubechies-based wavelet methods are equivalent to finite difference methods with grid refinement in regions of the domain where small-scale structure is present.

  1. Time-Frequency Feature Representation Using Multi-Resolution Texture Analysis and Acoustic Activity Detector for Real-Life Speech Emotion Recognition

    PubMed Central

    Wang, Kun-Ching

    2015-01-01

    The classification of emotional speech is mostly considered in speech-related research on human-computer interaction (HCI). In this paper, the purpose is to present a novel feature extraction based on multi-resolutions texture image information (MRTII). The MRTII feature set is derived from multi-resolution texture analysis for characterization and classification of different emotions in a speech signal. The motivation is that we have to consider emotions have different intensity values in different frequency bands. In terms of human visual perceptual, the texture property on multi-resolution of emotional speech spectrogram should be a good feature set for emotion classification in speech. Furthermore, the multi-resolution analysis on texture can give a clearer discrimination between each emotion than uniform-resolution analysis on texture. In order to provide high accuracy of emotional discrimination especially in real-life, an acoustic activity detection (AAD) algorithm must be applied into the MRTII-based feature extraction. Considering the presence of many blended emotions in real life, in this paper make use of two corpora of naturally-occurring dialogs recorded in real-life call centers. Compared with the traditional Mel-scale Frequency Cepstral Coefficients (MFCC) and the state-of-the-art features, the MRTII features also can improve the correct classification rates of proposed systems among different language databases. Experimental results show that the proposed MRTII-based feature information inspired by human visual perception of the spectrogram image can provide significant classification for real-life emotional recognition in speech. PMID:25594590

  2. On the spline-based wavelet differentiation matrix

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1993-01-01

    The differentiation matrix for a spline-based wavelet basis is constructed. Given an n-th order spline basis it is proved that the differentiation matrix is accurate of order 2n + 2 when periodic boundary conditions are assumed. This high accuracy, or superconvergence, is lost when the boundary conditions are no longer periodic. Furthermore, it is shown that spline-based bases generate a class of compact finite difference schemes.

  3. Time-frequency analysis of phonocardiogram signals using wavelet transform: a comparative study.

    PubMed

    Ergen, Burhan; Tatar, Yetkin; Gulcur, Halil Ozcan

    2012-01-01

    Analysis of phonocardiogram (PCG) signals provides a non-invasive means to determine the abnormalities caused by cardiovascular system pathology. In general, time-frequency representation (TFR) methods are used to study the PCG signal because it is one of the non-stationary bio-signals. The continuous wavelet transform (CWT) is especially suitable for the analysis of non-stationary signals and to obtain the TFR, due to its high resolution, both in time and in frequency and has recently become a favourite tool. It decomposes a signal in terms of elementary contributions called wavelets, which are shifted and dilated copies of a fixed mother wavelet function, and yields a joint TFR. Although the basic characteristics of the wavelets are similar, each type of the wavelets produces a different TFR. In this study, eight real types of the most known wavelets are examined on typical PCG signals indicating heart abnormalities in order to determine the best wavelet to obtain a reliable TFR. For this purpose, the wavelet energy and frequency spectrum estimations based on the CWT and the spectra of the chosen wavelets were compared with the energy distribution and the autoregressive frequency spectra in order to determine the most suitable wavelet. The results show that Morlet wavelet is the most reliable wavelet for the time-frequency analysis of PCG signals.

  4. Wavelet-based analysis of transient electromagnetic wave propagation in photonic crystals.

    PubMed

    Shifman, Yair; Leviatan, Yehuda

    2004-03-01

    Photonic crystals and optical bandgap structures, which facilitate high-precision control of electromagnetic-field propagation, are gaining ever-increasing attention in both scientific and commercial applications. One common photonic device is the distributed Bragg reflector (DBR), which exhibits high reflectivity at certain frequencies. Analysis of the transient interaction of an electromagnetic pulse with such a device can be formulated in terms of the time-domain volume integral equation and, in turn, solved numerically with the method of moments. Owing to the frequency-dependent reflectivity of such devices, the extent of field penetration into deep layers of the device will be different depending on the frequency content of the impinging pulse. We show how this phenomenon can be exploited to reduce the number of basis functions needed for the solution. To this end, we use spatiotemporal wavelet basis functions, which possess the multiresolution property in both spatial and temporal domains. To select the dominant functions in the solution, we use an iterative impedance matrix compression (IMC) procedure, which gradually constructs and solves a compressed version of the matrix equation until the desired degree of accuracy has been achieved. Results show that when the electromagnetic pulse is reflected, the transient IMC omits basis functions defined over the last layers of the DBR, as anticipated.

  5. BOOK REVIEW: The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance

    NASA Astrophysics Data System (ADS)

    Ng, J.; Kingsbury, N. G.

    2004-02-01

    This book provides an overview of the theory and practice of continuous and discrete wavelet transforms. Divided into seven chapters, the first three chapters of the book are introductory, describing the various forms of the wavelet transform and their computation, while the remaining chapters are devoted to applications in fluids, engineering, medicine and miscellaneous areas. Each chapter is well introduced, with suitable examples to demonstrate key concepts. Illustrations are included where appropriate, thus adding a visual dimension to the text. A noteworthy feature is the inclusion, at the end of each chapter, of a list of further resources from the academic literature which the interested reader can consult. The first chapter is purely an introduction to the text. The treatment of wavelet transforms begins in the second chapter, with the definition of what a wavelet is. The chapter continues by defining the continuous wavelet transform and its inverse and a description of how it may be used to interrogate signals. The continuous wavelet transform is then compared to the short-time Fourier transform. Energy and power spectra with respect to scale are also discussed and linked to their frequency counterparts. Towards the end of the chapter, the two-dimensional continuous wavelet transform is introduced. Examples of how the continuous wavelet transform is computed using the Mexican hat and Morlet wavelets are provided throughout. The third chapter introduces the discrete wavelet transform, with its distinction from the discretized continuous wavelet transform having been made clear at the end of the second chapter. In the first half of the chapter, the logarithmic discretization of the wavelet function is described, leading to a discussion of dyadic grid scaling, frames, orthogonal and orthonormal bases, scaling functions and multiresolution representation. The fast wavelet transform is introduced and its computation is illustrated with an example using the Haar wavelet. The second half of the chapter groups together miscellaneous points about the discrete wavelet transform, including coefficient manipulation for signal denoising and smoothing, a description of Daubechies’ wavelets, the properties of translation invariance and biorthogonality, the two-dimensional discrete wavelet transforms and wavelet packets. The fourth chapter is dedicated to wavelet transform methods in the author’s own specialty, fluid mechanics. Beginning with a definition of wavelet-based statistical measures for turbulence, the text proceeds to describe wavelet thresholding in the analysis of fluid flows. The remainder of the chapter describes wavelet analysis of engineering flows, in particular jets, wakes, turbulence and coherent structures, and geophysical flows, including atmospheric and oceanic processes. The fifth chapter describes the application of wavelet methods in various branches of engineering, including machining, materials, dynamics and information engineering. Unlike previous chapters, this (and subsequent) chapters are styled more as literature reviews that describe the findings of other authors. The areas addressed in this chapter include: the monitoring of machining processes, the monitoring of rotating machinery, dynamical systems, chaotic systems, non-destructive testing, surface characterization and data compression. The sixth chapter continues in this vein with the attention now turned to wavelets in the analysis of medical signals. Most of the chapter is devoted to the analysis of one-dimensional signals (electrocardiogram, neural waveforms, acoustic signals etc.), although there is a small section on the analysis of two-dimensional medical images. The seventh and final chapter of the book focuses on the application of wavelets in three seemingly unrelated application areas: fractals, finance and geophysics. The treatment on wavelet methods in fractals focuses on stochastic fractals with a short section on multifractals. The treatment on finance touches on the use of wavelets by other authors in studying stock prices, commodity behaviour, market dynamics and foreign exchange rates. The treatment on geophysics covers what was omitted from the fourth chapter, namely, seismology, well logging, topographic feature analysis and the analysis of climatic data. The text concludes with an assortment of other application areas which could only be mentioned in passing. Unlike most other publications in the subject, this book does not treat wavelet transforms in a mathematically rigorous manner but rather aims to explain the mechanics of the wavelet transform in a way that is easy to understand. Consequently, it serves as an excellent overview of the subject rather than as a reference text. Keeping the mathematics to a minimum and omitting cumbersome and detailed proofs from the text, the book is best-suited to those who are new to wavelets or who want an intuitive understanding of the subject. Such an audience may include graduate students in engineering and professionals and researchers in engineering and the applied sciences.

  6. Solution of second order quasi-linear boundary value problems by a wavelet method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; Zhou, Youhe; Wang, Jizeng, E-mail: jzwang@lzu.edu.cn

    2015-03-10

    A wavelet Galerkin method based on expansions of Coiflet-like scaling function bases is applied to solve second order quasi-linear boundary value problems which represent a class of typical nonlinear differential equations. Two types of typical engineering problems are selected as test examples: one is about nonlinear heat conduction and the other is on bending of elastic beams. Numerical results are obtained by the proposed wavelet method. Through comparing to relevant analytical solutions as well as solutions obtained by other methods, we find that the method shows better efficiency and accuracy than several others, and the rate of convergence can evenmore » reach orders of 5.8.« less

  7. Influence of Texture and Colour in Breast TMA Classification

    PubMed Central

    Fernández-Carrobles, M. Milagro; Bueno, Gloria; Déniz, Oscar; Salido, Jesús; García-Rojo, Marcial; González-López, Lucía

    2015-01-01

    Breast cancer diagnosis is still done by observation of biopsies under the microscope. The development of automated methods for breast TMA classification would reduce diagnostic time. This paper is a step towards the solution for this problem and shows a complete study of breast TMA classification based on colour models and texture descriptors. The TMA images were divided into four classes: i) benign stromal tissue with cellularity, ii) adipose tissue, iii) benign and benign anomalous structures, and iv) ductal and lobular carcinomas. A relevant set of features was obtained on eight different colour models from first and second order Haralick statistical descriptors obtained from the intensity image, Fourier, Wavelets, Multiresolution Gabor, M-LBP and textons descriptors. Furthermore, four types of classification experiments were performed using six different classifiers: (1) classification per colour model individually, (2) classification by combination of colour models, (3) classification by combination of colour models and descriptors, and (4) classification by combination of colour models and descriptors with a previous feature set reduction. The best result shows an average of 99.05% accuracy and 98.34% positive predictive value. These results have been obtained by means of a bagging tree classifier with combination of six colour models and the use of 1719 non-correlated (correlation threshold of 97%) textural features based on Statistical, M-LBP, Gabor and Spatial textons descriptors. PMID:26513238

  8. Speckle noise reduction in SAR images ship detection

    NASA Astrophysics Data System (ADS)

    Yuan, Ji; Wu, Bin; Yuan, Yuan; Huang, Qingqing; Chen, Jingbo; Ren, Lin

    2012-09-01

    At present, there are two types of method to detect ships in SAR images. One is a direct detection type, detecting ships directly. The other is an indirect detection type. That is, it firstly detects ship wakes, and then seeks ships around wakes. The two types all effect by speckle noise. In order to improve the accuracy of ship detection and get accurate ship and ship wakes parameters, such as ship length, ship width, ship area, the angle of ship wakes and ship outline from SAR images, it is extremely necessary to remove speckle noise in SAR images before data used in various SAR images ship detection. The use of speckle noise reduction filter depends on the specification for a particular application. Some common filters are widely used in speckle noise reduction, such as the mean filter, the median filter, the lee filter, the enhanced lee filter, the Kuan filter, the frost filter, the enhanced frost filter and gamma filter, but these filters represent some disadvantages in SAR image ship detection because of the various types of ship. Therefore, a mathematical function known as the wavelet transform and multi-resolution analysis were used to localize an SAR ocean image into different frequency components or useful subbands, and effectively reduce the speckle in the subbands according to the local statistics within the bands. Finally, the analysis of the statistical results are presented, which demonstrates the advantages and disadvantages of using wavelet shrinkage techniques over standard speckle filters.

  9. Relations among soil radon, environmental parameters, volcanic and seismic events at Mt. Etna (Italy)

    NASA Astrophysics Data System (ADS)

    Giammanco, S.; Ferrera, E.; Cannata, A.; Montalto, P.; Neri, M.

    2013-12-01

    From November 2009 to April 2011 soil radon activity was continuously monitored using a Barasol probe located on the upper NE flank of Mt. Etna volcano (Italy), close both to the Piano Provenzana fault and to the NE-Rift. Seismic, volcanological and radon data were analysed together with data on environmental parameters, such as air and soil temperature, barometric pressure, snow and rain fall. In order to find possible correlations among the above parameters, and hence to reveal possible anomalous trends in the radon time-series, we used different statistical methods: i) multivariate linear regression; ii) cross-correlation; iii) coherence analysis through wavelet transform. Multivariate regression indicated a modest influence on soil radon from environmental parameters (R2 = 0.31). When using 100-day time windows, the R2 values showed wide variations in time, reaching their maxima (~0.63-0.66) during summer. Cross-correlation analysis over 100-day moving averages showed that, similar to multivariate linear regression analysis, the summer period was characterised by the best correlation between radon data and environmental parameters. Lastly, the wavelet coherence analysis allowed a multi-resolution coherence analysis of the time series acquired. This approach allowed to study the relations among different signals either in the time or in the frequency domain. It confirmed the results of the previous methods, but also allowed to recognize correlations between radon and environmental parameters at different observation scales (e.g., radon activity changed during strong precipitations, but also during anomalous variations of soil temperature uncorrelated with seasonal fluctuations). Using the above analysis, two periods were recognized when radon variations were significantly correlated with marked soil temperature changes and also with local seismic or volcanic activity. This allowed to produce two different physical models of soil gas transport that explain the observed anomalies. Our work suggests that in order to make an accurate analysis of the relations among different signals it is necessary to use different techniques that give complementary analytical information. In particular, the wavelet analysis showed to be the most effective in discriminating radon changes due to environmental influences from those correlated with impending seismic or volcanic events.

  10. Remotely sensed vegetation moisture as explanatory variable of Lyme borreliosis incidence

    NASA Astrophysics Data System (ADS)

    Barrios, J. M.; Verstraeten, W. W.; Maes, P.; Clement, J.; Aerts, J. M.; Farifteh, J.; Lagrou, K.; Van Ranst, M.; Coppin, P.

    2012-08-01

    The strong correlation between environmental conditions and abundance and spatial spread of the tick Ixodes ricinus is widely documented. I. ricinus is in Europe the main vector of the bacterium Borrelia burgdorferi, the pathogen causing Lyme borreliosis (LB). Humidity in vegetated systems is a major factor in tick ecology and its effects might translate into disease incidence in humans. Time series of two remotely sensed indices with sensitivity to vegetation greenness and moisture were tested as explanatory variables of LB incidence. Wavelet-based multiresolution analysis allowed the examination of these signals at different temporal scales in study sites in Belgium, where increases in LB incidence were reported in recent years. The analysis showed the potential of the tested indices for disease monitoring, the usefulness of analyzing the signal in different time frames and the importance of local characteristics of the study area for the selection of the vegetation index.

  11. Improved biliary detection and diagnosis through intelligent machine analysis.

    PubMed

    Logeswaran, Rajasvaran

    2012-09-01

    This paper reports on work undertaken to improve automated detection of bile ducts in magnetic resonance cholangiopancreatography (MRCP) images, with the objective of conducting preliminary classification of the images for diagnosis. The proposed I-BDeDIMA (Improved Biliary Detection and Diagnosis through Intelligent Machine Analysis) scheme is a multi-stage framework consisting of successive phases of image normalization, denoising, structure identification, object labeling, feature selection and disease classification. A combination of multiresolution wavelet, dynamic intensity thresholding, segment-based region growing, region elimination, statistical analysis and neural networks, is used in this framework to achieve good structure detection and preliminary diagnosis. Tests conducted on over 200 clinical images with known diagnosis have shown promising results of over 90% accuracy. The scheme outperforms related work in the literature, making it a viable framework for computer-aided diagnosis of biliary diseases. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Bias correction of satellite precipitation products for flood forecasting application at the Upper Mahanadi River Basin in Eastern India

    NASA Astrophysics Data System (ADS)

    Beria, H.; Nanda, T., Sr.; Chatterjee, C.

    2015-12-01

    High resolution satellite precipitation products such as Tropical Rainfall Measuring Mission (TRMM), Climate Forecast System Reanalysis (CFSR), European Centre for Medium-Range Weather Forecasts (ECMWF), etc., offer a promising alternative to flood forecasting in data scarce regions. At the current state-of-art, these products cannot be used in the raw form for flood forecasting, even at smaller lead times. In the current study, these precipitation products are bias corrected using statistical techniques, such as additive and multiplicative bias corrections, and wavelet multi-resolution analysis (MRA) with India Meteorological Department (IMD) gridded precipitation product,obtained from gauge-based rainfall estimates. Neural network based rainfall-runoff modeling using these bias corrected products provide encouraging results for flood forecasting upto 48 hours lead time. We will present various statistical and graphical interpretations of catchment response to high rainfall events using both the raw and bias corrected precipitation products at different lead times.

  13. Cost-efficient speckle interferometry with plastic optical fiber for unobtrusive monitoring of human vital signs.

    PubMed

    Podbreznik, Peter; Đonlagić, Denis; Lešnik, Dejan; Cigale, Boris; Zazula, Damjan

    2013-10-01

    A cost-efficient plastic optical fiber (POF) system for unobtrusive monitoring of human vital signs is presented. The system is based on speckle interferometry. A laser diode is butt-coupled to the POF whose exit face projects speckle patterns onto a linear optical sensor array. Sequences of acquired speckle images are transformed into one-dimensional signals by using the phase-shifting method. The signals are analyzed by band-pass filtering and a Morlet-wavelet-based multiresolutional approach for the detection of cardiac and respiratory activities, respectively. The system is tested with 10 healthy nonhospitalized persons, lying supine on a mattress with the embedded POF. Experimental results are assessed statistically: precisions of 98.8% ± 1.5% and 97.9% ± 2.3%, sensitivities of 99.4% ± 0.6% and 95.3% ± 3%, and mean delays between interferometric detections and corresponding referential signals of 116.6 ± 55.5 and 1299.2 ± 437.3 ms for the heartbeat and respiration are obtained, respectively.

  14. Coherent structures and turbulence evolution in magnetized non-neutral plasmas

    NASA Astrophysics Data System (ADS)

    Romé, M.; Chen, S.; Maero, G.

    2018-01-01

    The evolution of turbulence of a magnetized pure electron plasma confined in a Penning-Malmberg trap is investigated by means of a two-dimensional particle-in-cell numerical code. The transverse plasma dynamics is studied both in the case of free evolution and under the influence of non-axisymmetric, multipolar radio-frequency drives applied on the circular conducting boundary. In the latter case the radio-frequency fields are chosen in the frequency range of the low-order azimuthal (diocotron) modes of the plasma in order to investigate their effect on the insurgence of azimuthal instabilities and the formation and evolution of coherent structures, possibly preventing the relaxation to a fully-developed turbulent state. Different initial density distributions (rings and spirals) are considered, so that evolutions characterized by different levels of turbulence and intermittency are obtained. The time evolution of integral and spectral quantities of interest are computed using a multiresolution analysis based on a wavelet decomposition of density maps. Qualitative features of turbulent relaxation are found to be similar in conditions of both free and forced evolution, but the analysis allows one to highlight fine details of the flow beyond the self-similarity turbulence properties, so that the influence of the initial conditions and the effect of the external forcing can be distinguished. In particular, the presence of small inhomogeneities in the initial density configuration turns out to lead to quite different final states, especially in the presence of competing unstable diocotron modes characterized by similar growth rates.

  15. Exploring the effects of climatic variables on monthly precipitation variation using a continuous wavelet-based multiscale entropy approach.

    PubMed

    Roushangar, Kiyoumars; Alizadeh, Farhad; Adamowski, Jan

    2018-08-01

    Understanding precipitation on a regional basis is an important component of water resources planning and management. The present study outlines a methodology based on continuous wavelet transform (CWT) and multiscale entropy (CWME), combined with self-organizing map (SOM) and k-means clustering techniques, to measure and analyze the complexity of precipitation. Historical monthly precipitation data from 1960 to 2010 at 31 rain gauges across Iran were preprocessed by CWT. The multi-resolution CWT approach segregated the major features of the original precipitation series by unfolding the structure of the time series which was often ambiguous. The entropy concept was then applied to components obtained from CWT to measure dispersion, uncertainty, disorder, and diversification of subcomponents. Based on different validity indices, k-means clustering captured homogenous areas more accurately, and additional analysis was performed based on the outcome of this approach. The 31 rain gauges in this study were clustered into 6 groups, each one having a unique CWME pattern across different time scales. The results of clustering showed that hydrologic similarity (multiscale variation of precipitation) was not based on geographic contiguity. According to the pattern of entropy across the scales, each cluster was assigned an entropy signature that provided an estimation of the entropy pattern of precipitation data in each cluster. Based on the pattern of mean CWME for each cluster, a characteristic signature was assigned, which provided an estimation of the CWME of a cluster across scales of 1-2, 3-8, and 9-13 months relative to other stations. The validity of the homogeneous clusters demonstrated the usefulness of the proposed approach to regionalize precipitation. Further analysis based on wavelet coherence (WTC) was performed by selecting central rain gauges in each cluster and analyzing against temperature, wind, Multivariate ENSO index (MEI), and East Atlantic (EA) and North Atlantic Oscillation (NAO), indeces. The results revealed that all climatic features except NAO influenced precipitation in Iran during the 1960-2010 period. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Tree-ring-based estimates of long-term seasonal precipitation in the Souris River Region of Saskatchewan, North Dakota and Manitoba

    USGS Publications Warehouse

    Ryberg, Karen R.; Vecchia, Aldo V.; Akyüz, F. Adnan; Lin, Wei

    2016-01-01

    Historically unprecedented flooding occurred in the Souris River Basin of Saskatchewan, North Dakota and Manitoba in 2011, during a longer term period of wet conditions in the basin. In order to develop a model of future flows, there is a need to evaluate effects of past multidecadal climate variability and/or possible climate change on precipitation. In this study, tree-ring chronologies and historical precipitation data in a four-degree buffer around the Souris River Basin were analyzed to develop regression models that can be used for predicting long-term variations of precipitation. To focus on longer term variability, 12-year moving average precipitation was modeled in five subregions (determined through cluster analysis of measures of precipitation) of the study area over three seasons (November–February, March–June and July–October). The models used multiresolution decomposition (an additive decomposition based on powers of two using a discrete wavelet transform) of tree-ring chronologies from Canada and the US and seasonal 12-year moving average precipitation based on Adjusted and Homogenized Canadian Climate Data and US Historical Climatology Network data. Results show that precipitation varies on long-term (multidecadal) time scales of 16, 32 and 64 years. Past extended pluvial and drought events, which can vary greatly with season and subregion, were highlighted by the models. Results suggest that the recent wet period may be a part of natural variability on a very long time scale.

  17. LOD map--A visual interface for navigating multiresolution volume visualization.

    PubMed

    Wang, Chaoli; Shen, Han-Wei

    2006-01-01

    In multiresolution volume visualization, a visual representation of level-of-detail (LOD) quality is important for us to examine, compare, and validate different LOD selection algorithms. While traditional methods rely on ultimate images for quality measurement, we introduce the LOD map--an alternative representation of LOD quality and a visual interface for navigating multiresolution data exploration. Our measure for LOD quality is based on the formulation of entropy from information theory. The measure takes into account the distortion and contribution of multiresolution data blocks. A LOD map is generated through the mapping of key LOD ingredients to a treemap representation. The ordered treemap layout is used for relative stable update of the LOD map when the view or LOD changes. This visual interface not only indicates the quality of LODs in an intuitive way, but also provides immediate suggestions for possible LOD improvement through visually-striking features. It also allows us to compare different views and perform rendering budget control. A set of interactive techniques is proposed to make the LOD adjustment a simple and easy task. We demonstrate the effectiveness and efficiency of our approach on large scientific and medical data sets.

  18. Wavelet-based higher-order neural networks for mine detection in thermal IR imagery

    NASA Astrophysics Data System (ADS)

    Baertlein, Brian A.; Liao, Wen-Jiao

    2000-08-01

    An image processing technique is described for the detection of miens in RI imagery. The proposed technique is based on a third-order neural network, which processes the output of a wavelet packet transform. The technique is inherently invariant to changes in signature position, rotation and scaling. The well-known memory limitations that arise with higher-order neural networks are addressed by (1) the data compression capabilities of wavelet packets, (2) protections of the image data into a space of similar triangles, and (3) quantization of that 'triangle space'. Using these techniques, image chips of size 28 by 28, which would require 0(109) neural net weights, are processed by a network having 0(102) weights. ROC curves are presented for mine detection in real and simulated imagery.

  19. A wavelet analysis of scaling laws and long-memory in stock market volatility

    NASA Astrophysics Data System (ADS)

    Vuorenmaa, Tommi A.

    2005-05-01

    This paper studies the time-varying behavior of scaling laws and long-memory. This is motivated by the earlier finding that in the FX markets a single scaling factor might not always be sufficient across all relevant timescales: a different region may exist for intradaily time-scales and for larger time-scales. In specific, this paper investigates (i) if different scaling regions appear in stock market as well, (ii) if the scaling factor systematically differs from the Brownian, (iii) if the scaling factor is constant in time, and (iv) if the behavior can be explained by the heterogenuity of the players in the market and/or by intraday volatility periodicity. Wavelet method is used because it delivers a multiresolution decomposition and has excellent local adaptiviness properties. As a consequence, a wavelet-based OLS method allows for consistent estimation of long-memory. Thus issues (i)-(iv) shed light on the magnitude and behavior of a long-memory parameter, as well. The data are the 5-minute volatility series of Nokia Oyj at the Helsinki Stock Exchange around the burst of the IT-bubble. Period one represents the era of "irrational exuberance" and another the time after it. The results show that different scaling regions (i.e. multiscaling) may appear in the stock markets and not only in the FX markets, the scaling factor and the long-memory parameter are systematically different from the Brownian and they do not have to be constant in time, and that the behavior can be explained for a significant part by an intraday volatility periodicity called the New York effect. This effect was magnified by the frenzy trading of short-term speculators in the bubble period. The found stronger long-memory is also attributable to irrational exuberance.

  20. Alcoholism detection in magnetic resonance imaging by Haar wavelet transform and back propagation neural network

    NASA Astrophysics Data System (ADS)

    Yu, Yali; Wang, Mengxia; Lima, Dimas

    2018-04-01

    In order to develop a novel alcoholism detection method, we proposed a magnetic resonance imaging (MRI)-based computer vision approach. We first use contrast equalization to increase the contrast of brain slices. Then, we perform Haar wavelet transform and principal component analysis. Finally, we use back propagation neural network (BPNN) as the classification tool. Our method yields a sensitivity of 81.71±4.51%, a specificity of 81.43±4.52%, and an accuracy of 81.57±2.18%. The Haar wavelet gives better performance than db4 wavelet and sym3 wavelet.

  1. Removal of EMG and ECG artifacts from EEG based on wavelet transform and ICA.

    PubMed

    Zhou, Weidong; Gotman, Jean

    2004-01-01

    In this study, the methods of wavelet threshold de-noising and independent component analysis (ICA) are introduced. ICA is a novel signal processing technique based on high order statistics, and is used to separate independent components from measurements. The extended ICA algorithm does not need to calculate the higher order statistics, converges fast, and can be used to separate subGaussian and superGaussian sources. A pre-whitening procedure is performed to de-correlate the mixed signals before extracting sources. The experimental results indicate the electromyogram (EMG) and electrocardiograph (ECG) artifacts in electroencephalograph (EEG) can be removed by a combination of wavelet threshold de-noising and ICA.

  2. An Adaptive and Time-Efficient ECG R-Peak Detection Algorithm.

    PubMed

    Qin, Qin; Li, Jianqing; Yue, Yinggao; Liu, Chengyu

    2017-01-01

    R-peak detection is crucial in electrocardiogram (ECG) signal analysis. This study proposed an adaptive and time-efficient R-peak detection algorithm for ECG processing. First, wavelet multiresolution analysis was applied to enhance the ECG signal representation. Then, ECG was mirrored to convert large negative R-peaks to positive ones. After that, local maximums were calculated by the first-order forward differential approach and were truncated by the amplitude and time interval thresholds to locate the R-peaks. The algorithm performances, including detection accuracy and time consumption, were tested on the MIT-BIH arrhythmia database and the QT database. Experimental results showed that the proposed algorithm achieved mean sensitivity of 99.39%, positive predictivity of 99.49%, and accuracy of 98.89% on the MIT-BIH arrhythmia database and 99.83%, 99.90%, and 99.73%, respectively, on the QT database. By processing one ECG record, the mean time consumptions were 0.872 s and 0.763 s for the MIT-BIH arrhythmia database and QT database, respectively, yielding 30.6% and 32.9% of time reduction compared to the traditional Pan-Tompkins method.

  3. An Adaptive and Time-Efficient ECG R-Peak Detection Algorithm

    PubMed Central

    Qin, Qin

    2017-01-01

    R-peak detection is crucial in electrocardiogram (ECG) signal analysis. This study proposed an adaptive and time-efficient R-peak detection algorithm for ECG processing. First, wavelet multiresolution analysis was applied to enhance the ECG signal representation. Then, ECG was mirrored to convert large negative R-peaks to positive ones. After that, local maximums were calculated by the first-order forward differential approach and were truncated by the amplitude and time interval thresholds to locate the R-peaks. The algorithm performances, including detection accuracy and time consumption, were tested on the MIT-BIH arrhythmia database and the QT database. Experimental results showed that the proposed algorithm achieved mean sensitivity of 99.39%, positive predictivity of 99.49%, and accuracy of 98.89% on the MIT-BIH arrhythmia database and 99.83%, 99.90%, and 99.73%, respectively, on the QT database. By processing one ECG record, the mean time consumptions were 0.872 s and 0.763 s for the MIT-BIH arrhythmia database and QT database, respectively, yielding 30.6% and 32.9% of time reduction compared to the traditional Pan-Tompkins method. PMID:29104745

  4. Reliable discrimination of high explosive and chemical/biological artillery using acoustic UGS

    NASA Astrophysics Data System (ADS)

    Hohil, Myron E.; Desai, Sachi

    2005-10-01

    The Army is currently developing acoustic overwatch sensor systems that will provide extended range surveillance, detection, and identification for force protection and tactical security on the battlefield. A network of such sensors remotely deployed in conjunction with a central processing node (or gateway) will provide early warning and assessment of enemy threats, near real-time situational awareness to commanders, and may reduce potential hazards to the soldier. In contrast, the current detection of chemical/biological (CB) agents expelled into a battlefield environment is limited to the response of chemical sensors that must be located within close proximity to the CB agent. Since chemical sensors detect hazardous agents through contact, the sensor range to an airburst is the key-limiting factor in identifying a potential CB weapon attack. The associated sensor reporting latencies must be minimized to give sufficient preparation time to field commanders, who must assess if an attack is about to occur, has occurred, or if occurred, the type of agent that soldiers might be exposed to. The long-range propagation of acoustic blast waves from heavy artillery blasts, which are typical in a battlefield environment, introduces a feature for using acoustics and other disparate sensor technologies for the early detection and identification of CB threats. Employing disparate sensor technologies implies that warning of a potential CB attack can be provided to the solider more rapidly and from a safer distance when compared to that which conventional methods allow. This capability facilitates the necessity of classifying the types of rounds that have burst in a specified region in order to give both warning and provide identification of CB agents found in the area. In this paper, feature extraction methods based on the discrete wavelet transform (DWT) and multiresolution analysis facilitate the development of a robust classification algorithm that affords reliable discrimination between conventional and simulated chemical/biological artillery rounds using acoustic signals produced during detonation. Distinct characteristics arise within the different airburst signatures because high explosive warheads emphasize concussive and shrapnel effects, while chemical/biological warheads are designed to disperse their contents over large areas, therefore employing a slower burning, less intense explosive to mix and spread their contents. The ensuing blast waves are readily characterized by variations in the corresponding peak pressure and rise time of the blast, differences in the ratio of positive pressure amplitude to the negative amplitude, and variations in the overall duration of the resulting waveform. We show that, highly reliable discrimination (> 98%) between conventional and potentially chemical/biological artillery is achieved at ranges exceeding 3km. A feedforward neural network classifier, trained on a feature space derived from the distribution of wavelet coefficients found within different levels of the multiresolution decomposition yields.

  5. Distinguishing autofluorescence of normal, benign, and cancerous breast tissues through wavelet domain correlation studies.

    PubMed

    Gharekhan, Anita H; Arora, Siddharth; Oza, Ashok N; Sureshkumar, Mundan B; Pradhan, Asima; Panigrahi, Prasanta K

    2011-08-01

    Using the multiresolution ability of wavelets and effectiveness of singular value decomposition (SVD) to identify statistically robust parameters, we find a number of local and global features, capturing spectral correlations in the co- and cross-polarized channels, at different scales (of human breast tissues). The copolarized component, being sensitive to intrinsic fluorescence, shows different behavior for normal, benign, and cancerous tissues, in the emission domain of known fluorophores, whereas the perpendicular component, being more prone to the diffusive effect of scattering, points out differences in the Kernel-Smoother density estimate employed to the principal components, between malignant, normal, and benign tissues. The eigenvectors, corresponding to the dominant eigenvalues of the correlation matrix in SVD, also exhibit significant differences between the three tissue types, which clearly reflects the differences in the spectral correlation behavior. Interestingly, the most significant distinguishing feature manifests in the perpendicular component, corresponding to porphyrin emission range in the cancerous tissue. The fact that perpendicular component is strongly influenced by depolarization, and porphyrin emissions in cancerous tissue has been found to be strongly depolarized, may be the possible cause of the above observation.

  6. Luminance sticker based facial expression recognition using discrete wavelet transform for physically disabled persons.

    PubMed

    Nagarajan, R; Hariharan, M; Satiyan, M

    2012-08-01

    Developing tools to assist physically disabled and immobilized people through facial expression is a challenging area of research and has attracted many researchers recently. In this paper, luminance stickers based facial expression recognition is proposed. Recognition of facial expression is carried out by employing Discrete Wavelet Transform (DWT) as a feature extraction method. Different wavelet families with their different orders (db1 to db20, Coif1 to Coif 5 and Sym2 to Sym8) are utilized to investigate their performance in recognizing facial expression and to evaluate their computational time. Standard deviation is computed for the coefficients of first level of wavelet decomposition for every order of wavelet family. This standard deviation is used to form a set of feature vectors for classification. In this study, conventional validation and cross validation are performed to evaluate the efficiency of the suggested feature vectors. Three different classifiers namely Artificial Neural Network (ANN), k-Nearest Neighborhood (kNN) and Linear Discriminant Analysis (LDA) are used to classify a set of eight facial expressions. The experimental results demonstrate that the proposed method gives very promising classification accuracies.

  7. Compressive Strength Estimation of Marble Specimens using Acoustic Emission Hits in Time and Natural Time Domains: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Hloupis, George; Stavrakas, Ilias; Vallianatos, Filippos; Triantis, Dimos

    2013-04-01

    The current study deals with preliminary results of characteristic patterns derived from acoustic emissions during compressional stress. Two loading cycles were applied to a specimen of 4cm x 4cm x 10 cm Dionysos marble while acoustic emissions (AE) were recorded using one acoustic sensor coupled at the expected direction of the main crack (at the center of the specimen). The produced time series comprised from the number of counts per AE hit under increasing and constant load. Processing took place in two domains: in conventional time domain (t), using multiresolution wavelet analysis for the study of temporal variation of the wavelet-coefficients' standard deviation (SDEV) [1] and in natural time domain (χ), using the variance (κ1) of natural-time transformed time-series [2,3]. Results in both cases, dictate that identification of the region where the increasing stress (σ), exceeds 40% of the ultimate compressional strength (σ*), is possible. More specific, in conventional time domain, the temporal evolution of SDEV presents a sharp change around σ* during first loading cycle and less than σ* during second loading cycle. In natural time domain, the κ1 value clearly oscillate around 0.07 at natural time indexes corresponding to σ* during first loading cycle. Merging both results leads to a preliminary observation that we have an identification of the time when the compressional stress exceeds σ*. References [1] Telesca, L., Hloupis, G., Nikolintaga, I., Vallianatos, F.,."Temporal patterns in southern Aegean seismicity revealed by the multiresolution wavelet analysis", Communications in Nonlinear Science and Numerical Simulation, vol. 12, issue 8, pp 1418-1426, 2007 [2] P. A. Varotsos, N. V. Sarlis, and E. S. Skordas, "Natural Time Analysis: The New View of Time. Precursory Seismic Electric Signals, Earthquakes and other Complex Time-Series", Springer-Verlag, Berlin, Heidelberg, 2011. [3] N. V. Sarlis, P. A. Varotsos, and E. S. Skordas, "Flux Avalances in YBa2Cu307-x films and rice piles: natural time domain analysis", Physical Review B, 73, 054504, 2006. Acknowledgements This work was supported by the THALES Program of the Ministry of Education of Greece and the European Union in the framework of the project entitled "Integrated understanding of Seismicity, using innovative Methodologies of Fracture mechanics along with Earthquake and non extensive statistical physics - Application to the geodynamic system of the Hellenic Arc. SEISMO FEAR HELLARC".

  8. Adaptive multiresolution modeling of groundwater flow in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Malenica, Luka; Gotovac, Hrvoje; Srzic, Veljko; Andric, Ivo

    2016-04-01

    Proposed methodology was originally developed by our scientific team in Split who designed multiresolution approach for analyzing flow and transport processes in highly heterogeneous porous media. The main properties of the adaptive Fup multi-resolution approach are: 1) computational capabilities of Fup basis functions with compact support capable to resolve all spatial and temporal scales, 2) multi-resolution presentation of heterogeneity as well as all other input and output variables, 3) accurate, adaptive and efficient strategy and 4) semi-analytical properties which increase our understanding of usually complex flow and transport processes in porous media. The main computational idea behind this approach is to separately find the minimum number of basis functions and resolution levels necessary to describe each flow and transport variable with the desired accuracy on a particular adaptive grid. Therefore, each variable is separately analyzed, and the adaptive and multi-scale nature of the methodology enables not only computational efficiency and accuracy, but it also describes subsurface processes closely related to their understood physical interpretation. The methodology inherently supports a mesh-free procedure, avoiding the classical numerical integration, and yields continuous velocity and flux fields, which is vitally important for flow and transport simulations. In this paper, we will show recent improvements within the proposed methodology. Since "state of the art" multiresolution approach usually uses method of lines and only spatial adaptive procedure, temporal approximation was rarely considered as a multiscale. Therefore, novel adaptive implicit Fup integration scheme is developed, resolving all time scales within each global time step. It means that algorithm uses smaller time steps only in lines where solution changes are intensive. Application of Fup basis functions enables continuous time approximation, simple interpolation calculations across different temporal lines and local time stepping control. Critical aspect of time integration accuracy is construction of spatial stencil due to accurate calculation of spatial derivatives. Since common approach applied for wavelets and splines uses a finite difference operator, we developed here collocation one including solution values and differential operator. In this way, new improved algorithm is adaptive in space and time enabling accurate solution for groundwater flow problems, especially in highly heterogeneous porous media with large lnK variances and different correlation length scales. In addition, differences between collocation and finite volume approaches are discussed. Finally, results show application of methodology to the groundwater flow problems in highly heterogeneous confined and unconfined aquifers.

  9. An efficient computer based wavelets approximation method to solve Fuzzy boundary value differential equations

    NASA Astrophysics Data System (ADS)

    Alam Khan, Najeeb; Razzaq, Oyoon Abdul

    2016-03-01

    In the present work a wavelets approximation method is employed to solve fuzzy boundary value differential equations (FBVDEs). Essentially, a truncated Legendre wavelets series together with the Legendre wavelets operational matrix of derivative are utilized to convert FB- VDE into a simple computational problem by reducing it into a system of fuzzy algebraic linear equations. The capability of scheme is investigated on second order FB- VDE considered under generalized H-differentiability. Solutions are represented graphically showing competency and accuracy of this method.

  10. Directional dual-tree complex wavelet packet transforms for processing quadrature signals.

    PubMed

    Serbes, Gorkem; Gulcur, Halil Ozcan; Aydin, Nizamettin

    2016-03-01

    Quadrature signals containing in-phase and quadrature-phase components are used in many signal processing applications in every field of science and engineering. Specifically, Doppler ultrasound systems used to evaluate cardiovascular disorders noninvasively also result in quadrature format signals. In order to obtain directional blood flow information, the quadrature outputs have to be preprocessed using methods such as asymmetrical and symmetrical phasing filter techniques. These resultant directional signals can be employed in order to detect asymptomatic embolic signals caused by small emboli, which are indicators of a possible future stroke, in the cerebral circulation. Various transform-based methods such as Fourier and wavelet were frequently used in processing embolic signals. However, most of the times, the Fourier and discrete wavelet transforms are not appropriate for the analysis of embolic signals due to their non-stationary time-frequency behavior. Alternatively, discrete wavelet packet transform can perform an adaptive decomposition of the time-frequency axis. In this study, directional discrete wavelet packet transforms, which have the ability to map directional information while processing quadrature signals and have less computational complexity than the existing wavelet packet-based methods, are introduced. The performances of proposed methods are examined in detail by using single-frequency, synthetic narrow-band, and embolic quadrature signals.

  11. Numerical solution of the Black-Scholes equation using cubic spline wavelets

    NASA Astrophysics Data System (ADS)

    Černá, Dana

    2016-12-01

    The Black-Scholes equation is used in financial mathematics for computation of market values of options at a given time. We use the θ-scheme for time discretization and an adaptive scheme based on wavelets for discretization on the given time level. Advantages of the proposed method are small number of degrees of freedom, high-order accuracy with respect to variables representing prices and relatively small number of iterations needed to resolve the problem with a desired accuracy. We use several cubic spline wavelet and multi-wavelet bases and discuss their advantages and disadvantages. We also compare an isotropic and anisotropic approach. Numerical experiments are presented for the two-dimensional Black-Scholes equation.

  12. Multi-resolution extension for transmission of geodata in a mobile context

    NASA Astrophysics Data System (ADS)

    Follin, Jean-Michel; Bouju, Alain; Bertrand, Frédéric; Boursier, Patrice

    2005-03-01

    A solution is proposed for the management of multi-resolution vector data in a mobile spatial information visualization system. The client-server architecture and the models of data and transfer of the system are presented first. The aim of this system is to reduce data exchanged between client and server by reusing data already present on the client side. Then, an extension of this system to multi-resolution data is proposed. Our solution is based on the use of increments in a multi-scale database. A database architecture where data sets for different predefined scales are precomputed and stored on the server side is adopted. In this model, each object representing the same real world entities at different levels of detail has to be linked beforehand. Increments correspond to the difference between two datasets with different levels of detail. They are transmitted in order to increase (or decrease) the detail to the client upon request. They include generalization and refinement operators allowing transitions between the different levels. Finally, a framework suited to the transfer of multi-resolution data in a mobile context is presented. This allows reuse of data locally available at different levels of detail and, in this way, reduces the amount of data transferred between client and server.

  13. Classification of endoscopic capsule images by using color wavelet features, higher order statistics and radial basis functions.

    PubMed

    Lima, C S; Barbosa, D; Ramos, J; Tavares, A; Monteiro, L; Carvalho, L

    2008-01-01

    This paper presents a system to support medical diagnosis and detection of abnormal lesions by processing capsule endoscopic images. Endoscopic images possess rich information expressed by texture. Texture information can be efficiently extracted from medium scales of the wavelet transform. The set of features proposed in this paper to code textural information is named color wavelet covariance (CWC). CWC coefficients are based on the covariances of second order textural measures, an optimum subset of them is proposed. Third and forth order moments are added to cope with distributions that tend to become non-Gaussian, especially in some pathological cases. The proposed approach is supported by a classifier based on radial basis functions procedure for the characterization of the image regions along the video frames. The whole methodology has been applied on real data containing 6 full endoscopic exams and reached 95% specificity and 93% sensitivity.

  14. Reduced-Order Modeling and Wavelet Analysis of Turbofan Engine Structural Response Due to Foreign Object Damage (FOD) Events

    NASA Technical Reports Server (NTRS)

    Turso, James; Lawrence, Charles; Litt, Jonathan

    2004-01-01

    The development of a wavelet-based feature extraction technique specifically targeting FOD-event induced vibration signal changes in gas turbine engines is described. The technique performs wavelet analysis of accelerometer signals from specified locations on the engine and is shown to be robust in the presence of significant process and sensor noise. It is envisioned that the technique will be combined with Kalman filter thermal/health parameter estimation for FOD-event detection via information fusion from these (and perhaps other) sources. Due to the lack of high-frequency FOD-event test data in the open literature, a reduced-order turbofan structural model (ROM) was synthesized from a finite element model modal analysis to support the investigation. In addition to providing test data for algorithm development, the ROM is used to determine the optimal sensor location for FOD-event detection. In the presence of significant noise, precise location of the FOD event in time was obtained using the developed wavelet-based feature.

  15. Reduced-Order Modeling and Wavelet Analysis of Turbofan Engine Structural Response Due to Foreign Object Damage "FOD" Events

    NASA Technical Reports Server (NTRS)

    Turso, James A.; Lawrence, Charles; Litt, Jonathan S.

    2007-01-01

    The development of a wavelet-based feature extraction technique specifically targeting FOD-event induced vibration signal changes in gas turbine engines is described. The technique performs wavelet analysis of accelerometer signals from specified locations on the engine and is shown to be robust in the presence of significant process and sensor noise. It is envisioned that the technique will be combined with Kalman filter thermal/ health parameter estimation for FOD-event detection via information fusion from these (and perhaps other) sources. Due to the lack of high-frequency FOD-event test data in the open literature, a reduced-order turbofan structural model (ROM) was synthesized from a finite-element model modal analysis to support the investigation. In addition to providing test data for algorithm development, the ROM is used to determine the optimal sensor location for FOD-event detection. In the presence of significant noise, precise location of the FOD event in time was obtained using the developed wavelet-based feature.

  16. Buildings Change Detection Based on Shape Matching for Multi-Resolution Remote Sensing Imagery

    NASA Astrophysics Data System (ADS)

    Abdessetar, M.; Zhong, Y.

