Sample records for ordered phase formation

  1. Formation of the molecular crystal structure during the vacuum sublimation of paracetamol

    NASA Astrophysics Data System (ADS)

    Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.

    2015-04-01

    The results from structural and thermal studies on the formation of molecular crystals during the vacuum sublimation of paracetamol from its vapor phase are given. It is established that the vapor-crystal phase transition proceeds in a complicated way as the superposition of two phase transitions: a first-order phase transition with a change in density, and a second-order phase transition with a change in ordering. It is shown that the latter is a smeared phase transition that proceeds with the formation of a pretransitional phase that is irreversibly dissipated during phase transformation, leading to the formation of crystals of the rhombic syngony. Data from differential scanning calorimetry and X-ray diffraction analysis are presented along with microphotographs.

  2. Modeling of metastable phase formation diagrams for sputtered thin films.

    PubMed

    Chang, Keke; Music, Denis; To Baben, Moritz; Lange, Dennis; Bolvardi, Hamid; Schneider, Jochen M

    2016-01-01

    A method to model the metastable phase formation in the Cu-W system based on the critical surface diffusion distance has been developed. The driver for the formation of a second phase is the critical diffusion distance which is dependent on the solubility of W in Cu and on the solubility of Cu in W. Based on comparative theoretical and experimental data, we can describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation. Metastable phase formation diagrams for Cu-W and Cu-V thin films are predicted and validated by combinatorial magnetron sputtering experiments. The correlative experimental and theoretical research strategy adopted here enables us to efficiently describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation during magnetron sputtering.

  3. Vapor-crystal phase transition in synthesis of paracetamol films by vacuum evaporation and condensation

    NASA Astrophysics Data System (ADS)

    Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.; Zarembo, V. I.

    2014-03-01

    We report on the structural and technological investigations of the vapor-crystal phase transition during synthesis of paracetamol films of the monoclinic system by vacuum evaporation and condensation in the temperature range 220-320 K. The complex nature of the transformation accompanied by the formation of a gel-like phase is revealed. The results are interpreted using a model according to which the vapor-crystal phase transition is not a simple first-order phase transition, but is a nonlinear superposition of two phase transitions: a first-order transition with a change in density and a second-order phase transition with a change in ordering. Micrographs of the surface of the films are obtained at different phases of formation.

  4. Metastability in the formation of Condon domains

    NASA Astrophysics Data System (ADS)

    Bakaleinikov, L. A.; Gordon, A.

    2018-05-01

    Metastability effects in the formation of Condon non-spin magnetic domains are considered. A possibility for the first-order phase transition occurrence in a three-dimensional electron gas is described in the case of two-frequency de-Haas-van Alphen magnetization oscillations originating from two extremal cross sections of the Fermi surface. The appearance of two additional domains is shown in the metastable region in aluminum. The phase diagram temperature-magnetic field exhibits the presence of second-order and first- order phase transitions in the two-frequency case.

  5. Effects of Cooling Rate on 6.5% Silicon Steel Ordering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Jun; Macziewski, Chad; Jensen, Brandt

    Increasing Si content improves magnetic and electrical properties of electrical steel, with 6.5% Si as the optimum. Unfortunately, when Si content approaches 5.7%, the Fe-Si alloy becomes brittle. At 6.5%, the steel conventional cold rolling process is no longer applicable. The heterogeneous formation of B2 and D03 ordered phases is responsible for the embrittlement. The formation of these ordered phases can be impeded by rapid cooling. However, only the cooling rates of water and brine water were investigated. A comprehensive study of the effect of rapid cooling rate on the formation of the ordered phases was carried out by varyingmore » wheel speed and melt-injection rate. Thermal imaging employed to measure cooling rates while microstructures of the obtained ribbons are characterized using X-ray diffraction and TEM. The electrical, magnetic and mechanical properties are characterized using 4-pt probe, VSM, and macro-indentation methods. The relations between physical properties and ordered phases are established.« less

  6. Unique atom hyper-kagome order in Na4Ir3O8 and in low-symmetry spinel modifications.

    PubMed

    Talanov, V M; Shirokov, V B; Talanov, M V

    2015-05-01

    Group-theoretical and thermodynamic methods of the Landau theory of phase transitions are used to investigate the hyper-kagome atomic order in structures of ordered spinels and a spinel-like Na4Ir3O8 crystal. The formation of an atom hyper-kagome sublattice in Na4Ir3O8 is described theoretically on the basis of the archetype (hypothetical parent structure/phase) concept. The archetype structure of Na4Ir3O8 has a spinel-like structure (space group Fd\\bar 3m) and composition [Na1/2Ir3/2](16d)[Na3/2](16c)O(32e)4. The critical order parameter which induces hypothetical phase transition has been stated. It is shown that the derived structure of Na4Ir3O8 is formed as a result of the displacements of Na, Ir and O atoms, and ordering of Na, Ir and O atoms, ordering dxy, dxz, dyz orbitals as well. Ordering of all atoms takes place according to the type 1:3. Ir and Na atoms form an intriguing atom order: a network of corner-shared Ir triangles called a hyper-kagome lattice. The Ir atoms form nanoclusters which are named decagons. The existence of hyper-kagome lattices in six types of ordered spinel structures is predicted theoretically. The structure mechanisms of the formation of the predicted hyper-kagome atom order in some ordered spinel phases are established. For a number of cases typical diagrams of possible crystal phase states are built in the framework of the Landau theory of phase transitions. Thermodynamical conditions of hyper-kagome order formation are discussed by means of these diagrams. The proposed theory is in accordance with experimental data.

  7. Cholesterol-Induced Formation of Liquid Ordered Phase-Like Structures in Non-Phospholipid Systems.

    PubMed

    Konno, Yoshikazu; Yoshimura, Akio; Naito, Noboru; Aramaki, Kenji

    2018-01-01

    The formation of liquid ordered (L o ) phase-like structures in stearyltrimethylammonium chloride/cholesterol/1,3-butanediol/water and hepta(oxyethylen) octadecyl ether/cholesterol/1,3-butanediol/water systems was investigated. Differential scanning calorimetry and X-ray scattering measurements confirmed that L o phase-like structures were formed in both surfactant/cholesterol systems, similar to the lysophospholipid/cholesterol system. It was revealed that the concentration of cholesterol at which only L o phase-like structures are formed increases in the order stearyltrimethylammonium chloride < lysophospholipid < hepta(oxyethylen) octadecyl ether. In addition, for both surfactants, the interlayer spacing, d, was larger for L o phase-like structures than for α-gel structures. These results suggest that the ionicity and structure of the hydrophilic group of each surfactant play important roles.

  8. Formation mechanism of superconducting phase and its three-dimensional architecture in pseudo-single-crystal K xFe 2-ySe 2

    DOE PAGES

    Liu, Yong; Xing, Qingfeng; Straszheim, Warren E.; ...

    2016-02-11

    Here, we report how the superconducting phase forms in pseudo-single-crystal K xFe 2-ySe 2. In situ scanning electron microscopy (SEM) observation reveals that, as an order-disorder transition occurs, on cooling, most of the high-temperature iron-vacancy-disordered phase gradually changes into the iron-vacancy-ordered phase whereas a small quantity of the high-temperature phase retains its structure and aggregates to the stripes with more iron concentration but less potassium concentration compared to the iron-vacancy-ordered phase. The stripes that are generally recognized as the superconducting phase are actually formed as a remnant of the high-temperature phase with a compositional change after an “imperfect” order-disorder transition.more » It should be emphasized that the phase separation in pseudo-single-crystal K xFe 2-ySe 2 is caused by the iron-vacancy order-disorder transition. The shrinkage of the high-temperature phase and the expansion of the newly created iron-vacancy-ordered phase during the phase separation rule out the mechanism of spinodal decomposition proposed in an early report [Wang et al, Phys. Rev. B 91, 064513 (2015)]. Since the formation of the superconducting phase relies on the occurrence of the iron-vacancy order-disorder transition, it is impossible to synthesize a pure superconducting phase by a conventional solid state reaction or melt growth. By focused ion beam-scanning electron microscopy, we further demonstrate that the superconducting phase forms a contiguous three-dimensional architecture composed of parallelepipeds that have a coherent orientation relationship with the iron-vacancy-ordered phase.« less

  9. Formation of metastable phases by spinodal decomposition

    PubMed Central

    Alert, Ricard; Tierno, Pietro; Casademunt, Jaume

    2016-01-01

    Metastable phases may be spontaneously formed from other metastable phases through nucleation. Here we demonstrate the spontaneous formation of a metastable phase from an unstable equilibrium by spinodal decomposition, which leads to a transient coexistence of stable and metastable phases. This phenomenon is generic within the recently introduced scenario of the landscape-inversion phase transitions, which we experimentally realize as a structural transition in a colloidal crystal. This transition exhibits a rich repertoire of new phase-ordering phenomena, including the coexistence of two equilibrium phases connected by two physically different interfaces. In addition, this scenario enables the control of sizes and lifetimes of metastable domains. Our findings open a new setting that broadens the fundamental understanding of phase-ordering kinetics, and yield new prospects of applications in materials science. PMID:27713406

  10. Phase transformations during the growth of paracetamol crystals from the vapor phase

    NASA Astrophysics Data System (ADS)

    Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.

    2014-07-01

    Phase transformations during the growth of paracetamol crystals from the vapor phase are studied by differential scanning calorimetry. It is found that the vapor-crystal phase transition is actually a superposition of two phase transitions: a first-order phase transition with variable density and a second-order phase transition with variable ordering. The latter, being a diffuse phase transition, results in the formation of a new, "pretransition," phase irreversibly spent in the course of the transition, which ends in the appearance of orthorhombic crystals. X-ray diffraction data and micrograph are presented.

  11. The Connection Between Local Icosahedral Order in Metallic Liquids and the Nucleation Behavior of Ordered Phases

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.; Gangopadhyay, A. K.; Lee, G. W.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.; Robinson, M. B.; Schenk, T.; Simonet, V.

    2003-01-01

    Over fifty years ago, David Turnbull showed that the temperature of many metallic liquids could be decreased far below their equilibrium melting temperature before crystallization occurred. To explain those surprising results, Charles Frank hypothesized that the local structures of undercooled metallic liquids are different from those of crystal phases, containing a significant degree of icosahedral order that is incompatible with extended periodicity. Such structural differences must create a barrier to the formation crystal phases, explaining the observed undercooling behavior. If true, the nucleation from the liquid of phases with extended icosahedral order should be easier. Icosahedral order is often favored in small clusters, as observed recently in liquid-like clusters of pure Pb on the (111) surface of Si[3], for example. However, it has never been shown that an increasing preference for icosahedral phase formation can be directly linked with the development of icosahedral order in the undercooled liquid. Owing to the combination of very recent advances in levitation techniques and the availability of synchrotron x-ray and high flux neutron facilities, this is shown here.

  12. The Connection Between Local Icosahedral Order in Metallic Liquids and the Nucleation of Ordered Phases

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A. (Technical Monitor); Kelton, K. F.; Gangopadhyay, A.; Lee, G. W.; Hyers, R. W.; Rathz, R. J.; Rogers, J.; Schenk, T.; Simonet, V.; Holland-Moritz, D.

    2003-01-01

    Over fifty years ago, David Turnbull showed that the temperature of many metallic liquids could be decreased far below their equilibrium melting temperature before crystallization occurred. To explain those surprising results, Charles Frank hypothesized that the local structures of undercooled metallic liquids are different from those of crystal phases, containing a significant degree of icosahedral order that is incompatible with extended periodicity. Such structural differences must create a barrier to the formation crystal phases, explaining the observed undercooling behavior. If true, the nucleation from the liquid of phases with extended icosahedral order should be easier. Icosahedral order is often favored in small clusters, as observed recently in liquid-like clusters of pure Pb on the (111) surface of Si, for example. However, it has never been shown that an increasing preference for icosahedral phase formation can be directly linked with the development of icosahedral order in the undercooled liquid. Owing to the combination of very recent advances in levitation techniques and the availability of synchrotron x-ray and high flux neutron facilities, this is shown here.

  13. The Connection Between Local Icosahedral Order in Metallic Liquids and the Nucleation of Ordered Phases

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.; Gangopadhyay, A. K.; Lee, G. W.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.; Robinson, M. B.; Schenk, T.; Simonet, V.; Holland-Moritz, D.; hide

    2002-01-01

    Over fifty years ago, David Turnbull showed that the temperature of many metallic liquids could be decreased far below their equilibrium melting temperature before crystallization occurred. To explain those surprising results, Charles Frank hypothesized that the local structures of undercooled metallic liquids are different from those of crystal phases, containing a significant degree of icosahedral order that is incompatible with extended periodicity. Such structural differences must create a barrier to the formation crystal phases, explaining the observed undercooling behavior. If true, the nucleation from the liquid of phases with extended icosahedral order should be easier. Icosahedral order is often favored in small clusters, as observed recently in liquid-like clusters of pure Pb on the (111) surface of Si(3), for example. However, it has never been shown that an increasing preference for icosahedral phase formation can be directly linked with the development of icosahedral order in the undercooled liquid. Owing to the combination of very recent advances in levitation techniques and the availability of synchrotron X-ray and high flux neutron facilities.

  14. Phospholipid Chain Interactions with Cholesterol Drive Domain Formation in Lipid Membranes.

    PubMed

    Bennett, W F Drew; Shea, Joan-Emma; Tieleman, D Peter

    2018-06-05

    Cholesterol is a key component of eukaryotic membranes, but its role in cellular biology in general and in lipid rafts in particular remains controversial. Model membranes are used extensively to determine the phase behavior of ternary mixtures of cholesterol, a saturated lipid, and an unsaturated lipid with liquid-ordered and liquid-disordered phase coexistence. Despite many different experiments that determine lipid-phase diagrams, we lack an understanding of the molecular-level driving forces for liquid phase coexistence in bilayers with cholesterol. Here, we use atomistic molecular dynamics computer simulations to address the driving forces for phase coexistence in ternary lipid mixtures. Domain formation is directly observed in a long-timescale simulation of a mixture of 1,2-distearoyl-sn-glycero-3-phosphocholine, unsaturated 1,2-dilinoleoyl-sn-glycero-3-phosphocholine, and cholesterol. Free-energy calculations for the exchange of the saturated and unsaturated lipids between the ordered and disordered phases give insight into the mixing behavior. We show that a large energetic contribution to domain formation is favorable enthalpic interactions of the saturated lipid in the ordered phase. This favorable energy for forming an ordered, cholesterol-rich phase is opposed by a large unfavorable entropy. Martini coarse-grained simulations capture the unfavorable free energy of mixing but do not reproduce the entropic contribution because of the reduced representation of the phospholipid tails. Phospholipid tails and their degree of unsaturation are key energetic contributors to lipid phase separation. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Transformation of BCC and B2 High Temperature Phases to HCP and Orthorhombic Structures in the Ti-Al-Nb System. Part II: Experimental TEM Study of Microstructures

    PubMed Central

    Bendersky, L. A.; Boettinger, W. J.

    1993-01-01

    Possible transformation paths that involve no long range diffusion and their corresponding microstructural details were predicted by Bendersky, Roytburd, and Boettinger [J. Res. Natl. Inst. Stand. Technol. 98, 561 (1993)] for Ti-Al-Nb alloys cooled from the high temperature BCC/B2 phase field into close-packed orthorhombic or hexagonal phase fields. These predictions were based on structural and symmetry relations between the known phases. In the present paper experimental TEM results show that two of the predicted transformation paths are indeed followed for different alloy compositions. For Ti-25Al-12.5Nb (at%), the path includes the formation of intermediate hexagonal phases, A3 and DO19, and subsequent formation of a metastable domain structure of the low-temperature O phase. For alloys close to Ti-25Al-25Nb (at%), the path involves an intermediate B19 structure and subsequent formation of a translational domain structure of the O phase. The path selection depends on whether B2 order forms in the high temperature cubic phase prior to transformation to the close-packed structure. The paper also analyzes the formation of a two-phase modulated microstructure during long term annealing at 700 °C. The structure forms by congruent ordering of the DO19 phase to the O phase, and then reprecipitation of the DO19 phase, possibly by a spinodal mechanism. The thermodynamics underlying the path selection and the two-phase formation are also discussed. PMID:28053488

  16. Altering the cooling rate dependence of phase formation during rapid solidification in the Nd 2Fe 14B system

    NASA Astrophysics Data System (ADS)

    Branagan, D. J.; McCallum, R. W.

    In order to evaluate the effects of additions on the solidification behavior of Nd 2Fe 14B, a stoichiometric alloy was modified with elemental additions of Ti or C and a compound addition of Ti with C. For each alloy, a series of wheel speed runs was undertaken, from which the optimum wheel speeds and optimum energy products were determined. On the BHmax versus wheel speed plots, regions were identified in order to analyze the changes with cooling rates leading to phase formation brought about by the alloy modifications. The compilation of the regional data of the modified alloys showed their effects on altering the cooling rate dependence of phase formation. It was found that the regions of properitectic iron formation, glass formation, and the optimum cooling rate can be changed by more than a factor of two through appropriate alloying additions. The effects of the alloy modifications can be visualized in a convenient fashion through the use of a model continuous cooling transformation (CCT) diagram which represents phase formation during the solidification process under continuous cooling conditions for a wide range of cooling rates from rapid solidification to equilibrium cooling.

  17. Metastable phase formation in undercooled Fe-Co melts under terrestrial and parabolic flight conditions

    NASA Astrophysics Data System (ADS)

    Hermann, R.; Löser, W.; Lindenkreuz, H. G.; Yang-Bitterlich, W.; Mickel, Ch.; Diefenbach, A.; Schneider, S.; Dreier, W.

    2007-12-01

    Soft magnetic Fe-Co alloys display primary fcc phase solidification for>19,5 at% Co in conventional near-equilibrium solidification processes. Undercooled Fe-Co melt drops within the composition range of 30 to 50 at% Co have been investigated with the electromagnetic levitation technique. The solidification kinetics was measured in situ using a high-resolution Siphotodiode. Melt drops were undercooled up to 263 K below the liquidus temperature and subsequently quenched onto a chill substrate in order to characterize the solidification sequence and microstructure. The transition from stable fcc phase to metastable bcc primary phase solidification has been observed after reaching a critical undercooling level. The critical undercooling increases with rising Co content. The growth velocity drops obviously after transition to metastable bcc phase formation. Parabolic flight experiments were performed in order to study the phase selection under reduced gravity conditions. Under microgravity conditions, a much smaller critical undercooling and an increased life time of the metastable bcc phase were obtained. This result was validated with TEM investigations. The appearance of Fe-O particles gives an indirect hint for an intermediate fcc phase formation from the metastable bcc phase at elevated temperature.

  18. Formation of Low Symmetry Ordered Phases in Block Polymer Melts

    NASA Astrophysics Data System (ADS)

    Bates, Frank

    Until recently the phase behavior of asymmetric AB diblock copolymers in the melt state was universally accepted as a solved problem: spherical domains packed on a body centered cubic (BCC) lattice. Recent experiments with low molecular weight diblocks have upended this picture, beginning with the discovery of the Frank-Kasper sigma phase in poly(isoprene)- b-poly(lactide) (PI-PLA) followed recently by the identification of a dodecagonal quasicrystal phase (DDQC) as a metastable state that evolves from the supercooled disordered liquid. Self-consistent mean-field theory shows that introducing conformational asymmetry (bA >bB where b is the statistical segment length) opens a window in the phase portrait at fA <<1/2 that supports the formation of various low symmetry ordered phases. However, contrary to the widely accepted mean-field picture, the disordered state near the order-disorder transition (ODT) is highly structured and rapid cooling of this micellar fluid several tens of degrees below the ODT temperature arrests macromolecular chain exchange transitioning the material from an ergodic to non-ergodic state. We have explored the evolution of order following such temperature quenches and during subsequent reheating using synchrotron small-angle X-ray scattering (SAXS) revealing surprising analogies with the behavior of metal alloys. This presentation will associate the formation of ordered low symmetry phases with the concept of sphericity, the tendency for the self-assembled nanoparticles to be spherical in competition with the constraints imposed by periodic and aperiodic packing without voids and subject to the condition of incompressibility. Supported by NSF-DMR-1104368. This work was conducted in collaboration with Kyungtae Kim, Morgan Schulze, Akash Arora, Ronald Lewis, Timothy Gillard, Sangwoo Lee, Kevin Dorfman and Marc Hillmyer.

  19. High-order UWB pulses scheme to generate multilevel modulation formats based on incoherent optical sources.

    PubMed

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2013-11-18

    We present a high-order UWB pulses generator based on a microwave photonic filter which provides a set of positive and negative samples by using the slicing of an incoherent optical source and the phase inversion in a Mach-Zehnder modulator. The simple scalability and high reconfigurability of the system permit a better accomplishment of the FCC requirements. Moreover, the proposed scheme permits an easy adaptation to pulse amplitude modulation, bi phase modulation, pulse shape modulation and pulse position modulation. The flexibility of the scheme for being adaptable to multilevel modulation formats permits to increase the transmission bit rate by using hybrid modulation formats.

  20. Particle formation and ordering in strongly correlated fermionic systems: Solving a model of quantum chromodynamics

    DOE PAGES

    Azaria, P.; Konik, R. M.; Lecheminant, P.; ...

    2016-08-03

    In our paper we study a (1+1)-dimensional version of the famous Nambu–Jona-Lasinio model of quantum chromodynamics (QCD2) both at zero and at finite baryon density. We use nonperturbative techniques (non-Abelian bosonization and the truncated conformal spectrum approach). When the baryon chemical potential, μ, is zero, we describe the formation of fermion three-quark (nucleons and Δ baryons) and boson (two-quark mesons, six-quark deuterons) bound states. We also study at μ=0 the formation of a topologically nontrivial phase. When the chemical potential exceeds the critical value and a finite baryon density appears, the model has a rich phase diagram which includes phasesmore » with a density wave and superfluid quasi-long-range (QLR) order, as well as a phase of a baryon Tomonaga-Luttinger liquid (strange metal). Finally, the QLR order results in either a condensation of scalar mesons (the density wave) or six-quark bound states (deuterons).« less

  1. Ferri-magnetic order in Mn induced spinel Co3-xMnxO4 (0.1≤x≤1.0) ceramic compositions

    NASA Astrophysics Data System (ADS)

    Meena, P. L.; Sreenivas, K.; Singh, M. R.; Kumar, Ashok; Singh, S. P.; Kumar, Ravi

    2016-04-01

    We report structural and magnetic properties of spinel Co3-xMnxO4 (x=0.1-1.0) synthesized by solid state reaction technique. Rietveld refinement analysis of X-ray diffraction (XRD) data, revealed the formation of polycrystalline single phase Co3-xMnxO4 without any significant structural change in cubic crystal symmetry with Mn substitution, except change in lattice parameter. Temperature dependent magnetization data show changes in magnetic ordering temperature, indicating formation of antiferromagnetic (AFM) and ferrimagnetic (FM) phase at low Mn concentration (x≤0.3) and well-defined FM phase at high Mn concentration (x≥0.5). The isothermal magnetization records established an AFM/FM mixed phase for composition ranging 0.10.5.

  2. Kinetic modeling of secondary organic aerosol formation: effects of particle- and gas-phase reactions of semivolatile products

    NASA Astrophysics Data System (ADS)

    Chan, A. W. H.; Kroll, J. H.; Ng, N. L.; Seinfeld, J. H.

    2007-08-01

    The distinguishing mechanism of formation of secondary organic aerosol (SOA) is the partitioning of semivolatile hydrocarbon oxidation products between the gas and aerosol phases. While SOA formation is typically described in terms of partitioning only, the rate of formation and ultimate yield of SOA can also depend on the kinetics of both gas- and aerosol-phase processes. We present a general equilibrium/kinetic model of SOA formation that provides a framework for evaluating the extent to which the controlling mechanisms of SOA formation can be inferred from laboratory chamber data. With this model we examine the effect on SOA formation of gas-phase oxidation of first-generation products to either more or less volatile species, of particle-phase reaction (both first- and second-order kinetics), of the rate of parent hydrocarbon oxidation, and of the extent of reaction of the parent hydrocarbon. The effect of pre-existing organic aerosol mass on SOA yield, an issue of direct relevance to the translation of laboratory data to atmospheric applications, is examined. The importance of direct chemical measurements of gas- and particle-phase species is underscored in identifying SOA formation mechanisms.

  3. Kinetic modeling of Secondary Organic Aerosol formation: effects of particle- and gas-phase reactions of semivolatile products

    NASA Astrophysics Data System (ADS)

    Chan, A. W. H.; Kroll, J. H.; Ng, N. L.; Seinfeld, J. H.

    2007-05-01

    The distinguishing mechanism of formation of secondary organic aerosol (SOA) is the partitioning of semivolatile hydrocarbon oxidation products between the gas and aerosol phases. While SOA formation is typically described in terms of partitioning only, the rate of formation and ultimate yield of SOA can also depend on the kinetics of both gas- and aerosol-phase processes. We present a general equilibrium/kinetic model of SOA formation that provides a framework for evaluating the extent to which the controlling mechanisms of SOA formation can be inferred from laboratory chamber data. With this model we examine the effect on SOA formation of gas-phase oxidation of first-generation products to either more or less volatile species, of particle-phase reaction (both first- and second-order kinetics), of the rate of parent hydrocarbon oxidation, and of the extent of reaction of the parent hydrocarbon. The effect of pre-existing organic aerosol mass on SOA yield, an issue of direct relevance to the translation of laboratory data to atmospheric applications, is examined. The importance of direct chemical measurements of gas- and particle-phase species is underscored in identifying SOA formation mechanisms.

  4. Single-phase and two-phase flow properties of mesaverde tight sandstone formation; random-network modeling approach

    NASA Astrophysics Data System (ADS)

    Bashtani, Farzad; Maini, Brij; Kantzas, Apostolos

    2016-08-01

    3D random networks are constructed in order to represent the tight Mesaverde formation which is located in north Wyoming, USA. The porous-space is represented by pore bodies of different shapes and sizes which are connected to each other by pore throats of varying length and diameter. Pore bodies are randomly distributed in space and their connectivity varies based on the connectivity number distribution which is used in order to generate the network. Network representations are then validated using publicly available mercury porosimetry experiments. The network modeling software solves the fundamental equations of two-phase immiscible flow incorporating wettability and contact angle variability. Quasi-static displacement is assumed. Single phase macroscopic properties (porosity, permeability) are calculated and whenever possible are compared to experimental data. Using this information drainage and imbibition capillary pressure, and relative permeability curves are predicted and (whenever possible) compared to experimental data. The calculated information is grouped and compared to available literature information on typical behavior of tight formations. Capillary pressure curve for primary drainage process is predicted and compared to experimental mercury porosimetry in order to validate the virtual porous media by history matching. Relative permeability curves are also calculated and presented.

  5. An auto-bias control scheme for IQ-modulator with various modulation formats

    NASA Astrophysics Data System (ADS)

    Zhang, Wenqi; Yuan, Xueguang; Zhang, Yang'an

    2016-10-01

    We propose and demonstrate an auto-bias control scheme for the IQ-modulator of a flexible optical PSK or QAM or other modulation formats transmitter in this paper. Due to IQ-modulators usually producing higher-order modulation format, these modulation formats involve phase mostly. It is based on that the bias drift will change the operating point and result in varying the output optical phase. This technology has no restrictions on modulation formats, so it has good flexibility. The experimental result show the three biases can be stabilized when the proposed scheme is implemented.

  6. Formation of high-order acoustic Bessel beams by spiral diffraction gratings

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Picó, R.; Sánchez-Morcillo, V.; Romero-García, V.; García-Raffi, L. M.; Staliunas, K.

    2016-11-01

    The formation of high-order Bessel beams by a passive acoustic device consisting of an Archimedes' spiral diffraction grating is theoretically, numerically, and experimentally reported in this paper. These beams are propagation-invariant solutions of the Helmholtz equation and are characterized by an azimuthal variation of the phase along its annular spectrum producing an acoustic vortex in the near field. In our system, the scattering of plane acoustic waves by the spiral grating leads to the formation of the acoustic vortex with zero pressure on axis and the angular phase dislocations characterized by the spiral geometry. The order of the generated Bessel beam and, as a consequence, the size of the generated vortex can be fixed by the number of arms in the spiral diffraction grating. The obtained results allow for obtaining Bessel beams with controllable vorticity by a passive device, which has potential applications in low-cost acoustic tweezers and acoustic radiation force devices.

  7. The formation and structure of Fe-Mn-Ni-Si solute clusters and G-phase precipitates in steels

    NASA Astrophysics Data System (ADS)

    King, D. J. M.; Burr, P. A.; Middleburgh, S. C.; Whiting, T. M.; Burke, M. G.; Wenman, M. R.

    2018-07-01

    Solute clustering and G-phase precipitation cause hardening phenomena observed in some low alloy and stainless steels, respectively. Density functional theory was used to investigate the energetic driving force for the formation of these precipitates, capturing temperature effects through analysis of the system's configurational and magnetic entropies. It is shown that enrichment of Mn, Ni and Si is thermodynamically favourable compared to the dilute ferrite matrix of a typical A508 low alloy steel. We predict the ordered G-phase to form preferentially rather than a structure with B2-type ordering when the Fe content of the system falls below 10-18 at. %. The B2 → G-phase transformation is predicted to occur spontaneously when vacancies are introduced into the B2 structure in the absence of Fe.

  8. Understanding the facet formation mechanisms of Si thin-film solidification through three-dimensional phase-field modeling

    NASA Astrophysics Data System (ADS)

    Chen, G. Y.; Lan, C. W.

    2017-09-01

    Adaptive phase field modeling is used in order to model the formation mechanism of a silicon faceted interface in three dimensions. We investigate the faceting condition for equilibrium shapes and dynamic situations. In this study, we propose a new anisotropic function of surface energy for the phase-field simulations in three-dimension, and negative stiffness is further considered. The morphological evolutions are presented and compare well with experimental findings. The growth mechanism is further discussed.

  9. A theoretical study of the omega-phase transformation in metals

    NASA Astrophysics Data System (ADS)

    Sanati, Mahdi

    I have studied the formation of o-phase from electronic and mesoscopic (domain wall) points of view. To study the formation of domain walls, I have extended the Landau model of Cook for the o-phase transition by including a spatial gradient (Ginzburg) term of the scalar order parameter. In general, the Landau free energy is an asymmetric double-well potential. From the variational derivative of the total free energy I obtained a static equilibrium condition. By solving this equation for different physical parameters and boundary conditions, I obtained different quasi-one-dimensional soliton-like solutions. These solutions correspond to three different types of domain walls between the o-phase and the beta-matrix. These results are used to model the formation of the o-phase in bcc Ti. Canonical band model and first principles calculations confirmed the instability of the bcc-phase of group III and IV transition metals with respect to the o-phase transformation. I showed that the d-electron density is the controlling parameter for this type of the transformation. Also the possibility of formation of the o-phase for rare earth metals is discussed. First-principles full-potential linear muffin-tin orbital method (FPLMTO) calculations are performed for o-type displacement of the atoms to study the formation of the o-phase in TiAl and Ti 3Al2Nb alloys. The results of my calculations showed an instability in ordered B2 TiAl structure with respect to the o-phase when one third of the Al atoms are replaced by Nb atoms. These phenomena are explained, first by symmetry arguments; then a pair potential model is used to illustrate this instability based on interactions between different pair of atoms derived from the electronic structure. In addition, importance of the atomic arrangements on the structural stability of the Ti3Al2 Nb system is discussed.

  10. Formation of an 18R long-period stacking ordered structure in rapidly solidified Mg{sub 88}Y{sub 8}Zn{sub 4} alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcés, Gerardo, E-mail: ggarces@cenim.csic.es

    The formation of the long-period stacking ordered structure (LPSO) in a Mg{sub 88}Y{sub 8}Zn{sub 4}(at%) ribbon produced by melt spinning was studied using high energy X-ray synchrotron radiation diffraction during in-situ isochronal heating and transmission electron microscopy. The microstructure of the rapidly solidified ribbons is characterised by fine magnesium grains with yttrium and zinc in solid solution and primary 18R LPSO-phase segregated at grain boundaries. Using differential scanning calorimetry, a strong exothermal peak was observed around 300 °C which was associated with the development of the 18R-type LPSO-phase in the magnesium grains. The apparent activation energy calculated using the Kissingermore » model was 125 KJmol{sup −1} and it is related to simultaneous diffusion of Y and Zn through magnesium basal plane. - Highlights: •The formation of the LPSO phase in rapidly solidified ribbons was studied. •The formation of the 18R LPSO starts at around 300 °C. •LPSO formation have to steps: Stacking faults along basal plane and then growth of 18R structure along the c direction.« less

  11. Self-association and cyclodextrin solubilization of drugs.

    PubMed

    Loftsson, Thorsteinn; Magnúsdóttir, Auethur; Másson, Már; Sigurjónsdóttir, Jóhanna F

    2002-11-01

    Phase-solubility diagrams are frequently used to calculate stoichiometry of drug/cyclodextrin complexes. Linear diagrams (A(L)-type systems) are thought to indicate that the complexes are first order with respect to cyclodextrin and first or higher order with respect to the drug. Positive deviation from linearity (A(P)-type systems) are thought to indicate formation of complexes that are first order with respect to the drug but second or higher order with respect to cyclodextrin. The phase solubility of several different compounds, i.e., cholesterol, ibuprofen, diflunisal, alprazolam, 17beta-estradiol and diethylstilbestrol, and various charged and uncharged cyclodextrins was investigated. Phase-solubility diagrams of cholesterol in aqueous cyclodextrin solutions were all of A(P) type. However, the phase-solubility diagrams obtained with charged cyclodextrins could not be fitted to complexes of second or higher order with respect to cyclodextrin. The phase-solubility diagrams of ibuprofen and diflunisal were of A(L) type with slope greater than unity indicating formation of 2:1 drug/cyclodextrin complexes. However, Job's plots and space filling docking studies indicated that 1:1 complexes were formed. These and other observations show that stoichiometry of drug/cyclodextrin complexes cannot be derived from simple phase-solubility studies. Furthermore, the results indicate that drug/cyclodextrin complexes can self-associate to form water-soluble aggregates, which then can further solubilize the drug through non-inclusion complexation. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91:2307-2316, 2002

  12. The effect of thermal treatment on the organization of copper and nickel nanoclusters synthesized from the gas phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gafner, Yu. Ya., E-mail: ygafner@khsu.ru; Gafner, S. L.; Chepkasov, I. V.

    2010-10-15

    The condensation of 85000 Cu or Ni atoms from the high-temperature gas phase has been simulated by molecular dynamics with the tight binding potential. The efect of the subsequent thermal treatment on the shape and structure of synthesized particles was studied by simulating their gradual heating in a range of 100-1200 K. Some tendencies are revealed that are characteristic of the influence of heat treatment on the nanoparticles synthesized from the gas phase. It is concluded that short-term heating leads to significant ordering of the internal structure in 70% of agglomerated nanoparticles with the predominant formation of spherical shapes. Inmore » order to explain this result, the main mechanisms of cluster formation from the gas phase have been analyzed and it is found that the agglomeration temperature plays the main role in the formation of clusters with unified shape and structure. This opens the fundamental possibility of obtaining Cu and Ni nanoclusters with preset size, shape, and structure and, hence, predictable physical properties.« less

  13. Short range orders of an adsorbed layer: gold on the Si(111)7 × 7 surface

    NASA Astrophysics Data System (ADS)

    Takahashi, S.; Tanishiro, Y.; Takayanagi, K.

    1991-02-01

    Ordered phases of 5 × 2, 3× 3 and 6 × 6 structures formed by gold deposition on a Si(11)7 × 7 surface were observed by transmission electron diffraction (TED). Short-range orders of the 3× 3 phase of low and high coverages are analyzed from diffuse TED intensities. Phasons which displace the adsorption site by a at every translation of 6 a are found to be introduced in the 3× 3 structure of the saturation coverage. The phasons, which create 2 a correlation between gold clusters, prohibit formation of a completely ordered 3× 3 phase.

  14. Nucleation of ordered solid phases of proteins via a disordered high-density state: Phenomenological approach

    NASA Astrophysics Data System (ADS)

    Pan, Weichun; Kolomeisky, Anatoly B.; Vekilov, Peter G.

    2005-05-01

    Nucleation of ordered solid phases of proteins triggers numerous phenomena in laboratory, industry, and in healthy and sick organisms. Recent simulations and experiments with protein crystals suggest that the formation of an ordered crystalline nucleus is preceded by a disordered high-density cluster, akin to a droplet of high-density liquid that has been observed with some proteins; this mechanism allowed a qualitative explanation of recorded complex nucleation kinetics curves. Here, we present a simple phenomenological theory that takes into account intermediate high-density metastable states in the nucleation process. Nucleation rate data at varying temperature and protein concentration are reproduced with high fidelity using literature values of the thermodynamic and kinetic parameters of the system. Our calculations show that the growth rate of the near-critical and supercritical ordered clusters within the dense intermediate is a major factor for the overall nucleation rate. This highlights the role of viscosity within the dense intermediate for the formation of the ordered nucleus. The model provides an understanding of the action of additives that delay or accelerate nucleation and presents a framework within which the nucleation of other ordered protein solid phases, e.g., the sickle cell hemoglobin polymers, can be analyzed.

  15. The Influence of Ionic Environment and Histone Tails on Columnar Order of Nucleosome Core Particles

    PubMed Central

    Berezhnoy, Nikolay V.; Liu, Ying; Allahverdi, Abdollah; Yang, Renliang; Su, Chun-Jen; Liu, Chuan-Fa; Korolev, Nikolay; Nordenskiöld, Lars

    2016-01-01

    The nucleosome core particle (NCP) is the basic building block of chromatin. Nucleosome-nucleosome interactions are instrumental in chromatin compaction, and understanding NCP self-assembly is important for understanding chromatin structure and dynamics. Recombinant NCPs aggregated by multivalent cations form various ordered phases that can be studied by x-ray diffraction (small-angle x-ray scattering). In this work, the effects on the supramolecular structure of aggregated NCPs due to lysine histone H4 tail acetylations, histone H2A mutations (neutralizing the acidic patch of the histone octamer), and the removal of histone tails were investigated. The formation of ordered mainly hexagonal columnar NCP phases is in agreement with earlier studies; however, the highly homogeneous recombinant NCP systems used in this work display a more compact packing. The long-range order of the NCP columnar phase was found to be abolished or reduced by acetylation of the H4 tails, acidic patch neutralization, and removal of the H3 and H2B tails. Loss of nucleosome stacking upon removal of the H3 tails in combination with other tails was observed. In the absence of the H2A tails, the formation of an unknown highly ordered phase was observed. PMID:27119633

  16. Emergence of higher order rotational symmetry in the hidden order phase of URu 2Si 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanchanavatee, N.; Janoschek, M.; Huang, K.

    2016-09-30

    Electrical resistivity measurements were performed in this paper as functions of temperature, magnetic field, and angle θ between the magnetic field and the c-axis of a URu 2Si 2 single crystal. The resistivity exhibits a two-fold oscillation as a function of θ at high temperatures, which undergoes a 180°-phase shift (sign change) with decreasing temperature at around 35 K. The hidden order transition is manifested as a minimum in the magnetoresistance and amplitude of the two-fold oscillation. Interestingly, the resistivity also showed four-fold, six-fold, and eight-fold symmetries at the hidden order transition. These higher order symmetries were also detected atmore » low temperatures, which could be a sign of the formation of another pseudogap phase above the superconducting transition, consistent with recent evidence for a pseudogap from point-contact spectroscopy measurements and NMR. Measurements of the magnetisation of single crystalline URu 2Si 2 with the magnetic field applied parallel and perpendicular to the crystallographic c-axis revealed regions with linear temperature dependencies between the hidden order transition temperature and about 25 K. Finally, this T-linear behaviour of the magnetisation may be associated with the formation of a precursor phase or ‘pseudogap’ in the density of states in the vicinity of 30–35 K.« less

  17. Gas-phase chemiluminescent reactions of ozone with monoterpenes

    NASA Astrophysics Data System (ADS)

    Arora, P. K.; Chatha, J. P. S.; Vohra, K. G.

    1983-08-01

    Chemiluminescent reactions of ozone with monoterpenes such as linallol, geraniol, d-limonene and α-pinene have been studied in the gas phase at low pressures. Methylglyoxal phosphorescence has been observed in the first two reactions. Emissions from HCHO( 1A 2) and glyoxal ( 3A u) are observed in the reaction of ozone with d-limonene and formation of excited glyoxal is found to be first order in ozone. The reaction of ozone with β-pinene gives rise to emission from a α-dicarbonyl compound and this is found to be first order in ozone. The mechanisms for the formation of excited species are proposed.

  18. Charge order-superfluidity transition in a two-dimensional system of hard-core bosons and emerging domain structures

    NASA Astrophysics Data System (ADS)

    Moskvin, A. S.; Panov, Yu. D.; Rybakov, F. N.; Borisov, A. B.

    2017-11-01

    We have used high-performance parallel computations by NVIDIA graphics cards applying the method of nonlinear conjugate gradients and Monte Carlo method to observe directly the developing ground state configuration of a two-dimensional hard-core boson system with decrease in temperature, and its evolution with deviation from a half-filling. This has allowed us to explore unconventional features of a charge order—superfluidity phase transition, specifically, formation of an irregular domain structure, emergence of a filamentary superfluid structure that condenses within of the charge-ordered phase domain antiphase boundaries, and formation and evolution of various topological structures.

  19. GBSFP: General Bluetooth Scatternet Formation Protocol for Ad Hoc Networking

    NASA Astrophysics Data System (ADS)

    Lim, Chaegwon; Huh, Myung-Sun; Choi, Chong-Ho; Jeong, Gu-Min

    Recently, bluetooth technology has become widely prevalent so that many laptops and mobile phones are equipped with bluetooth capability. In order to meet the increasing demand to interconnect these devices a new scatternet formation protocol named GBSFP (General Bluetooth Scatternet Formation Protocol) is proposed in this paper. GBSFP is the result of efforts to overcome the two major limitations of the legacy scatternet formation protocols as regards their real implementation, that all of the nodes should be within the Bluetooth communication range or that they should be time synchronized. In GBSFP, a node goes through three phases; 1) the Init phase to establish a bluetooth link to as many of its neighbors as possible, 2) the Ready phase to determine the role of each node, i.e., master or slave, and remove any unnecessary bluetooth links, and 3) the Complete phase to finalize the formation of the scatternet and begin data transmission. The simulation results show that GBSFP provides higher connectivity in many scenarios compared with BTCP and BlueStars.

  20. Counting defects in an instantaneous quench.

    PubMed

    Ibaceta, D; Calzetta, E

    1999-09-01

    We consider the formation of defects in a nonequilibrium second-order phase transition induced by an instantaneous quench to zero temperature in a type II superconductor. We perform a full nonlinear simulation where we follow the evolution in time of the local order parameter field. We determine how far into the phase transition theoretical estimates of the defect density based on the Gaussian approximation yield a reliable prediction for the actual density. We also characterize quantitatively some aspects of the out of equilibrium phase transition.

  1. Polymorphism of POPE/cholesterol system: a 2H nuclear magnetic resonance and infrared spectroscopic investigation.

    PubMed Central

    Paré, C; Lafleur, M

    1998-01-01

    It is well established that cholesterol induces the formation of a liquid-ordered phase in phosphatidylcholine (PC) bilayers. The goal of this work is to examine the influence of cholesterol on phosphatidylethanolamine polymorphism. The behavior of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE)/cholesterol mixtures was characterized using infrared and 2H nuclear magnetic resonance (NMR) spectroscopy (using POPE bearing a perdeuterated palmitoyl chain in the latter case). Our results reveal that cholesterol induces the formation of a liquid-ordered phase in POPE membranes, similar to those observed for various PC/cholesterol systems. However, the coexistence region of the gel and the liquid-ordered phases is different from that proposed for PC/cholesterol systems. The results indicate a progressive broadening of the gel-to-fluid phase transition, suggesting the absence of an eutectic. In addition, there is a progressive downshift of the end of the transition for cholesterol content higher than 10 mol %. Cholesterol has an ordering effect on the acyl chains of POPE, but it is less pronounced than for the PC equivalent. This study also shows that the cholesterol effect on the lamellar-to-hexagonal (L(alpha)-H(II)) phase transition is not monotonous. It shifts the transition toward the low temperatures between 0 and 30 mol % cholesterol but shifts it toward the high temperatures when cholesterol content is higher than 30 mol %. The change in conformational order of the lipid acyl chains, as probed by the shift of the symmetric methylene C-H stretching, shows concerted variations. Finally, we show that cholesterol maintains its chain ordering effect in the hexagonal phase. PMID:9533701

  2. The role of order-disorder transitions in the quest for molecular multiferroics: structural and magnetic neutron studies of a mixed valence iron(II)-iron(III) formate framework.

    PubMed

    Cañadillas-Delgado, Laura; Fabelo, Oscar; Rodríguez-Velamazán, J Alberto; Lemée-Cailleau, Marie-Hélène; Mason, Sax A; Pardo, Emilio; Lloret, Francesc; Zhao, Jiong-Peng; Bu, Xian-He; Simonet, Virginie; Colin, Claire V; Rodríguez-Carvajal, Juan

    2012-12-05

    Neutron diffraction studies have been carried out to shed light on the unprecedented order-disorder phase transition (ca. 155 K) observed in the mixed-valence iron(II)-iron(III) formate framework compound [NH(2)(CH(3))(2)](n)[Fe(III)Fe(II)(HCOO)(6)](n). The crystal structure at 220 K was first determined from Laue diffraction data, then a second refinement at 175 K and the crystal structure determination in the low temperature phase at 45 K were done with data from the monochromatic high resolution single crystal diffractometer D19. The 45 K nuclear structure reveals that the phase transition is associated with the order-disorder of the dimethylammonium counterion that is weakly anchored in the cavities of the [Fe(III)Fe(II)(HCOO)(6)](n) framework. In the low-temperature phase, a change in space group from P31c to R3c occurs, involving a tripling of the c-axis due to the ordering of the dimethylammonium counterion. The occurrence of this nuclear phase transition is associated with an electric transition, from paraelectric to antiferroelectric. A combination of powder and single crystal neutron diffraction measurements below the magnetic order transition (ca. 37 K) has been used to determine unequivocally the magnetic structure of this Néel N-Type ferrimagnet, proving that the ferrimagnetic behavior is due to a noncompensation of the different Fe(II) and Fe(III) magnetic moments.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yong; Xing, Qingfeng; Straszheim, Warren E.

    Here, we report how the superconducting phase forms in pseudo-single-crystal K xFe 2-ySe 2. In situ scanning electron microscopy (SEM) observation reveals that, as an order-disorder transition occurs, on cooling, most of the high-temperature iron-vacancy-disordered phase gradually changes into the iron-vacancy-ordered phase whereas a small quantity of the high-temperature phase retains its structure and aggregates to the stripes with more iron concentration but less potassium concentration compared to the iron-vacancy-ordered phase. The stripes that are generally recognized as the superconducting phase are actually formed as a remnant of the high-temperature phase with a compositional change after an “imperfect” order-disorder transition.more » It should be emphasized that the phase separation in pseudo-single-crystal K xFe 2-ySe 2 is caused by the iron-vacancy order-disorder transition. The shrinkage of the high-temperature phase and the expansion of the newly created iron-vacancy-ordered phase during the phase separation rule out the mechanism of spinodal decomposition proposed in an early report [Wang et al, Phys. Rev. B 91, 064513 (2015)]. Since the formation of the superconducting phase relies on the occurrence of the iron-vacancy order-disorder transition, it is impossible to synthesize a pure superconducting phase by a conventional solid state reaction or melt growth. By focused ion beam-scanning electron microscopy, we further demonstrate that the superconducting phase forms a contiguous three-dimensional architecture composed of parallelepipeds that have a coherent orientation relationship with the iron-vacancy-ordered phase.« less

  4. Structural short-range order of the β-Ti phase in bulk Ti-Fe-(Sn) nanoeutectic composites

    NASA Astrophysics Data System (ADS)

    Das, J.; Eckert, J.; Theissmann, R.

    2006-12-01

    The authors report lattice distortion and "ω-like" structural short-range order (SRO) of the β-Ti phase in a Ti-Fe-(Sn) bulk nanoeutectic composite prepared by slow cooling from the melt. The nanoeuetctic phases are chemically homogeneous, but the addition of Sn releases the local lattice strain, modifies the structural SRO, and prevents the formation of stacking faults in the body centered cubic (bcc) β-Ti phase resulting in improved plastic deformability. The elastic properties and the structural SRO of the β-Ti phase are proposed to be important parameters for developing advanced high strength, ductile Ti-base nanocomposite alloys.

  5. Role of strongly interacting additives in tuning the structure and properties of polymer systems

    NASA Astrophysics Data System (ADS)

    Daga, Vikram Kumar

    Block copolymer (BCP) nanocomposites are an important class of hybrid materials in which the BCP guides the spatial location and the periodic assembly of the additives. High loadings of well-dispersed nanofillers are generally important for many applications including mechanical reinforcing of polymers. In particular the composites shown in this work might find use as etch masks in nanolithography, or for enabling various phase selective reactions for new materials development. This work explores the use of hydrogen bonding interactions between various additives (such as homopolymers and non-polymeric additives) and small, disordered BCPs to cause the formation of well-ordered morphologies with small domains. A detailed study of the organization of homopolymer chains and the evolution of structure during the process of ordering is performed. The results demonstrate that by tuning the selective interaction of the additive with the incorporating phase of the BCP, composites with significantly high loadings of additives can be formed while maintaining order in the BCP morphology. The possibility of high and selective loading of additives in one of the phases of the ordered BCP composite opens new avenues due to high degree of functionalization and the proximity of the additives within the incorporating phase. This aspect is utilized in one case for the formation of a network structure between adjoining additive cores to derive mesoporous inorganic materials with their structures templated by the BCP. The concept of additive-driven assembly is extended to formulate BCPadditive blends with an ability to undergo photo-induced ordering. Underlying this strategy is the ability to transition a weakly interacting additive to its strongly interacting form. This strategy provides an on-demand, non-intrusive route for formation of well-ordered nanostructures in arbitrarily defined regions of an otherwise disordered material. The second area explored in this dissertation deals with the incorporation of additives into photoresists for next generation extreme ultra violet (EUV) photolithography applications. The concept of hydrogen bonding between the additives and the polymeric photoresist was utilized to cause formation of a physical network that is expected to slow down the diffusion of photoacid leading to better photolithographic performance (25-30 nm resolution obtained).

  6. Order-disorder antiferroelectric phase transition in a hybrid inorganic-organic framework with the perovskite architecture.

    PubMed

    Jain, Prashant; Dalal, Naresh S; Toby, Brian H; Kroto, Harold W; Cheetham, Anthony K

    2008-08-13

    [(CH3)2NH2]Zn(HCOO)3, 1, adopts a structure that is analogous to that of a traditional perovskite, ABX3, with A = [(CH3)2NH2], B = Zn, and X = HCOO. The hydrogen atoms of the dimethyl ammonium cation, which hydrogen bond to oxygen atoms of the formate framework, are disordered at room temperature. X-ray powder diffraction, dielectric constant, and specific heat data show that 1 undergoes an order-disorder phase transition on cooling below 156 K. We present evidence that this is a classical paraelectric to antiferroelectric phase transition that is driven by ordering of the hydrogen atoms. This sort of electrical ordering associated with order-disorder phase transition is unprecedented in hybrid frameworks and opens up an exciting new direction in rational synthetic strategies to create extended hybrid networks for applications in ferroic-related fields.

  7. A Facile Method to Fabricate Double Gyroid as A Polymer Template for Nanohybrids

    NASA Astrophysics Data System (ADS)

    Wang, Hsiao-Fang; Ho, Rong-Ming

    2015-03-01

    Here, we suggest a facile method to acquire double gyroid (DG) phase from the self-assembly of chiral block copolymers (BCPs*), polystyrene- b-poly(L-lactide) (PS-PLLA). A wide region for the formation of DG can be found in the phase diagram of the BCPs*, suggesting that helical phase (H*) from the self-assembly of BCPs* can serve as a stepping stone for the formation of the DG due to an easy path for order-order transition from two-dimensional to three-dimensional (network) structure. Moreover, the order-order transition from metastable H* to stable DG can be expedited by blending the PS-PLLA with compatible entity. Moreover, PS-PLLA blends are prepared by using styrene oligomer (S) to fine-tune the morphologies of the blends at which the molecular weight ratio of the S and compatible PS block (r) is less than 0.1. Owing to the use of the low-molecular-weight oligomer, the increase of BCP chain mobility in the blends significantly reduces the transformation time for the order-order transition from H* to DG. Consequently, nanoporous gyroid SiO2 can be fabricated using hydrolyzed PS-PLLA blends as a template for sol-gel reaction followed by removal of the PS matrix.

  8. Outbursts formation on low carbon and trip steel grades during hot-dip galvanisation

    NASA Astrophysics Data System (ADS)

    Petit, E. J.; Lamm, L.; Gilles, M.

    2004-12-01

    Low carbon and TRIP grade steels have been hot dip galvanised in order to study outbursts formation. Microstructure and texture of intermetallic phases have been observed after selective electrochemical etching by scanning electron microscopy. Potential versus time (chronopotentiometric) characteristics were recorded in order to monitor surface modifications. This combination of techniques enable to quantify and observe intermetallic phase one by one. The overall thickness of coating on both substrates are similar. However, microstructures of Fe-Zn intermetallic phases are very different on both grades. In particular, the V phase is dense on standard steel but develops a highly branched filament structure on TRIP steel. The transformation of V phase to d and G1 are limited on TRIP steel. Differences of texture provide clues for understanding mechanisms of formation of outbursts. They can account for the differences of mechanical properties and corrosion resistance. Silicon from the substrate influences the reactivity of TRIP steels due to capping and local reactions. La formation des outbursts a été étudiée sur un acier bas carbone et sur un acier TRIP galvanisés. Les épaisseurs des revêtements sont similaires. Néanmoins, les observations microscopiques et les érosions électrochimiques montrent que la répartition des phases intermétalliques et leurs microstructures diffèrent sensiblement en fonction de la nature du substrat. Ces différences expliquent les propriétés mécaniques et anticorrosions. L’encapsulation de la surface par les oxydes de silicium freine la transformation de la phase dzêta en delta et gamma sur l’acier TRIP.

  9. A calorimetric study on the low temperature dynamics of doped ice V and its reversible phase transition to hydrogen ordered ice XIII.

    PubMed

    Salzmann, Christoph G; Radaelli, Paolo G; Finney, John L; Mayer, Erwin

    2008-11-07

    Doped ice V samples made from solutions containing 0.01 M HCl (DCl), HF (DF), or KOH (KOD) in H(2)O (D(2)O) were slow-cooled from 250 to 77 K at 0.5 GPa. The effect of the dopant on the hydrogen disorder --> order transition and formation of hydrogen ordered ice XIII was studied by differential scanning calorimetry (DSC) with samples recovered at 77 K. DSC scans of acid-doped samples are consistent with a reversible ice XIII <--> ice V phase transition at ambient pressure, showing an endothermic peak on heating due to the hydrogen ordered ice XIII --> disordered ice V phase transition, and an exothermic peak on subsequent cooling due to the ice V --> ice XIII phase transition. The equilibrium temperature (T(o)) for the ice V <--> ice XIII phase transition is 112 K for both HCl doped H(2)O and DCl doped D(2)O. From the maximal enthalpy change of 250 J mol(-1) on the ice XIII --> ice V phase transition and T(o) of 112 K, the change in configurational entropy for the ice XIII --> ice V transition is calculated as 2.23 J mol(-1) K(-1) which is 66% of the Pauling entropy. For HCl, the most effective dopant, the influence of HCl concentration on the formation of ice XIII was determined: on decreasing the concentration of HCl from 0.01 to 0.001 M, its effectiveness is only slightly lowered. However, further HCl decrease to 0.0001 M drastically lowered its effectiveness. HF (DF) doping is less effective in inducing formation of ice XIII than HCl (DCl) doping. On heating at a rate of 5 K min(-1), kinetic unfreezing starts in pure ice V at approximately 132 K, whereas in acid doped ice XIII it starts at about 105 K due to acceleration of reorientation of water molecules. KOH doping does not lead to formation of hydrogen ordered ice XIII, a result which is consistent with our powder neutron diffraction study (C. G. Salzmann, P. G. Radaelli, A. Hallbrucker, E. Mayer, J. L. Finney, Science, 2006, 311, 1758). We further conjecture whether or not ice XIII has a stable region in the water/ice phase diagram, and on a metastable triple point where ice XIII, ice V and ice II are in equilibrium.

  10. Nanoclusters first: a hierarchical phase transformation in a novel Mg alloy

    NASA Astrophysics Data System (ADS)

    Okuda, Hiroshi; Yamasaki, Michiaki; Kawamura, Yoshihito; Tabuchi, Masao; Kimizuka, Hajime

    2015-09-01

    The Mg-Y-Zn ternary alloy system contains a series of novel structures known as long-period stacking ordered (LPSO) structures. The formation process and its key concept from a viewpoint of phase transition are not yet clear. The current study reveals that the phase transformation process is not a traditional spinodal decomposition or structural transformation but, rather a novel hierarchical phase transformation. In this transformation, clustering occurs first, and the spatial rearrangement of the clusters induce a secondary phase transformation that eventually lead to two-dimensional ordering of the clusters. The formation process was examined using in situ synchrotron radiation small-angle X-ray scattering (SAXS). Rapid quenching from liquid alloy into thin ribbons yielded strongly supersaturated amorphous samples. The samples were heated at a constant rate of 10 K/min. and the scattering patterns were acquired. The SAXS analysis indicated that small clusters grew to sizes of 0.2 nm after they crystallized. The clusters distributed randomly in space grew and eventually transformed into a microstructure with two well-defined cluster-cluster distances, one for the segregation periodicity of LPSO and the other for the in-plane ordering in segregated layer. This transformation into the LPSO structure concomitantly introduces the periodical stacking fault required for the 18R structures.

  11. CONTAMINANT TRANSPORT RESULTING FROM MULTICOMPONENT NONAQUEOUS PHASE LIQUID POOL DISSOLUTION IN THREE-DIMENSIONAL SUBSURFACE FORMATIONS (R823579)

    EPA Science Inventory

    A semi-analytical method for simulating transient contaminant transport originating from the dissolution of multicomponent nonaqueous phase liquid (NAPL) pools in three-dimensional, saturated, homogeneous porous media is presented. Each dissolved component may undergo first-order...

  12. The Influence of Annealing Temperature and Time on the Formation of δ-Phase in Additively-Manufactured Inconel 625

    NASA Astrophysics Data System (ADS)

    Stoudt, M. R.; Lass, E. A.; Ng, D. S.; Williams, M. E.; Zhang, F.; Campbell, C. E.; Lindwall, G.; Levine, L. E.

    2018-07-01

    This research evaluated the kinetics of δ-phase growth in laser powder bed additively-manufactured (AM) Inconel 625 during post-build stress-relief heat treatments. The temperatures ranged between 650 °C and 1050 °C, and the times from 0.25 to 168 hours. The presence of δ-phase was verified for each temperature/time combination through multiple techniques. A conventional time-temperature-transformation diagram was constructed from the time-temperature data. Comparison to the growth in wrought IN625 with a similar nominal composition revealed that δ-phase formation occurred at least two orders of magnitude faster in the AM IN625. The results of this study also revealed that the segregated microstructure in the as-built condition has a strong influence on the kinetics of δ-phase formation in AM IN625 as compared to a homogenized material. Since control of the δ-phase growth is essential for reliable prediction of the performance of IN625 components in service, avoiding heat treatments that promote the formation of δ-phase in AM components that are not homogenized is highly recommended. This will be particularly true at elevated temperatures where the microstructural stability and the consistency of mechanical properties are more likely to be affected by the presence of δ-phase.

  13. The Influence of Annealing Temperature and Time on the Formation of δ-Phase in Additively-Manufactured Inconel 625

    NASA Astrophysics Data System (ADS)

    Stoudt, M. R.; Lass, E. A.; Ng, D. S.; Williams, M. E.; Zhang, F.; Campbell, C. E.; Lindwall, G.; Levine, L. E.

    2018-05-01

    This research evaluated the kinetics of δ-phase growth in laser powder bed additively-manufactured (AM) Inconel 625 during post-build stress-relief heat treatments. The temperatures ranged between 650 °C and 1050 °C, and the times from 0.25 to 168 hours. The presence of δ-phase was verified for each temperature/time combination through multiple techniques. A conventional time-temperature-transformation diagram was constructed from the time-temperature data. Comparison to the growth in wrought IN625 with a similar nominal composition revealed that δ-phase formation occurred at least two orders of magnitude faster in the AM IN625. The results of this study also revealed that the segregated microstructure in the as-built condition has a strong influence on the kinetics of δ-phase formation in AM IN625 as compared to a homogenized material. Since control of the δ-phase growth is essential for reliable prediction of the performance of IN625 components in service, avoiding heat treatments that promote the formation of δ-phase in AM components that are not homogenized is highly recommended. This will be particularly true at elevated temperatures where the microstructural stability and the consistency of mechanical properties are more likely to be affected by the presence of δ-phase.

  14. Spin ordering and electronic texture in the bilayer iridate Sr3Ir2O7

    NASA Astrophysics Data System (ADS)

    Dhital, Chetan; Khadka, Sovit; Yamani, Z.; de la Cruz, Clarina; Hogan, T. C.; Disseler, S. M.; Pokharel, Mani; Lukas, K. C.; Tian, Wei; Opeil, C. P.; Wang, Ziqiang; Wilson, Stephen D.

    2012-09-01

    Through a neutron scattering, charge transport, and magnetization study, the correlated ground state in the bilayer iridium oxide Sr3Ir2O7 is explored. Our combined results resolve scattering consistent with a high temperature magnetic phase that persists above 600 K, reorients at the previously defined TAF=280 K, and coexists with an electronic ground state whose phase behavior suggests the formation of a fluctuating charge or orbital phase that freezes below T*≈70 K. Our study provides a window into the emergence of multiple electronic order parameters near the boundary of the metal to insulator phase transition of the 5d Jeff=1/2 Mott phase.

  15. Predicting glass-to-glass and liquid-to-liquid phase transitions in supercooled water using classical nucleation theory

    NASA Astrophysics Data System (ADS)

    Tournier, Robert F.

    2018-01-01

    Glass-to-glass and liquid-to-liquid phase transitions are observed in bulk and confined water, with or without applied pressure. They result from the competition of two liquid phases separated by an enthalpy difference depending on temperature. The classical nucleation equation of these phases is completed by this quantity existing at all temperatures, a pressure contribution, and an enthalpy excess. This equation leads to two homogeneous nucleation temperatures in each liquid phase; the first one (Tn- below Tm) being the formation temperature of an "ordered" liquid phase and the second one corresponding to the overheating temperature (Tn+ above Tm). Thermodynamic properties, double glass transition temperatures, sharp enthalpy and volume changes are predicted in agreement with experimental results. The first-order transition line at TLL = 0.833 × Tm between fragile and strong liquids joins two critical points. Glass phase above Tg becomes "ordered" liquid phase disappearing at TLL at low pressure and at Tn+ = 1.302 × Tm at high pressure.

  16. Coarsening and pattern formation during true morphological phase separation in unstable thin films under gravity

    NASA Astrophysics Data System (ADS)

    Kumar, Avanish; Narayanam, Chaitanya; Khanna, Rajesh; Puri, Sanjay

    2017-12-01

    We address in detail the problem of true morphological phase separation (MPS) in three-dimensional or (2 +1 )-dimensional unstable thin liquid films (>100 nm) under the influence of gravity. The free-energy functionals of these films are asymmetric and show two points of common tangency, which facilitates the formation of two equilibrium phases. Three distinct patterns formed by relative preponderance of these phases are clearly identified in "true MPS". Asymmetricity induces two different pathways of pattern formation, viz., defect and direct pathway for true MPS. The pattern formation and phase-ordering dynamics have been studied using statistical measures such as structure factor, correlation function, and growth laws. In the late stage of coarsening, the system reaches into a scaling regime for both pathways, and the characteristic domain size follows the Lifshitz-Slyozov growth law [L (t ) ˜t1 /3] . However, for the defect pathway, there is a crossover of domain growth behavior from L (t ) ˜t1 /4→t1 /3 in the dynamical scaling regime. We also underline the analogies and differences behind the mechanisms of MPS and true MPS in thin liquid films and generic spinodal phase separation in binary mixtures.

  17. Tachyon condensation due to domain-wall annihilation in Bose-Einstein condensates.

    PubMed

    Takeuchi, Hiromitsu; Kasamatsu, Kenichi; Tsubota, Makoto; Nitta, Muneto

    2012-12-14

    We show theoretically that a domain-wall annihilation in two-component Bose-Einstein condensates causes tachyon condensation accompanied by spontaneous symmetry breaking in a two-dimensional subspace. Three-dimensional vortex formation from domain-wall annihilations is considered a kink formation in subspace. Numerical experiments reveal that the subspatial dynamics obey the dynamic scaling law of phase-ordering kinetics. This model is experimentally feasible and provides insights into how the extra dimensions influence subspatial phase transition in higher-dimensional space.

  18. Simulation of Z(3) walls and string production via bubble nucleation in a quark-hadron transition

    NASA Astrophysics Data System (ADS)

    Gupta, Uma Shankar; Mohapatra, Ranjita K.; Srivastava, Ajit M.; Tiwari, Vivek K.

    2010-10-01

    We study the dynamics of confinement-deconfinement phase transition in the context of relativistic heavy-ion collisions within the framework of effective models for the Polyakov loop order parameter. We study the formation of Z(3) walls and associated strings in the initial transition from the confining (hadronic) phase to the deconfining [quark-gluon plasma (QGP)] phase via the so-called Kibble mechanism. Essential physics of the Kibble mechanism is contained in a sort of domain structure arising after any phase transition which represents random variation of the order parameter at distances beyond the typical correlation length. We implement this domain structure by using the Polyakov loop effective model with a first order phase transition and confine ourselves with temperature/time ranges so that the first order confinement-deconfinement transition proceeds via bubble nucleation, leading to a well defined domain structure. The formation of Z(3) walls and associated strings results from the coalescence of QGP bubbles expanding in the confining background. We investigate the evolution of the Z(3) wall and string network. We also calculate the energy density fluctuations associated with Z(3) wall network and strings which decay away after the temperature drops below the quark-hadron transition temperature during the expansion of QGP. We discuss evolution of these quantities with changing temperature via Bjorken’s hydrodynamical model and discuss possible experimental signatures resulting from the presence of Z(3) wall network and associate strings.

  19. Simulation of Z(3) walls and string production via bubble nucleation in a quark-hadron transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Uma Shankar; Tiwari, Vivek K.; Mohapatra, Ranjita K.

    2010-10-01

    We study the dynamics of confinement-deconfinement phase transition in the context of relativistic heavy-ion collisions within the framework of effective models for the Polyakov loop order parameter. We study the formation of Z(3) walls and associated strings in the initial transition from the confining (hadronic) phase to the deconfining [quark-gluon plasma (QGP)] phase via the so-called Kibble mechanism. Essential physics of the Kibble mechanism is contained in a sort of domain structure arising after any phase transition which represents random variation of the order parameter at distances beyond the typical correlation length. We implement this domain structure by using themore » Polyakov loop effective model with a first order phase transition and confine ourselves with temperature/time ranges so that the first order confinement-deconfinement transition proceeds via bubble nucleation, leading to a well defined domain structure. The formation of Z(3) walls and associated strings results from the coalescence of QGP bubbles expanding in the confining background. We investigate the evolution of the Z(3) wall and string network. We also calculate the energy density fluctuations associated with Z(3) wall network and strings which decay away after the temperature drops below the quark-hadron transition temperature during the expansion of QGP. We discuss evolution of these quantities with changing temperature via Bjorken's hydrodynamical model and discuss possible experimental signatures resulting from the presence of Z(3) wall network and associate strings.« less

  20. Spiral and never-settling patterns in active systems

    NASA Astrophysics Data System (ADS)

    Yang, X.; Marenduzzo, D.; Marchetti, M. C.

    2014-01-01

    We present a combined numerical and analytical study of pattern formation in an active system where particles align, possess a density-dependent motility, and are subject to a logistic reaction. The model can describe suspensions of reproducing bacteria, as well as polymerizing actomyosin gels in vitro or in vivo. In the disordered phase, we find that motility suppression and growth compete to yield stable or blinking patterns, which, when dense enough, acquire internal orientational ordering to give asters or spirals. We predict these may be observed within chemotactic aggregates in bacterial fluids. In the ordered phase, the reaction term leads to previously unobserved never-settling patterns which can provide a simple framework to understand the formation of motile and spiral patterns in intracellular actin systems.

  1. Alternative route to charge density wave formation in multiband systems

    PubMed Central

    Eiter, Hans-Martin; Lavagnini, Michela; Hackl, Rudi; Nowadnick, Elizabeth A.; Kemper, Alexander F.; Devereaux, Thomas P.; Chu, Jiun-Haw; Analytis, James G.; Fisher, Ian R.; Degiorgi, Leonardo

    2013-01-01

    Charge and spin density waves, periodic modulations of the electron, and magnetization densities, respectively, are among the most abundant and nontrivial low-temperature ordered phases in condensed matter. The ordering direction is widely believed to result from the Fermi surface topology. However, several recent studies indicate that this common view needs to be supplemented. Here, we show how an enhanced electron–lattice interaction can contribute to or even determine the selection of the ordering vector in the model charge density wave system ErTe3. Our joint experimental and theoretical study allows us to establish a relation between the selection rules of the electronic light scattering spectra and the enhanced electron–phonon coupling in the vicinity of band degeneracy points. This alternative proposal for charge density wave formation may be of general relevance for driving phase transitions into other broken-symmetry ground states, particularly in multiband systems, such as the iron-based superconductors. PMID:23248317

  2. Alternative route to charge density wave formation in multiband systems.

    PubMed

    Eiter, Hans-Martin; Lavagnini, Michela; Hackl, Rudi; Nowadnick, Elizabeth A; Kemper, Alexander F; Devereaux, Thomas P; Chu, Jiun-Haw; Analytis, James G; Fisher, Ian R; Degiorgi, Leonardo

    2013-01-02

    Charge and spin density waves, periodic modulations of the electron, and magnetization densities, respectively, are among the most abundant and nontrivial low-temperature ordered phases in condensed matter. The ordering direction is widely believed to result from the Fermi surface topology. However, several recent studies indicate that this common view needs to be supplemented. Here, we show how an enhanced electron-lattice interaction can contribute to or even determine the selection of the ordering vector in the model charge density wave system ErTe(3). Our joint experimental and theoretical study allows us to establish a relation between the selection rules of the electronic light scattering spectra and the enhanced electron-phonon coupling in the vicinity of band degeneracy points. This alternative proposal for charge density wave formation may be of general relevance for driving phase transitions into other broken-symmetry ground states, particularly in multiband systems, such as the iron-based superconductors.

  3. Effect of calcination routes on phase formation of BaTiO3 and their electronic and magnetic properties

    NASA Astrophysics Data System (ADS)

    Majumder, Supriyo; Choudhary, R. J.; Tripathi, M.; Phase, D. M.

    2018-05-01

    We have investigated the phase formation and correlation between electronic and magnetic properties of oxygen deficient BaTiO3 ceramics, synthesized by solid state reaction method, following different calcination paths. The phase analysis divulge that a higher calcination temperature above 1000° C is favored for tetragonal phase formation than the cubic phase. The core level X-ray photo electron spectroscopy measurements confirm the presence of oxygen vacancies and oxygen vacancy mediated Ti3+ states. As the calcination temperature and calcination time increases these oxygen vacancies and hence Ti3+ concentrations reduce in the sample. The temperature dependent magnetization curves suggest unexpected magnetic ordering, which may be due to the presence of unpaired electron at the t2g state (d1) of nearest-neighbor Ti atoms. In magnetization vs magnetic field isotherms, the regular decrease of saturation moment value with increasing calcination temperature and calcination time, can be discussed considering the amount of oxygen deficiency induced Ti3+ concentrations, present in the sample.

  4. Integrable high order UWB pulse photonic generator based on cross phase modulation in a SOA-MZI.

    PubMed

    Moreno, Vanessa; Rius, Manuel; Mora, José; Muriel, Miguel A; Capmany, José

    2013-09-23

    We propose and experimentally demonstrate a potentially integrable optical scheme to generate high order UWB pulses. The technique is based on exploiting the cross phase modulation generated in an InGaAsP Mach-Zehnder interferometer containing integrated semiconductor optical amplifiers, and is also adaptable to different pulse modulation formats through an optical processing unit which allows to control of the amplitude, polarity and time delay of the generated taps.

  5. The sensitivities of in cloud and cloud top phase distributions to primary ice formation in ICON-LEM

    NASA Astrophysics Data System (ADS)

    Beydoun, H.; Karrer, M.; Tonttila, J.; Hoose, C.

    2017-12-01

    Mixed phase clouds remain a leading source of uncertainty in our attempt to quantify cloud-climate and aerosol-cloud climate interactions. Nevertheless, recent advances in parametrizing the primary ice formation process, high resolution cloud modelling, and retrievals of cloud phase distributions from satellite data offer an excellent opportunity to conduct closure studies on the sensitivity of the cloud phase to microphysical and dynamical processes. Particularly, the reliability of satellite data to resolve the phase at the top of the cloud provides a promising benchmark to compare model output to. We run large eddy simulations with the new ICOsahedral Non-hydrostatic atmosphere model (ICON) to place bounds on the sensitivity of in cloud and cloud top phase to the primary ice formation process. State of the art primary ice formation parametrizations in the form of the cumulative ice active site density ns are implemented in idealized deep convective cloud simulations. We exploit the ability of ICON-LEM to switch between a two moment microphysics scheme and the newly developed Predicted Particle Properties (P3) scheme by running our simulations in both configurations for comparison. To quantify the sensitivity of cloud phase to primary ice formation, cloud ice content is evaluated against order of magnitude changes in ns at variable convective strengths. Furthermore, we assess differences between in cloud and cloud top phase distributions as well as the potential impact of updraft velocity on the suppression of the Wegener-Bergeron-Findeisen process. The study aims to evaluate our practical understanding of primary ice formation in the context of predicting the structure and evolution of mixed phase clouds.

  6. Are metastable, precrystallisation, density-fluctuations a universal phenomena?

    PubMed

    Heeley, Ellen L; Poh, C Kit; Li, Wu; Maidens, Anna; Bras, Wim; Dolbnya, Igor P; Gleeson, Anthony J; Terrill, Nicolas J; Fairclough, J Patrick A; Olmsted, Peter D; Ristic, Rile I; Hounslow, Micheal J; Ryan, Anthony J

    2003-01-01

    In-situ observations of crystallisation in minerals and organic polymers have been made by simultaneous, time-resolved small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) techniques. In isotactic polypropylene slow quiescent crystallisation shows the onset of large scale ordering prior to crystal growth. Rapid crystallisations studied by melt extrusion indicate the development of well resolved oriented SAXS patterns associated with long range order before the development of crystalline peaks in the WAXS region. Block copolymers self-assemble into mesophases in polymer melts above a critical chain length (or above a critical temperature) and this self-assembly process is shown to be susceptible to an incipient crystallisation. Mesophase formation is observed at anomalously high temperatures in ethylene-oxide containing block copolymers below the normal melting point of the polyoxy ethylene chains. Formation of calcium carbonate from aqueous solutions of sodium carbonate and calcium nitrate is observed to be a two-stage process and precipitation proceeds by the production of an amorphous metastable phase. This phase grows until it is volume filling and leads to the formation of the two polymorphs Calcite and Vaterite. These three sets of results suggest pre-nucleation density fluctuations, leading to a metastable phase, play an integral role in all three classes of crystallisation. In due course, this phase undergoes transformation to "normal" crystals.

