The Ramachandran Number: An Order Parameter for Protein Geometry
Mannige, Ranjan V.; Kundu, Joyjit; Whitelam, Stephen; ...
2016-08-04
Three-dimensional protein structures usually contain regions of local order, called secondary structure, such as α-helices and β-sheets. Secondary structure is characterized by the local rotational state of the protein backbone, quantified by two dihedral angles called Øand Ψ. Particular types of secondary structure can generally be described by a single (diffuse) location on a two-dimensional plot drawn in the space of the angles Ø andΨ, called a Ramachandran plot. By contrast, a recently-discovered nanomaterial made from peptoids, structural isomers of peptides, displays a secondary-structure motif corresponding to two regions on the Ramachandran plot [Mannige et al., Nature 526, 415 (2015)].more » In order to describe such 'higher-order' secondary structure in a compact way we introduce here a means of describing regions on the Ramachandran plot in terms of a single Ramachandran number, R, which is a structurally meaningful combination of Ø andΨ. We show that the potential applications of R are numerous: it can be used to describe the geometric content of protein structures, and can be used to draw diagrams that reveal, at a glance, the frequency of occurrence of regular secondary structures and disordered regions in large protein datasets. We propose that R might be used as an order parameter for protein geometry for a wide range of applications.« less
Li, Yaohang; Liu, Hui; Rata, Ionel; Jakobsson, Eric
2013-02-25
The rapidly increasing number of protein crystal structures available in the Protein Data Bank (PDB) has naturally made statistical analyses feasible in studying complex high-order inter-residue correlations. In this paper, we report a context-based secondary structure potential (CSSP) for assessing the quality of predicted protein secondary structures generated by various prediction servers. CSSP is a sequence-position-specific knowledge-based potential generated based on the potentials of mean force approach, where high-order inter-residue interactions are taken into consideration. The CSSP potential is effective in identifying secondary structure predictions with good quality. In 56% of the targets in the CB513 benchmark, the optimal CSSP potential is able to recognize the native secondary structure or a prediction with Q3 accuracy higher than 90% as best scored in the predicted secondary structures generated by 10 popularly used secondary structure prediction servers. In more than 80% of the CB513 targets, the predicted secondary structures with the lowest CSSP potential values yield higher than 80% Q3 accuracy. Similar performance of CSSP is found on the CASP9 targets as well. Moreover, our computational results also show that the CSSP potential using triplets outperforms the CSSP potential using doublets and is currently better than the CSSP potential using quartets.
Influence of thermodynamically unfavorable secondary structures on DNA hybridization kinetics
Hata, Hiroaki; Kitajima, Tetsuro
2018-01-01
Abstract Nucleic acid secondary structure plays an important role in nucleic acid–nucleic acid recognition/hybridization processes, and is also a vital consideration in DNA nanotechnology. Although the influence of stable secondary structures on hybridization kinetics has been characterized, unstable secondary structures, which show positive ΔG° with self-folding, can also form, and their effects have not been systematically investigated. Such thermodynamically unfavorable secondary structures should not be ignored in DNA hybridization kinetics, especially under isothermal conditions. Here, we report that positive ΔG° secondary structures can change the hybridization rate by two-orders of magnitude, despite the fact that their hybridization obeyed second-order reaction kinetics. The temperature dependence of hybridization rates showed non-Arrhenius behavior; thus, their hybridization is considered to be nucleation limited. We derived a model describing how ΔG° positive secondary structures affect hybridization kinetics in stopped-flow experiments with 47 pairs of oligonucleotides. The calculated hybridization rates, which were based on the model, quantitatively agreed with the experimental rate constant. PMID:29220504
Wang, Xiaoguang; Yang, Pei; Mondiot, Frederic; Li, Yaoxin; Miller, Daniel S; Chen, Zhan; Abbott, Nicholas L
2015-12-07
We report that assemblies formed by eight oligopeptides at phospholipid-decorated interfaces of thermotropic liquid crystals (LCs) trigger changes in ordering of the LCs that are dependent on the secondary structures of the oligopeptides (as characterized in situ using infrared-visible sum-frequency spectroscopy).
Double scattering of light from Biophotonic Nanostructures with short-range order
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar
2010-07-28
We investigate the physical mechanism for color production by isotropic nanostructures with short-range order in bird feather barbs. While the primary peak in optical scattering spectra results from constructive interference of singly-scattered light, many species exhibit secondary peaks with distinct characteristic. Our experimental and numerical studies show that these secondary peaks result from double scattering of light by the correlated structures. Without an analog in periodic or random structures, such a phenomenon is unique for short-range ordered structures, and has been widely used by nature for non-iridescent structural coloration.
The Globular State of the Single-Stranded RNA: Effect of the Secondary Structure Rearrangements
Grigoryan, Zareh A.; Karapetian, Armen T.
2015-01-01
The mutual influence of the slow rearrangements of secondary structure and fast collapse of the long single-stranded RNA (ssRNA) in approximation of coarse-grained model is studied with analytic calculations. It is assumed that the characteristic time of the secondary structure rearrangement is much longer than that for the formation of the tertiary structure. A nonequilibrium phase transition of the 2nd order has been observed. PMID:26345143
NASA Astrophysics Data System (ADS)
Yates, Emma
2012-02-01
Thioflavin T and Congo Red are fluorescent dyes that are commonly used to identify the presence of amyloid structures, ordered protein aggregates. Despite the ubiquity of their use, little is known about their mechanism of interaction with amyloid fibrils, or whether other dyes, whose photophysics indicate that they may be more responsive to differences in macromolecular secondary structure and hydrophobicity, would be better suited to the identification of pathologically relevant oligomeric species in amyloid diseases. In order to systematically address this question, we have designed a strategy that discretely introduces differences in secondary structure and hydrophobicity amidst otherwise identical polyamino acids. This strategy will enable us to quantify and compare the affinities of Thioflavin T, Congo Red, and other, incompletely explored, fluorescent dyes for different secondary structural elements and hydrophobic motifs. With this information, we will identify dyes that give the most robust and quantitative information about structural differences among the complex population of oligomeric species present along an aggregation pathway between soluble monomers and amyloid fibrils, and correlate the resulting structural information with differential oligomeric toxicity.
Density functional study of molecular interactions in secondary structures of proteins.
Takano, Yu; Kusaka, Ayumi; Nakamura, Haruki
2016-01-01
Proteins play diverse and vital roles in biology, which are dominated by their three-dimensional structures. The three-dimensional structure of a protein determines its functions and chemical properties. Protein secondary structures, including α-helices and β-sheets, are key components of the protein architecture. Molecular interactions, in particular hydrogen bonds, play significant roles in the formation of protein secondary structures. Precise and quantitative estimations of these interactions are required to understand the principles underlying the formation of three-dimensional protein structures. In the present study, we have investigated the molecular interactions in α-helices and β-sheets, using ab initio wave function-based methods, the Hartree-Fock method (HF) and the second-order Møller-Plesset perturbation theory (MP2), density functional theory, and molecular mechanics. The characteristic interactions essential for forming the secondary structures are discussed quantitatively.
RNApdbee--a webserver to derive secondary structures from pdb files of knotted and unknotted RNAs.
Antczak, Maciej; Zok, Tomasz; Popenda, Mariusz; Lukasiak, Piotr; Adamiak, Ryszard W; Blazewicz, Jacek; Szachniuk, Marta
2014-07-01
In RNA structural biology and bioinformatics an access to correct RNA secondary structure and its proper representation is of crucial importance. This is true especially in the field of secondary and 3D RNA structure prediction. Here, we introduce RNApdbee-a new tool that allows to extract RNA secondary structure from the pdb file, and presents it in both textual and graphical form. RNApdbee supports processing of knotted and unknotted structures of large RNAs, also within protein complexes. The method works not only for first but also for high order pseudoknots, and gives an information about canonical and non-canonical base pairs. A combination of these features is unique among existing applications for RNA structure analysis. Additionally, a function of converting between the text notations, i.e. BPSEQ, CT and extended dot-bracket, is provided. In order to facilitate a more comprehensive study, the webserver integrates the functionality of RNAView, MC-Annotate and 3DNA/DSSR, being the most common tools used for automated identification and classification of RNA base pairs. RNApdbee is implemented as a publicly available webserver with an intuitive interface and can be freely accessed at http://rnapdbee.cs.put.poznan.pl/. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
RNApdbee 2.0: multifunctional tool for RNA structure annotation.
Zok, Tomasz; Antczak, Maciej; Zurkowski, Michal; Popenda, Mariusz; Blazewicz, Jacek; Adamiak, Ryszard W; Szachniuk, Marta
2018-04-30
In the field of RNA structural biology and bioinformatics, an access to correctly annotated RNA structure is of crucial importance, especially in the secondary and 3D structure predictions. RNApdbee webserver, introduced in 2014, primarily aimed to address the problem of RNA secondary structure extraction from the PDB files. Its new version, RNApdbee 2.0, is a highly advanced multifunctional tool for RNA structure annotation, revealing the relationship between RNA secondary and 3D structure given in the PDB or PDBx/mmCIF format. The upgraded version incorporates new algorithms for recognition and classification of high-ordered pseudoknots in large RNA structures. It allows analysis of isolated base pairs impact on RNA structure. It can visualize RNA secondary structures-including that of quadruplexes-with depiction of non-canonical interactions. It also annotates motifs to ease identification of stems, loops and single-stranded fragments in the input RNA structure. RNApdbee 2.0 is implemented as a publicly available webserver with an intuitive interface and can be freely accessed at http://rnapdbee.cs.put.poznan.pl/.
Sampling And Resolution Enhancement Techniques For The Infrared Analysis Of Adsorbed Proteins.
NASA Astrophysics Data System (ADS)
Fuller, Michael P.; Singh, Bal R.
1989-12-01
In this report, we have analyzed the secondary structures of the dichain form of tetanus neurotoxin using. FT-IR and circular dichroic spectroscopies for a-helix, β-sheets, β-turns and random coils. These results indicate that the secondary structures are significantly different from those reported in earlier studies in that it shows much higher content of ordered structures (~50%) which could be significant for the function of the neurotoxin.
Structural changes and fluctuations of proteins. I. A statistical thermodynamic model.
Ikegami, A
1977-01-01
A general theory of the structural changes and fluctuations of proteins has been proposed based on statistical thermodynamic considerations at the chain level. The "structure" of protein was assumed to be characterized by the state of secondary bonds between unique pairs of specific sites on peptide chains. Every secondary bond changes between the bonded and unbonded states by thermal agitation and the "structure" is continuously fluctuating. The free energy of the "structural state" that is defined by the fraction of secondary bonds in the bonded state has been expressed by the bond energy, the cooperative interaction between bonds, the mixing entropy of bonds, and the entropy of polypeptide chains. The most probable "structural state" can be simply determined by graphical analysis and the effect of temperature or solvent composition on it is discussed. The temperature dependence of the free energy, the probability distribution of structural states and the specific heat have been calculted for two examples of structural change. The theory predicts two different types of structural changes from the ordered to disorderd state, a "structured transition" and a "gradual structural change" with rising temperature. In the "structural transition", the probability distribution has two maxima in the temperature range of transition. In the "gradual structural change", the probabilty distribution has only one maximum during the change. A considerable fraction of secondary bonds is in the unbounded state and is always fluctuating even in the ordered state at room temperature. Such structural flucutations in a single protein molecule have been discussed quantitatively. The theory is extended to include small molecules which bind to the protein molecule and affect the structural state. The changes of structural state caused by specific and non-specific binding and allosteric effects are explained in a unified manner.
Desroches, Marie-Josee; Omanovic, Sasha
2008-05-14
Polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS) was employed to investigate the interaction of serum protein fibrinogen with a biomedical-grade 316LVM stainless steel surface, in terms of the adsorption thermodynamics, kinetics and secondary structure changes of the protein. Apparent Gibbs energy of adsorption values indicated a highly spontaneous and strong adsorption of fibrinogen onto the surface. The kinetics of fibrinogen adsorption were successfully modeled using a pseudo first-order kinetic model. Deconvolution of the amide I bands indicated that the adsorption of fibrinogen on 316LVM results in significant changes in the protein's secondary structure that occur predominantly within the first minute of adsorption. Among the investigated structures, the alpha-helix structure undergoes the smallest changes, while the beta-sheet and beta-turns structures undergo significant changes. It was shown that lateral interactions between the adsorbed molecules do not play a role in controlling the secondary structure changes. An increase in temperature induced changes in the secondary structure of the protein, characterized by a loss of the alpha-helical content and its transformation into the beta-turns structure.
Functional formation of domain V of the poliovirus noncoding region: significance of unpaired bases.
Rowe, A; Burlison, J; Macadam, A J; Minor, P D
2001-10-10
Previously we have shown that polioviruses with mutations that disrupt the predicted secondary structure of the 5' noncoding region of domain V are temperature sensitive for growth. Non-temperature-sensitive revertant viruses had mutations that re-formed secondary structure by a direct back mutation of changes in the opposite strand. We mutated unpaired regions and selected revertants of viruses with single base deletions, where no obvious back mutation was available in order to gain information on secondary structure. Results indicated that conservation of length of a three base loop between two double-stranded stems was essential for a functional domain V to form. The requirement for the unpaired "hinge" base at 484 which is implicated in the attenuation of Sabin 2 was also confirmed. Results also underline the necessity for functional folding over local secondary structure stability. Copyright 2001 Academic Press.
Protein Interaction Profile Sequencing (PIP-seq).
Foley, Shawn W; Gregory, Brian D
2016-10-10
Every eukaryotic RNA transcript undergoes extensive post-transcriptional processing from the moment of transcription up through degradation. This regulation is performed by a distinct cohort of RNA-binding proteins which recognize their target transcript by both its primary sequence and secondary structure. Here, we describe protein interaction profile sequencing (PIP-seq), a technique that uses ribonuclease-based footprinting followed by high-throughput sequencing to globally assess both protein-bound RNA sequences and RNA secondary structure. PIP-seq utilizes single- and double-stranded RNA-specific nucleases in the absence of proteins to infer RNA secondary structure. These libraries are also compared to samples that undergo nuclease digestion in the presence of proteins in order to find enriched protein-bound sequences. Combined, these four libraries provide a comprehensive, transcriptome-wide view of RNA secondary structure and RNA protein interaction sites from a single experimental technique. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Predicting residue-wise contact orders in proteins by support vector regression.
Song, Jiangning; Burrage, Kevin
2006-10-03
The residue-wise contact order (RWCO) describes the sequence separations between the residues of interest and its contacting residues in a protein sequence. It is a new kind of one-dimensional protein structure that represents the extent of long-range contacts and is considered as a generalization of contact order. Together with secondary structure, accessible surface area, the B factor, and contact number, RWCO provides comprehensive and indispensable important information to reconstructing the protein three-dimensional structure from a set of one-dimensional structural properties. Accurately predicting RWCO values could have many important applications in protein three-dimensional structure prediction and protein folding rate prediction, and give deep insights into protein sequence-structure relationships. We developed a novel approach to predict residue-wise contact order values in proteins based on support vector regression (SVR), starting from primary amino acid sequences. We explored seven different sequence encoding schemes to examine their effects on the prediction performance, including local sequence in the form of PSI-BLAST profiles, local sequence plus amino acid composition, local sequence plus molecular weight, local sequence plus secondary structure predicted by PSIPRED, local sequence plus molecular weight and amino acid composition, local sequence plus molecular weight and predicted secondary structure, and local sequence plus molecular weight, amino acid composition and predicted secondary structure. When using local sequences with multiple sequence alignments in the form of PSI-BLAST profiles, we could predict the RWCO distribution with a Pearson correlation coefficient (CC) between the predicted and observed RWCO values of 0.55, and root mean square error (RMSE) of 0.82, based on a well-defined dataset with 680 protein sequences. Moreover, by incorporating global features such as molecular weight and amino acid composition we could further improve the prediction performance with the CC to 0.57 and an RMSE of 0.79. In addition, combining the predicted secondary structure by PSIPRED was found to significantly improve the prediction performance and could yield the best prediction accuracy with a CC of 0.60 and RMSE of 0.78, which provided at least comparable performance compared with the other existing methods. The SVR method shows a prediction performance competitive with or at least comparable to the previously developed linear regression-based methods for predicting RWCO values. In contrast to support vector classification (SVC), SVR is very good at estimating the raw value profiles of the samples. The successful application of the SVR approach in this study reinforces the fact that support vector regression is a powerful tool in extracting the protein sequence-structure relationship and in estimating the protein structural profiles from amino acid sequences.
Coupling of order parameters, chirality, and interfacial structures in multiferroic materials.
Conti, Sergio; Müller, Stefan; Poliakovsky, Arkady; Salje, Ekhard K H
2011-04-13
We study optimal interfacial structures in multiferroic materials with a biquadratic coupling between two order parameters. We discover a new duality relation between the strong coupling and the weak coupling regime for the case of isotropic gradient terms. We analyze the phase diagram depending on the coupling constant and anisotropy of the gradient term, and show that in a certain regime the secondary order parameter becomes activated only in the interfacial region.
Evolutionary optimization of biopolymers and sequence structure maps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reidys, C.M.; Kopp, S.; Schuster, P.
1996-06-01
Searching for biopolymers having a predefined function is a core problem of biotechnology, biochemistry and pharmacy. On the level of RNA sequences and their corresponding secondary structures we show that this problem can be analyzed mathematically. The strategy will be to study the properties of the RNA sequence to secondary structure mapping that is essential for the understanding of the search process. We show that to each secondary structure s there exists a neutral network consisting of all sequences folding into s. This network can be modeled as a random graph and has the following generic properties: it is densemore » and has a giant component within the graph of compatible sequences. The neutral network percolates sequence space and any two neutral nets come close in terms of Hamming distance. We investigate the distribution of the orders of neutral nets and show that above a certain threshold the topology of neutral nets allows to find practically all frequent secondary structures.« less
Chiusano, M L; D'Onofrio, G; Alvarez-Valin, F; Jabbari, K; Colonna, G; Bernardi, G
1999-09-30
We investigated the relationships between the nucleotide substitution rates and the predicted secondary structures in the three states representation (alpha-helix, beta-sheet, and coil). The analysis was carried out on 34 alignments, each of which comprised sequences belonging to at least four different mammalian orders. The rates of synonymous substitution were found to be significantly different in regions predicted to be alpha-helix, beta-sheet, or coil. Likewise, the nonsynonymous rates also differ, although expectedly at a lower extent, in the three types of secondary structure, suggesting that different selective constraints associated with the different structures are affecting in a similar way the synonymous and nonsynonymous rates. Moreover, the base composition of the third codon positions is different in coding sequence regions corresponding to different secondary structures of proteins.
A generalized analysis of hydrophobic and loop clusters within globular protein sequences
Eudes, Richard; Le Tuan, Khanh; Delettré, Jean; Mornon, Jean-Paul; Callebaut, Isabelle
2007-01-01
Background Hydrophobic Cluster Analysis (HCA) is an efficient way to compare highly divergent sequences through the implicit secondary structure information directly derived from hydrophobic clusters. However, its efficiency and application are currently limited by the need of user expertise. In order to help the analysis of HCA plots, we report here the structural preferences of hydrophobic cluster species, which are frequently encountered in globular domains of proteins. These species are characterized only by their hydrophobic/non-hydrophobic dichotomy. This analysis has been extended to loop-forming clusters, using an appropriate loop alphabet. Results The structural behavior of hydrophobic cluster species, which are typical of protein globular domains, was investigated within banks of experimental structures, considered at different levels of sequence redundancy. The 294 more frequent hydrophobic cluster species were analyzed with regard to their association with the different secondary structures (frequencies of association with secondary structures and secondary structure propensities). Hydrophobic cluster species are predominantly associated with regular secondary structures, and a large part (60 %) reveals preferences for α-helices or β-strands. Moreover, the analysis of the hydrophobic cluster amino acid composition generally allows for finer prediction of the regular secondary structure associated with the considered cluster within a cluster species. We also investigated the behavior of loop forming clusters, using a "PGDNS" alphabet. These loop clusters do not overlap with hydrophobic clusters and are highly associated with coils. Finally, the structural information contained in the hydrophobic structural words, as deduced from experimental structures, was compared to the PSI-PRED predictions, revealing that β-strands and especially α-helices are generally over-predicted within the limits of typical β and α hydrophobic clusters. Conclusion The dictionary of hydrophobic clusters described here can help the HCA user to interpret and compare the HCA plots of globular protein sequences, as well as provides an original fundamental insight into the structural bricks of protein folds. Moreover, the novel loop cluster analysis brings additional information for secondary structure prediction on the whole sequence through a generalized cluster analysis (GCA), and not only on regular secondary structures. Such information lays the foundations for developing a new and original tool for secondary structure prediction. PMID:17210072
Mustoe, Anthony M.; Brooks, Charles L.; Al-Hashimi, Hashim M.
2014-01-01
Recent studies have shown that basic steric and connectivity constraints encoded at the secondary structure level are key determinants of 3D structure and dynamics in simple two-way RNA junctions. However, the role of these topological constraints in higher order RNA junctions remains poorly understood. Here, we use a specialized coarse-grained molecular dynamics model to directly probe the thermodynamic contributions of topological constraints in defining the 3D architecture and dynamics of transfer RNA (tRNA). Topological constraints alone restrict tRNA's allowed conformational space by over an order of magnitude and strongly discriminate against formation of non-native tertiary contacts, providing a sequence independent source of folding specificity. Topological constraints also give rise to long-range correlations between the relative orientation of tRNA's helices, which in turn provides a mechanism for encoding thermodynamic cooperativity between distinct tertiary interactions. These aspects of topological constraints make it such that only several tertiary interactions are needed to confine tRNA to its native global structure and specify functionally important 3D dynamics. We further show that topological constraints are conserved across tRNA's different naturally occurring secondary structures. Taken together, our results emphasize the central role of secondary-structure-encoded topological constraints in defining RNA 3D structure, dynamics and folding. PMID:25217593
The Rainbow Spectrum of RNA Secondary Structures.
Li, Thomas J X; Reidys, Christian M
2018-06-01
In this paper, we analyze the length spectrum of rainbows in RNA secondary structures. A rainbow in a secondary structure is a maximal arc with respect to the partial order induced by nesting. We show that there is a significant gap in this length spectrum. We shall prove that there asymptotically almost surely exists a unique longest rainbow of length at least [Formula: see text] and that with high probability any other rainbow has finite length. We show that the distribution of the length of the longest rainbow converges to a discrete limit law and that, for finite k, the distribution of rainbows of length k becomes for large n a negative binomial distribution. We then put the results of this paper into context, comparing the analytical results with those observed in RNA minimum free energy structures, biological RNA structures and relate our findings to the sparsification of folding algorithms.
The complex folding pathways of protein A suggest a multiple-funnelled energy landscape
NASA Astrophysics Data System (ADS)
St-Pierre, Jean-Francois; Mousseau, Normand; Derreumaux, Philippe
2008-01-01
Folding proteins into their native states requires the formation of both secondary and tertiary structures. Many questions remain, however, as to whether these form into a precise order, and various pictures have been proposed that place the emphasis on the first or the second level of structure in describing folding. One of the favorite test models for studying this question is the B domain of protein A, which has been characterized by numerous experiments and simulations. Using the activation-relaxation technique coupled with a generic energy model (optimized potential for efficient peptide structure prediction), we generate more than 50 folding trajectories for this 60-residue protein. While the folding pathways to the native state are fully consistent with the funnel-like description of the free energy landscape, we find a wide range of mechanisms in which secondary and tertiary structures form in various orders. Our nonbiased simulations also reveal the presence of a significant number of non-native β and α conformations both on and off pathway, including the visit, for a non-negligible fraction of trajectories, of fully ordered structures resembling the native state of nonhomologous proteins.
Mechanical properties of amyloid-like fibrils defined by secondary structures
NASA Astrophysics Data System (ADS)
Bortolini, C.; Jones, N. C.; Hoffmann, S. V.; Wang, C.; Besenbacher, F.; Dong, M.
2015-04-01
Amyloid and amyloid-like fibrils represent a generic class of highly ordered nanostructures that are implicated in some of the most fatal neurodegenerative diseases. On the other hand, amyloids, by possessing outstanding mechanical robustness, have also been successfully employed as functional biomaterials. For these reasons, physical and chemical factors driving fibril self-assembly and morphology are extensively studied - among these parameters, the secondary structures and the pH have been revealed to be crucial, since a variation in pH changes the fibril morphology and net chirality during protein aggregation. It is important to quantify the mechanical properties of these fibrils in order to help the design of effective strategies for treating diseases related to the presence of amyloid fibrils. In this work, we show that by changing pH the mechanical properties of amyloid-like fibrils vary as well. In particular, we reveal that these mechanical properties are strongly related to the content of secondary structures. We analysed and estimated the Young's modulus (E) by comparing the persistence length (Lp) - measured from the observation of TEM images by using statistical mechanics arguments - with the mechanical information provided by peak force quantitative nanomechanical property mapping (PF-QNM). The secondary structure content and the chirality are investigated by means of synchrotron radiation circular dichroism (SR-CD). Results arising from this study could be fruitfully used as a protocol to investigate other medical or engineering relevant peptide fibrils.Amyloid and amyloid-like fibrils represent a generic class of highly ordered nanostructures that are implicated in some of the most fatal neurodegenerative diseases. On the other hand, amyloids, by possessing outstanding mechanical robustness, have also been successfully employed as functional biomaterials. For these reasons, physical and chemical factors driving fibril self-assembly and morphology are extensively studied - among these parameters, the secondary structures and the pH have been revealed to be crucial, since a variation in pH changes the fibril morphology and net chirality during protein aggregation. It is important to quantify the mechanical properties of these fibrils in order to help the design of effective strategies for treating diseases related to the presence of amyloid fibrils. In this work, we show that by changing pH the mechanical properties of amyloid-like fibrils vary as well. In particular, we reveal that these mechanical properties are strongly related to the content of secondary structures. We analysed and estimated the Young's modulus (E) by comparing the persistence length (Lp) - measured from the observation of TEM images by using statistical mechanics arguments - with the mechanical information provided by peak force quantitative nanomechanical property mapping (PF-QNM). The secondary structure content and the chirality are investigated by means of synchrotron radiation circular dichroism (SR-CD). Results arising from this study could be fruitfully used as a protocol to investigate other medical or engineering relevant peptide fibrils. Electronic supplementary information (ESI) available: A molecular model for the peptide studied and the charge chart associated to it. In addition, an AFM image of pH 4 fibrils is presented. See DOI: 10.1039/c4nr05109b
Octahedral tilting instabilities in inorganic halide perovskites
NASA Astrophysics Data System (ADS)
Bechtel, Jonathon S.; Van der Ven, Anton
2018-02-01
Dynamic instabilities, stabilized by anharmonic interactions in cubic and tetragonal halide perovskites at high temperature, play a role in the electronic structure and optoelectronic properties of halide perovskites. In particular, inorganic and hybrid perovskite materials undergo structural phase transitions associated with octahedral tilts of the metal-halide octahedra. We investigate the structural instabilities present in inorganic Cs M X3 perovskites with Pb or Sn on the metal site and Br or I on the X site. Defining primary order parameters in terms of symmetry-adapted collective displacement modes and secondary order parameters in terms of symmetrized Hencky strain components, we unravel the coupling between octahedral tilt modes and macroscopic strains as well as the role of A -site displacements in perovskite phase stability. Symmetry-allowed secondary strain order parameters are enumerated for the 14 unique perovskite tilt systems. Using first-principles calculations to explore the Born-Oppenheimer energy surface in terms of symmetrized order parameters, we find coupling between octahedral tilting and A -site displacements is necessary to stabilize P n m a ground states. Additionally, we show that the relative stability of an inorganic halide perovskite tilt system correlates with the volume decrease from the high-symmetry cubic phase to the low-symmetry distorted phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
York, Roger L.
2007-01-01
Sum frequency generation (SFG) vibrational spectroscopy has been used to study the interfacial structure of several polypeptides and amino acids adsorbed to hydrophobic and hydrophilic surfaces under a variety of experimental conditions. Peptide sequence, peptide chain length, peptide hydrophobicity, peptide side-chain type, surface hydrophobicity, and solution ionic strength all affect an adsorbed peptide's interfacial structure. Herein, it is demonstrated that with the choice of simple, model peptides and amino acids, surface specific SFG vibrational spectroscopy can be a powerful tool to elucidate the interfacial structure of these adsorbates. Herein, four experiments are described. In one, a series of isosequential amphiphilicmore » peptides are synthesized and studied when adsorbed to both hydrophobic and hydrophilic surfaces. On hydrophobic surfaces of deuterated polystyrene, it was determined that the hydrophobic part of the peptide is ordered at the solid-liquid interface, while the hydrophilic part of the peptide appears to have a random orientation at this interface. On a hydrophilic surface of silica, it was determined that an ordered peptide was only observed if a peptide had stable secondary structure in solution. In another experiment, the interfacial structure of a model amphiphilic peptide was studied as a function of the ionic strength of the solution, a parameter that could change the peptide's secondary structure in solution. It was determined that on a hydrophobic surface, the peptide's interfacial structure was independent of its structure in solution. This was in contrast to the adsorbed structure on a hydrophilic surface, where the peptide's interfacial structure showed a strong dependence on its solution secondary structure. In a third experiment, the SFG spectra of lysine and proline amino acids on both hydrophobic and hydrophilic surfaces were obtained by using a different experimental geometry that increases the SFG signal. Upon comparison of these spectra to the SFG spectra of interfacial polylysine and polyproline it was determined that the interfacial structure of a peptide is strongly dependent on its chain length. Lastly, SFG spectroscopy has been extended to the Amide I vibrational mode of a peptide (which is sensitive to peptide secondary structure) by building a new optical parametric amplifier based on lithium thioindate. Evidence is presented that suggests that the interfacial secondary structure of a peptide can be perturbed by a surface.« less
NASA Astrophysics Data System (ADS)
Boz, Utku; Basdogan, Ipek
2015-12-01
Structural vibrations is a major cause for noise problems, discomfort and mechanical failures in aerospace, automotive and marine systems, which are mainly composed of plate-like structures. In order to reduce structural vibrations on these structures, active vibration control (AVC) is an effective approach. Adaptive filtering methodologies are preferred in AVC due to their ability to adjust themselves for varying dynamics of the structure during the operation. The filtered-X LMS (FXLMS) algorithm is a simple adaptive filtering algorithm widely implemented in active control applications. Proper implementation of FXLMS requires availability of a reference signal to mimic the disturbance and model of the dynamics between the control actuator and the error sensor, namely the secondary path. However, the controller output could interfere with the reference signal and the secondary path dynamics may change during the operation. This interference problem can be resolved by using an infinite impulse response (IIR) filter which considers feedback of the one or more previous control signals to the controller output and the changing secondary path dynamics can be updated using an online modeling technique. In this paper, IIR filtering based filtered-U LMS (FULMS) controller is combined with online secondary path modeling algorithm to suppress the vibrations of a plate-like structure. The results are validated through numerical and experimental studies. The results show that the FULMS with online secondary path modeling approach has more vibration rejection capabilities with higher convergence rate than the FXLMS counterpart.
Shedding a Tier: Flattening Organisational Structures and Employee Empowerment.
ERIC Educational Resources Information Center
Powell, Loraine
2002-01-01
Surveyed United Kingdom business people and secondary school educators working in organizations with a flatter structure about organizational climate, job meaningfulness, communications, work intensity, and personal motivation. Found that old hierarchical attitudes persist and that an investment in changing the culture is required in order to…
Heavy ion track-structure calculations for radial dose in arbitrary materials
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Katz, Robert; Wilson, John W.; Dubey, Rajendra R.
1995-01-01
The delta-ray theory of track structure is compared with experimental data for the radial dose from heavy ion irradiation. The effects of electron transmission and the angular dependence of secondary electron ejection are included in the calculations. Several empirical formulas for electron range and energy are compared in a wide variety of materials in order to extend the application of the track-structure theory. The model of Rudd for the secondary electron-spectrum in proton collisions, which is based on a modified classical kinematics binary encounter model at high energies and a molecular promotion model at low energies, is employed. For heavier projectiles, the secondary electron spectrum is found by scaling the effective charge. Radial dose calculations for carbon, water, silicon, and gold are discussed. The theoretical data agreed well with the experimental data.
Structural Interplay - Tuning Mechanics in Peptide-Polyurea Hybrids
NASA Astrophysics Data System (ADS)
Korley, Lashanda
Utilizing cues from natural materials, we have been inspired to explore the hierarchical arrangement critical to energy absorption and mechanical enhancement in synthetic systems. Of particular interest is the soft domain ordering proposed as a contributing element to the observed toughness in spider silk. Multiblock copolymers, are ideal and dynamic systems in which to explore this approach via variations in secondary structure of nature's building blocks - peptides. We have designed a new class of polyurea hybrids that incorporate peptidic copolymers as the soft segment. The impact of hierarchical ordering on the thermal, mechanical, and morphological behavior of these bio-inspired polyurethanes with a siloxane-based, peptide soft segment was investigated. These peptide-polyurethane/urea hybrids were microphase segregated, and the beta-sheet secondary structure of the soft segment was preserved during polymerization and film casting. Toughness enhancement at low strains was achieved, but the overall extensibility of the peptide-incorporated systems was reduced due to the unique hard domain organization. To decouple the secondary structure influence in the siloxane-peptide soft segment from mechanics dominated by the hard domain, we also developed non-chain extended peptide-polyurea hybrids in which the secondary structure (beta sheet vs. alpha helix) was tuned via choice of peptide and peptide length. It was shown that this structural approach allowed tailoring of extensibility, toughness, and modulus. The sheet-dominant hybrid materials were typically tougher and more elastic due to intermolecular H-bonding facilitating load distribution, while the helical-prevalent systems generally exhibited higher stiffness. Recently, we have explored the impact of a molecular design strategy that overlays a covalent and physically crosslinked architecture in these peptide-polyurea hybrids, demonstrating that physical constraints in the network hybrids influences peptide hydrogen bonding and morphology. These structural features correlated well with systematic changes in modulus, extensibility, and hysteresis. Complementary to this effort is the design of PEG-based peptide-polyurea hybrids with tunable and responsive as structural and injectable hydrogels. The authors acknowledge funding support from the National Science Foundation (CAREER DMR-0953236).
Balazs, Anna [University of Pittsburgh, Pittsburgh, Pennsylvania, United States
2017-12-09
Computer simulations reveal how photo-induced chemical reactions can be exploited to create long-range order in binary and ternary polymeric materials. The process is initiated by shining a spatially uniform light over a photosensitive AB binary blend, which undergoes both a reversible chemical reaction and phase separation. We then introduce a well-collimated, higher-intensity light source. Rastering this secondary light over the sample locally increases the reaction rate and causes formation of defect-free, spatially periodic structures. These binary structures resemble either the lamellar or hexagonal phases of microphase-separated di-block copolymers. We measure the regularity of the ordered structures as a function of the relative reaction rates for different values of the rastering speed and determine the optimal conditions for creating defect-free structures in the binary systems. We then add a non-reactive homo-polymer C, which is immiscible with both A and B. We show that this component migrates to regions that are illuminated by the secondary, higher-intensity light, allowing us to effectively write a pattern of C onto the AB film. Rastering over the ternary blend with this collimated light now leads to hierarchically ordered patterns of A, B, and C. The findings point to a facile, non-intrusive process for manufacturing high-quality polymeric devices in a low-cost, efficient manner.
Xi, Jia-Fu; Tang, Lei; Zhang, Jian-Hua; Zhang, Hong-Jian; Chen, Xu-Sheng; Mao, Zhong-Gui
2014-11-01
Circular dichroism (CD) is a special absorption spectrum. The secondary structure of protein such as α-helix, β-sheet and β-turn in the far ultraviolet region (190-250 nm) has a characteristic CD spectrum. In order to understand the activity and structural changes of ascorbate peroxidase from Chinese kale (BaAPX) during denaturation, specific activity and percentage of secondary structure of BaAPX under different time, temperature and concentration were analyzed by CD dynamically. In addition, the percentage of four secondary structures in BaAPX was calculated by CD analysis software Dichroweb. The results show that BaAPX is a full α-type enzyme whose specific activity is positively related to the percentage of α-helix. During denaturation of BaAPX, three kinds of structural changes were proposed: the one-step structural change from initial state (N state) to minimum state of α-helix (R state) under low concentration and low temperature; the one-step structural change from N state to equilibrium state (T state) under high concentration and low temperature; the two-step structural changes from N state through R state to final T state under heat treatment and low temperature renaturation.
Recognition and pseudonymisation of medical records for secondary use.
Heurix, Johannes; Fenz, Stefan; Rella, Antonio; Neubauer, Thomas
2016-03-01
Health records rank among the most sensitive personal information existing today. An unwanted disclosure to unauthorised parties usually results in significant negative consequences for an individual. Therefore, health records must be adequately protected in order to ensure the individual's privacy. However, health records are also valuable resources for clinical studies and research activities. In order to make the records available for privacy-preserving secondary use, thorough de-personalisation is a crucial prerequisite to prevent re-identification. This paper introduces MEDSEC, a system which automatically converts paper-based health records into de-personalised and pseudonymised documents which can be accessed by secondary users without compromising the patients' privacy. The system converts the paper-based records into a standardised structure that facilitates automated processing and the search for useful information.
An Amino Acid Code for Irregular and Mixed Protein Packing
Joo, Hyun; Chavan, Archana; Fraga, Keith; Tsai, Jerry
2015-01-01
To advance our understanding of protein tertiary structure, the development of the knob-socket model is completed in an analysis of the packing in irregular coil and turn secondary structure packing as well as between mixed secondary structure. The knob-socket model simplifies packing based on repeated patterns of 2 motifs: a 3 residue socket for packing within 2° structure and a 4 residue knob-socket for 3° packing. For coil and turn secondary structure, knob-sockets allow identification of a correlation between amino acid composition and tertiary arrangements in space. Coil contributes almost as much as α-helices to tertiary packing. Irregular secondary structure involves 3 residue cliques of consecutive contacting residues or XYZ sockets. In irregular sockets, Gly, Pro, Asp and Ser are favored, while Cys, His, Met and Trp are not. For irregular knobs, the preference order is Arg, Asp, Pro, Asn, Thr, Leu, and Gly, while Cys, His, Met and Trp are not. In mixed packing, the knob amino acid preferences are a function of the socket that they are packing into, whereas the amino acid composition of the sockets does not depend on the secondary structure of the knob. A unique motif of a coil knob with an XYZ β-sheet socket may potentially function to inhibit β-sheet extension. In addition, analysis of the preferred crossing angles for strands within a β-sheet and mixed α-helices/β-sheets identifies canonical packing patterns useful in protein design. Lastly, the knob-socket model abstracts the complexity of protein tertiary structure into an intuitive packing surface topology map. PMID:26370334
Cascaded bidirectional recurrent neural networks for protein secondary structure prediction.
Chen, Jinmiao; Chaudhari, Narendra
2007-01-01
Protein secondary structure (PSS) prediction is an important topic in bioinformatics. Our study on a large set of non-homologous proteins shows that long-range interactions commonly exist and negatively affect PSS prediction. Besides, we also reveal strong correlations between secondary structure (SS) elements. In order to take into account the long-range interactions and SS-SS correlations, we propose a novel prediction system based on cascaded bidirectional recurrent neural network (BRNN). We compare the cascaded BRNN against another two BRNN architectures, namely the original BRNN architecture used for speech recognition as well as Pollastri's BRNN that was proposed for PSS prediction. Our cascaded BRNN achieves an overall three state accuracy Q3 of 74.38\\%, and reaches a high Segment OVerlap (SOV) of 66.0455. It outperforms the original BRNN and Pollastri's BRNN in both Q3 and SOV. Specifically, it improves the SOV score by 4-6%.
Wu, Johnny C; Gardner, David P; Ozer, Stuart; Gutell, Robin R; Ren, Pengyu
2009-08-28
The accurate prediction of the secondary and tertiary structure of an RNA with different folding algorithms is dependent on several factors, including the energy functions. However, an RNA higher-order structure cannot be predicted accurately from its sequence based on a limited set of energy parameters. The inter- and intramolecular forces between this RNA and other small molecules and macromolecules, in addition to other factors in the cell such as pH, ionic strength, and temperature, influence the complex dynamics associated with transition of a single stranded RNA to its secondary and tertiary structure. Since all of the factors that affect the formation of an RNAs 3D structure cannot be determined experimentally, statistically derived potential energy has been used in the prediction of protein structure. In the current work, we evaluate the statistical free energy of various secondary structure motifs, including base-pair stacks, hairpin loops, and internal loops, using their statistical frequency obtained from the comparative analysis of more than 50,000 RNA sequences stored in the RNA Comparative Analysis Database (rCAD) at the Comparative RNA Web (CRW) Site. Statistical energy was computed from the structural statistics for several datasets. While the statistical energy for a base-pair stack correlates with experimentally derived free energy values, suggesting a Boltzmann-like distribution, variation is observed between different molecules and their location on the phylogenetic tree of life. Our statistical energy values calculated for several structural elements were utilized in the Mfold RNA-folding algorithm. The combined statistical energy values for base-pair stacks, hairpins and internal loop flanks result in a significant improvement in the accuracy of secondary structure prediction; the hairpin flanks contribute the most.
Glavac, Damjan; Potocnik, Uros; Podpecnik, Darja; Zizek, Teofil; Smerkolj, Sava; Ravnik-Glavac, Metka
2002-04-01
We have studied 57 different mutations within three beta-globin gene promoter fragments with sizes 52 bp, 77 bp, and 193 bp by fluorescent capillary electrophoresis CE-SSCP analysis. For each mutation and wild type, energetically most-favorable predicted secondary structures were calculated for sense and antisense strands using the MFOLD DNA-folding algorithm in order to investigate if any correlation exists between predicted DNA structures and actual CE migration time shifts. The overall CE-SSCP detection rate was 100% for all mutations in three studied DNA fragments. For shorter 52 bp and 77 bp DNA fragments we obtained a positive correlation between the migration time shifts and difference in free energy values of predicted secondary structures at all temperatures. For longer 193 bp beta-globin gene fragments with 46 mutations MFOLD predicted different secondary structures for 89% of mutated strands at 25 degrees C and 40 degrees C. However, the magnitude of the mobility shifts did not necessarily correlate with their secondary structures and free energy values except for the sense strand at 40 degrees C where this correlation was statistically significant (r = 0.312, p = 0.033). Results of this study provided more direct insight into the mechanism of CE-SSCP and showed that MFOLD prediction could be helpful in making decisions about the running temperatures and in prediction of CE-SSCP data patterns, especially for shorter (50-100 bp) DNA fragments. Copyright 2002 Wiley-Liss, Inc.
Hess, M A; Duncan, R F
1996-01-01
Preferential translation of Drosophila heat shock protein 70 (Hsp70) mRNA requires only the 5'-untranslated region (5'-UTR). The sequence of this region suggests that it has relatively little secondary structure, which may facilitate efficient protein synthesis initiation. To determine whether minimal 5'-UTR secondary structure is required for preferential translation during heat shock, the effect of introducing stem-loops into the Hsp70 mRNA 5'-UTR was measured. Stem-loops of -11 kcal/mol abolished translation during heat shock, but did not reduce translation in non-heat shocked cells. A -22 kcal/mol stem-loop was required to comparably inhibit translation during growth at normal temperatures. To investigate whether specific sequence elements are also required for efficient preferential translation, deletion and mutation analyses were conducted in a truncated Hsp70 5'-UTR containing only the cap-proximal and AUG-proximal segments. Linker-scanner mutations in the cap-proximal segment (+1 to +37) did not impair translation. Re-ordering the segments reduced mRNA translational efficiency by 50%. Deleting the AUG-proximal segment severely inhibited translation. A 5-extension of the full-length leader specifically impaired heat shock translation. These results indicate that heat shock reduces the capacity to unwind 5-UTR secondary structure, allowing only mRNAs with minimal 5'-UTR secondary structure to be efficiently translated. A function for specific sequences is also suggested. PMID:8710519
The structure and dynamics in solution of Cu(I) pseudoazurin from Paracoccus pantotrophus.
Thompson, G. S.; Leung, Y. C.; Ferguson, S. J.; Radford, S. E.; Redfield, C.
2000-01-01
The solution structure and backbone dynamics of Cu(I) pseudoazurin, a 123 amino acid electron transfer protein from Paracoccus pantotrophus, have been determined using NMR methods. The structure was calculated to high precision, with a backbone RMS deviation for secondary structure elements of 0.35+/-0.06 A, using 1,498 distance and 55 torsion angle constraints. The protein has a double-wound Greek-key fold with two alpha-helices toward its C-terminus, similar to that of its oxidized counterpart determined by X-ray crystallography. Comparison of the Cu(I) solution structure with the X-ray structure of the Cu(II) protein shows only small differences in the positions of some of the secondary structure elements. Order parameters S2, measured for amide nitrogens, indicate that the backbone of the protein is rigid on the picosecond to nanosecond timescale. PMID:10850794
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brothers, Michael C; Nesbitt, Anna E; Hallock, Michael J
2011-01-01
Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., (13)C-(13)C 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library ofmore » 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.« less
Zook, James D.; Molugu, Trivikram R.; Jacobsen, Neil E.; Lin, Guangxin; Soll, Jürgen; Cherry, Brian R.; Brown, Michael F.; Fromme, Petra
2013-01-01
Solving high-resolution structures for membrane proteins continues to be a daunting challenge in the structural biology community. In this study we report our high-resolution NMR results for a transmembrane protein, outer envelope protein of molar mass 16 kDa (OEP16), an amino acid transporter from the outer membrane of chloroplasts. Three-dimensional, high-resolution NMR experiments on the 13C, 15N, 2H-triply-labeled protein were used to assign protein backbone resonances and to obtain secondary structure information. The results yield over 95% assignment of N, HN, CO, Cα, and Cβ chemical shifts, which is essential for obtaining a high resolution structure from NMR data. Chemical shift analysis from the assignment data reveals experimental evidence for the first time on the location of the secondary structure elements on a per residue basis. In addition T 1Z and T2 relaxation experiments were performed in order to better understand the protein dynamics. Arginine titration experiments yield an insight into the amino acid residues responsible for protein transporter function. The results provide the necessary basis for high-resolution structural determination of this important plant membrane protein. PMID:24205117
Dynamic/Jitter Assessment of Multiple Potential HabEx Structural Designs
NASA Technical Reports Server (NTRS)
Knight, J. Brent; Stahl, H. Philip; Singleton, Andy; Hunt, Ron; Therrell, Melissa; Caldwell, Kate; Garcia, Jay; Baysinger, Mike
2017-01-01
One of the driving structural requirements of the Habitable Exo-Planet (HabEx) telescope is to maintain Line Of Sight (LOS) stability between the Primary Mirror (PM) and Secondary Mirror (SM) of = 5 mas. Dynamic analyses of two configurations of a proposed (HabEx) 4 meter off-axis telescope structure were performed to predict effects of jitter on primary/secondary mirror alignment. The dynamic disturbance used as the forcing function was the James Webb Space Telescope reaction wheel assembly vibration emission specification level. The objective of these analyses was to predict "order-of-magnitude" performance for various structural configurations which will roll into efforts to define the HabEx structural design's global architecture. Two variations of the basic architectural design were analyzed. Relative motion between the PM and the SM for each design configuration are reported.
Dynamic/jitter assessment of multiple potential HabEx structural designs
NASA Astrophysics Data System (ADS)
Knight, J. Brent; Stahl, H. Philip; Singleton, Andy; Hunt, Ron; Therrell, Melissa; Caldwell, Kate; Garcia, Jay; Baysinger, Mike
2017-09-01
One of the driving structural requirements of the Habitable Exo-Planet (HabEx) telescope is to maintain Line Of Sight (LOS) stability between the Primary Mirror (PM) and Secondary Mirror (SM) of <= 5 milli-arc seconds (mas). Dynamic analyses of two configurations of a proposed HabEx 4 meter off-axis telescope structure were performed to predict effects of a vibration input on primary/secondary mirror alignment. The dynamic disturbance used as the forcing function was the James Webb Space Telescope reaction wheel assembly vibration emission specification level. The objective of these analyses was to predict "order-of-magnitude" performance for various structural configurations which contribute to efforts in defining the HabEx structural design's global architecture. Two variations of the basic architectural design were analyzed. Relative motion between the PM and the SM for each design configuration are reported.
Stochastic steps in secondary active sugar transport
Adelman, Joshua L.; Ghezzi, Chiara; Bisignano, Paola; Loo, Donald D. F.; Choe, Seungho; Abramson, Jeff; Rosenberg, John M.; Wright, Ernest M.; Grabe, Michael
2016-01-01
Secondary active transporters, such as those that adopt the leucine-transporter fold, are found in all domains of life, and they have the unique capability of harnessing the energy stored in ion gradients to accumulate small molecules essential for life as well as expel toxic and harmful compounds. How these proteins couple ion binding and transport to the concomitant flow of substrates is a fundamental structural and biophysical question that is beginning to be answered at the atomistic level with the advent of high-resolution structures of transporters in different structural states. Nonetheless, the dynamic character of the transporters, such as ion/substrate binding order and how binding triggers conformational change, is not revealed from static structures, yet it is critical to understanding their function. Here, we report a series of molecular simulations carried out on the sugar transporter vSGLT that lend insight into how substrate and ions are released from the inward-facing state of the transporter. Our simulations reveal that the order of release is stochastic. Functional experiments were designed to test this prediction on the human homolog, hSGLT1, and we also found that cytoplasmic release is not ordered, but we confirmed that substrate and ion binding from the extracellular space is ordered. Our findings unify conflicting published results concerning cytoplasmic release of ions and substrate and hint at the possibility that other transporters in the superfamily may lack coordination between ions and substrate in the inward-facing state. PMID:27325773
Stochastic steps in secondary active sugar transport.
Adelman, Joshua L; Ghezzi, Chiara; Bisignano, Paola; Loo, Donald D F; Choe, Seungho; Abramson, Jeff; Rosenberg, John M; Wright, Ernest M; Grabe, Michael
2016-07-05
Secondary active transporters, such as those that adopt the leucine-transporter fold, are found in all domains of life, and they have the unique capability of harnessing the energy stored in ion gradients to accumulate small molecules essential for life as well as expel toxic and harmful compounds. How these proteins couple ion binding and transport to the concomitant flow of substrates is a fundamental structural and biophysical question that is beginning to be answered at the atomistic level with the advent of high-resolution structures of transporters in different structural states. Nonetheless, the dynamic character of the transporters, such as ion/substrate binding order and how binding triggers conformational change, is not revealed from static structures, yet it is critical to understanding their function. Here, we report a series of molecular simulations carried out on the sugar transporter vSGLT that lend insight into how substrate and ions are released from the inward-facing state of the transporter. Our simulations reveal that the order of release is stochastic. Functional experiments were designed to test this prediction on the human homolog, hSGLT1, and we also found that cytoplasmic release is not ordered, but we confirmed that substrate and ion binding from the extracellular space is ordered. Our findings unify conflicting published results concerning cytoplasmic release of ions and substrate and hint at the possibility that other transporters in the superfamily may lack coordination between ions and substrate in the inward-facing state.
Classification of the Pospiviroidae based on their structural hallmarks.
Giguère, Tamara; Perreault, Jean-Pierre
2017-01-01
The simplest known plant pathogens are the viroids. Because of their non-coding single-stranded circular RNA genome, they depend on both their sequence and their structure for both a successful infection and their replication. In the recent years, important progress in the elucidation of their structures was achieved using an adaptation of the selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) protocol in order to probe viroid structures in solution. Previously, SHAPE has been adapted to elucidate the structures of all of the members of the family Avsunviroidae, as well as those of a few members of the family Pospiviroidae. In this study, with the goal of providing an entire compendium of the secondary structures of the various viroid species, a total of thirteen new Pospiviroidae members were probed in solution using the SHAPE protocol. More specifically, the secondary structures of eleven species for which the genus was previously known were initially elucidated. At this point, considering all of the SHAPE elucidated secondary structures, a classification system for viroids in their respective genera was proposed. On the basis of the structural classification reported here, the probings of both the Grapevine latent viroid and the Dahlia latent viroid provide sound arguments for the determination of their respective genera, which appear to be Apscaviroid and Hostuviroid, respectively. More importantly, this study provides the complete repertoire of the secondary structures, mapped in solution, of all of the accepted viroid species reported thus far. In addition, a classification scheme based on structural hallmarks, an important tool for many biological studies, is proposed.
Classification of the Pospiviroidae based on their structural hallmarks
Giguère, Tamara
2017-01-01
The simplest known plant pathogens are the viroids. Because of their non-coding single-stranded circular RNA genome, they depend on both their sequence and their structure for both a successful infection and their replication. In the recent years, important progress in the elucidation of their structures was achieved using an adaptation of the selective 2’-hydroxyl acylation analyzed by primer extension (SHAPE) protocol in order to probe viroid structures in solution. Previously, SHAPE has been adapted to elucidate the structures of all of the members of the family Avsunviroidae, as well as those of a few members of the family Pospiviroidae. In this study, with the goal of providing an entire compendium of the secondary structures of the various viroid species, a total of thirteen new Pospiviroidae members were probed in solution using the SHAPE protocol. More specifically, the secondary structures of eleven species for which the genus was previously known were initially elucidated. At this point, considering all of the SHAPE elucidated secondary structures, a classification system for viroids in their respective genera was proposed. On the basis of the structural classification reported here, the probings of both the Grapevine latent viroid and the Dahlia latent viroid provide sound arguments for the determination of their respective genera, which appear to be Apscaviroid and Hostuviroid, respectively. More importantly, this study provides the complete repertoire of the secondary structures, mapped in solution, of all of the accepted viroid species reported thus far. In addition, a classification scheme based on structural hallmarks, an important tool for many biological studies, is proposed. PMID:28783761
A Guide to Establishing and Directing a Family Oriented Structured Preschool Activity.
ERIC Educational Resources Information Center
Maethner, Judith A.
This is the teacher's manual of the Family Oriented Structured Preschool Activity, a Title III Elementary and Secondary Education Act Developer/Demonstration Project in Saint Cloud, Minnesota. The program attempts to mold the expertise of the parent with the expertise of the professional educator in order to enhance the child's development. It is…
Structure and reactivity of boron-ate complexes derived from primary and secondary boronic esters.
Feeney, Kathryn; Berionni, Guillaume; Mayr, Herbert; Aggarwal, Varinder K
2015-06-05
Boron-ate complexes derived from primary and secondary boronic esters and aryllithiums have been isolated, and the kinetics of their reactions with carbenium ions studied. The second-order rate constants have been used to derive nucleophilicity parameters for the boron-ate complexes, revealing that nucleophilicity increased with (i) electron-donating aromatics on boron, (ii) neopentyl glycol over pinacol boronic esters, and (iii) 12-crown-4 ether.
Compilation of small ribosomal subunit RNA structures.
Neefs, J M; Van de Peer, Y; De Rijk, P; Chapelle, S; De Wachter, R
1993-01-01
The database on small ribosomal subunit RNA structure contained 1804 nucleotide sequences on April 23, 1993. This number comprises 365 eukaryotic, 65 archaeal, 1260 bacterial, 30 plastidial, and 84 mitochondrial sequences. These are stored in the form of an alignment in order to facilitate the use of the database as input for comparative studies on higher-order structure and for reconstruction of phylogenetic trees. The elements of the postulated secondary structure for each molecule are indicated by special symbols. The database is available on-line directly from the authors by ftp and can also be obtained from the EMBL nucleotide sequence library by electronic mail, ftp, and on CD ROM disk. PMID:8332525
Secondary structure estimation and properties analysis of stretched Asian and Caucasian hair.
Zhou, A J; Liu, H L; Du, Z Q
2015-02-01
In this previous work, we investigated the secondary structure changes of stretched yak hairs by deconvolution, secondary derivation, and curve fitting and determined the number of bands and their positions in order to resolve the protein spectrum of Raman spectroscopy. The secondary structure estimation and properties analysis of stretched Asian and Caucasian hair were investigated by Fourier transform infrared spectroscopy, tensile curves, and measurement of density. The hairs were stretched, dried, and baked at ratios 20%, 40%, 60%, 80% and 100%. The analysis of the amide I band indicated that the transformation from α-helix to β-pleated structure occurred during the stretching process, which could be verified from the tensile analysis. The cysteine oxide in S-O vibration area exhibited that stretching led to the breakage of the disulfide bonds. When the stretching ratio of Caucasian hair was more than a certain ratio, the fiber macromolecular structure was destroyed because Caucasian hair had finer diameter and less medulla than Asian hair. The β turn was easier to retract compared with other conformations, resulted in the content increase. The density measurements revealed that the structure of Caucasian hair was indeed more destroyed than that of Asian hair. The cuticles characterization indicated the length of scales was stretched longer and the thickness became thinner. Caucasian hair tended to collapse to form small fragments at the early stage of stretching. With the increase in stretching ratio, the scales of Caucasian hair lifted up, then flaked off and the scale interval increased accordingly. Asian hair was more easily peeled off than Caucasian hair cuticles with the increase in stretching ratio. The secondary structure of Caucasian hair was destroyed more easily than that of Asian hair. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A Unique Box in 28S rRNA Is Shared by the Enigmatic Insect Order Zoraptera and Dictyoptera
Dang, Kai; Wu, Haoyang; Wang, Ying; Xie, Qiang; Bu, Wenjun
2013-01-01
The position of the Zoraptera remains one of the most challenging and uncertain concerns in ordinal-level phylogenies of the insects. Zoraptera have been viewed as having a close relationship with five different groups of Polyneoptera, or as being allied to the Paraneoptera or even Holometabola. Although rDNAs have been widely used in phylogenetic studies of insects, the application of the complete 28S rDNA are still scattered in only a few orders. In this study, a secondary structure model of the complete 28S rRNAs of insects was reconstructed based on all orders of Insecta. It was found that one length-variable region, D3-4, is particularly distinctive. The length and/or sequence of D3-4 is conservative within each order of Polyneoptera, but it can be divided into two types between the different orders of the supercohort, of which the enigmatic order Zoraptera and Dictyoptera share one type, while the remaining orders of Polyneoptera share the other. Additionally, independent evidence from phylogenetic results support the clade (Zoraptera+Dictyoptera) as well. Thus, the similarity of D3-4 between Zoraptera and Dictyoptera can serve as potentially valuable autapomorphy or synapomorphy in phylogeny reconstruction. The clades of (Plecoptera+Dermaptera) and ((Grylloblattodea+Mantophasmatodea)+(Embiodea+Phasmatodea)) were also recovered in the phylogenetic study. In addition, considering the other studies based on rDNAs, this study reached the highest congruence with previous phylogenetic studies of Holometabola based on nuclear protein coding genes or morphology characters. Future comparative studies of secondary structures across deep divergences and additional taxa are likely to reveal conserved patterns, structures and motifs that can provide support for major phylogenetic lineages. PMID:23301099
SeMPI: a genome-based secondary metabolite prediction and identification web server.