    2017-09-01

    Buildings change detection has the ability to quantify the temporal effect, on urban area, for urban evolution study or damage assessment in disaster cases. In this context, changes analysis might involve the utilization of the available satellite images with different resolutions for quick responses. In this paper, to avoid using traditional method with image resampling outcomes and salt-pepper effect, building change detection based on shape matching is proposed for multi-resolution remote sensing images. Since the object's shape can be extracted from remote sensing imagery and the shapes of corresponding objects in multi-scale images are similar, it is practical for detecting buildings changes in multi-scale imagery using shape analysis. Therefore, the proposed methodology can deal with different pixel size for identifying new and demolished buildings in urban area using geometric properties of objects of interest. After rectifying the desired multi-dates and multi-resolutions images, by image to image registration with optimal RMS value, objects based image classification is performed to extract buildings shape from the images. Next, Centroid-Coincident Matching is conducted, on the extracted building shapes, based on the Euclidean distance measurement between shapes centroid (from shape T0 to shape T1 and vice versa), in order to define corresponding building objects. Then, New and Demolished buildings are identified based on the obtained distances those are greater than RMS value (No match in the same location).

  17. Adapted wavelet transform improves time-frequency representations: a study of auditory elicited P300-like event-related potentials in rats.

    PubMed

    Richard, Nelly; Laursen, Bettina; Grupe, Morten; Drewes, Asbjørn M; Graversen, Carina; Sørensen, Helge B D; Bastlund, Jesper F

    2017-04-01

    Active auditory oddball paradigms are simple tone discrimination tasks used to study the P300 deflection of event-related potentials (ERPs). These ERPs may be quantified by time-frequency analysis. As auditory stimuli cause early high frequency and late low frequency ERP oscillations, the continuous wavelet transform (CWT) is often chosen for decomposition due to its multi-resolution properties. However, as the conventional CWT traditionally applies only one mother wavelet to represent the entire spectrum, the time-frequency resolution is not optimal across all scales. To account for this, we developed and validated a novel method specifically refined to analyse P300-like ERPs in rats. An adapted CWT (aCWT) was implemented to preserve high time-frequency resolution across all scales by commissioning of multiple wavelets operating at different scales. First, decomposition of simulated ERPs was illustrated using the classical CWT and the aCWT. Next, the two methods were applied to EEG recordings obtained from prefrontal cortex in rats performing a two-tone auditory discrimination task. While only early ERP frequency changes between responses to target and non-target tones were detected by the CWT, both early and late changes were successfully described with strong accuracy by the aCWT in rat ERPs. Increased frontal gamma power and phase synchrony was observed particularly within theta and gamma frequency bands during deviant tones. The study suggests superior performance of the aCWT over the CWT in terms of detailed quantification of time-frequency properties of ERPs. Our methodological investigation indicates that accurate and complete assessment of time-frequency components of short-time neural signals is feasible with the novel analysis approach which may be advantageous for characterisation of several types of evoked potentials in particularly rodents.

  18. Classification of glioblastoma and metastasis for neuropathology intraoperative diagnosis: a multi-resolution textural approach to model the background

    NASA Astrophysics Data System (ADS)

    Ahmad Fauzi, Mohammad Faizal; Gokozan, Hamza Numan; Elder, Brad; Puduvalli, Vinay K.; Otero, Jose J.; Gurcan, Metin N.

    2014-03-01

    Brain cancer surgery requires intraoperative consultation by neuropathology to guide surgical decisions regarding the extent to which the tumor undergoes gross total resection. In this context, the differential diagnosis between glioblastoma and metastatic cancer is challenging as the decision must be made during surgery in a short time-frame (typically 30 minutes). We propose a method to classify glioblastoma versus metastatic cancer based on extracting textural features from the non-nuclei region of cytologic preparations. For glioblastoma, these regions of interest are filled with glial processes between the nuclei, which appear as anisotropic thin linear structures. For metastasis, these regions correspond to a more homogeneous appearance, thus suitable texture features can be extracted from these regions to distinguish between the two tissue types. In our work, we use the Discrete Wavelet Frames to characterize the underlying texture due to its multi-resolution capability in modeling underlying texture. The textural characterization is carried out in primarily the non-nuclei regions after nuclei regions are segmented by adapting our visually meaningful decomposition segmentation algorithm to this problem. k-nearest neighbor method was then used to classify the features into glioblastoma or metastasis cancer class. Experiment on 53 images (29 glioblastomas and 24 metastases) resulted in average accuracy as high as 89.7% for glioblastoma, 87.5% for metastasis and 88.7% overall. Further studies are underway to incorporate nuclei region features into classification on an expanded dataset, as well as expanding the classification to more types of cancers.

  19. Quality of reconstruction of compressed off-axis digital holograms by frequency filtering and wavelets.

    PubMed

    Cheremkhin, Pavel A; Kurbatova, Ekaterina A

    2018-01-01

    Compression of digital holograms can significantly help with the storage of objects and data in 2D and 3D form, its transmission, and its reconstruction. Compression of standard images by methods based on wavelets allows high compression ratios (up to 20-50 times) with minimum losses of quality. In the case of digital holograms, application of wavelets directly does not allow high values of compression to be obtained. However, additional preprocessing and postprocessing can afford significant compression of holograms and the acceptable quality of reconstructed images. In this paper application of wavelet transforms for compression of off-axis digital holograms are considered. The combined technique based on zero- and twin-order elimination, wavelet compression of the amplitude and phase components of the obtained Fourier spectrum, and further additional compression of wavelet coefficients by thresholding and quantization is considered. Numerical experiments on reconstruction of images from the compressed holograms are performed. The comparative analysis of applicability of various wavelets and methods of additional compression of wavelet coefficients is performed. Optimum parameters of compression of holograms by the methods can be estimated. Sizes of holographic information were decreased up to 190 times.

  20. Application of based on improved wavelet algorithm in fiber temperature sensor

    NASA Astrophysics Data System (ADS)

    Qi, Hui; Tang, Wenjuan

    2018-03-01

    It is crucial point that accurate temperature in distributed optical fiber temperature sensor. In order to solve the problem of temperature measurement error due to weak Raman scattering signal and strong noise in system, a new based on improved wavelet algorithm is presented. On the basis of the traditional modulus maxima wavelet algorithm, signal correlation is considered to improve the ability to capture signals and noise, meanwhile, combined with wavelet decomposition scale adaptive method to eliminate signal loss or noise not filtered due to mismatch scale. Superiority of algorithm filtering is compared with others by Matlab. At last, the 3km distributed optical fiber temperature sensing system is used for verification. Experimental results show that accuracy of temperature generally increased by 0.5233.

  1. Detection of small bowel tumors in capsule endoscopy frames using texture analysis based on the discrete wavelet transform.

    PubMed

    Barbosa, Daniel J C; Ramos, Jaime; Lima, Carlos S

    2008-01-01

    Capsule endoscopy is an important tool to diagnose tumor lesions in the small bowel. The capsule endoscopic images possess vital information expressed by color and texture. This paper presents an approach based in the textural analysis of the different color channels, using the wavelet transform to select the bands with the most significant texture information. A new image is then synthesized from the selected wavelet bands, trough the inverse wavelet transform. The features of each image are based on second-order textural information, and they are used in a classification scheme using a multilayer perceptron neural network. The proposed methodology has been applied in real data taken from capsule endoscopic exams and reached 98.7% sensibility and 96.6% specificity. These results support the feasibility of the proposed algorithm.

  2. Multiscale Image Processing of Solar Image Data

    NASA Astrophysics Data System (ADS)

    Young, C.; Myers, D. C.

    2001-12-01

    It is often said that the blessing and curse of solar physics is too much data. Solar missions such as Yohkoh, SOHO and TRACE have shown us the Sun with amazing clarity but have also increased the amount of highly complex data. We have improved our view of the Sun yet we have not improved our analysis techniques. The standard techniques used for analysis of solar images generally consist of observing the evolution of features in a sequence of byte scaled images or a sequence of byte scaled difference images. The determination of features and structures in the images are done qualitatively by the observer. There is little quantitative and objective analysis done with these images. Many advances in image processing techniques have occured in the past decade. Many of these methods are possibly suited for solar image analysis. Multiscale/Multiresolution methods are perhaps the most promising. These methods have been used to formulate the human ability to view and comprehend phenomena on different scales. So these techniques could be used to quantitify the imaging processing done by the observers eyes and brains. In this work we present several applications of multiscale techniques applied to solar image data. Specifically, we discuss uses of the wavelet, curvelet, and related transforms to define a multiresolution support for EIT, LASCO and TRACE images.

  3. Numerical Algorithms Based on Biorthogonal Wavelets

    NASA Technical Reports Server (NTRS)

    Ponenti, Pj.; Liandrat, J.

    1996-01-01

    Wavelet bases are used to generate spaces of approximation for the resolution of bidimensional elliptic and parabolic problems. Under some specific hypotheses relating the properties of the wavelets to the order of the involved operators, it is shown that an approximate solution can be built. This approximation is then stable and converges towards the exact solution. It is designed such that fast algorithms involving biorthogonal multi resolution analyses can be used to resolve the corresponding numerical problems. Detailed algorithms are provided as well as the results of numerical tests on partial differential equations defined on the bidimensional torus.

  4. Signal quality enhancement using higher order wavelets for ultrasonic TOFD signals from austenitic stainless steel welds.

    PubMed

    Praveen, Angam; Vijayarekha, K; Abraham, Saju T; Venkatraman, B

    2013-09-01

    Time of flight diffraction (TOFD) technique is a well-developed ultrasonic non-destructive testing (NDT) method and has been applied successfully for accurate sizing of defects in metallic materials. This technique was developed in early 1970s as a means for accurate sizing and positioning of cracks in nuclear components became very popular in the late 1990s and is today being widely used in various industries for weld inspection. One of the main advantages of TOFD is that, apart from fast technique, it provides higher probability of detection for linear defects. Since TOFD is based on diffraction of sound waves from the extremities of the defect compared to reflection from planar faces as in pulse echo and phased array, the resultant signal would be quite weak and signal to noise ratio (SNR) low. In many cases the defect signal is submerged in this noise making it difficult for detection, positioning and sizing. Several signal processing methods such as digital filtering, Split Spectrum Processing (SSP), Hilbert Transform and Correlation techniques have been developed in order to suppress unwanted noise and enhance the quality of the defect signal which can thus be used for characterization of defects and the material. Wavelet Transform based thresholding techniques have been applied largely for de-noising of ultrasonic signals. However in this paper, higher order wavelets are used for analyzing the de-noising performance for TOFD signals obtained from Austenitic Stainless Steel welds. It is observed that higher order wavelets give greater SNR improvement compared to the lower order wavelets. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Automatic CT Brain Image Segmentation Using Two Level Multiresolution Mixture Model of EM

    NASA Astrophysics Data System (ADS)

    Jiji, G. Wiselin; Dehmeshki, Jamshid

    2014-04-01

    Tissue classification in computed tomography (CT) brain images is an important issue in the analysis of several brain dementias. A combination of different approaches for the segmentation of brain images is presented in this paper. A multi resolution algorithm is proposed along with scaled versions using Gaussian filter and wavelet analysis that extends expectation maximization (EM) algorithm. It is found that it is less sensitive to noise and got more accurate image segmentation than traditional EM. Moreover the algorithm has been applied on 20 sets of CT of the human brain and compared with other works. The segmentation results show the advantages of the proposed work have achieved more promising results and the results have been tested with Doctors.

  6. Wavelet-based adaptation methodology combined with finite difference WENO to solve ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Do, Seongju; Li, Haojun; Kang, Myungjoo

    2017-06-01

    In this paper, we present an accurate and efficient wavelet-based adaptive weighted essentially non-oscillatory (WENO) scheme for hydrodynamics and ideal magnetohydrodynamics (MHD) equations arising from the hyperbolic conservation systems. The proposed method works with the finite difference weighted essentially non-oscillatory (FD-WENO) method in space and the third order total variation diminishing (TVD) Runge-Kutta (RK) method in time. The philosophy of this work is to use the lifted interpolating wavelets as not only detector for singularities but also interpolator. Especially, flexible interpolations can be performed by an inverse wavelet transformation. When the divergence cleaning method introducing auxiliary scalar field ψ is applied to the base numerical schemes for imposing divergence-free condition to the magnetic field in a MHD equation, the approximations to derivatives of ψ require the neighboring points. Moreover, the fifth order WENO interpolation requires large stencil to reconstruct high order polynomial. In such cases, an efficient interpolation method is necessary. The adaptive spatial differentiation method is considered as well as the adaptation of grid resolutions. In order to avoid the heavy computation of FD-WENO, in the smooth regions fixed stencil approximation without computing the non-linear WENO weights is used, and the characteristic decomposition method is replaced by a component-wise approach. Numerical results demonstrate that with the adaptive method we are able to resolve the solutions that agree well with the solution of the corresponding fine grid.

  7. Image wavelet decomposition and applications

    NASA Technical Reports Server (NTRS)

    Treil, N.; Mallat, S.; Bajcsy, R.

    1989-01-01

    The general problem of computer vision has been investigated for more that 20 years and is still one of the most challenging fields in artificial intelligence. Indeed, taking a look at the human visual system can give us an idea of the complexity of any solution to the problem of visual recognition. This general task can be decomposed into a whole hierarchy of problems ranging from pixel processing to high level segmentation and complex objects recognition. Contrasting an image at different representations provides useful information such as edges. An example of low level signal and image processing using the theory of wavelets is introduced which provides the basis for multiresolution representation. Like the human brain, we use a multiorientation process which detects features independently in different orientation sectors. So, images of the same orientation but of different resolutions are contrasted to gather information about an image. An interesting image representation using energy zero crossings is developed. This representation is shown to be experimentally complete and leads to some higher level applications such as edge and corner finding, which in turn provides two basic steps to image segmentation. The possibilities of feedback between different levels of processing are also discussed.

  8. A comparative study on book shelf structure based on different domain modal analysis

    NASA Astrophysics Data System (ADS)

    Sabamehr, Ardalan; Roy, Timir Baran; Bagchi, Ashutosh

    2017-04-01

    Structural Health Monitoring (SHM) based on the vibration of structures has been very attractive topic for researchers in different fields such as: civil, aeronautical and mechanical engineering. The aim of this paper is to compare three most common modal identification techniques such as Frequency Domain Decomposition (FDD), Stochastic Subspace Identification (SSI) and Continuous Wavelet Transform (CWT) to find modal properties (such as natural frequency, mode shape and damping ratio) of three story book shelf steel structure which was built in Concordia University Lab. The modified Complex Morlet wavelet have been selected for wavelet in order to use asymptotic signal rather than real one with variable bandwidth and wavelet central frequency. So, CWT is able to detect instantaneous modulus and phase by use of local maxima ridge detection.

  9. Medical Image Compression Based on Vector Quantization with Variable Block Sizes in Wavelet Domain

    PubMed Central

    Jiang, Huiyan; Ma, Zhiyuan; Hu, Yang; Yang, Benqiang; Zhang, Libo

    2012-01-01

    An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD) was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality. PMID:23049544

  10. Medical image compression based on vector quantization with variable block sizes in wavelet domain.

    PubMed

    Jiang, Huiyan; Ma, Zhiyuan; Hu, Yang; Yang, Benqiang; Zhang, Libo

    2012-01-01

    An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD) was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality.

  11. Optical phase distribution evaluation by using zero order Generalized Morse Wavelet

    NASA Astrophysics Data System (ADS)

    Kocahan, Özlem; Elmas, Merve Naz; Durmuş, ćaǧla; Coşkun, Emre; Tiryaki, Erhan; Özder, Serhat

    2017-02-01

    When determining the phase from the projected fringes by using continuous wavelet transform (CWT), selection of wavelet is an important step. A new wavelet for phase retrieval from the fringe pattern with the spatial carrier frequency in the x direction is presented. As a mother wavelet, zero order generalized Morse wavelet (GMW) is chosen because of the flexible spatial and frequency localization property, and it is exactly analytic. In this study, GMW method is explained and numerical simulations are carried out to show the validity of this technique for finding the phase distributions. Results for the Morlet and Paul wavelets are compared with the results of GMW analysis.

  12. An improved method based on wavelet coefficient correlation to filter noise in Doppler ultrasound blood flow signals

    NASA Astrophysics Data System (ADS)

    Wan, Renzhi; Zu, Yunxiao; Shao, Lin

    2018-04-01

    The blood echo signal maintained through Medical ultrasound Doppler devices would always include vascular wall pulsation signal .The traditional method to de-noise wall signal is using high-pass filter, which will also remove the lowfrequency part of the blood flow signal. Some scholars put forward a method based on region selective reduction, which at first estimates of the wall pulsation signals and then removes the wall signal from the mixed signal. Apparently, this method uses the correlation between wavelet coefficients to distinguish blood signal from wall signal, but in fact it is a kind of wavelet threshold de-noising method, whose effect is not so much ideal. In order to maintain a better effect, this paper proposes an improved method based on wavelet coefficient correlation to separate blood signal and wall signal, and simulates the algorithm by computer to verify its validity.

  13. Multiadaptive Bionic Wavelet Transform: Application to ECG Denoising and Baseline Wandering Reduction

    NASA Astrophysics Data System (ADS)

    Sayadi, Omid; Shamsollahi, Mohammad B.

    2007-12-01

    We present a new modified wavelet transform, called the multiadaptive bionic wavelet transform (MABWT), that can be applied to ECG signals in order to remove noise from them under a wide range of variations for noise. By using the definition of bionic wavelet transform and adaptively determining both the center frequency of each scale together with the[InlineEquation not available: see fulltext.]-function, the problem of desired signal decomposition is solved. Applying a new proposed thresholding rule works successfully in denoising the ECG. Moreover by using the multiadaptation scheme, lowpass noisy interference effects on the baseline of ECG will be removed as a direct task. The method was extensively clinically tested with real and simulated ECG signals which showed high performance of noise reduction, comparable to those of wavelet transform (WT). Quantitative evaluation of the proposed algorithm shows that the average SNR improvement of MABWT is 1.82 dB more than the WT-based results, for the best case. Also the procedure has largely proved advantageous over wavelet-based methods for baseline wandering cancellation, including both DC components and baseline drifts.

  14. Optical asymmetric image encryption using gyrator wavelet transform

    NASA Astrophysics Data System (ADS)

    Mehra, Isha; Nishchal, Naveen K.

    2015-11-01

    In this paper, we propose a new optical information processing tool termed as gyrator wavelet transform to secure a fully phase image, based on amplitude- and phase-truncation approach. The gyrator wavelet transform constitutes four basic parameters; gyrator transform order, type and level of mother wavelet, and position of different frequency bands. These parameters are used as encryption keys in addition to the random phase codes to the optical cryptosystem. This tool has also been applied for simultaneous compression and encryption of an image. The system's performance and its sensitivity to the encryption parameters, such as, gyrator transform order, and robustness has also been analyzed. It is expected that this tool will not only update current optical security systems, but may also shed some light on future developments. The computer simulation results demonstrate the abilities of the gyrator wavelet transform as an effective tool, which can be used in various optical information processing applications, including image encryption, and image compression. Also this tool can be applied for securing the color image, multispectral, and three-dimensional images.

  15. Glutenite bodies sequence division of the upper Es4 in northern Minfeng zone of Dongying Sag, Bohai Bay Basin, China

    NASA Astrophysics Data System (ADS)

    Shao, Xupeng

    2017-04-01

    Glutenite bodies are widely developed in northern Minfeng zone of Dongying Sag. Their litho-electric relationship is not clear. In addition, as the conventional sequence stratigraphic research method drawbacks of involving too many subjective human factors, it has limited deepening of the regional sequence stratigraphic research. The wavelet transform technique based on logging data and the time-frequency analysis technique based on seismic data have advantages of dividing sequence stratigraphy quantitatively comparing with the conventional methods. Under the basis of the conventional sequence research method, this paper used the above techniques to divide the fourth-order sequence of the upper Es4 in northern Minfeng zone of Dongying Sag. The research shows that the wavelet transform technique based on logging data and the time-frequency analysis technique based on seismic data are essentially consistent, both of which divide sequence stratigraphy quantitatively in the frequency domain; wavelet transform technique has high resolutions. It is suitable for areas with wells. The seismic time-frequency analysis technique has wide applicability, but a low resolution. Both of the techniques should be combined; the upper Es4 in northern Minfeng zone of Dongying Sag is a complete set of third-order sequence, which can be further subdivided into 5 fourth-order sequences that has the depositional characteristics of fine-upward sequence in granularity. Key words: Dongying sag, northern Minfeng zone, wavelet transform technique, time-frequency analysis technique ,the upper Es4, sequence stratigraphy

  16. Directional dual-tree rational-dilation complex wavelet transform.

    PubMed

    Serbes, Gorkem; Gulcur, Halil Ozcan; Aydin, Nizamettin

    2014-01-01

    Dyadic discrete wavelet transform (DWT) has been used successfully in processing signals having non-oscillatory transient behaviour. However, due to the low Q-factor property of their wavelet atoms, the dyadic DWT is less effective in processing oscillatory signals such as embolic signals (ESs). ESs are extracted from quadrature Doppler signals, which are the output of Doppler ultrasound systems. In order to process ESs, firstly, a pre-processing operation known as phase filtering for obtaining directional signals from quadrature Doppler signals must be employed. Only then, wavelet based methods can be applied to these directional signals for further analysis. In this study, a directional dual-tree rational-dilation complex wavelet transform, which can be applied directly to quadrature signals and has the ability of extracting directional information during analysis, is introduced.

  17. Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows, I: Basic Theory

    NASA Technical Reports Server (NTRS)

    Sjoegreen, Bjoern; Yee, H. C.

    2003-01-01

    The objective of this paper is to extend our recently developed highly parallelizable nonlinear stable high order schemes for complex multiscale hydrodynamic applications to the viscous MHD equations. These schemes employed multiresolution wavelets as adaptive numerical dissipation controls t o limit the amount of and to aid the selection and/or blending of the appropriate types of dissipation to be used. The new scheme is formulated for both the conservative and non-conservative form of the MHD equations in curvilinear grids. The four advantages of the present approach over existing MHD schemes reported in the open literature are as follows. First, the scheme is constructed for long-time integrations of shock/turbulence/combustion MHD flows. Available schemes are too diffusive for long-time integrations and/or turbulence/combustion problems. Second, unlike exist- ing schemes for the conservative MHD equations which suffer from ill-conditioned eigen- decompositions, the present scheme makes use of a well-conditioned eigen-decomposition obtained from a minor modification of the eigenvectors of the non-conservative MHD equations t o solve the conservative form of the MHD equations. Third, this approach of using the non-conservative eigensystem when solving the conservative equations also works well in the context of standard shock-capturing schemes for the MHD equations. Fourth, a new approach to minimize the numerical error of the divergence-free magnetic condition for high order schemes is introduced. Numerical experiments with typical MHD model problems revealed the applicability of the newly developed schemes for the MHD equations.

  18. Element analysis: a wavelet-based method for analysing time-localized events in noisy time series.

    PubMed

    Lilly, Jonathan M

    2017-04-01

    A method is derived for the quantitative analysis of signals that are composed of superpositions of isolated, time-localized 'events'. Here, these events are taken to be well represented as rescaled and phase-rotated versions of generalized Morse wavelets, a broad family of continuous analytic functions. Analysing a signal composed of replicates of such a function using another Morse wavelet allows one to directly estimate the properties of events from the values of the wavelet transform at its own maxima. The distribution of events in general power-law noise is determined in order to establish significance based on an expected false detection rate. Finally, an expression for an event's 'region of influence' within the wavelet transform permits the formation of a criterion for rejecting spurious maxima due to numerical artefacts or other unsuitable events. Signals can then be reconstructed based on a small number of isolated points on the time/scale plane. This method, termed element analysis , is applied to the identification of long-lived eddy structures in ocean currents as observed by along-track measurements of sea surface elevation from satellite altimetry.

  19. Adaptive fuzzy wavelet network control of second order multi-agent systems with unknown nonlinear dynamics.

    PubMed

    Taheri, Mehdi; Sheikholeslam, Farid; Najafi, Majddedin; Zekri, Maryam

    2017-07-01

    In this paper, consensus problem is considered for second order multi-agent systems with unknown nonlinear dynamics under undirected graphs. A novel distributed control strategy is suggested for leaderless systems based on adaptive fuzzy wavelet networks. Adaptive fuzzy wavelet networks are employed to compensate for the effect of unknown nonlinear dynamics. Moreover, the proposed method is developed for leader following systems and leader following systems with state time delays. Lyapunov functions are applied to prove uniformly ultimately bounded stability of closed loop systems and to obtain adaptive laws. Three simulation examples are presented to illustrate the effectiveness of the proposed control algorithms. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  20. A Wavelet-Based Methodology for Grinding Wheel Condition Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, T. W.; Ting, C.F.; Qu, Jun

    2007-01-01

    Grinding wheel surface condition changes as more material is removed. This paper presents a wavelet-based methodology for grinding wheel condition monitoring based on acoustic emission (AE) signals. Grinding experiments in creep feed mode were conducted to grind alumina specimens with a resinoid-bonded diamond wheel using two different conditions. During the experiments, AE signals were collected when the wheel was 'sharp' and when the wheel was 'dull'. Discriminant features were then extracted from each raw AE signal segment using the discrete wavelet decomposition procedure. An adaptive genetic clustering algorithm was finally applied to the extracted features in order to distinguish differentmore » states of grinding wheel condition. The test results indicate that the proposed methodology can achieve 97% clustering accuracy for the high material removal rate condition, 86.7% for the low material removal rate condition, and 76.7% for the combined grinding conditions if the base wavelet, the decomposition level, and the GA parameters are properly selected.« less

  1. Multi-scale variability and long-range memory in indoor Radon concentrations from Coimbra, Portugal

    NASA Astrophysics Data System (ADS)

    Donner, Reik V.; Potirakis, Stelios; Barbosa, Susana

    2014-05-01

    The presence or absence of long-range correlations in the variations of indoor Radon concentrations has recently attracted considerable interest. As a radioactive gas naturally emitted from the ground in certain geological settings, understanding environmental factors controlling Radon concentrations and their dynamics is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we re-analyze two high-resolution records of indoor Radon concentrations from Coimbra, Portugal, each of which spans several months of continuous measurements. In order to evaluate the presence of long-range correlations and fractal scaling, we utilize a multiplicity of complementary methods, including power spectral analysis, ARFIMA modeling, classical and multi-fractal detrended fluctuation analysis, and two different estimators of the signals' fractal dimensions. Power spectra and fluctuation functions reveal some complex behavior with qualitatively different properties on different time-scales: white noise in the high-frequency part, indications of some long-range correlated process dominating time scales of several hours to days, and pronounced low-frequency variability associated with tidal and/or meteorological forcing. In order to further decompose these different scales of variability, we apply two different approaches. On the one hand, applying multi-resolution analysis based on the discrete wavelet transform allows separately studying contributions on different time scales and characterize their specific correlation and scaling properties. On the other hand, singular system analysis (SSA) provides a reconstruction of the essential modes of variability. Specifically, by considering only the first leading SSA modes, we achieve an efficient de-noising of our environmental signals, highlighting the low-frequency variations together with some distinct scaling on sub-daily time-scales resembling the properties of a long-range correlated process.

  2. Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows

    NASA Technical Reports Server (NTRS)

    Sjoegreen, Bjoern; Yee, Helen C.; Mansour, Nagi (Technical Monitor)

    2002-01-01

    Accurate numerical simulations of complex multiscale compressible viscous flows, especially high speed turbulence combustion and acoustics, demand high order schemes with adaptive numerical dissipation controls. Standard high resolution shock-capturing methods are too dissipative to capture the small scales and/or long-time wave propagations without extreme grid refinements and small time steps. An integrated approach for the control of numerical dissipation in high order schemes for the compressible Euler and Navier-Stokes equations has been developed and verified by the authors and collaborators. These schemes are suitable for the problems in question. Basically, the scheme consists of sixth-order or higher non-dissipative spatial difference operators as the base scheme. To control the amount of numerical dissipation, multiresolution wavelets are used as sensors to adaptively limit the amount and to aid the selection and/or blending of the appropriate types of numerical dissipation to be used. Magnetohydrodynamics (MHD) waves play a key role in drag reduction in highly maneuverable high speed combat aircraft, in space weather forecasting, and in the understanding of the dynamics of the evolution of our solar system and the main sequence stars. Although there exist a few well-studied second and third-order high-resolution shock-capturing schemes for the MHD in the literature, these schemes are too diffusive and not practical for turbulence/combustion MHD flows. On the other hand, extension of higher than third-order high-resolution schemes to the MHD system of equations is not straightforward. Unlike the hydrodynamic equations, the inviscid MHD system is non-strictly hyperbolic with non-convex fluxes. The wave structures and shock types are different from their hydrodynamic counterparts. Many of the non-traditional hydrodynamic shocks are not fully understood. Consequently, reliable and highly accurate numerical schemes for multiscale MHD equations pose a great challenge to algorithm development. In addition, controlling the numerical error of the divergence free condition of the magnetic fields for high order methods has been a stumbling block. Lower order methods are not practical for the astrophysical problems in question. We propose to extend our hydrodynamics schemes to the MHD equations with several desired properties over commonly used MHD schemes.

  3. Continuous wavelet transforms for the simultaneous quantitative analysis and dissolution testing of lamivudine-zidovudine tablets.

    PubMed

    Dinç, Erdal; Özdemir, Nurten; Üstündağ, Özgür; Tilkan, Müşerref Günseli

    2013-01-01

    Dissolution testing has a very vital importance for a quality control test and prediction of the in vivo behavior of the oral dosage formulation. This requires the use of a powerful analytical method to get reliable, accurate and precise results for the dissolution experiments. In this context, new signal processing approaches, continuous wavelet transforms (CWTs) were improved for the simultaneous quantitative estimation and dissolution testing of lamivudine (LAM) and zidovudine (ZID) in a tablet dosage form. The CWT approaches are based on the application of the continuous wavelet functions to the absorption spectra-data vectors of LAM and ZID in the wavelet domain. After applying many wavelet functions, the families consisting of Mexican hat wavelet with the scaling factor a=256, Symlets wavelet with the scaling factor a=512 and the order of 5 and Daubechies wavelet at the scale factor a=450 and the order of 10 were found to be suitable for the quantitative determination of the mentioned drugs. These wavelet applications were named as mexh-CWT, sym5-CWT and db10-CWT methods. Calibration graphs for LAM and ZID in the working range of 2.0-50.0 µg/mL and 2.0-60.0 µg/mL were obtained measuring the mexh-CWT, sym5-CWT and db10-CWT amplitudes at the wavelength points corresponding to zero crossing points. The validity and applicability of the improved mexh-CWT, sym5-CWT and db10-CWT approaches was carried out by the analysis of the synthetic mixtures containing the analyzed drugs. Simultaneous determination of LAM and ZID in tablets was accomplished by the proposed CWT methods and their dissolution profiles were graphically explored.

  4. Enhancing hyperspectral spatial resolution using multispectral image fusion: A wavelet approach

    NASA Astrophysics Data System (ADS)

    Jazaeri, Amin

    High spectral and spatial resolution images have a significant impact in remote sensing applications. Because both spatial and spectral resolutions of spaceborne sensors are fixed by design and it is not possible to further increase the spatial or spectral resolution, techniques such as image fusion must be applied to achieve such goals. This dissertation introduces the concept of wavelet fusion between hyperspectral and multispectral sensors in order to enhance the spectral and spatial resolution of a hyperspectral image. To test the robustness of this concept, images from Hyperion (hyperspectral sensor) and Advanced Land Imager (multispectral sensor) were first co-registered and then fused using different wavelet algorithms. A regression-based fusion algorithm was also implemented for comparison purposes. The results show that the fused images using a combined bi-linear wavelet-regression algorithm have less error than other methods when compared to the ground truth. In addition, a combined regression-wavelet algorithm shows more immunity to misalignment of the pixels due to the lack of proper registration. The quantitative measures of average mean square error show that the performance of wavelet-based methods degrades when the spatial resolution of hyperspectral images becomes eight times less than its corresponding multispectral image. Regardless of what method of fusion is utilized, the main challenge in image fusion is image registration, which is also a very time intensive process. Because the combined regression wavelet technique is computationally expensive, a hybrid technique based on regression and wavelet methods was also implemented to decrease computational overhead. However, the gain in faster computation was offset by the introduction of more error in the outcome. The secondary objective of this dissertation is to examine the feasibility and sensor requirements for image fusion for future NASA missions in order to be able to perform onboard image fusion. In this process, the main challenge of image registration was resolved by registering the input images using transformation matrices of previously acquired data. The composite image resulted from the fusion process remarkably matched the ground truth, indicating the possibility of real time onboard fusion processing.

  5. Highly efficient codec based on significance-linked connected-component analysis of wavelet coefficients

    NASA Astrophysics Data System (ADS)

    Chai, Bing-Bing; Vass, Jozsef; Zhuang, Xinhua

    1997-04-01

    Recent success in wavelet coding is mainly attributed to the recognition of importance of data organization. There has been several very competitive wavelet codecs developed, namely, Shapiro's Embedded Zerotree Wavelets (EZW), Servetto et. al.'s Morphological Representation of Wavelet Data (MRWD), and Said and Pearlman's Set Partitioning in Hierarchical Trees (SPIHT). In this paper, we propose a new image compression algorithm called Significant-Linked Connected Component Analysis (SLCCA) of wavelet coefficients. SLCCA exploits both within-subband clustering of significant coefficients and cross-subband dependency in significant fields. A so-called significant link between connected components is designed to reduce the positional overhead of MRWD. In addition, the significant coefficients' magnitude are encoded in bit plane order to match the probability model of the adaptive arithmetic coder. Experiments show that SLCCA outperforms both EZW and MRWD, and is tied with SPIHT. Furthermore, it is observed that SLCCA generally has the best performance on images with large portion of texture. When applied to fingerprint image compression, it outperforms FBI's wavelet scalar quantization by about 1 dB.

  6. Agile Multi-Scale Decompositions for Automatic Image Registration

    NASA Technical Reports Server (NTRS)

    Murphy, James M.; Leija, Omar Navarro; Le Moigne, Jacqueline

    2016-01-01

    In recent works, the first and third authors developed an automatic image registration algorithm based on a multiscale hybrid image decomposition with anisotropic shearlets and isotropic wavelets. This prototype showed strong performance, improving robustness over registration with wavelets alone. However, this method imposed a strict hierarchy on the order in which shearlet and wavelet features were used in the registration process, and also involved an unintegrated mixture of MATLAB and C code. In this paper, we introduce a more agile model for generating features, in which a flexible and user-guided mix of shearlet and wavelet features are computed. Compared to the previous prototype, this method introduces a flexibility to the order in which shearlet and wavelet features are used in the registration process. Moreover, the present algorithm is now fully coded in C, making it more efficient and portable than the MATLAB and C prototype. We demonstrate the versatility and computational efficiency of this approach by performing registration experiments with the fully-integrated C algorithm. In particular, meaningful timing studies can now be performed, to give a concrete analysis of the computational costs of the flexible feature extraction. Examples of synthetically warped and real multi-modal images are analyzed.

  7. Direct fusion of geostationary meteorological satellite visible and infrared images based on thermal physical properties.

    PubMed

    Han, Lei; Wulie, Buzha; Yang, Yiling; Wang, Hongqing

    2015-01-05

    This study investigated a novel method of fusing visible (VIS) and infrared (IR) images with the major objective of obtaining higher-resolution IR images. Most existing image fusion methods focus only on visual performance and many fail to consider the thermal physical properties of the IR images, leading to spectral distortion in the fused image. In this study, we use the IR thermal physical property to correct the VIS image directly. Specifically, the Stefan-Boltzmann Law is used as a strong constraint to modulate the VIS image, such that the fused result shows a similar level of regional thermal energy as the original IR image, while preserving the high-resolution structural features from the VIS image. This method is an improvement over our previous study, which required VIS-IR multi-wavelet fusion before the same correction method was applied. The results of experiments show that applying this correction to the VIS image directly without multi-resolution analysis (MRA) processing achieves similar results, but is considerably more computationally efficient, thereby providing a new perspective on VIS and IR image fusion.

  8. Direct Fusion of Geostationary Meteorological Satellite Visible and Infrared Images Based on Thermal Physical Properties

    PubMed Central

    Han, Lei; Wulie, Buzha; Yang, Yiling; Wang, Hongqing

    2015-01-01

    This study investigated a novel method of fusing visible (VIS) and infrared (IR) images with the major objective of obtaining higher-resolution IR images. Most existing image fusion methods focus only on visual performance and many fail to consider the thermal physical properties of the IR images, leading to spectral distortion in the fused image. In this study, we use the IR thermal physical property to correct the VIS image directly. Specifically, the Stefan-Boltzmann Law is used as a strong constraint to modulate the VIS image, such that the fused result shows a similar level of regional thermal energy as the original IR image, while preserving the high-resolution structural features from the VIS image. This method is an improvement over our previous study, which required VIS-IR multi-wavelet fusion before the same correction method was applied. The results of experiments show that applying this correction to the VIS image directly without multi-resolution analysis (MRA) processing achieves similar results, but is considerably more computationally efficient, thereby providing a new perspective on VIS and IR image fusion. PMID:25569749

  9. Information recovery through image sequence fusion under wavelet transformation

    NASA Astrophysics Data System (ADS)

    He, Qiang

    2010-04-01

    Remote sensing is widely applied to provide information of areas with limited ground access with applications such as to assess the destruction from natural disasters and to plan relief and recovery operations. However, the data collection of aerial digital images is constrained by bad weather, atmospheric conditions, and unstable camera or camcorder. Therefore, how to recover the information from the low-quality remote sensing images and how to enhance the image quality becomes very important for many visual understanding tasks, such like feature detection, object segmentation, and object recognition. The quality of remote sensing imagery can be improved through meaningful combination of the employed images captured from different sensors or from different conditions through information fusion. Here we particularly address information fusion to remote sensing images under multi-resolution analysis in the employed image sequences. The image fusion is to recover complete information by integrating multiple images captured from the same scene. Through image fusion, a new image with high-resolution or more perceptive for human and machine is created from a time series of low-quality images based on image registration between different video frames.

  10. Morphological Feature Extraction for Automatic Registration of Multispectral Images

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; LeMoigne, Jacqueline; Netanyahu, Nathan S.

    2007-01-01

    The task of image registration can be divided into two major components, i.e., the extraction of control points or features from images, and the search among the extracted features for the matching pairs that represent the same feature in the images to be matched. Manual extraction of control features can be subjective and extremely time consuming, and often results in few usable points. On the other hand, automated feature extraction allows using invariant target features such as edges, corners, and line intersections as relevant landmarks for registration purposes. In this paper, we present an extension of a recently developed morphological approach for automatic extraction of landmark chips and corresponding windows in a fully unsupervised manner for the registration of multispectral images. Once a set of chip-window pairs is obtained, a (hierarchical) robust feature matching procedure, based on a multiresolution overcomplete wavelet decomposition scheme, is used for registration purposes. The proposed method is validated on a pair of remotely sensed scenes acquired by the Advanced Land Imager (ALI) multispectral instrument and the Hyperion hyperspectral instrument aboard NASA's Earth Observing-1 satellite.

  11. Adapted wavelet transform improves time-frequency representations: a study of auditory elicited P300-like event-related potentials in rats

    NASA Astrophysics Data System (ADS)

    Richard, Nelly; Laursen, Bettina; Grupe, Morten; Drewes, Asbjørn M.; Graversen, Carina; Sørensen, Helge B. D.; Bastlund, Jesper F.

    2017-04-01

    Objective. Active auditory oddball paradigms are simple tone discrimination tasks used to study the P300 deflection of event-related potentials (ERPs). These ERPs may be quantified by time-frequency analysis. As auditory stimuli cause early high frequency and late low frequency ERP oscillations, the continuous wavelet transform (CWT) is often chosen for decomposition due to its multi-resolution properties. However, as the conventional CWT traditionally applies only one mother wavelet to represent the entire spectrum, the time-frequency resolution is not optimal across all scales. To account for this, we developed and validated a novel method specifically refined to analyse P300-like ERPs in rats. Approach. An adapted CWT (aCWT) was implemented to preserve high time-frequency resolution across all scales by commissioning of multiple wavelets operating at different scales. First, decomposition of simulated ERPs was illustrated using the classical CWT and the aCWT. Next, the two methods were applied to EEG recordings obtained from prefrontal cortex in rats performing a two-tone auditory discrimination task. Main results. While only early ERP frequency changes between responses to target and non-target tones were detected by the CWT, both early and late changes were successfully described with strong accuracy by the aCWT in rat ERPs. Increased frontal gamma power and phase synchrony was observed particularly within theta and gamma frequency bands during deviant tones. Significance. The study suggests superior performance of the aCWT over the CWT in terms of detailed quantification of time-frequency properties of ERPs. Our methodological investigation indicates that accurate and complete assessment of time-frequency components of short-time neural signals is feasible with the novel analysis approach which may be advantageous for characterisation of several types of evoked potentials in particularly rodents.

  12. Wavelet-promoted sparsity for non-invasive reconstruction of electrical activity of the heart.

    PubMed

    Cluitmans, Matthijs; Karel, Joël; Bonizzi, Pietro; Volders, Paul; Westra, Ronald; Peeters, Ralf

    2018-05-12

    We investigated a novel sparsity-based regularization method in the wavelet domain of the inverse problem of electrocardiography that aims at preserving the spatiotemporal characteristics of heart-surface potentials. In three normal, anesthetized dogs, electrodes were implanted around the epicardium and body-surface electrodes were attached to the torso. Potential recordings were obtained simultaneously on the body surface and on the epicardium. A CT scan was used to digitize a homogeneous geometry which consisted of the body-surface electrodes and the epicardial surface. A novel multitask elastic-net-based method was introduced to regularize the ill-posed inverse problem. The method simultaneously pursues a sparse wavelet representation in time-frequency and exploits correlations in space. Performance was assessed in terms of quality of reconstructed epicardial potentials, estimated activation and recovery time, and estimated locations of pacing, and compared with performance of Tikhonov zeroth-order regularization. Results in the wavelet domain obtained higher sparsity than those in the time domain. Epicardial potentials were non-invasively reconstructed with higher accuracy than with Tikhonov zeroth-order regularization (p < 0.05), and recovery times were improved (p < 0.05). No significant improvement was found in terms of activation times and localization of origin of pacing. Next to improved estimation of recovery isochrones, which is important when assessing substrate for cardiac arrhythmias, this novel technique opens potentially powerful opportunities for clinical application, by allowing to choose wavelet bases that are optimized for specific clinical questions. Graphical Abstract The inverse problem of electrocardiography is to reconstruct heart-surface potentials from recorded bodysurface electrocardiograms (ECGs) and a torso-heart geometry. However, it is ill-posed and solving it requires additional constraints for regularization. We introduce a regularization method that simultaneously pursues a sparse wavelet representation in time-frequency and exploits correlations in space. Our approach reconstructs epicardial (heart-surface) potentials with higher accuracy than common methods. It also improves the reconstruction of recovery isochrones, which is important when assessing substrate for cardiac arrhythmias. This novel technique opens potentially powerful opportunities for clinical application, by allowing to choose wavelet bases that are optimized for specific clinical questions.

  13. ECG compression using non-recursive wavelet transform with quality control

    NASA Astrophysics Data System (ADS)

    Liu, Je-Hung; Hung, King-Chu; Wu, Tsung-Ching

    2016-09-01

    While wavelet-based electrocardiogram (ECG) data compression using scalar quantisation (SQ) yields excellent compression performance, a wavelet's SQ scheme, however, must select a set of multilevel quantisers for each quantisation process. As a result of the properties of multiple-to-one mapping, however, this scheme is not conducive for reconstruction error control. In order to address this problem, this paper presents a single-variable control SQ scheme able to guarantee the reconstruction quality of wavelet-based ECG data compression. Based on the reversible round-off non-recursive discrete periodised wavelet transform (RRO-NRDPWT), the SQ scheme is derived with a three-stage design process that first uses genetic algorithm (GA) for high compression ratio (CR), followed by a quadratic curve fitting for linear distortion control, and the third uses a fuzzy decision-making for minimising data dependency effect and selecting the optimal SQ. The two databases, Physikalisch-Technische Bundesanstalt (PTB) and Massachusetts Institute of Technology (MIT) arrhythmia, are used to evaluate quality control performance. Experimental results show that the design method guarantees a high compression performance SQ scheme with statistically linear distortion. This property can be independent of training data and can facilitate rapid error control.

  14. Element analysis: a wavelet-based method for analysing time-localized events in noisy time series

    PubMed Central

    2017-01-01

    A method is derived for the quantitative analysis of signals that are composed of superpositions of isolated, time-localized ‘events’. Here, these events are taken to be well represented as rescaled and phase-rotated versions of generalized Morse wavelets, a broad family of continuous analytic functions. Analysing a signal composed of replicates of such a function using another Morse wavelet allows one to directly estimate the properties of events from the values of the wavelet transform at its own maxima. The distribution of events in general power-law noise is determined in order to establish significance based on an expected false detection rate. Finally, an expression for an event’s ‘region of influence’ within the wavelet transform permits the formation of a criterion for rejecting spurious maxima due to numerical artefacts or other unsuitable events. Signals can then be reconstructed based on a small number of isolated points on the time/scale plane. This method, termed element analysis, is applied to the identification of long-lived eddy structures in ocean currents as observed by along-track measurements of sea surface elevation from satellite altimetry. PMID:28484325

  15. Frequency hopping signal detection based on wavelet decomposition and Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Zheng, Yang; Chen, Xihao; Zhu, Rui

    2017-07-01

    Frequency hopping (FH) signal is widely adopted by military communications as a kind of low probability interception signal. Therefore, it is very important to research the FH signal detection algorithm. The existing detection algorithm of FH signals based on the time-frequency analysis cannot satisfy the time and frequency resolution requirement at the same time due to the influence of window function. In order to solve this problem, an algorithm based on wavelet decomposition and Hilbert-Huang transform (HHT) was proposed. The proposed algorithm removes the noise of the received signals by wavelet decomposition and detects the FH signals by Hilbert-Huang transform. Simulation results show the proposed algorithm takes into account both the time resolution and the frequency resolution. Correspondingly, the accuracy of FH signals detection can be improved.

  16. A 2D Daubechies finite wavelet domain method for transient wave response analysis in shear deformable laminated composite plates

    NASA Astrophysics Data System (ADS)

    Nastos, C. V.; Theodosiou, T. C.; Rekatsinas, C. S.; Saravanos, D. A.