  7. New ordered metastable phases between the gel and subgel phases in hydrated phospholipids.

    PubMed Central

    Tenchov, B; Koynova, R; Rapp, G

    2001-01-01

    Formation of low-temperature ordered gel phases in several fully hydrated phosphatidylethanolamines (PEs) and phosphatidylcholines (PCs) with saturated chains as well as in dipalmitoylphosphatidylglycerol (DPPG) was observed by synchrotron x-ray diffraction, microcalorimetry, and densitometry. The diffraction patterns recorded during slow cooling show that the gel-phase chain reflection cooperatively splits into two reflections, signaling a transformation of the usual gel phase into a more ordered phase, with an orthorhombic chain packing (the Y-transition). This transition is associated with a small decrease (2-4 microl/g) or inflection of the partial specific volume. It is fully reversible with the temperature and displays in heating direction as a small (0.1-0.7 kcal/mol) endothermic event. We recorded a Y-transition in distearoyl PE, dipalmitoyl PE (DPPE), mono and dimethylated DPPE, distearoyl PC, dipalmitoyl PC, diC(15)PC, and DPPG. No such transition exists in dimyristoyl PE and dilauroyl PE where the gel L(beta) phase transforms directly into subgel L(c) phase, as well as in the unsaturated dielaidoyl PE. The PE and PC low-temperature phases denoted L(R1) and SGII, respectively, have different hydrocarbon chain packing. The SGII phase is with tilted chains, arranged in an orthorhombic lattice of two-nearest-neighbor type. Except for the PCs, it was also registered in ionized DPPG. In the L(R1) phase, the chains are perpendicular to the bilayer plane and arranged in an orthorhombic lattice of four-nearest-neighbor type. It was observed in PEs and in protonated DPPG. The L(R1) and SGII phases are metastable phases, which may only be formed by cooling the respective gel L(beta) and L(beta') phases, and not by heating the subgel L(c) phase. Whenever present, they appear to represent an indispensable intermediate step in the formation of the latter phase. PMID:11259300

  8. Acoustic waves and the detectability of first-order phase transitions by eLISA

    NASA Astrophysics Data System (ADS)

    Weir, David J.

    2017-05-01

    In various extensions of the Standard Model it is possible that the electroweak phase transition was first order. This would have been a violent process, involving the formation of bubbles and associated shock waves. Not only would the collision of these bubbles and shock waves be a detectable source of gravitational waves, but persistent acoustic waves could enhance the signal and improve prospects of detection by eLISA. I summarise the results of a recent campaign to model such a phase transition based on large-scale hydrodynamical simulations, and its implications for the eLISA mission.

  9. Directional Forces by Momentumless Excitation and Order-to-Order Transition in Peierls-Distorted Solids: The Case of GeTe

    NASA Astrophysics Data System (ADS)

    Chen, Nian-Ke; Li, Xian-Bin; Bang, Junhyeok; Wang, Xue-Peng; Han, Dong; West, Damien; Zhang, Shangbai; Sun, Hong-Bo

    2018-05-01

    Time-dependent density-functional theory molecular dynamics reveals an unexpected effect of optical excitation in the experimentally observed rhombohedral-to-cubic transition of GeTe. The excitation induces coherent forces along [001], which may be attributed to the unique energy landscape of Peierls-distorted solids. The forces drive the A1 g optical phonon mode in which Ge and Te move out of phase. Upon damping of the A1 g mode, phase transition takes place, which involves no atomic diffusion, defect formation, or the nucleation and growth of the cubic phase.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velten, Sven; Streubel, Robert; Farhan, Alan

    We report a magnetic X-ray microscopy study of the pattern formation of circulation in arrays of magnetic vortices ordered in a hexagonal and a honeycomb lattice. In the honeycomb lattice, we observe at remanence an ordered phase of alternating circulations, whereas in the hexagonal lattice, small regions of alternating lines form. A variation in the edge-to-edge distance shows that the size of those regions scales with the magnetostatic interaction. Micromagnetic simulations reveal that the patterns result from the formation of flux closure states during the nucleation process.

  11. Energetics of defects formation and oxygen migration in pyrochlore compounds from first principles calculations

    NASA Astrophysics Data System (ADS)

    Li, Yan; Kowalski, Piotr M.

    2018-07-01

    In order to get better understanding of the selective order-disorder transition in pyrochlore compounds, using ab initio methods we calculated the formation energies of coupled cation anti-site and anion Frenkel pair defects and the energy barriers for the oxygen migration for number of families of A2B2 O7 pyrochlore-type compounds. While these parameters have been previously computed with force field-based methods, the ab initio results provide more reliable values that can be confidently used in subsequent analysis. We found a fairly good correlation between the formation energies of the coupled defects and the stability field of pyrochlores. In line with previous studies, the compounds that crystallize in defect fluorite structure are found to have smaller values of coupled defect formation energies than those crystallizing in the pyrochlore phase, although the correlation is not that sharp as in the case of isolated anion Frenkel pair defect. The investigation of the energy barriers for the oxygen migration shows that it is not a good, sole indicator of the tendency of the order-disorder phase transition in pyrochlores. However, we found that the oxygen migration barrier is reduced in the presence of the cation antisite defect. This points at disordering-induced enhancement of oxygen diffusion in pyrochlore compounds.

  12. Spontaneous and Flow-Driven Interfacial Phase Change: Dynamics of Microemulsion Formation at the Pore Scale.

    PubMed

    Tagavifar, Mohsen; Xu, Ke; Jang, Sung Hyun; Balhoff, Matthew T; Pope, Gary A

    2017-11-14

    The dynamic behavior of microemulsion-forming water-oil-amphiphiles mixtures is investigated in a 2.5D micromodel. The equilibrium phase behavior of such mixtures is well-understood in terms of macroscopic phase transitions. However, what is less understood and where experimental data are lacking is the coupling between the phase change and the bulk flow. Herein, we study the flow of an aqueous surfactant solution-oil mixture in porous media and analyze the dependence of phase formation and spatial phase configurations on the bulk flow rate. We find that a microemulsion forms instantaneously as a boundary layer at the initial surface of contact between the surfactant solution and oil. The boundary layer is temporally continuous because of the imposed convection. In addition to the imposed flow, we observe spontaneous pulsed Marangoni flows that drag the microemulsion and surfactant solution into the oil stream, forming large (macro)emulsion droplets. The formation of the microemulsion phase at the interface distinguishes the situation from that of the more common Marangoni flow with only two phases present. Additionally, an emulsion forms via liquid-liquid nucleation or the Ouzo effect (i.e., spontaneous emulsification) at low flow rates and via mechanical mixing at high flow rates. With regard to multiphase flow, contrary to the common belief that the microemulsion is the wetting liquid, we observe that the minor oil phase wets the solid surface. We show that a layered flow pattern is formed because of the out-of-equilibrium phase behavior at high volumetric flow rates (order of 2 m/day) where advection is much faster than the diffusive interfacial mass transfer and transverse mixing, which promote equilibrium behavior. At lower flow rates (order of 30 cm/day), however, the dynamic and equilibrium phase behaviors are well-correlated. These results clearly show that the phase change influences the macroscale flow behavior.

  13. The Lγ Phase of Pulmonary Surfactant.

    PubMed

    Kumar, Kamlesh; Chavarha, Mariya; Loney, Ryan W; Weiss, Thomas M; Rananavare, Shankar B; Hall, Stephen B

    2018-06-05

    To determine how different components affect the structure of pulmonary surfactant, we measured X-ray scattering by samples derived from calf surfactant. The surfactant phospholipids demonstrated the essential characteristics of the L γ phase: a unit cell with a lattice constant appropriate for two bilayers, and crystalline chains detected by wide-angle X-ray scattering (WAXS). The electron density profile, obtained from scattering by oriented films at different relative humidities (70-97%), showed that the two bilayers, arranged as mirror images, each contain two distinct leaflets with different thicknesses and profiles. The detailed structures suggest one ordered leaflet that would contain crystalline chains and one disordered monolayer likely to contain the anionic compounds, which constitute ∼10% of the surfactant phospholipids. The spacing and temperature dependence detected by WAXS fit with an ordered leaflet composed of dipalmitoyl phosphatidylcholine. Physiological levels of cholesterol had no effect on this structure. Removing the anionic phospholipids prevented formation of the L γ phase. The cationic surfactant proteins inhibited L γ structures, but at levels unlikely related to charge. Because the L γ phase, if arranged properly, could produce a self-assembled ordered interfacial monolayer, the structure could have important functional consequences. Physiological levels of the proteins, however, inhibit formation of the L γ structures at high relative humidities, making their physiological significance uncertain.

  14. Degradation properties of protein and carbohydrate during sludge anaerobic digestion.

    PubMed

    Yang, Guang; Zhang, Panyue; Zhang, Guangming; Wang, Yuanyuan; Yang, Anqi

    2015-09-01

    Degradation of protein and carbohydrate is vital for sludge anaerobic digestion performance. However, few studies focused on degradation properties of protein and carbohydrate. This study investigated detailed degradation properties of sludge protein and carbohydrate in order to gain insight into organics removal during anaerobic digestion. Results showed that carbohydrate was more efficiently degraded than protein and was degraded prior to protein. The final removal efficiencies of carbohydrate and protein were 49.7% and 32.2%, respectively. The first 3 days were a lag phase for protein degradation since rapid carbohydrate degradation in this phase led to repression of protease formation. Kinetics results showed that, after initial lag phase, protein degradation followed the first-order kinetic with rate constants of 0.0197 and 0.0018 d(-1) during later rapid degradation phase and slow degradation phase, respectively. Carbohydrate degradation also followed the first-order kinetics with a rate constant of 0.007 d(-1) after initial quick degradation phase. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Microstructure Formations in the Two-Phase Region of the Binary Peritectic Organic System TRIS-NPG

    NASA Technical Reports Server (NTRS)

    Mogeritsch, Johann; Ludwig, Andreas

    2012-01-01

    In order to prepare for an onboard experiment on the International Space Station (ISS), systematic directional solidification experiments with transparent hypoperitectic alloys were carried out at different solidification rates around the critical velocity for morphological stability of both solid phases. The investigations were done in the peritectic region of the binary transparent organic TRIS-NPG system where the formation of layered structures is expected to occur. The transparent appearance of the liquid and solid phase enables real time observations of the dynamic of pattern formation during solidification. The investigations show that frequently occurring nucleation events govern the peritectic solidification morphology which occurs at the limit of morphological stability. As a consequence, banded structures lead to coupled growth even if the lateral growth is much faster compared to the growth in pulling direction.

  16. Structural, thermal, dielectric and phonon properties of perovskite-like imidazolium magnesium formate.

    PubMed

    Mączka, Mirosław; Marinho Costa, Nathalia Leal; Gągor, Anna; Paraguassu, Waldeci; Sieradzki, Adam; Hanuza, Jerzy

    2016-05-18

    We report the synthesis and characterisation of a magnesium formate framework templated by protonated imidazole. Single-crystal X-ray diffraction data showed that this compound crystallizes in the monoclinic structure in the P21/n space group with lattice parameters a = 12.1246(4) Å, b = 12.2087(5) Å, c = 12.4991(4) Å and β = 91.39(1)°. The antiparallel arrangement of the dipole moments associated with imidazolium cations suggests the antiferroelectric character of the room-temperature phase. The studied compound undergoes a structural phase transition at 451 K associated with a halving of the c lattice parameter and the disappearance of the antiferroelectric order. The monoclinic symmetry is preserved and the new metrics are a = 12.261(7) Å, b = 12.290(4) Å, c = 6.280(4) Å, and β = 90.62(5)°. Raman and IR data are consistent with the X-ray diffraction data. They also indicate that the disorder of imidazolium cations plays a significant role in the mechanism of the phase transition. Dielectric data show that the phase transition is associated with a relaxor nature of electric ordering. We also report high-pressure Raman scattering studies of this compound that revealed the presence of two pressure-induced phase transitions near 3 and 7 GPa. The first transition is most likely associated with a rearrangement of the imidazolium cations without any significant distortion of these cations and the magnesium formate framework, whereas the second transition leads to strong distortion of both the framework and imidazolium cations. High-pressure data also show that imidazolium magnesium formate does not show any signs of amorphization up to 11.4 GPa.

  17. Highly repeatable nanoscale phase coexistence in vanadium dioxide films

    NASA Astrophysics Data System (ADS)

    Huffman, T. J.; Lahneman, D. J.; Wang, S. L.; Slusar, T.; Kim, Bong-Jun; Kim, Hyun-Tak; Qazilbash, M. M.

    2018-02-01

    It is generally believed that in first-order phase transitions in materials with imperfections, the formation of phase domains must be affected to some extent by stochastic (probabilistic) processes. The stochasticity would lead to unreliable performance in nanoscale devices that have the potential to exploit the transformation of physical properties in a phase transition. Here we show that stochasticity at nanometer length scales is completely suppressed in the thermally driven metal-insulator transition (MIT) in sputtered vanadium dioxide (V O2 ) films. The nucleation and growth of domain patterns of metallic and insulating phases occur in a strikingly reproducible way. The completely deterministic nature of domain formation and growth in films with imperfections is a fundamental and unexpected finding about the kinetics of this material. Moreover, it opens the door for realizing reliable nanoscale devices based on the MIT in V O2 and similar phase-change materials.

  18. Phase stability and microstructures of high entropy alloys ion irradiated to high doses

    NASA Astrophysics Data System (ADS)

    Xia, Songqin; Gao, Michael C.; Yang, Tengfei; Liaw, Peter K.; Zhang, Yong

    2016-11-01

    The microstructures of AlxCoCrFeNi (x = 0.1, 0.75 and 1.5 in molar ratio) high entropy alloys (HEAs) irradiated at room temperature with 3 MeV Au ions at the highest fluence of 105, 91, and 81 displacement per atom, respectively, were studied. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analyses show that the initial microstructures and phase composition of all three alloys are retained after ion irradiation and no phase decomposition is observed. Furthermore, it is demonstrated that the disordered face-centered cubic (FCC) and disordered body-centered cubic (BCC) phases show much less defect cluster formation and structural damage than the NiAl-type ordered B2 phase. This effect is explained by higher entropy of mixing, higher defect formation/migration energies, substantially lower thermal conductivity, and higher atomic level stress in the disordered phases.

  19. Two-dimensional liquid crystalline growth within a phase-field-crystal model.

    PubMed

    Tang, Sai; Praetorius, Simon; Backofen, Rainer; Voigt, Axel; Yu, Yan-Mei; Wang, Jincheng

    2015-07-01

    By using a two-dimensional phase-field-crystal (PFC) model, the liquid crystalline growth of the plastic triangular phase is simulated with emphasis on crystal shape and topological defect formation. The equilibrium shape of a plastic triangular crystal (PTC) grown from an isotropic phase is compared with that grown from a columnar or smectic-A (CSA) phase. While the shape of a PTC nucleus in the isotropic phase is almost identical to that of the classical PFC model, the shape of a PTC nucleus in CSA is affected by the orientation of stripes in the CSA phase, and irregular hexagonal, elliptical, octagonal, and rectangular shapes are obtained. Concerning the dynamics of the growth process, we analyze the topological structure of the nematic order, which starts from nucleation of +1/2 and -1/2 disclination pairs at the PTC growth front and evolves into hexagonal cells consisting of +1 vortices surrounded by six satellite -1/2 disclinations. It is found that the orientational and the positional order do not evolve simultaneously; the orientational order evolves behind the positional order, leading to a large transition zone, which can span over several lattice spacings.

  20. Mott localization in a pure stripe antiferromagnet Rb 1 - δ Fe 1.5 - σ S 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Meng; Yi, Ming; Cao, Huibo

    A combination of neutron diffraction and angle-resolved photoemission spectroscopy measurements on a pure antiferromagnetic stripe Rb 1-δFe 1.5-σS 2 is reported. A neutron diffraction experiment on a powder sample shows that a 98% volume fraction of the sample is in the antiferromagnetic stripe phase with rhombic iron vacancy order and a refined composition of Rb 0.66Fe 1.36S 2, and that only 2% of the sample is in the block antiferromagnetic phase with √5×√5 iron vacancy order. Furthermore, a neutron diffraction experiment on a single crystal shows that there is only a single phase with the stripe antiferromagnetic order with themore » refined composition of Rb 0.78Fe 1.35S 2, while the phase with block antiferromagnetic order is absent. Angle-resolved photoemission spectroscopy measurements on the same crystal with the pure stripe phase reveal that the electronic structure is gapped at the Fermi level with a gap larger than 0.325 eV. The data collectively demonstrate that the extra 10% iron vacancies in addition to the rhombic iron vacancy order effectively impede the formation of the block antiferromagnetic phase; the data also suggest that the stripe antiferromagnetic phase with rhombic iron vacancy order is a Mott insulator.« less

  1. On the protein crystal formation as an interface-controlled process with prototype ion-channeling effect.

    PubMed

    Siódmiak, Jacek; Uher, Jan J; Santamaría-Holek, Ivan; Kruszewska, Natalia; Gadomski, Adam

    2007-08-01

    A superdiffusive random-walk action in the depletion zone around a growing protein crystal is considered. It stands for a dynamic boundary condition of the growth process and competes steadily with a quasistatic, curvature-involving (thermodynamic) free boundary condition, both of them contributing to interpret the (mainly late-stage) growth process in terms of a prototype ion-channeling effect. An overall diffusion function contains quantitative signatures of both boundary conditions mentioned and indicates whether the new phase grows as an orderly phase or a converse scenario occurs. This situation can be treated in a quite versatile way both numerically and analytically, within a generalized Smoluchowski framework. This study can help in (1) elucidating some dynamic puzzles of a complex crystal formation vs biomolecular aggregation, also those concerning ion-channel formation, and (2) seeing how ion-channel-type dynamics of non-Markovian nature may set properly the pace of model (dis)ordered protein aggregation.

  2. Heliconical smectic phases formed by achiral molecules

    DOE PAGES

    Abberley, Jordan P.; Killah, Ross; Walker, Rebecca; ...

    2018-01-15

    Chiral symmetry breaking in soft matter is a hot topic of current research. Recently, such a phenomenon was found in a fluidic phase showing orientational order of molecules - the nematic phase; although built of achiral molecules, the phase can exhibit structural chirality - average molecular direction follows a short-pitch helix. Here in this paper, we report a series of achiral asymmetric dimers with an odd number of atoms in the spacer, which form twisted structures in nematic as well as in lamellar phases. The tight pitch heliconical nematic (N TB) phase and heliconical tilted smectic C (SmC TB) phasemore » are formed. The formation of a variety of helical structures is accompanied by a gradual freezing of molecular rotation. In the lowest temperature smectic phase, HexI, the twist is expressed through the formation of hierarchical structure: nanoscale helices and mesoscopic helical filaments. The short-pitch helical structure in the smectic phases is confirmed by resonant X-ray measurements.« less

  3. Heliconical smectic phases formed by achiral molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abberley, Jordan P.; Killah, Ross; Walker, Rebecca

    Chiral symmetry breaking in soft matter is a hot topic of current research. Recently, such a phenomenon was found in a fluidic phase showing orientational order of molecules - the nematic phase; although built of achiral molecules, the phase can exhibit structural chirality - average molecular direction follows a short-pitch helix. Here in this paper, we report a series of achiral asymmetric dimers with an odd number of atoms in the spacer, which form twisted structures in nematic as well as in lamellar phases. The tight pitch heliconical nematic (N TB) phase and heliconical tilted smectic C (SmC TB) phasemore » are formed. The formation of a variety of helical structures is accompanied by a gradual freezing of molecular rotation. In the lowest temperature smectic phase, HexI, the twist is expressed through the formation of hierarchical structure: nanoscale helices and mesoscopic helical filaments. The short-pitch helical structure in the smectic phases is confirmed by resonant X-ray measurements.« less

  4. Structure, phonon properties, and order-disorder transition in the metal formate framework of [NH4][Mg(HCOO)3].

    PubMed

    Mączka, Mirosław; Pietraszko, Adam; Macalik, Bogusław; Hermanowicz, Krzysztof

    2014-01-21

    We report the synthesis, crystal structure, thermal, dielectric, IR, and Raman studies of [NH4][Mg(HCOO)3] formate. Single-crystal X-ray diffraction shows that it crystallizes in the hexagonal space group P6322, with orientationally disordered NH4(+) ions located in the cages of the network. Upon cooling, [NH4][Mg(HCOO)3] undergoes a phase transition at around 255 K to the ferroelectric P63 structure. Raman and IR spectra show a strong increase in intensity of the N-H stretching bands as well as narrowing of the bands related to the NH4(+) ions upon cooling. These changes indicate that the phase transition is due to orientational ordering of the NH4(+) ions. Analysis of the Raman data show, however, that the rotational and translational motions of NH4(+) do not freeze completely at the phase transition but exhibit further slowing down below 255 K, and the motional freezing becomes nearly complete below 140 K.

  5. Dynamic phases, pinning, and pattern formation for driven dislocation assemblies

    DOE PAGES

    Zhou, Caizhi; Reichhardt, Charles; Olson Reichhardt, Cynthia J.; ...

    2015-01-23

    We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Lastly, our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation andmore » dynamics in these systems.« less

  6. Evidence of Photo-induced Dynamic Competition of Metallic and Insulating Phase in a Layered Manganite.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuelin; Walko, Donald A.; Li, Qing'an

    2015-12-16

    We show evidence that the competition between the antiferromagetic metallic phase and the charge- and orbital-ordered insulating phase at the reentrant phase boundary of a layered manganite, LaSr2Mn2O7, can be manipulated using ultrafast optical excitation. The time- dependent evolution of the Jahn-Teller superlattice reflection, which indicates the formation of the charge and orbital order, was measured at different laser fluences. The laser-induced enhancement and reduction the Jahn-Teller reflection intensity shows a reversal of sign between earlier (~10 ns) and later (~150 ns) time delays during the relaxation after photo excitation. This effect is consistent with a scenario whereby the lasermore » excitation modulates the local competition between the metallic and the insulating phases.« less

  7. Two-dimensional lattice-fluid model with waterlike anomalies.

    PubMed

    Buzano, C; De Stefanis, E; Pelizzola, A; Pretti, M

    2004-06-01

    We investigate a lattice-fluid model defined on a two-dimensional triangular lattice, with the aim of reproducing qualitatively some anomalous properties of water. Model molecules are of the "Mercedes Benz" type, i.e., they possess a D3 (equilateral triangle) symmetry, with three bonding arms. Bond formation depends both on orientation and local density. We work out phase diagrams, response functions, and stability limits for the liquid phase, making use of a generalized first order approximation on a triangle cluster, whose accuracy is verified, in some cases, by Monte Carlo simulations. The phase diagram displays one ordered (solid) phase which is less dense than the liquid one. At fixed pressure the liquid phase response functions show the typical anomalous behavior observed in liquid water, while, in the supercooled region, a reentrant spinodal is observed.

  8. Evidence of photo-induced dynamic competition of metallic and insulating phase in a layered manganite

    DOE PAGES

    Li, Yuelin; Walko, Daonld A.; Li, Qing'an; ...

    2015-11-17

    We show evidence that the competition between the antiferromagetic metallic phase and the charge- and orbital-ordered insulating phase at the reentrant phase boundary of a layered manganite, LaSr 2Mn 2O 7, can be manipulated using ultrafast optical excitation. The time-dependent evolution of the Jahn-Teller superlattice reflection, which indicates the formation of the charge and orbital order, was measured at different laser fluences. The laser-induced enhancement and reduction the Jahn-Teller reflection intensity shows a reversal of sign between earlier (~10 ns) and later (~150 ns) time delays during the relaxation after photo excitation. This effect is consistent with a scenario wherebymore » the laser excitation modulates the local competition between the metallic and the insulating phases.« less

  9. Momentum-resolved hidden-order gap reveals symmetry breaking and origin of entropy loss in URu2Si2

    NASA Astrophysics Data System (ADS)

    Bareille, C.; Boariu, F. L.; Schwab, H.; Lejay, P.; Reinert, F.; Santander-Syro, A. F.

    2014-07-01

    Spontaneous symmetry breaking in physical systems leads to salient phenomena at all scales, from the Higgs mechanism and the emergence of the mass of the elementary particles, to superconductivity and magnetism in solids. The hidden-order state arising below 17.5 K in URu2Si2 is a puzzling example of one of such phase transitions: its associated broken symmetry and gap structure have remained longstanding riddles. Here we directly image how, across the hidden-order transition, the electronic structure of URu2Si2 abruptly reconstructs. We observe an energy gap of 7 meV opening over 70% of a large diamond-like heavy-fermion Fermi surface, resulting in the formation of four small Fermi petals, and a change in the electronic periodicity from body-centred tetragonal to simple tetragonal. Our results explain the large entropy loss in the hidden-order phase, and the similarity between this phase and the high-pressure antiferromagnetic phase found in quantum-oscillation experiments.

  10. Order-disorder phenomena in the low-temperature phase of BaTiO3

    NASA Astrophysics Data System (ADS)

    Völkel, G.; Müller, K. A.

    2007-09-01

    X - and Q -band electron paramagnetic resonance measurements are reported on Mn4+ -doped BaTiO3 single crystals in the rhombohedral low-temperature phase. The Mn4+ probe ion is statistically substitute for the isovalent Ti4+ ion. The critical line broadening observed when approaching the phase transition to the orthorhombic phase demonstrates the presence of order-disorder processes within the off-center Ti subsystem and the formation of dynamic precursor clusters with a structure compatible with one of the orthorhombic phase. From the data it is concluded that BaTiO3 shows a special type of phase transition where displacive and order-disorder character are not only present at the cubic-tetragonal transition, but also at the orthorhombic-rhombohedral transition at low temperatures. The disappearance of the Mn4+ spectrum in the orthorhombic, tetragonal, and cubic phases can be interpreted as the consequence of the strong line broadening caused by changes of the instantaneous off-center positions in time around the averaged off-center position along a body diagonal.

  11. A Comparison between Growth Morphology of "Eutectic" Cells/Dendrites and Single-Phase Cells/Dendrites

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Raj, S. V.; Locci, I. E.

    2003-01-01

    Directionally solidified (DS) intermetallic and ceramic-based eutectic alloys with an in-situ composite microstructure containing finely distributed, long aspect ratio, fiber, or plate reinforcements are being seriously examined for several advanced aero-propulsion applications. In designing these alloys, additional solutes need to be added to the base eutectic composition in order to improve heir high-temperature strength, and provide for adequate toughness and resistance to environmental degradation. Solute addition, however, promotes instability at the planar liquid-solid interface resulting in the formation of two-phase eutectic "colonies." Because morphology of eutectic colonies is very similar to the single-phase cells and dendrites, the stability analysis of Mullins and Sekerka has been extended to describe their formation. Onset of their formation shows a good agreement with this approach; however, unlike the single-phase cells and dendrites, there is limited examination of their growth speed dependence of spacing, morphology, and spatial distribution. The purpose of this study is to compare the growth speed dependence of the morphology, spacing, and spatial distribution of eutectic cells and dendrites with that for the single-phase cells and dendrites.

  12. Fine mist versus large droplets in phase separated manganites

    NASA Astrophysics Data System (ADS)

    Khomskii, D.; Khomskii, L.

    2003-02-01

    The properties of phase-separated systems, e.g., manganites close to a first-order phase transition between charge-ordered insulator and ferromagnetic metal, are usually described by percolation picture. We argue that the correlated occupation of metallic sites leads to the preferential formation of larger metallic clusters, and their size distribution depends on the thermal history. This can explain several puzzling effects in manganites, such as the often observed inverse, or “overshot” hysteresis, and the recently discovered thermal cycling effect. Thus in treating this and similar systems in percolation picture, not only the total concentration of metallic phase, but also the distribution of metallic clusters by shape and size may significantly influence the properties of the system and has to be taken into account.

  13. The Intramolecular Hydrogen Bond N-H···S in 2,2'-Diaminodiphenyl Disulfide: Experimental and Computational Thermochemistry.

    PubMed

    Ramos, Fernando; Flores, Henoc; Hernández-Pérez, Julio M; Sandoval-Lira, Jacinto; Camarillo, E Adriana

    2018-01-11

    The intramolecular hydrogen bond of the N-H···S type has been investigated sparingly by thermochemical and computational methods. In order to study this interaction, the standard molar enthalpies of formation in gaseous phase of diphenyl disulfide, 2,2'-diaminodiphenyl disulfide and 4,4'-diaminodiphenyl disulfide at T = 298.15 K were determined by experimental thermochemical methods and computational calculations. The experimental enthalpies of formation in gas-phase were obtained from enthalpies of formation in crystalline phase and enthalpies of sublimation. Enthalpies of formation in crystalline phase were obtained using rotatory bomb combustion calorimetry. By thermogravimetry, enthalpies of vaporization were obtained, and by combining them with enthalpies of fusion, the enthalpies of sublimation were calculated. The Gaussian-4 procedure and the atomization method were applied to obtain enthalpies of formation in gas-phase of the compounds under study. Theoretical and experimental values are in good agreement. Through natural bond orbital (NBO) analysis and a topological analysis of the electronic density, the intramolecular hydrogen bridge (N-H···S) in the 2,2'-diaminodiphenyl disulfide was confirmed. Finally, an enthalpic difference of 11.8 kJ·mol -1 between the 2,2'-diaminodiphenyl disulfide and 4,4'-diaminodiphenyl disulfide was found, which is attributed to the intramolecular N-H···S interaction.

  14. New Structured Laves Phase in the Mg-In-Ca System with Nontranslational Symmetry and Two Unit Cells

    NASA Astrophysics Data System (ADS)

    Xie, Hongbo; Pan, Hucheng; Ren, Yuping; Wang, Liqing; He, Yufeng; Qi, Xixi; Qin, Gaowu

    2018-02-01

    All of the A B2 Laves phases discovered so far satisfy the general crystalline structure characteristic of translational symmetry; however, we report here a new structured Laves phase directly precipitated in an aged Mg-In-Ca alloy by using aberration-corrected scanning transmission electron microscopy. The nanoprecipitate is determined to be a (Mg,In ) 2Ca phase, which has a C 14 Laves structure (hcp, space group: P 63/m m c , a =6.25 Å , c =10.31 Å ) but without any translational symmetry on the (0001) p basal plane. The (Mg,In ) 2Ca Laves phase contains two separate unit cells promoting the formation of five tiling patterns. The bonding of these patterns leads to the generation of the present Laves phase, followed by the Penrose geometrical rule. The orientation relationship between the Laves precipitate and Mg matrix is (0001) p//(0001) α and [11 ¯00 ] p//[112 ¯0 ] α . More specifically, in contrast to the traditional view that the third element would orderly replace other atoms in a manner of layer by layer on the close-packed (0001) L plane, the In atoms here have orderly occupied certain position of Mg atomic columns along the [0001] L zone axis. The finding would be interesting and important for understanding the formation mechanism of Laves phases, and even atom stacking behavior in condensed matter.

  15. Nonequilibrium Phase Transition in a Model for Social Influence

    NASA Astrophysics Data System (ADS)

    Castellano, Claudio; Marsili, Matteo; Vespignani, Alessandro

    2000-10-01

    We present extensive numerical simulations of the Axelrod's model for social influence, aimed at understanding the formation of cultural domains. This is a nonequilibrium model with short range interactions and a remarkably rich dynamical behavior. We study the phase diagram of the model and uncover a nonequilibrium phase transition separating an ordered (culturally polarized) phase from a disordered (culturally fragmented) one. The nature of the phase transition can be continuous or discontinuous depending on the model parameters. At the transition, the size of cultural regions is power-law distributed.

  16. Vortex circulation patterns in planar microdisk arrays

    DOE PAGES

    Velten, Sven; Streubel, Robert; Farhan, Alan; ...

    2017-06-26

    We report a magnetic X-ray microscopy study of the pattern formation of circulation in arrays of magnetic vortices ordered in a hexagonal and a honeycomb lattice. In the honeycomb lattice, we observe at remanence an ordered phase of alternating circulations, whereas in the hexagonal lattice, small regions of alternating lines form. A variation in the edge-to-edge distance shows that the size of those regions scales with the magnetostatic interaction. Micromagnetic simulations reveal that the patterns result from the formation of flux closure states during the nucleation process.

  17. Kinetic arrest of field-temperature induced first order phase transition in quasi-one dimensional spin system Ca{sub 3}Co{sub 2}O{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De, Santanu, E-mail: santanujuphys91@gmail.com; Kumar, Kranti; Banerjee, A.

    We have found that the geometrically frustrated spin chain compound Ca{sub 3}Co{sub 2}O{sub 6} belonging to Ising like universality class with uniaxial anisotropy shows kinetic arrest of first order intermediate phase (IP) to ferrimagnetic (FIM) transition. In this system, dc magnetization measurements followed by different protocols suggest the coexistence of high temperature IP with equilibrium FIM phase in low temperature. Formation of metastable state due to hindered first order transition has also been probed through cooling and heating in unequal field (CHUF) protocol. Kinetically arrested high temperature IP appears to persist down to almost the spin freezing temperature in thismore » system.« less

  18. Signatures of pair-density wave order via measurement of the current-phase relation in La2-xBaxCuO4 Josephson junctions

    NASA Astrophysics Data System (ADS)

    Hamilton, David; Weis, Adam; Gu, Genda; van Harlingen, Dale

    La2-xBaxCuO4 (LBCO) exhibits a sharp drop in the transition temperature near x = 1 / 8 doping. In this regime, charge, spin and superconducting orders are intertwined and superconductivity is believed to exist in a pair-density wave (PDW) state, an ordered stripe phase characterized by sign changes in the superconducting order parameter between adjacent stripes. We present direct measurements of the current-phase relation (CPR) of Josephson junctions patterned onto crystals of LBCO at x = 1 / 8 and x = 0 . 155 (optimal doping) using a phase-sensitive Josephson interferometry technique. In contrast to the approximately sinusoidal CPR observed at optimal doping, we find the proportion of higher harmonics in the CPR increases at x = 1 / 8 doping, consistent with the formation of a PDW state. In parallel, we are carrying out measurements of the resistance noise in thin films of LBCO of various doping levels to identify features that signify the onset of charge order and changes in the dynamics of charge stripes.

  19. Starless Clumps and the Earliest Phases of High-mass Star Formation in the Milky Way

    NASA Astrophysics Data System (ADS)

    Svoboda, Brian

    2018-01-01

    High-mass stars are key to regulating the interstellar medium, star formation activity, and overall evolution of galaxies, but their formation remains an open problem in astrophysics. In order to understand the physical conditions during the earliest phases of high-mass star formation, I report on observational studies of dense starless clump candidates (SCCs) that show no signatures of star formation activity. I identify 2223 SCCs from the 1.1 mm Bolocam Galactic Plane Survey, systematically analyze their physical properties, and show that the starless phase is not represented by a single timescale, but evolves more rapidly with increasing clump mass. To investigate the sub-structure in SCCs at high spatial resolution, I study the 12 most high-mass SCCs within 5 kpc using ALMA. I report previously undetected low-luminosity protostars in 11 out of 12 SCCs, fragmentation equal to the thermal Jeans length of the clump, and no starless cores exceeding 30 solar masses. While uncertainties remain concerning the star formation effeciency in this sample, these observational facts are consistent with models where high-mass stars form from intially low- to intermediate-mass protostars that accrete most of their mass from the surrounding clump.

  20. Thermal annealing studies of GeTe-Sb2Te3 alloys with multiple interfaces

    NASA Astrophysics Data System (ADS)

    Bragaglia, Valeria; Mio, Antonio M.; Calarco, Raffaella

    2017-08-01

    A high degree of vacancy ordering is obtained by annealing amorphous GeTe-Sb2Te3 (GST) alloys deposited on a crystalline substrate, which acts as a template for the crystallization. Under annealing the material evolves from amorphous to disordered rocksalt, to ordered rocksalt with vacancies arranged into (111) oriented layers, and finally converts into the stable trigonal phase. The role of the interface in respect to the formation of an ordered crystalline phase is studied by comparing the transformation stages of crystalline GST with and without a capping layer. The capping layer offers another crystallization interface, which harms the overall crystalline quality.

  1. Formation of Microcracks During Micro-Arc Oxidation in a Phytic Acid-Containing Solution on Two-Phase AZ91HP

    NASA Astrophysics Data System (ADS)

    Zhang, R. F.; Chang, W. H.; Jiang, L. F.; Qu, B.; Zhang, S. F.; Qiao, L. P.; Xiang, J. H.

    2016-04-01

    Micro-arc oxidation (MAO) is an effective method to produce ceramic coatings on magnesium alloys and can considerably improve their corrosion resistance. The coating properties are closely related with microcracks, which are always inevitably developed on the coating surface. In order to find out the formation and development regularity of microcracks, anodic coatings developed on two-phase AZ91HP after different anodizing times were fabricated in a solution containing environmentally friendly organic electrolyte phytic acid. The results show that anodic film is initially developed on the α phase. At 50 s, anodic coatings begin to develop on the β phase, evidencing the formation of a rough area. Due to the coating successive development, the microcracks initially appear at the boundary between the initially formed coating on the α phase and the subsequently developed coating on the β phase. With the prolonging treatment time, the microcracks near the β phase become evident. After treating for 3 min, the originally rough area on the β phase disappears and the coatings become almost uniform with microcracks randomly distributed on the sample surface. Inorganic phosphates are found in MAO coatings, suggesting that phytate salts are decomposed due to the high instantaneous temperature on the sample surface resulted from spark discharge.

  2. Enthalpy of Formation of N 2 H 4 (Hydrazine) Revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feller, David; Bross, David H.; Ruscic, Branko

    2017-08-02

    In order to address the accuracy of the long-standing experimental enthalpy of formation of gas-phase hydrazine, fully confirmed in earlier versions of Active Thermochemical Tables (ATcT), the provenance of that value is re-examined in light of new high-end calculations of the Feller-Peterson-Dixon (FPD) variety. An overly optimistic determination of the vaporization enthalpy of hydrazine, which created an unrealistically strong connection between the gas phase thermochemistry and the calorimetric results defining the thermochemistry of liquid hydrazine was identified as the probable culprit. The new enthalpy of formation of gas-phase hydrazine, based on balancing all available knowledge, was determined to be 111.57more » ± 0.47 kJ/mol at 0 K (97.41 kJ/mol at 298.15 K). Close agreement was found between the ATcT (even excluding the latest theoretical result) and FPD enthalpies.« less

  3. Enthalpy of Formation of N2H4 (Hydrazine) Revisited.

    PubMed

    Feller, David; Bross, David H; Ruscic, Branko

    2017-08-17

    In order to address the accuracy of the long-standing experimental enthalpy of formation of gas-phase hydrazine, fully confirmed in earlier versions of Active Thermochemical Tables (ATcT), the provenance of that value is re-examined in light of new high-end calculations of the Feller-Peterson-Dixon (FPD) variety. An overly optimistic determination of the vaporization enthalpy of hydrazine, which created an unrealistically strong connection between the gas phase thermochemistry and the calorimetric results defining the thermochemistry of liquid hydrazine, was identified as the probable culprit. The new enthalpy of formation of gas-phase hydrazine, based on balancing all available knowledge, was determined to be 111.57 ± 0.47 kJ/mol at 0 K (97.42 ± 0.47 kJ/mol at 298.15 K). Close agreement was found between the ATcT (even excluding the latest theoretical result) and the FPD enthalpy.

  4. Episodic sequence memory is supported by a theta-gamma phase code.

    PubMed

    Heusser, Andrew C; Poeppel, David; Ezzyat, Youssef; Davachi, Lila

    2016-10-01

    The meaning we derive from our experiences is not a simple static extraction of the elements but is largely based on the order in which those elements occur. Models propose that sequence encoding is supported by interactions between high- and low-frequency oscillations, such that elements within an experience are represented by neural cell assemblies firing at higher frequencies (gamma) and sequential order is encoded by the specific timing of firing with respect to a lower frequency oscillation (theta). During episodic sequence memory formation in humans, we provide evidence that items in different sequence positions exhibit greater gamma power along distinct phases of a theta oscillation. Furthermore, this segregation is related to successful temporal order memory. Our results provide compelling evidence that memory for order, a core component of an episodic memory, capitalizes on the ubiquitous physiological mechanism of theta-gamma phase-amplitude coupling.

  5. Structure Formation in Solutions of Rigid Polymers Undergoing a Phase Transition

    DTIC Science & Technology

    1987-04-01

    cyclohexene dioxide (ERL-4206) - 10 g. nonenyl succinic anhydride (NSA) - 26 g. dimethyl amino ethanol ( DMAE ) - 0.4 g. After infiltration, short segments...existence of a significant number of defects within the individual microfibril. The presence of defects in the lateral packing of PBT chains is also suggested...of the D- and L- enantiomers yields a nematic phase. The ordered phases exhi- bit complex textures due to defects (disclinations) which depend on

  6. Imaging domain walls between nematic quantum Hall phases on the surface of bismuth

    NASA Astrophysics Data System (ADS)

    Ding, Hao; Randeria, Mallika T.; Feldman, Benjamin E.; Ji, Huiwen; Cava, Robert J.; Yazdani, Ali

    The sensitivity of nematic electronic phases to disorder results in short range ordering and the formation of domains. Local probes are required to investigate the character of these domains and the boundaries between them, which remain hidden in global measurements that average over microscopic configurations. In this talk, I will describe measurements performed with a scanning tunneling microscope to study local nematic order on the surface of bismuth at high magnetic field. By imaging individual anisotropic cyclotron orbit wavefunctions that are pinned to atomic-scale surface defects, we directly resolve local nematic behavior and study the evolution of nematic states across a domain wall. Through spectroscopic mapping, we explore how the broken-symmetry Landau levels disperse across the domain wall, the influence of exchange interactions at such a boundary, and the formation of one-dimensional edge states.

  7. Collapsed tetragonal phase as a strongly covalent and fully nonmagnetic state: Persistent magnetism with interlayer As-As bond formation in Rh-doped Ca0 .8Sr0 .2Fe2As2

    NASA Astrophysics Data System (ADS)

    Zhao, K.; Glasbrenner, J. K.; Gretarsson, H.; Schmitz, D.; Bednarcik, J.; Etter, M.; Sun, J. P.; Manna, R. S.; Al-Zein, A.; Lafuerza, S.; Scherer, W.; Cheng, J. G.; Gegenwart, P.

    2018-02-01

    A well-known feature of the CaFe2As2 -based superconductors is the pressure-induced collapsed tetragonal phase that is commonly ascribed to the formation of an interlayer As-As bond. Using detailed x-ray scattering and spectroscopy, we find that Rh-doped Ca0.8Sr0.2Fe2As2 does not undergo a first-order phase transition and that local Fe moments persist despite the formation of interlayer As-As bonds. Our density functional theory calculations reveal that the Fe-As bond geometry is critical for stabilizing magnetism and the pressure-induced drop in the c lattice parameter observed in pure CaFe2As2 is mostly due to a constriction within the FeAs planes. The collapsed tetragonal phase emerges when covalent bonding of strongly hybridized Fe 3 d and As 4 p states completely wins out over their exchange splitting. Thus the collapsed tetragonal phase is properly understood as a strong covalent phase that is fully nonmagnetic with the As-As bond forming as a by-product.

  8. From atomistic interfaces to dendritic patterns

    NASA Astrophysics Data System (ADS)

    Galenko, P. K.; Alexandrov, D. V.

    2018-01-01

    Transport processes around phase interfaces, together with thermodynamic properties and kinetic phenomena, control the formation of dendritic patterns. Using the thermodynamic and kinetic data of phase interfaces obtained on the atomic scale, one can analyse the formation of a single dendrite and the growth of a dendritic ensemble. This is the result of recent progress in theoretical methods and computational algorithms calculated using powerful computer clusters. Great benefits can be attained from the development of micro-, meso- and macro-levels of analysis when investigating the dynamics of interfaces, interpreting experimental data and designing the macrostructure of samples. The review and research articles in this theme issue cover the spectrum of scales (from nano- to macro-length scales) in order to exhibit recently developing trends in the theoretical analysis and computational modelling of dendrite pattern formation. Atomistic modelling, the flow effect on interface dynamics, the transition from diffusion-limited to thermally controlled growth existing at a considerable driving force, two-phase (mushy) layer formation, the growth of eutectic dendrites, the formation of a secondary dendritic network due to coalescence, computational methods, including boundary integral and phase-field methods, and experimental tests for theoretical models-all these themes are highlighted in the present issue. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.

  9. Kinetic phase transitions and reactive windows in reactions of monomers on two-dimensional lattices

    NASA Astrophysics Data System (ADS)

    Cortés, Joaquín; Puschmann, Heinrich; Valencia, Eliana

    1997-01-01

    Some conceptual considerations are made and Monte Carlo simulation studies are carried out to analyze a series of catalytic reactions of two and three monomers on a square lattice of sites. Two aspects are considered: The increase in the system's degrees of freedom, leading to the formation of reactive sites that allow a change in the character of one of the kinetic phase transitions from the first order to a second order transition, and the classification and reactivity of the new system class.

  10. The multiuniverse transition in superfluid 3He

    NASA Astrophysics Data System (ADS)

    Bunkov, Yury

    2013-10-01

    The symmetry-breaking phase transitions of the universe and of superfluid 3He may lead to the formation of different states with different order parameters. In both cases the energy potential below the transition temperature has a complicated multidimensional profile with many local minima and saddle points, which correspond to different states. Consequently, not only topological defects, but also islands of different metastable states can be created. Using 3He we can analyse the properties and experimental consequences of such transitions and, in particular, the first-order phase transition between the two low symmetry states.

  11. The multiuniverse transition in superfluid 3He.

    PubMed

    Bunkov, Yury

    2013-10-09

    The symmetry-breaking phase transitions of the universe and of superfluid (3)He may lead to the formation of different states with different order parameters. In both cases the energy potential below the transition temperature has a complicated multidimensional profile with many local minima and saddle points, which correspond to different states. Consequently, not only topological defects, but also islands of different metastable states can be created. Using (3)He we can analyse the properties and experimental consequences of such transitions and, in particular, the first-order phase transition between the two low symmetry states.

  12. Accelerated Exploration of Multi-principal Element Alloys for Structural Applications (Postprint)

    DTIC Science & Technology

    2015-04-27

    SS phases (BCC, HCP and FCC), three silicide phases (M5Si3, M5Si4 and M3Si3), an ordered B2 phase, and two Laves phases (C14 and C15). In total, 453...alloys containing silicide phases (M5Si3, M5Si4, and M3Si2) is probably due to very negative, often below 50 kJ/mol [51 53] enthalpies of formation of...The majority of equiatomic alloys containing two or more phases are (SSþ IM) alloys.5. BCC, HCP and FCC SS phases, three silicide phases (M5Si3, M5Si4

  13. Can visco-elastic phase separation, macromolecular crowding and colloidal physics explain nuclear organisation?

    PubMed

    Iborra, Francisco J

    2007-04-12

    The cell nucleus is highly compartmentalized with well-defined domains, it is not well understood how this nuclear order is maintained. Many scientists are fascinated by the different set of structures observed in the nucleus to attribute functions to them. In order to distinguish functional compartments from non-functional aggregates, I believe is important to investigate the biophysical nature of nuclear organisation. The various nuclear compartments can be divided broadly as chromatin or protein and/or RNA based, and they have very different dynamic properties. The chromatin compartment displays a slow, constrained diffusional motion. On the other hand, the protein/RNA compartment is very dynamic. Physical systems with dynamical asymmetry go to viscoelastic phase separation. This phase separation phenomenon leads to the formation of a long-lived interaction network of slow components (chromatin) scattered within domains rich in fast components (protein/RNA). Moreover, the nucleus is packed with macromolecules in the order of 300 mg/ml. This high concentration of macromolecules produces volume exclusion effects that enhance attractive interactions between macromolecules, known as macromolecular crowding, which favours the formation of compartments. In this paper I hypothesise that nuclear compartmentalization can be explained by viscoelastic phase separation of the dynamically different nuclear components, in combination with macromolecular crowding and the properties of colloidal particles. I demonstrate that nuclear structure can satisfy the predictions of this hypothesis. I discuss the functional implications of this phenomenon.

  14. Nanocrystalline SnO2 formation by oxygen ion implantation in tin thin films

    NASA Astrophysics Data System (ADS)

    Kondkar, Vidya; Rukade, Deepti; Kanjilal, Dinakar; Bhattacharyya, Varsha

    2018-03-01

    Metallic tin thin films of thickness 100 nm are deposited on fused silica substrates by thermal evaporation technique. These films are implanted with 45 keV oxygen ions at fluences ranging from 5 × 1015 to 5 × 1016 ions cm-2. The energy of the oxygen ions is calculated using SRIM in order to form embedded phases at the film-substrate interface. Post-implantation, films are annealed using a tube furnace for nanocrystalline tin oxide formation. These films are characterized using x-ray diffraction, Raman spectroscopy, UV-vis spectroscopy and photoluminescence spectroscopy. XRD and Raman spectroscopy studies reveal the formation of single rutile phase of SnO2. The size of the nanocrystallites formed decreases with an increase in the ion fluence. The nanocrystalline SnO2 formation is also confirmed by UV-vis and photoluminescence spectroscopy.

  15. Through-Thickness Vertically Ordered Lamellar Block Copolymer Thin Films on Unmodified Quartz with Cold Zone Annealing [Thru-Thickness Vertically Ordered Lamellar Block Copolymer Thin Films on Unmodified Quartz with Cold Zone Annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basutkar, Monali N.; Samant, Saumil; Strzalka, Joseph

    Here, template-free directed self-assembly of ultrathin (~10’s nm) lamellar block copolymer (l-BCP) films of high-interfacial area into vertically oriented nanodomains holds much technological relevance for fabrication of next-generation devices from nanoelectronics to nanomembranes due to domain interconnectivity and high interfacial area. We report for the first time, the formation of full thru-thickness vertically oriented lamellar domains in 100 nm thin polystyrene- block-poly(methyl methacrylate) (PS- b-PMMA) films on quartz substrate, achieved without any PMMA-block wetting layer formation, quartz surface modification (templating chemical, topographical) or system modifications (added surfactant, top-layer coat). Vertical ordering of l-BCPs results from the coupling between a molecularmore » and a macroscopic phenomenon. A molecular relaxation induced vertical l-BCP ordering occurs under a transient macroscopic vertical strain field, imposed by a high film thermal expansion rate under sharp thermal gradient cold zone annealing (CZA-S). The parametric window for vertical ordering is quantified via a coupling constant, C (= v∇ T), whose range is established in terms of a thermal gradient (∇ T) above a threshold value, and an optimal dynamic sample sweep rate ( v ~ d/τ), where τ is the l-BCP’s longest molecular relaxation time and d is the T g,heat- T g,cool distance. Real-time CZA-S morphology evolution of vertically oriented l-BCP tracked along ∇ T using in-situ Grazing Incidence Small Angle X-ray Scattering exhibited an initial formation phase of vertical lamellae, a polygrain structure formation stage, and a grain coarsening phase to fully vertically ordered l-BCP morphology development. CZA-S is a roll-to-roll manufacturing method, rendering this template-free thru-thickness vertical ordering of l-BCP films highly attractive and industrially relevant.« less

  16. Through-Thickness Vertically Ordered Lamellar Block Copolymer Thin Films on Unmodified Quartz with Cold Zone Annealing [Thru-Thickness Vertically Ordered Lamellar Block Copolymer Thin Films on Unmodified Quartz with Cold Zone Annealing

    DOE PAGES

    Basutkar, Monali N.; Samant, Saumil; Strzalka, Joseph; ...

    2017-11-14

    Here, template-free directed self-assembly of ultrathin (~10’s nm) lamellar block copolymer (l-BCP) films of high-interfacial area into vertically oriented nanodomains holds much technological relevance for fabrication of next-generation devices from nanoelectronics to nanomembranes due to domain interconnectivity and high interfacial area. We report for the first time, the formation of full thru-thickness vertically oriented lamellar domains in 100 nm thin polystyrene- block-poly(methyl methacrylate) (PS- b-PMMA) films on quartz substrate, achieved without any PMMA-block wetting layer formation, quartz surface modification (templating chemical, topographical) or system modifications (added surfactant, top-layer coat). Vertical ordering of l-BCPs results from the coupling between a molecularmore » and a macroscopic phenomenon. A molecular relaxation induced vertical l-BCP ordering occurs under a transient macroscopic vertical strain field, imposed by a high film thermal expansion rate under sharp thermal gradient cold zone annealing (CZA-S). The parametric window for vertical ordering is quantified via a coupling constant, C (= v∇ T), whose range is established in terms of a thermal gradient (∇ T) above a threshold value, and an optimal dynamic sample sweep rate ( v ~ d/τ), where τ is the l-BCP’s longest molecular relaxation time and d is the T g,heat- T g,cool distance. Real-time CZA-S morphology evolution of vertically oriented l-BCP tracked along ∇ T using in-situ Grazing Incidence Small Angle X-ray Scattering exhibited an initial formation phase of vertical lamellae, a polygrain structure formation stage, and a grain coarsening phase to fully vertically ordered l-BCP morphology development. CZA-S is a roll-to-roll manufacturing method, rendering this template-free thru-thickness vertical ordering of l-BCP films highly attractive and industrially relevant.« less

  17. Onset of phase separation in the double perovskite oxide La2MnNiO6

    NASA Astrophysics Data System (ADS)

    Spurgeon, Steven R.; Sushko, Peter V.; Devaraj, Arun; Du, Yingge; Droubay, Timothy; Chambers, Scott A.

    2018-04-01

    Identification of kinetic and thermodynamic factors that control crystal nucleation and growth represents a central challenge in materials synthesis. Here we report that apparently defect-free growth of La2MnNiO6 (LMNO) thin films supported on SrTiO3 (STO) proceeds up to 1-5 nm, after which it is disrupted by precipitation of NiO phases. Local geometric phase analysis and ensemble-averaged x-ray reciprocal space mapping show no change in the film strain away from the interface, indicating that mechanisms other than strain relaxation induce the formation of the NiO phases. Ab initio simulations suggest that the electrostatic potential build-up associated with the polarity mismatch at the film-substrate interface promotes the formation of oxygen vacancies with increasing thickness. In turn, oxygen deficiency promotes the formation of Ni-rich regions, which points to the built-in potential as an additional factor that contributes to the NiO precipitation mechanisms. These results suggest that the precipitate-free region could be extended further by either incorporating dopants that suppress the built-in potential or by increasing the oxygen fugacity in order to suppress the formation of oxygen vacancies.

  18. Two-dimensional lattice-fluid model with waterlike anomalies

    NASA Astrophysics Data System (ADS)

    Buzano, C.; de Stefanis, E.; Pelizzola, A.; Pretti, M.

    2004-06-01

    We investigate a lattice-fluid model defined on a two-dimensional triangular lattice, with the aim of reproducing qualitatively some anomalous properties of water. Model molecules are of the “Mercedes Benz” type, i.e., they possess a D3 (equilateral triangle) symmetry, with three bonding arms. Bond formation depends both on orientation and local density. We work out phase diagrams, response functions, and stability limits for the liquid phase, making use of a generalized first order approximation on a triangle cluster, whose accuracy is verified, in some cases, by Monte Carlo simulations. The phase diagram displays one ordered (solid) phase which is less dense than the liquid one. At fixed pressure the liquid phase response functions show the typical anomalous behavior observed in liquid water, while, in the supercooled region, a reentrant spinodal is observed.

  19. Correlation and nonlocality measures as indicators of quantum phase transitions in several critical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altintas, Ferdi, E-mail: ferdialtintas@ibu.edu.tr; Eryigit, Resul, E-mail: resul@ibu.edu.tr

    2012-12-15

    We have investigated the quantum phase transitions in the ground states of several critical systems, including transverse field Ising and XY models as well as XY with multiple spin interactions, XXZ and the collective system Lipkin-Meshkov-Glick models, by using different quantumness measures, such as entanglement of formation, quantum discord, as well as its classical counterpart, measurement-induced disturbance and the Clauser-Horne-Shimony-Holt-Bell function. Measurement-induced disturbance is found to detect the first and second order phase transitions present in these critical systems, while, surprisingly, it is found to fail to signal the infinite-order phase transition present in the XXZ model. Remarkably, the Clauser-Horne-Shimony-Holt-Bellmore » function is found to detect all the phase transitions, even when quantum and classical correlations are zero for the relevant ground state. - Highlights: Black-Right-Pointing-Pointer The ability of correlation measures to detect quantum phase transitions has been studied. Black-Right-Pointing-Pointer Measurement induced disturbance fails to detect the infinite order phase transition. Black-Right-Pointing-Pointer CHSH-Bell function detects all phase transitions even when the bipartite density matrix is uncorrelated.« less

  20. Complex free-energy landscapes in biaxial nematic liquid crystals and the role of repulsive interactions: A Wang-Landau study

    NASA Astrophysics Data System (ADS)

    Kamala Latha, B.; Murthy, K. P. N.; Sastry, V. S. S.

    2017-09-01

    General quadratic Hamiltonian models, describing the interaction between liquid-crystal molecules (typically with D2 h symmetry), take into account couplings between their uniaxial and biaxial tensors. While the attractive contributions arising from interactions between similar tensors of the participating molecules provide for eventual condensation of the respective orders at suitably low temperatures, the role of cross coupling between unlike tensors is not fully appreciated. Our recent study with an advanced Monte Carlo technique (entropic sampling) showed clearly the increasing relevance of this cross term in determining the phase diagram (contravening in some regions of model parameter space), the predictions of mean-field theory, and standard Monte Carlo simulation results. In this context, we investigated the phase diagrams and the nature of the phases therein on two trajectories in the parameter space: one is a line in the interior region of biaxial stability believed to be representative of the real systems, and the second is the extensively investigated parabolic path resulting from the London dispersion approximation. In both cases, we find the destabilizing effect of increased cross-coupling interactions, which invariably result in the formation of local biaxial organizations inhomogeneously distributed. This manifests as a small, but unmistakable, contribution of biaxial order in the uniaxial phase. The free-energy profiles computed in the present study as a function of the two dominant order parameters indicate complex landscapes. On the one hand, these profiles account for the unusual thermal behavior of the biaxial order parameter under significant destabilizing influence from the cross terms. On the other, they also allude to the possibility that in real systems, these complexities might indeed be inhibiting the formation of a low-temperature biaxial order itself—perhaps reflecting the difficulties in their ready realization in the laboratory.

  1. Communication: From close-packed to topologically close-packed: Formation of Laves phases in moderately polydisperse hard-sphere mixtures

    NASA Astrophysics Data System (ADS)

    Lindquist, Beth A.; Jadrich, Ryan B.; Truskett, Thomas M.

    2018-05-01

    Particle size polydispersity can help to inhibit crystallization of the hard-sphere fluid into close-packed structures at high packing fractions and thus is often employed to create model glass-forming systems. Nonetheless, it is known that hard-sphere mixtures with modest polydispersity still have ordered ground states. Here, we demonstrate by computer simulation that hard-sphere mixtures with increased polydispersity fractionate on the basis of particle size and a bimodal subpopulation favors the formation of topologically close-packed C14 and C15 Laves phases in coexistence with a disordered phase. The generality of this result is supported by simulations of hard-sphere mixtures with particle-size distributions of four different forms.

  2. Radial elemental and phase separation in Ni-Mn-Ga glass-coated microwires

    NASA Astrophysics Data System (ADS)

    Shevyrtalov, S.; Zhukov, A.; Medvedeva, S.; Lyatun, I.; Zhukova, V.; Rodionova, V.

    2018-05-01

    In this manuscript, radial elemental and phase separation in Ni-Mn-Ga glass-coated microwires with high excess Ni as a result of high-temperature annealing was observed. Partial manganese evaporation from the outer part of the metallic nucleus and glass melting results in the formation of manganese oxide at the surface. The lack of manganese due to its evaporation induces Ni3Ga formation in the intermediate part, while in the middle part of the metallic nucleus, the residual L21 phase with an average chemical composition of Ni60Mn9Ga31 remains. The layered structure exhibits soft ferromagnetic behavior below 270 K. The results were discussed taking into account the chemical composition, arising internal stresses, recrystallization, and atomic ordering.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gries, K. I.; Vogel, S.; Straubinger, R.

    The self-assembled formation of ordered, vertically stacked rocksalt/wurtzite Mg{sub x}Zn{sub 1−x}O heterostructures by planar phase separation is shown. These heterostructures form quasi “natural” two-dimensional hetero-interfaces between the different phases upon annealing of MgO-oversaturated wurtzite Mg{sub x}Zn{sub 1−x}O layers grown by plasma-assisted molecular beam epitaxy on c-plane sapphire substrates. The optical absorption spectra show a red shift simultaneous with the appearance of a cubic phase upon annealing at temperatures between 900 °C and 1000 °C. Transmission electron microscopy reveals that these effects are caused by phase separation leading to the formation of a vertically ordered rock salt/wurtzite heterostructures. To explain these observations, wemore » suggest a phase separation epitaxy model that considers this process being initiated by the formation of a cubic (Mg,Zn)Al{sub 2}O{sub 4} spinel layer at the interface to the sapphire substrate, acting as a planar seed for the epitaxial precipitation of rock salt Mg{sub x}Zn{sub 1−x}O. The equilibrium fraction x of magnesium in the resulting wurtzite (rock salt) layers is approximately 0.15 (0.85), independent of the MgO content of the as-grown layer and determined by the annealing temperature. This model is confirmed by photoluminescence analysis of the resulting layer systems after different annealing temperatures. In addition, we show that the thermal annealing process results in a significant reduction in the density of edge- and screw-type dislocations, providing the possibility to fabricate high quality templates for quasi-homoepitaxial growth.« less

  4. Structural, thermodynamic, and electronic properties of Laves-phase NbMn2 from first principles, x-ray diffraction, and calorimetric experiments

    NASA Astrophysics Data System (ADS)

    Yan, X.; Chen, Xing-Qiu; Michor, H.; Wolf, W.; Witusiewicz, V. T.; Bauer, E.; Podloucky, R.; Rogl, P.

    2018-03-01

    By combining theoretical density functional theory (DFT) and experimental studies, structural and magnetic phase stabilities and electronic structural, elastic, and vibrational properties of the Laves-phase compound NbMn2 have been investigated for the C14, C15, and C36 crystal structures. At low temperatures C14 is the ground-state structure, with ferromagnetic and antiferromagnetic orderings being degenerate in energy. The degenerate spin configurations result in a rather large electronic density of states at Fermi energy for all magnetic cases, even for the spin-polarized DFT calculations. Based on the DFT-derived phonon dispersions and densities of states, temperature-dependent free energies were derived for the ferromagnetic and antiferromagnetic C14 phase, demonstrating that the spin-configuration degeneracy possibly exists up to finite temperatures. The heat of formation Δ298H0=-45.05 ±3.64 kJ (molf .u .NbMn2) -1 was extracted from drop isoperibolic calorimetry in a Ni bath. The DFT-derived enthalpy of formation of NbMn2 is in good agreement with the calorimetric measurements. Second-order elastic constants for NbMn2 as well as for related compounds were calculated.

  5. Pump RIN-induced impairments in unrepeatered transmission systems using distributed Raman amplifier.

    PubMed

    Cheng, Jingchi; Tang, Ming; Lau, Alan Pak Tao; Lu, Chao; Wang, Liang; Dong, Zhenhua; Bilal, Syed Muhammad; Fu, Songnian; Shum, Perry Ping; Liu, Deming

    2015-05-04

    High spectral efficiency modulation format based unrepeatered transmission systems using distributed Raman amplifier (DRA) have attracted much attention recently. To enhance the reach and optimize system performance, careful design of DRA is required based on the analysis of various types of impairments and their balance. In this paper, we study various pump RIN induced distortions on high spectral efficiency modulation formats. The vector theory of both 1st and higher-order stimulated Raman scattering (SRS) effect using Jones-matrix formalism is presented. The pump RIN will induce three types of distortion on high spectral efficiency signals: intensity noise stemming from SRS, phase noise stemming from cross phase modulation (XPM), and polarization crosstalk stemming from cross polarization modulation (XPolM). An analytical model for the statistical property of relative phase noise (RPN) in higher order DRA without dealing with complex vector theory is derived. The impact of pump RIN induced impairments are analyzed in polarization-multiplexed (PM)-QPSK and PM-16QAM-based unrepeatered systems simulations using 1st, 2nd and 3rd-order forward pumped Raman amplifier. It is shown that at realistic RIN levels, negligible impairments will be induced to PM-QPSK signals in 1st and 2nd order DRA, while non-negligible impairments will occur in 3rd order case. PM-16QAM signals suffer more penalties compared to PM-QPSK with the same on-off gain where both 2nd and 3rd order DRA will cause non-negligible performance degradations. We also investigate the performance of digital signal processing (DSP) algorithms to mitigate such impairments.

  6. Protocol for Communication Networking for Formation Flying

    NASA Technical Reports Server (NTRS)

    Jennings, Esther; Okino, Clayton; Gao, Jay; Clare, Loren

    2009-01-01

    An application-layer protocol and a network architecture have been proposed for data communications among multiple autonomous spacecraft that are required to fly in a precise formation in order to perform scientific observations. The protocol could also be applied to other autonomous vehicles operating in formation, including robotic aircraft, robotic land vehicles, and robotic underwater vehicles. A group of spacecraft or other vehicles to which the protocol applies could be characterized as a precision-formation- flying (PFF) network, and each vehicle could be characterized as a node in the PFF network. In order to support precise formation flying, it would be necessary to establish a corresponding communication network, through which the vehicles could exchange position and orientation data and formation-control commands. The communication network must enable communication during early phases of a mission, when little positional knowledge is available. Particularly during early mission phases, the distances among vehicles may be so large that communication could be achieved only by relaying across multiple links. The large distances and need for omnidirectional coverage would limit communication links to operation at low bandwidth during these mission phases. Once the vehicles were in formation and distances were shorter, the communication network would be required to provide high-bandwidth, low-jitter service to support tight formation-control loops. The proposed protocol and architecture, intended to satisfy the aforementioned and other requirements, are based on a standard layered-reference-model concept. The proposed application protocol would be used in conjunction with conventional network, data-link, and physical-layer protocols. The proposed protocol includes the ubiquitous Institute of Electrical and Electronics Engineers (IEEE) 802.11 medium access control (MAC) protocol to be used in the datalink layer. In addition to its widespread and proven use in diverse local-area networks, this protocol offers both (1) a random- access mode needed for the early PFF deployment phase and (2) a time-bounded-services mode needed during PFF-maintenance operations. Switching between these two modes could be controlled by upper-layer entities using standard link-management mechanisms. Because the early deployment phase of a PFF mission can be expected to involve multihop relaying to achieve network connectivity (see figure), the proposed protocol includes the open shortest path first (OSPF) network protocol that is commonly used in the Internet. Each spacecraft in a PFF network would be in one of seven distinct states as the mission evolved from initial deployment, through coarse formation, and into precise formation. Reconfiguration of the formation to perform different scientific observations would also cause state changes among the network nodes. The application protocol provides for recognition and tracking of the seven states for each node and for protocol changes under specified conditions to adapt the network and satisfy communication requirements associated with the current PFF mission phase. Except during early deployment, when peer-to-peer random access discovery methods would be used, the application protocol provides for operation in a centralized manner.

  7. Driving forces of redistribution of elements during quasicrystalline phase formation under heating of mechanically alloyed Al65Cu23Fe12 powder

    NASA Astrophysics Data System (ADS)

    Tcherdyntsev, V. V.; Kaloshkin, S. D.; Shelekhov, E. V.; Principi, G.; Rodin, A. O.

    2008-02-01

    Al65Cu23Fe12 alloys were prepared by ball milling of the elemental powders mixture. Phase and structural transformations at heating of as-milled powders were investigated by X-ray diffraction analysis. Precision analysis of Mössbauer spectra was performed to check the adequacy of the fitting of X-ray diffraction patterns. The results were compared with the data of differential scanning and solution calorimetry, as well as with the thermodynamic literature data, in order to estimate the driving forces of redistribution of elements that preceded the formation of single-phase quasicrystalline structure. The heat of elements mixing, which is positive for Cu-Fe system and negative for Al-Fe and Al-Cu systems, was supposed to be a decisive factor for phase transformations during heating of the alloy. The correlation between sequence of phase transformations during heating and the thermodynamic data was discussed and the scheme describing phase transformations observed was proposed.

  8. Impurity Induced Phase Competition and Supersolidity

    NASA Astrophysics Data System (ADS)

    Karmakar, Madhuparna; Ganesh, R.

    2017-12-01

    Several material families show competition between superconductivity and other orders. When such competition is driven by doping, it invariably involves spatial inhomogeneities which can seed competing orders. We study impurity-induced charge order in the attractive Hubbard model, a prototypical model for competition between superconductivity and charge density wave order. We show that a single impurity induces a charge-ordered texture over a length scale set by the energy cost of the competing phase. Our results are consistent with a strong-coupling field theory proposed earlier in which superconducting and charge order parameters form components of an SO(3) vector field. To discuss the effects of multiple impurities, we focus on two cases: correlated and random distributions. In the correlated case, the CDW puddles around each impurity overlap coherently leading to a "supersolid" phase with coexisting pairing and charge order. In contrast, a random distribution of impurities does not lead to coherent CDW formation. We argue that the energy lowering from coherent ordering can have a feedback effect, driving correlations between impurities. This can be understood as arising from an RKKY-like interaction, mediated by impurity textures. We discuss implications for charge order in the cuprates and doped CDW materials such as NbSe2.

  9. Structural comparison of nickel electrodes and precursor phases

    NASA Technical Reports Server (NTRS)

    Cornilsen, Bahne C.; Shan, Xiaoyin; Loyselle, Patricia

    1989-01-01

    Researchers summarize previous Raman spectroscopic results and discuss important structural differences in the various phases of active mass and active mass precursors. Raman spectra provide unique signatures for these phases, and allow one to distinguish each phase, even when the compound is amorphous to x rays (i.e., does not scatter x rays because of a lack of order and/or small particle size). The structural changes incurred during formation, charge and discharge, cobalt addition, and aging are discussed. The oxidation states and dopant contents are explained in terms of the nonstoichiometric structures.

  10. Energy Dispersive X-ray Diffraction (EDXRD) of Li1.1V3O8 Electrochemical Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qing; Bruck, Andrea M.; Bock, David C.

    2017-01-01

    ABSTRACT In this study, we conducted the first energy dispersive x-ray diffraction (EDXRD) experiments on Li/Li 1.1V 3O 8coin cells discharged to different lithiation levels in order to investigate the phase transitions upon electrochemical reduction. The phase transformation from layered Li-poor α to Li-rich α to defect rock-salt β phase was confirmed with cells of different lithiation stages. No spatial localization of phase formation was observed throughout the cathodes under the conditions of this measurement.

  11. Energy Dispersive X-ray Diffraction (EDXRD) of Li1.1V3O8 Electrochemical Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qing; Bruck, Andrea M.; Bock, David C.

    ABSTRACT In this study, we conducted the first energy dispersive x-ray diffraction (EDXRD) experiments on Li/Li 1.1V 3O 8coin cells discharged to different lithiation levels in order to investigate the phase transitions upon electrochemical reduction. The phase transformation from layered Li-poor α to Li-rich α to defect rock-salt β phase was confirmed with cells of different lithiation stages. No spatial localization of phase formation was observed throughout the cathodes under the conditions of this measurement.

  12. Brownian dynamics simulations of insulin microspheres formation

    NASA Astrophysics Data System (ADS)

    Li, Wei; Chakrabarti, Amit; Gunton, James

    2010-03-01

    Recent experiments have indicated a novel, aqueous process of microsphere insulin fabrication based on controlled phase separation of protein from water-soluble polymers. We investigate the insulin microsphere crystal formation from insulin-PEG-water systems via 3D Brownian Dynamics simulations. We use the two component Asakura-Oosawa model to simulate the kinetics of this colloid polymer mixture. We first perform a deep quench below the liquid-crystal boundary that leads to fractal formation. We next heat the system to obtain a break-up of the fractal clusters and subsequently cool the system to obtain a spherical aggregation of droplets with a relatively narrow size distribution. We analyze the structure factor S(q) to identify the cluster dimension. S(q) crosses over from a power law q dependence of 1.8 (in agreement with DLCA) to 4 as q increases, which shows the evolution from fractal to spherical clusters. By studying the bond-order parameters, we find the phase transition from liquid-like droplets to crystals which exhibit local HCP and FCC order. This work is supported by grants from the NSF and Mathers Foundation.

  13. Reproduction of a higher-order circular harmonic field using a linear array of loudspeakers.

    PubMed

    Lee, Jung-Min; Choi, Jung-Woo; Kim, Yang-Hann

    2015-03-01

    This paper presents a direct formula for reproducing a sound field consisting of higher-order circular harmonics with polar phase variation. Sound fields with phase variation can be used for synthesizing various spatial attributes, such as the perceived width or the location of a virtual sound source. To reproduce such a sound field using a linear loudspeaker array, the driving function of the array is derived in the format of an integral formula. The proposed function shows fewer reproduction errors than a conventional formula focused on magnitude variations. In addition, analysis of the sweet spot reveals that its shape can be asymmetric, depending on the order of harmonics.

  14. Theory of Metastable State Relaxation in a Gravitational Field for Non-Critical Binary Systems with Non-Conserved Order Parameter

    NASA Technical Reports Server (NTRS)

    Izmailov, Alexander F.; Myerson, Allan S.

    1993-01-01

    A new mathematical ansatz is developed for solution of the time-dependent Ginzburg-Landau nonlinear partial differential equation describing metastable state relaxation in binary (solute+solvent) non-critical solutions with non-conserved scalar order parameter in presence of a gravitational field. It has been demonstrated analytically that in such systems metastability initiates heterogeneous solute redistribution which results in the formation of a non-equilibrium singly-periodic spatial solute structure in the new solute-rich phase. The critical radius of nucleation and the induction time in these systems are gravity-dependent. It has also been proved that metastable state relaxation in vertical columns of supersaturated non-critical binary solutions leads to formation of the solute concentration gradient. Analytical expression for this concentration gradient is found and analysed. It is concluded that gravity can initiate phase separation (nucleation or spinodal decomposition).

  15. Modeling of UV laser-induced patterning of ultrathin Co films on bulk SiO2: verification of short- and long-range ordering mechanisms

    NASA Astrophysics Data System (ADS)

    Trice, Justin; Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, R.

    2006-03-01

    Irradiating ultrathin Co films (1 to 10 nm) by a short-pulsed UV laser leads to pattern formation with both short- and long-range order (SRO, LRO). Single beam irradiation produces SRO, while two-beam interference irradiation produces a quasi-2D arrangement of nanoparticles with LRO and SRO. The pattern formation primarily occurs in the molten phase. An estimate of the thermal behavior of the film/substrate composite following a laser pulse is presented. The thermal behavior includes the lifetime of the liquid phase and the thermal gradient during interference heating. Based on this evidence, the SRO is attributed to spinodal dewetting of the film while surface tension gradients induced by the laser interference pattern appear to influence LRO [1]. [1] C.Favazza, J.Trice, H.Krishna, R.Sureshkumar, and R.Kalyanaraman, unpublished.

  16. Characterization of Flow Dynamics and Reduced-Order Description of Experimental Two-Phase Pipe Flow

    NASA Astrophysics Data System (ADS)

    Viggiano, Bianca; SkjæRaasen, Olaf; Tutkun, Murat; Cal, Raul Bayoan

    2017-11-01

    Multiphase pipe flow is investigated using proper orthogonal decomposition for tomographic X-ray data, where holdup, cross sectional phase distributions and phase interface characteristics are obtained. Instantaneous phase fractions of dispersed flow and slug flow are analyzed and a reduced order dynamical description is generated. The dispersed flow displays coherent structures in the first few modes near the horizontal center of the pipe, representing the liquid-liquid interface location while the slug flow case shows coherent structures that correspond to the cyclical formation and breakup of the slug in the first 10 modes. The reconstruction of the fields indicate that main features are observed in the low order dynamical descriptions utilizing less than 1 % of the full order model. POD temporal coefficients a1, a2 and a3 show interdependence for the slug flow case. The coefficients also describe the phase fraction holdup as a function of time for both dispersed and slug flow. These flows are highly applicable to petroleum transport pipelines, hydroelectric power and heat exchanger tubes to name a few. The mathematical representations obtained via proper orthogonal decomposition will deepen the understanding of fundamental multiphase flow characteristics.

  17. Morphological transitions of brain sphingomyelin are determined by the hydration protocol: ripples re-arrange in plane, and sponge-like networks disintegrate into small vesicles.

    PubMed

    Meyer, H W; Bunjes, H; Ulrich, A S

    1999-06-01

    The phase transition of hydrated brain sphingomyelin occurs at around 35 degrees C, which is close to the physiological temperature. Freeze-fracture electron microscopy is used to characterize different gel state morphologies in terms of solid-ordered and liquid-ordered phase states, according to the occurrence of ripples and other higher-dimensional bilayer deformations. Evidently, the natural mixed-chain sphingomyelin does not assume the flat L beta, phase but instead the rippled P beta, phase, with symmetric and asymmetric ripples as well as macroripples and an egg-carton pattern, depending on the incubation conditions. An unexpected difference was observed between samples that are hydrated above and below the phase transition temperature. When the lipid is hydrated at low temperature, a sponge-like network of bilayers is formed in the gel state, next to some normal lamellae. The network loses its ripples during cold-incubation, which indicates the formation of a liquid-ordered (lo) gel phase. Ripples re-appear upon warming and the sponge-like network disintegrates spontaneously and irreversibly into small vesicles above the phase transition.