Zierep, Paul F; Padilla, Natàlia; Yonchev, Dimitar G; Telukunta, Kiran K; Klementz, Dennis; Günther, Stefan
2017-07-03
The secondary metabolism of bacteria, fungi and plants yields a vast number of bioactive substances. The constantly increasing amount of published genomic data provides the opportunity for an efficient identification of gene clusters by genome mining. Conversely, for many natural products with resolved structures, the encoding gene clusters have not been identified yet. Even though genome mining tools have become significantly more efficient in the identification of biosynthetic gene clusters, structural elucidation of the actual secondary metabolite is still challenging, especially due to as yet unpredictable post-modifications. Here, we introduce SeMPI, a web server providing a prediction and identification pipeline for natural products synthesized by polyketide synthases of type I modular. In order to limit the possible structures of PKS products and to include putative tailoring reactions, a structural comparison with annotated natural products was introduced. Furthermore, a benchmark was designed based on 40 gene clusters with annotated PKS products. The web server of the pipeline (SeMPI) is freely available at: http://www.pharmaceutical-bioinformatics.de/sempi. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Man, Viet Hoang; Pan, Feng; Sagui, Celeste, E-mail: sagui@ncsu.edu
We explore the use of a fast laser melting simulation approach combined with atomistic molecular dynamics simulations in order to determine the melting and healing responses of B-DNA and Z-DNA dodecamers with the same d(5′-CGCGCGCGCGCG-3′){sub 2} sequence. The frequency of the laser pulse is specifically tuned to disrupt Watson-Crick hydrogen bonds, thus inducing melting of the DNA duplexes. Subsequently, the structures relax and partially refold, depending on the field strength. In addition to the inherent interest of the nonequilibrium melting process, we propose that fast melting by an infrared laser pulse could be used as a technique for a fastmore » comparison of relative stabilities of same-sequence oligonucleotides with different secondary structures with full atomistic detail of the structures and solvent. This could be particularly useful for nonstandard secondary structures involving non-canonical base pairs, mismatches, etc.« less
NASA Astrophysics Data System (ADS)
dos-Santos, M. N.; Keller, M. M.; Scaranello, M. A., Sr.; Longo, M.; Daniel, P.
2016-12-01
Ongoing forest fragmentation in the tropics severely reduces the ability of remaining forests to store carbon and provide ecosystem services, however, secondary regeneration could offset the impacts of forest degradation. Previous plot-based forest inventory studies have shown that secondary regeneration is promoted at remnant forest edges. However, this process has not been studied at landscape scale. We used over 450 ha of lidar data to study the forest structure and spatial variation of secondary growth forest 18 years after swidden cultivation abandonment in Serra do Conduro State Park. Lidar data was acquired in December 2015 with a density of 93 points per square meter using an airborne scanning laser system (Optech Orion M-300). Serra do Conduru, a 10 000 ha State Park in Bahia was created in 1997 as part of a network of forest reserves with both old-growth forest and secondary forest aiming at establishing a central corridor of the Atlantic forest. The Brazilian Atlantic forest is a highly human modified and fragmented forest landscape reduced to 12.5% of its original extent. Prior to the establishment of the State Park, the area was a mosaic of forest and agricultural area. We created 10m wide buffers from the edge of the remnant forest into the secondary forest and generated lidar metrics for each strip in order to ask: does the distance from the remnant forest create a gradient effect on the secondary forest structure? We cross-compared the lidar metrics of the samples. Results demonstrate that distance from old-growth forest promotes spatial variation in forest recovery and forest structure.
NASA Astrophysics Data System (ADS)
Ardon, M.; Pringle, C. M.
2005-05-01
We examined effects of initial leaf chemistry of six common riparian species on the relative contribution of fungi, bacteria, and invertebrates to leaf breakdown in a lowland stream in Costa Rica. We hypothesized that fungi and bacteria would contribute more to the breakdown of species with low concentrations of secondary (tannins and phenolics) and structural (cellulose and lignin) compounds, while invertebrates would be more important in the processing of species with high concentrations of secondary and structural compounds. We incubated single species leaf bags of six common riparian species, representing a range in secondary and structural compounds, in a third-order stream at La Selva Biological Station, Costa Rica. We measured leaf chemistry during the breakdown process. We determined fungal biomass using ergosterol methods, bacteria using DAPI counts, and invertebrate biomass using length-weight regressions. We then used biomass estimates for each group to determine their contribution to the overall breakdown process. Breakdown rates ranged from very fast (Trema integerima, k = 0.23 day-1) to slow (Zygia longifolia , k = 0.011 day-1). While analyses are still under way, preliminary results support our initial hypothesis that fungi contribute more to the break down of leaves from tree species with low concentrations of secondary and structural compounds.
Canivez, Gary L; Watkins, Marley W; Dombrowski, Stefan C
2016-08-01
The factor structure of the 16 Primary and Secondary subtests of the Wechsler Intelligence Scale for Children-Fifth Edition (WISC-V; Wechsler, 2014a) standardization sample was examined with exploratory factor analytic methods (EFA) not included in the WISC-V Technical and Interpretive Manual (Wechsler, 2014b). Factor extraction criteria suggested 1 to 4 factors and results favored 4 first-order factors. When this structure was transformed with the Schmid and Leiman (1957) orthogonalization procedure, the hierarchical g-factor accounted for large portions of total and common variance while the 4 first-order factors accounted for small portions of total and common variance; rendering interpretation at the factor index level less appropriate. Although the publisher favored a 5-factor model where the Perceptual Reasoning factor was split into separate Visual Spatial and Fluid Reasoning dimensions, no evidence for 5 factors was found. It was concluded that the WISC-V provides strong measurement of general intelligence and clinical interpretation should be primarily, if not exclusively, at that level. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Ferrer, Evelina G.; Gómez, Analía V.; Añón, María C.; Puppo, María C.
2011-06-01
Food protein product, gluten protein, was chemically modified by varying levels of sodium stearoyl lactylate (SSL); and the extent of modifications (secondary and tertiary structures) of this protein was analyzed by using Raman spectroscopy. Analysis of the Amide I band showed an increase in its intensity mainly after the addition of the 0.25% of SSL to wheat flour to produced modified gluten protein, pointing the formation of a more ordered structure. Side chain vibrations also confirmed the observed changes.
Development of in-orbit refocusing mechanism for SpaceEye-1 electro-optical payload
NASA Astrophysics Data System (ADS)
Lee, Minwoo; Kim, Jongun; Chang, Jin-Soo; Kang, Myung-Seok
2016-09-01
SpaceEye-1 earth observation satellite, developed by Satrec Initiative Co. Ltd., is a 300 kg scale spacecraft with high resolution electro-optical payload (EOS-D) which performs 1 m GSD, 12 km swath in low earth orbit. Metering structure of EOS-D is manufactured with Carbon Fiber Reinforced Plastic (CFRP). Due to the moisture emission from CFRP metering structure, this spaceborne electro-optical payload undergoes shrinkage after orbit insertion. The shrinkage of metering structure causes change of the distance between primary and secondary mirror. In order to compensate the moisture shrinkage effect, two types of thermal refocusing mechanism were developed, analyzed and applied to EOS-D. Thermal analysis simulating in-orbit thermal condition and thermo-elastic displacement analysis was conducted to calculate the performance of refocusing mechanism. For each EOS-D telescope, analytical refocusing range (displacement change between primary and secondary mirror) was 2.5 um and 3.6 um. Thus, the refocusing mechanism can compensate the dimensional instability of metering structure caused by moisture emission. Furthermore, modal, static and wavefront error analysis was conducted in order to evaluate natural frequency, structural stability and optical performance. As a result, it can be concluded that the refocusing system of EOS-D payload can perform its function in orbit.
pH-directed self-assembling helical peptide conformation
USDA-ARS?s Scientific Manuscript database
The beta-sheet and alpha-helix peptide conformation are two of the most fundamentally ordered secondary structures found in proteins and peptides. They also give rise to self-assembling motifs that form macromolecular channels and nanostructures. Through design these conformations can yield enhance...
Structator: fast index-based search for RNA sequence-structure patterns
2011-01-01
Background The secondary structure of RNA molecules is intimately related to their function and often more conserved than the sequence. Hence, the important task of searching databases for RNAs requires to match sequence-structure patterns. Unfortunately, current tools for this task have, in the best case, a running time that is only linear in the size of sequence databases. Furthermore, established index data structures for fast sequence matching, like suffix trees or arrays, cannot benefit from the complementarity constraints introduced by the secondary structure of RNAs. Results We present a novel method and readily applicable software for time efficient matching of RNA sequence-structure patterns in sequence databases. Our approach is based on affix arrays, a recently introduced index data structure, preprocessed from the target database. Affix arrays support bidirectional pattern search, which is required for efficiently handling the structural constraints of the pattern. Structural patterns like stem-loops can be matched inside out, such that the loop region is matched first and then the pairing bases on the boundaries are matched consecutively. This allows to exploit base pairing information for search space reduction and leads to an expected running time that is sublinear in the size of the sequence database. The incorporation of a new chaining approach in the search of RNA sequence-structure patterns enables the description of molecules folding into complex secondary structures with multiple ordered patterns. The chaining approach removes spurious matches from the set of intermediate results, in particular of patterns with little specificity. In benchmark experiments on the Rfam database, our method runs up to two orders of magnitude faster than previous methods. Conclusions The presented method's sublinear expected running time makes it well suited for RNA sequence-structure pattern matching in large sequence databases. RNA molecules containing several stem-loop substructures can be described by multiple sequence-structure patterns and their matches are efficiently handled by a novel chaining method. Beyond our algorithmic contributions, we provide with Structator a complete and robust open-source software solution for index-based search of RNA sequence-structure patterns. The Structator software is available at http://www.zbh.uni-hamburg.de/Structator. PMID:21619640
Bi-objective integer programming for RNA secondary structure prediction with pseudoknots.
Legendre, Audrey; Angel, Eric; Tahi, Fariza
2018-01-15
RNA structure prediction is an important field in bioinformatics, and numerous methods and tools have been proposed. Pseudoknots are specific motifs of RNA secondary structures that are difficult to predict. Almost all existing methods are based on a single model and return one solution, often missing the real structure. An alternative approach would be to combine different models and return a (small) set of solutions, maximizing its quality and diversity in order to increase the probability that it contains the real structure. We propose here an original method for predicting RNA secondary structures with pseudoknots, based on integer programming. We developed a generic bi-objective integer programming algorithm allowing to return optimal and sub-optimal solutions optimizing simultaneously two models. This algorithm was then applied to the combination of two known models of RNA secondary structure prediction, namely MEA and MFE. The resulting tool, called BiokoP, is compared with the other methods in the literature. The results show that the best solution (structure with the highest F 1 -score) is, in most cases, given by BiokoP. Moreover, the results of BiokoP are homogeneous, regardless of the pseudoknot type or the presence or not of pseudoknots. Indeed, the F 1 -scores are always higher than 70% for any number of solutions returned. The results obtained by BiokoP show that combining the MEA and the MFE models, as well as returning several optimal and several sub-optimal solutions, allow to improve the prediction of secondary structures. One perspective of our work is to combine better mono-criterion models, in particular to combine a model based on the comparative approach with the MEA and the MFE models. This leads to develop in the future a new multi-objective algorithm to combine more than two models. BiokoP is available on the EvryRNA platform: https://EvryRNA.ibisc.univ-evry.fr .
NASA Astrophysics Data System (ADS)
Wu, Hong; Li, Peng; Li, Yulong
2016-02-01
This paper describes the calculation method for unsteady state conditions in the secondary air systems in gas turbines. The 1D-3D-Structure coupled method was applied. A 1D code was used to model the standard components that have typical geometric characteristics. Their flow and heat transfer were described by empirical correlations based on experimental data or CFD calculations. A 3D code was used to model the non-standard components that cannot be described by typical geometric languages, while a finite element analysis was carried out to compute the structural deformation and heat conduction at certain important positions. These codes were coupled through their interfaces. Thus, the changes in heat transfer and structure and their interactions caused by exterior disturbances can be reflected. The results of the coupling method in an unsteady state showed an apparent deviation from the existing data, while the results in the steady state were highly consistent with the existing data. The difference in the results in the unsteady state was caused primarily by structural deformation that cannot be predicted by the 1D method. Thus, in order to obtain the unsteady state performance of a secondary air system more accurately and efficiently, the 1D-3D-Structure coupled method should be used.
Aggregation and folding phase transitions of RNA molecules
NASA Astrophysics Data System (ADS)
Bundschuh, Ralf
2007-03-01
RNA is a biomolecule that is involved in nearly all aspects of cellular functions. In order to perform many of these functions, RNA molecules have to fold into specific secondary structures. This folding is driven by the tendency of the bases to form Watson-Crick base pairs. Beyond the biological importance of RNA, the relatively simple rules for structure formation of RNA make it a very interesting system from the statistical physics point of view. We will present examples of phase transitions in RNA secondary structure formation that are amenable to analytical descriptions. A special focus will be on aggregation between several RNA molecules which is important for some regulatory circuits based on RNA structure, triplet repeat diseases like Huntington's, and as a model for prion diseases. We show that depending on the relative strength of the intramolecular and the intermolecular base pairing, RNA molecules undergo a transition into an aggregated phase and quantitatively characterize this transition.
General mechanism of two-state protein folding kinetics.
Rollins, Geoffrey C; Dill, Ken A
2014-08-13
We describe here a general model of the kinetic mechanism of protein folding. In the Foldon Funnel Model, proteins fold in units of secondary structures, which form sequentially along the folding pathway, stabilized by tertiary interactions. The model predicts that the free energy landscape has a volcano shape, rather than a simple funnel, that folding is two-state (single-exponential) when secondary structures are intrinsically unstable, and that each structure along the folding path is a transition state for the previous structure. It shows how sequential pathways are consistent with multiple stochastic routes on funnel landscapes, and it gives good agreement with the 9 order of magnitude dependence of folding rates on protein size for a set of 93 proteins, at the same time it is consistent with the near independence of folding equilibrium constant on size. This model gives estimates of folding rates of proteomes, leading to a median folding time in Escherichia coli of about 5 s.
Bulusu, Kartik V; Plesniak, Michael W
2016-07-19
The arterial network in the human vasculature comprises of ubiquitously present blood vessels with complex geometries (branches, curvatures and tortuosity). Secondary flow structures are vortical flow patterns that occur in curved arteries due to the combined action of centrifugal forces, adverse pressure gradients and inflow characteristics. Such flow morphologies are greatly affected by pulsatility and multiple harmonics of physiological inflow conditions and vary greatly in size-strength-shape characteristics compared to non-physiological (steady and oscillatory) flows (1 - 7). Secondary flow structures may ultimately influence the wall shear stress and exposure time of blood-borne particles toward progression of atherosclerosis, restenosis, sensitization of platelets and thrombosis (4 - 6, 8 - 13). Therefore, the ability to detect and characterize these structures under laboratory-controlled conditions is precursor to further clinical investigations. A common surgical treatment to atherosclerosis is stent implantation, to open up stenosed arteries for unobstructed blood flow. But the concomitant flow perturbations due to stent installations result in multi-scale secondary flow morphologies (4 - 6). Progressively higher order complexities such as asymmetry and loss in coherence can be induced by ensuing stent failures vis-à-vis those under unperturbed flows (5). These stent failures have been classified as "Types I-to-IV" based on failure considerations and clinical severity (14). This study presents a protocol for the experimental investigation of the complex secondary flow structures due to complete transverse stent fracture and linear displacement of fractured parts ("Type IV") in a curved artery model. The experimental method involves the implementation of particle image velocimetry (2C-2D PIV) techniques with an archetypal carotid artery inflow waveform, a refractive index matched blood-analog working fluid for phase-averaged measurements (15 - 18). Quantitative identification of secondary flow structures was achieved using concepts of flow physics, critical point theory and a novel wavelet transform algorithm applied to experimental PIV data (5, 6, 19 - 26).
Protein structure similarity from Principle Component Correlation analysis.
Zhou, Xiaobo; Chou, James; Wong, Stephen T C
2006-01-25
Owing to rapid expansion of protein structure databases in recent years, methods of structure comparison are becoming increasingly effective and important in revealing novel information on functional properties of proteins and their roles in the grand scheme of evolutionary biology. Currently, the structural similarity between two proteins is measured by the root-mean-square-deviation (RMSD) in their best-superimposed atomic coordinates. RMSD is the golden rule of measuring structural similarity when the structures are nearly identical; it, however, fails to detect the higher order topological similarities in proteins evolved into different shapes. We propose new algorithms for extracting geometrical invariants of proteins that can be effectively used to identify homologous protein structures or topologies in order to quantify both close and remote structural similarities. We measure structural similarity between proteins by correlating the principle components of their secondary structure interaction matrix. In our approach, the Principle Component Correlation (PCC) analysis, a symmetric interaction matrix for a protein structure is constructed with relationship parameters between secondary elements that can take the form of distance, orientation, or other relevant structural invariants. When using a distance-based construction in the presence or absence of encoded N to C terminal sense, there are strong correlations between the principle components of interaction matrices of structurally or topologically similar proteins. The PCC method is extensively tested for protein structures that belong to the same topological class but are significantly different by RMSD measure. The PCC analysis can also differentiate proteins having similar shapes but different topological arrangements. Additionally, we demonstrate that when using two independently defined interaction matrices, comparison of their maximum eigenvalues can be highly effective in clustering structurally or topologically similar proteins. We believe that the PCC analysis of interaction matrix is highly flexible in adopting various structural parameters for protein structure comparison.
Balakrishnan, Swati; Sarma, Siddhartha P
2017-08-22
Aromatic interactions are an important force in protein folding as they combine the stability of a hydrophobic interaction with the selectivity of a hydrogen bond. Much of our understanding of aromatic interactions comes from "bioinformatics" based analyses of protein structures and from the contribution of these interactions to stabilizing secondary structure motifs in model peptides. In this study, the structural consequences of aromatic interactions on protein folding have been explored in engineered mutants of the molten globule protein apo-cytochrome b 5 . Structural changes from disorder to order due to aromatic interactions in two variants of the protein, viz., WF-cytb5 and FF-cytb5, result in significant long-range secondary and tertiary structure. The results show that 54 and 52% of the residues in WF-cytb5 and FF-cytb5, respectively, occupy ordered regions versus 26% in apo-cytochrome b 5 . The interactions between the aromatic groups are offset-stacked and edge-to-face for the Trp-Phe and Phe-Phe mutants, respectively. Urea denaturation studies indicate that both mutants have a C m higher than that of apo-cytochrome b 5 and are more stable to chaotropic agents than apo-cytochrome b 5 . The introduction of these aromatic residues also results in "trimer" interactions with existing aromatic groups, reaffirming the selectivity of the aromatic interactions. These studies provide insights into the aromatic interactions that drive disorder-to-order transitions in intrinsically disordered regions of proteins and will aid in de novo protein design beyond small peptide scaffolds.
Kilpert, Fabian; Podsiadlowski, Lars
2006-01-01
Background Sequence data and other characters from mitochondrial genomes (gene translocations, secondary structure of RNA molecules) are useful in phylogenetic studies among metazoan animals from population to phylum level. Moreover, the comparison of complete mitochondrial sequences gives valuable information about the evolution of small genomes, e.g. about different mechanisms of gene translocation, gene duplication and gene loss, or concerning nucleotide frequency biases. The Peracarida (gammarids, isopods, etc.) comprise about 21,000 species of crustaceans, living in many environments from deep sea floor to arid terrestrial habitats. Ligia oceanica is a terrestrial isopod living at rocky seashores of the european North Sea and Atlantic coastlines. Results The study reveals the first complete mitochondrial DNA sequence from a peracarid crustacean. The mitochondrial genome of Ligia oceanica is a circular double-stranded DNA molecule, with a size of 15,289 bp. It shows several changes in mitochondrial gene order compared to other crustacean species. An overview about mitochondrial gene order of all crustacean taxa yet sequenced is also presented. The largest non-coding part (the putative mitochondrial control region) of the mitochondrial genome of Ligia oceanica is unexpectedly not AT-rich compared to the remainder of the genome. It bears two repeat regions (4× 10 bp and 3× 64 bp), and a GC-rich hairpin-like secondary structure. Some of the transfer RNAs show secondary structures which derive from the usual cloverleaf pattern. While some tRNA genes are putative targets for RNA editing, trnR could not be localized at all. Conclusion Gene order is not conserved among Peracarida, not even among isopods. The two isopod species Ligia oceanica and Idotea baltica show a similarly derived gene order, compared to the arthropod ground pattern and to the amphipod Parhyale hawaiiensis, suggesting that most of the translocation events were already present the last common ancestor of these isopods. Beyond that, the positions of three tRNA genes differ in the two isopod species. Strand bias in nucleotide frequency is reversed in both isopod species compared to other Malacostraca. This is probably due to a reversal of the replication origin, which is further supported by the fact that the hairpin structure typically found in the control region shows a reversed orientation in the isopod species, compared to other crustaceans. PMID:16987408
[Diversity of uncultured actinomycetes in saline-alkali soil from Jiuquan area of Hexi Corridor].
Li, Hai-yun; Niu, Shi-quan; Kong, Wei-bao; Yan, Wei-ru; Geng, Hui; Han, Cai-hong; Da, Wen-yan; Zhang, Ai-mei; Zhu, Xue-tai
2015-09-01
In order to more accurately understand community structure and diversity of actinomycetes in saline-alkali soil from Jiuquan area of Hexi Corridor, the community structure and diversity from three kinds of soil samples (primary, secondary saline alkali soil and farmland soil) were analyzed using uncultured methods. The results showed that the 16S rDNA clone library of actinomycetales from the primary saline-alkali soil belonged to 19 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; the 16S r DNA clone library of actinomycetales from the secondary saline-alkali soil belonged to 14 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; the 16S rDNA clone library of farmland soil belonged to 7 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; Micrococcineae was the common population in the three soils, and also was the dominant population in primary saline alkali soil and farmland soil. The diversity index and rarefaction curves analysis showed that actinomycetes species richness was in order of primary saline-alkali soil > secondary saline-alkali soil > farmland soil. The dilution curves of primary saline-alkali soil and secondary saline-alkali soil were not leveled off, which indicated the actinomycetes diversity in saline-alkali soil was more enriched than the actual. The rich and diverse actinomycetes resources in saline-alkali soil from Jiuquan area of Hexi Corridor provide important data on the actinomycetes ecology distribution research, exploitation and utilization in saline-alkali soil.
John J. Hutchens; J. Bruce Wallance
2004-01-01
Podostemum ceratophyllum Michx. has been associated with extremely high secondary production of benthic macroinvertebrates in open-canopy rapids. We conducted an experiment in the 7th-order Little Tennessee River, North Carolina, to test whether varying amounts of Podostemum influenced macroinvertebrate...
ToF-SIMS and Laser-SNMS Imaging of Heterogeneous Topographically Complex Polymer Systems.
Pelster, Andreas; Körsgen, Martin; Kurosawa, Takako; Morita, Hiromi; Arlinghaus, Heinrich F
2016-10-04
Heterogeneous polymer coatings, such as those used in organic electronics and medical devices, are of increasing industrial importance. In order to advance the development of these types of systems, analytical techniques are required which are able to determine the elemental and molecular spatial distributions, on a nanometer scale, with very high detection efficiency and sensitivity. The goal of this study was to investigate the suitability of laser postionization secondary neutral mass spectrometry (Laser-SNMS) with a 157 nm postionization laser beam to image structured polymer mixtures and compare the results with time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurements using Bi 3 + primary ions. The results showed that Laser-SNMS is better suited than ToF-SIMS for unambiguous detection and submicrometer imaging of the wide range of polymers investigated. The data also showed that Laser-SNMS has the advantage of being much more sensitive (in general higher by more than an order of magnitude and peaking at up to 3 orders of magnitude) than ToF-SIMS while also showing superior performance on topographically complex structured insulating surfaces, due to significantly reduced field effects and a higher dynamic range as compared to ToF-SIMS. It is concluded that Laser-SNMS is a powerful complementary technique to ToF-SIMS for the analysis of heterogeneous polymers and other complex structured organic mixtures, providing submicrometer resolution and high sensitivity.
Makarov, Alexey; LoBrutto, Rosario; Karpinski, Paul
2013-11-29
There are several spectroscopic techniques such as IR and CD, that allow for analyzing protein secondary structure in solution. However, a majority of these techniques require using purified protein, concentrated enough in the solution, to produce a relevant spectrum. Fundamental principles for the usage of reversed-phase ultra high pressure liquid chromatography (UHPLC) as an alternative technique to study protein secondary structures in solution were investigated. Several "model" proteins, as well as several small ionizable and neutral molecules, were used for these studies. The studies were conducted with UHPLC in isocratic mode, using premixed mobile phases at constant flow rate and temperature. The pressure was modified by a backpressure regulator from about 6000psi to about 12,000psi. It was found that when using a mobile phase composition at which proteins were fully denatured (loss of alpha-helix secondary structure), the retention factors of the proteins increased upon pressure increase in the same manner as non-proteins. When using a mobile phase composition in which proteins were not fully denatured, it was observed that the retention factors of the proteins displayed a much steeper (by one order of magnitude) increase in retention upon pressure increase. It was concluded that in a mobile phase in which the protein is not initially fully denatured, the increase of pressure may facilitate the folding back of the protein to its native state (alpha-helix secondary structure). The impact of different mobile phase compositions on the denaturation of the proteins was studied using CD (Circular Dichroism). Moreover, the effect of flow rate on retention of proteins and small molecules was studied at constant pressure on the different pore size silicas and the impact of internal frictional heating was evaluated. Copyright © 2013 Elsevier B.V. All rights reserved.
Meyer, Irmtraud M
2017-05-01
RNA transcripts are the primary products of active genes in any living organism, including many viruses. Their cellular destiny not only depends on primary sequence signals, but can also be determined by RNA structure. Recent experimental evidence shows that many transcripts can be assigned more than a single functional RNA structure throughout their cellular life and that structure formation happens co-transcriptionally, i.e. as the transcript is synthesised in the cell. Moreover, functional RNA structures are not limited to non-coding transcripts, but can also feature in coding transcripts. The picture that now emerges is that RNA structures constitute an additional layer of information that can be encoded in any RNA transcript (and on top of other layers of information such as protein-context) in order to exert a wide range of functional roles. Moreover, different encoded RNA structures can be expressed at different stages of a transcript's life in order to alter the transcript's behaviour depending on its actual cellular context. Similar to the concept of alternative splicing for protein-coding genes, where a single transcript can yield different proteins depending on cellular context, it is thus appropriate to propose the notion of alternative RNA structure expression for any given transcript. This review introduces several computational strategies that my group developed to detect different aspects of RNA structure expression in vivo. Two aspects are of particular interest to us: (1) RNA secondary structure features that emerge during co-transcriptional folding and (2) functional RNA structure features that are expressed at different times of a transcript's life and potentially mutually exclusive. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Kasmer, Lisa
2013-09-01
In order to promote mathematical understanding among English Language Learners (ELLs), it is necessary to modify instructional strategies to effectively communicate mathematical content. This paper discusses the instructional strategies used by four pre-service teachers to teach mathematics to secondary students in English-medium schools in Arusha, Tanzania as a result of the tensions they faced and reflections on their teaching. Strategies such as code switching, attending to sentence structure, non-linguistic representations, and placing the content within a familiar context proved to be beneficial strategies for conveying mathematical ideas.
Computational study of RNA folding kinetics and thermodynamics
NASA Astrophysics Data System (ADS)
Morgan, Steven Robert
RNA in its many forms is involved in the processes of protein manufacture, gene splicing, catalysis and gene regulation. It is also the store of genetic information in some viruses. The function of the RNA is determined by its structure, and it is the purpose of this thesis to investigate kinetic and thermodynamic properties of RNA secondary structures in order to obtain a better understanding of their formation and function. Our main tenet is that kinetic formation of RNA structure is necessary to explain features found in natural RNA structures, as well as aspects of the biological function of RNA. Firstly we show that examination of the energies of fragments of RNA secondary structure provides evidence for kinetic formation of structure. Local regions of RNA of length less than about 100 nucleotides adopt a conformation with energy near or equal to the minimum possible for those regions, whilst the energies of larger domains are much further from the their respective minima. This is consistent with the patterns that would be expected if RNA structure is folded Idneticatic during transcription. A Monte-Carlo algorithm is then used to model the kinetic folding of RNA during transcriptional growth. The algorithm is capable of finding the correct structure of a natural RNA for which the minimum free energy approach is unsuccessful. In the viral phage MS2 Idneticatic formed RNA structure plays an important role in the regulation of gene expression. The folding algorithm can accurately model this by IdneticaUy controlling access to the gene initiation region. The algorithm is also successfully used to model the control of replication in the ColEl plasmid. Taking a different approach, we then use a simplified model of RNA secondary structure to investigate the size of energy barriers between degenerate minimum energy structures. This model has much in common with physical systems such as spin glasses, and in fact shows similar behaviour to these systems in that energy barriers between structures grow quickly with the length of the RNA sequence. These barriers will serve to trap RNA in non-optimal structures. Together these studies demonstrate the necessity of studying RNA secondary structure from a kinetic point of view, and provide clear directions in which further work may be taken. Kinetic models of RNA secondary structure should continue to prove useful in modelling the structure and function of RNA.
Effects of temperature and electric field on order parameters in ferroelectric hexagonal manganites
NASA Astrophysics Data System (ADS)
Zhang, C. X.; Yang, K. L.; Jia, P.; Lin, H. L.; Li, C. F.; Lin, L.; Yan, Z. B.; Liu, J.-M.
2018-03-01
In Landau-Devonshire phase transition theory, the order parameter represents a unique property for a disorder-order transition at the critical temperature. Nevertheless, for a phase transition with more than one order parameter, such behaviors can be quite different and system-dependent in many cases. In this work, we investigate the temperature (T) and electric field (E) dependence of the two order parameters in improper ferroelectric hexagonal manganites, addressing the phase transition from the high-symmetry P63/mmc structure to the polar P63cm structure. It is revealed that the trimerization as the primary order parameter with two components: the trimerization amplitude Q and phase Φ, and the spontaneous polarization P emerging as the secondary order parameter exhibit quite different stability behaviors against various T and E. The critical exponents for the two parameters Q and P are 1/2 and 3/2, respectively. As temperature increases, the window for the electric field E enduring the trimerization state will shrink. An electric field will break the Z2 part of the Z2×Z3 symmetry. The present work may shed light on the complexity of the vortex-antivortex domain structure evolution near the phase transition temperature.
RNA design using simulated SHAPE data.
Lotfi, Mohadeseh; Zare-Mirakabad, Fatemeh; Montaseri, Soheila
2018-05-03
It has long been established that in addition to being involved in protein translation, RNA plays essential roles in numerous other cellular processes, including gene regulation and DNA replication. Such roles are known to be dictated by higher-order structures of RNA molecules. It is therefore of prime importance to find an RNA sequence that can fold to acquire a particular function that is desirable for use in pharmaceuticals and basic research. The challenge of finding an RNA sequence for a given structure is known as the RNA design problem. Although there are several algorithms to solve this problem, they mainly consider hard constraints, such as minimum free energy, to evaluate the predicted sequences. Recently, SHAPE data has emerged as a new soft constraint for RNA secondary structure prediction. To take advantage of this new experimental constraint, we report here a new method for accurate design of RNA sequences based on their secondary structures using SHAPE data as pseudo-free energy. We then compare our algorithm with four others: INFO-RNA, ERD, MODENA and RNAifold 2.0. Our algorithm precisely predicts 26 out of 29 new sequences for the structures extracted from the Rfam dataset, while the other four algorithms predict no more than 22 out of 29. The proposed algorithm is comparable to the above algorithms on RNA-SSD datasets, where they can predict up to 33 appropriate sequences for RNA secondary structures out of 34.
Ahmed, Mumdooh A M; Bamm, Vladimir V; Shi, Lichi; Steiner-Mosonyi, Marta; Dawson, John F; Brown, Leonid; Harauz, George; Ladizhansky, Vladimir
2009-01-01
The 18.5 kDa isoform of myelin basic protein (MBP) is a peripheral membrane protein that maintains the structural integrity of the myelin sheath of the central nervous system by conjoining the cytoplasmic leaflets of oligodendrocytes and by linking the myelin membrane to the underlying cytoskeleton whose assembly it strongly promotes. It is a multifunctional, intrinsically disordered protein that behaves primarily as a structural stabilizer, but with elements of a transient or induced secondary structure that represent binding sites for calmodulin or SH3-domain-containing proteins, inter alia. In this study we used solid-state NMR (SSNMR) and Fourier transform infrared (FTIR) spectroscopy to study the conformation of 18.5 kDa MBP in association with actin microfilaments and bundles. FTIR spectroscopy of fully (13)C,(15)N-labeled MBP complexed with unlabeled F-actin showed induced folding of both protein partners, viz., some increase in beta-sheet content in actin, and increases in both alpha-helix and beta-sheet content in MBP, albeit with considerable extended structure remaining. Solid-state NMR spectroscopy revealed that MBP in MBP-actin assemblies is structurally heterogeneous but gains ordered secondary structure elements (both alpha-helical and beta-sheet), particularly in the terminal fragments and in a central immunodominant epitope. The overall conformational polymorphism of MBP is consistent with its in vivo roles as both a linker (membranes and cytoskeleton) and a putative signaling hub.
Jowitt, Thomas A; Murdoch, Alan D; Baldock, Clair; Berry, Richard; Day, Joanna M; Hardingham, Timothy E
2010-01-01
Structural investigation of proteins containing large stretches of sequences without predicted secondary structure is the focus of much increased attention. Here, we have produced an unglycosylated 30 kDa peptide from the chondroitin sulphate (CS)-attachment region of human aggrecan (CS-peptide), which was predicted to be intrinsically disordered and compared its structure with the adjacent aggrecan G3 domain. Biophysical analyses, including analytical ultracentrifugation, light scattering, and circular dichroism showed that the CS-peptide had an elongated and stiffened conformation in contrast to the globular G3 domain. The results suggested that it contained significant secondary structure, which was sensitive to urea, and we propose that the CS-peptide forms an elongated wormlike molecule based on a dynamic range of energetically equivalent secondary structures stabilized by hydrogen bonds. The dimensions of the structure predicted from small-angle X-ray scattering analysis were compatible with EM images of fully glycosylated aggrecan and a partly glycosylated aggrecan CS2-G3 construct. The semiordered structure identified in CS-peptide was not predicted by common structural algorithms and identified a potentially distinct class of semiordered structure within sequences currently identified as disordered. Sequence comparisons suggested some evidence for comparable structures in proteins encoded by other genes (PRG4, MUC5B, and CBP). The function of these semiordered sequences may serve to spatially position attached folded modules and/or to present polypeptides for modification, such as glycosylation, and to provide templates for the multiple pleiotropic interactions proposed for disordered proteins. Proteins 2010. © 2010 Wiley-Liss, Inc. PMID:20806220
2010-01-01
Background Recent discoveries concerning novel functions of RNA, such as RNA interference, have contributed towards the growing importance of the field. In this respect, a deeper knowledge of complex three-dimensional RNA structures is essential to understand their new biological functions. A number of bioinformatic tools have been proposed to explore two major structural databases (PDB, NDB) in order to analyze various aspects of RNA tertiary structures. One of these tools is RNA FRABASE 1.0, the first web-accessible database with an engine for automatic search of 3D fragments within PDB-derived RNA structures. This search is based upon the user-defined RNA secondary structure pattern. In this paper, we present and discuss RNA FRABASE 2.0. This second version of the system represents a major extension of this tool in terms of providing new data and a wide spectrum of novel functionalities. An intuitionally operated web server platform enables very fast user-tailored search of three-dimensional RNA fragments, their multi-parameter conformational analysis and visualization. Description RNA FRABASE 2.0 has stored information on 1565 PDB-deposited RNA structures, including all NMR models. The RNA FRABASE 2.0 search engine algorithms operate on the database of the RNA sequences and the new library of RNA secondary structures, coded in the dot-bracket format extended to hold multi-stranded structures and to cover residues whose coordinates are missing in the PDB files. The library of RNA secondary structures (and their graphics) is made available. A high level of efficiency of the 3D search has been achieved by introducing novel tools to formulate advanced searching patterns and to screen highly populated tertiary structure elements. RNA FRABASE 2.0 also stores data and conformational parameters in order to provide "on the spot" structural filters to explore the three-dimensional RNA structures. An instant visualization of the 3D RNA structures is provided. RNA FRABASE 2.0 is freely available at http://rnafrabase.cs.put.poznan.pl. Conclusions RNA FRABASE 2.0 provides a novel database and powerful search engine which is equipped with new data and functionalities that are unavailable elsewhere. Our intention is that this advanced version of the RNA FRABASE will be of interest to all researchers working in the RNA field. PMID:20459631
Popenda, Mariusz; Szachniuk, Marta; Blazewicz, Marek; Wasik, Szymon; Burke, Edmund K; Blazewicz, Jacek; Adamiak, Ryszard W
2010-05-06
Recent discoveries concerning novel functions of RNA, such as RNA interference, have contributed towards the growing importance of the field. In this respect, a deeper knowledge of complex three-dimensional RNA structures is essential to understand their new biological functions. A number of bioinformatic tools have been proposed to explore two major structural databases (PDB, NDB) in order to analyze various aspects of RNA tertiary structures. One of these tools is RNA FRABASE 1.0, the first web-accessible database with an engine for automatic search of 3D fragments within PDB-derived RNA structures. This search is based upon the user-defined RNA secondary structure pattern. In this paper, we present and discuss RNA FRABASE 2.0. This second version of the system represents a major extension of this tool in terms of providing new data and a wide spectrum of novel functionalities. An intuitionally operated web server platform enables very fast user-tailored search of three-dimensional RNA fragments, their multi-parameter conformational analysis and visualization. RNA FRABASE 2.0 has stored information on 1565 PDB-deposited RNA structures, including all NMR models. The RNA FRABASE 2.0 search engine algorithms operate on the database of the RNA sequences and the new library of RNA secondary structures, coded in the dot-bracket format extended to hold multi-stranded structures and to cover residues whose coordinates are missing in the PDB files. The library of RNA secondary structures (and their graphics) is made available. A high level of efficiency of the 3D search has been achieved by introducing novel tools to formulate advanced searching patterns and to screen highly populated tertiary structure elements. RNA FRABASE 2.0 also stores data and conformational parameters in order to provide "on the spot" structural filters to explore the three-dimensional RNA structures. An instant visualization of the 3D RNA structures is provided. RNA FRABASE 2.0 is freely available at http://rnafrabase.cs.put.poznan.pl. RNA FRABASE 2.0 provides a novel database and powerful search engine which is equipped with new data and functionalities that are unavailable elsewhere. Our intention is that this advanced version of the RNA FRABASE will be of interest to all researchers working in the RNA field.
A semi-supervised learning approach for RNA secondary structure prediction.
Yonemoto, Haruka; Asai, Kiyoshi; Hamada, Michiaki
2015-08-01
RNA secondary structure prediction is a key technology in RNA bioinformatics. Most algorithms for RNA secondary structure prediction use probabilistic models, in which the model parameters are trained with reliable RNA secondary structures. Because of the difficulty of determining RNA secondary structures by experimental procedures, such as NMR or X-ray crystal structural analyses, there are still many RNA sequences that could be useful for training whose secondary structures have not been experimentally determined. In this paper, we introduce a novel semi-supervised learning approach for training parameters in a probabilistic model of RNA secondary structures in which we employ not only RNA sequences with annotated secondary structures but also ones with unknown secondary structures. Our model is based on a hybrid of generative (stochastic context-free grammars) and discriminative models (conditional random fields) that has been successfully applied to natural language processing. Computational experiments indicate that the accuracy of secondary structure prediction is improved by incorporating RNA sequences with unknown secondary structures into training. To our knowledge, this is the first study of a semi-supervised learning approach for RNA secondary structure prediction. This technique will be useful when the number of reliable structures is limited. Copyright © 2015 Elsevier Ltd. All rights reserved.
Microstructure modification and performance improvement of Mg-RE alloys by friction stir processing
NASA Astrophysics Data System (ADS)
Wu, Yujuan; Peng, Liming; Zheng, Feiyan; Li, Xuewen; Li, Dejiang; Ding, Wenjiang
Friction stir processing (FSP) is a severe plastic deformation (SPD) processing, which is very useful to refine grain size and secondary phase as well as change the texture of metal materials. Many FSP research were focused on aluminum alloys, while there are few reports on FSP of magnesium alloys, esp. on precipitation-hardening Mg-RE alloys. This paper overviewed the micro structures and mechanical properties of several FSPed Mg-RE alloys, such as Mg-Gd-Zn-Zr, Mg-Gd-Ag-Zr, and Mg-Nd-Zn-Zr with or without long period stacking ordering (LPSO) structure. The effects of processing parameters, such as rotation rate and traversing speed, on microstructure and mechanical properties were evaluated. It shows that FSP can effectively lend to performance improvement by micro structure modification, including obtaining remarkable finer and more homogenized grains, changing distribution and volume percentage of secondary phase etc.
Molecular Design of Branched and Binary Molecules at Ordered Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genson, Kirsten Larson
2005-01-01
This study examined five different branched molecular architectures to discern the effect of design on the ability of molecules to form ordered structures at interfaces. Photochromic monodendrons formed kinked packing structures at the air-water interface due to the cross-sectional area mismatch created by varying number of alkyl tails and the hydrophilic polar head group. The lower generations formed orthorhombic unit cell with long range ordering despite the alkyl tails tilted to a large degree. Favorable interactions between liquid crystalline terminal groups and the underlying substrate were observed to compel a flexible carbosilane dendrimer core to form a compressed elliptical conformationmore » which packed stagger within lamellae domains with limited short range ordering. A twelve arm binary star polymer was observed to form two dimensional micelles at the air-water interface attributed to the higher polystyrene block composition. Linear rod-coil molecules formed a multitude of packing structures at the air-water interface due to the varying composition. Tree-like rod-coil molecules demonstrated the ability to form one-dimensional structures at the air-water interface and at the air-solvent interface caused by the preferential ordering of the rigid rod cores. The role of molecular architecture and composition was examined and the influence chemically competing fragments was shown to exert on the packing structure. The amphiphilic balance of the different molecular series exhibited control on the ordering behavior at the air-water interface and within bulk structures. The shell nature and tail type was determined to dictate the preferential ordering structure and molecular reorganization at interfaces with the core nature effect secondary.« less
Pharmaceutically active secondary metabolites of marine actinobacteria.
Manivasagan, Panchanathan; Venkatesan, Jayachandran; Sivakumar, Kannan; Kim, Se-Kwon
2014-04-01
Marine actinobacteria are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinobacteria from terrestrial sources have been studied and screened since the 1950s, for many important antibiotics, anticancer, antitumor and immunosuppressive agents. However, frequent rediscovery of the same compounds from the terrestrial actinobacteria has made them less attractive for screening programs in the recent years. At the same time, actinobacteria isolated from the marine environment have currently received considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. They are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, antitumor, cytotoxic, cytostatic, anti-inflammatory, anti-parasitic, anti-malaria, antiviral, antioxidant, anti-angiogenesis, etc. In this review, an evaluation is made on the current status of research on marine actinobacteria yielding pharmaceutically active secondary metabolites. Bioactive compounds from marine actinobacteria possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens. With the increasing advancement in science and technology, there would be a greater demand for new bioactive compounds synthesized by actinobacteria from various marine sources in future. Copyright © 2013 Elsevier GmbH. All rights reserved.
General Mechanism of Two-State Protein Folding Kinetics
Rollins, Geoffrey C.; Dill, Ken A.
2016-01-01
We describe here a general model of the kinetic mechanism of protein folding. In the Foldon Funnel Model, proteins fold in units of secondary structures, which form sequentially along the folding pathway, stabilized by tertiary interactions. The model predicts that the free energy landscape has a volcano shape, rather than a simple funnel, that folding is two-state (single-exponential) when secondary structures are intrinsically unstable, and that each structure along the folding path is a transition state for the previous structure. It shows how sequential pathways are consistent with multiple stochastic routes on funnel landscapes, and it gives good agreement with the 9 order of magnitude dependence of folding rates on protein size for a set of 93 proteins, at the same time it is consistent with the near independence of folding equilibrium constant on size. This model gives estimates of folding rates of proteomes, leading to a median folding time in Escherichia coli of about 5 s. PMID:25056406
ERIC Educational Resources Information Center
Park, Eun-Young; Kim, Won-Ho
2013-01-01
Physical therapy intervention for children with cerebral palsy (CP) is focused on reducing neurological impairments, improving strength, and preventing the development of secondary impairments in order to improve functional outcomes. However, relationship between motor impairments and functional outcome has not been proved definitely. This study…
Whose Model Student? Learner-Centered Discourse and the Post-Secondary Privatization Agenda
ERIC Educational Resources Information Center
Hoben, John
2016-01-01
Using discourse analysis, the author identifies contradictions in privatization discourse in order to highlight how state-based educational reform has used a normative language of student interests to fundamentally redefine the nature of the university's mission and its faculty based governance structures. The author proposes a counter-discourse…
Wu, Dongni; Zhang, Shuangying; Zhao, Yuyuan; Ao, Ningjian; Ramakrishna, Seeram; He, Liumin
2018-03-16
RADA16-I (Ac-(RADA) 4 -CONH 2 ) is a widely investigated self-assembling peptide (SAP) in the biomedical field. It can undergo ordered self-assembly to form stable secondary structures, thereby further forming a nanofiber hydrogel. The modification of RADA16-I with functional peptide motifs has become a popular research topic. Researchers aim to exhibit particular biomedical signaling, and subsequently, further expand its applications. However, only a few fundamental reports are available on the influences of the peptide motifs on self-assembly mechanisms of designer functional RADA16-I SAPs. In this study, we designed RGD-modified RADA16-I SAPs with a series of net charges and amphiphilicities. The assembly/reassembly of these functionally designer SAPs was thoroughly studied using Raman spectroscopy, CD spectroscopy, and AFM. The nanofiber morphology and the secondary structure largely depended on the balance between the hydrophobic effects versus like-charge repulsions of the motifs, which should be to the focus in order to achieve a tailored nanostructure. Our study would contribute insight into considerations for sophisticated design of SAPs for biomedical applications.
Modin, Bitte; Låftman, Sara B; Östberg, Viveca
2017-12-13
School ethos refers to the school leadership's purposive efforts to shape and direct the attitudes, values and behaviors needed in order to promote an active learning environment and to prevent the emergence of undesirable behaviors by creating shared meaning and common goals for the school. The aim of this study was to examine how teacher rated aspects of school ethos are linked with manifestations of bullying among 11th grade students. Five teacher-rated sub-dimensions of school ethos (staff stability, teacher morale, structure-order, student focus, and academic atmosphere) were examined in relation to student-reported perpetration of and exposure to traditional school bullying and cyberbullying. The data material combines student and teacher information from two separate data collections performed in 2016, comprising teachers and students in 58 upper secondary schools in Stockholm. Analyses showed that bullying was associated with all but one of the five sub-dimensions of school ethos, namely structure and order for dealing with bullying behaviors at the school. Results are discussed in light of this counter-intuitive finding. Our findings nevertheless lend support to the idea that the social organization of schools, as reflected in their teacher-rated ethos, can affect individual students' attitudes in a way that prevents the emergence of bullying behavior among students.
Gorinstein, S; Zemser, M; Vargas-Albores, F; Ochoa, J L; Paredes-Lopez, O; Scheler, C; Aksu, S; Salnikow, J
1999-02-01
Characterization of three cactus proteins (native and denatured) from Machaerocereus gummosus (Pitahaya agria), Lophocereu schottii (Garambullo), and Cholla opuntia (Cholla), was based on electrophoretic, fluorescence, CD (circular dichroism), DSC (differential scanning calorimetry), and FT-IR (Fourier transform infrared) measurements. The obtained results of intrinsic fluorescence, DSC, and CD were dissimilar for the three species of cactus, providing evidence of differences in secondary and tertiary structures. Cactus proteins may be situated in the following order corresponding to their relative stability: Machaerocereus gummosus (Pitahaya agria) > Cholla opuntia (Cholla) > Lophocereu schottii (Garambullo). Thermodynamic properties of proteins and their changes upon denaturation (temperature of denaturation, enthalphy, and the number of ruptured hydrogen bonds) were correlated with the secondary structure of proteins and disappearance of alpha-helix.
Domain structure of the ribozyme from eubacterial ribonuclease P.
Loria, A; Pan, T
1996-01-01
Large RNAs can be composed of discrete domains that fold independently. One such "folding domain" has been identified previously in the ribozyme from Bacillus subtilis ribonuclease P (denoted P RNA). This domain contains roughly one-third of all residues. Folding of an RNA construct consisting of the remaining two-thirds of B. subtilis P RNA was examined by Fe(II)-EDTA hydroxyl radical protection. This molecule folds into the proper higher-order structure under identical conditions as the full-length P RNA, suggesting the presence of a second folding domain in B. subtilis P RNA. Folding analysis of the Escherichia coli P RNA by hydroxyl radical protection shows that this P RNA is completely folded at 5-6 mM Mg2+. In order to analyze the structural organization of folding domains in E. coli P RNA, constructs were designed based on the domain structure of B. subtilis P RNA. Fe(II)-EDTA protection indicates that E. coli P RNA also contains two folding domains. Despite the significant differences at the secondary structure level, both P RNAs appear to converge structurally at the folding domain level. The pre-tRNA substrate, localized in previous studies, may bind across the folding domains with the acceptor stem/3'CCA contacting the domain including the active site and the T stem-loop contacting the other. Because all eubacterial P RNAs share considerable homology in secondary structure to either B. subtilis or E. coli P RNA, these results suggest that this domain structure may be applicable for most, if not all, eubacterial P RNAs. Identification of folding domains should be valuable in dissecting structure-function relationship of large RNAs. PMID:8718684
RNA-SSPT: RNA Secondary Structure Prediction Tools.
Ahmad, Freed; Mahboob, Shahid; Gulzar, Tahsin; Din, Salah U; Hanif, Tanzeela; Ahmad, Hifza; Afzal, Muhammad
2013-01-01
The prediction of RNA structure is useful for understanding evolution for both in silico and in vitro studies. Physical methods like NMR studies to predict RNA secondary structure are expensive and difficult. Computational RNA secondary structure prediction is easier. Comparative sequence analysis provides the best solution. But secondary structure prediction of a single RNA sequence is challenging. RNA-SSPT is a tool that computationally predicts secondary structure of a single RNA sequence. Most of the RNA secondary structure prediction tools do not allow pseudoknots in the structure or are unable to locate them. Nussinov dynamic programming algorithm has been implemented in RNA-SSPT. The current studies shows only energetically most favorable secondary structure is required and the algorithm modification is also available that produces base pairs to lower the total free energy of the secondary structure. For visualization of RNA secondary structure, NAVIEW in C language is used and modified in C# for tool requirement. RNA-SSPT is built in C# using Dot Net 2.0 in Microsoft Visual Studio 2005 Professional edition. The accuracy of RNA-SSPT is tested in terms of Sensitivity and Positive Predicted Value. It is a tool which serves both secondary structure prediction and secondary structure visualization purposes.
RNA-SSPT: RNA Secondary Structure Prediction Tools
Ahmad, Freed; Mahboob, Shahid; Gulzar, Tahsin; din, Salah U; Hanif, Tanzeela; Ahmad, Hifza; Afzal, Muhammad
2013-01-01
The prediction of RNA structure is useful for understanding evolution for both in silico and in vitro studies. Physical methods like NMR studies to predict RNA secondary structure are expensive and difficult. Computational RNA secondary structure prediction is easier. Comparative sequence analysis provides the best solution. But secondary structure prediction of a single RNA sequence is challenging. RNA-SSPT is a tool that computationally predicts secondary structure of a single RNA sequence. Most of the RNA secondary structure prediction tools do not allow pseudoknots in the structure or are unable to locate them. Nussinov dynamic programming algorithm has been implemented in RNA-SSPT. The current studies shows only energetically most favorable secondary structure is required and the algorithm modification is also available that produces base pairs to lower the total free energy of the secondary structure. For visualization of RNA secondary structure, NAVIEW in C language is used and modified in C# for tool requirement. RNA-SSPT is built in C# using Dot Net 2.0 in Microsoft Visual Studio 2005 Professional edition. The accuracy of RNA-SSPT is tested in terms of Sensitivity and Positive Predicted Value. It is a tool which serves both secondary structure prediction and secondary structure visualization purposes. PMID:24250115
Computer Simulation of Fracture in Aerogels
NASA Technical Reports Server (NTRS)
Good, Brian S.
2006-01-01
Aerogels are of interest to the aerospace community primarily for their thermal properties, notably their low thermal conductivities. While the gels are typically fragile, recent advances in the application of conformal polymer layers to these gels has made them potentially useful as lightweight structural materials as well. In this work, we investigate the strength and fracture behavior of silica aerogels using a molecular statics-based computer simulation technique. The gels' structure is simulated via a Diffusion Limited Cluster Aggregation (DLCA) algorithm, which produces fractal structures representing experimentally observed aggregates of so-called secondary particles, themselves composed of amorphous silica primary particles an order of magnitude smaller. We have performed multi-length-scale simulations of fracture in silica aerogels, in which the interaction b e e n two secondary particles is assumed to be described by a Morse pair potential parameterized such that the potential range is much smaller than the secondary particle size. These Morse parameters are obtained by atomistic simulation of models of the experimentally-observed amorphous silica "bridges," with the fracture behavior of these bridges modeled via molecular statics using a Morse/Coulomb potential for silica. We consider the energetics of the fracture, and compare qualitative features of low-and high-density gel fracture.
Oligonuclear ferrocene amides: mixed-valent peptides and potential redox-switchable foldamers.
Siebler, Daniel; Linseis, Michael; Gasi, Teuta; Carrella, Luca M; Winter, Rainer F; Förster, Christoph; Heinze, Katja
2011-04-11
Trinuclear ferrocene tris-amides were synthesized from an Fmoc- or Boc-protected ferrocene amino acid, and hydrogen-bonded zigzag conformations were determined by NMR spectroscopy, molecular modelling, and X-ray diffraction. In these ordered secondary structures orientation of the individual amide dipole moments approximately in the same direction results in a macrodipole moment similar to that of α-helices composed of α-amino acids. Unlike ordinary α-amino acids, the building blocks in these ferrocene amides with defined secondary structure can be sequentially oxidized to mono-, di-, and trications. Singly and doubly charged mixed-valent cations were probed experimentally by Vis/NIR, paramagnetic ¹H NMR and Mössbauer spectroscopy and investigated theoretically by DFT calculations. According to the appearance of intervalence charge transfer (IVCT) bands in solution, the ferrocene/ferrocenium amides are described as Robin-Day class II mixed-valent systems. Mössbauer spectroscopy indicates trapped valences in the solid state. The secondary structure of trinuclear ferrocene tris-amides remains intact (coiled form) upon oxidation to mono- and dications according to DFT calculations, while oxidation to the trication should break the intramolecular hydrogen bonding and unfold the ferrocene peptide (uncoiled form).
Self-organization of granular media in airborne ultrasonic fields
NASA Astrophysics Data System (ADS)
Bobrovskaya, A. I.; Stepanenko, D. A.; Minchenya, V. T.
2012-05-01
The article presents results of experimental and theoretical studies of behaviour of granular media (powder materials) in airborne ultrasonic field created by flexurally-vibrating ring-shaped waveguide with resonant frequency in the range 20-40 kHz. Experiments show that action of acoustic radiation forces results in formation of ordered structures in the form of ultrathin walls (monolayers) with number corresponding to the number of ring nodal points. Action of secondary radiation forces (König forces) results in formation of collateral (secondary) walls situated nearby primary walls. Experimental observations are compared with results of modelling of acoustic radiation force field inside the ring by means of COMSOL Multiphysics and MathCad software. Results of the studies can be used in development of devices for ultrasonic separation and concentration of particles as well as for formation of ordered monolayers from spherical particles.
Helicoidal pattern in secondary cell walls and possible role of xylans in their construction.
Reis, Danièle; Vian, Brigitte
2004-01-01
The helicoidal organization of secondary cell walls is overviewed from several examples. Both the plywood texture and the occurrence of characteristic defects strongly suggest that the wall ordering is relevant of a cholesteric liquid-crystal assembly that is rapidly and strongly consolidated by lignification. A preferential localization of glucuronoxylans, major matrix components, and in vitro re-association experiments emphasize their preeminent role: (1) during the construction of the composite as directing the cellulose microfibrils in a helicoidal array; (2) during the lignification of the composite as a host structure for lignin precursors.