    2018-03-01

    An efficient numerical method is developed for the simulation of dynamic response and the prediction of the wave propagation in composite plate structures. The method is termed finite wavelet domain method and takes advantage of the outstanding properties of compactly supported 2D Daubechies wavelet scaling functions for the spatial interpolation of displacements in a finite domain of a plate structure. The development of the 2D wavelet element, based on the first order shear deformation laminated plate theory is described and equivalent stiffness, mass matrices and force vectors are calculated and synthesized in the wavelet domain. The transient response is predicted using the explicit central difference time integration scheme. Numerical results for the simulation of wave propagation in isotropic, quasi-isotropic and cross-ply laminated plates are presented and demonstrate the high spatial convergence and problem size reduction obtained by the present method.

  17. Efficient random access high resolution region-of-interest (ROI) image retrieval using backward coding of wavelet trees (BCWT)

    NASA Astrophysics Data System (ADS)

    Corona, Enrique; Nutter, Brian; Mitra, Sunanda; Guo, Jiangling; Karp, Tanja

    2008-03-01

    Efficient retrieval of high quality Regions-Of-Interest (ROI) from high resolution medical images is essential for reliable interpretation and accurate diagnosis. Random access to high quality ROI from codestreams is becoming an essential feature in many still image compression applications, particularly in viewing diseased areas from large medical images. This feature is easier to implement in block based codecs because of the inherent spatial independency of the code blocks. This independency implies that the decoding order of the blocks is unimportant as long as the position for each is properly identified. In contrast, wavelet-tree based codecs naturally use some interdependency that exploits the decaying spectrum model of the wavelet coefficients. Thus one must keep track of the decoding order from level to level with such codecs. We have developed an innovative multi-rate image subband coding scheme using "Backward Coding of Wavelet Trees (BCWT)" which is fast, memory efficient, and resolution scalable. It offers far less complexity than many other existing codecs including both, wavelet-tree, and block based algorithms. The ROI feature in BCWT is implemented through a transcoder stage that generates a new BCWT codestream containing only the information associated with the user-defined ROI. This paper presents an efficient technique that locates a particular ROI within the BCWT coded domain, and decodes it back to the spatial domain. This technique allows better access and proper identification of pathologies in high resolution images since only a small fraction of the codestream is required to be transmitted and analyzed.

  18. Component separation for cosmic microwave background radiation

    NASA Astrophysics Data System (ADS)

    Fernández-Cobos, R.; Vielva, P.; Barreiro, R. B.; Martínez-González, E.

    2011-11-01

    Cosmic microwave background (CMB) radiation data obtained by different experiments contains, besides the desired signal, a superposition of microwave sky contributions mainly due to, on the one hand, synchrotron radiation, free-free emission and re-emission of dust clouds in our galaxy; and, on the other hand, extragalactic sources. We present an analytical method, using a wavelet decomposition on the sphere, to recover the CMB signal from microwave maps. Being applied to both temperature and polarization data, it is shown as a significant powerful tool when it is used in particularly polluted regions of the sky. The applied wavelet has the advantages of requiring little computering time in its calculations being adapted to the HEALPix pixelization scheme (which is the format that the community uses to report the CMB data) and offering the possibility of multi-resolution analysis. The decomposition is implemented as part of a template fitting method, minimizing the variance of the resulting map. The method was tested with simulations of WMAP data and results have been positive, with improvements up to 12% in the variance of the resulting full sky map and about 3% in low contaminate regions. Finally, we also present some preliminary results with WMAP data in the form of an angular cross power spectrum C_ℓ^{TE}, consistent with the spectrum offered by WMAP team.

  19. Time-frequency analysis of electric motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentley, C.L.; Dunn, M.E.; Mattingly, J.K.

    1995-12-31

    Physical signals such as the current of an electric motor become nonstationary as a consequence of degraded operation and broken parts. In this instance, their power spectral densities become time dependent, and time-frequency analysis techniques become the appropriate tools for signal analysis. The first among these techniques, generally called the short-time Fourier transform (STFT) method, is the Gabor transform 2 (GT) of a signal S(t), which decomposes the signal into time-local frequency modes: where the window function, {Phi}(t-{tau}), is a normalized Gaussian. Alternatively, one can decompose the signal into its multi-resolution representation at different levels of magnification. This representation ismore » achieved by the continuous wavelet transform (CWT) where the function g(t) is a kernel of zero average belonging to a family of scaled and shifted wavelet kernels. The CWT can be interpreted as the action of a microscope that locates the signal by the shift parameter b and adjusts its magnification by changing the scale parameter a. The Fourier-transformed CWT, W,{sub g}(a, {omega}), acts as a filter that places the high-frequency content of a signal into the lower end of the scale spectrum and vice versa for the low frequencies. Signals from a motor in three different states were analyzed.« less

  20. Wavelet entropy: a new tool for analysis of short duration brain electrical signals.

    PubMed

    Rosso, O A; Blanco, S; Yordanova, J; Kolev, V; Figliola, A; Schürmann, M; Başar, E

    2001-01-30

    Since traditional electrical brain signal analysis is mostly qualitative, the development of new quantitative methods is crucial for restricting the subjectivity in the study of brain signals. These methods are particularly fruitful when they are strongly correlated with intuitive physical concepts that allow a better understanding of brain dynamics. Here, new method based on orthogonal discrete wavelet transform (ODWT) is applied. It takes as a basic element the ODWT of the EEG signal, and defines the relative wavelet energy, the wavelet entropy (WE) and the relative wavelet entropy (RWE). The relative wavelet energy provides information about the relative energy associated with different frequency bands present in the EEG and their corresponding degree of importance. The WE carries information about the degree of order/disorder associated with a multi-frequency signal response, and the RWE measures the degree of similarity between different segments of the signal. In addition, the time evolution of the WE is calculated to give information about the dynamics in the EEG records. Within this framework, the major objective of the present work was to characterize in a quantitative way functional dynamics of order/disorder microstates in short duration EEG signals. For that aim, spontaneous EEG signals under different physiological conditions were analyzed. Further, specific quantifiers were derived to characterize how stimulus affects electrical events in terms of frequency synchronization (tuning) in the event related potentials.

  1. Determination of phase from the ridge of CWT using generalized Morse wavelet

    NASA Astrophysics Data System (ADS)

    Kocahan, Ozlem; Tiryaki, Erhan; Coskun, Emre; Ozder, Serhat

    2018-03-01

    The selection of wavelet is an important step in order to determine the phase from the fringe patterns. In the present work, a new wavelet for phase retrieval from the ridge of continuous wavelet transform (CWT) is presented. The phase distributions have been extracted from the optical fringe pattern by choosing the zero order generalized morse wavelet (GMW) as a mother wavelet. The aim of the study is to reveal the ways in which the two varying parameters of GMW affect the phase calculation. To show the validity of this method, an experimental study has been conducted by using the diffraction phase microscopy (DPM) setup; consequently, the profiles of red blood cells have been retrieved. The results for the CWT ridge technique with GMW have been compared with the results for the Morlet wavelet and the Paul wavelet; the results are almost identical for Paul and zero order GMW because of their degree of freedom. Also, for further discussion, the Fourier transform and the Stockwell transform have been applied comparatively. The outcome of the comparison reveals that GMWs are highly applicable to the research in various areas, predominantly biomedicine.

  2. MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Robert J.; Beylkin, Gregory; Bischoff, Florian A.

    2016-01-01

    MADNESS (multiresolution adaptive numerical environment for scientific simulation) is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast harmonic analysis methods with guaranteed precision based on multiresolution analysis and separated representations. Underpinning the numerical capabilities is a powerful petascale parallel programming environment that aims to increase both programmer productivity and code scalability. This paper describes the features and capabilities of MADNESS and briefly discusses some current applications in chemistry and several areas of physics.

  3. Statistical Analysis of Stress Signals from Bridge Monitoring by FBG System.

    PubMed

    Ye, Xiao-Wei; Su, You-Hua; Xi, Pei-Sen

    2018-02-07

    In this paper, a fiber Bragg grating (FBG)-based stress monitoring system instrumented on an orthotropic steel deck arch bridge is demonstrated. The FBG sensors are installed at two types of critical fatigue-prone welded joints to measure the strain and temperature signals. A total of 64 FBG sensors are deployed around the rib-to-deck and rib-to-diagram areas at the mid-span and quarter-span of the investigated orthotropic steel bridge. The local stress behaviors caused by the highway loading and temperature effect during the construction and operation periods are presented with the aid of a wavelet multi-resolution analysis approach. In addition, the multi-modal characteristic of the rainflow counted stress spectrum is modeled by the method of finite mixture distribution together with a genetic algorithm (GA)-based parameter estimation approach. The optimal probability distribution of the stress spectrum is determined by use of Bayesian information criterion (BIC). Furthermore, the hot spot stress of the welded joint is calculated by an extrapolation method recommended in the specification of International Institute of Welding (IIW). The stochastic characteristic of stress concentration factor (SCF) of the concerned welded joint is addressed. The proposed FBG-based stress monitoring system and probabilistic stress evaluation methods can provide an effective tool for structural monitoring and condition assessment of orthotropic steel bridges.

  4. Techniques and potential capabilities of multi-resolutional information (knowledge) processing

    NASA Technical Reports Server (NTRS)

    Meystel, A.

    1989-01-01

    A concept of nested hierarchical (multi-resolutional, pyramidal) information (knowledge) processing is introduced for a variety of systems including data and/or knowledge bases, vision, control, and manufacturing systems, industrial automated robots, and (self-programmed) autonomous intelligent machines. A set of practical recommendations is presented using a case study of a multiresolutional object representation. It is demonstrated here that any intelligent module transforms (sometimes, irreversibly) the knowledge it deals with, and this tranformation affects the subsequent computation processes, e.g., those of decision and control. Several types of knowledge transformation are reviewed. Definite conditions are analyzed, satisfaction of which is required for organization and processing of redundant information (knowledge) in the multi-resolutional systems. Providing a definite degree of redundancy is one of these conditions.

  5. A simple structure wavelet transform circuit employing function link neural networks and SI filters

    NASA Astrophysics Data System (ADS)

    Mu, Li; Yigang, He

    2016-12-01

    Signal processing by means of analog circuits offers advantages from a power consumption viewpoint. Implementing wavelet transform (WT) using analog circuits is of great interest when low-power consumption becomes an important issue. In this article, a novel simple structure WT circuit in analog domain is presented by employing functional link neural network (FLNN) and switched-current (SI) filters. First, the wavelet base is approximated using FLNN algorithms for giving a filter transfer function that is suitable for simple structure WT circuit implementation. Next, the WT circuit is constructed with the wavelet filter bank, whose impulse response is the approximated wavelet and its dilations. The filter design that follows is based on a follow-the-leader feedback (FLF) structure with multiple output bilinear SI integrators and current mirrors as the main building blocks. SI filter is well suited for this application since the dilation constant across different scales of the transform can be precisely implemented and controlled by the clock frequency of the circuit with the same system architecture. Finally, to illustrate the design procedure, a seventh-order FLNN-approximated Gaussian wavelet is implemented as an example. Simulations have successfully verified that the designed simple structure WT circuit has low sensitivity, low-power consumption and litter effect to the imperfections.

  6. Parametric instability analysis of truncated conical shells using the Haar wavelet method

    NASA Astrophysics Data System (ADS)

    Dai, Qiyi; Cao, Qingjie

    2018-05-01

    In this paper, the Haar wavelet method is employed to analyze the parametric instability of truncated conical shells under static and time dependent periodic axial loads. The present work is based on the Love first-approximation theory for classical thin shells. The displacement field is expressed as the Haar wavelet series in the axial direction and trigonometric functions in the circumferential direction. Then the partial differential equations are reduced into a system of coupled Mathieu-type ordinary differential equations describing dynamic instability behavior of the shell. Using Bolotin's method, the first-order and second-order approximations of principal instability regions are determined. The correctness of present method is examined by comparing the results with those in the literature and very good agreement is observed. The difference between the first-order and second-order approximations of principal instability regions for tensile and compressive loads is also investigated. Finally, numerical results are presented to bring out the influences of various parameters like static load factors, boundary conditions and shell geometrical characteristics on the domains of parametric instability of conical shells.

  7. Extended AIC model based on high order moments and its application in the financial market

    NASA Astrophysics Data System (ADS)

    Mao, Xuegeng; Shang, Pengjian

    2018-07-01

    In this paper, an extended method of traditional Akaike Information Criteria(AIC) is proposed to detect the volatility of time series by combining it with higher order moments, such as skewness and kurtosis. Since measures considering higher order moments are powerful in many aspects, the properties of asymmetry and flatness can be observed. Furthermore, in order to reduce the effect of noise and other incoherent features, we combine the extended AIC algorithm with multiscale wavelet analysis, in which the newly extended AIC algorithm is applied to wavelet coefficients at several scales and the time series are reconstructed by wavelet transform. After that, we create AIC planes to derive the relationship among AIC values using variance, skewness and kurtosis respectively. When we test this technique on the financial market, the aim is to analyze the trend and volatility of the closing price of stock indices and classify them. And we also adapt multiscale analysis to measure complexity of time series over a range of scales. Empirical results show that the singularity of time series in stock market can be detected via extended AIC algorithm.

  8. Multiresolution saliency map based object segmentation

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Wang, Xin; Dai, ZhenYou

    2015-11-01

    Salient objects' detection and segmentation are gaining increasing research interest in recent years. A saliency map can be obtained from different models presented in previous studies. Based on this saliency map, the most salient region (MSR) in an image can be extracted. This MSR, generally a rectangle, can be used as the initial parameters for object segmentation algorithms. However, to our knowledge, all of those saliency maps are represented in a unitary resolution although some models have even introduced multiscale principles in the calculation process. Furthermore, some segmentation methods, such as the well-known GrabCut algorithm, need more iteration time or additional interactions to get more precise results without predefined pixel types. A concept of a multiresolution saliency map is introduced. This saliency map is provided in a multiresolution format, which naturally follows the principle of the human visual mechanism. Moreover, the points in this map can be utilized to initialize parameters for GrabCut segmentation by labeling the feature pixels automatically. Both the computing speed and segmentation precision are evaluated. The results imply that this multiresolution saliency map-based object segmentation method is simple and efficient.

  9. Numerical solution of sixth-order boundary-value problems using Legendre wavelet collocation method

    NASA Astrophysics Data System (ADS)

    Sohaib, Muhammad; Haq, Sirajul; Mukhtar, Safyan; Khan, Imad

    2018-03-01

    An efficient method is proposed to approximate sixth order boundary value problems. The proposed method is based on Legendre wavelet in which Legendre polynomial is used. The mechanism of the method is to use collocation points that converts the differential equation into a system of algebraic equations. For validation two test problems are discussed. The results obtained from proposed method are quite accurate, also close to exact solution, and other different methods. The proposed method is computationally more effective and leads to more accurate results as compared to other methods from literature.

  10. Fourth order scheme for wavelet based solution of Black-Scholes equation

    NASA Astrophysics Data System (ADS)

    Finěk, Václav

    2017-12-01

    The present paper is devoted to the numerical solution of the Black-Scholes equation for pricing European options. We apply the Crank-Nicolson scheme with Richardson extrapolation for time discretization and Hermite cubic spline wavelets with four vanishing moments for space discretization. This scheme is the fourth order accurate both in time and in space. Computational results indicate that the Crank-Nicolson scheme with Richardson extrapolation significantly decreases the amount of computational work. We also numerically show that optimal convergence rate for the used scheme is obtained without using startup procedure despite the data irregularities in the model.

  11. A Wavelet-based Fast Discrimination of Transformer Magnetizing Inrush Current

    NASA Astrophysics Data System (ADS)

    Kitayama, Masashi

    Recently customers who need electricity of higher quality have been installing co-generation facilities. They can avoid voltage sags and other distribution system related disturbances by supplying electricity to important load from their generators. For another example, FRIENDS, highly reliable distribution system using semiconductor switches or storage devices based on power electronics technology, is proposed. These examples illustrates that the request for high reliability in distribution system is increasing. In order to realize these systems, fast relaying algorithms are indispensable. The author proposes a new method of detecting magnetizing inrush current using discrete wavelet transform (DWT). DWT provides the function of detecting discontinuity of current waveform. Inrush current occurs when transformer core becomes saturated. The proposed method detects spikes of DWT components derived from the discontinuity of the current waveform at both the beginning and the end of inrush current. Wavelet thresholding, one of the wavelet-based statistical modeling, was applied to detect the DWT component spikes. The proposed method is verified using experimental data using single-phase transformer and the proposed method is proved to be effective.

  12. Fractal properties and denoising of lidar signals from cirrus clouds

    NASA Astrophysics Data System (ADS)

    van den Heuvel, J. C.; Driesenaar, M. L.; Lerou, R. J. L.

    2000-02-01

    Airborne lidar signals of cirrus clouds are analyzed to determine the cloud structure. Climate modeling and numerical weather prediction benefit from accurate modeling of cirrus clouds. Airborne lidar measurements of the European Lidar in Space Technology Experiment (ELITE) campaign were analyzed by combining shots to obtain the backscatter at constant altitude. The signal at high altitude was analyzed for horizontal structure of cirrus clouds. The power spectrum and the structure function show straight lines on a double logarithmic plot. This behavior is characteristic for a Brownian fractal. Wavelet analysis using the Haar wavelet confirms the fractal aspects. It is shown that the horizontal structure of cirrus can be described by a fractal with a dimension of 1.8 over length scales that vary 4 orders of magnitude. We use the fractal properties in a new denoising method. Denoising is required for future lidar measurements from space that have a low signal to noise ratio. Our wavelet denoising is based on the Haar wavelet and uses the statistical fractal properties of cirrus clouds in a method based on the maximum a posteriori (MAP) probability. This denoising based on wavelets is tested on airborne lidar signals from ELITE using added Gaussian noise. Superior results with respect to averaging are obtained.

  13. MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation

    DOE PAGES

    Harrison, Robert J.; Beylkin, Gregory; Bischoff, Florian A.; ...

    2016-01-01

    We present MADNESS (multiresolution adaptive numerical environment for scientific simulation) that is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast harmonic analysis methods with guaranteed precision that are based on multiresolution analysis and separated representations. Underpinning the numerical capabilities is a powerful petascale parallel programming environment that aims to increase both programmer productivity and code scalability. This paper describes the features and capabilities of MADNESS and briefly discusses some current applications in chemistry and several areas of physics.

  14. Classification of arterial and venous cerebral vasculature based on wavelet postprocessing of CT perfusion data.

    PubMed

    Havla, Lukas; Schneider, Moritz J; Thierfelder, Kolja M; Beyer, Sebastian E; Ertl-Wagner, Birgit; Reiser, Maximilian F; Sommer, Wieland H; Dietrich, Olaf

    2016-02-01

    The purpose of this study was to propose and evaluate a new wavelet-based technique for classification of arterial and venous vessels using time-resolved cerebral CT perfusion data sets. Fourteen consecutive patients (mean age 73 yr, range 17-97) with suspected stroke but no pathology in follow-up MRI were included. A CT perfusion scan with 32 dynamic phases was performed during intravenous bolus contrast-agent application. After rigid-body motion correction, a Paul wavelet (order 1) was used to calculate voxelwise the wavelet power spectrum (WPS) of each attenuation-time course. The angiographic intensity A was defined as the maximum of the WPS, located at the coordinates T (time axis) and W (scale/width axis) within the WPS. Using these three parameters (A, T, W) separately as well as combined by (1) Fisher's linear discriminant analysis (FLDA), (2) logistic regression (LogR) analysis, or (3) support vector machine (SVM) analysis, their potential to classify 18 different arterial and venous vessel segments per subject was evaluated. The best vessel classification was obtained using all three parameters A and T and W [area under the curve (AUC): 0.953 with FLDA and 0.957 with LogR or SVM]. In direct comparison, the wavelet-derived parameters provided performance at least equal to conventional attenuation-time-course parameters. The maximum AUC obtained from the proposed wavelet parameters was slightly (although not statistically significantly) higher than the maximum AUC (0.945) obtained from the conventional parameters. A new method to classify arterial and venous cerebral vessels with high statistical accuracy was introduced based on the time-domain wavelet transform of dynamic CT perfusion data in combination with linear or nonlinear multidimensional classification techniques.

  15. Textural characterization of histopathological images for oral sub-mucous fibrosis detection.

    PubMed

    Krishnan, M Muthu Rama; Shah, Pratik; Choudhary, Anirudh; Chakraborty, Chandan; Paul, Ranjan Rashmi; Ray, Ajoy K

    2011-10-01

    In the field of quantitative microscopy, textural information plays a significant role very often in tissue characterization and diagnosis, in addition to morphology and intensity. The aim of this work is to improve the classification accuracy based on textural features for the development of a computer assisted screening of oral sub-mucous fibrosis (OSF). In fact, a systematic approach is introduced in order to grade the histopathological tissue sections into normal, OSF without dysplasia and OSF with dysplasia, which would help the oral onco-pathologists to screen the subjects rapidly. In totality, 71 textural features are extracted from epithelial region of the tissue sections using various wavelet families, Gabor-wavelet, local binary pattern, fractal dimension and Brownian motion curve, followed by preprocessing and segmentation. Wavelet families contribute a common set of 9 features, out of which 8 are significant and other 61 out of 62 obtained from the rest of the extractors are also statistically significant (p<0.05) in discriminating the three stages. Based on mean distance criteria, the best wavelet family (i.e., biorthogonal3.1 (bior3.1)) is selected for classifier design. support vector machine (SVM) is trained by 146 samples based on 69 textural features and its classification accuracy is computed for each of the combinations of wavelet family and rest of the extractors. Finally, it has been investigated that bior3.1 wavelet coefficients leads to higher accuracy (88.38%) in combination with LBP and Gabor wavelet features through three-fold cross validation. Results are shown and discussed in detail. It is shown that combining more than one texture measure instead of using just one might improve the overall accuracy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Enhancing seismic P phase arrival picking based on wavelet denoising and kurtosis picker

    NASA Astrophysics Data System (ADS)

    Shang, Xueyi; Li, Xibing; Weng, Lei

    2018-01-01

    P phase arrival picking of weak signals is still challenging in seismology. A wavelet denoising is proposed to enhance seismic P phase arrival picking, and the kurtosis picker is applied on the wavelet-denoised signal to identify P phase arrival. It has been called the WD-K picker. The WD-K picker, which is different from those traditional wavelet-based pickers on the basis of a single wavelet component or certain main wavelet components, takes full advantage of the reconstruction of main detail wavelet components and the approximate wavelet component. The proposed WD-K picker considers more wavelet components and presents a better P phase arrival feature. The WD-K picker has been evaluated on 500 micro-seismic signals recorded in the Chinese Yongshaba mine. The comparison between the WD-K pickings and manual pickings shows the good picking accuracy of the WD-K picker. Furthermore, the WD-K picking performance has been compared with the main detail wavelet component combining-based kurtosis (WDC-K) picker, the single wavelet component-based kurtosis (SW-K) picker, and certain main wavelet component-based maximum kurtosis (MMW-K) picker. The comparison has demonstrated that the WD-K picker has better picking accuracy than the other three-wavelet and kurtosis-based pickers, thus showing the enhanced ability of wavelet denoising.

  17. Shuttle Data Center File-Processing Tool in Java

    NASA Technical Reports Server (NTRS)

    Barry, Matthew R.; Miller, Walter H.

    2006-01-01

    A Java-language computer program has been written to facilitate mining of data in files in the Shuttle Data Center (SDC) archives. This program can be executed on a variety of workstations or via Web-browser programs. This program is partly similar to prior C-language programs used for the same purpose, while differing from those programs in that it exploits the platform-neutrality of Java in implementing several features that are important for analysis of large sets of time-series data. The program supports regular expression queries of SDC archive files, reads the files, interleaves the time-stamped samples according to a chosen output, then transforms the results into that format. A user can choose among a variety of output file formats that are useful for diverse purposes, including plotting, Markov modeling, multivariate density estimation, and wavelet multiresolution analysis, as well as for playback of data in support of simulation and testing.

  18. An Optimised System for Generating Multi-Resolution Dtms Using NASA Mro Datasets

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Muller, J.-P.; Sidiropoulos, P.; Veitch-Michaelis, J.; Yershov, V.

    2016-06-01

    Within the EU FP-7 iMars project, a fully automated multi-resolution DTM processing chain, called Co-registration ASP-Gotcha Optimised (CASP-GO) has been developed, based on the open source NASA Ames Stereo Pipeline (ASP). CASP-GO includes tiepoint based multi-resolution image co-registration and an adaptive least squares correlation-based sub-pixel refinement method called Gotcha. The implemented system guarantees global geo-referencing compliance with respect to HRSC (and thence to MOLA), provides refined stereo matching completeness and accuracy based on the ASP normalised cross-correlation. We summarise issues discovered from experimenting with the use of the open-source ASP DTM processing chain and introduce our new working solutions. These issues include global co-registration accuracy, de-noising, dealing with failure in matching, matching confidence estimation, outlier definition and rejection scheme, various DTM artefacts, uncertainty estimation, and quality-efficiency trade-offs.

  19. A novel analysis method for near infrared spectroscopy based on Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenyu; Yang, Hongyu; Liu, Yun; Ruan, Zongcai; Luo, Qingming; Gong, Hui; Lu, Zuhong

    2007-05-01

    Near Infrared Imager (NIRI) has been widely used to access the brain functional activity non-invasively. We use a portable, multi-channel and continuous-wave NIR topography instrument to measure the concentration changes of each hemoglobin species and map cerebral cortex functional activation. By extracting some essential features from the BOLD signals, optical tomography is able to be a new way of neuropsychological studies. Fourier spectral analysis provides a common framework for examining the distribution of global energy in the frequency domain. However, this method assumes that the signal should be stationary, which limits its application in non-stationary system. The hemoglobin species concentration changes are of such kind. In this work we develop a new signal processing method using Hilbert-Huang transform to perform spectral analysis of the functional NIRI signals. Compared with wavelet based multi-resolution analysis (MRA), we demonstrated the extraction of task related signal for observation of activation in the prefrontal cortex (PFC) in vision stimulation experiment. This method provides a new analysis tool for functional NIRI signals. Our experimental results show that the proposed approach provides the unique method for reconstructing target signal without losing original information and enables us to understand the episode of functional NIRI more precisely.

  20. A new approach of watermarking technique by means multichannel wavelet functions

    NASA Astrophysics Data System (ADS)

    Agreste, Santa; Puccio, Luigia

    2012-12-01

    The digital piracy involving images, music, movies, books, and so on, is a legal problem that has not found a solution. Therefore it becomes crucial to create and to develop methods and numerical algorithms in order to solve the copyright problems. In this paper we focus the attention on a new approach of watermarking technique applied to digital color images. Our aim is to describe the realized watermarking algorithm based on multichannel wavelet functions with multiplicity r = 3, called MCWM 1.0. We report a large experimentation and some important numerical results in order to show the robustness of the proposed algorithm to geometrical attacks.

  1. sparse-msrf:A package for sparse modeling and estimation of fossil-fuel CO2 emission fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2014-10-06

    The software is used to fit models of emission fields (e.g., fossil-fuel CO2 emissions) to sparse measurements of gaseous concentrations. Its primary aim is to provide an implementation and a demonstration for the algorithms and models developed in J. Ray, V. Yadav, A. M. Michalak, B. van Bloemen Waanders and S. A. McKenna, "A multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions", accepted, Geoscientific Model Development, 2014. The software can be used to estimate emissions of non-reactive gases such as fossil-fuel CO2, methane etc. The software uses a proxy of the emission field beingmore » estimated (e.g., for fossil-fuel CO2, a population density map is a good proxy) to construct a wavelet model for the emission field. It then uses a shrinkage regression algorithm called Stagewise Orthogonal Matching Pursuit (StOMP) to fit the wavelet model to concentration measurements, using an atmospheric transport model to relate emission and concentration fields. Algorithmic novelties described in the paper above (1) ensure that the estimated emission fields are non-negative, (2) allow the use of guesses for emission fields to accelerate the estimation processes and (3) ensure that under/overestimates in the guesses do not skew the estimation.« less

  2. Design of compactly supported wavelet to match singularities in medical images

    NASA Astrophysics Data System (ADS)

    Fung, Carrson C.; Shi, Pengcheng

    2002-11-01

    Analysis and understanding of medical images has important clinical values for patient diagnosis and treatment, as well as technical implications for computer vision and pattern recognition. One of the most fundamental issues is the detection of object boundaries or singularities, which is often the basis for further processes such as organ/tissue recognition, image registration, motion analysis, measurement of anatomical and physiological parameters, etc. The focus of this work involved taking a correlation based approach toward edge detection, by exploiting some of desirable properties of wavelet analysis. This leads to the possibility of constructing a bank of detectors, consisting of multiple wavelet basis functions of different scales which are optimal for specific types of edges, in order to optimally detect all the edges in an image. Our work involved developing a set of wavelet functions which matches the shape of the ramp and pulse edges. The matching algorithm used focuses on matching the edges in the frequency domain. It was proven that this technique could create matching wavelets applicable at all scales. Results have shown that matching wavelets can be obtained for the pulse edge while the ramp edge requires another matching algorithm.

  3. Image superresolution of cytology images using wavelet based patch search

    NASA Astrophysics Data System (ADS)

    Vargas, Carlos; García-Arteaga, Juan D.; Romero, Eduardo

    2015-01-01

    Telecytology is a new research area that holds the potential of significantly reducing the number of deaths due to cervical cancer in developing countries. This work presents a novel super-resolution technique that couples high and low frequency information in order to reduce the bandwidth consumption of cervical image transmission. The proposed approach starts by decomposing into wavelets the high resolution images and transmitting only the lower frequency coefficients. The transmitted coefficients are used to reconstruct an image of the original size. Additional details are added by iteratively replacing patches of the wavelet reconstructed image with equivalent high resolution patches from a previously acquired image database. Finally, the original transmitted low frequency coefficients are used to correct the final image. Results show a higher signal to noise ratio in the proposed method over simply discarding high frequency wavelet coefficients or replacing directly down-sampled patches from the image-database.

  4. Efficient hemodynamic event detection utilizing relational databases and wavelet analysis

    NASA Technical Reports Server (NTRS)

    Saeed, M.; Mark, R. G.

    2001-01-01

    Development of a temporal query framework for time-oriented medical databases has hitherto been a challenging problem. We describe a novel method for the detection of hemodynamic events in multiparameter trends utilizing wavelet coefficients in a MySQL relational database. Storage of the wavelet coefficients allowed for a compact representation of the trends, and provided robust descriptors for the dynamics of the parameter time series. A data model was developed to allow for simplified queries along several dimensions and time scales. Of particular importance, the data model and wavelet framework allowed for queries to be processed with minimal table-join operations. A web-based search engine was developed to allow for user-defined queries. Typical queries required between 0.01 and 0.02 seconds, with at least two orders of magnitude improvement in speed over conventional queries. This powerful and innovative structure will facilitate research on large-scale time-oriented medical databases.

  5. ECG denoising with adaptive bionic wavelet transform.

    PubMed

    Sayadi, Omid; Shamsollahi, Mohammad Bagher

    2006-01-01

    In this paper a new ECG denoising scheme is proposed using a novel adaptive wavelet transform, named bionic wavelet transform (BWT), which had been first developed based on a model of the active auditory system. There has been some outstanding features with the BWT such as nonlinearity, high sensitivity and frequency selectivity, concentrated energy distribution and its ability to reconstruct signal via inverse transform but the most distinguishing characteristic of BWT is that its resolution in the time-frequency domain can be adaptively adjusted not only by the signal frequency but also by the signal instantaneous amplitude and its first-order differential. Besides by optimizing the BWT parameters parallel to modifying a new threshold value, one can handle ECG denoising with results comparing to those of wavelet transform (WT). Preliminary tests of BWT application to ECG denoising were constructed on the signals of MIT-BIH database which showed high performance of noise reduction.

  6. Quantification of frequency-components contributions to the discharge of a karst spring

    NASA Astrophysics Data System (ADS)

    Taver, V.; Johannet, A.; Vinches, M.; Borrell, V.; Pistre, S.; Bertin, D.

    2013-12-01

    Karst aquifers represent important underground resources for water supplies, providing it to 25% of the population. Nevertheless such systems are currently underexploited because of their heterogeneity and complexity, which make work fields and physical measurements expensive, and frequently not representative of the whole aquifer. The systemic paradigm appears thus at a complementary approach to study and model karst aquifers in the framework of non-linear system analysis. Its input and output signals, namely rainfalls and discharge contain information about the function performed by the physical process. Therefore, improvement of knowledge about the karst system can be provided using time series analysis, for example Fourier analysis or orthogonal decomposition [1]. Another level of analysis consists in building non-linear models to identify rainfall/discharge relation, component by component [2]. In this context, this communication proposes to use neural networks to first model the rainfall-runoff relation using frequency components, and second to analyze the models, using the KnoX method [3], in order to quantify the importance of each component. Two different neural models were designed: (i) the recurrent model which implements a non-linear recurrent model fed by rainfalls, ETP and previous estimated discharge, (ii) the feed-forward model which implements a non-linear static model fed by rainfalls, ETP and previous observed discharges. The first model is known to better represent the rainfall-runoff relation; the second one to better predict the discharge based on previous discharge observations. KnoX method is based on a variable selection method, which simply considers values of parameters after the training without taking into account the non-linear behavior of the model during functioning. An amelioration of the KnoX method, is thus proposed in order to overcome this inadequacy. The proposed method, leads thus to both a hierarchization and a quantification of the input variables, here the frequency components, over output signal. Applied to the Lez karst aquifer, the combination of frequency decomposition and knowledge extraction improves knowledge on hydrological behavior. Both models and both extraction methods were applied and assessed using a fictitious reference model. Discussion is proposed in order to analyze efficiency of the methods compared to in situ measurements and tracing. [1] D. Labat et al. 'Rainfall-runoff relations for karst springs. Part II: continuous wavelet and discrete orthogonal multiresolution' In J of Hydrology, Vol. 238, 2000, pp. 149-178. [2] A. Johannet et al. 'Prediction of Lez Spring Discharge (Southern France) by Neural Networks using Orthogonal Wavelet Decomposition'.IJCNN Proceedings Brisbane 2012. [3] L. Kong A Siou et al. 'Modélisation hydrodynamique des karsts par réseaux de neurones : Comment dépasser la boîte noire. (Karst hydrodynamic modelling using artificial neural networks: how to surpass the black box ?)'. Proceedings of the 9th conference on limestone hydrogeology,2011 Besançon, France.

  7. Morphological and wavelet features towards sonographic thyroid nodules evaluation.

    PubMed

    Tsantis, Stavros; Dimitropoulos, Nikos; Cavouras, Dionisis; Nikiforidis, George

    2009-03-01

    This paper presents a computer-based classification scheme that utilized various morphological and novel wavelet-based features towards malignancy risk evaluation of thyroid nodules in ultrasonography. The study comprised 85 ultrasound images-patients that were cytological confirmed (54 low-risk and 31 high-risk). A set of 20 features (12 based on nodules boundary shape and 8 based on wavelet local maxima located within each nodule) has been generated. Two powerful pattern recognition algorithms (support vector machines and probabilistic neural networks) have been designed and developed in order to quantify the power of differentiation of the introduced features. A comparative study has also been held, in order to estimate the impact speckle had onto the classification procedure. The diagnostic sensitivity and specificity of both classifiers was made by means of receiver operating characteristics (ROC) analysis. In the speckle-free feature set, the area under the ROC curve was 0.96 for the support vector machines classifier whereas for the probabilistic neural networks was 0.91. In the feature set with speckle, the corresponding areas under the ROC curves were 0.88 and 0.86 respectively for the two classifiers. The proposed features can increase the classification accuracy and decrease the rate of missing and misdiagnosis in thyroid cancer control.

  8. Analysis of dual-frequency MEMS antenna using H-MRTD method

    NASA Astrophysics Data System (ADS)

    Yu, Wenge; Zhong, Xianxin; Chen, Yu; Wu, Zhengzhong

    2004-10-01

    For applying micro/nano technologies and Micro-Electro-Mechanical System (MEMS) technologies in the Radio Frequency (RF) field to manufacture miniature microstrip antennas. A novel MEMS dual-band patch antenna designed using slot-loaded and short-circuited size-reduction techniques is presented in this paper. By controlling the short-plane width, the two resonant frequencies, f10 and f30, can be significantly reduced and the frequency ratio (f30/f10) is tunable in the range 1.7~2.3. The Haar-Wavelet-Based multiresolution time domain (H-MRTD) with compactly supported scaling function for a full three-dimensional (3-D) wave to Yee's staggered cell is used for modeling and analyzing the antenna for the first time. Associated with practical model, an uniaxial perfectly matched layer (UPML) absorbing boundary conditions was developed, In addition , extending the mathematical formulae to an inhomogenous media. Numerical simulation results are compared with those using the conventional 3-D finite-difference time-domain (FDTD) method and measured. It has been demonstrated that, with this technique, space discretization with only a few cells per wavelength gives accurate results, leading to a reduction of both memory requirement and computation time.

  9. Adaptively synchronous scalable spread spectrum (A4S) data-hiding strategy for three-dimensional visualization

    NASA Astrophysics Data System (ADS)

    Hayat, Khizar; Puech, William; Gesquière, Gilles

    2010-04-01

    We propose an adaptively synchronous scalable spread spectrum (A4S) data-hiding strategy to integrate disparate data, needed for a typical 3-D visualization, into a single JPEG2000 format file. JPEG2000 encoding provides a standard format on one hand and the needed multiresolution for scalability on the other. The method has the potential of being imperceptible and robust at the same time. While the spread spectrum (SS) methods are known for the high robustness they offer, our data-hiding strategy is removable at the same time, which ensures highest possible visualization quality. The SS embedding of the discrete wavelet transform (DWT)-domain depth map is carried out in transform domain YCrCb components from the JPEG2000 coding stream just after the DWT stage. To maintain synchronization, the embedding is carried out while taking into account the correspondence of subbands. Since security is not the immediate concern, we are at liberty with the strength of embedding. This permits us to increase the robustness and bring the reversibility of our method. To estimate the maximum tolerable error in the depth map according to a given viewpoint, a human visual system (HVS)-based psychovisual analysis is also presented.

  10. Defect Detection in Textures through the Use of Entropy as a Means for Automatically Selecting the Wavelet Decomposition Level.

    PubMed

    Navarro, Pedro J; Fernández-Isla, Carlos; Alcover, Pedro María; Suardíaz, Juan

    2016-07-27

    This paper presents a robust method for defect detection in textures, entropy-based automatic selection of the wavelet decomposition level (EADL), based on a wavelet reconstruction scheme, for detecting defects in a wide variety of structural and statistical textures. Two main features are presented. One of the new features is an original use of the normalized absolute function value (NABS) calculated from the wavelet coefficients derived at various different decomposition levels in order to identify textures where the defect can be isolated by eliminating the texture pattern in the first decomposition level. The second is the use of Shannon's entropy, calculated over detail subimages, for automatic selection of the band for image reconstruction, which, unlike other techniques, such as those based on the co-occurrence matrix or on energy calculation, provides a lower decomposition level, thus avoiding excessive degradation of the image, allowing a more accurate defect segmentation. A metric analysis of the results of the proposed method with nine different thresholding algorithms determined that selecting the appropriate thresholding method is important to achieve optimum performance in defect detection. As a consequence, several different thresholding algorithms depending on the type of texture are proposed.

  11. Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering.

    PubMed

    Sicat, Ronell; Krüger, Jens; Möller, Torsten; Hadwiger, Markus

    2014-12-01

    This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs.

  12. Exploration of EEG features of Alzheimer's disease using continuous wavelet transform.

    PubMed

    Ghorbanian, Parham; Devilbiss, David M; Hess, Terry; Bernstein, Allan; Simon, Adam J; Ashrafiuon, Hashem

    2015-09-01

    We have developed a novel approach to elucidate several discriminating EEG features of Alzheimer's disease. The approach is based on the use of a variety of continuous wavelet transforms, pairwise statistical tests with multiple comparison correction, and several decision tree algorithms, in order to choose the most prominent EEG features from a single sensor. A pilot study was conducted to record EEG signals from Alzheimer's disease (AD) patients and healthy age-matched control (CTL) subjects using a single dry electrode device during several eyes-closed (EC) and eyes-open (EO) resting conditions. We computed the power spectrum distribution properties and wavelet and sample entropy of the wavelet coefficients time series at scale ranges approximately corresponding to the major brain frequency bands. A predictive index was developed using the results from statistical tests and decision tree algorithms to identify the most reliable significant features of the AD patients when compared to healthy controls. The three most dominant features were identified as larger absolute mean power and larger standard deviation of the wavelet scales corresponding to 4-8 Hz (θ) during EO and lower wavelet entropy of the wavelet scales corresponding to 8-12 Hz (α) during EC, respectively. The fourth reliable set of distinguishing features of AD patients was lower relative power of the wavelet scales corresponding to 12-30 Hz (β) followed by lower skewness of the wavelet scales corresponding to 2-4 Hz (upper δ), both during EO. In general, the results indicate slowing and lower complexity of EEG signal in AD patients using a very easy-to-use and convenient single dry electrode device.

  13. Classification of the Gabon SAR Mosaic Using a Wavelet Based Rule Classifier

    NASA Technical Reports Server (NTRS)

    Simard, Marc; Saatchi, Sasan; DeGrandi, Gianfranco

    2000-01-01

    A method is developed for semi-automated classification of SAR images of the tropical forest. Information is extracted using the wavelet transform (WT). The transform allows for extraction of structural information in the image as a function of scale. In order to classify the SAR image, a Desicion Tree Classifier is used. The method of pruning is used to optimize classification rate versus tree size. The results give explicit insight on the type of information useful for a given class.

  14. Wavelet-based clustering of resting state MRI data in the rat.

    PubMed

    Medda, Alessio; Hoffmann, Lukas; Magnuson, Matthew; Thompson, Garth; Pan, Wen-Ju; Keilholz, Shella

    2016-01-01

    While functional connectivity has typically been calculated over the entire length of the scan (5-10min), interest has been growing in dynamic analysis methods that can detect changes in connectivity on the order of cognitive processes (seconds). Previous work with sliding window correlation has shown that changes in functional connectivity can be observed on these time scales in the awake human and in anesthetized animals. This exciting advance creates a need for improved approaches to characterize dynamic functional networks in the brain. Previous studies were performed using sliding window analysis on regions of interest defined based on anatomy or obtained from traditional steady-state analysis methods. The parcellation of the brain may therefore be suboptimal, and the characteristics of the time-varying connectivity between regions are dependent upon the length of the sliding window chosen. This manuscript describes an algorithm based on wavelet decomposition that allows data-driven clustering of voxels into functional regions based on temporal and spectral properties. Previous work has shown that different networks have characteristic frequency fingerprints, and the use of wavelets ensures that both the frequency and the timing of the BOLD fluctuations are considered during the clustering process. The method was applied to resting state data acquired from anesthetized rats, and the resulting clusters agreed well with known anatomical areas. Clusters were highly reproducible across subjects. Wavelet cross-correlation values between clusters from a single scan were significantly higher than the values from randomly matched clusters that shared no temporal information, indicating that wavelet-based analysis is sensitive to the relationship between areas. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Statistical Analysis of Stress Signals from Bridge Monitoring by FBG System

    PubMed Central

    Ye, Xiao-Wei; Xi, Pei-Sen

    2018-01-01

    In this paper, a fiber Bragg grating (FBG)-based stress monitoring system instrumented on an orthotropic steel deck arch bridge is demonstrated. The FBG sensors are installed at two types of critical fatigue-prone welded joints to measure the strain and temperature signals. A total of 64 FBG sensors are deployed around the rib-to-deck and rib-to-diagram areas at the mid-span and quarter-span of the investigated orthotropic steel bridge. The local stress behaviors caused by the highway loading and temperature effect during the construction and operation periods are presented with the aid of a wavelet multi-resolution analysis approach. In addition, the multi-modal characteristic of the rainflow counted stress spectrum is modeled by the method of finite mixture distribution together with a genetic algorithm (GA)-based parameter estimation approach. The optimal probability distribution of the stress spectrum is determined by use of Bayesian information criterion (BIC). Furthermore, the hot spot stress of the welded joint is calculated by an extrapolation method recommended in the specification of International Institute of Welding (IIW). The stochastic characteristic of stress concentration factor (SCF) of the concerned welded joint is addressed. The proposed FBG-based stress monitoring system and probabilistic stress evaluation methods can provide an effective tool for structural monitoring and condition assessment of orthotropic steel bridges. PMID:29414850

  16. Entropy changes in brain function.

    PubMed

    Rosso, Osvaldo A

    2007-04-01

    The traditional way of analyzing brain electrical activity, on the basis of electroencephalography (EEG) records, relies mainly on visual inspection and years of training. Although it is quite useful, of course, one has to acknowledge its subjective nature that hardly allows for a systematic protocol. In the present work quantifiers based on information theory and wavelet transform are reviewed. The "relative wavelet energy" provides information about the relative energy associated with different frequency bands present in the EEG and their corresponding degree of importance. The "normalized total wavelet entropy" carries information about the degree of order-disorder associated with a multi-frequency signal response. Their application in the analysis and quantification of short duration EEG signals (event-related potentials) and epileptic EEG records are summarized.

  17. Face recognition algorithm based on Gabor wavelet and locality preserving projections

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojie; Shen, Lin; Fan, Honghui

    2017-07-01

    In order to solve the effects of illumination changes and differences of personal features on the face recognition rate, this paper presents a new face recognition algorithm based on Gabor wavelet and Locality Preserving Projections (LPP). The problem of the Gabor filter banks with high dimensions was solved effectively, and also the shortcoming of the LPP on the light illumination changes was overcome. Firstly, the features of global image information were achieved, which used the good spatial locality and orientation selectivity of Gabor wavelet filters. Then the dimensions were reduced by utilizing the LPP, which well-preserved the local information of the image. The experimental results shown that this algorithm can effectively extract the features relating to facial expressions, attitude and other information. Besides, it can reduce influence of the illumination changes and the differences in personal features effectively, which improves the face recognition rate to 99.2%.

  18. [An automatic peak detection method for LIBS spectrum based on continuous wavelet transform].