  18. Liquid Crystal Phase Behaviour of Attractive Disc-Like Particles

    PubMed Central

    Wu, Liang; Jackson, George; Müller, Erich A.

    2013-01-01

    We employ a generalized van der Waals-Onsager perturbation theory to construct a free energy functional capable of describing the thermodynamic properties and orientational order of the isotropic and nematic phases of attractive disc particles. The model mesogen is a hard (purely repulsive) cylindrical disc particle decorated with an anisotropic square-well attractive potential placed at the centre of mass. Even for isotropic attractive interactions, the resulting overall inter-particle potential is anisotropic, due to the orientation-dependent excluded volume of the underlying hard core. An algebraic equation of state for attractive disc particles is developed by adopting the Onsager trial function to characterize the orientational order in the nematic phase. The theory is then used to represent the fluid-phase behaviour (vapour-liquid, isotropic-nematic, and nematic-nematic) of the oblate attractive particles for varying values of the molecular aspect ratio and parameters of the attractive potential. When compared to the phase diagram of their athermal analogues, it is seen that the addition of an attractive interaction facilitates the formation of orientationally-ordered phases. Most interestingly, for certain aspect ratios, a coexistence between two anisotropic nematic phases is exhibited by the attractive disc-like fluids. PMID:23965962

  19. Liquid crystal phase behaviour of attractive disc-like particles.

    PubMed

    Wu, Liang; Jackson, George; Müller, Erich A

    2013-08-08

    We employ a generalized van der Waals-Onsager perturbation theory to construct a free energy functional capable of describing the thermodynamic properties and orientational order of the isotropic and nematic phases of attractive disc particles. The model mesogen is a hard (purely repulsive) cylindrical disc particle decorated with an anisotropic square-well attractive potential placed at the centre of mass. Even for isotropic attractive interactions, the resulting overall inter-particle potential is anisotropic, due to the orientation-dependent excluded volume of the underlying hard core. An algebraic equation of state for attractive disc particles is developed by adopting the Onsager trial function to characterize the orientational order in the nematic phase. The theory is then used to represent the fluid-phase behaviour (vapour-liquid, isotropic-nematic, and nematic-nematic) of the oblate attractive particles for varying values of the molecular aspect ratio and parameters of the attractive potential. When compared to the phase diagram of their athermal analogues, it is seen that the addition of an attractive interaction facilitates the formation of orientationally-ordered phases. Most interestingly, for certain aspect ratios, a coexistence between two anisotropic nematic phases is exhibited by the attractive disc-like fluids.

  20. Effect of gradual ordering of Ge/Sb atoms on chemical bonding: A proposed mechanism for the formation of crystalline Ge2Sb2Te5

    NASA Astrophysics Data System (ADS)

    Singh, Janpreet; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2018-04-01

    Using first principle calculations, we study the atomic arrangement and bonding mechanism in the crystalline phase of Ge2Sb2Te5 (GST). It is found that the stability of GST depends on the gradual ordering of Ge/Sb atoms. The configurations with different concentration of Ge/Sb in layers have been analyzed by the partial density of state, electron localization function and Bader charge distribution. The s and p-states of Ge atom alter with different stacking configurations but there is no change in Sb and Te atom states. Our findings show that the bonding between Ge-Te is not only responsible for the stability of GST alloy but can also predict which composition can show generic features of phase change material. As the number of Ge atoms near to vacancy layer decreases, Ge donates more charge. A growth model has been proposed for the formation of crystalline phase which justifies the structure models proposed in the literature.

  1. Reflection high-energy electron diffraction study of growth and interface formation of the Ga(1-x)In(x)Sb/InAs strained-layer superlattices

    NASA Technical Reports Server (NTRS)

    Fan, W. C.; Zborowski, J. T.; Golding, T. D.; Shih, H. D.

    1992-01-01

    Reflection high-energy electron diffraction (RHEED) during molecular beam epitaxy is used to study the growth and interface formation of the Ga(1-x)In(x)Sb/InAs (x is not greater than 0.4) strained-layer superlattices (SLSs) on GaSb(100) substrates. A number of surface atomic structures were observed in the growth of the SLS: a (1 x 3) phase from the InAs epilayer surface, a (2 x 3) phase, a (2 x 4) phase, and diffuse (1 x 1)-like phases from the InAs epilayer surface. It is suggested that the long-range order quality of the interface of Ga(1-x)In(x)Sb on InAs may be better than that of the interface of InAs on Ga(1-x)In(x)Sb, but the abruptness of the interfaces would still be compatible. The RHEED intensity variations in the formation of the interfaces are discussed in terms of interface chemical reactions.

  2. Model of melting (crystallization) process of the condensed disperse phase in the smoky plasmas

    NASA Astrophysics Data System (ADS)

    Dragan, G. S.; Kolesnikov, K. V.; Kutarov, V. V.

    2018-01-01

    The paper presents an analysis of the causes of a formation of spatial ordered grain structures in a smoky plasma. We are modeling the process of melting (crystallization) of a condensed phase in this environment taking into account the screened electrostatic interaction and the diffusion-drift force. We discuss an influence of the charge on the melting temperatures.

  3. Self-assembled pentacenequinone derivative for trace detection of picric acid.

    PubMed

    Bhalla, Vandana; Gupta, Ankush; Kumar, Manoj; Rao, D S Shankar; Prasad, S Krishna

    2013-02-01

    Pentacenequinone derivative 3 forms luminescent supramolecular aggregates both in bulk as well as in solution phase. In bulk phase at high temperature, long-range stacking of columns leads to formation of stable and ordered columnar mesophase. Further, derivative 3 works as sensitive chemosensor for picric acid (PA) and gel-coated paper strips detect PA at nanomolar level and provide a simple, portable, and low-cost method for detection of PA in aqueous solution, vapor phase, and in contact mode.

  4. Molecular hydrogen formation on interstellar PAHs through Eley-Rideal abstraction reactions

    NASA Astrophysics Data System (ADS)

    Foley, Nolan; Cazaux, S.; Egorov, D.; Boschman, L. M. P. V.; Hoekstra, R.; Schlathölter, T.

    2018-06-01

    We present experimental data on H2 formation processes on gas-phase polycyclic aromatic hydrocarbon (PAH) cations. This process was studied by exposing coronene radical cations, confined in a radio-frequency ion trap, to gas phase H atoms. Sequential attachment of up to 23 hydrogen atoms has been observed. Exposure to atomic D instead of H allows one to distinguish attachment from competing abstraction reactions, as the latter now leave a unique fingerprint in the measured mass spectra. Modeling of the experimental results using realistic cross sections and barriers for attachment and abstraction yield a 1:2 ratio of abstraction to attachment cross sections. The strong contribution of abstraction indicates that H2 formation on interstellar PAH cations is an order of magnitude more relevant than previously thought.

  5. Persistent Step-Flow Growth of Strained Films on Vicinal Substrates

    NASA Astrophysics Data System (ADS)

    Hong, Wei; Lee, Ho Nyung; Yoon, Mina; Christen, Hans M.; Lowndes, Douglas H.; Suo, Zhigang; Zhang, Zhenyu

    2005-08-01

    We propose a model of persistent step flow, emphasizing dominant kinetic processes and strain effects. Within this model, we construct a morphological phase diagram, delineating a regime of step flow from regimes of step bunching and island formation. In particular, we predict the existence of concurrent step bunching and island formation, a new growth mode that competes with step flow for phase space, and show that the deposition flux and temperature must be chosen within a window in order to achieve persistent step flow. The model rationalizes the diverse growth modes observed in pulsed laser deposition of SrRuO3 on SrTiO3.

  6. Amelogenin Affects Brushite Crystal Morphology and Promotes Its Phase Transformation to Monetite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Dongni; Ruan, Qichao; Tao, Jinhui

    2016-09-07

    Amelogenin protein is involved in organized apatite crystallization during enamel formation. Brushite (CaHPO4·2H2O), which is one of the precursors for hydroxyapatite in in vitro mineralization, has been used for fabrication of biomaterials for hard tissue repair. In order to explore its potential application in biomimetic material synthesis, we studied the influence of amelogenin on brushite morphology and phase transformation to monetite. Our results show that amelogenin can adsorb onto surface of brushite, leading to the formation of layered structures on the (010) face. Amelogenin promoted the phase transformation of brushite into monetite (CaHPO4) in the dry state, presumably by interactingmore » with crystalline water layers in brushite unit cell. Changes to the crystal morphology by amelogenin continued even after the phase transformation to monetite forming an organized nanotextured structure of nano-sticks resembling the bundle structure in enamel.« less

  7. Thermodynamic model of social influence on two-dimensional square lattice: Case for two features

    NASA Astrophysics Data System (ADS)

    Genzor, Jozef; Bužek, Vladimír; Gendiar, Andrej

    2015-02-01

    We propose a thermodynamic multi-state spin model in order to describe equilibrial behavior of a society. Our model is inspired by the Axelrod model used in social network studies. In the framework of the statistical mechanics language, we analyze phase transitions of our model, in which the spin interaction J is interpreted as a mutual communication among individuals forming a society. The thermal fluctuations introduce a noise T into the communication, which suppresses long-range correlations. Below a certain phase transition point Tt, large-scale clusters of the individuals, who share a specific dominant property, are formed. The measure of the cluster sizes is an order parameter after spontaneous symmetry breaking. By means of the Corner transfer matrix renormalization group algorithm, we treat our model in the thermodynamic limit and classify the phase transitions with respect to inherent degrees of freedom. Each individual is chosen to possess two independent features f = 2 and each feature can assume one of q traits (e.g. interests). Hence, each individual is described by q2 degrees of freedom. A single first-order phase transition is detected in our model if q > 2, whereas two distinct continuous phase transitions are found if q = 2 only. Evaluating the free energy, order parameters, specific heat, and the entanglement von Neumann entropy, we classify the phase transitions Tt(q) in detail. The permanent existence of the ordered phase (the large-scale cluster formation with a non-zero order parameter) is conjectured below a non-zero transition point Tt(q) ≈ 0.5 in the asymptotic regime q → ∞.

  8. Thermodynamic evaluation of the solidification phase of molten core-concrete under estimated Fukushima Daiichi nuclear power plant accident conditions

    NASA Astrophysics Data System (ADS)

    Kitagaki, Toru; Yano, Kimihiko; Ogino, Hideki; Washiya, Tadahiro

    2017-04-01

    The solidification phases of molten core-concrete under the estimated molten core-concrete interaction (MCCI) conditions in the Fukushima Daiichi Nuclear Power Plant Unit 1 were predicted using the thermodynamic equilibrium calculation tool, FactSage 6.2, and the NUCLEA database in order to contribute toward the 1F decommissioning work and to understand the accident progression via the analytical results for the 1F MCCI products. We showed that most of the U and Zr in the molten core-concrete forms (U,Zr)O2 and (Zr,U)SiO4, and the formation of other phases with these elements is limited. However, the formation of (Zr,U)SiO4 requires a relatively long time because it involves a change in the crystal structure from fcc-(U,Zr)O2 to tet-(U,Zr)O2, followed by the formation of (Zr,U)SiO4 by reaction with SiO2. Therefore, the formation of (Zr,U)SiO4 is limited under quenching conditions. Other common phases are the oxide phases, CaAl2Si2O8, SiO2, and CaSiO3, and the metallic phases of the Fe-Si and Fe-Ni alloys. The solidification phenomenon of the crust under quenching conditions and that of the molten pool under thermodynamic equilibrium conditions in the 1F MCCI progression are discussed.

  9. Characterization of a water-solid interaction in a partially ordered system.

    PubMed

    Chakravarty, Paroma; Lubach, Joseph W

    2013-11-04

    GNE068-PC, a developmental compound, was previously characterized to be mesomorphous, i.e. having long-range order associated with significant local molecular disorder (Chakravarty et. al., Mol. Pharmaceutics, accepted). The compound was exposed to moisture under different relative humidity conditions ranging from 11% to 60% RH at room temperature (RT) for 7 days, and the resultant product phases were characterized. The partially ordered sample progressively lost crystallinity (long-range order) and birefringence (orientational order) upon exposure to increasing RH conditions, leading to the formation of a completely disordered amorphous phase at 60% RH (RT). Long-range positional order was irrecoverable even after moisture removal from the sample exposed to 60% RH. This was attributed to replacement of residual ethyl acetate by water, the former being critical for maintenance of long-range order in the material. In addition, water sorption appeared to irreversibly alter the molecular orientation, thereby affecting sample birefringence. Solid-state NMR revealed increases in (1)H and (13)C spin-lattice relaxation times (T1) going from the mesomorphous phase to the fully amorphous phase. This was indicative of reduction in lattice mobility, likely due to the decreased motion of the aromatic portions of the molecule, in particular C17, which showed the most dramatic increase in (13)C T1. This is likely due to decrease in available free volume upon water sorption. Drying of the hydrated disordered phase showed somewhat greater mobility than the hydrated phase, likely due to increased relative free volume through removal of water. A water-solid interaction therefore irreversibly changed the solid-state makeup of GNE068-PC.

  10. Directionally Interacting Spheres and Rods Form Ordered Phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenyan; Mahynski, Nathan A.; Gang, Oleg

    The structures formed by mixtures of dissimilarly shaped nanoscale objects can significantly enhance our ability to produce nanoscale architectures. However, understanding their formation is a complex problem due to the interplay of geometric effects (entropy) and energetic interactions at the nanoscale. Spheres and rods are perhaps the most basic geometrical shapes and serve as convenient models of such dissimilar objects. The ordered phases formed by each of these individual shapes have already been explored, but, when mixed, spheres and rods have demonstrated only limited structural organization to date. We show using experiments and theory that the introduction of directional attractionsmore » between rod ends and isotropically interacting spherical nanoparticles (NPs) through DNA base pairing leads to the formation of ordered three-dimensional lattices. The spheres and rods arrange themselves in a complex alternating manner, where the spheres can form either a face-centered cubic (FCC) or hexagonal close-packed (HCP) lattice, or a disordered phase, as observed by in situ X-ray scattering. Increasing NP diameter at fixed rod length yields an initial transition from a disordered phase to the HCP crystal, energetically stabilized by rod-rod attraction across alternating crystal layers, as revealed by theory. In the limit of large NPs, the FCC structure is instead stabilized over the HCP by rod entropy. Thus, we propose that directionally specific attractions in mixtures of anisotropic and isotropic objects offer insight into unexplored self-assembly behavior of noncomplementary shaped particles.« less

  11. Directionally Interacting Spheres and Rods Form Ordered Phases

    DOE PAGES

    Liu, Wenyan; Mahynski, Nathan A.; Gang, Oleg; ...

    2017-05-10

    The structures formed by mixtures of dissimilarly shaped nanoscale objects can significantly enhance our ability to produce nanoscale architectures. However, understanding their formation is a complex problem due to the interplay of geometric effects (entropy) and energetic interactions at the nanoscale. Spheres and rods are perhaps the most basic geometrical shapes and serve as convenient models of such dissimilar objects. The ordered phases formed by each of these individual shapes have already been explored, but, when mixed, spheres and rods have demonstrated only limited structural organization to date. We show using experiments and theory that the introduction of directional attractionsmore » between rod ends and isotropically interacting spherical nanoparticles (NPs) through DNA base pairing leads to the formation of ordered three-dimensional lattices. The spheres and rods arrange themselves in a complex alternating manner, where the spheres can form either a face-centered cubic (FCC) or hexagonal close-packed (HCP) lattice, or a disordered phase, as observed by in situ X-ray scattering. Increasing NP diameter at fixed rod length yields an initial transition from a disordered phase to the HCP crystal, energetically stabilized by rod-rod attraction across alternating crystal layers, as revealed by theory. In the limit of large NPs, the FCC structure is instead stabilized over the HCP by rod entropy. Thus, we propose that directionally specific attractions in mixtures of anisotropic and isotropic objects offer insight into unexplored self-assembly behavior of noncomplementary shaped particles.« less

  12. Low-Dimensional Oxygen Vacancy Ordering and Diffusion in SrCrO 3$-$δ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, Phuong-Vu; Du, Yingge; Sushko, Peter V.

    2017-04-06

    We investigate the formation mechanisms of vacancy-ordered phase and collective mass transport in epitaxial SrCrO 3$-$δ films using ab initio simulations within the density functional theory formalism. We show that as concentration of oxygen vacancies (V O’s) increases, they form one-dimensional (1D) chains that feature Cr-centered tetrahedra. Aggregation of these 1D V O-chains results in the formation of (111)-oriented oxygen-deficient planes (V O-planes) and an extended vacancy-ordered phase observed in recent experiments. We discuss atomic scale mechanisms enabling the quasi-2D V O aggregates to expand along and translate across (111) planes. The corresponding lowest activation energy pathways necessarily involve rotationmore » of Cr-centered tetrahedra, which emerges as a universal feature of fast ionic conduction in complex oxides. These findings explain reversible oxidation and reduction in SrCrO 3$-$δ at low-temperatures and provide insights into transient behavior necessary to harness ionic conductive oxides for high performance and low-temperature electrochemical reactors.« less

  13. The puzzling first-order phase transition in water–glycerol mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popov, Ivan; Greenbaum; Sokolov, Alexei P.

    2015-06-05

    Over the last decade, discussions on a possible liquid-liquid transition (LLT) have strongly intensified. The LLT proposed by several authors focused mostly on explaining the anomalous properties of water in a deeply supercooled state. However, there have been no direct experimental observations yet of LLT in bulk water in the so-called 'no man's land', where water exists only in the crystalline states. Recently, a novel experimental strategy to detect LLT in water has been employed using water-glycerol (W-G) mixtures, because glycerol can generate a strong hindrance for water crystallization. As a result, the observed first-order phase transition at a concentrationmore » of glycerol around c(g) approximate to 20 mol% was ascribed to the LLT. Here we show unambiguously that the first order phase transition in W-G mixtures is caused by the ice formation. We provide additional dielectric measurements, applying specific annealing temperature protocols in order to reinforce this conclusion. We also provide an explanation, why such a phase transition occurs only in the narrow glycerol concentration range. These results clearly demonstrate the danger of analysis of phase-separating liquids to gain better insights into water dynamics. These liquids have complex phase behavior that is affected by temperature, phase stability and segregation, viscosity and nucleation, and finally by crystallization, that might lead to significant misinterpretations.« less

  14. Ocean rogue waves and their phase space dynamics in the limit of a linear interference model.

    PubMed

    Birkholz, Simon; Brée, Carsten; Veselić, Ivan; Demircan, Ayhan; Steinmeyer, Günter

    2016-10-12

    We reanalyse the probability for formation of extreme waves using the simple model of linear interference of a finite number of elementary waves with fixed amplitude and random phase fluctuations. Under these model assumptions no rogue waves appear when less than 10 elementary waves interfere with each other. Above this threshold rogue wave formation becomes increasingly likely, with appearance frequencies that may even exceed long-term observations by an order of magnitude. For estimation of the effective number of interfering waves, we suggest the Grassberger-Procaccia dimensional analysis of individual time series. For the ocean system, it is further shown that the resulting phase space dimension may vary, such that the threshold for rogue wave formation is not always reached. Time series analysis as well as the appearance of particular focusing wind conditions may enable an effective forecast of such rogue-wave prone situations. In particular, extracting the dimension from ocean time series allows much more specific estimation of the rogue wave probability.

  15. In situ observation of shear-driven amorphization in silicon crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yang; Zhong, Li; Fan, Feifei

    Amorphous materials have attracted great interest in the scientific and technological fields. An amorphous solid usually forms under the externally driven conditions of melt-quenching, irradiation and severe mechanical deformation. However, its dynamic formation process remains elusive. Here we report the in situ atomic-scale observation of dynamic amorphization processes during mechanical straining of nanoscale silicon crystals by high resolution transmission electron microscopy (HRTEM). We observe the shear-driven amorphization (SDA) occurring in a dominant shear band. The SDA involves a sequence of processes starting with the shear-induced diamond-cubic to diamond-hexagonal phase transition that is followed by dislocation nucleation and accumulation in themore » newly formed phase, leading to the formation of amorphous silicon. The SDA formation through diamond-hexagonal phase is rationalized by its structural conformity with the order in the paracrystalline amorphous silicon, which maybe widely applied to diamond-cubic materials. Besides, the activation of SDA is orientation-dependent through the competition between full dislocation nucleation and partial gliding.« less

  16. Ocean rogue waves and their phase space dynamics in the limit of a linear interference model

    PubMed Central

    Birkholz, Simon; Brée, Carsten; Veselić, Ivan; Demircan, Ayhan; Steinmeyer, Günter

    2016-01-01

    We reanalyse the probability for formation of extreme waves using the simple model of linear interference of a finite number of elementary waves with fixed amplitude and random phase fluctuations. Under these model assumptions no rogue waves appear when less than 10 elementary waves interfere with each other. Above this threshold rogue wave formation becomes increasingly likely, with appearance frequencies that may even exceed long-term observations by an order of magnitude. For estimation of the effective number of interfering waves, we suggest the Grassberger-Procaccia dimensional analysis of individual time series. For the ocean system, it is further shown that the resulting phase space dimension may vary, such that the threshold for rogue wave formation is not always reached. Time series analysis as well as the appearance of particular focusing wind conditions may enable an effective forecast of such rogue-wave prone situations. In particular, extracting the dimension from ocean time series allows much more specific estimation of the rogue wave probability. PMID:27731411

  17. Onset of phase separation in the double perovskite oxide La 2 MnNiO 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spurgeon, Steven R.; Sushko, Peter V.; Devaraj, Arun

    2018-04-01

    Identification of kinetic and thermodynamic factors that control crystal nucleation and growth represents a central challenge in materials synthesis. Here we report that apparently defect-free growth of La2MnNiO6 (LMNO) thin films supported on SrTiO3 (STO) proceeds up to 1–5 nm, after which it is disrupted by precipitation of NiO phases. Local geometric phase analysis and ensemble-averaged x-ray reciprocal space mapping show no change in the film strain away from the interface, indicating that mechanisms other than strain relaxation induce the formation of the NiO phases. Ab initio simulations suggest that the electrostatic potential build-up associated with the polarity mismatch atmore » the film-substrate interface promotes the formation of oxygen vacancies with increasing thickness. In turn, oxygen deficiency promotes the formation of Ni-rich regions, which points to the built-in potential as an additional factor that contributes to the NiO precipitation mechanisms. These results suggest that the precipitate-free region could be extended further by either incorporating dopants that suppress the built-in potential or by increasing the oxygen fugacity in order to suppress the formation of oxygen vacancies.« less

  18. Ordering kinetics in the long-period superlattice alloy Cu0.79 Pd0.21

    NASA Astrophysics Data System (ADS)

    Wang, X.; Mainville, J.; Ludwig, K.; Flament, X.; Finel, A.; Caudron, R.

    2005-07-01

    The kinetics of long-period superlattice (LPS) formation from the disordered state has been examined in a Cu0.79Pd0.21 alloy that exhibits a one-dimensional LPS ordered state. Time-resolved x-ray scattering shows that, following a rapid temperature quench from the disordered state into the LPS region of the phase diagram, the satellite peaks initially grow more quickly than do the central integer-order superlattice peaks. During this process, the satellite peak position, which is inversely related to the average modulation wavelength 2M , initially decreases rapidly, then reaches a minimum and relaxes slowly back toward its new equilibrium position. In the later stages of the LPS formation process, the satellite and central integer-order superlattice peaks narrow in a manner consistent with t1/2 domain coarsening. A simple stochastic model of the partially ordered structure was developed to better understand the relationships between peak widths.

  19. Superconvergent second order Cartesian method for solving free boundary problem for invadopodia formation

    NASA Astrophysics Data System (ADS)

    Gallinato, Olivier; Poignard, Clair

    2017-06-01

    In this paper, we present a superconvergent second order Cartesian method to solve a free boundary problem with two harmonic phases coupled through the moving interface. The model recently proposed by the authors and colleagues describes the formation of cell protrusions. The moving interface is described by a level set function and is advected at the velocity given by the gradient of the inner phase. The finite differences method proposed in this paper consists of a new stabilized ghost fluid method and second order discretizations for the Laplace operator with the boundary conditions (Dirichlet, Neumann or Robin conditions). Interestingly, the method to solve the harmonic subproblems is superconvergent on two levels, in the sense that the first and second order derivatives of the numerical solutions are obtained with the second order of accuracy, similarly to the solution itself. We exhibit numerical criteria on the data accuracy to get such properties and numerical simulations corroborate these criteria. In addition to these properties, we propose an appropriate extension of the velocity of the level-set to avoid any loss of consistency, and to obtain the second order of accuracy of the complete free boundary problem. Interestingly, we highlight the transmission of the superconvergent properties for the static subproblems and their preservation by the dynamical scheme. Our method is also well suited for quasistatic Hele-Shaw-like or Muskat-like problems.

  20. Characterization of photochemical-cured acrylates with calorimetric methods

    NASA Astrophysics Data System (ADS)

    Strehmel, Bernd; Anwand, Dirk; Wetzel, Henrik

    1994-05-01

    Radical polymerization kinetics of different kinds of diacrylates was investigated in linear polymers (binders) by using an isoperibolic calorimeter. For all experiments benzoin compounds were added as photoinitiator. The ester between acrylic acid and bisphenol-A-diglycidylether (DDGDA) and hexamethylenediacrylate were used as monomers. Both compounds have a high limiting conversion and a large polymerization rate in the binders investigated. Additionally, three kinds of termination reaction were observed: first order, second order, and primary radical termination. The last reaction was mainly found in the case of using the hexamethylenediacrylate monomer. The materials were investigated by DSC to determine the phase behavior. Both monomers form one phase with the binder (polymethylmethacrylate, PMMA). In contrast, a phase separation was observed between the crosslinked hexamethylenediacrylate and PMMA. Formations of semi- interpenetrating networks were found in the case of crosslinked DDGDA and PMMA. The glass transition temperatures were determined at different polymerization degrees also. The obtained results indicate that most of the network formation occurred in the glassy state. Fluorescence probe technique was applied to study changes in the mobility during network formation. The fluorescence probe crystal violet (CV) was used because this compound shows a strong free volume-dependent fluorescence. It was found that in the glassy state, where most of networks were formed, a large variation of the molecular mobility was observed during irradiation of the photopolymers. This result was in agreement with the observations during DSC experiments.

  1. Role of oxygen impurities in synthesis of iron mononitride thin films

    NASA Astrophysics Data System (ADS)

    Niti, Seema, Gupta, Mukul

    2018-04-01

    In this work we have studied iron mononitride (FeN) thin films. FeN is debated for its structure and often a mixed phase is obtained experimentally. Even in single phases of FeN obtain so far, an additional phase was always found even though its volume fraction was minimal. Such phases have been claimed to stem from impurities due to partial oxidation taking place during the growth. In order to study the nature of such impurities, we have deliberately introduced oxygen during the growth of FeN in a magnetron sputtering process. We found that the presence of oxygen tends to distort the tetrahedral symmetry as envisaged in the N K edge absorption spectra. The effect of oxygen impurities is subtler on the long range ordering due to formation of a disordered phase. Obtained results can be used to find the pathways to prepare a single phase FeN compound and thereafter to resolve the debate about its structure and the magnetic ground state.

  2. Geometry-induced phase transition in fluids: Capillary prewetting

    NASA Astrophysics Data System (ADS)

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2013-02-01

    We report a new first-order phase transition preceding capillary condensation and corresponding to the discontinuous formation of a curved liquid meniscus. Using a mean-field microscopic approach based on the density functional theory we compute the complete phase diagram of a prototypical two-dimensional system exhibiting capillary condensation, namely that of a fluid with long-ranged dispersion intermolecular forces which is spatially confined by a substrate forming a semi-infinite rectangular pore exerting long-ranged dispersion forces on the fluid. In the T-μ plane the phase line of the new transition is tangential to the capillary condensation line at the capillary wetting temperature Tcw. The surface phase behavior of the system maps to planar wetting with the phase line of the new transition, termed capillary prewetting, mapping to the planar prewetting line. If capillary condensation is approached isothermally with T>Tcw, the meniscus forms at the capping wall and unbinds continuously, making capillary condensation a second-order phenomenon. We compute the corresponding critical exponent for the divergence of adsorption.

  3. Effect of organic matters on CO2 hydrate phase equilibrium conditions in Na-montmorillonite clay

    NASA Astrophysics Data System (ADS)

    Park, T.; Kyung, D.; Lee, W.

    2013-12-01

    Formation of gas hydrates provides an attractive idea for storing greenhouse gases in a long-term stable geological formation. Since the phase equilibrium conditions of gas hydrates indicate the stability of hydrates, estimation of the phase equilibrium conditions of gas hydrates in marine geological conditions is necessary. In this study, we have identified the effects of organic matters (glycine, glucose, and urea) and solid surface (montmorillonite (MMT)) on the three-phase (liquid-hydrate-vapor) equilibrium conditions of CO2 hydrate. CO2 phase equilibrium experiments were conducted using 0.5mol% organic matter solutions with and without 10g soil mineral were experimentally conducted. Addition of organic matters shifted the phase equilibrium conditions of CO2 hydrate to the higher pressure or lower pressure region because of higher competition of water molecules due to the dissolved organic matters. Presence of MMT also leaded to the higher equilibrium pressure due to the interaction of cations with water molecules. By addition of organic matters to the clay suspension, the hydrate phase equilibrium conditions were less inhibited compared to those of MMT and organic matters independently. The diminished magnitudes by addition of organic matters to the clay suspension (MMT > MMT+urea > MMT+glycine > MMT+glucose > DIW) were different to the order of inhibition degree without MMT (Glucose > glycine > urea > DIW). X-ray diffraction (XRD), scanning electron microscope (SEM), and ion chromatography (IC) analysis were conducted to support the hypothesis that the organic matters interact with cations in MMT interlayer space, and leads to the less inhibition of phase equilibrium conditions. The present study provides basic information for the formation and dissociation of CO2 hydrates in the geological formation when sequestering CO2 as a form of CO2 hydrate.

  4. Kinetics, Mechanism, and Secondary Organic Aerosol Yield of Aqueous Phase Photo-oxidation of α-Pinene Oxidation Products.

    PubMed

    Aljawhary, Dana; Zhao, Ran; Lee, Alex K Y; Wang, Chen; Abbatt, Jonathan P D

    2016-03-10

    Formation of secondary organic aerosol (SOA) involves atmospheric oxidation of volatile organic compounds (VOCs), the majority of which are emitted from biogenic sources. Oxidation can occur not only in the gas-phase but also in atmospheric aqueous phases such as cloudwater and aerosol liquid water. This study explores for the first time the aqueous-phase OH oxidation chemistry of oxidation products of α-pinene, a major biogenic VOC species emitted to the atmosphere. The kinetics, reaction mechanisms, and formation of SOA compounds in the aqueous phase of two model compounds, cis-pinonic acid (PIN) and tricarballylic acid (TCA), were investigated in the laboratory; TCA was used as a surrogate for 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a known α-pinene oxidation product. Aerosol time-of-flight chemical ionization mass spectrometry (Aerosol-ToF-CIMS) was used to follow the kinetics and reaction mechanisms at the molecular level. Room-temperature second-order rate constants of PIN and TCA were determined to be 3.3 (± 0.5) × 10(9) and 3.1 (± 0.2) × 10(8) M(-1) s(-1), respectively, from which were estimated their condensed-phase atmospheric lifetimes. Aerosol-ToF-CIMS detected a large number of products leading to detailed reaction mechanisms for PIN and MBTCA. By monitoring the particle size distribution after drying, the amount of SOA material remaining in the particle phase was determined. An aqueous SOA yield of 40 to 60% was determined for PIN OH oxidation. Although recent laboratory studies have focused primarily on aqueous-phase processing of isoprene-related compounds, we demonstrate that aqueous formation of SOA materials also occurs from monoterpene oxidation products, thus representing an additional source of biogenically driven aerosol formation.

  5. Dome-shaped magnetic order competing with high-temperature superconductivity at high pressures in FeSe.

    PubMed

    Sun, J P; Matsuura, K; Ye, G Z; Mizukami, Y; Shimozawa, M; Matsubayashi, K; Yamashita, M; Watashige, T; Kasahara, S; Matsuda, Y; Yan, J-Q; Sales, B C; Uwatoko, Y; Cheng, J-G; Shibauchi, T

    2016-07-19

    The coexistence and competition between superconductivity and electronic orders, such as spin or charge density waves, have been a central issue in high transition-temperature (Tc) superconductors. Unlike other iron-based superconductors, FeSe exhibits nematic ordering without magnetism whose relationship with its superconductivity remains unclear. Moreover, a pressure-induced fourfold increase of Tc has been reported, which poses a profound mystery. Here we report high-pressure magnetotransport measurements in FeSe up to ∼15 GPa, which uncover the dome shape of magnetic phase superseding the nematic order. Above ∼6 GPa the sudden enhancement of superconductivity (Tc≤38.3 K) accompanies a suppression of magnetic order, demonstrating their competing nature with very similar energy scales. Above the magnetic dome, we find anomalous transport properties suggesting a possible pseudogap formation, whereas linear-in-temperature resistivity is observed in the normal states of the high-Tc phase above 6 GPa. The obtained phase diagram highlights unique features of FeSe among iron-based superconductors, but bears some resemblance to that of high-Tc cuprates.

  6. THE ROLE OF METASTABLE STATES IN POLYMER PHASE TRANSITIONS: Concepts, Principles, and Experimental Observations

    NASA Astrophysics Data System (ADS)

    Cheng, Stephen Z. D.; Keller, Andrew

    1998-08-01

    Polymer phases can be described in the same way as phases in other condensed matter using a number density operator and its correlation functions. This description requires the understanding of symmetry operations and order at different atomic and molecular levels. Statistical mechanics provides a link between the microscopic description of the structure and motion and the macroscopic thermodynamic properties. Within the limits of the laws of thermodynamics, polymers exhibit a rich variety of phase transition behaviors. By definition, a first-order phase transition describes a transformation that involves a sudden change of thermodynamic properties at its transition temperature, whereas higher-order phase transitions are classified as critical phenomena. Of special interest is the role of metastability in phase and phase transition behaviors. Although a metastable state possesses a local free energy minimum, it is not at the global equilibrium. Furthermore, metastable states can also be associated with phase sizes. Metastable behavior is also observed in phase transformations that are impeded by kinetic limitations along the pathway to thermodynamic equilibrium. This is illustrated in structural and morphological investigations of crystallization and mesophase transitions, liquid-liquid phase separation, vitrification, and gel formation, as well as combinations of transformation processes. In these cases, the metastable state often becomes the dominant state for the entire system and is observed over a range of time and size scales. This review describes the general principles of metastability in polymer phases and phase transitions and provides illustrations from current experimental works in selected areas.

  7. Modification of local order in FePd films by low energy He{sup +} irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkel, D. G.; Tancziko, F.; Sajti, Sz.

    2008-07-01

    Owing to their strong perpendicular magnetic anisotropy, FePd, CoPd, and their Co(Fe)Pt counterparts are candidate materials for ultrahigh density magnetic recording. The stability and magnetic properties of such films are largely dependent on the orientation and local distribution of the L1{sub 0} FePd phase fraction. Therefore, the formation and transformation of the L1{sub 0} phase in such thin films have been the subject of continued interest. Highly ordered epitaxial FePd(001) thin films (with an L1{sub 0} phase fraction of 0.81) were prepared by molecular-beam epitaxy on a MgO(001) substrate. The effect of postgrown room temperature, 130 keV He{sup +} irradiationmore » was investigated at fluences up to 14.9x10{sup 15} ions/cm{sup 2}. X-ray diffraction and conversion electron Moessbauer spectroscopy revealed that with increasing fluence, the L1{sub 0} FePd phase decomposes into the face centered cubic phase with random Fe and Pd occupation of the sites. A partially ordered local environment exhibiting a large hyperfine magnetic field also develops. Upon He{sup +} irradiation, the lattice parameter c of the FePd L1{sub 0} structure increases and the long range order parameter S steeply decreases. The Fe-Fe nearest-neighbor coordination in the Fe-containing environments increases on average from Fe{sub 47}Pd{sub 53} to Fe{sub 54}Pd{sub 46}, indicating a tendency of formation iron-rich clusters. The equilibrium parameters corresponding to the equiatomic L1{sub 0} phase were found at different fluences by conversion electron Moessbauer spectroscopy and by x-ray diffraction a difference, from which a plane-perpendicular compressive stress and a corresponding in-plane tensile stress are conjectured. The steep increase in the interface roughness above 7.4x10{sup 15} ions/cm{sup 2} is interpreted as a percolation-type behavior related to the high diffusion anisotropy in the L1{sub 0} phase.« less

  8. RPPAML/RIMS: A metadata format and an information management system for reverse phase protein arrays

    PubMed Central

    Stanislaus, Romesh; Carey, Mark; Deus, Helena F; Coombes, Kevin; Hennessy, Bryan T; Mills, Gordon B; Almeida, Jonas S

    2008-01-01

    Background Reverse Phase Protein Arrays (RPPA) are convenient assay platforms to investigate the presence of biomarkers in tissue lysates. As with other high-throughput technologies, substantial amounts of analytical data are generated. Over 1000 samples may be printed on a single nitrocellulose slide. Up to 100 different proteins may be assessed using immunoperoxidase or immunoflorescence techniques in order to determine relative amounts of protein expression in the samples of interest. Results In this report an RPPA Information Management System (RIMS) is described and made available with open source software. In order to implement the proposed system, we propose a metadata format known as reverse phase protein array markup language (RPPAML). RPPAML would enable researchers to describe, document and disseminate RPPA data. The complexity of the data structure needed to describe the results and the graphic tools necessary to visualize them require a software deployment distributed between a client and a server application. This was achieved without sacrificing interoperability between individual deployments through the use of an open source semantic database, S3DB. This data service backbone is available to multiple client side applications that can also access other server side deployments. The RIMS platform was designed to interoperate with other data analysis and data visualization tools such as Cytoscape. Conclusion The proposed RPPAML data format hopes to standardize RPPA data. Standardization of data would result in diverse client applications being able to operate on the same set of data. Additionally, having data in a standard format would enable data dissemination and data analysis. PMID:19102773

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amdursky, Nadav; Gazit, Ehud; Rosenman, Gil, E-mail: gilr@eng.tau.ac.il

    Highlights: Black-Right-Pointing-Pointer We observe lag-phase crystallization process in insulin. Black-Right-Pointing-Pointer The crystallization is a result of the formation of higher order oligomers. Black-Right-Pointing-Pointer The crystallization also changes the secondary structure of the protein. Black-Right-Pointing-Pointer The spectroscopic signature can be used for amyloid inhibitors assay. -- Abstract: Insulin, as other amyloid proteins, can form amyloid fibrils at certain conditions. The self-assembled aggregation process of insulin can result in a variety of conformations, starting from small oligomers, going through various types of protofibrils, and finishing with bundles of fibrils. One of the most common consensuses among the various self-assembly processes that aremore » suggested in the literature is the formation of an early stage nucleus conformation. Here we present an additional insight for the self-assembly process of insulin. We show that at the early lag phase of the process (prior to fibril formation) the insulin monomers self-assemble into ordered nanostructures. The most notable feature of this early self-assembly process is the formation of nanocrystalline nucleus regions with a strongly bound electron-hole confinement, which also change the secondary structure of the protein. Each step in the self-assembly process is characterized by an optical spectroscopic signature, and possesses a narrow size distribution. By following the spectroscopic signature we can measure the potency of amyloid fibrils inhibitors already at the lag phase. We further demonstrate it by the use of epigallocatechin gallate, a known inhibitor for insulin fibrils. The findings can result in a spectroscopic-based application for the analysis of amyloid fibrils inhibitors.« less

  10. Development of a Knowledge Base of Ti-Alloys From First-Principles and Thermodynamic Modeling

    NASA Astrophysics Data System (ADS)

    Marker, Cassie

    An aging population with an active lifestyle requires the development of better load-bearing implants, which have high levels of biocompatibility and a low elastic modulus. Titanium alloys, in the body centered cubic phase, are great implant candidates, due to their mechanical properties and biocompatibility. The present work aims at investigating the thermodynamic and elastic properties of bcc Tialloys, using the integrated first-principles based on Density Functional Theory (DFT) and the CALculation of PHAse Diagrams (CALPHAD) method. The use of integrated first-principles calculations based on DFT and CALPHAD modeling has greatly reduced the need for trial and error metallurgy, which is ineffective and costly. The phase stability of Ti-alloys has been shown to greatly affect their elastic properties. Traditionally, CALPHAD modeling has been used to predict the equilibrium phase formation, but in the case of Ti-alloys, predicting the formation of two metastable phases o and alpha" is of great importance as these phases also drastically effect the elastic properties. To build a knowledge base of Ti-alloys, for biomedical load-bearing implants, the Ti-Mo-Nb-Sn-Ta-Zr system was studied because of the biocompatibility and the bcc stabilizing effects of some of the elements. With the focus on bcc Ti-rich alloys, a database of thermodynamic descriptions of each phase for the pure elements, binary and Ti-rich ternary alloys was developed in the present work. Previous thermodynamic descriptions for the pure elements were adopted from the widely used SGTE database for global compatibility. The previous binary and ternary models from the literature were evaluated for accuracy and new thermodynamic descriptions were developed when necessary. The models were evaluated using available experimental data, as well as the enthalpy of formation of the bcc phase obtained from first-principles calculations based on DFT. The thermodynamic descriptions were combined into a database ensuring that the sublattice models are compatible with each other. For subsystems, such as the Sn-Ta system, where no thermodynamic description had been evaluated and minimal experimental data was available, first-principles calculations based on DFT were used. The Sn-Ta system has two intermetallic phases, TaSn2 and Ta3Sn, with three solution phases: bcc, body centered tetragonal (bct) and diamond. First-principles calculations were completed on the intermetallic and solution phases. Special quasirandom structures (SQS) were used to obtain information about the solution phases across the entire composition range. The Debye-Gruneisen approach, as well as the quasiharmonic phonon method, were used to obtain the finite-temperature data. Results from the first-principles calculations and experiments were used to complete the thermodynamic description. The resulting phase diagram reproduced the first-principles calculations and experimental data accurately. In order to determine the effect of alloying on the elastic properties, first-principles calculations based on DFT were systematically done on the pure elements, five Ti-X binary systems and Ti-X-Y ternary systems (X ≠ Y = Mo, Nb, Sn, Ta Zr) in the bcc phase. The first-principles calculations predicted the single crystal elastic stiffness constants cij 's. Correspondingly, the polycrystalline aggregate properties were also estimated from the cij's, including bulk modulus B, shear modulus G and Young's modulus E. The calculated results showed good agreement with experimental results. The CALPHAD method was then adapted to assist in the database development of the elastic properties as a function of composition. On average, the database predicted the elastic properties of higher order Ti-alloys within 5 GPa of the experimental results. Finally, the formation of the metastable phases, o and alpha" was studied in the Ti-Ta and Ti-Nb systems. The formation energy of these phases, calculated from first-principles at 0 K, showed that the phases have similar formation energies to the bcc and hcp phases. Inelastic neutron scattering was completed on four different Ti-Nb compositions to study the entropy of the phases as well as the transformations occurring when the phases form and the phase fractions. Ongoing work is being done to use the experimental information to introduce thermodynamic descriptions for these two phases in the Ti-Nb system in order to be able to predict the formation and phase fractions. DFT based first-principles were used to predict the effect these phases have on the elastic properties and a rule of mixtures was used to determine the elastic properties of multi-phase alloys. The results were compared with experiments and showed that if the ongoing modeling can predict the phase fraction, the elastic database can accurately predict the elastic properties of the o and alpha" phases. This thesis provides a knowledge base of the thermodynamic and elastic properties of Ti-alloys from computational thermodynamics. The databases created will impact research activities on Ti-alloys and specifically efforts focused on Ti-alloys for biomedical applications.

  11. Dynamo onset as a first-order transition: lessons from a shell model for magnetohydrodynamics.

    PubMed

    Sahoo, Ganapati; Mitra, Dhrubaditya; Pandit, Rahul

    2010-03-01

    We carry out systematic and high-resolution studies of dynamo action in a shell model for magnetohydrodynamic (MHD) turbulence over wide ranges of the magnetic Prandtl number PrM and the magnetic Reynolds number ReM. Our study suggests that it is natural to think of dynamo onset as a nonequilibrium first-order phase transition between two different turbulent, but statistically steady, states. The ratio of the magnetic and kinetic energies is a convenient order parameter for this transition. By using this order parameter, we obtain the stability diagram (or nonequilibrium phase diagram) for dynamo formation in our MHD shell model in the (PrM-1,ReM) plane. The dynamo boundary, which separates dynamo and no-dynamo regions, appears to have a fractal character. We obtain a hysteretic behavior of the order parameter across this boundary and suggestions of nucleation-type phenomena.

  12. Secondary phases in Al xCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal

    DOE PAGES

    Rao, J. C.; Diao, H. Y.; Ocelík, V.; ...

    2017-03-27

    Secondary phases, either introduced by alloying or heat treatment, are commonly present in most high-entropy alloys (HEAs). Understanding the formation of secondary phases at high temperatures, and their effect on mechanical properties, is a critical issue that is undertaken in the present paper, using the Al xCoCrFeNi (x = 0.3, 0.5, and 0.7) as a model alloy. The in-situ transmission-electron-microscopy (TEM) heating observation, an atom-probe-tomography (APT) study for the reference starting materials (Al 0.3 and Al 0.5 alloys), and thermodynamic calculations for all three alloys, are performed to investigate (1) the aluminum effect on the secondary-phase fractions, (2) the annealing-twinningmore » formation in the face-centered-cubic (FCC) matrix, (3) the strengthening effect of the secondary ordered body-centered-cubic (B2) phase, and (4) the nucleation path of the σ secondary phase thoroughly. Finally, the present work will substantially optimize the alloy design of HEAs and facilitate applications of HEAs to a wide temperature range.« less

  13. Secondary phases in Al xCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, J. C.; Diao, H. Y.; Ocelík, V.

    Secondary phases, either introduced by alloying or heat treatment, are commonly present in most high-entropy alloys (HEAs). Understanding the formation of secondary phases at high temperatures, and their effect on mechanical properties, is a critical issue that is undertaken in the present paper, using the Al xCoCrFeNi (x = 0.3, 0.5, and 0.7) as a model alloy. The in-situ transmission-electron-microscopy (TEM) heating observation, an atom-probe-tomography (APT) study for the reference starting materials (Al 0.3 and Al 0.5 alloys), and thermodynamic calculations for all three alloys, are performed to investigate (1) the aluminum effect on the secondary-phase fractions, (2) the annealing-twinningmore » formation in the face-centered-cubic (FCC) matrix, (3) the strengthening effect of the secondary ordered body-centered-cubic (B2) phase, and (4) the nucleation path of the σ secondary phase thoroughly. Finally, the present work will substantially optimize the alloy design of HEAs and facilitate applications of HEAs to a wide temperature range.« less

  14. Monitoring reactive microencapsulation dynamics using microfluidics

    PubMed Central

    Brosseau, Quentin; Baret, Jean-Christophe

    2015-01-01

    We use microfluidic polydimethylsiloxane (PDMS) devices to measure the kinetics of reactive encapsulations occurring at the interface of emulsion droplets. The formation of the polymeric shell is inferred from the droplet deformability measured in a series of expansion–constriction chambers along the microfluidic chip. With this tool we quantify the kinetic processes governing the encapsulation at the very early stage of shell formation with a time resolution of the order of the millisecond for overall reactions occurring in less than 0.5 s. We perform a comparison of monomer reactivities used for the encapsulation. We study the formation of polyurea microcapsules (PUMCs); the shell formation proceeds at the water–oil interface by an immediate reaction of amines dissolved in the aqueous phase and isocyanates dissolved in the oil phase. We observe that both monomers contribute differently to the encapsulation kinetics. The kinetics of the shell formation process at the oil-in-water (O/W) experiments significantly differs from the water-in-oil (W/O) systems; the component dissolved in the continuous phase has the largest impact on the kinetics. In addition, we quantified the retarding effect on the encapsulation kinetics by the interface stabilizing agent (surfactant). Our approach is valuable for quantifying in situ reactive encapsulation processes and provides guidelines to generate microcapsules with soft interfaces of tailored and controllable interfacial properties. PMID:25705975

  15. Nano-phase separation and structural ordering in silica-rich mixed network former glasses.

    PubMed

    Liu, Hao; Youngman, Randall E; Kapoor, Saurabh; Jensen, Lars R; Smedskjaer, Morten M; Yue, Yuanzheng

    2018-06-13

    We investigate the structure, phase separation, glass transition, and crystallization in a mixed network former glass series, i.e., B2O3-Al2O3-SiO2-P2O5 glasses with varying SiO2/B2O3 molar ratio. All the studied glasses exhibit two separate glassy phases: droplet phase (G1) with the size of 50-100 nm and matrix phase (G2), corresponding to a lower calorimetric glass transition temperature (Tg1) and a higher one (Tg2), respectively. Both Tg values decrease linearly with the substitution of B2O3 for SiO2, but the magnitude of the decrease is larger for Tg1. Based on nuclear magnetic resonance and Raman spectroscopy results, we infer that the G1 phase is rich in boroxol rings, while the G2 phase mainly involves the B-O-Si network. Both phases contain BPO4- and AlPO4-like units. Ordered domains occur in G2 upon isothermal and dynamic heating, driven by the structural heterogeneity in the as-prepared glasses. The structural ordering lowers the activation energy of crystal growth, thus promoting partial crystallization of G2. These findings are useful for understanding glass formation and phase separation in mixed network former oxide systems, and for tailoring their properties.

  16. Atomic insights into nanoparticle formation of hydroxyfluorinated anatase featuring titanium vacancies

    DOE PAGES

    Li, Wei; Body, Monique; Legein, Christophe; ...

    2016-06-28

    Anatase TiO 2 with exposed highly reactive (001) surface is commonly prepared using solution-based synthesis in the presence of a fluorinating agent acting as a structure directing agent. Here, the solvothermal reaction of titanium tetraisopropoxide in the presence of aqueous HF has resulted in the stabilization of an oxyhydroxyfluorinated anatase phase featuring cationic vacancies. In the present work, we have studied its formation mechanism, revealing a solid-state transformation of a highly defective anatase phase having a hydroxyfluoride composition that subsequently evolves through an oxolation reaction into an oxyhydroxyfluoride phase. Importantly, this work confirms that titanium alkoxide precursors can react withmore » HF via a fluorolysis process yielding fluorinated molecular precursors, which further condense to produce new composition and structural features deviating from a well ordered anatase network.« less

  17. Aqueous Lyotropic Liquid Crystalline Frank-Kasper Mesophases

    NASA Astrophysics Data System (ADS)

    Mahanthappa, Mahesh; Kim, Sung A.; Jeong, Kyeong-Jun; Yethiraj, Arun

    Amphiphilic molecules undergo water concentration-dependent self-assembly to form lyotropic liquid crystal (LLC) mesophases. LLC morphology selection is directed by cooperative optimization of preferred molecular packing arrangements, which stem from a subtle balance of local, non-covalent interactions. We recently discovered a class of amphiphiles that form a progression of discontinuous micellar LLCs, including two tetrahedrally-closest packed Frank-Kasper phases that exhibit exceptional long range order. This discovery complements recent reports of their formation in thermotropic liquid crystals, neat diblock and tetrablock polymers, and in lyotropic mesophases of block polymers in ionic liquids. Using a combination of MD simulations and experiments, we provide new insights into the mechanisms of formation for these low symmetry micelle phases.

  18. Orientational order in smectic liquid-crystalline phases of amphiphilic diols

    NASA Astrophysics Data System (ADS)

    Giesselmann, Frank; Germer, Roland; Saipa, Alexander

    2005-07-01

    The thermotropic smectic phases of amphiphilic 2-(trans-4-n-alkylcyclohexyl)-propane-1,3-diols were investigated by means of small- and wide-angle x-ray scattering and values of the smectic (bi-)layer spacing, the orientational order parameters ⟨P2⟩ and ⟨P4⟩, the orientational distribution function as well as the intralayer correlation length were extracted from the scattering profiles. The results for the octyl homolog indicate that these smectic phases combine a very high degree of smectic one-dimensional-translational order with remarkably low orientational order, the order parameter of which (⟨P2⟩≈0.56) is far below those values typically found in nonamphiphilic smectics. This combination, quite exceptional in thermotropic smectics, most likely originates from the intermolecular hydrogen bonding between the terminal diol groups which seems to be the specific driving force in the formation of the thermotropic smectic structure in these amphiphiles and leads to a type of microphase segregation. Even in the absence of a solvent, the liquid-crystalline ordering of the amphiphilic mesogens comes close to the structure of the so-called neat soaps, found in lyotropic liquid crystals.

  19. In Situ Observation of Oxygen Vacancy Dynamics and Ordering in the Epitaxial LaCoO3 System.

    PubMed

    Jang, Jae Hyuck; Kim, Young-Min; He, Qian; Mishra, Rohan; Qiao, Liang; Biegalski, Michael D; Lupini, Andrew R; Pantelides, Sokrates T; Pennycook, Stephen J; Kalinin, Sergei V; Borisevich, Albina Y

    2017-07-25

    Vacancy dynamics and ordering underpin the electrochemical functionality of complex oxides and strongly couple to their physical properties. In the field of the epitaxial thin films, where connection between chemistry and film properties can be most clearly revealed, the effects related to oxygen vacancies are attracting increasing attention. In this article, we report a direct, real-time, atomic level observation of the formation of oxygen vacancies in the epitaxial LaCoO 3 thin films and heterostructures under the influence of the electron beam utilizing scanning transmission electron microscopy (STEM). In the case of LaCoO 3 /SrTiO 3 superlattice, the formation of the oxygen vacancies is shown to produce quantifiable changes in the interatomic distances, as well as qualitative changes in the symmetry of the Co sites manifested as off-center displacements. The onset of these changes was observed in both the [100] pc and [110] pc orientations in real time. Additionally, annular bright field images directly show the formation of oxygen vacancy channels along [110]pc direction. In the case of 15 u.c. LaCoO 3 thin film, we observe the sequence of events during beam-induced formation of oxygen vacancy ordered phases and find them consistent with similar processes in the bulk. Moreover, we record the dynamics of the nucleation, growth, and defect interaction at the atomic scale as these transformations happen. These results demonstrate that we can track dynamic oxygen vacancy behavior with STEM, generating atomic-level quantitative information on phase transformation and oxygen diffusion.

  20. Stochastic phase of ventral furrow formation in the Drosophila embryo: cellular constriction chains, mechanical feedback, and robustness

    NASA Astrophysics Data System (ADS)

    Blawzdziewicz, Jerzy; Gao, Guo-Jie J.; Holcomb, Michael C.; Thomas, Jeffrey H.

    The key process giving rise to ventral furrow formation (VFF) in Drosophila embryo is apical constriction of cells in the ventral region. The constriction produces negative spontaneous curvature of the cell layer. During the initial slower phase of VFF approximately 40% of cells constrict in a seemingly random order. We show that this initial phase of VFF does not depend on random uncorrelated events. Instead, constricted cell apices form well-defined correlated structures, i.e., cellular constriction chains (CCCs), indicative of strong spatial and directional correlations between the constriction events. We argue that this chain formation is a signature of mechanical signaling that coordinates apical constrictions through tensile stress. To gain insights into the mechanisms involved in this correlated constriction process, we propose an active granular fluid (AGF) model which considers a tissue as a collection of mechanically active, stress-responsive objects. Our AGF molecular dynamics simulations show that cell constriction sensitivity to tensile stress results in formation of CCCs whereas compressive-stress sensitivity leads to compact constricted cell clusters; the CCCs, which can penetrate less-active regions, increase the robustness of the VFF process.

  1. Physical properties and spin excitations in the lacunar spinels AV4S8(A =Ga, Ge)

    NASA Astrophysics Data System (ADS)

    Pokharel, Ganesh; Christianson, Andrew; Mandrus, David; Liusuo Wu Team; Mark Lumsden Collaboration; Rupam Mukherjee Collaboration; Matthew Stone Collaboration; Georg Ehlers Collaboration

    In the lacunar spinels AV4S8 (A = Ga, Ge), the interplay of spin, charge, and orbital degrees of freedom results in a complex phase diagram which includes: ferroelectric, orbitally ordered, and Néel type skyrmion phases. Below 12.7 K GaV4S8 exhibits cycloidal and ferromagnetic order and the application of a magnetic field results in a Néel type skyrmion spin structure. On the other hand, GeV4S8 orders antiferromagentically below 18 K. To illuminate the underlying physics driving the formation of these novel phases, we have measured the magnetization, resistivity, thermal conductivity, and inelastic neutron scattering spectrum of these spinels. The inelastic neutron scattering data shows broadened spin excitations which extend to 6 meV within the magnetically order phases for both GaV4S8 and GeV4S8. The similarity of the spectra for ferromagnetic GaV4S8 and antiferromagnetic GeV4S8 reflects the close balance of ferromagnetic and antiferromagnetic interactions in these materials. This research is funded by the Gordon and Betty Moore Foundation's EPIQS Initiative through Grant GBMF4416.

  2. Effect of duty-cycles on the air plasma gas-phase of dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Barni, R.; Biganzoli, I.; Dell'Orto, E. C.; Riccardi, C.

    2015-10-01

    An experimental investigation concerning the effects of a duty-cycle in the supply of a dielectric barrier discharge in atmospheric pressure air has been performed. Electrical characteristics of the discharge have been measured, focusing mainly on the statistical properties of the current filaments and on dielectric surface charging, both affected by the frequent repetition of breakdown imposed by the duty-cycle. Information on the gas-phase composition was gathered too. In particular, a strong enhancement in the ozone formation rate is observed when suitable long pauses separate the active discharge phases. A simulation of the chemical kinetics in the gas-phase, based on a simplified discharge modeling, is briefly described in order to shed light on the observed increase in ozone production. The effect of a duty-cycle on surface modification of polymeric films in order to increase their wettability has been investigated too.

  3. Relative phase noise induced impairment in CO-OFDM optical communication system with distributed fiber Raman amplifier.

    PubMed

    Wu, Jiadi; Cheng, Jingchi; Tang, Ming; Deng, Lei; Songnian, Fu; Shum, Perry Ping; Liu, Deming

    2014-05-15

    In this Letter, we demonstrate that the interplay between Raman pump relative intensity noise and cross-phase modulation leads to a relative phase noise (RPN) that brings non-negligible performance degradation to coherent optical orthogonal frequency-division multiplexing (CO-OFDM) transmission systems with co-pumped Raman amplification. By theoretical analysis and numerical simulation, we proved that RPN brings more system impairment in terms of Q-factor penalty than the single carrier system, and relatively larger walk-off between pump and signal helps to suppress the RPN induced impairment. A higher-order modulated signal is less tolerant to RPN than a lower-order signal. With the same spectral efficiency, the quadrature-amplitude modulation format shows better tolerance to RPN than phase-shift keying. The reported findings will be useful for the design and optimization of Raman amplified CO-OFDM multi-carrier transmission systems.

  4. Ordering phase transition in the one-dimensional Axelrod model

    NASA Astrophysics Data System (ADS)

    Vilone, D.; Vespignani, A.; Castellano, C.

    2002-12-01

    We study the one-dimensional behavior of a cellular automaton aimed at the description of the formation and evolution of cultural domains. The model exhibits a non-equilibrium transition between a phase with all the system sharing the same culture and a disordered phase of coexisting regions with different cultural features. Depending on the initial distribution of the disorder the transition occurs at different values of the model parameters. This phenomenology is qualitatively captured by a mean-field approach, which maps the dynamics into a multi-species reaction-diffusion problem.

  5. Equilibrium Phase Behavior of a Continuous-Space Microphase Former.

    PubMed

    Zhuang, Yuan; Zhang, Kai; Charbonneau, Patrick

    2016-03-04

    Periodic microphases universally emerge in systems for which short-range interparticle attraction is frustrated by long-range repulsion. The morphological richness of these phases makes them desirable material targets, but our relatively coarse understanding of even simple models hinders controlling their assembly. We report here the solution of the equilibrium phase behavior of a microscopic microphase former through specialized Monte Carlo simulations. The results for cluster crystal, cylindrical, double gyroid, and lamellar ordering qualitatively agree with a Landau-type free energy description and reveal the nontrivial interplay between cluster, gel, and microphase formation.

  6. Periodic Colony Formation of Bacteria Due to their Cell Reproduction and Movement

    NASA Astrophysics Data System (ADS)

    Itoh, H.; Wakita, J.; Watanabe, K.; Matsuyama, T.; Matsushita, M.

    We have experimentally investigated periodic pattern formation produced by bacterial species Proteus mirabilis, which forms concentric-ring-like colonies by repeating migration and rest alternately on the surface of a solid agar medium. We distinguish three phases (initial lag phase, the following migration and consolidation phases that appear alternately) for the colony growth. Here we mainly used physical approaches in order to try to understand the formation of concentric-ring-like colonies, such as cutting the part of a colony during its growth. Global chemical signals governing the colony formation from the center were not found. We also checked phase entrainment quantitatively by letting two colonies collide with each other and confirmed that it does not take place in macroscopic scales. When we cut a colony just behind the migrating front shortly after the migration started, the migration ended earlier and the following consolidation lasted longer. However, the following cycles were not influenced by the cut, i.e., the following migration and consolidation phases were both found to return normal. The cut results in the stop of supply of cell population to the migrating front by internal waves. In fact the cell population on the new terrace during the first migration after the cut was less than that without cut. Furthermore, the cell population density was found to be recovered to the ordinary value by the end of the consolidation. All these experimental results suggest that the most important factor for the repetition of migration and consolidation phases is the cell population density.

  7. Amorphous Calcium Carbonate in Biomineralization: Stable and Precursor Phases

    NASA Astrophysics Data System (ADS)

    Weiner, S.

    2003-12-01

    The biological formation of the crystalline polymorphs of calcium carbonate, aragonite and calcite, is widespread. The less stable polymorphs, vaterite and monohydrocalcite are also formed by some organisms. Surprisingly, the highly unstable phase, amorphous calcium carbonate (ACC), is formed by a variety of organisms from different phyla. Most of these are stable at least within the lifetime of the organism. The stable forms all have a stoichiometry of CaCO3.H2O. Despite the fact that they do not diffract X-rays. Studies of their short range order by EXAFS, reveal species specific variations in the number and distances of atoms that surround the calcium ion. Proteins extracted from stable biogenic ACC are able to stabilize the phase in vitro. ACC has also been identified as a transient precursor phase during the formation of the calcitic larval spicule of the sea urchin and the formation of the larval shell of a bivalve. The transient form has little or no water associated with the CaCO3. Preliminary EXAFS data suggest that the short range order of the sea urchin spicule transient ACC resembles calcite. Proteins extracted from these spicules are able to stabilize ACC provided Mg is present in the solution. As the mollusks and the echinoderms are on two different branches of the animal phylogenetic tree, it is conceivable that the strategy of using ACC as a precursor phase at least for larval mineralization may be widespread. It has yet to be shown that it is used by adults of either phylum. The manner in which organisms precipitate, stabilize and destabilize if necessary, this highly metastable phase of calcium carbonate presents many fascinating and enigmatic questions, whose solutions could well contribute to a better understanding of basic processes in biomineralization. For more details and references, see Addadi, L., Raz, S. and Weiner, S. (2003). Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Adv. Mat.15, 959-970.

  8. Structural and Mössbauer characterization of the ball milled Fe x(Cr 2O 3) 1- x system

    NASA Astrophysics Data System (ADS)

    Biondo, Valdecir; de Medeiros, Suzana Nóbrega; Paesano, Andrea, Jr.; Ghivelder, Luis; Hallouche, Bachir; da Cunha, João Batista Marimon

    2009-08-01

    The Fe x(Cr 2O 3) 1- x system, with 0.10 ≤ X ≤ 0.80, was mechanically processed for 24 h in a high-energy ball-mill. In order to examine the possible formation of iron-chromium oxides and alloys, the milled samples were, later, thermally annealed in inert (argon) and reducing (hydrogen) atmospheres. The as-milled and annealed products were characterized by X-ray diffraction, Mössbauer spectroscopy, transmission electron microscopy and magnetization. The as-milled samples showed the formation of an Fe 1+ YCr 2- YO 4- δ nanostructured and disordered spinel phase, the α 1-Fe(Cr) and α 2-Cr(Fe) solid solutions and the presence of non-exhausted precursors. For the samples annealed in inert atmosphere, the chromite (FeCr 2O 4) formation and the recrystallization of the precursors were verified. The hydrogen treated samples revealed the reduction of the spinel phase, with the phase separation of the chromia phase and retention of the Fe-Cr solid solutions. All the samples, either as-milled or annealed, presented the magnetization versus applied field curves typical for superparamagnetic systems.

  9. Formation of CaS-MgS in Enstatite Chondrites and Achondrites as a Function of Redox Conditions and Temperature: Constraints on Their Evolution in a Planetesimal and in a Proto-planet

    NASA Technical Reports Server (NTRS)

    Malavergne, Valerie; Berthet, S.; Righter, K.

    2007-01-01

    The cubic monosulfide series with the general formula (Mg,Mn,Ca,Fe)S are common phases in the enstatite chondrite (EH) and aubrite meteorite groups. In the Earth s mantle, sulfide minerals are associated with peridotites and eclogites. Study of these sulfide mineral systems is of interest for the mineralogy and petrology of planetary mantles. For example, MgS could occur in the primitive Earth and because it remains a low density phase compared to metal, would stay a separate phase during the core formation process, and thus not segregate to the core. (Mg,Ca,Mn,Fe)S sulphides might thus be important phases even in planetary differentiation processes. The importance of such minerals, and their formation, composition and textural relationships for understanding the genesis of enstatite chondrites and aubrites, has long been recognized. The main objective of this experimental study is to understand the formation and evolution of (Mg,Ca,Mn,Fe)S sulphides, particularly the oldhamite CaS and ningerite MgS, with pressure, temperature but also with redox conditions because EH and aubrites are meteorites that formed under reduced conditions. Piston-cylinder (PC) and multi-anvil (MA) experiments at high pressure (HP) and high temperature (HT) have been performed in order to simulate the evolution of these phases in a small planetary body from a planetesimal (with PC experiments) up to a proto-planet (with MA experiments).

  10. Accelerated formation of cubic phases in phosphatidylethanolamine dispersions.

    PubMed Central

    Tenchov, B; Koynova, R; Rapp, G

    1998-01-01

    By means of x-ray diffraction we show that several sodium salts and the disaccharides sucrose and trehalose strongly accelerate the formation of cubic phases in phosphatidylethanolamine (PE) dispersions upon temperature cycling through the lamellar liquid crystalline-inverted hexagonal (Lalpha-HII) phase transition. Ethylene glycol does not have such an effect. The degree of acceleration increases with the solute concentration. Such an acceleration has been observed for dielaidoyl PE (DEPE), dihexadecyl PE, and dipalmitoyl PE. It was investigated in detail for DEPE dispersions. For DEPE (10 wt% of lipid) aqueous dispersions at 1 M solute concentration, 10-50 temperature cycles typically result in complete conversion of the Lalpha phase into cubic phase. Most efficient is temperature cycling executed by laser flash T-jumps. In that case the conversion completes within 10-15 cycles. However, the cubic phases produced by laser T-jumps are less ordered in comparison to the rather regular cubic structures produced by linear, uniform temperature cycling at 10 degrees C/min. Temperature cycles at scan rates of 1-3 degrees C/min also induce the rapid formation of cubic phases. All solutes used induce the formation of Im3m (Q229) cubic phase in 10 wt% DEPE dispersions. The initial Im3m phases appearing during the first temperature cycles have larger lattice parameters that relax to smaller values with continuation of the cycling after the disappearance of the Lalpha phase. A cooperative Im3m --> Pn3m transition takes place at approximately 85 degrees C and transforms the Im3m phase into a mixture of coexisting Pn3m (Q224) and Im3m phases. The Im3m/Pn3m lattice parameter ratio is 1. 28, as could be expected from a representation of the Im3m and Pn3m phases with the primitive and diamond infinite periodic minimal surfaces, respectively. At higher DEPE contents ( approximately 30 wt%), cubic phase formation is hindered after 20-30 temperature cycles. The conversion does not go through, but reaches a stage with coexisting Ia3d (Q230) and Lalpha phases. Upon heating, the Ia3d phase cooperatively transforms into a mixture of, presumably, Im3m and Pn3m phases at about the temperature of the Lalpha-HII transition. This transformation is readily reversible with the temperature. The lattice parameters of the DEPE cubic phases are temperature-insensitive in the Lalpha temperature range and decrease with the temperature in the range of the HII phase. PMID:9675186

  11. Exploring the Nuclear Phase Diagram with Beam Energy Scans

    NASA Astrophysics Data System (ADS)

    Horvat, Stephen

    2017-04-01

    The nuclear phase diagram is mapped using beam energy scans of relativistic heavy-ion collisions. This mapping is possible because different collision energies develop along different trajectories through the phase diagram. High energy collisions will evolve though a crossover phase transition according to lattice QCD, but lower collision energies may traverse a first order phase transition. There are hints for this first order phase transition and its critical endpoint, but further measurements and theoretical guidance is needed. In addition to mapping the phase transition, beam energy scans allow us to see if we can turn off the signatures of deconfinement. If an observable is a real signature for the formation of the deconfined state called quark-gluon plasma, then it should turn off at sufficiently low collision energies. In this summary talk I will show the current state of the field using beam energy scan results from RHIC and SPS, I will show where precise theoretical guidance is needed for understanding recent measurements, and I will motivate the need for more data and new measurements from FAIR, NICA, RHIC, and the SPS.

  12. Snakes on a plane: modeling flexible active nematics

    NASA Astrophysics Data System (ADS)

    Selinger, Robin

    Active soft matter systems of self-propelled rod-shaped particles exhibit ordered phases and collective behavior that are remarkably different from their passive analogs. In nature, many self-propelled rod-shaped particles, such as gliding bacteria and kinesin-driven microtubules, are flexible and can bend. We model these ``living liquid crystals'' to explore their phase behavior, dynamics, and pattern formation. We model particles as short polymers via molecular dynamics with a Langevin thermostat and various types of activity, substrate, and environments. For self-propelled polar particles gliding on a solid substrate, we map out the phase diagram as a function of particle density and flexibility. We compare simulated defect structures to those observed in colonies of gliding myxobacteria; compare spooling behavior to that observed in microtubule gliding assays; and analyze emergence of nematic and polar order. Next we explore pattern formation of self-propelled polar particles under flexible encapsulation, and on substrates with non-uniform Gaussian curvature. Lastly, we impose an activity mechanism that mimics extensile shear, study flexible particles both on solid substrates and coupled to a lipid membrane, and discuss comparisons to relevant experiments. Work performed in collaboration with Michael Varga (Kent State) and Luca Giomi (Universiteit Leiden.) Work supported by NSF DMR-1409658.

  13. Formation and Recondensation of Complex Organic Molecules During Protostellar Luminosity Outbursts

    NASA Technical Reports Server (NTRS)

    Taquet, Vianney; Wirstrom, Eva S.; Charnley, Steven B.

    2016-01-01

    During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The model calculations presented here demonstrate that ion-molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude.

  14. Formation and Recondensation of Complex Organic Molecules during Protostellar Luminosity Outbursts

    NASA Astrophysics Data System (ADS)

    Taquet, Vianney; Wirström, Eva S.; Charnley, Steven B.

    2016-04-01

    During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The model calculations presented here demonstrate that ion-molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude.

  15. A model of jam formation in congested traffic

    NASA Astrophysics Data System (ADS)

    Bunzarova, N. Zh; Pesheva, N. C.; Priezzhev, V. B.; Brankov, J. G.

    2017-12-01

    We study a model of irreversible jam formation in congested vehicular traffic on an open segment of a single-lane road. The vehicles obey a stochastic discrete-time dynamics which is a limiting case of the generalized Totally Asymmetric Simple Exclusion Process. Its characteristic features are: (a) the existing clusters of jammed cars cannot break into parts; (b) when the leading vehicle of a cluster hops to the right, the whole cluster follows it deterministically, and (c) any two clusters of vehicles, occupying consecutive positions on the chain, may become nearest-neighbors and merge irreversibly into a single cluster. The above dynamics was used in a one-dimensional model of irreversible aggregation by Bunzarova and Pesheva [Phys. Rev. E 95, 052105 (2017)]. The model has three stationary non-equilibrium phases, depending on the probabilities of injection (α), ejection (β), and hopping (p) of particles: a many-particle one, MP, a completely jammed phase CF, and a mixed MP+CF phase. An exact expression for the stationary probability P(1) of a completely jammed configuration in the mixed MP+CF phase is obtained. The gap distribution between neighboring clusters of jammed cars at large lengths L of the road is studied. Three regimes of evolution of the width of a single gap are found: (i) growing gaps with length of the order O(L) when β > p; (ii) shrinking gaps with length of the order O(1) when β < p; and (iii) critical gaps at β = p, of the order O(L 1/2). These results are supported by extensive Monte Carlo calculations.

  16. Molecular Dynamics Study on Nucleation Behavior and Lamellar Mergence of Polyethylene Globule Crystallization

    NASA Astrophysics Data System (ADS)

    Yang, Xiaozhen; Wang, Simiao

    2012-02-01

    The site order parameter (SOP) has been adopted to analyze various order structure formation and distribution during the crystallization of a multi-chain polyethylene globule simulated by molecular dynamics. We found that the nucleation relies on crystallinity fluctuation with increase of amplitude, and the baby nucleus in the fluctuation suddenly appears with different shape and increasing size. In the growth stage, a number of lamellar mergence was observed and their selective behaviors were suggested to be related to the orientation difference between the merging lamellae. We obtained that SOP distribution of all atoms in the system during crystallization appears with two peaks: one for the amorphous phase and the other for the crystalline phase. Mesomorphic structures with medium orders locate between the two peaks as an order promotion pathway. Obtained data show that the medium order structure fluctuates at the growth front and does not always be available; the medium order structure existing at the front is not always good for developing. It is possibly caused by chain entanglement.

  17. Accommodating High Transformation Strains in Battery Electrodes via the Formation of Nanoscale Intermediate Phases: Operando Investigation of Olivine NaFePO 4 [Accommodation of High Transformation Strain in Battery Electrodes via Formation of Nanoscale Intermediate Phases: Operando Structure Investigation of Olivine Sodium Iron Phosphate

    DOE PAGES

    Xiang, Kai; Xing, Wenting; Ravnsbaek, Dorthe B.; ...

    2017-02-21

    Virtually all intercalation compounds used as battery electrodes exhibit significant changes in unit cell volume during use. Na xFePO 4 (0 < x < 1, NFP) olivine, of interest as a cathode for sodium-ion batteries, is a model for topotactic, high strain systems as it exhibits one of the largest discontinuous volume changes (~17% by volume) during its first-order transition between two otherwise isostructural phases. Using synchrotron radiation powder X-ray diffraction (PXD) and pair distribution function (PDF) analysis, we discover a new strain-accommodation mechanism wherein a third, <10 nm scale nanocrystalline phase forms to buffer the large lattice mismatch betweenmore » primary phases. The new phase has a and b lattice parameters matching one crystalline endmember phase and c lattice parameter matching the other, and is not detectable by powder diffraction alone. Finally, we suggest that this strain-accommodation mechanism may apply to systems with large transformation strains but in which true “amorphization” does not occur.« less

  18. Kinetics of Cr/Mo-rich precipitates formation for 25Cr-6.9Ni-3.8Mo-0.3N super duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Byun, Sang-Ho; Kang, Namhyun; Lee, Tae-Ho; Ahn, Sang-Kon; Lee, Hae Woo; Chang, Woong-Seong; Cho, Kyung-Mox

    2012-04-01

    The amount and composition of Cr-rich (σ) and Mo-rich (χ) precipitates in super duplex stainless steels was analyzed. An isothermal heat treatment was conducted at temperatures ranging from 700 °C to 1000 °C for up to 10 days. A time-temperature transformation (TTT) diagram was constructed for the mixture of σ and χ phases. The mixture of the σ and χ phases exhibited the fastest rate of formation at approximately 900 °C. Minor phases, such as Cr2N, M23C6, and M7C3, were also detected using a transmission electron microscopy (TEM). Also, a continuous cooling transformation (CCT) diagram was constructed for the mixture of σ and χ phases using the Johnson-Mehl-Avrami equation. Compared with the known CCT diagram of the σ phase, this study revealed faster kinetics with an order of magnitude difference and a new CCT diagram was also developed for a mixture of σ and χ phases. The calculated fraction of σ and χ phases obtained at a cooling speed of 0.5 °C/s was in good agreement with the experimental data.