Kędra, Monika; Renaud, Paul E; Andrade, Hector; Goszczko, Ilona; Ambrose, William G
2013-01-01
The Barents Sea is among the most productive areas in the world oceans, and its shallow banks exhibit particularly high rates of primary productivity reaching over 300 g C m -2 year -1 . Our study focused on the Svalbard Bank, an important feeding area for fishes and whales. In order to investigate how benthic community structure and benthic secondary production vary across environmental gradients and through time, we sampled across the bank and compared results with a similar study conducted 85 years ago. Considerable variability in community structure and function across bank corresponded with differences in the physical structure of the habitat, including currents, sedimentation regimes and sediment type, and overlying water masses. Despite an intensive scallop fishery and climatic shifts that have taken place since the last survey in the 1920s, benthic community structure was very similar to that from the previous survey, suggesting strong system resilience. Primary and secondary production over shallow banks plays a large role in the Barents Sea and may act as a carbon subsidy to surrounding fish populations, of which many are of commercial importance.
Integration of QUARK and I-TASSER for ab initio protein structure prediction in CASP11
Zhang, Wenxuan; Yang, Jianyi; He, Baoji; Walker, Sara Elizabeth; Zhang, Hongjiu; Govindarajoo, Brandon; Virtanen, Jouko; Xue, Zhidong; Shen, Hong-Bin; Zhang, Yang
2015-01-01
We tested two pipelines developed for template-free protein structure prediction in the CASP11 experiment. First, the QUARK pipeline constructs structure models by reassembling fragments of continuously distributed lengths excised from unrelated proteins. Five free-modeling (FM) targets have the model successfully constructed by QUARK with a TM-score above 0.4, including the first model of T0837-D1, which has a TM-score=0.736 and RMSD=2.9 Å to the native. Detailed analysis showed that the success is partly attributed to the high-resolution contact map prediction derived from fragment-based distance-profiles, which are mainly located between regular secondary structure elements and loops/turns and help guide the orientation of secondary structure assembly. In the Zhang-Server pipeline, weakly scoring threading templates are re-ordered by the structural similarity to the ab initio folding models, which are then reassembled by I-TASSER based structure assembly simulations; 60% more domains with length up to 204 residues, compared to the QUARK pipeline, were successfully modeled by the I-TASSER pipeline with a TM-score above 0.4. The robustness of the I-TASSER pipeline can stem from the composite fragment-assembly simulations that combine structures from both ab initio folding and threading template refinements. Despite the promising cases, challenges still exist in long-range beta-strand folding, domain parsing, and the uncertainty of secondary structure prediction; the latter of which was found to affect nearly all aspects of FM structure predictions, from fragment identification, target classification, structure assembly, to final model selection. Significant efforts are needed to solve these problems before real progress on FM could be made. PMID:26370505
Integration of QUARK and I-TASSER for Ab Initio Protein Structure Prediction in CASP11.
Zhang, Wenxuan; Yang, Jianyi; He, Baoji; Walker, Sara Elizabeth; Zhang, Hongjiu; Govindarajoo, Brandon; Virtanen, Jouko; Xue, Zhidong; Shen, Hong-Bin; Zhang, Yang
2016-09-01
We tested two pipelines developed for template-free protein structure prediction in the CASP11 experiment. First, the QUARK pipeline constructs structure models by reassembling fragments of continuously distributed lengths excised from unrelated proteins. Five free-modeling (FM) targets have the model successfully constructed by QUARK with a TM-score above 0.4, including the first model of T0837-D1, which has a TM-score = 0.736 and RMSD = 2.9 Å to the native. Detailed analysis showed that the success is partly attributed to the high-resolution contact map prediction derived from fragment-based distance-profiles, which are mainly located between regular secondary structure elements and loops/turns and help guide the orientation of secondary structure assembly. In the Zhang-Server pipeline, weakly scoring threading templates are re-ordered by the structural similarity to the ab initio folding models, which are then reassembled by I-TASSER based structure assembly simulations; 60% more domains with length up to 204 residues, compared to the QUARK pipeline, were successfully modeled by the I-TASSER pipeline with a TM-score above 0.4. The robustness of the I-TASSER pipeline can stem from the composite fragment-assembly simulations that combine structures from both ab initio folding and threading template refinements. Despite the promising cases, challenges still exist in long-range beta-strand folding, domain parsing, and the uncertainty of secondary structure prediction; the latter of which was found to affect nearly all aspects of FM structure predictions, from fragment identification, target classification, structure assembly, to final model selection. Significant efforts are needed to solve these problems before real progress on FM could be made. Proteins 2016; 84(Suppl 1):76-86. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
K-Partite RNA Secondary Structures
NASA Astrophysics Data System (ADS)
Jiang, Minghui; Tejada, Pedro J.; Lasisi, Ramoni O.; Cheng, Shanhong; Fechser, D. Scott
RNA secondary structure prediction is a fundamental problem in structural bioinformatics. The prediction problem is difficult because RNA secondary structures may contain pseudoknots formed by crossing base pairs. We introduce k-partite secondary structures as a simple classification of RNA secondary structures with pseudoknots. An RNA secondary structure is k-partite if it is the union of k pseudoknot-free sub-structures. Most known RNA secondary structures are either bipartite or tripartite. We show that there exists a constant number k such that any secondary structure can be modified into a k-partite secondary structure with approximately the same free energy. This offers a partial explanation of the prevalence of k-partite secondary structures with small k. We give a complete characterization of the computational complexities of recognizing k-partite secondary structures for all k ≥ 2, and show that this recognition problem is essentially the same as the k-colorability problem on circle graphs. We present two simple heuristics, iterated peeling and first-fit packing, for finding k-partite RNA secondary structures. For maximizing the number of base pair stackings, our iterated peeling heuristic achieves a constant approximation ratio of at most k for 2 ≤ k ≤ 5, and at most frac6{1-(1-6/k)^k} le frac6{1-e^{-6}} < 6.01491 for k ≥ 6. Experiment on sequences from PseudoBase shows that our first-fit packing heuristic outperforms the leading method HotKnots in predicting RNA secondary structures with pseudoknots. Source code, data set, and experimental results are available at
Laakso, Into; Stenroos, Soili
2017-01-01
Heterocephalacria bachmannii is a lichenicolous fungus that takes as hosts numerous lichen species of the genus Cladonia. In the present study we analyze whether the geographical distance, the host species or the host secondary metabolites determine the genetic structure of this parasite. To address the question, populations mainly from the Southern Europe, Southern Finland and the Azores were sampled. The specimens were collected from 20 different host species representing ten chemotypes. Three loci, ITS rDNA, LSU rDNA and mtSSU, were sequenced. The genetic structure was assessed by AMOVA, redundance analyses and Bayesian clustering methods. The results indicated that the host species and the host secondary metabolites are the most influential factors over the genetic structure of this lichenicolous fungus. In addition, the genetic structure of H. bachmannii was compared with that of one of its hosts, Cladonia rangiformis. The population structure of parasite and host were discordant. The contents in phenolic compounds and fatty acids of C. rangiformis were quantified in order to test whether it had some influence on the genetic structure of the species. But no correlation was found with the genetic clusters of H. bachmannii. PMID:29253026
NASA Astrophysics Data System (ADS)
Jauernik, Stephan; Hein, Petra; Gurgel, Max; Falke, Julian; Bauer, Michael
2018-03-01
Laser-based angle-resolved photoelectron spectroscopy is performed on tin-phthalocyanine (SnPc) adsorbed on silver Ag(111). Upon adsorption of SnPc, strongly dispersing bands are observed which are identified as secondary Mahan cones formed by surface umklapp processes acting on photoelectrons from the silver substrate as they transit through the ordered adsorbate layer. We show that the photoemission data carry quantitative structural information on the adsorbate layer similar to what can be obtained from a conventional low-energy electron diffraction (LEED) study. More specifically, we compare photoemission data and LEED data probing an incommensurate-to-commensurate structural phase transition of the adsorbate layer. Based on our results we propose that Mahan-cone spectroscopy operated in a pump-probe configuration can be used in the future to probe structural dynamics at surfaces with a temporal resolution in the sub-100-fs regime.
Batkhishig, Dashdavaa; Bilguun, Khurelbaatar; Enkhbayar, Purevjav; Miyashita, Hiroki; Kretsinger, Robert H; Matsushima, Norio
2018-06-01
Leucine rich repeats (LRRs) are present in over 100,000 proteins from viruses to eukaryotes. The LRRs are 20-30 residues long and occur in tandem. LRRs form parallel stacks of short β-strands and then assume a super helical arrangement called a solenoid structure. Individual LRRs are separated into highly conserved segment (HCS) with the consensus of LxxLxLxxNxL and variable segment (VS). Eight classes have been recognized. Bacterial LRRs are short and characterized by two prolines in the VS; the consensus is xxLPxLPxx with Nine residues (N-subtype) and xxLPxxLPxx with Ten residues (T-subtype). Bacterial LRRs are contained in type III secretion system effectors such as YopM, IpaH3/9.8, SspH1/2, and SlrP from bacteria. Some LRRs in decorin, fribromodulin, TLR8/9, and FLRT2/3 from vertebrate also contain the motifs. In order to understand structural features of bacterial LRRs, we performed both secondary structures assignments using four programs-DSSP-PPII, PROSS, SEGNO, and XTLSSTR-and HELFIT analyses (calculating helix axis, pitch, radius, residues per turn, and handedness), based on the atomic coordinates of their crystal structures. The N-subtype VS adopts a left handed polyproline II helix (PPII) with four, five or six residues and a type I β-turn at the C-terminal side. Thus, the N-subtype is characterized by a super secondary structure consisting of a PPII and a β-turn. In contrast, the T-subtype VS prefers two separate PPIIs with two or three and two residues. The HELFIT analysis indicates that the type I β-turn is a right handed helix. The HELFIT analysis determines three unit vectors of the helix axes of PPII (P), β-turn (B), and LRR domain (A). Three structural parameters using these three helix axes are suggested to characterize the super secondary structure and the LRR domain.
There is Diversity in Disorder-"In all Chaos there is a Cosmos, in all Disorder a Secret Order".
Nielsen, Jakob T; Mulder, Frans A A
2016-01-01
The protein universe consists of a continuum of structures ranging from full order to complete disorder. As the structured part of the proteome has been intensively studied, stably folded proteins are increasingly well documented and understood. However, proteins that are fully, or in large part, disordered are much less well characterized. Here we collected NMR chemical shifts in a small database for 117 protein sequences that are known to contain disorder. We demonstrate that NMR chemical shift data can be brought to bear as an exquisite judge of protein disorder at the residue level, and help in validation. With the help of secondary chemical shift analysis we demonstrate that the proteins in the database span the full spectrum of disorder, but still, largely segregate into two classes; disordered with small segments of order scattered along the sequence, and structured with small segments of disorder inserted between the different structured regions. A detailed analysis reveals that the distribution of order/disorder along the sequence shows a complex and asymmetric distribution, that is highly protein-dependent. Access to ratified training data further suggests an avenue to improving prediction of disorder from sequence.
Design and research of focusable secondary microprism in concentrating photovoltaic module
NASA Astrophysics Data System (ADS)
Guo, Limin; Liu, Youqiang; Zhao, Guoming; Wang, Zhiyong
2017-09-01
Low tracking accuracy of tracker, wind induced vibration of structure and lens deformation by temperature lead to non-vertical incident irradiation to the Fresnel lens, which necessitates a secondary concentrator in actual engineering application of concentrating photovoltaic module. This paper adds a secondary focusable microprism between Fresnel lens and solar cells in order to improve optical efficiency. The 3D model of microprism is established by SOLIDWORDS and main parameters are optimized using ZEMAX. Results show that combination of Fresnel lens and focusable microprism achieves a higher energy when the secondary microprism upper spherical diameter is 18mm, the opposite side face included angle is 116°, and the side length of the bottom is 2.15mm. The highest energy of solar cell surface can reach 2.4998W, improving 33.2%, and the module height with the secondary microprism is 88mm, which reduces by 5.5mm without secondary microprism. Experimental results show that the optical efficiency of 400X concentrating module system is 88.67%, the acceptance angle is ±1.2°, the 400X module maximum output power is 144.7W.
Organizational Role Stress of Secondary School Teachers with Reference to Gender and Management
ERIC Educational Resources Information Center
Mohanty, Sankar Prasad
2017-01-01
Everyone talks on stress. Further, role stress in an organization is very common in the current scenario. The organization has its own structure and goal and an individual plays important role in order to achieve the organisational goals. Individual's unique personality and needs affects his role in any organization. The investigators conducted a…
USDA-ARS?s Scientific Manuscript database
Trichothecenes are secondary metabolites produced by multiple genera in the order Hypocreales, including Fusarium, Myrothecium, Stachybotrys, and Trichoderma. These metabolites are of concern because they are toxic to humans and animals, can contribute to pathogenicity in Fusarium, and are required ...
ERIC Educational Resources Information Center
Antink-Meyer, Allison; Lederman, Norman G.
2015-01-01
The divergent thinking skills in science of 282 US high school students were investigated across 16 weeks of instruction in order to determine whether typical academic time periods can significantly influence changes in thinking skills. Students' from 6 high school science classrooms completed the Scientific Structures Creativity Measure (SSCM)…
Mental Health Status: A Study among Higher Secondary Students
ERIC Educational Resources Information Center
Kumar, V. Jurist Lionial
2013-01-01
Education is the totality of the process within which the students experiences are structured in order to promote desired learning. Education is a plan and procedure for the development of an individual. Education helps to attain the goal of life of an individual. Student period is one of the important periods in life to plan their future. To…
Secondary impact hazard assessment
NASA Technical Reports Server (NTRS)
1986-01-01
A series of light gas gun shots (4 to 7 km/sec) were performed with 5 mg nylon and aluminum projectiles to determine the size, mass, velocity, and spatial distribution of spall and ejecta from a number of graphite/epoxy targets. Similar determinations were also performed on a few aluminum targets. Target thickness and material were chosen to be representative of proposed Space Station structure. The data from these shots and other information were used to predict the hazard to Space Station elements from secondary particles resulting from impacts of micrometeoroids and orbital debris on the Space Station. This hazard was quantified as an additional flux over and above the primary micrometeoroid and orbital debris flux that must be considered in the design process. In order to simplify the calculations, eject and spall mass were assumed to scale directly with the energy of the projectile. Other scaling systems may be closer to reality. The secondary particles considered are only those particles that may impact other structure immediately after the primary impact. The addition to the orbital debris problem from these primary impacts was not addressed. Data from this study should be fed into the orbital debris model to see if Space Station secondaries make a significant contribution to orbital debris. The hazard to a Space Station element from secondary particles above and beyond the micrometeoroid and orbital debris hazard is categorized in terms of two factors: (1) the 'view factor' of the element to other Space Station structure or the geometry of placement of the element, and (2) the sensitivity to damage, stated in terms of energy. Several example cases were chosen, the Space Station module windows, windows of a Shuttle docked to the Space Station, the habitat module walls, and the photovoltaic solar cell arrays. For the examples chosen the secondary flux contributed no more than 10 percent to the total flux (primary and secondary) above a given calculated critical energy. A key assumption in these calculations is that above a certain critical energy, significant damage will be done. This is not true for all structures. Double-walled, bumpered structures are an example for which damage may be reduced as energy goes up. The critical energy assumption is probably conservative, however, in terms of secondary damage. To understand why the secondary impacts seem to, in general, contribute less than 10 percent of the flux above a given critical energy, consider the case of a meteoroid impact of a given energy on a fixed, large surface. This impact results in a variety of secondary particles, all of which have much less energy than the original impact. Conservation of energy prohibits any other situation. Thus if damage is linked to a critical energy of a particle, the primary flux will always deliver particles of much greater energy. Even if all the secondary particles impacted other Space Station structures, none would have a kinetic energy more than a fraction of the primary impact energy.
Panja, Sudipta; Halder, Mintu
2016-08-01
Exogenous ligand binding can be adequate to alter the secondary structure of biomolecules besides other external stimuli. In such cases, structural alterations can complicate on the nature of interaction with the exogenous molecules. In order to accommodate the exogenous ligand, the biomolecule has to unfold resulting in a considerable change to its properties. If the bound ligand can be unbound, the biomolecule gets the opportunity to refold back and return to its native state. Keeping this in mind, we have purposely investigated the interaction of tartrazine (TZ), a well abundant azo food colorant, with two homologous lysozymes, namely, human lysozyme (HLZ) and chicken egg white lysozyme (CEWLZ) in physiological pH condition. The binding of TZ with lysozymes has been identified to accompany a ligand-induced secondary structure alteration as indicated by the circular dichroism spectra, and the reduction of α-helical content is more with HLZ than CEWLZ. Interestingly, the binding is identified to occur in the electronic ground state of TZ with lysozyme in its hydrophobic cavity, containing excess of positive charge, predominantly via electrostatic interaction. With increase of salinity of the medium the protein tends to refold back due to wakening of electrostatic forces and consequent reduction of strength of ligand interaction and unbinding. The entropy enthalpy compensation (EEC) has been probed to understand the binding features and it is found that CEWLZ-TZ shows better compensation than HLZ-TZ complex. This is presumably due to the fact that with CEWLZ the binding does not accompany substantial change in the protein secondary structure and hence ineffective to scramble the EEC. The present study initiates the importance of ligand-perturbed structural alteration of biomolecule in controlling the thermodynamics of binding. If there is a considerable alteration of the protein secondary structure due to binding, it is indicative that such changes should bring in the overall loss of activity of protein. Copyright © 2016 Elsevier B.V. All rights reserved.
fRMSDPred: Predicting Local RMSD Between Structural Fragments Using Sequence Information
2007-04-04
machine learning approaches for estimating the RMSD value of a pair of protein fragments. These estimated fragment-level RMSD values can be used to construct the alignment, assess the quality of an alignment, and identify high-quality alignment segments. We present algorithms to solve this fragment-level RMSD prediction problem using a supervised learning framework based on support vector regression and classification that incorporates protein profiles, predicted secondary structure, effective information encoding schemes, and novel second-order pairwise exponential kernel
2008-05-01
a Titanium and Gamma-TiAl Alloy, JOM, September 2005, 50-54 4 Chapter 1 [ref3] Caton, M.J., Jha, S.K., Larsen, J.M., Rosenberger, A.H., TMS...Figure 5: Notch 3 strain distribution at 900MPa 25 Chapter 3 Figure 6 : Notch 3 inverse pole figure of local microstructure. Figure 7: Notch 4 ...showing the local grain structure Figure 6 : Local strain distribution at 986MPa calculated from 36 Chapter 4 Figure 7: Secondary electron
Metal matrix composite fabrication processes for high performance aerospace structures
NASA Astrophysics Data System (ADS)
Ponzi, C.
A survey is conducted of extant methods of metal matrix composite (MMC) production in order to serve as a basis for prospective MMC users' selection of a matrix/reinforcement combination, cost-effective primary fabrication methods, and secondary fabrication techniques for the achievement of desired performance levels. Attention is given to the illustrative cases of structural fittings, control-surface connecting rods, hypersonic aircraft air inlet ramps, helicopter swash plates, and turbine rotor disks. Methods for technical and cost analysis modeling useful in process optimization are noted.
Probing Xist RNA Structure in Cells Using Targeted Structure-Seq
Rutenberg-Schoenberg, Michael; Simon, Matthew D.
2015-01-01
The long non-coding RNA (lncRNA) Xist is a master regulator of X-chromosome inactivation in mammalian cells. Models for how Xist and other lncRNAs function depend on thermodynamically stable secondary and higher-order structures that RNAs can form in the context of a cell. Probing accessible RNA bases can provide data to build models of RNA conformation that provide insight into RNA function, molecular evolution, and modularity. To study the structure of Xist in cells, we built upon recent advances in RNA secondary structure mapping and modeling to develop Targeted Structure-Seq, which combines chemical probing of RNA structure in cells with target-specific massively parallel sequencing. By enriching for signals from the RNA of interest, Targeted Structure-Seq achieves high coverage of the target RNA with relatively few sequencing reads, thus providing a targeted and scalable approach to analyze RNA conformation in cells. We use this approach to probe the full-length Xist lncRNA to develop new models for functional elements within Xist, including the repeat A element in the 5’-end of Xist. This analysis also identified new structural elements in Xist that are evolutionarily conserved, including a new element proximal to the C repeats that is important for Xist function. PMID:26646615
A True Delphi Approach: Developing a Tailored Curriculum in Response to Local Agriscience Need
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubenstein, Eric; Thoron, Andrew; Burleson, Sarah
2012-02-07
The Delphi approach is a structured communication technique, developed as a systematic, interactive forecasting method which relies on a panel of experts. In this specific case experts from Industry, Education and Extension fields addressed needs for educational programs in a traditional agriculturally-based community, environmentally conscious practices in order to restore environmental integrity and multi-disciplinary approach to solve sustainability problems facing the agricultural industry. The experts were divided into two main groups, (A) Secondary and (B) Post-secondary, and answered questionnaires in three rounds: • 1st Round – Participants generated a list of knowledge, skills, and competencies followed • 2nd Round –more » Panelists rated each item • 3rd Round – Panelists were given the opportunity to combine and add additional items As a result, top six items from both groups were not found similar, secondary panelists centralized around employment skills and post-secondary panelists focused on content areas. Implications include a need for content-based curriculum for post-secondary graduates, utilization of true-Delphi technique for future curriculum development research and further examination of students that complete secondary and post-secondary programs in biofuels/sustainable agriculture.« less
Sachan, Priyanka; Kulkarni, Manish; Sharma, Ashutosh
2015-11-17
Photoresists are the materials of choice for micro/nanopatterning and device fabrication but are rarely used as a self-assembly material. We report for the first time a novel interplay of self-assembly and photolithography for fabrication of hierarchical and ordered micro/nano structures. We create self-organized structures by the intensified dewetting of unstable thin (∼10 nm to 1 μm) photoresist films by annealing them in an optimal solvent and nonsolvent liquid mixture that allows spontaneous dewetting to form micro/nano smooth dome-like structures. The density, size (∼100 nm to millimeters), and curvature/contact angle of the dome/droplet structures are controlled by the film thickness, composition of the dewetting liquid, and time of annealing. Ordered dewetted structures are obtained simply by creating spatial variation of viscosity by ultraviolet exposure or by photopatterning before dewetting. Further, the structures thus fabricated are readily photopatterned again on the finer length scales after dewetting. We illustrate the approach by fabricating several three-dimensional structures of varying complexity with secondary and tertiary features.
Liu, Huihua; Wang, Bo; Barrow, Colin J; Adhikari, Benu
2014-01-15
The objectives of this study were to quantify the relationship between secondary structure of gelatin and its adsorption at the fish-oil/water interface and to quantify the implication of the adsorption on the dynamic interfacial tension (DST) and emulsion stability. The surface hydrophobicity of the gelatin solutions decreased when the pH increased from 4.0 to 6.0, while opposite tend was observed in the viscosity of the solution. The DST values decreased as the pH increased from 4.0 to 6.0, indicating that higher positive charges (measured trough zeta potential) in the gelatin solution tended to result in higher DST values. The adsorption kinetics of the gelatin solution was examined through the calculated diffusion coefficients (Deff). The addition of acid promoted the random coil and β-turn structures at the expense of α-helical structure. The addition of NaOH decreased the β-turn and increased the α-helix and random coil. The decrease in the random coil and triple helix structures in the gelatin solution resulted into increased Deff values. The highest diffusion coefficients, the highest emulsion stability and the lowest amount of random coil and triple helix structures were observed at pH=4.8. The lowest amount of random coil and triple helix structures in the interfacial protein layer correlated with the highest stability of the emulsion (highest ESI value). The lower amount of random coil and triple helix structures allowed higher coverage of the oil-water interface by relatively highly ordered secondary structure of gelatin. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kato, Koichi; Nakayoshi, Tomoki; Fukuyoshi, Shuichi; Kurimoto, Eiji; Oda, Akifumi
2017-10-12
Although various higher-order protein structure prediction methods have been developed, almost all of them were developed based on the three-dimensional (3D) structure information of known proteins. Here we predicted the short protein structures by molecular dynamics (MD) simulations in which only Newton's equations of motion were used and 3D structural information of known proteins was not required. To evaluate the ability of MD simulationto predict protein structures, we calculated seven short test protein (10-46 residues) in the denatured state and compared their predicted and experimental structures. The predicted structure for Trp-cage (20 residues) was close to the experimental structure by 200-ns MD simulation. For proteins shorter or longer than Trp-cage, root-mean square deviation values were larger than those for Trp-cage. However, secondary structures could be reproduced by MD simulations for proteins with 10-34 residues. Simulations by replica exchange MD were performed, but the results were similar to those from normal MD simulations. These results suggest that normal MD simulations can roughly predict short protein structures and 200-ns simulations are frequently sufficient for estimating the secondary structures of protein (approximately 20 residues). Structural prediction method using only fundamental physical laws are useful for investigating non-natural proteins, such as primitive proteins and artificial proteins for peptide-based drug delivery systems.
NASA Technical Reports Server (NTRS)
Deo, Ravi; Wang, Donny; Bohlen, Jim; Fukuda, Cliff
2008-01-01
A trade study was conducted to determine the suitability of composite structures for weight and life cycle cost savings in primary and secondary structural systems for crew exploration vehicles, crew and cargo launch vehicles, landers, rovers, and habitats. The results of the trade study were used to identify and rank order composite material technologies that can have a near-term impact on a broad range of exploration mission applications. This report recommends technologies that should be developed to enable usage of composites on Vision for Space Exploration vehicles towards mass and life-cycle cost savings.
Thermal modeling and analysis of structurally complex spacecraft using the IDEAS system
NASA Technical Reports Server (NTRS)
Garrett, L. B.
1983-01-01
Large antenna satellites of unprecedented sizes are needed for a number of applications. Antenna diameters on the order of 50 meters and upward are required. Such antennas involve the use of large expanses of lattice structures with hundreds or thousands of individual connecting members. In connection with the design of such structures, the consideration of thermal effects represents a crucial factor. Software capabilities have emerged which are coded to include major first order thermal effects and to purposely ignore, in the interest of computational efficiency, the secondary effects. The Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) is one such system. It has been developed for an employment in connection with thermal-structural interaction analyses related to the design of large structurally complex classes of future spacecraft. An IDEAS overview is presented. Attention is given to a typical antenna analysis using IDEAS, the thermal and loading analyses of a tetrahedral truss spacecraft, and ecliptic and polar orbit analyses.
Knaus, Tanja; Schober, Markus; Kepplinger, Bernhard; Faccinelli, Martin; Pitzer, Julia; Faber, Kurt; Macheroux, Peter; Wagner, Ulrike
2012-12-01
A highly enantioselective and stereoselective secondary alkylsulfatase from Pseudomonas sp. DSM6611 (Pisa1) was heterologously expressed in Escherichia coli BL21, and purified to homogeneity for kinetic and structural studies. Structure determination of Pisa1 by X-ray crystallography showed that the protein belongs to the family of metallo-β-lactamases with a conserved binuclear Zn(2+) cluster in the active site. In contrast to a closely related alkylsulfatase from Pseudomonas aeruginosa (SdsA1), Pisa1 showed a preference for secondary rather than primary alkyl sulfates, and enantioselectively hydrolyzed the (R)-enantiomer of rac-2-octyl sulfate, yielding (S)-2-octanol with inversion of absolute configuration as a result of C-O bond cleavage. In order to elucidate the mechanism of inverting sulfate ester hydrolysis, for which no counterpart in chemical catalysis exists, we designed variants of Pisa1 guided by three-dimensional structure and docking experiments. In the course of these studies, we identified an invariant histidine (His317) near the sulfate-binding site as the general acid for crucial protonation of the sulfate leaving group. Additionally, amino acid replacements in the alkyl chain-binding pocket generated an enzyme variant that lost its stereoselectivity towards rac-2-octyl sulfate. These findings are discussed in light of the potential use of this enzyme family for applications in biocatalysis. © 2012 The Authors Journal compilation © 2012 FEBS.
Estimating loop length from CryoEM images at medium resolutions.
McKnight, Andrew; Si, Dong; Al Nasr, Kamal; Chernikov, Andrey; Chrisochoides, Nikos; He, Jing
2013-01-01
De novo protein modeling approaches utilize 3-dimensional (3D) images derived from electron cryomicroscopy (CryoEM) experiments. The skeleton connecting two secondary structures such as α-helices represent the loop in the 3D image. The accuracy of the skeleton and of the detected secondary structures are critical in De novo modeling. It is important to measure the length along the skeleton accurately since the length can be used as a constraint in modeling the protein. We have developed a novel computational geometric approach to derive a simplified curve in order to estimate the loop length along the skeleton. The method was tested using fifty simulated density images of helix-loop-helix segments of atomic structures and eighteen experimentally derived density data from Electron Microscopy Data Bank (EMDB). The test using simulated density maps shows that it is possible to estimate within 0.5 Å of the expected length for 48 of the 50 cases. The experiments, involving eighteen experimentally derived CryoEM images, show that twelve cases have error within 2 Å. The tests using both simulated and experimentally derived images show that it is possible for our proposed method to estimate the loop length along the skeleton if the secondary structure elements, such as α-helices, can be detected accurately, and there is a continuous skeleton linking the α-helices.
Viseu, Maria Isabel; Melo, Eduardo P.; Carvalho, Teresa Isabel; Correia, Raquel F.; Costa, Sílvia M. B.
2007-01-01
The β→α transition of β-lactoglobulin, a globular protein abundant in the milk of several mammals, is investigated in this work. This transition, induced by the cationic surfactant dodecyltrimethylammonium chloride (DTAC), is accompanied by partial unfolding of the protein. In this work, unfolding of bovine β-lactoglobulin in DTAC is compared with its unfolding induced by the chemical denaturant guanidine hydrochloride (GnHCl). The final protein states attained in the two media have quite different secondary structure: in DTAC the α-helical content increases, leading to the so-called α-state; in GnHCl the amount of ordered secondary-structure decreases, resulting in a random coil-rich final state (denatured, or D, state). To obtain information on both mechanistic routes, in DTAC and GnHCl, and to characterize intermediates, the kinetics of unfolding were investigated in the two media. Equilibrium and kinetic data show the partial accumulation of an on-pathway intermediate in each unfolding route: in DTAC, an intermediate (I1) with mostly native secondary structure but loose tertiary structure appears between the native (β) and α-states; in GnHCl, another intermediate (I2) appears between states β and D. Kinetic rate constants follow a linear Chevron-plot representation in GnHCl, but show a more complex mechanism in DTAC, which acts like a stronger binding species. PMID:17693475
Modularity in protein structures: study on all-alpha proteins.
Khan, Taushif; Ghosh, Indira
2015-01-01
Modularity is known as one of the most important features of protein's robust and efficient design. The architecture and topology of proteins play a vital role by providing necessary robust scaffolds to support organism's growth and survival in constant evolutionary pressure. These complex biomolecules can be represented by several layers of modular architecture, but it is pivotal to understand and explore the smallest biologically relevant structural component. In the present study, we have developed a component-based method, using protein's secondary structures and their arrangements (i.e. patterns) in order to investigate its structural space. Our result on all-alpha protein shows that the known structural space is highly populated with limited set of structural patterns. We have also noticed that these frequently observed structural patterns are present as modules or "building blocks" in large proteins (i.e. higher secondary structure content). From structural descriptor analysis, observed patterns are found to be within similar deviation; however, frequent patterns are found to be distinctly occurring in diverse functions e.g. in enzymatic classes and reactions. In this study, we are introducing a simple approach to explore protein structural space using combinatorial- and graph-based geometry methods, which can be used to describe modularity in protein structures. Moreover, analysis indicates that protein function seems to be the driving force that shapes the known structure space.
Modin, Bitte; Låftman, Sara B.; Östberg, Viveca
2017-01-01
School ethos refers to the school leadership’s purposive efforts to shape and direct the attitudes, values and behaviors needed in order to promote an active learning environment and to prevent the emergence of undesirable behaviors by creating shared meaning and common goals for the school. The aim of this study was to examine how teacher rated aspects of school ethos are linked with manifestations of bullying among 11th grade students. Five teacher-rated sub-dimensions of school ethos (staff stability, teacher morale, structure-order, student focus, and academic atmosphere) were examined in relation to student-reported perpetration of and exposure to traditional school bullying and cyberbullying. The data material combines student and teacher information from two separate data collections performed in 2016, comprising teachers and students in 58 upper secondary schools in Stockholm. Analyses showed that bullying was associated with all but one of the five sub-dimensions of school ethos, namely structure and order for dealing with bullying behaviors at the school. Results are discussed in light of this counter-intuitive finding. Our findings nevertheless lend support to the idea that the social organization of schools, as reflected in their teacher-rated ethos, can affect individual students’ attitudes in a way that prevents the emergence of bullying behavior among students. PMID:29236039
Sakai, Atsushi; Murayama, Yoshihiro; Fujiwara, Kei; Fujisawa, Takahiro; Sasaki, Saori; Kidoaki, Satoru; Yanagisawa, Miho
2018-04-25
Even though microgels are used in a wide variety of applications, determining their mechanical properties has been elusive because of the difficulties in analysis. In this study, we investigated the surface elasticity of a spherical microgel of gelatin prepared inside a lipid droplet by using micropipet aspiration. We found that gelation inside a microdroplet covered with lipid membranes increased Young's modulus E toward a plateau value E * along with a decrease in gel size. In the case of 5.0 wt % gelatin gelled inside a microsized lipid space, the E * for small microgels with R ≤ 50 μm was 10-fold higher (35-39 kPa) than that for the bulk gel (∼3 kPa). Structural analysis using circular dichroism spectroscopy and a fluorescence indicator for ordered beta sheets demonstrated that the smaller microgels contained more beta sheets in the structure than the bulk gel. Our finding indicates that the confinement size of gelling polymers becomes a factor in the variation of elasticity of protein-based microgels via secondary structure changes.
2018-01-01
Even though microgels are used in a wide variety of applications, determining their mechanical properties has been elusive because of the difficulties in analysis. In this study, we investigated the surface elasticity of a spherical microgel of gelatin prepared inside a lipid droplet by using micropipet aspiration. We found that gelation inside a microdroplet covered with lipid membranes increased Young’s modulus E toward a plateau value E* along with a decrease in gel size. In the case of 5.0 wt % gelatin gelled inside a microsized lipid space, the E* for small microgels with R ≤ 50 μm was 10-fold higher (35–39 kPa) than that for the bulk gel (∼3 kPa). Structural analysis using circular dichroism spectroscopy and a fluorescence indicator for ordered beta sheets demonstrated that the smaller microgels contained more beta sheets in the structure than the bulk gel. Our finding indicates that the confinement size of gelling polymers becomes a factor in the variation of elasticity of protein-based microgels via secondary structure changes. PMID:29721530
A Quest for Meta-Learning Gains in a Physics Serious Game
ERIC Educational Resources Information Center
Verpoorten, Dominique; Castaigne, Jean-Loup; Westera, Wim; Specht, Marcus
2014-01-01
This paper describes how a short, repeated and structured opportunity to reflect was integrated in the storyline of a serious game in order to stimulate the development of a meta-cognitive skill: the ability to self-assess the degree of confidence in own answers. An empirical validation of the approach, conducted with 28 secondary school pupils,…
ERIC Educational Resources Information Center
Artley, A. Sterl
The factors which determine the nature of a reading program are discussed in order to identify differences in reading instruction at the elementary and secondary levels. These factors are the developmental status of the learner, the demands of the curriculum, and the structure of the reading process. The differences in the developmental status of…
Uhlik, Ondrej; Musilova, Lucie; Ridl, Jakub; Hroudova, Miluse; Vlcek, Cestmir; Koubek, Jiri; Holeckova, Marcela; Mackova, Martina; Macek, Tomas
2013-10-01
The aim of the study was to investigate how selected natural compounds (naringin, caffeic acid, and limonene) induce shifts in both bacterial community structure and degradative activity in long-term polychlorinated biphenyl (PCB)-contaminated soil and how these changes correlate with changes in chlorobiphenyl degradation capacity. In order to address this issue, we have integrated analytical methods of determining PCB degradation with pyrosequencing of 16S rRNA gene tag-encoded amplicons and DNA-stable isotope probing (SIP). Our model system was set in laboratory microcosms with PCB-contaminated soil, which was enriched for 8 weeks with the suspensions of flavonoid naringin, terpene limonene, and phenolic caffeic acid. Our results show that application of selected plant secondary metabolites resulted in bacterial community structure far different from the control one (no natural compound amendment). The community in soil treated with caffeic acid is almost solely represented by Proteobacteria, Acidobacteria, and Verrucomicrobia (together over 99 %). Treatment with naringin resulted in an enrichment of Firmicutes to the exclusion of Acidobacteria and Verrucomicrobia. SIP was applied in order to identify populations actively participating in 4-chlorobiphenyl catabolism. We observed that naringin and limonene in soil foster mainly populations of Hydrogenophaga spp., caffeic acid Burkholderia spp. and Pseudoxanthomonas spp. None of these populations were detected among 4-chlorobiphenyl utilizers in non-amended soil. Similarly, the degradation of individual PCB congeners was influenced by the addition of different plant compounds. Residual content of PCBs was lowest after treating the soil with naringin. Addition of caffeic acid resulted in comparable decrease of total PCBs with non-amended soil; however, higher substituted congeners were more degraded after caffeic acid treatment compared to all other treatments. Finally, it appears that plant secondary metabolites have a strong effect on the bacterial community structure, activity, and associated degradative ability.
Hotchkiss, Jason T; Lesher, Ruth
2018-06-01
This study predicted Burnout from the self-care practices, compassion satisfaction, secondary traumatic stress, and organizational factors among chaplains who participated from all 50 states (N = 534). A hierarchical regression model indicated that the combined effect of compassion satisfaction, secondary traumatic stress, mindful self-care, demographic, and organizational factors explained 83.2% of the variance in Burnout. Chaplains serving in a hospital were slightly more at risk for Burnout than those in hospice or other settings. Organizational factors that most predicted Burnout were feeling bogged down by the "system" (25.7%) and an overwhelming caseload (19.9%). Each self-care category was a statistically significant protective factor against Burnout risk. The strongest protective factors against Burnout in order of strength were self-compassion and purpose, supportive structure, mindful self-awareness, mindful relaxation, supportive relationships, and physical care. For secondary traumatic stress, supportive structure, mindful self-awareness, and self-compassion and purpose were the strongest protective factors. Chaplains who engaged in multiple and frequent self-care strategies experienced higher professional quality of life and low Burnout risk. In the chaplain's journey toward wellness, a reflective practice of feeling good about doing good and mindful self-care are vital. The significance, implications, and limitations of the study were discussed.
Hafsa, Noor E.; Arndt, David; Wishart, David S.
2015-01-01
The Chemical Shift Index or CSI 3.0 (http://csi3.wishartlab.com) is a web server designed to accurately identify the location of secondary and super-secondary structures in protein chains using only nuclear magnetic resonance (NMR) backbone chemical shifts and their corresponding protein sequence data. Unlike earlier versions of CSI, which only identified three types of secondary structure (helix, β-strand and coil), CSI 3.0 now identifies total of 11 types of secondary and super-secondary structures, including helices, β-strands, coil regions, five common β-turns (type I, II, I′, II′ and VIII), β hairpins as well as interior and edge β-strands. CSI 3.0 accepts experimental NMR chemical shift data in multiple formats (NMR Star 2.1, NMR Star 3.1 and SHIFTY) and generates colorful CSI plots (bar graphs) and secondary/super-secondary structure assignments. The output can be readily used as constraints for structure determination and refinement or the images may be used for presentations and publications. CSI 3.0 uses a pipeline of several well-tested, previously published programs to identify the secondary and super-secondary structures in protein chains. Comparisons with secondary and super-secondary structure assignments made via standard coordinate analysis programs such as DSSP, STRIDE and VADAR on high-resolution protein structures solved by X-ray and NMR show >90% agreement between those made with CSI 3.0. PMID:25979265
NASA Astrophysics Data System (ADS)
Wang, Xiaoyong; Guo, Chongling; Hu, Yongli; He, Hongyan
2017-11-01
The primary and secondary mirrors of onaxis three mirror anastigmatic (TMA) space camera are connected and supported by its front mirror-body structure, which affects both imaging performance and stability of the camera. In this paper, the carbon fiber reinforced plastics (CFRP) thin-walled cylinder and titanium alloy connecting rod have been used for the front mirror-body opto-mechanical structure of the long-focus on-axis and TMA space camera optical system. The front mirror-body component structure has then been optimized by finite element analysis (FEA) computing. Each performance of the front mirror-body structure has been tested by mechanics and vacuum experiments in order to verify the validity of such structure engineering design.
Evolution of intrinsic disorder in eukaryotic proteins.
Ahrens, Joseph B; Nunez-Castilla, Janelle; Siltberg-Liberles, Jessica
2017-09-01
Conformational flexibility conferred though regions of intrinsic structural disorder allows proteins to behave as dynamic molecules. While it is well-known that intrinsically disordered regions can undergo disorder-to-order transitions in real-time as part of their function, we also are beginning to learn more about the dynamics of disorder-to-order transitions along evolutionary time-scales. Intrinsically disordered regions endow proteins with functional promiscuity, which is further enhanced by the ability of some of these regions to undergo real-time disorder-to-order transitions. Disorder content affects gene retention after whole genome duplication, but it is not necessarily conserved. Altered patterns of disorder resulting from evolutionary disorder-to-order transitions indicate that disorder evolves to modify function through refining stability, regulation, and interactions. Here, we review the evolution of intrinsically disordered regions in eukaryotic proteins. We discuss the interplay between secondary structure and disorder on evolutionary time-scales, the importance of disorder for eukaryotic proteome expansion and functional divergence, and the evolutionary dynamics of disorder.
Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective
NASA Technical Reports Server (NTRS)
Gutell, R. R.; Larsen, N.; Woese, C. R.
1994-01-01
The 16S and 23S rRNA higher-order structures inferred from comparative analysis are now quite refined. The models presented here differ from their immediate predecessors only in minor detail. Thus, it is safe to assert that all of the standard secondary-structure elements in (prokaryotic) rRNAs have been identified, with approximately 90% of the individual base pairs in each molecule having independent comparative support, and that at least some of the tertiary interactions have been revealed. It is interesting to compare the rRNAs in this respect with tRNA, whose higher-order structure is known in detail from its crystal structure (36) (Table 2). It can be seen that rRNAs have as great a fraction of their sequence in established secondary-structure elements as does tRNA. However, the fact that the former show a much lower fraction of identified tertiary interactions and a greater fraction of unpaired nucleotides than the latter implies that many of the rRNA tertiary interactions remain to be located. (Alternatively, the ribosome might involve protein-rRNA rather than intramolecular rRNA interactions to stabilize three-dimensional structure.) Experimental studies on rRNA are consistent to a first approximation with the structures proposed here, confirming the basic assumption of comparative analysis, i.e., that bases whose compositions strictly covary are physically interacting. In the exhaustive study of Moazed et al. (45) on protection of the bases in the small-subunit rRNA against chemical modification, the vast majority of bases inferred to pair by covariation are found to be protected from chemical modification, both in isolated small-subunit rRNA and in the 30S subunit. The majority of the tertiary interactions are reflected in the chemical protection data as well (45). On the other hand, many of the bases not shown as paired in Fig. 1 are accessible to chemical attack (45). However, in this case a sizeable fraction of them are also protected against chemical modification (in the isolated rRNA), which suggests that considerable higher-order structure remains to be found (although all of it may not involve base-base interactions and so may not be detectable by comparative analysis). The agreement between the higher-order structure of the small-subunit rRNA and protection against chemical modification is not perfect, however; some bases shown to covary canonically are accessible to chemical modification (45).(ABSTRACT TRUNCATED AT 400 WORDS).
NASA Astrophysics Data System (ADS)
Ares, A. E.; Gassa, L. M.; Gueijman, S. F.; Schvezov, C. E.
2008-04-01
The columnar to equiaxed transition (CET) has been examined for many years and the significance of CET has been treated in several articles. Experimental observations in different alloy systems have shown that the position of the transition is dependent on parameters like cooling rate, velocity of the liquidus and solidus fronts, local solidification time, temperature gradients and recalescence. The dendritic structure in alloys results in microsegregation of solute species which affects significantly the mechanical properties of the material. The main parameters characterizing the microstructure and the length range of microsegregation is the spacing which is classified as primary, secondary and tertiary. Properties like mechanical resistance and ductility are influenced by the dimensions and continuity of the primary branches, while the secondary and tertiary branches permit the isolation of interdendritic phases which can deteriorate the mechanical behavior of the material. Since the morphology and dimensions of the dendritic structure is related to the solidification parameters mentioned above, for each type of alloy it is essential to correlate dimensions and solidification conditions in order to control the structure. The objective of the present research consists on studying the influence of solidification thermal parameters with the type of structure (columnar, equiaxial or with the CET); and with grain size and dendritic spacing (primary and secondary) in Zn-Al (ZA) alloys (Zn—4 wt%Al, Zn—16 wt%Al and Zn—27 wt%Al, weight percent). Also, correlate the thermal parameters, type of structure, grain size and dendritic spacing with the corrosion resistance of these alloys.
Myhr, Arnhild; Lillefjell, Monica; Espnes, Geir Arild; Halvorsen, Thomas
2017-01-01
Completion of secondary education is important for individuals' future health and health behaviour. The fundamental purpose of this study is to investigate the variation and clustering of school completion in families and neighbourhoods. Secondly, we aim to examine the impact of individuals' family structure and neighbourhood of residence and examine to what extent parental education level moderates these associations. Longitudinal register data for 30% of the entire Norwegian population aged 21-27 years in 2010 (N = 107,003) was extracted from Statistic Norway´s event database. Three-level logistic regression models, which incorporated individual, family, and neighbourhood contextual factors, were applied to estimate the family and neighbourhood general contextual effects and detect possible educational differences in the impact of family structure and urban place of residence in school completion. Completion rates were significantly higher within families with higher education level (79% in tertiary educated families vs. 61% and 48% in secondary and primary educated families respectively) and were strongly correlated within families (ICC = 39.6) and neighbourhoods (ICC = 5.7). Several structural factors at the family level negatively associated with school completion (e.g., family disruption, large family size, and young maternal age) were more prevalent and displayed more negative impact among primary educated individuals. Urban residence was associated with school completion, but only among the tertiary educated. Investment in the resources in the individuals' immediate surroundings, including family and neighbourhood, may address a substantial portion of the social inequalities in the completion of upper secondary education. The high intra-familial correlation in school completion suggests that public health policies and future research should acknowledge family environments in order to improve secondary education completion rates among young people within lower educated families.
Polarized neutron scattering study of the multiple order parameter system NdB4
NASA Astrophysics Data System (ADS)
Metoki, N.; Yamauchi, H.; Matsuda, M.; Fernandez-Baca, J. A.; Watanuki, R.; Hagihala, M.
2018-05-01
Neutron polarization analysis has been carried out in order to clarify the magnetic structures of multiple order parameter f -electron system NdB4. We confirmed the noncollinear "all-in all-out" structure (Γ4) of the in-plane moment, which is in good agreement with our previous neutron powder diffraction study. We found that the magnetic moment along the c -axis mc showed diagonally antiferromagnetic structure (Γ10), inconsistent with previously reported "vortex" structure (Γ2). The microscopic mixture of these two structures with q⃗0=(0 ,0 ,0 ) appears in phase II and remains stable in phases III and IV, where an incommensurate modulation coexists. The unusual magnetic ordering is phenomenologically understood via Landau theory with the primary order parameter Γ4 coupled with higher-order secondary order parameter Γ10. The magnetic moments were estimated to be 1.8 ±0.2 and 0.2 ±0.05 μB at T =7.5 K for Γ4 and Γ10, respectively. We also found a long-period incommensurate modulation of the q⃗1=(0 ,0 ,1 /2 ) antiferromagnetic structure of mc with the propagation q⃗s 1=(0.14 ,0.14 ,0.1 ) and q⃗s 2=(0.2 ,0 ,0.1 ) in phase III and IV, respectively. The amplitude of sinusoidal modulation was about mc=1.0 ±0.2 μB at T =1.5 K. The local (0 ,0 ,1 /2 ) structure consists of in-plane ferromagnetic and out-of-plane antiferromagnetic coupling of mc, opposite to the coexisting Γ10. The mc of Γ10 is significantly enhanced up to 0.6 μB at T =1.5 K, which is accompanied by the incommensurate modulations. The Landau phenomenological approach indicates that the higher-order magnetic and/or multipole interactions based on the pseudoquartet f -electron state play important roles.
van Keulen, H; Gutell, R R; Gates, M A; Campbell, S R; Erlandsen, S L; Jarroll, E L; Kulda, J; Meyer, E A
1993-01-01
Complete small-subunit rRNA (SSU-rRNA) coding region sequences were determined for two species of the intestinal parasite Giardia: G. ardeae and G. muris, both belonging to the order Diplomonadida, and a free-living member of this order, Hexamita sp. These sequences were compared to published SSU-rDNA sequences from a third member of the genus Giardia, G. duodenalis (often called G. intestinalis or G. lamblia) and various representative organisms from other taxa. Of the three Giardia sequences analyzed, the SSU-rRNA from G. muris is the smallest (1432 bases as compared to 1435 and 1453 for G. ardeae and G. duodenalis, respectively) and has the lowest G+C content (58.9%). The Hexamita SSU-rRNA is the largest in this group, containing 1550 bases. Because the sizes of the SSU-rRNA are prokaryotic rather than typically eukaryotic, the secondary structures of the SSU-rRNAs were constructed. These structures show a number of typically eukaryotic signature sequences. Sequence alignments based on constraints imposed by secondary structure were used for construction of a phylogenetic tree for these four taxa. The results show that of the four diplomonads represented, the Giardia species form a distinct group. The other diplomonad Hexamita and the microsporidium Vairimorpha necatrix appear to be distinct from Giardia.
Secondary metabolites from three Florida sponges with antidepressant activity.
Kochanowska, Anna J; Rao, Karumanchi V; Childress, Suzanne; El-Alfy, Abir; Matsumoto, Rae R; Kelly, Michelle; Stewart, Gina S; Sufka, Kenneth J; Hamann, Mark T
2008-02-01
Brominated indole alkaloids are a common class of metabolites reported from sponges of the order Verongida. Herein we report the isolation, structure determination, and activity of metabolites from three Florida sponges, namely, Verongula rigida (order Verongida, family Aplysinidae), Smenospongia aurea, and S. cerebriformis (order Dictyoceratida, family Thorectidae). All three species were investigated chemically, revealing similarities in secondary metabolites. Brominated compounds, as well as sesquiterpene quinones and hydroquinones, were identified from both V. rigida and S. aurea despite their apparent taxonomic differences at the ordinal level. Similar metabolites found in these distinct sponge species of two different genera provide evidence for a microbial origin of the metabolites. Isolated compounds were evaluated in the Porsolt forced swim test (FST) and the chick anxiety-depression continuum model. Among the isolated compounds, 5,6-dibromo- N,N-dimethyltryptamine ( 1) exhibited significant antidepressant-like action in the rodent FST model, while 5-bromo- N,N-dimethyltryptamine ( 2) caused significant reduction of locomotor activity indicative of a potential sedative action. The current study provides ample evidence that marine natural products with the diversity of brominated marine alkaloids will provide potential leads for antidepressant and anxiolytic drugs.
NASA Astrophysics Data System (ADS)
Bang, Eunjin
This two-year study explored changes in practices and the emerging identities of beginning secondary science teachers who participated in an online science specific mentoring program. Fourteen beginning secondary science teachers and six experienced secondary science teachers were selected for the study. As a mixed methods study, data were gathered quantitatively and qualitatively. A hierarchical linear modeling was used in order to depict the changes in inquiry-based science practices as a result of content-focused online mentoring program. Qualitative data were collected via monthly semi-structured interviews, pre, post, and follow-up yearly semi-structured interviews, and finally online written dialogues of beginning secondary science teachers and their e-mentors. A mixed method was used that utilized the results of quantitative data, Items for Inquiry-Based Practice (IBP) scores, helped for selecting cases for qualitative analysis. Results indicated that there were no significant differences in IBP scores among the fourteen beginning secondary science teachers; however, three groups were detected: increasing use, no change, and decreasing use in inquiry-based practices. Porsha, who made increasing use, showed four emerging identities throughout two years: watchful-imitator, seeker, collaborator, and junior-leader. Nora, who made no change, showed only two emerging identities: imitator and seeker. Netty, who made decreasing use, showed also two emerging identities: lonely-follower and feeder. Different identities detected in online dialogue, namely Porsha as a whistleblower, Nora as a watchful-imitator, and Netty as a watchful-feeder. The corresponding responses of three beginning secondary science teachers' e-mentors were defender, provider, listener, pusher and umpire. This study provides not only an in-depth picture of the contemporary science education community of practice but also suggest a roadmap to design an effective induction program.
First on-sky demonstration of the piezoelectric adaptive secondary mirror.
Guo, Youming; Zhang, Ang; Fan, Xinlong; Rao, Changhui; Wei, Ling; Xian, Hao; Wei, Kai; Zhang, Xiaojun; Guan, Chunlin; Li, Min; Zhou, Luchun; Jin, Kai; Zhang, Junbo; Deng, Jijiang; Zhou, Longfeng; Chen, Hao; Zhang, Xuejun; Zhang, Yudong
2016-12-15
We propose using a piezoelectric adaptive secondary mirror (PASM) in the medium-sized adaptive telescopes with a 2-4 m aperture for structure and control simplification by utilizing the piezoelectric actuators in contrast with the voice-coil adaptive secondary mirror. A closed-loop experimental setup was built for on-sky demonstration of the 73-element PASM developed by our laboratory. In this Letter, the PASM and the closed-loop adaptive optics system are introduced. High-resolution stellar images were obtained by using the PASM to correct high-order wavefront errors in May 2016. To the best of our knowledge, this is the first successful on-sky demonstration of the PASM. The results show that with the PASM as the deformable mirror, the angular resolution of the 1.8 m telescope can be effectively improved.
Solar Wind Access to Lunar Polar Craters: Feedback Between Surface Charging and Plasma Expansion
NASA Technical Reports Server (NTRS)
Zimmerman, M. I.; Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.; Jackson, T. L.
2011-01-01
Determining the plasma environment within permanently shadowed lunar craters is critical to understanding local processes such as surface charging, electrostatic dust transport, volatile sequestration, and space weathering. In order to investigate the nature of this plasma environment, the first two-dimensional kinetic simulations of solar wind expansion into a lunar crater with a self-consistent plasma-surface interaction have been undertaken. The present results reveal how the plasma expansion into a crater couples with the electrically-charged lunar surface to produce a quasi-steady wake structure. In particular, there is a negative feedback between surface charging and ambipolar wake potential that allows an equilibrium to be achieved, with secondary electron emission strongly moderating the process. A range of secondary electron yields is explored, and two distinct limits are highlighted in which either surface charging or ambipoiar expansion is responsible for determining the overall wake structure.
Hafsa, Noor E; Arndt, David; Wishart, David S
2015-07-01
The Chemical Shift Index or CSI 3.0 (http://csi3.wishartlab.com) is a web server designed to accurately identify the location of secondary and super-secondary structures in protein chains using only nuclear magnetic resonance (NMR) backbone chemical shifts and their corresponding protein sequence data. Unlike earlier versions of CSI, which only identified three types of secondary structure (helix, β-strand and coil), CSI 3.0 now identifies total of 11 types of secondary and super-secondary structures, including helices, β-strands, coil regions, five common β-turns (type I, II, I', II' and VIII), β hairpins as well as interior and edge β-strands. CSI 3.0 accepts experimental NMR chemical shift data in multiple formats (NMR Star 2.1, NMR Star 3.1 and SHIFTY) and generates colorful CSI plots (bar graphs) and secondary/super-secondary structure assignments. The output can be readily used as constraints for structure determination and refinement or the images may be used for presentations and publications. CSI 3.0 uses a pipeline of several well-tested, previously published programs to identify the secondary and super-secondary structures in protein chains. Comparisons with secondary and super-secondary structure assignments made via standard coordinate analysis programs such as DSSP, STRIDE and VADAR on high-resolution protein structures solved by X-ray and NMR show >90% agreement between those made with CSI 3.0. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
The conservation and function of RNA secondary structure in plants
Vandivier, Lee E.; Anderson, Stephen J.; Foley, Shawn W.; Gregory, Brian D.
2016-01-01
RNA transcripts fold into secondary structures via intricate patterns of base pairing. These secondary structures impart catalytic, ligand binding, and scaffolding functions to a wide array of RNAs, forming a critical node of biological regulation. Among their many functions, RNA structural elements modulate epigenetic marks, alter mRNA stability and translation, regulate alternative splicing, transduce signals, and scaffold large macromolecular complexes. Thus, the study of RNA secondary structure is critical to understanding the function and regulation of RNA transcripts. Here, we review the origins, form, and function of RNA secondary structure, focusing on plants. We then provide an overview of methods for probing secondary structure, from physical methods such as X-ray crystallography and nuclear magnetic resonance imaging (NMR) to chemical and nuclease probing methods. Marriage with high-throughput sequencing has enabled these latter methods to scale across whole transcriptomes, yielding tremendous new insights into the form and function of RNA secondary structure. PMID:26865341
Structure and Order of Phosphonic Acid-Based Self-Assembled Monolayers on Si(100)
Dubey, Manish; Weidner, Tobias; Gamble, Lara J.; Castner, David G.