    PubMed

    Chen, Peng-Fei; Tian, Di; Qiao, Shu-Jun; Yang, Guang

    2014-07-01

    Spectrum peak detection in the laser-induced breakdown spectroscopy (LIBS) is an essential step, but the presence of background and noise seriously disturb the accuracy of peak position. The present paper proposed a method applied to automatic peak detection for LIBS spectrum in order to enhance the ability of overlapping peaks searching and adaptivity. We introduced the ridge peak detection method based on continuous wavelet transform to LIBS, and discussed the choice of the mother wavelet and optimized the scale factor and the shift factor. This method also improved the ridge peak detection method with a correcting ridge method. The experimental results show that compared with other peak detection methods (the direct comparison method, derivative method and ridge peak search method), our method had a significant advantage on the ability to distinguish overlapping peaks and the precision of peak detection, and could be be applied to data processing in LIBS.

  19. Pattern recognition by wavelet transforms using macro fibre composites transducers

    NASA Astrophysics Data System (ADS)

    Ruiz de la Hermosa González-Carrato, Raúl; García Márquez, Fausto Pedro; Dimlaye, Vichaar; Ruiz-Hernández, Diego

    2014-10-01

    This paper presents a novel pattern recognition approach for a non-destructive test based on macro fibre composite transducers applied in pipes. A fault detection and diagnosis (FDD) method is employed to extract relevant information from ultrasound signals by wavelet decomposition technique. The wavelet transform is a powerful tool that reveals particular characteristics as trends or breakdown points. The FDD developed for the case study provides information about the temperatures on the surfaces of the pipe, leading to monitor faults associated with cracks, leaks or corrosion. This issue may not be noticeable when temperatures are not subject to sudden changes, but it can cause structural problems in the medium and long-term. Furthermore, the case study is completed by a statistical method based on the coefficient of determination. The main purpose will be to predict future behaviours in order to set alarm levels as a part of a structural health monitoring system.

  20. A methodology for the efficient integration of transient constraints in the design of aircraft dynamic systems

    NASA Astrophysics Data System (ADS)

    Phan, Leon L.

    The motivation behind this thesis mainly stems from previous work performed at Hispano-Suiza (Safran Group) in the context of the European research project "Power Optimised Aircraft". Extensive testing on the COPPER Bird RTM, a test rig designed to characterize aircraft electrical networks, demonstrated the relevance of transient regimes in the design and development of dynamic systems. Transient regimes experienced by dynamic systems may have severe impacts on the operation of the aircraft. For example, the switching on of a high electrical load might cause a network voltage drop inducing a loss of power available to critical aircraft systems. These transient behaviors are thus often regulated by dynamic constraints, requiring the dynamic signals to remain within bounds whose values vary with time. The verification of these peculiar types of constraints, which generally requires high-fidelity time-domain simulation, intervenes late in the system development process, thus potentially causing costly design iterations. The research objective of this thesis is to develop a methodology that integrates the verification of dynamic constraints in the early specification of dynamic systems. In order to circumvent the inefficiencies of time-domain simulation, multivariate dynamic surrogate models of the original time-domain simulation models are generated, building on a nonlinear system identification technique using wavelet neural networks (or wavenets), which allow the multiscale nature of transient signals to be captured. However, training multivariate wavenets can become computationally prohibitive as the number of design variables increases. Therefore, an alternate approach is formulated, in which dynamic surrogate models using sigmoid-based neural networks are used to emulate the transient behavior of the envelopes of the time-domain response. Thus, in order to train the neural network, the envelopes are extracted by first separating the scales of the dynamic response, using a multiresolution analysis (MRA) based on the discrete wavelet transform. The MRA separates the dynamic response into a trend and a noise signal (ripple). The envelope of the noise is then computed with a windowing method, and recombined with the trend in order to reconstruct the global envelope of the dynamic response. The run-time efficiency of the resulting dynamic surrogate models enable the implementation of a data farming approach, in which a Monte-Carlo simulation generates time-domain behaviors of transient responses for a vast set of design and operation scenarios spanning the design and operation space. An interactive visualization environment, enabling what-if analyses, will be developed; the user can thereby instantaneously comprehend the transient response of the system (or its envelope) and its sensitivities to design and operation variables, as well as filter the design space to have it exhibit only the design scenarios verifying the dynamic constraints. The proposed methodology, along with its foundational hypotheses, are tested on the design and optimization of a 350VDC network, where a generator and its control system are concurrently designed in order to minimize the electrical losses, while ensuring that the transient undervoltage induced by peak demands in the consumption of a motor does not violate transient power quality constraints.

  1. Chaotic Signal Denoising Based on Hierarchical Threshold Synchrosqueezed Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Bo; Jing, Yun-yu; Zhao, Yan-chao; Zhang, Lian-Hua; Wang, Xiang-Li

    2017-12-01

    In order to overcoming the shortcoming of single threshold synchrosqueezed wavelet transform(SWT) denoising method, an adaptive hierarchical threshold SWT chaotic signal denoising method is proposed. Firstly, a new SWT threshold function is constructed based on Stein unbiased risk estimation, which is two order continuous derivable. Then, by using of the new threshold function, a threshold process based on the minimum mean square error was implemented, and the optimal estimation value of each layer threshold in SWT chaotic denoising is obtained. The experimental results of the simulating chaotic signal and measured sunspot signals show that, the proposed method can filter the noise of chaotic signal well, and the intrinsic chaotic characteristic of the original signal can be recovered very well. Compared with the EEMD denoising method and the single threshold SWT denoising method, the proposed method can obtain better denoising result for the chaotic signal.

  2. On the feasibility of using satellite gravity observations for detecting large-scale solid mass transfer events

    NASA Astrophysics Data System (ADS)

    Peidou, Athina C.; Fotopoulos, Georgia; Pagiatakis, Spiros

    2017-10-01

    The main focus of this paper is to assess the feasibility of utilizing dedicated satellite gravity missions in order to detect large-scale solid mass transfer events (e.g. landslides). Specifically, a sensitivity analysis of Gravity Recovery and Climate Experiment (GRACE) gravity field solutions in conjunction with simulated case studies is employed to predict gravity changes due to past subaerial and submarine mass transfer events, namely the Agulhas slump in southeastern Africa and the Heart Mountain Landslide in northwestern Wyoming. The detectability of these events is evaluated by taking into account the expected noise level in the GRACE gravity field solutions and simulating their impact on the gravity field through forward modelling of the mass transfer. The spectral content of the estimated gravity changes induced by a simulated large-scale landslide event is estimated for the known spatial resolution of the GRACE observations using wavelet multiresolution analysis. The results indicate that both the Agulhas slump and the Heart Mountain Landslide could have been detected by GRACE, resulting in {\\vert }0.4{\\vert } and {\\vert }0.18{\\vert } mGal change on GRACE solutions, respectively. The suggested methodology is further extended to the case studies of the submarine landslide in Tohoku, Japan, and the Grand Banks landslide in Newfoundland, Canada. The detectability of these events using GRACE solutions is assessed through their impact on the gravity field.

  3. Wavelet transform analysis of transient signals: the seismogram and the electrocardiogram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anant, K.S.

    1997-06-01

    In this dissertation I quantitatively demonstrate how the wavelet transform can be an effective mathematical tool for the analysis of transient signals. The two key signal processing applications of the wavelet transform, namely feature identification and representation (i.e., compression), are shown by solving important problems involving the seismogram and the electrocardiogram. The seismic feature identification problem involved locating in time the P and S phase arrivals. Locating these arrivals accurately (particularly the S phase) has been a constant issue in seismic signal processing. In Chapter 3, I show that the wavelet transform can be used to locate both the Pmore » as well as the S phase using only information from single station three-component seismograms. This is accomplished by using the basis function (wave-let) of the wavelet transform as a matching filter and by processing information across scales of the wavelet domain decomposition. The `pick` time results are quite promising as compared to analyst picks. The representation application involved the compression of the electrocardiogram which is a recording of the electrical activity of the heart. Compression of the electrocardiogram is an important problem in biomedical signal processing due to transmission and storage limitations. In Chapter 4, I develop an electrocardiogram compression method that applies vector quantization to the wavelet transform coefficients. The best compression results were obtained by using orthogonal wavelets, due to their ability to represent a signal efficiently. Throughout this thesis the importance of choosing wavelets based on the problem at hand is stressed. In Chapter 5, I introduce a wavelet design method that uses linear prediction in order to design wavelets that are geared to the signal or feature being analyzed. The use of these designed wavelets in a test feature identification application led to positive results. The methods developed in this thesis; the feature identification methods of Chapter 3, the compression methods of Chapter 4, as well as the wavelet design methods of Chapter 5, are general enough to be easily applied to other transient signals.« less

  4. Automatic small bowel tumor diagnosis by using multi-scale wavelet-based analysis in wireless capsule endoscopy images.

    PubMed

    Barbosa, Daniel C; Roupar, Dalila B; Ramos, Jaime C; Tavares, Adriano C; Lima, Carlos S

    2012-01-11

    Wireless capsule endoscopy has been introduced as an innovative, non-invasive diagnostic technique for evaluation of the gastrointestinal tract, reaching places where conventional endoscopy is unable to. However, the output of this technique is an 8 hours video, whose analysis by the expert physician is very time consuming. Thus, a computer assisted diagnosis tool to help the physicians to evaluate CE exams faster and more accurately is an important technical challenge and an excellent economical opportunity. The set of features proposed in this paper to code textural information is based on statistical modeling of second order textural measures extracted from co-occurrence matrices. To cope with both joint and marginal non-Gaussianity of second order textural measures, higher order moments are used. These statistical moments are taken from the two-dimensional color-scale feature space, where two different scales are considered. Second and higher order moments of textural measures are computed from the co-occurrence matrices computed from images synthesized by the inverse wavelet transform of the wavelet transform containing only the selected scales for the three color channels. The dimensionality of the data is reduced by using Principal Component Analysis. The proposed textural features are then used as the input of a classifier based on artificial neural networks. Classification performances of 93.1% specificity and 93.9% sensitivity are achieved on real data. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis systems to assist physicians in their clinical practice.

  5. Decision support system for diabetic retinopathy using discrete wavelet transform.

    PubMed

    Noronha, K; Acharya, U R; Nayak, K P; Kamath, S; Bhandary, S V

    2013-03-01

    Prolonged duration of the diabetes may affect the tiny blood vessels of the retina causing diabetic retinopathy. Routine eye screening of patients with diabetes helps to detect diabetic retinopathy at the early stage. It is very laborious and time-consuming for the doctors to go through many fundus images continuously. Therefore, decision support system for diabetic retinopathy detection can reduce the burden of the ophthalmologists. In this work, we have used discrete wavelet transform and support vector machine classifier for automated detection of normal and diabetic retinopathy classes. The wavelet-based decomposition was performed up to the second level, and eight energy features were extracted. Two energy features from the approximation coefficients of two levels and six energy values from the details in three orientations (horizontal, vertical and diagonal) were evaluated. These features were fed to the support vector machine classifier with various kernel functions (linear, radial basis function, polynomial of orders 2 and 3) to evaluate the highest classification accuracy. We obtained the highest average classification accuracy, sensitivity and specificity of more than 99% with support vector machine classifier (polynomial kernel of order 3) using three discrete wavelet transform features. We have also proposed an integrated index called Diabetic Retinopathy Risk Index using clinically significant wavelet energy features to identify normal and diabetic retinopathy classes using just one number. We believe that this (Diabetic Retinopathy Risk Index) can be used as an adjunct tool by the doctors during the eye screening to cross-check their diagnosis.

  6. An accurate nonlinear stochastic model for MEMS-based inertial sensor error with wavelet networks

    NASA Astrophysics Data System (ADS)

    El-Diasty, Mohammed; El-Rabbany, Ahmed; Pagiatakis, Spiros

    2007-12-01

    The integration of Global Positioning System (GPS) with Inertial Navigation System (INS) has been widely used in many applications for positioning and orientation purposes. Traditionally, random walk (RW), Gauss-Markov (GM), and autoregressive (AR) processes have been used to develop the stochastic model in classical Kalman filters. The main disadvantage of classical Kalman filter is the potentially unstable linearization of the nonlinear dynamic system. Consequently, a nonlinear stochastic model is not optimal in derivative-based filters due to the expected linearization error. With a derivativeless-based filter such as the unscented Kalman filter or the divided difference filter, the filtering process of a complicated highly nonlinear dynamic system is possible without linearization error. This paper develops a novel nonlinear stochastic model for inertial sensor error using a wavelet network (WN). A wavelet network is a highly nonlinear model, which has recently been introduced as a powerful tool for modelling and prediction. Static and kinematic data sets are collected using a MEMS-based IMU (DQI-100) to develop the stochastic model in the static mode and then implement it in the kinematic mode. The derivativeless-based filtering method using GM, AR, and the proposed WN-based processes are used to validate the new model. It is shown that the first-order WN-based nonlinear stochastic model gives superior positioning results to the first-order GM and AR models with an overall improvement of 30% when 30 and 60 seconds GPS outages are introduced.

  7. Context Modeler for Wavelet Compression of Spectral Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Kiely, Aaron; Xie, Hua; Klimesh, matthew; Aranki, Nazeeh

    2010-01-01

    A context-modeling sub-algorithm has been developed as part of an algorithm that effects three-dimensional (3D) wavelet-based compression of hyperspectral image data. The context-modeling subalgorithm, hereafter denoted the context modeler, provides estimates of probability distributions of wavelet-transformed data being encoded. These estimates are utilized by an entropy coding subalgorithm that is another major component of the compression algorithm. The estimates make it possible to compress the image data more effectively than would otherwise be possible. The following background discussion is prerequisite to a meaningful summary of the context modeler. This discussion is presented relative to ICER-3D, which is the name attached to a particular compression algorithm and the software that implements it. The ICER-3D software is summarized briefly in the preceding article, ICER-3D Hyperspectral Image Compression Software (NPO-43238). Some aspects of this algorithm were previously described, in a slightly more general context than the ICER-3D software, in "Improving 3D Wavelet-Based Compression of Hyperspectral Images" (NPO-41381), NASA Tech Briefs, Vol. 33, No. 3 (March 2009), page 7a. In turn, ICER-3D is a product of generalization of ICER, another previously reported algorithm and computer program that can perform both lossless and lossy wavelet-based compression and decompression of gray-scale-image data. In ICER-3D, hyperspectral image data are decomposed using a 3D discrete wavelet transform (DWT). Following wavelet decomposition, mean values are subtracted from spatial planes of spatially low-pass subbands prior to encoding. The resulting data are converted to sign-magnitude form and compressed. In ICER-3D, compression is progressive, in that compressed information is ordered so that as more of the compressed data stream is received, successive reconstructions of the hyperspectral image data are of successively higher overall fidelity.

  8. Pigmented skin lesion detection using random forest and wavelet-based texture

    NASA Astrophysics Data System (ADS)

    Hu, Ping; Yang, Tie-jun

    2016-10-01

    The incidence of cutaneous malignant melanoma, a disease of worldwide distribution and is the deadliest form of skin cancer, has been rapidly increasing over the last few decades. Because advanced cutaneous melanoma is still incurable, early detection is an important step toward a reduction in mortality. Dermoscopy photographs are commonly used in melanoma diagnosis and can capture detailed features of a lesion. A great variability exists in the visual appearance of pigmented skin lesions. Therefore, in order to minimize the diagnostic errors that result from the difficulty and subjectivity of visual interpretation, an automatic detection approach is required. The objectives of this paper were to propose a hybrid method using random forest and Gabor wavelet transformation to accurately differentiate which part belong to lesion area and the other is not in a dermoscopy photographs and analyze segmentation accuracy. A random forest classifier consisting of a set of decision trees was used for classification. Gabor wavelets transformation are the mathematical model of visual cortical cells of mammalian brain and an image can be decomposed into multiple scales and multiple orientations by using it. The Gabor function has been recognized as a very useful tool in texture analysis, due to its optimal localization properties in both spatial and frequency domain. Texture features based on Gabor wavelets transformation are found by the Gabor filtered image. Experiment results indicate the following: (1) the proposed algorithm based on random forest outperformed the-state-of-the-art in pigmented skin lesions detection (2) and the inclusion of Gabor wavelet transformation based texture features improved segmentation accuracy significantly.

  9. High-performance wavelet engine

    NASA Astrophysics Data System (ADS)

    Taylor, Fred J.; Mellot, Jonathon D.; Strom, Erik; Koren, Iztok; Lewis, Michael P.

    1993-11-01

    Wavelet processing has shown great promise for a variety of image and signal processing applications. Wavelets are also among the most computationally expensive techniques in signal processing. It is demonstrated that a wavelet engine constructed with residue number system arithmetic elements offers significant advantages over commercially available wavelet accelerators based upon conventional arithmetic elements. Analysis is presented predicting the dynamic range requirements of the reported residue number system based wavelet accelerator.

  10. Skin surface removal on breast microwave imagery using wavelet multiscale products

    NASA Astrophysics Data System (ADS)

    Flores-Tapia, Daniel; Thomas, Gabriel; Pistorius, Stephen

    2006-03-01

    In many parts of the world, breast cancer is the leading cause mortality among women and it is the major cause of cancer death, next only to lung cancer. In recent years, microwave imaging has shown its potential as an alternative approach for breast cancer detection. Although advances have improved the likelihood of developing an early detection system based on this technology, there are still limitations. One of these limitations is that target responses are often obscured by surface reflections. Contrary to ground penetrating radar applications, a simple reference subtraction cannot be easily applied to alleviate this problem due to differences in the breast skin composition between patients. A novel surface removal technique for the removal of these high intensity reflections is proposed in this paper. This paper presents an algorithm based on the multiplication of adjacent wavelet subbands in order to enhance target echoes while reducing skin reflections. In these multiscale products, target signatures can be effectively distinguished from surface reflections. A simple threshold is applied to the signal in the wavelet domain in order to eliminate the skin responses. This final signal is reconstructed to the spatial domain in order to obtain a focused image. The proposed algorithm yielded promising results when applied to real data obtained from a phantom which mimics the dielectric properties of breast, cancer and skin tissues.

  11. Dependence and risk assessment for oil prices and exchange rate portfolios: A wavelet based approach

    NASA Astrophysics Data System (ADS)

    Aloui, Chaker; Jammazi, Rania

    2015-10-01

    In this article, we propose a wavelet-based approach to accommodate the stylized facts and complex structure of financial data, caused by frequent and abrupt changes of markets and noises. Specifically, we show how the combination of both continuous and discrete wavelet transforms with traditional financial models helps improve portfolio's market risk assessment. In the empirical stage, three wavelet-based models (wavelet-EGARCH with dynamic conditional correlations, wavelet-copula, and wavelet-extreme value) are considered and applied to crude oil price and US dollar exchange rate data. Our findings show that the wavelet-based approach provides an effective and powerful tool for detecting extreme moments and improving the accuracy of VaR and Expected Shortfall estimates of oil-exchange rate portfolios after noise is removed from the original data.

  12. Optical Coherence Tomography Noise Reduction Using Anisotropic Local Bivariate Gaussian Mixture Prior in 3D Complex Wavelet Domain.

    PubMed

    Rabbani, Hossein; Sonka, Milan; Abramoff, Michael D

    2013-01-01

    In this paper, MMSE estimator is employed for noise-free 3D OCT data recovery in 3D complex wavelet domain. Since the proposed distribution for noise-free data plays a key role in the performance of MMSE estimator, a priori distribution for the pdf of noise-free 3D complex wavelet coefficients is proposed which is able to model the main statistical properties of wavelets. We model the coefficients with a mixture of two bivariate Gaussian pdfs with local parameters which are able to capture the heavy-tailed property and inter- and intrascale dependencies of coefficients. In addition, based on the special structure of OCT images, we use an anisotropic windowing procedure for local parameters estimation that results in visual quality improvement. On this base, several OCT despeckling algorithms are obtained based on using Gaussian/two-sided Rayleigh noise distribution and homomorphic/nonhomomorphic model. In order to evaluate the performance of the proposed algorithm, we use 156 selected ROIs from 650 × 512 × 128 OCT dataset in the presence of wet AMD pathology. Our simulations show that the best MMSE estimator using local bivariate mixture prior is for the nonhomomorphic model in the presence of Gaussian noise which results in an improvement of 7.8 ± 1.7 in CNR.

  13. Gravity Waves characteristics and their impact on turbulent transport above an Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Cava, Daniela; Giostra, Umberto; Katul, Gabriel

    2016-04-01

    Turbulence within the stable boundary layer (SBL) remains a ubiquitous feature of many geophysical flows, especially over glaciers and ice-sheets. Although numerous studies have investigated various aspects of the boundary layer motion during stable atmospheric conditions, a unified picture of turbulent transport within the SBL remains elusive. In a strongly stratified SBL, turbulence generation is frequently associated with interactions with sub-meso scale motions that are often a combination of gravity waves (GWs) and horizontal modes. While some progress has been made in the inclusion of GW parameterisation within global models, description and parameterisation of the turbulence-wave interaction remain an open question. The discrimination between waves and turbulence is a focal point needed to make progress as these two motions have different properties with regards to heat, moisture and pollutant transport. In fact, the occurrence of GWs can cause significant differences and ambiguities in the interpretation of turbulence statistics and fluxes if not a priori filtered from the analysis. In this work, the characteristics of GW and their impact on turbulent statistics were investigated using wind velocity components and scalars collected above an Antarctic Ice sheet during an Austral Summer. Antarctica is an ideal location for exploring the characteristics of GW because of persistent conditions of strongly stable atmospheric stability in the lower troposphere. Periods dominated by wavy motions have been identified by analysing time series measured by fast response instrumentation. The GWs nature and features have been investigated using Fourier cross-spectral indicators. The detected waves were frequently characterised by variable amplitude and period; moreover, they often produced non-stationarity and large intermittency in turbulent fluctuations that can significantly alter the estimation of turbulence statistics in general and fluxes in particular. A multi-resolution decomposition based on the Haar wavelet has been applied to separate gravity waves from turbulent fluctuations in case of a sufficiently defined spectral gap. Statistics computed after removing wavy disturbances highlight the large impact of gravity waves on second order turbulent quantities. One of the most impacted parameters is turbulent kinetic energy, in particular in the longitudinal and lateral components. The effect of wave activity on momentum and scalar fluxes is more complex because waves can produce large errors in sign and magnitude of computed turbulent fluxes or they themselves can contribute to intermittent turbulent mixing. The proposed filtering procedure based on the multi-resolution decomposition restored the correct sign in the turbulent sensible heat flux values. These findings highlight the significance of a correct evaluation of the impact of wave components when the goal is determining the turbulent transport component of mass and energy in the SBL.

  14. Devil's vortex Fresnel lens phase masks on an asymmetric cryptosystem based on phase-truncation in gyrator wavelet transform domain

    NASA Astrophysics Data System (ADS)

    Singh, Hukum

    2016-06-01

    An asymmetric scheme has been proposed for optical double images encryption in the gyrator wavelet transform (GWT) domain. Grayscale and binary images are encrypted separately using double random phase encoding (DRPE) in the GWT domain. Phase masks based on devil's vortex Fresnel Lens (DVFLs) and random phase masks (RPMs) are jointly used in spatial as well as in the Fourier plane. The images to be encrypted are first gyrator transformed and then single-level discrete wavelet transformed (DWT) to decompose LL , HL , LH and HH matrices of approximation, horizontal, vertical and diagonal coefficients. The resulting coefficients from the DWT are multiplied by other RPMs and the results are applied to inverse discrete wavelet transform (IDWT) for obtaining the encrypted images. The images are recovered from their corresponding encrypted images by using the correct parameters of the GWT, DVFL and its digital implementation has been performed using MATLAB 7.6.0 (R2008a). The mother wavelet family, DVFL and gyrator transform orders associated with the GWT are extra keys that cause difficulty to an attacker. Thus, the scheme is more secure as compared to conventional techniques. The efficacy of the proposed scheme is verified by computing mean-squared-error (MSE) between recovered and the original images. The sensitivity of the proposed scheme is verified with encryption parameters and noise attacks.

  15. Cloud-Scale Genomic Signals Processing for Robust Large-Scale Cancer Genomic Microarray Data Analysis.

    PubMed

    Harvey, Benjamin Simeon; Ji, Soo-Yeon

    2017-01-01

    As microarray data available to scientists continues to increase in size and complexity, it has become overwhelmingly important to find multiple ways to bring forth oncological inference to the bioinformatics community through the analysis of large-scale cancer genomic (LSCG) DNA and mRNA microarray data that is useful to scientists. Though there have been many attempts to elucidate the issue of bringing forth biological interpretation by means of wavelet preprocessing and classification, there has not been a research effort that focuses on a cloud-scale distributed parallel (CSDP) separable 1-D wavelet decomposition technique for denoising through differential expression thresholding and classification of LSCG microarray data. This research presents a novel methodology that utilizes a CSDP separable 1-D method for wavelet-based transformation in order to initialize a threshold which will retain significantly expressed genes through the denoising process for robust classification of cancer patients. Additionally, the overall study was implemented and encompassed within CSDP environment. The utilization of cloud computing and wavelet-based thresholding for denoising was used for the classification of samples within the Global Cancer Map, Cancer Cell Line Encyclopedia, and The Cancer Genome Atlas. The results proved that separable 1-D parallel distributed wavelet denoising in the cloud and differential expression thresholding increased the computational performance and enabled the generation of higher quality LSCG microarray datasets, which led to more accurate classification results.

  16. Value-at-risk estimation with wavelet-based extreme value theory: Evidence from emerging markets

    NASA Astrophysics Data System (ADS)

    Cifter, Atilla

    2011-06-01

    This paper introduces wavelet-based extreme value theory (EVT) for univariate value-at-risk estimation. Wavelets and EVT are combined for volatility forecasting to estimate a hybrid model. In the first stage, wavelets are used as a threshold in generalized Pareto distribution, and in the second stage, EVT is applied with a wavelet-based threshold. This new model is applied to two major emerging stock markets: the Istanbul Stock Exchange (ISE) and the Budapest Stock Exchange (BUX). The relative performance of wavelet-based EVT is benchmarked against the Riskmetrics-EWMA, ARMA-GARCH, generalized Pareto distribution, and conditional generalized Pareto distribution models. The empirical results show that the wavelet-based extreme value theory increases predictive performance of financial forecasting according to number of violations and tail-loss tests. The superior forecasting performance of the wavelet-based EVT model is also consistent with Basel II requirements, and this new model can be used by financial institutions as well.

  17. Wavelet based free-form deformations for nonrigid registration

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Niessen, Wiro J.; Klein, Stefan

    2014-03-01

    In nonrigid registration, deformations may take place on the coarse and fine scales. For the conventional B-splines based free-form deformation (FFD) registration, these coarse- and fine-scale deformations are all represented by basis functions of a single scale. Meanwhile, wavelets have been proposed as a signal representation suitable for multi-scale problems. Wavelet analysis leads to a unique decomposition of a signal into its coarse- and fine-scale components. Potentially, this could therefore be useful for image registration. In this work, we investigate whether a wavelet-based FFD model has advantages for nonrigid image registration. We use a B-splines based wavelet, as defined by Cai and Wang.1 This wavelet is expressed as a linear combination of B-spline basis functions. Derived from the original B-spline function, this wavelet is smooth, differentiable, and compactly supported. The basis functions of this wavelet are orthogonal across scales in Sobolev space. This wavelet was previously used for registration in computer vision, in 2D optical flow problems,2 but it was not compared with the conventional B-spline FFD in medical image registration problems. An advantage of choosing this B-splines based wavelet model is that the space of allowable deformation is exactly equivalent to that of the traditional B-spline. The wavelet transformation is essentially a (linear) reparameterization of the B-spline transformation model. Experiments on 10 CT lung and 18 T1-weighted MRI brain datasets show that wavelet based registration leads to smoother deformation fields than traditional B-splines based registration, while achieving better accuracy.

  18. Wavelet analysis techniques applied to removing varying spectroscopic background in calibration model for pear sugar content

    NASA Astrophysics Data System (ADS)

    Liu, Yande; Ying, Yibin; Lu, Huishan; Fu, Xiaping

    2005-11-01

    A new method is proposed to eliminate the varying background and noise simultaneously for multivariate calibration of Fourier transform near infrared (FT-NIR) spectral signals. An ideal spectrum signal prototype was constructed based on the FT-NIR spectrum of fruit sugar content measurement. The performances of wavelet based threshold de-noising approaches via different combinations of wavelet base functions were compared. Three families of wavelet base function (Daubechies, Symlets and Coiflets) were applied to estimate the performance of those wavelet bases and threshold selection rules by a series of experiments. The experimental results show that the best de-noising performance is reached via the combinations of Daubechies 4 or Symlet 4 wavelet base function. Based on the optimization parameter, wavelet regression models for sugar content of pear were also developed and result in a smaller prediction error than a traditional Partial Least Squares Regression (PLSR) mode.

  19. Wavelet transforms with discrete-time continuous-dilation wavelets

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Rao, Raghuveer M.

    1999-03-01

    Wavelet constructions and transforms have been confined principally to the continuous-time domain. Even the discrete wavelet transform implemented through multirate filter banks is based on continuous-time wavelet functions that provide orthogonal or biorthogonal decompositions. This paper provides a novel wavelet transform construction based on the definition of discrete-time wavelets that can undergo continuous parameter dilations. The result is a transformation that has the advantage of discrete-time or digital implementation while circumventing the problem of inadequate scaling resolution seen with conventional dyadic or M-channel constructions. Examples of constructing such wavelets are presented.

  20. LiveWire interactive boundary extraction algorithm based on Haar wavelet transform and control point set direction search

    NASA Astrophysics Data System (ADS)

    Cheng, Jun; Zhang, Jun; Tian, Jinwen

    2015-12-01

    Based on deep analysis of the LiveWire interactive boundary extraction algorithm, a new algorithm focusing on improving the speed of LiveWire algorithm is proposed in this paper. Firstly, the Haar wavelet transform is carried on the input image, and the boundary is extracted on the low resolution image obtained by the wavelet transform of the input image. Secondly, calculating LiveWire shortest path is based on the control point set direction search by utilizing the spatial relationship between the two control points users provide in real time. Thirdly, the search order of the adjacent points of the starting node is set in advance. An ordinary queue instead of a priority queue is taken as the storage pool of the points when optimizing their shortest path value, thus reducing the complexity of the algorithm from O[n2] to O[n]. Finally, A region iterative backward projection method based on neighborhood pixel polling has been used to convert dual-pixel boundary of the reconstructed image to single-pixel boundary after Haar wavelet inverse transform. The algorithm proposed in this paper combines the advantage of the Haar wavelet transform and the advantage of the optimal path searching method based on control point set direction search. The former has fast speed of image decomposition and reconstruction and is more consistent with the texture features of the image and the latter can reduce the time complexity of the original algorithm. So that the algorithm can improve the speed in interactive boundary extraction as well as reflect the boundary information of the image more comprehensively. All methods mentioned above have a big role in improving the execution efficiency and the robustness of the algorithm.

  1. A Wavelet Polarization Decomposition Net Model for Polarimetric SAR Image Classification

    NASA Astrophysics Data System (ADS)

    He, Chu; Ou, Dan; Yang, Teng; Wu, Kun; Liao, Mingsheng; Chen, Erxue

    2014-11-01

    In this paper, a deep model based on wavelet texture has been proposed for Polarimetric Synthetic Aperture Radar (PolSAR) image classification inspired by recent successful deep learning method. Our model is supposed to learn powerful and informative representations to improve the generalization ability for the complex scene classification tasks. Given the influence of speckle noise in Polarimetric SAR image, wavelet polarization decomposition is applied first to obtain basic and discriminative texture features which are then embedded into a Deep Neural Network (DNN) in order to compose multi-layer higher representations. We demonstrate that the model can produce a powerful representation which can capture some untraceable information from Polarimetric SAR images and show a promising achievement in comparison with other traditional SAR image classification methods for the SAR image dataset.

  2. Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering

    PubMed Central

    Sicat, Ronell; Krüger, Jens; Möller, Torsten; Hadwiger, Markus

    2015-01-01

    This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs. PMID:26146475

  3. Processing strategy for water-gun seismic data from the Gulf of Mexico

    USGS Publications Warehouse

    Lee, Myung W.; Hart, Patrick E.; Agena, Warren F.

    2000-01-01

    In order to study the regional distribution of gas hydrates and their potential relationship to a large-scale sea-fl oor failures, more than 1,300 km of near-vertical-incidence seismic profi les were acquired using a 15-in3 water gun across the upper- and middle-continental slope in the Garden Banks and Green Canyon regions of the Gulf of Mexico. Because of the highly mixed phase water-gun signature, caused mainly by a precursor of the source arriving about 18 ms ahead of the main pulse, a conventional processing scheme based on the minimum phase assumption is not suitable for this data set. A conventional processing scheme suppresses the reverberations and compresses the main pulse, but the failure to suppress precursors results in complex interference between the precursors and primary refl ections, thus obscuring true refl ections. To clearly image the subsurface without interference from the precursors, a wavelet deconvolution based on the mixedphase assumption using variable norm is attempted. This nonminimum- phase wavelet deconvolution compresses a longwave- train water-gun signature into a simple zero-phase wavelet. A second-zero-crossing predictive deconvolution followed by a wavelet deconvolution suppressed variable ghost arrivals attributed to the variable depths of receivers. The processing strategy of using wavelet deconvolution followed by a secondzero- crossing deconvolution resulted in a sharp and simple wavelet and a better defi nition of the polarity of refl ections. Also, the application of dip moveout correction enhanced lateral resolution of refl ections and substantially suppressed coherent noise.

  4. Wavelet-based unsupervised learning method for electrocardiogram suppression in surface electromyograms.

    PubMed

    Niegowski, Maciej; Zivanovic, Miroslav

    2016-03-01

    We present a novel approach aimed at removing electrocardiogram (ECG) perturbation from single-channel surface electromyogram (EMG) recordings by means of unsupervised learning of wavelet-based intensity images. The general idea is to combine the suitability of certain wavelet decomposition bases which provide sparse electrocardiogram time-frequency representations, with the capacity of non-negative matrix factorization (NMF) for extracting patterns from images. In order to overcome convergence problems which often arise in NMF-related applications, we design a novel robust initialization strategy which ensures proper signal decomposition in a wide range of ECG contamination levels. Moreover, the method can be readily used because no a priori knowledge or parameter adjustment is needed. The proposed method was evaluated on real surface EMG signals against two state-of-the-art unsupervised learning algorithms and a singular spectrum analysis based method. The results, expressed in terms of high-to-low energy ratio, normalized median frequency, spectral power difference and normalized average rectified value, suggest that the proposed method enables better ECG-EMG separation quality than the reference methods. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Parameters effective on estimating a nonstationary mixed-phase wavelet using cumulant matching approach

    NASA Astrophysics Data System (ADS)

    Vosoughi, Ehsan; Javaherian, Abdolrahim

    2018-01-01

    Seismic inversion is a process performed to remove the effects of propagated wavelets in order to recover the acoustic impedance. To obtain valid velocity and density values related to subsurface layers through the inversion process, it is highly essential to perform reliable wavelet estimation such as cumulant matching approach. For this purpose, the seismic data were windowed in this work in such a way that two consecutive windows were only one sample apart. Also, we did not consider any fixed wavelet for any window and let the phase of each wavelet rotate in each sample in the window. Comparing the fourth order cumulant of the whitened trace and fourth-order moment of the all-pass operator in each window generated a cost function that should be minimized with a non-linear optimization method. In this regard, parameters effective on the estimation of the nonstationary mixed-phase wavelets were tested over the created nonstationary seismic trace at 0.82 s and 1.6 s. Besides, we compared the consequences of each parameter on estimated wavelets at two mentioned times. The parameters studied in this work are window length, taper type, the number of iteration, signal-to-noise ratio, bandwidth to central frequency ratio, and Q factor. The results show that applying the optimum values of the effective parameters, the average correlation of the estimated mixed-phase wavelets with the original ones is about 87%. Moreover, the effectiveness of the proposed approach was examined on a synthetic nonstationary seismic section with variable Q factor values alongside the time and offset axis. Eventually, the cumulant matching method was applied on a cross line of the migrated data from a 3D data set of an oilfield in the Persian Gulf. Also, the effect of the wrong Q estimation on the estimated mixed-phase wavelet was considered on the real data set. It is concluded that the accuracy of the estimated wavelet relied on the estimated Q and more than 10% error in the estimated value of Q is acceptable. Eventually, an 88% correlation was found between the estimated mixed-phase wavelets and the original ones for three horizons. The estimated wavelets applied to the data and the result of deconvolution processes was presented.

  6. Volumetric Medical Image Coding: An Object-based, Lossy-to-lossless and Fully Scalable Approach

    PubMed Central

    Danyali, Habibiollah; Mertins, Alfred

    2011-01-01

    In this article, an object-based, highly scalable, lossy-to-lossless 3D wavelet coding approach for volumetric medical image data (e.g., magnetic resonance (MR) and computed tomography (CT)) is proposed. The new method, called 3DOBHS-SPIHT, is based on the well-known set partitioning in the hierarchical trees (SPIHT) algorithm and supports both quality and resolution scalability. The 3D input data is grouped into groups of slices (GOS) and each GOS is encoded and decoded as a separate unit. The symmetric tree definition of the original 3DSPIHT is improved by introducing a new asymmetric tree structure. While preserving the compression efficiency, the new tree structure allows for a small size of each GOS, which not only reduces memory consumption during the encoding and decoding processes, but also facilitates more efficient random access to certain segments of slices. To achieve more compression efficiency, the algorithm only encodes the main object of interest in each 3D data set, which can have any arbitrary shape, and ignores the unnecessary background. The experimental results on some MR data sets show the good performance of the 3DOBHS-SPIHT algorithm for multi-resolution lossy-to-lossless coding. The compression efficiency, full scalability, and object-based features of the proposed approach, beside its lossy-to-lossless coding support, make it a very attractive candidate for volumetric medical image information archiving and transmission applications. PMID:22606653

  7. Use of the wavelet transform to investigate differences in brain PET images between patient groups

    NASA Astrophysics Data System (ADS)

    Ruttimann, Urs E.; Unser, Michael A.; Rio, Daniel E.; Rawlings, Robert R.

    1993-06-01

    Suitability of the wavelet transform was studied for the analysis of glucose utilization differences between subject groups as displayed in PET images. To strengthen statistical inference, it was of particular interest investigating the tradeoff between signal localization and image decomposition into uncorrelated components. This tradeoff is shown to be controlled by wavelet regularity, with the optimal compromise attained by third-order orthogonal spline wavelets. Testing of the ensuing wavelet coefficients identified only about 1.5% as statistically different (p < .05) from noise, which then served to resynthesize the difference images by the inverse wavelet transform. The resulting images displayed relatively uniform, noise-free regions of significant differences with, due to the good localization maintained by the wavelets, very little reconstruction artifacts.

  8. A Wavelet-Based Algorithm for the Spatial Analysis of Poisson Data

    NASA Astrophysics Data System (ADS)

    Freeman, P. E.; Kashyap, V.; Rosner, R.; Lamb, D. Q.

    2002-01-01

    Wavelets are scalable, oscillatory functions that deviate from zero only within a limited spatial regime and have average value zero, and thus may be used to simultaneously characterize the shape, location, and strength of astronomical sources. But in addition to their use as source characterizers, wavelet functions are rapidly gaining currency within the source detection field. Wavelet-based source detection involves the correlation of scaled wavelet functions with binned, two-dimensional image data. If the chosen wavelet function exhibits the property of vanishing moments, significantly nonzero correlation coefficients will be observed only where there are high-order variations in the data; e.g., they will be observed in the vicinity of sources. Source pixels are identified by comparing each correlation coefficient with its probability sampling distribution, which is a function of the (estimated or a priori known) background amplitude. In this paper, we describe the mission-independent, wavelet-based source detection algorithm ``WAVDETECT,'' part of the freely available Chandra Interactive Analysis of Observations (CIAO) software package. Our algorithm uses the Marr, or ``Mexican Hat'' wavelet function, but may be adapted for use with other wavelet functions. Aspects of our algorithm include: (1) the computation of local, exposure-corrected normalized (i.e., flat-fielded) background maps; (2) the correction for exposure variations within the field of view (due to, e.g., telescope support ribs or the edge of the field); (3) its applicability within the low-counts regime, as it does not require a minimum number of background counts per pixel for the accurate computation of source detection thresholds; (4) the generation of a source list in a manner that does not depend upon a detailed knowledge of the point spread function (PSF) shape; and (5) error analysis. These features make our algorithm considerably more general than previous methods developed for the analysis of X-ray image data, especially in the low count regime. We demonstrate the robustness of WAVDETECT by applying it to an image from an idealized detector with a spatially invariant Gaussian PSF and an exposure map similar to that of the Einstein IPC; to Pleiades Cluster data collected by the ROSAT PSPC; and to simulated Chandra ACIS-I image of the Lockman Hole region.

  9. The Brera Multiscale Wavelet ROSAT HRI Source Catalog. I. The Algorithm

    NASA Astrophysics Data System (ADS)

    Lazzati, Davide; Campana, Sergio; Rosati, Piero; Panzera, Maria Rosa; Tagliaferri, Gianpiero

    1999-10-01

    We present a new detection algorithm based on the wavelet transform for the analysis of high-energy astronomical images. The wavelet transform, because of its multiscale structure, is suited to the optimal detection of pointlike as well as extended sources, regardless of any loss of resolution with the off-axis angle. Sources are detected as significant enhancements in the wavelet space, after the subtraction of the nonflat components of the background. Detection thresholds are computed through Monte Carlo simulations in order to establish the expected number of spurious sources per field. The source characterization is performed through a multisource fitting in the wavelet space. The procedure is designed to correctly deal with very crowded fields, allowing for the simultaneous characterization of nearby sources. To obtain a fast and reliable estimate of the source parameters and related errors, we apply a novel decimation technique that, taking into account the correlation properties of the wavelet transform, extracts a subset of almost independent coefficients. We test the performance of this algorithm on synthetic fields, analyzing with particular care the characterization of sources in poor background situations, where the assumption of Gaussian statistics does not hold. In these cases, for which standard wavelet algorithms generally provide underestimated errors, we infer errors through a procedure that relies on robust basic statistics. Our algorithm is well suited to the analysis of images taken with the new generation of X-ray instruments equipped with CCD technology, which will produce images with very low background and/or high source density.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besse, Nicolas; Latu, Guillaume; Ghizzo, Alain

    In this paper we present a new method for the numerical solution of the relativistic Vlasov-Maxwell system on a phase-space grid using an adaptive semi-Lagrangian method. The adaptivity is performed through a wavelet multiresolution analysis, which gives a powerful and natural refinement criterion based on the local measurement of the approximation error and regularity of the distribution function. Therefore, the multiscale expansion of the distribution function allows to get a sparse representation of the data and thus save memory space and CPU time. We apply this numerical scheme to reduced Vlasov-Maxwell systems arising in laser-plasma physics. Interaction of relativistically strongmore » laser pulses with overdense plasma slabs is investigated. These Vlasov simulations revealed a rich variety of phenomena associated with the fast particle dynamics induced by electromagnetic waves as electron trapping, particle acceleration, and electron plasma wavebreaking. However, the wavelet based adaptive method that we developed here, does not yield significant improvements compared to Vlasov solvers on a uniform mesh due to the substantial overhead that the method introduces. Nonetheless they might be a first step towards more efficient adaptive solvers based on different ideas for the grid refinement or on a more efficient implementation. Here the Vlasov simulations are performed in a two-dimensional phase-space where the development of thin filaments, strongly amplified by relativistic effects requires an important increase of the total number of points of the phase-space grid as they get finer as time goes on. The adaptive method could be more useful in cases where these thin filaments that need to be resolved are a very small fraction of the hyper-volume, which arises in higher dimensions because of the surface-to-volume scaling and the essentially one-dimensional structure of the filaments. Moreover, the main way to improve the efficiency of the adaptive method is to increase the local character in phase-space of the numerical scheme, by considering multiscale reconstruction with more compact support and by replacing the semi-Lagrangian method with more local - in space - numerical scheme as compact finite difference schemes, discontinuous-Galerkin method or finite element residual schemes which are well suited for parallel domain decomposition techniques.« less

  11. Long-term solar activity explored with wavelet methods

    NASA Astrophysics Data System (ADS)

    Lundstedt, H.; Liszka, L.; Lundin, R.; Muscheler, R.

    2006-03-01

    Long-term solar activity has been studied with a set of wavelet methods. The following indicators of long-term solar activity were used; the group sunspot number, the sunspot number, and the 14C production rate. Scalograms showed the very long-term scales of 2300 years (Hallstat cycle), 900-1000 years, 400-500 years, and 200 years (de Vries cycle). Scalograms of a newly-constructed 14C production rate showed interesting solar modulation during the Maunder minimum. Multi-Resolution Analysis (MRA) revealed the modulation in detail, as well as peaks of solar activity not seen in the sunspot number. In both the group sunspot number scalogram and the 14C production rate scalogram, a process appeared, starting or ending in late 1700. This process has not been discussed before. Its solar origin is unclear.

    The group sunspot number ampligram and the sunspot number ampligram showed the Maunder and the Dalton minima, and the period of high solar activity, which already started about 1900 and then decreased again after mid 1990. The decrease starts earlier for weaker components. Also, weak semiperiodic activity was found.

    Time Scale Spectra (TSS) showed both deterministic and stochastic processes behind the variability of the long-term solar activity. TSS of the 14C production rate, group sunspot number and Mt. Wilson sunspot index and plage index were compared in an attempt to interpret the features and processes behind the long-term variability.

  12. A Subband Coding Method for HDTV

    NASA Technical Reports Server (NTRS)

    Chung, Wilson; Kossentini, Faouzi; Smith, Mark J. T.

    1995-01-01

    This paper introduces a new HDTV coder based on motion compensation, subband coding, and high order conditional entropy coding. The proposed coder exploits the temporal and spatial statistical dependencies inherent in the HDTV signal by using intra- and inter-subband conditioning for coding both the motion coordinates and the residual signal. The new framework provides an easy way to control the system complexity and performance, and inherently supports multiresolution transmission. Experimental results show that the coder outperforms MPEG-2, while still maintaining relatively low complexity.