  19. Accommodating High Transformation Strains in Battery Electrodes via the Formation of Nanoscale Intermediate Phases: Operando Investigation of Olivine NaFePO 4 [Accommodation of High Transformation Strain in Battery Electrodes via Formation of Nanoscale Intermediate Phases: Operando Structure Investigation of Olivine Sodium Iron Phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Kai; Xing, Wenting; Ravnsbaek, Dorthe B.

    Virtually all intercalation compounds used as battery electrodes exhibit significant changes in unit cell volume during use. Na xFePO 4 (0 < x < 1, NFP) olivine, of interest as a cathode for sodium-ion batteries, is a model for topotactic, high strain systems as it exhibits one of the largest discontinuous volume changes (~17% by volume) during its first-order transition between two otherwise isostructural phases. Using synchrotron radiation powder X-ray diffraction (PXD) and pair distribution function (PDF) analysis, we discover a new strain-accommodation mechanism wherein a third, <10 nm scale nanocrystalline phase forms to buffer the large lattice mismatch betweenmore » primary phases. The new phase has a and b lattice parameters matching one crystalline endmember phase and c lattice parameter matching the other, and is not detectable by powder diffraction alone. Finally, we suggest that this strain-accommodation mechanism may apply to systems with large transformation strains but in which true “amorphization” does not occur.« less

  20. The formation of ordered nanoclusters controls cadherin anchoring to actin and cell–cell contact fluidity

    PubMed Central

    Strale, Pierre-Olivier; Duchesne, Laurence; Peyret, Grégoire; Montel, Lorraine; Nguyen, Thao; Png, Evelyn; Tampé, Robert; Troyanovsky, Sergey; Hénon, Sylvie; Ladoux, Benoit

    2015-01-01

    Oligomerization of cadherins could provide the stability to ensure tissue cohesion. Cadherins mediate cell–cell adhesion by forming trans-interactions. They form cis-interactions whose role could be essential to stabilize intercellular junctions by shifting cadherin clusters from a fluid to an ordered phase. However, no evidence has been provided so far for cadherin oligomerization in cellulo and for its impact on cell–cell contact stability. Visualizing single cadherins within cell membrane at a nanometric resolution, we show that E-cadherins arrange in ordered clusters, providing the first demonstration of the existence of oligomeric cadherins at cell–cell contacts. Studying the consequences of the disruption of the cis-interface, we show that it is not essential for adherens junction formation. Its disruption, however, increased the mobility of junctional E-cadherin. This destabilization strongly affected E-cadherin anchoring to actin and cell–cell rearrangement during collective cell migration, indicating that the formation of oligomeric clusters controls the anchoring of cadherin to actin and cell–cell contact fluidity. PMID:26195669

  1. Microstructural development of a gas-atomized and hot-pressed super-α2 alloy

    NASA Astrophysics Data System (ADS)

    Xu, R.; Cui, Y. Y.; Xu, D. M.; Li, D.; Li, Q. C.; Hu, Z. Q.

    1996-08-01

    A variety of heat treatments have been employed to explore the microstructure in Ti-25Al-10Nb-3V-lMo alloy prepared by gas atomization and hot pressing. These treatments include quenching by oil cooling and water cooling and aging at temperatures between 530 °C and 950 °C. Quenching transformations from the β-phase field include the formation of O phase in oil quenching and β (disordered) + O phase in water quenching. The metastable β phase decomposes into O + “Ω”, O, or α2 + βo/B2 phase when the as-quenched alloy is aged at various temperatures. By comparing the selection area diffraction patterns, it has been found that the ordered w phase in the alloy studied in this article is distinct in structure to the “Ω type” ( P3m1) and B82 phase which are formed in the parent matrix of the ordered β(B2,D03) phases. It has also been shown by X-ray diffraction (XRD) analyses that the lattice parameters of the as-aged O phase do not remain constant in the alloy at various temperatures.

  2. Raman scattering of IrTe2

    NASA Astrophysics Data System (ADS)

    Lee, Alexander; Thorsmolle, Verner; Artyukhin, Sergey; Yang, Jun; Cheong, Sang-Wook; Blumberg, Girsh

    2014-03-01

    IrTe2 presents a layered compound with a triangular lattice. It is known to exhibit a first order structural phase transition at approximately 260 K which is of a first order, corresponding to a formation of a superstructure with a period of five unit cells. Using polarized Raman spectroscopy we have studied the temperature dependence of 14 observed Raman allowed phononic modes. These phonons couple strongly to this transition and one additional first order transition at approximately 170 K. In the high-temperature phase only 3 modes are observed, while below approximately 280 K all 14 modes become visible. Below approximately 170 K only 11 modes are observed. Our results shed light on the possible mechanism driving the transitions. ACL, VKT and GB acknowledge support by NSF DMR-1104884.

  3. Fabrication and characterization of L10-ordered FeNi thin films

    NASA Astrophysics Data System (ADS)

    Takanashi, Koki; Mizuguchi, Masaki; Kojima, Takayuki; Tashiro, Takayuki

    2017-12-01

    L10-ordered FeNi, showing high uniaxial magnetic anisotropy (K u), is promising as a ‘rare metal-free’ high K u material. We have worked on L10-ordered FeNi thin films prepared by two methods: one is molecular beam epitaxy (MBE) with alternate deposition of Fe and Ni monatomic layers, and the other is sputtering with co-deposition or multilayer-deposition of Fe and Ni followed by rapid thermal annealing (RTA). For the MBE films prepared by alternate monatomic layer deposition (leading to the stoichiometric composition: Fe 50 at.%- Ni 50 at.%), a clear relationship between K u and the long-range order parameter S estimated by synchrotron x-ray diffraction (XRD) was found with maximum values of S  =  0.48 and K u  =  7.0  ×  106 erg cm-3. The composition dependence of K u was also investigated by deviating the thickness from monatomic layer, showing a maximum of 9.3  ×  106 erg cm-3 around 60 at.%Fe. In addition, the effect of Co addition to L10-ordered FeNi was investigated, suggesting that a small amount (<10 at.%) of Co substitution for Ni would enhance K u if S keeps the same. The experiments were in qualitatively good agreement with the first-principles calculations. The magnetic damping constant α was also measured to be approximately 0.01 irrespective of S, suggesting that L10-FeNi is a candidate material with high K u and low α. For the sputtered films with RTA, no major difference between co-deposition and multilayer-deposition was found: in both cases the formation of L10-ordered phase after RTA was definitely confirmed by XRD. Transmission electron microscopy observations indicated that nanometer-sized L10-ordered clusters were dispersed in a disordered phase, in contrast to that of MBE films showing the homogeneous formation of L10-ordered phase. The enhancement of coercivity (H c) and residual magnetization (M r/M s) was observed associated with the appearance of L10-ordered phase. The maxima of H c and M r/M s were obtained to be 1.35 kOe and 0.22, respectively.

  4. Capillary electrochromatography and capillary electrochromatography-electrospray mass spectrometry for the separation of non-steroidal anti-inflammatory drugs.

    PubMed

    Desiderio, C; Fanali, S

    2000-10-20

    In this study capillary electrochromatography (CEC) was utilized for the separation of ten non-steroidal anti-inflammatory drugs (NSAIDs). Experiments were carried out in a commercially available CE instrument using a packed capillary with RP-18 silica particles where the stationary phase completely filled the capillary. The mobile phase consisted of a mixture of ammonium formate buffer pH 2.5 and acetonitrile. Selectivity and resolution were studied changing the pH and the concentration of the buffer, the acetonitrile content mobile phase and the capillary temperature. The optimum experimental conditions for CEC separation of the studied drug mixture were found using 50 mM ammonium formate pH 2.5-acetonitrile (40:60) at 25 degrees C. The CEC capillary was coupled to an electrospray mass spectrometer for the characterization of the NSAIDs. A mobile phase composed by the same buffer but with a higher concentration of acetonitrile (90%) was used in order to speed up the separation of analytes.

  5. Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics

    PubMed Central

    Danewalia, Satwinder Singh; Sharma, Gaurav; Thakur, Samita; Singh, K.

    2016-01-01

    Agricultural waste ashes are used as resource materials to synthesize new glass and glass-ceramics. The as-prepared materials are characterized using various techniques for their structural and dielectric properties to check their suitability in microelectronic applications. Sugarcane leaves ash exhibits higher content of alkali metal oxides than rice husk ash, which reduces the melting point of the components due to eutectic reactions. The addition of sugarcane leaves ash in rice husk ash promotes the glass formation. Additionally, it prevents the cristobalite phase formation. These materials are inherently porous, which is responsible for low dielectric permittivity i.e. 9 to 40. The presence of less ordered augite phase enhances the dielectric permittivity as compared to cristobalite and tridymite phases. The present glass-ceramics exhibit lower losses than similar materials synthesized using conventional minerals. The dielectric permittivity is independent to a wide range of temperature and frequency. The glass-ceramics developed with adequately devitrified phases can be used in microelectronic devices and other dielectric applications. PMID:27087123

  6. Liquid crystal droplet formation and anchoring dynamics in a microfluidic device

    NASA Astrophysics Data System (ADS)

    Steinhaus, Ben; Shen, Amy; Feng, James; Link, Darren

    2004-11-01

    Liquid crystal drops dispersed in a continuous phase of silicon oil are generated with a narrow distribution in droplet size in microfluidic devices both above and below the nematic to isotropic transition temperature. For these two cases, we observe not only the different LC droplet generation and coalescence dynamics, but also distinct droplet morphology. Our experiments show that the nematic liquid crystalline order is important for the LC droplet formation and anchoring dynamics.

  7. Physicochemical analysis of Permian coprolites from Brazil

    NASA Astrophysics Data System (ADS)

    Rodrigues, M. I. C.; da Silva, J. H.; Santos, F. Eroni P.; Dentzien-Dias, P.; Cisneros, J. C.; de Menezes, A. S.; Freire, P. T. C.; Viana, B. C.

    2018-01-01

    In this paper we performed the study of two coprolites (fossilized feces) collected from the exposed levels of the Pedra de Fogo Formation, Parnaiba Sedimentary Basin, and Rio do Rasto Formation, Paraná Sedimentary Basin, both of the Palaeozoic era (Permian age). They were characterized using X-ray diffractometry, infrared, Raman and energy dispersive spectroscopy techniques in order to aid our understanding of the processes of fossilization and to discuss issues related to the feeding habits of the animals which generated those coprolites, probably cartilaginous fishes. The results obtained using a multitechnique approach showed that although these coprolites are from different geological formations, 3000 km away from each other, they show the same major crystalline phases and elemental composition. The main phases found were hydroxyapatite, silica, calcite and hematite, which lead to infer that those coprolites were formed under similar conditions and produced by a similar group of carnivore or omnivore fishes.

  8. Aqueous photooxidation of ambient Po Valley Italy air samples: Insights into secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Kirkland, J. R.; Lim, Y. B.; Sullivan, A. P.; Decesari, S.; Facchini, C.; Collett, J. L.; Keutsch, F. N.; Turpin, B. J.

    2012-12-01

    In this work, we conducted aqueous photooxidation experiments with ambient samples in order to develop insights concerning the formation of secondary organic aerosol through gas followed by aqueous chemistry (SOAaq). Water-soluble organics (e.g., glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone) are formed through gas phase oxidation of alkene and aromatic emissions of anthropogenic and biogenic origin. Their further oxidation in clouds, fogs and wet aerosols can form lower volatility products (e.g., oligomers, organic acids) that remain in the particle phase after water evaporation, thus producing SOA. The aqueous OH radical oxidation of several individual potentially important precursors has been studied in the laboratory. In this work, we used a mist-chamber apparatus to collect atmospheric mixtures of water-soluble gases from the ambient air at San Pietro Capofiume, Italy during the PEGASOS field campaign. We measured the concentration dynamics after addition of OH radicals, in order to develop new insights regarding formation of SOA through aqueous chemistry. Specifically, batch aqueous reactions were conducted with 33 ml mist-chamber samples (TOC ~ 50-100μM) and OH radicals (~10-12M) in a new low-volume aqueous reaction vessel. OH radicals were formed in-situ, continuously by H2O2 photolysis. Products were analyzed by ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS +/-), and ESI-MS with IC pre-separation (IC/ESI-MS-). Reproducible formation of pyruvate and oxalate were observed both by IC and ESI-MS. These compounds are known to form from aldehyde oxidation in the aqueous phase. New insights regarding the aqueous chemistry of these "more atmospherically-realistic" experiments will be discussed.

  9. Nucleation-controlled microstructures and anomalous eutectic formation in undercooled Co-Sn and Ni-Si eutectic melts

    NASA Astrophysics Data System (ADS)

    Li, Mingjun; Kuribayashi, Kazuhiko

    2003-12-01

    Co-20.5 at. pct Sn and Ni-21.4 at. pct Si eutectic alloys have been levitated and undercooled in an electromagnetic levitator (EML) and then solidified spontaneously at different undercoolings. The original surface and cross-sectional morphologies of these solidified samples consist of separate eutectic colonies regardless of melt undercooling, indicating that microstructures in the free solidification of the eutectic systems are nucleation controlled. Regular lamellae always grow from the periphery of an independent anomalous eutectic grain in each eutectic colony. This typical morphology shows that the basic unit should be a single eutectic colony, when discussing the solidification behavior. Special emphasis is focused on the anomalous eutectic formation after a significant difference in linear kinetic coefficients is recognized for terminal eutectic phases, in particular when a eutectic reaction contains a nonfaceted disordered solid solution and a faceted ordered intermetallic compound as the terminal eutectic phases. It is this remarkable difference in the linear kinetic coefficients that leads to a pronounced difference in kinetic undercoolings. The sluggish kinetics in the interface atomic attachment of the intermetallic compound originates the occurrence of the decoupled growth of two eutectic phases. Hence, the current eutectic models are modified to incorporate kinetic undercooling, in order to account for the competitive growth behavior of eutectic phases in a single eutectic colony. The critical condition for generating the decoupled growth of eutectic phases is proposed. Further analysis reveals that a dimensionless critical undercooling may be appropriate to show the tendency for the anomalous eutectic-forming ability when considering the difference in linear kinetic coefficients of terminal eutectic phases. This qualitative criterion, albeit crude with several approximations and assumptions, can elucidate most of the published experimental results with the correct order of magnitude. Solidification modes in some eutectic alloys are predicted on the basis of the present criterion. Future work that may result in some probable errors is briefly directed to improve the model.

  10. The Reactive Stabilisation of Aluminum-Zinc-X Foams via the Formation of a Transient Liquid Phase Using the Powder Metallurgy Approach

    NASA Astrophysics Data System (ADS)

    Lafrance, Maxime

    During the past few decades, aluminum foam research has focused on the improvement of properties. These properties include pore structure and process reproducibility. High energy absorption capacity, lightweight and high stiffness to weight ratio are some of the properties that make these foams desirable for a number of diverse applications. The use of a transient liquid phase and melting point depressant was studied in order to improve aluminum foam manufactured through the powder metallurgy process and to create reactive Stabilisation. The transient liquid phase reacts with aluminum and helps encapsulate higher levels of hydrogen, simultaneously reducing the difference between the melting point of the alloy and the gas release temperature of the blowing agent (TiH2). A large difference is known to adversely affect foam properties. The study of pure aluminum foam formation was undertaken to understand the basic foaming mechanisms related to crack formations under in-situ conditions. Elemental zinc powder at various concentrations (Al-10wt%Zn, Al-33wt%Zn and Al-50wt%Zn) was added to produce a transient liquid phase. Subsequently, an Al-12wt%Si pre-alloyed powder was added to the Al-Zn mixture in order to further reduce the melting point of the alloy and to increase the amount of transient liquid phase available (Al-3.59wtSi-9.6%Zn and Al-2.4wt%Si-9.7wt%Zn). The mechanical properties of each system at optimal foaming conditions were assessed and compared. It was determined that pure aluminum foam crack formation could be suppressed at higher heating rates, improving the structure through the nucleation of uniform pores. The Al-10wt%Zn foams generated superior pore properties, post maximum expansion stability and mechanical properties at lower temperatures, compared to pure aluminum. The Al-Si-Zn foams revealed remarkable stability and pore structure at very low temperatures (640 to 660°C). Overall, the Al-10wt%Zn and Al-3.59wt%Si-9.6wt%Zn foams offer superior properties compared to pure aluminum.

  11. Carbon solids in oxygen-deficient explosives (LA-UR-13-21151)

    NASA Astrophysics Data System (ADS)

    Peery, Travis

    2013-06-01

    The phase behavior of excess carbon in oxygen-deficient explosives has a significant effect on detonation properties and product equations of state. Mixtures of fuel oil in ammonium nitrate (ANFO) above a stoichiometric ratio demonstrate that even small amounts of graphite, on the order of 5% by mole fraction, can substantially alter the Chapman-Jouget (CJ) state properties, a central ingredient in modeling the products equation of state. Similar effects can be seen for Composition B, which borders the carbon phase boundary between graphite and diamond. Nano-diamond formation adds complexity to the product modeling because of surface adsorption effects. I will discuss these carbon phase issues in our equation of state modeling of detonation products, including our statistical mechanics description of carbon clustering and surface chemistry to properly treat solid carbon formation. This work is supported by the Advanced Simulation and Computing Program, under the NNSA.

  12. Intrinsic folding of small peptide chains: spectroscopic evidence for the formation of beta-turns in the gas phase.

    PubMed

    Chin, Wutharath; Dognon, Jean-Pierre; Piuzzi, François; Tardivel, Benjamin; Dimicoli, Iliana; Mons, Michel

    2005-01-19

    Laser desorption of model peptides coupled to laser spectroscopic techniques enables the gas-phase observation of genuine secondary structures of biology. Spectroscopic evidence for the formation of beta-turns in gas-phase peptide chains containing glycine and phenylalanine residues establishes the intrinsic stability of these forms and their ability to compete with other stable structures. The precise characterization of local minima on the potential energy surface from IR spectroscopy constitutes an acute assessment for the state-of-the-art quantum mechanical calculations also presented. The observation of different types of beta-turns depending upon the residue order within the sequence is found to be consistent with the residue propensities in beta-turns of proteins, which suggests that the prevalence of glycine in type II and II' turns stems essentially from an energetic origin, already at play under isolated conditions.

  13. Aggregation and folding phase transitions of RNA molecules

    NASA Astrophysics Data System (ADS)

    Bundschuh, Ralf

    2007-03-01

    RNA is a biomolecule that is involved in nearly all aspects of cellular functions. In order to perform many of these functions, RNA molecules have to fold into specific secondary structures. This folding is driven by the tendency of the bases to form Watson-Crick base pairs. Beyond the biological importance of RNA, the relatively simple rules for structure formation of RNA make it a very interesting system from the statistical physics point of view. We will present examples of phase transitions in RNA secondary structure formation that are amenable to analytical descriptions. A special focus will be on aggregation between several RNA molecules which is important for some regulatory circuits based on RNA structure, triplet repeat diseases like Huntington's, and as a model for prion diseases. We show that depending on the relative strength of the intramolecular and the intermolecular base pairing, RNA molecules undergo a transition into an aggregated phase and quantitatively characterize this transition.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuzhan; Zhang, Yuehong; Rios, Orlando

    In this study, a liquid crystalline epoxy network (LCEN) with exchangeable disulfide bonds is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic dicarboxylic acid curing agent containing a disulfide bond. The effect of disulfide bonds on curing behavior and liquid crystalline (LC) phase formation of the LCEN is investigated. The presence of the disulfide bonds results in an increase in the reaction rate, leading to a reduction in liquid crystallinity of the LCEN. In order to promote LC phase formation and stabilize the self-assembled LC domains, a similar aliphatic dicarboxylic acid without the disulfide bond is used asmore » a co-curing agent to reduce the amount of exchangeable disulfide bonds in the system. After optimizing the molar ratio of the two curing agents, the resulting LCEN exhibits improved reprocessability and recyclability because of the disulfide exchange reactions, while preserving LC properties, such as the reversible LC phase transition and macroscopic LC orientation, for shape memory applications.« less

  15. Confocal raman microscopy as a non-invasive tool to investigate the phase composition of frozen complex cryopreservation media.

    PubMed

    Kreiner-Møller, A; Stracke, F; Zimmermann, H

    2013-01-01

    Various cryoprotective agents (CPA) are added to cell media in order to avoid cell injury during cryo preservation. The resulting complex environment of the preserved cell, consisting of crystalline and liquid phases can however not be investigated non-invasively by established methods in cryobiology. This study shows how scanning confocal Raman microscopy can non-invasively extract information on chemical composition, phase domain and distribution at cryogenic temperatures. The formation of the salt hydrate, hydrohalite NaCl∙H2O, in solutions comprised of phosphate buffered saline (PBS) and dimethyl sulphoxide (DMSO) is studied in particular. Scanning confocal Raman microscopy can be used to unambiguously identify hydrohalite in a medium containing DMSO and saline. The confocal Raman microscopy imaging along with differential scanning calorimetric measurements further show that the hydrohalite is formed without eutectic formation. This method also allows for discrimination between closely packed hydrohalite crystals that are oriented differently.

  16. Possible existence of two amorphous phases of d-mannitol related by a first-order transition

    NASA Astrophysics Data System (ADS)

    Zhu, Men; Wang, Jun-Qiang; Perepezko, John H.; Yu, Lian

    2015-06-01

    We report that the common polyalcohol d-mannitol may have two amorphous phases related by a first-order transition. Slightly above its glass transition temperature Tg (284 K), the supercooled liquid (SCL) of d-mannitol transforms to a low-energy, apparently amorphous phase with stronger hydrogen bonds. The enthalpy of this so-called Phase X is approximately halfway between those of the known amorphous and crystalline phases, a position low for glass aging and high for crystal polymorphs. Similar to the SCL, Phase X is transparent with broad X-ray diffraction and Raman scattering; upon temperature cycling, it exhibits a glass-transition-like change of heat capacity. On fast heating, Phase X transforms back to the SCL near Tg + 50 K, enabling a determination of their equilibrium temperature. The presence of d-sorbitol as a plasticizer enables observation of a first-order transition from the SCL to Phase X entirely in the liquid state (liquid-liquid transition). The transition from d-mannitol's SCL to Phase X has intriguing similarities with the formation of the glacial phase of triphenyl phosphite (TPP) and the conversion from high-density to low-density amorphous ice, both studied intensely in the context of polyamorphism. All three processes occur near Tg with substantial enthalpy decrease toward the crystalline phases; the processes in water and d-mannitol both strengthen the hydrogen bonds. In contrast to TPP, d-mannitol's Phase X forms more rapidly and can transform back to the SCL. These features make d-mannitol a valuable new model for understanding polyamorphism.

  17. Liquid-phase explosive crystallization of electron-beam-evaporated a-Si films induced by flash lamp annealing

    NASA Astrophysics Data System (ADS)

    Ohdaira, Keisuke; Matsumura, Hideki

    2013-01-01

    We succeed in the formation of micrometer-order-thick polycrystalline silicon (poly-Si) films through the flash-lamp-induced liquid-phase explosive crystallization (EC) of precursor a-Si films prepared by electron-beam (EB) evaporation. The velocity of the explosive crystallization (vEC) is estimated to be ˜14 m/s, which is close to the velocity of the liquid-phase epitaxy (LPE) of Si at a temperature around the melting point of a-Si of 1418 K. Poly-Si films formed have micrometer-order-long grains stretched along a lateral crystallization direction, and X-ray diffraction (XRD) and electron diffraction pattern measurements reveal that grains in poly-Si films tend to have a particular orientation. These features are significantly different from our previous results: the formation of poly-Si films containing randomly-oriented 10-nm-sized fine grains formed from a-Si films prepared by catalytic chemical vapor deposition (Cat-CVD) or sputtering. One possible reason for the emergence of a different EC mode in EB-evaporated a-Si films is the suppression of solid-phase nucleation (SPN) during Flash Lamp Annealing (FLA) due to tensile stress which precursor a-Si films originally hold. Poly-Si films formed from EB-evaporated a-Si films would contribute to the realization of high-efficiency thin-film poly-Si solar cells because of large and oriented grains.

  18. Imaging chiral symmetry breaking from Kekule bond order in graphene

    DOE PAGES

    Gutiérrez, Christopher; Kim, Cheol -Joo; Brown, Lola; ...

    2016-05-23

    Chirality—or ‘handedness’—is a symmetry property crucial to fields as diverse as biology, chemistry and high-energy physics. In graphene, chiral symmetry emerges naturally as a consequence of the carbon honeycomb lattice. This symmetry can be broken by interactions that couple electrons with opposite momenta in graphene. Here we directly visualize the formation of Kekulé bond order, one such phase of broken chiral symmetry, in an ultraflat graphene sheet grown epitaxially on a copper substrate. We show that its origin lies in the interactions between individual vacancies in the copper substrate that are mediated electronically by the graphene. We show that thismore » interaction causes the bonds in graphene to distort, creating a phase with broken chiral symmetry. Furthermore, the Kekulé ordering is robust at ambient temperature and atmospheric conditions, indicating that intercalated atoms may be harnessed to drive graphene and other two-dimensional materials towards electronically desirable and exotic collective phases.« less

  19. Dome-shaped magnetic order competing with high-temperature superconductivity at high pressures in FeSe

    DOE PAGES

    Sun, J. P.; Matsuura, K.; Ye, G. Z.; ...

    2016-07-19

    The coexistence and competition between superconductivity and electronic orders, such as spin or charge density waves, have been a central issue in high transition-temperature (T c) superconductors. Unlike other iron-based superconductors, FeSe exhibits nematic ordering without magnetism whose relationship with its superconductivity remains unclear. Moreover, a pressure-induced fourfold increase of T c has been reported, which poses a profound mystery. Here we report high-pressure magnetotransport measurements in FeSe up to ~15 GPa, which uncover the dome shape of magnetic phase superseding the nematic order. Above ~6 GPa the sudden enhancement of superconductivity (T c ≤ 38.3 K) accompanies a suppressionmore » of magnetic order, demonstrating their competing nature with very similar energy scales. Above the magnetic dome, we find anomalous transport properties suggesting a possible pseudogap formation, whereas linear-in-temperature resistivity is observed in the normal states of the high-T c phase above 6 GPa. In conclusion, the obtained phase diagram highlights unique features of FeSe among iron-based superconductors, but bears some resemblance to that of high-T c cuprates.« less

  20. Vesicle Origami and the Influence of Cholesterol on Lipid Packing.

    PubMed

    Tanasescu, Radu; Lanz, Martin A; Mueller, Dennis; Tassler, Stephanie; Ishikawa, Takashi; Reiter, Renate; Brezesinski, Gerald; Zumbuehl, Andreas

    2016-05-17

    The artificial phospholipid Pad-PC-Pad was analyzed in 2D (monolayers at the air/water interface) and 3D (aqueous lipid dispersions) systems. In the gel phase, the two leaflets of a Pad-PC-Pad bilayer interdigitate completely, and the hydrophobic bilayer region has a thickness comparable to the length of a single phospholipid acyl chain. This leads to a stiff membrane with no spontaneous curvature. Forced into a vesicular structure, Pad-PC-Pad has faceted geometry, and in its extreme form, tetrahedral vesicles were found as predicted a decade ago. Above the main transition temperature, a noninterdigitated Lα phase with fluid chains has been observed. The addition of cholesterol leads to a slight decrease of the main transition temperature and a gradual decrease in the transition enthalpy until the transition vanishes at 40 mol % cholesterol in the mixture. Additionally, cholesterol pulls the chains apart, and a noninterdigitated gel phase is observed. In monolayers, cholesterol has an ordering effect on liquid-expanded phases and disorders condensed phases. The wavenumbers of the methylene stretching vibration indicate the formation of a liquid-ordered phase in mixtures with 40 mol % cholesterol.

  1. Precisely cyclic sand: self-organization of periodically sheared frictional grains.

    PubMed

    Royer, John R; Chaikin, Paul M

    2015-01-06

    The disordered static structure and chaotic dynamics of frictional granular matter has occupied scientists for centuries, yet there are few organizational principles or guiding rules for this highly hysteretic, dissipative material. We show that cyclic shear of a granular material leads to dynamic self-organization into several phases with different spatial and temporal order. Using numerical simulations, we present a phase diagram in strain-friction space that shows chaotic dispersion, crystal formation, vortex patterns, and most unusually a disordered phase in which each particle precisely retraces its unique path. However, the system is not reversible. Rather, the trajectory of each particle, and the entire frictional, many-degrees-of-freedom system, organizes itself into a limit cycle absorbing state. Of particular note is that fact that the cyclic states are spatially disordered, whereas the ordered states are chaotic.

  2. A review of rapid solidification studies of intermetallic compounds

    NASA Technical Reports Server (NTRS)

    Koch, C. C.

    1985-01-01

    A review of rapid solidification studies of high-temperature ordered intermetallic compounds is presented. Emphasis is on the nickel - and iron- aluminides which are of potential interest as structural materials. The nickel-base aluminides which have been rapidly solidified exhibit changes in grain size, compositional segregation, and degree of long range order (as reflected in APB size and distribution) which markedly affect mechanical properties. Some experiments indicate the formation of a metastable L1(2) phase in rapidly solidified Fe-(Ni,Mn)-Al-C alloys, while other work observes only a metastable fcc phase in the same composition range. The metastable phases and/or microstructures in both nickel and iron aluminides are destroyed by annealing at temperatures above 750 K, with subsequent degradation of mechanical properties. Rapid solidification studies of several other intermetallic compounds are briefly noted.

  3. Precisely cyclic sand: Self-organization of periodically sheared frictional grains

    PubMed Central

    Royer, John R.; Chaikin, Paul M.

    2015-01-01

    The disordered static structure and chaotic dynamics of frictional granular matter has occupied scientists for centuries, yet there are few organizational principles or guiding rules for this highly hysteretic, dissipative material. We show that cyclic shear of a granular material leads to dynamic self-organization into several phases with different spatial and temporal order. Using numerical simulations, we present a phase diagram in strain–friction space that shows chaotic dispersion, crystal formation, vortex patterns, and most unusually a disordered phase in which each particle precisely retraces its unique path. However, the system is not reversible. Rather, the trajectory of each particle, and the entire frictional, many–degrees-of-freedom system, organizes itself into a limit cycle absorbing state. Of particular note is that fact that the cyclic states are spatially disordered, whereas the ordered states are chaotic. PMID:25538298

  4. Temperature dependent structural and magnetic study of Co-sputtered Fe-Al thin film

    NASA Astrophysics Data System (ADS)

    Vyas, Anupam; Brajpuriya, Ranjeet

    2017-05-01

    The authors have deposited co-sputtered Fe-Al thin film on a glass substrate. It is the first ever reporting of Fe and Al co-sputtering in an Argon atmosphere under vacuum conditions. The sample was annealed at 200°C, 300°C, 400°C, so as to allow different phase formation in it. To study the structural and magnetic properties of the samples the GIXRD, XRR and MOKE measurements were done. After annealing at 400°C we observed disordered FeAl formation and which after further converted to more ordered phase which is also confirmed from reflectivity measurements. The magnetic measurement shows the magnetic nature of the sample even after annealing at 400°C/5hr.

  5. Nucleation of the Widmanstatten Pattern in Iron Meteorites

    NASA Technical Reports Server (NTRS)

    Yang, J.; Goldstein, J. I.

    2004-01-01

    The Widmanstatten pattern develops at low temperatures during the evolution of the asteroids. We have studied the origin of the Widmanstatten pattern in order to obtain metallographic cooling rates in the temperature range (approx. 700 to 300 deg C). This paper summarizes our recent evaluation of the various mechanisms for the formation of the Widmanstatten pattern. All chemical groups of the iron meteorites are considered. We also propose a new mechanism for the formation of the Widmanstatten pattern in the low P metal phase of iron, stony-iron and stony meteorites. The results of this evaluation enables us to more accurately determine metallographic cooling rates particularly when incorporated with other recent advances in Fe-Ni and Fe-Ni (P saturated) phase diagrams and interdiffusion coefficients.

  6. Enhancement of high-order harmonics in a plasma waveguide formed in clustered Ar gas.

    PubMed

    Geng, Xiaotao; Zhong, Shiyang; Chen, Guanglong; Ling, Weijun; He, Xinkui; Wei, Zhiyi; Kim, Dong Eon

    2018-02-05

    Generation of high-order harmonics (HHs) is intensified by using a plasma waveguide created by a laser in a clustered gas jet. The formation of a plasma waveguide and the guiding of a laser beam are also demonstrated. Compared to the case without a waveguide, harmonics were strengthened up to nine times, and blue-shifted. Numerical simulation by solving the time-dependent Schrödinger equation in strong field approximation agreed well with experimental results. This result reveals that the strengthening is the result of improved phase matching and that the blue shift is a result of change in fundamental laser frequency due to self-phase modulation (SPM).

  7. X-Ray Amorphous Phases in Terrestrial Analog Volcanic Sediments: Implications for Amorphous Phases in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Smith, R. J.; Horgan, B.; Rampe, E.; Dehouck, E.; Morris, R. V.

    2017-01-01

    X-ray diffraction (XRD) amorphous phases have been found as major components (approx.15-60 wt%) of all rock and soil samples measured by the CheMin XRD instrument in Gale Crater, Mars. The nature of these phases is not well understood and could be any combination of primary (e.g., glass) and secondary (e.g., allophane) phases. Amorphous phases form in abundance during surface weathering on Earth. Yet, these materials are poorly characterized, and it is not certain how properties like composition and structure change with formation environment. The presence of poorly crystalline phases can be inferred from XRD patterns by the appearance of a low angle rise (< or approx.10deg 2(theta)) or broad peaks in the background at low to moderate 2(theta) angles (amorphous humps). CheMin mineral abundances combined with bulk chemical composition measurements from the Alpha Particle X-ray Spectrometer (APXS) have been used to estimate the abundance and composition of the XRD amorphous materials in soil and rock samples on Mars. Here we apply a similar approach to a diverse suite of terrestrial samples - modern soils, glacial sediments, and paleosols - in order to determine how formation environment, climate, and diagenesis affect the abundance and composition of X-ray amorphous phases.

  8. Primordial origin of nontopological solitons

    NASA Technical Reports Server (NTRS)

    Frieman, Joshua A.; Gelmini, Graciela B.; Gleiser, Marcelo; Kolb, Edward W.

    1988-01-01

    The formation of nontopological solitons in a second-order phase transition in the early universe is discussed. Ratios of dimensionless coupling constants in the Lagrangian determine their abundance and mass. For a large range of parameters, nontopological solitons can be cosmologically significant, contributing a significant fraction of the present mass density of the universe.

  9. Crystallization induced ordering of hard magnetic L1{sub 0} phase in melt-spun FeNi-based ribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Kazuhisa, E-mail: sato@uhvem.osaka-u.ac.jp; Sharma, Parmanand; Zhang, Yan

    2016-05-15

    The microstructure of newly developed hard magnetic Fe{sub 42}Ni{sub 41.3}Si{sub x}B{sub 12-x}P{sub 4}Cu{sub 0.7} (x = 2 to 8 at%) nanocrystalline alloy ribbons has been studied by transmission electron microscopy (TEM) and electron diffraction. A high-density polycrystalline grains, ∼30 nm in size, were formed in a ribbon after annealing at 673 K for 288 hours. Elemental mapping of the annealed specimen revealed the coexistence of three regions, Fe-rich, Ni-rich, and nearly equiatomic Fe-Ni, with areal fractions of 37%, 40%, and 23 %, respectively. The equiatomic L1{sub 0}-type ordered phase of FeNi was detected in between the Fe and Ni-rich phases.more » The presence of superlattice reflections in nanobeam electron diffraction patterns confirmed the formation of the hard magnetic L1{sub 0} phase beyond any doubt. The L1{sub 0} phase of FeNi was detected in alloys annealed in the temperature range of 673 to 813 K. The present results suggest that the order-disorder transition temperature of L1{sub 0} FeNi is higher than the previously reported value (593 K). The high diffusion rates of the constituent elements induced by the crystallization of an amorphous phase at relatively low temperature (∼673 K) are responsible for the development of atomic ordering in FeNi.« less

  10. Early stages of carbonate mineralization revealed from molecular simulations: Implications for biomineral formation

    NASA Astrophysics Data System (ADS)

    Wallace, A. F.; DeYoreo, J.; Banfield, J. F.

    2011-12-01

    The carbonate mineral constituents of many biomineralized products, formed both in and ex vivo, grow by a multi-stage crystallization process that involves the nucleation and structural reorganization of transient amorphous phases. The existence of transient phases and cluster species has significant implications for carbonate nucleation and growth in natural and engineered environments, both modern and ancient. The structure of these intermediate phases remains elusive, as does the nature of the disorder to order transition, however, these process details may strongly influence the interpretation of elemental and isotopic climate proxy data obtained from authigenic and biogenic carbonates. While molecular simulations have been applied to certain aspects of crystal growth, studies of metal carbonate nucleation are strongly inhibited by the presence of kinetic traps that prevent adequate sampling of the potential landscape upon which the growing clusters reside within timescales accessible by simulation. This research addresses this challenge by marrying the recent Kawska-Zahn (KZ) approach to simulation of crystal nucleation and growth from solution with replica-exchange molecular dynamics (REMD) techniques. REMD has been used previously to enhance sampling of protein conformations that occupy energy wells that are separated by sizable thermodynamic and kinetic barriers, and is used here to probe the initial formation and onset of order within hydrated calcium and iron carbonate cluster species during nucleation. Results to date suggest that growing clusters initiate as short linear ion chains that evolve into two- and three-dimensional structures with continued growth. The planar structures exhibit an obvious 2d lattice, while establishment of a 3d lattice is hindered by incomplete ion desolvation. The formation of a dehydrated core consisting of a single carbonate ion is observed when the clusters are ~0.75 nm. At the same size a distorted, but discernible calcite-type lattice is also apparent. Continued growth results in expansion of the dehydrated core, however, complete desolvation and incorporation of cations into the growing carbonate phase is not achieved until the cluster grows to ~1.2 nm. Exploration of the system free energy along the crystallization path reveals "special" cluster sizes that correlate with ion desolvation milestones. The formation of these species comprise critical bottlenecks on the energy landscape and for the establishment of order within the growing clusters.

  11. Effect of polynucleotides on the dimerization of glycine. [abiological protein synthesis in primitive earth conditions

    NASA Technical Reports Server (NTRS)

    Mizutani, H.; Ponnamperuma, C.

    1981-01-01

    Results from experiments to determine the effect of polynucleotides on abiological formation of peptide bonds are reported. The reaction between glycine molecules in an aqueous phase in the presence of a condensing agent was chosen as a model, with polyphosphates being selected as the condensing agent for biologically relevant peptide formation. Four types of polynucleotides were used: polygluanic acid (G), polyuridic acid (U), polyadenylic acid (A), and polycytidylic acid (C); the effects of small anions, acetate, chloride, and phosphate, were also studied. Procedures are given, including concentrations, pH, and incubation time, and the type of amino acid analyzer. The diglycine yields were, in order of most to least: G, C, A, U, and are diagrammed as a function of time; rate of formation followed the same order of magnitude as the final yields. Anion presence displayed no discernible effect. The results are taken to indicate that polynucleotides do have an effect on the formation of peptide bonds, an effect significant in the understanding of chemical evolution.

  12. Merging of independent condensates: disentangling the Kibble-Zurek mechanism

    NASA Astrophysics Data System (ADS)

    Ville, Jean-Loup; Aidelsburger, Monika; Saint-Jalm, Raphael; Nascimbene, Sylvain; Beugnon, Jerome; Dalibard, Jean

    2017-04-01

    An important step in the study of out-of-equilibrium physics is the Kibble-Zurek theory which describes a system after a quench through a second-order phase transition. This was studied in our group with a temperature quench across the normal-to-superfluid phase transition in an annular trap geometry, inducing the formation of supercurrents. Their magnitude and direction were detected by measuring spiral patterns resulting from the interference of the ring-shaped condensate with a central reference disk. According to the KZ mechanism domains of phase are created during the quench, with a characteristic size depending of its duration. In our case this results in a stochastic formation of supercurrents depending on the relative phases of the domains. As a next step of this study, we now design ourselves the patches thanks to our tunable trapping potential. We control both the number of condensates to be merged (from one to twelve) and their merging time. We report an increase of the vorticity in the ring for an increased number of patches compatible with a random phase model. We further investigate the time required by the phase to homogenize between two condensates.

  13. Domain shape instabilities and dendrite domain growth in uniaxial ferroelectrics

    NASA Astrophysics Data System (ADS)

    Shur, Vladimir Ya.; Akhmatkhanov, Andrey R.

    2018-01-01

    The effects of domain wall shape instabilities and the formation of nanodomains in front of moving walls obtained in various uniaxial ferroelectrics are discussed. Special attention is paid to the formation of self-assembled nanoscale and dendrite domain structures under highly non-equilibrium switching conditions. All obtained results are considered in the framework of the unified kinetic approach to domain structure evolution based on the analogy with first-order phase transformation. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.

  14. FORMATION AND RECONDENSATION OF COMPLEX ORGANIC MOLECULES DURING PROTOSTELLAR LUMINOSITY OUTBURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taquet, Vianney; Wirström, Eva S.; Charnley, Steven B.

    2016-04-10

    During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The modelmore » calculations presented here demonstrate that ion–molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude.« less

  15. Formation process of micro arc oxidation coatings obtained in a sodium phytate containing solution with and without CaCO3 on binary Mg-1.0Ca alloy

    NASA Astrophysics Data System (ADS)

    Zhang, R. F.; Zhang, Y. Q.; Zhang, S. F.; B. Qu; Guo, S. B.; Xiang, J. H.

    2015-01-01

    Micro arc oxidation (MAO) is an effective method to improve the corrosion resistance of magnesium alloys. In order to reveal the influence of alloying element Ca and CaCO3 electrolyte on the formation process and chemical compositions of MAO coatings on binary Mg-1.0Ca alloy, anodic coatings after different anodizing times were prepared on binary Mg-1.0Ca alloy in a base solution containing 3 g/L sodium hydroxide and 15 g/L sodium phytate with and without addition of CaCO3. The coating formation was studied by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that Mg-1.0Ca alloy is composed of two phases, the Mg phase and Mg2Ca phase. After treating for 5 s, the coating began to develop and was preferentially formed on the area nearby Mg2Ca phase, which may be resulted from the intrinsic electronegative potential of the Mg phase than that of Mg2Ca phase. Anodic coatings unevenly covered the total surface after 20 s. After 80 s, the coatings were uniformly developed on Mg-1.0Ca alloy with micro pores. During MAO process, some sodium phytate molecules are hydrolyzed into inorganic phosphate. CaCO3 has minor influence on the calcium content of the obtained MAO coatings.

  16. Heterogeneity-enhanced gas phase formation in shallow aquifers during leakage of CO2-saturated water from geologic sequestration sites

    NASA Astrophysics Data System (ADS)

    Plampin, Michael R.; Lassen, Rune N.; Sakaki, Toshihiro; Porter, Mark L.; Pawar, Rajesh J.; Jensen, Karsten H.; Illangasekare, Tissa H.

    2014-12-01

    A primary concern for geologic carbon storage is the potential for leakage of stored carbon dioxide (CO2) into the shallow subsurface where it could degrade the quality of groundwater and surface water. In order to predict and mitigate the potentially negative impacts of CO2 leakage, it is important to understand the physical processes that CO2 will undergo as it moves through naturally heterogeneous porous media formations. Previous studies have shown that heterogeneity can enhance the evolution of gas phase CO2 in some cases, but the conditions under which this occurs have not yet been quantitatively defined, nor tested through laboratory experiments. This study quantitatively investigates the effects of geologic heterogeneity on the process of gas phase CO2 evolution in shallow aquifers through an extensive set of experiments conducted in a column that was packed with layers of various test sands. Soil moisture sensors were utilized to observe the formation of gas phase near the porous media interfaces. Results indicate that the conditions under which heterogeneity controls gas phase evolution can be successfully predicted through analysis of simple parameters, including the dissolved CO2 concentration in the flowing water, the distance between the heterogeneity and the leakage location, and some fundamental properties of the porous media. Results also show that interfaces where a less permeable material overlies a more permeable material affect gas phase evolution more significantly than interfaces with the opposite layering.

  17. Crystallization around solid-like nanosized docks can explain the specificity, diversity, and stability of membrane microdomains.

    PubMed

    de Almeida, Rodrigo F M; Joly, Etienne

    2014-01-01

    To date, it is widely accepted that microdomains do form in the biological membranes of all eukaryotic cells, and quite possibly also in prokaryotes. Those sub-micrometric domains play crucial roles in signaling, in intracellular transport, and even in inter-cellular communications. Despite their ubiquitous distribution, and the broad and lasting interest invested in those microdomains, their actual nature and composition, and even the physical rules that regiment their assembly still remain elusive and hotly debated. One of the most often considered models is the raft hypothesis, i.e., the partition of lipids between liquid disordered and ordered phases (Ld and Lo, respectively), the latter being enriched in sphingolipids and cholesterol. Although it is experimentally possible to obtain the formation of microdomains in synthetic membranes through Ld/Lo phase separation, there is an ever increasing amount of evidence, obtained with a wide array of experimental approaches, that a partition between domains in Ld and Lo phases cannot account for many of the observations collected in real cells. In particular, it is now commonly perceived that the plasma membrane of cells is mostly in Lo phase and recent data support the existence of gel or solid ordered domains in a whole variety of live cells under physiological conditions. Here, we present a model whereby seeds comprised of oligomerised proteins and/or lipids would serve as crystal nucleation centers for the formation of diverse gel/crystalline nanodomains. This could confer the selectivity necessary for the formation of multiple types of membrane domains, as well as the stability required to match the time frames of cellular events, such as intra- or inter-cellular transport or assembly of signaling platforms. Testing of this model will, however, require the development of new methods allowing the clear-cut discrimination between Lo and solid nanoscopic phases in live cells.

  18. Microstructure transformation of Cr-Al coating on carbon steel prepared by ball milling method as a function of tungsten doping

    NASA Astrophysics Data System (ADS)

    Wismogroho, A. S.; Sudiro, T.; Didik, A.; Ciswandi

    2018-03-01

    In present work, Cr-Al coatings containing 0, 1, 2, 3, and 5% W have been prepared on the surface of low carbon steel by mechanical alloying technique. The composition of each powder was milled for 2 hour in a stainless steel crucible with a ball to powder ratio of 10:1. Afterward, the Cr-Al-W powder and substrate were mechanically alloyed in air for 1 hour. The heat treatment of coated samples was carried out at 800 °C in a vacuum furnace for 2 hour. In order to characterize the phase composition and microstructure of the coating before and after heat treatment, XRD and SEM-EDX were used. The analysis results reveal that the ball milling process induces the formation of homogeneous Cr-Al-W coating structure with a thickness of about 80 μm. The phase observation shows individual peaks of each starting elements, along with the occurrence of powder refinement and solid solution formation. After heat treatment, AlCr2 and Al8Cr5 phases were formed. The addition of W accelerates the formation of AlCr2, but inhibits the formation of Al8Cr5. The detail of the results was presented in this paper.

  19. Effect of Ammonia on Glyoxal SOA in Inorganic Aqueous Seed Particles

    NASA Astrophysics Data System (ADS)

    Waxman, E.; Volkamer, R. M.; Laskin, A.; Laskin, J.; Koenig, T. K.; Baltensperger, U.; Dommen, J.; Prevot, A. S.; Slowik, J.; Maxut, A.; Noziere, B.; Wang, S.; Yu, J.

    2014-12-01

    Glyoxal (C2H2O2) is a ubiquitous small molecule that is observed in the terrestrial biogenic, urban, marine and arctic atmosphere. It forms secondary organic aerosol (SOA) as a result of multiphase chemical reactions in water. The rate of these reactions is controlled by the effective Henry's law partitioning coefficient (Heff) which is enhanced in the presence of inorganic salts by up to 3 orders of magnitude (Kampf et al., 2013, ES&T). Aerosol particles are among the most concentrated salt solutions on Earth and the SOA formation rate in aerosol water is strongly modified by this 'salting-in' mechanism. We have studied the effect of gas-phase ammonia on the rate of SOA formation in real particles composed of different inorganic salts (sulfate, nitrate, chloride). A series of simulation chamber experiments were conducted at the Paul Scherrer Institut in Switzerland during Summer 2013. The SOA formation rate in experiments with added gas-phase ammonia (NH3) was found to be greatly accelerated compared to experiments without added NH3. Product analysis of particles included online HR-ToF-AMS and offline nano-DESI and LC-MS. We find that imidazole-like oligomer compounds dominate the observed products, rather than high-O/C oligomers containing solely C, H, and O. We further employed isotopically labelled di-substituted 13C glyoxal experiments in order to unambiguously link product formation to glyoxal (and separate it from chamber wall contamination). We present a molecular perspective on the reaction pathways and evaluate the effect of environmental parameters (RH, particle pH, seed chemical composition) on the formation of these imidazole-like oligomer compounds. The implications for SOA formation from photosensitized oxidation chemistry is discussed.

  20. Charge disproportionation of mixed-valent Cr triggered by Bi lone-pair effect in the A -site-ordered perovskite BiC u3C r4O12

    NASA Astrophysics Data System (ADS)

    Etter, Martin; Isobe, Masahiko; Sakurai, Hiroya; Yaresko, Alexander; Dinnebier, Robert E.; Takagi, Hidenori

    2018-05-01

    A new A -site-ordered perovskite BiC u3C r4O12 is synthesized under a high pressure of 7.7 GPa. A phase transition from a paramagnetic metal to a ferrimagnetic metal is observed at Tc=190 K accompanied with a structural change from cubic to monoclinic. Structural analysis of the low-temperature monoclinic phase reveals that this transition represents a charge disproportionation of C r3.75 + into C r4 + and C r3.5 + . We argue that the asymmetric displacement of Bi caused by a lone-pair effect triggers the formation of a dimeric Cr4+2O5 unit and leads to an ordering of C r4 + and C r3.5 + below the transition.

  1. A-site Ordered Chromium Perovskites, ACu3Cr4O12 with A = Trivalent Ions

    NASA Astrophysics Data System (ADS)

    Sugiyama, Jun; Nozaki, Hiroshi; Umegaki, Izumi; Higemoto, Wataru; Isobe, Masahiko; Takagi, Hidenori; Sakurai, Hiroya; Ansaldo, Eduardo J.; Brewer, Jess H.; Sassa, Yasmine; Forslund, Ola Kenji; Månsson, Martin

    The magnetic ground state of the A-site ordered chromium perovskites, ACu3Cr4O12 with A = Y, La, Eu, and Lu has been investigated with μ+SR using powder samples prepared by a high-pressure technique. Weak transverse field measurements revealed that the four compounds enter into a magnetic phase below 230-260 K. Moreover, the transition temperature (TN) was found to decrease with increasing the size of A3+ ions. Zero field measurements indicated the formation of static antiferromagnetic (AF) order in ACu3Cr4O12 below TN. Furthermore, since the internal magnetic field in the AF phase is independent of A, the role of 4f electrons on the AF state is very limited and/or eventually absence in ACu3Cr4O12.

  2. The interaction of insulin with phospholipids

    PubMed Central

    Perry, M. C.; Tampion, W.; Lucy, J. A.

    1971-01-01

    1. A simple two-phase chloroform–aqueous buffer system was used to investigate the interaction of insulin with phospholipids and other amphipathic substances. 2. The distribution of 125I-labelled insulin in this system was determined after incubation at 37°C. Phosphatidic acid, dicetylphosphoric acid and, to a lesser extent, phosphatidylcholine and cetyltrimethylammonium bromide solubilized 125I-labelled insulin in the chloroform phase, indicating the formation of chloroform-soluble insulin–phospholipid or insulin–amphipath complexes. Phosphatidylethanolamine, sphingomyelin, cholesterol, stearylamine and Triton X-100 were without effect. 3. Formation of insulin–phospholipid complex was confirmed by paper chromatography. 4. The two-phase system was adapted to act as a simple functional system with which to investigate possible effects of insulin on the structural and functional properties of phospholipid micelles in chloroform, by using the distribution of [14C]glucose between the two phases as a monitor of phospholipid–insulin interactions. The ability of phospholipids to solubilize [14C]glucose in chloroform increased in the order phosphatidylcholine

  3. Formation and Stability of Pb-Sn Embedded Multiphase Alloy Nanoparticles via Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Khan, Patan Yousaf; Devi, M. Manolata; Biswas, Krishanu

    2015-08-01

    The present paper describes the preparation, characterization, and stability of Pb-Sn multiphase alloy nanoparticles embedded in Al matrix via mechanical alloying (MA). MA is a solid-state processing route, which can produce nanocrystalline phases by severely deforming the materials at high strain rate. Therefore, in order to understand the effect of the increasing interface as well as defects on the phase transformation behavior of Pb-Sn nanoparticles, Pb-Sn multiphase nanoparticles have been embedded in Al by MA. The nanoparticles have extensively been characterized using X-ray diffraction and transmission electron microscope. The characterization reveals the formation of biphasic as well as single-phase solid solution nanoparticles embedded in the matrix. The detailed microstructural and differential scanning calorimetry studies indicate that the formation of biphasic nanoparticles is due to size effect, mechanical attrition, and ballistic diffusion of Pb and Sn nanoparticles embedded in Al grains. Thermal characterization data reveal that the heating event consists of the melting peaks due to the multiphase nanoparticles and the peak positions shift to lower temperature with the increase in milling time. The role of interface structure is believed to play a prominent role in determining the phase stability of the nanoparticle. The results are discussed in the light of the existing literature.

  4. Engineering lipid structure for recognition of the liquid ordered membrane phase

    DOE PAGES

    Bordovsky, Stefan S.; Wong, Christopher S.; Bachand, George D.; ...

    2016-08-26

    The selective partitioning of lipid components in phase-separated membranes is essential for domain formation involved in cellular processes. Identifying and tracking the movement of lipids in cellular systems would be improved if we understood how to achieve selective affinity between fluorophore-labeled lipids and membrane assemblies. Furthermore, we investigated the structure and chemistry of membrane lipids to evaluate lipid designs that partition to the liquid ordered (L o) phase. A range of fluorophores at the headgroup position and lengths of PEG spacer between the lipid backbone and fluorophore were examined. On a lipid body with saturated palmityl or palmitoyl tails, wemore » found that although the lipid tails can direct selective partitioning to the L o phase through favorable packing interactions, headgroup hydrophobicity can override the partitioning behavior and direct the lipid to the disordered membrane phase (L d). The PEG spacer can serve as a buffer to mute headgroup–membrane interactions and thus improve L o phase partitioning, but its effect is limited with strongly hydrophobic fluorophore headgroups. We present a series of lipid designs leading to the development of novel fluorescently labeled lipids with selective affinity for the L o phase.« less

  5. Engineering Lipid Structure for Recognition of the Liquid Ordered Membrane Phase.

    PubMed

    Bordovsky, Stefan S; Wong, Christopher S; Bachand, George D; Stachowiak, Jeanne C; Sasaki, Darryl Y

    2016-11-29

    The selective partitioning of lipid components in phase-separated membranes is essential for domain formation involved in cellular processes. Identifying and tracking the movement of lipids in cellular systems would be improved if we understood how to achieve selective affinity between fluorophore-labeled lipids and membrane assemblies. Here, we investigated the structure and chemistry of membrane lipids to evaluate lipid designs that partition to the liquid ordered (L o ) phase. A range of fluorophores at the headgroup position and lengths of PEG spacer between the lipid backbone and fluorophore were examined. On a lipid body with saturated palmityl or palmitoyl tails, we found that although the lipid tails can direct selective partitioning to the L o phase through favorable packing interactions, headgroup hydrophobicity can override the partitioning behavior and direct the lipid to the disordered membrane phase (L d ). The PEG spacer can serve as a buffer to mute headgroup-membrane interactions and thus improve L o phase partitioning, but its effect is limited with strongly hydrophobic fluorophore headgroups. We present a series of lipid designs leading to the development of novel fluorescently labeled lipids with selective affinity for the L o phase.

  6. First-principles analysis of phase stability in layered-layered composite cathodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Iddir, Hakim; Benedek, Roy; Voltage Fade Team

    2014-03-01

    The atomic order in layered-layered composites with composition xLi2MnO3 .(1-x)LiCoO2 is investigated with first-principles calculations at the GGA +U level. This material, and others in its class, are often regarded as solid solutions, however, only a minute solubility of Li2MnO3 in a LiCoO2 host is predicted. Calculations of Co-vacancy formation and migration energies in LiCoO2 are presented, to elucidate the rate of vacancy-mediated ordering in the transition-metal-layer, and thus determine whether low vacancy mobility could result in slow equilibration. The Co-vacancy formation energy can be predicted only to within a range, because of uncertainty in the chemical potentials. Predicted migration energies, however, are approximately 1 eV, small enough to be consistent with rapid ordering in the transition metal layer, and therefore separated Li2MnO3 and LiCoO2 phases. The relatively small (of the order of a few nm) Li2MnO3 domain sizes observed with TEM in some xLi2MnO3 .(1-x)LiMO2 composites may result from other factors, such as coherency strain, which perhaps block further domain coarsening in these materials. Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  7. Is there an aerosol signature of aqueous processing?

    NASA Astrophysics Data System (ADS)

    Ervens, B.; Sorooshian, A.

    2017-12-01

    The formation of aerosol mass in cloud water has been recognized as a substantial source of atmospheric aerosol mass. While sulfate formation can be relatively well constrained, the formation of secondary organic aerosol mass in the aqueous phase (aqSOA) is much more complex due to the multitude of precursors and variety in chemical processes. Aqueous phase processing adds aerosol mass to the droplet mode, which is formed due to mass addition to activated particles in clouds. In addition, it has been shown that aqSOA mass has specific characteristics in terms of oxidation state and hygroscopicity that might help to distinguish it from other SOA sources. Many models do not include detailed chemical mechanisms of sulfate and aqSOA formation and also lack details on the mass distribution of newly formed mass. Mass addition inside and outside clouds modifies different parts of an aerosol population and consequently affects predictions of properties and lifetime of particles. Using a combination of field data analysis and model studies for a variety of air masses, we will show which chemical and physical aerosol properties can be used, in order to identify an `aqueous phase signature' in processed aerosol populations. We will discuss differences in this signature in clean (e.g., background), moderately polluted (e.g., urban) and highly polluted (e.g., biomass burning) air masses and suggest air-mass-specific chemical and/or physical properties that will help to quantify the aqueous-phase derived aerosol mass.

  8. Effect of chain stiffness on the competition between crystallization and glass-formation in model unentangled polymers

    NASA Astrophysics Data System (ADS)

    Nguyen, Hong T.; Smith, Tyler B.; Hoy, Robert S.; Karayiannis, Nikos Ch.

    2015-10-01

    We map out the solid-state morphologies formed by model soft-pearl-necklace polymers as a function of chain stiffness, spanning the range from fully flexible to rodlike chains. The ratio of Kuhn length to bead diameter (lK/r0) increases monotonically with increasing bending stiffness kb and yields a one-parameter model that relates chain shape to bulk morphology. In the flexible limit, monomers occupy the sites of close-packed crystallites while chains retain random-walk-like order. In the rodlike limit, nematic chain ordering typical of lamellar precursors coexists with close-packing. At intermediate values of bending stiffness, the competition between random-walk-like and nematic chain ordering produces glass-formation; the range of kb over which this occurs increases with the thermal cooling rate | T ˙ | implemented in our molecular dynamics simulations. Finally, values of kb between the glass-forming and rodlike ranges produce complex ordered phases such as close-packed spirals. Our results should provide a useful initial step in a coarse-grained modeling approach to systematically determining the effect of chain stiffness on the crystallization-vs-glass-formation competition in both synthetic and colloidal polymers.

  9. Rise of an alternative majority against opinion leaders

    NASA Astrophysics Data System (ADS)

    Tucci, K.; González-Avella, J. C.; Cosenza, M. G.

    2016-03-01

    We investigate the role of opinion leaders or influentials in the collective behavior of a social system. Opinion leaders are characterized by their unidirectional influence on other agents. We employ a model based on Axelrod's dynamics for cultural interaction among social agents that allows for non-interacting states. We find three collective phases in the space of parameters of the system, given by the fraction of opinion leaders and a quantity representing the number of available states: one ordered phase having the state imposed by the leaders; another nontrivial ordered phase consisting of a majority group in a state orthogonal or alternative to that of the opinion leaders, and a disordered phase, where many small groups coexist. We show that the spontaneous rise of an alternative group in the presence of opinion leaders depends on the existence of a minimum number of long-range connections in the underlying network. This phenomenon challenges the common idea that influentials are fundamental to propagation processes in society, such as the formation of public opinion.

  10. Thermodynamics of phase formation in the quantum critical metal Sr3Ru2O7

    PubMed Central

    Rost, A. W.; Grigera, S. A.; Bruin, J. A. N.; Perry, R. S.; Tian, D.; Raghu, S.; Kivelson, Steven Allan; Mackenzie, A. P.

    2011-01-01

    The behavior of matter near zero temperature continuous phase transitions, or “quantum critical points” is a central topic of study in condensed matter physics. In fermionic systems, fundamental questions remain unanswered: the nature of the quantum critical regime is unclear because of the apparent breakdown of the concept of the quasiparticle, a cornerstone of existing theories of strongly interacting metals. Even less is known experimentally about the formation of ordered phases from such a quantum critical “soup.” Here, we report a study of the specific heat across the phase diagram of the model system Sr3Ru2O7, which features an anomalous phase whose transport properties are consistent with those of an electronic nematic. We show that this phase, which exists at low temperatures in a narrow range of magnetic fields, forms directly from a quantum critical state, and contains more entropy than mean-field calculations predict. Our results suggest that this extra entropy is due to remnant degrees of freedom from the highly entropic state above Tc. The associated quantum critical point, which is “concealed” by the nematic phase, separates two Fermi liquids, neither of which has an identifiable spontaneously broken symmetry, but which likely differ in the topology of their Fermi surfaces. PMID:21933961

  11. Simulation of non-linear acoustic field and thermal pattern of phased-array high-intensity focused ultrasound (HIFU).

    PubMed

    Wang, Mingjun; Zhou, Yufeng

    2016-08-01

    HIFU becomes an effective and non-invasive modality of solid tumour/cancer ablation. Simulation of the non-linear acoustic wave propagation using a phased-array transducer in multiple layered media using different focusing strategies and the consequent lesion formation are essential in HIFU planning in order to enhance the efficacy and efficiency of treatment. An angular spectrum approach with marching fractional steps was applied in the wave propagation from phased-array HIFU transducer, and diffraction, attenuation, and non-linearity effects were accounted for by a second-order operator splitting scheme. The simulated distributions of the first three harmonics along and transverse to the transducer axis were compared to the hydrophone measurements. The bioheat equation was used to simulate the subsequent temperature elevation using the deposited acoustic energy, and lesion formation was determined by the thermal dose. Better agreement was found between the measured harmonics distribution and simulation using the proposed algorithm than the Khokhlov-Zabozotskaya-Kuznetsov equation. Variable focusing of the phased-array transducer (geometric focusing, transverse shifting and the generation of multiple foci) can be simulated successfully. The shifting and splitting of focus was found to result in significantly less temperature elevation at the focus and the subsequently, the smaller lesion size, but the larger grating lobe grating lobe in the pre-focal region. The proposed algorithm could simulate the non-linear wave propagation from the source with arbitrary shape and distribution of excitation through multiple tissue layers in high computation accuracy. The performance of phased-array HIFU can be optimised in the treatment planning.

  12. Possible existence of two amorphous phases of D-mannitol related by a first-order transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Men; Yu, Lian, E-mail: lian.yu@wisc.edu; Wang, Jun-Qiang

    2015-06-28

    We report that the common polyalcohol D-mannitol may have two amorphous phases related by a first-order transition. Slightly above its glass transition temperature T{sub g} (284 K), the supercooled liquid (SCL) of D-mannitol transforms to a low-energy, apparently amorphous phase with stronger hydrogen bonds. The enthalpy of this so-called Phase X is approximately halfway between those of the known amorphous and crystalline phases, a position low for glass aging and high for crystal polymorphs. Similar to the SCL, Phase X is transparent with broad X-ray diffraction and Raman scattering; upon temperature cycling, it exhibits a glass-transition-like change of heat capacity.more » On fast heating, Phase X transforms back to the SCL near T{sub g} + 50 K, enabling a determination of their equilibrium temperature. The presence of D-sorbitol as a plasticizer enables observation of a first-order transition from the SCL to Phase X entirely in the liquid state (liquid-liquid transition). The transition from D-mannitol’s SCL to Phase X has intriguing similarities with the formation of the glacial phase of triphenyl phosphite (TPP) and the conversion from high-density to low-density amorphous ice, both studied intensely in the context of polyamorphism. All three processes occur near T{sub g} with substantial enthalpy decrease toward the crystalline phases; the processes in water and D-mannitol both strengthen the hydrogen bonds. In contrast to TPP, D-mannitol’s Phase X forms more rapidly and can transform back to the SCL. These features make D-mannitol a valuable new model for understanding polyamorphism.« less

  13. Pressure-induced collapsed-tetragonal phase in SrCo2As2

    NASA Astrophysics Data System (ADS)

    Jayasekara, W. T.; Kaluarachchi, U. S.; Ueland, B. G.; Pandey, Abhishek; Lee, Y. B.; Taufour, V.; Sapkota, A.; Kothapalli, K.; Sangeetha, N. S.; Fabbris, G.; Veiga, L. S. I.; Feng, Yejun; dos Santos, A. M.; Bud'ko, S. L.; Harmon, B. N.; Canfield, P. C.; Johnston, D. C.; Kreyssig, A.; Goldman, A. I.

    2015-12-01

    We present high-energy x-ray diffraction data under applied pressures up to p =29 GPa , neutron diffraction measurements up to p =1.1 GPa , and electrical resistance measurements up to p =5.9 GPa , on SrCo2As2 . Our x-ray diffraction data demonstrate that there is a first-order transition between the tetragonal (T) and collapsed-tetragonal (cT) phases, with an onset above approximately 6 GPa at T =7 K . The pressure for the onset of the cT phase and the range of coexistence between the T and cT phases appears to be nearly temperature independent. The compressibility along the a axis is the same for the T and cT phases, whereas, along the c axis, the cT phase is significantly stiffer, which may be due to the formation of an As-As bond in the cT phase. Our resistivity measurements found no evidence of superconductivity in SrCo2As2 for p ≤5.9 GPa and T ≥ 1.8 K. The resistivity data also show signatures consistent with a pressure-induced phase transition for p ≳5.5 GPa. Single-crystal neutron diffraction measurements performed up to 1.1 GPa in the T phase found no evidence of stripe-type or A-type antiferromagnetic ordering down to 10 K. Spin-polarized total-energy calculations demonstrate that the cT phase is the stable phase at high pressure with a c/a ratio of 2.54. Furthermore, these calculations indicate that the cT phase of SrCo2As2 should manifest either A-type antiferromagnetic or ferromagnetic order.

  14. Controlling superstructural ordering in the clathrate-I Ba 8 M 16 P 30 (M = Cu, Zn) through the formation of metal–metal bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolyniuk, J.; Whitfield, P. S.; Lee, K.

    2017-01-01

    Order–disorder–order phase transitions in the clathrate-I Ba8Cu16P30 were induced and controlled by aliovalent substitutions of Zn into the framework. Unaltered Ba8Cu16P30 crystallizes in an ordered orthorhombic (Pbcn) clathrate-I superstructure that maintains complete segregation of metal and phosphorus atoms over 23 different crystallographic positions in the clathrate framework. The driving force for the formation of this Pbcn superstructure is the avoidance of Cu–Cu bonds. This superstructure is preserved upon aliovalent substitution of Zn for Cu in Ba8Cu16-xZnxP30 with 0 < x < 1.6 (10% Zn/Mtotal), but vanishes at greater substitution concentrations. Higher Zn concentrations (up to 35% Zn/Mtotal) resulted in themore » additional substitution of Zn for P in Ba8M16+yP30-y (M = Cu, Zn) with 0 ≤ y ≤ 1. This causes the formation of Cu–Zn bonds in the framework, leading to a collapse of the orthorhombic superstructure into the more common cubic subcell of clathrate-I (Pm[3 with combining macron]n). In the resulting cubic phases, each clathrate framework position is jointly occupied by three different elements: Cu, Zn, and P. Detailed structural characterization of the Ba–Cu–Zn–P clathrates-I via single crystal X-ray diffraction, joint synchrotron X-ray and neutron powder diffractions, pair distribution function analysis, electron diffraction and high-resolution electron microscopy, along with elemental analysis, indicates that local ordering is present in the cubic clathrate framework, suggesting the evolution of Cu–Zn bonds. For the compounds with the highest Zn content, a disorder–order transformation is detected due to the formation of another superstructure with trigonal symmetry and Cu–Zn bonds in the clathrate-I framework. It is shown that small changes in the composition, synthesis, and crystal structure have significant impacts on the structural and transport properties of Zn-substituted Ba8Cu16P30.« less

  15. Theory of Remote Image Formation

    NASA Astrophysics Data System (ADS)

    Blahut, Richard E.

    2004-11-01

    In many applications, images, such as ultrasonic or X-ray signals, are recorded and then analyzed with digital or optical processors in order to extract information. Such processing requires the development of algorithms of great precision and sophistication. This book presents a unified treatment of the mathematical methods that underpin the various algorithms used in remote image formation. The author begins with a review of transform and filter theory. He then discusses two- and three-dimensional Fourier transform theory, the ambiguity function, image construction and reconstruction, tomography, baseband surveillance systems, and passive systems (where the signal source might be an earthquake or a galaxy). Information-theoretic methods in image formation are also covered, as are phase errors and phase noise. Throughout the book, practical applications illustrate theoretical concepts, and there are many homework problems. The book is aimed at graduate students of electrical engineering and computer science, and practitioners in industry. Presents a unified treatment of the mathematical methods that underpin the algorithms used in remote image formation Illustrates theoretical concepts with reference to practical applications Provides insights into the design parameters of real systems

  16. An Exploration of the Phases and Structure Formation in Active Nematic Materials Using an Overdamped Continuum Theory

    NASA Astrophysics Data System (ADS)

    Putzig, Elias

    Active nematics are a class of nonequilibrium systems which have received much attention in the form of continuum models in recent years. For the dense, highly ordered case which is of particular interest, these models focus almost exclusively on suspensions of active particles in which the flow of the medium plays a key role in the dynamical equations. Many active nematics, however, reside at an interface or on a surface where friction excludes the effects of long-range flow. In the following pages we shall construct a general model which describes these systems with overdamped dynamical equations. Through numerical and analytical investigation we detail how many of the striking nonequilibrium behaviors of active nematics arise in such systems. We shall first discuss how the activity in these systems gives rise to an instability in the nematic ordered state. This instability leads to phase-separation in which bands of ordered active nematic are interspersed with bands of the disordered phase. We expose the factors which control the density contrast and the stability of these bands through numerical investigation. We then turn to the highly ordered phase of active nematic materials, in which striking nonequilibrium behaviors such as the spontaneous formation, self-propulsion, and ordering of charge-half defects occurs. We extend the overdamped model of an active nematic to describe these behaviors by including the advection of the director by the active forces in the dynamical equations. We find a new instability in the ordered state which gives rise to defect formation, as well as an analog of the instability which is seen in models of active nematic suspensions. Through numerical investigations we expose a rich phenomenology in the neighborhood of this new instability. The phenomenology includes a state in which the orientations of motile, transient defects form long-range order. This is the first continuum model to contain such a state, and we compare the behavior seen here with similar states seen in the experiments and simulations of Stephen DeCamp and Gabriel Redner et. al. [1]. Finally, we propose the measurement of defect shape as a mechanism for the comparison between continuum theories of active nematics and the experimental and simulated realiza- tions of these systems. We present a method for making these measurements which allows for averaging and statistical analysis, and use this method to determine how the shapes of defects depend on the parameters of our continuum theory. We then compare these with the shapes of defects which we measure in the experiments and simulations mentioned above in order to place these systems in the parameter space of our model. It is our hope that this mechanism for comparison between models and realizations of active nematics will provide a key to pairing the two more closely.

  17. Segregation and Phase Transformations Along Superlattice Intrinsic Stacking Faults in Ni-Based Superalloys

    NASA Astrophysics Data System (ADS)

    Smith, T. M.; Esser, B. D.; Good, B.; Hooshmand, M. S.; Viswanathan, G. B.; Rae, C. M. F.; Ghazisaeidi, M.; McComb, D. W.; Mills, M. J.

    2018-06-01

    In this study, local chemical and structural changes along superlattice intrinsic stacking faults combine to represent an atomic-scale phase transformation. In order to elicit stacking fault shear, creep tests of two different single crystal Ni-based superalloys, ME501 and CMSX-4, were performed near 750 °C using stresses of 552 and 750 MPa, respectively. Through high-resolution scanning transmission electron microscopy (STEM) and state-of-the-art energy dispersive X-ray spectroscopy, ordered compositional changes were measured along SISFs in both alloys. For both instances, the elemental segregation and local crystal structure present along the SISFs are consistent with a nanoscale γ' to D019 phase transformation. Other notable observations are prominent γ-rich Cottrell atmospheres and new evidence of more complex reordering processes responsible for the formation of these faults. These findings are further supported using density functional theory calculations and high-angle annular dark-field (HAADF)-STEM image simulations.

  18. Phonon Dispersion and the Competition between Pairing and Charge Order

    NASA Astrophysics Data System (ADS)

    Costa, N. C.; Blommel, T.; Chiu, W.-T.; Batrouni, G.; Scalettar, R. T.

    2018-05-01

    The Holstein model describes the interaction between fermions and a collection of local (dispersionless) phonon modes. In the dilute limit, the phonon degrees of freedom dress the fermions, giving rise to polaron and bipolaron formation. At higher densities, the phonons mediate collective superconducting (SC) and charge-density wave (CDW) phases. Quantum Monte Carlo (QMC) simulations have considered both these limits but have not yet focused on the physics of more general phonon spectra. Here we report QMC studies of the role of phonon dispersion on SC and CDW order in such models. We quantify the effect of finite phonon bandwidth and curvature on the critical temperature Tcdw for CDW order and also uncover several novel features of diagonal long-range order in the phase diagram, including a competition between charge patterns at momenta q =(π ,π ) and q =(0 ,π ) which lends insight into the relationship between Fermi surface nesting and the wave vector at which charge order occurs. We also demonstrate SC order at half filling in situations where a nonzero bandwidth sufficiently suppresses Tcdw.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sornadurai, D.; Ravindran, T. R.; Paul, V. Thomas

    Synthesis parameters are optimized in order to grow single crystals of multiferroic BiFeO{sub 3}. 2 to 3 mm size pyramid (tetrahedron) shaped single crystals were successfully obtained by solvothermal method. Scanning electron microscopy with EDAX confirmed the phase formation. Raman scattering spectra of bulk BiFeO3 single crystals have been measured which match well with reported spectra.

  20. Separations on water-ice. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, P.K.

    1998-07-01

    This report focuses on processes to separate water frozen into ice. Research topics include the following: normal phase columnar chromatography; electrophoresis in a planar format; and zone melting type separations on a solid column of ice. Attempts were made to dope the emulsion with {beta}-cyclodextrin in order to separate commercially important chiral drugs such as Inderal.

  1. Glass-Glass Transitions by Means of an Acceptor-Donor Percolating Electric-Dipole Network

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Lou, Xiaojie; Wang, Dong; Zhou, Yan; Yang, Yang; Kuball, Martin; Carpenter, Michael A.; Ren, Xiaobing

    2017-11-01

    We report the ferroelectric glass-glass transitions in KN (K+/Nb5 +) -doped BaTiO3 ferroelectric ceramics, which have been proved by x-ray diffraction profile and Raman spectra data. The formation of glass-glass transitions can be attributed to the existence of cubic (C )-tetragonal (T )-orthorhombic (O )-rhombohedral (R ) ferroelectric transitions in short-range order. These abnormal glass-glass transitions can perform very small thermal hysteresis (approximately 1.0 K ) with a large dielectric constant (approximately 3000), small remanent polarization Pr , and relative high maximum polarization Pm remaining over a wide temperature range (220-350 K) under an electrical stimulus, indicating the potential applications in dielectric recoverable energy-storage devices with high thermal reliability. Further phase field simulations suggest that these glass-glass transitions are induced by the formation of a percolating electric defect-dipole network (PEDN). This proper PEDN breaks the long-range ordered ferroelectric domain pattern and results in the local phase transitions at the nanoscale. Our work may further stimulate the fundamental physical theory and accelerate the development of dielectric energy-storing devices.