2010-01-01
Organophosphonic acid self-assembled monolayers (SAMs) on oxide surfaces have recently seen increased use in electrical and biological sensor applications. The reliability and reproducibility of these sensors require good molecular organization in these SAMs. In this regard, packing, order and alignment in the SAMs is important, as it influences the electron transport measurements. In this study, we examine the order of hydroxyl- and methyl- terminated phosphonate films deposited onto silicon oxide surfaces by the tethering by aggregation and growth method using complementary, state-of-art surface characterization tools. Near edge x-ray absorption fine structure (NEXAFS) spectroscopy and in situ sum frequency generation (SFG) spectroscopy are used to study the order of the phosphonate SAMs in vacuum and under aqueous conditions, respectively. X-ray photoelectron spectroscopy and time of flight secondary ion mass spectrometry results show that these samples form chemically intact monolayer phosphonate films. NEXAFS and SFG spectroscopy showed that molecular order exists in the octadecylphosphonic acid and 11-hydroxyundecylphosphonic acid SAMs. The chain tilt angles in these SAMs were approximately 37° and 45°, respectively. PMID:20735054
NASA Astrophysics Data System (ADS)
Kim, Taekyung; Shin, Ryung; Jung, Myungki; Lee, Jinhyung; Park, Changsu; Kang, Shinill
2016-03-01
Durable drag-reduction surfaces have recently received much attention, due to energy-saving and power-consumption issues associated with harsh environment applications, such as those experienced by piping infrastructure, ships, aviation, underwater vehicles, and high-speed ground vehicles. In this study, a durable, metallic surface with highly ordered hierarchical structures was used to enhance drag-reduction properties, by combining two passive drag-reduction strategies: an air-layer effect induced by nanostructures and secondary vortex generation by micro-riblet structures. The nanostructures and micro-riblet structures were designed to increase slip length. The top-down fabrication method used to form the metallic hierarchical structures combined laser interference lithography, photolithography, thermal reflow, nanoimprinting, and pulse-reverse-current electrochemical deposition. The surfaces were formed from nickel, which has high hardness and corrosion resistance, making it suitable for use in harsh environments. The drag-reduction properties of various metal surfaces were investigated based on the surface structure: a bare surface, a nanostructured surface, a micro-riblet surface, and a hierarchically structured surface of nanostructures on micro-riblets.
Structural Probability Concepts Adapted to Electrical Engineering
NASA Technical Reports Server (NTRS)
Steinberg, Eric P.; Chamis, Christos C.
1994-01-01
Through the use of equivalent variable analogies, the authors demonstrate how an electrical subsystem can be modeled by an equivalent structural subsystem. This allows the electrical subsystem to be probabilistically analyzed by using available structural reliability computer codes such as NESSUS. With the ability to analyze the electrical subsystem probabilistically, we can evaluate the reliability of systems that include both structural and electrical subsystems. Common examples of such systems are a structural subsystem integrated with a health-monitoring subsystem, and smart structures. Since these systems have electrical subsystems that directly affect the operation of the overall system, probabilistically analyzing them could lead to improved reliability and reduced costs. The direct effect of the electrical subsystem on the structural subsystem is of secondary order and is not considered in the scope of this work.
JNSViewer—A JavaScript-based Nucleotide Sequence Viewer for DNA/RNA secondary structures
Dong, Min; Graham, Mitchell; Yadav, Nehul
2017-01-01
Many tools are available for visualizing RNA or DNA secondary structures, but there is scarce implementation in JavaScript that provides seamless integration with the increasingly popular web computational platforms. We have developed JNSViewer, a highly interactive web service, which is bundled with several popular tools for DNA/RNA secondary structure prediction and can provide precise and interactive correspondence among nucleotides, dot-bracket data, secondary structure graphs, and genic annotations. In JNSViewer, users can perform RNA secondary structure predictions with different programs and settings, add customized genic annotations in GFF format to structure graphs, search for specific linear motifs, and extract relevant structure graphs of sub-sequences. JNSViewer also allows users to choose a transcript or specific segment of Arabidopsis thaliana genome sequences and predict the corresponding secondary structure. Popular genome browsers (i.e., JBrowse and BrowserGenome) were integrated into JNSViewer to provide powerful visualizations of chromosomal locations, genic annotations, and secondary structures. In addition, we used StructureFold with default settings to predict some RNA structures for Arabidopsis by incorporating in vivo high-throughput RNA structure profiling data and stored the results in our web server, which might be a useful resource for RNA secondary structure studies in plants. JNSViewer is available at http://bioinfolab.miamioh.edu/jnsviewer/index.html. PMID:28582416
Rtools: a web server for various secondary structural analyses on single RNA sequences.
Hamada, Michiaki; Ono, Yukiteru; Kiryu, Hisanori; Sato, Kengo; Kato, Yuki; Fukunaga, Tsukasa; Mori, Ryota; Asai, Kiyoshi
2016-07-08
The secondary structures, as well as the nucleotide sequences, are the important features of RNA molecules to characterize their functions. According to the thermodynamic model, however, the probability of any secondary structure is very small. As a consequence, any tool to predict the secondary structures of RNAs has limited accuracy. On the other hand, there are a few tools to compensate the imperfect predictions by calculating and visualizing the secondary structural information from RNA sequences. It is desirable to obtain the rich information from those tools through a friendly interface. We implemented a web server of the tools to predict secondary structures and to calculate various structural features based on the energy models of secondary structures. By just giving an RNA sequence to the web server, the user can get the different types of solutions of the secondary structures, the marginal probabilities such as base-paring probabilities, loop probabilities and accessibilities of the local bases, the energy changes by arbitrary base mutations as well as the measures for validations of the predicted secondary structures. The web server is available at http://rtools.cbrc.jp, which integrates software tools, CentroidFold, CentroidHomfold, IPKnot, CapR, Raccess, Rchange and RintD. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Tang, Zhongfeng; Bao, Junjie; Du, Qingxia; Shao, Yu; Gao, Minghao; Zou, Bangkun; Chen, Chunhua
2016-12-21
A complete and ordered layered structure on the surface of LiNi 0.815 Co 0.15 Al 0.035 O 2 (NCA) has been achieved via a facile surface-oxidation method with Na 2 S 2 O 8 . The field-emission transmission electron microscopy images clearly show that preoxidation of the hydroxide precursor can eliminate the crystal defects and convert Ni(OH) 2 into layered β-NiOOH, which leads to a highly ordered crystalline NCA, with its (006) planes perpendicular to the surface in the sintering process. X-ray photoelectron spectroscopy and Raman shift results demonstrate that the contents of Ni 2+ and Co 2+ ions are reduced with preoxidization on the surface of the hydroxide precursor. The level of Li + /Ni 2+ disordering in the modified NCA determined by the peak intensity ratio I (003) /I (104) in X-ray diffraction patterns decreases. Thanks to the complete and ordered layered structure on the surface of secondary particles, lithium ions can easily intercalate/extract in the discharging-charging process, leading to greatly improved electrochemical properties.
High performance EUV multilayer structures insensitive to capping layer optical parameters.
Pelizzo, Maria Guglielmina; Suman, Michele; Monaco, Gianni; Nicolosi, Piergiorgio; Windt, David L
2008-09-15
We have designed and tested a-periodic multilayer structures containing protective capping layers in order to obtain improved stability with respect to any possible changes of the capping layer optical properties (due to oxidation and contamination, for example)-while simultaneously maximizing the EUV reflection efficiency for specific applications, and in particular for EUV lithography. Such coatings may be particularly useful in EUV lithographic apparatus, because they provide both high integrated photon flux and higher stability to the harsh operating environment, which can affect seriously the performance of the multilayer-coated projector system optics. In this work, an evolutive algorithm has been developed in order to design these a-periodic structures, which have been proven to have also the property of stable performance with respect to random layer thickness errors that might occur during coating deposition. Prototypes have been fabricated, and tested with EUV and X-ray reflectometry, and secondary electron spectroscopy. The experimental results clearly show improved performance of our new a-periodic coatings design compared with standard periodic multilayer structures.
ERIC Educational Resources Information Center
Hamel, Christine
2012-01-01
As part of the bachelor's degree in Secondary Education at Laval University, students have the option of completing a final practicum in their region of origin. The structure of this final practicum requires new configurations in order to meet not only the requirements of practical training in teaching, but also the needs of remote communities who…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podsiadlowski, L.; Carapelli, A.; Nardi, F.
2005-12-01
Mitochondrial genomes from two dipluran hexapods of the genus Campodea have been sequenced. Gene order is the same as in most other hexapods and crustaceans. Secondary structures of tRNAs reveal specific structural changes in tRNA-C, tRNA-R, tRNA-S1 and tRNA-S2. Comparative analyses of nucleotide and amino acid composition, as well as structural features of both ribosomal RNA subunits, reveal substantial differences among the analyzed taxa. Although the two Campodea species are morphologically highly uniform, genetic divergence is larger than expected, suggesting a long evolutionary history under stable ecological conditions.
Gao, Feng; Katz, Laura A; Song, Weibo
2013-07-01
Relationships among members of the ciliate subclass Scuticociliatia (Ciliophora, Oligohymenophorea) are largely unresolved. Phylogenetic studies of its orders Pleuronematida and Loxocephalida were initially based on small subunit ribosomal RNA gene (SSU-rDNA) analyses of a limited number of taxa. Here we characterized 37 sequences (SSU-rDNA, ITS-5.8S and LSU-rDNA) from 21 taxonomically controversial members of these orders. Phylogenetic trees constructed to assess the inter- and intra-generic relationships of pleuronematids and loxocephalids reveal the following: (1) the order Loxocephalida and its two families Loxocephalidae and Cinetochilidae are not monophyletic when more taxa are added; (2) the core pleuronematids are divided into two fully supported clades, however, the order Pleuronematida is not monophyletic because Cyclidium glaucoma is closer to Thigmotrichida; (3) the family Pleuronematidae and the genus Schizocalyptra are monophyletic, though rDNA sequences of Pleuronema species are highly variable; (4) Pseudoplatynematum and Sathrophilus are closely related to the subclass Astomatia, while Cinetochilum forms a monophyletic group with the subclass Apostomatia; and (5) Hippocomos falls in the order Pleuronematida and is closely related to Eurystomatellidae and Cyclidium plouneouri. Further, in an effort to provide a better resolution of evolutionary relationships, the secondary structures of ITS2 transcripts and the variable region 4 (V4) of the small subunit ribosomal RNA (SSU-rRNA) are predicted, revealing that ITS2 structures are conserved at the order level while V4 region structures are more variable than ITS2 structures. Copyright © 2013 Elsevier Inc. All rights reserved.
McFadden, Nora; Arias, Armando; Dry, Inga; Bailey, Dalan; Witteveldt, Jeroen; Evans, David J.; Goodfellow, Ian; Simmonds, Peter
2013-01-01
Mechanisms by which certain RNA viruses, such as hepatitis C virus, establish persistent infections and cause chronic disease are of fundamental importance in viral pathogenesis. Mammalian positive-stranded RNA viruses establishing persistence typically possess genome-scale ordered RNA secondary structure (GORS) in their genomes. Murine norovirus (MNV) persists in immunocompetent mice and provides an experimental model to functionally characterize GORS. Substitution mutants were constructed with coding sequences in NS3/4- and NS6/7-coding regions replaced with sequences with identical coding and (di-)nucleotide composition but disrupted RNA secondary structure (F1, F2, F1/F2 mutants). Mutants replicated with similar kinetics to wild-type (WT) MNV3 in RAW264.7 cells and primary macrophages, exhibited similar (highly restricted) induction and susceptibility to interferon-coupled cellular responses and equal replication fitness by serial passaging of co-cultures. In vivo, both WT and F1/F2 mutant viruses persistently infected mice, although F1, F2 and F1/F2 mutant viruses were rapidly eliminated 1–7 days post-inoculation in competition experiments with WT. F1/F2 mutants recovered from tissues at 9 months showed higher synonymous substitution rates than WT and nucleotide substitutions that potentially restored of RNA secondary structure. GORS plays no role in basic replication of MNV but potentially contributes to viral fitness and persistence in vivo. PMID:23630317
Nanoclusters first: a hierarchical phase transformation in a novel Mg alloy
NASA Astrophysics Data System (ADS)
Okuda, Hiroshi; Yamasaki, Michiaki; Kawamura, Yoshihito; Tabuchi, Masao; Kimizuka, Hajime
2015-09-01
The Mg-Y-Zn ternary alloy system contains a series of novel structures known as long-period stacking ordered (LPSO) structures. The formation process and its key concept from a viewpoint of phase transition are not yet clear. The current study reveals that the phase transformation process is not a traditional spinodal decomposition or structural transformation but, rather a novel hierarchical phase transformation. In this transformation, clustering occurs first, and the spatial rearrangement of the clusters induce a secondary phase transformation that eventually lead to two-dimensional ordering of the clusters. The formation process was examined using in situ synchrotron radiation small-angle X-ray scattering (SAXS). Rapid quenching from liquid alloy into thin ribbons yielded strongly supersaturated amorphous samples. The samples were heated at a constant rate of 10 K/min. and the scattering patterns were acquired. The SAXS analysis indicated that small clusters grew to sizes of 0.2 nm after they crystallized. The clusters distributed randomly in space grew and eventually transformed into a microstructure with two well-defined cluster-cluster distances, one for the segregation periodicity of LPSO and the other for the in-plane ordering in segregated layer. This transformation into the LPSO structure concomitantly introduces the periodical stacking fault required for the 18R structures.
ERIC Educational Resources Information Center
Ellington, Roni; Wachira, James; Nkwanta, Asamoah
2010-01-01
The focus of this Research Experience for Undergraduates (REU) project was on RNA secondary structure prediction by using a lattice walk approach. The lattice walk approach is a combinatorial and computational biology method used to enumerate possible secondary structures and predict RNA secondary structure from RNA sequences. The method uses…
Fourier-based classification of protein secondary structures.
Shu, Jian-Jun; Yong, Kian Yan
2017-04-15
The correct prediction of protein secondary structures is one of the key issues in predicting the correct protein folded shape, which is used for determining gene function. Existing methods make use of amino acids properties as indices to classify protein secondary structures, but are faced with a significant number of misclassifications. The paper presents a technique for the classification of protein secondary structures based on protein "signal-plotting" and the use of the Fourier technique for digital signal processing. New indices are proposed to classify protein secondary structures by analyzing hydrophobicity profiles. The approach is simple and straightforward. Results show that the more types of protein secondary structures can be classified by means of these newly-proposed indices. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Thiemann, H.; Schunk, R. W.
1990-01-01
The interaction between satellite solar arrays and the LEO plasma is presently studied with particle-in-cell simulations in which an electrical potential was suddenly applied to the solar cell interconnector. The consequent temporal response was followed for the real O(+)-electron mass ratio in the cases of 100- and 250-V solar cells, various solar cell thicknesses, and solar cells with secondary electron emission. Larger applied potentials and thinner solar cells lead to greater initial polarization surface charges, and therefore longer discharging and shielding times. When secondary electron emission from the cover glass is brought to bear, however, the potential structure is nearly planar, allowing constant interaction between plasma electrons and cover glass; a large fraction of the resulting secondary electrons is collected by the interconnector, constituting an order-of-magnitude increase in collected current.
NASA Astrophysics Data System (ADS)
Greiner, Benjamin; Lammen, Yannick; Reinacher, Andreas; Krabbe, Alfred; Wagner, Jörg
2016-07-01
The Stratospheric Observatory for Infrared Astronomy (SOFIA) uses its compact and highly integrated Secondary Mirror Mechanism (SMM) to switch between target positions on the sky in a square wave pattern. This chopping motion excites eigenmodes of the mechanism structure, which limit controller and observatory performance. We present the setup and results of experimental modal tests performed on different building stages of a test-bench model as well as on the original flight hardware. Test results were correlated to simulations employing a finite element model in order to identify excited mode shapes and contributing flexible components of the Secondary Mirror Mechanism. It was possible to isolate the motion of the compensation ring and its elastic mounts as the vibration mode inducing the main disturbance at about 300 Hz, which is currently the main mode shape limiting the performance of the chopping controller.
Deciphering the shape and deformation of secondary structures through local conformation analysis
2011-01-01
Background Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Results Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface) reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. Conclusion The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons. PMID:21284872
Deciphering the shape and deformation of secondary structures through local conformation analysis.
Baussand, Julie; Camproux, Anne-Claude
2011-02-01
Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface) reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metoki, Naoto; Yamauchi, Hiroki; Matsuda, Masaaki
Neutron polarization analysis has been carried out in order to clarify the magnetic structures of multiple order parameter f-electron system NdB 4. We confirmed the noncollinear “all-in all-out” structure (Γ 4) of the in-plane moment, which is in good agreement with our previous neutron powder diffraction study. We found that the magnetic moment along the c-axis m c showed diagonally antiferromagnetic structure (Γ 10), inconsistent with previously reported “vortex” structure (Γ 2). The microscopic mixture of these two structures with →q 0=(0,0,0) appears in phase II and remains stable in phases III and IV, where an incommensurate modulation coexists. Themore » unusual magnetic ordering is phenomenologically understood via Landau theory with the primary order parameter Γ 4 coupled with higher-order secondary order parameter Γ 10. The magnetic moments were estimated to be 1.8 ± 0.2 and 0.2 ± 0.05μ B at T = 7.5K for Γ 4 and Γ 10, respectively. We also found a long-period incommensurate modulation of the →q 1=(0,0,1/2) antiferromagnetic structure of mc with the propagation →q s1=(0.14,0.14,0.1) and →q s2=(0.2,0,0.1) in phase III and IV, respectively. The amplitude of sinusoidal modulation was about m c=1.0 ± 0.2μ B at T=1.5 K. The local (0,0,1/2) structure consists of in-plane ferromagnetic and out-of-plane antiferromagnetic coupling of m c, opposite to the coexisting Γ 10. The mc of Γ 10 is significantly enhanced up to 0.6μ B at T=1.5 K, which is accompanied by the incommensurate modulations. As a result, the Landau phenomenological approach indicates that the higher-order magnetic and/or multipole interactions based on the pseudoquartet f-electron state play important roles.« less
Metoki, Naoto; Yamauchi, Hiroki; Matsuda, Masaaki; ...
2018-05-17
Neutron polarization analysis has been carried out in order to clarify the magnetic structures of multiple order parameter f-electron system NdB 4. We confirmed the noncollinear “all-in all-out” structure (Γ 4) of the in-plane moment, which is in good agreement with our previous neutron powder diffraction study. We found that the magnetic moment along the c-axis m c showed diagonally antiferromagnetic structure (Γ 10), inconsistent with previously reported “vortex” structure (Γ 2). The microscopic mixture of these two structures with →q 0=(0,0,0) appears in phase II and remains stable in phases III and IV, where an incommensurate modulation coexists. Themore » unusual magnetic ordering is phenomenologically understood via Landau theory with the primary order parameter Γ 4 coupled with higher-order secondary order parameter Γ 10. The magnetic moments were estimated to be 1.8 ± 0.2 and 0.2 ± 0.05μ B at T = 7.5K for Γ 4 and Γ 10, respectively. We also found a long-period incommensurate modulation of the →q 1=(0,0,1/2) antiferromagnetic structure of mc with the propagation →q s1=(0.14,0.14,0.1) and →q s2=(0.2,0,0.1) in phase III and IV, respectively. The amplitude of sinusoidal modulation was about m c=1.0 ± 0.2μ B at T=1.5 K. The local (0,0,1/2) structure consists of in-plane ferromagnetic and out-of-plane antiferromagnetic coupling of m c, opposite to the coexisting Γ 10. The mc of Γ 10 is significantly enhanced up to 0.6μ B at T=1.5 K, which is accompanied by the incommensurate modulations. As a result, the Landau phenomenological approach indicates that the higher-order magnetic and/or multipole interactions based on the pseudoquartet f-electron state play important roles.« less
Co-extinction in a host-parasite network: identifying key hosts for network stability.
Dallas, Tad; Cornelius, Emily
2015-08-17
Parasites comprise a substantial portion of total biodiversity. Ultimately, this means that host extinction could result in many secondary extinctions of obligate parasites and potentially alter host-parasite network structure. Here, we examined a highly resolved fish-parasite network to determine key hosts responsible for maintaining parasite diversity and network structure (quantified here as nestedness and modularity). We evaluated four possible host extinction orders and compared the resulting co-extinction dynamics to random extinction simulations; including host removal based on estimated extinction risk, parasite species richness and host level contributions to nestedness and modularity. We found that all extinction orders, except the one based on realistic extinction risk, resulted in faster declines in parasite diversity and network structure relative to random biodiversity loss. Further, we determined species-level contributions to network structure were best predicted by parasite species richness and host family. Taken together, we demonstrate that a small proportion of hosts contribute substantially to network structure and that removal of these hosts results in rapid declines in parasite diversity and network structure. As network stability can potentially be inferred through measures of network structure, our findings may provide insight into species traits that confer stability.
Hydrophobic Collapse of Ubiquitin Generates Rapid Protein-Water Motions.
Wirtz, Hanna; Schäfer, Sarah; Hoberg, Claudius; Reid, Korey M; Leitner, David M; Havenith, Martina
2018-06-04
We report time-resolved measurements of the coupled protein-water modes of solvated ubiquitin during protein folding. Kinetic terahertz absorption (KITA) spectroscopy serves as a label-free technique for monitoring large scale conformational changes and folding of proteins subsequent to a sudden T-jump. We report here KITA measurements at an unprecedented time resolution of 500 ns, a resolution 2 orders of magnitude better than those of any previous KITA measurements, which reveal the coupled ubiquitin-solvent dynamics even in the initial phase of hydrophobic collapse. Complementary equilibrium experiments and molecular simulations of ubiquitin solutions are performed to clarify non-equilibrium contributions and reveal the molecular picture upon a change in structure, respectively. On the basis of our results, we propose that in the case of ubiquitin a rapid (<500 ns) initial phase of the hydrophobic collapse from the elongated protein to a molten globule structure precedes secondary structure formation. We find that these very first steps, including large-amplitude changes within the unfolded manifold, are accompanied by a rapid (<500 ns) pronounced change of the coupled protein-solvent response. The KITA response upon secondary structure formation exhibits an opposite sign, which indicates a distinct effect on the solvent-exposed surface.
Sun, Jing; Boschen, Mark J; Farrell, Lara J; Buys, Nicholas; Li, Zhan-Jiang
2014-08-01
Chinese adolescents face life stresses from multiple sources, with higher levels of stress predictive of adolescent mental health outcomes, including in the area of obsessive-compulsive disorders (OCD). Valid assessment of OCD among this age group is therefore a critical need in China. This study aims to standardise the Chinese version of the Leyton short version scale for adolescents of secondary schools in order to assess this condition. Stratified randomly selected adolescents were selected from four high schools located in Beijing, China. The Chinese version of the Leyton scale was administered to 3221 secondary school students aged between 12 and 18 years. A high response rate was achieved, with 3185 adolescents responding to the survey (98.5 percent). Exploratory factor analysis (EFA) extracted four factors from the scale: compulsive thoughts, concerns of cleanliness, lucky number, repetitiveness and repeated checking. The four-factor structures were confirmed using Confirmatory Factor Analysis (CFA). Overall the four-factor structure had a good model fit and high levels of reliability for each individual dimension and reasonable content validity. Invariance analyses in unconstrained, factor loading, and error variance models demonstrated that the Leyton scale is invariant in relation to the presence or absence OCD, age and gender. Discriminant validity analysis demonstrated that the four-factor structure scale also had excellent ability to differentiate between OCD and non-OCD students, male and female students, and age groups. The dataset was a non-clinical sample of high school students, rather than a sample of individuals with OCD. Future research may examine symptom structure in clinical populations to assess whether this structure fits into both clinical and community population. The structure derived from the Leyton short version scale in a non-clinical secondary school sample of adolescents, suggests that a four-factor solution can be utilised as a screening tool to assess adolescents׳ psychopathological symptoms in the area of OCD in mainland Chinese non-clinical secondary school students. Copyright © 2014 Elsevier B.V. All rights reserved.
Drugs from the Oceans: Marine Natural Products as Leads for Drug Discovery.
Altmann, Karl-Heinz
2017-10-25
The marine environment harbors a vast number of species that are the source of a wide array of structurally diverse bioactive secondary metabolites. At this point in time, roughly 27'000 marine natural products are known, of which eight are (were) at the origin of seven marketed drugs, mostly for the treatment of cancer. The majority of these drugs and also of drug candidates currently undergoing clinical evaluation (excluding antibody-drug conjugates) are unmodified natural products, but synthetic chemistry has played a central role in the discovery and/or development of all but one of the approved marine-derived drugs. More than 1000 new marine natural products have been isolated per year over the last decade, but the pool of new and unique structures is far from exhausted. To fully leverage the potential offered by the structural diversity of marine-produced secondary metabolites for drug discovery will require their broad assessment for different bioactivities and the productive interplay between new fermentation technologies, synthetic organic chemistry, and medicinal chemistry, in order to secure compound supply and enable lead optimization.
Prediction of pi-turns in proteins using PSI-BLAST profiles and secondary structure information.
Wang, Yan; Xue, Zhi-Dong; Shi, Xiao-Hong; Xu, Jin
2006-09-01
Due to the structural and functional importance of tight turns, some methods have been proposed to predict gamma-turns, beta-turns, and alpha-turns in proteins. In the past, studies of pi-turns were made, but not a single prediction approach has been developed so far. It will be useful to develop a method for identifying pi-turns in a protein sequence. In this paper, the support vector machine (SVM) method has been introduced to predict pi-turns from the amino acid sequence. The training and testing of this approach is performed with a newly collected data set of 640 non-homologous protein chains containing 1931 pi-turns. Different sequence encoding schemes have been explored in order to investigate their effects on the prediction performance. With multiple sequence alignment and predicted secondary structure, the final SVM model yields a Matthews correlation coefficient (MCC) of 0.556 by a 7-fold cross-validation. A web server implementing the prediction method is available at the following URL: http://210.42.106.80/piturn/.
Intermediates and the folding of proteins L and G
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Scott; Head-Gordon, Teresa
We use a minimalist protein model, in combination with a sequence design strategy, to determine differences in primary structure for proteins L and G that are responsible for the two proteins folding through distinctly different folding mechanisms. We find that the folding of proteins L and G are consistent with a nucleation-condensation mechanism, each of which is described as helix-assisted {beta}-1 and {beta}-2 hairpin formation, respectively. We determine that the model for protein G exhibits an early intermediate that precedes the rate-limiting barrier of folding and which draws together misaligned secondary structure elements that are stabilized by hydrophobic core contactsmore » involving the third {beta}-strand, and presages the later transition state in which the correct strand alignment of these same secondary structure elements is restored. Finally the validity of the targeted intermediate ensemble for protein G was analyzed by fitting the kinetic data to a two-step first order reversible reaction, proving that protein G folding involves an on-pathway early intermediate, and should be populated and therefore observable by experiment.« less
Intermediates and the folding of proteins L and G
Brown, Scott; Head-Gordon, Teresa
2004-01-01
We use a minimalist protein model, in combination with a sequence design strategy, to determine differences in primary structure for proteins L and G, which are responsible for the two proteins folding through distinctly different folding mechanisms. We find that the folding of proteins L and G are consistent with a nucleation-condensation mechanism, each of which is described as helix-assisted β-1 and β-2 hairpin formation, respectively. We determine that the model for protein G exhibits an early intermediate that precedes the rate-limiting barrier of folding, and which draws together misaligned secondary structure elements that are stabilized by hydrophobic core contacts involving the third β-strand, and presages the later transition state in which the correct strand alignment of these same secondary structure elements is restored. Finally, the validity of the targeted intermediate ensemble for protein G was analyzed by fitting the kinetic data to a two-step first-order reversible reaction, proving that protein G folding involves an on-pathway early intermediate, and should be populated and therefore observable by experiment. PMID:15044729
Microenvironments and Signaling Pathways Regulating Early Dissemination, Dormancy, and Metastasis
2015-09-01
hypothesize that after extravasation at secondary site TMEM (S- TMEM), in order to exit dormancy a stable S-TMEM structure needs to be maintained and...by understanding early dissemination and dormancy of DTCs we will find ways to eradicate dormant DTCs and prevent metastasis. 2. KEYWORDS...TMEM, DTC, dormancy, dissemination intravasation, extravasation 3. ACCOMPLISHMENTS: What were the major goals of the project? Our original specific
Schwierz, Nadine; Frost, Christina V; Geissler, Phillip L; Zacharias, Martin
2017-02-02
Secondary nucleation pathways in which existing amyloid fibrils catalyze the formation of new aggregates and neurotoxic oligomers are of immediate importance for the onset and progression of Alzheimer's disease. Here, we apply extensive all-atom molecular dynamics simulations in explicit water to study surface-activated secondary nucleation pathways at the extended lateral β-sheet surface of a preformed Aβ 9-40 filament. Calculation of free-energy profiles allows us to determine binding free energies and conformational intermediates for nucleation complexes consisting of 1-4 Aβ peptides. In addition, we combine the free-energy profiles with position-dependent diffusion profiles to extract complementary kinetic information and macroscopic growth rates. Single monomers bind to the β-sheet surface in a disordered, hydrophobically collapsed conformation, whereas dimers and larger oligomers can retain a cross-β conformation resembling a more ordered fibril structure. The association processes during secondary nucleation follow a dock/lock mechanism consisting of a fast initial encounter phase (docking) and a slow structural rearrangement phase (locking). The major driving forces for surface-activated secondary nucleation are the release of a large number of hydration water molecules and the formation of hydrophobic interface contacts, the latter being in contrast to the elongation process at filament tips, which is dominated by the formation of stable and highly specific interface hydrogen bonds. The calculated binding free energies and the association rates for the attachment of Aβ monomers and oligomers to the extended lateral β-sheet surface of the filament seed are higher compared to those for elongation at the filament tips, indicating that secondary nucleation pathways can become important once a critical concentration of filaments has formed.
Christofilos, N.C.; Ehlers, K.W.
1960-04-01
A pulsed electron gun capable of delivering pulses at voltages of the order of 1 mv and currents of the order of 100 amperes is described. The principal novelty resides in a transformer construction which is disposed in the same vacuum housing as the electron source and accelerating electrode structure of the gun to supply the accelerating potential thereto. The transformer is provided by a plurality of magnetic cores disposed in circumferentially spaced relation and having a plurality of primary windings each inductively coupled to a different one of the cores, and a helical secondary winding which is disposed coaxially of the cores and passes therethrough in circumferential succession. Additional novelty resides in the disposition of the electron source cathode filament input leads interiorly of the transformer secondary winding which is hollow, as well as in the employment of a half-wave filament supply which is synchronously operated with the transformer supply such that the transformer is pulsed during the zero current portions of the half-wave cycle.
Design of ferrocene-dipeptide bioorganometallic conjugates to induce chirality-organized structures.
Moriuchi, Toshiyuki; Hirao, Toshikazu
2010-07-20
The highly ordered molecular assemblies in proteins can have a variety of functions, as observed in enzymes, receptors, and the like. Synthetic scientists are constructing bioinspired systems by harnessing the self-assembling properties of short peptides. Secondary structures such as alpha-helices, beta-sheets, and beta-turns are important in protein folding, which is mostly directed and stabilized by hydrogen bonding and the hydrophobic interactions of side chains. The design of secondary structure mimics that are composed of short peptides has attracted much attention, both for gaining fundamental insight into the factors affecting protein folding and for developing pharmacologically useful compounds, artificial receptors, asymmetric catalysts, and new materials. Ferrocenes are an organometallic scaffold with a central reverse-turn unit based on the inter-ring spacing of about 3.3 A, which is a suitable distance for hydrogen bonding between attached peptide strands. The conjugation of organometallic compounds with biomolecules such as amino acids, peptides, and DNA should provide novel systems that reflect properties of both the ferrocene and the biologically derived moieties. In this Account, we focus on recent advances in the design of ferrocene-peptide bioconjugates, which help illustrate the peptidomimetic basis for protein folding and the means of constructing highly ordered molecular assemblies. Ferrocene-peptide bioconjugates are constructed to form chirality-organized structures in both solid and solution states. The ferrocene serves as a reliable organometallic scaffold for the construction of protein secondary structures via intramolecular hydrogen bonding: the attached dipeptide strands are constrained within the appropriate dimensions. The introduction of the chiral dipeptide chains into the ferrocene scaffold induces the conformational enantiomerization of the ferrocenyl moiety; the chirality-organized structure results from intramolecular hydrogen bonding. The configuration and sequence of the amino acids are instrumental in the process. Regulation of the directionality and specificity of hydrogen bonding is a key component in the design of various molecular assemblies. Ferrocene-peptide bioconjugates also have a strong tendency to self-assemble through the contributions of available hydrogen-bonding donors in the solid state. Some ferrocene-peptide bioconjugates bearing only one dipeptide chain exhibit a helically ordered molecular assembly through a network of intermolecular (rather than intramolecular) hydrogen bonds. The propensity to form the chiral helicity appears to be controlled by the chirality of the dipeptide chains. Organization of host molecules is a useful strategy for forming artificial receptors. The conformationally regulated ferrocene-peptide bioconjugate provides the chirality-organized binding site for size-selective and chiral recognition of dicarboxylic acids through multipoint hydrogen bonds. Metal ions serve a variety of purposes in proteins, including structural stabilization for biological function. The complexation of ferrocene-peptide bioconjugates with palladium(II) compounds not only stabilizes the chirality conformational regulation but also induces conformational regulation of the dipeptide chain through complexation and intramolecular chirality organization. Construction of the chirality-organized ferrocene-peptide bioconjugates is also achieved by metal-directed assembly. These varied examples amply demonstrate the value of ferrocene-peptide bioconjugates in asserting architectural control over highly ordered molecular assemblies.
Silva, Helbert Eustáquio Cardoso da; Gottems, Leila Bernarda Donato
2017-08-01
Secondary care in dentistry in Brazil has scarce and broadly underutilized resources. The challenge is to organize the interface between primary health care (PHC) and secondary care in order to consolidate the population's access to specialist dental care in the Unified Health System (SUS). This article seeks to analyze national publications in Portuguese and English on the interface between secondary health care and primary health care in dentistry from the perspective of comprehensive care in the SUS. It is an integrative review, considering the publications of the following databases: SciELO (Scientific Electronic Library Online), LILACS (Latin American and Caribbean Literature) WEB OF SCIENCE, SCOPUS, PubMed (International Literature on Health Sciences) and GOOGLE SCHOLAR. The search located 966 articles, of which 12 were used in full. Coverage of the oral health teams (ESB) in the family health strategy (ESF), primary health care implementation in a structured way, access to secondary health care, counter-referral to PHC, development of indicators and socioeconomic conditions and inequalities in the distribution of dental specialist centers (CEO) are factors that influence the integrity of oral health care in the SUS.
Saladino, Jessica; Liu, Mian; Live, David; Sharp, Joshua S.
2009-01-01
Hydroxyl radical footprinting is a technique for studying protein structure and binding that entails oxidizing a protein system of interest with diffusing hydroxyl radicals, and then measuring the amount of oxidation of each amino acid. One important issue in hydroxyl radical footprinting is limiting amino acid oxidation by secondary oxidants to prevent uncontrolled oxidation which can cause amino acids to appear more solvent accessible than they really are. Previous work suggested that hydrogen peroxide was the major secondary oxidant of concern in hydroxyl radical footprinting experiments; however, even after elimination of all hydrogen peroxide, some secondary oxidation was still detected. Evidence is presented for the formation of peptidyl hydroperoxides as the most abundant product upon oxidation of aliphatic amino acids. Both reverse phase liquid chromatography and catalase treatment were shown to be ineffective at eliminating peptidyl hydroperoxides. The ability of these peptidyl hydroperoxides to directly oxidize methionine is demonstrated, suggesting the value of methionine amide as an in situ protectant. Hydroxyl radical footprinting protocols require the use of an organic sulfide or similar peroxide scavenger in addition to removal of hydrogen peroxide in order to successfully eradicate all secondary oxidizing species and prevent uncontrolled oxidation of sulfur-containing residues. PMID:19278868
Structural Phase Evolution in Ultrasonic-Assisted Friction Stir Welded 2195 Aluminum Alloy Joints
NASA Astrophysics Data System (ADS)
Eliseev, A. A.; Fortuna, S. V.; Kalashnikova, T. A.; Chumaevskii, A. V.; Kolubaev, E. A.
2017-10-01
The authors examined the structural and phase state of fixed joints produced by method of friction stir welding (FSW) and ultrasonic-assisted friction stir welding (UAFSW) from extruded profile of aluminum alloy AA2195. In order to identify the role of ultrasonic application in the course of welding, such characteristics, as volume fraction and average size of secondary particles are compared in the base material and stir zones of FSW and UAFSW joints. By applying the methods of SEM and TEM analysis, researchers established the complex character of phase transitions as a result of ultrasonic application.
Nature of the tensor order in Cd 2 Re 2 O 7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Matteo, S.; Norman, M. R.
The pyrochlore metal Cd 2Re 2O 7 has been recently investigated by second-harmonic generation (SHG) reflectivity. In this paper, we develop a general formalism that allows for the identification of the relevant tensor components of the SHG from azimuthal scans. We demonstrate that the secondary order parameter identified by SHG at the structural phase transition is the x 2 - y 2 component of the axial toroidal quadrupole. This differs from the 3z 2 - r 2 symmetry of the atomic displacements associated with the I4m2 crystal structure that was previously thought to be its origin. Within the same formalism,more » we suggest that the primary order parameter detected in the SHG experiment is the 3z 2 - r 2 component of the magnetic quadrupole. We discuss the general mechanism driving the phase transition in our proposed framework, and suggest experiments, particularly resonant x-ray scattering ones, that could clarify this issue.« less
NASA Astrophysics Data System (ADS)
Olsen, Mikkel S.; Clausen, Ole R.; Andresen, Katrine J.; Korstgård, John A.
2015-04-01
Minor secondary structures observed along the flanks of major salt structures in the Norwegian-Danish Basin appear to be generated mainly during the early stages of halokinesis. Seismic anomalies in the cover sediments at the flanks of the major salt structures and in relation to one of the secondary structures show several circular patterns. The circular patterns are generally interpreted as faults related to collapsing salt, indicating a subtle and dynamic cannibalization relationship between the secondary structure and the main diapir. High-amplitude reflections interpreted as either entrapped gas along the circular faults or diagenetic changes induced by the fluids originating from the salt-sediment interface generally enhances the seismic appearance of the circular faults, but potentially also disturb the seismic imaging of the faults. Other secondary salt structures, with a similar geometry, do not show sign of collapse, apparently due to a greater distance from the main salt structures and therefore not within the reach of being cannibalized by these. The observations furthermore suggest a trend showing a more advanced development of the main salt structures when the secondary structures are cannibalized. The lateral distribution of the main salt structures thus appears to be controlled not only by the initial thickness of the Zechstein salt, and possible underlying structures, but also by subtle variations in the location and evolution of secondary structures. The secondary structures have a major impact on the drainage of the deep Mesozoic succession as indicated by the fluid flow pattern also observed in the study, which emphasizes that a detailed mapping of salt structures including secondary structures at the flanks is of major importance during evaluation of petroleum systems in areas dominated by halokinesis.
Secondary Metabolites from Three Florida Sponges with Antidepressant Activity
Kochanowska, Anna J.; Rao, Karumanchi V.; Childress, Suzanne; El-Alfy, Abir; Matsumoto, Rae R.; Kelly, Michelle; Stewart, Gina S.; Sufka, Kenneth J.; Hamann, Mark T.
2016-01-01
Brominated indole alkaloids are a common class of metabolites reported from sponges of the order Verongida. Herein we report the isolation, structure determination, and activity of metabolites from three Florida sponges, namely, Verongula rigida (order Verongida, family Aplysinidae), Smenospongia aurea, and S. cerebriformis (order Dictyoceratida, family Thorectidae). All three species were investigated chemically, revealing similarities in secondary metabolites. Brominated compounds, as well as sesquiterpene quinones and hydroquinones, were identified from both V. rigida and S. aurea despite their apparent taxonomic differences at the ordinal level. Similar metabolites found in these distinct sponge species of two different genera provide evidence for a microbial origin of the metabolites. Isolated compounds were evaluated in the Porsolt forced swim test (FST) and the chick anxiety–depression continuum model. Among the isolated compounds, 5,6-dibromo-N,N-dimethyltryptamine (1) exhibited significant antidepressant-like action in the rodent FST model, while 5-bromo-N,N-dimethyltryptamine (2) caused significant reduction of locomotor activity indicative of a potential sedative action. The current study provides ample evidence that marine natural products with the diversity of brominated marine alkaloids will provide potential leads for antidepressant and anxiolytic drugs. PMID:18217716
Interface magnetism and electronic structure: ZnO(0001)/Co3O4 (111)
NASA Astrophysics Data System (ADS)
Kupchak, I. M.; Serpak, N. F.; Shkrebtii, A.; Hayn, R.
2018-03-01
We have studied the structural, electronic, and magnetic properties of spinel Co3O4 (111) surfaces and their interfaces with ZnO(0001) using density functional theory within the generalized gradient approximation with the on-site Coulomb repulsion term. Two possible forms of spinel surface, containing Co2 + or Co3 + ions and terminated with either cobalt or oxygen ions, were considered, as well as their interface with zinc oxide. Our calculations demonstrate that Co3 + ions attain nonzero magnetic moments at the surface and interface, in contrast to the bulk, where they are not magnetic, leading to the ferromagnetic ordering. Since heavily Co doped ZnO samples can contain a Co3O4 secondary phase, such magnetic ordering at the interface might explain the origin of the magnetism in such diluted magnetic semiconductors.
NASA Astrophysics Data System (ADS)
Szeleszczuk, Łukasz; Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika; Wawer, Iwona
2016-06-01
In this article we report the results of combined theoretical and experimental structural studies on cinnamic acid derivatives (CADs), one of the main groups of secondary metabolites present in various medicinal plant species and food products of plant origin. The effects of structural differences in CADs on their spectroscopic properties were studied in detail by both: solid-state NMR and GIAO/GIPAW calculations. Theoretical computations were used in order to perform signal assignment in 13C CP/MAS NMR spectra of the cinnamic, o-coumaric, m-coumaric, p-coumaric, caffeic, ferulic, sinapic and 3,4-dimethoxycinnamic acids, and to evaluate the accuracy of GIPAW and GIAO methodology.
Role of DNA secondary structures in fragile site breakage along human chromosome 10
Dillon, Laura W.; Pierce, Levi C. T.; Ng, Maggie C. Y.; Wang, Yuh-Hwa
2013-01-01
The formation of alternative DNA secondary structures can result in DNA breakage leading to cancer and other diseases. Chromosomal fragile sites, which are regions of the genome that exhibit chromosomal breakage under conditions of mild replication stress, are predicted to form stable DNA secondary structures. DNA breakage at fragile sites is associated with regions that are deleted, amplified or rearranged in cancer. Despite the correlation, unbiased examination of the ability to form secondary structures has not been evaluated in fragile sites. Here, using the Mfold program, we predict potential DNA secondary structure formation on the human chromosome 10 sequence, and utilize this analysis to compare fragile and non-fragile DNA. We found that aphidicolin (APH)-induced common fragile sites contain more sequence segments with potential high secondary structure-forming ability, and these segments clustered more densely than those in non-fragile DNA. Additionally, using a threshold of secondary structure-forming ability, we refined legitimate fragile sites within the cytogenetically defined boundaries, and identified potential fragile regions within non-fragile DNA. In vitro detection of alternative DNA structure formation and a DNA breakage cell assay were used to validate the computational predictions. Many of the regions identified by our analysis coincide with genes mutated in various diseases and regions of copy number alteration in cancer. This study supports the role of DNA secondary structures in common fragile site instability, provides a systematic method for their identification and suggests a mechanism by which DNA secondary structures can lead to human disease. PMID:23297364
NASA Astrophysics Data System (ADS)
Giordano, V. M.; Ruta, B.
2016-01-01
Understanding and controlling physical aging, that is, the spontaneous temporal evolution of out-of-equilibrium systems, represents one of the greatest tasks in material science. Recent studies have revealed the existence of a complex atomic motion in metallic glasses, with different aging regimes in contrast with the typical continuous aging observed in macroscopic quantities. By combining dynamical and structural synchrotron techniques, here for the first time we directly connect previously identified microscopic structural mechanisms with the peculiar atomic motion, providing a broader unique view of their complexity. We show that the atomic scale is dominated by the interplay between two processes: rearrangements releasing residual stresses related to a cascade mechanism of relaxation, and medium range ordering processes, which do not affect the local density, likely due to localized relaxations of liquid-like regions. As temperature increases, a surprising additional secondary relaxation process sets in, together with a faster medium range ordering, likely precursors of crystallization.
R-chie: a web server and R package for visualizing RNA secondary structures
Lai, Daniel; Proctor, Jeff R.; Zhu, Jing Yun A.; Meyer, Irmtraud M.
2012-01-01
Visually examining RNA structures can greatly aid in understanding their potential functional roles and in evaluating the performance of structure prediction algorithms. As many functional roles of RNA structures can already be studied given the secondary structure of the RNA, various methods have been devised for visualizing RNA secondary structures. Most of these methods depict a given RNA secondary structure as a planar graph consisting of base-paired stems interconnected by roundish loops. In this article, we present an alternative method of depicting RNA secondary structure as arc diagrams. This is well suited for structures that are difficult or impossible to represent as planar stem-loop diagrams. Arc diagrams can intuitively display pseudo-knotted structures, as well as transient and alternative structural features. In addition, they facilitate the comparison of known and predicted RNA secondary structures. An added benefit is that structure information can be displayed in conjunction with a corresponding multiple sequence alignments, thereby highlighting structure and primary sequence conservation and variation. We have implemented the visualization algorithm as a web server R-chie as well as a corresponding R package called R4RNA, which allows users to run the software locally and across a range of common operating systems. PMID:22434875
High sensitivity and high resolution element 3D analysis by a combined SIMS–SPM instrument
Wirtz, Tom
2015-01-01
Summary Using the recently developed SIMS–SPM prototype, secondary ion mass spectrometry (SIMS) data was combined with topographical data from the scanning probe microscopy (SPM) module for five test structures in order to obtain accurate chemical 3D maps: a polystyrene/polyvinylpyrrolidone (PS/PVP) polymer blend, a nickel-based super-alloy, a titanium carbonitride-based cermet, a reticle test structure and Mg(OH)2 nanoclusters incorporated inside a polymer matrix. The examples illustrate the potential of this combined approach to track and eliminate artefacts related to inhomogeneities of the sputter rates (caused by samples containing various materials, different phases or having a non-flat surface) and inhomogeneities of the secondary ion extraction efficiencies due to local field distortions (caused by topography with high aspect ratios). In this respect, this paper presents the measured relative sputter rates between PVP and PS as well as in between the different phases of the TiCN cermet. PMID:26171285
Gao, Xianli; Yin, Yiyun; Zhou, Cunshan
2018-02-01
A salt-tolerant aspartyl aminopeptidase (approximately 57kDa) from Aspergillus oryzae 3.042 was purified and identified. Specific inhibitor experiments indicated that it was an aminopeptidase containing Zn 2+ . Its optimal and stable pH values and temperatures were 7 and 50°C, respectively. Its relative activity remained beyond 30% in 3M NaCl solution for 15d, and its K m and V max were slightly affected in 3M NaCl solution, indicating its excellent salt-tolerance. A comprehensive analysis including protein homology modelling, molecular dynamics simulation, secondary structure, acidic residues and hydrophobicity of interior residues demonstrated that aspartyl aminopeptidase had a greater stability than non-salt-tolerant protease in high salinity. Higher contents of ordered secondary structures, more salt bridges between hydrated surface acidic residues and specific basic residues and stronger hydrophobicity of interior residues were the salt-tolerance mechanisms of aspartyl aminopeptidase. Copyright © 2017. Published by Elsevier Ltd.
Sugimoto, Hayuki; Nakaura, Miho; Nishimura, Shigenori; Karita, Shuichi; Miyake, Hideo; Tanaka, Akiyoshi
2009-08-01
Refolding of a thermally unfolded disulfide-deficient mutant of the starch-binding domain of glucoamylase was investigated using differential scanning calorimetry, isothermal titration calorimetry, CD, and (1)H NMR. When the protein solution was rapidly cooled from a higher temperature, a kinetic intermediate was formed during refolding. The intermediate was unexpectedly stable compared with typical folding intermediates that have short half-lives. It was shown that this intermediate contained substantial secondary structure and tertiary packing and had the same binding ability with beta-cyclodextrin as the native state, suggesting that the intermediate is highly-ordered and native-like on the whole. These characteristics differ from those of partially folded intermediates such as molten globule states. Far-UV CD spectra showed that the secondary structure was once disrupted during the transition from the intermediate to the native state. These results suggest that the intermediate could be an off-pathway type, possibly a misfolded state, that has to undergo unfolding on its way to the native state.
Bioinformatics study of the mangrove actin genes
NASA Astrophysics Data System (ADS)
Basyuni, M.; Wasilah, M.; Sumardi
2017-01-01
This study describes the bioinformatics methods to analyze eight actin genes from mangrove plants on DDBJ/EMBL/GenBank as well as predicted the structure, composition, subcellular localization, similarity, and phylogenetic. The physical and chemical properties of eight mangroves showed variation among the genes. The percentage of the secondary structure of eight mangrove actin genes followed the order of a helix > random coil > extended chain structure for BgActl, KcActl, RsActl, and A. corniculatum Act. In contrast to this observation, the remaining actin genes were random coil > extended chain structure > a helix. This study, therefore, shown the prediction of secondary structure was performed for necessary structural information. The values of chloroplast or signal peptide or mitochondrial target were too small, indicated that no chloroplast or mitochondrial transit peptide or signal peptide of secretion pathway in mangrove actin genes. These results suggested the importance of understanding the diversity and functional of properties of the different amino acids in mangrove actin genes. To clarify the relationship among the mangrove actin gene, a phylogenetic tree was constructed. Three groups of mangrove actin genes were formed, the first group contains B. gymnorrhiza BgAct and R. stylosa RsActl. The second cluster which consists of 5 actin genes the largest group, and the last branch consist of one gene, B. sexagula Act. The present study, therefore, supported the previous results that plant actin genes form distinct clusters in the tree.
Characterising RNA secondary structure space using information entropy
2013-01-01
Comparative methods for RNA secondary structure prediction use evolutionary information from RNA alignments to increase prediction accuracy. The model is often described in terms of stochastic context-free grammars (SCFGs), which generate a probability distribution over secondary structures. It is, however, unclear how this probability distribution changes as a function of the input alignment. As prediction programs typically only return a single secondary structure, better characterisation of the underlying probability space of RNA secondary structures is of great interest. In this work, we show how to efficiently compute the information entropy of the probability distribution over RNA secondary structures produced for RNA alignments by a phylo-SCFG, and implement it for the PPfold model. We also discuss interpretations and applications of this quantity, including how it can clarify reasons for low prediction reliability scores. PPfold and its source code are available from http://birc.au.dk/software/ppfold/. PMID:23368905
Visualizing the global secondary structure of a viral RNA genome with cryo-electron microscopy
Garmann, Rees F.; Gopal, Ajaykumar; Athavale, Shreyas S.; Knobler, Charles M.; Gelbart, William M.; Harvey, Stephen C.
2015-01-01
The lifecycle, and therefore the virulence, of single-stranded (ss)-RNA viruses is regulated not only by their particular protein gene products, but also by the secondary and tertiary structure of their genomes. The secondary structure of the entire genomic RNA of satellite tobacco mosaic virus (STMV) was recently determined by selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE). The SHAPE analysis suggested a single highly extended secondary structure with much less branching than occurs in the ensemble of structures predicted by purely thermodynamic algorithms. Here we examine the solution-equilibrated STMV genome by direct visualization with cryo-electron microscopy (cryo-EM), using an RNA of similar length transcribed from the yeast genome as a control. The cryo-EM data reveal an ensemble of branching patterns that are collectively consistent with the SHAPE-derived secondary structure model. Thus, our results both elucidate the statistical nature of the secondary structure of large ss-RNAs and give visual support for modern RNA structure determination methods. Additionally, this work introduces cryo-EM as a means to distinguish between competing secondary structure models if the models differ significantly in terms of the number and/or length of branches. Furthermore, with the latest advances in cryo-EM technology, we suggest the possibility of developing methods that incorporate restraints from cryo-EM into the next generation of algorithms for the determination of RNA secondary and tertiary structures. PMID:25752599
Myhr, Arnhild; Lillefjell, Monica; Espnes, Geir Arild; Halvorsen, Thomas
2017-01-01
Background Completion of secondary education is important for individuals’ future health and health behaviour. The fundamental purpose of this study is to investigate the variation and clustering of school completion in families and neighbourhoods. Secondly, we aim to examine the impact of individuals’ family structure and neighbourhood of residence and examine to what extent parental education level moderates these associations. Methods Longitudinal register data for 30% of the entire Norwegian population aged 21–27 years in 2010 (N = 107,003) was extracted from Statistic Norway´s event database. Three-level logistic regression models, which incorporated individual, family, and neighbourhood contextual factors, were applied to estimate the family and neighbourhood general contextual effects and detect possible educational differences in the impact of family structure and urban place of residence in school completion. Results Completion rates were significantly higher within families with higher education level (79% in tertiary educated families vs. 61% and 48% in secondary and primary educated families respectively) and were strongly correlated within families (ICC = 39.6) and neighbourhoods (ICC = 5.7). Several structural factors at the family level negatively associated with school completion (e.g., family disruption, large family size, and young maternal age) were more prevalent and displayed more negative impact among primary educated individuals. Urban residence was associated with school completion, but only among the tertiary educated. Conclusions Investment in the resources in the individuals’ immediate surroundings, including family and neighbourhood, may address a substantial portion of the social inequalities in the completion of upper secondary education. The high intra-familial correlation in school completion suggests that public health policies and future research should acknowledge family environments in order to improve secondary education completion rates among young people within lower educated families. PMID:28222115
Huang, Mingchao; Wang, Yuyu; Liu, Xingyue; Li, Weihai; Kang, Zehui; Wang, Kai; Li, Xuankun; Yang, Ding
2015-02-15
The Plecoptera (stoneflies) is a hemimetabolous order of insects, whose larvae are usually used as indicators for fresh water biomonitoring. Herein, we describe the complete mitochondrial (mt) genome of a stonefly species, namely Acroneuria hainana Wu belonging to the family Perlidae. This mt genome contains 13 PCGs, 22 tRNA-coding genes and 2 rRNA-coding genes that are conserved in most insect mt genomes, and it also has the identical gene order with the insect ancestral gene order. However, there are three special initiation codons of ND1, ND5 and COI in PCGs: TTG, GTG and CGA, coding for L, V and R, respectively. Additionally, the 899-bp control region, with 73.30% A+T content, has two long repeated sequences which are found at the 3'-end closing to the tRNA(Ile) gene. Both of them can be folded into a stem-loop structure, whose adjacent upstream and downstream sequences can be also folded into stem-loop structures. It is presumed that the four special structures in series could be associated with the D-loop replication. It might be able to adjust the replication speed of two replicate directions. Copyright © 2014 Elsevier B.V. All rights reserved.
Micsonai, András; Wien, Frank; Bulyáki, Éva; Kun, Judit; Moussong, Éva; Lee, Young-Ho; Goto, Yuji; Réfrégiers, Matthieu; Kardos, József
2018-06-11
Circular dichroism (CD) spectroscopy is a widely used method to study the protein secondary structure. However, for decades, the general opinion was that the correct estimation of β-sheet content is challenging because of the large spectral and structural diversity of β-sheets. Recently, we showed that the orientation and twisting of β-sheets account for the observed spectral diversity, and developed a new method to estimate accurately the secondary structure (PNAS, 112, E3095). BeStSel web server provides the Beta Structure Selection method to analyze the CD spectra recorded by conventional or synchrotron radiation CD equipment. Both normalized and measured data can be uploaded to the server either as a single spectrum or series of spectra. The originality of BeStSel is that it carries out a detailed secondary structure analysis providing information on eight secondary structure components including parallel-β structure and antiparallel β-sheets with three different groups of twist. Based on these, it predicts the protein fold down to the topology/homology level of the CATH protein fold classification. The server also provides a module to analyze the structures deposited in the PDB for BeStSel secondary structure contents in relation to Dictionary of Secondary Structure of Proteins data. The BeStSel server is freely accessible at http://bestsel.elte.hu.
Structure of the ordered hydration of amino acids in proteins: analysis of crystal structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biedermannová, Lada, E-mail: lada.biedermannova@ibt.cas.cz; Schneider, Bohdan
2015-10-27
The hydration of protein crystal structures was studied at the level of individual amino acids. The dependence of the number of water molecules and their preferred spatial localization on various parameters, such as solvent accessibility, secondary structure and side-chain conformation, was determined. Crystallography provides unique information about the arrangement of water molecules near protein surfaces. Using a nonredundant set of 2818 protein crystal structures with a resolution of better than 1.8 Å, the extent and structure of the hydration shell of all 20 standard amino-acid residues were analyzed as function of the residue conformation, secondary structure and solvent accessibility. Themore » results show how hydration depends on the amino-acid conformation and the environment in which it occurs. After conformational clustering of individual residues, the density distribution of water molecules was compiled and the preferred hydration sites were determined as maxima in the pseudo-electron-density representation of water distributions. Many hydration sites interact with both main-chain and side-chain amino-acid atoms, and several occurrences of hydration sites with less canonical contacts, such as carbon–donor hydrogen bonds, OH–π interactions and off-plane interactions with aromatic heteroatoms, are also reported. Information about the location and relative importance of the empirically determined preferred hydration sites in proteins has applications in improving the current methods of hydration-site prediction in molecular replacement, ab initio protein structure prediction and the set-up of molecular-dynamics simulations.« less
Structurally coloured secondary particles composed of black and white colloidal particles.