  13. Multi-Resolution Climate Ensemble Parameter Analysis with Nested Parallel Coordinates Plots.

    PubMed

    Wang, Junpeng; Liu, Xiaotong; Shen, Han-Wei; Lin, Guang

    2017-01-01

    Due to the uncertain nature of weather prediction, climate simulations are usually performed multiple times with different spatial resolutions. The outputs of simulations are multi-resolution spatial temporal ensembles. Each simulation run uses a unique set of values for multiple convective parameters. Distinct parameter settings from different simulation runs in different resolutions constitute a multi-resolution high-dimensional parameter space. Understanding the correlation between the different convective parameters, and establishing a connection between the parameter settings and the ensemble outputs are crucial to domain scientists. The multi-resolution high-dimensional parameter space, however, presents a unique challenge to the existing correlation visualization techniques. We present Nested Parallel Coordinates Plot (NPCP), a new type of parallel coordinates plots that enables visualization of intra-resolution and inter-resolution parameter correlations. With flexible user control, NPCP integrates superimposition, juxtaposition and explicit encodings in a single view for comparative data visualization and analysis. We develop an integrated visual analytics system to help domain scientists understand the connection between multi-resolution convective parameters and the large spatial temporal ensembles. Our system presents intricate climate ensembles with a comprehensive overview and on-demand geographic details. We demonstrate NPCP, along with the climate ensemble visualization system, based on real-world use-cases from our collaborators in computational and predictive science.

  14. SU-E-J-88: Deformable Registration Using Multi-Resolution Demons Algorithm for 4DCT.

    PubMed

    Li, Dengwang; Yin, Yong

    2012-06-01

    In order to register 4DCT efficiently, we propose an improved deformable registration algorithm based on improved multi-resolution demons strategy to improve the efficiency of the algorithm. 4DCT images of lung cancer patients are collected from a General Electric Discovery ST CT scanner from our cancer hospital. All of the images are sorted into groups and reconstructed according to their phases, and eachrespiratory cycle is divided into 10 phases with the time interval of 10%. Firstly, in our improved demons algorithm we use gradients of both reference and floating images as deformation forces and also redistribute the forces according to the proportion of the two forces. Furthermore, we introduce intermediate variable to cost function for decreasing the noise in registration process. At the same time, Gaussian multi-resolution strategy and BFGS method for optimization are used to improve speed and accuracy of the registration. To validate the performance of the algorithm, we register the previous 10 phase-images. We compared the difference of floating and reference images before and after registered where two landmarks are decided by experienced clinician. We registered 10 phase-images of 4D-CT which is lung cancer patient from cancer hospital and choose images in exhalationas the reference images, and all other images were registered into the reference images. This method has a good accuracy demonstrated by a higher similarity measure for registration of 4D-CT and it can register a large deformation precisely. Finally, we obtain the tumor target achieved by the deformation fields using proposed method, which is more accurately than the internal margin (IM) expanded by the Gross Tumor Volume (GTV). Furthermore, we achieve tumor and normal tissue tracking and dose accumulation using 4DCT data. An efficient deformable registration algorithm was proposed by using multi-resolution demons algorithm for 4DCT. © 2012 American Association of Physicists in Medicine.

  15. Assessment of Multiresolution Segmentation for Extracting Greenhouses from WORLDVIEW-2 Imagery

    NASA Astrophysics Data System (ADS)

    Aguilar, M. A.; Aguilar, F. J.; García Lorca, A.; Guirado, E.; Betlej, M.; Cichon, P.; Nemmaoui, A.; Vallario, A.; Parente, C.

    2016-06-01

    The latest breed of very high resolution (VHR) commercial satellites opens new possibilities for cartographic and remote sensing applications. In this way, object based image analysis (OBIA) approach has been proved as the best option when working with VHR satellite imagery. OBIA considers spectral, geometric, textural and topological attributes associated with meaningful image objects. Thus, the first step of OBIA, referred to as segmentation, is to delineate objects of interest. Determination of an optimal segmentation is crucial for a good performance of the second stage in OBIA, the classification process. The main goal of this work is to assess the multiresolution segmentation algorithm provided by eCognition software for delineating greenhouses from WorldView- 2 multispectral orthoimages. Specifically, the focus is on finding the optimal parameters of the multiresolution segmentation approach (i.e., Scale, Shape and Compactness) for plastic greenhouses. The optimum Scale parameter estimation was based on the idea of local variance of object heterogeneity within a scene (ESP2 tool). Moreover, different segmentation results were attained by using different combinations of Shape and Compactness values. Assessment of segmentation quality based on the discrepancy between reference polygons and corresponding image segments was carried out to identify the optimal setting of multiresolution segmentation parameters. Three discrepancy indices were used: Potential Segmentation Error (PSE), Number-of-Segments Ratio (NSR) and Euclidean Distance 2 (ED2).

  16. Advanced Signal Processing Methods Applied to Digital Mammography

    NASA Technical Reports Server (NTRS)

    Stauduhar, Richard P.

    1997-01-01

    The work reported here is on the extension of the earlier proposal of the same title, August 1994-June 1996. The report for that work is also being submitted. The work reported there forms the foundation for this work from January 1997 to September 1997. After the earlier work was completed there were a few items that needed to be completed prior to submission of a new and more comprehensive proposal for further research. Those tasks have been completed and two new proposals have been submitted, one to NASA, and one to Health & Human Services WS). The main purpose of this extension was to refine some of the techniques that lead to automatic large scale evaluation of full mammograms. Progress on each of the proposed tasks follows. Task 1: A multiresolution segmentation of background from breast has been developed and tested. The method is based on the different noise characteristics of the two different fields. The breast field has more power in the lower octaves and the off-breast field behaves similar to a wideband process, where more power is in the high frequency octaves. After the two fields are separated by lowpass filtering, a region labeling routine is used to find the largest contiguous region, the breast. Task 2: A wavelet expansion that can decompose the image without zero padding has been developed. The method preserves all properties of the power-of-two wavelet transform and does not add appreciably to computation time or storage. This work is essential for analysis of the full mammogram, as opposed to selecting sections from the full mammogram. Task 3: A clustering method has been developed based on a simple counting mechanism. No ROC analysis has been performed (and was not proposed), so we cannot finally evaluate this work without further support. Task 4: Further testing of the filter reveals that different wavelet bases do yield slightly different qualitative results. We cannot provide quantitative conclusions about this for all possible bases without further support. Task 5: Better modeling does indeed make an improvement in the detection output. After the proposal ended, we came up with some new theoretical explanations that helps in understanding when the D4 filter should be better. This work is currently in the review process. Task 6: N/A. This no longer applies in view of Tasks 4-5. Task 7: Comprehensive plans for further work have been completed. These plans are the subject of two proposals, one to NASA and one to HHS. These proposals represent plans for a complete evaluation of the methods for identifying normal mammograms, augmented with significant further theoretical work.

  17. Wavelet entropy of BOLD time series: An application to Rolandic epilepsy.

    PubMed

    Gupta, Lalit; Jansen, Jacobus F A; Hofman, Paul A M; Besseling, René M H; de Louw, Anton J A; Aldenkamp, Albert P; Backes, Walter H

    2017-12-01

    To assess the wavelet entropy for the characterization of intrinsic aberrant temporal irregularities in the time series of resting-state blood-oxygen-level-dependent (BOLD) signal fluctuations. Further, to evaluate the temporal irregularities (disorder/order) on a voxel-by-voxel basis in the brains of children with Rolandic epilepsy. The BOLD time series was decomposed using the discrete wavelet transform and the wavelet entropy was calculated. Using a model time series consisting of multiple harmonics and nonstationary components, the wavelet entropy was compared with Shannon and spectral (Fourier-based) entropy. As an application, the wavelet entropy in 22 children with Rolandic epilepsy was compared to 22 age-matched healthy controls. The images were obtained by performing resting-state functional magnetic resonance imaging (fMRI) using a 3T system, an 8-element receive-only head coil, and an echo planar imaging pulse sequence ( T2*-weighted). The wavelet entropy was also compared to spectral entropy, regional homogeneity, and Shannon entropy. Wavelet entropy was found to identify the nonstationary components of the model time series. In Rolandic epilepsy patients, a significantly elevated wavelet entropy was observed relative to controls for the whole cerebrum (P = 0.03). Spectral entropy (P = 0.41), regional homogeneity (P = 0.52), and Shannon entropy (P = 0.32) did not reveal significant differences. The wavelet entropy measure appeared more sensitive to detect abnormalities in cerebral fluctuations represented by nonstationary effects in the BOLD time series than more conventional measures. This effect was observed in the model time series as well as in Rolandic epilepsy. These observations suggest that the brains of children with Rolandic epilepsy exhibit stronger nonstationary temporal signal fluctuations than controls. 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017;46:1728-1737. © 2017 International Society for Magnetic Resonance in Medicine.

  18. Satellite altimetry and GOCE contribution to the pre-definition of the Kingdom of Saudi Arabia (KSA) Vertical Network

    NASA Astrophysics Data System (ADS)

    Vergos, Georgios S.; Grebenitcharsky, Rossen S.; Natsiopoulos, Dimitrios A.; Al-Kherayef, Othman; Al-Muslmani, Bandar

    2017-04-01

    The availability of a unified and well-established national vertical system and frame is of outmost importance in support of everyday geodetic, surveying and engineering applications. Vertical reference system (VRS) modernization and unification has gained increased importance especially during the last years due to the advent of gravity-field dedicated missions and GOCE in particular, since it is the first time that an unprecedented in accuracy dataset of gravity field functionals has become available at a global scale. The Kingdom of Saudi Arabia VRS is outdated and exhibits significant tilts and biases, so that during the last couple of years an extensive effort has been put forth in order to: re-measure by traditional levelling the entire network, establish new benchmarks (BMs), perform high-quality absolute and relative gravity observations and construct new tide-gauge (TG) stations in both the Arab and Red Seas. The Current work focuses on the combined analysis of the existing, recently collected, terrestrial observations with satellite altimetry data and the latest GOCE-based Earth Geopotential Models (EGMs) in order to provide a pre-definition of the KSA VRS. To that respect, a 30-year satellite altimetry time-series is constructed for each TG station in order to derive both the Mean Sea Level (MSL) as well as the sea level trends. This information is analyzed, through Wavelet (WL) Multi-resolution Analysis (MRA), with the TG sea level records in order to determine annual, semi-annual and secular trends of the Red and Arab Sea variations. Finally, the so-derived trends and MSL are combined with local gravity observations at the TG BMs, levelling offsets between the TGs and the network BMs, levelling observations between the network BMs themselves and GOCE-based EGM-derived geoid heights and potential values. The validation of GOCE contribution and of the satellite altimetry derived MSL and trends is based on a simultaneous adjustment of the entire KSA vertical network, keeping fixed various TG stations and investigating the distortions introduced in the adjusted BM orthometric heights. Finally, a pre-definition of the KSA VRS is detailed as vertical offsets and potential differences δWo relative to the recently adopted conventional zero-level geopotential value by IAG. Conclusions regarding the contribution of satellite altimetry and GOCE are drown along with the necessary information for the definition of the KSA vertical datum and its connection to an International Height References System (IHRS).

  19. Wavelet-based statistical classification of skin images acquired with reflectance confocal microscopy

    PubMed Central

    Halimi, Abdelghafour; Batatia, Hadj; Le Digabel, Jimmy; Josse, Gwendal; Tourneret, Jean Yves

    2017-01-01

    Detecting skin lentigo in reflectance confocal microscopy images is an important and challenging problem. This imaging modality has not yet been widely investigated for this problem and there are a few automatic processing techniques. They are mostly based on machine learning approaches and rely on numerous classical image features that lead to high computational costs given the very large resolution of these images. This paper presents a detection method with very low computational complexity that is able to identify the skin depth at which the lentigo can be detected. The proposed method performs multiresolution decomposition of the image obtained at each skin depth. The distribution of image pixels at a given depth can be approximated accurately by a generalized Gaussian distribution whose parameters depend on the decomposition scale, resulting in a very-low-dimension parameter space. SVM classifiers are then investigated to classify the scale parameter of this distribution allowing real-time detection of lentigo. The method is applied to 45 healthy and lentigo patients from a clinical study, where sensitivity of 81.4% and specificity of 83.3% are achieved. Our results show that lentigo is identifiable at depths between 50μm and 60μm, corresponding to the average location of the the dermoepidermal junction. This result is in agreement with the clinical practices that characterize the lentigo by assessing the disorganization of the dermoepidermal junction. PMID:29296480

  20. ICASE Semiannual Report, October 1, 1992 through March 31, 1993

    DTIC Science & Technology

    1993-06-01

    NUMERICAL MATHEMATICS Saul Abarbanel Further results have been obtained regarding long time integration of high order compact finite difference schemes...overall accuracy. These problems are common to all numerical methods: finite differences , finite elements and spectral methods. It should be noted that...fourth order finite difference scheme. * In the same case, the D6 wavelets provide a sixth order finite difference , noncompact formula. * The wavelets

  1. Cross-Layer Design for Video Transmission over Wireless Rician Slow-Fading Channels Using an Adaptive Multiresolution Modulation and Coding Scheme

    NASA Astrophysics Data System (ADS)

    Pei, Yong; Modestino, James W.

    2007-12-01

    We describe a multilayered video transport scheme for wireless channels capable of adapting to channel conditions in order to maximize end-to-end quality of service (QoS). This scheme combines a scalable H.263+ video source coder with unequal error protection (UEP) across layers. The UEP is achieved by employing different channel codes together with a multiresolution modulation approach to transport the different priority layers. Adaptivity to channel conditions is provided through a joint source-channel coding (JSCC) approach which attempts to jointly optimize the source and channel coding rates together with the modulation parameters to obtain the maximum achievable end-to-end QoS for the prevailing channel conditions. In this work, we model the wireless links as slow-fading Rician channel where the channel conditions can be described in terms of the channel signal-to-noise ratio (SNR) and the ratio of specular-to-diffuse energy[InlineEquation not available: see fulltext.]. The multiresolution modulation/coding scheme consists of binary rate-compatible punctured convolutional (RCPC) codes used together with nonuniform phase-shift keyed (PSK) signaling constellations. Results indicate that this adaptive JSCC scheme employing scalable video encoding together with a multiresolution modulation/coding approach leads to significant improvements in delivered video quality for specified channel conditions. In particular, the approach results in considerably improved graceful degradation properties for decreasing channel SNR.

  2. Evaluation of retrieval methods of daytime convective boundary layer height based on lidar data

    NASA Astrophysics Data System (ADS)

    Li, Hong; Yang, Yi; Hu, Xiao-Ming; Huang, Zhongwei; Wang, Guoyin; Zhang, Beidou; Zhang, Tiejun

    2017-04-01

    The atmospheric boundary layer height is a basic parameter in describing the structure of the lower atmosphere. Because of their high temporal resolution, ground-based lidar data are widely used to determine the daytime convective boundary layer height (CBLH), but the currently available retrieval methods have their advantages and drawbacks. In this paper, four methods of retrieving the CBLH (i.e., the gradient method, the idealized backscatter method, and two forms of the wavelet covariance transform method) from lidar normalized relative backscatter are evaluated, using two artificial cases (an idealized profile and a case similar to real profile), to test their stability and accuracy. The results show that the gradient method is suitable for high signal-to-noise ratio conditions. The idealized backscatter method is less sensitive to the first estimate of the CBLH; however, it is computationally expensive. The results obtained from the two forms of the wavelet covariance transform method are influenced by the selection of the initial input value of the wavelet amplitude. Further sensitivity analysis using real profiles under different orders of magnitude of background counts show that when different initial input values are set, the idealized backscatter method always obtains consistent CBLH. For two wavelet methods, the different CBLH are always obtained with the increase in the wavelet amplitude when noise is significant. Finally, the CBLHs as measured by three lidar-based methods are evaluated by as measured from L-band soundings. The boundary layer heights from two instruments coincide with ±200 m in most situations.

  3. Progress in the Development of a Class of Efficient Low Dissipative High Order Shock-capturing Methods

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjogreen, B.; Sandham, N. D.; Hadjadj, A.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    In a series of papers, Olsson (1994, 1995), Olsson & Oliger (1994), Strand (1994), Gerritsen Olsson (1996), Yee et al. (1999a,b, 2000) and Sandham & Yee (2000), the issue of nonlinear stability of the compressible Euler and Navier-Stokes Equations, including physical boundaries, and the corresponding development of the discrete analogue of nonlinear stable high order schemes, including boundary schemes, were developed, extended and evaluated for various fluid flows. High order here refers to spatial schemes that are essentially fourth-order or higher away from shock and shear regions. The objective of this paper is to give an overview of the progress of the low dissipative high order shock-capturing schemes proposed by Yee et al. (1999a,b, 2000). This class of schemes consists of simple non-dissipative high order compact or non-compact central spatial differencings and adaptive nonlinear numerical dissipation operators to minimize the use of numerical dissipation. The amount of numerical dissipation is further minimized by applying the scheme to the entropy splitting form of the inviscid flux derivatives, and by rewriting the viscous terms to minimize odd-even decoupling before the application of the central scheme (Sandham & Yee). The efficiency and accuracy of these scheme are compared with spectral, TVD and fifth- order WENO schemes. A new approach of Sjogreen & Yee (2000) utilizing non-orthogonal multi-resolution wavelet basis functions as sensors to dynamically determine the appropriate amount of numerical dissipation to be added to the non-dissipative high order spatial scheme at each grid point will be discussed. Numerical experiments of long time integration of smooth flows, shock-turbulence interactions, direct numerical simulations of a 3-D compressible turbulent plane channel flow, and various mixing layer problems indicate that these schemes are especially suitable for practical complex problems in nonlinear aeroacoustics, rotorcraft dynamics, direct numerical simulation or large eddy simulation of compressible turbulent flows at various speeds including high-speed shock-turbulence interactions, and general long time wave propagation problems. These schemes, including entropy splitting, have also been extended to freestream preserving schemes on curvilinear moving grids for a thermally perfect gas (Vinokur & Yee 2000).

  4. Dynamically re-configurable CMOS imagers for an active vision system

    NASA Technical Reports Server (NTRS)

    Yang, Guang (Inventor); Pain, Bedabrata (Inventor)

    2005-01-01

    A vision system is disclosed. The system includes a pixel array, at least one multi-resolution window operation circuit, and a pixel averaging circuit. The pixel array has an array of pixels configured to receive light signals from an image having at least one tracking target. The multi-resolution window operation circuits are configured to process the image. Each of the multi-resolution window operation circuits processes each tracking target within a particular multi-resolution window. The pixel averaging circuit is configured to sample and average pixels within the particular multi-resolution window.

  5. Interpretations of gravity and magnetic anomalies in the Songliao Basin with Wavelet Multi-scale Decomposition

    NASA Astrophysics Data System (ADS)

    Li, Changbo; Wang, Liangshu; Sun, Bin; Feng, Runhai; Wu, Yongjing

    2015-09-01

    In this paper, we introduce the method of Wavelet Multi-scale Decomposition (WMD) combined with Power Spectrum Analysis (PSA) for the separation of regional gravity and magnetic anomalies. The Songliao Basin is situated between the Siberian Plate and the North China Plate, and its main structural trend of gravity and magnetic anomaly fields is NNE. The study area shows a significant feature of deep collage-type construction. According to the feature of gravity field, the region was divided into five sub-regions. The gravity and magnetic fields of the Songliao Basin were separated using WMD with a 4th order separation. The apparent depth of anomalies in each order was determined by Logarithmic PSA. Then, the shallow high-frequency anomalies were removed and the 2nd-4th order wavelet detail anomalies were used to study the basin's major faults. Twenty-six faults within the basement were recognized. The 4th order wavelet approximate anomalies were used for the inversion of the Moho discontinuity and the Curie isothermal surface.

  6. A wavelet-based Bayesian framework for 3D object segmentation in microscopy

    NASA Astrophysics Data System (ADS)

    Pan, Kangyu; Corrigan, David; Hillebrand, Jens; Ramaswami, Mani; Kokaram, Anil

    2012-03-01

    In confocal microscopy, target objects are labeled with fluorescent markers in the living specimen, and usually appear with irregular brightness in the observed images. Also, due to the existence of out-of-focus objects in the image, the segmentation of 3-D objects in the stack of image slices captured at different depth levels of the specimen is still heavily relied on manual analysis. In this paper, a novel Bayesian model is proposed for segmenting 3-D synaptic objects from given image stack. In order to solve the irregular brightness and out-offocus problems, the segmentation model employs a likelihood using the luminance-invariant 'wavelet features' of image objects in the dual-tree complex wavelet domain as well as a likelihood based on the vertical intensity profile of the image stack in 3-D. Furthermore, a smoothness 'frame' prior based on the a priori knowledge of the connections of the synapses is introduced to the model for enhancing the connectivity of the synapses. As a result, our model can successfully segment the in-focus target synaptic object from a 3D image stack with irregular brightness.

  7. The Partition of Multi-Resolution LOD Based on Qtm

    NASA Astrophysics Data System (ADS)

    Hou, M.-L.; Xing, H.-Q.; Zhao, X.-S.; Chen, J.

    2011-08-01

    The partition hierarch of Quaternary Triangular Mesh (QTM) determine the accuracy of spatial analysis and application based on QTM. In order to resolve the problem that the partition hierarch of QTM is limited by the level of the computer hardware, the new method that Multi- Resolution LOD (Level of Details) based on QTM will be discussed in this paper. This method can make the resolution of the cells varying with the viewpoint position by partitioning the cells of QTM, selecting the particular area according to the viewpoint; dealing with the cracks caused by different subdivisions, it satisfies the request of unlimited partition in part.

  8. Handwritten numeral databases of Indian scripts and multistage recognition of mixed numerals.

    PubMed

    Bhattacharya, Ujjwal; Chaudhuri, B B

    2009-03-01

    This article primarily concerns the problem of isolated handwritten numeral recognition of major Indian scripts. The principal contributions presented here are (a) pioneering development of two databases for handwritten numerals of two most popular Indian scripts, (b) a multistage cascaded recognition scheme using wavelet based multiresolution representations and multilayer perceptron classifiers and (c) application of (b) for the recognition of mixed handwritten numerals of three Indian scripts Devanagari, Bangla and English. The present databases include respectively 22,556 and 23,392 handwritten isolated numeral samples of Devanagari and Bangla collected from real-life situations and these can be made available free of cost to researchers of other academic Institutions. In the proposed scheme, a numeral is subjected to three multilayer perceptron classifiers corresponding to three coarse-to-fine resolution levels in a cascaded manner. If rejection occurred even at the highest resolution, another multilayer perceptron is used as the final attempt to recognize the input numeral by combining the outputs of three classifiers of the previous stages. This scheme has been extended to the situation when the script of a document is not known a priori or the numerals written on a document belong to different scripts. Handwritten numerals in mixed scripts are frequently found in Indian postal mails and table-form documents.

  9. The combined use of dynamic factor analysis and wavelet analysis to evaluate latent factors controlling complex groundwater level fluctuations in a riverside alluvial aquifer

    NASA Astrophysics Data System (ADS)

    Oh, Yun-Yeong; Yun, Seong-Taek; Yu, Soonyoung; Hamm, Se-Yeong

    2017-12-01

    To identify and quantitatively evaluate complex latent factors controlling groundwater level (GWL) fluctuations in a riverside alluvial aquifer influenced by barrage construction, we developed the combined use of dynamic factor analysis (DFA) and wavelet analysis (WA). Time series data of GWL, river water level and precipitation were collected for 3 years (July 2012 to June 2015) from an alluvial aquifer underneath an agricultural area of the Nakdong river basin, South Korea. Based on the wavelet coefficients of the final approximation, the GWL data was clustered into three groups (WCG1 to WCG3). Two dynamic factors (DFs) were then extracted using DFA for each group; thus, six major factors were extracted. Next, the time-frequency variability of the extracted DFs was examined using multiresolution cross-correlation analysis (MRCCA) with the following steps: 1) major driving forces and their scales in GWL fluctuations were identified by comparing maximum correlation coefficients (rmax) between DFs and the GWL time series and 2) the results were supplemented using the wavelet transformed coherence (WTC) analysis between DFs and the hydrological time series. Finally, relative contributions of six major DFs to the GWL fluctuations could be quantitatively assessed by calculating the effective dynamic efficiency (Def). The characteristics and relevant process of the identified six DFs are: 1) WCG1DF4,1 as an indicative of seasonal agricultural pumping (scales = 64-128 days; rmax = 0.68-0.89; Def ≤ 23.1%); 2) WCG1DF4,4 representing the cycle of regional groundwater recharge (scales = 64-128 days; rmax = 0.98-1.00; Def ≤ 11.1%); 3) WCG2DF4,1 indicating the complex interaction between the episodes of precipitation and direct runoff (scales = 2-8 days; rmax = 0.82-0.91; Def ≤ 35.3%) and seasonal GW-RW interaction (scales = 64-128 days; rmax = 0.76-0.91; Def ≤ 14.2%); 4) WCG2DF4,4 reflecting the complex effects of seasonal pervasive pumping and the local recharge cycle (scales = 64-128 days; rmax = 0.86-0.94; Def ≤ 16.4%); 5) WCG3DF4,2 as the result of temporal pumping (scales = 2-8 days; rmax = 0.98-0.99; Def ≤ 7.7%); and 6) WCG3DF4,4 indicating the local recharge cycle (scales = 64-128 days; rmax = 0.76-0.91; Def ≤ 34.2 %). This study shows that major driving forces controlling GWL time series data in a complex hydrological setting can be identified and quantitatively evaluated by the combined use of DFA and WA and applying MRCCA and WTC.

  10. Analysis and Synthesis of Pseudo-Periodic[InlineEquation not available: see fulltext.]-Like Noise by Means of Wavelets with Applications to Digital Audio

    NASA Astrophysics Data System (ADS)

    Polotti, Pietro; Evangelista, Gianpaolo

    2001-12-01

    Voiced musical sounds have nonzero energy in sidebands of the frequency partials. Our work is based on the assumption, often experimentally verified, that the energy distribution of the sidebands is shaped as powers of the inverse of the distance from the closest partial. The power spectrum of these pseudo-periodic processes is modeled by means of a superposition of modulated[InlineEquation not available: see fulltext.] components, that is, by a pseudo-periodic[InlineEquation not available: see fulltext.]-like process. Due to the fundamental selfsimilar character of the wavelet transform,[InlineEquation not available: see fulltext.] processes can be fruitfully analyzed and synthesized by means of wavelets. We obtain a set of very loosely correlated coefficients at each scale level that can be well approximated by white noise in the synthesis process. Our computational scheme is based on an orthogonal[InlineEquation not available: see fulltext.]-band filter bank and a dyadic wavelet transform per channel. The[InlineEquation not available: see fulltext.] channels are tuned to the left and right sidebands of the harmonics so that sidebands are mutually independent. The structure computes the expansion coefficients of a new orthogonal and complete set of harmonic-band wavelets. The main point of our scheme is that we need only two parameters per harmonic in order to model the stochastic fluctuations of sounds from a pure periodic behavior.

  11. Rock classification based on resistivity patterns in electrical borehole wall images

    NASA Astrophysics Data System (ADS)

    Linek, Margarete; Jungmann, Matthias; Berlage, Thomas; Pechnig, Renate; Clauser, Christoph

    2007-06-01

    Electrical borehole wall images represent grey-level-coded micro-resistivity measurements at the borehole wall. Different scientific methods have been implemented to transform image data into quantitative log curves. We introduce a pattern recognition technique applying texture analysis, which uses second-order statistics based on studying the occurrence of pixel pairs. We calculate so-called Haralick texture features such as contrast, energy, entropy and homogeneity. The supervised classification method is used for assigning characteristic texture features to different rock classes and assessing the discriminative power of these image features. We use classifiers obtained from training intervals to characterize the entire image data set recovered in ODP hole 1203A. This yields a synthetic lithology profile based on computed texture data. We show that Haralick features accurately classify 89.9% of the training intervals. We obtained misclassification for vesicular basaltic rocks. Hence, further image analysis tools are used to improve the classification reliability. We decompose the 2D image signal by the application of wavelet transformation in order to enhance image objects horizontally, diagonally and vertically. The resulting filtered images are used for further texture analysis. This combined classification based on Haralick features and wavelet transformation improved our classification up to a level of 98%. The application of wavelet transformation increases the consistency between standard logging profiles and texture-derived lithology. Texture analysis of borehole wall images offers the potential to facilitate objective analysis of multiple boreholes with the same lithology.

  12. Turbidity forecasting at a karst spring using combined machine learning and wavelet multiresolution analysis.

    NASA Astrophysics Data System (ADS)

    Savary, M.; Massei, N.; Johannet, A.; Dupont, J. P.; Hauchard, E.

    2016-12-01

    25% of the world populations drink water extracted from karst aquifer. The comprehension and the protection of these aquifers appear as crucial due to an increase of drinking water needs. In Normandie(North-West of France), the principal exploited aquifer is the chalk aquifer. The chalk aquifer highly karstified is an important water resource, regionally speaking. Connections between surface and underground waters thanks to karstification imply turbidity that decreases water quality. Both numerous parameters and phenomenons, and the non-linearity of the rainfall/turbidity relation influence the turbidity causing difficulties to model and forecast turbidity peaks. In this context, the Yport pumping well provides half of Le Havreconurbation drinking water supply (236 000 inhabitants). The aim of this work is thus to perform prediction of the turbidity peaks in order to help pumping well managers to decrease the impact of turbidity on water treatment. Database consists in hourly rainfalls coming from six rain gauges located on the alimentation basin since 2009 and hourly turbidity since 1993. Because of the lack of accurate physical description of the karst system and its surface basin, the systemic paradigm is chosen and a black box model: a neural network model is chosen. In a first step, correlation analyses are used to design the original model architecture by identifying the relation between output and input. The following optimization phases bring us four different architectures. These models were experimented to forecast 12h ahead turbidity and threshold surpassing. The first model is a simple multilayer perceptron. The second is a two-branches model designed to better represent the fast (rainfall) and low (evapotranspiration) dynamics. Each kind of model is developed using both a recurrent and feed-forward architecture. This work highlights that feed-forward multilayer perceptron is better to predict turbidity peaks when feed-forward two-branches model is better to predict threshold surpassing. In a second step, the implementation of wavelet decomposition within the neural network model to better apprehend slow and fast dynamics is tested and discussed, which could also allows accounting for non-linearity of the turbid response to some extent. This second approach is still under realization so far.

  13. Investigation on thermo-acoustic instability dynamic characteristics of hydrocarbon fuel flowing in scramjet cooling channel based on wavelet entropy method

    NASA Astrophysics Data System (ADS)

    Zan, Hao; Li, Haowei; Jiang, Yuguang; Wu, Meng; Zhou, Weixing; Bao, Wen

    2018-06-01

    As part of our efforts to find ways and means to further improve the regenerative cooling technology in scramjet, the experiments of thermo-acoustic instability dynamic characteristics of hydrocarbon fuel flowing have been conducted in horizontal circular tubes at different conditions. The experimental results indicate that there is a developing process from thermo-acoustic stability to instability. In order to have a deep understanding on the developing process of thermo-acoustic instability, the method of Multi-scale Shannon Wavelet Entropy (MSWE) based on Wavelet Transform Correlation Filter (WTCF) and Multi-Scale Shannon Entropy (MSE) is adopted in this paper. The results demonstrate that the developing process of thermo-acoustic instability from noise and weak signals is well detected by MSWE method and the differences among the stability, the developing process and the instability can be identified. These properties render the method particularly powerful for warning thermo-acoustic instability of hydrocarbon fuel flowing in scramjet cooling channels. The mass flow rate and the inlet pressure will make an influence on the developing process of the thermo-acoustic instability. The investigation on thermo-acoustic instability dynamic characteristics at supercritical pressure based on wavelet entropy method offers guidance on the control of scramjet fuel supply, which can secure stable fuel flowing in regenerative cooling system.

  14. Optical Coherence Tomography Noise Reduction Using Anisotropic Local Bivariate Gaussian Mixture Prior in 3D Complex Wavelet Domain

    PubMed Central

    Sonka, Milan; Abramoff, Michael D.

    2013-01-01

    In this paper, MMSE estimator is employed for noise-free 3D OCT data recovery in 3D complex wavelet domain. Since the proposed distribution for noise-free data plays a key role in the performance of MMSE estimator, a priori distribution for the pdf of noise-free 3D complex wavelet coefficients is proposed which is able to model the main statistical properties of wavelets. We model the coefficients with a mixture of two bivariate Gaussian pdfs with local parameters which are able to capture the heavy-tailed property and inter- and intrascale dependencies of coefficients. In addition, based on the special structure of OCT images, we use an anisotropic windowing procedure for local parameters estimation that results in visual quality improvement. On this base, several OCT despeckling algorithms are obtained based on using Gaussian/two-sided Rayleigh noise distribution and homomorphic/nonhomomorphic model. In order to evaluate the performance of the proposed algorithm, we use 156 selected ROIs from 650 × 512 × 128 OCT dataset in the presence of wet AMD pathology. Our simulations show that the best MMSE estimator using local bivariate mixture prior is for the nonhomomorphic model in the presence of Gaussian noise which results in an improvement of 7.8 ± 1.7 in CNR. PMID:24222760

  15. Wavelet Denoising of Radio Observations of Rotating Radio Transients (RRATs): Improved Timing Parameters for Eight RRATs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, M.; Schmid, N. A.; Cao, Z.-C.

    Rotating radio transients (RRATs) are sporadically emitting pulsars detectable only through searches for single pulses. While over 100 RRATs have been detected, only a small fraction (roughly 20%) have phase-connected timing solutions, which are critical for determining how they relate to other neutron star populations. Detecting more pulses in order to achieve solutions is key to understanding their physical nature. Astronomical signals collected by radio telescopes contain noise from many sources, making the detection of weak pulses difficult. Applying a denoising method to raw time series prior to performing a single-pulse search typically leads to a more accurate estimation ofmore » their times of arrival (TOAs). Taking into account some features of RRAT pulses and noise, we present a denoising method based on wavelet data analysis, an image-processing technique. Assuming that the spin period of an RRAT is known, we estimate the frequency spectrum components contributing to the composition of RRAT pulses. This allows us to suppress the noise, which contributes to other frequencies. We apply the wavelet denoising method including selective wavelet reconstruction and wavelet shrinkage to the de-dispersed time series of eight RRATs with existing timing solutions. The signal-to-noise ratio (S/N) of most pulses are improved after wavelet denoising. Compared to the conventional approach, we measure 12%–69% more TOAs for the eight RRATs. The new timing solutions for the eight RRATs show 16%–90% smaller estimation error of most parameters. Thus, we conclude that wavelet analysis is an effective tool for denoising RRATs signal.« less

  16. Thermal and TEC anomalies detection using an intelligent hybrid system around the time of the Saravan, Iran, (Mw = 7.7) earthquake of 16 April 2013

    NASA Astrophysics Data System (ADS)

    Akhoondzadeh, M.

    2014-02-01

    A powerful earthquake of Mw = 7.7 struck the Saravan region (28.107° N, 62.053° E) in Iran on 16 April 2013. Up to now nomination of an automated anomaly detection method in a non linear time series of earthquake precursor has been an attractive and challenging task. Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO) have revealed strong potentials in accurate time series prediction. This paper presents the first study of an integration of ANN and PSO method in the research of earthquake precursors to detect the unusual variations of the thermal and total electron content (TEC) seismo-ionospheric anomalies induced by the strong earthquake of Saravan. In this study, to overcome the stagnation in local minimum during the ANN training, PSO as an optimization method is used instead of traditional algorithms for training the ANN method. The proposed hybrid method detected a considerable number of anomalies 4 and 8 days preceding the earthquake. Since, in this case study, ionospheric TEC anomalies induced by seismic activity is confused with background fluctuations due to solar activity, a multi-resolution time series processing technique based on wavelet transform has been applied on TEC signal variations. In view of the fact that the accordance in the final results deduced from some robust methods is a convincing indication for the efficiency of the method, therefore the detected thermal and TEC anomalies using the ANN + PSO method were compared to the results with regard to the observed anomalies by implementing the mean, median, Wavelet, Kalman filter, Auto-Regressive Integrated Moving Average (ARIMA), Support Vector Machine (SVM) and Genetic Algorithm (GA) methods. The results indicate that the ANN + PSO method is quite promising and deserves serious attention as a new tool for thermal and TEC seismo anomalies detection.

  17. Wavelet Transform Based Higher Order Statistical Analysis of Wind and Wave Time Histories

    NASA Astrophysics Data System (ADS)

    Habib Huseni, Gulamhusenwala; Balaji, Ramakrishnan

    2017-10-01

    Wind, blowing on the surface of the ocean, imparts the energy to generate the waves. Understanding the wind-wave interactions is essential for an oceanographer. This study involves higher order spectral analyses of wind speeds and significant wave height time histories, extracted from European Centre for Medium-Range Weather Forecast database at an offshore location off Mumbai coast, through continuous wavelet transform. The time histories were divided by the seasons; pre-monsoon, monsoon, post-monsoon and winter and the analysis were carried out to the individual data sets, to assess the effect of various seasons on the wind-wave interactions. The analysis revealed that the frequency coupling of wind speeds and wave heights of various seasons. The details of data, analysing technique and results are presented in this paper.

  18. Optimal wavelets for biomedical signal compression.

    PubMed

    Nielsen, Mogens; Kamavuako, Ernest Nlandu; Andersen, Michael Midtgaard; Lucas, Marie-Françoise; Farina, Dario

    2006-07-01

    Signal compression is gaining importance in biomedical engineering due to the potential applications in telemedicine. In this work, we propose a novel scheme of signal compression based on signal-dependent wavelets. To adapt the mother wavelet to the signal for the purpose of compression, it is necessary to define (1) a family of wavelets that depend on a set of parameters and (2) a quality criterion for wavelet selection (i.e., wavelet parameter optimization). We propose the use of an unconstrained parameterization of the wavelet for wavelet optimization. A natural performance criterion for compression is the minimization of the signal distortion rate given the desired compression rate. For coding the wavelet coefficients, we adopted the embedded zerotree wavelet coding algorithm, although any coding scheme may be used with the proposed wavelet optimization. As a representative example of application, the coding/encoding scheme was applied to surface electromyographic signals recorded from ten subjects. The distortion rate strongly depended on the mother wavelet (for example, for 50% compression rate, optimal wavelet, mean+/-SD, 5.46+/-1.01%; worst wavelet 12.76+/-2.73%). Thus, optimization significantly improved performance with respect to previous approaches based on classic wavelets. The algorithm can be applied to any signal type since the optimal wavelet is selected on a signal-by-signal basis. Examples of application to ECG and EEG signals are also reported.

  19. Multi-resolution simulation of focused ultrasound propagation through ovine skull from a single-element transducer

    NASA Astrophysics Data System (ADS)

    Yoon, Kyungho; Lee, Wonhye; Croce, Phillip; Cammalleri, Amanda; Yoo, Seung-Schik

    2018-05-01

    Transcranial focused ultrasound (tFUS) is emerging as a non-invasive brain stimulation modality. Complicated interactions between acoustic pressure waves and osseous tissue introduce many challenges in the accurate targeting of an acoustic focus through the cranium. Image-guidance accompanied by a numerical simulation is desired to predict the intracranial acoustic propagation through the skull; however, such simulations typically demand heavy computation, which warrants an expedited processing method to provide on-site feedback for the user in guiding the acoustic focus to a particular brain region. In this paper, we present a multi-resolution simulation method based on the finite-difference time-domain formulation to model the transcranial propagation of acoustic waves from a single-element transducer (250 kHz). The multi-resolution approach improved computational efficiency by providing the flexibility in adjusting the spatial resolution. The simulation was also accelerated by utilizing parallelized computation through the graphic processing unit. To evaluate the accuracy of the method, we measured the actual acoustic fields through ex vivo sheep skulls with different sonication incident angles. The measured acoustic fields were compared to the simulation results in terms of focal location, dimensions, and pressure levels. The computational efficiency of the presented method was also assessed by comparing simulation speeds at various combinations of resolution grid settings. The multi-resolution grids consisting of 0.5 and 1.0 mm resolutions gave acceptable accuracy (under 3 mm in terms of focal position and dimension, less than 5% difference in peak pressure ratio) with a speed compatible with semi real-time user feedback (within 30 s). The proposed multi-resolution approach may serve as a novel tool for simulation-based guidance for tFUS applications.

  20. Multi-resolution simulation of focused ultrasound propagation through ovine skull from a single-element transducer.

    PubMed

    Yoon, Kyungho; Lee, Wonhye; Croce, Phillip; Cammalleri, Amanda; Yoo, Seung-Schik

    2018-05-10

    Transcranial focused ultrasound (tFUS) is emerging as a non-invasive brain stimulation modality. Complicated interactions between acoustic pressure waves and osseous tissue introduce many challenges in the accurate targeting of an acoustic focus through the cranium. Image-guidance accompanied by a numerical simulation is desired to predict the intracranial acoustic propagation through the skull; however, such simulations typically demand heavy computation, which warrants an expedited processing method to provide on-site feedback for the user in guiding the acoustic focus to a particular brain region. In this paper, we present a multi-resolution simulation method based on the finite-difference time-domain formulation to model the transcranial propagation of acoustic waves from a single-element transducer (250 kHz). The multi-resolution approach improved computational efficiency by providing the flexibility in adjusting the spatial resolution. The simulation was also accelerated by utilizing parallelized computation through the graphic processing unit. To evaluate the accuracy of the method, we measured the actual acoustic fields through ex vivo sheep skulls with different sonication incident angles. The measured acoustic fields were compared to the simulation results in terms of focal location, dimensions, and pressure levels. The computational efficiency of the presented method was also assessed by comparing simulation speeds at various combinations of resolution grid settings. The multi-resolution grids consisting of 0.5 and 1.0 mm resolutions gave acceptable accuracy (under 3 mm in terms of focal position and dimension, less than 5% difference in peak pressure ratio) with a speed compatible with semi real-time user feedback (within 30 s). The proposed multi-resolution approach may serve as a novel tool for simulation-based guidance for tFUS applications.

  1. Comparison of wavelet based denoising schemes for gear condition monitoring: An Artificial Neural Network based Approach

    NASA Astrophysics Data System (ADS)

    Ahmed, Rounaq; Srinivasa Pai, P.; Sriram, N. S.; Bhat, Vasudeva

    2018-02-01

    Vibration Analysis has been extensively used in recent past for gear fault diagnosis. The vibration signals extracted is usually contaminated with noise and may lead to wrong interpretation of results. The denoising of extracted vibration signals helps the fault diagnosis by giving meaningful results. Wavelet Transform (WT) increases signal to noise ratio (SNR), reduces root mean square error (RMSE) and is effective to denoise the gear vibration signals. The extracted signals have to be denoised by selecting a proper denoising scheme in order to prevent the loss of signal information along with noise. An approach has been made in this work to show the effectiveness of Principal Component Analysis (PCA) to denoise gear vibration signal. In this regard three selected wavelet based denoising schemes namely PCA, Empirical Mode Decomposition (EMD), Neighcoeff Coefficient (NC), has been compared with Adaptive Threshold (AT) an extensively used wavelet based denoising scheme for gear vibration signal. The vibration signals acquired from a customized gear test rig were denoised by above mentioned four denoising schemes. The fault identification capability as well as SNR, Kurtosis and RMSE for the four denoising schemes have been compared. Features extracted from the denoised signals have been used to train and test artificial neural network (ANN) models. The performances of the four denoising schemes have been evaluated based on the performance of the ANN models. The best denoising scheme has been identified, based on the classification accuracy results. PCA is effective in all the regards as a best denoising scheme.

  2. Multi-resolution statistical image reconstruction for mitigation of truncation effects: application to cone-beam CT of the head

    NASA Astrophysics Data System (ADS)

    Dang, Hao; Webster Stayman, J.; Sisniega, Alejandro; Zbijewski, Wojciech; Xu, Jennifer; Wang, Xiaohui; Foos, David H.; Aygun, Nafi; Koliatsos, Vassilis E.; Siewerdsen, Jeffrey H.

    2017-01-01

    A prototype cone-beam CT (CBCT) head scanner featuring model-based iterative reconstruction (MBIR) has been recently developed and demonstrated the potential for reliable detection of acute intracranial hemorrhage (ICH), which is vital to diagnosis of traumatic brain injury and hemorrhagic stroke. However, data truncation (e.g. due to the head holder) can result in artifacts that reduce image uniformity and challenge ICH detection. We propose a multi-resolution MBIR method with an extended reconstruction field of view (RFOV) to mitigate truncation effects in CBCT of the head. The image volume includes a fine voxel size in the (inner) nontruncated region and a coarse voxel size in the (outer) truncated region. This multi-resolution scheme allows extension of the RFOV to mitigate truncation effects while introducing minimal increase in computational complexity. The multi-resolution method was incorporated in a penalized weighted least-squares (PWLS) reconstruction framework previously developed for CBCT of the head. Experiments involving an anthropomorphic head phantom with truncation due to a carbon-fiber holder were shown to result in severe artifacts in conventional single-resolution PWLS, whereas extending the RFOV within the multi-resolution framework strongly reduced truncation artifacts. For the same extended RFOV, the multi-resolution approach reduced computation time compared to the single-resolution approach (viz. time reduced by 40.7%, 83.0%, and over 95% for an image volume of 6003, 8003, 10003 voxels). Algorithm parameters (e.g. regularization strength, the ratio of the fine and coarse voxel size, and RFOV size) were investigated to guide reliable parameter selection. The findings provide a promising method for truncation artifact reduction in CBCT and may be useful for other MBIR methods and applications for which truncation is a challenge.

  3. Clinical utility of wavelet compression for resolution-enhanced chest radiography

    NASA Astrophysics Data System (ADS)

    Andriole, Katherine P.; Hovanes, Michael E.; Rowberg, Alan H.

    2000-05-01

    This study evaluates the usefulness of wavelet compression for resolution-enhanced storage phosphor chest radiographs in the detection of subtle interstitial disease, pneumothorax and other abnormalities. A wavelet compression technique, MrSIDTM (LizardTech, Inc., Seattle, WA), is implemented which compresses the images from their original 2,000 by 2,000 (2K) matrix size, and then decompresses the image data for display at optimal resolution by matching the spatial frequency characteristics of image objects using a 4,000- square matrix. The 2K-matrix computed radiography (CR) chest images are magnified to a 4K-matrix using wavelet series expansion. The magnified images are compared with the original uncompressed 2K radiographs and with two-times magnification of the original images. Preliminary results show radiologist preference for MrSIDTM wavelet-based magnification over magnification of original data, and suggest that the compressed/decompressed images may provide an enhancement to the original. Data collection for clinical trials of 100 chest radiographs including subtle interstitial abnormalities and/or subtle pneumothoraces and normal cases, are in progress. Three experienced thoracic radiologists will view images side-by- side on calibrated softcopy workstations under controlled viewing conditions, and rank order preference tests will be performed. This technique combines image compression with image enhancement, and suggests that compressed/decompressed images can actually improve the originals.