  2. The origin of and conditions for clustering in fluids with competing interactions

    NASA Astrophysics Data System (ADS)

    Jadrich, Ryan; Bollinger, Jonathan; Truskett, Thomas

    2015-03-01

    Fluids with competing short-range attractions and long-range repulsions exhibit a rich phase behavior characterized by intermediate range order (IRO), as quantified via the static structure factor. This phase behavior includes cluster formation depending upon density-controlled packing effects and the magnitude and range of the attractive and repulsive interactions. Such model systems mimic (to zeroth order) screened, charge-stabilized, aqueous colloidal dispersions of, e.g., proteins. We employ molecular dynamics simulations and integral equation theory to elucidate a more fundamental microscopic explanation for IRO-driven clustering. A simple criterion is identified that indicates when dynamic, amorphous clustering emerges in a polydisperse system, namely when the Ornstein-Zernike thermal correlation length in the system exceeds the repulsive potential tail range. Remarkably, this criterion also appears tightly correlated to crystalline cluster formation in a monodisperse system. Our new gauge is compared to another phenomenological condition for clustering which is when the IRO peak magnitude exceeds ~ 2.7. Ramifications of crystalline versus amorphous clustering are discussed and potential ways of using our new measure in experiment are put forward.

  3. Dodecagonal quasicrystalline order in a diblock copolymer melt.

    PubMed

    Gillard, Timothy M; Lee, Sangwoo; Bates, Frank S

    2016-05-10

    We report the discovery of a dodecagonal quasicrystalline state (DDQC) in a sphere (micelle) forming poly(isoprene-b-lactide) (IL) diblock copolymer melt, investigated as a function of time following rapid cooling from above the order-disorder transition temperature (TODT = 66 °C) using small-angle X-ray scattering (SAXS) measurements. Between TODT and the order-order transition temperature TOOT = 42 °C, an equilibrium body-centered cubic (BCC) structure forms, whereas below TOOT the Frank-Kasper σ phase is the stable morphology. At T < 40 °C the supercooled disordered state evolves into a metastable DDQC that transforms with time to the σ phase. The times required to form the DDQC and σ phases are strongly temperature dependent, requiring several hours and about 2 d at 35 °C and more than 10 and 200 d at 25 °C, respectively. Remarkably, the DDQC forms only from the supercooled disordered state, whereas the σ phase grows directly when the BCC phase is cooled below TOOT and vice versa upon heating. A transition in the rapidly supercooled disordered material, from an ergodic liquid-like arrangement of particles to a nonergodic soft glassy-like solid, occurs below ∼40 °C, coincident with the temperature associated with the formation of the DDQC. We speculate that this stiffening reflects the development of particle clusters with local tetrahedral or icosahedral symmetry that seed growth of the temporally transient DDQC state. This work highlights extraordinary opportunities to uncover the origins and stability of aperiodic order in condensed matter using model block polymers.

  4. X-ray study of mesomorphism of bent-core and chromonic mesogens

    NASA Astrophysics Data System (ADS)

    Joshi, Leela Pradhan

    The discovery of thermotropic biaxial nematic phase in bent-core mesogens, have engendered interest in these systems. Also, it undergoes optical switching about 100 times faster than conventional uniaxial nematic liquid crystal. Azo-substituted bent-core compounds, A131 and A103, were investigated as both offer an opportunity to observe their structures and phase transitions from the uniaxial nematic (Nu) to biaxial nematic (Nb) phase and from Nb to the underlying smectic-C (SmC) phase. Plank-like molecular systems are also expected to form Nb phase. Chromonic liquid crystals formed by aqueous solutions of plank-like dye molecules are interesting for their unique self-assembly and structural evolution. They have applications in optical element, coloring in food and textiles, and etc. Both systems were investigated with synchrotron x-ray scattering, polarizing optical microscopy, and differential scanning calorimetry. Temperature dependence of d-spacing and positional order correlations along the director clearly mark the phase boundaries where Nu-Nb transition was approximately 27° below the clearing point. Positional order correlation length of A131 increased from 1.5 in Nu to 3.3 molecular lengths in Nb phase, before it jumps by a factor of at least 5 in SmC phase. The lack of large discontinuous changes in the structural parameters and the subtle signatures in heat capacity establish the second order nature of Nu-Nb and Nb-SmC phase transitions. The chromonic system investigation results provide quantitative information of structural properties in nematic and columnar mesophases. We studied water solutions of (achiral) sunset yellow dye and (chiral and achiral) dihydrochloride salts of perylenebis-dicarboxydiimide. Positional order correlation lengths measurements, parallel and perpendicular to the aggregate axis, revealed that they increase with concentration and decrease with temperature. Temperature dependence of correlation lengths yielded the scission energy to be 1.8 (+/-0.1) x10-20J and 1.5 (+/-0.08) x10-20J in the nematic and columnar phases. The aggregates' small aspect ratio (2.5) is inconsistent with the Onsager model for the formation of an orientationally ordered phase, which strongly suggests more complicated aggregate-shape than simple cylindrical objects as postulated by Laventovich, et al.

  5. Water ordering controls the dynamic equilibrium of micelle-fibre formation in self-assembly of peptide amphiphiles.

    PubMed

    Deshmukh, Sanket A; Solomon, Lee A; Kamath, Ganesh; Fry, H Christopher; Sankaranarayanan, Subramanian K R S

    2016-08-24

    Understanding the role of water in governing the kinetics of the self-assembly processes of amphiphilic peptides remains elusive. Here, we use a multistage atomistic-coarse-grained approach, complemented by circular dichroism/infrared spectroscopy and dynamic light scattering experiments to highlight the dual nature of water in driving the self-assembly of peptide amphiphiles (PAs). We show computationally that water cage formation and breakage near the hydrophobic groups control the fusion dynamics and aggregation of PAs in the micellar stage. Simulations also suggest that enhanced structural ordering of vicinal water near the hydrophilic amino acids shifts the equilibrium towards the fibre phase and stimulates structure and order during the PA assembly into nanofibres. Experiments validate our simulation findings; the measured infrared O-H bond stretching frequency is reminiscent of an ice-like bond which suggests that the solvated water becomes increasingly ordered with time in the assembled peptide network, thus shedding light on the role of water in a self-assembly process.

  6. The formation of topological defects in phase transitions

    NASA Technical Reports Server (NTRS)

    Hodges, Hardy M.

    1989-01-01

    It was argued, and fought through numerical work that the results of non-dynamical Monte Carlo computer simulations cannot be applied to describe the formation of topological defects when the correlation length at the Ginzburg temperature is significantly smaller than the horizon size. To test the current hypothesis that infinite strings at formation are essentially described by Brownian walks of size the correlation length at the Ginzburg temperature, fields at the Ginzburg temperature were equilibrated. Infinite structure do not exist in equilibrium for reasonable definitions of the Ginzburg temperature, and horizons must be included in a proper treatment. A phase transition, from small-scale to large-scale string or domain wall structure, is found to occur very close to the Ginzburg temperature, in agreement with recent work. The formation process of domain walls and global strings were investigated through the breaking of initially ordered states. To mimic conditions in the early Universe, cooling times are chosen so that horizons exist in the sample volume when topological structure formation occurs. The classical fields are evolved in real-time by the numerical solution of Langevin equations of motion on a three dimensional spatial lattice. The results indicate that it is possible for most of the string energy to be in small loops, rather than in long strings, at formation.

  7. Recent Selected Ion Flow Tube (SIFT) Studies Concerning the Formation of Amino Acids in the Gas Phase

    NASA Technical Reports Server (NTRS)

    Jackson, Douglas M.; Adams, Nigel G.; Babcock, Lucia M.

    2006-01-01

    Recently the simplest amino acid, glycine, has been detected in interstellar clouds, ISC, although this has since been contested. In order to substantiate either of these claims, plausible routes to amino acids need to be investigated. For gas phase synthesis, the SIFT technique has been employed to study simple amino acids via ion-molecule reactions of several ions of interstellar interest with methylamine, ethylamine, formic acid, acetic acid, and methyl formate. Carboxylic acid type ions were considered in the reactions involving the amines. In reactions where the carboxylic acid and methyl formate neutrals were studied, the reactant ions were primarily amine ion fragments. It was observed that the amines and acids preferentially fragment or accept a proton whenever energetically possible. NH3(+), however, uniquely reacted with the neutrals via atom abstraction to form NH4(+). These studies yielded a body of data relevant to astrochemistry, supplementing the available literature. However, the search for gas phase routes to amino acids using conventional molecules has been frustrated. Our most recent research investigates the fragmentation patterns of several amino acids and several possible routes have been suggested for future study.

  8. Surface phase behavior of di-n-tetradecyl hydrogen phosphate in Langmuir monolayers at the air-water interface.

    PubMed

    Hossain, Md Mufazzal; Iimura, Ken-Ichi; Kato, Teiji

    2006-10-01

    Surface phase behavior of di-n-tetradecyl hydrogen phosphate, DTP, has been studied by measuring pi-A isotherms with a film balance and observing monolayer morphology with a Brewster angle microscopy (BAM) at different temperatures. A generalized phase diagram, which shows a triple point for gas (G), liquid-expanded (LE) and liquid-condensed (LC) phases at about 32 degrees C, is constructed for the amphiphile. Below the triple point, a first-order G-LC phase transition has been shown to occur, whereas a first-order G-LE phase transition followed by another first-order LE-LC transition has been found to take place at a temperature above the triple point. The amphiphile shows the fingering LC domains with uniform brightness indicating the presence of untilted molecules. The domain shapes are independent of the change in temperature and compression rate. The existence of similar fingering domains over a wide range of temperature is rather uncommon in the monolayer systems and is considered to be due to the restricted movement of the molecules incorporating into the LC phase. Because the two-alkyl chains are directly attached to two covalent bonds of the phosphate head group, the rearrangement of the molecules, which is an essential condition for the circular domain formation, needs the movement of the whole molecules including the hydration sphere. The difficulty related to such a movement of the molecules causes fingering domains, which are independent of external variables.

  9. Advances in coherent optical modems and 16-QAM transmission with feedforward carrier recovery

    NASA Astrophysics Data System (ADS)

    Noé, Reinhold; Hoffmann, Sebastian; Wördehoff, Christian; Al-Bermani, Ali; El-Darawy, Mohamed

    2011-01-01

    Polarization multiplexing and quadrature phase shift keying (QPSK) both double spectral efficiency. Combined with synchronous coherent polarization diverse intradyne receivers this modulation format is ultra-robust and cost-efficient. A feedforward carrier recovery is required in order to tolerate phase noise of normal DFB lasers. Signal processing in the digital domain permits compensation of at least chromatic and polarization mode dispersion. Some companies have products on the market, others are working on them. For 100 GbE transmission, 50 GHz channel spacing is sufficient. 16ary quadrature amplitude modulation (16-QAM) is attractive to double capacity once more, possibly in a modulation format flexible transponder which is switched down to QPSK only if system margin is too low. For 16-QAM the phase noise problem is sharply increased. However, also here a feedforward carrier recovery has been implemented. A number of carrier phase angles is tested in parallel, and the recovered data is selected for that phase angle where squared distance of recovered data to the nearest constellation point, averaged over a number of symbols, is minimum. An intradyne/selfhomodyne synchronous coherent 16-QAM experiment (2.5 Gb/s, 81 km) is presented.

  10. Refractory metal particles in refractory inclusions in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Fuchs, L. H.; Blander, M.

    1980-01-01

    SEM and X-ray analysis were used to study refractory metal particles in five calcium-aluminum-rich inclusions in the Allende meteorite, and a complex variety of compositions and large departures from equilibrium were found. It is suggested that these particles could have been primordial condensates which were isolated from the nebula and from each other at different times by cocondensing oxides. Selective diffusion and/or oxidation of the more oxidizable metals (Mo, W, Fe, and Ni), phase segregations into different alloy phases (fcc, bcc, hcp, and, possibly, ordered phases), and the formation of metastable condensates could have been involved in the genesis of these materials

  11. Phase diagram of dilute cosmic matter

    NASA Astrophysics Data System (ADS)

    Iwata, Yoritaka

    2011-10-01

    Enhancement of nuclear pasta formation due to multi-nucleus simultaneous collision is presented based on time-dependent density functional calculations with periodic boundary condition. This calculation corresponds to the situation with density lower than the known low-density existence limit of the nuclear pasta phase. In order to evaluate the contribution from three-nucleus simultaneous collisions inside the cosmic matter, the possibility of multi-nucleus simultaneous collisions is examined by a systematic Monte-Carlo calculation, and the mean free path of a nucleus is obtained. Consequently the low-density existence limit of the nuclear pasta phase is formed to be lower than believed up to now.

  12. What is the origin of anomalous dielectric response in 2D organic dimer Mott insulators κ-(BEDT-TTF)2Cu[N(CN)2]Cl and κ-(BEDT-TTF)2Cu2(CN)3

    NASA Astrophysics Data System (ADS)

    Pinterić, M.; Ivek, T.; Čulo, M.; Milat, O.; Basletić, M.; Korin-Hamzić, B.; Tafra, E.; Hamzić, A.; Dressel, M.; Tomić, S.

    2015-03-01

    Novel forms of the low-temperature phases in the two-dimensional molecular solids with competing interactions between charges, spins and lattice, in particular those featuring anomalous dielectric relaxation, have been the focus of intense activity in recent years. Open issues concern the nature of collective charge excitations as well as their coupling to applied ac and dc electric fields. The charge response is reasonably well understood by now in the charge-ordered phase with the formation of ferroelectric-like domains below the metal-to-insulator phase transition. Conversely, the dielectric response observed in dimer Mott insulator phases with no complete evidence for charge ordering is rather intriguing. We overview our recent results of anisotropic complex conductivity (dc - MHz) in the magnetic phase of κ-(BEDT - TTF) 2 Cu [ N(CN)2 ] Cl and in the spin-liquid phase of κ-(BEDT - TTF) 2Cu2(CN)3. We discuss possible explanations for the observed dynamics within current theoretical models and compare them with the well-known fingerprints of the spin density wave response to ac electric fields.

  13. Microstructures responsible for the invar and permalloy effects in Fe-Ni alloys

    NASA Astrophysics Data System (ADS)

    Ustinovshchikov, Yu. I.; Shabanova, I. N.; Lomova, N. V.

    2015-05-01

    The experimental studies of Fe68Ni32 and Fe23Ni77 alloys by transmission electron microscopy and X-ray electron spectroscopy show that the ordering-separation phase transition in these alloys occurs in a temperature range near 600°C. At temperatures higher than the transition temperature, the ordering energy of the alloy is positive, and the structures contain clusters enriched in one of the components. After heat treatment at the temperatures where the invar effect in the Fe68Ni32 alloy is maximal, a modulated microstructure forms. Below the transition temperature, the ordering energy is negative, which provides a tendency to formation of chemical compounds. After aging at these temperatures (where the Fe23Ni77 alloy exhibits high permalloy properties), highly dispersed completely coherent particles of the FeNi3 phase with structure L12 precipitate in a solid solution.

  14. Heuristic rule for binary superlattice coassembly: mixed plastic mesophases of hard polyhedral nanoparticles.

    PubMed

    Khadilkar, Mihir R; Escobedo, Fernando A

    2014-10-17

    Sought-after ordered structures of mixtures of hard anisotropic nanoparticles can often be thermodynamically unfavorable due to the components' geometric incompatibility to densely pack into regular lattices. A simple compatibilization rule is identified wherein the particle sizes are chosen such that the order-disorder transition pressures of the pure components match (and the entropies of the ordered phases are similar). Using this rule with representative polyhedra from the truncated-cube family that form pure-component plastic crystals, Monte Carlo simulations show the formation of plastic-solid solutions for all compositions and for a wide range of volume fractions.

  15. Conventional magnetic superconductors

    DOE PAGES

    Wolowiec, C. T.; White, B. D.; Maple, M. B.

    2015-07-01

    We discuss several classes of conventional magnetic superconductors including the ternary rhodium borides and molybdenum chalcogenides (or Chevrel phases), and the quaternary nickel-borocarbides. These materials exhibit some exotic phenomena related to the interplay between superconductivity and long-range magnetic order including: the coexistence of superconductivity and antiferromagnetic order; reentrant and double reentrant superconductivity, magnetic field induced superconductivity, and the formation of a sinusoidally-modulated magnetic state that coexists with superconductivity. We introduce the article with a discussion of the binary and pseudobinary superconducting materials containing magnetic impurities which at best exhibit short-range “glassy” magnetic order. Early experiments on these materials led tomore » the idea of a magnetic exchange interaction between the localized spins of magnetic impurity ions and the spins of the conduction electrons which plays an important role in understanding conventional magnetic superconductors. Furthermore, these advances provide a natural foundation for investigating unconventional superconductivity in heavy-fermion compounds, cuprates, and other classes of materials in which superconductivity coexists with, or is in proximity to, a magnetically-ordered phase.« less

  16. Spontaneous symmetry breaking and phase coexistence in two-color networks

    NASA Astrophysics Data System (ADS)

    Avetisov, V.; Gorsky, A.; Nechaev, S.; Valba, O.

    2016-01-01

    We consider an equilibrium ensemble of large Erdős-Renyi topological random networks with fixed vertex degree and two types of vertices, black and white, prepared randomly with the bond connection probability p . The network energy is a sum of all unicolor triples (either black or white), weighted with chemical potential of triples μ . Minimizing the system energy, we see for some positive μ the formation of two predominantly unicolor clusters, linked by a string of Nb w black-white bonds. We have demonstrated that the system exhibits critical behavior manifested in the emergence of a wide plateau on the Nb w(μ ) curve, which is relevant to a spinodal decomposition in first-order phase transitions. In terms of a string theory, the plateau formation can be interpreted as an entanglement between baby universes in two-dimensional gravity. We conjecture that the observed classical phenomenon can be considered as a toy model for the chiral condensate formation in quantum chromodynamics.

  17. Spontaneous symmetry breaking and phase coexistence in two-color networks.

    PubMed

    Avetisov, V; Gorsky, A; Nechaev, S; Valba, O

    2016-01-01

    We consider an equilibrium ensemble of large Erdős-Renyi topological random networks with fixed vertex degree and two types of vertices, black and white, prepared randomly with the bond connection probability p. The network energy is a sum of all unicolor triples (either black or white), weighted with chemical potential of triples μ. Minimizing the system energy, we see for some positive μ the formation of two predominantly unicolor clusters, linked by a string of N_{bw} black-white bonds. We have demonstrated that the system exhibits critical behavior manifested in the emergence of a wide plateau on the N_{bw}(μ) curve, which is relevant to a spinodal decomposition in first-order phase transitions. In terms of a string theory, the plateau formation can be interpreted as an entanglement between baby universes in two-dimensional gravity. We conjecture that the observed classical phenomenon can be considered as a toy model for the chiral condensate formation in quantum chromodynamics.

  18. FORMATION OF POLYCYCLIC AROMATIC HYDROCARBONS AND CARBONACEOUS SOLIDS IN GAS-PHASE CONDENSATION EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaeger, C.; Huisken, F.; Henning, Th.

    2009-05-01

    Carbonaceous grains represent a major component of cosmic dust. In order to understand their formation pathways, they have been prepared in the laboratory by gas-phase condensation reactions such as laser pyrolysis and laser ablation. Our studies demonstrate that the temperature in the condensation zone determines the formation pathway of carbonaceous particles. At temperatures lower than 1700 K, the condensation by-products are mainly polycyclic aromatic hydrocarbons (PAHs) that are also the precursors or building blocks for the condensing soot grains. The low-temperature condensates contain PAH mixtures that are mainly composed of volatile three to five ring systems. At condensation temperatures highermore » than 3500 K, fullerene-like carbon grains and fullerene compounds are formed. Fullerene fragments or complete fullerenes equip the nucleating particles. Fullerenes can be identified as soluble components. Consequently, condensation products in cool and hot astrophysical environments such as cool and hot asymptotic giant branch stars or Wolf-Rayet stars should be different and should have distinct spectral properties.« less

  19. Stepped Single Crystals as Improved Model for Supported Catalysts: Ethylene, Methanol and Assorted Molecules on PLATINUM(511) and PLATINUM(331)

    NASA Astrophysics Data System (ADS)

    Spaendonk, Vincent Van

    Past research has shown unusual activity of the (1 x 1)Pt(110) surface to break carbon-carbon and carbon -oxygen bonds. Methane formation from ethylene or ethane has been reported for supported platinum catalysts. A model for the methane formation on (1 x 1)Pt(110), was proposed by Yagasaki. In this study, the mechanism of methane formation has been further investigated, and Yagasaki's model tested, by studying the decomposition of ethylene and methanol on the stepped surfaces Pt(511) and Pt(331) with Temperature Programmed Desorption. The experiments have been carried out in a Ultra High Vacuum system, equipped with a mass spectrometer, LEED and AES. Hydrogen and carbon monoxide desorption show that on Pt(511) different adsorption sites are available than on Pt(331). Ethylene decomposition on Pt(511) leads to small amounts of methane formation compared to (1 x 1)Pt(110). The metastable (1 x 1) phase of Pt(511) is 2-3 times more active than the stable (hex) phase. When ^{13}C_2H _4 is used, ^{13 }CH_4 is not detected. Methane formation is not seen on the Pt(331) surface. Arguments are given why Pt(511) is a superior model for supported catalysts compared to (1 x 1)Pt(110). The carbon-oxygen bond of methanol is not broken on either Pt(511) or Pt(331), whether the surface is clean or covered with oxygen. Hydrogen saturating the surface, prevents the chemisorption of ethylene and the formation of methane. Postadsorption of hydrogen does not lead to an increase in methane formation. Coadsorption of ethylene with carbon monoxide shows a maximum methane formation at 0.3 L carbon monoxide exposure. Poison experiments with 'oxide' and carbon indicate that the active site for methane formation is located at the step. The amount of carbon deposited during ethylene decomposition, increases in the order (1 x 1)Pt(511) to (hex)Pt(511) to Pt(331). This is also the order for decreasing methane activity. In a new model, it is proposed that in order to be active for methane formation, a surface has to prevent the polymerization of single carbon species to inactive graphite. The model predicts that surfaces with large enough (111) terraces have higher diffusion rates and allow the single carbon species to convert to graphite before the species can be hydrogenated.

  20. Composition-dependent stability of the medium-range order responsible for metallic glass formation

    DOE PAGES

    Zhang, Feng; Ji, Min; Fang, Xiao-Wei; ...

    2014-09-18

    The competition between the characteristic medium-range order corresponding to amorphous alloys and that in ordered crystalline phases is central to phase selection and morphology evolution under various processing conditions. We examine the stability of a model glass system, Cu–Zr, by comparing the energetics of various medium-range structural motifs over a wide range of compositions using first-principles calculations. Furthermore, we focus specifically on motifs that represent possible building blocks for competing glassy and crystalline phases, and we employ a genetic algorithm to efficiently identify the energetically favored decorations of each motif for specific compositions. These results show that a Bergman-type motifmore » with crystallization-resisting icosahedral symmetry is energetically most favorable in the composition range 0.63 < xCu < 0.68, and is the underlying motif for one of the three optimal glass-forming ranges observed experimentally for this binary system (Li et al., 2008). This work establishes an energy-based methodology to evaluate specific medium-range structural motifs which compete with stable crystalline nuclei in deeply undercooled liquids.« less

  1. Studies of Nucleation and Growth, Specific Heat and Viscosity of Undercooled Melts of Quasicrystals and Polytetrehedral-Phase-Forming Alloys

    NASA Technical Reports Server (NTRS)

    2003-01-01

    By investigating the properties of quasicrystals and quasicrystal-forming liquid alloys, we may determine the role of ordering of the liquid phase in the formation of quasicrystals, leading to a better fundamental understanding of both the quasicrystal and the liquid. A quasicrystal is solid characterized by a symmetric but non-periodic arrangement of atoms, usually in the form of an icosahedron (12 atoms, 20 triangular faces). It is theorized that the short-range order in liquids takes this same form. The degree of ordering depends on the temperature of the liquid, and affects many of the liquid s properties, including specific heat, viscosity, and electrical resistivity. The MSFC role in this project includes solidification studies, phase diagram determination, and thermophysical property measurements on the liquid quasicrystal-forming alloys, all by electrostatic levitation (ESL). The viscosity of liquid quasicrystal-forming alloys is measured by the oscillating drop method, both in the stable and undercooled liquid state. The specific heat of solid, undercooled liquid, and stable liquid are measured by the radiative cooling rate of the droplets.

  2. The effect of reaction conditions on formation of wet precipitated calcium phosphates

    NASA Astrophysics Data System (ADS)

    Huang, Chen; Cao, Peng

    2015-03-01

    The precipitation process discussed in the present study involves the addition of alkaline solutions to an acidic calcium phosphate suspension. Several parameters (pH, pH buffer reagent, ageing and stirring) were investigated. The synthesized powders were calcined at 1000°C for 1 h in air, in order to study the thermal stability and crystalline phase compositions. X-ray diffraction (XRD) and ESEM analysis were used for sample characterization. It is found that all these processing parameters affect the crystalline phases evolved and resultant microstructures. Phase evolution occurred at an elevated pH level. The pH buffer reagent would affect both the phase composition and microstructure. Ageing was essential for the phase maturation. Stirring accelerated the reaction process by providing a homogeneous medium for precipitation.

  3. Studies of Nucleation, Growth, Specific Heat, and Viscosity of Undercooled Melts of Quasicrystals and Polytetrahedral-Phase-Forming Alloys

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.; Croat, T. K.; Gangopadhyay, A.; Holland-Moritz, D.; Hyers, Robert W.; Rathz, Thomas J.; Robinson, Michael B.; Rogers, Jan R.

    2001-01-01

    Undercooling experiments and thermal physical property measurements of metallic alloys on the International Space Station (ISS) are planned. This recently-funded research focuses on fundamental issues of the formation and structure of highly-ordered non-crystallographic phases (quasicrystals) and related crystal phases (crystal approximants), and the connections between the atomic structures of these phases and those of liquids and glasses. It extends studies made previously by us of the composition dependence of crystal nucleation processes in silicate and metallic glasses, to the case of nucleation from the liquid phase. Motivating results from rf-levitation and drop-tube measurements of the undercooling of Ti/Zr-based liquids that form quasicrystals and crystal approximants are discussed. Preliminary measurements by electrostatic levitation (ESL) are presented.

  4. TEM studies of plasma nitrided austenitic stainless steel.

    PubMed

    Stróz, D; Psoda, M

    2010-03-01

    Cross-sectional transmission electron microscopy and X-ray phase analysis were used to study the structure of a layer formed during nitriding the AISI 316L stainless steel at temperature 440 degrees C. It was found that the applied treatment led to the formation of 6-microm-thick layer of the S-phase. There is no evidence of CrN precipitation. The X-ray diffraction experiments proved that the occurred austenite lattice expansion - due to nitrogen atoms - depended on the crystallographic direction. The cross-sectional transmission electron microscopy studies showed that the layer consisted of a single cubic phase that contained a lot of defects such as dislocations, stacking faults, slip bands and twins. The high-resolution electron microscopy observations were applied to study the defect formation due to the nitriding process. It was shown that the presence of great number of stacking faults leads to formation of nanotwins. Weak, forbidden {100} reflections were still another characteristic feature of the S-phase. These were not detected in the X-ray spectra of the phase. Basing on the high-resolution electron microscopy studies it can be suggested that the short-range ordering of the nitrogen atoms in the octahedral sites inside the f.c.c. matrix lattice takes place and gives rise to appearance of these spots. It is suggested that the cubic lattice undergoes not only expansion but also slight rombohedral distortion that explains differences in the lattice expansion for different crystallographic directions.

  5. Stability of smectic phases in hard-rod mixtures

    NASA Astrophysics Data System (ADS)

    Martínez-Ratón, Yuri; Velasco, Enrique; Mederos, Luis

    2005-09-01

    Using density-functional theory, we have analyzed the phase behavior of binary mixtures of hard rods of different lengths and diameters. Previous studies have shown a strong tendency of smectic phases of these mixtures to segregate and, in some circumstances, to form microsegregated phases. Our focus in the present work is on the formation of columnar phases which some studies, under some approximations, have shown to become thermodynamically stable prior to crystallization. Specifically we focus on the relative stability between smectic and columnar phases, a question not fully addressed in previous work. Our analysis is based on two complementary perspectives: on the one hand, an extended Onsager theory, which includes the full orientational degrees of freedom but with spatial and orientational correlations being treated in an approximate manner; on the other hand, we formulate a Zwanzig approximation of fundamental-measure theory on hard parallelepipeds, whereby orientations are restricted to be only along three mutually orthogonal axes, but correlations are faithfully represented. In the latter case novel, complete phase diagrams containing regions of stability of liquid-crystalline phases are calculated. Our findings indicate that the restricted-orientation approximation enhances the stability of columnar phases so as to preempt smectic order completely while, in the framework of the extended Onsager model, with full orientational degrees of freedom taken into account, columnar phases may preempt a large region of smectic stability in some mixtures, but some smectic order still persists.

  6. Liquid crystalline epoxy networks with exchangeable disulfide bonds

    DOE PAGES

    Li, Yuzhan; Zhang, Yuehong; Rios, Orlando; ...

    2017-06-09

    In this study, a liquid crystalline epoxy network (LCEN) with exchangeable disulfide bonds is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic dicarboxylic acid curing agent containing a disulfide bond. The effect of disulfide bonds on curing behavior and liquid crystalline (LC) phase formation of the LCEN is investigated. The presence of the disulfide bonds results in an increase in the reaction rate, leading to a reduction in liquid crystallinity of the LCEN. In order to promote LC phase formation and stabilize the self-assembled LC domains, a similar aliphatic dicarboxylic acid without the disulfide bond is used asmore » a co-curing agent to reduce the amount of exchangeable disulfide bonds in the system. After optimizing the molar ratio of the two curing agents, the resulting LCEN exhibits improved reprocessability and recyclability because of the disulfide exchange reactions, while preserving LC properties, such as the reversible LC phase transition and macroscopic LC orientation, for shape memory applications.« less

  7. Explosive synchronization as a process of explosive percolation in dynamical phase space

    PubMed Central

    Zhang, Xiyun; Zou, Yong; Boccaletti, S.; Liu, Zonghua

    2014-01-01

    Explosive synchronization and explosive percolation are currently two independent phenomena occurring in complex networks, where the former takes place in dynamical phase space while the latter in configuration space. It has been revealed that the mechanism of EP can be explained by the Achlioptas process, where the formation of a giant component is controlled by a suppressive rule. We here introduce an equivalent suppressive rule for ES. Before the critical point of ES, the suppressive rule induces the presence of multiple, small sized, synchronized clusters, while inducing the abrupt formation of a giant cluster of synchronized oscillators at the critical coupling strength. We also show how the explosive character of ES degrades into a second-order phase transition when the suppressive rule is broken. These results suggest that our suppressive rule can be considered as a dynamical counterpart of the Achlioptas process, indicating that ES and EP can be unified into a same framework. PMID:24903808

  8. The study of the Boltzmann equation of solid-gas two-phase flow with three-dimensional BGK model

    NASA Astrophysics Data System (ADS)

    Liu, Chang-jiang; Pang, Song; Xu, Qiang; He, Ling; Yang, Shao-peng; Qing, Yun-jie

    2018-06-01

    The motion of many solid-gas two-phase flows can be described by the Boltzmann equation. In order to simplify the Boltzmann equation, the convective-diffusion term is reserved and the collision term is replaced by the three-dimensional Bharnagar-Gross-Krook (BGK) model. Then the simplified Boltzmann equation is solved by homotopy perturbation method (HPM), and its approximate analytical solution is obtained. Through the analyzing, it is proved that the analytical solution satisfies all the constraint conditions, and its formation is in accord with the formation of the solution that is obtained by traditional Chapman-Enskog method, and the solving process of HPM is much more simple and convenient. This preliminarily shows the effectiveness and rapidness of HPM to solve the Boltzmann equation. The results obtained herein provide some theoretical basis for the further study of dynamic model of solid-gas two-phase flows, such as the sturzstrom of high-speed distant landslide caused by microseism and the sand storm caused by strong breeze.

  9. Coevolving complex networks in the model of social interactions

    NASA Astrophysics Data System (ADS)

    Raducha, Tomasz; Gubiec, Tomasz

    2017-04-01

    We analyze Axelrod's model of social interactions on coevolving complex networks. We introduce four extensions with different mechanisms of edge rewiring. The models are intended to catch two kinds of interactions-preferential attachment, which can be observed in scientists or actors collaborations, and local rewiring, which can be observed in friendship formation in everyday relations. Numerical simulations show that proposed dynamics can lead to the power-law distribution of nodes' degree and high value of the clustering coefficient, while still retaining the small-world effect in three models. All models are characterized by two phase transitions of a different nature. In case of local rewiring we obtain order-disorder discontinuous phase transition even in the thermodynamic limit, while in case of long-distance switching discontinuity disappears in the thermodynamic limit, leaving one continuous phase transition. In addition, we discover a new and universal characteristic of the second transition point-an abrupt increase of the clustering coefficient, due to formation of many small complete subgraphs inside the network.

  10. Social climber attachment in forming networks produces a phase transition in a measure of connectivity

    NASA Astrophysics Data System (ADS)

    Taylor, Dane; Larremore, Daniel B.

    2012-09-01

    The formation and fragmentation of networks are typically studied using percolation theory, but most previous research has been restricted to studying a phase transition in cluster size, examining the emergence of a giant component. This approach does not study the effects of evolving network structure on dynamics that occur at the nodes, such as the synchronization of oscillators and the spread of information, epidemics, and neuronal excitations. We introduce and analyze an alternative link-formation rule, called social climber (SC) attachment, that may be combined with arbitrary percolation models to produce a phase transition using the largest eigenvalue of the network adjacency matrix as the order parameter. This eigenvalue is significant in the analyses of many network-coupled dynamical systems in which it measures the quality of global coupling and is hence a natural measure of connectivity. We highlight the important self-organized properties of SC attachment and discuss implications for controlling dynamics on networks.

  11. Coherent inflationary dynamics for Bose-Einstein condensates crossing a quantum critical point

    NASA Astrophysics Data System (ADS)

    Feng, Lei; Clark, Logan W.; Gaj, Anita; Chin, Cheng

    2018-03-01

    Quantum phase transitions, transitions between many-body ground states, are of extensive interest in research ranging from condensed-matter physics to cosmology1-4. Key features of the phase transitions include a stage with rapidly growing new order, called inflation in cosmology5, followed by the formation of topological defects6-8. How inflation is initiated and evolves into topological defects remains a hot topic of debate. Ultracold atomic gas offers a pristine and tunable platform to investigate quantum critical dynamics9-21. We report the observation of coherent inflationary dynamics across a quantum critical point in driven Bose-Einstein condensates. The inflation manifests in the exponential growth of density waves and populations in well-resolved momentum states. After the inflation stage, extended coherent dynamics is evident in both real and momentum space. We present an intuitive description of the quantum critical dynamics in our system and demonstrate the essential role of phase fluctuations in the formation of topological defects.

  12. Mössbauer study of iron minerals transformations by Fuchsiella ferrireducens

    NASA Astrophysics Data System (ADS)

    Gracheva, M. A.; Chistyakova, N. I.; Antonova, A. V.; Rusakov, V. S.; Zhilina, T. N.; Zavarzina, D. G.

    2017-11-01

    Biogenic transformations of iron-containing minerals synthesized ferrihydrite, magnetite and hydrothermal siderite by anaerobic alkaliphilic bacterium Fuchsiella ferrireducens (strain Z-7101T) were studied by 57Fe Mössbauer spectroscopy. Mössbauer investigations of solid phase samples obtained after microbial transformation were carried out at room temperature and at 82 K. It was found that all tested minerals transformed during bacterial growth. In the presence of synthesized ferrihydrite, added as an electron acceptor, a mixture of large (more than 100 nm) and small (˜5 nm) particles of magnetically ordered phase and siderite was formed. Synthesized magnetite that contains both Fe3+ and Fe2+ forms could serve as electron acceptor as well as an electron donor for F.ferrireducens growth. As a result of its biotransformation, no siderite formation was observed while small particles of magnetite were formed. In the case of the addition of siderite as an electron donor formation of a small amount of a new phase containing Fe2+ caused by recrystallization of siderite during bacterial growth was detected.

  13. Entrapment of Hydrate-coated Gas Bubbles into Oil and Separation of Gas and Hydrate-film; Seafloor Experiments with ROV

    NASA Astrophysics Data System (ADS)

    Hiruta, A.; Matsumoto, R.

    2015-12-01

    We trapped gas bubbles emitted from the seafloor into oil-containing collector and observed an unique phenomena. Gas hydrate formation needs water for the crystal lattice; however, gas hydrates in some areas are associated with hydrophobic crude oil or asphalt. In order to understand gas hydrate growth in oil-bearing sediments, an experiment with cooking oil was made at gas hydrate stability condition. We collected venting gas bubbles into a collector with canola oil during ROV survey at a gas hydrate area in the eastern margin of the Sea of Japan. When the gas bubbles were trapped into collector with oil, gas phase appeared above the oil and gas hydrates, between oil and gas phase. At this study area within gas hydrate stability condition, control experiment with oil-free collector suggested that gas bubbles emitted from the seafloor were quickly covered with gas hydrate film. Therefore it is improbable that gas bubbles entered into the oil phase before hydrate skin formation. After the gas phase formation in oil-containing collector, the ROV floated outside of hydrate stability condition for gas hydrate dissociation and re-dived to the venting site. During the re-dive within hydrate stability condition, gas hydrate was not formed. The result suggests that moisture in the oil is not enough for hydrate formation. Therefore gas hydrates that appeared at the oil/gas phase boundary were already formed before bubbles enter into the oil. Hydrate film is the only possible origin. This observation suggests that hydrate film coating gas hydrate was broken at the sea water/oil boundary or inside oil. Further experiments may contribute for revealing kinetics of hydrate film and formation. This work was a part of METI (Ministry of Economy, Trade and Industry)'s project entitled "FY2014 Promoting research and development of methane hydrate". We also appreciate support of AIST (National Institute of Advanced Industrial Science and Technology).

  14. Atomistic simulation of cubic and tetragonal phases of U-Mo alloy: Structure and thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Starikov, S. V.; Kolotova, L. N.; Kuksin, A. Yu.; Smirnova, D. E.; Tseplyaev, V. I.

    2018-02-01

    We studied structure and thermodynamic properties of cubic and tetragonal phases of pure uranium and U-Mo alloys using atomistic simulations: molecular dynamics and density functional theory. The main attention was paid to the metastable γ0 -phase that is formed in U-Mo alloys at low temperature. Structure of γ0 -phase is similar to body-centered tetragonal (bct) lattice with displacement of a central atom in the basic cell along [ 001 ] direction. Such displacements have opposite orientations for part of the neighbouring basic cells. In this case, such ordering of the displacements can be designated as antiferro-displacement. Formation of such complex structure may be interpreted through forming of short U-U bonds. At heating, the tetragonal structure transforms into cubic γs -phase, still showing ordering of central atom displacements. With rise in temperature, γs -phase transforms to γ-phase with a quasi body-centered cubic (q-bcc) lattice. The local positions of uranium atoms in γ-phase correspond to γs -phase, however, orientations of the central atom displacements become disordered. Transition from γ0 to γ can be considered as antiferro-to paraelastic transition of order-disorder type. This approach to the structure description of uranium alloy allows to explain a number of unusual features found in the experiments: anisotropy of lattice at low temperature; remarkably high self-diffusion mobility in γ-phase; decreasing of electrical resistivity at heating for some alloys. In addition, important part of this work is the development of new interatomic potential for U-Mo system made with taking into account details of studied structures.

  15. Investigating the mechanisms of surface-bound functional groups in overcoming kinetic barriers to the precipitation of ordered dolomite at low temperature (Invited)

    NASA Astrophysics Data System (ADS)

    Kenward, P. A.; Roberts, J.; Fowle, D.; Goldstein, R.; Moore, D.; Gonzalez, L. A.

    2013-12-01

    The mineral dolomite, while abundant in the geologic record, is scarce in modern environments and limited to specific environments, due to kinetic barriers at low temperature (< 50°C). The microbial mediation of dolomite has been extensively studied using numerous microorganisms and disordered dolomite has been synthesized under abiotic conditions. However these studies either yielded disordered dolomite or failed to elucidate the specific mechanism(s) necessary to achieve the precipitation ordered phases of dolomite. Our work [1,2] demonstrates laboratory synthesis of dolomite at 25 °C using microcosms composed of either microbial biomass or abiotic carboxylated polystyrene micro-spheres and fluids with a range of marine-type compositions. We identify the density of surface-bound carboxyl-groups of organic matter as a primary control in ordered dolomite formation at low temperatures under the conditions studied. We hypothesize that surface-bound carboxyl-groups, such as those associated with organic matter or microbial biomass, overcome slow reaction kinetics for dolomite precipitation by dehydrating Mg2+ in an energetically favorable reaction. The precipitation of solid carbonate phases remains the most effective means of permanently sequestering CO2 from the atmosphere. As such, an increased understanding of dolomite kinetics at low temperature affords us the opportunity to apply this mechanism to engineered systems designed to enhance carbon sequestration in environments which do not kinetically favor the formation of carbonate mineral phases. [1] Kenward et al. (2013) AAPG, in press. [2] Roberts et al. (2013) PNAS, in press.

  16. Biological plywood film formation from para-nematic liquid crystalline organization.

    PubMed

    Aguilar Gutierrez, Oscar F; Rey, Alejandro D

    2017-11-15

    In vitro non-equilibrium chiral phase ordering processes of biomacromolecular solutions offer a systematic and reproducible way of generating material architectures found in Nature, such as biological plywoods. Accelerated progress in biomimetic engineering of mesoscopic plywoods and other fibrous structures requires a fundamental understanding of processing and transport principles. In this work we focus on collagen I based materials and structures to find processing conditions that lead to defect-free collagen films displaying the helicoidal plywood architecture. Here we report experimentally-guided theory and simulations of the chiral phase ordering of collagen molecules through water solvent evaporation of pre-aligned dilute collagen solutions. We develop, implement and a posteriori validate an integrated liquid crystal chiral phase ordering-water transport model that captures the essential features of spatio-temporal chiral structure formation in shrinking film domains due to directed water loss. Three microstructural (texture) modes are identified depending on the particular value of the time-scale ratio defined by collagen rotational diffusion to water translational diffusion. The magnitude of the time scale ratio provides the conditions for the synchronization of the helical axis morphogenesis with the increase in the mesogen concentration due to water loss. Slower than critical water removal rates leads to internal multiaxial cellular patterns, reminiscent of the classical columnar-equiaxed metallurgical casting structures. Excessive water removal rates lead to destabilization of the chiral axis and multidomain defected films. The predictions of the integrated model are in qualitative agreement with experimental results and can potentially guide solution processing of other bio-related mesogenic solutions that seek to mimic the architecture of biological fibrous composites.

  17. Multiscale structural changes of atomic order in severely deformed industrial aluminum

    NASA Astrophysics Data System (ADS)

    Samoilenko, Z. A.; Ivakhnenko, N. N.; Pushenko, E. I.; Pashinskaya, E. G.; Varyukhin, V. N.

    2016-02-01

    The regularities of multiscale structural changes in the atomic order of the aluminum alloy AD-1 after a severe cold plastic deformation by conventional rolling in smooth rolls or in rolls with relief recesses favorable for shear deformation have been investigated. It has been found that there are four types of structural fractions that differ in scale and perfection of atomic order: crystallographic planes with a long-range order; nanoscale fragments of the planes ( D = 100-300 Å) with an incipient long-range order; smaller groups of atoms ( D = 20-30 Å) of amorphized structure; and the least ordered structural fraction of intercluster medium, keeping only a short-range atomic order (2-3 interatomic distances, 10 Å). The presence of diffuse halo bands in the region of intense Debye lines indicates phase transitions of the order → disorder type with the formation of one to three groups of amorphous clusters with the dominance, in the nanometer scale, of the atomic order characteristic of the family of planes (111), (220), and (311) of crystalline aluminum. We have found a dynamic phase transition with the changing crystallographic order of aluminum, with the matrix structure of a face-centered cubic (FCC) lattice, in the form of nanosized local groups of atoms, that is, the deformation clusters of aluminum with a simple cubic K6 lattice. In the case of conventional rolling, the development of large clusters 50-500 Å in size is observed; however, in the use of rolls with relief recesses, the difference in the sizes of the clusters is one half as much: 50-250 Å. Based on the analysis of the integrated intensity of incoherent X-ray scattering by the samples, we have elucidated the nature of the lowest measured density for the sample subjected to conventional rolling, which consists in the volume concentration of disorderly arranged atoms, the highest of the compared structures, which indicates the formation therein of the greatest amount of fluctuation "voids."

  18. A case of Z/E-isomers elution order inversion caused by cosolvent percentage change in supercritical fluid chromatography.

    PubMed

    Pokrovskiy, Oleg I; Ustinovich, Konstantin B; Usovich, Oleg I; Parenago, Olga O; Lunin, Valeriy V; Ovchinnikov, Denis V; Kosyakov, Dmitry S

    2017-01-06

    A case of elution order inversion caused by cosolvent percentage change in supercritical fluid chromatography was observed and investigated in some detail. Z- and E-isomers of phenylisobutylketone oxime experience an elution order reversal on most columns if the mobile phase consists of CO 2 and alcohol. At lower percentages of alcohol Z-oxime is retained less, somewhere at 2-5% coelution occurs and at larger cosolvent volume elution order reverses - Z-oxime is eluted later than E-oxime. We suppose inversion with CO 2 -ROH phases happens due to a shift in balance between two main interactions governing retention. At low ROH percentages stationary phase surface is only slightly covered by ROH molecules so oximes primarily interact with adsorption sites via hydrogen bond formation. Due to intramolecular sterical hindrance Z-oxime is less able to form hydrogen bonds and consequently is eluted first. At higher percentages alcohols occupy most of strong hydrogen bonding sites on silica surface thus leaving non-specific electrostatic interactions predominantly responsible for Z/E selectivity. Z-oxime has a much larger dipole moment than E-oxime and at these conditions it is eluted later. Additional experimental data with CO 2 -CH 3 CN, hexane-iPrOH and CHF 3 -ROH mobile phases supporting this explanation are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A high precision extrapolation method in multiphase-field model for simulating dendrite growth

    NASA Astrophysics Data System (ADS)

    Yang, Cong; Xu, Qingyan; Liu, Baicheng

    2018-05-01

    The phase-field method coupling with thermodynamic data has become a trend for predicting the microstructure formation in technical alloys. Nevertheless, the frequent access to thermodynamic database and calculation of local equilibrium conditions can be time intensive. The extrapolation methods, which are derived based on Taylor expansion, can provide approximation results with a high computational efficiency, and have been proven successful in applications. This paper presents a high precision second order extrapolation method for calculating the driving force in phase transformation. To obtain the phase compositions, different methods in solving the quasi-equilibrium condition are tested, and the M-slope approach is chosen for its best accuracy. The developed second order extrapolation method along with the M-slope approach and the first order extrapolation method are applied to simulate dendrite growth in a Ni-Al-Cr ternary alloy. The results of the extrapolation methods are compared with the exact solution with respect to the composition profile and dendrite tip position, which demonstrate the high precision and efficiency of the newly developed algorithm. To accelerate the phase-field and extrapolation computation, the graphic processing unit (GPU) based parallel computing scheme is developed. The application to large-scale simulation of multi-dendrite growth in an isothermal cross-section has demonstrated the ability of the developed GPU-accelerated second order extrapolation approach for multiphase-field model.

  20. Hierarchical assembly of Sm2Co7/Co magnetic nanoparticles into highly stable and uniform nanospheres.

    PubMed

    Saravanan, P; Sreedhar, B; Mishra, D; Perumal, A; Chandrasekaran, V

    2011-04-01

    Hierarchical assembly of colloidal Sm2Co7/Co clusters in the form of nanospheres has been processed through a polyol process. The SmCo nanospheres are found to be robust, uniform ( 100 nm) and tend to self-assemble in the form of ordered superstructures. Each nanosphere consists of large number of discrete fine particles ( 6.0 nm), having two-phase structure of both Sm2Co7 and Co-phases. Upon annealing, these phases transform into Sm2Co17 phase with very high magnetization (169 emu/g). A possible mechanism on the formation of nanospheres from the individual Sm2Co2o7 and Co nanoparticles is also discussed.

  1. Kinetics of Polydomain Ordering at Second-Order Phase Transitions (by the Example of the AuCu3 Alloy)

    NASA Astrophysics Data System (ADS)

    Feldman, E. P.; Stefanovich, L. I.; Gumennyk, K. V.

    2008-08-01

    Kinetics of polydomain spinodal ordering is studied in alloys of AuCu3 type. We introduce four non-conserved long-range order parameters whose sum, however, is conserved and, using the statistical approach, follow the temporal evolution of their random spatial distribution after a rapid temperature quench. A system of nonlinear differential equations for correlators of second and third order is derived. Asymptotical analysis of this system allows to investigate the scaling regime, which develops on the late stages of evolution and to extract additional information concerning the rate of decrease of the specific volume of disordered regions and the rate of decrease of the average thickness of antiphase boundaries. Comparison of these results to experimental data is given. The quench below the spinodal and the onset of long-range order may be separated by the incubation time, whose origin is different from that in first-order phase transitions. Numerical integration of equations for correlators shows also, that it is possible to prepare a sample in such a way that its further evolution will go with formation of transient kinetically slowed polydomain structures different from the final L12 structure.

  2. Synthesis of Stereoisomeric - Metal Complexes Using Phase-Transfer Catalysis and Photochemical Transforms.

    DTIC Science & Technology

    1984-05-25

    bonded arrangement (2) as depicted in Figure 1-1. Fe Fe.’. % V3 1 2 Figure I-1 Proposed Structures of Ferrocene In order to understand clearly the... phosphines (PR3) or methanol (CH3OH) results in the formation nf o-alkylmetal complexes (Scheme Ill-1, 1). If stable, further reaction of these

  3. Iron-platinum multilayer thin film reactions to form L1(0) iron-platinum and exchange spring magnets

    NASA Astrophysics Data System (ADS)

    Yao, Bo

    FePt films with the L10 phase have potential applications for magnetic recording and permanent magnets due to its high magnetocrystalline anisotropy energy density. Heat treatment of [Fe/Pt] n multilayer films is one approach to form the L10 FePt phase through a solid state reaction. This thesis has studied the diffusion and reaction of [Fe/Pt]n multilayer films to form the L10 FePt phase and has used this understanding to construct exchange spring magnets. The process-structure-property relations of [Fe/Pt] n multilayer films were systematically examined. The transmission electron microscopy (TEM) study of the annealed multilayers indicates that the Pt layer grows at the expense of Fe during annealing, forming a disordered fcc FePt phase by the interdiffusion of Fe into Pt. This thickening of the fcc Pt layer can be attributed to the higher solubilities of Fe into fcc Pt, as compared to the converse. For the range of film thickness studied, a continuous L10 FePt product layer that then thickens with further annealing is not found. Instead, the initial L10 FePt grains are distributed mainly on the grain boundaries within the fcc FePt layer and at the Fe/Pt interfaces and further transformation of the sample to the ordered L10 FePt phase proceeds coupled with the growth of the initial L10 FePt grains. A comprehensive study of annealed [Fe/Pt]n films is provided concerning the phase fraction, grain size, nucleation/grain density, interdiffusivity, long-range order parameter, and texture, as well as magnetic properties. A method based on hollow cone dark field TEM is introduced to measure the volume fraction, grain size, and density of ordered L10 FePt phase grains in the annealed films, and low-angle X-ray diffraction is used to measure the effective Fe-Pt interdiffusivity. The process-structure-properties relations of two groups of samples with varying substrate temperature and periodicity are reported. The results demonstrate that the processing parameters (substrate temperature, periodicity) have a strong influence on the structure (effective interdiffusivity, L1 0 phase volume fraction, grain size, and density) and magnetic properties. The correlation of these parameters suggests that the annealed [Fe/Pt]n multilayer films have limited nuclei, and the subsequent growth of L10 phase is very important to the extent of ordered phase formed. A correlation between the grain size of fcc FePt phase, grain size of the L10 FePt phase, the L10 FePt phase fraction, and magnetic properties strongly suggests that the phase transformation of fcc →L10 is highly dependent on the grain size of the parent fcc FePt phase. A selective phase growth model is proposed to explain the phenomena observed. An investigation of the influence of total film thickness on the phase formation of the L10 FePt phase in [Fe/Pt] n multilayer films and a comparison of this to that of FePt co-deposited alloy films is also conducted. A general trend of greater L1 0 phase formation in thicker films was observed in both types of films. It was further found that the thickness dependence of the structure and of the magnetic properties in [Fe/Pt]n multilayer films is much stronger than that in FePt alloy films. This is related to the greater chemical energy contained in [Fe/Pt]n films than FePt alloy films, which is helpful for the L10 FePt phase growth. However, the initial nucleation temperature of [Fe/Pt]n multilayers and co-deposited alloy films was found to be similar. An investigation of L10 FePt-based exchange spring magnets is presented based on our understanding of the L10 formation in [Fe/Pt] n multilayer films. It is known that exchange coupling is an interfacial magnetic interaction and it was experimentally shown that this interaction is limited to within several nanometers of the interface. A higher degree of order of the hard phase is shown to increase the length scale slightly. Two approaches can be used to construct the magnets. For samples with composition close to stoichiometric L10 FePt, the achievement of higher energy product is limited by the average saturation magnetization, and therefore, a lower annealing temperature is beneficial to increase the energy product, allowing a larger fraction of disordered phase. For samples with higher Fe concentration, the (BH)max is limited by the low coercivity of annealed sample, and a higher annealing temperature is beneficial to increase the energy product.

  4. NMR properties of 3He-A in biaxially anisotropic aerogel

    NASA Astrophysics Data System (ADS)

    Dmitriev, V. V.; Krasnikhin, D. A.; Senin, A. A.; Yudin, A. N.

    2012-12-01

    Theoretical model of G.E. Volovik for A-like phase of 3He in aerogel suggests formation of Larkin-Imry-Ma state of Anderson-Brinkmann-Morel order parameter. Most of results of NMR studies of A-like phase are in a good agreement with this model in assumption of uniaxial anisotropy, except for some of experiments in weakly anisotropic aerogel samples. We demonstrate that these results can be described in frames of the same model in assumption of biaxial anisotropy. Parameters of anisotropy in these experiments can be determined from the NMR data.

  5. Isobaric molecular dynamics version of the generalized replica exchange method (gREM): Liquid–vapor equilibrium

    DOE PAGES

    Malolepsza, Edyta; Secor, Maxim; Keyes, Tom

    2015-09-23

    A prescription for sampling isobaric generalized ensembles with molecular dynamics is presented and applied to the generalized replica exchange method (gREM), which was designed for simulating first-order phase transitions. The properties of the isobaric gREM ensemble are discussed and a study is presented of the liquid-vapor equilibrium of the guest molecules given for gas hydrate formation with the mW water model. As a result, phase diagrams, critical parameters, and a law of corresponding states are obtained.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiche, Helmut Matthias; Vogel, Sven C.

    New in situ data for the U-C system are presented, with the goal of improving knowledge of the phase diagram to enable production of new ceramic fuels. The none quenchable, cubic, δ-phase, which in turn is fundamental to computational methods, was identified. Rich datasets of the formation synthesis of uranium carbide yield kinetics data which allow the benchmarking of modeling, thermodynamic parameters etc. The order-disorder transition (carbon sublattice melting) was observed due to equal sensitivity of neutrons to both elements. This dynamic has not been accurately described in some recent simulation-based publications.

  7. Dependence of growth of the phases of multiphase binary systems on the diffusion parameters

    NASA Astrophysics Data System (ADS)

    Molokhina, L. A.; Rogalin, V. E.; Filin, S. A.; Kaplunov, I. A.

    2017-12-01

    A mathematical model of the diffusion interaction of a binary system with several phases on the equilibrium phase diagram is presented. The theoretical and calculated dependences of the layer thickness of each phase in the multiphase diffusion zone on the isothermal annealing time and the ratio of the diffusion parameters in the neighboring phases with an unlimited supply of both components were constructed. The phase formation and growth in the diffusion zone during "reactive" diffusion corresponds to the equilibrium state diagram for two components, and the order of their appearance in the diffusion zone depends only on the ratio of the diffusion parameters in the phases themselves and on the duration of the incubation periods. The dependence of phase appearance on the incubation periods, annealing time, and difference in the movement rates of the components across the interface boundaries was obtained. An example of the application of the model for processing the experimental data on phase growth in a two-component three-phase system was given.

  8. Evaluation of the pathways of tropospheric nitrophenol formation using a multiphase model

    NASA Astrophysics Data System (ADS)

    Harrison, M. A. J.; Heal, M. R.; Cape, J. N.

    2005-03-01

    Phenols are a major class of volatile organic compounds (VOC) whose reaction within, and partitioning between, the gas and liquid phases affects their lifetime within the atmosphere, the local oxidising capacity, and the extent of production of nitrophenols, which are toxic chemicals. In this work, a zero-dimension box model was constructed to quantify the relative nitration pathways, and partitioning into the liquid phase, of mono-aromatic compounds in order to help elucidate the formation pathways of 2- and 4-nitrophenol in the troposphere. The liquid phase contributed significantly to the production of nitrophenols for liquid water content (Lc) values exceeding 3×10-9, and for a range of assumed liquid droplet diameter, even though the resultant equilibrium partitioning to the liquid phase was much lower. For example, in a ''typical'' model scenario, with Lc=3×10-7, 58% of nitrophenol production occurred in the liquid phase but only 2% of nitrophenol remained there, i.e. a significant proportion of nitrophenol observed in the gas phase may actually be produced via the liquid phase. The importance of the liquid phase was enhanced at lower temperatures, by a factor ~1.5-2 at 278 K cf. 298 K. The model showed that nitrophenol production was particularly sensitive to the values of the rate coefficients for the liquid phase reactions between phenol and OH or NO3 reactions, but insensitive to the rate coefficient for the reaction between benzene and OH, thus identifying where further experimental data are required.

  9. Microcanonical molecular simulations of methane hydrate nucleation and growth: evidence that direct nucleation to sI hydrate is among the multiple nucleation pathways.

    PubMed

    Zhang, Zhengcai; Walsh, Matthew R; Guo, Guang-Jun

    2015-04-14

    The results of six high-precision constant energy molecular dynamics (MD) simulations initiated from methane-water systems equilibrated at 80 MPa and 250 K indicate that methane hydrates can nucleate via multiple pathways. Five trajectories nucleate to an amorphous solid. One trajectory nucleates to a structure-I hydrate template with long-range order which spans the simulation box across periodic boundaries despite the presence of several defects. While experimental and simulation data for hydrate nucleation with different time- and length-scales suggest that there may exist multiple pathways for nucleation, including metastable intermediates and the direct formation of the globally-stable phase, this work provides the most compelling evidence that direct formation to the globally stable crystalline phase is one of the multiple pathways available for hydrate nucleation.

  10. Polarity-driven oxygen vacancy formation in ultrathin LaNiO 3 films on SrTiO 3

    DOE PAGES

    Tung, I-Cheng; Luo, Guangfu; Lee, June Hyuk; ...

    2017-10-18

    Oxide heterostructures offer a pathway to control emergent phases in complex oxides, but their creation often leads to boundaries that have a polar discontinuity. In order to fabricate atomic-scale arrangements of dissimilar materials, we need a clear understanding of the pathways by which materials resolve polarity issues. By examining the real-time lattice structure in-situ during growth for the case of polar LaNiO 3 synthesized on non-polar SrTiO 3 (001), we demonstrate how films in ultra-thin limit form as LaNiO 2.5 and then evolve into LaNiO 3 as the thickness increases. Theory explains how the polar energetics drives the formation ofmore » oxygen vacancies and the stability of these phases with thickness and structure.« less

  11. The mineralogy and formation processes of Mars soil

    NASA Technical Reports Server (NTRS)

    Banin, Amos

    1992-01-01

    The mineralogical nature of Mars soil is far from being understood, nor are the formation time and weathering processes known. Quantitatively, the two major mineral-forming elements in Mars soil are silicon and iron, constituting 44 and 19 percent of the soils as SiO4 and Fe2O3, respectively. The silicate phases have been studied only briefly, mostly because of their limited spectral fingerprinting in the VIS and NIR. Much attention was given to the iron minerals in the soil, due to their pronounced absorption in the VIS and NIR, making them easily detectable by telescopic observations. The available information on Mars soil mineralogy, mostly obtained by remote sensing, is reviewed, and it is hypothesized that it leads to the suggestion that nanophase short-range-order (amorphous) phases of the silicates and iron oxides abound in the soil.

  12. Morphological, compositional, and geometrical transients of V-groove quantum wires formed during metalorganic vapor-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Dimastrodonato, Valeria; Pelucchi, Emanuele; Zestanakis, Panagiotis A.; Vvedensky, Dimitri D.

    2013-07-01

    We present a theoretical model of the formation of self-limited (Al)GaAs quantum wires within V-grooves on GaAs(001) substrates during metalorganic vapor-phase epitaxy. We identify the facet-dependent rates of the kinetic processes responsible for the formation of the self-limiting profile, which is accompanied by Ga segregation along the axis perpendicular to the bottom of the original template, and analyze their interplay with the facet geometry in the transient regime. A reduced model is adopted for the evolution of the patterned profile, as determined by the angle between the different crystallographic planes as a function of the growth conditions. Our results provide a comprehensive phenomenological understanding of the self-ordering mechanism on patterned surfaces which can be harnessed for designing the quantum optical properties of low-dimensional systems.

  13. Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro

    PubMed Central

    Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P. C.; Livesey, Frederick J.

    2015-01-01

    A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (<10) of presynaptic inputs, whereas a small set of hub-like neurons have large numbers of synaptic connections (>40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. PMID:26395144

  14. Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro.

    PubMed

    Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P C; Livesey, Frederick J

    2015-09-15

    A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (<10) of presynaptic inputs, whereas a small set of hub-like neurons have large numbers of synaptic connections (>40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. © 2015. Published by The Company of Biologists Ltd.

  15. Gradual Ordering in Red Abalone Nacre

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, P. U. P. A.; Metzler, Rebecca A.; Zhou, Dong

    2008-09-03

    Red abalone (Haliotis rufescens) nacre is a layered composite biomineral that contains crystalline aragonite tablets confined by organic layers. Nacre is intensely studied because its biologically controlled microarchitecture gives rise to remarkable strength and toughness, but the mechanisms leading to its formation are not well understood. Here we present synchrotron spectromicroscopy experiments revealing that stacks of aragonite tablet crystals in nacre are misoriented with respect to each other. Quantitative measurements of crystal orientation, tablet size, and tablet stacking direction show that orientational ordering occurs not abruptly but gradually over a distance of 50 {micro}m. Several lines of evidence indicate thatmore » different crystal orientations imply different tablet growth rates during nacre formation. A theoretical model based on kinetic and gradual selection of the fastest growth rates produces results in qualitative and quantitative agreement with the experimental data and therefore demonstrates that ordering in nacre is a result of crystal growth kinetics and competition either in addition or to the exclusion of templation by acidic proteins as previously assumed. As in other natural evolving kinetic systems, selection of the fastest-growing stacks of tablets occurs gradually in space and time. These results suggest that the self-ordering of the mineral phase, which may occur completely independently of biological or organic-molecule control, is fundamental in nacre formation.« less

  16. Phase transformations in cast duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Kim, Yoon-Jun

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as sigma (sigma) and chi (chi) can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (sigma + chi) formation were analyzed using the Johnson-Mehl-Avrami (JMA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities, a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, a was stabilized with increasing Cr addition and chi by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in DSS can be affected by local composition fluctuations in the cast alloy. This may cause discrepancy between thermodynamic prediction and experimental observation.

  17. Two-peak structure in the K-edge RIXS spectra of a spatially frustrated Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Datta, Trinanjan; Luo, Cheng; Yao, Dao-Xin

    2014-03-01

    Quantum fluctuations due to spatial anisotropy and strong magnetic frustration lead to the formation of a two-peak structure in the K-edge bimagnon RIXS intensity spectra of a Jx-Jy-J2 Heisenberg model on a square lattice. We compute the RIXS intensity, including up to first order 1/S spin wave expansion correction, using the Bethe-Salpeter equation within the ladder approximation scheme. The two-peak feature occurs in both the antiferromagnetic phase and the collinear antiferromagnetic phase. A knowledge of the peak splitting energy from both magnetically ordered regime can provide experimentalists with an alternative means to measure and study the effects of local microscopic exchange constants. Cottrell Research Corporation, NSFC-11074310, NSFC-11275279, Specialized Research Fund for the Doctoral Program of Higher Education.

  18. Observations of electron phase-space holes driven during magnetic reconnection in a laboratory plasma

    NASA Astrophysics Data System (ADS)

    Fox, W.; Porkolab, M.; Egedal, J.; Katz, N.; Le, A.

    2012-03-01

    This work presents detailed experimental observations of electron phase-space holes driven during magnetic reconnection events on the Versatile Toroidal Facility. The holes are observed to travel on the order of or faster than the electron thermal speed, and are of large size scale, with diameter of order 60 Debye lengths. In addition, they have 3D spheroidal structure with approximately unity aspect ratio. We estimate the direct anomalous resistivity due to ion interaction with the holes and find it to be too small to affect the reconnection rate; however, the holes may play a role in reining in a tail of accelerated electrons and they indicate the presence of other processes in the reconnection layer, such as electron energization and electron beam formation.

  19. Order and gelation of cellulose nanocrystal suspensions: an overview of some issues

    NASA Astrophysics Data System (ADS)

    Gray, Derek G.

    2017-12-01

    Cellulose nanocrystals (CNCs) are polydisperse rod-shaped particles of crystalline cellulose I, typically prepared by sulfuric acid hydrolysis of natural cellulose fibres to give aqueous colloidal suspensions stabilized by sulfate half-ester groups. Sufficiently dilute suspensions are isotropic fluids, but as the concentration of CNC in water is increased, a critical concentration is reached where a spontaneously ordered phase is observed. The (equilibrium) phase separation of the ordered chiral nematic phase is in competition with a tendency of the CNC suspension to form a gel. Qualitatively, factors that reduce the stability of the CNC suspension favour the onset of gelation. The chiral nematic structure is preserved, at least partially, when the suspension dries. Solid chiral nematic films of cellulose are of interest for their optical and templating properties, but the preparation of the films requires improvement. The processes that govern the formation of solid chiral nematic films from CNC suspensions include phase separation, gelation and also the effects of shear on CNC orientation during evaporation. Some insight into these processes is provided by polarized light microscopy, which indicates that the relaxation of shear-induced orientation to give a chiral nematic structure may occur via an intermediate twist-bend state. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  20. Temperature effects on the atomic structure and kinetics in single crystal electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gründer, Yvonne; Markovic, Nenad M.; Thompson, Paul

    2015-01-01

    The influence of temperature on the atomic structure at the electrochemical interface has been studied using in-situ surface x-ray scattering (SXS) during the formation of metal monolayers on a Au(111) electrode. For the surface reconstruction of Au(111), higher temperatures increase the mobility of surface atoms in the unreconstructed phase which then determines the surface ordering during the formation of the reconstruction. For the underpotential deposition (UPD) systems, the surface diffusion of the depositing metal adatoms is significantly reduced at low temperatures which results in the frustration of ordered structures in the case of Cu UPD, occurring on a Br-modified surface,more » and in the formation of a disordered Ag monolayer during Ag UPD. The results indicate that temperature changes affect the mass transport and diffusion of metal adatoms on the electrode surface. This demonstrates the importance of including temperature as a variable in studying surface structure and reactions at the electrochemical interface.« less

  1. Layered double hydroxide stability. 2. Formation of Cr(III)-containing layered double hydroxides directly from solution

    NASA Technical Reports Server (NTRS)

    Boclair, J. W.; Braterman, P. S.; Jiang, J.; Lou, S.; Yarberry, F.

    1999-01-01

    Solutions containing divalent metal [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+] chlorides and CrCl3 6H2O were titrated with NaOH to yield, for M(II) = Zn, Co, and Ni, hydrotalcite-like layered double hydroxides (LDHs), [[M(II)]1-z[Cr(III)]z(OH)2][Cl]z yH2O, in a single step, without intermediate formation of chromium hydroxide. Analysis of the resultant titration curves yields solubility constants for these compounds. These are in the order Zn < Ni approximately Co, with a clear preference for formation of the phase with z = 1/3. With Mg2+ as chloride, titration gives a mixture of Cr(OH)3 and Mg(OH)2, but the metal sulfates give Mg2Cr(OH)6 1/2(SO4) by a two-step process. Titrimetric and spectroscopic evidence suggests short-range cation order in the one-step LDH systems.

  2. Fuel-optimal low-thrust formation reconfiguration via Radau pseudospectral method

    NASA Astrophysics Data System (ADS)

    Li, Jing

    2016-07-01

    This paper investigates fuel-optimal low-thrust formation reconfiguration near circular orbit. Based on the Clohessy-Wiltshire equations, first-order necessary optimality conditions are derived from the Pontryagin's maximum principle. The fuel-optimal impulsive solution is utilized to divide the low-thrust trajectory into thrust and coast arcs. By introducing the switching times as optimization variables, the fuel-optimal low-thrust formation reconfiguration is posed as a nonlinear programming problem (NLP) via direct transcription using multiple-phase Radau pseudospectral method (RPM), which is then solved by a sparse nonlinear optimization software SNOPT. To facilitate optimality verification and, if necessary, further refinement of the optimized solution of the NLP, formulas for mass costate estimation and initial costates scaling are presented. Numerical examples are given to show the application of the proposed optimization method. To fix the problem, generic fuel-optimal low-thrust formation reconfiguration can be simplified as reconfiguration without any initial and terminal coast arcs, whose optimal solutions can be efficiently obtained from the multiple-phase RPM at the cost of a slight fuel increment. Finally, influence of the specific impulse and maximum thrust magnitude on the fuel-optimal low-thrust formation reconfiguration is analyzed. Numerical results shown the links and differences between the fuel-optimal impulsive and low-thrust solutions.

  3. Pressure-dependence of the phase transitions and thermal expansion in zirconium and hafnium pyrovanadate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallington, Leighanne C.; Hester, Brett R.; Kaplan, Benjamin S.

    Low or negative thermal expansion (NTE) has been previously observed in members of the ZrP{sub 2}O{sub 7} family at temperatures higher than their order-disorder phase transitions. The thermoelastic properties and phase behavior of the low temperature superstructure and high temperature negative thermal expansion phases of ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} were explored via in situ variable temperature/pressure powder x-ray diffraction measurements. The phase transition temperatures of ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} exhibited a very strong dependence on pressure (∼700 K GPa), with moderate compression suppressing the formation of their NTE phases below 513 K. Compression alsomore » reduced the magnitude of the coefficients of thermal expansion in both the positive and negative thermal expansion phases. Additionally, the high temperature NTE phase of ZrV{sub 2}O{sub 7} was found to be twice as stiff as the low temperature positive thermal expansion superstructure (24 and 12 GPa respectively). - Graphical abstract: The temperature at which ZrV{sub 2}O{sub 7} transforms to a phase displaying negative thermal expansion is strongly pressure dependent. The high temperature form of ZrV{sub 2}O{sub 7} is elastically stiffer than the low temperature form. - Highlights: • The order-disorder phase transition temperatures in ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} are strongly pressure dependent (∼700 K.GPa). • The high temperature (disordered) phase of ZrV{sub 2}O{sub 7} is much stiffer than the ambient temperature (ordered) phase. • Compression reduces the magnitude of the negative thermal expansion in the high temperature phase of ZrV{sub 2}O{sub 7}.« less

  4. Dark current reduction of Ge photodetector by GeO₂ surface passivation and gas-phase doping.

    PubMed

    Takenaka, Mitsuru; Morii, Kiyohito; Sugiyama, Masakazu; Nakano, Yoshiaki; Takagi, Shinichi

    2012-04-09

    We have investigated the dark current of a germanium (Ge) photodetector (PD) with a GeO₂ surface passivation layer and a gas-phase-doped n+/p junction. The gas-phase-doped PN diodes exhibited a dark current of approximately two orders of magnitude lower than that of the diodes formed by a conventional ion implantation process, indicating that gas-phase doping is suitable for low-damage PN junction formation. The bulk leakage (Jbulk) and surface leakage (Jsurf) components of the dark current were also investigated. We have found that GeO₂ surface passivation can effectively suppress the dark current of a Ge PD in conjunction with gas-phase doping, and we have obtained extremely low values of Jbulk of 0.032 mA/cm² and Jsurf of 0.27 μA/cm.

  5. Discovery of a Frank-Kasper [sigma] Phase in Sphere-Forming Block Copolymer Melts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sangwoo; Bluemle, Michael J.; Bates, Frank S.

    Sphere-forming block copolymers are known to self-assemble into body-centered cubic crystals near the order-disorder transition temperature. Small-angle x-ray scattering and transmission electron microscopy experiments on diblock and tetrablock copolymer melts have revealed an equilibrium phase characterized by a large tetragonal unit cell containing 30 microphase-separated spheres. This structure, referred to as the sigma ({sigma}) phase by Frank and Kasper more than 50 years ago, nucleates and grows from the body-centered cubic phase similar to its occurrence in metal alloys and is a crystal approximant to dodecagonal quasicrystals. Formation of the {sigma} phase in undiluted linear block copolymers (and certain branchedmore » dendrimers) appears to be mediated by macromolecular packing frustration, an entropic contribution to the interparticle interactions that control the sphere-packing geometry.« less

  6. The competition of hydrogen-like and isotropic interactions on polymer collapse

    NASA Astrophysics Data System (ADS)

    Krawczyk, J.; Owczarek, A. L.; Prellberg, T.

    2007-09-01

    We investigate a lattice model of polymers where the nearest neighbour monomer monomer interaction strengths differ according to whether the local configurations have so-called 'hydrogen-like' formations or not. If the interaction strengths are all the same then the classical θ-point collapse transition occurs on lowering the temperature, and the polymer enters the isotropic liquid drop phase known as the collapsed globule. On the other hand, strongly favouring the hydrogen-like interactions gives rise to an anisotropic folded (solid-like) phase on lowering the temperature. We use Monte Carlo simulations up to a length of 256 to map out the phase diagram in the plane of parameters and determine the order of the associated phase transitions. We discuss the connections to semi-flexible polymers and other polymer models. Importantly, we demonstrate that for a range of energy parameters, two phase transitions occur on lowering the temperature, the second being a transition from the globule state to the crystal state. We argue from our data that this globule-to-crystal transition is continuous in two dimensions in accord with field-theory arguments concerning Hamiltonian walks, but is first order in three dimensions.

  7. Formation of iron disilicide on amorphous silicon

    NASA Astrophysics Data System (ADS)

    Erlesand, U.; Östling, M.; Bodén, K.

    1991-11-01

    Thin films of iron disilicide, β-FeSi 2 were formed on both amorphous silicon and on crystalline silicon. The β-phase is reported to be semiconducting with a direct band-gap of about 0.85-0.89 eV. This phase is known to form via a nucleation-controlled growth process on crystalline silicon and as a consequence a rather rough silicon/silicide interface is usually formed. In order to improve the interface a bilayer structure of amorphous silicon and iron was sequentially deposited on Czochralski <111> silicon in an e-gun evaporation system. Secondary ion mass spectrometry profiling (SIMS) and scanning electron micrographs revealed an improvement of the interface sharpness. Rutherford backscattering spectrometry (RBS) and X-ray diffractiometry showed β-FeSi 2 formation already at 525°C. It was also observed that the silicide growth was diffusion-controlled, similar to what has been reported for example in the formation of NiSi 2 for the reaction of nickel on amorphous silicon. The kinetics of the FeSi 2 formation in the temperature range 525-625°C was studied by RBS and the activation energy was found to be 1.5 ± 0.1 eV.

  8. Heat of formation of petalite, LiAlSi4O10

    NASA Astrophysics Data System (ADS)

    Faßhauer, D. W.; Cemič, L.