Takeoka, Yukikazu; Yoshioka, Shinya; Teshima, Midori; Takano, Atsushi; Harun-Ur-Rashid, Mohammad; Seki, Takahiro
2013-01-01
This study investigated the colourful secondary particles formed by controlling the aggregation states of colloidal silica particles and the enhancement of the structural colouration of the secondary particles caused by adding black particles. We obtained glossy, partially structurally coloured secondary particles in the absence of NaCl, but matte, whitish secondary particles were obtained in the presence of NaCl. When a small amount of carbon black was incorporated into both types of secondary particles, the incoherent multiple scattering of light from the amorphous region was considerably reduced. However, the peak intensities in the reflection spectra, caused by Bragg reflection and by coherent single wavelength scattering, were only slightly decreased. Consequently, a brighter structural colour of these secondary particles was observed with the naked eye. Furthermore, when magnetite was added as a black particle, the coloured secondary particles could be moved and collected by applying an external magnetic field.
Structurally Coloured Secondary Particles Composed of Black and White Colloidal Particles
Takeoka, Yukikazu; Yoshioka, Shinya; Teshima, Midori; Takano, Atsushi; Harun-Ur-Rashid, Mohammad; Seki, Takahiro
2013-01-01
This study investigated the colourful secondary particles formed by controlling the aggregation states of colloidal silica particles and the enhancement of the structural colouration of the secondary particles caused by adding black particles. We obtained glossy, partially structurally coloured secondary particles in the absence of NaCl, but matte, whitish secondary particles were obtained in the presence of NaCl. When a small amount of carbon black was incorporated into both types of secondary particles, the incoherent multiple scattering of light from the amorphous region was considerably reduced. However, the peak intensities in the reflection spectra, caused by Bragg reflection and by coherent single wavelength scattering, were only slightly decreased. Consequently, a brighter structural colour of these secondary particles was observed with the naked eye. Furthermore, when magnetite was added as a black particle, the coloured secondary particles could be moved and collected by applying an external magnetic field. PMID:23917891
Mejía, Sol M; Espinal, Juan F; Mills, Matthew J L; Mondragón, Fanor
2016-08-01
Bioethanol is one of the world's most extensively produced biofuels. However, it is difficult to purify due to the formation of the ethanol-water azeotrope. Knowledge of the azeotrope structure at the molecular level can help to improve existing purification methods. In order to achieve a better understanding of this azeotrope structure, the characterization of (ethanol)5-water heterohexamers was carried out by analyzing the results of electronic structure calculations performed at the B3LYP/6-31+G(d) level. Hexamerization energies were found to range between -36.8 and -25.8 kcal/mol. Topological analysis of the electron density confirmed the existence of primary (OH…O) hydrogen bonds (HBs), secondary (CH…O) HBs, and H…H interactions in these clusters. Comparison with three different solvated alcohol systems featuring the same types of atom-atom interactions permitted the following order of stability to be determined: (methanol)5-water > (methanol)6 > (ethanol)5-water > (ethanol)6. These findings, together with accompanying geometric and spectroscopic analyses, show that similar cooperative effects exist among the primary HBs for structures with the same arrangement of primary HBs, regardless of the nature of the molecules involved. This result provides an indication that the molecular ratio can be considered to determine the unusual behavior of the ethanol-water system. The investigation also highlights the presence of several types of weak interaction in addition to primary HBs. Graphical Abstract Water-ethanol clusters exhibit a variety of interaction types between their atoms, such as primary OH...O (blue), secondary CH...O (green) and H...H (yellow) interactions as revealed by Quantum Chemical Topology.
Compton, L A; Johnson, W C
1986-05-15
Inverse circular dichroism (CD) spectra are presented for each of the five major secondary structures of proteins: alpha-helix, antiparallel and parallel beta-sheet, beta-turn, and other (random) structures. The fraction of the each secondary structure in a protein is predicted by forming the dot product of the corresponding inverse CD spectrum, expressed as a vector, with the CD spectrum of the protein digitized in the same way. We show how this method is based on the construction of the generalized inverse from the singular value decomposition of a set of CD spectra corresponding to proteins whose secondary structures are known from X-ray crystallography. These inverse spectra compute secondary structure directly from protein CD spectra without resorting to least-squares fitting and standard matrix inversion techniques. In addition, spectra corresponding to the individual secondary structures, analogous to the CD spectra of synthetic polypeptides, are generated from the five most significant CD eigenvectors.
Sturm, Marc; Quinten, Sascha; Huber, Christian G.; Kohlbacher, Oliver
2007-01-01
We propose a new model for predicting the retention time of oligonucleotides. The model is based on ν support vector regression using features derived from base sequence and predicted secondary structure of oligonucleotides. Because of the secondary structure information, the model is applicable even at relatively low temperatures where the secondary structure is not suppressed by thermal denaturing. This makes the prediction of oligonucleotide retention time for arbitrary temperatures possible, provided that the target temperature lies within the temperature range of the training data. We describe different possibilities of feature calculation from base sequence and secondary structure, present the results and compare our model to existing models. PMID:17567619
Mikuła, A; Król, M; Koleżyński, A
2015-06-05
Zeolites are a group of tecto-aluminosilicates with numerous practical applications, e.g. gas separators, molecular sieves and sorbents. The unique properties result from porous structure of channels and cages which are built from smaller units - the so-called Secondary Building Units (SBU), and sometimes also larger groups (Breck, 1974; Ciciszwili et al., 1974; Mozgawa, 2008; Čejka and van Bekkum, 2005). The aim of this study was the examination of the influence of long-range order on vibrational spectra of sodalite and zeolite A. Ab initio calculations (geometry optimizations and vibrational spectra calculations) of sodalite cage and selected SBU were carried out by means of Gaussian09 (Frisch et al., 2009) (in the case of isolated clusters) and Crystal09 (Dovesi et al., 2005, 2009) (for periodic structures). The obtained results were compared with the experimental spectra of sodalite and zeolite A crystal structures, synthesized under hydrothermal conditions. These results allowed analyzing of the long-range ordering influence on the vibrational spectra, as well as the identification of the characteristic vibrations in β cage based frameworks. It has been found, that based on small structural fragment (SBU) models a characteristic vibrations can be identify. However, full spectra analysis and especially the interpretation of far-infrared region of the spectra require using periodic models under the influence of translational crystal lattice. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, J.B.
2016-08-15
Transmission electron microscopy was performed to investigate the microstructures of a secondary phase and its surrounding matrix in a Co{sub 38}Ni{sub 33}Al{sub 29} ferromagnetic shape memory alloy. The secondary phase shows a γ′ L1{sub 2} structure exhibiting a dendritic morphology with enclosed B2 austenite regions while the matrix shows the L1{sub 0} martensitic structure. A secondary phase-austenite-martensite sandwich structure with residual austenite ranging from several hundred nanometers to several micrometers wide is observed at the secondary phase-martensite interface due to the depletion of Co and enrichment of Al in the chemical gradient zone and the effect of the strong martensiticmore » start temperature dependency of the element concentrations. The crystallographic orientation relationship of the secondary phase and the B2 austenite fits the Kurdjumov-Sachs relationship. - Highlights: •The secondary phase has a γ′ L1{sub 2} structure exhibiting a dendritic morphology. •A secondary phase-austenite-martensite sandwich structure is observed. •The structural sandwich structure is due to elemental composition variation. •The secondary phase and the B2 austenite fit the Kurdjumov-Sachs relationship.« less
The turn of the screw: an exercise in protein secondary structure.
Pikaart, Michael
2011-01-01
An exercise using simple paper strips to illustrate protein helical and sheet secondary structures is presented. Drawing on the rich historical context of the use of physical models in protein biochemistry by early practitioners, in particular Linus Pauling, the purpose of this activity is to cultivate in students a hands-on, intuitive sense of protein secondary structure and to complement the common computer-based structural portrayals often used in teaching biochemistry. As students fold these paper strips into model secondary structures, they will better grasp how intramolecular hydrogen bonds form in the folding of a polypeptide into secondary structure, and how these hydrogen bonds direct the overall shape of helical and sheet structures, including the handedness of the α-helix and the difference between right- and the left-handed twist. Copyright © 2010 Wiley Periodicals, Inc.
Yahyavi, Masoumeh; Falsafi-Zadeh, Sajad; Karimi, Zahra; Kalatarian, Giti; Galehdari, Hamid
2014-01-01
The investigation on the types of secondary structure (SS) of a protein is important. The evolution of secondary structures during molecular dynamics simulations is a useful parameter to analyze protein structures. Therefore, it is of interest to describe VMD-SS (a software program) for the identification of secondary structure elements and its trajectories during simulation for known structures available at the Protein Data Bank (PDB). The program helps to calculate (1) percentage SS, (2) SS occurrence in each residue, (3) percentage SS during simulation, and (4) percentage residues in all SS types during simulation. The VMD-SS plug-in was designed using TCL script and stride to calculate secondary structure features. The database is available for free at http://science.scu.ac.ir/HomePage.aspx?TabID=13755.
Conservation of mRNA secondary structures may filter out mutations in Escherichia coli evolution
Chursov, Andrey; Frishman, Dmitrij; Shneider, Alexander
2013-01-01
Recent reports indicate that mutations in viral genomes tend to preserve RNA secondary structure, and those mutations that disrupt secondary structural elements may reduce gene expression levels, thereby serving as a functional knockout. In this article, we explore the conservation of secondary structures of mRNA coding regions, a previously unknown factor in bacterial evolution, by comparing the structural consequences of mutations in essential and nonessential Escherichia coli genes accumulated over 40 000 generations in the course of the ‘long-term evolution experiment’. We monitored the extent to which mutations influence minimum free energy (MFE) values, assuming that a substantial change in MFE is indicative of structural perturbation. Our principal finding is that purifying selection tends to eliminate those mutations in essential genes that lead to greater changes of MFE values and, therefore, may be more disruptive for the corresponding mRNA secondary structures. This effect implies that synonymous mutations disrupting mRNA secondary structures may directly affect the fitness of the organism. These results demonstrate that the need to maintain intact mRNA structures imposes additional evolutionary constraints on bacterial genomes, which go beyond preservation of structure and function of the encoded proteins. PMID:23783573
Atomistic model of the spider silk nanostructure
NASA Astrophysics Data System (ADS)
Keten, Sinan; Buehler, Markus J.
2010-04-01
Spider silk is an ultrastrong and extensible self-assembling biopolymer that outperforms the mechanical characteristics of many synthetic materials including steel. Here we report atomic-level structures that represent aggregates of MaSp1 proteins from the N. Clavipes silk sequence based on a bottom-up computational approach using replica exchange molecular dynamics. We discover that poly-alanine regions predominantly form distinct and orderly beta-sheet crystal domains while disorderly structures are formed by poly-glycine repeats, resembling 31-helices. These could be the molecular source of the large semicrystalline fraction observed in silks, and also form the basis of the so-called "prestretched" molecular configuration. Our structures are validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots, alpha-carbon atomic distances, as well as secondary structure content.
Protein sectors: evolutionary units of three-dimensional structure
Halabi, Najeeb; Rivoire, Olivier; Leibler, Stanislas; Ranganathan, Rama
2011-01-01
Proteins display a hierarchy of structural features at primary, secondary, tertiary, and higher-order levels, an organization that guides our current understanding of their biological properties and evolutionary origins. Here, we reveal a structural organization distinct from this traditional hierarchy by statistical analysis of correlated evolution between amino acids. Applied to the S1A serine proteases, the analysis indicates a decomposition of the protein into three quasi-independent groups of correlated amino acids that we term “protein sectors”. Each sector is physically connected in the tertiary structure, has a distinct functional role, and constitutes an independent mode of sequence divergence in the protein family. Functionally relevant sectors are evident in other protein families as well, suggesting that they may be general features of proteins. We propose that sectors represent a structural organization of proteins that reflects their evolutionary histories. PMID:19703402
Nanostructure and molecular mechanics of spider dragline silk protein assemblies
Keten, Sinan; Buehler, Markus J.
2010-01-01
Spider silk is a self-assembling biopolymer that outperforms most known materials in terms of its mechanical performance, despite its underlying weak chemical bonding based on H-bonds. While experimental studies have shown that the molecular structure of silk proteins has a direct influence on the stiffness, toughness and failure strength of silk, no molecular-level analysis of the nanostructure and associated mechanical properties of silk assemblies have been reported. Here, we report atomic-level structures of MaSp1 and MaSp2 proteins from the Nephila clavipes spider dragline silk sequence, obtained using replica exchange molecular dynamics, and subject these structures to mechanical loading for a detailed nanomechanical analysis. The structural analysis reveals that poly-alanine regions in silk predominantly form distinct and orderly beta-sheet crystal domains, while disorderly regions are formed by glycine-rich repeats that consist of 31-helix type structures and beta-turns. Our structural predictions are validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots, alpha-carbon atomic distances, as well as secondary structure content. Mechanical shearing simulations on selected structures illustrate that the nanoscale behaviour of silk protein assemblies is controlled by the distinctly different secondary structure content and hydrogen bonding in the crystalline and semi-amorphous regions. Both structural and mechanical characterization results show excellent agreement with available experimental evidence. Our findings set the stage for extensive atomistic investigations of silk, which may contribute towards an improved understanding of the source of the strength and toughness of this biological superfibre. PMID:20519206
Nanostructure and molecular mechanics of spider dragline silk protein assemblies.
Keten, Sinan; Buehler, Markus J
2010-12-06
Spider silk is a self-assembling biopolymer that outperforms most known materials in terms of its mechanical performance, despite its underlying weak chemical bonding based on H-bonds. While experimental studies have shown that the molecular structure of silk proteins has a direct influence on the stiffness, toughness and failure strength of silk, no molecular-level analysis of the nanostructure and associated mechanical properties of silk assemblies have been reported. Here, we report atomic-level structures of MaSp1 and MaSp2 proteins from the Nephila clavipes spider dragline silk sequence, obtained using replica exchange molecular dynamics, and subject these structures to mechanical loading for a detailed nanomechanical analysis. The structural analysis reveals that poly-alanine regions in silk predominantly form distinct and orderly beta-sheet crystal domains, while disorderly regions are formed by glycine-rich repeats that consist of 3₁-helix type structures and beta-turns. Our structural predictions are validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots, alpha-carbon atomic distances, as well as secondary structure content. Mechanical shearing simulations on selected structures illustrate that the nanoscale behaviour of silk protein assemblies is controlled by the distinctly different secondary structure content and hydrogen bonding in the crystalline and semi-amorphous regions. Both structural and mechanical characterization results show excellent agreement with available experimental evidence. Our findings set the stage for extensive atomistic investigations of silk, which may contribute towards an improved understanding of the source of the strength and toughness of this biological superfibre.
Peptoid nanosheets exhibit a new secondary-structure motif.
Mannige, Ranjan V; Haxton, Thomas K; Proulx, Caroline; Robertson, Ellen J; Battigelli, Alessia; Butterfoss, Glenn L; Zuckermann, Ronald N; Whitelam, Stephen
2015-10-15
A promising route to the synthesis of protein-mimetic materials that are capable of complex functions, such as molecular recognition and catalysis, is provided by sequence-defined peptoid polymers--structural relatives of biologically occurring polypeptides. Peptoids, which are relatively non-toxic and resistant to degradation, can fold into defined structures through a combination of sequence-dependent interactions. However, the range of possible structures that are accessible to peptoids and other biological mimetics is unknown, and our ability to design protein-like architectures from these polymer classes is limited. Here we use molecular-dynamics simulations, together with scattering and microscopy data, to determine the atomic-resolution structure of the recently discovered peptoid nanosheet, an ordered supramolecular assembly that extends macroscopically in only two dimensions. Our simulations show that nanosheets are structurally and dynamically heterogeneous, can be formed only from peptoids of certain lengths, and are potentially porous to water and ions. Moreover, their formation is enabled by the peptoids' adoption of a secondary structure that is not seen in the natural world. This structure, a zigzag pattern that we call a Σ('sigma')-strand, results from the ability of adjacent backbone monomers to adopt opposed rotational states, thereby allowing the backbone to remain linear and untwisted. Linear backbones tiled in a brick-like way form an extended two-dimensional nanostructure, the Σ-sheet. The binary rotational-state motif of the Σ-strand is not seen in regular protein structures, which are usually built from one type of rotational state. We also show that the concept of building regular structures from multiple rotational states can be generalized beyond the peptoid nanosheet system.
NASA Astrophysics Data System (ADS)
Bürck, Jochen; Aras, Onur; Bertinetti, Luca; Ilhan, Caner A.; Ermeydan, Mahmut A.; Schneider, Reinhard; Ulrich, Anne S.; Kazanci, Murat
2018-01-01
Collagen is a very popular natural biomaterial due to its high biocompatibility and bioactivity. Electrospinning is currently the only technique that allows the fabrication of continuous fibers with diameters down to a few nanometers. In order to regenerate collagen in the forms of nanofibers, it is necessary to dissolve it in suitable solvents. The solvents and electrospinning process cause unfolding of collagen nanofibers. It is proposed that acidic solvents preserve better the natural structure of collagen fibers. In this paper, the structures of collagen nanofibers were examined by using circular dichroism (CD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, differential scanning calorimetry (DSC) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) methods in order to test this hypothesis. The increase in PP-II fraction, representing the triple helix structure in collagen, that was observed in CD analysis of HAc derived collagen nanofibers, for the first time was successfully confirmed and illustrated by using SEM and TEM methods. Furthermore, CD revealed the mostly detrimental effect of stabilization conditions such as heat, vacuum and UV treatment on the secondary structure of the collagen nanofibers.
Large Binocular Telescope project
NASA Astrophysics Data System (ADS)
Hill, John M.; Salinari, Piero
2000-08-01
The Large Binocular Telescope (LBT) Project is a collaboration between institutions in Arizona, Germany, Italy, and Ohio. The telescope will have two 8.4 meter diameter primary mirrors phased on a common mounting with a 22.8 meter baseline. The second of two borosilicate honeycomb primary mirrors for LBT is being case at the Steward Observatory Mirror Lab this year. The baseline optical configuration of LBT includes adaptive infrared secondaries of a Gregorian design. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4 arcminute diameter field-of- view. The interferometric focus combining the light from the two 8.4 meter primaries will reimage the two folded Gregorian focal planes to three central locations. The telescope elevation structure accommodates swing arm spiders which allow rapid interchange of the various secondary and tertiary mirrors as well as prime focus cameras. Maximum stiffness and minimal thermal disturbance were important drivers for the design of the telescope in order to provide the best possible images for interferometric observations. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The telescope structure is being fabricated in Italy by Ansaldo Energia S.p.A. in Milan. After pre-erection in the factory, the telescope will be shipped to Arizona in early 2001. The enclosure is being built on Mt. Graham under the auspices of Hart Construction Management Services of Safford, Arizona. The enclosure will be completed by late 2001 and ready for telescope installation.
Vuokko, Riikka; Mäkelä-Bengs, Päivi; Hyppönen, Hannele; Lindqvist, Minna; Doupi, Persephone
2017-01-01
To explore the impacts that structuring of electronic health records (EHRs) has had from the perspective of secondary use of patient data as reflected in currently published literature. This paper presents the results of a systematic literature review aimed at answering the following questions; (1) what are the common methods of structuring patient data to serve secondary use purposes; (2) what are the common methods of evaluating patient data structuring in the secondary use context, and (3) what impacts or outcomes of EHR structuring have been reported from the secondary use perspective. The reported study forms part of a wider systematic literature review on the impacts of EHR structuring methods and evaluations of their impact. The review was based on a 12-step systematic review protocol adapted from the Cochrane methodology. Original articles included in the study were divided into three groups for analysis and reporting based on their use focus: nursing documentation, medical use and secondary use (presented in this paper). The analysis from the perspective of secondary use of data includes 85 original articles from 1975 to 2010 retrieved from 15 bibliographic databases. The implementation of structured EHRs can be roughly divided into applications for documenting patient data at the point of care and application for retrieval of patient data (post hoc structuring). Two thirds of the secondary use articles concern EHR structuring methods which were still under development or in the testing phase. of structuring patient data such as codes, terminologies, reference information models, forms or templates and documentation standards were usually applied in combination. Most of the identified benefits of utilizing structured EHR data for secondary use purposes concentrated on information content and quality or on technical quality and reliability, particularly in the case of Natural Language Processing (NLP) studies. A few individual articles evaluated impacts on care processes, productivity and costs, patient safety, care quality or other health impacts. In most articles these endpoints were usually discussed as goals of secondary use and less as evidence-supported impacts, resulting from the use of structured EHR data for secondary purposes. Further studies and more sound evaluation methods are needed for evidence on how EHRs are utilized for secondary purposes, and how structured documentation methods can serve different users' needs, e.g. administration, statistics and research and development, in parallel to medical use purposes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A decade and a half of protein intrinsic disorder: Biology still waits for physics
Uversky, Vladimir N
2013-01-01
The abundant existence of proteins and regions that possess specific functions without being uniquely folded into unique 3D structures has become accepted by a significant number of protein scientists. Sequences of these intrinsically disordered proteins (IDPs) and IDP regions (IDPRs) are characterized by a number of specific features, such as low overall hydrophobicity and high net charge which makes these proteins predictable. IDPs/IDPRs possess large hydrodynamic volumes, low contents of ordered secondary structure, and are characterized by high structural heterogeneity. They are very flexible, but some may undergo disorder to order transitions in the presence of natural ligands. The degree of these structural rearrangements varies over a very wide range. IDPs/IDPRs are tightly controlled under the normal conditions and have numerous specific functions that complement functions of ordered proteins and domains. When lacking proper control, they have multiple roles in pathogenesis of various human diseases. Gaining structural and functional information about these proteins is a challenge, since they do not typically “freeze” while their “pictures are taken.” However, despite or perhaps because of the experimental challenges, these fuzzy objects with fuzzy structures and fuzzy functions are among the most interesting targets for modern protein research. This review briefly summarizes some of the recent advances in this exciting field and considers some of the basic lessons learned from the analysis of physics, chemistry, and biology of IDPs. PMID:23553817
Ab initio NMR Confirmed Evolutionary Structure Prediction for Organic Molecular Crystals
NASA Astrophysics Data System (ADS)
Pham, Cong-Huy; Kucukbenli, Emine; de Gironcoli, Stefano
2015-03-01
Ab initio crystal structure prediction of even small organic compounds is extremely challenging due to polymorphism, molecular flexibility and difficulties in addressing the dispersion interaction from first principles. We recently implemented vdW-aware density functionals and demonstrated their success in energy ordering of aminoacid crystals. In this work we combine this development with the evolutionary structure prediction method to study cholesterol polymorphs. Cholesterol crystals have paramount importance in various diseases, from cancer to atherosclerosis. The structure of some polymorphs (e.g. ChM, ChAl, ChAh) have already been resolved while some others, which display distinct NMR spectra and are involved in disease formation, are yet to be determined. Here we thoroughly assess the applicability of evolutionary structure prediction to address such real world problems. We validate the newly predicted structures with ab initio NMR chemical shift data using secondary referencing for an improved comparison with experiments.
Thermodynamic and structural characterization of an antibody gel
Esue, Osigwe; Xie, Anna X.; Kamerzell, Tim J.; Patapoff, Thomas W.
2013-01-01
Although extensively studied, protein–protein interactions remain highly elusive and are of increasing interest in drug development. We show the assembly of a monoclonal antibody, using multivalent carboxylate ions, into highly-ordered structures. While the presence and function of similar structures in vivo are not known, the results may present a possible unexplored area of antibody structure-function relationships. Using a variety of tools (e.g., mechanical rheology, electron microscopy, isothermal calorimetry, Fourier transform infrared spectroscopy), we characterized the physical, biochemical, and thermodynamic properties of these structures and found that citrate may interact directly with the amino acid residue histidine, after which the individual protein units assemble into a filamentous network gel exhibiting high elasticity and interfilament interactions. Citrate interacts exothermically with the monoclonal antibody with an association constant that is highly dependent on solution pH and temperature. Secondary structure analysis also reveals involvement of hydrophobic and aromatic residues. PMID:23425660
Glover, Karen; Mei, Yang; Sinha, Sangita C
2016-10-01
Many proteins contain intrinsically disordered regions (IDRs) lacking stable secondary and ordered tertiary structure. IDRs are often implicated in macromolecular interactions, and may undergo structural transitions upon binding to interaction partners. However, as binding partners of many protein IDRs are unknown, these structural transitions are difficult to verify and often are poorly understood. In this study we describe a method to identify IDRs that are likely to undergo helical transitions upon binding. This method combines bioinformatics analyses followed by circular dichroism spectroscopy to monitor 2,2,2-trifluoroethanol (TFE)-induced changes in secondary structure content of these IDRs. Our results demonstrate that there is no significant change in the helicity of IDRs that are not predicted to fold upon binding. IDRs that are predicted to fold fall into two groups: one group does not become helical in the presence of TFE and includes examples of IDRs that form β-strands upon binding, while the other group becomes more helical and includes examples that are known to fold into helices upon binding. Therefore, we propose that bioinformatics analyses combined with experimental evaluation using TFE may provide a general method to identify IDRs that undergo binding-induced disorder-to-helix transitions. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aftab, M.; Department of Physics, Quaid-i-Azam University, Islamabad; Hassnain Jaffari, G.
2011-09-01
We present the structural, magnetic, and transport properties of quaternary Co{sub 2}Mn{sub 1-x}Cr{sub x}Si (0 {<=} x {<=} 1) Heusler alloy thin films prepared by DC magnetron sputtering on commercially available glass substrates without any buffer layer. Recent theoretical calculations have shown the compositions to be half-metallic. XRD patterns show the presence of L2{sub 1} structure in the films for x = 0, however, the peaks intensities are not in accordance with the literature. High resolution transmission electron microscopy images of films show granular morphologies, crystalline growth, and an ordered L2{sub 1} structure for x {<=} 0.6. For higher Crmore » concentrations, secondary phases start to appear in the films. Magnetization measurements as a function of applied magnetic field show that the saturation moments for x {<=} 0.2 follow the Slater-Pauling rule, however, for 0.2 < x {<=} 0.6 the saturation moments fall short of the theoretically predicted values. Transport measurements at room temperature show a monotonic increase in resistivity with increasing Cr concentration. These results are explained in terms of texturing effects, Co-Cr antisite disorder, presence of secondary phases, and the amount of disorder present in the films.« less
Linker histone partial phosphorylation: effects on secondary structure and chromatin condensation
Lopez, Rita; Sarg, Bettina; Lindner, Herbert; Bartolomé, Salvador; Ponte, Inma; Suau, Pedro; Roque, Alicia
2015-01-01
Linker histones are involved in chromatin higher-order structure and gene regulation. We have successfully achieved partial phosphorylation of linker histones in chicken erythrocyte soluble chromatin with CDK2, as indicated by HPCE, MALDI-TOF and Tandem MS. We have studied the effects of linker histone partial phosphorylation on secondary structure and chromatin condensation. Infrared spectroscopy analysis showed a gradual increase of β-structure in the phosphorylated samples, concomitant to a decrease in α-helix/turns, with increasing linker histone phosphorylation. This conformational change could act as the first step in the phosphorylation-induced effects on chromatin condensation. A decrease of the sedimentation rate through sucrose gradients of the phosphorylated samples was observed, indicating a global relaxation of the 30-nm fiber following linker histone phosphorylation. Analysis of specific genes, combining nuclease digestion and qPCR, showed that phosphorylated samples were more accessible than unphosphorylated samples, suggesting local chromatin relaxation. Chromatin aggregation was induced by MgCl2 and analyzed by dynamic light scattering (DLS). Phosphorylated chromatin had lower percentages in volume of aggregated molecules and the aggregates had smaller hydrodynamic diameter than unphosphorylated chromatin, indicating that linker histone phosphorylation impaired chromatin aggregation. These findings provide new insights into the effects of linker histone phosphorylation in chromatin condensation. PMID:25870416
A strand graph semantics for DNA-based computation
Petersen, Rasmus L.; Lakin, Matthew R.; Phillips, Andrew
2015-01-01
DNA nanotechnology is a promising approach for engineering computation at the nanoscale, with potential applications in biofabrication and intelligent nanomedicine. DNA strand displacement is a general strategy for implementing a broad range of nanoscale computations, including any computation that can be expressed as a chemical reaction network. Modelling and analysis of DNA strand displacement systems is an important part of the design process, prior to experimental realisation. As experimental techniques improve, it is important for modelling languages to keep pace with the complexity of structures that can be realised experimentally. In this paper we present a process calculus for modelling DNA strand displacement computations involving rich secondary structures, including DNA branches and loops. We prove that our calculus is also sufficiently expressive to model previous work on non-branching structures, and propose a mapping from our calculus to a canonical strand graph representation, in which vertices represent DNA strands, ordered sites represent domains, and edges between sites represent bonds between domains. We define interactions between strands by means of strand graph rewriting, and prove the correspondence between the process calculus and strand graph behaviours. Finally, we propose a mapping from strand graphs to an efficient implementation, which we use to perform modelling and simulation of DNA strand displacement systems with rich secondary structure. PMID:27293306
NASA Astrophysics Data System (ADS)
Sivanesam, Kalkena
More than 40 diseases have been associated with the misfolding of peptides (or proteins) that form fibrils with a very specific morphology. These peptides classified as amyloidogenic peptides have been implicated in the development of Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, Hungtinton's Disease etc. To date, these diseases have no cure, only therapies that can ameliorate the symptoms to a degree. Inhibition of the amyloidogenesis of these peptides has been proposed as a possible treatment option. While small molecules have been heavily tested as inhibitors of amyloidogenesis, peptides have emerged as potential inhibitors. In this work, the ability of a set of designed hairpin peptides to inhibit the amyloidogenesis of two different systems, alpha-synuclein (implicated in Parkinson's Disease) and human amylin (implicated in Type II Diabetes) is tested. Using circular dichroism and thioflavin T fluorescence, the ability of these peptides to inhibit amyloidogenesis is tested. The binding loci of these inhibitors to alpha-synuclein are also explored. The use of peptides as antimicrobials on the other hand is not a novel concept. However, most antimicrobial peptides, both natural and designed, rely heavily on covalent stabilizations in order to maintain secondary structure. In this study, non-covalent stabilizations are applied to a couple of natural as well as designed antimicrobials in order to study the effects of secondary structure stabilization on biological activity.
An experimental study of secondary vortex structure in mixing layers
NASA Technical Reports Server (NTRS)
Bell, J. H.; Mehta, Rabindra D.
1990-01-01
This report covers the first eight months of an experimental research project on the secondary vortex structure in plane mixing layers. The aim of the project is to obtain quantitative data on the behavior of the secondary structure in a turbulent mixing layer at reasonable reynolds numbers (Re(sub delta(sub w)) approx. 50,000). In particular, we hope to resolve the questions of how the scale of the secondary vortex structure changes with the scale of the mixing layer, and whether the structures are fixed in space, or whether they 'meander' in the spanwise direction.
Investigation of α-MnO 2 Tunneled Structures as Model Cation Hosts for Energy Storage
Housel, Lisa M.; Wang, Lei; Abraham, Alyson; ...
2018-02-19
Future advances in energy storage systems rely on identification of appropriate target materials and deliberate synthesis of the target materials with control of their physiochemical properties in order to disentangling the contributions of distinct properties to the functional electrochemistry. Furthermore, this goal demands systematic inquiry using model materials that provide the opportunity for significant synthetic versatility and control. Ideally, a material family that enables direct manipulation of characteristics including composition, defects and crystallite size while remaining within the defined structural framework would be necessary. Accomplishing this through direct synthetic methods is desirable to minimize the complicating effects of secondary processing.
Cuccia, Louis A; Ruiz, Eliseo; Lehn, Jean-Marie; Homo, Jean-Claude; Schmutz, Marc
2002-08-02
The synthesis and characterization of an alternating pyridine-pyridazine strand comprising thirteen heterocycles are described. Spontaneous folding into a helical secondary structure is based on a general molecular self-organization process enforced by the conformational information encoded within the primary structure of the molecular strand itself. Conformational control based on heterocyclic "helicity codons" illustrates a strategy for designing folding properties into synthetic oligomers (foldamers). Strong intermolecular interactions of the highly ordered lock-washer subunits of compound 3 results in hierarchical supramolecular self-assembly into protofibrils and fibrils. Compound 3 also forms mechanically stable two-dimensional Langmuir-Blodgett and cast thin films.
Investigation of α-MnO 2 Tunneled Structures as Model Cation Hosts for Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Housel, Lisa M.; Wang, Lei; Abraham, Alyson
Future advances in energy storage systems rely on identification of appropriate target materials and deliberate synthesis of the target materials with control of their physiochemical properties in order to disentangling the contributions of distinct properties to the functional electrochemistry. Furthermore, this goal demands systematic inquiry using model materials that provide the opportunity for significant synthetic versatility and control. Ideally, a material family that enables direct manipulation of characteristics including composition, defects and crystallite size while remaining within the defined structural framework would be necessary. Accomplishing this through direct synthetic methods is desirable to minimize the complicating effects of secondary processing.
Residue length and solvation model dependency of elastinlike polypeptides
NASA Astrophysics Data System (ADS)
Bilsel, Mustafa; Arkin, Handan
2010-05-01
We have performed exhaustive multicanonical Monte Carlo simulations of elastinlike polypeptides with a chain including amino acids (valine-proline-glycine-valine-glycine)n or in short (VPGVG)n , where n changes from 1 to 4, in order to investigate the thermodynamic and structural properties. To predict the characteristic secondary structure motifs of the molecules, Ramachandran plots were prepared and analyzed as well. In these studies, we utilized a realistic model where the interactions between all types of atoms were taken into account. Effects of solvation were also simulated by using an implicit-solvent model with two commonly used solvation parameter sets and compared with the vacuum case.
Böhm, Karl-Heinz; Banert, Klaus; Auer, Alexander A
2014-04-23
We present ab-initio calculations of secondary isotope effects on NMR chemical shieldings. The change of the NMR chemical shift of a certain nucleus that is observed if another nucleus is replaced by a different isotope can be calculated by computing vibrational corrections on the NMR parameters using electronic structure methods. We demonstrate that the accuracy of the computational results is sufficient to even distinguish different conformers. For this purpose, benchmark calculations for fluoro(2-2H)ethane in gauche and antiperiplanar conformation are carried out at the HF, MP2 and CCSD(T) level of theory using basis sets ranging from double- to quadruple-zeta quality. The methodology is applied to the secondary isotope shifts for 2-fluoronorbornane in order to resolve an ambiguity in the literature on the assignment of endo- and exo-2-fluoronorbornanes with deuterium substituents in endo-3 and exo-3 positions, also yielding insight into mechanistic details of the corresponding synthesis.
Convergence of an iterative procedure for large-scale static analysis of structural components
NASA Technical Reports Server (NTRS)
Austin, F.; Ojalvo, I. U.
1976-01-01
The paper proves convergence of an iterative procedure for calculating the deflections of built-up component structures which can be represented as consisting of a dominant, relatively stiff primary structure and a less stiff secondary structure, which may be composed of one or more substructures that are not connected to one another but are all connected to the primary structure. The iteration consists in estimating the deformation of the primary structure in the absence of the secondary structure on the assumption that all mechanical loads are applied directly to the primary structure. The j-th iterate primary structure deflections at the interface are imposed on the secondary structure, and the boundary loads required to produce these deflections are computed. The cycle is completed by applying the interface reaction to the primary structure and computing its updated deflections. It is shown that the mathematical condition for convergence of this procedure is that the maximum eigenvalue of the equation relating primary-structure deflection to imposed secondary-structure deflection be less than unity, which is shown to correspond with the physical requirement that the secondary structure be more flexible at the interface boundary.
Aoyagi, Satoka; Abe, Kiyoshi; Yamagishi, Takayuki; Iwai, Hideo; Yamaguchi, Satoru; Sunohara, Takashi
2017-11-01
Blood adsorption onto the inside surface of hollow fiber dialysis membranes was investigated by means of time-of-flight secondary ion mass spectrometry (TOF-SIMS) and near-field infrared microscopy (NFIR) in order to evaluate the biocompatibility and permeability of dialysis membranes. TOF-SIMS is useful for the imaging of particular molecules with a high spatial resolution of approximately 100 nm. In contrast, infrared spectra provide quantitative information and NFIR enables analysis with a high spatial resolution of less than 1 μm, which is close to the resolution of TOF-SIMS. A comparison was made of one of the most widely used dialysis membranes made of polysulfone (PSf), that has an asymmetric and inhomogeneous pore structure, and a newly developed asymmetric cellulose triacetate (ATA) membrane that also has an asymmetric pore structure, even though the conventional cellulose triacetate membrane has a symmetric and homogeneous pore structure. As a result, it was demonstrated that blood adsorption on the inside surface of the ATA membrane is more reduced than that on the PSf membrane. Graphical abstract Analysis of blood adsorption on inside surface of hollow fiber membrane.
Robustness of a multimodal piezoelectric damping involving the electrical analogue of a plate
NASA Astrophysics Data System (ADS)
Lossouarn, Boris; Cunefare, Kenneth A.; Aucejo, Mathieu; Deü, Jean-François
2016-04-01
Multimodal passive damping of a mechanical structure can be implemented by a coupling to a secondary structure exhibiting similar modal properties. When considering a piezoelectric coupling, the secondary structure is an electrical network. A suitable topology for such a network can be obtained by a finite difference formulation of the mechanical equations, followed by a direct electromechanical analogy. This procedure is applied to the Kirchhoff-Love theory in order to find the electrical analogue of a clamped plate. The passive electrical network is implemented with inductors, transformers and the inherent capacitance of the piezoelectric patches. The electrical resonances are tuned to approach those of several mechanical modes simultaneously. This yields a broadband reduction of the plate vibrations through the array of interconnected piezoelectric patches. The robustness of the control strategy is evaluated by introducing perturbations in the mechanical or electrical designs. A non-optimal tuning is considered by way of a uniform variation of the network inductance. Then, the effect of local or boundary modifications of the electromechanical system is observed experimentally. In the end, the use of an analogous electrical network appears as an efficient and robust solution for the multimodal control of a plate.
Daniels, Lia M; Frenzel, Anne C; Stupnisky, Robert H; Stewart, Tara L; Perry, Raymond P
2013-09-01
The literature documents fewer classroom mastery goal structures in secondary school compared to elementary. However, little is known about how personal achievement goals may influence classroom goal structures. This is especially true at the level of pre-service teachers. Our objective was to investigate if pre-service teachers' personal goals predicted their intended classroom goal structures. Participants were 125 elementary and 175 secondary school pre-service teachers from two Western Canadian universities. Structural equation modelling was used to examine if the structural relationships and latent means of personal and intended classroom goal structures differed for elementary and secondary school pre-service teachers. The results revealed that personal goals predicted the goal structures that pre-service teachers intended to establish; however, the relationships and means differed between elementary and secondary school pre-service teachers. Specifically, personal mastery-approach goals positively predicted classroom mastery goals much more strongly at the elementary than the secondary level. Furthermore, elementary pre-service teachers had significantly higher latent mean scores on personal mastery-approach goals than their secondary counterparts. It seems possible that the currently documented differences between classroom goal structures noted for elementary compared to secondary school may be based on the personal goals endorsed as pre-service teachers. The results are further discussed in terms of alignment with research on practising teachers' personal and classroom goals and implications for teacher education. © 2012 The British Psychological Society.
Yao, Haruhiko; Matuoka, Sinzi; Tenchov, Boris; Hatta, Ichiro
1991-01-01
Fully hydrated dipalmitoylphosphatidylcholine (DPPC) undergoes liquid crystalline to metastable Pβ, phase transition in cooling. A small angle x-ray scattering study has been performed for obtaining further evidence about the structure of this phase. From a high-resolution observation of x-ray diffraction profiles, a distinct multipeak pattern has become obvious. Among them the (01) reflection in the secondary ripple structure is identified clearly. There are peaks assigned straightforwardly to (10) and (20) reflections in the primary ripple structure and peaks assigned to (10) and (20) reflections in the secondary ripple structure. Therefore the multipeak pattern is due to superposition of the reflections cause by the primary and secondary ripple structures. The lattice parameters are estimated as follows: for the primary ripple structure a = 7.09 nm, b = 13.64 nm, and γ = 95°, and for the secondary ripple structure a = 8.2 nm, b = 26.6 nm, and γ = 90°. The lattice parameters thus obtained for the secondary ripple structure are not conclusive, however. The hydrocarbon chains in the primary ripple structure have been reported as being tilted against the bilayer plane and, on the other hand, the hydrocarbon chains in the secondary ripple structure are likely to be perpendicular to the bilayer plane. This fact seems to be related to a sequential mechanism of phase transitions. On heating from the Lβ, phase where the hydrocarbon chains are tilted the primary ripple structure having tilted hydrocarbon chains takes place and on cooling from the Lα phase where the hydrocarbon chains are not tilted the secondary ripple structure with untilted chains tends to be stabilized. It appears that the truly metastable ripple phase is expressed by the second ripple structure although in the course of the actual cooling transition both the secondary and primary ripple structures form and coexist. PMID:19431787
Stem-Loop RNA Hairpins in Giant Viruses: Invading rRNA-Like Repeats and a Template Free RNA
Seligmann, Hervé; Raoult, Didier
2018-01-01
We examine the hypothesis that de novo template-free RNAs still form spontaneously, as they did at the origins of life, invade modern genomes, contribute new genetic material. Previously, analyses of RNA secondary structures suggested that some RNAs resembling ancestral (t)RNAs formed recently de novo, other parasitic sequences cluster with rRNAs. Here positive control analyses of additional RNA secondary structures confirm ancestral and de novo statuses of RNA grouped according to secondary structure. Viroids with branched stems resemble de novo RNAs, rod-shaped viroids resemble rRNA secondary structures, independently of GC contents. 5′ UTR leading regions of West Nile and Dengue flavivirid viruses resemble de novo and rRNA structures, respectively. An RNA homologous with Megavirus, Dengue and West Nile genomes, copperhead snake microsatellites and levant cotton repeats, not templated by Mimivirus' genome, persists throughout Mimivirus' infection. Its secondary structure clusters with candidate de novo RNAs. The saltatory phyletic distribution and secondary structure of Mimivirus' peculiar RNA suggest occasional template-free polymerization of this sequence, rather than noncanonical transcriptions (swinger polymerization, posttranscriptional editing). PMID:29449833
Sato, Kanna; Ito, Sachiko; Fujii, Takeo; Suzuki, Ryu; Takenouchi, Sachi; Nakaba, Satoshi; Funada, Ryo; Sano, Yuzou; Kajita, Shinya; Kitano, Hidemi; Katayama, Yoshihiro
2010-11-01
We recently reported that the cwa1 mutation disturbed the deposition and assembly of secondary cell wall materials in the cortical fiber of rice internodes. Genetic analysis revealed that cwa1 is allelic to bc1, which encodes glycosylphosphatidylinositol (GPI)-anchored COBRA-like protein with the highest homology to Arabidopsis COBRA-like 4 (COBL4) and maize Brittle Stalk 2 (Bk2). Our results suggested that CWA1/BC1 plays a role in assembling secondary cell wall materials at appropriate sites, enabling synthesis of highly ordered secondary cell wall structure with solid and flexible internodes in rice. The N-terminal amino acid sequence of CWA1/BC1, as well as its orthologs (COBL4, Bk2) and other BC1-like proteins in rice, shows weak similarity to a family II carbohydrate-binding module (CBM2) of several bacterial cellulases. To investigate the importance of the CBM-like sequence of CWA1/BC1 in the assembly of secondary cell wall materials, Trp residues in the CBM-like sequence, which is important for carbohydrate binding, were substituted for Val residues and introduced into the cwa1 mutant. CWA1/BC1 with the mutated sequence did not complement the abnormal secondary cell walls seen in the cwa1 mutant, indicating that the CBM-like sequence is essential for the proper function of CWA1/BC1, including assembly of secondary cell wall materials.
Guo, Zuojun; Streu, Kristina; Krilov, Goran; Mohanty, Udayan
2014-06-01
The stabilization of secondary structure is believed to play an important role in the peptide-protein binding interaction. In this study, the α-helical conformation and structural stability of single and double stapled all-hydrocarbon cross-linked p53 peptides when bound and unbound to MDM2 are investigated. We determined the effects of the peptide sequence, the stereochemistry of the cross-linker, the conformation of the double bond in the alkene bridge, and the length of the bridge, to the relative stability of the α-helix structure. The binding affinity calculations by WaterMap provided over one hundred hydration sites in the MDM2 binding pocket where water density is greater than twice that of the bulk, and the relative value of free energy released by displacing these hydration sites. In agreement with the experimental data, potentials of mean force obtained by weighted histogram analysis methods indicated the order of peptides from lowest to highest binding affinity. Our study provides a comprehensive rationalization of the relationship between peptide stapling strategy, the secondary structural stability, and the binding affinity of p53/MDM2 complex. We hope our efforts can help to further the development of a new generation p53/MDM2 inhibitors that can reactivate the function of p53 as tumor suppressor gene. © 2014 John Wiley & Sons A/S.
Vendra, Venkata Pulla Rao; Agarwal, Garima; Chandani, Sushil; Talla, Venu; Srinivasan, Narayanaswamy; Balasubramanian, Dorairajan
2013-01-01
Background We highlight an unrecognized physiological role for the Greek key motif, an evolutionarily conserved super-secondary structural topology of the βγ-crystallins. These proteins constitute the bulk of the human eye lens, packed at very high concentrations in a compact, globular, short-range order, generating transparency. Congenital cataract (affecting 400,000 newborns yearly worldwide), associated with 54 mutations in βγ-crystallins, occurs in two major phenotypes nuclear cataract, which blocks the central visual axis, hampering the development of the growing eye and demanding earliest intervention, and the milder peripheral progressive cataract where surgery can wait. In order to understand this phenotypic dichotomy at the molecular level, we have studied the structural and aggregation features of representative mutations. Methods Wild type and several representative mutant proteins were cloned, expressed and purified and their secondary and tertiary structural details, as well as structural stability, were compared in solution, using spectroscopy. Their tendencies to aggregate in vitro and in cellulo were also compared. In addition, we analyzed their structural differences by molecular modeling in silico. Results Based on their properties, mutants are seen to fall into two classes. Mutants A36P, L45PL54P, R140X, and G165fs display lowered solubility and structural stability, expose several buried residues to the surface, aggregate in vitro and in cellulo, and disturb/distort the Greek key motif. And they are associated with nuclear cataract. In contrast, mutants P24T and R77S, associated with peripheral cataract, behave quite similar to the wild type molecule, and do not affect the Greek key topology. Conclusion When a mutation distorts even one of the four Greek key motifs, the protein readily self-aggregates and precipitates, consistent with the phenotype of nuclear cataract, while mutations not affecting the motif display ‘native state aggregation’, leading to peripheral cataract, thus offering a protein structural rationale for the cataract phenotypic dichotomy “distort motif, lose central vision”. PMID:23936409
Identifying tropical dry forests extent and succession via the use of machine learning techniques
NASA Astrophysics Data System (ADS)
Li, Wei; Cao, Sen; Campos-Vargas, Carlos; Sanchez-Azofeifa, Arturo
2017-12-01
Information on ecosystem services as a function of the successional stage for secondary tropical dry forests (TDFs) is scarce and limited. Secondary TDFs succession is defined as regrowth following a complete forest clearance for cattle growth or agriculture activities. In the context of large conservation initiatives, the identification of the extent, structure and composition of secondary TDFs can serve as key elements to estimate the effectiveness of such activities. As such, in this study we evaluate the use of a Hyperspectral MAPper (HyMap) dataset and a waveform LIDAR dataset for characterization of different levels of intra-secondary forests stages at the Santa Rosa National Park (SRNP) Environmental Monitoring Super Site located in Costa Rica. Specifically, a multi-task learning based machine learning classifier (MLC-MTL) is employed on the first shortwave infrared (SWIR1) of HyMap in order to identify the variability of aboveground biomass of secondary TDFs along a successional gradient. Our paper recognizes that the process of ecological succession is not deterministic but a combination of transitional forests types along a stochastic path that depends on ecological, edaphic, land use, and micro-meteorological conditions, and our results provide a new way to obtain the spatial distribution of three main types of TDFs successional stages.
Probing the rhizosphere to define mineral organic relationships
NASA Astrophysics Data System (ADS)
Schulz, M. S.; Dohnalkova, A.; Stonestrom, D. A.
2016-12-01
Soil organic matter (SOM) accumulation and stabilization over time is an important process as soils are a large carbon reservoir in which feedbacks under changing climates are unclear. The association of SOM with poorly crystalline or short-range-ordered secondary minerals has been shown to be important for carbon stabilization. Commonly used soil extraction techniques display correlations of SOM with secondary phases but do not show causation. The fate of root exudates in soils and processes controlling exudate associations with mineral phases are as yet structurally undefined. Sub-micron exploration of in-situ relations provides valuable information on SOM-mineral interactions. Soils of the Santa Cruz (California) marine terrace chronosequence are used to illustrate changes in deep (> 1 m) rhizosphere through time. Cracks and soil ped faces are sites of high root density and organic matter (biofilm or mucilage) deposition. We employ a variety of scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) techniques for high resolution imaging and elemental analyses of deep rhizosphere and associated carbon mineral interactions. In these coastal prairie soils microscopy reveals secondary clay minerals associated with and possibly forming from organic-rich mucilage that occurs along the aforementioned rooting networks on fracture surfaces. We hypothesize that the production of secondary clays in the rhizosphere is an important mode of C incorporation into secondary minerals.
Structural properties of hydration shell around various conformations of simple polypeptides.
Czapiewski, Dariusz; Zielkiewicz, Jan
2010-04-08
In this paper we investigate structural properties of water within the solvation shell around the peptide core created by a well-defined conformation of polypeptide chain. The following secondary structures are investigated: linear (straight chain), and three helices PII (polyproline-like), 3(10), and alpha. We propose using the two-particle contribution to entropy as a rational measure of the water structural ordering within the solvation layer. This contribution divides into two terms, depending on the peptide-water and water-water interactions, respectively, and in this paper both terms are investigated. The structure of "solvation" water is described by the second term, and therefore it mainly attracts our attention. Determination of this term, however, is not an easy task, requiring some controversial approximations. Therefore, we have transformed this term to the form of some rational parameter which measures the local structural ordering of water within the solvation shell. Moreover, the results of several independent investigations are reported: we adopt the harmonic approximation for an independent estimation of the water entropy within the solvation shell, and we also study structure of the water-water hydrogen bond network, mean geometry of a single hydrogen bond, the self-diffusion coefficients (both translational and rotational) of water, and the mean lifetimes of water-water and water-peptide hydrogen bonds. All the obtained results lead to the conclusion that the local structure of water within the solvation shell changes only slightly in comparison to the bulk one. If so, the measure of local water ordering proposed by us is exploited with the aim to gain the deeper insight on the structural properties of "solvation" water. It has been shown that this parameter can be factored into three terms, which measure translational, configurational, and orientational ordering, respectively. Using this factoring, the ordering map for a precise description of the water local ordering has been built. An interesting correlation is observed: the points on this map lie approximately on the straight line, while the linear conformations clearly deviate from the general tendency. Further analysis of the obtained results allows us to express the supposition that an increasing local ordering of water around given secondary structure corresponds to an increasing relative stability of this structure in aqueous solution. Analyzing the geometry of the water-water hydrogen bond network within the solvation layer, we find some systematic deviations of this geometry from the bulk water properties. We also observe that the alanine peptides (excluding the linear form) disturb the hydrogen bond network in the less range, and in another way than the various conformations of polyglycine, while the linear form of polyalanine behaves very similarly to the glycine ones. Next, investigating the dynamic properties, we also conclude that water near the peptide surface creates a pseudorigid structure, a "halo" around the peptide core. This "halo" is stabilized by slightly higher energy of the hydrogen bonds network: we have found that within this region the hydrogen bonds network is slightly less distorted, the water-water hydrogen bonds are a little more stable and their mean lifetime is clearly longer that that of bulk water. Significant differences between the alanine- and glycine-based polypeptides are also visible. It has also been found that this solvation layer interacts with the polyalanine in another way than with polyglycine. Although in the case of the glycine-based polypeptide this layer slides relatively freely over the peptide surface, for the alanine-based polypeptide this sliding is strongly hindered by the presence of the methyl groups, and this effect is additionally enhanced by a rise in the solvation layer rigidity. Thus, the survey of various dynamic properties allows us to perceive and to explain distinct differences in behavior of water within the solvation shell around both glycine and alanine peptides.
RNAstructure: software for RNA secondary structure prediction and analysis.
Reuter, Jessica S; Mathews, David H
2010-03-15
To understand an RNA sequence's mechanism of action, the structure must be known. Furthermore, target RNA structure is an important consideration in the design of small interfering RNAs and antisense DNA oligonucleotides. RNA secondary structure prediction, using thermodynamics, can be used to develop hypotheses about the structure of an RNA sequence. RNAstructure is a software package for RNA secondary structure prediction and analysis. It uses thermodynamics and utilizes the most recent set of nearest neighbor parameters from the Turner group. It includes methods for secondary structure prediction (using several algorithms), prediction of base pair probabilities, bimolecular structure prediction, and prediction of a structure common to two sequences. This contribution describes new extensions to the package, including a library of C++ classes for incorporation into other programs, a user-friendly graphical user interface written in JAVA, and new Unix-style text interfaces. The original graphical user interface for Microsoft Windows is still maintained. The extensions to RNAstructure serve to make RNA secondary structure prediction user-friendly. The package is available for download from the Mathews lab homepage at http://rna.urmc.rochester.edu/RNAstructure.html.
NASA Astrophysics Data System (ADS)
Yajie, Cheng; Qingliang, Liao; Yue, Zhang
Due to composition segregation and cooling speed, streamline or banded structure were often obtained in the thermal forming parts along the direction of parts forming. Generally speaking, banded structure doesn't decrease the longitudinal mechanical properties, so the secondary banded structure can't get enough attention. The effect of secondary banded structure on the fatigue properties of micro alloyed DG20Mn and 35CrMo steel was investigated using the axial tensile fatigue test of stress ratio of 0.1. The result shows that secondary banded structure was obtained in the center of the steel parts, because of the composition segregation and the lower cooling rate in center part of steel. Secondary banded structure has no significant effect on axial tensile properties of both DG20Mn and 35CrMo, but decreases the axial tensile fatigue performance of DG20Mn steel. This study suggests that under the high cyclic tensile stress, multi-source damage cracks in steel initiated by large strain of pearlite of secondary banded structure, which is larger than damage strain, is the major factor of the decrease of fatigue life of steel.
Precision pointing compensation for DSN antennas with optical distance measuring sensors
NASA Technical Reports Server (NTRS)
Scheid, R. E.
1989-01-01
The pointing control loops of Deep Space Network (DSN) antennas do not account for unmodeled deflections of the primary and secondary reflectors. As a result, structural distortions due to unpredictable environmental loads can result in uncompensated boresight shifts which degrade pointing accuracy. The design proposed here can provide real-time bias commands to the pointing control system to compensate for environmental effects on pointing performance. The bias commands can be computed in real time from optically measured deflections at a number of points on the primary and secondary reflectors. Computer simulations with a reduced-order finite-element model of a DSN antenna validate the concept and lead to a proposed design by which a ten-to-one reduction in pointing uncertainty can be achieved under nominal uncertainty conditions.
DNA Secondary Structure at Chromosomal Fragile Sites in Human Disease
Thys, Ryan G; Lehman, Christine E; Pierce, Levi C. T; Wang, Yuh-Hwa
2015-01-01
DNA has the ability to form a variety of secondary structures that can interfere with normal cellular processes, and many of these structures have been associated with neurological diseases and cancer. Secondary structure-forming sequences are often found at chromosomal fragile sites, which are hotspots for sister chromatid exchange, chromosomal translocations, and deletions. Structures formed at fragile sites can lead to instability by disrupting normal cellular processes such as DNA replication and transcription. The instability caused by disruption of replication and transcription can lead to DNA breakage, resulting in gene rearrangements and deletions that cause disease. In this review, we discuss the role of DNA secondary structure at fragile sites in human disease. PMID:25937814
Liu, Bo; He, Junxia; Zeng, Fanjiang; Lei, Jiaqiang; Arndt, Stefan K
2016-07-01
The terminal branch orders of plant root systems have been proposed as short-lived 'ephemeral' modules specialized for resource absorption. The occurrence of ephemeral root modules has so far only been reported for a temperate tree species and it is unclear if the concept also applies to other woody (shrub, tree) and herb species. Fine roots of 12 perennial dicotyledonous herb, shrub and tree species were monitored for two growing seasons using a branch-order classification, sequential sampling and rhizotrons in the Taklamakan desert. Two root modules existed in all three plant functional groups. Among the first five branch orders, the first two (perennial herbs, shrubs) or three (trees) root orders were ephemeral and had a primary anatomical structure, high nitrogen (N) concentrations, high respiration rates and very short life spans of 1-4 months, whereas the last two branch orders in all functional groups were perennial, with thicker diameters, no or collapsed cortex, distinct secondary growth, low N concentrations, low respiration rates, but much longer life spans. Ephemeral, short-lived root modules and long-lived, persistent root modules seem to be a general feature across many plant functional groups and could represent a basic root system design. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Lukyanov, Alexey; Lubchenko, Vassiliy
2017-09-01
We develop a computationally efficient algorithm for generating high-quality structures for amorphous materials exhibiting distorted octahedral coordination. The computationally costly step of equilibrating the simulated melt is relegated to a much more efficient procedure, viz., generation of a random close-packed structure, which is subsequently used to generate parent structures for octahedrally bonded amorphous solids. The sites of the so-obtained lattice are populated by atoms and vacancies according to the desired stoichiometry while allowing one to control the number of homo-nuclear and hetero-nuclear bonds and, hence, effects of the mixing entropy. The resulting parent structure is geometrically optimized using quantum-chemical force fields; by varying the extent of geometric optimization of the parent structure, one can partially control the degree of octahedrality in local coordination and the strength of secondary bonding. The present methodology is applied to the archetypal chalcogenide alloys AsxSe1-x. We find that local coordination in these alloys interpolates between octahedral and tetrahedral bonding but in a non-obvious way; it exhibits bonding motifs that are not characteristic of either extreme. We consistently recover the first sharp diffraction peak (FSDP) in our structures and argue that the corresponding mid-range order stems from the charge density wave formed by regions housing covalent and weak, secondary interactions. The number of secondary interactions is determined by a delicate interplay between octahedrality and tetrahedrality in the covalent bonding; many of these interactions are homonuclear. The present results are consistent with the experimentally observed dependence of the FSDP on arsenic content, pressure, and temperature and its correlation with photodarkening and the Boson peak. They also suggest that the position of the FSDP can be used to infer the effective particle size relevant for the configurational equilibration in covalently bonded glassy liquids, where the identification of the effective rigid molecular unit is ambiguous.