  4. Characterization of palmprints by wavelet signatures via directional context modeling.

    PubMed

    Zhang, Lei; Zhang, David

    2004-06-01

    The palmprint is one of the most reliable physiological characteristics that can be used to distinguish between individuals. Current palmprint-based systems are more user friendly, more cost effective, and require fewer data signatures than traditional fingerprint-based identification systems. The principal lines and wrinkles captured in a low-resolution palmprint image provide more than enough information to uniquely identify an individual. This paper presents a palmprint identification scheme that characterizes a palmprint using a set of statistical signatures. The palmprint is first transformed into the wavelet domain, and the directional context of each wavelet subband is defined and computed in order to collect the predominant coefficients of its principal lines and wrinkles. A set of statistical signatures, which includes gravity center, density, spatial dispersivity and energy, is then defined to characterize the palmprint with the selected directional context values. A classification and identification scheme based on these signatures is subsequently developed. This scheme exploits the features of principal lines and prominent wrinkles sufficiently and achieves satisfactory results. Compared with the line-segments-matching or interesting-points-matching based palmprint verification schemes, the proposed scheme uses a much smaller amount of data signatures. It also provides a convenient classification strategy and more accurate identification.

  5. Iterated oversampled filter banks and wavelet frames

    NASA Astrophysics Data System (ADS)

    Selesnick, Ivan W.; Sendur, Levent

    2000-12-01

    This paper takes up the design of wavelet tight frames that are analogous to Daubechies orthonormal wavelets - that is, the design of minimal length wavelet filters satisfying certain polynomial properties, but now in the oversampled case. The oversampled dyadic DWT considered in this paper is based on a single scaling function and tow distinct wavelets. Having more wavelets than necessary gives a closer spacing between adjacent wavelets within the same scale. As a result, the transform is nearly shift-invariant, and can be used to improve denoising. Because the associated time- frequency lattice preserves the dyadic structure of the critically sampled DWT it can be used with tree-based denoising algorithms that exploit parent-child correlation.

  6. Community detection for fluorescent lifetime microscopy image segmentation

    NASA Astrophysics Data System (ADS)

    Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Achilefu, Samuel; Nussinov, Zohar

    2014-03-01

    Multiresolution community detection (CD) method has been suggested in a recent work as an efficient method for performing unsupervised segmentation of fluorescence lifetime (FLT) images of live cell images containing fluorescent molecular probes.1 In the current paper, we further explore this method in FLT images of ex vivo tissue slices. The image processing problem is framed as identifying clusters with respective average FLTs against a background or "solvent" in FLT imaging microscopy (FLIM) images derived using NIR fluorescent dyes. We have identified significant multiresolution structures using replica correlations in these images, where such correlations are manifested by information theoretic overlaps of the independent solutions ("replicas") attained using the multiresolution CD method from different starting points. In this paper, our method is found to be more efficient than a current state-of-the-art image segmentation method based on mixture of Gaussian distributions. It offers more than 1:25 times diversity based on Shannon index than the latter method, in selecting clusters with distinct average FLTs in NIR FLIM images.

  7. Adaptive multifocus image fusion using block compressed sensing with smoothed projected Landweber integration in the wavelet domain.

    PubMed

    V S, Unni; Mishra, Deepak; Subrahmanyam, G R K S

    2016-12-01

    The need for image fusion in current image processing systems is increasing mainly due to the increased number and variety of image acquisition techniques. Image fusion is the process of combining substantial information from several sensors using mathematical techniques in order to create a single composite image that will be more comprehensive and thus more useful for a human operator or other computer vision tasks. This paper presents a new approach to multifocus image fusion based on sparse signal representation. Block-based compressive sensing integrated with a projection-driven compressive sensing (CS) recovery that encourages sparsity in the wavelet domain is used as a method to get the focused image from a set of out-of-focus images. Compression is achieved during the image acquisition process using a block compressive sensing method. An adaptive thresholding technique within the smoothed projected Landweber recovery process reconstructs high-resolution focused images from low-dimensional CS measurements of out-of-focus images. Discrete wavelet transform and dual-tree complex wavelet transform are used as the sparsifying basis for the proposed fusion. The main finding lies in the fact that sparsification enables a better selection of the fusion coefficients and hence better fusion. A Laplacian mixture model fit is done in the wavelet domain and estimation of the probability density function (pdf) parameters by expectation maximization leads us to the proper selection of the coefficients of the fused image. Using the proposed method compared with the fusion scheme without employing the projected Landweber (PL) scheme and the other existing CS-based fusion approaches, it is observed that with fewer samples itself, the proposed method outperforms other approaches.

  8. Real-Time Detection and Tracking of Vital Signs with an Ambulatory Subject Using Millimeter-Wave Interferometry

    NASA Astrophysics Data System (ADS)

    Mikhelson, Ilya V.

    Finding a subject's heart rate from a distance without any contact is a difficult and very practical problem. This kind of technology would allow more comfortable patient monitoring in hospitals or in home settings. It would also allow another level of security screening, as a person's heart rate increases in stressful situations, such as when lying or hiding malicious intent. In addition, the fact that the heart rate is obtained remotely means that the subject would not have to know he/she is being monitored at all, adding to the efficacy of the measurement. Using millimeter-wave interferometry, a signal can be obtained that contains composite chest wall motion made up of component motions due to cardiac activity, respiration, and interference. To be of use, these components have to be separated from each other by signal processing. To do this, the quadrature and in-phase components of the received signal are analyzed to get a displacement waveform. After that, processing can be done on that waveform in either the time or frequency domains to find the individual heartbeats. The first method is to find the power spectrum of the displacement waveform and to look for peaks corresponding to heartbeats and respiration. Another approach is to examine the signal in the time domain using wavelets for multiresolution analysis. One more method involves studying the statistics of the wavelet-processed signal. The final method uses a heartbeat model along with probabilistic processing to find heartbeats. For any of the above methods to work, the millimeter-wave sensor has to be accurately pointed at the subject's chest. However, even small subject motions can render the rest of the gathered data useless as the antenna may have lost its aim. To combat this, a color and a depth camera are used with a servo-pan/tilt base. My program finds a face in the image and subsequently tracks that face through upcoming frames. The pan/tilt base adjusts the aim of the antenna depending on the subject's position. This makes the entire system self-aiming and also allows the subject to move to a new location and to have data acquisition continue.

  9. SeeSway - A free web-based system for analysing and exploring standing balance data.

    PubMed

    Clark, Ross A; Pua, Yong-Hao

    2018-06-01

    Computerised posturography can be used to assess standing balance, and can predict poor functional outcomes in many clinical populations. A key limitation is the disparate signal filtering and analysis techniques, with many methods requiring custom computer programs. This paper discusses the creation of a freely available web-based software program, SeeSway (www.rehabtools.org/seesway), which was designed to provide powerful tools for pre-processing, analysing and visualising standing balance data in an easy to use and platform independent website. SeeSway links an interactive web platform with file upload capability to software systems including LabVIEW, Matlab, Python and R to perform the data filtering, analysis and visualisation of standing balance data. Input data can consist of any signal that comprises an anterior-posterior and medial-lateral coordinate trace such as center of pressure or mass displacement. This allows it to be used with systems including criterion reference commercial force platforms and three dimensional motion analysis, smartphones, accelerometers and low-cost technology such as Nintendo Wii Balance Board and Microsoft Kinect. Filtering options include Butterworth, weighted and unweighted moving average, and discrete wavelet transforms. Analysis methods include standard techniques such as path length, amplitude, and root mean square in addition to less common but potentially promising methods such as sample entropy, detrended fluctuation analysis and multiresolution wavelet analysis. These data are visualised using scalograms, which chart the change in frequency content over time, scatterplots and standard line charts. This provides the user with a detailed understanding of their results, and how their different pre-processing and analysis method selections affect their findings. An example of the data analysis techniques is provided in the paper, with graphical representation of how advanced analysis methods can better discriminate between someone with neurological impairment and a healthy control. The goal of SeeSway is to provide a simple yet powerful educational and research tool to explore how standing balance is affected in aging and clinical populations. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. An improved wavelet neural network medical image segmentation algorithm with combined maximum entropy

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoqian; Tao, Jinxu; Ye, Zhongfu; Qiu, Bensheng; Xu, Jinzhang

    2018-05-01

    In order to solve the problem of medical image segmentation, a wavelet neural network medical image segmentation algorithm based on combined maximum entropy criterion is proposed. Firstly, we use bee colony algorithm to optimize the network parameters of wavelet neural network, get the parameters of network structure, initial weights and threshold values, and so on, we can quickly converge to higher precision when training, and avoid to falling into relative extremum; then the optimal number of iterations is obtained by calculating the maximum entropy of the segmented image, so as to achieve the automatic and accurate segmentation effect. Medical image segmentation experiments show that the proposed algorithm can reduce sample training time effectively and improve convergence precision, and segmentation effect is more accurate and effective than traditional BP neural network (back propagation neural network : a multilayer feed forward neural network which trained according to the error backward propagation algorithm.

  11. Applying wavelet transforms to analyse aircraft-measured turbulence and turbulent fluxes in the atmospheric boundary layer over eastern Siberia

    NASA Astrophysics Data System (ADS)

    Strunin, M. A.; Hiyama, T.

    2004-11-01

    The wavelet spectral method was applied to aircraft-based measurements of atmospheric turbulence obtained during joint Russian-Japanese research on the atmospheric boundary layer near Yakutsk (eastern Siberia) in April-June 2000. Practical ways to apply Fourier and wavelet methods for aircraft-based turbulence data are described. Comparisons between Fourier and wavelet transform results are shown and they demonstrate, in conjunction with theoretical and experimental restrictions, that the Fourier transform method is not useful for studying non-homogeneous turbulence. The wavelet method is free from many disadvantages of Fourier analysis and can yield more informative results. Comparison of Fourier and Morlet wavelet spectra showed good agreement at high frequencies (small scales). The quality of the wavelet transform and corresponding software was estimated by comparing the original data with restored data constructed with an inverse wavelet transform. A Haar wavelet basis was inappropriate for the turbulence data; the mother wavelet function recommended in this study is the Morlet wavelet. Good agreement was also shown between variances and covariances estimated with different mathematical techniques, i.e. through non-orthogonal wavelet spectra and through eddy correlation methods.

  12. Comparison between wavelet and wavelet packet transform features for classification of faults in distribution system

    NASA Astrophysics Data System (ADS)

    Arvind, Pratul

    2012-11-01

    The ability to identify and classify all ten types of faults in a distribution system is an important task for protection engineers. Unlike transmission system, distribution systems have a complex configuration and are subjected to frequent faults. In the present work, an algorithm has been developed for identifying all ten types of faults in a distribution system by collecting current samples at the substation end. The samples are subjected to wavelet packet transform and artificial neural network in order to yield better classification results. A comparison of results between wavelet transform and wavelet packet transform is also presented thereby justifying the feature extracted from wavelet packet transform yields promising results. It should also be noted that current samples are collected after simulating a 25kv distribution system in PSCAD software.

  13. Fault Diagnosis for Micro-Gas Turbine Engine Sensors via Wavelet Entropy

    PubMed Central

    Yu, Bing; Liu, Dongdong; Zhang, Tianhong

    2011-01-01

    Sensor fault diagnosis is necessary to ensure the normal operation of a gas turbine system. However, the existing methods require too many resources and this need can’t be satisfied in some occasions. Since the sensor readings are directly affected by sensor state, sensor fault diagnosis can be performed by extracting features of the measured signals. This paper proposes a novel fault diagnosis method for sensors based on wavelet entropy. Based on the wavelet theory, wavelet decomposition is utilized to decompose the signal in different scales. Then the instantaneous wavelet energy entropy (IWEE) and instantaneous wavelet singular entropy (IWSE) are defined based on the previous wavelet entropy theory. Subsequently, a fault diagnosis method for gas turbine sensors is proposed based on the results of a numerically simulated example. Then, experiments on this method are carried out on a real micro gas turbine engine. In the experiment, four types of faults with different magnitudes are presented. The experimental results show that the proposed method for sensor fault diagnosis is efficient. PMID:22163734

  14. Fault diagnosis for micro-gas turbine engine sensors via wavelet entropy.

    PubMed

    Yu, Bing; Liu, Dongdong; Zhang, Tianhong

    2011-01-01

    Sensor fault diagnosis is necessary to ensure the normal operation of a gas turbine system. However, the existing methods require too many resources and this need can't be satisfied in some occasions. Since the sensor readings are directly affected by sensor state, sensor fault diagnosis can be performed by extracting features of the measured signals. This paper proposes a novel fault diagnosis method for sensors based on wavelet entropy. Based on the wavelet theory, wavelet decomposition is utilized to decompose the signal in different scales. Then the instantaneous wavelet energy entropy (IWEE) and instantaneous wavelet singular entropy (IWSE) are defined based on the previous wavelet entropy theory. Subsequently, a fault diagnosis method for gas turbine sensors is proposed based on the results of a numerically simulated example. Then, experiments on this method are carried out on a real micro gas turbine engine. In the experiment, four types of faults with different magnitudes are presented. The experimental results show that the proposed method for sensor fault diagnosis is efficient.

  15. Daily water level forecasting using wavelet decomposition and artificial intelligence techniques

    NASA Astrophysics Data System (ADS)

    Seo, Youngmin; Kim, Sungwon; Kisi, Ozgur; Singh, Vijay P.

    2015-01-01

    Reliable water level forecasting for reservoir inflow is essential for reservoir operation. The objective of this paper is to develop and apply two hybrid models for daily water level forecasting and investigate their accuracy. These two hybrid models are wavelet-based artificial neural network (WANN) and wavelet-based adaptive neuro-fuzzy inference system (WANFIS). Wavelet decomposition is employed to decompose an input time series into approximation and detail components. The decomposed time series are used as inputs to artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) for WANN and WANFIS models, respectively. Based on statistical performance indexes, the WANN and WANFIS models are found to produce better efficiency than the ANN and ANFIS models. WANFIS7-sym10 yields the best performance among all other models. It is found that wavelet decomposition improves the accuracy of ANN and ANFIS. This study evaluates the accuracy of the WANN and WANFIS models for different mother wavelets, including Daubechies, Symmlet and Coiflet wavelets. It is found that the model performance is dependent on input sets and mother wavelets, and the wavelet decomposition using mother wavelet, db10, can further improve the efficiency of ANN and ANFIS models. Results obtained from this study indicate that the conjunction of wavelet decomposition and artificial intelligence models can be a useful tool for accurate forecasting daily water level and can yield better efficiency than the conventional forecasting models.

  16. Iterative filtering decomposition based on local spectral evolution kernel

    PubMed Central

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2011-01-01

    The synthesizing information, achieving understanding, and deriving insight from increasingly massive, time-varying, noisy and possibly conflicting data sets are some of most challenging tasks in the present information age. Traditional technologies, such as Fourier transform and wavelet multi-resolution analysis, are inadequate to handle all of the above-mentioned tasks. The empirical model decomposition (EMD) has emerged as a new powerful tool for resolving many challenging problems in data processing and analysis. Recently, an iterative filtering decomposition (IFD) has been introduced to address the stability and efficiency problems of the EMD. Another data analysis technique is the local spectral evolution kernel (LSEK), which provides a near prefect low pass filter with desirable time-frequency localizations. The present work utilizes the LSEK to further stabilize the IFD, and offers an efficient, flexible and robust scheme for information extraction, complexity reduction, and signal and image understanding. The performance of the present LSEK based IFD is intensively validated over a wide range of data processing tasks, including mode decomposition, analysis of time-varying data, information extraction from nonlinear dynamic systems, etc. The utility, robustness and usefulness of the proposed LESK based IFD are demonstrated via a large number of applications, such as the analysis of stock market data, the decomposition of ocean wave magnitudes, the understanding of physiologic signals and information recovery from noisy images. The performance of the proposed method is compared with that of existing methods in the literature. Our results indicate that the LSEK based IFD improves both the efficiency and the stability of conventional EMD algorithms. PMID:22350559

  17. Variable mass pendulum behaviour processed by wavelet analysis

    NASA Astrophysics Data System (ADS)

    Caccamo, M. T.; Magazù, S.

    2017-01-01

    The present work highlights how, in order to characterize the motion of a variable mass pendulum, wavelet analysis can be an effective tool in furnishing information on the time evolution of the oscillation spectral content. In particular, the wavelet transform is applied to process the motion of a hung funnel that loses fine sand at an exponential rate; it is shown how, in contrast to the Fourier transform which furnishes only an average frequency value for the motion, the wavelet approach makes it possible to perform a joint time-frequency analysis. The work is addressed at undergraduate and graduate students.

  18. On the probability density function and characteristic function moments of image steganalysis in the log prediction error wavelet subband

    NASA Astrophysics Data System (ADS)

    Bao, Zhenkun; Li, Xiaolong; Luo, Xiangyang

    2017-01-01

    Extracting informative statistic features is the most essential technical issue of steganalysis. Among various steganalysis methods, probability density function (PDF) and characteristic function (CF) moments are two important types of features due to the excellent ability for distinguishing the cover images from the stego ones. The two types of features are quite similar in definition. The only difference is that the PDF moments are computed in the spatial domain, while the CF moments are computed in the Fourier-transformed domain. Then, the comparison between PDF and CF moments is an interesting question of steganalysis. Several theoretical results have been derived, and CF moments are proved better than PDF moments in some cases. However, in the log prediction error wavelet subband of wavelet decomposition, some experiments show that the result is opposite and lacks a rigorous explanation. To solve this problem, a comparison result based on the rigorous proof is presented: the first-order PDF moment is proved better than the CF moment, while the second-order CF moment is better than the PDF moment. It tries to open the theoretical discussion on steganalysis and the question of finding suitable statistical features.

  19. Boundary element based multiresolution shape optimisation in electrostatics

    NASA Astrophysics Data System (ADS)

    Bandara, Kosala; Cirak, Fehmi; Of, Günther; Steinbach, Olaf; Zapletal, Jan

    2015-09-01

    We consider the shape optimisation of high-voltage devices subject to electrostatic field equations by combining fast boundary elements with multiresolution subdivision surfaces. The geometry of the domain is described with subdivision surfaces and different resolutions of the same geometry are used for optimisation and analysis. The primal and adjoint problems are discretised with the boundary element method using a sufficiently fine control mesh. For shape optimisation the geometry is updated starting from the coarsest control mesh with increasingly finer control meshes. The multiresolution approach effectively prevents the appearance of non-physical geometry oscillations in the optimised shapes. Moreover, there is no need for mesh regeneration or smoothing during the optimisation due to the absence of a volume mesh. We present several numerical experiments and one industrial application to demonstrate the robustness and versatility of the developed approach.

  20. Fourier and wavelet analyses of intermittent and resonant pressure components in a slot burner

    NASA Astrophysics Data System (ADS)

    Pagliaroli, Tiziano; Mancinelli, Matteo; Troiani, Guido; Iemma, Umberto; Camussi, Roberto

    2018-01-01

    In laboratory-scale burner it has been observed that the acoustic excitations change the flame topology inducing asymmetry and oscillations. Hence, an acoustic and aeroacoustic study in non reactive condition is of primary importance during the design stage of a new burner in order to avoid the development of standing waves which can force the flame. So wall pressure fluctuations inside and outside of a novel slot burner have been studied experimentally and numerically for a broad range of geometrical parameters and mass flow rates. Wall pressure fluctuations have been measured through cavity-mounted microphones, providing uni- and multi-variate pressure statistics in both the time and frequency domains. Furthermore, since the onset of combustion-driven oscillations is always presaged by intermittent bursts of high amplitude, a wavelet-based conditional sampling procedure was applied to the database in order to detect coherent signatures embedded in the pressure time signals. Since for a particular case the coherent structures identified have a multi-scale signature, a wavelet-based decomposition technique was proposed as well to separate the contribution of the large- and small-scale flow structures to the pressure fluctuation field. As a main outcome of the activity no coupling between standing waves and velocity fluctuations was observed, but only well localized pressure signatures with shape strongly affected by the neighbouring flow physics.

  1. Discrete wavelet transform: a tool in smoothing kinematic data.

    PubMed

    Ismail, A R; Asfour, S S

    1999-03-01

    Motion analysis systems typically introduce noise to the displacement data recorded. Butterworth digital filters have been used to smooth the displacement data in order to obtain smoothed velocities and accelerations. However, this technique does not yield satisfactory results, especially when dealing with complex kinematic motions that occupy the low- and high-frequency bands. The use of the discrete wavelet transform, as an alternative to digital filters, is presented in this paper. The transform passes the original signal through two complementary low- and high-pass FIR filters and decomposes the signal into an approximation function and a detail function. Further decomposition of the signal results in transforming the signal into a hierarchy set of orthogonal approximation and detail functions. A reverse process is employed to perfectly reconstruct the signal (inverse transform) back from its approximation and detail functions. The discrete wavelet transform was applied to the displacement data recorded by Pezzack et al., 1977. The smoothed displacement data were twice differentiated and compared to Pezzack et al.'s acceleration data in order to choose the most appropriate filter coefficients and decomposition level on the basis of maximizing the percentage of retained energy (PRE) and minimizing the root mean square error (RMSE). Daubechies wavelet of the fourth order (Db4) at the second decomposition level showed better results than both the biorthogonal and Coiflet wavelets (PRE = 97.5%, RMSE = 4.7 rad s-2). The Db4 wavelet was then used to compress complex displacement data obtained from a noisy mathematically generated function. Results clearly indicate superiority of this new smoothing approach over traditional filters.

  2. Application of time–frequency wavelet analysis in the reflectometry of thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Astaf’ev, S. B., E-mail: bard@crys.ras.ru; Shchedrin, B. M.; Yanusova, L. G.

    2017-03-15

    The application of time–frequency wavelet analysis for solving the reflectometry inverse problem is considered. It is shown that a simultaneous transform of specular intensity curve, depending on the grazing angle and spatial frequency, allows one to determine not only the thickness but also the alteration order of individual regions (layers) with characteristic behavior of electron density. This information makes it possible to reconstruct the electron density profile in the film cross section as a whole (i.e., to solve the inverse reflectometry problem). The application of the time–frequency transform is illustrated by examples of reconstructing (based on X-ray reflectivity data) themore » layer alternation order in models of two-layer films with inverted arrangement of layers and a four-layer film on a solid substrate.« less

  3. A High Order Finite Difference Scheme with Sharp Shock Resolution for the Euler Equations

    NASA Technical Reports Server (NTRS)

    Gerritsen, Margot; Olsson, Pelle

    1996-01-01

    We derive a high-order finite difference scheme for the Euler equations that satisfies a semi-discrete energy estimate, and present an efficient strategy for the treatment of discontinuities that leads to sharp shock resolution. The formulation of the semi-discrete energy estimate is based on a symmetrization of the Euler equations that preserves the homogeneity of the flux vector, a canonical splitting of the flux derivative vector, and the use of difference operators that satisfy a discrete analogue to the integration by parts procedure used in the continuous energy estimate. Around discontinuities or sharp gradients, refined grids are created on which the discrete equations are solved after adding a newly constructed artificial viscosity. The positioning of the sub-grids and computation of the viscosity are aided by a detection algorithm which is based on a multi-scale wavelet analysis of the pressure grid function. The wavelet theory provides easy to implement mathematical criteria to detect discontinuities, sharp gradients and spurious oscillations quickly and efficiently.

  4. Coherent vorticity extraction in resistive drift-wave turbulence: Comparison of orthogonal wavelets versus proper orthogonal decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Futatani, S.; Bos, W.J.T.; Del-Castillo-Negrete, Diego B

    2011-01-01

    We assess two techniques for extracting coherent vortices out of turbulent flows: the wavelet based Coherent Vorticity Extraction (CVE) and the Proper Orthogonal Decomposition (POD). The former decomposes the flow field into an orthogonal wavelet representation and subsequent thresholding of the coefficients allows one to split the flow into organized coherent vortices with non-Gaussian statistics and an incoherent random part which is structureless. POD is based on the singular value decomposition and decomposes the flow into basis functions which are optimal with respect to the retained energy for the ensemble average. Both techniques are applied to direct numerical simulation datamore » of two-dimensional drift-wave turbulence governed by Hasegawa Wakatani equation, considering two limit cases: the quasi-hydrodynamic and the quasi-adiabatic regimes. The results are compared in terms of compression rate, retained energy, retained enstrophy and retained radial flux, together with the enstrophy spectrum and higher order statistics. (c) 2010 Published by Elsevier Masson SAS on behalf of Academie des sciences.« less

  5. Generation of Ground Truth Datasets for the Analysis of 3d Point Clouds in Urban Scenes Acquired via Different Sensors

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Sun, Z.; Boerner, R.; Koch, T.; Hoegner, L.; Stilla, U.

    2018-04-01

    In this work, we report a novel way of generating ground truth dataset for analyzing point cloud from different sensors and the validation of algorithms. Instead of directly labeling large amount of 3D points requiring time consuming manual work, a multi-resolution 3D voxel grid for the testing site is generated. Then, with the help of a set of basic labeled points from the reference dataset, we can generate a 3D labeled space of the entire testing site with different resolutions. Specifically, an octree-based voxel structure is applied to voxelize the annotated reference point cloud, by which all the points are organized by 3D grids of multi-resolutions. When automatically annotating the new testing point clouds, a voting based approach is adopted to the labeled points within multiple resolution voxels, in order to assign a semantic label to the 3D space represented by the voxel. Lastly, robust line- and plane-based fast registration methods are developed for aligning point clouds obtained via various sensors. Benefiting from the labeled 3D spatial information, we can easily create new annotated 3D point clouds of different sensors of the same scene directly by considering the corresponding labels of 3D space the points located, which would be convenient for the validation and evaluation of algorithms related to point cloud interpretation and semantic segmentation.

  6. Discrete Wavelet Transform for Fault Locations in Underground Distribution System

    NASA Astrophysics Data System (ADS)

    Apisit, C.; Ngaopitakkul, A.

    2010-10-01

    In this paper, a technique for detecting faults in underground distribution system is presented. Discrete Wavelet Transform (DWT) based on traveling wave is employed in order to detect the high frequency components and to identify fault locations in the underground distribution system. The first peak time obtained from the faulty bus is employed for calculating the distance of fault from sending end. The validity of the proposed technique is tested with various fault inception angles, fault locations and faulty phases. The result is found that the proposed technique provides satisfactory result and will be very useful in the development of power systems protection scheme.

  7. A wavelet-based Gaussian method for energy dispersive X-ray fluorescence spectrum.

    PubMed

    Liu, Pan; Deng, Xiaoyan; Tang, Xin; Shen, Shijian

    2017-05-01

    This paper presents a wavelet-based Gaussian method (WGM) for the peak intensity estimation of energy dispersive X-ray fluorescence (EDXRF). The relationship between the parameters of Gaussian curve and the wavelet coefficients of Gaussian peak point is firstly established based on the Mexican hat wavelet. It is found that the Gaussian parameters can be accurately calculated by any two wavelet coefficients at the peak point which has to be known. This fact leads to a local Gaussian estimation method for spectral peaks, which estimates the Gaussian parameters based on the detail wavelet coefficients of Gaussian peak point. The proposed method is tested via simulated and measured spectra from an energy X-ray spectrometer, and compared with some existing methods. The results prove that the proposed method can directly estimate the peak intensity of EDXRF free from the background information, and also effectively distinguish overlap peaks in EDXRF spectrum.

  8. Synthesis of wavelet envelope in 2-D random media having power-law spectra: comparison with FD simulations

    NASA Astrophysics Data System (ADS)

    Sato, Haruo; Fehler, Michael C.

    2016-10-01

    The envelope broadening and the peak delay of the S-wavelet of a small earthquake with increasing travel distance are results of scattering by random velocity inhomogeneities in the earth medium. As a simple mathematical model, Sato proposed a new stochastic synthesis of the scalar wavelet envelope in 3-D von Kármán type random media when the centre wavenumber of the wavelet is in the power-law spectral range of the random velocity fluctuation. The essential idea is to split the random medium spectrum into two components using the centre wavenumber as a reference: the long-scale (low-wavenumber spectral) component produces the peak delay and the envelope broadening by multiple scattering around the forward direction; the short-scale (high-wavenumber spectral) component attenuates wave amplitude by wide angle scattering. The former is calculated by the Markov approximation based on the parabolic approximation and the latter is calculated by the Born approximation. Here, we extend the theory for the envelope synthesis of a wavelet in 2-D random media, which makes it easy to compare with finite difference (FD) simulation results. The synthetic wavelet envelope is analytically written by using the random medium parameters in the angular frequency domain. For the case that the power spectral density function of the random velocity fluctuation has a steep roll-off at large wavenumbers, the envelope broadening is small and frequency independent, and scattering attenuation is weak. For the case of a small roll-off, however, the envelope broadening is large and increases with frequency, and the scattering attenuation is strong and increases with frequency. As a preliminary study, we compare synthetic wavelet envelopes with the average of FD simulation wavelet envelopes in 50 synthesized random media, which are characterized by the RMS fractional velocity fluctuation ε = 0.05, correlation scale a = 5 km and the background wave velocity V0 = 4 km s-1. We use the radiation of a 2 Hz Ricker wavelet from a point source. For all the cases of von Kármán order κ = 0.1, 0.5 and 1, we find the synthetic wavelet envelopes are a good match to the characteristics of FD simulation wavelet envelopes in a time window starting from the onset through the maximum peak to the time when the amplitude decreases to half the peak amplitude.

  9. Imaging reconstruction based on improved wavelet denoising combined with parallel-beam filtered back-projection algorithm

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Huang, Zhen

    2012-11-01

    The image reconstruction is a key step in medical imaging (MI) and its algorithm's performance determinates the quality and resolution of reconstructed image. Although some algorithms have been used, filter back-projection (FBP) algorithm is still the classical and commonly-used algorithm in clinical MI. In FBP algorithm, filtering of original projection data is a key step in order to overcome artifact of the reconstructed image. Since simple using of classical filters, such as Shepp-Logan (SL), Ram-Lak (RL) filter have some drawbacks and limitations in practice, especially for the projection data polluted by non-stationary random noises. So, an improved wavelet denoising combined with parallel-beam FBP algorithm is used to enhance the quality of reconstructed image in this paper. In the experiments, the reconstructed effects were compared between the improved wavelet denoising and others (directly FBP, mean filter combined FBP and median filter combined FBP method). To determine the optimum reconstruction effect, different algorithms, and different wavelet bases combined with three filters were respectively test. Experimental results show the reconstruction effect of improved FBP algorithm is better than that of others. Comparing the results of different algorithms based on two evaluation standards i.e. mean-square error (MSE), peak-to-peak signal-noise ratio (PSNR), it was found that the reconstructed effects of the improved FBP based on db2 and Hanning filter at decomposition scale 2 was best, its MSE value was less and the PSNR value was higher than others. Therefore, this improved FBP algorithm has potential value in the medical imaging.

  10. A novel coupling of noise reduction algorithms for particle flow simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimoń, M.J., E-mail: malgorzata.zimon@stfc.ac.uk; James Weir Fluids Lab, Mechanical and Aerospace Engineering Department, The University of Strathclyde, Glasgow G1 1XJ; Reese, J.M.

    2016-09-15

    Proper orthogonal decomposition (POD) and its extension based on time-windows have been shown to greatly improve the effectiveness of recovering smooth ensemble solutions from noisy particle data. However, to successfully de-noise any molecular system, a large number of measurements still need to be provided. In order to achieve a better efficiency in processing time-dependent fields, we have combined POD with a well-established signal processing technique, wavelet-based thresholding. In this novel hybrid procedure, the wavelet filtering is applied within the POD domain and referred to as WAVinPOD. The algorithm exhibits promising results when applied to both synthetically generated signals and particlemore » data. In this work, the simulations compare the performance of our new approach with standard POD or wavelet analysis in extracting smooth profiles from noisy velocity and density fields. Numerical examples include molecular dynamics and dissipative particle dynamics simulations of unsteady force- and shear-driven liquid flows, as well as phase separation phenomenon. Simulation results confirm that WAVinPOD preserves the dimensionality reduction obtained using POD, while improving its filtering properties through the sparse representation of data in wavelet basis. This paper shows that WAVinPOD outperforms the other estimators for both synthetically generated signals and particle-based measurements, achieving a higher signal-to-noise ratio from a smaller number of samples. The new filtering methodology offers significant computational savings, particularly for multi-scale applications seeking to couple continuum informations with atomistic models. It is the first time that a rigorous analysis has compared de-noising techniques for particle-based fluid simulations.« less

  11. Wavelet-like bases for thin-wire integral equations in electromagnetics

    NASA Astrophysics Data System (ADS)

    Francomano, E.; Tortorici, A.; Toscano, E.; Ala, G.; Viola, F.

    2005-03-01

    In this paper, wavelets are used in solving, by the method of moments, a modified version of the thin-wire electric field integral equation, in frequency domain. The time domain electromagnetic quantities, are obtained by using the inverse discrete fast Fourier transform. The retarded scalar electric and vector magnetic potentials are employed in order to obtain the integral formulation. The discretized model generated by applying the direct method of moments via point-matching procedure, results in a linear system with a dense matrix which have to be solved for each frequency of the Fourier spectrum of the time domain impressed source. Therefore, orthogonal wavelet-like basis transform is used to sparsify the moment matrix. In particular, dyadic and M-band wavelet transforms have been adopted, so generating different sparse matrix structures. This leads to an efficient solution in solving the resulting sparse matrix equation. Moreover, a wavelet preconditioner is used to accelerate the convergence rate of the iterative solver employed. These numerical features are used in analyzing the transient behavior of a lightning protection system. In particular, the transient performance of the earth termination system of a lightning protection system or of the earth electrode of an electric power substation, during its operation is focused. The numerical results, obtained by running a complex structure, are discussed and the features of the used method are underlined.

  12. Mustiscaling Analysis applied to field Water Content through Distributed Fiber Optic Temperature sensing measurements

    NASA Astrophysics Data System (ADS)

    Benitez Buelga, Javier; Rodriguez-Sinobas, Leonor; Sanchez, Raul; Gil, Maria; Tarquis, Ana M.

    2014-05-01

    Soils can be seen as the result of spatial variation operating over several scales. This observation points to 'variability' as a key soil attribute that should be studied. Soil variability has often been considered to be composed of 'functional' (explained) variations plus random fluctuations or noise. However, the distinction between these two components is scale dependent because increasing the scale of observation almost always reveals structure in the noise. Geostatistical methods and, more recently, multifractal/wavelet techniques have been used to characterize scaling and heterogeneity of soil properties among others coming from complexity science. Multifractal formalism, first proposed by Mandelbrot (1982), is suitable for variables with self-similar distribution on a spatial domain (Kravchenko et al., 2002). Multifractal analysis can provide insight into spatial variability of crop or soil parameters (Vereecken et al., 2007). This technique has been used to characterize the scaling property of a variable measured along a transect as a mass distribution of a statistical measure on a spatial domain of the studied field (Zeleke and Si, 2004). To do this, it divides the transect into a number of self-similar segments. It identifies the differences among the subsets by using a wide range of statistical moments. Wavelets were developed in the 1980s for signal processing, and later introduced to soil science by Lark and Webster (1999). The wavelet transform decomposes a series; whether this be a time series (Whitcher, 1998; Percival and Walden, 2000), or as in our case a series of measurements made along a transect; into components (wavelet coefficients) which describe local variation in the series at different scale (or frequency) intervals, giving up only some resolution in space (Lark et al., 2003, 2004). Wavelet coefficients can be used to estimate scale specific components of variation and correlation. This allows us to see which scales contribute most to signal variation, or to see at which scales signals are most correlated. This can give us an insight into the dominant processes An alternative to both of the above methods has been described recently. Relative entropy and increments in relative entropy has been applied in soil images (Bird et al., 2006) and in soil transect data (Tarquis et al., 2008) to study scale effects localized in scale and provide the information that is complementary to the information about scale dependencies found across a range of scales. We will use them in this work to describe the spatial scaling properties of a set of field water content data measured in an extension of a corn field, in a plot of 500 m2 and an spatial resolution of 25 cm. These measurements are based on an optics cable (BruggSteal) buried on a ziz-zag deployment at 30cm depth. References Bird, N., M.C. Díaz, A. Saa, and A.M. Tarquis. 2006. A review of fractal and multifractal analysis of soil pore-scale images. J. Hydrol. 322:211-219. Kravchenko, A.N., R. Omonode, G.A. Bollero, and D.G. Bullock. 2002. Quantitative mapping of soil drainage classes using topographical data and soil electrical conductivity. Soil Sci. Soc. Am. J. 66:235-243. Lark, R.M., A.E. Milne, T.M. Addiscott, K.W.T. Goulding, C.P. Webster, and S. O'Flaherty. 2004. Scale- and location-dependent correlation of nitrous oxide emissions with soil properties: An analysis using wavelets. Eur. J. Soil Sci. 55:611-627. Lark, R.M., S.R. Kaffka, and D.L. Corwin. 2003. Multiresolution analysis of data on electrical conductivity of soil using wavelets. J. Hydrol. 272:276-290. Lark, R. M. and Webster, R. 1999. Analysis and elucidation of soil variation using wavelets. European J. of Soil Science, 50(2): 185-206. Mandelbrot, B.B. 1982. The fractal geometry of nature. W.H. Freeman, New York. Percival, D.B., and A.T. Walden. 2000. Wavelet methods for time series analysis. Cambridge Univ. Press, Cambridge, UK. Tarquis, A.M., N.R. Bird, A.P. Whitmore, M.C. Cartagena, and Y. Pachepsky. 2008. Multiscale analysis of soil transect data. Vadose Zone J. 7: 563-569. Vereecken, H., R. Kasteel, J. Vanderborght, and T. Harter. 2007. Upscaling hydraulic properties and soil water flow processes in heterogeneous soils: A review. Vadose Zone J. 6:1-28. Whitcher, B.J. 1998. Assessing nonstationary time series using wavelets. Ph.D. diss. Univ. of Washington, Seattle (Diss. Abstr. 9907961). Zeleke, T.B., and B.C. Si. 2004. Scaling properties of topographic indices and crop yield: Multifractal and joint multifractal approaches. Agron J., 96:1082-1090.

  13. Quantification of localized vertebral deformities using a sparse wavelet-based shape model.

    PubMed

    Zewail, R; Elsafi, A; Durdle, N

    2008-01-01

    Medical experts often examine hundreds of spine x-ray images to determine existence of various pathologies. Common pathologies of interest are anterior osteophites, disc space narrowing, and wedging. By careful inspection of the outline shapes of the vertebral bodies, experts are able to identify and assess vertebral abnormalities with respect to the pathology under investigation. In this paper, we present a novel method for quantification of vertebral deformation using a sparse shape model. Using wavelets and Independent component analysis (ICA), we construct a sparse shape model that benefits from the approximation power of wavelets and the capability of ICA to capture higher order statistics in wavelet space. The new model is able to capture localized pathology-related shape deformations, hence it allows for quantification of vertebral shape variations. We investigate the capability of the model to predict localized pathology related deformations. Next, using support-vector machines, we demonstrate the diagnostic capabilities of the method through the discrimination of anterior osteophites in lumbar vertebrae. Experiments were conducted using a set of 150 contours from digital x-ray images of lumbar spine. Each vertebra is labeled as normal or abnormal. Results reported in this work focus on anterior osteophites as the pathology of interest.

  14. Hybrid wavelet-support vector machine approach for modelling rainfall-runoff process.

    PubMed

    Komasi, Mehdi; Sharghi, Soroush

    2016-01-01

    Because of the importance of water resources management, the need for accurate modeling of the rainfall-runoff process has rapidly grown in the past decades. Recently, the support vector machine (SVM) approach has been used by hydrologists for rainfall-runoff modeling and the other fields of hydrology. Similar to the other artificial intelligence models, such as artificial neural network (ANN) and adaptive neural fuzzy inference system, the SVM model is based on the autoregressive properties. In this paper, the wavelet analysis was linked to the SVM model concept for modeling the rainfall-runoff process of Aghchai and Eel River watersheds. In this way, the main time series of two variables, rainfall and runoff, were decomposed to multiple frequent time series by wavelet theory; then, these time series were imposed as input data on the SVM model in order to predict the runoff discharge one day ahead. The obtained results show that the wavelet SVM model can predict both short- and long-term runoff discharges by considering the seasonality effects. Also, the proposed hybrid model is relatively more appropriate than classical autoregressive ones such as ANN and SVM because it uses the multi-scale time series of rainfall and runoff data in the modeling process.

  15. Influence of pansharpening techniques in obtaining accurate vegetation thematic maps

    NASA Astrophysics Data System (ADS)

    Ibarrola-Ulzurrun, Edurne; Gonzalo-Martin, Consuelo; Marcello-Ruiz, Javier

    2016-10-01

    In last decades, there have been a decline in natural resources, becoming important to develop reliable methodologies for their management. The appearance of very high resolution sensors has offered a practical and cost-effective means for a good environmental management. In this context, improvements are needed for obtaining higher quality of the information available in order to get reliable classified images. Thus, pansharpening enhances the spatial resolution of the multispectral band by incorporating information from the panchromatic image. The main goal in the study is to implement pixel and object-based classification techniques applied to the fused imagery using different pansharpening algorithms and the evaluation of thematic maps generated that serve to obtain accurate information for the conservation of natural resources. A vulnerable heterogenic ecosystem from Canary Islands (Spain) was chosen, Teide National Park, and Worldview-2 high resolution imagery was employed. The classes considered of interest were set by the National Park conservation managers. 7 pansharpening techniques (GS, FIHS, HCS, MTF based, Wavelet `à trous' and Weighted Wavelet `à trous' through Fractal Dimension Maps) were chosen in order to improve the data quality with the goal to analyze the vegetation classes. Next, different classification algorithms were applied at pixel-based and object-based approach, moreover, an accuracy assessment of the different thematic maps obtained were performed. The highest classification accuracy was obtained applying Support Vector Machine classifier at object-based approach in the Weighted Wavelet `à trous' through Fractal Dimension Maps fused image. Finally, highlight the difficulty of the classification in Teide ecosystem due to the heterogeneity and the small size of the species. Thus, it is important to obtain accurate thematic maps for further studies in the management and conservation of natural resources.

  16. Embedded DCT and wavelet methods for fine granular scalable video: analysis and comparison

    NASA Astrophysics Data System (ADS)

    van der Schaar-Mitrea, Mihaela; Chen, Yingwei; Radha, Hayder

    2000-04-01

    Video transmission over bandwidth-varying networks is becoming increasingly important due to emerging applications such as streaming of video over the Internet. The fundamental obstacle in designing such systems resides in the varying characteristics of the Internet (i.e. bandwidth variations and packet-loss patterns). In MPEG-4, a new SNR scalability scheme, called Fine-Granular-Scalability (FGS), is currently under standardization, which is able to adapt in real-time (i.e. at transmission time) to Internet bandwidth variations. The FGS framework consists of a non-scalable motion-predicted base-layer and an intra-coded fine-granular scalable enhancement layer. For example, the base layer can be coded using a DCT-based MPEG-4 compliant, highly efficient video compression scheme. Subsequently, the difference between the original and decoded base-layer is computed, and the resulting FGS-residual signal is intra-frame coded with an embedded scalable coder. In order to achieve high coding efficiency when compressing the FGS enhancement layer, it is crucial to analyze the nature and characteristics of residual signals common to the SNR scalability framework (including FGS). In this paper, we present a thorough analysis of SNR residual signals by evaluating its statistical properties, compaction efficiency and frequency characteristics. The signal analysis revealed that the energy compaction of the DCT and wavelet transforms is limited and the frequency characteristic of SNR residual signals decay rather slowly. Moreover, the blockiness artifacts of the low bit-rate coded base-layer result in artificial high frequencies in the residual signal. Subsequently, a variety of wavelet and embedded DCT coding techniques applicable to the FGS framework are evaluated and their results are interpreted based on the identified signal properties. As expected from the theoretical signal analysis, the rate-distortion performances of the embedded wavelet and DCT-based coders are very similar. However, improved results can be obtained for the wavelet coder by deblocking the base- layer prior to the FGS residual computation. Based on the theoretical analysis and our measurements, we can conclude that for an optimal complexity versus coding-efficiency trade- off, only limited wavelet decomposition (e.g. 2 stages) needs to be performed for the FGS-residual signal. Also, it was observed that the good rate-distortion performance of a coding technique for a certain image type (e.g. natural still-images) does not necessarily translate into similarly good performance for signals with different visual characteristics and statistical properties.

  17. A Data-Gathering Scheme with Joint Routing and Compressive Sensing Based on Modified Diffusion Wavelets in Wireless Sensor Networks.

    PubMed

    Gu, Xiangping; Zhou, Xiaofeng; Sun, Yanjing

    2018-02-28

    Compressive sensing (CS)-based data gathering is a promising method to reduce energy consumption in wireless sensor networks (WSNs). Traditional CS-based data-gathering approaches require a large number of sensor nodes to participate in each CS measurement task, resulting in high energy consumption, and do not guarantee load balance. In this paper, we propose a sparser analysis that depends on modified diffusion wavelets, which exploit sensor readings' spatial correlation in WSNs. In particular, a novel data-gathering scheme with joint routing and CS is presented. A modified ant colony algorithm is adopted, where next hop node selection takes a node's residual energy and path length into consideration simultaneously. Moreover, in order to speed up the coverage rate and avoid the local optimal of the algorithm, an improved pheromone impact factor is put forward. More importantly, theoretical proof is given that the equivalent sensing matrix generated can satisfy the restricted isometric property (RIP). The simulation results demonstrate that the modified diffusion wavelets' sparsity affects the sensor signal and has better reconstruction performance than DFT. Furthermore, our data gathering with joint routing and CS can dramatically reduce the energy consumption of WSNs, balance the load, and prolong the network lifetime in comparison to state-of-the-art CS-based methods.

  18. A global strategy based on experiments and simulations for squeal prediction on industrial railway brakes

    NASA Astrophysics Data System (ADS)

    Sinou, J.-J.; Loyer, A.; Chiello, O.; Mogenier, G.; Lorang, X.; Cocheteux, F.; Bellaj, S.