    The enthalpy of formation of petalite, LiAlSi4O10, has been measured using high-temperature solution calorimetry. The measurements were carried out in a Calvet-type twin micro calorimeter at 728°C. A 2PbO.B2O3 melt was used as a solvent. Tabulated heats of formation of the components and tabulated heat capacities of the reactants and the product (Robie and Hemingway 1995) were used to calculate the standard heat of formation of petalite from the measured heats of solution. The calculations yielded a mean value of ΔfHpet298.15=-4872+/-5.4 kJ mol-1. This value may be compared to the heat of formation of ΔfHpet298.15= -4886.5+/-6.3 kJ mol-1 determined by the HF solution calorimetry by Bennington etal. (1980). Faßhauer etal. (1998) combined thermodynamic data with phase-equilibrium results to obtain best-fit thermodynamic results using the Bayes method, in order to derive an internally consistent dataset for phases in the NaAlSiO4- LiAlSiO4-Al2O3-SiO2-H2O system. They determined -4865.6+/-0.8kJmol-1 as the enthalpy of formation of petalite, a value that is appreciably closer to the enthalpy found in this work.

  9. Thermal Stability of NaxCrO2 for Rechargeable Sodium Batteries; Studies by High-Temperature Synchrotron X-ray Diffraction.

    PubMed

    Yabuuchi, Naoaki; Ikeuchi, Issei; Kubota, Kei; Komaba, Shinichi

    2016-11-30

    Thermal stability and phase transition processes of NaCrO 2 and Na 0.5 CrO 2 are carefully examined by high-temperature synchrotron X-ray diffraction method. O3-type NaCrO 2 shows anisotropic thermal expansion on heating, which is a common character as layered materials, without phase transition in the temperature range of 27-527 °C. In contrast, for the desodiated phase, in-plane distorted P3-type layered oxide (P'3 Na 0.5 CrO 2 ), phase transition occurs in the following order. Monoclinic distortion associated with Na/vacancy ordering is gradually lost on heating, and its symmetry increases and changes to a rhombohedral lattice at 207 °C. On further heating, phase segregation to two P3 layered metastable phases, which have different interlayer distances (17.0 and 13.5 Å, presumably sodium-rich and sodium-free P3 phases, respectively) are observed on heating to 287-477 °C, but oxygen loss is not observed. Oxygen loss is observed at temperatures only above 500 °C, resulting in the formation of corundum-type Cr 2 O 3 and O3 NaCrO 2 as thermodynamically stable phases. From these results, possibility of Na x CrO 2 as a positive electrode material for safe rechargeable sodium batteries is also discussed.

  10. Polariton Chimeras: Bose-Einstein Condensates with Intrinsic Chaoticity and Spontaneous Long-Range Ordering

    NASA Astrophysics Data System (ADS)

    Gavrilov, S. S.

    2018-01-01

    The system of cavity polaritons driven by a plane electromagnetic wave is found to undergo the spontaneous breaking of spatial symmetry, which results in a lifted phase locking with respect to the driving field and, consequently, in the possibility of internal ordering. In particular, periodic spin and intensity patterns arise in polariton wires; they exhibit strong long-range order and can serve as media for signal transmission. Such patterns have the properties of dynamical chimeras: they are formed spontaneously in perfectly homogeneous media and can be partially chaotic. The reported new mechanism of chimera formation requires neither time-delayed feedback loops nor nonlocal interactions.

  11. Smooth and flat phase-locked Kerr frequency comb generation by higher order mode suppression

    PubMed Central

    Huang, S.-W.; Liu, H.; Yang, J.; Yu, M.; Kwong, D.-L.; Wong, C. W.

    2016-01-01

    High-Q microresonator is perceived as a promising platform for optical frequency comb generation, via dissipative soliton formation. In order to achieve a higher quality factor and obtain the necessary anomalous dispersion, multi-mode waveguides were previously implemented in Si3N4 microresonators. However, coupling between different transverse mode families in multi-mode waveguides results in periodic disruption of dispersion and quality factor, and consequently causes perturbation to dissipative soliton formation and amplitude modulation to the corresponding spectrum. Careful choice of pump wavelength to avoid the mode crossing region is thus critical in conventional Si3N4 microresonators. Here, we report a novel design of Si3N4 microresonator in which single-mode operation, high quality factor, and anomalous dispersion are attained simultaneously. The novel microresonator is consisted of uniform single-mode waveguides in the semi-circle region, to eliminate bending induced mode coupling, and adiabatically tapered waveguides in the straight region, to avoid excitation of higher order modes. The intrinsic quality factor of the microresonator reaches 1.36 × 106 while the group velocity dispersion remains to be anomalous at −50 fs2/mm. With this novel microresonator, we demonstrate that broadband phase-locked Kerr frequency combs with flat and smooth spectra can be generated by pumping at any resonances in the optical C-band. PMID:27181420

  12. Disinfection by-product formation during chlor(am)ination of algal organic matters (AOM) extracted from Microcystis aeruginosa: effect of growth phases, AOM and bromide concentration.

    PubMed

    Chen, Juxiang; Gao, Naiyun; Li, Lei; Zhu, Mingqiu; Yang, Jing; Lu, Xian; Zhang, Yansen

    2017-03-01

    Algae organic matter (AOM), including extracellular organic matter (EOM) and intracellular organic matter (IOM), has caused a series of problems to the water quality, among which formation of disinfection by-products (DBPs) during subsequent chlor(am)ination process was especially serious and concerned. This study characterized physicochemical properties of the EOM and IOM solution extracted from different growth phases of Microcystis aeruginosa and investigated the corresponding formation potential of DBPs during chlor(am)ination process. Besides, the effects of initial concentration of xEOM, IOM, and Br - on the yields of disinfection by-product formation potential were studied. The results indicated that the specific UV absorbance (SUVA 254 ) values of IOM and EOM (1.09 and 2.66 L/mg m) were considerably lower than that of natural organic matter (NOM) (4.79 L/mg m). Fluorescence dates showed the soluble microbial by-product was dominant in both EOM and IOM, and the tryptophan was the main component of AOM. From the excitation-emission matrix figure of EOM and IOM, we found that the content of the high molecular weight protein substance in IOM was higher than EOM. During chlorination of EOM and IOM, the yields of four kinds of DBPs followed the order trichloroethene (TCM) > 1,1-DCP > dichloride acetonitrile (DCAN) > trichloronitromethane (TCNM), while the order was TCM > DCAN > TCNM > 1,1-DCP during chloramination process. The bromine substitution factor (BSF) value increased with the increasing of the concentration of Br - . When the concentration of Br - was 500 μg/L, the BSF values of chlorination EOM and IOM were 51.1 and 68.4%, respectively. As the concentration of Br - increased, the formation of Cl-DBPs was inhibited and the formation of Br-DBPs was promoted. Graphical abstract ᅟ.

  13. Observation of polar order and thermochromic behaviour in a chiral bent-core system exhibiting exotic mesophases due to superstructural frustration.

    PubMed

    Punjani, Vidhika; Mohiuddin, Golam; Kaur, Supreet; Khan, Raj Kumar; Ghosh, Sharmistha; Pal, Santanu Kumar

    2018-04-03

    A new approach accompanied by superstructural frustration is reported. By attaching a cholesterol moiety directly to the central bent-core system it displayed exotic BPIII, BPII/I, Ncyb*, TGBA, SmAPA, SmA and SmX phases as shown by X-ray scattering results. While higher homologues of the series exhibited spontaneous formation of polar order (Ps ∼ 61 nC cm-2) upon applied voltage, the lower homologues showed thermochromic behaviour which can also be trapped via temperature quenching.

  14. Conformational Asymmetry and Quasicrystal Approximants in Linear Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Schulze, Morgan W.; Lewis, Ronald M.; Lettow, James H.; Hickey, Robert J.; Gillard, Timothy M.; Hillmyer, Marc A.; Bates, Frank S.

    2017-05-01

    Small angle x-ray scattering experiments on three model low molar mass diblock copolymer systems containing minority polylactide and majority hydrocarbon blocks demonstrate that conformational asymmetry stabilizes the Frank-Kasper σ phase. Differences in block flexibility compete with space filling at constant density inducing the formation of polyhedral shaped particles that assemble into this low symmetry ordered state with local tetrahedral coordination. These results confirm predictions from self-consistent field theory that establish the origins of symmetry breaking in the ordering of block polymer melts subjected to compositional and conformational asymmetry.

  15. Solid-state dewetting of Au-Ni bi-layer films mediated through individual layer thickness and stacking sequence

    NASA Astrophysics Data System (ADS)

    Herz, Andreas; Theska, Felix; Rossberg, Diana; Kups, Thomas; Wang, Dong; Schaaf, Peter

    2018-06-01

    In the present work, the solid-state dewetting of Au-Ni bi-layer thin films deposited on SiO2/Si is systematically studied with respect to individual layer thickness and stacking sequence. For this purpose, a rapid heat treatment at medium temperatures is applied in order to examine void formation at the early stages of the dewetting. Compositional variations are realized by changing the thickness ratio of the bi-layer films, while the total thickness is maintained at 20 nm throughout the study. In the event of Au/Ni films annealed at 500 °C, crystal voids exposing the substrate are missing regardless of chemical composition. In reverse order, the number of voids per unit area in two-phase Au-Ni thin films is found to be governed by the amount of Au-rich material. At higher temperatures up to 650 °C, a decreased probability of nucleation comes at the expense of a major portion of cavities, resulting in the formation of bubbles in 15 nm Ni/5 nm Au bi-layers. Film buckling predominantly occurred at phase boundaries crossing the bubbles.

  16. Quantized Self-Assembly of Discotic Rings in a Liquid Crystal Confined in Nanopores

    NASA Astrophysics Data System (ADS)

    Sentker, Kathrin; Zantop, Arne W.; Lippmann, Milena; Hofmann, Tommy; Seeck, Oliver H.; Kityk, Andriy V.; Yildirim, Arda; Schönhals, Andreas; Mazza, Marco G.; Huber, Patrick

    2018-02-01

    Disklike molecules with aromatic cores spontaneously stack up in linear columns with high, one-dimensional charge carrier mobilities along the columnar axes, making them prominent model systems for functional, self-organized matter. We show by high-resolution optical birefringence and synchrotron-based x-ray diffraction that confining a thermotropic discotic liquid crystal in cylindrical nanopores induces a quantized formation of annular layers consisting of concentric circular bent columns, unknown in the bulk state. Starting from the walls this ring self-assembly propagates layer by layer towards the pore center in the supercooled domain of the bulk isotropic-columnar transition and thus allows one to switch on and off reversibly single, nanosized rings through small temperature variations. By establishing a Gibbs free energy phase diagram we trace the phase transition quantization to the discreteness of the layers' excess bend deformation energies in comparison to the thermal energy, even for this near room-temperature system. Monte Carlo simulations yielding spatially resolved nematic order parameters, density maps, and bond-orientational order parameters corroborate the universality and robustness of the confinement-induced columnar ring formation as well as its quantized nature.

  17. Microstructure, optical, and electrochromic properties of sol-gel nanoporous tungsten oxide films

    NASA Astrophysics Data System (ADS)

    Djaoued, Yahia; Ashrit, P. V.; Badilescu, S.; Bruning, R.

    2003-08-01

    Porous tungsten oxide films have been prepared by a nonhydrolitic sol-gel method using poly(ethylene glycol) (PEG) as a structure directing agent. The method entails the hydrolysis of an ethanolic solution of tungsten ethoxide (formed by the reaction of WCl6 with ethanol) followed by condensation and polymerization at the PEG-tungsten oxide oligometers interface. A highly porous WO3 framework was obtained after PEG was burned off by calcination at a relativley low temperature. AFM images of the films treated thermally show an ordered material rather than microscopic particulates. Both fibrilar nanostructures and striped phase can be obtained via this approach, depending on the concentration of PEG in the coating solution. XRD data from the fibrils indicate that they are crystalline with very small crystals, whereas the striped phases obtained with 20% PEG correspond to two crystalline phases, one, the stoichiometric WO3 and the other one an oxygen deficient phase, containing larger crystals (~28 nm). The results show that PEG promotes the formation of oxygen deficient phases and delays crystallization. Compared to WO3 with no PEG, the optical and electrochromic properties of the macroporous tungsten oxide films appear to be significantly improved. The formation of organized nanostructures is tentatively accounted for by the strong hydrogen bonding interactions between PEG and the tungsten oxide oligomers.

  18. Particle dynamics and pattern formation in a rotating suspension of positively buoyant particles

    NASA Astrophysics Data System (ADS)

    Konidena, Sudarshan; Lee, Jonghoon; Reddy, K. Anki; Singh, Anugrah

    2018-04-01

    Numerical simulations of positively buoyant suspension in a horizontally rotating cylinder were performed to study the formation of radial and axial patterns. The order parameter for the low-frequency segregated phase and dispersed phase is similar to that predicted for the settling suspension by Lee and Ladd [J. Fluid Mech. 577, 183 (2007), 10.1017/S002211200700465X], which is the average angular velocity of the particles. The particle density profiles for axial bands in the buoyancy-dominated phase shows an amplitude equivalent to the diameter of the cylinder. Axial density profiles show sinusoidal behavior for the drag-dominant phase and oscillating sinusoidal behavior for the centrifugal-force-dominant phase. Results also indicate that the traveling bands are formed as a consequence of the inhomogeneous distribution of particles arising from a certain imbalance of drag, buoyancy, and centrifugal forces. In the centrifugal limit, particles move towards the center of the cylinder, aggregating to form a dense core of particles with its axis coinciding with that of the rotating cylinder, a behavior which is in contrast to the sedimenting particles. The particle distribution patterns obtained from the simulations are found to be in good agreement with the experiments of Kalyankar et al. [Phys. Fluids 20, 083301 (2008), 10.1063/1.2970156].

  19. p-type doping efficiency in CdTe: Influence of second phase formation

    NASA Astrophysics Data System (ADS)

    McCoy, Jedidiah J.; Swain, Santosh K.; Sieber, John R.; Diercks, David R.; Gorman, Brian P.; Lynn, Kelvin G.

    2018-04-01

    Cadmium telluride (CdTe) high purity, bulk, crystal ingots doped with phosphorus were grown by the vertical Bridgman melt growth technique to understand and improve dopant solubility and activation. Large net carrier densities have been reproducibly obtained from as-grown ingots, indicating successful incorporation of dopants into the lattice. However, net carrier density values are orders of magnitude lower than the solubility of P in CdTe as reported in literature, 1018/cm3 to 1019/cm3 [J. H. Greenberg, J. Cryst. Growth 161, 1-11 (1996) and R. B. Hall and H. H. Woodbury, J. Appl. Phys. 39(12), 5361-5365 (1968)], despite comparable starting charge dopant densities. Growth conditions, such as melt stoichiometry and post growth cooling, are shown to have significant impacts on dopant solubility. This study demonstrates that a significant portion of the dopant becomes incorporated into second phase defects as compounds of cadmium and phosphorous, such as cadmium phosphide, which inhibits dopant incorporation into the lattice and limits maximum attainable net carrier density in bulk crystals. Here, we present an extensive study on the characteristics of these second phase defects in relation to their composition and formation kinetics while providing a pathway to minimize their formation and enhance solubility.

  20. Are superhydrophobic surfaces best for icephobicity?

    PubMed

    Jung, Stefan; Dorrestijn, Marko; Raps, Dominik; Das, Arindam; Megaridis, Constantine M; Poulikakos, Dimos

    2011-03-15

    Ice formation can have catastrophic consequences for human activity on the ground and in the air. Here we investigate water freezing delays on untreated and coated surfaces ranging from hydrophilic to superhydrophobic and use these delays to evaluate icephobicity. Supercooled water microdroplets are inkjet-deposited and coalesce until spontaneous freezing of the accumulated mass occurs. Surfaces with nanometer-scale roughness and higher wettability display unexpectedly long freezing delays, at least 1 order of magnitude longer than typical superhydrophobic surfaces with larger hierarchical roughness and low wettability. Directly related to the main focus on heterogeneous nucleation and freezing delay of supercooled water droplets, the observed ensuing crystallization process consisted of two distinct phases: one very rapid recalescent partial solidification phase and a subsequent slower phase. Observations of the droplet collision process employed for the continuous liquid mass accumulation up to the point of ice formation reveal a previously unseen atmospheric-pressure, subfreezing-temperature regime for liquid-on-liquid bounce. On the basis of the entropy reduction of water near a solid surface, we formulate a modification to the classical heterogeneous nucleation theory, which predicts the observed freezing delay trends. Our results bring to question recent emphasis on super water-repellent surface formulations for ice formation retardation and suggest that anti-icing design must optimize the competing influences of both wettability and roughness.

  1. Structural comparison of nickel electrodes and precursor phases

    NASA Technical Reports Server (NTRS)

    Cornilsen, Bahne C.; Shan, Xiaoyin; Loyselle, Patricia

    1989-01-01

    A summary of previous Raman spectroscopic results and a discussion of important structural differences in the various phases of active mass and active mass precurors are presented. Raman spectra provide unique signatures for these phases, and allow one to distinguish each phase, even when the compound is amorphous to X-rays (i.e., does not scatter X-rays because of a lack of order and/or small particle size). The structural changes incurred during formation, charge and discharge, cobalt addition, and aging will be discussed and related to electrode properties. Important structural differences include NiO2 layer stacking, nonstoichiometry (especially cation-deficit nonstoichiometry), disorder, dopant content, and water content. The results indicate that optimal nickel active mass is non-close packed and nonstoichiometric. The formation process transforms precursor phases into this structure. Therefore, the precursor disorder, or lack thereof, influences this final active mass structure and the rate of formation. Aging processes induce structural change which is believed to be detrimental. The role of cobalt addition can be appreciated in terms of structures favored or stabilized by the dopant. In recent work, the in situ Raman technique to characterize the critical structural parameters was developed. An in situ method relates structure, electrochemistry, and preparation. In situ Raman spectra of cells during charge and discharge, either during cyclic voltammetry or under constant current conditions were collected. With the structure-preparation knowledge and the in situ Raman tool, it will be possible to define the structure-property-preparation relations in more detail. This instrumentation has application to a variety of electrode systems.

  2. Pressure-dependence of the phase transitions and thermal expansion in zirconium and hafnium pyrovanadate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallington, Leighanne C.; Hester, Brett R.; Kaplan, Benjamin S.

    Low or negative thermal expansion (NTE) has been previously observed in members of the ZrP 2O 7 family at temperatures higher than their order-disorder phase transitions. The thermoelastic properties and phase behavior of the low temperature superstructure and high temperature negative thermal expansion phases of ZrV 2O 7 and HfV 2O 7 were explored via in situ variable temperature/pressure powder x-ray diffraction measurements. The phase transition temperatures of ZrV 2O 7 and HfV 2O 7 exhibited a very strong dependence on pressure (~700 K GPa), with moderate compression suppressing the formation of their NTE phases below 513 K. Compression alsomore » reduced the magnitude of the coefficients of thermal expansion in both the positive and negative thermal expansion phases. Additionally, the high temperature NTE phase of ZrV 2O 7 was found to be twice as stiff as the low temperature positive thermal expansion superstructure (24 and 12 GPa respectively).« less

  3. CH4 Hydrate Formation between Silica and Graphite Surfaces: Insights from Microsecond Molecular Dynamics Simulations.

    PubMed

    He, Zhongjin; Linga, Praveen; Jiang, Jianwen

    2017-10-31

    Microsecond simulations have been performed to investigate CH 4 hydrate formation from gas/water two-phase systems between silica and graphite surfaces, respectively. The hydrophilic silica and hydrophobic graphite surfaces exhibit substantially different effects on CH 4 hydrate formation. The graphite surface adsorbs CH 4 molecules to form a nanobubble with a flat or negative curvature, resulting in a low aqueous CH 4 concentration, and hydrate nucleation does not occur during 2.5 μs simulation. Moreover, an ordered interfacial water bilayer forms between the nanobubble and graphite surface thus preventing their direct contact. In contrast, the hydroxylated-silica surface prefers to be hydrated by water, with a cylindrical nanobubble formed in the solution, leading to a high aqueous CH 4 concentration and hydrate nucleation in the bulk region; during hydrate growth, the nanobubble is gradually covered by hydrate solid and separated from the water phase, hence slowing growth. The silanol groups on the silica surface can form strong hydrogen bonds with water, and hydrate cages need to match the arrangements of silanols to form more hydrogen bonds. At the end of the simulation, the hydrate solid is separated from the silica surface by liquid water, with only several cages forming hydrogen bonds with the silica surface, mainly due to the low CH 4 aqueous concentrations near the surface. To further explore hydrate formation between graphite surfaces, CH 4 /water homogeneous solution systems are also simulated. CH 4 molecules in the solution are adsorbed onto graphite and hydrate nucleation occurs in the bulk region. During hydrate growth, the adsorbed CH 4 molecules are gradually converted into hydrate solid. It is found that the hydrate-like ordering of interfacial water induced by graphite promotes the contact between hydrate solid and graphite. We reveal that the ability of silanol groups on silica to form strong hydrogen bonds to stabilize incipient hydrate solid, as well as the ability of graphite to adsorb CH 4 molecules and induce hydrate-like ordering of the interfacial water, are the key factors to affect CH 4 hydrate formation between silica and graphite surfaces.

  4. Baryon inhomogeneity generation in the quark-gluon plasma phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layek, Biswanath; Mishra, Ananta P.; Srivastava, Ajit M.

    2006-05-15

    We discuss the possibility of generation of baryon inhomogeneities in a quark-gluon plasma phase due to moving Z(3) interfaces. By modeling the dependence of effective mass of the quarks on the Polyakov loop order parameter, we study the reflection of quarks from collapsing Z(3) interfaces and estimate resulting baryon inhomogeneities in the context of the early universe. We argue that in the context of certain low energy scale inflationary models, it is possible that large Z(3) walls arise at the end of the reheating stage. Collapse of such walls could lead to baryon inhomogeneities which may be separated by largemore » distances near the QCD scale. Importantly, the generation of these inhomogeneities is insensitive to the order, or even the existence, of the quark-hadron phase transition. We also briefly discuss the possibility of formation of quark nuggets in this model, as well as baryon inhomogeneity generation in relativistic heavy-ion collisions.« less

  5. Fabrication of Ni-silicide/Si heterostructured nanowire arrays by glancing angle deposition and solid state reaction.

    PubMed

    Hsu, Hsun-Feng; Huang, Wan-Ru; Chen, Ting-Hsuan; Wu, Hwang-Yuan; Chen, Chun-An

    2013-05-10

    This work develops a method for growing Ni-silicide/Si heterostructured nanowire arrays by glancing angle Ni deposition and solid state reaction on ordered Si nanowire arrays. Samples of ordered Si nanowire arrays were fabricated by nanosphere lithography and metal-induced catalytic etching. Glancing angle Ni deposition deposited Ni only on the top of Si nanowires. When the annealing temperature was 500°C, a Ni3Si2 phase was formed at the apex of the nanowires. The phase of silicide at the Ni-silicide/Si interface depended on the diameter of the Si nanowires, such that epitaxial NiSi2 with a {111} facet was formed at the Ni-silicide/Si interface in Si nanowires with large diameter, and NiSi was formed in Si nanowires with small diameter. A mechanism that is based on flux divergence and a nucleation-limited reaction is proposed to explain this phenomenon of size-dependent phase formation.

  6. Fabrication of Ni-silicide/Si heterostructured nanowire arrays by glancing angle deposition and solid state reaction

    PubMed Central

    2013-01-01

    This work develops a method for growing Ni-silicide/Si heterostructured nanowire arrays by glancing angle Ni deposition and solid state reaction on ordered Si nanowire arrays. Samples of ordered Si nanowire arrays were fabricated by nanosphere lithography and metal-induced catalytic etching. Glancing angle Ni deposition deposited Ni only on the top of Si nanowires. When the annealing temperature was 500°C, a Ni3Si2 phase was formed at the apex of the nanowires. The phase of silicide at the Ni-silicide/Si interface depended on the diameter of the Si nanowires, such that epitaxial NiSi2 with a {111} facet was formed at the Ni-silicide/Si interface in Si nanowires with large diameter, and NiSi was formed in Si nanowires with small diameter. A mechanism that is based on flux divergence and a nucleation-limited reaction is proposed to explain this phenomenon of size-dependent phase formation. PMID:23663726

  7. Energetics of zirconia stabilized by cation and nitrogen substitution

    NASA Astrophysics Data System (ADS)

    Molodetsky, Irina

    Tetragonal and cubic zirconia are used in advanced structural ceramics, fuel cells, oxygen sensors, nuclear waste ceramics and many other applications. These zirconia phases are stabilized at room temperature (relative to monoclinic phase for pure zirconia) by cation and nitrogen substitution. This work is aimed at a better understanding of the mechanisms of stabilization of the high-temperature zirconia. phases. Experimental data are produced on the energetics of zirconia stabilized by yttria and calcia, energetics of nitrogen-oxygen substitution in zirconia and cation doped zirconia, and energetics of x-ray amorphous zirconia. obtained by low-temperature synthesis. High-temperature oxide melt solution enables direct measurement of enthalpies of formation of these refractory oxides. The enthalpy of the monoclinic to cubic phase transition of zirconia is DeltaHm-c = 12.2 +/- 1.2 kJ/mol. For cubic phases of YSZ at low yttria contents, a straight line DeltaH f,YSZ = -(52.4 +/- 3.6)x + (12.2 +/- 1.2) approximates the enthalpy of formation as a function of the yttria content, x (0. 1 < x < 0.3). Use of the quadratic fit DeltaHf,YSZ = 126.36 x 2 - 81.29 x + 12.37 (0.1 ≲ x ≲ 0.53) indicates that yttria stabilizes the cubic phase in enthalpy at low dopant content and destabilizes the cubic phase as yttria content increases. Positive entropy of mixing in YSZ and small enthalpy of long range ordering in 0.47ZrO2-0.53YO1.5, DeltaHord = -2.4 +/- 3.0 kJ/mol, indicate presence of short range ordering in YSZ. The enthalpy of formation of calcia stabilized zirconia as a function of calcia content x, is approximated as DeltaHf,c = (-91.4 +/- 3.8) x + (13.5 +/- 1.7) kJ/mol. The enthalpy of oxygen-nitrogen substitution, DeltaHO-N, in zirconium oxynitrides is a linear function of nitrogen content. DeltaH O-N ˜ -500 kJ/mol N is for Ca (Y)-Zr-N-O and Zr-N-O oxynitrides and DeltaHO-N ˜ -950 kJ/mol N is for Mg-Zr-N-O oxynitrides. X-ray amorphous zirconia is 58.6 +/- 3.3 kJ/mol less stable in enthalpy than monoclinic zirconia. The difference between the surface energies of amorphous and tetragonal zirconia phases is ˜1.19 +/- 0.05 J/m2, with a lower surface energy for the amorphous material.

  8. A 106-fold enhancement in the conductivity of a discotic liquid crystal doped with only 1% (w/w) gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Holt, Lucy A.; Bushby, Richard J.; Evans, Stephen D.; Burgess, Andrew; Seeley, Gordon

    2008-03-01

    The presence of 1% (w/w) of methylbenzene thiol coated gold nanoparticles increases the conductivity of the discotic liquid crystal 2,3,6,7,10,11-hexakis(hexyloxy)triphenylene (HAT6) by about two orders of magnitude in all three phases (crystal, columnar liquid crystal, and isotropic liquid). However, when a field (above a certain critical value) is applied to the isotropic phase, the conductivity rapidly increases by another three or four orders of magnitude after which the higher conductivity is maintained regardless of phase, field, or temperature. This increase in conductivity is attributed to the formation of chains of gold nanoparticles. A similar phenomenon is observed for 1% (w/w) gold nanoparticles in the isotropic phase of hexadecane. However, the liquid crystal/nanoparticle mixture preserves its high conductivity when it is cooled into the crystalline phase whereas that of the hexadecane/nanoparticle mixture is lost. In hexadecane, crystal grain boundaries are expected to form in a random fashion and this disrupts the conductive pathways. However, if HAT6 crystallizes via the homeotropically aligned columnar phase, the grain boundaries form predominantly surface to surface (electrode to electrode) so that the conductive nanoparticle chains are trapped in a stabilizing solid matrix.

  9. Diffusion paths formation for Cu + ions in superionic Cu 6PS 5I single crystals studied in terms of structural phase transition

    NASA Astrophysics Data System (ADS)

    Gągor, A.; Pietraszko, A.; Kaynts, D.

    2005-11-01

    In order to understand the structural transformations leading to high ionic conductivity of Cu + ions in Cu 6PS 5I argyrodite compound, the detailed structure analysis based on single-crystal X-ray diffraction has been performed. Below the phase transition at T=(144-169) K Cu 6PS 5I belongs to monoclinic, ferroelastic phase (space group Cc) with ordered copper sublattice. Above Tc delocalization of copper ions begins and crystal changes the symmetry to cubic superstructure with space group F-43 c ( a'=19.528 Å, z=32). Finally, above T1=274 K increasing disordering of the Cu + ions heightens the symmetry to F-43 m ( a=9.794 Å, z=4). In this work, the final structural model of two cubic phases is presented including the detailed temperature evolution of positions and site occupation factors of copper ions ( R1=0.0397 for F-43 c phase, and 0.0245 for F-43 m phase). Possible diffusion paths for the copper ions are represented by means of the atomic displacement factors and split model. The structural results coincide well with the previously reported non-Arrhenius behavior of conductivity and indicate significant change in conduction mechanism.

  10. Structural mechanism of the formation of mineral Na-tveitite-a new type of phase with a fluorite-derivative structure-in the NaF-CaF{sub 2}-(Y,Ln)F{sub 3} natural system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golubev, A. M., E-mail: fluorides@ns.crys.ras.ru; Otroshchenko, L. P.; Sobolev, B. P.

    2012-03-15

    Relationships between the chemical compositions and structures of the mineral tveitite from the southern Norway pegmatites (with the idealized formula Ca{sub 14}Y{sub 5}F{sub 43}) and Na-tveitite from the Rov mountain (Keivy, Kola Peninsula) Na{sub 2.5}Ca{sub 10}Ln{sub 1.5}Y{sub 5}F{sub 42} are considered. According to the structural mechanism of its formation, Na-tveitite is a nanocomposite crystal based on the crystalline matrix Ca{sub 14}Y{sub 5}F{sub 43} with the ordered arrangement of {l_brace}Ca{sub 8}[CaY{sub 5}]F{sub 69}{r_brace} clusters which contain anionic {l_brace}F{sub 13}{r_brace} cuboctahedra with F{sup 1-} at the center. When Na-tveitite is formed, 29% of these clusters are statistically replaced by Na-'Y' clusters {l_brace}[Na{submore » 0.5}(Y,Ln){sub 0.5}]{sub 14}F{sub 64}{r_brace} with {l_brace}F{sub 8}{r_brace} cubes at the center (analogs of matrix fluorite groups {l_brace}Ca{sub 14}F{sub 64}{r_brace}). This replacement gives rise to composition-imperfect (Na, Ca, 'Y') cationic positions and occupancy-deficient F positions, which correspond to {l_brace}F{sub 13}{r_brace} cuboctahedra and the {l_brace}F{sub 8}{r_brace} cubes that replace them. The difference between Na-tveitite and fluorite phases M{sub 1-x}R{sub x}F{sub 2+x} is as follows: its matrix is the structure of the ordered phase (tveitite) into which Na-containing rare earth fragments of fluorite-type structure are incorporated instead of ordered-phase structural blocks (clusters).« less

  11. Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation

    NASA Astrophysics Data System (ADS)

    Yang, Tengfei; Xia, Songqin; Liu, Shi; Wang, Chenxu; Liu, Shaoshuai; Fang, Yuan; Zhang, Yong; Xue, Jianming; Yan, Sha; Wang, Yugang

    2016-08-01

    Materials performance is central to the satisfactory operation of current and future nuclear energy systems due to the severe irradiation environment in reactors. Searching for structural materials with excellent irradiation tolerance is crucial for developing the next generation nuclear reactors. Here, we report the irradiation responses of a novel multi-component alloy system, high entropy alloy (HEA) AlxCoCrFeNi (x = 0.1, 0.75 and 1.5), focusing on their precipitation behavior. It is found that the single phase system, Al0.1CoCrFeNi, exhibits a great phase stability against ion irradiation. No precipitate is observed even at the highest fluence. In contrast, numerous coherent precipitates are present in both multi-phase HEAs. Based on the irradiation-induced/enhanced precipitation theory, the excellent structural stability against precipitation of Al0.1CoCrFeNi is attributed to the high configurational entropy and low atomic diffusion, which reduces the thermodynamic driving force and kinetically restrains the formation of precipitate, respectively. For the multiphase HEAs, the phase separations and formation of ordered phases reduce the system configurational entropy, resulting in the similar precipitation behavior with corresponding binary or ternary conventional alloys. This study demonstrates the structural stability of single-phase HEAs under irradiation and provides important implications for searching for HEAs with higher irradiation tolerance.

  12. Chondrules and Opaque Phases in Unequilibrated R Chondrites: A Comprehensive Assessment of Their Formation

    NASA Technical Reports Server (NTRS)

    Miller, K. E.; Lauretta, D. S.; Connolly, H. C., Jr.; Berger, E. L.; Domanik, K.

    2016-01-01

    Equilibrated Rumuruti (R) chondrites record an oxygen fugacity between 0 and 3.5 log units below the fayalite-magnetite-quartz buffer, and a sulfur fugacity (fS2) 2 log units above the iron-troilite buffer. They are more than an order of magnitude more oxidized than the ordinary chondrites [1], and orders of magnitude more sulfidized than solar values. Although the R chondrites have the highest (delta)O-17 value of any meteorites, analyses of unequilibrated R chondrites indicate chondrule formation in an oxygen isotope reservoir similar to that of the ordinary chondrite chondrules. We present the relationship of the R chondrite parent body to pre-accretionary volatiles O and S based on our analyses of unequilibrated R chondrite material in two thin sections from the meteorite Mount Prestrud (PRE) 95404.

  13. Nontrivial Berry phase in magnetic BaMnSb2 semimetal

    PubMed Central

    Huang, Silu; Shelton, W. A.; Plummer, E. W.; Jin, Rongying

    2017-01-01

    The subject of topological materials has attracted immense attention in condensed-matter physics because they host new quantum states of matter containing Dirac, Majorana, or Weyl fermions. Although Majorana fermions can only exist on the surface of topological superconductors, Dirac and Weyl fermions can be realized in both 2D and 3D materials. The latter are semimetals with Dirac/Weyl cones either not tilted (type I) or tilted (type II). Although both Dirac and Weyl fermions have massless nature with the nontrivial Berry phase, the formation of Weyl fermions in 3D semimetals require either time-reversal or inversion symmetry breaking to lift degeneracy at Dirac points. Here we demonstrate experimentally that canted antiferromagnetic BaMnSb2 is a 3D Weyl semimetal with a 2D electronic structure. The Shubnikov–de Hass oscillations of the magnetoresistance give nearly zero effective mass with high mobility and the nontrivial Berry phase. The ordered magnetic arrangement (ferromagnetic ordering in the ab plane and antiferromagnetic ordering along the c axis below 286 K) breaks the time-reversal symmetry, thus offering us an ideal platform to study magnetic Weyl fermions in a centrosymmetric material. PMID:28539436

  14. Multiphase composition changes and reactive oxygen species formation during limonene oxidation in the new Cambridge Atmospheric Simulation Chamber (CASC)

    NASA Astrophysics Data System (ADS)

    Gallimore, Peter J.; Mahon, Brendan M.; Wragg, Francis P. H.; Fuller, Stephen J.; Giorio, Chiara; Kourtchev, Ivan; Kalberer, Markus

    2017-08-01

    The chemical composition of organic aerosols influences their impacts on human health and the climate system. Aerosol formation from gas-to-particle conversion and in-particle reaction was studied for the oxidation of limonene in a new facility, the Cambridge Atmospheric Simulation Chamber (CASC). Health-relevant oxidising organic species produced during secondary organic aerosol (SOA) formation were quantified in real time using an Online Particle-bound Reactive Oxygen Species Instrument (OPROSI). Two categories of reactive oxygen species (ROS) were identified based on time series analysis: a short-lived component produced during precursor ozonolysis with a lifetime of the order of minutes, and a stable component that was long-lived on the experiment timescale (˜ 4 h). Individual organic species were monitored continuously over this time using Extractive Electrospray Ionisation (EESI) Mass Spectrometry (MS) for the particle phase and Proton Transfer Reaction (PTR) MS for the gas phase. Many first-generation oxidation products are unsaturated, and we observed multiphase aging via further ozonolysis reactions. Volatile products such as C9H14O (limonaketone) and C10H16O2 (limonaldehyde) were observed in the gas phase early in the experiment, before reacting again with ozone. Loss of C10H16O4 (7-hydroxy limononic acid) from the particle phase was surprisingly slow. A combination of reduced C = C reactivity and viscous particle formation (relative to other SOA systems) may explain this, and both scenarios were tested in the Pretty Good Aerosol Model (PG-AM). A range of characterisation measurements were also carried out to benchmark the chamber against existing facilities. This work demonstrates the utility of CASC, particularly for understanding the reactivity and health-relevant properties of organic aerosols using novel, highly time-resolved techniques.

  15. Mineralogical study of brown olivine in Northwest Africa 1950 shergottite and implications for the formation mechanism of iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Takenouchi, Atsushi; Mikouchi, Takashi; Kogure, Toshihiro

    2017-12-01

    Martian meteorites, in particular shergottites, contain darkened olivine (so-called "brown olivine") whose color is induced by iron nanoparticles formed in olivine during a shock event. The formation process and conditions of brown olivine have been discussed in the Northwest Africa 2737 (NWA 2737) chassignite. However, formation conditions of brown olivine in NWA 2737 cannot be applied to shergottites because NWA 2737 has a different shock history from that of shergottites. Therefore, this study observed brown olivine in the NWA 1950 shergottite and discusses the general formation process and conditions of brown olivine in shergottites. Our observation of NWA 1950 revealed that olivine is heterogeneously darkened between and within grains different from brown olivine in NWA 2737. XANES analysis showed that brown olivine contains small amounts of Fe3+ and TEM/STEM observation revealed that there is no SiO-rich phase around iron metal nanoparticles. These observations indicate that iron nanoparticles were formed by a disproportionation reaction of olivine (3Fe2+olivine → Fe0metal + 2Fe3+olivine + Volivine, where Volivine means a vacancy in olivine). Some parts of brown olivine show lamellar textures in SEM observation and Raman peaks in addition to those expected for olivine, implying that brown olivine experienced a phase transition (to e.g., ringwoodite). In order to induce heterogeneous darkening, heterogeneous high temperature of about 1500-1700 K and shock duration of at least 90 ms are required. This heterogeneous high temperature resulted in high postshock temperature (>900 K) inducing back-transformation of most high-pressure phases. Therefore, in spite of lack of high-pressure phases, NWA 1950 (= Martian meteorites with brown olivine) experienced higher pressure and temperature compared to other highly shocked meteorite groups.

  16. The Physical Properties of Ceramides in Membranes.

    PubMed

    Alonso, Alicia; Goñi, Félix M

    2018-05-20

    Ceramides are sphingolipids containing a sphingosine or a related base, to which a fatty acid is linked through an amide bond. When incorporated into a lipid bilayer, ceramides exhibit a number of properties not shared by almost any other membrane lipid: Ceramides ( a) are extremely hydrophobic and thus cannot exist in suspension in aqueous media; ( b) increase the molecular order (rigidity) of phospholipids in membranes; ( c) give rise to lateral phase separation and domain formation in phospholipid bilayers; ( d) possess a marked intrinsic negative curvature that facilitates formation of inverted hexagonal phases; ( e) make bilayers and cell membranes permeable to small and large (i.e., protein-size) solutes; and ( f) promote transmembrane (flip-flop) lipid motion. Unfortunately, there is hardly any link between the physical studies reviewed here and the mass of biological and clinical studies on the effects of ceramides in health and disease.

  17. Electrical properties of zinc-oxide-based thin-film transistors using strontium-oxide-doped semiconductors

    NASA Astrophysics Data System (ADS)

    Wu, Shao-Hang; Zhang, Nan; Hu, Yong-Sheng; Chen, Hong; Jiang, Da-Peng; Liu, Xing-Yuan

    2015-10-01

    Strontium-zinc-oxide (SrZnO) films forming the semiconductor layers of thin-film transistors (TFTs) are deposited by using ion-assisted electron beam evaporation. Using strontium-oxide-doped semiconductors, the off-state current can be dramatically reduced by three orders of magnitude. This dramatic improvement is attributed to the incorporation of strontium, which suppresses carrier generation, thereby improving the TFT. Additionally, the presence of strontium inhibits the formation of zinc oxide (ZnO) with the hexagonal wurtzite phase and permits the formation of an unusual phase of ZnO, thus significantly changing the surface morphology of ZnO and effectively reducing the trap density of the channel. Project supported by the National Natural Science Foundation of China (Grant No. 6140031454) and the Innovation Program of Chinese Academy of Sciences and State Key Laboratory of Luminescence and Applications.

  18. Origin of high Coulombic loss during sodiation in Na-Sn battery

    NASA Astrophysics Data System (ADS)

    Byeon, Young-Woon; Choi, Yong-Seok; Ahn, Jae-Pyoung; Lee, Jae-Chul

    2017-03-01

    Electrochemical sodiation is performed in crystalline Sn foil using in situ scanning electron microscopy (SEM) to simultaneously measure the changes in the electrical resistivity and volume of the Sn anode in a Na-Sn battery. We observe that sodiation causes an increase in the Sn anode resistivity by six orders of magnitude. Ab initio molecular dynamics simulations of the Na-Sn alloy system demonstrate that the increased resistivity of the anode is caused by the formation of an electrically resistive amorphous NaSn phase (a-NaSn) with a pseudogap. It is also observed that the formation of a-NaSn is always accompanied by a large volume expansion of ∼200%, causing the development of residual tensile stress. The residual stress in turn alters the electronic structure of the a-NaSn phase, further increasing the resistivity of a-NaSn and thus decreasing the energy efficiency of the Na-Sn battery.

  19. Social judgment theory based model on opinion formation, polarization and evolution

    NASA Astrophysics Data System (ADS)

    Chau, H. F.; Wong, C. Y.; Chow, F. K.; Fung, Chi-Hang Fred

    2014-12-01

    The dynamical origin of opinion polarization in the real world is an interesting topic that physical scientists may help to understand. To properly model the dynamics, the theory must be fully compatible with findings by social psychologists on microscopic opinion change. Here we introduce a generic model of opinion formation with homogeneous agents based on the well-known social judgment theory in social psychology by extending a similar model proposed by Jager and Amblard. The agents’ opinions will eventually cluster around extreme and/or moderate opinions forming three phases in a two-dimensional parameter space that describes the microscopic opinion response of the agents. The dynamics of this model can be qualitatively understood by mean-field analysis. More importantly, first-order phase transition in opinion distribution is observed by evolving the system under a slow change in the system parameters, showing that punctuated equilibria in public opinion can occur even in a fully connected social network.

  20. Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials

    PubMed Central

    Dierking, Ingo

    2017-01-01

    Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i) addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii) novel functionalities can be added to the liquid crystal; and (iii) the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide. PMID:28974025

  1. Weak ferromagnetism and short range polar order in NaMnF3 thin films

    NASA Astrophysics Data System (ADS)

    KC, Amit; Borisov, Pavel; Shvartsman, Vladimir V.; Lederman, David

    2017-02-01

    The orthorhombically distorted perovskite NaMnF3 has been predicted to become ferroelectric if an a = c distortion of the bulk Pnma structure is imposed. In order to test this prediction, NaMnF3 thin films were grown on SrTiO3 (001) single crystal substrates via molecular beam epitaxy. The best films were smooth and single phase with four different twin domains. In-plane magnetization measurements revealed the presence of antiferromagnetic ordering with weak ferromagnetism below the Néel temperature TN = 66 K. For the dielectric studies, NaMnF3 films were grown on a 30 nm SrRuO3 (001) layer used as a bottom electrode grown via pulsed laser deposition. The complex permittivity as a function of frequency indicated a strong Debye-like relaxation contribution characterized by a distribution of relaxation times. A power-law divergence of the characteristic relaxation time revealed an order-disorder phase transition at 8 K. The slow relaxation dynamics indicated the formation of super-dipoles (superparaelectric moments) that extend over several unit cells, similar to polar nanoregions of relaxor ferroelectrics.

  2. Water Ordering Controls the Dynamic Equilibrium of Micelle-Fiber Formation in Self-Assembly of Peptide Amphiphiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshmukh, Sanket; Solomon, Lee A.; Kamath, Ganesh

    Understanding the role of water in governing the kinetics of the self-assembly processes of amphiphilic peptides has still remained elusive. Here, using a multi-stage atomistic-coarse-grained approach, complemented by circular dichroism/infra-red spectroscopy and dynamic light scattering experiments, we highlight the dual nature of water in dictating the mechanism and dynamics of self-assembly of peptide amphiphiles (PAs). Our computational study shows that (i) Water cage formation and breakage near the hydrophobic groups controls the fusion dynamics and aggregation of PAs in the micellar stage, and (ii) Enhanced structural ordering of vicinal water near the hydrophilic amino acids shifts the equilibrium towards themore » fiber phase and stimulates structure and order in the PAs when they assemble into a hexagonal nanofiber architecture. Finally, spectroscopy and microscopy studies authenticate our computational observation that water ordering near the PAs increases with increase in time. The measured infra-red O-H bond stretch frequency reminiscent of ice-like suggests that the solvated water becomes increasingly solid-like with increased structural order in the assembled peptide network – thus shedding light on the role of water in a self-assembly process.« less

  3. Water Ordering Controls the Dynamic Equilibrium of Micelle-Fiber Formation in Self-Assembly of Peptide Amphiphiles

    DOE PAGES

    Deshmukh, Sanket; Solomon, Lee A.; Kamath, Ganesh; ...

    2016-08-24

    Understanding the role of water in governing the kinetics of the self-assembly processes of amphiphilic peptides has still remained elusive. Here, using a multi-stage atomistic-coarse-grained approach, complemented by circular dichroism/infra-red spectroscopy and dynamic light scattering experiments, we highlight the dual nature of water in dictating the mechanism and dynamics of self-assembly of peptide amphiphiles (PAs). Our computational study shows that (i) Water cage formation and breakage near the hydrophobic groups controls the fusion dynamics and aggregation of PAs in the micellar stage, and (ii) Enhanced structural ordering of vicinal water near the hydrophilic amino acids shifts the equilibrium towards themore » fiber phase and stimulates structure and order in the PAs when they assemble into a hexagonal nanofiber architecture. Finally, spectroscopy and microscopy studies authenticate our computational observation that water ordering near the PAs increases with increase in time. The measured infra-red O-H bond stretch frequency reminiscent of ice-like suggests that the solvated water becomes increasingly solid-like with increased structural order in the assembled peptide network – thus shedding light on the role of water in a self-assembly process.« less

  4. Microstructures of Hibonite From an ALH A77307 (CO3.0) CAI: Evidence for Evaporative Loss of Calcium

    NASA Technical Reports Server (NTRS)

    Han, Jangmi; Brearley, Adrian J.; Keller, Lindsay P.

    2014-01-01

    Hibonite is a comparatively rare, primary phase found in some CAIs from different chondrite groups and is also common in Wark-Lovering rims [1]. Hibonite is predicted to be one of the earliest refractory phases to form by equilibrium condensation from a cooling gas of solar composition [2] and, therefore, can be a potential recorder of very early solar system processes. In this study, we describe the microstructures of hibonite from one CAI in ALH A77307 (CO3.0) using FIB/TEM techniques in order to reconstruct its formational history.

  5. Investigation on the oxidation behavior of AlCrVxN thin films by means of synchrotron radiation and influence on the high temperature friction

    NASA Astrophysics Data System (ADS)

    Tillmann, Wolfgang; Kokalj, David; Stangier, Dominic; Paulus, Michael; Sternemann, Christian; Tolan, Metin

    2018-01-01

    Friction minimization is an important topic which is pursued in research and industry. In addition to the use of lubricants, friction-reducing oxide phases can be utilized which occur during. These oxides are called Magnéli phases and especially vanadium oxides exhibit good friction reducing properties. Thereby, the lubrication effect can be traced back to oxygen deficiencies. AlCrN thin films are being used as coatings for tools which have to withstand high temperatures. A further improvement of AlCrN thin films concerning their friction properties is possible by incorporation of vanadium. This study analyzes the temperature dependent oxidation behavior of magnetron sputtered AlCrVN thin films with different vanadium contents up to 13.5 at.-% by means of X-ray diffraction and X-ray absorption near-edge spectroscopy. Up to 400 °C the coatings show no oxidation. A higher temperature of 700 °C leads to an oxidation and formation of Magnéli phases of the coatings with vanadium contents above 10.7 at.-%. Friction coefficients, measured by ball-on-disk test are correlated with the oxide formation in order to figure out the effect of vanadium oxides. At 700 °C a decrease of the friction coefficient with increasing vanadium content can be observed, due to the formation of VO2, V2O3 and the Magnéli phase V4O7.

  6. Evaluation of the pathways of tropospheric nitrophenol formation from benzene and phenol using a multiphase model

    NASA Astrophysics Data System (ADS)

    Harrison, M. A. J.; Heal, M. R.; Cape, J. N.

    2005-07-01

    Phenols are a major class of volatile organic compounds (VOC) whose reaction within, and partitioning between, the gas and liquid phases affects their lifetime within the atmosphere, the local oxidising capacity, and the extent of production of nitrophenols, which are toxic chemicals. In this work, a zero-dimension box model was constructed to quantify the relative importance of different nitration pathways, and partitioning into the liquid phase, of mono-aromatic compounds in order to help elucidate the formation pathways of 2- and 4-nitrophenol in the troposphere. The liquid phase contributed significantly to the production of nitrophenols for liquid water content (Lc) values exceeding 3x10-9, and for a range of assumed liquid droplet diameter, even though the resultant equilibrium partitioning to the liquid phase was much lower. For example, in a "typical" model scenario, with Lc=3x10-7, 58% of nitrophenol production occurred in the liquid phase but only 2% of nitrophenol remained there, i.e. a significant proportion of nitrophenol observed in the gas phase may actually be produced via the liquid phase. The importance of the liquid phase was enhanced at lower temperatures, by a factor ~1.5-2 at 278K c.f. 298K. The model showed that nitrophenol production was particularly sensitive to the values of the rate coefficients for the liquid phase reactions between phenol and OH or NO3 reactions, but insensitive to the rate coefficient for the reaction between benzene and OH, thus identifying where further experimental data are required.

  7. Constraining the Abundances of Complex Organics in the Inner Regions of Solar-Type Protostars

    NASA Astrophysics Data System (ADS)

    López-Sepulcre, A.; Taquet, V.; Ceccarelli, C.; Neri, R.; Kahane, C.; Charnley, S. B.

    2015-12-01

    We present arcsecond-resolution observations, obtained with the IRAM Plateau de Bure interferometer, of multiple complex organic molecules in two hot corino protostars: IRAS 2A and IRAS 4A, in the NGC 1333 star-forming region. The distribution of the line emission is very compact, indicating the presence of COMs is mostly concentrated in the inner hot corino regions. A comparison of the COMs abundances with astrochemical models favours a gas-phase formation route for CH3OCH3, and a grain formation of C2H5OH, C2H5CN, and HCOCH2OH. The high abundances of methyl formate (HCOOCH3) remain underpredicted by an order of magnitude.

  8. Modeling the relative contributions of secondary ice formation processes to ice crystal number concentrations within mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Sullivan, Sylvia; Hoose, Corinna; Nenes, Athanasios

    2016-04-01

    Measurements of in-cloud ice crystal number concentrations can be three or four orders of magnitude greater than the in-cloud ice nuclei number concentrations. This discrepancy can be explained by various secondary ice formation processes, which occur after initial ice nucleation, but the relative importance of these processes, and even the exact physics of each, is still unclear. A simple bin microphysics model (2IM) is constructed to investigate these knowledge gaps. 2IM extends the time-lag collision parameterization of Yano and Phillips, 2011 to include rime splintering, ice-ice aggregation, and droplet shattering and to incorporate the aspect ratio evolution as in Jensen and Harrington, 2015. The relative contribution of the secondary processes under various conditions are shown. In particular, temperature-dependent efficiencies are adjusted for ice-ice aggregation versus collision around -15°C, when rime splintering is no longer active, and the effect of aspect ratio on the process weighting is explored. The resulting simulations are intended to guide secondary ice formation parameterizations in larger-scale mixed-phase cloud schemes.

  9. Decomposition of group-velocity-locked-vector-dissipative solitons and formation of the high-order soliton structure by the product of their recombination.

    PubMed

    Wang, Xuan; Li, Lei; Geng, Ying; Wang, Hanxiao; Su, Lei; Zhao, Luming

    2018-02-01

    By using a polarization manipulation and projection system, we numerically decomposed the group-velocity-locked-vector-dissipative solitons (GVLVDSs) from a normal dispersion fiber laser and studied the combination of the projections of the phase-modulated components of the GVLVDS through a polarization beam splitter. Pulses with a structure similar to a high-order vector soliton could be obtained, which could be considered as a pseudo-high-order GVLVDS. It is found that, although GVLVDSs are intrinsically different from group-velocity-locked-vector solitons generated in fiber lasers operated in the anomalous dispersion regime, similar characteristics for the generation of pseudo-high-order GVLVDS are obtained. However, pulse chirp plays a significant role on the generation of pseudo-high-order GVLVDS.

  10. Microdomain Formation, Oxidation, and Cation Ordering in LaCa 2Fe 3O 8+y

    DOE PAGES

    Price, Patrick M.; Browning, Nigel D.; Butt, Darryl P.

    2015-03-23

    The compound LaCa 2Fe 3O 8+y, also known as the Grenier phase, is known to undergo an order-disorder transformation (ODT) at high temperatures. Oxidation has been observed when the compound is cooled in air after the ODT. In this study, we have synthesized the Grenier compound in air using traditional solid state reactions and investigated the structure and composition before and after the ODT. Thermal analysis showed that the material undergoes an order-disorder transformation in both oxygen and argon atmospheres with dynamic, temperature dependent, oxidation upon cooling. Results from scanning transmission electron microscopy (STEM) suggest that the Grenier phase hasmore » preferential segregation of Ca and La on the two crystallographic A-sites before the ODT, but a random distribution above the ODT temperature. Furthermore, STEM images suggest the possibility that oxygen excess may exist in La-rich regions within microdomains rather than at microdomain boundaries.« less

  11. Hybrid glasses from strong and fragile metal-organic framework liquids.

    PubMed

    Bennett, Thomas D; Tan, Jin-Chong; Yue, Yuanzheng; Baxter, Emma; Ducati, Caterina; Terrill, Nick J; Yeung, Hamish H-M; Zhou, Zhongfu; Chen, Wenlin; Henke, Sebastian; Cheetham, Anthony K; Greaves, G Neville

    2015-08-28

    Hybrid glasses connect the emerging field of metal-organic frameworks (MOFs) with the glass formation, amorphization and melting processes of these chemically versatile systems. Though inorganic zeolites collapse around the glass transition and melt at higher temperatures, the relationship between amorphization and melting has so far not been investigated. Here we show how heating MOFs of zeolitic topology first results in a low density 'perfect' glass, similar to those formed in ice, silicon and disaccharides. This order-order transition leads to a super-strong liquid of low fragility that dynamically controls collapse, before a subsequent order-disorder transition, which creates a more fragile high-density liquid. After crystallization to a dense phase, which can be remelted, subsequent quenching results in a bulk glass, virtually identical to the high-density phase. We provide evidence that the wide-ranging melting temperatures of zeolitic MOFs are related to their network topologies and opens up the possibility of 'melt-casting' MOF glasses.

  12. Records of transient avulsion-related river patterns in ancient deposits: evidence for different styles of channel-floodplain coupling

    NASA Astrophysics Data System (ADS)

    Hajek, E. A.; Edmonds, D.; Millard, C.; Toms, L.; Fogaren, C.

    2012-12-01

    River mobility and avulsion are important controls on how course and fine sediment are distributed across alluvial basins. In some systems, broad distributary channel networks that form during channel avulsions contribute significantly to overbank aggradation within the basin and help transport relatively coarse sediment from the channel out onto the floodplain. In contrast, avulsion-related deposits are virtually absent in other systems, which primarily avulse either through incision or with no significant aggradational phase preceding channel relocation; in these systems, overbank sedimentation primarily comprises relatively fine floodplain deposits. In order to constrain the conditions under which distributary-channel networks develop during avulsions, we evaluate channel, avulsion, and floodplain deposits in several ancient units including the Ferris (Maastrichtian/Paleocene, Wyoming), Fort Union (Paleocene, Wyoming), Wasatch (Paleocene/Eocene, Colorado), and Willwood (Paleocene/Eocene, Wyoming) formations. Ancient deposits afford the opportunity to observe multiple (tens to hundreds) channel-avulsion realizations and evaluate characteristic spatial and temporal variability in channel, avulsion, and floodplain deposits within a basin. In each formation, spatial relationships and grain-size distributions of channel, proximal-overbank, distal-overbank, and, where present, avulsion deposits are compared. The thickness, width, and stratigraphic frequency of crevasse-splay and avulsion deposits are characterized in each formation, and paleosol development is documented in order to provide information about relative differences in floodplain conditions (particularly sedimentation rate and floodplain drainage) throughout each unit. We compare these results to modern systems and numerical models. Several formations contain abundant and distinctive evidence of prograding sediment wedges preceding avulsed channels (Willwood Formation and some members of the Wasatch formation), while others contain virtually no avulsion-associated deposits (Ferris Formation). The Fort Union Formation and one member of the Wasatch Formation show a mix of both. These results largely reflect depositional processes and not preservation bias within ancient deposits. Evidence from ancient deposits also suggests sediment partitioning between channels and floodplains was mediated by crevasse-splay production and avulsion, where some systems were "tuned" to produce large splay deposits and other systems produced only infrequent, small splays. Systems that readily produced splay deposits are associated with more prominent avulsion deposits, and splay production seems to be influenced by the particle-size distribution of sediment carried in the channel and floodplain drainage conditions (where abundant fine-sand and coarse-silt sediment and relatively well-drained floodplain conditions promote crevasse-splay production). Avulsion deposits reflect a transient distributary phase associated with a marked increase in local overbank sedimentation rates, but this phase is not ubiquitous to all avulsive systems. The persistence of conditions that promote or inhibit crevasse-splay and avulsion-deposit production may strongly influence channel-floodplain coupling in aggrading fluvial systems.

  13. Formation of High-Quality μm-Order-Thick Poly-Si Films on Glass-Substrates by Flash Lamp Annealing

    NASA Astrophysics Data System (ADS)

    Ohdaira, Keisuke

    Flash lamp annealing (FLA), millisecond-order discharge from Xe lamps, can form a few μm-thick polycrystalline Si (poly-Si) films by crystallizing precursor amorphous Si (a-Si) films prepared on low-cost substrates without serious thermal damage onto the whole glass substrates, thanks to its proper annealing duration. The FLA of a-Si films can induce lateral explosive crystallization (EC), self-catalytic crystallization driven by the release of latent heat. Periodic structures with a spacing of ˜1 μm are spontaneously left behind on and inside flash-lamp-crystallized (FLC) poly-Si films formed, when chemical-vapor-deposited (CVD) or sputtered a-Si films are used as precursor films. These microstructures result from the alternative emergence of two types of crystallization with different mechanisms during FLA: one is governed only by solid-phase nucleation (SPN) and the other includes SPN and partial liquid-phase epitaxy (LPE), resulting in the formation of grains with sizes of 10-500 nm. This rapid lateral crystallization leads to the complete preservation of abrupt dopant profiles, which is favorable for device fabrication. This particular crystallization also results in the suppression of hydrogen desorption during FLA, which realizes the formation of poly-Si films with hydrogen atoms on the order of 1021/cm3. Hydrogen atoms in poly-Si films probably act to reduce defect density, which can be on the order of 1016/cm3 after conventional furnace annealing in inert gas atmosphere. These features are suitable for the realization of high-efficiency thin-film poly-Si solar cells. Furthermore, a different type of EC can occur when using electron-beam-(EB-) evaporated a-Si films as precursor films. All the grains in the FLC poly-Si films formed stretch along lateral crystallization direction, and the length of grains is typically more than 10 μm. Based on the results of multi-pulse FLA technique, the velocity of EC is estimated to be ˜14 m/s, which corresponds to the speed of LPE at around the melting point of a-Si, indicating that this EC occurs completely in liquid phase. This approach to form large-grain poly-Si films can also contribute to realizing high-performance solar cells.

  14. Effect of Hydroxyapatite on the Mechanical Properties and Corrosion Behavior of Mg-Zn-Y Alloy

    PubMed Central

    Chiu, Chun; Lu, Chih-Te; Chen, Shih-Hsun; Ou, Keng-Liang

    2017-01-01

    Mg-Zn-Y alloys with a long period stacking ordered (LPSO) phase are potential candidates for biodegradable implants; however, an unfavorable degradation rate has limited their applications. Hydroxyapatite (HA) has been shown to enhance the corrosion resistance of Mg alloys. In this study, Mg97Zn1Y2-0.5 wt% HA composite was synthesized and solution treated at 500 °C for 10 h. The corrosion behavior of the composite was studied by electrochemical and immersion tests, while the mechanical properties were investigated by a tensile test. Addition of HA particles improves the corrosion resistance of Mg97Zn1Y2 alloy without sacrificing tensile strength. The improved corrosion resistance is due to the formation of a compact Ca-P surface layer and a decrease of the volume fraction of the LPSO phase, both resulting from the addition of HA. After solution-treatment, the corrosion resistance of the composite decreases. This is due to the formation of a more extended LPSO phase, which weakens its role as a corrosion barrier in protecting the Mg matrix. PMID:28773216

  15. Investigations on structural and giant magneto impedance properties of Zn3(VO4)2 nanorods

    NASA Astrophysics Data System (ADS)

    Malaidurai, M.; Bulusu, Venkat; De, Sourodeep; Thangavel, R.

    2018-05-01

    In this paper, we successfully synthesized Zn3(VO4)2 novel nanorods by hydrothermal method. As mixed phase of Zn3(VO4)2 structural and phase transformations were monitored in crystal lattice with different ionic strength by X-ray diffraction(XRD). The Zn3(VO4)2 thin film formation validated through qualitative and quantitative analysis by FESEM and it is clearly depicted the formation of the Zn3(VO4)2 nanorods varied from ˜100nm in lengths and ˜30 nm in widths. The Zn precursor's anions directly influence the composition and shape of the resultant hydrated Zn3(VO4)2. Impedance analysis were closely studied with Impedance-Frequency characterization, which was then followed by a dielectric measurement. The analysis of GMI effect was carried out with the help of the model equivalent circuit at low frequencies, constant phase element (CPE). GMI effect and the sensitivity are calculated for the sample by appling magnetic field and driving frequency in order to analyze the giant magnetoimpedance resistance of grain boundaries for spintronics applications.

  16. Secondary organic aerosol formation through cloud processing of aromatic VOCs

    NASA Astrophysics Data System (ADS)

    Herckes, P.; Hutchings, J. W.; Ervens, B.

    2010-12-01

    Field observations have shown substantial concentrations (20-5,500 ng L-1) of aromatic volatile organic compounds (VOC) in cloud droplets. The potential generation of secondary organic aerosol mass through the processing of these anthropogenic VOCs was investigated through laboratory and modeling studies. Under simulated atmospheric laboratory conditions, in idealized solutions, benzene, toluene, ethylbenzene, and xylene (BTEX) degraded quickly in the aqueous phase. The degradation process yielded less volatile products which would contribute to new aerosol mass upon cloud evaporation. However, when realistic cloud solutions containing natural organic matter were used in the experiments, the reaction rates decreased with increasing organic carbon content. Kinetic data derived from these experiments were used as input to a multiphase box model in order to evaluate the secondary organic aerosol (SOA) mass formation potential of cloud processing of BTEX. Model results will be presented that quantify the SOA amounts from these aqueous phase pathways. The efficiency of this multiphase SOA source will be compared to SOA yields from the same aromatics as treated in traditional SOA models that are restricted to gas phase oxidation and subsequent condensation on particles.

  17. Magnetic analytic bond-order potential for modeling the different phases of Mn at zero Kelvin

    NASA Astrophysics Data System (ADS)

    Drain, John F.; Drautz, Ralf; Pettifor, D. G.

    2014-04-01

    It is known that while group VII 4d Tc and 5d Re have hexagonally close-packed (hcp) ground states, 3d Mn adopts a complex χ-phase ground state, exhibiting complex noncollinear magnetic ordering. Density functional theory (DFT) calculations have shown that without magnetism, the χ phase is still the ground state of Mn implying that magnetism and the resultant atomic-size difference between large- and small-moment atoms are not the critical factors, as is commonly believed, in driving the anomalous stability of the χ phase over hcp. Using a canonical tight-binding (TB) model, it is found that for a more than half-filled d band, while harder potentials stabilize close-packed hcp, a softer potential stabilizes the more open χ phase. By analogy with the structural trend from open to close-packed phases down the group IV elements, the anomalous stability of the χ phase in Mn is shown to be due to 3d valent Mn lacking d states in the core which leads to an effectively softer atomic repulsion between the atoms than in 4d Tc and 5d Re. Subsequently, an analytic bond-order potential (BOP) is developed to investigate the structural and magnetic properties of elemental Mn at 0 K. It is derived within BOP theory directly from a new short-ranged orthogonal d-valent TB model of Mn, the parameters of which are fitted to reproduce the DFT binding energy curves of the four experimentally observed phases of Mn, namely, α, β, γ, δ, and ɛ-Mn. Not only does the BOP reproduce qualitatively the DFT binding energy curves of the five different structure types, it also predicts the complex collinear antiferromagnetic (AFM) ordering in α-Mn, the ferrimagnetic ordering in β-Mn, and the AFM ordering in γ-, δ-, and ɛ-Mn that are found by DFT. A BOP expansion including 14 moments is sufficiently converged to reproduce most of the properties of the TB model with the exception of the elastic shear constants, which require further moments. The current TB model, however, predicts values of the shear moduli and the vacancy formation energies that are approximately a factor of 2 too small, so that a future more realistic model for MD simulations will require these properties to be included from the outset in the fitting database.

  18. Observation of solid–solid transitions in 3D crystals of colloidal superballs

    PubMed Central

    Meijer, Janne-Mieke; Pal, Antara; Ouhajji, Samia; Lekkerkerker, Henk N. W.; Philipse, Albert P.; Petukhov, Andrei V.

    2017-01-01

    Self-organization in anisotropic colloidal suspensions leads to a fascinating range of crystal and liquid crystal phases induced by shape alone. Simulations predict the phase behaviour of a plethora of shapes while experimental realization often lags behind. Here, we present the experimental phase behaviour of superball particles with a shape in between that of a sphere and a cube. In particular, we observe the formation of a plastic crystal phase with translational order and orientational disorder, and the subsequent transformation into rhombohedral crystals. Moreover, we uncover that the phase behaviour is richer than predicted, as we find two distinct rhombohedral crystals with different stacking variants, namely hollow-site and bridge-site stacking. In addition, for slightly softer interactions we observe a solid–solid transition between the two. Our investigation brings us one step closer to ultimately controlling the experimental self-assembly of superballs into functional materials, such as photonic crystals. PMID:28186101

  19. Separation of multiphosphorylated peptide isomers by hydrophilic interaction chromatography on an aminopropyl phase.

    PubMed

    Singer, David; Kuhlmann, Julia; Muschket, Matthias; Hoffmann, Ralf

    2010-08-01

    The separation of isomeric phosphorylated peptides is challenging and often impossible for multiphosphorylated isomers using chromatographic and capillary electrophoretic methods. In this study we investigated the separation of a set of single-, double-, and triple-phosphorylated peptides (corresponding to the human tau protein) by ion-pair reversed-phase chromatography (IP-RPC) and hydrophilic interaction chromatography (HILIC). In HILIC both hydroxyl and aminopropyl stationary phases were tested with aqueous acetonitrile in order to assess their separation efficiency. The hydroxyl phase separated the phosphopeptides very well from the unphosphorylated analogue, while on the aminopropyl phase even isomeric phosphopeptides attained baseline separation. Thus, up to seven phosphorylated versions of a given tau domain were separated. Furthermore, the low concentration of an acidic ammonium formate buffer allowed an online analysis with electrospray ionization tandem mass spectrometry (ESI-MS/MS) to be conducted, enabling peptide sequencing and identification of phosphorylation sites.

  20. Synthesis of Self-Bonded Pellets of ETS-4 Phase by New Methodology of Preparation

    NASA Astrophysics Data System (ADS)

    De Luca, P.; Mastroianni, C.; Nagy, J. B.

    2018-06-01

    We hereby present the results of a research in order to prepare self-bonded pellets of ETS-4 phase by a new methodology of preparation. In particular, the pellets were prepared by kneading crystals of ETS-4 phase and a dry gel, the latter being the precursor for the synthesis of the ETS-4 phase crystals. One of the innovative aspects that is proposed and highlighted in this work is represented by the fact that the dry-gel acts as a “binder”. It is characterized by the same chemical composition of crystals, thus avoiding contamination with other elements. In addition, dry-gel allows, the promotion of nucleation phenomena and thus the formation of new crystals of ETS-4 during the pellets baking phases. The pellets were characterized by X-ray diffraction (XRD), Electron microscopy (SEM) and mechanical strength by hardness tester.

  1. From bedside to classroom: the nurse educator transition model.

    PubMed

    Schoening, Anne M

    2013-01-01

    The purpose of this qualitative study was to generate a theoretical model that describes the social process that occurs during the role transition from nurse to nurse educator. Recruitment and retention of qualified nurse educators is essential in order to remedy the current staff nurse and faculty shortage in the United States, yet nursing schools face many challenges in this area. This grounded theory study utilized purposive, theoretical sampling to identify 20 nurse educators teaching in baccalaureate nursing programs in the Midwest. The Nurse Educator Transition (NET) model was created from these data.This model identifies four phases in the role transition from nurse to nurse educator: a) the Anticipatory/Expectation Phase, b) the Disorientation Phase, c) the Information-Seeking Phase, and d) the Identity Formation Phase. Recommendations include integrating formal pedagogical education into nursing graduate programs and creating evidence-based orientation and mentoring programs for novice nurse faculty.

  2. Spiral magnetism in the single-band Hubbard model: the Hartree-Fock and slave-boson approaches.

    PubMed

    Igoshev, P A; Timirgazin, M A; Gilmutdinov, V F; Arzhnikov, A K; Irkhin, V Yu

    2015-11-11

    The ground-state magnetic phase diagram is investigated within the single-band Hubbard model for square and different cubic lattices. The results of employing the generalized non-correlated mean-field (Hartree-Fock) approximation and generalized slave-boson approach by Kotliar and Ruckenstein with correlation effects included are compared. We take into account commensurate ferromagnetic, antiferromagnetic, and incommensurate (spiral) magnetic phases, as well as phase separation into magnetic phases of different types, which was often lacking in previous investigations. It is found that the spiral states and especially ferromagnetism are generally strongly suppressed up to non-realistically large Hubbard U by the correlation effects if nesting is absent and van Hove singularities are well away from the paramagnetic phase Fermi level. The magnetic phase separation plays an important role in the formation of magnetic states, the corresponding phase regions being especially wide in the vicinity of half-filling. The details of non-collinear and collinear magnetic ordering for different cubic lattices are discussed.

  3. Single Sublattice Endotaxial Phase Separation Driven by Charge Frustration in a Complex Oxide

    PubMed Central

    2013-01-01

    Complex transition-metal oxides are important functional materials in areas such as energy and information storage. The cubic ABO3 perovskite is an archetypal example of this class, formed by the occupation of small octahedral B-sites within an AO3 network defined by larger A cations. We show that introduction of chemically mismatched octahedral cations into a cubic perovskite oxide parent phase modifies structure and composition beyond the unit cell length scale on the B sublattice alone. This affords an endotaxial nanocomposite of two cubic perovskite phases with distinct properties. These locally B-site cation-ordered and -disordered phases share a single AO3 network and have enhanced stability against the formation of a competing hexagonal structure over the single-phase parent. Synergic integration of the distinct properties of these phases by the coherent interfaces of the composite produces solid oxide fuel cell cathode performance superior to that expected from the component phases in isolation. PMID:23750709

  4. Interaction of saponin 1688 with phase separated lipid bilayers.

    PubMed

    Chen, Maohui; Balhara, Vinod; Jaimes Castillo, Ana Maria; Balsevich, John; Johnston, Linda J

    2017-07-01

    Saponins are a diverse family of naturally occurring plant triterpene or steroid glycosides that have a wide range of biological activities. They have been shown to permeabilize membranes and in some cases membrane disruption has been hypothesized to involve saponin/cholesterol complexes. We have examined the interaction of steroidal saponin 1688-1 with lipid membranes that contain cholesterol and have a mixture of liquid-ordered (L o ) and liquid-disordered (L d ) phases as a model for lipid rafts in cellular membranes. A combination of atomic force microscopy (AFM) and fluorescence was used to probe the effect of saponin on the bilayer. The results demonstrate that saponin forms defects in the membrane and also leads to formation of small aggregates on the membrane surface. Although most of the membrane damage occurs in the liquid-disordered phase, fluorescence results demonstrate that saponin localizes in both ordered and disordered membrane phases, with a modest preference for the disordered regions. Similar effects are observed for both direct incorporation of saponin in the lipid mixture used to make vesicles/bilayers and for incubation of saponin with preformed bilayers. The results suggest that the initial sites of interaction are at the interface between the domains and surrounding disordered phase. The preference for saponin localization in the disordered phase may reflect the ease of penetration of saponin into a less ordered membrane, rather than the actual cholesterol concentration in the membrane. Dye leakage assays indicate that a high concentration of saponin is required for membrane permeabilization consistent with the supported lipid bilayer experiments. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  5. Gas-phase Precursors to Anthropogenic SOA: Using the MCM to Probe Detailed Observations of Aromatic Photo-oxidation

    NASA Astrophysics Data System (ADS)

    Rickard, A. R.; Wyche, K. P.; Metzger, A.; Monks, P. S.; Ellis, A. M.; Baltensperger, U.; Pilling, M. J.; Jenkin, M. E.

    2008-12-01

    The formation of photochemical ozone and particulate matter are major priorities in the determination of European air quality policies. Predictions of the future state of the atmosphere and the development of appropriate mitigation strategies rely on models, which necessarily incorporate chemistry. The Master Chemical Mechanism (MCM, http://mcm.leeds.ac.uk/MCM) is a near-explicit chemical mechanism originally conceived to model ozone formation in Europe but now also employed as a benchmark mechanism in a wide variety of applications where chemical detail is required. The MCM currently describes the detailed gas- phase tropospheric degradation of a 135 primary emitted volatile organic compounds (VOCs) leading to a mechanism containing ca. 5900 species and 13500 reactions. In order that the MCM continues to be a state-of-the-art resource for the atmospheric science community it resides under a constant regime of evaluation, development and improvement. Individual VOC photochemical mechanisms are evaluated using data obtained, under a variety of atmospheric conditions, from highly instrumented smog chambers. Smog chamber experiments are crucial, not only for mechanism evaluation, but also for mechanism development. Findings obtained from combined model and chamber studies can additionally provide key insight for guiding the directions of future laboratory experiments. Recently, the MCM was updated to MCMv3.1 in order to take into account recent advancements in the understanding of aromatic photo-oxidation, an important class of anthropogenic VOCs. As well as constituting precursors to secondary organic aerosol (SOA), aromatics generally have high photochemical ozone creation potentials (POCPs) and hence contribute significantly towards tropospheric ozone formation. In the work presented, a detailed gas-phase photochemical chamber box model, incorporating the MCMv3.1 degradation mechanism for 1,3,5-trimethylbenzene (TMB), has been used to simulate data measured during a series of chamber experiments carried out at the Paul Scherrer Institute Aerosol Chamber in order to evaluate the mechanism under a variety of VOC/NOx conditions. More specifically, the model was used in the interpretation of data recorded by the University of Leicester's Chemical Ionisation Reaction Time-of- Flight Mass Spectrometer (CIR-TOF-MS), a novel instrument used to provide comprehensive, high (mass and time) resolution measurements of the organic gaseous oxidation products formed from the TMB precursor. Additional supporting gas and aerosol measurements also enable us to explore the "missing link" between the gas and aerosol phases. Model-measurement comparisons have been used to gain an insight into the complex array of oxygenated products formed, including the peroxide bicyclic ring opening products (gamma-dicarbonyls and furanones) and the O2-bridged peroxide bicyclic ring retaining products (diol, ketone and nitrate). To our knowledge this is the first time these O2-bridged species have been identified in the gas-phase. The model was also used to give insights into which gas-phase species were participating in SOA formation, with the primary and secondary peroxide products, formed primarily under NOx-limiting conditions ([NO] approaches zero), identified as likely candidates.