Babaei, Sepideh; Geranmayeh, Amir; Seyyedsalehi, Seyyed Ali
2010-12-01
The supervised learning of recurrent neural networks well-suited for prediction of protein secondary structures from the underlying amino acids sequence is studied. Modular reciprocal recurrent neural networks (MRR-NN) are proposed to model the strong correlations between adjacent secondary structure elements. Besides, a multilayer bidirectional recurrent neural network (MBR-NN) is introduced to capture the long-range intramolecular interactions between amino acids in formation of the secondary structure. The final modular prediction system is devised based on the interactive integration of the MRR-NN and the MBR-NN structures to arbitrarily engage the neighboring effects of the secondary structure types concurrent with memorizing the sequential dependencies of amino acids along the protein chain. The advanced combined network augments the percentage accuracy (Q₃) to 79.36% and boosts the segment overlap (SOV) up to 70.09% when tested on the PSIPRED dataset in three-fold cross-validation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
New insights from cluster analysis methods for RNA secondary structure prediction
Rogers, Emily; Heitsch, Christine
2016-01-01
A widening gap exists between the best practices for RNA secondary structure prediction developed by computational researchers and the methods used in practice by experimentalists. Minimum free energy (MFE) predictions, although broadly used, are outperformed by methods which sample from the Boltzmann distribution and data mine the results. In particular, moving beyond the single structure prediction paradigm yields substantial gains in accuracy. Furthermore, the largest improvements in accuracy and precision come from viewing secondary structures not at the base pair level but at lower granularity/higher abstraction. This suggests that random errors affecting precision and systematic ones affecting accuracy are both reduced by this “fuzzier” view of secondary structures. Thus experimentalists who are willing to adopt a more rigorous, multilayered approach to secondary structure prediction by iterating through these levels of granularity will be much better able to capture fundamental aspects of RNA base pairing. PMID:26971529
Highly Loaded Fe-MCM-41 Materials: Synthesis and Reducibility Studies
Mokhonoana, Malose P.; Coville, Neil J.
2009-01-01
Fe-MCM-41 materials were prepared by different methods. The Fe was both incorporated into the structure and formed crystallites attached to the silica. High Fe content MCM-41 (~16 wt%) with retention of mesoporosity and long-range order was achieved by a range of new synthetic methodologies: (i) by delaying the addition of Fe3+(aq) to the stirred synthesis gel by 2 h, (ii) by addition of Fe3+ precursor as a freshly-precipitated aqueous slurry, (iii) by exploiting a secondary synthesis with Si-MCM-41 as SiO2 source. For comparative purposes the MCM-41 was also prepared by incipient wetness impregnation (IWI). Although all these synthesis methods preserved mesoporosity and long-range order of the SiO2 matrix, the hydrothermally-fabricated Fe materials prepared via the secondary synthesis route has the most useful properties for exploitation as a catalyst, in terms of hydrothermal stability of the resulting support. Temperature-programmed reduction (TPR) studies revealed a three-peak reduction pattern for this material instead of the commonly observed two-peak reduction pattern. The three peaks showed variable intensity that related to the presence of two components: crystalline Fe2O3 and Fe embedded in the SiO2 matrix (on the basis of ESR studies). The role of secondary synthesis of Si-MCM-41 on the iron reducibility was also demonstrated in IWI of sec-Si-MCM-41.
Global Organization of a Positive-strand RNA Virus Genome
Wu, Baodong; Grigull, Jörg; Ore, Moriam O.; Morin, Sylvie; White, K. Andrew
2013-01-01
The genomes of plus-strand RNA viruses contain many regulatory sequences and structures that direct different viral processes. The traditional view of these RNA elements are as local structures present in non-coding regions. However, this view is changing due to the discovery of regulatory elements in coding regions and functional long-range intra-genomic base pairing interactions. The ∼4.8 kb long RNA genome of the tombusvirus tomato bushy stunt virus (TBSV) contains these types of structural features, including six different functional long-distance interactions. We hypothesized that to achieve these multiple interactions this viral genome must utilize a large-scale organizational strategy and, accordingly, we sought to assess the global conformation of the entire TBSV genome. Atomic force micrographs of the genome indicated a mostly condensed structure composed of interconnected protrusions extending from a central hub. This configuration was consistent with the genomic secondary structure model generated using high-throughput selective 2′-hydroxyl acylation analysed by primer extension (i.e. SHAPE), which predicted different sized RNA domains originating from a central region. Known RNA elements were identified in both domain and inter-domain regions, and novel structural features were predicted and functionally confirmed. Interestingly, only two of the six long-range interactions known to form were present in the structural model. However, for those interactions that did not form, complementary partner sequences were positioned relatively close to each other in the structure, suggesting that the secondary structure level of viral genome structure could provide a basic scaffold for the formation of different long-range interactions. The higher-order structural model for the TBSV RNA genome provides a snapshot of the complex framework that allows multiple functional components to operate in concert within a confined context. PMID:23717202
He, Zhipeng; Liu, Zhao; Zhou, Xiaofeng; Huang, He
2018-06-01
The secondary structure transitions of regenerated silk fibroin (RSF) under different external perturbations have been studied extensively, except for pressure. In this work, time-resolved infrared spectroscopy with the attenuated total reflectance (ATR) accessory was employed to follow the secondary structure transitions of RSF in its wet film under low pressure. It has been found that pressure alone is favorable only to the formation of β-sheet structure. Under constant pressure there is an optimum amount of D 2 O in the wet film (D 2 O : film = 2:1) so as to provide the optimal condition for the reorganization of the secondary structure and to have the largest formation of β-sheet structure. Under constant amount of D 2 O and constant pressure, the secondary structure transitions of RSF in its wet film can be divided into three stages along with time. In the first stage, random coil, α-helix, and β-turn were quickly transformed into β-sheet. In the second stage, random coil and β-turn were relatively slowly transformed into β-sheet and α-helix, and the content of α-helix was recovered to the value prior to the application of pressure. In the third and final stage, no measurable changes can be found for each secondary structure. This study may be helpful to understand the secondary structure changes of silk fibroin in silkworm's glands under hydrostatic pressure. © 2018 Wiley Periodicals, Inc.
Discovery of chitin in skeletons of non-verongiid Red Sea demosponges.
Ehrlich, Hermann; Shaala, Lamiaa A; Youssef, Diaa T A; Żółtowska-Aksamitowska, Sonia; Tsurkan, Mikhail; Galli, Roberta; Meissner, Heike; Wysokowski, Marcin; Petrenko, Iaroslav; Tabachnick, Konstantin R; Ivanenko, Viatcheslav N; Bechmann, Nicole; Joseph, Yvonne; Jesionowski, Teofil
2018-01-01
Marine demosponges (Porifera: Demospongiae) are recognized as first metazoans which have developed over millions of years of evolution effective survival strategies based on unique metabolic pathways to produce both biologically active secondary metabolites and biopolymer-based stiff skeletons with 3D architecture. Up to date, among marine demosponges, only representatives of the Verongiida order have been known to synthetize biologically active substances as well as skeletons made of structural polysaccharide chitin. This work, to our knowledge, demonstrates for the first time that chitin is an important structural component within skeletons of non-verongiid demosponges Acarnus wolffgangi and Echinoclathria gibbosa collected in the Red Sea. Calcofluor white staining, FTIR and Raman analysis, ESI-MS, SEM, and fluorescence microscopy as well as a chitinase digestion assay were applied in order to confirm, with strong evidence, the finding of α-chitin in the skeleton of both species. We suggest that, the finding of chitin within these representatives of Poecilosclerida order is a promising step in the evaluation of these sponges as novel renewable sources for both biologically active metabolites and chitin, which are of prospective application for pharmacology and biomedicine.
NASA Astrophysics Data System (ADS)
Kluber, Alexander; Hayre, Robert; Cox, Daniel
2012-02-01
Motivated by the need to find beta-structure aggregation nuclei for the polyQ diseases such as Huntington's, we have undertaken a search for length dependent structure in model polyglutamine proteins. We use the Onufriev-Bashford-Case (OBC) generalized Born implicit solvent GPU based AMBER11 molecular dynamics with the parm96 force field coupled with a replica exchange method to characterize monomeric strands of polyglutamine as a function of chain length and temperature. This force field and solvation method has been shown among other methods to accurately reproduce folded metastability in certain small peptides, and to yield accurately de novo folded structures in a millisecond time-scale protein. Using GPU molecular dynamics we can sample out into the microsecond range. Additionally, explicit solvent runs will be used to verify results from the implicit solvent runs. We will assess order using measures of secondary structure and hydrogen bond content.
Zhang, Guojin; Senak, Laurence; Moore, David J
2011-05-01
Spatially resolved infrared (IR) and Raman images are acquired from human hair cross sections or intact hair fibers. The full informational content of these spectra are spatially correlated to hair chemistry, anatomy, and structural organization through univariate and multivariate data analysis. Specific IR and Raman images from untreated human hair describing the spatial dependence of lipid and protein distribution, protein secondary structure, lipid chain conformational order, and distribution of disulfide cross-links in hair protein are presented in this study. Factor analysis of the image plane acquired with IR microscopy in hair sections, permits delineation of specific micro-regions within the hair. These data indicate that both IR and Raman imaging of molecular structural changes in a specific region of hair will prove to be valuable tools in the understanding of hair structure, physiology, and the effect of various stresses upon its integrity.
Urban population growth and urbanization in the Caribbean.
Hope, K R
1985-01-01
The structure, sources, consequences, and policy implications of urbanization and of the rapid growth of the urban population in the Caribbean are examined. In particular, a comparative analysis of the situation in Barbados, Guyana, Jamaica, and Trinidad and Tobago is presented. Data are from a variety of secondary sources, including those published by the United Nations and the World Bank. The need to reorient policies to favor rural rather than urban areas in order to reduce rural-urban migration is noted.
Sixty-five years of the long march in protein secondary structure prediction: the final stretch?
Yang, Yuedong; Gao, Jianzhao; Wang, Jihua; Heffernan, Rhys; Hanson, Jack; Paliwal, Kuldip; Zhou, Yaoqi
2018-01-01
Abstract Protein secondary structure prediction began in 1951 when Pauling and Corey predicted helical and sheet conformations for protein polypeptide backbone even before the first protein structure was determined. Sixty-five years later, powerful new methods breathe new life into this field. The highest three-state accuracy without relying on structure templates is now at 82–84%, a number unthinkable just a few years ago. These improvements came from increasingly larger databases of protein sequences and structures for training, the use of template secondary structure information and more powerful deep learning techniques. As we are approaching to the theoretical limit of three-state prediction (88–90%), alternative to secondary structure prediction (prediction of backbone torsion angles and Cα-atom-based angles and torsion angles) not only has more room for further improvement but also allows direct prediction of three-dimensional fragment structures with constantly improved accuracy. About 20% of all 40-residue fragments in a database of 1199 non-redundant proteins have <6 Å root-mean-squared distance from the native conformations by SPIDER2. More powerful deep learning methods with improved capability of capturing long-range interactions begin to emerge as the next generation of techniques for secondary structure prediction. The time has come to finish off the final stretch of the long march towards protein secondary structure prediction. PMID:28040746
Soft actuators and soft actuating devices
Yang, Dian; Whitesides, George M.
2017-10-17
A soft buckling linear actuator is described, including: a plurality of substantially parallel bucklable, elastic structural components each having its longest dimension along a first axis; and a plurality of secondary structural components each disposed between and bridging two adjacent bucklable, elastic structural components; wherein every two adjacent bucklable, elastic structural components and the secondary structural components in-between define a layer comprising a plurality of cells each capable of being connected with a fluid inflation or deflation source; the secondary structural components from two adjacent layers are not aligned along a second axis perpendicular to the first axis; and the secondary structural components are configured not to buckle, the bucklable, elastic structural components are configured to buckle along the second axis to generate a linear force, upon the inflation or deflation of the cells. Methods of actuation using the same are also described.
Free energy minimization to predict RNA secondary structures and computational RNA design.
Churkin, Alexander; Weinbrand, Lina; Barash, Danny
2015-01-01
Determining the RNA secondary structure from sequence data by computational predictions is a long-standing problem. Its solution has been approached in two distinctive ways. If a multiple sequence alignment of a collection of homologous sequences is available, the comparative method uses phylogeny to determine conserved base pairs that are more likely to form as a result of billions of years of evolution than by chance. In the case of single sequences, recursive algorithms that compute free energy structures by using empirically derived energy parameters have been developed. This latter approach of RNA folding prediction by energy minimization is widely used to predict RNA secondary structure from sequence. For a significant number of RNA molecules, the secondary structure of the RNA molecule is indicative of its function and its computational prediction by minimizing its free energy is important for its functional analysis. A general method for free energy minimization to predict RNA secondary structures is dynamic programming, although other optimization methods have been developed as well along with empirically derived energy parameters. In this chapter, we introduce and illustrate by examples the approach of free energy minimization to predict RNA secondary structures.
NASA Astrophysics Data System (ADS)
Callahan, Shannon; Sajjad, Roshan; Bulusu, Kartik V.; Plesniak, Michael W.
2013-11-01
An experimental investigation of secondary flow structures within a 180-degree bent tube model of a curved artery was performed using phase-averaged, two-component, two-dimensional, particle image velocimetry (2C-2D PIV) under pulsatile inflow conditions. Pulsatile waveforms ranging from simple sinusoidal to physiological inflows were supplied. We developed a novel continuous wavelet transform algorithm (PIVlet 1.2) and applied it to vorticity fields for coherent secondary flow structure detection. Regime maps of secondary flow structures revealed new, deceleration-phase-dependent flow morphologies. The temporal instances where streamwise centrifugal forces dominated were associated with large-scale coherent structures, such as deformed Dean-, Lyne- and Wall-type (D-L-W) vortical structures. Magnitudes of streamwise and cross-stream centrifugal forces tend to balance during deceleration phases. Deceleration events were also associated with spatial reorganization and asymmetry in large-scale D-L-W secondary flow structures. Hence, the interaction between streamwise and cross-stream centrifugal forces that affects secondary flow morphologies is explained using a ``residual force'' parameter i.e., the difference in magnitudes of these forces. Supported by the NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.
PreSSAPro: a software for the prediction of secondary structure by amino acid properties.
Costantini, Susan; Colonna, Giovanni; Facchiano, Angelo M
2007-10-01
PreSSAPro is a software, available to the scientific community as a free web service designed to provide predictions of secondary structures starting from the amino acid sequence of a given protein. Predictions are based on our recently published work on the amino acid propensities for secondary structures in either large but not homogeneous protein data sets, as well as in smaller but homogeneous data sets corresponding to protein structural classes, i.e. all-alpha, all-beta, or alpha-beta proteins. Predictions result improved by the use of propensities evaluated for the right protein class. PreSSAPro predicts the secondary structure according to the right protein class, if known, or gives a multiple prediction with reference to the different structural classes. The comparison of these predictions represents a novel tool to evaluate what sequence regions can assume different secondary structures depending on the structural class assignment, in the perspective of identifying proteins able to fold in different conformations. The service is available at the URL http://bioinformatica.isa.cnr.it/PRESSAPRO/.
Mullen, Anna; Hall, Jenny; Diegel, Janika; Hassan, Isa; Fey, Adam; MacMillan, Fraser
2016-06-15
During their mechanistic cycles membrane transporters often undergo extensive conformational changes, sampling a range of orientations, in order to complete their function. Such membrane transporters present somewhat of a challenge to conventional structural studies; indeed, crystallization of membrane-associated proteins sometimes require conditions that vary vastly from their native environments. Moreover, this technique currently only allows for visualization of single selected conformations during any one experiment. EPR spectroscopy is a magnetic resonance technique that offers a unique opportunity to study structural, environmental and dynamic properties of such proteins in their native membrane environments, as well as readily sampling their substrate-binding-induced dynamic conformational changes especially through complementary computational analyses. Here we present a review of recent studies that utilize a variety of EPR techniques in order to investigate both the structure and dynamics of a range of membrane transporters and associated proteins, focusing on both primary (ABC-type transporters) and secondary active transporters which were key interest areas of the late Professor Stephen Baldwin to whom this review is dedicated. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Electronic Conductivity in Biomimetic α-Helical Peptide Nanofibers and Gels.
Ing, Nicole L; Spencer, Ryan K; Luong, Son H; Nguyen, Hung D; Hochbaum, Allon I
2018-03-27
Examples of long-range electronic conductivity are rare in biological systems. The observation of micrometer-scale electronic transport through protein wires produced by bacteria is therefore notable, providing an opportunity to study fundamental aspects of conduction through protein-based materials and natural inspiration for bioelectronics materials. Borrowing sequence and structural motifs from these conductive protein fibers, we designed self-assembling peptides that form electronically conductive nanofibers under aqueous conditions. Conductivity in these nanofibers is distinct for two reasons: first, they support electron transport over distances orders of magnitude greater than expected for proteins, and second, the conductivity is mediated entirely by amino acids lacking extended conjugation, π-stacking, or redox centers typical of existing organic and biohybrid semiconductors. Electrochemical transport measurements show that the fibers support ohmic electronic transport and a metallic-like temperature dependence of conductance in aqueous buffer. At higher solution concentrations, the peptide monomers form hydrogels, and comparisons of the structure and electronic properties of the nanofibers and gels highlight the critical roles of α-helical secondary structure and supramolecular ordering in supporting electronic conductivity in these materials. These findings suggest a structural basis for long-range electronic conduction mechanisms in peptide and protein biomaterials.
Thermal analysis and cooling structure design of the primary collimator in CSNS/RCS
NASA Astrophysics Data System (ADS)
Zou, Yi-Qing; Wang, Na; Kang, Ling; Qu, Hua-Min; He, Zhe-Xi; Yu, Jie-Bing
2013-05-01
The rapid cycling synchrotron (RCS) of the China Spallation Neutron Source (CSNS) is a high intensity proton ring with beam power of 100 kW. In order to control the residual activation to meet the requirements of hands-on maintenance, a two-stage collimation system has been designed for the RCS. The collimation system consists of one primary collimator made of thin metal to scatter the beam and four secondary collimators as absorbers. Thermal analysis is an important aspect in evaluating the reliability of the collimation system. The calculation of the temperature distribution and thermal stress of the primary collimator with different materials is carried out by using ANSYS code. In order to control the temperature rise and thermal stress of the primary collimator to a reasonable level, an air cooling structure is intended to be used. The mechanical design of the cooling structure is presented, and the cooling efficiency with different chin numbers and wind velocity is also analyzed. Finally, the fatigue lifetime of the collimator under thermal shocks is estimated.
Finding the target sites of RNA-binding proteins
Li, Xiao; Kazan, Hilal; Lipshitz, Howard D; Morris, Quaid D
2014-01-01
RNA–protein interactions differ from DNA–protein interactions because of the central role of RNA secondary structure. Some RNA-binding domains (RBDs) recognize their target sites mainly by their shape and geometry and others are sequence-specific but are sensitive to secondary structure context. A number of small- and large-scale experimental approaches have been developed to measure RNAs associated in vitro and in vivo with RNA-binding proteins (RBPs). Generalizing outside of the experimental conditions tested by these assays requires computational motif finding. Often RBP motif finding is done by adapting DNA motif finding methods; but modeling secondary structure context leads to better recovery of RBP-binding preferences. Genome-wide assessment of mRNA secondary structure has recently become possible, but these data must be combined with computational predictions of secondary structure before they add value in predicting in vivo binding. There are two main approaches to incorporating structural information into motif models: supplementing primary sequence motif models with preferred secondary structure contexts (e.g., MEMERIS and RNAcontext) and directly modeling secondary structure recognized by the RBP using stochastic context-free grammars (e.g., CMfinder and RNApromo). The former better reconstruct known binding preferences for sequence-specific RBPs but are not suitable for modeling RBPs that recognize shape and geometry of RNAs. Future work in RBP motif finding should incorporate interactions between multiple RBDs and multiple RBPs in binding to RNA. WIREs RNA 2014, 5:111–130. doi: 10.1002/wrna.1201 PMID:24217996
Structural diversity of domain superfamilies in the CATH database.
Reeves, Gabrielle A; Dallman, Timothy J; Redfern, Oliver C; Akpor, Adrian; Orengo, Christine A
2006-07-14
The CATH database of domain structures has been used to explore the structural variation of homologous domains in 294 well populated domain structure superfamilies, each containing at least three sequence diverse relatives. Our analyses confirm some previously detected trends relating sequence divergence to structural variation but for a much larger dataset and in some superfamilies the new data reveal exceptional structural variation. Use of a new algorithm (2DSEC) to analyse variability in secondary structure compositions across a superfamily sheds new light on how structures evolve. 2DSEC detects inserted secondary structures that embellish the core of conserved secondary structures found throughout the superfamily. Analysis showed that for 56% of highly populated superfamilies (>9 sequence diverse relatives), there are twofold or more increases in the numbers of secondary structures in some relatives. In some families fivefold increases occur, sometimes modifying the fold of the domain. Manual inspection of secondary structure insertions or embellishments in 48 particularly variable superfamilies revealed that although these insertions were usually discontiguous in the sequence they were often co-located in 3D resulting in a larger structural motif that often modified the geometry of the active site or the surface conformation promoting diverse domain partnerships and protein interactions. These observations, supported by automatic analysis of all well populated CATH families, suggest that accretion of small secondary structure insertions may provide a simple mechanism for evolving new functions in diverse relatives. Some layered domain architectures (e.g. mainly-beta and alpha-beta sandwiches) that recur highly in the genomes more frequently exploit these types of embellishments to modify function. In these architectures, aggregation occurs most often at the edges, top or bottom of the beta-sheets. Information on structural variability across domain superfamilies has been made available through the CATH Dictionary of Homologous Structures (DHS).
RNA secondary structure prediction with pseudoknots: Contribution of algorithm versus energy model.
Jabbari, Hosna; Wark, Ian; Montemagno, Carlo
2018-01-01
RNA is a biopolymer with various applications inside the cell and in biotechnology. Structure of an RNA molecule mainly determines its function and is essential to guide nanostructure design. Since experimental structure determination is time-consuming and expensive, accurate computational prediction of RNA structure is of great importance. Prediction of RNA secondary structure is relatively simpler than its tertiary structure and provides information about its tertiary structure, therefore, RNA secondary structure prediction has received attention in the past decades. Numerous methods with different folding approaches have been developed for RNA secondary structure prediction. While methods for prediction of RNA pseudoknot-free structure (structures with no crossing base pairs) have greatly improved in terms of their accuracy, methods for prediction of RNA pseudoknotted secondary structure (structures with crossing base pairs) still have room for improvement. A long-standing question for improving the prediction accuracy of RNA pseudoknotted secondary structure is whether to focus on the prediction algorithm or the underlying energy model, as there is a trade-off on computational cost of the prediction algorithm versus the generality of the method. The aim of this work is to argue when comparing different methods for RNA pseudoknotted structure prediction, the combination of algorithm and energy model should be considered and a method should not be considered superior or inferior to others if they do not use the same scoring model. We demonstrate that while the folding approach is important in structure prediction, it is not the only important factor in prediction accuracy of a given method as the underlying energy model is also as of great value. Therefore we encourage researchers to pay particular attention in comparing methods with different energy models.
ERIC Educational Resources Information Center
Betoret, Fernando Domenech
2009-01-01
This study examines the relationship between school resources, teacher self-efficacy, potential multi-level stressors and teacher burnout using structural equation modelling. The causal structure for primary and secondary school teachers was also examined. The sample was composed of 724 primary and secondary Spanish school teachers. The changes…
Secondary Structure Predictions for Long RNA Sequences Based on Inversion Excursions and MapReduce.
Yehdego, Daniel T; Zhang, Boyu; Kodimala, Vikram K R; Johnson, Kyle L; Taufer, Michela; Leung, Ming-Ying
2013-05-01
Secondary structures of ribonucleic acid (RNA) molecules play important roles in many biological processes including gene expression and regulation. Experimental observations and computing limitations suggest that we can approach the secondary structure prediction problem for long RNA sequences by segmenting them into shorter chunks, predicting the secondary structures of each chunk individually using existing prediction programs, and then assembling the results to give the structure of the original sequence. The selection of cutting points is a crucial component of the segmenting step. Noting that stem-loops and pseudoknots always contain an inversion, i.e., a stretch of nucleotides followed closely by its inverse complementary sequence, we developed two cutting methods for segmenting long RNA sequences based on inversion excursions: the centered and optimized method. Each step of searching for inversions, chunking, and predictions can be performed in parallel. In this paper we use a MapReduce framework, i.e., Hadoop, to extensively explore meaningful inversion stem lengths and gap sizes for the segmentation and identify correlations between chunking methods and prediction accuracy. We show that for a set of long RNA sequences in the RFAM database, whose secondary structures are known to contain pseudoknots, our approach predicts secondary structures more accurately than methods that do not segment the sequence, when the latter predictions are possible computationally. We also show that, as sequences exceed certain lengths, some programs cannot computationally predict pseudoknots while our chunking methods can. Overall, our predicted structures still retain the accuracy level of the original prediction programs when compared with known experimental secondary structure.
Canonical structures for dispersive waves in shallow water
NASA Astrophysics Data System (ADS)
Neyzi, Fahrünisa; Nutku, Yavuz
1987-07-01
The canonical Hamiltonian structure of the equations of fluid dynamics obtained in the Boussinesq approximation are considered. New variational formulations of these equations are proposed and it is found that, as in the case of the KdV equation and the equations governing long waves in shallow water, they are degenerate Lagrangian systems. Therefore, in order to cast these equations into canonical form it is again necessary to use Dirac's theory of constraints. It is found that there are primary and secondary constraints which are second class and it is possible to construct the Hamiltonian in terms of canonical variables. Among the examples of Boussinesq equations that are discussed are the equations of Whitham-Broer-Kaup which Kupershmidt has recently expressed in symmetric form and shown to admit tri-Hamiltonian structure.
Reynolds number influence on the formation of vortical structures on a pitching flat plate.
Widmann, Alexander; Tropea, Cameron
2017-02-06
The impact of chord-based Reynolds number on the formation of leading-edge vortices (LEVs) on unsteady pitching flat plates is investigated. The influence of secondary flow structures on the shear layer feeding the LEV and the subsequent topological change at the leading edge as the result of viscous processes are demonstrated. Time-resolved velocity fields are measured using particle image velocimetry simultaneously in two fields of view to correlate local and global flow phenomena in order to identify unsteady boundary-layer separation and the subsequent flow structures. Finally, the Reynolds number is identified as a parameter that is responsible for the transition in mechanisms leading to LEV detachment from an aerofoil, as it determines the viscous response of the boundary layer in the vortex-wall interaction.
Reynolds number influence on the formation of vortical structures on a pitching flat plate
Tropea, Cameron
2017-01-01
The impact of chord-based Reynolds number on the formation of leading-edge vortices (LEVs) on unsteady pitching flat plates is investigated. The influence of secondary flow structures on the shear layer feeding the LEV and the subsequent topological change at the leading edge as the result of viscous processes are demonstrated. Time-resolved velocity fields are measured using particle image velocimetry simultaneously in two fields of view to correlate local and global flow phenomena in order to identify unsteady boundary-layer separation and the subsequent flow structures. Finally, the Reynolds number is identified as a parameter that is responsible for the transition in mechanisms leading to LEV detachment from an aerofoil, as it determines the viscous response of the boundary layer in the vortex–wall interaction. PMID:28163871
NASA Astrophysics Data System (ADS)
Ganzherli, N. M.; Gulyaev, S. N.; Maurer, I. A.; Khazvalieva, D. R.
2018-03-01
The possibility of the transfer of a holographic structure that was originally registered on layers of dichromated gelatin (DCG) onto a substrate material of polymethylmethacrylate (PMMA) has been shown. The use of a selective destructive effect of short-wave UV radiation with a wavelength that is less than 270 nm is the basis of the mechanism of formation of secondary relief-phase holographic structure on the surface of PMMA. The optimization of processing modes and selection of developing compositions which are based on isopropanol and methylisobutylketone (MIBK) have been carried out, which made it possible to create reliefphase holographic gratings with high diffraction efficiency (DE) of about 25% and the maximum depth of the surface relief of the order of 1 μm on the substrates of PMMA.
Formation Of Nano Layered Lamellar Structure In a Processed γ-TiAl Based Alloy
NASA Astrophysics Data System (ADS)
Heshmati-Manesh, S.; Shakoorian, H.; Armaki, H. Ghassemi; Ahmadabadi, M. Nili
2009-06-01
In this research, microstructures of an intermetallic alloy based on γ-TiAl has been investigated by optical and transmission electron microscopy. Samples of Ti-47Al-2Cr alloy were subjected to either a cyclic heat treatment or thermomechanical treatment with the aim of microstructural refinement. In both cases it was found that very fine lamellar structure with an interlamellar spacing in the nano scale is formed. Upon cyclic heat treatment, nano layers of α2 and γ ordered intermetallic phases were either formed during rapid cooling cycle in competition with massive structure formation, or formed as secondary lamellar structure during final stages of cyclic heat treatment. Also, TEM observations in hot forged specimens with initial lamellar structure revealed that micro twins form during the deformation within lamellar structure with twinning plates parallel to lamellar interfaces. Concurrent dynamic recrystallisation results in a nano layered structure with an interlamellar spacing of less than 100 nm.
Nelson, Wendy D; Blakely, Sarah E; Nesmelov, Yuri E; Thomas, David D
2005-03-15
We have used site-directed spin labeling and EPR spectroscopy to detect structural changes within the regulatory light chain (RLC) of smooth muscle myosin upon phosphorylation. Smooth muscle contraction is activated by phosphorylation of S19 on RLC, but the structural basis of this process is unknown. There is no crystal structure containing a phosphorylated RLC, and there is no crystal structure for the N-terminal region of any RLC. Therefore, we have prepared single-Cys mutations throughout RLC, exchanged each mutant onto smooth muscle heavy meromyosin, verified normal regulatory function, and used EPR to determine dynamics and solvent accessibility at each site. A survey of spin-label sites throughout the RLC revealed that only the N-terminal region (first 24 aa) shows a significant change in dynamics upon phosphorylation, with most of the first 17 residues showing an increase in rotational amplitude. Therefore, we focused on this N-terminal region. Additional structural information was obtained from the pattern of oxygen accessibility along the sequence. In the absence of phosphorylation, little or no periodicity was observed, suggesting a lack of secondary structural order in this region. However, phosphorylation induced a strong helical pattern (3.6-residue periodicity) in the first 17 residues, while increasing accessibility throughout the first 24 residues. We have identified a domain within RLC, the N-terminal phosphorylation domain, in which phosphorylation increases helical order, internal dynamics, and accessibility. These results support a model in which this disorder-to-order transition within the phosphorylation domain results in decreased head-head interactions, activating myosin in smooth muscle.
Hahn, Melinda W; O'Meliae, Charles R
2004-01-01
The deposition and reentrainment of particles in porous media have been examined theoretically and experimentally. A Brownian Dynamics/Monte Carlo (MC/BD) model has been developed that simulates the movement of Brownian particles near a collector under "unfavorable" chemical conditions and allows deposition in primary and secondary minima. A simple Maxwell approach has been used to estimate particle attachment efficiency by assuming deposition in the secondary minimum and calculating the probability of reentrainment. The MC/BD simulations and the Maxwell calculations support an alternative view of the deposition and reentrainment of Brownian particles under unfavorable chemical conditions. These calculations indicate that deposition into and subsequent release from secondary minima can explain reported discrepancies between classic model predictions that assume irreversible deposition in a primary well and experimentally determined deposition efficiencies that are orders of magnitude larger than Interaction Force Boundary Layer (IFBL) predictions. The commonly used IFBL model, for example, is based on the notion of transport over an energy barrier into the primary well and does not address contributions of secondary minimum deposition. A simple Maxwell model based on deposition into and reentrainment from secondary minima is much more accurate in predicting deposition rates for column experiments at low ionic strengths. It also greatly reduces the substantial particle size effects inherent in IFBL models, wherein particle attachment rates are predicted to decrease significantly with increasing particle size. This view is consistent with recent work by others addressing the composition and structure of the first few nanometers at solid-water interfaces including research on modeling water at solid-liquid interfaces, surface speciation, interfacial force measurements, and the rheological properties of concentrated suspensions. It follows that deposition under these conditions will depend on the depth of the secondary minimum and that some transition between secondary and primary depositions should occur when the height of the energy barrier is on the order of several kT. When deposition in secondary minima predominates, observed deposition should increase with increasing ionic strength, particle size, and Hamaker constant. Since an equilibrium can develop between bound and bulk particles, the collision efficiency [alpha] can no longer be considered a constant for a given physical and chemical system. Rather, in many cases it can decrease over time until it eventually reaches zero as equilibrium is established.
Hassan, Natalia; Maldonado-Valderrama, Julia; Gunning, A Patrick; Morris, V J; Ruso, Juan M
2011-10-15
Propanolol is a betablocker drug used in the treatment of arterial hypertension related diseases. In order to achieve an optimal performance of this drug it is important to consider the possible interactions of propanolol with plasma proteins. In this work, we have used several experimental techniques to characterise the effect of addition of the betablocker propanolol on the properties of bovine plasma fibrinogen (FB). Differential scanning calorimeter (DSC), circular dichroism (CD), dynamic light scattering (DLS), surface tension techniques and atomic force microscopy (AFM) measurements have been combined to carry out a detailed physicochemical and surface characterization of the mixed system. As a result, DSC measurements show that propranolol can play two opposite roles, either acting as a structure stabilizer at low molar concentrations or as a structure destabilizer at higher concentrations, in different domains of fibrinogen. CD measurements have revealed that the effect of propanolol on the secondary structure of fibrinogen depends on the temperature and the drug concentration and the DLS analysis showed evidence for protein aggregation. Interestingly, surface tension measurements provided further evidence of the conformational change induced by propanolol on the secondary structure of FB by importantly increasing the surface tension of the system. Finally, AFM imaging of the fibrinogen system provided direct visualization of the protein structure in the presence of propanolol. Combination of these techniques has produced complementary information on the behavior of the mixed system, providing new insights into the structural properties of proteins with potential medical interest. Copyright © 2011 Elsevier B.V. All rights reserved.
Pairwise amino acid secondary structural propensities
NASA Astrophysics Data System (ADS)
Chemmama, Ilan E.; Chapagain, Prem P.; Gerstman, Bernard S.
2015-04-01
We investigate the propensities for amino acids to form a specific secondary structure when they are paired with other amino acids. Our investigations use molecular dynamics (MD) computer simulations, and we compare the results to those from the Protein Data Bank (PDB). Proper comparison requires weighting of the MD results in a manner consistent with the relative frequency of appearance in the PDB of each possible pair of amino acids. We find that the propensity for an amino acid to assume a secondary structure varies dramatically depending on the amino acid that is before or after it in the primary sequence. This cooperative effect means that when selecting amino acids to facilitate the formation of a secondary structure in peptide engineering experiments, the adjacent amino acids must be considered. We also examine the preference for a secondary structure in bacterial proteins and compare the results to those of human proteins.
A COMBINED FACTOR ANALYSIS OF CREATIVITY AND INTELLIGENCE.
Cave, R L
1970-04-01
A battery of tests was given to 447 studenits in the secondary schools of Alcoa, Tennessee. The tests were composed of the Lorge-Thorndike Intelligence Tests, and five selected creativity tests. The combined battery of tests was factor analyzed and rotated to an oblique simple structure, and then to a hierachical solution. Three factors were found: the verbal intelligence and reasoning factors identified in many previous studies, and a creativity faotor. The structure was very oblique. The second order factor, g, was found to count for 77% of the variance of the verbal facbor, 89% of the reasoning factor and 48% of the creativity factor. These results were compared with those of previous studies of creativity and intelligence.
NASA Technical Reports Server (NTRS)
Ukeiley, L.; Varghese, M.; Glauser, M.; Valentine, D.
1991-01-01
A 'lobed mixer' device that enhances mixing through secondary flows and streamwise vorticity is presently studied within the framework of multifractal-measures theory, in order to deepen understanding of velocity time trace data gathered on its operation. Proper orthogonal decomposition-based knowledge of coherent structures has been applied to obtain the generalized fractal dimensions and multifractal spectrum of several proper eigenmodes for data samples of the velocity time traces; this constitutes a marked departure from previous multifractal theory applications to self-similar cascades. In certain cases, a single dimension may suffice to capture the entire spectrum of scaling exponents for the velocity time trace.
NASA Astrophysics Data System (ADS)
Bozkurt, Ozlem; Haman Bayari, Sevgi; Severcan, Mete; Krafft, Christoph; Popp, Jürgen; Severcan, Feride
2012-07-01
The relation between protein structural alterations and tissue dysfunction is a major concern as protein fibrillation and/or aggregation due to structural alterations has been reported in many disease states. In the current study, Fourier transform infrared microspectroscopic imaging has been used to investigate diabetes-induced changes on protein secondary structure and macromolecular content in streptozotocin-induced diabetic rat liver. Protein secondary structural alterations were predicted using neural network approach utilizing the amide I region. Moreover, the role of selenium in the recovery of diabetes-induced alterations on macromolecular content and protein secondary structure was also studied. The results revealed that diabetes induced a decrease in lipid to protein and glycogen to protein ratios in diabetic livers. Significant alterations in protein secondary structure were observed with a decrease in α-helical and an increase in β-sheet content. Both doses of selenium restored diabetes-induced changes in lipid to protein and glycogen to protein ratios. However, low-dose selenium supplementation was not sufficient to recover the effects of diabetes on protein secondary structure, while a higher dose of selenium fully restored diabetes-induced alterations in protein structure.
Connecting Advanced and Secondary Mathematics
ERIC Educational Resources Information Center
Murray, Eileen; Baldinger, Erin; Wasserman, Nicholas; Broderick, Shawn; White, Diana
2017-01-01
There is an ongoing debate among scholars in understanding what mathematical knowledge secondary teachers should have in order to provide effective instruction. We explore connections between advanced and secondary mathematics as an entry point into this debate. In many cases, advanced mathematics is considered relevant for secondary teachers…
Rational Design of Orthogonal Multipolar Interactions with Fluorine in Protein–Ligand Complexes
Pollock, Jonathan; Borkin, Dmitry; Lund, George; ...
2015-08-19
Multipolar interactions involving fluorine and the protein backbone have been frequently observed in protein–ligand complexes. Such fluorine–backbone interactions may substantially contribute to the high affinity of small molecule inhibitors. Here we found that introduction of trifluoromethyl groups into two different sites in the thienopyrimidine class of menin–MLL inhibitors considerably improved their inhibitory activity. In both cases, trifluoromethyl groups are engaged in short interactions with the backbone of menin. In order to understand the effect of fluorine, we synthesized a series of analogues by systematically changing the number of fluorine atoms, and we determined high-resolution crystal structures of the complexes withmore » menin. Here, we found that introduction of fluorine at favorable geometry for interactions with backbone carbonyls may improve the activity of menin–MLL inhibitors as much as 5- to 10-fold. In order to facilitate the design of multipolar fluorine–backbone interactions in protein–ligand complexes, we developed a computational algorithm named FMAP, which calculates fluorophilic sites in proximity to the protein backbone. We demonstrated that FMAP could be used to rationalize improvement in the activity of known protein inhibitors upon introduction of fluorine. Furthermore, FMAP may also represent a valuable tool for designing new fluorine substitutions and support ligand optimization in drug discovery projects. Analysis of the menin–MLL inhibitor complexes revealed that the backbone in secondary structures is particularly accessible to the interactions with fluorine. Lastly, considering that secondary structure elements are frequently exposed at protein interfaces, we postulate that multipolar fluorine–backbone interactions may represent a particularly attractive approach to improve inhibitors of protein–protein interactions.« less
Defining the loop structures in proteins based on composite β-turn mimics.
Dhar, Jesmita; Chakrabarti, Pinak
2015-06-01
Asx- and ω-turns are β-turn mimics, which replace the conventional main-chain hydrogen bonds seen in the latter by those involving the side chains, and both involve three residues. In this paper we analyzed the cases where these turns occur together--side by side, with or without any gap, overlapping and in any order. These composite turns (of length 3-15 residues), occurring at ∼1 per 100 residues, may constitute the full length of many loops, and when the residues in the two component turns overlap or are adjacent to each other, the composite may take well-defined shape. It is thus possible for non-regular regions in protein structure to form local structural motifs, akin to the regular geometrical features exhibited by secondary structures. Composites having the order ω-turns followed by Asx-turns can constitute N-terminal helix capping motif. Ternary composite turns (made up of ω-, Asx- and ST-turns), some with characteristic shape, have also been identified. Delineation of composite turns would help in characterizing loops in protein structures, which often have functional roles. Some sequence patterns seen in composites can be used for their incorporation in protein design. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Helix-length compensation studies reveal the adaptability of the VS ribozyme architecture.
Lacroix-Labonté, Julie; Girard, Nicolas; Lemieux, Sébastien; Legault, Pascale
2012-03-01
Compensatory mutations in RNA are generally regarded as those that maintain base pairing, and their identification forms the basis of phylogenetic predictions of RNA secondary structure. However, other types of compensatory mutations can provide higher-order structural and evolutionary information. Here, we present a helix-length compensation study for investigating structure-function relationships in RNA. The approach is demonstrated for stem-loop I and stem-loop V of the Neurospora VS ribozyme, which form a kissing-loop interaction important for substrate recognition. To rapidly characterize the substrate specificity (k(cat)/K(M)) of several substrate/ribozyme pairs, a procedure was established for simultaneous kinetic characterization of multiple substrates. Several active substrate/ribozyme pairs were identified, indicating the presence of limited substrate promiscuity for stem Ib variants and helix-length compensation between stems Ib and V. 3D models of the I/V interaction were generated that are compatible with the kinetic data. These models further illustrate the adaptability of the VS ribozyme architecture for substrate cleavage and provide global structural information on the I/V kissing-loop interaction. By exploring higher-order compensatory mutations in RNA our approach brings a deeper understanding of the adaptability of RNA structure, while opening new avenues for RNA research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1979-05-01
Set targets for increased utilization of energy-saving recovered materials in the metals and metal products industries (ferrous, aluminium, copper, zinc, and lead) are discussed. Data preparation and methodology development and analysis of the technological and economic factors in order to prepare draft targets for the use of recovered materials are covered. Chapter 2 provides an introductory discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33, including industry structure, process technology, materials and recyclingmore » flow, and future trends for the 5 industries: ferrous, aluminium, copper, zinc, and lead. Chapter 4 presents the evaluation of recycling targets for those industries. (MCW)« less
Operating systems. [of computers
NASA Technical Reports Server (NTRS)
Denning, P. J.; Brown, R. L.
1984-01-01
A counter operating system creates a hierarchy of levels of abstraction, so that at a given level all details concerning lower levels can be ignored. This hierarchical structure separates functions according to their complexity, characteristic time scale, and level of abstraction. The lowest levels include the system's hardware; concepts associated explicitly with the coordination of multiple tasks appear at intermediate levels, which conduct 'primitive processes'. Software semaphore is the mechanism controlling primitive processes that must be synchronized. At higher levels lie, in rising order, the access to the secondary storage devices of a particular machine, a 'virtual memory' scheme for managing the main and secondary memories, communication between processes by way of a mechanism called a 'pipe', access to external input and output devices, and a hierarchy of directories cataloguing the hardware and software objects to which access must be controlled.
Atranorin - An Interesting Lichen Secondary Metabolite.
Studzinska-Sroka, Elzbieta; Galanty, Agnieszka; Bylka, Wieslawa
2017-01-01
Atranorin, a compound with the depside structure, is one of the most common lichen secondary metabolites, characteristic for numerous lichen families but rarely found in some mosses and higher plants. Over the years various biological properties of atranorin were examined. This review summarizes the studies on atranorin, focusing on a number of biological activities in different fields. The literature describes anti-inflammatory, analgesic, as well as wound healing, antibacterial, antifungal, cytotoxic, antioxidant, antiviral, and immunomodulatory activities of the depside. Furthermore, lack of toxicity of atranorin was confirmed in the animals' in vivo assays. In conclusion, atranorin seems to be an interesting lichen substance, which needs to be investigated in more detail in order to allow further applications, e.g. in pharmacy, medicine or cosmetology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Flach, C R; Brauner, J W; Taylor, J W; Baldwin, R C; Mendelsohn, R
1994-01-01
A Fourier transform infrared spectrometer has been interfaced with a surface balance and a new external reflection infrared sampling accessory, which permits the acquisition of spectra from protein monolayers in situ at the air/water interface. The accessory, a sample shuttle that permits the collection of spectra in alternating fashion from sample and background troughs, reduces interference from water vapor rotation-vibration bands in the amide I and amide II regions of protein spectra (1520-1690 cm-1) by nearly an order of magnitude. Residual interference from water vapor absorbance ranges from 50 to 200 microabsorbance units. The performance of the device is demonstrated through spectra of synthetic peptides designed to adopt alpha-helical, antiparallel beta-sheet, mixed beta-sheet/beta-turn, and unordered conformations at the air/water interface. The extent of exchange on the surface can be monitored from the relative intensities of the amide II and amide I modes. Hydrogen-deuterium exchange may lower the amide I frequency by as much as 11-12 cm-1 for helical secondary structures. This shifts the vibrational mode into a region normally associated with unordered structures and leads to uncertainties in the application of algorithms commonly used for determination of secondary structure from amide I contours of proteins in D2O solution. PMID:7919013
NASA Astrophysics Data System (ADS)
Najjari, Mohammad Reza; Plesniak, Michael W.
2017-11-01
Secondary flow vortical structures were investigated in an elastic 180° curved pipe with and without torsion under steady and pulsatile flow using particle image velocimetry (PIV). The elastic thin-walled curved pipes were constructed using Sylgard 184, and inserted into a bath of refractive index matched fluid to perform PIV. A vortex identification method was employed to identify various vortical structures in the flow. The secondary flow structures in the planar compliant model with dilatation of 0.61%-3.23% under pulsatile flow rate were compared with the rigid vessel model results, and it was found that local vessel compliance has a negligible effect on secondary flow morphology. The secondary flow structures were found to be more sensitive to out of plane curvature (torsion) than to vessel compliance. Torsion distorts the symmetry of secondary flow and results in more complex vortical structures in both steady and pulsatile flows. In high Re number steady flow with torsion, a single dominant vortical structure can be detected at the middle of the 90° cross section. In pulsatile flow with torsion, the split-Dean and Lyne-type vortices with same rotation direction originating from opposite sides of the cross section tend to merge together. supported by GW Center for Biomimetics and Bioinspired Engineering.
Vaingankar, Janhavi Ajit; Subramaniam, Mythily; Abdin, Edimansyah; Picco, Louisa; Chua, Boon Yiang; Eng, Goi Khia; Sambasivam, Rajeswari; Shafie, Saleha; Zhang, Yunjue; Chong, Siow Ann
2014-06-01
The 47-item positive mental health (PMH) instrument measures the level of PMH in multiethnic adult Asian populations. This study aimed to (1) develop a short PMH instrument and (2) establish its validity and reliability among the adult Singapore population. Two separate studies were conducted among adult community-dwelling Singapore residents of Chinese, Malay or Indian ethnicity where participants completed self-administered questionnaires. In the first study, secondary data analysis was conducted using confirmatory factor analysis (CFA) to shorten the PMH instrument. In the second study, the newly developed short PMH instrument and other scales were administered to 201 residents to establish its factor structure, validity and reliability. A 20-item short PMH instrument fulfilling a higher-order six-factor structure was developed following secondary analysis. The mean age of the participants in the second study was 41 years and about 53% were women. One item with poor factor loading was further removed to generate a 19-item version of the PMH instrument. CFA demonstrated a first-order six-factor model of the short PMH instrument. The PMH-19 instrument and its subscales fulfilled criterion validity hypotheses. Internal consistency and test-retest reliability of the PMH-19 instrument were high (Cronbach's α coefficient = 0.87; intraclass correlation coefficient = 0.93, respectively). The 19-item PMH instrument is multidimensional, valid and reliable, and most importantly, with its reduced administration time, the short PMH instrument can be used to measure and evaluate PMH in Asian communities.
NASA Technical Reports Server (NTRS)
Koontz, Steven L.; Boeder, Paul A.; Pankop, Courtney; Reddell, Brandon
2005-01-01
The role of structural shielding mass in the design, verification, and in-flight performance of International Space Station (ISS), in both the natural and induced orbital ionizing radiation (IR) environments, is reported. Detailed consideration of the effects of both the natural and induced ionizing radiation environment during ISS design, development, and flight operations has produced a safe, efficient manned space platform that is largely immune to deleterious effects of the LEO ionizing radiation environment. The assumption of a small shielding mass for purposes of design and verification has been shown to be a valid worst-case approximation approach to design for reliability, though predicted dependences of single event effect (SEE) effects on latitude, longitude, SEP events, and spacecraft structural shielding mass are not observed. The Figure of Merit (FOM) method over predicts the rate for median shielding masses of about 10g/cm(exp 2) by only a factor of 3, while the Scott Effective Flux Approach (SEFA) method overestimated by about one order of magnitude as expected. The Integral Rectangular Parallelepiped (IRPP), SEFA, and FOM methods for estimating on-orbit (Single Event Upsets) SEU rates all utilize some version of the CREME-96 treatment of energetic particle interaction with structural shielding, which has been shown to underestimate the production of secondary particles in heavily shielded manned spacecraft. The need for more work directed to development of a practical understanding of secondary particle production in massive structural shielding for SEE design and verification is indicated. In contrast, total dose estimates using CAD based shielding mass distributions functions and the Shieldose Code provided a reasonable accurate estimate of accumulated dose in Grays internal to the ISS pressurized elements, albeit as a result of using worst-on-worst case assumptions (500 km altitude x 2) that compensate for ignoring both GCR and secondary particle production in massive structural shielding.
Réblová, Martina; Jaklitsch, Walter M.; Réblová, Kamila; Štěpánek, Václav
2015-01-01
The Calosphaeriales is revisited with new collection data, living cultures, morphological studies of ascoma centrum, secondary structures of the internal transcribed spacer (ITS) rDNA and phylogeny based on novel DNA sequences of five nuclear ribosomal and protein-coding loci. Morphological features, molecular evidence and information from predicted RNA secondary structures of ITS converged upon robust phylogenies of the Calosphaeriales and Togniniales. The current concept of the Calosphaeriales includes the Calosphaeriaceae and Pleurostomataceae encompassing five monophyletic genera, Calosphaeria, Flabellascus gen. nov., Jattaea, Pleurostoma and Togniniella, strongly supported by Bayesian and Maximum Likelihood methods. The structural elements of ITS1 form characteristic patterns that are phylogenetically conserved, corroborate observations based on morphology and have a high predictive value at the generic level. Three major clades containing 44 species of Phaeoacremonium were recovered in the closely related Togniniales based on ITS, actin and β-tubulin sequences. They are newly characterized by sexual and RNA structural characters and ecology. This approach is a first step towards understanding of the molecular systematics of Phaeoacremonium and possibly its new classification. In the Calosphaeriales, Jattaea aphanospora sp. nov. and J. ribicola sp. nov. are introduced, Calosphaeria taediosa is combined in Jattaea and epitypified. The sexual morph of Phaeoacremonium cinereum was encountered for the first time on decaying wood and obtained in vitro. In order to achieve a single nomenclature, the genera of asexual morphs linked with the Calosphaeriales are transferred to synonymy of their sexual morphs following the principle of priority, i.e. Calosphaeriophora to Calosphaeria, Phaeocrella to Togniniella and Pleurostomophora to Pleurostoma. Three new combinations are proposed, i.e. Pleurostoma ochraceum comb. nov., P. repens comb. nov. and P. richardsiae comb. nov. The morphology-based key is provided to facilitate identification of genera accepted in the Calosphaeriales. PMID:26699541
A parallel strategy for predicting the secondary structure of polycistronic microRNAs.
Han, Dianwei; Tang, Guiliang; Zhang, Jun
2013-01-01
The biogenesis of a functional microRNA is largely dependent on the secondary structure of the microRNA precursor (pre-miRNA). Recently, it has been shown that microRNAs are present in the genome as the form of polycistronic transcriptional units in plants and animals. It will be important to design efficient computational methods to predict such structures for microRNA discovery and its applications in gene silencing. In this paper, we propose a parallel algorithm based on the master-slave architecture to predict the secondary structure from an input sequence. We conducted some experiments to verify the effectiveness of our parallel algorithm. The experimental results show that our algorithm is able to produce the optimal secondary structure of polycistronic microRNAs.
Gao, Yu; Zheng, Lanyan; Li, Jian-Jun; Du, Yuguang
2016-12-15
Two structural Ca 2+ (proximal and distal) is known to be important for ligninolytic peroxidases. However, few studies toward impact of residues involved in two Ca 2+ on properties of ligninolytic peroxidases have been done, especially the proximal one. In this study, mutants of nine residues involved in liganding two Ca 2+ of Pleurotus eryngii versatile peroxidase (VP) were investigated. Most mutants almost completely lost activities, except the mutants of proximal Ca 2+ - S170A and V192T. In comparison with WT (wild type), optimal pH values of S170A, S170D, and V192T shifted from pH 3.0 to pH 3.5. The order of thermal and pH stabilities of WT, V192T, S170A, and S170D is similar to that of their specific activities: WT > V192T > S170A > S170D. The CD (circular dichroism) results of WT and several mutants indicated that mutations had some effects on secondary structures. For the first time, it was observed that the thermostability of ligninolytic peroxidases is related with proximal Ca 2+ too, and the mutant containing distal Ca 2+ only was obtained. Our results clearly demonstrated that enzymatic activities, pH and thermal stabilities, Ca 2+ content, and secondary structures of VP have close relationship with the residues involved in two structural Ca 2+ . Copyright © 2016 Elsevier Inc. All rights reserved.
Adsorption orientations and immunological recognition of antibodies on graphene
NASA Astrophysics Data System (ADS)
Vilhena, J. G.; Dumitru, A. C.; Herruzo, Elena T.; Mendieta-Moreno, Jesús I.; Garcia, Ricardo; Serena, P. A.; Pérez, Rubén
2016-07-01
Large-scale molecular dynamics (MD) simulations and atomic force microscopy (AFM) in liquid are combined to characterize the adsorption of Immunoglobulin G (IgG) antibodies over a hydrophobic surface modeled with a three-layer graphene slab. We consider explicitly the water solvent, simulating systems with massive sizes (up to 770 000 atoms), for four different adsorption orientations. Protocols based on steered MD to speed up the protein diffusion stage and to enhance the dehydration process are combined with long simulation times (>150 ns) in order to make sure that the final adsorption states correspond to actual stable configurations. Our MD results and the AFM images demonstrate that the IgG antibodies are strongly adsorbed, do not unfold, and retain their secondary and tertiary structures upon deposition. Statistical analysis of the AFM images shows that many of the antibodies adopt vertical orientations, even at very small coverages, which expose at least one Fab binding site for recognition events. Single molecule force spectroscopy experiments demonstrate the immunological response of the deposited antibodies by recognizing its specific antigens. The above properties together with the strong anchoring and preservation of the secondary structure, make graphene an excellent candidate for the development of immunosensors.Large-scale molecular dynamics (MD) simulations and atomic force microscopy (AFM) in liquid are combined to characterize the adsorption of Immunoglobulin G (IgG) antibodies over a hydrophobic surface modeled with a three-layer graphene slab. We consider explicitly the water solvent, simulating systems with massive sizes (up to 770 000 atoms), for four different adsorption orientations. Protocols based on steered MD to speed up the protein diffusion stage and to enhance the dehydration process are combined with long simulation times (>150 ns) in order to make sure that the final adsorption states correspond to actual stable configurations. Our MD results and the AFM images demonstrate that the IgG antibodies are strongly adsorbed, do not unfold, and retain their secondary and tertiary structures upon deposition. Statistical analysis of the AFM images shows that many of the antibodies adopt vertical orientations, even at very small coverages, which expose at least one Fab binding site for recognition events. Single molecule force spectroscopy experiments demonstrate the immunological response of the deposited antibodies by recognizing its specific antigens. The above properties together with the strong anchoring and preservation of the secondary structure, make graphene an excellent candidate for the development of immunosensors. Electronic supplementary information (ESI) available: Further details concerning the experimental methods, the MD simulation protocols, and the characterization and stability of the different adsorption configurations. See DOI: 10.1039/C5NR07612A
The Prevalence and Predictors of Cigarette Smoking among Secondary School Students in Nigeria.