    2013-09-01

    This paper presents an overview of recent experimental and numerical investigations on industrial railway brakes. The goal of the present study is to discuss the relevance of the mechanical modeling strategy for squeal prediction. Specific experimental set-ups based on transient and controlled braking tests are designed for this purpose. Measurements are performed on it to investigate the dynamic behavior of TGV squeal noise and its squeal characterization through experiments. It will be demonstrated that it is possible to build consistent and efficient finite element models to simulate squeal events in TGV brake systems. The numerical strategy will be presented, including not only the modeling of the TGV brake system and the stability analysis, but also the transient nonlinear dynamic and computational process based on efficient reduced basis. This complete numerical strategy allows us to perform relevance squeal prediction on industrial railway brakes. This study comes within the scope of a research program AcouFren that is supported by ADEME (Agence De l'Environnement et de la Maîtrise de l'Energie) concerning the reduction of the squeal noise generated by high power railway disc brakes. experiments with an evolution of the rotational speed of the disc: these tests are called "transient braking tests" and correspond to real braking tests, experiments with a controlled steady rotational speed (i.e. dynamic fluctuations in rotational speed are not significant): these tests are called "controlled braking tests". In the present study, the Continuous Wavelet Transform (CWT) [20] is used to study the time-history responses of the TGV brake system. So, a brief basic theory of the wavelet analysis that transforms a signal into wavelets that are well localized both in frequency and time is presented in this part of the paper. Considering a function f(t), the associated Continuous Wavelet Transform (CWT) corresponds to a wavelet transform given by W(a,b)=∫-∞+∞f(t)ψa,b*(t) dt where ψ(t)={1}/{√{a}}ψ({t-b}/{a}) where a and b define the scale parameter and the time translation factor, respectively. The asterisk ψa,b* indicates the complex conjugate of ψ that are the daughter wavelets (i.e. the dilated and shifted versions of the "'mother"' wavelet ψ that is continuous in both time and frequency). The mother wavelet must satisfy an admissibility criterion in order to get a stably invertible transform.

  19. Wavelet-based identification of rotor blades in passage-through-resonance tests

    NASA Astrophysics Data System (ADS)

    Carassale, Luigi; Marrè-Brunenghi, Michela; Patrone, Stefano

    2018-01-01

    Turbine blades are critical components in turbo engines and their design process usually includes experimental tests in order to validate and/or update numerical models. These tests are generally carried out on full-scale rotors having some blades instrumented with strain gauges and usually involve a run-up or a run-down phase. The quantification of damping in these conditions is rather challenging for several reasons. In this work, we show through numerical simulations that the usual identification procedures lead to a systematic overestimation of damping due both to the finite sweep velocity, as well as to the variation of the blade natural frequencies with the rotation speed. To overcome these problems, an identification procedure based on the continuous wavelet transform is proposed and validated through numerical simulation.

  20. Wavelet-based compression of pathological images for telemedicine applications

    NASA Astrophysics Data System (ADS)

    Chen, Chang W.; Jiang, Jianfei; Zheng, Zhiyong; Wu, Xue G.; Yu, Lun

    2000-05-01

    In this paper, we present the performance evaluation of wavelet-based coding techniques as applied to the compression of pathological images for application in an Internet-based telemedicine system. We first study how well suited the wavelet-based coding is as it applies to the compression of pathological images, since these images often contain fine textures that are often critical to the diagnosis of potential diseases. We compare the wavelet-based compression with the DCT-based JPEG compression in the DICOM standard for medical imaging applications. Both objective and subjective measures have been studied in the evaluation of compression performance. These studies are performed in close collaboration with expert pathologists who have conducted the evaluation of the compressed pathological images and communication engineers and information scientists who designed the proposed telemedicine system. These performance evaluations have shown that the wavelet-based coding is suitable for the compression of various pathological images and can be integrated well with the Internet-based telemedicine systems. A prototype of the proposed telemedicine system has been developed in which the wavelet-based coding is adopted for the compression to achieve bandwidth efficient transmission and therefore speed up the communications between the remote terminal and the central server of the telemedicine system.

  1. Peak finding using biorthogonal wavelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, C.Y.

    2000-02-01

    The authors show in this paper how they can find the peaks in the input data if the underlying signal is a sum of Lorentzians. In order to project the data into a space of Lorentzian like functions, they show explicitly the construction of scaling functions which look like Lorentzians. From this construction, they can calculate the biorthogonal filter coefficients for both the analysis and synthesis functions. They then compare their biorthogonal wavelets to the FBI (Federal Bureau of Investigations) wavelets when used for peak finding in noisy data. They will show that in this instance, their filters perform muchmore » better than the FBI wavelets.« less

  2. Comparison between deterministic and statistical wavelet estimation methods through predictive deconvolution: Seismic to well tie example from the North Sea

    NASA Astrophysics Data System (ADS)

    de Macedo, Isadora A. S.; da Silva, Carolina B.; de Figueiredo, J. J. S.; Omoboya, Bode

    2017-01-01

    Wavelet estimation as well as seismic-to-well tie procedures are at the core of every seismic interpretation workflow. In this paper we perform a comparative study of wavelet estimation methods for seismic-to-well tie. Two approaches to wavelet estimation are discussed: a deterministic estimation, based on both seismic and well log data, and a statistical estimation, based on predictive deconvolution and the classical assumptions of the convolutional model, which provides a minimum-phase wavelet. Our algorithms, for both wavelet estimation methods introduce a semi-automatic approach to determine the optimum parameters of deterministic wavelet estimation and statistical wavelet estimation and, further, to estimate the optimum seismic wavelets by searching for the highest correlation coefficient between the recorded trace and the synthetic trace, when the time-depth relationship is accurate. Tests with numerical data show some qualitative conclusions, which are probably useful for seismic inversion and interpretation of field data, by comparing deterministic wavelet estimation and statistical wavelet estimation in detail, especially for field data example. The feasibility of this approach is verified on real seismic and well data from Viking Graben field, North Sea, Norway. Our results also show the influence of the washout zones on well log data on the quality of the well to seismic tie.

  3. The use of Merging and Aggregation Operators for MRDB Data Feeding

    NASA Astrophysics Data System (ADS)

    Kozioł, Krystian; Lupa, Michał

    2013-12-01

    This paper presents the application of two generalization operators - merging and displacement - in the process of automatic data feeding in a multiresolution data base of topographic objects from large-scale data-bases (1 : 500-1 : 5000). An ordered collection of objects makes a layer of development that in the process of generalization is subjected to the processes of merging and displacement in order to maintain recognizability in the reduced scale of the map. The solution to the above problem is the algorithms described in the work; these algorithms use the standard recognition of drawings (Chrobak 2010), independent of the user. A digital cartographic generalization process is a set of consecutive operators where merging and aggregation play a key role. The proper operation has a significant impact on the qualitative assessment of data generalization

  4. Informative frame detection from wireless capsule video endoscopic images

    NASA Astrophysics Data System (ADS)

    Bashar, Md. Khayrul; Mori, Kensaku; Suenaga, Yasuhito; Kitasaka, Takayuki; Mekada, Yoshito

    2008-03-01

    Wireless capsule endoscopy (WCE) is a new clinical technology permitting the visualization of the small bowel, the most difficult segment of the digestive tract. The major drawback of this technology is the high amount of time for video diagnosis. In this study, we propose a method for informative frame detection by isolating useless frames that are substantially covered by turbid fluids or their contamination with other materials, e.g., faecal, semi-processed or unabsorbed foods etc. Such materials and fluids present a wide range of colors, from brown to yellow, and/or bubble-like texture patterns. The detection scheme, therefore, consists of two stages: highly contaminated non-bubbled (HCN) frame detection and significantly bubbled (SB) frame detection. Local color moments in the Ohta color space are used to characterize HCN frames, which are isolated by the Support Vector Machine (SVM) classifier in Stage-1. The rest of the frames go to the Stage-2, where Laguerre gauss Circular Harmonic Functions (LG-CHFs) extract the characteristics of the bubble-structures in a multi-resolution framework. An automatic segmentation method is designed to extract the bubbled regions based on local absolute energies of the CHF responses, derived from the grayscale version of the original color image. Final detection of the informative frames is obtained by using threshold operation on the extracted regions. An experiment with 20,558 frames from the three videos shows the excellent average detection accuracy (96.75%) by the proposed method, when compared with the Gabor based- (74.29%) and discrete wavelet based features (62.21%).

  5. The 4D hyperspherical diffusion wavelet: A new method for the detection of localized anatomical variation.

    PubMed

    Hosseinbor, Ameer Pasha; Kim, Won Hwa; Adluru, Nagesh; Acharya, Amit; Vorperian, Houri K; Chung, Moo K

    2014-01-01

    Recently, the HyperSPHARM algorithm was proposed to parameterize multiple disjoint objects in a holistic manner using the 4D hyperspherical harmonics. The HyperSPHARM coefficients are global; they cannot be used to directly infer localized variations in signal. In this paper, we present a unified wavelet framework that links Hyper-SPHARM to the diffusion wavelet transform. Specifically, we will show that the HyperSPHARM basis forms a subset of a wavelet-based multiscale representation of surface-based signals. This wavelet, termed the hyperspherical diffusion wavelet, is a consequence of the equivalence of isotropic heat diffusion smoothing and the diffusion wavelet transform on the hypersphere. Our framework allows for the statistical inference of highly localized anatomical changes, which we demonstrate in the first-ever developmental study on the hyoid bone investigating gender and age effects. We also show that the hyperspherical wavelet successfully picks up group-wise differences that are barely detectable using SPHARM.

  6. The 4D Hyperspherical Diffusion Wavelet: A New Method for the Detection of Localized Anatomical Variation

    PubMed Central

    Hosseinbor, A. Pasha; Kim, Won Hwa; Adluru, Nagesh; Acharya, Amit; Vorperian, Houri K.; Chung, Moo K.

    2014-01-01

    Recently, the HyperSPHARM algorithm was proposed to parameterize multiple disjoint objects in a holistic manner using the 4D hyperspherical harmonics. The HyperSPHARM coefficients are global; they cannot be used to directly infer localized variations in signal. In this paper, we present a unified wavelet framework that links HyperSPHARM to the diffusion wavelet transform. Specifically, we will show that the HyperSPHARM basis forms a subset of a wavelet-based multiscale representation of surface-based signals. This wavelet, termed the hyperspherical diffusion wavelet, is a consequence of the equivalence of isotropic heat diffusion smoothing and the diffusion wavelet transform on the hypersphere. Our framework allows for the statistical inference of highly localized anatomical changes, which we demonstrate in the firstever developmental study on the hyoid bone investigating gender and age effects. We also show that the hyperspherical wavelet successfully picks up group-wise differences that are barely detectable using SPHARM. PMID:25320783

  7. EnvironmentalWaveletTool: Continuous and discrete wavelet analysis and filtering for environmental time series

    NASA Astrophysics Data System (ADS)

    Galiana-Merino, J. J.; Pla, C.; Fernandez-Cortes, A.; Cuezva, S.; Ortiz, J.; Benavente, D.

    2014-10-01

    A MATLAB-based computer code has been developed for the simultaneous wavelet analysis and filtering of several environmental time series, particularly focused on the analyses of cave monitoring data. The continuous wavelet transform, the discrete wavelet transform and the discrete wavelet packet transform have been implemented to provide a fast and precise time-period examination of the time series at different period bands. Moreover, statistic methods to examine the relation between two signals have been included. Finally, the entropy of curves and splines based methods have also been developed for segmenting and modeling the analyzed time series. All these methods together provide a user-friendly and fast program for the environmental signal analysis, with useful, practical and understandable results.

  8. A nonlinear background removal method for seismo-ionospheric anomaly analysis under a complex solar activity scenario: A case study of the M9.0 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    He, Liming; Wu, Lixin; Pulinets, Sergey; Liu, Shanjun; Yang, Fan

    2012-07-01

    A precise determination of ionospheric total electron content (TEC) anomaly variations that are likely associated with large earthquakes as observed by global positioning system (GPS) requires the elimination of the ionospheric effect from irregular solar electromagnetic radiation. In particular, revealing the seismo-ionospheric anomalies when earthquakes occurred during periods of high solar activity is of utmost importance. To overcome this constraint, a multiresolution time series processing technique based on wavelet transform applicable to global ionosphere map (GIM) TEC data was used to remove the nonlinear effect from solar radiation for the earthquake that struck Tohoku, Japan, on 11 March, 2011. As a result, it was found that the extracted TEC have a good correlation with the measured solar extreme ultraviolet flux in 26-34 nm (EUV26-34) and the 10.7 cm solar radio flux (F10.7). After removing the influence of solar radiation origin in GIM TEC, the analysis results show that the TEC around the forthcoming epicenter and its conjugate were significantly enhanced in the afternoon period of 8 March 2011, 3 days before the earthquake. The spatial distributions of the TEC anomalous and extreme enhancements indicate that the earthquake preparation process had brought with a TEC anomaly area of size approximately 1650 and 5700 km in the latitudinal and longitudinal directions, respectively.

  9. Multiresolution wavelet analysis for efficient analysis, compression and remote display of long-term physiological signals.

    PubMed

    Khuan, L Y; Bister, M; Blanchfield, P; Salleh, Y M; Ali, R A; Chan, T H

    2006-06-01

    Increased inter-equipment connectivity coupled with advances in Web technology allows ever escalating amounts of physiological data to be produced, far too much to be displayed adequately on a single computer screen. The consequence is that large quantities of insignificant data will be transmitted and reviewed. This carries an increased risk of overlooking vitally important transients. This paper describes a technique to provide an integrated solution based on a single algorithm for the efficient analysis, compression and remote display of long-term physiological signals with infrequent short duration, yet vital events, to effect a reduction in data transmission and display cluttering and to facilitate reliable data interpretation. The algorithm analyses data at the server end and flags significant events. It produces a compressed version of the signal at a lower resolution that can be satisfactorily viewed in a single screen width. This reduced set of data is initially transmitted together with a set of 'flags' indicating where significant events occur. Subsequent transmissions need only involve transmission of flagged data segments of interest at the required resolution. Efficient processing and code protection with decomposition alone is novel. The fixed transmission length method ensures clutter-less display, irrespective of the data length. The flagging of annotated events in arterial oxygen saturation, electroencephalogram and electrocardiogram illustrates the generic property of the algorithm. Data reduction of 87% to 99% and improved displays are demonstrated.

  10. Speckle noise reduction in quantitative optical metrology techniques by application of the discrete wavelet transformation

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    2002-06-01

    Effective suppression of speckle noise content in interferometric data images can help in improving accuracy and resolution of the results obtained with interferometric optical metrology techniques. In this paper, novel speckle noise reduction algorithms based on the discrete wavelet transformation are presented. The algorithms proceed by: (a) estimating the noise level contained in the interferograms of interest, (b) selecting wavelet families, (c) applying the wavelet transformation using the selected families, (d) wavelet thresholding, and (e) applying the inverse wavelet transformation, producing denoised interferograms. The algorithms are applied to the different stages of the processing procedures utilized for generation of quantitative speckle correlation interferometry data of fiber-optic based opto-electronic holography (FOBOEH) techniques, allowing identification of optimal processing conditions. It is shown that wavelet algorithms are effective for speckle noise reduction while preserving image features otherwise faded with other algorithms.

  11. Target Detection and Classification Using Seismic and PIR Sensors

    DTIC Science & Technology

    2012-06-01

    time series analysis via wavelet - based partitioning,” Signal Process...regard, this paper presents a wavelet - based method for target detection and classification. The proposed method has been validated on data sets of...The work reported in this paper makes use of a wavelet - based feature extraction method , called Symbolic Dynamic Filtering (SDF) [12]–[14]. The

  12. Wavelet Types Comparison for Extracting Iris Feature Based on Energy Compaction

    NASA Astrophysics Data System (ADS)

    Rizal Isnanto, R.

    2015-06-01

    Human iris has a very unique pattern which is possible to be used as a biometric recognition. To identify texture in an image, texture analysis method can be used. One of method is wavelet that extract the image feature based on energy. Wavelet transforms used are Haar, Daubechies, Coiflets, Symlets, and Biorthogonal. In the research, iris recognition based on five mentioned wavelets was done and then comparison analysis was conducted for which some conclusions taken. Some steps have to be done in the research. First, the iris image is segmented from eye image then enhanced with histogram equalization. The features obtained is energy value. The next step is recognition using normalized Euclidean distance. Comparison analysis is done based on recognition rate percentage with two samples stored in database for reference images. After finding the recognition rate, some tests are conducted using Energy Compaction for all five types of wavelets above. As the result, the highest recognition rate is achieved using Haar, whereas for coefficients cutting for C(i) < 0.1, Haar wavelet has a highest percentage, therefore the retention rate or significan coefficient retained for Haaris lower than other wavelet types (db5, coif3, sym4, and bior2.4)

  13. UV Spectrophotometric Simultaneous Determination of Paracetamol and Ibuprofen in Combined Tablets by Derivative and Wavelet Transforms

    PubMed Central

    Hoang, Vu Dang; Ly, Dong Thi Ha; Tho, Nguyen Huu; Minh Thi Nguyen, Hue

    2014-01-01

    The application of first-order derivative and wavelet transforms to UV spectra and ratio spectra was proposed for the simultaneous determination of ibuprofen and paracetamol in their combined tablets. A new hybrid approach on the combined use of first-order derivative and wavelet transforms to spectra was also discussed. In this application, DWT (sym6 and haar), CWT (mexh), and FWT were optimized to give the highest spectral recoveries. Calibration graphs in the linear concentration ranges of ibuprofen (12–32 mg/L) and paracetamol (20–40 mg/L) were obtained by measuring the amplitudes of the transformed signals. Our proposed spectrophotometric methods were statistically compared to HPLC in terms of precision and accuracy. PMID:24949492

  14. UV spectrophotometric simultaneous determination of paracetamol and ibuprofen in combined tablets by derivative and wavelet transforms.

    PubMed

    Hoang, Vu Dang; Ly, Dong Thi Ha; Tho, Nguyen Huu; Nguyen, Hue Minh Thi

    2014-01-01

    The application of first-order derivative and wavelet transforms to UV spectra and ratio spectra was proposed for the simultaneous determination of ibuprofen and paracetamol in their combined tablets. A new hybrid approach on the combined use of first-order derivative and wavelet transforms to spectra was also discussed. In this application, DWT (sym6 and haar), CWT (mexh), and FWT were optimized to give the highest spectral recoveries. Calibration graphs in the linear concentration ranges of ibuprofen (12-32 mg/L) and paracetamol (20-40 mg/L) were obtained by measuring the amplitudes of the transformed signals. Our proposed spectrophotometric methods were statistically compared to HPLC in terms of precision and accuracy.

  15. Statistical methods for change-point detection in surface temperature records

    NASA Astrophysics Data System (ADS)

    Pintar, A. L.; Possolo, A.; Zhang, N. F.

    2013-09-01

    We describe several statistical methods to detect possible change-points in a time series of values of surface temperature measured at a meteorological station, and to assess the statistical significance of such changes, taking into account the natural variability of the measured values, and the autocorrelations between them. These methods serve to determine whether the record may suffer from biases unrelated to the climate signal, hence whether there may be a need for adjustments as considered by M. J. Menne and C. N. Williams (2009) "Homogenization of Temperature Series via Pairwise Comparisons", Journal of Climate 22 (7), 1700-1717. We also review methods to characterize patterns of seasonality (seasonal decomposition using monthly medians or robust local regression), and explain the role they play in the imputation of missing values, and in enabling robust decompositions of the measured values into a seasonal component, a possible climate signal, and a station-specific remainder. The methods for change-point detection that we describe include statistical process control, wavelet multi-resolution analysis, adaptive weights smoothing, and a Bayesian procedure, all of which are applicable to single station records.

  16. Wavelet tree structure based speckle noise removal for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yuan, Xin; Liu, Xuan; Liu, Yang

    2018-02-01

    We report a new speckle noise removal algorithm in optical coherence tomography (OCT). Though wavelet domain thresholding algorithms have demonstrated superior advantages in suppressing noise magnitude and preserving image sharpness in OCT, the wavelet tree structure has not been investigated in previous applications. In this work, we propose an adaptive wavelet thresholding algorithm via exploiting the tree structure in wavelet coefficients to remove the speckle noise in OCT images. The threshold for each wavelet band is adaptively selected following a special rule to retain the structure of the image across different wavelet layers. Our results demonstrate that the proposed algorithm outperforms conventional wavelet thresholding, with significant advantages in preserving image features.

  17. Dual Cylindrical Wave Laser-Doppler Method for Measurement of Skin Friction in Fluid Flow.

    DTIC Science & Technology

    1987-01-01

    instrument to the flow channel. The individual modules must not be dis-assembled and handled with care in order to prevent acci- dental misalignment...of light as a wave, according to which each point on a primary wavefront may be considered as a source of a secondary wavelet . Inter- ference between...secondary wavelets produces various patterns of inten- sity in the case of diffraction from an aperture. An envelope of the secondary wavelets may be

  18. E-Nose Vapor Identification Based on Dempster-Shafer Fusion of Multiple Classifiers

    NASA Technical Reports Server (NTRS)

    Li, Winston; Leung, Henry; Kwan, Chiman; Linnell, Bruce R.

    2005-01-01

    Electronic nose (e-nose) vapor identification is an efficient approach to monitor air contaminants in space stations and shuttles in order to ensure the health and safety of astronauts. Data preprocessing (measurement denoising and feature extraction) and pattern classification are important components of an e-nose system. In this paper, a wavelet-based denoising method is applied to filter the noisy sensor measurements. Transient-state features are then extracted from the denoised sensor measurements, and are used to train multiple classifiers such as multi-layer perceptions (MLP), support vector machines (SVM), k nearest neighbor (KNN), and Parzen classifier. The Dempster-Shafer (DS) technique is used at the end to fuse the results of the multiple classifiers to get the final classification. Experimental analysis based on real vapor data shows that the wavelet denoising method can remove both random noise and outliers successfully, and the classification rate can be improved by using classifier fusion.

  19. Novel approach of wavelet analysis for nonlinear ultrasonic measurements and fatigue assessment of jet engine components

    NASA Astrophysics Data System (ADS)

    Bunget, Gheorghe; Tilmon, Brevin; Yee, Andrew; Stewart, Dylan; Rogers, James; Webster, Matthew; Farinholt, Kevin; Friedersdorf, Fritz; Pepi, Marc; Ghoshal, Anindya

    2018-04-01

    Widespread damage in aging aircraft is becoming an increasing concern as both civil and military fleet operators are extending the service lifetime of their aircraft. Metallic components undergoing variable cyclic loadings eventually fatigue and form dislocations as precursors to ultimate failure. In order to characterize the progression of fatigue damage precursors (DP), the acoustic nonlinearity parameter is measured as the primary indicator. However, using proven standard ultrasonic technology for nonlinear measurements presents limitations for settings outside of the laboratory environment. This paper presents an approach for ultrasonic inspection through automated immersion scanning of hot section engine components where mature ultrasonic technology is used during periodic inspections. Nonlinear ultrasonic measurements were analyzed using wavelet analysis to extract multiple harmonics from the received signals. Measurements indicated strong correlations of nonlinearity coefficients and levels of fatigue in aluminum and Ni-based superalloys. This novel wavelet cross-correlation (WCC) algorithm is a potential technique to scan for fatigue damage precursors and identify critical locations for remaining life prediction.

  20. Enhanced CT images by the wavelet transform improving diagnostic accuracy of chest nodules.

    PubMed

    Guo, Xiuhua; Liu, Xiangye; Wang, Huan; Liang, Zhigang; Wu, Wei; He, Qian; Li, Kuncheng; Wang, Wei

    2011-02-01

    The objective of this study was to compare the diagnostic accuracy in the interpretation of chest nodules using original CT images versus enhanced CT images based on the wavelet transform. The CT images of 118 patients with cancers and 60 with benign nodules were used in this study. All images were enhanced through an algorithm based on the wavelet transform. Two experienced radiologists interpreted all the images in two reading sessions. The reading sessions were separated by a minimum of 1 month in order to minimize the effect of observer's recall. The Mann-Whitney U nonparametric test was used to analyze the interpretation results between original and enhanced images. The Kruskal-Wallis H nonparametric test of K independent samples was used to investigate the related factors which could affect the diagnostic accuracy of observers. The area under the ROC curves for the original and enhanced images was 0.681 and 0.736, respectively. There is significant difference in diagnosing the malignant nodules between the original and enhanced images (z = 7.122, P < 0.001), whereas there is no significant difference in diagnosing the benign nodules (z = 0.894, P = 0.371). The results showed that there is significant difference between original and enhancement images when the size of nodules was larger than 2 cm (Z = -2.509, P = 0.012, indicating the size of the nodules is a critical evaluating factor of the diagnostic accuracy of observers). This study indicated that the image enhancement based on wavelet transform could improve the diagnostic accuracy of radiologists for the malignant chest nodules.

  1. Crack Identification in CFRP Laminated Beams Using Multi-Resolution Modal Teager–Kaiser Energy under Noisy Environments

    PubMed Central

    Xu, Wei; Cao, Maosen; Ding, Keqin; Radzieński, Maciej; Ostachowicz, Wiesław

    2017-01-01

    Carbon fiber reinforced polymer laminates are increasingly used in the aerospace and civil engineering fields. Identifying cracks in carbon fiber reinforced polymer laminated beam components is of considerable significance for ensuring the integrity and safety of the whole structures. With the development of high-resolution measurement technologies, mode-shape-based crack identification in such laminated beam components has become an active research focus. Despite its sensitivity to cracks, however, this method is susceptible to noise. To address this deficiency, this study proposes a new concept of multi-resolution modal Teager–Kaiser energy, which is the Teager–Kaiser energy of a mode shape represented in multi-resolution, for identifying cracks in carbon fiber reinforced polymer laminated beams. The efficacy of this concept is analytically demonstrated by identifying cracks in Timoshenko beams with general boundary conditions; and its applicability is validated by diagnosing cracks in a carbon fiber reinforced polymer laminated beam, whose mode shapes are precisely acquired via non-contact measurement using a scanning laser vibrometer. The analytical and experimental results show that multi-resolution modal Teager–Kaiser energy is capable of designating the presence and location of cracks in these beams under noisy environments. This proposed method holds promise for developing crack identification systems for carbon fiber reinforced polymer laminates. PMID:28773016

  2. Watermarking on 3D mesh based on spherical wavelet transform.

    PubMed

    Jin, Jian-Qiu; Dai, Min-Ya; Bao, Hu-Jun; Peng, Qun-Sheng

    2004-03-01

    In this paper we propose a robust watermarking algorithm for 3D mesh. The algorithm is based on spherical wavelet transform. Our basic idea is to decompose the original mesh into a series of details at different scales by using spherical wavelet transform; the watermark is then embedded into the different levels of details. The embedding process includes: global sphere parameterization, spherical uniform sampling, spherical wavelet forward transform, embedding watermark, spherical wavelet inverse transform, and at last resampling the mesh watermarked to recover the topological connectivity of the original model. Experiments showed that our algorithm can improve the capacity of the watermark and the robustness of watermarking against attacks.

  3. A lung sound classification system based on the rational dilation wavelet transform.

    PubMed

    Ulukaya, Sezer; Serbes, Gorkem; Sen, Ipek; Kahya, Yasemin P

    2016-08-01

    In this work, a wavelet based classification system that aims to discriminate crackle, normal and wheeze lung sounds is presented. While the previous works related with this problem use constant low Q-factor wavelets, which have limited frequency resolution and can not cope with oscillatory signals, in the proposed system, the Rational Dilation Wavelet Transform, whose Q-factors can be tuned, is employed. Proposed system yields an accuracy of 95 % for crackle, 97 % for wheeze, 93.50 % for normal and 95.17 % for total sound signal types using energy feature subset and proposed approach is superior to conventional low Q-factor wavelet analysis.

  4. Wavelet detection of singularities in the presence of fractal noise

    NASA Astrophysics Data System (ADS)

    Noel, Steven E.; Gohel, Yogesh J.; Szu, Harold H.

    1997-04-01

    Here we detect singularities with generalized quadrature processing using the recently developed Hermitian Hat wavelet. Our intended application is radar target detection for the optimal fuzzing of ship self-defense munitions. We first develop a wavelet-based fractal noise model to represent sea clutter. We then investigate wavelet shrinkage as a way to reduce and smooth the noise before attempting wavelet detection. Finally, we use the complex phase of the Hermitian Hat wavelet to detect a simulated target singularity in the presence of our fractal noise.

  5. Investigation of using wavelet analysis for classifying pattern of cyclic voltammetry signals

    NASA Astrophysics Data System (ADS)

    Jityen, Arthit; Juagwon, Teerasak; Jaisuthi, Rawat; Osotchan, Tanakorn

    2017-09-01

    Wavelet analysis is an excellent technique for data processing analysis based on linear vector algebra since it has an ability to perform local analysis and is able to analyze an unspecific localized area of a large signal. In this work, the wavelet analysis of cyclic waveform was investigated in order to find the distinguishable feature from the cyclic data. The analyzed wavelet coefficients were proposed to be used as selected cyclic feature parameters. The cyclic voltammogram (CV) of different electrodes consisting of carbon nanotube (CNT) and several types of metal phthalocyanine (MPc) including CoPc, FePc, ZnPc and MnPc powders was used as several sets of cyclic data for various types of coffee. The mixture powder was embedded in a hollow Teflon rod and used as working electrodes. Electrochemical response of the fabricated electrodes in Robusta, blend coffee I, blend coffee II, chocolate malt and cocoa at the same concentrations was measured with scanning rate of 0.05V/s from -1.5 to 1.5V respectively to Ag/AgCl electrode for five scanning loops. The CV of blended CNT electrode with some MPc electrodes indicated the ionic interaction which can be the effect of catalytic oxidation of saccharides and/or polyphenol on the sensor surface. The major information of CV response can be extracted by using several mother wavelet families viz. daubechies (dB1 to dB3), coiflets (coiflet1), biorthogonal (Bior1.1) and symlets (sym2) and then the discrimination of these wavelet coefficients of each data group can be separated by principal component analysis (PCA). The PCA results indicated the clearly separate groups with total contribution more than 62.37% representing from PC1 and PC2.

  6. Simultaneous determination of chloramphenicol, dexamethasone and naphazoline in ternary and quaternary mixtures by RP-HPLC, derivative and wavelet transforms of UV ratio spectra

    NASA Astrophysics Data System (ADS)

    Hoang, Vu Dang; Hue, Nguyen Thu; Tho, Nguyen Huu; Nguyen, Hue Minh Thi

    2015-03-01

    The application of chemometrics-assisted UV spectrophotometry and RP-HPLC to the simultaneous determination of chloramphenicol, dexamethasone and naphazoline in ternary and quaternary mixtures is presented. The spectrophotometric procedure is based on the first-order derivative and wavelet transforms of ratio spectra using single, double and successive divisors. The ratio spectra were differentiated and smoothed using Savitzky-Golay filter; whereas wavelet transform realized with wavelet functions (i.e. db6, gaus5 and coif3) to obtain highest spectral recoveries. For the RP-HPLC procedure, the separation was achieved on a ZORBAX SB-C18 (150 × 4.6 mm; 5 μm) column at ambient temperature and the total run time was less than 7 min. A mixture of acetonitrile - 25 mM phosphate buffer pH 3 (27:73, v/v) was used as the mobile phase at a flow rate of 1.0 mL/min and the effluent monitored by measuring absorbance at 220 nm. Calibration graphs were established in the range 20-70 mg/L for chloramphenicol, 6-14 mg/L for dexamethasone and 3-8 mg/L for naphazoline (R2 > 0.990). The RP-HPLC and ratio spectra transformed by a combination of derivative-wavelet algorithms proved to be able to successfully determine all analytes in commercial eye drop formulations without sample matrix interference (mean percent recoveries, 97.4-104.3%).

  7. Wavelet Analysis Used for Spectral Background Removal in the Determination of Glucose from Near-Infrared Single-Beam Spectra

    PubMed Central

    Wan, Boyong; Small, Gary W.

    2010-01-01

    Wavelet analysis is developed as a preprocessing tool for use in removing background information from near-infrared (near-IR) single-beam spectra before the construction of multivariate calibration models. Three data sets collected with three different near-IR spectrometers are investigated that involve the determination of physiological levels of glucose (1-30 mM) in a simulated biological matrix containing alanine, ascorbate, lactate, triacetin, and urea in phosphate buffer. A factorial design is employed to optimize the specific wavelet function used and the level of decomposition applied, in addition to the spectral range and number of latent variables associated with a partial least-squares calibration model. The prediction performance of the computed models is studied with separate data acquired after the collection of the calibration spectra. This evaluation includes one data set collected over a period of more than six months. Preprocessing with wavelet analysis is also compared to the calculation of second-derivative spectra. Over the three data sets evaluated, wavelet analysis is observed to produce better-performing calibration models, with improvements in concentration predictions on the order of 30% being realized relative to models based on either second-derivative spectra or spectra preprocessed with simple additive and multiplicative scaling correction. This methodology allows the construction of stable calibrations directly with single-beam spectra, thereby eliminating the need for the collection of a separate background or reference spectrum. PMID:21035604

  8. Wavelet analysis used for spectral background removal in the determination of glucose from near-infrared single-beam spectra.

    PubMed

    Wan, Boyong; Small, Gary W

    2010-11-29

    Wavelet analysis is developed as a preprocessing tool for use in removing background information from near-infrared (near-IR) single-beam spectra before the construction of multivariate calibration models. Three data sets collected with three different near-IR spectrometers are investigated that involve the determination of physiological levels of glucose (1-30 mM) in a simulated biological matrix containing alanine, ascorbate, lactate, triacetin, and urea in phosphate buffer. A factorial design is employed to optimize the specific wavelet function used and the level of decomposition applied, in addition to the spectral range and number of latent variables associated with a partial least-squares calibration model. The prediction performance of the computed models is studied with separate data acquired after the collection of the calibration spectra. This evaluation includes one data set collected over a period of more than 6 months. Preprocessing with wavelet analysis is also compared to the calculation of second-derivative spectra. Over the three data sets evaluated, wavelet analysis is observed to produce better-performing calibration models, with improvements in concentration predictions on the order of 30% being realized relative to models based on either second-derivative spectra or spectra preprocessed with simple additive and multiplicative scaling correction. This methodology allows the construction of stable calibrations directly with single-beam spectra, thereby eliminating the need for the collection of a separate background or reference spectrum. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Spherical 3D isotropic wavelets

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  10. Wavelet-Based Visible and Infrared Image Fusion: A Comparative Study

    PubMed Central

    Sappa, Angel D.; Carvajal, Juan A.; Aguilera, Cristhian A.; Oliveira, Miguel; Romero, Dennis; Vintimilla, Boris X.

    2016-01-01

    This paper evaluates different wavelet-based cross-spectral image fusion strategies adopted to merge visible and infrared images. The objective is to find the best setup independently of the evaluation metric used to measure the performance. Quantitative performance results are obtained with state of the art approaches together with adaptations proposed in the current work. The options evaluated in the current work result from the combination of different setups in the wavelet image decomposition stage together with different fusion strategies for the final merging stage that generates the resulting representation. Most of the approaches evaluate results according to the application for which they are intended for. Sometimes a human observer is selected to judge the quality of the obtained results. In the current work, quantitative values are considered in order to find correlations between setups and performance of obtained results; these correlations can be used to define a criteria for selecting the best fusion strategy for a given pair of cross-spectral images. The whole procedure is evaluated with a large set of correctly registered visible and infrared image pairs, including both Near InfraRed (NIR) and Long Wave InfraRed (LWIR). PMID:27294938

  11. Wavelet-Based Visible and Infrared Image Fusion: A Comparative Study.

    PubMed

    Sappa, Angel D; Carvajal, Juan A; Aguilera, Cristhian A; Oliveira, Miguel; Romero, Dennis; Vintimilla, Boris X

    2016-06-10

    This paper evaluates different wavelet-based cross-spectral image fusion strategies adopted to merge visible and infrared images. The objective is to find the best setup independently of the evaluation metric used to measure the performance. Quantitative performance results are obtained with state of the art approaches together with adaptations proposed in the current work. The options evaluated in the current work result from the combination of different setups in the wavelet image decomposition stage together with different fusion strategies for the final merging stage that generates the resulting representation. Most of the approaches evaluate results according to the application for which they are intended for. Sometimes a human observer is selected to judge the quality of the obtained results. In the current work, quantitative values are considered in order to find correlations between setups and performance of obtained results; these correlations can be used to define a criteria for selecting the best fusion strategy for a given pair of cross-spectral images. The whole procedure is evaluated with a large set of correctly registered visible and infrared image pairs, including both Near InfraRed (NIR) and Long Wave InfraRed (LWIR).

  12. A hybrid fault diagnosis method based on second generation wavelet de-noising and local mean decomposition for rotating machinery.

    PubMed

    Liu, Zhiwen; He, Zhengjia; Guo, Wei; Tang, Zhangchun

    2016-03-01

    In order to extract fault features of large-scale power equipment from strong background noise, a hybrid fault diagnosis method based on the second generation wavelet de-noising (SGWD) and the local mean decomposition (LMD) is proposed in this paper. In this method, a de-noising algorithm of second generation wavelet transform (SGWT) using neighboring coefficients was employed as the pretreatment to remove noise in rotating machinery vibration signals by virtue of its good effect in enhancing the signal-noise ratio (SNR). Then, the LMD method is used to decompose the de-noised signals into several product functions (PFs). The PF corresponding to the faulty feature signal is selected according to the correlation coefficients criterion. Finally, the frequency spectrum is analyzed by applying the FFT to the selected PF. The proposed method is applied to analyze the vibration signals collected from an experimental gearbox and a real locomotive rolling bearing. The results demonstrate that the proposed method has better performances such as high SNR and fast convergence speed than the normal LMD method. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  13. Classification of breast tissue in mammograms using efficient coding.

    PubMed

    Costa, Daniel D; Campos, Lúcio F; Barros, Allan K

    2011-06-24

    Female breast cancer is the major cause of death by cancer in western countries. Efforts in Computer Vision have been made in order to improve the diagnostic accuracy by radiologists. Some methods of lesion diagnosis in mammogram images were developed based in the technique of principal component analysis which has been used in efficient coding of signals and 2D Gabor wavelets used for computer vision applications and modeling biological vision. In this work, we present a methodology that uses efficient coding along with linear discriminant analysis to distinguish between mass and non-mass from 5090 region of interest from mammograms. The results show that the best rates of success reached with Gabor wavelets and principal component analysis were 85.28% and 87.28%, respectively. In comparison, the model of efficient coding presented here reached up to 90.07%. Altogether, the results presented demonstrate that independent component analysis performed successfully the efficient coding in order to discriminate mass from non-mass tissues. In addition, we have observed that LDA with ICA bases showed high predictive performance for some datasets and thus provide significant support for a more detailed clinical investigation.

  14. Probe-Independent EEG Assessment of Mental Workload in Pilots

    DTIC Science & Technology

    2015-05-18

    Teager Energy Operator - Frequency Modulated Component - z- score 10.94 17.46 10 Hurst Exponent - Discrete Second Order Derivative 7.02 17.06 D. Best...Teager Energy Operator– Frequency Modulated Component – Z-score 45. Line Length – Time Series 46. Line Length – Time Series – Z-score 47. Hurst Exponent ...Discrete Second Order Derivative 48. Hurst Exponent – Wavelet Based Adaptation 49. Hurst Exponent – Rescaled Range 50. Hurst Exponent – Discrete

  15. Multiresolution quantum chemistry in multiwavelet bases: excited states from time-dependent Hartree–Fock and density functional theory via linear response

    DOE PAGES

    Yanai, Takeshi; Fann, George I.; Beylkin, Gregory; ...

    2015-02-25

    Using the fully numerical method for time-dependent Hartree–Fock and density functional theory (TD-HF/DFT) with the Tamm–Dancoff (TD) approximation we use a multiresolution analysis (MRA) approach to present our findings. From a reformulation with effective use of the density matrix operator, we obtain a general form of the HF/DFT linear response equation in the first quantization formalism. It can be readily rewritten as an integral equation with the bound-state Helmholtz (BSH) kernel for the Green's function. The MRA implementation of the resultant equation permits excited state calculations without virtual orbitals. Moreover, the integral equation is efficiently and adaptively solved using amore » numerical multiresolution solver with multiwavelet bases. Our implementation of the TD-HF/DFT methods is applied for calculating the excitation energies of H 2, Be, N 2, H 2O, and C 2H 4 molecules. The numerical errors of the calculated excitation energies converge in proportion to the residuals of the equation in the molecular orbitals and response functions. The energies of the excited states at a variety of length scales ranging from short-range valence excitations to long-range Rydberg-type ones are consistently accurate. It is shown that the multiresolution calculations yield the correct exponential asymptotic tails for the response functions, whereas those computed with Gaussian basis functions are too diffuse or decay too rapidly. Finally, we introduce a simple asymptotic correction to the local spin-density approximation (LSDA) so that in the TDDFT calculations, the excited states are correctly bound.« less

  16. Mapping and characterizing selected canopy tree species at the Angkor World Heritage site in Cambodia using aerial data.

    PubMed

    Singh, Minerva; Evans, Damian; Tan, Boun Suy; Nin, Chan Samean

    2015-01-01

    At present, there is very limited information on the ecology, distribution, and structure of Cambodia's tree species to warrant suitable conservation measures. The aim of this study was to assess various methods of analysis of aerial imagery for characterization of the forest mensuration variables (i.e., tree height and crown width) of selected tree species found in the forested region around the temples of Angkor Thom, Cambodia. Object-based image analysis (OBIA) was used (using multiresolution segmentation) to delineate individual tree crowns from very-high-resolution (VHR) aerial imagery and light detection and ranging (LiDAR) data. Crown width and tree height values that were extracted using multiresolution segmentation showed a high level of congruence with field-measured values of the trees (Spearman's rho 0.782 and 0.589, respectively). Individual tree crowns that were delineated from aerial imagery using multiresolution segmentation had a high level of segmentation accuracy (69.22%), whereas tree crowns delineated using watershed segmentation underestimated the field-measured tree crown widths. Both spectral angle mapper (SAM) and maximum likelihood (ML) classifications were applied to the aerial imagery for mapping of selected tree species. The latter was found to be more suitable for tree species classification. Individual tree species were identified with high accuracy. Inclusion of textural information further improved species identification, albeit marginally. Our findings suggest that VHR aerial imagery, in conjunction with OBIA-based segmentation methods (such as multiresolution segmentation) and supervised classification techniques are useful for tree species mapping and for studies of the forest mensuration variables.

  17. Mapping and Characterizing Selected Canopy Tree Species at the Angkor World Heritage Site in Cambodia Using Aerial Data

    PubMed Central

    Singh, Minerva; Evans, Damian; Tan, Boun Suy; Nin, Chan Samean

    2015-01-01

    At present, there is very limited information on the ecology, distribution, and structure of Cambodia’s tree species to warrant suitable conservation measures. The aim of this study was to assess various methods of analysis of aerial imagery for characterization of the forest mensuration variables (i.e., tree height and crown width) of selected tree species found in the forested region around the temples of Angkor Thom, Cambodia. Object-based image analysis (OBIA) was used (using multiresolution segmentation) to delineate individual tree crowns from very-high-resolution (VHR) aerial imagery and light detection and ranging (LiDAR) data. Crown width and tree height values that were extracted using multiresolution segmentation showed a high level of congruence with field-measured values of the trees (Spearman’s rho 0.782 and 0.589, respectively). Individual tree crowns that were delineated from aerial imagery using multiresolution segmentation had a high level of segmentation accuracy (69.22%), whereas tree crowns delineated using watershed segmentation underestimated the field-measured tree crown widths. Both spectral angle mapper (SAM) and maximum likelihood (ML) classifications were applied to the aerial imagery for mapping of selected tree species. The latter was found to be more suitable for tree species classification. Individual tree species were identified with high accuracy. Inclusion of textural information further improved species identification, albeit marginally. Our findings suggest that VHR aerial imagery, in conjunction with OBIA-based segmentation methods (such as multiresolution segmentation) and supervised classification techniques are useful for tree species mapping and for studies of the forest mensuration variables. PMID:25902148

  18. Rapid production of optimal-quality reduced-resolution representations of very large databases

    DOEpatents

    Sigeti, David E.; Duchaineau, Mark; Miller, Mark C.; Wolinsky, Murray; Aldrich, Charles; Mineev-Weinstein, Mark B.

    2001-01-01

    View space representation data is produced in real time from a world space database representing terrain features. The world space database is first preprocessed. A database is formed having one element for each spatial region corresponding to a finest selected level of detail. A multiresolution database is then formed by merging elements and a strict error metric is computed for each element at each level of detail that is independent of parameters defining the view space. The multiresolution database and associated strict error metrics are then processed in real time for real time frame representations. View parameters for a view volume comprising a view location and field of view are selected. The error metric with the view parameters is converted to a view-dependent error metric. Elements with the coarsest resolution are chosen for an initial representation. Data set first elements from the initial representation data set are selected that are at least partially within the view volume. The first elements are placed in a split queue ordered by the value of the view-dependent error metric. If the number of first elements in the queue meets or exceeds a predetermined number of elements or whether the largest error metric is less than or equal to a selected upper error metric bound, the element at the head of the queue is force split and the resulting elements are inserted into the queue. Force splitting is continued until the determination is positive to form a first multiresolution set of elements. The first multiresolution set of elements is then outputted as reduced resolution view space data representing the terrain features.

  19. [Recognition of landscape characteristic scale based on two-dimension wavelet analysis].

    PubMed

    Gao, Yan-Ni; Chen, Wei; He, Xing-Yuan; Li, Xiao-Yu

    2010-06-01

    Three wavelet bases, i. e., Haar, Daubechies, and Symlet, were chosen to analyze the validity of two-dimension wavelet analysis in recognizing the characteristic scales of the urban, peri-urban, and rural landscapes of Shenyang. Owing to the transform scale of two-dimension wavelet must be the integer power of 2, some characteristic scales cannot be accurately recognized. Therefore, the pixel resolution of images was resampled to 3, 3.5, 4, and 4.5 m to densify the scale in analysis. It was shown that two-dimension wavelet analysis worked effectively in checking characteristic scale. Haar, Daubechies, and Symle were the optimal wavelet bases to the peri-urban landscape, urban landscape, and rural landscape, respectively. Both Haar basis and Symlet basis played good roles in recognizing the fine characteristic scale of rural landscape and in detecting the boundary of peri-urban landscape. Daubechies basis and Symlet basis could be also used to detect the boundary of urban landscape and rural landscape, respectively.