  6. Synthesis of Ge-nanoparticles in organic solution

    NASA Astrophysics Data System (ADS)

    Pugsley, Andrew James

    Much interest is focused on the synthesis of semiconductor particles from organic solution, in order to provide luminescent tracers for biological assays. However, group IV semiconductors have been largely neglected be cause of the lack of suitable nanoparticle formation reactions by solution-phase chemistries. A potentially useful new route to solution-based synthesis of nanocrystalline-Si,Ge involves the reaction between Zintl phases (NaSi, Mg 2Ge) that formally contain anionic semiconducting group species (Si-, Ge4-) and liquid phase SiCU, GeCU, etc. Luminescent nanoparticles formed by these reactions in organic solvents (e.g. diglyme) have been decribed in work from the Kauzlarich group at UC Davis (California, USA). The aim of this project has been to characterise the structural chemistry and luminescent properties of the products of the reaction, as well as following the course of the reaction in situ via synchrotron measurements. The product of the reaction has been characterised by TEM and x-ray absorption spectroscopy as well as other techniques. In order to analyse the x-ray absorption spectroscopy data, a number of model compounds have been studied, including the precursor material which was previously uncharacterised by this technique. An in situ reaction cell has been designed and built and used at a number of synchrotron beamlines to follow the course of the reaction. It has been found that the presence of even low concentrations of water can greatly affect the formation reaction, this is described herein.

  7. Physics and Chemistry of Creating New Titanates with Perovskite Structure

    NASA Astrophysics Data System (ADS)

    Politova, E. D.; Kaleva, G. M.; Golubko, N. V.; Mosunov, A. V.; Sadovskaya, N. V.; Bel'kova, D. A.; Strebkov, D. A.; Stefanovich, S. Yu.; Kiselev, D. A.; Kislyuk, A. M.

    2018-06-01

    The phase formation, structural features, and dielectric, ferroelectric, and piezoelectric properties of ceramics with compositions from the region of the morphotropic phase boundary in the (Na0.5Bi0.5)TiO3-BaTiO3-Bi(Mg0.5Ti0.5)O3 system modified by different low-melting additives (Bi2O3, V2O5, KCl, NaCl-LiF, LiF, CuO, and MnO2) are studied. First-order phase transitions are detected near 700-800 and 400 K that display relaxor behavior and are indicative of the presence of polar regions in a nonpolar matrix. Prospects for improving the piezoelectric properties of the modified ceramic samples are confirmed.

  8. Influence of disorder on the photoinduced excitations in phenyl substituted polythiophenes

    NASA Astrophysics Data System (ADS)

    Brabec, Christoph J.; Winder, Christoph; Scharber, Markus C.; Sariciftci, N. Serdar; Hummelen, Jan C.; Svensson, Mattias; Andersson, Mats R.

    2001-10-01

    Regioregular poly(3-(4'-(1″,4″,7″-trioxaoctyl)phenyl)thiophenes) (PEOPTs) exhibit interesting properties for the use in polymer electronics. Exposing thin films of the amorphous, disordered phase (orange phase) of the "as prepared" polymer to chloroform vapor or annealing them by heat treatment results in a redshift of the absorption maximum due to the formation of nanocrystals in an ordered phase (blue phase). As such, PEOPT thus is a very interesting conjugated polymeric material, which exhibits two different phases with well-defined order/disorder characters on one-and-the-same material. This property opens up the unique possibility to investigate the role of order/disorder on the photoexcited pattern without being obscured by the differences in chemical structure by using different materials with different crystallinity. The fact, that blue phase PEOPT exhibits absorption edges at relatively low energies around 1.8 eV, thereby demonstrating an enhanced spectral absorption range as compared to the orange phase, makes them attractive for use in photodiodes and solar cells as well. The photoinduced charge generation efficiency in both phases of PEOPT is significantly enhanced by the addition of a strong electron acceptor such as fullerene C60, as observed by quenching of the luminescence and by photoinduced absorption measurements in the infrared and uv-visible regime. The average number and the lifetime of photoinduced carriers in composites of PEOPT with a methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM) are found to depend on the crystallinity of PEOPT in thin films, which gives rise to charged photoexcitations delocalized between polymer chains. Stronger bimolecular recombination in composites of the blue phase PEOPT with PCBM is observed as compared to the orange phase PEOPT/PCBM films. The origin of this enhanced recombination is found to be related to the hole mobility of the polymer.

  9. Spontaneous magnetic order in complex materials: Role of longitudinal spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Chakraborty, Subrata; Vijay, Amrendra

    2017-06-01

    We show that the longitudinal spin-orbit interactions (SOI) critically determine the fate of spontaneous magnetic order (SMO) in complex materials. To study the magnetic response of interacting electrons constituting the material, we implement an extension of the Hubbard model that faithfully accounts for the SOI. Next, we use the double-time Green functions of quantum statistical mechanics to obtain the spontaneous magnetization, Msp , and thence ascertain the possibility of SMO. For materials with quenched SOI, in an arbitrary dimension, Msp vanishes at finite temperatures, implying the presence of the disordered (paramagnetic) phase. This is consistent with and goes beyond the Bogolyubov's inequality based analysis in one and two dimensions. In the presence of longitudinal SOI, Msp , for materials in an arbitrary dimension, remains non-zero at finite temperatures, which indicates the existence of the ordered (ferromagnetic) phase. As a plausible experimental evidence of the present SOI-based phenomenology, we discuss, inter alia, a recent experimental study on Y4Mn1-xGa12-yGey, an intermetallic compound, which exhibits a magnetic phase transition (paramagnetic to ferromagnetic) upon tuning the fraction of Ge atoms and thence the vacancies of the magnetic centers in this system. The availability of Ge atoms to form a direct chemical bond with octahedral Mn in this material appears to quench the SOI and, as a consequence, favours the formation of the disordered (paramagnetic) phase.

  10. Part I: an x-ray scattering study of cholera toxin penetration and induced phase transformations in lipid membranes.

    PubMed

    Miller, C E; Majewski, J; Watkins, E B; Kuhl, T L

    2008-07-01

    Cholera toxin is a highly efficient biotoxin, which is frequently used as a tool to investigate protein-membrane interactions and as a reporter for membrane rafts. Cholera toxin binds selectively to gangliosides with highest affinity to GM(1). However, the mechanism by which cholera toxin crosses the membrane remains unresolved. Using x-ray reflectivity and grazing incidence diffraction, we have been able to monitor the binding and penetration of cholera toxin into a model lipid monolayer containing the receptor GM(1) at the air-water interface. Very high toxin coverage was obtained allowing precise measurements of how toxin binding alters lipid packing. Grazing incidence x-ray diffraction revealed the coexistence of two monolayer phases after toxin binding. The first was identical to the monolayer before toxin binding. In regions where toxin was bound, a second membrane phase exhibited a decrease in order as evidenced by a larger area per molecule and tilt angle with concomitant thinning of the monolayer. These results demonstrate that cholera toxin binding induces the formation of structurally distinct, less ordered domains in gel phases. Furthermore, the largest decrease in lateral order to the monolayer occurred at low pH, supporting a low endosomal pH in the infection pathway. Surprisingly, at pH = 8 toxin penetration by the binding portion of the toxin, the B(5) pentamer, was also observed.

  11. Conversion of fogwater and aerosol organic nitrogen to ammonium, nitrate, and NOx during exposure to simulated sunlight and ozone.

    PubMed

    Zhang, Qi; Anastasio, Cort

    2003-08-15

    Although organic nitrogen (ON) compounds are apparently ubiquitous in the troposphere, very little is known about their fate and transformations. As one step in addressing this issue, we have studied the transformations of bulk (uncharacterized) organic nitrogen in fogwaters and aerosol aqueous extracts during exposure to simulated sunlight and O3. Our results show that over the course of several hours of exposure a significant portion of condensed-phase organic nitrogen is transformed into ammonium, nitrite, nitrate, and NOx. For nitrite, there was both photochemical formation and destruction, resulting in a slow net loss. Ammonium and nitrate were formed at initial rates on the order of a few micromolar per hour in the bulk fogwaters, corresponding to formation rates of approximately 10 and 40 ng m(-3) h(-1), respectively, in ambient fog. The average initial formation rate (expressed as ng (m of air)(-3) h(-1)) of NH4+ in the aqueous extracts of fine particles (PM2.5) was approximately one-half of the corresponding fogwater value. Initial formation rates of NOx (i.e., NO + NO2) were equivalent to approximately 2-11 pptv h(-1) in the three fogwaters tested. Although the formation rates of ammonium and nitrate were relatively small as compared to their initial concentrations in fogwaters (approximately 200-2000 microM) and aerosol particles (approximately 400-1500 ng m(-3)), this photochemical mineralization and "renoxification" from condensed-phase organic N is a previously uncharacterized source of inorganic N in the atmosphere. This conversion also represents a new component in the biogeochemical cycle of nitrogen that might have significant influences on atmospheric composition, condensed-phase properties, and the ecological impacts of N deposition.

  12. Cascading failures in interdependent networks with finite functional components

    NASA Astrophysics Data System (ADS)

    Di Muro, M. A.; Buldyrev, S. V.; Stanley, H. E.; Braunstein, L. A.

    2016-10-01

    We present a cascading failure model of two interdependent networks in which functional nodes belong to components of size greater than or equal to s . We find theoretically and via simulation that in complex networks with random dependency links the transition is first order for s ≥3 and continuous for s =2 . We also study interdependent lattices with a distance constraint r in the dependency links and find that increasing r moves the system from a regime without a phase transition to one with a second-order transition. As r continues to increase, the system collapses in a first-order transition. Each regime is associated with a different structure of domain formation of functional nodes.

  13. Controlling the Mesostructure Formation within the Shell of Novel Cubic/Hexagonal Phase Cetyltrimethylammonium Bromide-Poly(acrylamide-acrylic acid) Capsules for pH Stimulated Release.

    PubMed

    Tangso, Kristian J; Patel, Hetika; Lindberg, Seth; Hartley, Patrick G; Knott, Robert; Spicer, Patrick T; Boyd, Ben J

    2015-11-11

    The self-assembly of ordered structures in mixtures of oppositely charged surfactant and polymer systems has been exploited in various cleaning and pharmaceutical applications and continue to attract much interest since their discovery in the late twentieth century. The ability to control the electrostatic and hydrophobic interactions that dictate the formation of liquid crystalline phases in these systems is advantageous in manipulation of structure and rendering them responsive to external stimuli. Nanostructured capsules comprised of the cationic surfactant, cetyltrimethylammonium bromide (CTAB), and the diblock copolymer poly(acrylamide-acrylic acid) (PAAm-AA) were prepared to assess their potential as pH responsive nanomaterials. Crossed-polarizing light microscopy (CPLM) and small-angle X-ray scattering (SAXS) identified coexisting Pm3n cubic and hexagonal phases at the surfactant-polymer interface. The hydrophobic and electrostatic interactions between the oppositely charged components were studied by varying temperature and solution pH, respectively, and were found to influence the liquid crystalline nanostructure formed. The lattice parameter of the mesophases and the fraction of cubic phase in the system decreased upon heating. Acidic conditions resulted in the loss of the highly ordered structures due to protonation of the carboxylic acid group, and subsequent reduction of attractive forces previously present between the oppositely charged molecules. The rate of release of the model hydrophilic drug, Rhodamine B (RhB), from nanostructured macro-sized capsules significantly increased when the pH of the solution was adjusted from pH 7 to pH 2. This allowed for immediate release of the compound of interest "on demand", opening new options for structured materials with increased functionality over typical layer-by-layer capsules.

  14. Solid H2 in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Füglistaler, A.; Pfenniger, D.

    2018-06-01

    Context. Condensation of H2 in the interstellar medium (ISM) has long been seen as a possibility, either by deposition on dust grains or thanks to a phase transition combined with self-gravity. H2 condensation might explain the observed low efficiency of star formation and might help to hide baryons in spiral galaxies. Aims: Our aim is to quantify the solid fraction of H2 in the ISM due to a phase transition including self-gravity for different densities and temperatures in order to use the results in more complex simulations of the ISM as subgrid physics. Methods: We used molecular dynamics simulations of fluids at different temperatures and densities to study the formation of solids. Once the simulations reached a steady state, we calculated the solid mass fraction, energy increase, and timescales. By determining the power laws measured over several orders of magnitude, we extrapolated to lower densities the higher density fluids that can be simulated with current computers. Results: The solid fraction and energy increase of fluids in a phase transition are above 0.1 and do not follow a power law. Fluids out of a phase transition are still forming a small amount of solids due to chance encounters of molecules. The solid mass fraction and energy increase of these fluids are linearly dependent on density and can easily be extrapolated. The timescale is below one second, the condensation can be considered instantaneous. Conclusions: The presence of solid H2 grains has important dynamic implications on the ISM as they may be the building blocks for larger solid bodies when gravity is included. We provide the solid mass fraction, energy increase, and timescales for high density fluids and extrapolation laws for lower densities.

  15. A novel TFC forward osmosis (FO) membrane supported by polyimide (PI) microporous nanofiber membrane

    NASA Astrophysics Data System (ADS)

    Chi, Xiang-Yu; Zhang, Ping-Yun; Guo, Xue-Jiao; Xu, Zhen-Liang

    2018-01-01

    A novel interfacial polymerization (IP) procedure on polyimide (PI) microporous nanofiber membrane support with mean pore size 1.27 μm was reported. Using m-phenylenediamine (MPD) as aqueous phase monomer, trimesoyl chloride (TMC) as organic phase monomer, ethanol as aqueous phase co-solvent, thin-film composite (TFC) forward osmosis (FO) membrane was fabricated by two IP procedures. The first IP procedure with the unconventional order (ie, the membrane was immersed in the TMC organic phase first, then in the co-solvent ethanol-water MPD aqueous phase) was used to diminish the pore size of PI microporous nanofiber membrane support for the formation of the polyamide layer. The secondary IP procedure was employed to form the relatively dense polyamide layer with conventional order (ie, the membrane was immersed in the co-solvent ethanol-water MPD aqueous phase first, then in the TMC organic phase). The experimental results showed that higher ethanol concentration led to the relatively higher pure water permeability in RO process and osmotic water flux in FO process, whereas NaCl rejection in RO process decreased and reverse salt flux increased. The specific salt flux (Js/Jv) of TFC FO PI nanofiber membrane (PIN-2-4) could be as low as 0.095 g/L in FO mode. These results could be attributed to influence of the addition of ethanol into aqueous phase on the surface morphology, hydrophilicity and polyamide layer structure.

  16. Intradomain phase transitions in flexible block copolymers with self-aligning segments.

    PubMed

    Burke, Christopher J; Grason, Gregory M

    2018-05-07

    We study a model of flexible block copolymers (BCPs) in which there is an enlthalpic preference for orientational order, or local alignment, among like-block segments. We describe a generalization of the self-consistent field theory of flexible BCPs to include inter-segment orientational interactions via a Landau-de Gennes free energy associated with a polar or nematic order parameter for segments of one component of a diblock copolymer. We study the equilibrium states of this model numerically, using a pseudo-spectral approach to solve for chain conformation statistics in the presence of a self-consistent torque generated by inter-segment alignment forces. Applying this theory to the structure of lamellar domains composed of symmetric diblocks possessing a single block of "self-aligning" polar segments, we show the emergence of spatially complex segment order parameters (segment director fields) within a given lamellar domain. Because BCP phase separation gives rise to spatially inhomogeneous orientation order of segments even in the absence of explicit intra-segment aligning forces, the director fields of BCPs, as well as thermodynamics of lamellar domain formation, exhibit a highly non-linear dependence on both the inter-block segregation (χN) and the enthalpy of alignment (ε). Specifically, we predict the stability of new phases of lamellar order in which distinct regions of alignment coexist within the single mesodomain and spontaneously break the symmetries of the lamella (or smectic) pattern of composition in the melt via in-plane tilt of the director in the centers of the like-composition domains. We further show that, in analogy to Freedericksz transition confined nematics, the elastic costs to reorient segments within the domain, as described by the Frank elasticity of the director, increase the threshold value ε needed to induce this intra-domain phase transition.

  17. Intradomain phase transitions in flexible block copolymers with self-aligning segments

    NASA Astrophysics Data System (ADS)

    Burke, Christopher J.; Grason, Gregory M.

    2018-05-01

    We study a model of flexible block copolymers (BCPs) in which there is an enlthalpic preference for orientational order, or local alignment, among like-block segments. We describe a generalization of the self-consistent field theory of flexible BCPs to include inter-segment orientational interactions via a Landau-de Gennes free energy associated with a polar or nematic order parameter for segments of one component of a diblock copolymer. We study the equilibrium states of this model numerically, using a pseudo-spectral approach to solve for chain conformation statistics in the presence of a self-consistent torque generated by inter-segment alignment forces. Applying this theory to the structure of lamellar domains composed of symmetric diblocks possessing a single block of "self-aligning" polar segments, we show the emergence of spatially complex segment order parameters (segment director fields) within a given lamellar domain. Because BCP phase separation gives rise to spatially inhomogeneous orientation order of segments even in the absence of explicit intra-segment aligning forces, the director fields of BCPs, as well as thermodynamics of lamellar domain formation, exhibit a highly non-linear dependence on both the inter-block segregation (χN) and the enthalpy of alignment (ɛ). Specifically, we predict the stability of new phases of lamellar order in which distinct regions of alignment coexist within the single mesodomain and spontaneously break the symmetries of the lamella (or smectic) pattern of composition in the melt via in-plane tilt of the director in the centers of the like-composition domains. We further show that, in analogy to Freedericksz transition confined nematics, the elastic costs to reorient segments within the domain, as described by the Frank elasticity of the director, increase the threshold value ɛ needed to induce this intra-domain phase transition.

  18. Order-parameter model for unstable multilane traffic flow

    NASA Astrophysics Data System (ADS)

    Lubashevsky, Ihor A.; Mahnke, Reinhard

    2000-11-01

    We discuss a phenomenological approach to the description of unstable vehicle motion on multilane highways that explains in a simple way the observed sequence of the ``free flow <--> synchronized mode <--> jam'' phase transitions as well as the hysteresis in these transitions. We introduce a variable called an order parameter that accounts for possible correlations in the vehicle motion at different lanes. So, it is principally due to the ``many-body'' effects in the car interaction in contrast to such variables as the mean car density and velocity being actually the zeroth and first moments of the ``one-particle'' distribution function. Therefore, we regard the order parameter as an additional independent state variable of traffic flow. We assume that these correlations are due to a small group of ``fast'' drivers and by taking into account the general properties of the driver behavior we formulate a governing equation for the order parameter. In this context we analyze the instability of homogeneous traffic flow that manifested itself in the above-mentioned phase transitions and gave rise to the hysteresis in both of them. Besides, the jam is characterized by the vehicle flows at different lanes which are independent of one another. We specify a certain simplified model in order to study the general features of the car cluster self-formation under the ``free flow <--> synchronized motion'' phase transition. In particular, we show that the main local parameters of the developed cluster are determined by the state characteristics of vehicle motion only.

  19. Prediction of A2 to B2 Phase Transition in the High Entropy Alloy Mo-Nb-Ta-W

    NASA Astrophysics Data System (ADS)

    Huhn, William; Widom, Michael

    2014-03-01

    In this talk we show that an effective Hamiltonian fit with first principles calculations predicts an order/disorder transition occurs in the high entropy alloy Mo-Nb-Ta-W. Using the Alloy Theoretic Automated Toolset, we find T=0K enthalpies of formation for all binaries containing Mo, Nb, Ta, and W, and in particular we find the stable structures for binaries at equiatomic concentrations are close in energy to the associated B2 structure, suggesting that at intermediate temperatures a B2 phase is stabilized in Mo-Nb-Ta-W. Our ``hybrid Monte Carlo/molecular dynamics'' results for the Mo-Nb-Ta-W system are analyzed to identify certain preferred chemical bonding types. A mean field free energy model incorporating nearest neighbor bonds will be presented, allowing us to predict the mechanism of the order/disorder transition. We find the temperature evolution of the system is driven by strong Mo-Ta bonding. Comparison of the free energy model and our MC/MD results suggest the existence of additional low-temperature phase transitions in the system likely ending with phase segregation into binary phases. We would like to thank DOD-DTRA for funding this research under contract number DTRA-11-1-0064.

  20. Digital holographic microscopy of phase separation in multicomponent lipid membranes

    NASA Astrophysics Data System (ADS)

    Farzam Rad, Vahideh; Moradi, Ali-Reza; Darudi, Ahmad; Tayebi, Lobat

    2016-12-01

    Lateral in-homogeneities in lipid compositions cause microdomains formation and change in the physical properties of biological membranes. With the presence of cholesterol and mixed species of lipids, phospholipid membranes segregate into lateral domains of liquid-ordered and liquid-disordered phases. Coupling of two-dimensional intralayer phase separations and interlayer liquid-crystalline ordering in multicomponent membranes has been previously demonstrated. By the use of digital holographic microscopy (DHMicroscopy), we quantitatively analyzed the volumetric dynamical behavior of such membranes. The specimens are lipid mixtures composed of sphingomyelin, cholesterol, and unsaturated phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine. DHMicroscopy in a transmission mode is an effective tool for quantitative visualization of phase objects. By deriving the associated phase changes, three-dimensional information on the morphology variation of lipid stacks at arbitrary time scales is obtained. Moreover, the thickness distribution of the object at demanded axial planes can be obtained by numerical focusing. Our results show that the volume evolution of lipid domains follows approximately the same universal growth law of previously reported area evolution. However, the thickness of the domains does not alter significantly by time; therefore, the volume evolution is mostly attributed to the changes in area dynamics. These results might be useful in the field of membrane-based functional materials.

  1. A combined experimental and computational thermodynamic study of difluoronitrobenzene isomers.

    PubMed

    Ribeiro da Silva, Manuel A V; Monte, Manuel J S; Lobo Ferreira, Ana I M C; Oliveira, Juliana A S A; Cimas, Álvaro

    2010-10-14

    This work reports the experimental and computational thermochemical study performed on three difluorinated nitrobenzene isomers: 2,4-difluoronitrobenzene (2,4-DFNB), 2,5-difluoronitrobenzene (2,5-DFNB), and 3,4-difluoronitrobenzene (3,4-DFNB). The standard (p° = 0.1 MPa) molar enthalpies of formation in the liquid phase of these compounds were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by rotating bomb combustion calorimetry. A static method was used to perform the vapor pressure study of the referred compounds allowing the construction of the phase diagrams and determination of the respective triple point coordinates, as well as the standard molar enthalpies of vaporization, sublimation, and fusion for two of the isomers (2,4-DFNB and 3,4-DFNB). For 2,5-difluoronitrobenzene, only liquid vapor pressures were measured enabling the determination of the standard molar enthalpies of vaporization. Combining the thermodynamic parameters of the compounds studied, the following standard (p° = 0.1 MPa) molar enthalpies of formation in the gaseous phase, at T = 298.15 K, were derived: Δ(f)H(m)° (2,4-DFNB, g) = -(296.3 ± 1.8) kJ · mol⁻¹, Δ(f)H(m)° (2,5-DFNB, g) = -(288.2 ± 2.1) kJ · mol⁻¹, and Δ(f)H(m)° (3,4-DFNB, g) = -(302.4 ± 2.1) kJ · mol⁻¹. Using the empirical scheme developed by Cox, several approaches were evaluated in order to identify the best method for estimating the standard molar gas phase enthalpies of formation of these compounds. The estimated values were compared to the ones obtained experimentally, and the approach providing the best comparison with experiment was used to estimate the thermodynamic behavior of the other difluorinated nitrobenzene isomers not included in this study. Additionally, the enthalpies of formation of these compounds along with the enthalpies of formation of the other isomers not studied experimentally, i.e., 2,3-DFNB, 2,6-DFNB, and 3,5-DFNB, were estimated using the composite G3MP2B3 approach together with adequate gas-phase working reactions. Furthermore, we also used this computational approach to calculate the gas-phase basicities, proton and electron affinities, and, finally, adiabatic ionization enthalpies.

  2. Strong enhancement of s -wave superconductivity near a quantum critical point of Ca 3 Ir 4 Sn 13

    DOE PAGES

    Biswas, P. K.; Guguchia, Z.; Khasanov, R.; ...

    2015-11-11

    We repormore » t microscopic studies by muon spin rotation/relaxation as a function of pressure of the Ca 3 Ir 4 Sn 13 and Sr 3Ir 4Sn 13 system displaying superconductivity and a structural phase transition associated with the formation of a charge density wave (CDW). Our findings show a strong enhancement of the superfluid density and a dramatic increase of the pairing strength above a pressure of ≈ 1.6 GPa giving direct evidence of the presence of a quantum critical point separating a superconducting phase coexisting with CDW from a pure superconducting phase. The superconducting order parameter in both phases has the same s-wave symmetry. In spite of the conventional phonon-mediated BCS character of the weakly correlated (Ca 1-xSr x) 3Ir 4Sn 13 system the dependence of the effective superfluid density on the critical temperature puts this compound in the “Uemura” plot close to unconventional superconductors. This system exemplifies that conventional BCS superconductors in the presence of competing orders or multi-band structure can also display characteristics of unconventional superconductors.« less

  3. Membrane formation in liquids by adding an antagonistic salt

    NASA Astrophysics Data System (ADS)

    Sadakane, Koichiro; Seto, Hideki

    2018-03-01

    Antagonistic salts are composed of hydrophilic and hydrophobic ions. In a binary mixture, such as water and organic solvent, these ion pairs preferentially dissolve to those phases, respectively, and there is a coupling between the charge density and the composition. The heterogeneous distribution of ions forms a large electric double layer at the interface between these solvents. This reduces the interfacial tension between water and organic solvent, and stabilizes an ordered structure, such as a membrane. These phenomena have been extensively studied from both theoretical and experimental point of view. In addition, the numerical simulations can reproduce such ordered structures.

  4. Fabrication of ordered Fe–Ni nitride film with equiatomic Fe/Ni ratio

    NASA Astrophysics Data System (ADS)

    Takata, Fumiya; Ito, Keita; Suemasu, Takashi

    2018-05-01

    We successfully grew a single-phase tetragonal FeNiN film with an equiatomic ratio of Fe, Ni, and N on a MgO(001) substrate by molecular beam epitaxy. We then demonstrated the formation of Fe2Ni2N films by extracting N atoms from the FeNiN film. These results suggested that Fe and Ni atoms in the Fe2Ni2N film were L10-ordered along the film plane direction because of the a-axis orientation growth of the FeNiN film on the MgO(001) substrate.

  5. Space charge effects on the third order coupled resonance

    NASA Astrophysics Data System (ADS)

    Franchetti, Giuliano; Gilardoni, Simone; Huschauer, Alexander; Schmidt, Frank; Wasef, Raymond

    2017-08-01

    The effect of space charge on bunched beams has been the subject of numerous numerical and experimental studies in the first decade of 2000. Experimental campaigns performed at the CERN Proton Synchrotron in 2002 and at the GSI SIS18 in 2008 confirmed the existence of an underlying mechanism in the beam dynamics of periodic resonance crossing induced by the synchrotron motion and space charge. In this article we present an extension of the previous studies to describe the effect of space charge on a controlled coupled (2D) third order resonance. The experimental and simulation results of this latest campaign shed a new light on the difficulties of the 2D particle dynamics. We find striking experimental evidence that space charge and the coupled resonance create an unusual coupling in the phase space, leading to the formation of an asymmetric halo. Moreover, this study demonstrates a clear link between halo formation and fixed-lines.

  6. Generalised syntheses of ordered mesoporous oxides: the atrane route

    NASA Astrophysics Data System (ADS)

    Cabrera, Saúl; El Haskouri, Jamal; Guillem, Carmen; Latorre, Julio; Beltrán-Porter, Aurelio; Beltrán-Porter, Daniel; Marcos, M. Dolores; Amorós *, Pedro

    2000-06-01

    A new simple and versatile technique to obtain mesoporous oxides is presented. While implying surfactant-assisted formation of mesostructured intermediates, the original chemical contribution of this approach lies in the use of atrane complexes as precursors. Without prejudice to their inherent unstability in aqueous solution, the atranes show a marked inertness towards hydrolysis. Bringing kinetic factors into play, it becomes possible to control the processes involved in the formation of the surfactant-inorganic phase composite micelles, which constitute the elemental building blocks of the mesostructures. Independent of the starting compositional complexity, both the mesostructured intermediates and the final mesoporous materials are chemically homogeneous. The final ordered mesoporous materials are thermally stable and show unimodal porosity, as well as homogeneous microstructure and texture. Examples of materials synthesised on account of the versatility of this new method, including siliceous, non siliceous and mixed oxides, are presented and discussed.

  7. Clustering mechanism of oxocarboxylic acids involving hydration reaction: Implications for the atmospheric models

    NASA Astrophysics Data System (ADS)

    Liu, Ling; Kupiainen-Määttä, Oona; Zhang, Haijie; Li, Hao; Zhong, Jie; Kurtén, Theo; Vehkamäki, Hanna; Zhang, Shaowen; Zhang, Yunhong; Ge, Maofa; Zhang, Xiuhui; Li, Zesheng

    2018-06-01

    The formation of atmospheric aerosol particles from condensable gases is a dominant source of particulate matter in the boundary layer, but the mechanism is still ambiguous. During the clustering process, precursors with different reactivities can induce various chemical reactions in addition to the formation of hydrogen bonds. However, the clustering mechanism involving chemical reactions is rarely considered in most of the nucleation process models. Oxocarboxylic acids are common compositions of secondary organic aerosol, but the role of oxocarboxylic acids in secondary organic aerosol formation is still not fully understood. In this paper, glyoxylic acid, the simplest and the most abundant atmospheric oxocarboxylic acid, has been selected as a representative example of oxocarboxylic acids in order to study the clustering mechanism involving hydration reactions using density functional theory combined with the Atmospheric Clusters Dynamic Code. The hydration reaction of glyoxylic acid can occur either in the gas phase or during the clustering process. Under atmospheric conditions, the total conversion ratio of glyoxylic acid to its hydration reaction product (2,2-dihydroxyacetic acid) in both gas phase and clusters can be up to 85%, and the product can further participate in the clustering process. The differences in cluster structures and properties induced by the hydration reaction lead to significant differences in cluster formation rates and pathways at relatively low temperatures.

  8. Growth of L1{sub 0}-ordered crystal in FePt and FePd thin films on MgO(001) substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Futamoto, Masaaki, E-mail: futamoto@elect.chuo-u.ac.jp; Nakamura, Masahiro; Ohtake, Mitsuru

    2016-08-15

    Formation of L1{sub 0}-oredered structure from disordered A1 phase has been investigated for FePt and FePd films on MgO(001) substrates employing a two-step method consisting of low temperature deposition at 200 °C followed by high-temperature annealing at 600 °C. L1{sub 0}-(001) variant crystal with the c-axis perpendicular to the substrate grows preferentially in FePd films whereas L1{sub 0}-(100), (010) variants tend to be mixed with the L1{sub 0}-(001) variant in FePt films. The structure analysis by X-ray diffraction indicates that a difference in A1 lattice strain is the influential factor that determines the resulting L1{sub 0}-variant structure in ordered thinmore » films. Misfit dislocations and anti-phase boundaries are observed in high-resolution transmission electron micrographs of 10 nm-thick Fe(Pt, Pd) film consisting of L1{sub 0}-(001) variants which are formed through atomic diffusion at 600 °C in a laterally strained FePt/PeFd epitaxial thin film. Based on the experimental results, a nucleation and growth model for explaining L1{sub 0}-variant formation is proposed, which suggests a possibility in tailoring the L1{sub 0} variant structure in ordered magnetic thin films by controlling the alloy composition, the layer structure, and the substrate material.« less

  9. Microscopic mechanism of nanocrystal formation from solution by cluster aggregation and coalescence

    PubMed Central

    Hassan, Sergio A.

    2011-01-01

    Solute-cluster aggregation and particle fusion have recently been suggested as alternative routes to the classical mechanism of nucleation from solution. The role of both processes in the crystallization of an aqueous electrolyte under controlled salt addition is here elucidated by molecular dynamics simulation. The time scale of the simulation allows direct observation of the entire crystallization pathway, from early events in the prenucleation stage to the formation of a nanocrystal in equilibrium with concentrated solution. The precursor originates in a small amorphous aggregate stabilized by hydration forces. The core of the nucleus becomes crystalline over time and grows by coalescence of the amorphous phase deposited at the surface. Imperfections of ion packing during coalescence promote growth of two conjoint crystallites. A parameter of order and calculated cohesive energies reflect the increasing crystalline order and stress relief at the grain boundary. Cluster aggregation plays a major role both in the formation of the nucleus and in the early stages of postnucleation growth. The mechanism identified shares common features with nucleation of solids from the melt and of liquid droplets from the vapor. PMID:21428633

  10. Thermodynamics of concentrated solid solution alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Michael C.; Zhang, C.; Gao, P.

    This study reviews the three main approaches for predicting the formation of concentrated solid solution alloys (CSSA) and for modeling their thermodynamic properties, in particular, utilizing the methodologies of empirical thermo-physical parameters, CALPHAD method, and first-principles calculations combined with hybrid Monte Carlo/Molecular Dynamics (MC/MD) simulations. In order to speed up CSSA development, a variety of empirical parameters based on Hume-Rothery rules have been developed. Herein, these parameters have been systematically and critically evaluated for their efficiency in predicting solid solution formation. The phase stability of representative CSSA systems is then illustrated from the perspectives of phase diagrams and nucleation drivingmore » force plots of the σ phase using CALPHAD method. The temperature-dependent total entropies of the FCC, BCC, HCP, and σ phases in equimolar compositions of various systems are presented next, followed by the thermodynamic properties of mixing of the BCC phase in Al-containing and Ti-containing refractory metal systems. First-principles calculations on model FCC, BCC and HCP CSSA reveal the presence of both positive and negative vibrational entropies of mixing, while the calculated electronic entropies of mixing are negligible. Temperature dependent configurational entropy is determined from the atomic structures obtained from MC/MD simulations. Current status and challenges in using these methodologies as they pertain to thermodynamic property analysis and CSSA design are discussed.« less

  11. Thermodynamics of concentrated solid solution alloys

    DOE PAGES

    Gao, Michael C.; Zhang, C.; Gao, P.; ...

    2017-10-12

    This study reviews the three main approaches for predicting the formation of concentrated solid solution alloys (CSSA) and for modeling their thermodynamic properties, in particular, utilizing the methodologies of empirical thermo-physical parameters, CALPHAD method, and first-principles calculations combined with hybrid Monte Carlo/Molecular Dynamics (MC/MD) simulations. In order to speed up CSSA development, a variety of empirical parameters based on Hume-Rothery rules have been developed. Herein, these parameters have been systematically and critically evaluated for their efficiency in predicting solid solution formation. The phase stability of representative CSSA systems is then illustrated from the perspectives of phase diagrams and nucleation drivingmore » force plots of the σ phase using CALPHAD method. The temperature-dependent total entropies of the FCC, BCC, HCP, and σ phases in equimolar compositions of various systems are presented next, followed by the thermodynamic properties of mixing of the BCC phase in Al-containing and Ti-containing refractory metal systems. First-principles calculations on model FCC, BCC and HCP CSSA reveal the presence of both positive and negative vibrational entropies of mixing, while the calculated electronic entropies of mixing are negligible. Temperature dependent configurational entropy is determined from the atomic structures obtained from MC/MD simulations. Current status and challenges in using these methodologies as they pertain to thermodynamic property analysis and CSSA design are discussed.« less

  12. Diffusion paths formation for Cu{sup +} ions in superionic Cu{sub 6}PS{sub 5}I single crystals studied in terms of structural phase transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagor, A.; Pietraszko, A.; Kaynts, D.

    2005-11-15

    In order to understand the structural transformations leading to high ionic conductivity of Cu{sup +} ions in Cu{sub 6}PS{sub 5}I argyrodite compound, the detailed structure analysis based on single-crystal X-ray diffraction has been performed. Below the phase transition at T{sub c}=(144-169)K Cu{sub 6}PS{sub 5}I belongs to monoclinic, ferroelastic phase (space group Cc) with ordered copper sublattice. Above T{sub c} delocalization of copper ions begins and crystal changes the symmetry to cubic superstructure with space group F-43c (a{sup '}=19.528A, z=32). Finally, above T{sub 1}=274K increasing disordering of the Cu{sup +} ions heightens the symmetry to F-43m (a=9.794A, z=4). In this work,more » the final structural model of two cubic phases is presented including the detailed temperature evolution of positions and site occupation factors of copper ions (R{sub 1}=0.0397 for F-43c phase, and 0.0245 for F-43m phase). Possible diffusion paths for the copper ions are represented by means of the atomic displacement factors and split model. The structural results coincide well with the previously reported non-Arrhenius behavior of conductivity and indicate significant change in conduction mechanism.« less

  13. Chiral self-assembly of helical particles.

    PubMed

    Kolli, Hima Bindu; Cinacchi, Giorgio; Ferrarini, Alberta; Giacometti, Achille

    2016-01-01

    The shape of the building blocks plays a crucial role in directing self-assembly towards desired architectures. Out of the many different shapes, the helix has a unique position. Helical structures are ubiquitous in nature and a helical shape is exhibited by the most important biopolymers like polynucleotides, polypeptides and polysaccharides as well as by cellular organelles like flagella. Helical particles can self-assemble into chiral superstructures, which may have a variety of applications, e.g. as photonic (meta)materials. However, a clear and definite understanding of these structures has not been entirely achieved yet. We have recently undertaken an extensive investigation on the phase behaviour of hard helical particles, using numerical simulations and classical density functional theory. Here we present a detailed study of the phase diagram of hard helices as a function of their morphology. This includes a variety of liquid-crystal phases, with different degrees of orientational and positional ordering. We show how, by tuning the helix parameters, it is possible to control the organization of the system. Starting from slender helices, whose phase behaviour is similar to that of rodlike particles, an increase in curliness leads to the onset of azimuthal correlations between the particles and the formation of phases specific to helices. These phases feature a new kind of screw order, of which there is experimental evidence in colloidal suspensions of helical flagella.

  14. Cloud Point and Liquid-Liquid Equilibrium Behavior of Thermosensitive Polymer L61 and Salt Aqueous Two-Phase System.

    PubMed

    Rao, Wenwei; Wang, Yun; Han, Juan; Wang, Lei; Chen, Tong; Liu, Yan; Ni, Liang

    2015-06-25

    The cloud point of thermosensitive triblock polymer L61, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO), was determined in the presence of various electrolytes (K2HPO4, (NH4)3C6H5O7, and K3C6H5O7). The cloud point of L61 was lowered by the addition of electrolytes, and the cloud point of L61 decreased linearly with increasing electrolyte concentration. The efficacy of electrolytes on reducing cloud point followed the order: K3C6H5O7 > (NH4)3C6H5O7 > K2HPO4. With the increase in salt concentration, aqueous two-phase systems exhibited a phase inversion. In addition, increasing the temperature reduced the concentration of salt needed that could promote phase inversion. The phase diagrams and liquid-liquid equilibrium data of the L61-K2HPO4/(NH4)3C6H5O7/K3C6H5O7 aqueous two-phase systems (before the phase inversion but also after phase inversion) were determined at T = (25, 30, and 35) °C. Phase diagrams of aqueous two-phase systems were fitted to a four-parameter empirical nonlinear expression. Moreover, the slopes of the tie-lines and the area of two-phase region in the diagram have a tendency to rise with increasing temperature. The capacity of different salts to induce aqueous two-phase system formation was the same order as the ability of salts to reduce the cloud point.

  15. Molecular Hydrogen Formation from Proximal Glycol Pairs on TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Long; Li, Zhenjun; Smith, R. Scott

    2014-04-16

    Understanding hydrogen formation on TiO2 surfaces is of great importance as it could provide fundamental insight into water splitting for hydrogen production using solar energy. In this work, hydrogen formation from glycols having different numbers of methyl end-groups have been studied using temperature pro-grammed desorption on reduced, hydroxylated, and oxidized TiO2(110) surfaces. The results from OD-labeled glycols demon-strate that gas-phase molecular hydrogen originates exclusively from glycol hydroxyl groups. The yield is controlled by a combi-nation of glycol coverage, steric hindrance, TiO2(110) order and the amount of subsurface charge. Combined, these results show that proximal pairs of hydroxyl aligned glycol moleculesmore » and subsurface charge are required to maximize the yield of this redox reaction. These findings highlight the importance of geometric and electronic effects in hydrogen formation from adsorbates on TiO2(110).« less

  16. Ceruloplasmin inhibits carbonyl formation in endogenous proteins in phorbol myristate acetate (PMA)-stimulated neutrophils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krsek-Staples, J.; Webster, R.O.

    1991-03-11

    The respiratory burst of stimulated neutrophils can cause oxidative modifications of endogenous neutrophil proteins as measured by increased carbonyl formation. Ceruloplasmin is an acute phase protein and may act as an antioxidant during inflammation. Therefore, the role of ceruloplasmin in preventing oxidative damage of endogenous neutrophil proteins was investigated. Protein carbonyl content was determined spectrophotometrically using 2,4-dinitrophenylhydrazine. Ceruloplasmin, at a concentration present during inflammation significantly inhibited carbonyl formation in endogenous proteins of PMA-stimulated neutrophils. In order to determine if oxidative damage was occurring to the ceruloplasmin upon incubation with stimulated neutrophils, carbonyl formation in the ceruloplasmin in the presence andmore » absence of stimulated neutrophils. This data suggests that ceruloplasmin may play a role in regulating oxidative damage to proteins and that ceruloplasmin itself may act as a target for these modifications.« less

  17. Computational discovery of stable M2A X phases

    NASA Astrophysics Data System (ADS)

    Ashton, Michael; Hennig, Richard G.; Broderick, Scott R.; Rajan, Krishna; Sinnott, Susan B.

    2016-08-01

    The family of layered Mn +1A Xn compounds provides a large class of materials with applications ranging from magnets to high-temperature coatings to nuclear cladding. In this work, we employ a density-functional-theory-based discovery approach to identify a large number of thermodynamically stable Mn +1A Xn compounds, where n =1 , M =Sc, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta; A =Al, Si, P, S, Ga, Ge, As, Cd, In, Sn, Tl, Pb; and X =C, N. We calculate the formation energy for 216 pure M2A X compounds and 10 314 solid solutions, (MM') 2(A A') (X X') , relative to their competing phases. We find that the 49 experimentally known M2A X phases exhibit formation energies of less than 30 meV/atom. Among the 10 530 compositions considered, 3140 exhibit formation energies below 30 meV/atom, most of which have yet to be experimentally synthesized. A significant subset of 301 compositions exhibits strong exothermic stability in excess of 100 meV/atom, indicating favorable synthesis conditions. We identify empirical design rules for stable M2A X compounds. Among the metastable M2A X compounds are two Cr-based compounds with ferromagnetic ordering and expected Curie temperatures around 75 K. These results can serve as a map for the experimental design and synthesis of different M2A X compounds.

  18. Influence of heat-pretreatments on the microstructural and mechanical properties of galfan-coated metal bonds

    NASA Astrophysics Data System (ADS)

    Hordych, Illia; Rodman, Dmytro; Nürnberger, Florian; Schmidt, Hans Christian; Orive, Alejandro Gonzalez; Homberg, Werner; Grundmeier, Guido; Maier, Hans Jürgen

    2018-05-01

    In the present study, heat-treatment assisted bonding of galfan-coated low-carbon steel sheets was investigated. Steel sheets were bonded by cold rolling subsequently to a heat treatment in the temperature range from 400 °C to 550°C. The reduction ratio during cold rolling was varied in the range from 50% to 80%. Such high reduction ratios were achieved by splitting the bonding process into three stages. By employing heat-treatments, the mechanical properties of the bonds were improved. The heat-pretreatment allowed the formation of brittle intermetallic phases that were easily fractured in the rolling gap during the bonding process. Thus, juvenile non-oxidized surfaces were formed, which facilitated the bonding between the steel layers, and thus increased the bond strength. The intermetallic phases were actively formed at temperatures of 450 °C and above; however increasing temperatures resulted in decreasing mechanical properties due to oxidation processes. The local microstructure was analyzed by scanning electron microscopy in order to characterize the contact zone on the micro level with a focus on the formation of intermetallic phases. The mechanical properties were determined in tensile shear tests. Interestingly, it was found that the galfan coating allowed for bonding at room temperature, and the aluminum fraction was primarily responsible for the enhanced oxide formation during the heat-pretreatment.

  19. Formation and Evolution of Target Patterns in Cahn-Hilliard Flows: An Extension of the Flux Expulsion Studies in MHD

    NASA Astrophysics Data System (ADS)

    Fan, Xiang; P H Diamond Collaboration; Luis Chacon Collaboration

    2017-10-01

    Spinodal decomposition is a second order phase transition for a binary liquid mixture to evolve from a miscible phase (e.g., water + alcohol) to two co-existing phases (e.g., water + oil). The Cahn-Hilliard model for spinodal decomposition is analogous to 2D MHD. We study the evolution of the concentration field in a single eddy in the 2D Cahn-Hilliard system to better understand scalar mixing processes in that system. This study extends investigations of the classic studies of flux expulsion in 2D MHD and homogenization of potential vorticity in 2D fluids. Simulation results show that there are three stages in the evolution: (A) formation of a ``jelly roll'' pattern, for which the concentration field is constant along spirals; (B) a change in isoconcentration contour topology; and (C) formation of a target pattern, for which the isoconcentration contours follow concentric annuli. In the final target pattern stage, the isoconcentration bands align with stream lines. The results indicate that the target pattern is a metastable state. Band merger process continues on a time scale exponentially long relative to the eddy turnover time. The band merger process resembles step merger in drift-ZF staircases. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.

  20. Influence of spacer moiety and length of end chain for the phase stability in complementary, double hydrogen bonded liquid crystals, MA:nOBAs

    NASA Astrophysics Data System (ADS)

    Ashok Kumar, A. V. N.; Chalapathi, P. V.; Srinivasulu, M.; Muniprasad, M.; Potukuchi, D. M.

    2015-01-01

    Supra molecular liquid crystals formed by the Hydrogen Bonding interaction between a non-mesogenic aliphatic dicarboxylic acid viz., COOHsbnd CH2sbnd COOH (Malonic Acid, MA); and mesogenic aromatic, N-(p-n-alkoxy benzoic)Acids, (i.e., nOBAs) for n = 3, 4, 5, 7, 8, 9, 10, 11 and 12, labeled as nOBA:COOHsbnd [CH2]msbnd COOH:nOBAs, abbreviated as MA:nOBAs are reported. 1H NMR and 13C NMR studies confirm the formation of HBLC complexes. Infrared (IR) studies confirm the complementary, double, alternative type of HB. Polarized Optical Microscopy (POM) and Differential Scanning Calorimetry (DSC) studies infer N, SmC, SmX, SmCRE, SmF, SmG LC phase variance. SmX phase exhibiting finger print texture grows in MA:nOBAs for n = 10, 11 and 12 by the interruption of SmC phase with decreasing temperature. Re-Entrant SmC (SmCRE) grows by the cooling of SmX. I-N, N-C, X-CRE, C-G, CRE-F, F-G and G-Solid transitions exhibit first order nature. C-X is found to be second order nature in n = 10 and 11. C-X in n = 12 and X-CRE and CRE-F transitions are found to be weak first order nature. Influence of lengths of end chain (n) and spacer (m) for the overall LC phase [ΔT]LC; tilted phase [ΔT]Tilt; SmC phase [ΔT]C and SmX phase [ΔT]X stabilities is discussed in the wake of data on other HBLCs with similar molecular structure. Prevalence of SmX phase in MA:nOBAs with m = 1 infers repulsive interaction between the π-electronic cloud of aromatic boards of nOBAs. Model molecule predicts a twisted configuration of π-cloud around the molecular long axis. Finger print texture of SmX validates the model.

  1. Science Using an Electrostatic Levitation Furnace in the MUCAT Sector at the APS

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Kelton, K. F.; Rogers, J. R.

    2004-01-01

    The original motivation for the construction of the BESL prototype was to obtain the first proof of a 50-year-old hypothesis regarding the solidification of liquid metals. Since the 1950s it has been known that under proper conditions liquid metals can be cooled below their melting temperature (undercooled) without crystallizing to the stable solid phase. In 1952 Frank proposed that this was because the atoms in the metallic liquid were arranged with the symmetry of an icosahedron, a Platonic solid consisting of 20 tetrahedra (4-sided pyramid-shaped polyhedra) arranged around a common center. Since this local atomic order is incompatible with the long-range translational periodicity of crystal phases, a barrier is formed to the formation of small regions of the crystal phase, the nucleation barrier. A proof of Frank's hypothesis required a direct correlation between measured icosahedral order in the undercooled liquid and the nucleation barrier. The tendency of sample containers to catalyze nucleation obscured this relation, requiring containerless techniques. Combining containerless processing techniques for electrostatically levitated droplets (ESL) with x-ray synchrotron methods, a team from Washington University, St. Louis, MO, NASA Marshall Space Flight Center, and MUCAT at the APS demonstrated an increasing icosahedral order in TiZrNi liquids with decreasing temperature below the melting temperature. The increased icosahedral order caused the transformation of the liquid to a metastable icosahedral quasicrystal phase, instead of the stable tetrahedrally-coordinated crystal intermetallic, giving the first clear demonstration of the connection between the nucleation barrier and the local structure of the liquid, verifying Frank's hypothesis for this alloy.

  2. Formation of volatile compounds during heating of spice paprika (Capsicum annuum) powder.

    PubMed

    Cremer, D R; Eichner, K

    2000-06-01

    Spice paprika (red pepper; Capsicum annuum) is the most cultivated spice worldwide and is used mainly for its color and pungency. However, current research is also focusing on the flavor as an important parameter. This paper deals with the kinetics of the formation of those volatiles that indicate a decrease in spice paprika quality due to Maillard reaction, hydrolytic reactions, and oxidative degradation reactions of lipids such as fatty acids and carotenoids. Spice paprika volatiles were quantitatively analyzed by means of headspace gas chromatography (HS-GC) and solid-phase microextraction (SPME) followed by gas chromatography-mass spectrometry (GC-MS). The kinetics of their formation were investigated, and the respective activation energies determined. Strecker aldehyde, acetone, and methanol formation followed a pseudo-zero-order reaction kinetic, and formation of dimethyl sulfide (DMS) was characterized by a first-order kinetic. The activation energies determined were between 86.3 and 101.8 for the Strecker aldehydes acetaldehyde (AA), 2-methylpropanal (2-MP), 3-methylbutanal (3-MB), and 2-methylbutanal (2-MB), 130.7 for acetone, 114.2 for methanol, and 109.7 kJ/mol for DMS. The amounts of Strecker aldehydes formed were correlated to the concentrations of the corresponding free amino acids present in the samples. The formation of hexanal and 6-methyl-5-hepten-2-one in Capsicum annuum during processing was confirmed, and the formation of beta-ionone was probably described for the first time. During heating, the concentration of hexanal increased rapidly. The formation of 6-methyl-5-hepten-2-one confirms that Capsicum annuum fruits contain lycopene.

  3. Soliton communication lines based on spectrally efficient modulation formats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yushko, O V; Redyuk, A A

    2014-06-30

    We report the results of mathematical modelling of optical-signal propagation in soliton fibre-optic communication lines (FOCLs) based on spectrally efficient signal modulation formats. We have studied the influence of spontaneous emission noise, nonlinear distortions and FOCL length on the data transmission quality. We have compared the characteristics of a received optical signal for soliton and conventional dispersion compensating FOCLs. It is shown that in the presence of strong nonlinearity long-haul soliton FOCLs provide a higher data transmission performance, as well as allow higher order modulation formats to be used as compared to conventional communication lines. In the context of amore » coherent data transmission, soliton FOCLs allow the use of phase modulation with many levels, thereby increasing the spectral efficiency of the communication line. (optical communication lines)« less

  4. Prediction of the As-Cast Structure of Al-4.0 Wt Pct Cu Ingots

    NASA Astrophysics Data System (ADS)

    Ahmadein, Mahmoud; Wu, M.; Li, J. H.; Schumacher, P.; Ludwig, A.

    2013-06-01

    A two-stage simulation strategy is proposed to predict the as-cast structure. During the first stage, a 3-phase model is used to simulate the mold-filling process by considering the nucleation, the initial growth of globular equiaxed crystals and the transport of the crystals. The three considered phases are the melt, air and globular equiaxed crystals. In the second stage, a 5-phase mixed columnar-equiaxed solidification model is used to simulate the formation of the as-cast structure including the distinct columnar and equiaxed zones, columnar-to-equiaxed transition, grain size distribution, macrosegregation, etc. The five considered phases are the extradendritic melt, the solid dendrite, the interdendritic melt inside the equiaxed grains, the solid dendrite, and the interdendritic melt inside the columnar grains. The extra- and interdendritic melts are treated as separate phases. In order to validate the above strategy, laboratory ingots (Al-4.0 wt pct Cu) are poured and analyzed, and a good agreement with the numerical predictions is achieved. The origin of the equiaxed crystals by the "big-bang" theory is verified to play a key role in the formation of the as-cast structure, especially for the castings poured at a low pouring temperature. A single-stage approach that only uses the 5-phase mixed columnar-equiaxed solidification model and ignores the mold filling can predict satisfactory results for a casting poured at high temperature, but it delivers false results for the casting poured at low temperature.

  5. Wet powder processing of sol-gel derived mesoporous silica-hydroxyapatite hybrid powders.

    PubMed

    Andersson, Jenny; Johannessen, Espen; Areva, Sami; Järn, Mikael; Lindén, Mika

    2006-08-01

    This paper describes a method by which a porous silica coating layer can be obtained on different apatite particles through a simple sol-gel synthesis route. Sol-gel derived powders of hydroxyapatite (HAP) and beta tricalciumphosphate (beta-TCP) were coated with a mesoporous silica using C16TAB (hexadecyltrimethylammonium bromide) as a template in order to induce mesophase formation. Further calcination of the material removes the template from the mesophase and leaves a highly ordered hexagonal arranged mesoporous silica structure with a core of HAP/beta-TCP. The phase purity of the SiO2/apatite composites has been thoroughly investigated by the means of FT-IR, XRD, and solid state 31P MAS NMR. The phase purity of these materials is shown to be dependent on the solubility properties of the used apatites. The hybrid materials are suitable as a multifunctional biomaterial where osteoconductive properties can be combined with drug delivery.

  6. Designing exotic many-body states of atomic spin and motion in photonic crystals.

    PubMed

    Manzoni, Marco T; Mathey, Ludwig; Chang, Darrick E

    2017-03-08

    Cold atoms coupled to photonic crystals constitute an exciting platform for exploring quantum many-body physics. For example, such systems offer the potential to realize strong photon-mediated forces between atoms, which depend on the atomic internal (spin) states, and where both the motional and spin degrees of freedom can exhibit long coherence times. An intriguing question then is whether exotic phases could arise, wherein crystalline or other spatial patterns and spin correlations are fundamentally tied together, an effect that is atypical in condensed matter systems. Here, we analyse one realistic model Hamiltonian in detail. We show that this previously unexplored system exhibits a rich phase diagram of emergent orders, including spatially dimerized spin-entangled pairs, a fluid of composite particles comprised of joint spin-phonon excitations, phonon-induced Néel ordering, and a fractional magnetization plateau associated with trimer formation.

  7. Enhancing Entropy and Enthalpy Fluctuations to Drive Crystallization in Atomistic Simulations.

    PubMed

    Piaggi, Pablo M; Valsson, Omar; Parrinello, Michele

    2017-07-07

    Crystallization is a process of great practical relevance in which rare but crucial fluctuations lead to the formation of a solid phase starting from the liquid. As in all first order first transitions, there is an interplay between enthalpy and entropy. Based on this idea, in order to drive crystallization in molecular simulations, we introduce two collective variables, one enthalpic and the other entropic. Defined in this way, these collective variables do not prejudge the structure into which the system is going to crystallize. We show the usefulness of this approach by studying the cases of sodium and aluminum that crystallize in the bcc and fcc crystalline structures, respectively. Using these two generic collective variables, we perform variationally enhanced sampling and well tempered metadynamics simulations and find that the systems transform spontaneously and reversibly between the liquid and the solid phases.

  8. Molecular Simulations of the Synthesis of Periodic Mesoporous Silica Phases at High Surfactant Concentrations

    DOE PAGES

    Chien, Szu-Chia; Pérez-Sánchez, Germán; Gomes, José R. B.; ...

    2017-02-17

    Molecular dynamics simulations of a coarse-grained model are used to study the formation mechanism of periodic mesoporous silica over a wide range of cationic surfactant concentrations. This follows up on an earlier study of systems with low surfactant concentrations. We started by studying the phase diagram of the surfactant–water system and found that our model shows good qualitative agreement with experiments with respect to the surfactant concentrations where various phases appear. We then considered the impact of silicate species upon the morphologies formed. We have found that even in concentrated surfactant systems—in the concentration range where pure surfactant solutions yieldmore » a liquid crystal phase—the liquid-crystal templating mechanism is not viable because the preformed liquid crystal collapses as silica monomers are added into the solution. Upon the addition of silica dimers, a new phase-separated hexagonal array is formed. The preformed liquid crystals were found to be unstable in the presence of monomeric silicates. In addition, the silica dimer is found to be essential for mesoscale ordering at both low and high surfactant concentrations. Our results support the view that a cooperative interaction of anionic silica oligomers and cationic surfactants determines the mesostructure formation in the M41S family of materials.« less

  9. Phase-pure eutectic CoFe2O4-Ba1-xSrxTiO3 composites prepared by floating zone melting

    NASA Astrophysics Data System (ADS)

    Breitenbach, Martin; Ebbinghaus, Stefan G.

    2018-02-01

    Composites consisting of ferrimagnetic CoFe2O4 and ferroelectric Ba1-xSrxTiO3 were grown by the floating zone technique. The influence of Sr substitution, growth rate and atmosphere during the floating zone process were investigated. The formation of the non-ferroelectric, hexagonal modification of BaTiO3 was avoided by a slight Sr substitution of 3 mol% and the formation of BaFe12O19 was suppressed using pure nitrogen as atmosphere during the floating zone melting. These synthesis parameters led to phase-pure, but electrically conductive CoFe2O4-Ba1-xSrxTiO3 composites. A thermal treatment at 973 K in air resulted in a strong increase of the electric resistivity accompanied by a decrease of the unit-cell parameters of both components indicating the healing of oxygen defects. SEM investigations revealed a variety of different geometric structures and crack-free interfaces between both phases. The low porosities observed in the micrographs correspond with densities above 90%. Magnetoelectric (ME) measurements confirmed a coupling between the ferroic orders of both phases with a hysteresis and maximum αME of 1.3 mV Oe-1 cm-1.

  10. First-principles study of defects and phase transition in UO(2).

    PubMed

    Yu, Jianguo; Devanathan, Ram; Weber, William J

    2009-10-28

    Defect properties and phase transition in UO(2) have been studied from first principles by the all-electron projector-augmented-wave (PAW) method. The generalized gradient approximation with empirical self-interaction correction, (GGA)+U, formalism has been used to account for the strong on-site Coulomb repulsion among the localized U 5f electrons. The Hubbard parameter U(eff), magnetic ordering, chemical potential and heat of formation have been systematically examined. By choosing an appropriate U(eff) = 3.0 eV it is possible to consistently describe structural properties of UO(2) and model the phase transition processes. The phase transition pressure for UO(2) is about 20 GPa, which is less than the experimental value of 42 GPa but better than the LDA+U value of 7.8 GPa. Meanwhile our results for the formation energies of intrinsic defects partly confirm earlier calculations for the intrinsic charge neutral defects but reveal large variations depending on the determination of the chemical potential and whether the environment is O-rich or U-rich. Moreover, the results for extrinsic defects of Xe, which are representative of mobile insoluble fission product in UO(2), are consistent with experimental data in which Xe prefers to be trapped by Schottky defects.

  11. Fermioni in astrofisica

    NASA Astrophysics Data System (ADS)

    Sigismondi, Costantino

    2006-06-01

    The role played by Fermions in Astrophysics is primary in Cosmology dealing with large-scale structure formation and in Relativistic Astrophysics, with white dwarfs and neutron stars. An introductory approach to Fermions in the expanding Universe is presented for didactic purposes. The phase space structure is sketched, and the distinction between weak gravitational field and strong gravitational field is made in order to make some evaluations about the Fermi energy of the systems.

  12. Convergent and divergent two-dimensional coordination networks formed through substrate-activated or quenched alkynyl ligation.

    PubMed

    Čechal, Jan; Kley, Christopher S; Kumagai, Takashi; Schramm, Frank; Ruben, Mario; Stepanow, Sebastian; Kern, Klaus

    2014-09-07

    Metal coordination assemblies of the symmetric bi-functional 4,4'-di-(1,4-buta-1,3-diynyl)-benzoic acid are investigated by scanning tunnelling microscopy on metal surfaces. The formation of long-range ordered, short-range disordered and random phases depends on the competition between the convergent and divergent coordination motifs of the individual functional groups and is crucially influenced by the substrate.

  13. The reaction mechanism of SnSb and Sb thin film anodes for Na-ion batteries studied by X-ray diffraction, 119Sn and 121Sb Mössbauer spectroscopies

    DOE PAGES

    Baggetto, Loïc; Hah, Hien-Yoong; Jumas, Jean-Claude; ...

    2014-06-01

    The electrochemical reaction of Sb and SnSb anode materials with Na results in the formation of amorphous materials. To understand the resulting phases and electrochemical capacities we studied the reaction products local order using 119Sn and 121Sb Mössbauer spectroscopies in conjunction with measurements performed on model powder compounds of Na-Sn and Na-Sb to further clarify the reactions steps. For pure Sb the discharge (sodiation) starts with the formation of an amorphous phase composed of atomic environments similar to those found in NaSb, and proceeds further by the formation of environments similar to that present in Na 3Sb. The reversible reactionmore » takes place during a large portion of the charge process. At full charge the anode material still contains a substantial fraction of Na, which explains the lack of recrystallization into crystalline Sb. The reaction of SnSb yields Na 3Sb crystalline phase at full discharge at higher temperatures (65 and 95°C) while the room temperature reaction yields amorphous compounds. The electrochemically-driven, solid-state amorphization reaction occurring at room temperature is governed by the simultaneous formation of Na-coordinated Sn and Sb environments, as monitored by the decrease (increase) of the 119Sn ( 121Sb) Mössbauer isomer shifts. Overall, the monitoring of the hyperfine parameters enables to correlate the changes in Na content to the individual Sn and Sb local chemical environments.« less

  14. Controllable phase transitions and novel selection rules in Josephson junctions with inherent orthogonality

    NASA Astrophysics Data System (ADS)

    Cheng, Qiang; Zhang, Kunhua; Ma, Hongyang

    2018-03-01

    We propose a new type of Josephson junction consisting of topologically nontrivial superconductors with inherent orthogonality and a ferromagnetic interface. It is found this type of junction can host rich ground states: 0 phase, π phase, 0 + π phase, φ0 phase and φ0 ± φ phase. Phase transitions can be controlled by changing the direction of the interfacial magnetization. Phase diagrams are presented in the orientation space. Novel selection rules for the lowest order current, sin ⁡ ϕ or cos ⁡ ϕ, of this kind of junction are derived. General conditions for the formation of various ground states are established, which possess guiding significance to the experimental design of required ground states for practical applications. We construct the succinct form of a Ginzburg-Landau type of free energy from the viewpoint of the interplay between topological superconductivity and ferromagnetism, which can immediately lead to the selection rules. The constructed terms are universally available to the topological Josephson junctions with or without inherent orthogonality reported recently. The spin supercurrent, its selection rules and their relations to the constructed energy are also investigated.

  15. Milestone in the NTB phase investigation and beyond: direct insight into molecular self-assembly.

    PubMed

    Ivšić, Trpimir; Vinković, Marijana; Baumeister, Ute; Mikleušević, Ana; Lesac, Andreja

    2014-12-14

    Although liquid-crystalline materials are most widely exploited for flat-panel displays, their ability to self-organize into periodically ordered nanostructures gives rise to a broad variety of additional applications. The recently discovered low-temperature nematic phase (N(TB)) with unusual characteristics generated considerable attention within the scientific community: despite the fact that the molecules from which the phase is composed are not chiral, the helicoidal structure of the phase is strongly implicated. Here we report on combined experimental, computational and spectroscopic studies of the structural aspects influencing formation of the N(TB) phase as well as on the molecular organization within the phase. In an extensive DFT study, the structure-property prerequisite was traced to a "bent-propeller" shape of the molecule. We also demonstrate the first utilization of liquid state NMR for direct analysis of intermolecular interactions within thermotropic liquid-crystalline phases, providing new insight into molecular packing that can lead towards design of novel chiral functional materials. The synergy of experimental, computational and NMR studies suggests a syn-parallel helical molecular organization within the N(TB) phase.

  16. Modeling of mechanical properties of II-VI materials

    NASA Technical Reports Server (NTRS)

    Sher, A.; Berding, M. A.; Van Schilfgaarde, M.; Chen, A.-B.; Patrick, R.

    1988-01-01

    This paper reviews some new developments in the theory of alloy correlations, order-disorder transitions, and solidus phase-transition curves. It is argued that semiconductor alloys are never truly random, and the various phenomena that drive deviations from random arrangements are introduced. Likely consequences of correlations on the ability to fine-tune the lattice match of epitaxial layers to substrates, on vacancy formation, on diffusion, and on vapor-phase crystal growth are discussed. Examples are chosen for the alloys Hg(1-x)Cd(x)Te, Hg(1-x)Zn(x)Te, Cd(1-y)Zn(y)Te, and CdSe(1-y)Te(y).

  17. Mechanisms of kinetic trapping in self-assembly and phase transformation

    PubMed Central

    Hagan, Michael F.; Elrad, Oren M.; Jack, Robert L.

    2011-01-01

    In self-assembly processes, kinetic trapping effects often hinder the formation of thermodynamically stable ordered states. In a model of viral capsid assembly and in the phase transformation of a lattice gas, we show how simulations in a self-assembling steady state can be used to identify two distinct mechanisms of kinetic trapping. We argue that one of these mechanisms can be adequately captured by kinetic rate equations, while the other involves a breakdown of theories that rely on cluster size as a reaction coordinate. We discuss how these observations might be useful in designing and optimising self-assembly reactions. PMID:21932884

  18. Non-Equilibrium Phenomena in High Power Beam Materials Processing

    NASA Astrophysics Data System (ADS)

    Tosto, Sebastiano

    2004-03-01

    The paper concerns some aspects of non-equilibrium materials processing with high power beams. Three examples show that the formation of metastable phases plays a crucial role to understand the effects of beam-matter interaction: (i) modeling of pulsed laser induced thermal sputtering; (ii) formation of metastable phases during solidification of the melt pool; (i) possibility of carrying out heat treatments by low power irradiation ``in situ''. The case (i) deals with surface evaporation and boiling processes in presence of superheating. A computer simulation model of thermal sputtering by vapor bubble nucleation in molten phase shows that non-equilibrium processing enables the rise of large surface temperature gradients in the boiling layer and the possibility of sub-surface temperature maximum. The case (ii) concerns the heterogeneous welding of Cu and AISI 304L stainless steel plates by electron beam irradiation. Microstructural investigation of the molten zone has shown that dwell times of the order of 10-1-10-3 s, consistent with moderate cooling rates in the range 10^3-10^5 K/s, entail the formation of metastable Cu-Fe phases. The case (iii) concerns electron beam welding and post-welding treatments of 2219 Al base alloy. Electron microscopy and positron annihilation have explained why post-weld heat transients induced by low power irradiation of specimens in the as welded condition enable ageing effects usually expected after some hours of treatment in furnace. The problem of microstructural instability is particularly significant for a correct design of components manufactured with high power beam technologies and subjected to severe acceptance standards to ensure advanced performances during service life.

  19. Microarray Analyses of Gene Expression during Adventitious Root Development in Pinus contorta1[w

    PubMed Central

    Brinker, Monika; van Zyl, Leonel; Liu, Wenbin; Craig, Deborah; Sederoff, Ronald R.; Clapham, David H.; von Arnold, Sara

    2004-01-01

    In order to investigate the gene expression pattern during adventitious root development, RNA of Pinus contorta hypocotyls, pulse-treated with the auxin indole-3-butyric acid and harvested at distinct developmental time points of root development, was hybridized to microarrays containing 2,178 cDNAs from Pinus taeda. Over the period of observation of root development, the transcript levels of 220 genes changed significantly. During the root initiation phase, genes involved in cell replication and cell wall weakening and a transcript encoding a PINHEAD/ZWILLE-like protein were up-regulated, while genes related to auxin transport, photosynthesis, and cell wall synthesis were down-regulated. In addition, there were changes in transcript abundance of genes related to water stress. During the root meristem formation phase the transcript abundances of genes involved in auxin transport, auxin responsive transcription, and cell wall synthesis, and of a gene encoding a B-box zinc finger-like protein, increased, while those encoding proteins involved in cell wall weakening decreased. Changes of transcript abundance of genes related to water stress during the root meristem formation and root formation phase indicate that the plant roots had become functional in water transport. Simultaneously, genes involved in auxin transport were up-regulated, while genes related to cell wall modification were down-regulated. Finally, during the root elongation phase down-regulation of transcripts encoding proteins involved in cell replication and stress occurred. Based on the observed changes in transcript abundances, we suggest hypotheses about the relative importance of various physiological processes during the auxin-induced development of roots in P. contorta. PMID:15247392

  20. Study of the physical properties of a mesogenic mixture showing induced smectic A(d) phase by refractive index, density and x-ray diffraction measurements.

    PubMed

    Roy, P D; Prasad, A; Das, M K

    2009-02-18

    The binary mixture of 4-n-pentyl phenyl 4-n'-hexyloxy benzoate (ME6O.5) and p-cyanophenyl trans-4-pentyl cyclohexane carboxylate (CPPCC) shows the presence of an induced smectic A(d) phase in a certain concentration range 0.030.33, whereas there is a discontinuity in these values for mixtures with x<0.33, consistent with the density and transition entropy measurements done on this system. The orientational order parameter, measured from x-ray diffraction studies, are somewhat smaller than those obtained from refractive index measurement in the induced smectic phase for all the mixtures. In the smectic phase, the OOP values initially increases with molar concentration up to x = 0.24 and then decreases showing a broad minima around x = 0.4. The variation of layer thickness in the induced smectic phase with composition has been explained by assuming the formation of homo- and heterodimers. We conclude that the possible packing of molecules in the induced smectic A(d) phase stabilizes the layers but increases the orientational free volume, consistent with the lower orientational order parameter.

  1. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide Nanotube Arrays Prepared by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yijun; Liu, Ming; Peng, Bin; Zhou, Ziyao; Chen, Xing; Yang, Shu-Ming; Jiang, Zhuang-De; Zhang, Jie; Ren, Wei; Ye, Zuo-Guang

    2016-01-01

    Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe2O3 and superparamagnetic Fe3O4 with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe2O3 in a reducing atmosphere leads to the formation of the spinel Fe3O4 phase which displays a distinct ferrimagnetic anisotropy and the Verwey metal-insulator transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. The ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications.

  2. Chromatic patchy particles: Effects of specific interactions on liquid structure

    DOE PAGES

    Vasilyev, Oleg A.; Tkachenko, Alexei V.; Klumov, Boris A.

    2015-07-13

    We study the structural and thermodynamic properties of patchy particle liquids, with a special focus on the role of “color,” i.e., specific interactions between individual patches. A possible experimental realization of such “chromatic” interactions is by decorating the particle patches with single-stranded DNA linkers. The complementarity of the linkers can promote selective bond formation between predetermined pairs of patches. By using MD simulations, we compare the local connectivity, the bond orientation order, and other structural properties of the aggregates formed by the “colored” and “colorless” systems. The analysis is done for spherical particles with two different patch arrangements (tetrahedral andmore » cubic). It is found that the aggregated (liquid) phase of the “colorless” patchy particles is better connected, denser and typically has stronger local order than the corresponding “colored” one. This, in turn, makes the colored liquid less stable thermodynamically. Specifically, we predict that in a typical case the chromatic interactions should increase the relative stability of the crystalline phase with respect to the disordered liquid, thus expanding its region in the phase diagram.« less

  3. Nanoparticle guests in lyotropic liquid crystals

    NASA Astrophysics Data System (ADS)

    Dölle, Sarah; Park, Ji Hyun; Schymura, Stefan; Jo, Hyeran; Scalia, Giusy; Lagerwall, Jan P. F.

    In this chapter we discuss the benefits, peculiarities and main challenges related to nanoparticle templating in lyotropic liquid crystals. We first give a brief bird's-eye view of the field, discussing different nanoparticles as well as different lyotropic hosts that have been explored, but then quickly focus on the dispersion of carbon nanotubes in surfactant-based lyotropic nematic phases. We discuss in some detail how the transfer of orientational order from liquid crystal host to nanoparticle guest can be verified and which degree of ordering can be expected, as well as the importance of choosing the right surfactant and its concentration for the stability of the nanoparticle suspension. We introduce a method for dispersing nanoparticles with an absolute minimum of stabilizing surfactant, based on dispersion below the Krafft temperature, and we discuss the peculiar phenomenon of filament formation in lyotropic nematic phases with a sufficient concentration of well-dispersed carbon nanotubes. Finally, we describe how the total surfactant concentration in micellar nematics can be greatly reduced by combining cat- and anionic surfactants, and we discuss how nanotubes can help in inducing the liquid crystal phase close to the isotropic-nematic boundary.

  4. THE CHEMISTRY OF TRIBUTYL PHOSPHATE: A REVIEW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, L.L.

    1955-10-27

    The preparation, purification, and chemical properties of THP have been reviewed with emphasis on the hydrolytic reactions. TBP is chemically a very stable compound as evidenced by its thermal stability and resistance to oxidation. The most important reactions are hydrolytic which cleave the butyl or butoxy group and normally produce butyl alcohol together with dibutyl and monobutyl phosphate (DBP and MBP, respectively), and eventually H/sub 3/PO/sub 4/. Hydrolysis occurs in either the organic phase or the aqueous phase and is first order with respect to the ester. Although the rate in the aqueous phase is much faster than in themore » organic phase, the solubility is so low in aqueous solutions that the organic phase reactions become more important. Acid hydrolysis depends on both the nature of the acid and the concentration. The order with respect to acid concentration is close to one but often less than one. Hydrolysis is catalyzed by both acids and bases. In the latter case, the reaction occurs only in the aqueous phase and normally stops with the formation of dibutyl phosphate. The hydrolysis rate increases greatly as the temperature is raised and an activation energy of the order of 20 kcal is often found. The rates observed in the presence of 5 M acid at 60 and 70 deg C may be high enough to cause some concern in solvent extraction technology, since the product, dibutyl phosphate, has undesirable properties. Impurities produced during manufacture or by thermal degradation during purification such as the pyrophosphates, if present, would yield the same objectionable products as TBP hydrolysis, but at a faster rate. Included in the survey is a selected tabulation of physical properties of TBP. (auth)« less

  5. Magnetostructural phase transitions and magnetocaloric effect in (Gd 5-xSc x)Si 1.8Ge 2.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudolph, Kirk; Pathak, Arjun K.; Mudryk, Yaroslav

    Future advancements in magnetocaloric refrigeration/heat pumping technologies depend on the discovery of new materials that demonstrate large, tunable magnetocaloric effects (MCEs) in the vicinity of coupled magnetic and structural phase transitions that occur reversibly with minimum hysteresis. Here, with this in mind, we investigate phase transitions, microstructure, magnetic, thermal, magnetocaloric, and transport properties of (Gd 5-xSc x)Si 1.8Ge 2.2 compounds. Replacement of magnetic Gd with non-magnetic Sc in Gd 5-xSc xSi 1.8Ge 2.2 increases the ferromagnetic to paramagnetic first order phase transition temperature, T C, with only a minor reduction in MCE when x ≤ 0.2. We also demonstrate thatmore » hydrostatic pressure further increases T C and reduces the hysteresis of the first order phase transition in Gd 4.8Sc 0.2Si 1.8Ge 2.2 from 7 to 4 K. Temperature-dependent x-ray powder diffraction study of Gd 4.8Sc 0.2Si 1.8Ge 2.2 confirms the monoclinic ↔ orthorhombic structural transformation at T C, in agreement with magnetic, calorimetric, and electrical transport measurements. In addition to the substantial magnetocaloric effect, a large magnetoresistance of ~20% is also observed in Gd 4.8Sc 0.2Si 1.8Ge 2.2 for ΔH = 50 kOe in the vicinity of the magnetostructural transition. Finally, in a drastic reversal of the initial doping behavior further additions of Sc (x > 0.2) suppress formation of the monoclinic phase, change the nature of the transition from first-to second-order, and reduce both the transition temperature and magnetocaloric effect.« less

  6. Magnetostructural phase transitions and magnetocaloric effect in (Gd 5-xSc x)Si 1.8Ge 2.2

    DOE PAGES

    Rudolph, Kirk; Pathak, Arjun K.; Mudryk, Yaroslav; ...