Odeyemi, K A; Osibogun, A; Akinsete, A O; Sadiq, L
2009-03-01
This study was carried out to determine the prevalence of smoking among secondary school students and identify factors that influence smoking amongst them. This descriptive and explorative study was conducted among 1,183 secondary school students, selected by multistage sampling from each of the 6 geopolitical zones in Nigeria. Data was collected by using interviewer administered structured questionnaires. This study recorded a lifetime smoking prevalence of 26.4% and current smoking prevalence of 17.1% among secondary school students in Nigeria. Most (82%) of the students had seen warnings against smoking and most of them were aware that it is possible for cigarette smoking to damage body organs. Unfortunately, however, seeing such warnings had no significant effect on their decision to smoke or not. The students who smoke were introduced to smoking mainly by their friends (67.4 %), and the television (13.4%). Smoking habits of the respondents were influenced by parents' educational status (p<0.05), having friends who smoke (p<0.05) and living with a smoker (p<0.05). Over a quarter of secondary school students had ever smoked. Peer pressure was the main reason cited by respondents for initiating smoking. It is suggested that our smoking prevention programmes be reviewed and appropriate health education and smoking cessation programmes be developed and implemented in order to prevent and control smoking among Nigerian students.
NASA Astrophysics Data System (ADS)
Jeong, Haeyoung; Lee, Kihyung; Ikeda, Yuji
2007-05-01
There are many ways to reduce diesel engine exhaust emissions. However, NOx emission is difficult to reduce because the hydrocarbon (HC) concentration in a diesel engine is not sufficient for NOx conversion. Therefore, in order to create stoichiometric conditions in the De-NOx catalyst, a secondary injection system is designed to inject liquid HC into the exhaust pipe. The atomization and distribution characteristics of the HC injected from a secondary injector are key technologies to obtain a high NOx conversion because inhomogeneous droplets of injected HC cause not only high fuel consumption but also deterioration of NOx emission. This paper describes the spray characteristics of a secondary injector including the spray angle, penetration length and breakup behaviour of the spray to optimize the reduction rate of the NOx catalyst. In this study, various optical diagnostics were applied to investigate these spray characteristics, the atomization mechanism and spray developing process. The visualization and image processing method for the spray pulsation were developed by high speed photography. The influence of the fuel supply pressure on the spray behaviour and a more detailed spray developing process have been analysed experimentally using image processing. Finally, the experimental results were used to correlate the spray structure to the injection system performance and to provide a design guide for a secondary injector nozzle.
Principles for Predicting RNA Secondary Structure Design Difficulty.
Anderson-Lee, Jeff; Fisker, Eli; Kosaraju, Vineet; Wu, Michelle; Kong, Justin; Lee, Jeehyung; Lee, Minjae; Zada, Mathew; Treuille, Adrien; Das, Rhiju
2016-02-27
Designing RNAs that form specific secondary structures is enabling better understanding and control of living systems through RNA-guided silencing, genome editing and protein organization. Little is known, however, about which RNA secondary structures might be tractable for downstream sequence design, increasing the time and expense of design efforts due to inefficient secondary structure choices. Here, we present insights into specific structural features that increase the difficulty of finding sequences that fold into a target RNA secondary structure, summarizing the design efforts of tens of thousands of human participants and three automated algorithms (RNAInverse, INFO-RNA and RNA-SSD) in the Eterna massive open laboratory. Subsequent tests through three independent RNA design algorithms (NUPACK, DSS-Opt and MODENA) confirmed the hypothesized importance of several features in determining design difficulty, including sequence length, mean stem length, symmetry and specific difficult-to-design motifs such as zigzags. Based on these results, we have compiled an Eterna100 benchmark of 100 secondary structure design challenges that span a large range in design difficulty to help test future efforts. Our in silico results suggest new routes for improving computational RNA design methods and for extending these insights to assess "designability" of single RNA structures, as well as of switches for in vitro and in vivo applications. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Bulusu, Kartik V.; Hussain, Shadman; Plesniak, Michael W.
2014-11-01
Secondary flow vortical patterns in arterial curvatures have the potential to affect several cardiovascular phenomena, e.g., progression of atherosclerosis by altering wall shear stresses, carotid atheromatous disease, thoracic aortic aneurysms and Marfan's syndrome. Temporal characteristics of secondary flow structures vis-à-vis physiological (pulsatile) inflow waveform were explored by continuous wavelet transform (CWT) analysis of phase-locked, two-component, two-dimensional particle image velocimeter data. Measurements were made in a 180° curved artery test section upstream of the curvature and at the 90° cross-sectional plane. Streamwise, upstream flow rate measurements were analyzed using a one-dimensional antisymmetric wavelet. Cross-stream measurements at the 90° location of the curved artery revealed interesting multi-scale, multi-strength coherent secondary flow structures. An automated process for coherent structure detection and vortical feature quantification was applied to large ensembles of PIV data. Metrics such as the number of secondary flow structures, their sizes and strengths were generated at every discrete time instance of the physiological inflow waveform. An autonomous data post-processing method incorporating two-dimensional CWT for coherent structure detection was implemented. Loss of coherence in secondary flow structures during the systolic deceleration phase is observed in accordance with previous research. The algorithmic approach presented herein further elucidated the sensitivity and dependence of morphological changes in secondary flow structures on quasiperiodicity and magnitude of temporal gradients in physiological inflow conditions.
NASA Astrophysics Data System (ADS)
Baio, Joseph E.
There are many techniques that allow surface scientists to study interfaces. However, few are routinely applied to probe biological surfaces. The work presented here demonstrates how detailed information about the conformation, orientation, chemical state, and molecular structure of biological molecules immobilized onto a surface can be assessed by electron spectroscopy, mass spectrometry, and nonlinear vibrational spectroscopy techniques. This investigation began with the development of simple model systems (small proteins, and peptides) and evolved into a study of more complex --- real world systems. Initially, two model systems based on the chemical and electrostatic immobilization of a small rigid protein (Protein G B1 domain, 6kDa) were built to develop the capabilities of time-of-flight secondary ion mass spectrometry (ToFSIMS), near edge X-ray absorption fine structure spectroscopy (NEXAFS) and sum frequency generation (SFG) spectroscopy as tools to probe the structure of surface immobilized proteins. X-ray photoelectron spectroscopy (XPS) was used to measure the amount of immobilized protein and ToF-SIMS sampled the amino acid composition of the exposed surface of the protein film. Within the ToF-SIMS spectra, an enrichment of secondary ions from amino acids located at opposite ends of the proteins were used to describe protein orientation. SFG spectral peaks characteristic of ordered alpha-helix and beta-sheet elements were observed for both systems and the phase of the peaks indicated a predominantly upright orientation for both the covalent and electrostatic configurations. Polarization dependence of the NEXAFS signal from the N 1s to pi* transition of the peptide bonds that make up the beta-sheets also indicated protein ordering at the surface. Building upon the Protein G B1 studies, the orientation and structure of a surface immobilized antibody (HuLys Fv: variant of humanized anti-lysozyme variable fragment, 26kDa) was characterized across two immobilization schemes. This protein contained both a hexahistidine tag and a cysteine residue, introduced at opposite ends of the HuLys Fv, for immobilization onto nitrilotriacetic acid (NTA) and maleimide oligo- (ethylene glycol) (MEG)-terminated substrates. The thiol group on the cysteine residue selectively binds to the MEG groups, while the his-tag selectively binds to the Ni-loaded NTA groups. XPS was used to monitor protein coverage on both surfaces by following the change in the nitrogen atomic %. The ToF-SIMS data provided a clear differentiation between the two samples due to the intensity differences of secondary ions originating from asymmetrically located amino acids in HuLys Fv. Indicating that the HuLys Fv fragment when adsorbed into the NTA and MEG substrates will be induced into two different orientations. On the NTA substrate the protein's binding site is accessible, while on the MEG substrate the binding site is oriented towards the surface. By taking advantage of the electron pathway through the heme group in cytochrome c (CytoC) electrochemists have built sensors based upon CytoC immobilized onto functionalized metal electrodes. When immobilized onto a charged surface, CytoC, with its distribution of lysine and glutamate residues around its surface, should orient and form a well-ordered protein film. Here a detailed examination of CytoC orientation when electrostatically immobilized onto both amine (NH 3+) and carboxyl (COO-) functionalized gold is presented. Again, protein coverage, on both surfaces, was monitored by the change in the atomic % N, as determined by XPS. ToF-SIMS data demonstrated a clear separation between the two samples based on the intensity differences of secondary ions stemming from amino acids located asymmetrically within CytoC, indicating opposite orientations of the protein on the two different surfaces. Spectral features within the in situ sum frequency generation vibrational spectra, acquired for the protein interacting with positively and negatively charged surfaces, indicates that these electrostatic interactions do induce the protein into a well ordered film.
Yamamoto, Norifumi
2014-08-21
The conformational conversion of proteins into an aggregation-prone form is a common feature of various neurodegenerative disorders including Alzheimer's, Huntington's, Parkinson's, and prion diseases. In the early stage of prion diseases, secondary structure conversion in prion protein (PrP) causing β-sheet expansion facilitates the formation of a pathogenic isoform with a high content of β-sheets and strong aggregation tendency to form amyloid fibrils. Herein, we propose a straightforward method to extract essential information regarding the secondary structure conversion of proteins from molecular simulations, named secondary structure principal component analysis (SSPCA). The definite existence of a PrP isoform with an increased β-sheet structure was confirmed in a free-energy landscape constructed by mapping protein structural data into a reduced space according to the principal components determined by the SSPCA. We suggest a "spot" of structural ambivalence in PrP-the C-terminal part of helix 2-that lacks a strong intrinsic secondary structure, thus promoting a partial α-helix-to-β-sheet conversion. This result is important to understand how the pathogenic conformational conversion of PrP is initiated in prion diseases. The SSPCA has great potential to solve various challenges in studying highly flexible molecular systems, such as intrinsically disordered proteins, structurally ambivalent peptides, and chameleon sequences.
Computational analysis of conserved RNA secondary structure in transcriptomes and genomes.
Eddy, Sean R
2014-01-01
Transcriptomics experiments and computational predictions both enable systematic discovery of new functional RNAs. However, many putative noncoding transcripts arise instead from artifacts and biological noise, and current computational prediction methods have high false positive rates. I discuss prospects for improving computational methods for analyzing and identifying functional RNAs, with a focus on detecting signatures of conserved RNA secondary structure. An interesting new front is the application of chemical and enzymatic experiments that probe RNA structure on a transcriptome-wide scale. I review several proposed approaches for incorporating structure probing data into the computational prediction of RNA secondary structure. Using probabilistic inference formalisms, I show how all these approaches can be unified in a well-principled framework, which in turn allows RNA probing data to be easily integrated into a wide range of analyses that depend on RNA secondary structure inference. Such analyses include homology search and genome-wide detection of new structural RNAs.
PARTS: Probabilistic Alignment for RNA joinT Secondary structure prediction
Harmanci, Arif Ozgun; Sharma, Gaurav; Mathews, David H.
2008-01-01
A novel method is presented for joint prediction of alignment and common secondary structures of two RNA sequences. The joint consideration of common secondary structures and alignment is accomplished by structural alignment over a search space defined by the newly introduced motif called matched helical regions. The matched helical region formulation generalizes previously employed constraints for structural alignment and thereby better accommodates the structural variability within RNA families. A probabilistic model based on pseudo free energies obtained from precomputed base pairing and alignment probabilities is utilized for scoring structural alignments. Maximum a posteriori (MAP) common secondary structures, sequence alignment and joint posterior probabilities of base pairing are obtained from the model via a dynamic programming algorithm called PARTS. The advantage of the more general structural alignment of PARTS is seen in secondary structure predictions for the RNase P family. For this family, the PARTS MAP predictions of secondary structures and alignment perform significantly better than prior methods that utilize a more restrictive structural alignment model. For the tRNA and 5S rRNA families, the richer structural alignment model of PARTS does not offer a benefit and the method therefore performs comparably with existing alternatives. For all RNA families studied, the posterior probability estimates obtained from PARTS offer an improvement over posterior probability estimates from a single sequence prediction. When considering the base pairings predicted over a threshold value of confidence, the combination of sensitivity and positive predictive value is superior for PARTS than for the single sequence prediction. PARTS source code is available for download under the GNU public license at http://rna.urmc.rochester.edu. PMID:18304945
Secondary Moments due to Prestressing with Different Bond at the Ultimate Limit State
NASA Astrophysics Data System (ADS)
Halvoník, Jaroslav; Pažma, Peter; Vida, Radoslav
2018-03-01
Secondary effects of prestressing develop in statically indeterminate structures (e.g., continuous beams) due to the restraint of deformations imposed by hyperstatic restraints. These effects may significantly influence internal forces and stresses in prestressed structures. Secondary effects are influenced by the redundancy of a structural system, which raises the question of whether they will remain constant after a change in the structural system, e.g., due to the development of plastic hinge(s) in a critical cross-section(s) or after the development of a kinematic mechanism, or if they will disappear when the structure changes into a sequence of simply supported beams. The paper deals with an investigation of the behavior of continuous post-tensioned beams subjected to an ultimate load with significant secondary effects from prestressing. A total of 6 two-span beams prestressed by tendons with different bonds were tested in a laboratory with a load that changed their structural system into a kinematic mechanism. The internal forces and secondary effects of the prestressing were controlled through measurements of the reactions in all the supports. The results revealed that the secondary effects remained as a permanent part of the action on the experimental beams, even after the development of the kinematic mechanism. The results obtained confirmed that secondary effects should be included in all combinations of actions for verifications of ultimate limit states (ULS).
A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction
Spencer, Matt; Eickholt, Jesse; Cheng, Jianlin
2014-01-01
Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80% and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in attempts to stimulate progress. Since neural networks have historically played an important role in SS prediction, we wanted to determine whether deep learning could contribute to the advancement of this field as well. We developed an SS predictor that makes use of the position-specific scoring matrix generated by PSI-BLAST and deep learning network architectures, which we call DNSS. Graphical processing units and CUDA software optimize the deep network architecture and efficiently train the deep networks. Optimal parameters for the training process were determined, and a workflow comprising three separately trained deep networks was constructed in order to make refined predictions. This deep learning network approach was used to predict SS for a fully independent test data set of 198 proteins, achieving a Q3 accuracy of 80.7% and a Sov accuracy of 74.2%. PMID:25750595
A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction.
Spencer, Matt; Eickholt, Jesse; Jianlin Cheng
2015-01-01
Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80 percent and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in attempts to stimulate progress. Since neural networks have historically played an important role in SS prediction, we wanted to determine whether deep learning could contribute to the advancement of this field as well. We developed an SS predictor that makes use of the position-specific scoring matrix generated by PSI-BLAST and deep learning network architectures, which we call DNSS. Graphical processing units and CUDA software optimize the deep network architecture and efficiently train the deep networks. Optimal parameters for the training process were determined, and a workflow comprising three separately trained deep networks was constructed in order to make refined predictions. This deep learning network approach was used to predict SS for a fully independent test dataset of 198 proteins, achieving a Q3 accuracy of 80.7 percent and a Sov accuracy of 74.2 percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yong; Zhou, Yuming, E-mail: ymzhou@seu.edu.cn; Ge, Jianhua
Highlights: ► Silane coupling agent of KH550 was used to connect the ITO and polyurethanes. ► Infrared emissivity values of the hybrids were compared and analyzed. ► Interfacial synergistic action and orderly secondary structure were the key factors. -- Abstract: Optically active polyurethane@indium tin oxide and racemic polyurethane@indium tin oxide nanocomposites (LPU@ITO and RPU@ITO) were prepared by grafting the organics onto the surfaces of modified ITO nanoparticles. LPU@ITO and RPU@ITO composites based on the chiral and racemic tyrosine were characterized by FT-IR, UV–vis spectroscopy, X-ray diffraction (XRD), SEM, TEM, and thermogravimetric analysis (TGA), and the infrared emissivity values (8–14 μm)more » were investigated in addition. The results indicated that the polyurethanes had been successfully grafted onto the surfaces of ITO without destroying the crystalline structure. Both composites possessed the lower infrared emissivity values than the bare ITO nanoparticles, which indicated that the interfacial interaction had great effect on the infrared emissivity. Furthermore, LPU@ITO based on the optically active polyurethane had the virtue of regular secondary structure and more interfacial synergistic actions between organics and inorganics, thus it exhibited lower infrared emissivity value than RPU@ITO based on the racemic polyurethane.« less
Lou, Xiaowei; Yang, Qiuli; Sun, Yangying; Pan, Daodong; Cao, Jinxuan
2017-09-01
In order to investigate the influence of non-thermal effects of microwaves on the flavour of fish and meat products, the G-actin of grass carp in ice baths was exposed to different microwave powers (0, 100, 300 or 500 W); the surface hydrophobicity, sulfhydryl contents, secondary structures and adsorption capacity of G-actin to ketones were determined. As microwave power increased from 0 to 300 W, the surface hydrophobicity, total and reactive sulfhydryls increased; α-helix, β-sheet and random coil fractions turned into β-turn fractions. As microwave power increased from 300 to 500 W, however, hydrophobicity and sulfhydryl contents decreased; β-turn and random coil fractions turned into α-helix and β-sheet fractions. The tendencies of adsorbed capacity of ketones were similar to hydrophobicity and sulfhydryl contents. The increased adsorbing of ketones could be attributed to the unfolding of secondary structures by revealing new binding sites, including thiol groups and hydrophobic binding sites. The decreased binding capacity was related to the refolding and aggregation of protein. The results suggested that microwave powers had obvious effects on the flavour retention and proteins structures in muscle foods. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Influence of codon usage bias on FGLamide-allatostatin mRNA secondary structure.
Martínez-Pérez, Francisco; Bendena, William G; Chang, Belinda S W; Tobe, Stephen S
2011-03-01
The FGLamide allatostatins (ASTs) are invertebrate neuropeptides which inhibit juvenile hormone biosynthesis in Dictyoptera and related orders. They also show myomodulatory activity. FGLamide AST nucleotide frequencies and codon bias were investigated with respect to possible effects on mRNA secondary structure. 367 putative FGLamide ASTs and their potential endoproteolytic cleavage sites were identified from 40 species of crustaceans, chelicerates and insects. Among these, 55% comprised only 11 amino acids. An FGLamide AST consensus was identified to be (X)(1→16)Y(S/A/N/G)FGLGKR, with a strong bias for the codons UUU encoding for Phe and AAA for Lys, which can form strong Watson-Crick pairing in all peptides analyzed. The physical distance between these codons favor a loop structure from Ser/Ala-Phe to Lys-Arg. Other loop and hairpin loops were also inferred from the codon frequencies in the N-terminal motif, and the first amino acids from the C-terminal motif, or the dibasic potential endoproteolytic cleavage site. Our results indicate that nucleotide frequencies and codon usage bias in FGLamide ASTs tend to favor mRNA folds in the codon sequence in the C-terminal active peptide core and at the dibasic potential endoproteolytic cleavage site. Copyright © 2010 Elsevier Inc. All rights reserved.
Ceramic Nanocomposites from Tailor-Made Preceramic Polymers
Mera, Gabriela; Gallei, Markus; Bernard, Samuel; Ionescu, Emanuel
2015-01-01
The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs). Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail. PMID:28347023
Spacecraft Dynamics and Control Program at AFRPL
NASA Technical Reports Server (NTRS)
Das, A.; Slimak, L. K. S.; Schloegel, W. T.
1986-01-01
A number of future DOD and NASA spacecraft such as the space based radar will be not only an order of magnitude larger in dimension than the current spacecraft, but will exhibit extreme structural flexibility with very low structural vibration frequencies. Another class of spacecraft (such as the space defense platforms) will combine large physical size with extremely precise pointing requirement. Such problems require a total departure from the traditional methods of modeling and control system design of spacecraft where structural flexibility is treated as a secondary effect. With these problems in mind, the Air Force Rocket Propulsion Laboratory (AFRPL) initiated research to develop dynamics and control technology so as to enable the future large space structures (LSS). AFRPL's effort in this area can be subdivided into the following three overlapping areas: (1) ground experiments, (2) spacecraft modeling and control, and (3) sensors and actuators. Both the in-house and contractual efforts of the AFRPL in LSS are summarized.
Health e-mavens: identifying active online health information users.
Sun, Ye; Liu, Miao; Krakow, Melinda
2016-10-01
Given the rapid increase of Internet use for effective health communication, it is important for health practitioners to be able to identify and mobilize active users of online health information across various web-based health intervention programmes. We propose the concept 'health e-mavens' to characterize individuals actively engaged in online health information seeking and sharing activities. This study aimed to address three goals: (i) to test the factor structure of health e-mavenism, (ii) to assess the reliability and validity of this construct and (iii) to determine what predictors are associated with health e-mavenism. This study was a secondary analysis of nationally representative data from the 2010 Health Tracking Survey. We assessed the factor structure of health e-mavenism using confirmatory factor analysis and examined socio-demographic variables, health-related factors and use of technology as potential predictors of health e-mavenism through ordered regression analysis. Confirmatory factor analyses showed that a second-order two-factor structure best captured the health e-maven construct. Health e-mavenism comprised two second-order factors, each encompassing two first-order dimensions: information acquisition (consisting of information tracking and consulting) and information transmission (consisting of information posting and sharing). Both first-order and second-order factors exhibited good reliabilities. Several factors were found to be significant predictors of health e-mavenism. This study offers a starting point for further inquiries about health e-mavens. It is a fruitful construct for health promotion research in the age of new media technologies. We conclude with specific recommendations to further develop the health e-maven concept through continued empirical research. © 2015 The Authors. Health Expectations. Published by John Wiley & Sons Ltd.
Marti, Alessandra; Bock, Jayne E; Pagani, Maria Ambrogina; Ismail, Baraem; Seetharaman, Koushik
2016-03-01
The high protein and fiber content of intermediate wheatgrass (IWG) - together with its interesting agronomic traits and environment-related benefits - make this perennial crop attractive also for human consumption. Structural characteristics of the proteins in IWG/hard wheat flour (HWF) doughs (at IWG:HWF ratios of 0:100, 50:50, 75:25 and 100:0) - including aggregate formation, thiols availability, and secondary structure changes during dough mixing - were investigated. Proteins in IWG-doughs had higher solubility and thiol content - as function of IWG content - suggesting that protein network was mostly based on non-covalent interactions. While 50% IWG-enrichment gave an increase in random structures, enrichment at ⩾75% resulted in a decrease in β-sheets with an increase in random structures, indicating a decrease in structural order. The observed differences in protein molecular configuration and interactions in HWF compared to IWG doughs necessitate further investigation to establish their impact on the quality of IWG-enriched bread. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pineda-Lucena, Antonio; Liao, Jack C C; Cort, John R; Yee, Adelinda; Kennedy, Michael A; Edwards, Aled M; Arrowsmith, Cheryl H
2003-05-01
As part of the Northeast Structural Genomics Consortium pilot project focused on small eukaryotic proteins and protein domains, we have determined the NMR structure of the protein encoded by ORF YML108W from Saccharomyces cerevisiae. YML108W belongs to one of the numerous structural proteomics targets whose biological function is unknown. Moreover, this protein does not have sequence similarity to any other protein. The NMR structure of YML108W consists of a four-stranded beta-sheet with strand order 2143 and two alpha-helices, with an overall topology of betabetaalphabetabetaalpha. Strand beta1 runs parallel to beta4, and beta2:beta1 and beta4:beta3 pairs are arranged in an antiparallel fashion. Although this fold belongs to the split betaalphabeta family, it appears to be unique among this family; it is a novel arrangement of secondary structure, thereby expanding the universe of protein folds.
Trinus, F P; Braver-Chernobul'skaia, B S; Luĭk, A I; Boldeskul, A E; Velichko, A N
1984-01-01
High affinity interactions between blood serum albumin and five substances of various chemical structure, exhibiting distinct physiological activity, were accompanied by alterations in the protein tertiary structure, while the albumin secondary structure was involved in conformational transformation after less effective affinity binding.
Disease-Associated Mutations Disrupt Functionally Important Regions of Intrinsic Protein Disorder
Vacic, Vladimir; Markwick, Phineus R. L.; Oldfield, Christopher J.; Zhao, Xiaoyue; Haynes, Chad; Uversky, Vladimir N.; Iakoucheva, Lilia M.
2012-01-01
The effects of disease mutations on protein structure and function have been extensively investigated, and many predictors of the functional impact of single amino acid substitutions are publicly available. The majority of these predictors are based on protein structure and evolutionary conservation, following the assumption that disease mutations predominantly affect folded and conserved protein regions. However, the prevalence of the intrinsically disordered proteins (IDPs) and regions (IDRs) in the human proteome together with their lack of fixed structure and low sequence conservation raise a question about the impact of disease mutations in IDRs. Here, we investigate annotated missense disease mutations and show that 21.7% of them are located within such intrinsically disordered regions. We further demonstrate that 20% of disease mutations in IDRs cause local disorder-to-order transitions, which represents a 1.7–2.7 fold increase compared to annotated polymorphisms and neutral evolutionary substitutions, respectively. Secondary structure predictions show elevated rates of transition from helices and strands into loops and vice versa in the disease mutations dataset. Disease disorder-to-order mutations also influence predicted molecular recognition features (MoRFs) more often than the control mutations. The repertoire of disorder-to-order transition mutations is limited, with five most frequent mutations (R→W, R→C, E→K, R→H, R→Q) collectively accounting for 44% of all deleterious disorder-to-order transitions. As a proof of concept, we performed accelerated molecular dynamics simulations on a deleterious disorder-to-order transition mutation of tumor protein p63 and, in agreement with our predictions, observed an increased α-helical propensity of the region harboring the mutation. Our findings highlight the importance of mutations in IDRs and refine the traditional structure-centric view of disease mutations. The results of this study offer a new perspective on the role of mutations in disease, with implications for improving predictors of the functional impact of missense mutations. PMID:23055912
Baiocco, G; Alloni, D; Babini, G; Mariotti, L; Ottolenghi, A
2015-09-01
Neutron relative biological effectiveness (RBE) is found to be energy dependent, being maximal for energies ∼1 MeV. This is reflected in the choice of radiation weighting factors wR for radiation protection purposes. In order to trace back the physical origin of this behaviour, a detailed study of energy deposition processes with their full dependences is necessary. In this work, the Monte Carlo transport code PHITS was used to characterise main secondary products responsible for energy deposition in a 'human-sized' soft tissue spherical phantom, irradiated by monoenergetic neutrons with energies around the maximal RBE/wR. Thereafter, results on the microdosimetric characterisation of secondary protons were used as an input to track structure calculations performed with PARTRAC, thus evaluating the corresponding DNA damage induction. Within the proposed simplified approach, evidence is suggested for a relevant role of secondary protons in inducing the maximal biological effectiveness for 1 MeV neutrons. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Massman, William
1987-01-01
A semianalytical method for describing the mean wind profile and shear stress within plant canopies and for estimating the roughness length and the displacement height is presented. This method incorporates density and vertical structure of the canopy and includes simple parameterizations of the roughness sublayer and shelter factor. Some of the wind profiles examined are consistent with first-order closure techniques while others are consistent with second-order closure techniques. Some profiles show a shearless region near the base of the canopy; however, none displays a secondary maximum there. Comparing several different analytical expressions for the canopy wind profile against observations suggests that one particular type of profile (an Airy function which is associated with the triangular foliage surface area density distribution) is superior to the others. Because of the numerical simplicity of the methods outlined, it is suggested that they may be profitably used in large-scale models of plant-atmosphere exchanges.
[Spanish adaptation of the Stress Manifestations Scale of the Student Stress Inventory (SSI-SM)].
Escobar Espejo, Milagros; Blanca, María J; Fernández-Baena, F Javier; Trianes Torres, María Victoria
2011-08-01
The aim of the present study was to translate into Spanish and to describe the psychometric properties of the Stress Manifestations Scale of the Student Stress Inventory (SSI-SM), developed by Fimian, Fastenau, Tashner and Cross to identify the main manifestations of stress in adolescents. The scale was applied to a sample of 1,002 pupils from years one and two of Secondary Education. The paper reports the factor structure, an item analysis, the internal consistency, differences by sex and academic year, external evidence of validity, and norms for scoring the scale. The results reveal a factor structure based on three first-order factors (emotional manifestations, physiological manifestations and behavioural manifestations) and one second-order factor (indicative of stress manifestations). In terms of external validity, there was a positive association with measures of perceived stress, aggressiveness, internalized/externalized symptoms, and a negative association with life satisfaction. The results show that the scale is an adequate tool for evaluating stress manifestations in adolescents.
Residue-residue contacts: application to analysis of secondary structure interactions.
Potapov, Vladimir; Edelman, Marvin; Sobolev, Vladimir
2013-01-01
Protein structures and their complexes are formed and stabilized by interactions, both inside and outside of the protein. Analysis of such interactions helps in understanding different levels of structures (secondary, super-secondary, and oligomeric states). It can also assist molecular biologists in understanding structural consequences of modifying proteins and/or ligands. In this chapter, our definition of atom-atom and residue-residue contacts is described and applied to analysis of protein-protein interactions in dimeric β-sandwich proteins.
Distribution of genotype network sizes in sequence-to-structure genotype-phenotype maps.
Manrubia, Susanna; Cuesta, José A
2017-04-01
An essential quantity to ensure evolvability of populations is the navigability of the genotype space. Navigability, understood as the ease with which alternative phenotypes are reached, relies on the existence of sufficiently large and mutually attainable genotype networks. The size of genotype networks (e.g. the number of RNA sequences folding into a particular secondary structure or the number of DNA sequences coding for the same protein structure) is astronomically large in all functional molecules investigated: an exhaustive experimental or computational study of all RNA folds or all protein structures becomes impossible even for moderately long sequences. Here, we analytically derive the distribution of genotype network sizes for a hierarchy of models which successively incorporate features of increasingly realistic sequence-to-structure genotype-phenotype maps. The main feature of these models relies on the characterization of each phenotype through a prototypical sequence whose sites admit a variable fraction of letters of the alphabet. Our models interpolate between two limit distributions: a power-law distribution, when the ordering of sites in the prototypical sequence is strongly constrained, and a lognormal distribution, as suggested for RNA, when different orderings of the same set of sites yield different phenotypes. Our main result is the qualitative and quantitative identification of those features of sequence-to-structure maps that lead to different distributions of genotype network sizes. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Wanapun, Duangporn; Wampler, Ronald D.; Begue, Nathan J.; Simpson, Garth J.
2008-03-01
A new method for sensitive determination of protein secondary structure via multi-photon absorption is considered theoretically. Perturbation theory is developed to describe the polarization-dependent two-photon absorption (TPA) of α-helix and β-sheet protein secondary structures. The exciton coupling interactions responsible for relatively weak electronic circular dichroism in one-photon absorption are predicted to give rise to large changes in the TPA cross-section (>200%) for circular versus linear incident polarizations, defined as CLD. The CLD effect in TPA is electric dipole-allowed, which explains the much greater sensitivity. These predictions suggest TPA should be a viable means of sensitively probing protein secondary structure.
DNA secondary structures: stability and function of G-quadruplex structures
Bochman, Matthew L.; Paeschke, Katrin; Zakian, Virginia A.
2013-01-01
In addition to the canonical double helix, DNA can fold into various other inter- and intramolecular secondary structures. Although many such structures were long thought to be in vitro artefacts, bioinformatics demonstrates that DNA sequences capable of forming these structures are conserved throughout evolution, suggesting the existence of non-B-form DNA in vivo. In addition, genes whose products promote formation or resolution of these structures are found in diverse organisms, and a growing body of work suggests that the resolution of DNA secondary structures is critical for genome integrity. This Review focuses on emerging evidence relating to the characteristics of G-quadruplex structures and the possible influence of such structures on genomic stability and cellular processes, such as transcription. PMID:23032257
Sanchita; Singh, Swati; Sharma, Ashok
2014-11-01
Withania somnifera (Ashwagandha) is an affluent storehouse of large number of pharmacologically active secondary metabolites known as withanolides. These secondary metabolites are produced by withanolide biosynthetic pathway. Very less information is available on structural and functional aspects of enzymes involved in withanolides biosynthetic pathways of Withiana somnifera. We therefore performed a bioinformatics analysis to look at functional and structural properties of these important enzymes. The pathway enzymes taken for this study were 3-Hydroxy-3-methylglutaryl coenzyme A reductase, 1-Deoxy-D-xylulose-5-phosphate synthase, 1-Deoxy-D-xylulose-5-phosphate reductase, farnesyl pyrophosphate synthase, squalene synthase, squalene epoxidase, and cycloartenol synthase. The prediction of secondary structure was performed for basic structural information. Three-dimensional structures for these enzymes were predicted. The physico-chemical properties such as pI, AI, GRAVY and instability index were also studied. The current information will provide a platform to know the structural attributes responsible for the function of these protein until experimental structures become available.
DSSPcont: continuous secondary structure assignments for proteins
Carter, Phil; Andersen, Claus A. F.; Rost, Burkhard
2003-01-01
The DSSP program automatically assigns the secondary structure for each residue from the three-dimensional co-ordinates of a protein structure to one of eight states. However, discrete assignments are incomplete in that they cannot capture the continuum of thermal fluctuations. Therefore, DSSPcont (http://cubic.bioc.columbia.edu/services/DSSPcont) introduces a continuous assignment of secondary structure that replaces ‘static’ by ‘dynamic’ states. Technically, the continuum results from calculating weighted averages over 10 discrete DSSP assignments with different hydrogen bond thresholds. A DSSPcont assignment for a particular residue is a percentage likelihood of eight secondary structure states, derived from a weighted average of the ten DSSP assignments. The continuous assignments have two important features: (i) they reflect the structural variations due to thermal fluctuations as detected by NMR spectroscopy; and (ii) they reproduce the structural variation between many NMR models from one single model. Therefore, functionally important variation can be extracted from a single X-ray structure using the continuous assignment procedure. PMID:12824310
Liu, Qi; Yang, Yu; Chen, Chun; Bu, Jiajun; Zhang, Yin; Ye, Xiuzi
2008-03-31
With the rapid emergence of RNA databases and newly identified non-coding RNAs, an efficient compression algorithm for RNA sequence and structural information is needed for the storage and analysis of such data. Although several algorithms for compressing DNA sequences have been proposed, none of them are suitable for the compression of RNA sequences with their secondary structures simultaneously. This kind of compression not only facilitates the maintenance of RNA data, but also supplies a novel way to measure the informational complexity of RNA structural data, raising the possibility of studying the relationship between the functional activities of RNA structures and their complexities, as well as various structural properties of RNA based on compression. RNACompress employs an efficient grammar-based model to compress RNA sequences and their secondary structures. The main goals of this algorithm are two fold: (1) present a robust and effective way for RNA structural data compression; (2) design a suitable model to represent RNA secondary structure as well as derive the informational complexity of the structural data based on compression. Our extensive tests have shown that RNACompress achieves a universally better compression ratio compared with other sequence-specific or common text-specific compression algorithms, such as Gencompress, winrar and gzip. Moreover, a test of the activities of distinct GTP-binding RNAs (aptamers) compared with their structural complexity shows that our defined informational complexity can be used to describe how complexity varies with activity. These results lead to an objective means of comparing the functional properties of heteropolymers from the information perspective. A universal algorithm for the compression of RNA secondary structure as well as the evaluation of its informational complexity is discussed in this paper. We have developed RNACompress, as a useful tool for academic users. Extensive tests have shown that RNACompress is a universally efficient algorithm for the compression of RNA sequences with their secondary structures. RNACompress also serves as a good measurement of the informational complexity of RNA secondary structure, which can be used to study the functional activities of RNA molecules.
Liu, Qi; Yang, Yu; Chen, Chun; Bu, Jiajun; Zhang, Yin; Ye, Xiuzi
2008-01-01
Background With the rapid emergence of RNA databases and newly identified non-coding RNAs, an efficient compression algorithm for RNA sequence and structural information is needed for the storage and analysis of such data. Although several algorithms for compressing DNA sequences have been proposed, none of them are suitable for the compression of RNA sequences with their secondary structures simultaneously. This kind of compression not only facilitates the maintenance of RNA data, but also supplies a novel way to measure the informational complexity of RNA structural data, raising the possibility of studying the relationship between the functional activities of RNA structures and their complexities, as well as various structural properties of RNA based on compression. Results RNACompress employs an efficient grammar-based model to compress RNA sequences and their secondary structures. The main goals of this algorithm are two fold: (1) present a robust and effective way for RNA structural data compression; (2) design a suitable model to represent RNA secondary structure as well as derive the informational complexity of the structural data based on compression. Our extensive tests have shown that RNACompress achieves a universally better compression ratio compared with other sequence-specific or common text-specific compression algorithms, such as Gencompress, winrar and gzip. Moreover, a test of the activities of distinct GTP-binding RNAs (aptamers) compared with their structural complexity shows that our defined informational complexity can be used to describe how complexity varies with activity. These results lead to an objective means of comparing the functional properties of heteropolymers from the information perspective. Conclusion A universal algorithm for the compression of RNA secondary structure as well as the evaluation of its informational complexity is discussed in this paper. We have developed RNACompress, as a useful tool for academic users. Extensive tests have shown that RNACompress is a universally efficient algorithm for the compression of RNA sequences with their secondary structures. RNACompress also serves as a good measurement of the informational complexity of RNA secondary structure, which can be used to study the functional activities of RNA molecules. PMID:18373878
Li, Xiansen; Michaelis, Vladimir K.; Ong, Ta-Chung; Smith, Stacey J.; Griffin, Robert G.; Wang, Evelyn N.
2014-01-01
The controllable synthesis of well-ordered layered materials with specific nanoarchitecture poses a grand challenge in materials chemistry. We report the solvothermal synthesis of two structurally analogous 5-coordinate organosilicate complexes via a novel transesterification mechanism. Since the polycrystalline nature of the intrinsic hypervalent Si complex thwarts the endeavor in determining its structure, a novel strategy concerning the elegant addition of a small fraction of B species as an effective crystal growth mediator and a sacrificial agent is proposed to directly prepare diffraction-quality single crystals without disrupting the intrinsic elemental type. In the determined crystal structure, two monomeric primary building units (PBUs) self-assemble into a dimeric asymmetric secondary BU via strong Na+-O2− ionic bonds. The designed one-pot synthesis is straightforward, robust, and efficient, leading to a well-ordered (10ī)-parallel layered Si complex with its principal interlayers intercalated with extensive van der Waals gaps in spite of the presence of substantial Na+ counterions as a result of unique atomic arrangement in its structure. On the other hand, upon fast pyrolysis, followed by acid leaching, both complexes are converted into two SiO2 composites bearing BET surface areas of 163.3 and 254.7 m2 g−1 for the pyrolyzed intrinsic and B-assisted Si complexes, respectively. The transesterification methodology merely involving alcoholysis but without any hydrolysis side reaction is designed to have generalized applicability for use in synthesizing new layered metal-organic compounds with tailored PBUs and corresponding metal oxide particles with hierarchical porosity. PMID:24737615
Kiryu, Hisanori; Kin, Taishin; Asai, Kiyoshi
2007-02-15
Recent transcriptomic studies have revealed the existence of a considerable number of non-protein-coding RNA transcripts in higher eukaryotic cells. To investigate the functional roles of these transcripts, it is of great interest to find conserved secondary structures from multiple alignments on a genomic scale. Since multiple alignments are often created using alignment programs that neglect the special conservation patterns of RNA secondary structures for computational efficiency, alignment failures can cause potential risks of overlooking conserved stem structures. We investigated the dependence of the accuracy of secondary structure prediction on the quality of alignments. We compared three algorithms that maximize the expected accuracy of secondary structures as well as other frequently used algorithms. We found that one of our algorithms, called McCaskill-MEA, was more robust against alignment failures than others. The McCaskill-MEA method first computes the base pairing probability matrices for all the sequences in the alignment and then obtains the base pairing probability matrix of the alignment by averaging over these matrices. The consensus secondary structure is predicted from this matrix such that the expected accuracy of the prediction is maximized. We show that the McCaskill-MEA method performs better than other methods, particularly when the alignment quality is low and when the alignment consists of many sequences. Our model has a parameter that controls the sensitivity and specificity of predictions. We discussed the uses of that parameter for multi-step screening procedures to search for conserved secondary structures and for assigning confidence values to the predicted base pairs. The C++ source code that implements the McCaskill-MEA algorithm and the test dataset used in this paper are available at http://www.ncrna.org/papers/McCaskillMEA/. Supplementary data are available at Bioinformatics online.
NASA Astrophysics Data System (ADS)
Najjari, Mohammad Reza; Plesniak, Michael W.
2018-01-01
Secondary flow structures in a 180∘ curved pipe model of an artery are studied using particle image velocimetry. Both steady and pulsatile inflow conditions are investigated. In planar curved pipes with steady flow, multiple (two, four, six) vortices are detected. For pulsatile flow, various pairs of vortices, i.e., Dean, deformed-Dean, Lyne-type, and split-Dean, are present in the cross section of the pipe at 90∘ into the bend. The effects of nonplanar curvature (torsion) and vessel dilatation on these vortical structures are studied. Torsion distorts the symmetric secondary flows (which exist in planar curvatures) and can result in formation of more complex vortical structures. For example, the split-Dean and Lyne-type vortices with same rotation direction originating from opposite sides of the cross section tend to merge together in pulsatile flow. The vortical structures in elastic vessels with dilatation (0.61%-3.23%) are also investigated and the results are compared with rigid model results. It was found that the secondary flow structures in rigid and elastic models are similar, and hence the local compliance of the vessel does not affect the morphology of secondary flow structures.
RNAmutants: a web server to explore the mutational landscape of RNA secondary structures
Waldispühl, Jerome; Devadas, Srinivas; Berger, Bonnie; Clote, Peter
2009-01-01
The history and mechanism of molecular evolution in DNA have been greatly elucidated by contributions from genetics, probability theory and bioinformatics—indeed, mathematical developments such as Kimura's neutral theory, Kingman's coalescent theory and efficient software such as BLAST, ClustalW, Phylip, etc., provide the foundation for modern population genetics. In contrast to DNA, the function of most noncoding RNA depends on tertiary structure, experimentally known to be largely determined by secondary structure, for which dynamic programming can efficiently compute the minimum free energy secondary structure. For this reason, understanding the effect of pointwise mutations in RNA secondary structure could reveal fundamental properties of structural RNA molecules and improve our understanding of molecular evolution of RNA. The web server RNAmutants provides several efficient tools to compute the ensemble of low-energy secondary structures for all k-mutants of a given RNA sequence, where k is bounded by a user-specified upper bound. As we have previously shown, these tools can be used to predict putative deleterious mutations and to analyze regulatory sequences from the hepatitis C and human immunodeficiency genomes. Web server is available at http://bioinformatics.bc.edu/clotelab/RNAmutants/, and downloadable binaries at http://rnamutants.csail.mit.edu/. PMID:19531740
Interoperable Archetypes With a Three Folded Terminology Governance.
Pederson, Rune; Ellingsen, Gunnar
2015-01-01
The use of openEHR archetypes increases the interoperability of clinical terminology, and in doing so improves upon the availability of clinical terminology for both primary and secondary purposes. Where clinical terminology is employed in the EPR system, research reports conflicting a results for the use of structuring and standardization as measurements of success. In order to elucidate this concept, this paper focuses on the effort to establish a national repository for openEHR based archetypes in Norway where clinical terminology could be included with benefit for interoperability three folded.
Ensemble-based prediction of RNA secondary structures.
Aghaeepour, Nima; Hoos, Holger H
2013-04-24
Accurate structure prediction methods play an important role for the understanding of RNA function. Energy-based, pseudoknot-free secondary structure prediction is one of the most widely used and versatile approaches, and improved methods for this task have received much attention over the past five years. Despite the impressive progress that as been achieved in this area, existing evaluations of the prediction accuracy achieved by various algorithms do not provide a comprehensive, statistically sound assessment. Furthermore, while there is increasing evidence that no prediction algorithm consistently outperforms all others, no work has been done to exploit the complementary strengths of multiple approaches. In this work, we present two contributions to the area of RNA secondary structure prediction. Firstly, we use state-of-the-art, resampling-based statistical methods together with a previously published and increasingly widely used dataset of high-quality RNA structures to conduct a comprehensive evaluation of existing RNA secondary structure prediction procedures. The results from this evaluation clarify the performance relationship between ten well-known existing energy-based pseudoknot-free RNA secondary structure prediction methods and clearly demonstrate the progress that has been achieved in recent years. Secondly, we introduce AveRNA, a generic and powerful method for combining a set of existing secondary structure prediction procedures into an ensemble-based method that achieves significantly higher prediction accuracies than obtained from any of its component procedures. Our new, ensemble-based method, AveRNA, improves the state of the art for energy-based, pseudoknot-free RNA secondary structure prediction by exploiting the complementary strengths of multiple existing prediction procedures, as demonstrated using a state-of-the-art statistical resampling approach. In addition, AveRNA allows an intuitive and effective control of the trade-off between false negative and false positive base pair predictions. Finally, AveRNA can make use of arbitrary sets of secondary structure prediction procedures and can therefore be used to leverage improvements in prediction accuracy offered by algorithms and energy models developed in the future. Our data, MATLAB software and a web-based version of AveRNA are publicly available at http://www.cs.ubc.ca/labs/beta/Software/AveRNA.
Li, Ying; Shi, Xiaohu; Liang, Yanchun; Xie, Juan; Zhang, Yu; Ma, Qin
2017-01-21
RNAs have been found to carry diverse functionalities in nature. Inferring the similarity between two given RNAs is a fundamental step to understand and interpret their functional relationship. The majority of functional RNAs show conserved secondary structures, rather than sequence conservation. Those algorithms relying on sequence-based features usually have limitations in their prediction performance. Hence, integrating RNA structure features is very critical for RNA analysis. Existing algorithms mainly fall into two categories: alignment-based and alignment-free. The alignment-free algorithms of RNA comparison usually have lower time complexity than alignment-based algorithms. An alignment-free RNA comparison algorithm was proposed, in which novel numerical representations RNA-TVcurve (triple vector curve representation) of RNA sequence and corresponding secondary structure features are provided. Then a multi-scale similarity score of two given RNAs was designed based on wavelet decomposition of their numerical representation. In support of RNA mutation and phylogenetic analysis, a web server (RNA-TVcurve) was designed based on this alignment-free RNA comparison algorithm. It provides three functional modules: 1) visualization of numerical representation of RNA secondary structure; 2) detection of single-point mutation based on secondary structure; and 3) comparison of pairwise and multiple RNA secondary structures. The inputs of the web server require RNA primary sequences, while corresponding secondary structures are optional. For the primary sequences alone, the web server can compute the secondary structures using free energy minimization algorithm in terms of RNAfold tool from Vienna RNA package. RNA-TVcurve is the first integrated web server, based on an alignment-free method, to deliver a suite of RNA analysis functions, including visualization, mutation analysis and multiple RNAs structure comparison. The comparison results with two popular RNA comparison tools, RNApdist and RNAdistance, showcased that RNA-TVcurve can efficiently capture subtle relationships among RNAs for mutation detection and non-coding RNA classification. All the relevant results were shown in an intuitive graphical manner, and can be freely downloaded from this server. RNA-TVcurve, along with test examples and detailed documents, are available at: http://ml.jlu.edu.cn/tvcurve/ .
Zegeye, A; Mustin, C; Jorand, F
2010-06-01
In the presence of methanoate as electron donor, Shewanella putrefaciens, a Gram-negative, facultative anaerobe, is able to transform lepidocrocite (gamma-FeOOH) to secondary Fe (II-III) minerals such as carbonated green rust (GR1) and magnetite. When bacterial cells were added to a gamma-FeOOH suspension, aggregates were produced consisting of both bacteria and gamma-FeOOH particles. Recently, we showed that the production of secondary minerals (GR1 vs. magnetite) was dependent on bacterial cell density and not only on iron reduction rates. Thus, gamma-FeOOH and S. putrefaciens aggregation pattern was suggested as the main mechanism driving mineralization. In this study, lepidocrocite bioreduction experiments, in the presence of anthraquinone disulfonate, were conducted by varying the [cell]/[lepidocrocite] ratio in order to determine whether different types of aggregate are formed, which may facilitate precipitation of GR1 as opposed to magnetite. Confocal laser scanning microscopy was used to analyze the relative cell surface area and lepidocrocite concentration within the aggregates and captured images were characterized by statistical methods for spatial data (i.e. variograms). These results suggest that the [cell]/[lepidocrocite] ratio influenced both the aggregate structure and the nature of the secondary iron mineral formed. Subsequently, a [cell]/[lepidocrocite] ratio above 1 x 10(7) cells mmol(-1) leads to densely packed aggregates and to the formation of GR1. Below this ratio, looser aggregates are formed and magnetite was systematically produced. The data presented in this study bring us closer to a more comprehensive understanding of the parameters governing the formation of minerals in dense bacterial suspensions and suggest that screening mineral-bacteria aggregate structure is critical to understanding (bio)mineralization pathways.
Matveev, Vladimir V
2010-06-09
According to the hypothesis explored in this paper, native aggregation is genetically controlled (programmed) reversible aggregation that occurs when interacting proteins form new temporary structures through highly specific interactions. It is assumed that Anfinsen's dogma may be extended to protein aggregation: composition and amino acid sequence determine not only the secondary and tertiary structure of single protein, but also the structure of protein aggregates (associates). Cell function is considered as a transition between two states (two states model), the resting state and state of activity (this applies to the cell as a whole and to its individual structures). In the resting state, the key proteins are found in the following inactive forms: natively unfolded and globular. When the cell is activated, secondary structures appear in natively unfolded proteins (including unfolded regions in other proteins), and globular proteins begin to melt and their secondary structures become available for interaction with the secondary structures of other proteins. These temporary secondary structures provide a means for highly specific interactions between proteins. As a result, native aggregation creates temporary structures necessary for cell activity."One of the principal objects of theoretical research in any department of knowledge is to find the point of view from which the subject appears in its greatest simplicity."Josiah Willard Gibbs (1839-1903).
Modeling of Dendritic Evolution of Continuously Cast Steel Billet with Cellular Automaton
NASA Astrophysics Data System (ADS)
Wang, Weiling; Ji, Cheng; Luo, Sen; Zhu, Miaoyong
2018-02-01
In order to predict the dendritic evolution during the continuous steel casting process, a simple mechanism to connect the heat transfer at the macroscopic scale and the dendritic growth at the microscopic scale was proposed in the present work. As the core of the across-scale simulation, a two-dimensional cell automaton (CA) model with a decentered square algorithm was developed and parallelized. Apart from nucleation undercooling and probability, a temperature gradient was introduced to deal with the columnar-to-equiaxed transition (CET) by considering its variation during continuous casting. Based on the thermal history, the dendritic evolution in a 4 mm × 40 mm region near the centerline of a SWRH82B steel billet was predicted. The influences of the secondary cooling intensity, superheat, and casting speed on the dendritic structure of the billet were investigated in detail. The results show that the predicted equiaxed dendritic solidification of Fe-5.3Si alloy and columnar dendritic solidification of Fe-0.45C alloy are consistent with in situ experimental results [Yasuda et al. Int J Cast Metals Res 22:15-21 (2009); Yasuda et al. ISIJ Int 51:402-408 (2011)]. Moreover, the predicted dendritic arm spacing and CET location agree well with the actual results in the billet. The primary dendrite arm spacing of columnar dendrites decreases with increasing secondary cooling intensity, or decreasing superheat and casting speed. Meanwhile, the CET is promoted as the secondary cooling intensity and superheat decrease. However, the CET is not influenced by the casting speed, owing to the adjusting of the flow rate of secondary spray water. Compared with the superheat and casting speed, the secondary cooling intensity can influence the cooling rate and temperature gradient in deeper locations, and accordingly exerts a more significant influence on the equiaxed dendritic structure.
Comprehensive computational design of ordered peptide macrocycles
Hosseinzadeh, Parisa; Bhardwaj, Gaurav; Mulligan, Vikram Khipple; Shortridge, Matthew D.; Craven, Timothy W.; Pardo-Avila, Fátima; Rettie, Stephen A.; Kim, David E.; Silva, Daniel-Adriano; Ibrahim, Yehia M.; Webb, Ian K.; Cort, John R.; Adkins, Joshua N.; Varani, Gabriele; Baker, David
2018-01-01
Mixed-chirality peptide macrocycles such as cyclosporine are among the most potent therapeutics identified to date, but there is currently no way to systematically search the structural space spanned by such compounds. Natural proteins do not provide a useful guide: Peptide macrocycles lack regular secondary structures and hydrophobic cores, and can contain local structures not accessible with L-amino acids. Here, we enumerate the stable structures that can be adopted by macrocyclic peptides composed of L- and D-amino acids by near-exhaustive backbone sampling followed by sequence design and energy landscape calculations. We identify more than 200 designs predicted to fold into single stable structures, many times more than the number of currently available unbound peptide macrocycle structures. Nuclear magnetic resonance structures of 9 of 12 designed 7- to 10-residue macrocycles, and three 11- to 14-residue bicyclic designs, are close to the computational models. Our results provide a nearly complete coverage of the rich space of structures possible for short peptide macrocycles and vastly increase the available starting scaffolds for both rational drug design and library selection methods. PMID:29242347
Effect of homogenization and pasteurization on the structure and stability of whey protein in milk.
Qi, Phoebe X; Ren, Daxi; Xiao, Yingping; Tomasula, Peggy M
2015-05-01
The effect of homogenization alone or in combination with high-temperature, short-time (HTST) pasteurization or UHT processing on the whey fraction of milk was investigated using highly sensitive spectroscopic techniques. In pilot plant trials, 1-L quantities of whole milk were homogenized in a 2-stage homogenizer at 35°C (6.9 MPa/10.3 MPa) and, along with skim milk, were subjected to HTST pasteurization (72°C for 15 s) or UHT processing (135°C for 2 s). Other whole milk samples were processed using homogenization followed by either HTST pasteurization or UHT processing. The processed skim and whole milk samples were centrifuged further to remove fat and then acidified to pH 4.6 to isolate the corresponding whey fractions, and centrifuged again. The whey fractions were then purified using dialysis and investigated using the circular dichroism, Fourier transform infrared, and Trp intrinsic fluorescence spectroscopic techniques. Results demonstrated that homogenization combined with UHT processing of milk caused not only changes in protein composition but also significant secondary structural loss, particularly in the amounts of apparent antiparallel β-sheet and α-helix, as well as diminished tertiary structural contact. In both cases of homogenization alone and followed by HTST treatments, neither caused appreciable chemical changes, nor remarkable secondary structural reduction. But disruption was evident in the tertiary structural environment of the whey proteins due to homogenization of whole milk as shown by both the near-UV circular dichroism and Trp intrinsic fluorescence. In-depth structural stability analyses revealed that even though processing of milk imposed little impairment on the secondary structural stability, the tertiary structural stability of whey protein was altered significantly. The following order was derived based on these studies: raw whole>HTST, homogenized, homogenized and pasteurized>skimmed and pasteurized, and skimmed UHT>homogenized UHT. The methodology demonstrated in this study can be used to gain insight into the behavior of milk proteins when processed and provides a new empirical and comparative approach for analyzing and assessing the effect of processing schemes on the nutrition and quality of milk and dairy product without the need for extended separation and purification, which can be both time-consuming and disruptive to protein structures. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zeng, Jie; Chen, Weiqing
2015-10-01
Solidification structures of high carbon rectangular billet with a size of 180 mm × 240 mm in different secondary cooling conditions were simulated using cellular automaton-finite element (CAFE) coupling model. The adequacy of the model was compared with the simulated and the actual macrostructures of 82B steel. Effects of the secondary cooling water intensity on solidification structures including the equiaxed grain ratio and the equiaxed grain compactness were discussed. It was shown that the equiaxed grain ratio and the equiaxed grain compactness changed in the opposite direction at different secondary cooling water intensities. Increasing the secondary cooling water intensity from 0.9 or 1.1 to 1.3 L/kg could improve the equiaxed grain compactness and decrease the equiaxed grain ratio. Besides, the industrial test was conducted to investigate the effect of different secondary cooling water intensities on the center carbon macrosegregation of 82B steel. The optimum secondary cooling water intensity was 0.9 L/kg, while the center carbon segregation degree was 1.10. The relationship between solidification structure and center carbon segregation was discussed based on the simulation results and the industrial test.
Girls' education and their change of attitudes: a case from Sudan.
Abdel Halim, A M
1995-06-01
This study examines the association of girls' education and changes in attitudes and other socioeconomic changes in Sudan. Data were obtained from in-depth interviews, structured questionnaires, and secondary data among 810 educated Sudanese women who lived in the Central and Eastern Regions. Women responded to 10 opinions about the status of women. Findings show a significant association between level of education, even at the lowest levels, and the attitudes held by women. Women held relatively positive attitudes toward social change and economic development. Level of education was highly significantly associated with holding a view of educated women working. 54.1% of secondary school leavers agreed and 92% of well educated women disagreed with a family's objection to women having a job. 57% of secondary school leavers agreed that it is essential to give up work in order to care for family; however, 96% of postgraduates disagreed. 74% of respondents were indecisive, of which 44% were secondary school leavers and 2% had postgraduate degrees. Decisiveness increased with level of education. Only 32.6% of secondary school leavers agreed that most of a woman's time should be spent on family responsibilities. 100% of the highest educated women and 40% of secondary school leavers disagreed that women should take part-time work. 96% of postgraduate women disagreed and 73.6% of secondary school leavers agreed that women should not feel obligated to work after training. Employment was highly influenced by level of education. 83% of single women and 76% of married women agreed with using contraception. Rural women tended not to support women working and using contraceptives. Younger women were less traditional in their attitudes. Postgraduates came from families with high levels of income.