  20. Influence of the wavelet order on proper damage location in plate structures

    NASA Astrophysics Data System (ADS)

    Pawlak, Zdzisław; Knitter-Piątkowska, Anna

    2018-01-01

    The rectangular thin plates were analyzed in the paper. The static response in plate structure subjected to the uniform load was derived by applying the finite element method. In the dynamic, experimental tests the accelerations were obtained with the use of modal hammer and DEWEsoft® software. Next, the analysis of the signal was carried out with the use of Discrete Wavelet Transform (DWT), provided that damage exists in the considered plate structure. It was assumed, that in the middle of the structure a certain area of the plate is thinner or there is a crack across the entire plate thickness. The aim of this work was to choose the appropriate wavelet order to reveal the localization of defect. The results of selected numerical example proved the efficiency of proposed approach.

  1. A regularized vortex-particle mesh method for large eddy simulation

    NASA Astrophysics Data System (ADS)

    Spietz, H. J.; Walther, J. H.; Hejlesen, M. M.

    2017-11-01

    We present recent developments of the remeshed vortex particle-mesh method for simulating incompressible fluid flow. The presented method relies on a parallel higher-order FFT based solver for the Poisson equation. Arbitrary high order is achieved through regularization of singular Green's function solutions to the Poisson equation and recently we have derived novel high order solutions for a mixture of open and periodic domains. With this approach the simulated variables may formally be viewed as the approximate solution to the filtered Navier Stokes equations, hence we use the method for Large Eddy Simulation by including a dynamic subfilter-scale model based on test-filters compatible with the aforementioned regularization functions. Further the subfilter-scale model uses Lagrangian averaging, which is a natural candidate in light of the Lagrangian nature of vortex particle methods. A multiresolution variation of the method is applied to simulate the benchmark problem of the flow past a square cylinder at Re = 22000 and the obtained results are compared to results from the literature.

  2. Efficacy Evaluation of Different Wavelet Feature Extraction Methods on Brain MRI Tumor Detection

    NASA Astrophysics Data System (ADS)

    Nabizadeh, Nooshin; John, Nigel; Kubat, Miroslav

    2014-03-01

    Automated Magnetic Resonance Imaging brain tumor detection and segmentation is a challenging task. Among different available methods, feature-based methods are very dominant. While many feature extraction techniques have been employed, it is still not quite clear which of feature extraction methods should be preferred. To help improve the situation, we present the results of a study in which we evaluate the efficiency of using different wavelet transform features extraction methods in brain MRI abnormality detection. Applying T1-weighted brain image, Discrete Wavelet Transform (DWT), Discrete Wavelet Packet Transform (DWPT), Dual Tree Complex Wavelet Transform (DTCWT), and Complex Morlet Wavelet Transform (CMWT) methods are applied to construct the feature pool. Three various classifiers as Support Vector Machine, K Nearest Neighborhood, and Sparse Representation-Based Classifier are applied and compared for classifying the selected features. The results show that DTCWT and CMWT features classified with SVM, result in the highest classification accuracy, proving of capability of wavelet transform features to be informative in this application.

  3. Extracting fingerprint of wireless devices based on phase noise and multiple level wavelet decomposition

    NASA Astrophysics Data System (ADS)

    Zhao, Weichen; Sun, Zhuo; Kong, Song

    2016-10-01

    Wireless devices can be identified by the fingerprint extracted from the signal transmitted, which is useful in wireless communication security and other fields. This paper presents a method that extracts fingerprint based on phase noise of signal and multiple level wavelet decomposition. The phase of signal will be extracted first and then decomposed by multiple level wavelet decomposition. The statistic value of each wavelet coefficient vector is utilized for constructing fingerprint. Besides, the relationship between wavelet decomposition level and recognition accuracy is simulated. And advertised decomposition level is revealed as well. Compared with previous methods, our method is simpler and the accuracy of recognition remains high when Signal Noise Ratio (SNR) is low.

  4. The multi-resolution capability of Tchebichef moments and its applications to the analysis of fluorescence excitation-emission spectra

    NASA Astrophysics Data System (ADS)

    Li, Bao Qiong; Wang, Xue; Li Xu, Min; Zhai, Hong Lin; Chen, Jing; Liu, Jin Jin

    2018-01-01

    Fluorescence spectroscopy with an excitation-emission matrix (EEM) is a fast and inexpensive technique and has been applied to the detection of a very wide range of analytes. However, serious scattering and overlapping signals hinder the applications of EEM spectra. In this contribution, the multi-resolution capability of Tchebichef moments was investigated in depth and applied to the analysis of two EEM data sets (data set 1 consisted of valine-tyrosine-valine, tryptophan-glycine and phenylalanine, and data set 2 included vitamin B1, vitamin B2 and vitamin B6) for the first time. By means of the Tchebichef moments with different orders, the different information in the EEM spectra can be represented. It is owing to this multi-resolution capability that the overlapping problem was solved, and the information of chemicals and scatterings were separated. The obtained results demonstrated that the Tchebichef moment method is very effective, which provides a promising tool for the analysis of EEM spectra. It is expected that the applications of Tchebichef moment method could be developed and extended in complex systems such as biological fluids, food, environment and others to deal with the practical problems (overlapped peaks, unknown interferences, baseline drifts, and so on) with other spectra.

  5. Skin image retrieval using Gabor wavelet texture feature.

    PubMed

    Ou, X; Pan, W; Zhang, X; Xiao, P

    2016-12-01

    Skin imaging plays a key role in many clinical studies. We have used many skin imaging techniques, including the recently developed capacitive contact skin imaging based on fingerprint sensors. The aim of this study was to develop an effective skin image retrieval technique using Gabor wavelet transform, which can be used on different types of skin images, but with a special focus on skin capacitive contact images. Content-based image retrieval (CBIR) is a useful technology to retrieve stored images from database by supplying query images. In a typical CBIR, images are retrieved based on colour, shape, texture, etc. In this study, texture feature is used for retrieving skin images, and Gabor wavelet transform is used for texture feature description and extraction. The results show that the Gabor wavelet texture features can work efficiently on different types of skin images. Although Gabor wavelet transform is slower compared with other image retrieval techniques, such as principal component analysis (PCA) and grey-level co-occurrence matrix (GLCM), Gabor wavelet transform is the best for retrieving skin capacitive contact images and facial images with different orientations. Gabor wavelet transform can also work well on facial images with different expressions and skin cancer/disease images. We have developed an effective skin image retrieval method based on Gabor wavelet transform, that it is useful for retrieving different types of images, namely digital colour face images, digital colour skin cancer and skin disease images, and particularly greyscale skin capacitive contact images. Gabor wavelet transform can also be potentially useful for face recognition (with different orientation and expressions) and skin cancer/disease diagnosis. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  6. Wavelet transforms as solutions of partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zweig, G.

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Wavelet transforms are useful in representing transients whose time and frequency structure reflect the dynamics of an underlying physical system. Speech sound, pressure in turbulent fluid flow, or engine sound in automobiles are excellent candidates for wavelet analysis. This project focused on (1) methods for choosing the parent wavelet for a continuous wavelet transform in pattern recognition applications and (2) the more efficient computation of continuous wavelet transforms by understanding the relationship between discrete wavelet transforms and discretized continuousmore » wavelet transforms. The most interesting result of this research is the finding that the generalized wave equation, on which the continuous wavelet transform is based, can be used to understand phenomena that relate to the process of hearing.« less

  7. Hierarchical graphical-based human pose estimation via local multi-resolution convolutional neural network

    NASA Astrophysics Data System (ADS)

    Zhu, Aichun; Wang, Tian; Snoussi, Hichem

    2018-03-01

    This paper addresses the problems of the graphical-based human pose estimation in still images, including the diversity of appearances and confounding background clutter. We present a new architecture for estimating human pose using a Convolutional Neural Network (CNN). Firstly, a Relative Mixture Deformable Model (RMDM) is defined by each pair of connected parts to compute the relative spatial information in the graphical model. Secondly, a Local Multi-Resolution Convolutional Neural Network (LMR-CNN) is proposed to train and learn the multi-scale representation of each body parts by combining different levels of part context. Thirdly, a LMR-CNN based hierarchical model is defined to explore the context information of limb parts. Finally, the experimental results demonstrate the effectiveness of the proposed deep learning approach for human pose estimation.

  8. Unsupervised segmentation of lung fields in chest radiographs using multiresolution fractal feature vector and deformable models.

    PubMed

    Lee, Wen-Li; Chang, Koyin; Hsieh, Kai-Sheng

    2016-09-01

    Segmenting lung fields in a chest radiograph is essential for automatically analyzing an image. We present an unsupervised method based on multiresolution fractal feature vector. The feature vector characterizes the lung field region effectively. A fuzzy c-means clustering algorithm is then applied to obtain a satisfactory initial contour. The final contour is obtained by deformable models. The results show the feasibility and high performance of the proposed method. Furthermore, based on the segmentation of lung fields, the cardiothoracic ratio (CTR) can be measured. The CTR is a simple index for evaluating cardiac hypertrophy. After identifying a suspicious symptom based on the estimated CTR, a physician can suggest that the patient undergoes additional extensive tests before a treatment plan is finalized.

  9. Wavelet analysis of polarization azimuths maps for laser images of myocardial tissue for the purpose of diagnosing acute coronary insufficiency

    NASA Astrophysics Data System (ADS)

    Wanchuliak, O. Ya.; Peresunko, A. P.; Bakko, Bouzan Adel; Kushnerick, L. Ya.

    2011-09-01

    This paper presents the foundations of a large scale - localized wavelet - polarization analysis - inhomogeneous laser images of histological sections of myocardial tissue. Opportunities were identified defining relations between the structures of wavelet coefficients and causes of death. The optical model of polycrystalline networks of myocardium protein fibrils is presented. The technique of determining the coordinate distribution of polarization azimuth of the points of laser images of myocardium histological sections is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st-4th order) parameters are presented which characterize distributions of wavelet - coefficients polarization maps of myocardium layers and death reasons.

  10. Automatic segmentation of fluorescence lifetime microscopy images of cells using multiresolution community detection--a first study.

    PubMed

    Hu, D; Sarder, P; Ronhovde, P; Orthaus, S; Achilefu, S; Nussinov, Z

    2014-01-01

    Inspired by a multiresolution community detection based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Furthermore, using the proposed method, the mean-square error in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The multiresolution community detection method appeared to perform better than a popular spectral clustering-based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in mean-square error with increasing resolution. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  11. An efficient multi-resolution GA approach to dental image alignment

    NASA Astrophysics Data System (ADS)

    Nassar, Diaa Eldin; Ogirala, Mythili; Adjeroh, Donald; Ammar, Hany

    2006-02-01

    Automating the process of postmortem identification of individuals using dental records is receiving an increased attention in forensic science, especially with the large volume of victims encountered in mass disasters. Dental radiograph alignment is a key step required for automating the dental identification process. In this paper, we address the problem of dental radiograph alignment using a Multi-Resolution Genetic Algorithm (MR-GA) approach. We use location and orientation information of edge points as features; we assume that affine transformations suffice to restore geometric discrepancies between two images of a tooth, we efficiently search the 6D space of affine parameters using GA progressively across multi-resolution image versions, and we use a Hausdorff distance measure to compute the similarity between a reference tooth and a query tooth subject to a possible alignment transform. Testing results based on 52 teeth-pair images suggest that our algorithm converges to reasonable solutions in more than 85% of the test cases, with most of the error in the remaining cases due to excessive misalignments.

  12. Speckle noise reduction in ultrasound images using a discrete wavelet transform-based image fusion technique.

    PubMed

    Choi, Hyun Ho; Lee, Ju Hwan; Kim, Sung Min; Park, Sung Yun

    2015-01-01

    Here, the speckle noise in ultrasonic images is removed using an image fusion-based denoising method. To optimize the denoising performance, each discrete wavelet transform (DWT) and filtering technique was analyzed and compared. In addition, the performances were compared in order to derive the optimal input conditions. To evaluate the speckle noise removal performance, an image fusion algorithm was applied to the ultrasound images, and comparatively analyzed with the original image without the algorithm. As a result, applying DWT and filtering techniques caused information loss and noise characteristics, and did not represent the most significant noise reduction performance. Conversely, an image fusion method applying SRAD-original conditions preserved the key information in the original image, and the speckle noise was removed. Based on such characteristics, the input conditions of SRAD-original had the best denoising performance with the ultrasound images. From this study, the best denoising technique proposed based on the results was confirmed to have a high potential for clinical application.

  13. Running wavelet archetype aids the determination of heart rate from the video photoplethysmogram during motion.

    PubMed

    Addison, Paul S; Foo, David M H; Jacquel, Dominique

    2017-07-01

    The extraction of heart rate from a video-based biosignal during motion using a novel wavelet-based ensemble averaging method is described. Running Wavelet Archetyping (RWA) allows for the enhanced extraction of pulse information from the time-frequency representation, from which a video-based heart rate (HRvid) can be derived. This compares favorably to a reference heart rate derived from a pulse oximeter.

  14. Wavelet-based fMRI analysis: 3-D denoising, signal separation, and validation metrics

    PubMed Central

    Khullar, Siddharth; Michael, Andrew; Correa, Nicolle; Adali, Tulay; Baum, Stefi A.; Calhoun, Vince D.

    2010-01-01

    We present a novel integrated wavelet-domain based framework (w-ICA) for 3-D de-noising functional magnetic resonance imaging (fMRI) data followed by source separation analysis using independent component analysis (ICA) in the wavelet domain. We propose the idea of a 3-D wavelet-based multi-directional de-noising scheme where each volume in a 4-D fMRI data set is sub-sampled using the axial, sagittal and coronal geometries to obtain three different slice-by-slice representations of the same data. The filtered intensity value of an arbitrary voxel is computed as an expected value of the de-noised wavelet coefficients corresponding to the three viewing geometries for each sub-band. This results in a robust set of de-noised wavelet coefficients for each voxel. Given the decorrelated nature of these de-noised wavelet coefficients; it is possible to obtain more accurate source estimates using ICA in the wavelet domain. The contributions of this work can be realized as two modules. First, the analysis module where we combine a new 3-D wavelet denoising approach with better signal separation properties of ICA in the wavelet domain, to yield an activation component that corresponds closely to the true underlying signal and is maximally independent with respect to other components. Second, we propose and describe two novel shape metrics for post-ICA comparisons between activation regions obtained through different frameworks. We verified our method using simulated as well as real fMRI data and compared our results against the conventional scheme (Gaussian smoothing + spatial ICA: s-ICA). The results show significant improvements based on two important features: (1) preservation of shape of the activation region (shape metrics) and (2) receiver operating characteristic (ROC) curves. It was observed that the proposed framework was able to preserve the actual activation shape in a consistent manner even for very high noise levels in addition to significant reduction in false positives voxels. PMID:21034833

  15. Energy-Based Wavelet De-Noising of Hydrologic Time Series

    PubMed Central

    Sang, Yan-Fang; Liu, Changming; Wang, Zhonggen; Wen, Jun; Shang, Lunyu

    2014-01-01

    De-noising is a substantial issue in hydrologic time series analysis, but it is a difficult task due to the defect of methods. In this paper an energy-based wavelet de-noising method was proposed. It is to remove noise by comparing energy distribution of series with the background energy distribution, which is established from Monte-Carlo test. Differing from wavelet threshold de-noising (WTD) method with the basis of wavelet coefficient thresholding, the proposed method is based on energy distribution of series. It can distinguish noise from deterministic components in series, and uncertainty of de-noising result can be quantitatively estimated using proper confidence interval, but WTD method cannot do this. Analysis of both synthetic and observed series verified the comparable power of the proposed method and WTD, but de-noising process by the former is more easily operable. The results also indicate the influences of three key factors (wavelet choice, decomposition level choice and noise content) on wavelet de-noising. Wavelet should be carefully chosen when using the proposed method. The suitable decomposition level for wavelet de-noising should correspond to series' deterministic sub-signal which has the smallest temporal scale. If too much noise is included in a series, accurate de-noising result cannot be obtained by the proposed method or WTD, but the series would show pure random but not autocorrelation characters, so de-noising is no longer needed. PMID:25360533

  16. Gabor-based kernel PCA with fractional power polynomial models for face recognition.

    PubMed

    Liu, Chengjun

    2004-05-01

    This paper presents a novel Gabor-based kernel Principal Component Analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power polynomial models, the Gabor wavelet-based PCA method, and the Gabor wavelet-based kernel PCA method with polynomial kernels.

  17. Analysis of wheezes using wavelet higher order spectral features.

    PubMed

    Taplidou, Styliani A; Hadjileontiadis, Leontios J

    2010-07-01

    Wheezes are musical breath sounds, which usually imply an existing pulmonary obstruction, such as asthma and chronic obstructive pulmonary disease (COPD). Although many studies have addressed the problem of wheeze detection, a limited number of scientific works has focused in the analysis of wheeze characteristics, and in particular, their time-varying nonlinear characteristics. In this study, an effort is made to reveal and statistically analyze the nonlinear characteristics of wheezes and their evolution over time, as they are reflected in the quadratic phase coupling of their harmonics. To this end, the continuous wavelet transform (CWT) is used in combination with third-order spectra to define the analysis domain, where the nonlinear interactions of the harmonics of wheezes and their time variations are revealed by incorporating instantaneous wavelet bispectrum and bicoherence, which provide with the instantaneous biamplitude and biphase curves. Based on this nonlinear information pool, a set of 23 features is proposed for the nonlinear analysis of wheezes. Two complementary perspectives, i.e., general and detailed, related to average performance and to localities, respectively, were used in the construction of the feature set, in order to embed trends and local behaviors, respectively, seen in the nonlinear interaction of the harmonic elements of wheezes over time. The proposed feature set was evaluated on a dataset of wheezes, acquired from adult patients with diagnosed asthma and COPD from a lung sound database. The statistical evaluation of the feature set revealed discrimination ability between the two pathologies for all data subgroupings. In particular, when the total breathing cycle was examined, all 23 features, but one, showed statistically significant difference between the COPD and asthma pathologies, whereas for the subgroupings of inspiratory and expiratory phases, 18 out of 23 and 22 out of 23 features exhibited discrimination power, respectively. This paves the way for the use of the wavelet higher order spectral features as an input vector to an efficient classifier. Apparently, this would integrate the intrinsic characteristics of wheezes within computerized diagnostic tools toward their more efficient evaluation.

  18. A Multi-Resolution Data Structure for Two-Dimensional Morse Functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bremer, P-T; Edelsbrunner, H; Hamann, B

    2003-07-30

    The efficient construction of simplified models is a central problem in the field of visualization. We combine topological and geometric methods to construct a multi-resolution data structure for functions over two-dimensional domains. Starting with the Morse-Smale complex we build a hierarchy by progressively canceling critical points in pairs. The data structure supports mesh traversal operations similar to traditional multi-resolution representations.

  19. Use of the Morlet mother wavelet in the frequency-scale domain decomposition technique for the modal identification of ambient vibration responses

    NASA Astrophysics Data System (ADS)

    Le, Thien-Phu

    2017-10-01

    The frequency-scale domain decomposition technique has recently been proposed for operational modal analysis. The technique is based on the Cauchy mother wavelet. In this paper, the approach is extended to the Morlet mother wavelet, which is very popular in signal processing due to its superior time-frequency localization. Based on the regressive form and an appropriate norm of the Morlet mother wavelet, the continuous wavelet transform of the power spectral density of ambient responses enables modes in the frequency-scale domain to be highlighted. Analytical developments first demonstrate the link between modal parameters and the local maxima of the continuous wavelet transform modulus. The link formula is then used as the foundation of the proposed modal identification method. Its practical procedure, combined with the singular value decomposition algorithm, is presented step by step. The proposition is finally verified using numerical examples and a laboratory test.

  20. Variations in motor unit recruitment patterns occur within and between muscles in the running rat (Rattus norvegicus).

    PubMed

    Hodson-Tole, E F; Wakeling, J M

    2007-07-01

    Motor units are generally considered to follow a set, orderly pattern of recruitment within each muscle with activation occurring in the slowest through to the fastest units. A growing body of evidence, however, suggests that recruitment patterns may not always follow such an orderly sequence. Here we investigate whether motor unit recruitment patterns vary within and between the ankle extensor muscles of the rat running at 40 cm s(-1) on a level treadmill. In the past it has been difficult to quantify motor unit recruitment patterns during locomotion; however, recent application of wavelet analysis techniques has made such detailed analysis of motor unit recruitment possible. Here we present methods for quantifying the interplay of fast and slow motor unit recruitment based on their myoelectric signals. Myoelectric data were collected from soleus, plantaris and medial gastrocnemius muscles representing populations of slow, mixed and fast fibres, respectively, and providing a good opportunity to relate myoelectric frequency content to motor unit recruitment patterns. Following wavelet transformation, principal component analysis quantified signal intensity and relative frequency content. Significant differences in signal frequency content occurred between different time points within a stride (P<0.001). We optimised high- and low-frequency wavelets to the major signals from the fast and slow motor units. The goodness-of-fit of the optimised wavelets to the signal intensity was high for all three muscles (r2>0.98). The low-frequency band had a significantly better fit to signals from the soleus muscle (P<0.001), while the high-frequency band had a significantly better fit to the medial gastrocnemius (P<0.001).

  1. Texture classification of normal tissues in computed tomography using Gabor filters

    NASA Astrophysics Data System (ADS)

    Dettori, Lucia; Bashir, Alia; Hasemann, Julie

    2007-03-01

    The research presented in this article is aimed at developing an automated imaging system for classification of normal tissues in medical images obtained from Computed Tomography (CT) scans. Texture features based on a bank of Gabor filters are used to classify the following tissues of interests: liver, spleen, kidney, aorta, trabecular bone, lung, muscle, IP fat, and SQ fat. The approach consists of three steps: convolution of the regions of interest with a bank of 32 Gabor filters (4 frequencies and 8 orientations), extraction of two Gabor texture features per filter (mean and standard deviation), and creation of a Classification and Regression Tree-based classifier that automatically identifies the various tissues. The data set used consists of approximately 1000 DIACOM images from normal chest and abdominal CT scans of five patients. The regions of interest were labeled by expert radiologists. Optimal trees were generated using two techniques: 10-fold cross-validation and splitting of the data set into a training and a testing set. In both cases, perfect classification rules were obtained provided enough images were available for training (~65%). All performance measures (sensitivity, specificity, precision, and accuracy) for all regions of interest were at 100%. This significantly improves previous results that used Wavelet, Ridgelet, and Curvelet texture features, yielding accuracy values in the 85%-98% range The Gabor filters' ability to isolate features at different frequencies and orientations allows for a multi-resolution analysis of texture essential when dealing with, at times, very subtle differences in the texture of tissues in CT scans.

  2. Wavelet entropy characterization of elevated intracranial pressure.

    PubMed

    Xu, Peng; Scalzo, Fabien; Bergsneider, Marvin; Vespa, Paul; Chad, Miller; Hu, Xiao

    2008-01-01

    Intracranial Hypertension (ICH) often occurs for those patients with traumatic brain injury (TBI), stroke, tumor, etc. Pathology of ICH is still controversial. In this work, we used wavelet entropy and relative wavelet entropy to study the difference existed between normal and hypertension states of ICP for the first time. The wavelet entropy revealed the similar findings as the approximation entropy that entropy during ICH state is smaller than that in normal state. Moreover, with wavelet entropy, we can see that ICH state has the more focused energy in the low wavelet frequency band (0-3.1 Hz) than the normal state. The relative wavelet entropy shows that the energy distribution in the wavelet bands between these two states is actually different. Based on these results, we suggest that ICH may be formed by the re-allocation of oscillation energy within brain.

  3. Content Based Image Retrieval based on Wavelet Transform coefficients distribution

    PubMed Central

    Lamard, Mathieu; Cazuguel, Guy; Quellec, Gwénolé; Bekri, Lynda; Roux, Christian; Cochener, Béatrice

    2007-01-01

    In this paper we propose a content based image retrieval method for diagnosis aid in medical fields. We characterize images without extracting significant features by using distribution of coefficients obtained by building signatures from the distribution of wavelet transform. The research is carried out by computing signature distances between the query and database images. Several signatures are proposed; they use a model of wavelet coefficient distribution. To enhance results, a weighted distance between signatures is used and an adapted wavelet base is proposed. Retrieval efficiency is given for different databases including a diabetic retinopathy, a mammography and a face database. Results are promising: the retrieval efficiency is higher than 95% for some cases using an optimization process. PMID:18003013

  4. Adaptive multi-resolution Modularity for detecting communities in networks

    NASA Astrophysics Data System (ADS)

    Chen, Shi; Wang, Zhi-Zhong; Bao, Mei-Hua; Tang, Liang; Zhou, Ji; Xiang, Ju; Li, Jian-Ming; Yi, Chen-He

    2018-02-01

    Community structure is a common topological property of complex networks, which attracted much attention from various fields. Optimizing quality functions for community structures is a kind of popular strategy for community detection, such as Modularity optimization. Here, we introduce a general definition of Modularity, by which several classical (multi-resolution) Modularity can be derived, and then propose a kind of adaptive (multi-resolution) Modularity that can combine the advantages of different Modularity. By applying the Modularity to various synthetic and real-world networks, we study the behaviors of the methods, showing the validity and advantages of the multi-resolution Modularity in community detection. The adaptive Modularity, as a kind of multi-resolution method, can naturally solve the first-type limit of Modularity and detect communities at different scales; it can quicken the disconnecting of communities and delay the breakup of communities in heterogeneous networks; and thus it is expected to generate the stable community structures in networks more effectively and have stronger tolerance against the second-type limit of Modularity.

  5. Design of almost symmetric orthogonal wavelet filter bank via direct optimization.

    PubMed

    Murugesan, Selvaraaju; Tay, David B H

    2012-05-01

    It is a well-known fact that (compact-support) dyadic wavelets [based on the two channel filter banks (FBs)] cannot be simultaneously orthogonal and symmetric. Although orthogonal wavelets have the energy preservation property, biorthogonal wavelets are preferred in image processing applications because of their symmetric property. In this paper, a novel method is presented for the design of almost symmetric orthogonal wavelet FB. Orthogonality is structurally imposed by using the unnormalized lattice structure, and this leads to an objective function, which is relatively simple to optimize. The designed filters have good frequency response, flat group delay, almost symmetric filter coefficients, and symmetric wavelet function.

  6. Underwater target classification using wavelet packets and neural networks.

    PubMed

    Azimi-Sadjadi, M R; Yao, D; Huang, Q; Dobeck, G J

    2000-01-01

    In this paper, a new subband-based classification scheme is developed for classifying underwater mines and mine-like targets from the acoustic backscattered signals. The system consists of a feature extractor using wavelet packets in conjunction with linear predictive coding (LPC), a feature selection scheme, and a backpropagation neural-network classifier. The data set used for this study consists of the backscattered signals from six different objects: two mine-like targets and four nontargets for several aspect angles. Simulation results on ten different noisy realizations and for signal-to-noise ratio (SNR) of 12 dB are presented. The receiver operating characteristic (ROC) curve of the classifier generated based on these results demonstrated excellent classification performance of the system. The generalization ability of the trained network was demonstrated by computing the error and classification rate statistics on a large data set. A multiaspect fusion scheme was also adopted in order to further improve the classification performance.

  7. Prognostics of Lithium-Ion Batteries Based on Wavelet Denoising and DE-RVM

    PubMed Central

    Zhang, Chaolong; He, Yigang; Yuan, Lifeng; Xiang, Sheng; Wang, Jinping

    2015-01-01

    Lithium-ion batteries are widely used in many electronic systems. Therefore, it is significantly important to estimate the lithium-ion battery's remaining useful life (RUL), yet very difficult. One important reason is that the measured battery capacity data are often subject to the different levels of noise pollution. In this paper, a novel battery capacity prognostics approach is presented to estimate the RUL of lithium-ion batteries. Wavelet denoising is performed with different thresholds in order to weaken the strong noise and remove the weak noise. Relevance vector machine (RVM) improved by differential evolution (DE) algorithm is utilized to estimate the battery RUL based on the denoised data. An experiment including battery 5 capacity prognostics case and battery 18 capacity prognostics case is conducted and validated that the proposed approach can predict the trend of battery capacity trajectory closely and estimate the battery RUL accurately. PMID:26413090

  8. The design and implementation of signal decomposition system of CL multi-wavelet transform based on DSP builder

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Wang, Zhihui

    2015-12-01

    With the development of FPGA, DSP Builder is widely applied to design system-level algorithms. The algorithm of CL multi-wavelet is more advanced and effective than scalar wavelets in processing signal decomposition. Thus, a system of CL multi-wavelet based on DSP Builder is designed for the first time in this paper. The system mainly contains three parts: a pre-filtering subsystem, a one-level decomposition subsystem and a two-level decomposition subsystem. It can be converted into hardware language VHDL by the Signal Complier block that can be used in Quartus II. After analyzing the energy indicator, it shows that this system outperforms Daubenchies wavelet in signal decomposition. Furthermore, it has proved to be suitable for the implementation of signal fusion based on SoPC hardware, and it will become a solid foundation in this new field.

  9. Digital transceiver implementation for wavelet packet modulation

    NASA Astrophysics Data System (ADS)

    Lindsey, Alan R.; Dill, Jeffrey C.

    1998-03-01

    Current transceiver designs for wavelet-based communication systems are typically reliant on analog waveform synthesis, however, digital processing is an important part of the eventual success of these techniques. In this paper, a transceiver implementation is introduced for the recently introduced wavelet packet modulation scheme which moves the analog processing as far as possible toward the antenna. The transceiver is based on the discrete wavelet packet transform which incorporates level and node parameters for generalized computation of wavelet packets. In this transform no particular structure is imposed on the filter bank save dyadic branching, and a maximum level which is specified a priori and dependent mainly on speed and/or cost considerations. The transmitter/receiver structure takes a binary sequence as input and, based on the desired time- frequency partitioning, processes the signal through demultiplexing, synthesis, analysis, multiplexing and data determination completely in the digital domain - with exception of conversion in and out of the analog domain for transmission.

  10. On the action of Heisenberg's uncertainty principle in discrete linear methods for calculating the components of the deflection of the vertical

    NASA Astrophysics Data System (ADS)

    Mazurova, Elena; Lapshin, Aleksey

    2013-04-01

    The method of discrete linear transformations that can be implemented through the algorithms of the Standard Fourier Transform (SFT), Short-Time Fourier Transform (STFT) or Wavelet transform (WT) is effective for calculating the components of the deflection of the vertical from discrete values of gravity anomaly. The SFT due to the action of Heisenberg's uncertainty principle indicates weak spatial localization that manifests in the following: firstly, it is necessary to know the initial digital signal on the complete number line (in case of one-dimensional transform) or in the whole two-dimensional space (if a two-dimensional transform is performed) in order to find the SFT. Secondly, the localization and values of the "peaks" of the initial function cannot be derived from its Fourier transform as the coefficients of the Fourier transform are formed by taking into account all the values of the initial function. Thus, the SFT gives the global information on all frequencies available in the digital signal throughout the whole time period. To overcome this peculiarity it is necessary to localize the signal in time and apply the Fourier transform only to a small portion of the signal; the STFT that differs from the SFT only by the presence of an additional factor (window) is used for this purpose. A narrow enough window is chosen to localize the signal in time and, according to Heisenberg's uncertainty principle, it results in have significant enough uncertainty in frequency. If one chooses a wide enough window it, according to the same principle, will increase time uncertainty. Thus, if the signal is narrowly localized in time its spectrum, on the contrary, is spread on the complete axis of frequencies, and vice versa. The STFT makes it possible to improve spatial localization, that is, it allows one to define the presence of any frequency in the signal and the interval of its presence. However, owing to Heisenberg's uncertainty principle, it is impossible to tell precisely, what frequency is present in the signal at the current moment of time: it is possible to speak only about the range of frequencies. Besides, it is impossible to specify precisely the time moment of the presence of this or that frequency: it is possible to speak only about the time frame. It is this feature that imposes major constrains on the applicability of the STFT. In spite of the fact that the problems of resolution in time and frequency result from a physical phenomenon (Heisenberg's uncertainty principle) and exist independent of the transform applied, there is a possibility to analyze any signal, using the alternative approach - the multiresolutional analysis (MRA). The wavelet-transform is one of the methods for making a MRA-type analysis. Thanks to it, low frequencies can be shown in a more detailed form with respect to time, and high ones - with respect to frequency. The paper presents the results of calculating of the components of the deflection of the vertical, done by the SFT, STFT and WT. The results are presented in the form of 3-d models that visually show the action of Heisenberg's uncertainty principle in the specified algorithms. The research conducted allows us to recommend the application of wavelet-transform to calculate of the components of the deflection of the vertical in the near-field zone. Keywords: Standard Fourier Transform, Short-Time Fourier Transform, Wavelet Transform, Heisenberg's uncertainty principle.

  11. Wavelet based detection of manatee vocalizations

    NASA Astrophysics Data System (ADS)

    Gur, Berke M.; Niezrecki, Christopher

    2005-04-01

    The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of watercraft collisions in Florida's coastal waterways. Several boater warning systems, based upon manatee vocalizations, have been proposed to reduce the number of collisions. Three detection methods based on the Fourier transform (threshold, harmonic content and autocorrelation methods) were previously suggested and tested. In the last decade, the wavelet transform has emerged as an alternative to the Fourier transform and has been successfully applied in various fields of science and engineering including the acoustic detection of dolphin vocalizations. As of yet, no prior research has been conducted in analyzing manatee vocalizations using the wavelet transform. Within this study, the wavelet transform is used as an alternative to the Fourier transform in detecting manatee vocalizations. The wavelet coefficients are analyzed and tested against a specified criterion to determine the existence of a manatee call. The performance of the method presented is tested on the same data previously used in the prior studies, and the results are compared. Preliminary results indicate that using the wavelet transform as a signal processing technique to detect manatee vocalizations shows great promise.

  12. Estimation of Handgrip Force from SEMG Based on Wavelet Scale Selection.

    PubMed

    Wang, Kai; Zhang, Xianmin; Ota, Jun; Huang, Yanjiang

    2018-02-24

    This paper proposes a nonlinear correlation-based wavelet scale selection technology to select the effective wavelet scales for the estimation of handgrip force from surface electromyograms (SEMG). The SEMG signal corresponding to gripping force was collected from extensor and flexor forearm muscles during the force-varying analysis task. We performed a computational sensitivity analysis on the initial nonlinear SEMG-handgrip force model. To explore the nonlinear correlation between ten wavelet scales and handgrip force, a large-scale iteration based on the Monte Carlo simulation was conducted. To choose a suitable combination of scales, we proposed a rule to combine wavelet scales based on the sensitivity of each scale and selected the appropriate combination of wavelet scales based on sequence combination analysis (SCA). The results of SCA indicated that the scale combination VI is suitable for estimating force from the extensors and the combination V is suitable for the flexors. The proposed method was compared to two former methods through prolonged static and force-varying contraction tasks. The experiment results showed that the root mean square errors derived by the proposed method for both static and force-varying contraction tasks were less than 20%. The accuracy and robustness of the handgrip force derived by the proposed method is better than that obtained by the former methods.

  13. An efficient coding algorithm for the compression of ECG signals using the wavelet transform.

    PubMed

    Rajoub, Bashar A

    2002-04-01

    A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper. The ECG signal is first preprocessed, the discrete wavelet transform (DWT) is then applied to the preprocessed signal. Preprocessing guarantees that the magnitudes of the wavelet coefficients be less than one, and reduces the reconstruction errors near both ends of the compressed signal. The DWT coefficients are divided into three groups, each group is thresholded using a threshold based on a desired energy packing efficiency. A binary significance map is then generated by scanning the wavelet decomposition coefficients and outputting a binary one if the scanned coefficient is significant, and a binary zero if it is insignificant. Compression is achieved by 1) using a variable length code based on run length encoding to compress the significance map and 2) using direct binary representation for representing the significant coefficients. The ability of the coding algorithm to compress ECG signals is investigated, the results were obtained by compressing and decompressing the test signals. The proposed algorithm is compared with direct-based and wavelet-based compression algorithms and showed superior performance. A compression ratio of 24:1 was achieved for MIT-BIH record 117 with a percent root mean square difference as low as 1.08%.

  14. Adaptive Diffeomorphic Multiresolution Demons and Their Application to Same Modality Medical Image Registration with Large Deformation

    PubMed Central

    Wang, Chang; Ren, Qiongqiong; Qin, Xin

    2018-01-01

    Diffeomorphic demons can guarantee smooth and reversible deformation and avoid unreasonable deformation. However, the number of iterations needs to be set manually, and this greatly influences the registration result. In order to solve this problem, we proposed adaptive diffeomorphic multiresolution demons in this paper. We used an optimized framework with nonrigid registration and diffeomorphism strategy, designed a similarity energy function based on grey value, and stopped iterations adaptively. This method was tested by synthetic image and same modality medical image. Large deformation was simulated by rotational distortion and extrusion transform, medical image registration with large deformation was performed, and quantitative analyses were conducted using the registration evaluation indexes, and the influence of different driving forces and parameters on the registration result was analyzed. The registration results of same modality medical images were compared with those obtained using active demons, additive demons, and diffeomorphic demons. Quantitative analyses showed that the proposed method's normalized cross-correlation coefficient and structural similarity were the highest and mean square error was the lowest. Medical image registration with large deformation could be performed successfully; evaluation indexes remained stable with an increase in deformation strength. The proposed method is effective and robust, and it can be applied to nonrigid registration of same modality medical images with large deformation.

  15. Adaptive Diffeomorphic Multiresolution Demons and Their Application to Same Modality Medical Image Registration with Large Deformation.

    PubMed

    Wang, Chang; Ren, Qiongqiong; Qin, Xin; Yu, Yi

    2018-01-01

    Diffeomorphic demons can guarantee smooth and reversible deformation and avoid unreasonable deformation. However, the number of iterations needs to be set manually, and this greatly influences the registration result. In order to solve this problem, we proposed adaptive diffeomorphic multiresolution demons in this paper. We used an optimized framework with nonrigid registration and diffeomorphism strategy, designed a similarity energy function based on grey value, and stopped iterations adaptively. This method was tested by synthetic image and same modality medical image. Large deformation was simulated by rotational distortion and extrusion transform, medical image registration with large deformation was performed, and quantitative analyses were conducted using the registration evaluation indexes, and the influence of different driving forces and parameters on the registration result was analyzed. The registration results of same modality medical images were compared with those obtained using active demons, additive demons, and diffeomorphic demons. Quantitative analyses showed that the proposed method's normalized cross-correlation coefficient and structural similarity were the highest and mean square error was the lowest. Medical image registration with large deformation could be performed successfully; evaluation indexes remained stable with an increase in deformation strength. The proposed method is effective and robust, and it can be applied to nonrigid registration of same modality medical images with large deformation.

  16. Multidimensional, mapping-based complex wavelet transforms.

    PubMed

    Fernandes, Felix C A; van Spaendonck, Rutger L C; Burrus, C Sidney

    2005-01-01

    Although the discrete wavelet transform (DWT) is a powerful tool for signal and image processing, it has three serious disadvantages: shift sensitivity, poor directionality, and lack of phase information. To overcome these disadvantages, we introduce multidimensional, mapping-based, complex wavelet transforms that consist of a mapping onto a complex function space followed by a DWT of the complex mapping. Unlike other popular transforms that also mitigate DWT shortcomings, the decoupled implementation of our transforms has two important advantages. First, the controllable redundancy of the mapping stage offers a balance between degree of shift sensitivity and transform redundancy. This allows us to create a directional, nonredundant, complex wavelet transform with potential benefits for image coding systems. To the best of our knowledge, no other complex wavelet transform is simultaneously directional and nonredundant. The second advantage of our approach is the flexibility to use any DWT in the transform implementation. As an example, we exploit this flexibility to create the complex double-density DWT: a shift-insensitive, directional, complex wavelet transform with a low redundancy of (3M - 1)/(2M - 1) in M dimensions. No other transform achieves all these properties at a lower redundancy, to the best of our knowledge. By exploiting the advantages of our multidimensional, mapping-based complex wavelet transforms in seismic signal-processing applications, we have demonstrated state-of-the-art results.

  17. Phase synchronization based on a Dual-Tree Complex Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Ferreira, Maria Teodora; Domingues, Margarete Oliveira; Macau, Elbert E. N.

    2016-11-01

    In this work, we show the applicability of our Discrete Complex Wavelet Approach (DCWA) to verify the phenomenon of phase synchronization transition in two coupled chaotic Lorenz systems. DCWA is based on the phase assignment from complex wavelet coefficients obtained by using a Dual-Tree Complex Wavelet Transform (DT-CWT). We analyzed two coupled chaotic Lorenz systems, aiming to detect the transition from non-phase synchronization to phase synchronization. In addition, we check how good is the method in detecting periods of 2π phase-slips. In all experiments, DCWA is compared with classical phase detection methods such as the ones based on arctangent and Hilbert transform showing a much better performance.

  18. A Comparative Study on Fetal Heart Rates Estimated from Fetal Phonography and Cardiotocography

    PubMed Central

    Ibrahim, Emad A.; Al Awar, Shamsa; Balayah, Zuhur H.; Hadjileontiadis, Leontios J.; Khandoker, Ahsan H.

    2017-01-01

    The aim of this study is to investigate that fetal heart rates (fHR) extracted from fetal phonocardiography (fPCG) could convey similar information of fHR from cardiotocography (CTG). Four-channel fPCG sensors made of low cost (<$1) ceramic piezo vibration sensor within 3D-printed casings were used to collect abdominal phonogram signals from 20 pregnant mothers (>34 weeks of gestation). A novel multi-lag covariance matrix-based eigenvalue decomposition technique was used to separate maternal breathing, fetal heart sounds (fHS) and maternal heart sounds (mHS) from abdominal phonogram signals. Prior to the fHR estimation, the fPCG signals were denoised using a multi-resolution wavelet-based filter. The proposed source separation technique was first tested in separating sources from synthetically mixed signals and then on raw abdominal phonogram signals. fHR signals extracted from fPCG signals were validated using simultaneous recorded CTG-based fHR recordings.The experimental results have shown that the fHR derived from the acquired fPCG can be used to detect periods of acceleration and deceleration, which are critical indication of the fetus' well-being. Moreover, a comparative analysis demonstrated that fHRs from CTG and fPCG signals were in good agreement (Bland Altman plot has mean = −0.21 BPM and ±2 SD = ±3) with statistical significance (p < 0.001 and Spearman correlation coefficient ρ = 0.95). The study findings show that fHR estimated from fPCG could be a reliable substitute for fHR from the CTG, opening up the possibility of a low cost monitoring tool for fetal well-being. PMID:29089896

  19. Multiresolution strategies for the numerical solution of optimal control problems

    NASA Astrophysics Data System (ADS)

    Jain, Sachin

    There exist many numerical techniques for solving optimal control problems but less work has been done in the field of making these algorithms run faster and more robustly. The main motivation of this work is to solve optimal control problems accurately in a fast and efficient way. Optimal control problems are often characterized by discontinuities or switchings in the control variables. One way of accurately capturing the irregularities in the solution is to use a high resolution (dense) uniform grid. This requires a large amount of computational resources both in terms of CPU time and memory. Hence, in order to accurately capture any irregularities in the solution using a few computational resources, one can refine the mesh locally in the region close to an irregularity instead of refining the mesh uniformly over the whole domain. Therefore, a novel multiresolution scheme for data compression has been designed which is shown to outperform similar data compression schemes. Specifically, we have shown that the proposed approach results in fewer grid points in the grid compared to a common multiresolution data compression scheme. The validity of the proposed mesh refinement algorithm has been verified by solving several challenging initial-boundary value problems for evolution equations in 1D. The examples have demonstrated the stability and robustness of the proposed algorithm. The algorithm adapted dynamically to any existing or emerging irregularities in the solution by automatically allocating more grid points to the region where the solution exhibited sharp features and fewer points to the region where the solution was smooth. Thereby, the computational time and memory usage has been reduced significantly, while maintaining an accuracy equivalent to the one obtained using a fine uniform mesh. Next, a direct multiresolution-based approach for solving trajectory optimization problems is developed. The original optimal control problem is transcribed into a nonlinear programming (NLP) problem that is solved using standard NLP codes. The novelty of the proposed approach hinges on the automatic calculation of a suitable, nonuniform grid over which the NLP problem is solved, which tends to increase numerical efficiency and robustness. Control and/or state constraints are handled with ease, and without any additional computational complexity. The proposed algorithm is based on a simple and intuitive method to balance several conflicting objectives, such as accuracy of the solution, convergence, and speed of the computations. The benefits of the proposed algorithm over uniform grid implementations are demonstrated with the help of several nontrivial examples. Furthermore, two sequential multiresolution trajectory optimization algorithms for solving problems with moving targets and/or dynamically changing environments have been developed. For such problems, high accuracy is desirable only in the immediate future, yet the ultimate mission objectives should be accommodated as well. An intelligent trajectory generation for such situations is thus enabled by introducing the idea of multigrid temporal resolution to solve the associated trajectory optimization problem on a non-uniform grid across time that is adapted to: (i) immediate future, and (ii) potential discontinuities in the state and control variables.

  20. Denoising embolic Doppler ultrasound signals using Dual Tree Complex Discrete Wavelet Transform.

    PubMed

    Serbes, Gorkem; Aydin, Nizamettin

    2010-01-01

    Early and accurate detection of asymptomatic emboli is important for monitoring of preventive therapy in stroke-prone patients. One of the problems in detection of emboli is the identification of an embolic signal caused by very small emboli. The amplitude of the embolic signal may be so small that advanced processing methods are required to distinguish these signals from Doppler signals arising from red blood cells. In this study instead of conventional discrete wavelet transform, the Dual Tree Complex Discrete Wavelet Transform was used for denoising embolic signals. Performances of both approaches were compared. Unlike the conventional discrete wavelet transform discrete complex wavelet transform is a shift invariant transform with limited redundancy. Results demonstrate that the Dual Tree Complex Discrete Wavelet Transform based denoising outperforms conventional discrete wavelet denoising. Approximately 8 dB improvement is obtained by using the Dual Tree Complex Discrete Wavelet Transform compared to the improvement provided by the conventional Discrete Wavelet Transform (less than 5 dB).

Top