    2017-12-21

    Future advancements in magnetocaloric refrigeration/heat pumping technologies depend on the discovery of new materials that demonstrate large, tunable magnetocaloric effects (MCEs) in the vicinity of coupled magnetic and structural phase transitions that occur reversibly with minimum hysteresis. Here, with this in mind, we investigate phase transitions, microstructure, magnetic, thermal, magnetocaloric, and transport properties of (Gd 5-xSc x)Si 1.8Ge 2.2 compounds. Replacement of magnetic Gd with non-magnetic Sc in Gd 5-xSc xSi 1.8Ge 2.2 increases the ferromagnetic to paramagnetic first order phase transition temperature, T C, with only a minor reduction in MCE when x ≤ 0.2. We also demonstrate thatmore » hydrostatic pressure further increases T C and reduces the hysteresis of the first order phase transition in Gd 4.8Sc 0.2Si 1.8Ge 2.2 from 7 to 4 K. Temperature-dependent x-ray powder diffraction study of Gd 4.8Sc 0.2Si 1.8Ge 2.2 confirms the monoclinic ↔ orthorhombic structural transformation at T C, in agreement with magnetic, calorimetric, and electrical transport measurements. In addition to the substantial magnetocaloric effect, a large magnetoresistance of ~20% is also observed in Gd 4.8Sc 0.2Si 1.8Ge 2.2 for ΔH = 50 kOe in the vicinity of the magnetostructural transition. Finally, in a drastic reversal of the initial doping behavior further additions of Sc (x > 0.2) suppress formation of the monoclinic phase, change the nature of the transition from first-to second-order, and reduce both the transition temperature and magnetocaloric effect.« less

  7. Nanostructured Crystals of Fluorite Phases Sr1 - x R x F2 + x and Their Ordering: 12. Influence of Structural Ordering on the Fluorine-Ion Conductivity of Sr0.667 R 0.333F2.333 Alloys ( R = Tb or Tm) at Their Annealing

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.; Karimov, D. N.; Sul'yanova, E. A.; Sobolev, B. P.

    2018-01-01

    The ionic conductivity of Sr0.667 R 0.333F2.333 alloys (rational Sr2 RF7 compositions) in SrF2- RF3 systems ( R = Tb or Tm), prepared by spontaneous crystallization, has been investigated for the "as-grown" state and after annealing in CF4 at 900 ± 20°C for 96 h. As-grown samples of both compositions, prepared by fast (200°C/min) melt crystallization, exhibit partial (nonequilibrium) ordering, which increases from Tb to Tm. Annealing of Sr0.667 R 0.333F2.333 alloys yields strong ordering (equilibrium for the annealing temperatures) of the fluorite structure (CaF2 type, sp. gr. Fm3̅ m, Z = 4) at the formation of t-Sr2 RF7 tetragonal compound (sp. gr. I4/ m, Z = 30). It is established that ordering of the alloy fluorite structure reduces the fluorine-ion conductivity. After the annealing, the conductivity of Sr0.667R0.333F2.333 alloys with the initial (nonequilibrium) ordering stage of t-Sr2 RF7 phases with almost complete (equilibrium) ordering decreases by a factor of 3-4.5.

  8. The formation of urea in space. I. Ion-molecule, neutral-neutral, and radical gas-phase reactions

    NASA Astrophysics Data System (ADS)

    Brigiano, Flavio Siro; Jeanvoine, Yannick; Largo, Antonio; Spezia, Riccardo

    2018-02-01

    Context. Many organic molecules have been observed in the interstellar medium thanks to advances in radioastronomy, and very recently the presence of urea was also suggested. While those molecules were observed, it is not clear what the mechanisms responsible to their formation are. In fact, if gas-phase reactions are responsible, they should occur through barrierless mechanisms (or with very low barriers). In the past, mechanisms for the formation of different organic molecules were studied, providing only in a few cases energetic conditions favorable to a synthesis at very low temperature. A particularly intriguing class of such molecules are those containing one N-C-O peptide bond, which could be a building block for the formation of biological molecules. Urea is a particular case because two nitrogen atoms are linked to the C-O moiety. Thus, motivated also by the recent tentative observation of urea, we have considered the synthetic pathways responsible to its formation. Aims: We have studied the possibility of forming urea in the gas phase via different kinds of bi-molecular reactions: ion-molecule, neutral, and radical. In particular we have focused on the activation energy of these reactions in order to find possible reactants that could be responsible for to barrierless (or very low energy) pathways. Methods: We have used very accurate, highly correlated quantum chemistry calculations to locate and characterize the reaction pathways in terms of minima and transition states connecting reactants to products. Results: Most of the reactions considered have an activation energy that is too high; but the ion-molecule reaction between NH2OHNH2OH2+ and formamide is not too high. These reactants could be responsible not only for the formation of urea but also of isocyanic acid, which is an organic molecule also observed in the interstellar medium.

  9. The structural and magnetic phase transitions in Ca 0.73La 0.27FeAs 2 with electron overdoped FeAs layers.

    DOE PAGES

    Jiang, Shan; Liu, Chang; Cao, H.; ...

    2016-02-26

    Here we report a study of the Ca 0.73La 0.27FeAs 2 single crystals. We unravel a monoclinic to triclinic phase transition at 58 K, and a paramagnetic to stripe antiferromagnetic (AFM) phase transition at 54 K, below which spins order 45° away from the stripe direction. Furthermore, we demonstrate this material is substantially structurally untwinned at ambient pressure with the formation of spin rotation walls (S-walls). Finally, in addition to the central-hole and corner-electron Fermi pockets usually appearing in FPS, angle-resolved photoemission (ARPES) measurements resolve a Fermiology where an extra electron pocket of mainly As chain character exists at themore » Brillouin zone edge.« less

  10. Low-symmetry sphere packings of simple surfactant micelles induced by ionic sphericity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sung A.; Jeong, Kyeong-Jun; Yethiraj, Arun

    We report the discovery of an ionic small molecule surfactant that undergoes water-drive self- assembly into quasispherical micelles, which pack into the first lyotropic liquid crystalline Frank–Kasper σ phase. Small-angle X-ray scattering studies indicate that this unexpected, low-symmetry phase is characterized by a tetragonal unit cell, in which 30 sub-2 nm micelles of five discrete types are arranged into a tetrahedral close packing with exceptional translational order. Varying the relative amounts of surfactant and water in these lyotropic phases enables formation of a Frank–Kasper A15 sphere packing and a more common body-centered cubic structure. MD simulations reveal that the symmetrymore » breaking that drives the selection of the σ and A15 phases arises from a delicate interplay between the drive to maintain local spherical particle symmetry and the maximization of electrostatic cohesion between the soft micellar particles.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parlinski, K.; Hashi, Y.; Tsunekawa, S.

    A model of lanthanum orthoniobate which possesses a ferroelastic tetragonal-monoclinic phase transition is proposed. It contains only one particle per unit cell, but it is constructed consistently with symmetry changes at the phase transition. The model parameters are chosen to reproduce the bare soft mode, degree of deformation of the tetragonal unit cell to monoclinic one, and the phase transition temperature. The ferroelastic system with free boundary conditions was simulated by the molecular dynamics technique, and the second order phase transition was reproduced. The studied annealing process shows formation of the stripe lenticular domain pattern, which has been interrupted bymore » appearance of a temporary band of perpendicularly oriented lenticular domains. The maps contain W{sup {prime}}-type domain walls whose orientations are fixed only by interplay of potential parameters and not by symmetry elements. The simulated domain pattern has the same features as those observed by transmission electron microscopy. {copyright} {ital 1997 Materials Research Society.}« less

  12. Closed-Loop Control of Vortex Formation in Separated Flows

    NASA Technical Reports Server (NTRS)

    Colonius, Tim; Joe, Won Tae; MacMynowski, Doug; Rowley, Clancy; Taira, Sam; Ahuja, Sunil

    2010-01-01

    In order to phase lock the flow at the desired shedding cycle, particularly at Phi,best, We designed a feedback compensator. (Even though the open-loop forcing at Wf below Wn can lead to phase-locked limit cycles with a high average lift,) This feedback controller resulted in the phase-locked limit cycles that the open-loop control could not achieve for alpha=30 and 40 Particularly for alpha=40, the feedback was able to stabilize the limit cycle that was not stable with any of the open-loop periodic forcing. This results in stable phase-locked limit cycles for a larger range of forcing frequencies than the open-loop control. Also, it was shown that the feedback achieved the high-lift unsteady flow states that open-loop control could not sustain even after the states have been achieved for a long period of time.

  13. Ferromagnetic quantum critical point in the heavy-fermion metal YbNi4(P(1-x)As(x))2.

    PubMed

    Steppke, Alexander; Küchler, Robert; Lausberg, Stefan; Lengyel, Edit; Steinke, Lucia; Borth, Robert; Lühmann, Thomas; Krellner, Cornelius; Nicklas, Michael; Geibel, Christoph; Steglich, Frank; Brando, Manuel

    2013-02-22

    Unconventional superconductivity and other previously unknown phases of matter exist in the vicinity of a quantum critical point (QCP): a continuous phase change of matter at absolute zero. Intensive theoretical and experimental investigations on itinerant systems have shown that metallic ferromagnets tend to develop via either a first-order phase transition or through the formation of intermediate superconducting or inhomogeneous magnetic phases. Here, through precision low-temperature measurements, we show that the Grüneisen ratio of the heavy fermion metallic ferromagnet YbNi(4)(P(0.92)As(0.08))(2) diverges upon cooling to T = 0, indicating a ferromagnetic QCP. Our observation that this kind of instability, which is forbidden in d-electron metals, occurs in a heavy fermion system will have a large impact on the studies of quantum critical materials.

  14. Low-symmetry sphere packings of simple surfactant micelles induced by ionic sphericity

    DOE PAGES

    Kim, Sung A.; Jeong, Kyeong-Jun; Yethiraj, Arun; ...

    2017-04-03

    We report the discovery of an ionic small molecule surfactant that undergoes water-drive self- assembly into quasispherical micelles, which pack into the first lyotropic liquid crystalline Frank–Kasper σ phase. Small-angle X-ray scattering studies indicate that this unexpected, low-symmetry phase is characterized by a tetragonal unit cell, in which 30 sub-2 nm micelles of five discrete types are arranged into a tetrahedral close packing with exceptional translational order. Varying the relative amounts of surfactant and water in these lyotropic phases enables formation of a Frank–Kasper A15 sphere packing and a more common body-centered cubic structure. MD simulations reveal that the symmetrymore » breaking that drives the selection of the σ and A15 phases arises from a delicate interplay between the drive to maintain local spherical particle symmetry and the maximization of electrostatic cohesion between the soft micellar particles.« less

  15. Flexibility transition and guest-driven reconstruction in a ferroelastic metal-organic framework†Electronic supplementary information (ESI) available: Atomic coordinates and lattice parameter data. CCDC 1016797. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4ce01572jClick here for additional data file.

    PubMed

    Hunt, Sarah J; Cliffe, Matthew J; Hill, Joshua A; Cairns, Andrew B; Funnell, Nicholas P; Goodwin, Andrew L

    2015-01-14

    The metal-organic framework copper(i) tricyanomethanide, Cu(tcm), undergoes a ferroelastic transition on cooling below T f = 240 K. Thermal expansion measurements reveal an order-of-magnitude variation in framework flexibility across T f . The low-temperature phase α-Cu(tcm) exhibits colossal positive and negative thermal expansion that is the strongest ever reported for a framework material. On exposure to acetonitrile, Cu(tcm) undergoes a reconstructive solid-phase transition to acetonitrilocopper(i) tricyanomethanide. This transition can be reversed by heating under vacuum. Infrared spectroscopy measurements are sensitive to the phase change, suggesting that Cu(tcm) may find application in solid-phase acetonitrile sensing.

  16. Investigating Weathering of Basaltic Materials in Gale Crater, Mars: A Combined Laboratory, Modeling and Terrestrial Field Approach

    NASA Technical Reports Server (NTRS)

    Hausrath, Elisabeth; Ralston, Stephanie J.; Bamisile, Toluwalope; Ming, Douglas; Peretyazhko, Tanya; Rampe, Elizabeth; Gainey, Seth

    2017-01-01

    Recent observations from Gale Crater, Mars document past aqueous alteration both in the formation of the Stimson sandstone unit, as well as in the formation of altered fractures within that unit. Geochemical and mineralogical data from Curiosity also suggest Fe-rich amorphous weathering products are present in most samples measured to date. Here we interpret conditions of possible past weathering in Gale Crater using a combination of field, laboratory, and modeling work. In order to better understand secondary Fe-rich phases on Mars, we are examining formation of weathering products in high Fe and Mg and low Al serpentine soils in the Klamath Mountains, CA. We have isolated potential weathering products from these soils, and are analyzing them using synchrotron µXRF and µXRD as well as FullPat for a direct comparison to analyses from Gale Crater. In order to interpret the implications of the persistence of potential secondary Fe-containing phases on Mars, we are also measuring the dissolution rates of the secondary weathering products allophane, Fe-rich allophane, and hisingerite. Ongoing dissolution experiments of these materials suggest that they dissolve significantly more rapidly than more crystalline secondary minerals with similar chemical compositions. Finally, to quantify the specific conditions of past aqueous alteration in Gale Crater we are performing reactive transport modeling of a range of possible past environmental conditions. Specifically, we are testing the conditions under which a Stimson unit-like material forms from a parent material similar to Rocknest or Bagnold eolian deposits, and the conditions under which observed altered fracture zones form from a Stimson unit-like parent material. Our modeling results indicate that the formation of the Stimson unit is consistent with leaching of an eolian deposit with a solution of pH = 6-8, and that formation of the altered fracture zones is consistent with leaching with a very acidic (pH = 2-3) high sulfate solution containing Ca. These results suggest circumneutral pH conditions during authigenesis or early diagenesis in the Stimson formation sediments followed by diagenetic alteration by very acidic solutions along fracture zones.

  17. Stable silicon isotope signatures of marine pore waters - Biogenic opal dissolution versus authigenic clay mineral formation

    NASA Astrophysics Data System (ADS)

    Ehlert, Claudia; Doering, Kristin; Wallmann, Klaus; Scholz, Florian; Sommer, Stefan; Grasse, Patricia; Geilert, Sonja; Frank, Martin

    2016-10-01

    Dissolved silicon isotope compositions have been analysed for the first time in pore waters (δ30SiPW) of three short sediment cores from the Peruvian margin upwelling region with distinctly different biogenic opal content in order to investigate silicon isotope fractionation behaviour during early diagenetic turnover of biogenic opal in marine sediments. The δ30SiPW varies between +1.1‰ and +1.9‰ with the highest values occurring in the uppermost part close to the sediment-water interface. These values are of the same order or higher than the δ30Si of the biogenic opal extracted from the same sediments (+0.3‰ to +1.2‰) and of the overlying bottom waters (+1.1‰ to +1.5‰). Together with dissolved silicic acid concentrations well below biogenic opal saturation, our collective observations are consistent with the formation of authigenic alumino-silicates from the dissolving biogenic opal. Using a numerical transport-reaction model we find that approximately 24% of the dissolving biogenic opal is re-precipitated in the sediments in the form of these authigenic phases at a relatively low precipitation rate of 56 μmol Si cm-2 yr-1. The fractionation factor between the precipitates and the pore waters is estimated at -2.0‰. Dissolved and solid cation concentrations further indicate that off Peru, where biogenic opal concentrations in the sediments are high, the availability of reactive terrigenous material is the limiting factor for the formation of authigenic alumino-silicate phases.

  18. Formation of the racemic compound of ephedrine base from a physical mixture of its enantiomers in the solid, liquid, solution, or vapor state.

    PubMed

    Duddu, S P; Grant, D J

    1992-08-01

    Physical mixtures (conglomerates) of the two enantiomers of ephedrine base, each containing 0.5% (w/w) of water, were observed to be converted to the 1:1 racemic compound in the solid, liquid, solution, or vapor state. From a geometrically mixed racemic conglomerate of particle size 250-300 microns (50-60 mesh), the formation of the racemic compound follows second-order kinetics (first order with respect to each enantiomer), with a rate constant of 392 mol-1 hr-1 at 22 degrees C. The reaction appears to proceed via the vapor phase as indicated by the growth of the crystals of the racemic compound between diametrically separated crystals of the two enantiomers in a glass petri dish. The observed kinetics of conversion in the solid state are explained by a homogeneous reaction model via the vapor and/or liquid states. Formation of the racemic compound from the crystals of ephedrine enantiomers in the solution state may explain why Schmidt et al. (Pharm. Res. 5:391-395, 1988) observed a consistently lower aqueous solubility of the mixture than of the pure enantiomers. The solid phase in equilibrium with the solution at the end of the experiment was found to be the racemic compound, whose melting point and heat of fusion are higher than those of the enantiomers. An association reaction, of measurable rate, between the opposite enantiomers in a binary mixture in the solid, liquid, solution, or vapor state to form the racemic compound may be more common than is generally realized.

  19. Formation and High-order Carboxylic Acids (RCOOH) in Interstellar Analogous Ices of Carbon Dioxide (CO2) and Methane(CH4)

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng; Turner, Andrew M.; Abplanalp, Matthew J.; Kaiser, Ralf I.

    2018-01-01

    This laboratory study simulated the abiotic formation of carboxylic acids (RCOOH) in interstellar analogous ices of carbon dioxide (CO2) and methane (CH4) at 10 K upon exposure to energetic electrons. The chemical processing of the ices and the subsequent warm-up phase were monitored online and in situ, exploiting Fourier Transform Infrared Spectrometry and quadrupole mass spectrometry. Characteristic absorptions of functional groups of carboxylic acids (RCOOH) were observed in the infrared spectra of the irradiated ice. Two proposed reaction mechanisms replicated the kinetic profiles of the carboxylic acids along with the decay profile of the precursors during the irradiation via hydrocarbon formation, followed by carboxylation and/or through acetic acid along with mass growth processes of the alkyl chain. Mass spectra recorded during the warm-up phase demonstrated that these acids are distributed from acetic acid (CH3COOH) up to decanoic acid (C9H19COOH). High-dose irradiation studies (91 ± 14 eV) converted low-molecular-weight acids such as acetic acid (CH3COOH) and propionic acid (C2H5COOH) to higher-molecular-weight carboxylic acids, compared to low-dose irradiation studies (18 ± 3 eV). The traces of the {{{H}}}2{{C}}= {{C}}({OH}{)}2+ (m/z = 60) fragment—a link to linear carboxylic acids—implied that higher-order acids (C n H2n+1COOH, n ≥ 5) are likely branched, which correlates with the recent analysis of the structures of the monocarboxylic acids in the Murchison meteorite.

  20. Evolution of the Solar Nebula. II. Thermal Structure during Nebula Formation

    NASA Astrophysics Data System (ADS)

    Boss, Alan P.

    1993-11-01

    Models of the thermal structure of protoplanetary disks are required for understanding the physics and chemistry of the earliest phases of planet formation. Numerical hydrodynamical models of the protostellar collapse phase have not been evolved far enough in time to be relevant to planet formation, i.e., to a relatively low-mass disk surrounding a protostar. One simplification is to assume a pre-existing solar-mass protostar, and calculate the structure of just the disk as it forms from the highest angular momentum vestiges of the placental cloud core. A spatially second-order accurate, axisymmetric (two-dimensional), radiative hydrodynamics code has been used to construct three sets of protoplanetary disk models under this assumption. Because compressional heating has been included, but not viscous or other heating sources, the model temperatures obtained should be considered lower bounds. The first set started from a spherically symmetric configuration appropriate for freely falling gas: ρ ∝ r-3/2, υr ∝ r-1/2, but with rotation (Ω ∝ r-1, where r is the spherical coordinate radius). These first models turned out to be unsatisfactory because in order to achieve an acceptable mass accretion rate onto the protostar (Mṡ ≤ 10-5 Msun yr-1 for low-mass star formation), the disk mass became much too small (˜ 0.0002 Msun). The second set improved on the first set by ensuring that the late-arriving, high angular momentum gas did not accrete directly onto the protosun. By starting from a disklike cloud flattened about the equatorial plane and flowing vertically toward the midplane, these models led to Mṡ → 0, as desired. However, because the initial cloud was not chosen to be close to equilibrium, the disk rapidly contracted vertically, producing an effective disk mass accretion rate Mṡd ˜ 10-2 Msun yr-1, again too high. Hence, the third (and most realistic) set started from an approximate equilibrium state for an adiabatic, self-gravitating "fat" Keplerian disk, with surface density σ ∝ r-1/2, surrounded by a much lower density "halo" infalling onto the disk. This initial condition produced Mṡs → 0 and Mṡd ˜ 10-6 to 10-5 Msun yr-1, as desired. The resulting nebula temperature distributions show that midplane temperatures of at least 1000 K inside 2.5 AU, falling to around 100 K outside 5 AU, are to be expected during the formation phase of a minimum mass nebula containing ˜0.02 Msun within 10 AU. This steady state temperature distribution appears to be consistent with cosmochemical evidence which has been interpreted as implying a phase of relatively high temperatures in the inner nebula. The temperature distribution also implies that the nebula would be cool enough outside 5 AU to allow ices to accumulate into planetesimals even at this relatively early phase of nebula evolution.

  1. Investigating the Relative Contributions of Secondary Ice Formation Processes to Ice Crystal Number Concentrations Within Mixed-Phase Clouds

    NASA Astrophysics Data System (ADS)

    Sullivan, S.; Nenes, A.

    2015-12-01

    Measurements of the in-cloud ice nuclei concentration can be three or four orders of magnitude less than those of the in-cloud ice crystal number concentration. Different secondary formation processes, active after initial ice nucleation, have been proposed to explain this discrepancy, but their relative importance, and even the exact physics of each mechanism, are still unclear. We construct a simple bin microphysics model (2IM) including depositional growth, the Hallett-Mossop process, ice-ice collisions, and ice-ice aggregation, with temperature- and supersaturation-dependent efficiencies for each process. 2IM extends the time-lag collision model of Yano and Phillips to additional bins and incorporates the aspect ratio evolution of Jensen and Harrington. Model output and measured ice crystal size distributions are compared to answer three questions: (1) how important is ice-ice aggregation relative to ice-ice collision around -15°C, where the Hallett-Mossop process is no longer active; (2) what process efficiencies lead to the best reproduction of observed ice crystal size distributions; and (3) does ice crystal aspect ratio affect the dominant secondary formation process. The resulting parameterization is intended for eventual use in larger-scale mixed-phase cloud schemes.

  2. Lipid domains in zwitterionic-anionic lipid mixtures induced by combined effect of monovalent and divalent ions

    NASA Astrophysics Data System (ADS)

    Xu, Hongcheng; Ganesan, Sai; Matysiak, Silvina

    Lipid domain formation is an important process for many cellular processes. In experiment, the effects of Ba2+, Sr2+, Ca2+ and Mg2+ in inducing lateral phase separation in the binary phosphatidylcholine-phosphatidylserine (PC-PS) bilayer are quite different, of which the molecular mechanism remains to be understood. We have explored the effect of monovalent (MI) and divalent (MII) cationic radii on lipid domain formation in mixed zwitterionic-anionic lipid bilayers. We propose a mechanism for the formation of divalent-cation-induced lipid domains based on MD simulations with our Water-Explicit Polarizable MEMbrane (WEPMEM) coarse-grained model, which uses PC as the model for zwitterionic and PS for anionic lipids. Lipid aggregation only occurs with limited range of monovalent and divalent ion sizes in agreement with experimental observations. More ordering and closer packing of the lipids are noted within the domains, which correlate with bilayer thickness, curvature and lipid asymmetry. The results of the simulations reveal that the lipid domain consists of MII-mediated anionic lipid dimer/trimer complexes bridged by monovalent ions MI and provide a stereochemical insight in understanding the experimentally observed calcium-induced phase separation.

  3. Detection of Secondary Phases in UNS S32760 Superduplex Stainless Steel by Destructive and Non-destructive Techniques

    NASA Astrophysics Data System (ADS)

    Argandona, G.; Biezma, M. V.; Berrueta, J. M.; Berlanga, C.; Ruiz, A.

    2016-12-01

    Duplex stainless steels (DSS), with a microstructure of an approximately equal mixture of ferrite ( α) and austenite ( γ) phases, are susceptible to the formation of undesirable phases if manufacturing processes are not carefully controlled. In particular, sigma phase (σ) is a Cr- and Mo-rich intermetallic phase, formed generally when DSS are by the temperature range from 600 to 900 °C, even for very short time periods. The precipitation of this phase induces detrimental effects in mechanical and corrosion resistance properties in the material, and even a low volume percentage of σ phase can significantly affect these properties. The current paper presents the effect of thermal treatments on UNS S32760 superduplex stainless steel seamless tubes, applied in order to promote the precipitation of different σ phase percentages in a ferrite/austenite microstructure. The detection and quantification of the σ phase using non-destructive ultrasounds testing has been one of the most relevant events of this study that contributes to improving the correlation of the results obtained using destructive and non-destructive techniques for the quantification of undesirable phases in superduplex seamless tubes during the manufacturing process.

  4. Complex Fluids at Interfaces and Interfaces of Complex Fluids

    NASA Astrophysics Data System (ADS)

    Nouri, Mariam

    The present thesis deals with two independent projects and is consequently divided into two parts. The first part details a computational study of the fluid structure of ring-shaped molecules and their positional and orientational molecular organizations in different degrees of confinement, while the second part concerns an experimental study of phase behavior and interfacial phenomena in confined colloid-polymer systems. In the first part, ring-shaped molecules are studied using Monte Carlo simulation techniques in one, two and three dimensions. The model used to describe ring-shaped molecules is composed of hard-spheres linked together to form planar rigid rings. For rings of various sizes and for a wide range of densities, positional and orientational orderings are reported in forms of pair distribution functions of the ring centers and correlation functions of the ring normal orientations. Special emphasis is given to understand structural formation at interfaces, i.e., the structure and orderings of these molecules when they are confined to two dimensions. In a plane but the rings themselves are free to rotate around all axes, nematic ordering is observed at sufficiently high densities. In the second part, phase equilibria of confined aqueous colloid-polymer systems are studied experimentally using fluorescence microscopy. Aqueous mixtures of fluorescent polystyrene spheres and polyacrylamide are confined between a glass slide and a coverslip. The phase diagram is determined as a function of the colloidal and polymer concentrations. Liquid-liquid phase coexistence between a colloid-rich phase and a polymer-rich phase occurs at intermediate polymer concentrations, while liquid-solid phase coexistence between a polymer-rich liquid and a colloid-rich solid is observed at high polymer concentrations. Interfacial thickness and tension of the interface between these coexisting phases are measured using image analysis techniques. It is also observed that the colloid-rich solid and liquid domains coarsen mainly by Ostwald ripening.

  5. Charge density waves in disordered media circumventing the Imry-Ma argument

    DOE PAGES

    Changlani, Hitesh J.; Tubman, Norm M.; Hughes, Taylor L.

    2016-08-24

    Two powerful theoretical predictions, Anderson localization and the Imry-Ma argument, impose significant restrictions on the phases of matter that can exist in the presence of even the smallest amount of disorder in one-dimensional systems. These predictions forbid electrically conducting states and ordered states respectively. It was thus remarkable that a mechanism to circumvent Anderson localization relying on the presence of correlated disorder was found, that is also realized in certain biomolecular systems. Here, in a similar manner, we show that the Imry-Ma argument can be circumvented, resulting in the formation of stable ordered states with discrete broken symmetries in disorderedmore » one dimensional systems. We then investigate other mechanisms by which disorder can destroy an ordered state.« less

  6. Charge density waves in disordered media circumventing the Imry-Ma argument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Changlani, Hitesh J.; Tubman, Norm M.; Hughes, Taylor L.

    Two powerful theoretical predictions, Anderson localization and the Imry-Ma argument, impose significant restrictions on the phases of matter that can exist in the presence of even the smallest amount of disorder in one-dimensional systems. These predictions forbid electrically conducting states and ordered states respectively. It was thus remarkable that a mechanism to circumvent Anderson localization relying on the presence of correlated disorder was found, that is also realized in certain biomolecular systems. Here, in a similar manner, we show that the Imry-Ma argument can be circumvented, resulting in the formation of stable ordered states with discrete broken symmetries in disorderedmore » one dimensional systems. We then investigate other mechanisms by which disorder can destroy an ordered state.« less

  7. CHRONOLOGICAL CONSTRAINTS ON FLUID CIRCULATION IN MESOZOIC FORMATIONS OF THE EASTERN PART OF THE PARIS BASIN INFERRED FROM U-Pb DATING OF SECONDARY INFILLING CARBONATES

    NASA Astrophysics Data System (ADS)

    Pisapia, C.; Deschamps, P.; Hamelin, B.; Buschaert, S.

    2009-12-01

    The French agency for nuclear waste management (ANDRA) developed an Underground Research Laboratory in the Mesozoic formations of Eastern part of the Paris Basin (France) to assess the feasibility of a high-level radioactive wastes repository in sedimentary formations. The target host formation is a low-porosity detrital argillite (Callovo-Oxfordian) embedded between two shelf limestones formations (of Bajocian-Bathonian and Oxfordian-Kimmeridgian ages). These formations are affected by fracture networks, likely inherited mainly from the Eocene-Oligocene extension tectonics, also responsible of the Rhine graben formation in the same region. The limestones have very low permeability, the primary and secondary porosity being infilled by secondary carbonated minerals. The inter-particle porosity is filled with euhedral calcite spar cements. Similarly, macro-cavities and connected micro-fractures are almost sealed by euhedral calcite. Geochemical evidences (δ18O) suggest that the secondary carbonates likely derived from a common parent fluid (Buschaert et al., 2004, Appl. Geochem. (19) 1201-1215p). This late carbonated precipitation phase is responsible for the intense cementation of the limestone formations and bears witness of a major phase of fluids circulation that marked the late diagenetic evolution of the system. Knowledge of the chronology of the different precipitation phases of secondary minerals is thus of critical importance in order to determine the past hydrological conditions of the geological site. The aim of this study is to provide chronological constraints on the secondary carbonate mineral precipitation using U/Th and U/Pb methods. Analyses are performed on millimeter to centimeter scale secondary calcites collected within fractures outcropping in the regional fault zone of Gondrecourt and in cores from the ANDRA exploration-drilling program. Preliminary U-Th analyses obtained on secondary carbonates from surface fractures infillings yield secular equilibrium composition, indicating that the precipitation phase was older than 650 ky. U-Pb measurements were performed on a VG sector Thermal Ionization Mass Spectrometer (TIMS) using a 205Pb-236U-233U-229Th spike. Pb contents are generally very low, between 3 and 20 ppb, while U contents are more variable, leading to μ = 238U/204Pb up to ~600. Sub-samples with high μ show radiogenic 206Pb/204Pb ratio, but at this stage isochrons generally show high scatter. These U-Pb data however are consistent with an Eocene-Oligocene period for the late carbonates precipitation phase. We will discuss the different processes that may be responsible for these errorchrons (i.e. heterogeneities in the initial isotopic composition; multi-stage growth) as well as the chronological constraints that can be drawn from these data.

  8. Formation and dissolution of microbubbles on highly-ordered plasmonic nanopillar arrays

    PubMed Central

    Liu, Xiumei; Bao, Lei; Dipalo, Michele; De Angelis, Francesco; Zhang, Xuehua

    2015-01-01

    Bubble formation from plasmonic heating of nanostructures is of great interest in many applications. In this work, we study experimentally the intrinsic effects of the number of three-dimensional plasmonic nanostructures on the dynamics of microbubbles, largely decoupled from the effects of dissolved air. The formation and dissolution of microbubbles is observed on exciting groups of 1, 4, and 9 nanopillars. Our results show that the power threshold for the bubble formation depends on the number density of the nanopillars in highly-ordered arrays. In the degassed water, both the growth rate and the maximal radius of the plasmonic microbubbles increase with an increase of the illuminated pillar number, due to the heat balance between the heat loss across the bubble and the collective heating generated from the nanopillars. Interestingly, our results show that the bubble dissolution is affected by the spatial arrangement of the underlying nanopillars, due to the pinning effect on the bubble boundary. The bubbles on nanopillar arrays dissolve in a jumping mode with step-wise features on the dissolution curves, prior to a smooth dissolution phase for the bubble pinned by a single pillar. The insight from this work may facilitate the design of nanostructures for efficient energy conversion. PMID:26687143

  9. Influence of the surface speciation on biofilm attachment to chalcopyrite by Acidithiobacillus thiooxidans.

    PubMed

    Lara, René H; García-Meza, J Viridiana; González, Ignacio; Cruz, Roel

    2013-03-01

    Surfaces of massive chalcopyrite (CuFeS2) electrodes were modified by applying variable oxidation potential pulses under growth media in order to induce the formation of different secondary phases (e.g., copper-rich polysulfides, S n(2-); elemental sulfur, S(0); and covellite, CuS). The evolution of reactivity (oxidation capacity) of the resulting chalcopyrite surfaces considers a transition from passive or inactive (containing CuS and S n(2-)) to active (containing increasing amounts of S(0)) phases. Modified surfaces were incubated with cells of sulfur-oxidizing bacteria (Acidithiobacillus thiooxidans) for 24 h in a specific culture medium (pH 2). Abiotic control experiments were also performed to compare chemical and biological oxidation. After incubation, the density of cells attached to chalcopyrite surfaces, the structure of the formed biofilm, and their exopolysaccharides and nucleic acids were analyzed by confocal laser scanning microscopy (CLSM) and scanning electron microscopy coupled to dispersive X-ray analysis (SEM-EDS). Additionally, CuS and S n(2-)/S(0) speciation, as well as secondary phase evolution, was carried out on biooxidized and abiotic chalcopyrite surfaces using Raman spectroscopy and SEM-EDS. Our results indicate that oxidized chalcopyrite surfaces initially containing inactive S n(2-) and S n(2-)/CuS phases were less colonized by A. thiooxidans as compared with surfaces containing active phases (mainly S(0)). Furthermore, it was observed that cells were partially covered by CuS and S(0) phases during biooxidation, especially at highly oxidized chalcopyrite surfaces, suggesting the innocuous effect of CuS phases during A. thiooxidans performance. These results may contribute to understanding the effect of the concomitant formation of refractory secondary phases (as CuS and inactive S n(2-)) during the biooxidation of chalcopyrite by sulfur-oxidizing microorganisms in bioleaching systems.

  10. Nanostructured crystals of fluorite phases Sr{sub 1−x}R{sub x}F{sub 2+x} (R Are Rare Earth Elements) and their ordering: 10. Ordering under spontaneous crystallization and annealing of Sr{sub 1−x}R{sub x}F{sub 2+x} Alloys (R = Tb-Lu, Y) with 23.8–36.1 mol % RF{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulyanova, E. A., E-mail: sulyanova@gmail.com; Karimov, D. N.; Sulyanov, S. N.

    The products of spontaneous crystallization (at a cooling rate of ∼200 K/min) of Sr{sub 1−x}R{sub x}F{sub 2+x} melts in the homogeneity range of the fluorite phase have been investigated. Thirty-two irrational compositions with 23.8–36.1 mol % RF{sub 3} and eight rational Sr{sub 2}RF{sub 7} compositions are obtained. With respect to the RF{sub 3} content, these compositions form five groups: (1) Sr{sub 0.762}R{sub 0.238}F{sub 2.238} (23.8% RF{sub 3}), (2) Sr{sub 0.744}R{sub 0.256}F{sub 2.256} (25.6%), (3) Sr{sub 0.718}R{sub 0.282}F{sub 2.282} (28.2%), (4) Sr{sub 2}RF{sub 7} (33.3%), and (5) Sr{sub 0.639}R{sub 0.361}F{sub 2.361} (36.1%). R = Tb-Lu, Y for all groups. Quenching meltsmore » of group 5 with R = Tb, Dy, and Ho leads to the formation of ordered phases with the trigonal distortion of the rhβ-Na{sub 7}Zr{sub 6}F{sub 31} type, while for melts of group 5 with R = Lu, quenching yields a phase of the trigonal rhα′-Sr{sub 4}Lu{sub 3}F{sub 17} type. In group 5 with R = Y, Er, Tm, or Yb and in groups 1–4 with all REEs, fluorite phases are formed. Annealing at 900 ± 20°C for 96 h with subsequent cooling at a rate of ∼200 K/min expands the variety of ordered phases: a phase with a new r type of orthorhombic distortion is formed in group 1 with R = Lu, in group 2 with R = Tm or Lu, and in group 3 with R = Ho-Lu, Y; a t-Sr{sub 2}RF{sub 7} phase with tetragonal distortion is formed in group 4 with R = Tb-Er, Y; and a phase of trigonal rhα′ type is formed in group 5 with R = Y, Yb, or Lu. A fluorite phase arises in group 1 with R = Tb-Lu, Y as a result of quenching and annealing. The tendency to ordering becomes more pronounced with an increase in the RF{sub 3} content and REE atomic number. The annealing conditions do not provide equilibrium or the completely ordered state of all alloys.« less

  11. Superfluid-Mott insulator transition of spin-1 bosons in an optical lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuchiya, Shunji; Department of Physics, University of Toronto, Toronto, Ontario, M5S 1A7; Kurihara, Susumu

    2004-10-01

    We study the superfluid-Mott insulator (SF-MI) transition of spin-1 bosons interacting antiferromagnetically in an optical lattice. Starting from a Bose-Hubbard tight-binding model for spin-1 bosons, we obtain the zero-temperature phase diagram by a mean-field approximation. We find that the MI phase with an even number of atoms per site is a spin singlet state, while the MI phase with an odd number of atoms per site has spin 1 at each site in the limit of t=0, where t is the hopping matrix element. We also show that the superfluid phase is a polar state as in the case formore » a spin-1 Bose condensate in a harmonic trap. It is found that the MI phase is strongly stabilized against the SF-MI transition when the number of atoms per site is even, due to the formation of singlet pairs. We derive the effective spin Hamiltonian for the MI phase with one atom per site and briefly discuss the spin order in the MI phase.« less

  12. Confinement effects on lyotropic nematic liquid crystal phases of graphene oxide dispersions

    NASA Astrophysics Data System (ADS)

    Al-Zangana, Shakhawan; Iliut, Maria; Turner, Michael; Vijayaraghavan, Aravind; Dierking, Ingo

    2017-12-01

    Graphene oxide (GO) forms well ordered liquid crystal (LC) phases in polar solvents. Here, we map the lyotropic phase diagram of GO as a function of the lateral dimensions of the GO flakes, their concentration, geometrical confinement configuration and solvent polarity. GO flakes were prepared in water and transferred into other polar solvents. Polarising optical microscopy (POM) was used to determine the phase evolution through the isotropic-biphasic-nematic transitions of the GO LC. We report that the confinement volume and geometry relative to the particle size is critical for the observation of the lyotropic phase, specifically, this determines the low-end concentration limit for the detection of the GO LC. Additionally, a solvent with higher polarisability stabilises the LC phases at lower concentrations and smaller flake sizes. GO LCs have been proposed for a range of applications from display technologies to conductive fibres, and the behaviour of LC phase formation under confinement imposes a limit on miniaturisation of the dimensions of such GO LC systems which could significantly impact on their potential applications.

  13. All-optical 40Gbit/s format conversion from NRZ to RZ based on SFG in a PPLN waveguide

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Sun, Junqiang

    2006-01-01

    A novel all-optical 40Gbit/s NRZ-to-RZ data format conversion scheme based on sum-frequency generation (SFG) interaction in a periodically poled LiNbO 3 (PPLN) waveguide is presented for the first time, using a Mach-Zehnder interferometer (MZI). The conversion mechanism relies on the combination of attenuation and nonlinear phase shift Φ NL induced on the signal field. The performance of the conversion is numerically evaluated, with the result showing that it is more effective to yield Φ NL when appropriately phase mismatched for SFG process but Φ NL~0 when quasi-phase-matching (QPM). Compared with the cascaded second-order nonlinear interactions (SHG+DFG) with the influence of walk-off effect, a high conversion efficiency and good performance are achieved with peak power 500mw and width 2ps of the pump, which can be used in super high-speed situation (40Gbit/s and above). Finally, the inverse process of SFG and corresponding walk-off effect are analyzed and the optimum arrangement of power is proposed, showing that proper power, pump width, and waveguide length are necessary for achieving a satisfied conversion effect.

  14. Phase behaviour in complementary DNA-coated gold nanoparticles and fd-viruses mixtures: a numerical study.

    PubMed

    Chiappini, Massimiliano; Eiser, Erika; Sciortino, Francesco

    2017-01-01

    A new gel-forming colloidal system based on a binary mixture of fd-viruses and gold nanoparticles functionalized with complementary DNA single strands has been recently introduced. Upon quenching below the DNA melt temperature, such a system results in a highly porous gel state, that may be developed in a new functional material of tunable porosity. In order to shed light on the gelation mechanism, we introduce a model closely mimicking the experimental one and we explore via Monte Carlo simulations its equilibrium phase diagram. Specifically, we model the system as a binary mixture of hard rods and hard spheres mutually interacting via a short-range square-well attractive potential. In the experimental conditions, we find evidence of a phase separation occurring either via nucleation-and-growth or via spinodal decomposition. The spinodal decomposition leads to the formation of small clusters of bonded rods and spheres whose further diffusion and aggregation leads to the formation of a percolating network in the system. Our results are consistent with the hypothesis that the mixture of DNA-coated fd-viruses and gold nanoparticles undergoes a non-equilibrium gelation via an arrested spinodal decomposition mechanism.

  15. Effect of metallic silver nanoparticles on the alignment and relaxation behaviour of liquid crystalline material in smectic C* phase

    NASA Astrophysics Data System (ADS)

    Vimal, Tripti; Kumar Gupta, Swadesh; Katiyar, Rohit; Srivastava, Atul; Czerwinski, Michal; Krup, Katarzyna; Kumar, Sandeep; Manohar, Rajiv

    2017-09-01

    The influence of silver nanoparticles dispersed in a Ferroelectric Liquid Crystal (FLC) on the properties of the resultant composite system has been investigated by thermal, electro-optical, and dielectric methods. We show that the concentration of thiol capped silver nanoparticles is a critical factor in governing the alignment of nanoparticles (NPs) in the host FLC. The orientation of NPs in composite samples affects the ordering of the LC (Liquid Crystal) phase and consequently changes the various phase transition temperatures of the host LC. Formation of self-assembled 2D (two dimensional) arrays of nanoparticles is observed for high concentration of dopant in the LC, oriented perpendicular to the direction of rubbing. We propose that the molecular interaction between the thiol capped NPs and LC molecules is the key factor behind such an arrangement of NPs. Orientation of NPs has affected the relaxation behaviour and various other material parameters, significantly. A noteworthy change in DC conductivity articulates our proposed idea of the formation of 2D array of NPs perpendicular to the direction of rubbing. This comprehensive study endorses the importance of dopant concentration in modifying the properties of the host LC material.

  16. Investigation on structural properties of M-type strontium hexaferrite synthesized in presence of neem and aloe-vera plant leaves extract

    NASA Astrophysics Data System (ADS)

    Solanki, Neha; Jotania, Rajshree B.

    2017-05-01

    M-type strontium hexaferrite powder samples were synthesized using a green synthesis route with and without presence of Aloe vera and Neem leaves extract. The dry brownish precursors of strontium hexaferrite were recovered from a mixed solution of metal salts and leaves extract, heated at 100 °C. The obtained precursors were pre-heated at 500 °C for 4 hrs. followed by final heating at 950 °C for 4 hrs. in a muffle furnace to obtain SrFe12O19 hexaferrite powder. The obtained SrFe12O19 hexaferrite powder samples characterized at room temperature in order to check phase purity and structural properties. XRD analysis confirms that samples prepared without and with Aloe vera leaves extract (heated at 950 °C for 4 hrs.) show formation of α-Fe2O3 and M-phase; while the sample prepared in presence of Neem leaves extract (heated at 950 °C for 4 hrs.) show formation of mono phase of strontium hexaferrite. Lattice parameter (a) and cell volume (V) are found to increase in the samples prepared in presence of Aloe vera and Neem leaves extract.

  17. Thermal Behavior of an HSLA Steel and the Impact in Phase Transformation: Submerged Arc Welding (SAW) Process Approach to Pipelines

    NASA Astrophysics Data System (ADS)

    Costa, P. S.; Reyes-Valdés, F. A.; Saldaña-Garcés, R.; Delgado, E. R.; Salinas-Rodríguez, A.

    Heat input during welding metal fusion generates different transformations, such as grain growth, hydrogen cracking, and the formation of brittle structures, generally associated with the heat-affected zone (HAZ). For this reason, it is very important to know the behavior of this area before welding. This paper presents a study of the thermal behavior and its effect on phase transformations in the HAZ, depending on cooling rates (0.1-200 °C/s) to obtain continuous cooling transformation (CCT) curves for an high-strength low-alloy (HSLA) steel. In order to determine the formed phases, optical microscopy and Vickers microhardness measurement were used. The experimental CCT curve was obtained from an HSLA steel, and the results showed that, with the used cooling conditions, the steel did not provide formation of brittle structures. Therefore, it is unlikely that welds made by submerged arc welding (SAW) may lead to hydrogen embrittlement in the HAZ, which is one of the biggest problems of cracking in gas conduction pipelines. In addition, with these results, it will be possible to control the microstructure to optimize the pipe fabrication with SAW process in industrial plants.

  18. Templating effect of the substrate on the structure of Cu-phthalocyanine thin film

    NASA Astrophysics Data System (ADS)

    Pierantozzi, Gian Marco; Sbroscia, Marco; Ruocco, Alessandro

    2018-03-01

    An experimental study of electronic properties, structure and morphology of Copper-phthalocyanine films deposited onto Al(100) and Au(110), as a function of thickness up to tens of nanometers, is presented. The monolayers grown on these two model substrates are already known to exhibit very different behavior for what concerns both the degree of interaction with the substrate and the formation of long range order; in this experiment, by means of low energy electron scattering and Electron Energy Loss Spectroscopy (EELS), remarkable differences are revealed also in the successive growth. Exploiting the link between the crystal structure and the lineshape of HOMO-LUMO transition in EELS spectrum, two different structural phases are identified, compatible with α and β phases, respectively in the case of the film grown on aluminum and on gold. Besides, the evolution of the specular reflection elastic peak indicates the formation of islands on the gold substrate and a more homogeneous growth on the aluminum one.

  19. Formation of light absorbing organo-nitrogen species from evaporation of droplets containing glyoxal and ammonium sulfate.

    PubMed

    Lee, Alex K Y; Zhao, Ran; Li, Richard; Liggio, John; Li, Shao-Meng; Abbatt, Jonathan P D

    2013-11-19

    In the atmosphere, volatile organic compounds such as glyoxal can partition into aqueous droplets containing significant levels of inorganic salts. Upon droplet evaporation, both the organics and inorganic ions become highly concentrated, accelerating reactions between them. To demonstrate this process, we investigated the formation of organo-nitrogen and light absorbing materials in evaporating droplets containing glyoxal and different ammonium salts including (NH4)2SO4, NH4NO3, and NH4Cl. Our results demonstrate that evaporating glyoxal-(NH4)2SO4 droplets produce light absorbing species on a time scale of seconds, which is orders of magnitude faster than observed in bulk solutions. Using aerosol mass spectrometry, we show that particle-phase organics with high N:C ratios were formed when ammonium salts were used, and that the presence of sulfate ions promoted this chemistry. Since sulfate can also significantly enhance the Henry's law partitioning of glyoxal, our results highlight the atmospheric importance of such inorganic-organic interactions in aqueous phase aerosol chemistry.

  20. Friedel's salt formation in sulfoaluminate cements: A combined XRD and {sup 27}Al MAS NMR study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, G.; Boccaleri, E., E-mail: enrico.boccaleri@mfn.unipmn.it; Buzzi, L.

    Four different binders based on calcium sulfoaluminate cements have been submitted to accelerated chlorination through ionic exchange on hydrated pastes, in order to investigate their ability to chemically bind chloride ions that might reduce chloride penetration. The composition of hydrated cements before and after the treatment was evaluated by means of an X-Ray Diffraction–{sup 27}Al Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy combined study, allowing to take into account even partially amorphous phases and to make quantitative assumption on the relative abundance of the different aluminium-containing phases. It was found that low SO{sub 3} Sulfoaluminate–Portland ternary systems are the mostmore » effective in binding chloride ions and the active role played by different members of the AFm family in chloride uptake was confirmed. Moreover, a peculiar behavior related to the formation of Friedel's salt in different pH conditions was also established for the different cements.« less

  1. Gas-phase spectra of MgO molecules: a possible connection from gas-phase molecules to planet formation

    NASA Astrophysics Data System (ADS)

    Kloska, Katherine A.; Fortenberry, Ryan C.

    2018-02-01

    A more fine-tuned method for probing planet-forming regions, such as protoplanetary discs, could be rovibrational molecular spectroscopy observation of particular premineral molecules instead of more common but ultimately less related volatile organic compounds. Planets are created when grains aggregate, but how molecules form grains is an ongoing topic of discussion in astrophysics and planetary science. Using the spectroscopic data of molecules specifically involved in mineral formation could help to map regions where planet formation is believed to be occurring in order to examine the interplay between gas and dust. Four atoms are frequently associated with planetary formation: Fe, Si, Mg and O. Magnesium, in particular, has been shown to be in higher relative abundance in planet-hosting stars. Magnesium oxide crystals comprise the mineral periclase making it the chemically simplest magnesium-bearing mineral and a natural choice for analysis. The monomer, dimer and trimer forms of (MgO)n with n = 1-3 are analysed in this work using high-level quantum chemical computations known to produce accurate results. Strong vibrational transitions at 12.5, 15.0 and 16.5 μm are indicative of magnesium oxide monomer, dimer and trimer making these wavelengths of particular interest for the observation of protoplanetary discs and even potentially planet-forming regions around stars. If such transitions are observed in emission from the accretion discs or absorptions from stellar spectra, the beginning stages of mineral and, subsequently, rocky body formation could be indicated.

  2. A three-phase in-vitro system for studying Pseudomonas aeruginosa adhesion and biofilm formation upon hydrogel contact lenses

    PubMed Central

    2010-01-01

    Background Pseudomonas aeruginosa is commonly associated with contact lens (CL) -related eye infections, for which bacterial adhesion and biofilm formation upon hydrogel CLs is a specific risk factor. Whilst P. aeruginosa has been widely used as a model organism for initial biofilm formation on CLs, in-vitro models that closely reproduce in-vivo conditions have rarely been presented. Results In the current investigation, a novel in-vitro biofilm model for studying the adherence of P. aeruginosa to hydrogel CLs was established. Nutritional and interfacial conditions similar to those in the eye of a CL wearer were created through the involvement of a solid:liquid and a solid:air interface, shear forces and a complex artificial tear fluid. Bioburdens varied depending on the CL material and biofilm maturation occurred after 72 h incubation. Whilst a range of biofilm morphologies were visualised including dispersed and adherent bacterial cells, aggregates and colonies embedded in extracellular polymer substances (EPS), EPS fibres, mushroom-like formations, and crystalline structures, a compact and heterogeneous biofilm morphology predominated on all CL materials. Conclusions In order to better understand the process of biofilm formation on CLs and to test the efficacy of CL care solutions, representative in-vitro biofilm models are required. Here, we present a three-phase biofilm model that simulates the environment in the eye of a CL wearer and thus generates biofilms which resemble those commonly observed in-situ. PMID:21062489

  3. Origin of thickness dependence of structural phase transition temperatures in BiFeO 3 thin films

    DOE PAGES

    Yang, Yongsoo; Beekman, Christianne; Siemons, Wolter; ...

    2016-03-28

    In this study, two structural phase transitions are investigated in highly strained BiFeO 3 thin films grown on LaAlO 3 substrates, as a function of film thickness and temperature via synchrotron x-ray diffraction. Both transition temperatures (upon heating: monoclinic MC to monoclinic MA, and MA to tetragonal) decrease as the film becomes thinner. The existence of an interface layer at the film-substrate interface, deduced from half-order peak intensities, contributes to this behavior only for the thinnest samples; at larger thicknesses (above a few nanometers) the temperature dependence can be understood in terms of electrostatic considerations akin to size effects inmore » ferroelectric phase transitions, but observed here for structural phase transitions within the ferroelectric phase and related to the rearrangement rather than the formation of domains. For ultra-thin films, the tetragonal structure is stable at all investigated temperatures (down to 30 K).« less

  4. Dynamically fluctuating electric dipole moments in fullerene-based magnets.

    PubMed

    Kambe, Takashi; Oshima, Kokichi

    2014-09-19

    We report here the direct evidence of the existence of a permanent electric dipole moment in both crystal phases of a fullerene-based magnet--the ferromagnetic α-phase and the antiferromagnetic α'-phase of tetra-kis-(dimethylamino)-ethylene-C60 (TDAE-C60)--as determined by dielectric measurements. We propose that the permanent electric dipole originates from the pairing of a TDAE molecule with surrounding C60 molecules. The two polymorphs exhibit clear differences in their dielectric responses at room temperature and during the freezing process with dynamically fluctuating electric dipole moments, although no difference in their room-temperature structures has been previously observed. This result implies that two polymorphs have different local environment around the molecules. In particular, the ferromagnetism of the α-phase is founded on the homogeneous molecule displacement and orientational ordering. The formation of the different phases with respect to the different rotational states in the Jahn-Teller distorted C60s is also discussed.

  5. Dynamically fluctuating electric dipole moments in fullerene-based magnets

    PubMed Central

    Kambe, Takashi; Oshima, Kokichi

    2014-01-01

    We report here the direct evidence of the existence of a permanent electric dipole moment in both crystal phases of a fullerene-based magnet—the ferromagnetic α-phase and the antiferromagnetic α′-phase of tetra-kis-(dimethylamino)-ethylene-C60 (TDAE-C60)—as determined by dielectric measurements. We propose that the permanent electric dipole originates from the pairing of a TDAE molecule with surrounding C60 molecules. The two polymorphs exhibit clear differences in their dielectric responses at room temperature and during the freezing process with dynamically fluctuating electric dipole moments, although no difference in their room-temperature structures has been previously observed. This result implies that two polymorphs have different local environment around the molecules. In particular, the ferromagnetism of the α-phase is founded on the homogeneous molecule displacement and orientational ordering. The formation of the different phases with respect to the different rotational states in the Jahn–Teller distorted C60s is also discussed. PMID:25236361

  6. Compression driven 2D nematic phase in a columnar Langmuir monolayer

    NASA Astrophysics Data System (ADS)

    El Abed, A.; Goldmann, M.

    2012-08-01

    Langmuir films of pyramidic liquid crystals were studied using surface pressure versus molecular area isotherms and synchrotron grazing incidence X-ray diffraction. The used molecule, named 3BCN/14, consists of a pyramidal central core to which are bound symmetrically six lateral C14 alkyl chains. These molecules spread spontaneously at the air-water interface in a metastable side-on phase which relax rapidly upon compression towards a stable edge-on phase. Our results suggest that the new edge-on phase consists of an in-plane organization of columns which are made of about 11 stacked edge-on molecules. This structure remains stable after several expansion-compression cycles. Comparing these results with those obtained previously on two other pyramidic liquid crystals with shorter and longer lateral alkyl chains, C9 and C15 respectively, we attribute the formation of the obtained 2D nematic phase to a suitable lateral chains length which allow for the establishing of strong short smectic order within of the 3BCN/14 columns.

  7. Study of long-range orders of hard-core bosons coupled to cooperative normal modes in two-dimensional lattices

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Yarlagadda, S.

    2017-09-01

    Understanding the microscopic mechanism of coexisting long-range orders (such as lattice supersolidity) in strongly correlated systems is a subject of immense interest. We study the possible manifestations of long-range orders, including lattice-supersolid phases with differently broken symmetry, in a two-dimensional square lattice system of hard-core bosons (HCBs) coupled to archetypal cooperative/coherent normal-mode distortions such as those in perovskites. At strong HCB-phonon coupling, using a duality transformation to map the strong-coupling problem to a weak-coupling one, we obtain an effective Hamiltonian involving nearest-neighbor, next-nearest-neighbor, and next-to-next-nearest-neighbor hoppings and repulsions. Using stochastic series expansion quantum Monte Carlo, we construct the phase diagram of the system. As coupling strength is increased, we find that the system undergoes a first-order quantum phase transition from a superfluid to a checkerboard solid at half-filling and from a superfluid to a diagonal striped solid [with crystalline ordering wave vector Q ⃗=(2 π /3 ,2 π /3 ) or (2 π /3 ,4 π /3 )] at one-third filling without showing any evidence of supersolidity. On tuning the system away from these commensurate fillings, checkerboard supersolid is generated near half-filling whereas a rare diagonal striped supersolid is realized near one-third filling. Interestingly, there is an asymmetry in the extent of supersolidity about one-third filling. Within our framework, we also provide an explanation for the observed checkerboard and stripe formations in La2 -xSrxNiO4 at x =1 /2 and x =1 /3 .

  8. Evidence of Liquid Crystal-Assisted Abiotic Ligation of Nucleic Acids

    NASA Astrophysics Data System (ADS)

    Fraccia, Tommaso P.; Zanchetta, Giuliano; Rimoldi, Valeria; Clark, Noel A.; Bellini, Tommaso

    2015-06-01

    The emergence of early life must have been marked by the appearance in the prebiotic era of complex molecular structures and systems, motivating the investigation of conditions that could not only facilitate appropriate chemical synthesis, but also provide the mechanisms of molecular selection and structural templating necessary to pilot the complexification toward specific molecular patterns. We recently proposed and demonstrated that these functions could be afforded by the spontaneous ordering of ultrashort nucleic acids oligomers into Liquid Crystal (LC) phases. In such supramolecular assemblies, duplex-forming oligomers are held in average end-to-end contact to form chemically discontinuous but physically continuous double helices. Using blunt ended duplexes, we found that LC formation could both provide molecular selection mechanisms and boost inter-oligomer ligation. This paper provides an essential extension to this notion by investigating the catalytic effects of LC ordering in duplexes with mutually interacting overhangs. Specifically, we studied the influence of LC ordering of 5'-hydroxy-3'-phosphate partially self-complementary DNA 14mers with 3'-CG sticky-ends, on the efficiency of non-enzymatic ligation reaction induced by water-soluble carbodiimide EDC as condensing agent. We investigated the ligation products in mixtures of DNA with poly-ethylene glycol (PEG) at three PEG concentrations at which the system phase separates creating DNA-rich droplets that organize into isotropic, nematic LC and columnar LC phases. We observe remarkable LC-enhanced chain lengthening, and we demonstrate that such lengthening effectively promotes and stabilizes LC domains, providing the kernel of a positive feedback cycle by which LC ordering promotes elongation, in turn stabilizing the LC ordering.

  9. Ordered Fe(II)Ti(IV)O3 Mixed Monolayer Oxide on Rutile TiO2(011).

    PubMed

    Halpegamage, Sandamali; Ding, Pan; Gong, Xue-Qing; Batzill, Matthias

    2015-08-25

    Oxide monolayers supported or intermixed with an oxide support are potential nanocatalysts whose properties are determined by the interplay with the support. For fundamental studies of monolayer oxides on metal oxide supports, well-defined systems are needed, but so far, the synthesis of monolayer oxides with long-range order on single-crystal oxide surfaces is rare. Here, we show by a combination of scanning tunneling microscopy, photoemission spectroscopy, and density functional theory (DFT)-based computational analysis that the rutile TiO2(011) surface supports the formation of an ordered mixed FeTiO3 monolayer. Deposition of iron in a slightly oxidizing atmosphere (10(-8) Torr O2) and annealing to 300 °C results in a well-ordered surface structure with Fe in a 2+ charge state and Ti in a 4+ charge states. Low-energy ion scattering suggests that the cation surface composition is close to half Fe and half Ti. This surface is stable in ultrahigh vacuum to annealing temperatures of 300 °C before the iron is reduced. DFT simulations confirm that a surface structure with coverage of 50% FeO units is stable and forms an ordered structure. Although distinct from known bulk phases of the iron-titanium oxide systems, the FeTiO3 monolayer exhibits some resemblance to the ilmenite structure, which may suggest that a variety of different mixed oxide phases (of systems that exist in a bulk ilmenite phase) may be synthesized in this way on the rutile TiO2(011) substrate.

  10. Calcium aluminate in alumina

    NASA Astrophysics Data System (ADS)

    Altay, Arzu

    The properties of ceramic materials are determined not only by the composition and structure of the phases present, but also by the distribution of impurities, intergranular films and second phases. The phase distribution and microstructure both depend on the fabrication techniques, the raw materials used, the phase-equilibrium relations, grain growth and sintering processes. In this dissertation research, various approaches have been employed to understand fundamental phenomena such as grain growth, impurity segregation, second-phase formation and crystallization. The materials system chosen was alumina intentionally doped with calcium. Atomic-scale structural analyses of grain boundaries in alumina were carried on the processed samples. It was found that above certain calcium concentrations, CA6 precipitated as a second phase at all sintering temperatures. The results also showed that abnormal grain growth can occur after precipitation and it is not only related to the calcium level, but it is also temperature dependent. In order to understand the formation mechanism of CA6 precipitates in calcium doped alumina samples, several studies have been carried out using either bulk materials or thin films The crystallization of CA2 and CA6 powders has been studied. Chemical processing techniques were used to synthesize the powders. It was observed that CA2 powders crystallized directly, however CA6 powders crystallized through gamma-Al 2O3 solid solution. The results of energy-loss near-edge spectrometry confirmed that gamma-Al2O3 can dissolve calcium. Calcium aluminate/alumina reaction couples have also been investigated. All reaction couples were heat treated following deposition. It was found that gamma-Al2O3 was formed at the interface as a result of the interfacial reaction between the film and the substrate. gamma-Al 2O3 at the interface was stable at much higher temperatures compared to the bulk gamma-Al2O3 formed prior to the CA6 crystallization. In order to complement the studies carried out on the calcium aluminate phases, energy-loss near-edge structure (ELNES) fingerprints of CA2 and CA6 were obtained. It was shown that it is possible to distinguish these phases from each other by comparing the ELNES fingerprints. Theoretical calculations of ELNES were used to assign spectral features to certain symmetry environments that can later be used to understand the structures of unknown materials.

  11. Microforms in gravel bed rivers: Formation, disintegration, and effects on bedload transport

    USGS Publications Warehouse

    Strom, K.; Papanicolaou, A.N.; Evangelopoulos, N.; Odeh, M.

    2004-01-01

    This research aims to advance current knowledge on cluster formation and evolution by tackling some of the aspects associated with cluster microtopography and the effects of clusters on bedload transport. The specific objectives of the study are (1) to identify the bed shear stress range in which clusters form and disintegrate, (2) to quantitatively describe the spacing characteristics and orientation of clusters with respect to flow characteristics, (3) to quantify the effects clusters have on the mean bedload rate, and (4) to assess the effects of clusters on the pulsating nature of bedload. In order to meet the objectives of this study, two main experimental scenarios, namely, Test Series A and B (20 experiments overall) are considered in a laboratory flume under well-controlled conditions. Series A tests are performed to address objectives (1) and (2) while Series B is designed to meet objectives (3) and (4). Results show that cluster microforms develop in uniform sediment at 1.25 to 2 times the Shields parameter of an individual particle and start disintegrating at about 2.25 times the Shields parameter. It is found that during an unsteady flow event, effects of clusters on bedload transport rate can be classified in three different phases: a sink phase where clusters absorb incoming sediment, a neutral phase where clusters do not affect bedload, and a source phase where clusters release particles. Clusters also increase the magnitude of the fluctuations in bedload transport rate, showing that clusters amplify the unsteady nature of bedload transport. A fourth-order autoregressive, autoregressive integrated moving average model is employed to describe the time series of bedload and provide a predictive formula for predicting bedload at different periods. Finally, a change-point analysis enhanced with a binary segmentation procedure is performed to identify the abrupt changes in the bedload statistic characteristics due to the effects of clusters and detect the different phases in bedload time series using probability theory. The analysis verifies the experimental findings that three phases are detected in the bedload rate time series structure, namely, sink, neutral, and source. ?? ASCE / JUNE 2004.

  12. Understanding Oxygen Vacancy Formation, Interaction, Transport, and Strain in SOFC Components via Combined Thermodynamics and First Principles Calculations

    NASA Astrophysics Data System (ADS)

    Das, Tridip

    Understanding of the vacancy formation, interaction, increasing its concentration and diffusion, and controlling its chemical strain will advance the design of mixed ionic and electronic conductor (MIEC) materials via element doping and strain engineering. This is especially central to improve the performance of the solid oxide fuel cell (SOFC), an energy conversion device for sustainable future. The oxygen vacancy concentration grows exponentially with the temperature at dilute vacancy concentration but not at higher concentration, or even decreases due to oxygen vacancy interaction and vacancy ordered phase change. This limits the ionic conductivity. Using density functional theory (DFT), we provided fundamental understanding on how oxygen vacancy interaction originates in one of the typical MIEC, La1-xSrxFeO3-delta (LSF). The vacancy interaction is determined by the interplay of the charge state of multi-valence ion (Fe), aliovalent doping (La/Sr ratio), the crystal structure, and the oxygen vacancy concentration and/or nonstoichiometry (delta). It was found excess electrons left due to the formation of a neutral oxygen vacancy get distributed to Fe directly connected to the vacancy or to the second nearest neighboring Fe, based on crystal field splitting of Fe 3d orbital in different Fe-O polyhedral coordination. The progressively larger polaron size and anisotropic shape changes with increasing Sr-content resulted in increasing oxygen vacancy interactions, as indicated by an increase in the oxygen vacancy formation energy above a critical delta threshold. This was consistent with experimental results showing that Sr-rich LSF and highly oxygen deficient compositions are prone to oxygen-vacancy-ordering-induced phase transformations, while Sr-poor and oxygen-rich LSF compositions are not. Since oxygen vacancy induced phase transformations, cause a decrease in the mobile oxygen vacancy site fraction (X), both delta and X were predicted as a function of temperature and oxygen partial pressure, for multiple LSF compositions and phases using a combined thermodynamics and DFT approach. A detailed oxygen vacancy migration barrier calculation gave the oxygen ionic diffusivity and conductivity. Oxygen vacancy also causes chemical strain, which was treated as a scalar in the literature. However, in many materials, it should be a tensor, which is anisotropic. We illustrate this effect on CeO2, in which it explained a puzzling experiment, which shows significant amplification of measured strain on applied bias in non-stoichiometric Gd doped ceria. The presence of highly localized 4f valence orbital in Ce causes charge disproportionation on the formation of neutral oxygen vacancy, producing anisotropic chemical strain in ceria with cubic symmetry. Understanding of delta and X and anisotropic chemical strain in the lattice has led to the design of better MIEC via element doping and strain engineering of the lattice.

  13. Surface Phase Stability and Surfactant Behavior on InAsSb

    NASA Astrophysics Data System (ADS)

    Anderson, Evan M.

    InAsSb and related III-As/III-Sb heterostructures are of technological interest for applications in long wavelength infrared optoelectronic devices. However, there remain challenges to growing high quality material for these devices due to the complex interaction between As and Sb. While this interaction has been the subject of intense study, little work has focused on how As and Sb behave at the material surface with even fewer investigations into the atomic scale details of the InAsSb surface. This is a major gap in current knowledge because these materials are typically grown via vapor deposition methods, one atomic layer at a time. Thus, all processes impacting the growth of the crystal and its resultant properties occur at the surface. Despite this, the atomic scale details of the surface phases and processes impacting the Sb-As interaction have not previously been reported. This dissertation investigates the surface As-Sb interaction at an atomistic scale and its modification through different surface chemistry to be used as a guide for future experiments to improve the quality InAsSb of heterostructures by manipulating the surface phase during growth. In order to accomplish this, first principles calculations and experiments are used to investigate this system from three complimentary vantage points. First, the influence of Sb on the InAs surface and the stable surface phases of this system are investigated. Next, a similar approach is used on the opposite compositional extreme of the InAsSb system: As on the surface of InSb. Finally, the interaction of As and Sb is modified by the use of Bi as a surfactant during growth of InAsSb films. The interaction between As and Sb is found to be driven through the formation of surface phases and Bi is found to alter this interaction. Phase diagrams of both Sb on InAs and As on InSb show that As and Sb are driven to intermix through the formation of alloyed surface phases. Additionally, these phases range from having bulk-like stoichiometry to being highly As or Sb rich for the full InAsSb compositional range, indicating that surface stoichiometry is a controllable parameter for InAsSb growth. Sb is shown to intermix with the InAs surface by roughening the surface in a process driven by a phase transition. This interaction between Sb and InAs is stronger than previously thought, which has implications for the crystal growth problem of compositional broadening of the interfaces of III-As/III-Sb heterostructures. Finally, applying Bi to the surface of InAsSb during growth shows that modifies the interaction between As and Sb by catalyzing the formation of InAs, which decreases Sb incorporation. The results of this dissertation lay the foundation for optimization of the crystal growth surface in order to improve the properties of InAsSb and arsenide/antimonide heterostructures.

  14. Stratospheric ion and aerosol chemistry and possible links with cirrus cloud microphysics - A critical assessment

    NASA Technical Reports Server (NTRS)

    Mohnen, Volker A.

    1990-01-01

    Aspects of stratospheric ion chemistry and physics are assessed as they relate to aerosol formation and the transport of aerosols to upper tropospheric regions to create conditions favorable for cirrus cloud formation. It is found that ion-induced nucleation and other known phase transitions involving ions and sulfuric acid vapor are probably not efficient processes for stratospheric aerosol formation, and cannot compete with condensation of sulfuric acid on preexisting particles of volcanic or meteoritic origin which are larger than about 0.15 micron in radius. Thus, galactic cosmic rays cannot have a significant impact on stratospheric aerosol population. Changes in the stratospheric aerosol burden due to volcanos are up to two orders of magnitude larger than changes in ion densities. Thus, volcanic activity may modulate the radiative properties of cirrus clouds.

  15. Doping-induced disappearance of ice II from water's phase diagram

    NASA Astrophysics Data System (ADS)

    Shephard, Jacob J.; Slater, Ben; Harvey, Peter; Hart, Martin; Bull, Craig L.; Bramwell, Steven T.; Salzmann, Christoph G.

    2018-06-01

    Water and the many phases of ice display a plethora of complex physical properties and phase relationships1-4 that are of paramount importance in a range of settings including processes in Earth's hydrosphere, the geology of icy moons, industry and even the evolution of life. Well-known examples include the unusual behaviour of supercooled water2, the emergent ferroelectric ordering in ice films4 and the fact that the `ordinary' ice Ih floats on water. We report the intriguing observation that ice II, one of the high-pressure phases of ice, disappears in a selective fashion from water's phase diagram following the addition of small amounts of ammonium fluoride. This finding exposes the strict topologically constrained nature of the ice II hydrogen-bond network, which is not found for the competing phases. In analogy to the behaviour of frustrated magnets5, the presence of the exceptional ice II is argued to have a wider impact on water's phase diagram, potentially explaining its general tendency to display anomalous behaviour. Furthermore, the impurity-induced disappearance of ice II raises the prospect that specific dopants may not only be able to suppress certain phases but also induce the formation of new phases of ice in future studies.

  16. Kinetics and Mechanism of Bioactivation via S-Oxygenation of Anti-Tubercular Agent Ethionamide by Peracetic Acid.

    PubMed

    Chipiso, Kudzanai; Logan, Isabelle E; Eskew, Matthew W; Omondi, Benard; Simoyi, Reuben H

    2016-10-11

    The kinetics and mechanism of the oxidation of the important antitubercular agent, ethionamide, ETA (2-ethylthioisonicotinamide), by peracetic acid (PAA) have been studied. It is effectively a biphasic reaction with an initial rapid first phase of the reaction which is over in about 5 s and a second slower phase of the reaction which can run up to an hour. The first phase involves the addition of a single oxygen atom to ethionamide to form the S-oxide. The second phase involves further oxidation of the S-oxide to desulfurization of ETA to give 2-ethylisonicotinamide. In contrast to the stability of most organosulfur compounds, the S-oxide of ETA is relatively stable and can be isolated. In conditions of excess ETA, the stoichiometry of the reaction was strictly 1:1: CH 3 CO 3 H + Et(C 5 H 4 )C(═S)NH 2 → CH 3 CO 2 H + Et(C 5 H 4 )C(═NH)SOH. In this oxidation, it was apparent that only the sulfur center was the reactive site. Though ETA was ultimately desulfurized, only the S-oxide was stable. Electrospray ionization (ESI) spectral analysis did not detect any substantial formation of the sulfinic and sulfonic acids. This suggests that cleavage of the carbon-sulfur bond occurs at the sulfenic acid stage, resulting in the formation of an unstable sulfur species that can react further to form more stable sulfur species. In this oxidation, no sulfate formation was observed. ESI spectral analysis data showed a final sulfur species in the form of a dimeric sulfur monoxide species, H 3 S 2 O 2 . We derived a bimolecular rate constant for the formation of the S-oxide of (3.08 ± 0.72) × 10 2 M -1 s -1 . Oxidation of the S-oxide further to give 2-ethylisonicotinamide gave zero order kinetics.

  17. Super-hard cubic BN layer formation by nitrogen ion implantation

    NASA Astrophysics Data System (ADS)

    Komarov, F. F.; Pilko, V. V.; Yakushev, V. A.; Tishkov, V. S.

    1994-11-01

    Microcrystalline and amorphous boron thin films were implanted with nitrogen ions at energies from 25 to 125 keV and with doses from 2 × 10 17 to 1 × 10 18 at.cm 2 at temperatures below 200°C. The structure of boron nitride phases after ion implantation, formation of phases and phase transformations were investigated by TEM and TED methods. The cubic boron nitride phase is revealed. The microhardness of the formed films was satisfactorily explained in terms of chemical compound formation by polyenergetic ion implantation. The influence of the copper impurity on the formation of the cubic boron nitride phase is demonstrated. It has also been shown that low concentrations of copper promote cubic BN boundary formation.

  18. Magnetic ordering in Ce-La and Nd-La alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, T.S.; Legvold, S.; Gschneidner, K.A. Jr.

    1978-03-01

    Heat capacity, magnetic susceptibility, and electrical resistivity measurements have been made on a wide ranging set of Ce-La and Nd-La alloys. In the case of Ce it is found that less than 5 at. % of La will prevent the ..beta.. (dhcp) to ..cap alpha.. (collapsed fcc) transition at T9 or approx. =50 K. In the case of Nd-La only the dhcp allotrope is formed. Two magnetic ordering temperatures have been found for many of the samples. These are believed to be caused by antiferromagnetic ordering on the two different atomic sites in the dhcp structure, cubic and hexagonal. Inmore » both sets of alloys the two ordering temperatures coalesce into one for La concentrations > or approx. =30%. Additional magnetic features in Ce-La alloys are explained by the formation of the fcc phase.« less

  19. Dynamic Transition and Resonance in Coupled Oscillators Under Symmetry-Breaking Fields

    NASA Astrophysics Data System (ADS)

    Choi, J.; Choi, M. Y.; Chung, M. S.; Yoon, B.-G.

    2013-06-01

    We investigate numerically the dynamic properties of a system of globally coupled oscillators driven by periodic symmetry-breaking fields in the presence of noise. The phase distribution of the oscillators is computed and a dynamic transition is disclosed. It is further found that the stochastic resonance is closely related to the behavior of the dynamic order parameter, which is in turn explained by the formation of a bi-cluster in the system. Here noise tends to symmetrize the motion of the oscillators, facilitating the bi-cluster formation. The observed resonance appears to be of the same class as the resonance present in the two-dimensional Ising model under oscillating fields.

  20. Disintegration of liquid sheets

    NASA Technical Reports Server (NTRS)

    Mansour, Adel; Chigier, Norman

    1990-01-01

    The development, stability, and disintegration of liquid sheets issuing from a two-dimensional air-assisted nozzle is studied. Detailed measurements of mean drop size and velocity are made using a phase Doppler particle analyzer. Without air flow the liquid sheet converges toward the axis as a result of surface tension forces. With airflow a quasi-two-dimensional expanding spray is formed. The air flow causes small variations in sheet thickness to develop into major disturbances with the result that disruption starts before the formation of the main break-up region. In the two-dimensional variable geometry air-blast atomizer, it is shown that the air flow is responsible for the formation of large, ordered, and small chaotic 'cell' structures.

Top