Sato, Kanna; Suzuki, Ryu; Nishikubo, Nobuyuki; Takenouchi, Sachi; Ito, Sachiko; Nakano, Yoshimi; Nakaba, Satoshi; Sano, Yuzou; Funada, Ryo; Kajita, Shinya; Kitano, Hidemi; Katayama, Yoshihiro
2010-06-01
The plant secondary cell wall is a highly ordered structure composed of various polysaccharides, phenolic components and proteins. Its coordinated regulation of a number of complex metabolic pathways and assembly has not been resolved. To understand the molecular mechanisms that regulate secondary cell wall synthesis, we isolated a novel rice mutant, cell wall architecture1 (cwa1), that exhibits an irregular thickening pattern in the secondary cell wall of sclerenchyma, as well as culm brittleness and reduced cellulose content in mature internodes. Light and transmission electron microscopy revealed that the cwa1 mutant plant has regions of local aggregation in the secondary cell walls of the cortical fibers in its internodes, showing uneven thickness. Ultraviolet microscopic observation indicated that localization of cell wall phenolic components was perturbed and that these components abundantly deposited at the aggregated cell wall regions in sclerenchyma. Therefore, regulation of deposition and assembly of secondary cell wall materials, i.e. phenolic components, appear to be disturbed by mutation of the cwa1 gene. Genetic analysis showed that cwa1 is allelic to brittle culm1 (bc1), which encodes the glycosylphosphatidylinositol-anchored COBRA-like protein specifically in plants. BC1 is known as a regulator that controls the culm mechanical strength and cellulose content in the secondary cell walls of sclerenchyma, but the precise function of BC1 has not been resolved. Our results suggest that CWA1/BC1 has an essential role in assembling cell wall constituents at their appropriate sites, thereby enabling synthesis of solid and flexible internodes in rice.
An Evolution-Based Approach to De Novo Protein Design and Case Study on Mycobacterium tuberculosis
Brender, Jeffrey R.; Czajka, Jeff; Marsh, David; Gray, Felicia; Cierpicki, Tomasz; Zhang, Yang
2013-01-01
Computational protein design is a reverse procedure of protein folding and structure prediction, where constructing structures from evolutionarily related proteins has been demonstrated to be the most reliable method for protein 3-dimensional structure prediction. Following this spirit, we developed a novel method to design new protein sequences based on evolutionarily related protein families. For a given target structure, a set of proteins having similar fold are identified from the PDB library by structural alignments. A structural profile is then constructed from the protein templates and used to guide the conformational search of amino acid sequence space, where physicochemical packing is accommodated by single-sequence based solvation, torsion angle, and secondary structure predictions. The method was tested on a computational folding experiment based on a large set of 87 protein structures covering different fold classes, which showed that the evolution-based design significantly enhances the foldability and biological functionality of the designed sequences compared to the traditional physics-based force field methods. Without using homologous proteins, the designed sequences can be folded with an average root-mean-square-deviation of 2.1 Å to the target. As a case study, the method is extended to redesign all 243 structurally resolved proteins in the pathogenic bacteria Mycobacterium tuberculosis, which is the second leading cause of death from infectious disease. On a smaller scale, five sequences were randomly selected from the design pool and subjected to experimental validation. The results showed that all the designed proteins are soluble with distinct secondary structure and three have well ordered tertiary structure, as demonstrated by circular dichroism and NMR spectroscopy. Together, these results demonstrate a new avenue in computational protein design that uses knowledge of evolutionary conservation from protein structural families to engineer new protein molecules of improved fold stability and biological functionality. PMID:24204234
Characterization of non-conductive materials using field emission scanning electron microscopy
NASA Astrophysics Data System (ADS)
Cao, Cong; Gao, Ran; Shang, Huayan; Peng, Tingting
2016-01-01
With the development of science and technology, field emission scanning electron microscope (FESEM) plays an important role in nano-material measurements because of its advantages of high magnification, high resolution and easy operation. A high-quality secondary electron image is a significant prerequisite for accurate and precise length measurements. In order to obtain high-quality secondary electron images, the conventional treatment method for non-conductive materials is coating conductive films with gold, carbon or platinum to reduce charging effects, but this method will cover real micro structures of materials, change the sample composition properties and meanwhile introduce a relatively big error to nano-scale microstructure measurements. This paper discusses how to reduce or eliminate the impact of charging effects on image quality to the greatest extent by changing working conditions, such as voltage, stage bias, scanning mode and so on without treatment of coating, to obtain real and high-quality microstructure information of materials.
Vitrification of MSWI Fly Ash by Thermal Plasma Melting and Fate of Heavy Metals
NASA Astrophysics Data System (ADS)
Ni, Guohua; Zhao, Peng; Jiang, Yiman; Meng, Yuedong
2012-09-01
Municipal solid waste incinerator (MSWI) fly ash with high basicity (about 1.68) was vitrified in a thermal plasma melting furnace system. Through the thermal plasma treatment, the vitrified product (slag) with amorphous dark glassy structure was obtained, and the leachability of hazardous metals in slag was significantly reduced. Meanwhile, it was found that the cooling rate affects significantly the immobility of heavy metals in slag. The mass distribution of heavy metals (Zn, Cd, Cr, Pb, As, Hg) was investigated in residual products (slag, secondary residues and flue gas), in order to analyze the behavior of heavy metals in thermal plasma atmosphere. Heavy metal species with low boiling points accounting for the major fraction of their input-mass were adsorbed in secondary residues by pollution abatement devices, while those with high boiling points tended to be encapsulated in slag.
2012-01-01
Background The Nymphaeales (waterlilly and relatives) lineage has diverged as the second branch of basal angiosperms and comprises of two families: Cabombaceae and Nymphaceae. The classification of Nymphaeales and phylogeny within the flowering plants are quite intriguing as several systems (Thorne system, Dahlgren system, Cronquist system, Takhtajan system and APG III system (Angiosperm Phylogeny Group III system) have attempted to redefine the Nymphaeales taxonomy. There have been also fossil records consisting especially of seeds, pollen, stems, leaves and flowers as early as the lower Cretaceous. Here we present an in silico study of the order Nymphaeales taking maturaseK (matK) and internal transcribed spacer (ITS2) as biomarkers for phylogeny reconstruction (using character-based methods and Bayesian approach) and identification of motifs for DNA barcoding. Results The Maximum Likelihood (ML) and Bayesian approach yielded congruent fully resolved and well-supported trees using a concatenated (ITS2+ matK) supermatrix aligned dataset. The taxon sampling corroborates the monophyly of Cabombaceae. Nuphar emerges as a monophyletic clade in the family Nymphaeaceae while there are slight discrepancies in the monophyletic nature of the genera Nymphaea owing to Victoria-Euryale and Ondinea grouping in the same node of Nymphaeaceae. ITS2 secondary structures alignment corroborate the primary sequence analysis. Hydatellaceae emerged as a sister clade to Nymphaeaceae and had a basal lineage amongst the water lilly clades. Species from Cycas and Ginkgo were taken as outgroups and were rooted in the overall tree topology from various methods. Conclusions MatK genes are fast evolving highly variant regions of plant chloroplast DNA that can serve as potential biomarkers for DNA barcoding and also in generating primers for angiosperms with identification of unique motif regions. We have reported unique genus specific motif regions in the Order Nymphaeles from matK dataset which can be further validated for barcoding and designing of PCR primers. Our analysis using a novel approach of sequence-structure alignment and phylogenetic reconstruction using molecular morphometrics congrue with the current placement of Hydatellaceae within the early-divergent angiosperm order Nymphaeales. The results underscore the fact that more diverse genera, if not fully resolved to be monophyletic, should be represented by all major lineages. PMID:23282079
He, Zhang-Ping; Dai, Xia-Bin; Zhang, Shuai; Zhi, Ting-Ting; Lun, Zhao-Rong; Wu, Zhong-Dao; Yang, Ting-Bao
2016-01-01
The whole sequence (15,057 bp) of the mitochondrial DNA (mtDNA) of the terrestrial snail Achatina fulica (order Stylommatophora) was determined. The mitogenome, as the typical metazoan mtDNA, contains 13 protein-coding genes (PCG), 2 ribosomal RNA genes (rRNA) and 22 transfer RNA genes (tRNA). The tRNA genes include two trnS without standard secondary structure. Interestingly, among the known mitogenomes of Pulmonata species, we firstly characterized an unassigned lengthy sequence (551 bp) between the cox1 and the trnV which may be the CR for the sake of its AT bases usage bias (65.70%) and potential hairpin structure.
Gomez, Rapson; Vance, Alasdair; Watson, Shaun D
2016-01-01
This study used confirmatory factor analysis to examine the factor structure for the 10 core WISC-IV subtests in a group of children (N = 812) with ADHD. The study examined oblique four- and five-factor models, higher order models with one general secondary factor and four and five primary factors, and a bifactor model with a general factor and four specific factors. The findings supported all models tested, with the bifactor model being the optimum model. For this model, only the general factor had high explained common variance and omega hierarchical value, and it predicted reading and arithmetic abilities. The findings favor the use of the FSIQ scores of the WISC-IV, but not the subscale index scores.
NASA Astrophysics Data System (ADS)
Tran, Manh Thang
This study compares ICT policy and curriculum and assessment practices between Australian and Vietnamese secondary schools, and investigates differences between these two school systems. Document analyses and case studies were used to examine the key differences in ICT curriculum and policy and assessment practices between Australian and Vietnamese secondary schools. The document analyses focused on the intended ICT policy and curriculum and assessment, as presented in official documents in both countries. Using a case study approach for in-depth examination, two secondary schools were selected (one from Yenbai province, Vietnam and one from Sydney, New South Wales, Australia). Two principals and three teachers were interviewed. Classroom teaching and assessment practices were observed, and principals and teachers' views were obtained through semi-structured interviews and extensive discussions. Findings from the two case studies were compared with the findings from the document analysis. This study explored and analysed differences in ICT teaching, learning, assessment, and achievement between Vietnamese and Australian secondary students. It was found that that Australian ICT school curricula and assessment differed markedly from the Vietnamese system. Student ICT achievement in these Australian and Vietnamese schools could not only be attributed to higher standards of intended ICT curricula and assessment, or teacher knowledge or classroom practices. These differences are better explained by economic and cultural factors, ICT policies and their degrees of implementation, and extra ICT curricula. In order to bridge the gap and implement adequate ICT curricula and policies, rigorous professional training in teaching and assessment is essential for both Australian and Vietnamese teachers. In order to improve Australian students' ICT achievement, achievement motivation must be addressed. Many challenging aspects were found in ICT policies and classrooms in the Vietnamese educational system that calls for immediate change and improvement. In order to implement reforms in Vietnamese education, the impact of cultural influence must be considered more seriously. In particular, this study highlights the need to integrate case study with large-scale study in international comparative studies.
The predicted secondary structures of class I fructose-bisphosphate aldolases.
Sawyer, L; Fothergill-Gilmore, L A; Freemont, P S
1988-01-01
The results of several secondary-structure prediction programs were combined to produce an estimate of the regions of alpha-helix, beta-sheet and reverse turns for fructose-bisphosphate aldolases from human and rat muscle and liver, from Trypanosoma brucei and from Drosophila melanogaster. All the aldolase sequences gave essentially the same pattern of secondary-structure predictions despite having sequences up to 50% different. One exception to this pattern was an additional strongly predicted helix in the rat liver and Drosophila enzymes. Regions of relatively high sequence variation generally were predicted as reverse turns, and probably occur as surface loops. Most of the positions corresponding to exon boundaries are located between regions predicted to have secondary-structural elements consistent with a compact structure. The predominantly alternating alpha/beta structure predicted is consistent with the alpha/beta-barrel structure indicated by preliminary high-resolution X-ray diffraction studies on rabbit muscle aldolase [Sygusch, Beaudry & Allaire (1986) Biophys. J. 49, 287a]. Images Fig. 1. (cont.) Fig. 1. PMID:3128269
Guo, Jianxin; Kumar, Sandeep; Prashad, Amarnauth; Starkey, Jason; Singh, Satish K
2014-07-01
To provide a systematic biophysical approach towards a better understanding of impact of conjugation chemistry on higher order structure and physical stability of an antibody drug conjugate (ADC). ADC was prepared using thiol-maleimide chemistry. Physical stabilities of ADC and its parent IgG1 mAb were compared using calorimetric, spectroscopic and molecular modeling techniques. ADC and mAb respond differently to thermal stress. Both the melting temperatures and heat capacities are substantially lower for the ADC. Spectroscopic experiments show that ADC and mAb have similar secondary and tertiary structures, but these are more easily destabilized by thermal stress on the ADC indicating reduced conformational stability. Molecular modeling calculations suggest a substantial decrease in the conformational energy of the mAb upon conjugation. The local surface around the conjugation sites also becomes more hydrophobic in the ADC, explaining the lower colloidal stability and greater tendency of the ADC to aggregate. Computational and biophysical analyses of an ADC and its parent mAb have provided insights into impact of conjugation on physical stability and pinpointed reasons behind lower structural stability and increased aggregation propensity of the ADC. This knowledge can be used to design appropriate formulations to stabilize the ADC.
NASA Astrophysics Data System (ADS)
Matsumoto, Toru; Hasegawa, S.; Nakao, S.; Sakai, M.; Yurimoto, H.
2018-03-01
We investigated impact crater structures on regolith particles from asteroid Itokawa using scanning electron microscopy. We observed the surfaces of 51 Itokawa particles, ranging from 15 μm to 240 μm in size. Craters with average diameters ranging from 10 nm to 2.8 μm were identified on 13 Itokawa particles larger than 80 μm. We examined the abundance, spatial distribution, and morphology of approximately 900 craters on six Itokawa particles. Craters with sizes in excess of 200 nm are widely dispersed, with spatial densities from 2.6 μm2 to 4.5 μm2; a fraction of the craters was locally concentrated with a density of 0.1 μm2. The fractal dimension of the cumulative crater diameters ranges from 1.3 to 2.3. Craters of several tens of nanometers in diameter exhibit pit and surrounding rim structures. Craters of more than 100 nm in diameter commonly have melted residue at their bottom. These morphologies are similar to those of submicrometer-sized craters on lunar regolith. We estimated the impactor flux on Itokawa regolith-forming craters, assuming that the craters were accumulated during direct exposure to the space environment for 102 to 104 yr. The range of impactor flux onto Itokawa particles is estimated to be at least one order of magnitude higher than the interplanetary dust flux and comparable to the secondary impact flux on the Moon. This indicates that secondary ejecta impacts are probably the dominant cratering process in the submicrometer range on Itokawa regolith particles, as well as on the lunar surface. We demonstrate that secondary submicrometer craters can be produced anywhere in centimeter- to meter-sized depressions on Itokawa's surface through primary interplanetary dust impacts. If the surface unevenness on centimeter to meter scales is a significant factor determining the abundance of submicrometer secondary cratering, the secondary impact flux could be independent of the overall shapes or sizes of celestial bodies, and the secondary impact flux could have similar values on Itokawa and the Moon.
ERIC Educational Resources Information Center
Li, Spencer D.
2011-01-01
Mediation analysis in child and adolescent development research is possible using large secondary data sets. This article provides an overview of two statistical methods commonly used to test mediated effects in secondary analysis: multiple regression and structural equation modeling (SEM). Two empirical studies are presented to illustrate the…
Towards Long-Range RNA Structure Prediction in Eukaryotic Genes.
Pervouchine, Dmitri D
2018-06-15
The ability to form an intramolecular structure plays a fundamental role in eukaryotic RNA biogenesis. Proximate regions in the primary transcripts fold into a local secondary structure, which is then hierarchically assembled into a tertiary structure that is stabilized by RNA-binding proteins and long-range intramolecular base pairings. While the local RNA structure can be predicted reasonably well for short sequences, long-range structure at the scale of eukaryotic genes remains problematic from the computational standpoint. The aim of this review is to list functional examples of long-range RNA structures, to summarize current comparative methods of structure prediction, and to highlight their advances and limitations in the context of long-range RNA structures. Most comparative methods implement the “first-align-then-fold” principle, i.e., they operate on multiple sequence alignments, while functional RNA structures often reside in non-conserved parts of the primary transcripts. The opposite “first-fold-then-align” approach is currently explored to a much lesser extent. Developing novel methods in both directions will improve the performance of comparative RNA structure analysis and help discover novel long-range structures, their higher-order organization, and RNA⁻RNA interactions across the transcriptome.
ERIC Educational Resources Information Center
Gillette, Gabriel; Sanger, Michael J.
2014-01-01
This study analysed the distribution of questions from the gas law chapters of four high school and four college chemistry textbooks based on six variables--Book Type (secondary "versus" introductory college), Cognitive Skill (lower-order "versus" higher-order), Question Format (calculation "versus" multiple-choice…
The Policy of Universal Secondary Education: Its Influence on Secondary Schooling in Grenada
ERIC Educational Resources Information Center
Knight, Verna
2014-01-01
In an era of increasing access to secondary education in the Caribbean, it becomes critical that we understand the effect that Universal Secondary Education (USE) has had on our education systems in order to inform current educational reform efforts and future educational planning. This study explores the experience of the country of Grenada with…
Remali, Juwairiah; Sarmin, Nurul ‘Izzah Mohd; Ng, Chyan Leong; Tiong, John J.L.; Aizat, Wan M.; Keong, Loke Kok
2017-01-01
Background Streptomyces are well known for their capability to produce many bioactive secondary metabolites with medical and industrial importance. Here we report a novel bioactive phenazine compound, 6-((2-hydroxy-4-methoxyphenoxy) carbonyl) phenazine-1-carboxylic acid (HCPCA) extracted from Streptomyces kebangsaanensis, an endophyte isolated from the ethnomedicinal Portulaca oleracea. Methods The HCPCA chemical structure was determined using nuclear magnetic resonance spectroscopy. We conducted whole genome sequencing for the identification of the gene cluster(s) believed to be responsible for phenazine biosynthesis in order to map its corresponding pathway, in addition to bioinformatics analysis to assess the potential of S. kebangsaanensis in producing other useful secondary metabolites. Results The S. kebangsaanensis genome comprises an 8,328,719 bp linear chromosome with high GC content (71.35%) consisting of 12 rRNA operons, 81 tRNA, and 7,558 protein coding genes. We identified 24 gene clusters involved in polyketide, nonribosomal peptide, terpene, bacteriocin, and siderophore biosynthesis, as well as a gene cluster predicted to be responsible for phenazine biosynthesis. Discussion The HCPCA phenazine structure was hypothesized to derive from the combination of two biosynthetic pathways, phenazine-1,6-dicarboxylic acid and 4-methoxybenzene-1,2-diol, originated from the shikimic acid pathway. The identification of a biosynthesis pathway gene cluster for phenazine antibiotics might facilitate future genetic engineering design of new synthetic phenazine antibiotics. Additionally, these findings confirm the potential of S. kebangsaanensis for producing various antibiotics and secondary metabolites. PMID:29201559
Gupta, Asmita; Bansal, Manju
2016-10-19
Mechanical unfolding studies on Ribonucleic Acid (RNA) structures are a subject of tremendous interest as they shed light on the principles of higher order assembly of these structures. Pseudoknotting is one of the most elementary ways in which this higher order assembly is achieved as discrete secondary structural units in RNA are brought in close proximity to form a tertiary structure. Using steered molecular dynamics (SMD) simulations, we have studied the unfolding of five RNA pseudoknot structures that differ from each other either by base substitutions in helices or loops. Our SMD simulations reveal the manner in which a biologically functional RNA pseudoknot unfolds and the effect of changes in the primary structure on this unfolding pathway, providing necessary insights into the driving forces behind the functioning of these structures. We observed that an A → C mutation in the loop sequence makes the pseudoknot far more resistant against force induced disruption relative to its wild type structure. In contrast to this, a base-pair substitution GC → AU near the pseudoknot junction region renders it more vulnerable to this disruption. The quantitative estimation of differences in the unfolding paths was carried out using force extension curves, potential of mean force profiles, and the opening of different Watson-Crick and non-Watson-Crick interactions. The results provide a quantified view in which the unfolding paths of the small RNA structures can be used for investigating the programmability of RNA chains for designing RNA switches and aptamers as their biological folding and unfolding could be assessed and manipulated.
A secondary copulatory structure in a female insect: a clasp for a nuptial meal?
NASA Astrophysics Data System (ADS)
Gwynne, Darryl T.
2002-03-01
Secondary copulatory structures are well-known in male dragonflies and spiders. Here I report a secondary copulatory organ in female ground weta, Hemiandrus pallitarsis (Ensifera, Orthoptera - crickets and allies). The organ, located on the underside of the abdomen, appears to secure the male's genitalia during the transfer of a spermatophylax nuptial meal to this location, an area quite separate from the female's primary copulatory structures, where the sperm ampulla is attached.
Ellington, Roni; Wachira, James
2010-01-01
The focus of this Research Experience for Undergraduates (REU) project was on RNA secondary structure prediction by using a lattice walk approach. The lattice walk approach is a combinatorial and computational biology method used to enumerate possible secondary structures and predict RNA secondary structure from RNA sequences. The method uses discrete mathematical techniques and identifies specified base pairs as parameters. The goal of the REU was to introduce upper-level undergraduate students to the principles and challenges of interdisciplinary research in molecular biology and discrete mathematics. At the beginning of the project, students from the biology and mathematics departments of a mid-sized university received instruction on the role of secondary structure in the function of eukaryotic RNAs and RNA viruses, RNA related to combinatorics, and the National Center for Biotechnology Information resources. The student research projects focused on RNA secondary structure prediction on a regulatory region of the yellow fever virus RNA genome and on an untranslated region of an mRNA of a gene associated with the neurological disorder epilepsy. At the end of the project, the REU students gave poster and oral presentations, and they submitted written final project reports to the program director. The outcome of the REU was that the students gained transferable knowledge and skills in bioinformatics and an awareness of the applications of discrete mathematics to biological research problems. PMID:20810968
Ellington, Roni; Wachira, James; Nkwanta, Asamoah
2010-01-01
The focus of this Research Experience for Undergraduates (REU) project was on RNA secondary structure prediction by using a lattice walk approach. The lattice walk approach is a combinatorial and computational biology method used to enumerate possible secondary structures and predict RNA secondary structure from RNA sequences. The method uses discrete mathematical techniques and identifies specified base pairs as parameters. The goal of the REU was to introduce upper-level undergraduate students to the principles and challenges of interdisciplinary research in molecular biology and discrete mathematics. At the beginning of the project, students from the biology and mathematics departments of a mid-sized university received instruction on the role of secondary structure in the function of eukaryotic RNAs and RNA viruses, RNA related to combinatorics, and the National Center for Biotechnology Information resources. The student research projects focused on RNA secondary structure prediction on a regulatory region of the yellow fever virus RNA genome and on an untranslated region of an mRNA of a gene associated with the neurological disorder epilepsy. At the end of the project, the REU students gave poster and oral presentations, and they submitted written final project reports to the program director. The outcome of the REU was that the students gained transferable knowledge and skills in bioinformatics and an awareness of the applications of discrete mathematics to biological research problems.
Ramírez-Aldaba, Hugo; Vazquez-Arenas, Jorge; Sosa-Rodríguez, Fabiola S; Valdez-Pérez, Donato; Ruiz-Baca, Estela; García-Meza, Jessica Viridiana; Trejo-Córdova, Gabriel; Lara, René H
2017-08-01
Biofilm formation and evolution are key factors to consider to better understand the kinetics of arsenopyrite biooxidation. Chemical and surface analyses were carried out using Raman spectroscopy, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), glow discharge spectroscopy (GDS), and protein analysis (i.e., quantification) in order to evaluate the formation of intermediate secondary compounds and any significant changes arising in the biofilm structure of Acidithiobacillus thiooxidans during a 120-h period of biooxidation. Results show that the biofilm first evolves from a low cell density structure (1 to 12 h) into a formation of microcolonies (24 to 120 h) and then finally becomes enclosed by a secondary compound matrix that includes pyrite (FeS 2 )-like, S n 2- /S 0 , and As 2 S 3 compounds, as shown by Raman and SEM-EDS. GDS analyses (concentration-depth profiles, i.e., 12 h) indicate significant differences for depth speciation between abiotic control and biooxidized surfaces, thus providing a quantitative assessment of surface-bulk changes across samples (i.e. reactivity and /or structure-activity relationship). Respectively, quantitative protein analyses and CLSM analyses suggest variations in the type of extracellular protein expressed and changes in the biofilm structure from hydrophilic (i.e., exopolysaccharides) to hydrophobic (i.e., lipids) due to arsenopyrite and cell interactions during the 120-h period of biooxidation. We suggest feasible environmental and industrial implications for arsenopyrite biooxidation based on the findings of this study.
Takayama, Mitsuo; Osaka, Issey; Sakakura, Motoshi
2012-01-01
The susceptibility of the N-Cα bond of the peptide backbone to specific cleavage by in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) was studied from the standpoint of the secondary structure of three proteins. A naphthalene derivative, 5-amino-1-naphtol (5,1-ANL), was used as the matrix. The resulting c'-ions, which originate from the cleavage at N-Cα bonds in flexible secondary structures such as turn and bend, and are free from intra-molecular hydrogen-bonded α-helix structure, gave relatively intense peaks. Furthermore, ISD spectra of the proteins showed that the N-Cα bonds of specific amino acid residues, namely Gly-Xxx, Xxx-Asp, and Xxx-Asn, were more susceptible to MALDI-ISD than other amino acid residues. This is in agreement with the observation that Gly, Asp and Asn residues usually located in turns, rather than α-helix. The results obtained indicate that protein molecules embedded into the matrix crystal in the MALDI experiments maintain their secondary structures as determined by X-ray crystallography, and that MALDI-ISD has the capability for providing information concerning the secondary structure of protein.
Raman microscopy of bladder cancer cells expressing green fluorescent protein
NASA Astrophysics Data System (ADS)
Mandair, Gurjit S.; Han, Amy L.; Keller, Evan T.; Morris, Michael D.
2016-11-01
Gene engineering is a commonly used tool in cellular biology to determine changes in function or expression of downstream targets. However, the impact of genetic modulation on biochemical effects is less frequently evaluated. The aim of this study is to use Raman microscopy to assess the biochemical effects of gene silencing on T24 and UMUC-13 bladder cancer cell lines. Cellular biochemical information related to nucleic acid and lipogenic components was obtained from deconvolved Raman spectra. We show that the green fluorescence protein (GFP), the chromophore that served as a fluorescent reporter for gene silencing, could also be detected by Raman microscopy. Only the gene-silenced UMUC-13 cell lines exhibited low-to-moderate GFP fluorescence as determined by fluorescence imaging and Raman spectroscopic studies. Moreover, we show that gene silencing and cell phenotype had a greater effect on nucleic acid and lipogenic components with minimal interference from GFP expression. Gene silencing was also found to perturb cellular protein secondary structure in which the amount of disorderd protein increased at the expense of more ordered protein. Overall, our study identified the spectral signature for cellular GFP expression and elucidated the effects of gene silencing on cancer cell biochemistry and protein secondary structure.
Secondary structure prediction and structure-specific sequence analysis of single-stranded DNA.
Dong, F; Allawi, H T; Anderson, T; Neri, B P; Lyamichev, V I
2001-08-01
DNA sequence analysis by oligonucleotide binding is often affected by interference with the secondary structure of the target DNA. Here we describe an approach that improves DNA secondary structure prediction by combining enzymatic probing of DNA by structure-specific 5'-nucleases with an energy minimization algorithm that utilizes the 5'-nuclease cleavage sites as constraints. The method can identify structural differences between two DNA molecules caused by minor sequence variations such as a single nucleotide mutation. It also demonstrates the existence of long-range interactions between DNA regions separated by >300 nt and the formation of multiple alternative structures by a 244 nt DNA molecule. The differences in the secondary structure of DNA molecules revealed by 5'-nuclease probing were used to design structure-specific probes for mutation discrimination that target the regions of structural, rather than sequence, differences. We also demonstrate the performance of structure-specific 'bridge' probes complementary to non-contiguous regions of the target molecule. The structure-specific probes do not require the high stringency binding conditions necessary for methods based on mismatch formation and permit mutation detection at temperatures from 4 to 37 degrees C. Structure-specific sequence analysis is applied for mutation detection in the Mycobacterium tuberculosis katG gene and for genotyping of the hepatitis C virus.
NASA Astrophysics Data System (ADS)
Hussain, Shadman; Bulusu, Kartik V.; Plesniak, Michael W.
2013-11-01
A common treatment for atherosclerosis is the opening of narrowed arteries resulting from obstructive lesions by angioplasty and stent implantation to restore unrestricted blood flow. ``Type-IV'' stent fractures involve complete transverse, linear fracture of stent struts, along with displacement of the stent fragments. Experimental data pertaining to secondary flows in the presence of stents that underwent ``Type-IV'' fractures in a bent artery model under physiological inflow conditions were obtained through a two-component, two-dimensional (2C-2D) PIV technique. Concomitant stent-induced flow perturbations result in secondary flow structures with complex, multi-scale morphologies and varying size-strength characteristics. Ultimately, these flow structures may have a role to play in restenosis and progression of atherosclerotic plaque. Vortex circulation thresholds were established with the goal of resolving and tracking iso-circulation secondary flow vortical structures and their morphological changes. This allowed for a parametric evaluation and quantitative representation of secondary flow structures undergoing deformation and spatial reorganization. Supported by NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.
MS/MS analysis and imaging of lipids across Drosophila brain using secondary ion mass spectrometry.
Phan, Nhu T N; Munem, Marwa; Ewing, Andrew G; Fletcher, John S
2017-06-01
Lipids are abundant biomolecules performing central roles to maintain proper functioning of cells and biological bodies. Due to their highly complex composition, it is critical to obtain information of lipid structures in order to identify particular lipids which are relevant for a biological process or metabolic pathway under study. Among currently available molecular identification techniques, MS/MS in secondary ion mass spectrometry (SIMS) imaging has been of high interest in the bioanalytical community as it allows visualization of intact molecules in biological samples as well as elucidation of their chemical structures. However, there have been few applications using SIMS and MS/MS owing to instrumental challenges for this capability. We performed MS and MS/MS imaging to study the lipid structures of Drosophila brain using the J105 and 40-keV Ar 4000 + gas cluster ion source, with the novelty being the use of MS/MS SIMS analysis of intact lipids in the fly brain. Glycerophospholipids were identified by MS/MS profiling. MS/MS was also used to characterize diglyceride fragment ions and to identify them as triacylglyceride fragments. Moreover, MS/MS imaging offers a unique possibility for detailed elucidation of biomolecular distribution with high accuracy based on the ion images of its fragments. This is particularly useful in the presence of interferences which disturb the interpretation of biomolecular localization. Graphical abstract MS/MS was performed during time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis of Drosophila melongaster (fruit fly) to elucidate the structure and origin of different chemical species in the brain including a range of different phospholipid classes (PC, PI, PE) and di- and triacylglycerides (DAG & TAG) species where reference MS/MS spectra provided a potential means of discriminating between the isobaric [M-OH] + ion of DAGs and the [M-RCO] + ion of TAGs.
Alcaráz, Mirta R; Schwaighofer, Andreas; Goicoechea, Héctor; Lendl, Bernhard
2016-06-01
In this work, a novel EC-QCL-based setup for mid-IR transmission measurements in the amide I region is introduced for monitoring dynamic changes in secondary structure of proteins. For this purpose, α-chymotrypsin (aCT) acts as a model protein, which gradually forms intermolecular β-sheet aggregates after adopting a non-native α-helical structure induced by exposure to 50 % TFE. In order to showcase the versatility of the presented setup, the effects of varying pH values and protein concentration on the rate of β-aggregation were studied. The influence of the pH value on the initial reaction rate was studied in the range of pH 5.8-8.2. Results indicate an increased aggregation rate at elevated pH values. Furthermore, the widely accessible concentration range of the laser-based IR transmission setup was utilized to investigate β-aggregation across a concentration range of 5-60 mg mL(-1). For concentrations lower than 20 mg mL(-1), the aggregation rate appears to be independent of concentration. At higher values, the reaction rate increases linearly with protein concentration. Extended MCR-ALS was employed to obtain pure spectral and concentration profiles of the temporal transition between α-helices and intermolecular β-sheets. Comparison of the global solutions obtained by the modelled data with results acquired by the laser-based IR transmission setup at different conditions shows excellent agreement. This demonstrates the potential and versatility of the EC-QCL-based IR transmission setup to monitor dynamic changes of protein secondary structure in aqueous solution at varying conditions and across a wide concentration range. Graphical abstract EC-QCL IR spectroscopy for monitoring protein conformation change.
NASA Astrophysics Data System (ADS)
Abusnina, Mohamed; Moutinho, Helio; Al-Jassim, Mowafak; DeHart, Clay; Matin, Mohammed
2014-09-01
In this work, Cu2ZnSnS4 (CZTS) thin films were prepared by the sulfurization of metal precursors deposited sequentially via radio frequency magnetron sputtering on Mo-coated soda-lime glass. The stack order of the precursors was Mo/Zn/Sn/Cu. Sputtered precursors were annealed in sulfur atmosphere with nine different conditions to study the impact of sulfurization time and substrate temperature on the structural, morphological, and optical properties of the final CZTS films. X-ray fluorescence was used to determine the elemental composition ratio of the metal precursors. Final CZTS films were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). XRD and EDS were combined to investigate the films' structure and to identify the presence of secondary phases. XRD analysis indicated an improvement in film crystallinity with an increase of the substrate temperature and annealing times. Also indicated was the minimization and/or elimination of secondary phases when the films experienced longer annealing time. EDS revealed slight Sn loss in films sulfurized at 550°C; however, an increase of the sulfurization temperature to 600°C did not confirm these results. SEM study showed that films treated with higher temperatures exhibited dense morphology, indicating the completion of the sulfurization process. The estimated absorption coefficient was on the order of 104 cm-1 for all CZTS films, and the values obtained for the optical bandgap energy of the films were between 1.33 eV and 1.52 eV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amdursky, Nadav; Gazit, Ehud; Rosenman, Gil, E-mail: gilr@eng.tau.ac.il
Highlights: Black-Right-Pointing-Pointer We observe lag-phase crystallization process in insulin. Black-Right-Pointing-Pointer The crystallization is a result of the formation of higher order oligomers. Black-Right-Pointing-Pointer The crystallization also changes the secondary structure of the protein. Black-Right-Pointing-Pointer The spectroscopic signature can be used for amyloid inhibitors assay. -- Abstract: Insulin, as other amyloid proteins, can form amyloid fibrils at certain conditions. The self-assembled aggregation process of insulin can result in a variety of conformations, starting from small oligomers, going through various types of protofibrils, and finishing with bundles of fibrils. One of the most common consensuses among the various self-assembly processes that aremore » suggested in the literature is the formation of an early stage nucleus conformation. Here we present an additional insight for the self-assembly process of insulin. We show that at the early lag phase of the process (prior to fibril formation) the insulin monomers self-assemble into ordered nanostructures. The most notable feature of this early self-assembly process is the formation of nanocrystalline nucleus regions with a strongly bound electron-hole confinement, which also change the secondary structure of the protein. Each step in the self-assembly process is characterized by an optical spectroscopic signature, and possesses a narrow size distribution. By following the spectroscopic signature we can measure the potency of amyloid fibrils inhibitors already at the lag phase. We further demonstrate it by the use of epigallocatechin gallate, a known inhibitor for insulin fibrils. The findings can result in a spectroscopic-based application for the analysis of amyloid fibrils inhibitors.« less
Schaeffer, E; Sninsky, J J
1984-01-01
Proteins that are related evolutionarily may have diverged at the level of primary amino acid sequence while maintaining similar secondary structures. Computer analysis has been used to compare the open reading frames of the hepatitis B virus to those of the woodchuck hepatitis virus at the level of amino acid sequence, and to predict the relative hydrophilic character and the secondary structure of putative polypeptides. Similarity is seen at the levels of relative hydrophilicity and secondary structure, in the absence of sequence homology. These data reinforce the proposal that these open reading frames encode viral proteins. Computer analysis of this type can be more generally used to establish structural similarities between proteins that do not share obvious sequence homology as well as to assess whether an open reading frame is fortuitous or codes for a protein. PMID:6585835
Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy
Micsonai, András; Wien, Frank; Kernya, Linda; Lee, Young-Ho; Goto, Yuji; Réfrégiers, Matthieu; Kardos, József
2015-01-01
Circular dichroism (CD) spectroscopy is a widely used technique for the study of protein structure. Numerous algorithms have been developed for the estimation of the secondary structure composition from the CD spectra. These methods often fail to provide acceptable results on α/β-mixed or β-structure–rich proteins. The problem arises from the spectral diversity of β-structures, which has hitherto been considered as an intrinsic limitation of the technique. The predictions are less reliable for proteins of unusual β-structures such as membrane proteins, protein aggregates, and amyloid fibrils. Here, we show that the parallel/antiparallel orientation and the twisting of the β-sheets account for the observed spectral diversity. We have developed a method called β-structure selection (BeStSel) for the secondary structure estimation that takes into account the twist of β-structures. This method can reliably distinguish parallel and antiparallel β-sheets and accurately estimates the secondary structure for a broad range of proteins. Moreover, the secondary structure components applied by the method are characteristic to the protein fold, and thus the fold can be predicted to the level of topology in the CATH classification from a single CD spectrum. By constructing a web server, we offer a general tool for a quick and reliable structure analysis using conventional CD or synchrotron radiation CD (SRCD) spectroscopy for the protein science research community. The method is especially useful when X-ray or NMR techniques fail. Using BeStSel on data collected by SRCD spectroscopy, we investigated the structure of amyloid fibrils of various disease-related proteins and peptides. PMID:26038575
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu,P.
2007-01-01
Studying the secondary structure of proteins leads to an understanding of the components that make up a whole protein, and such an understanding of the structure of the whole protein is often vital to understanding its digestive behaviour and nutritive value in animals. The main protein secondary structures are the {alpha}-helix and {beta}-sheet. The percentage of these two structures in protein secondary structures influences protein nutritive value, quality and digestive behaviour. A high percentage of {beta}-sheet structure may partly cause a low access to gastrointestinal digestive enzymes, which results in a low protein value. The objectives of the present studymore » were to use advanced synchrotron-based Fourier transform IR (S-FTIR) microspectroscopy as a new approach to reveal the molecular chemistry of the protein secondary structures of feed tissues affected by heat-processing within intact tissue at a cellular level, and to quantify protein secondary structures using multicomponent peak modelling Gaussian and Lorentzian methods, in relation to protein digestive behaviours and nutritive value in the rumen, which was determined using the Cornell Net Carbohydrate Protein System. The synchrotron-based molecular chemistry research experiment was performed at the National Synchrotron Light Source at Brookhaven National Laboratory, US Department of Energy. The results showed that, with S-FTIR microspectroscopy, the molecular chemistry, ultrastructural chemical make-up and nutritive characteristics could be revealed at a high ultraspatial resolution ({approx}10 {mu}m). S-FTIR microspectroscopy revealed that the secondary structure of protein differed between raw and roasted golden flaxseeds in terms of the percentages and ratio of {alpha}-helixes and {beta}-sheets in the mid-IR range at the cellular level. By using multicomponent peak modelling, the results show that the roasting reduced (P <0.05) the percentage of {alpha}-helixes (from 47.1% to 36.1%: S-FTIR absorption intensity), increased the percentage of {beta}-sheets (from 37.2% to 49.8%: S-FTIR absorption intensity) and reduced the {alpha}-helix to {beta}-sheet ratio (from 0.3 to 0.7) in the golden flaxseeds, which indicated a negative effect of the roasting on protein values, utilisation and bioavailability. These results were proved by the Cornell Net Carbohydrate Protein System in situ animal trial, which also revealed that roasting increased the amount of protein bound to lignin, and well as of the Maillard reaction protein (both of which are poorly used by ruminants), and increased the level of indigestible and undegradable protein in ruminants. The present results demonstrate the potential of highly spatially resolved synchrotron-based infrared microspectroscopy to locate 'pure' protein in feed tissues, and reveal protein secondary structures and digestive behaviour, making a significant step forward in and an important contribution to protein nutritional research. Further study is needed to determine the sensitivities of protein secondary structures to various heat-processing conditions, and to quantify the relationship between protein secondary structures and the nutrient availability and digestive behaviour of various protein sources. Information from the present study arising from the synchrotron-based IR probing of the protein secondary structures of protein sources at the cellular level will be valuable as a guide to maintaining protein quality and predicting digestive behaviours.« less
ERIC Educational Resources Information Center
Yücel, Elif Özata; Özkan, Mulis
2015-01-01
In this study, we determined cognitive structures and misconceptions about basic ecological concepts by using "word association" tests on secondary school students, age between 12-14 years. Eighty-nine students participated in this study. Before WAT was generated, basic ecological concepts that take place in the secondary science…
Lin, Luan; McKerrow, Wilson H; Richards, Bryce; Phonsom, Chukiat; Lawrence, Charles E
2018-03-05
The nearest neighbor model and associated dynamic programming algorithms allow for the efficient estimation of the RNA secondary structure Boltzmann ensemble. However because a given RNA secondary structure only contains a fraction of the possible helices that could form from a given sequence, the Boltzmann ensemble is multimodal. Several methods exist for clustering structures and finding those modes. However less focus is given to exploring the underlying reasons for this multimodality: the presence of conflicting basepairs. Information theory, or more specifically mutual information, provides a method to identify those basepairs that are key to the secondary structure. To this end we find most informative basepairs and visualize the effect of these basepairs on the secondary structure. Knowing whether a most informative basepair is present tells us not only the status of the particular pair but also provides a large amount of information about which other pairs are present or not present. We find that a few basepairs account for a large amount of the structural uncertainty. The identification of these pairs indicates small changes to sequence or stability that will have a large effect on structure. We provide a novel algorithm that uses mutual information to identify the key basepairs that lead to a multimodal Boltzmann distribution. We then visualize the effect of these pairs on the overall Boltzmann ensemble.
A New Secondary Structure Assignment Algorithm Using Cα Backbone Fragments
Cao, Chen; Wang, Guishen; Liu, An; Xu, Shutan; Wang, Lincong; Zou, Shuxue
2016-01-01
The assignment of secondary structure elements in proteins is a key step in the analysis of their structures and functions. We have developed an algorithm, SACF (secondary structure assignment based on Cα fragments), for secondary structure element (SSE) assignment based on the alignment of Cα backbone fragments with central poses derived by clustering known SSE fragments. The assignment algorithm consists of three steps: First, the outlier fragments on known SSEs are detected. Next, the remaining fragments are clustered to obtain the central fragments for each cluster. Finally, the central fragments are used as a template to make assignments. Following a large-scale comparison of 11 secondary structure assignment methods, SACF, KAKSI and PROSS are found to have similar agreement with DSSP, while PCASSO agrees with DSSP best. SACF and PCASSO show preference to reducing residues in N and C cap regions, whereas KAKSI, P-SEA and SEGNO tend to add residues to the terminals when DSSP assignment is taken as standard. Moreover, our algorithm is able to assign subtle helices (310-helix, π-helix and left-handed helix) and make uniform assignments, as well as to detect rare SSEs in β-sheets or long helices as outlier fragments from other programs. The structural uniformity should be useful for protein structure classification and prediction, while outlier fragments underlie the structure–function relationship. PMID:26978354
Secondary electron imaging of monolayer materials inside a transmission electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cretu, Ovidiu, E-mail: cretu.ovidiu@nims.go.jp; Lin, Yung-Chang; Suenaga, Kazutomo
2015-08-10
A scanning transmission electron microscope equipped with a backscattered and secondary electron detector is shown capable to image graphene and hexagonal boron nitride monolayers. Secondary electron contrasts of the two lightest monolayer materials are clearly distinguished from the vacuum level. A signal difference between these two materials is attributed to electronic structure differences, which will influence the escape probabilities of the secondary electrons. Our results show that the secondary electron signal can be used to distinguish between the electronic structures of materials with atomic layer sensitivity, enhancing its applicability as a complementary signal in the analytical microscope.
Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign
2007-01-01
Background Joint alignment and secondary structure prediction of two RNA sequences can significantly improve the accuracy of the structural predictions. Methods addressing this problem, however, are forced to employ constraints that reduce computation by restricting the alignments and/or structures (i.e. folds) that are permissible. In this paper, a new methodology is presented for the purpose of establishing alignment constraints based on nucleotide alignment and insertion posterior probabilities. Using a hidden Markov model, posterior probabilities of alignment and insertion are computed for all possible pairings of nucleotide positions from the two sequences. These alignment and insertion posterior probabilities are additively combined to obtain probabilities of co-incidence for nucleotide position pairs. A suitable alignment constraint is obtained by thresholding the co-incidence probabilities. The constraint is integrated with Dynalign, a free energy minimization algorithm for joint alignment and secondary structure prediction. The resulting method is benchmarked against the previous version of Dynalign and against other programs for pairwise RNA structure prediction. Results The proposed technique eliminates manual parameter selection in Dynalign and provides significant computational time savings in comparison to prior constraints in Dynalign while simultaneously providing a small improvement in the structural prediction accuracy. Savings are also realized in memory. In experiments over a 5S RNA dataset with average sequence length of approximately 120 nucleotides, the method reduces computation by a factor of 2. The method performs favorably in comparison to other programs for pairwise RNA structure prediction: yielding better accuracy, on average, and requiring significantly lesser computational resources. Conclusion Probabilistic analysis can be utilized in order to automate the determination of alignment constraints for pairwise RNA structure prediction methods in a principled fashion. These constraints can reduce the computational and memory requirements of these methods while maintaining or improving their accuracy of structural prediction. This extends the practical reach of these methods to longer length sequences. The revised Dynalign code is freely available for download. PMID:17445273
Code of Federal Regulations, 2010 CFR
2010-01-01
... the secondary market for its own time deposits. 204.131 Section 204.131 Banks and Banking FEDERAL... secondary market for its own time deposits. (a) Background. In 1982, the Board issued an interpretation concerning the effect of a member bank's purchase of its own time deposits in the secondary market in order...
Code of Federal Regulations, 2011 CFR
2011-01-01
... the secondary market for its own time deposits. 204.131 Section 204.131 Banks and Banking FEDERAL... secondary market for its own time deposits. (a) Background. In 1982, the Board issued an interpretation concerning the effect of a member bank's purchase of its own time deposits in the secondary market in order...
Code of Federal Regulations, 2012 CFR
2012-01-01
... the secondary market for its own time deposits. 204.131 Section 204.131 Banks and Banking FEDERAL... secondary market for its own time deposits. (a) Background. In 1982, the Board issued an interpretation concerning the effect of a member bank's purchase of its own time deposits in the secondary market in order...
Computing the Partition Function for Kinetically Trapped RNA Secondary Structures
Lorenz, William A.; Clote, Peter
2011-01-01
An RNA secondary structure is locally optimal if there is no lower energy structure that can be obtained by the addition or removal of a single base pair, where energy is defined according to the widely accepted Turner nearest neighbor model. Locally optimal structures form kinetic traps, since any evolution away from a locally optimal structure must involve energetically unfavorable folding steps. Here, we present a novel, efficient algorithm to compute the partition function over all locally optimal secondary structures of a given RNA sequence. Our software, RNAlocopt runs in time and space. Additionally, RNAlocopt samples a user-specified number of structures from the Boltzmann subensemble of all locally optimal structures. We apply RNAlocopt to show that (1) the number of locally optimal structures is far fewer than the total number of structures – indeed, the number of locally optimal structures approximately equal to the square root of the number of all structures, (2) the structural diversity of this subensemble may be either similar to or quite different from the structural diversity of the entire Boltzmann ensemble, a situation that depends on the type of input RNA, (3) the (modified) maximum expected accuracy structure, computed by taking into account base pairing frequencies of locally optimal structures, is a more accurate prediction of the native structure than other current thermodynamics-based methods. The software RNAlocopt constitutes a technical breakthrough in our study of the folding landscape for RNA secondary structures. For the first time, locally optimal structures (kinetic traps in the Turner energy model) can be rapidly generated for long RNA sequences, previously impossible with methods that involved exhaustive enumeration. Use of locally optimal structure leads to state-of-the-art secondary structure prediction, as benchmarked against methods involving the computation of minimum free energy and of maximum expected accuracy. Web server and source code available at http://bioinformatics.bc.edu/clotelab/RNAlocopt/. PMID:21297972
Baltzis, Athanasios S; Glykos, Nicholas M
2016-03-01
The villin headpiece helical subdomain (HP36) is one of the best known model systems for computational studies of fast-folding all-α miniproteins. HP21 is a peptide fragment-derived from HP36-comprising only the first and second helices of the full domain. Experimental studies showed that although HP21 is mostly unfolded in solution, it does maintain some persistent native-like structure as indicated by the analysis of NMR-derived chemical shifts. Here we compare the experimental data for HP21 with the results obtained from a 15-μs long folding molecular dynamics simulation performed in explicit water and with full electrostatics. We find that the simulation is in good agreement with the experiment and faithfully reproduces the major experimental findings, namely that (a) HP21 is disordered in solution with <10% of the trajectory corresponding to transiently stable structures, (b) the most highly populated conformer is a native-like structure with an RMSD from the corresponding portion of the HP36 crystal structure of <1 Å, (c) the simulation-derived chemical shifts-over the whole length of the trajectory-are in reasonable agreement with the experiment giving reduced χ(2) values of 1.6, 1.4, and 0.8 for the Δδ(13) C(α) , Δδ(13) CO, and Δδ(13) C(β) secondary shifts, respectively (becoming 0.8, 0.7, and 0.3 when only the major peptide conformer is considered), and finally, (d) the secondary structure propensity scores are in very good agreement with the experiment and clearly indicate the higher stability of the first helix. We conclude that folding molecular dynamics simulations can be a useful tool for the structural characterization of even marginally stable peptides. © 2015 The Protein Society.
Spontaneous Symmetry Breaking of Domain Walls in Phase-Competing Regions
NASA Astrophysics Data System (ADS)
Ishizuka, Hiroaki; Yamada, Yasusada; Nagaosa, Naoto
2018-05-01
In this study, we investigate the nature of domain walls in an ordered phase in the phase-competing region of two Ising-type order parameters. We consider a two-component ϕ4 theory and show that the domain wall of the ground-state (primary) order parameter shows a second-order phase transition associated with the secondary order parameter of the competing phase; the effective theory of the phase transition is given by the Landau theory of an Ising-type phase transition. We find that the phase boundary of this phase transition is different from the spinodal line of the competing order. The phase transition is detected experimentally by the divergence of the susceptibility corresponding to the secondary order when the temperature is quenched to introduce the domain walls.
Oil platforms off California are among the most productive marine fish habitats globally
Claisse, Jeremy T.; Pondella, Daniel J.; Love, Milton; Zahn, Laurel A.; Williams, Chelsea M.; Williams, Jonathan P.; Bull, Ann S.
2014-01-01
Secondary (i.e., heterotrophic or animal) production is a main pathway of energy flow through an ecosystem as it makes energy available to consumers, including humans. Its estimation can play a valuable role in the examination of linkages between ecosystem functions and services. We found that oil and gas platforms off the coast of California have the highest secondary fish production per unit area of seafloor of any marine habitat that has been studied, about an order of magnitude higher than fish communities from other marine ecosystems. Most previous estimates have come from estuarine environments, generally regarded as one of the most productive ecosystems globally. High rates of fish production on these platforms ultimately result from high levels of recruitment and the subsequent growth of primarily rockfish (genus Sebastes) larvae and pelagic juveniles to the substantial amount of complex hardscape habitat created by the platform structure distributed throughout the water column. The platforms have a high ratio of structural surface area to seafloor surface area, resulting in large amounts of habitat for juvenile and adult demersal fishes over a relatively small footprint of seafloor. Understanding the biological implications of these structures will inform policy related to the decommissioning of existing (e.g., oil and gas platforms) and implementation of emerging (e.g., wind, marine hydrokinetic) energy technologies. PMID:25313050
Osteoarthritis screening using Raman spectroscopy of dried human synovial fluid drops
NASA Astrophysics Data System (ADS)
Esmonde-White, Karen A.; Mandair, Gurjit S.; Esmonde-White, Francis W. L.; Raaii, Farhang; Roessler, Blake J.; Morris, Michael D.
2009-02-01
We describe the use of Raman spectroscopy to investigate synovial fluid drops deposited onto fused silica microscope slides. This spectral information can be used to identify chemical changes in synovial fluid associated with osteoarthritis (OA) damage to knee joints. The chemical composition of synovial fluid is predominately proteins (enzymes, cytokines, or collagen fragments), glycosaminoglycans, and a mixture of minor components such as inorganic phosphate crystals. During osteoarthritis, the chemical, viscoelastic and biological properties of synovial fluid are altered. A pilot study was conducted to determine if Raman spectra of synovial fluid correlated with radiological scoring of knee joint damage. After informed consent, synovial fluid was drawn and x-rays were collected from the knee joints of 40 patients. Raman spectra and microscope images were obtained from the dried synovial fluid drops using a Raman microprobe and indicate a coarse separation of synovial fluid components. Individual protein signatures could not be identified; Raman spectra were useful as a general marker of overall protein content and secondary structure. Band intensity ratios used to describe protein and glycosaminoglycan structure were used in synovial fluid spectra. Band intensity ratios of Raman spectra indicate that there is less ordered protein secondary structure in synovial fluid from the damage group. Combination of drop deposition with Raman spectroscopy is a powerful approach to examining synovial fluid for the purposes of assessing osteoarthritis damage.
A 'periodic table' for protein structures.
Taylor, William R
2002-04-11
Current structural genomics programs aim systematically to determine the structures of all proteins coded in both human and other genomes, providing a complete picture of the number and variety of protein structures that exist. In the past, estimates have been made on the basis of the incomplete sample of structures currently known. These estimates have varied greatly (between 1,000 and 10,000; see for example refs 1 and 2), partly because of limited sample size but also owing to the difficulties of distinguishing one structure from another. This distinction is usually topological, based on the fold of the protein; however, in strict topological terms (neglecting to consider intra-chain cross-links), protein chains are open strings and hence are all identical. To avoid this trivial result, topologies are determined by considering secondary links in the form of intra-chain hydrogen bonds (secondary structure) and tertiary links formed by the packing of secondary structures. However, small additions to or loss of structure can make large changes to these perceived topologies and such subjective solutions are neither robust nor amenable to automation. Here I formalize both secondary and tertiary links to allow the rigorous and automatic definition of protein topology.
FTIR study of secondary structure of bovine serum albumin and ovalbumin
NASA Astrophysics Data System (ADS)
Abrosimova, K. V.; Shulenina, O. V.; Paston, S. V.
2016-11-01
Proteins structure is the critical factor for their functioning. Fourier transform infrared spectroscopy provides a possibility to obtain information about secondary structure of proteins in different states and also in a whole biological samples. Infrared spectra of egg white from the untreated and hard-boiled hen's egg, and also of chicken ovalbumin and bovine serum albumin in lyophilic form and in aqueous solution were studied. Lyophilization of investigated globular proteins is accompanied by the decrease of a-helix structures and the increase in amount of intermolecular β-sheets. Analysis of infrared spectrum of egg white allowed to make an estimation of OVA secondary structure and to observe α-to-β structural transformation as a result of the heat denaturation.
Bioinformatics analysis of the predicted polyprenol reductase genes in higher plants
NASA Astrophysics Data System (ADS)
Basyuni, M.; Wati, R.
2018-03-01
The present study evaluates the bioinformatics methods to analyze twenty-four predicted polyprenol reductase genes from higher plants on GenBank as well as predicted the structure, composition, similarity, subcellular localization, and phylogenetic. The physicochemical properties of plant polyprenol showed diversity among the observed genes. The percentage of the secondary structure of plant polyprenol genes followed the ratio order of α helix > random coil > extended chain structure. The values of chloroplast but not signal peptide were too low, indicated that few chloroplast transit peptide in plant polyprenol reductase genes. The possibility of the potential transit peptide showed variation among the plant polyprenol reductase, suggested the importance of understanding the variety of peptide components of plant polyprenol genes. To clarify this finding, a phylogenetic tree was drawn. The phylogenetic tree shows several branches in the tree, suggested that plant polyprenol reductase genes grouped into divergent clusters in the tree.
Gunasekaran, K; Gomathi, L; Ramakrishnan, C; Chandrasekhar, J; Balaram, P
1998-12-18
The two most important beta-turn features in peptides and proteins are the type I and type II turns, which differ mainly in the orientation of the central peptide unit. Facile conformational interconversion is possible, in principle, by a flip of the central peptide unit. Homologous crystal structures afford an opportunity to structurally characterize both possible conformational states, thus allowing identification of sites that are potentially stereochemically mobile. A representative data set of 250 high-resolution (=2.0 A), non-homologous protein crystal structures and corresponding variant and homologous entries, obtained from the Brookhaven Protein Data Bank, was examined to identify turns that are assigned different conformational types (type I/type II) in related structures. A total of 55 examples of beta-turns were identified as possible candidates for a stereochemically mobile site. Of the 55 examples, 45 could be classified as a potential site for interconversion between type I and type II beta-turns, while ten correspond to flips from type I' to type II' structures. As a further check, the temperature factors of the central peptide unit carbonyl oxygen atom of the 55 examples were examined. The analysis reveals that the turn assignments are indeed reliable. Examination of the secondary structures at the flanking positions of the flippable beta-turns reveals that seven examples occur in the loop region of beta-hairpins, indicating that the formation of ordered secondary structures on either side of the beta-turn does not preclude local conformational variations. In these beta-turns, Pro (11 examples), Lys (nine examples) and Ser (seven examples) were most often found at the i+1 position. Glycine was found to occur overwhelmingly at position i+2 (28 examples), while Ser (seven examples) and Asn (six examples) were amongst the most frequent residues. Activation energy barriers for the interconversion between type I and type II beta-turns were computed using the peptide models Ac-Pro-Aib-NHMe and Ac-Pro-Gly-NHMe within the framework of the AM1 semi-empirical molecular orbital procedure. In order to have a uniform basis for comparison and to eliminate the distracting influence of the deviation of backbone dihedral angles from that expected for ideal beta-turns, the dihedral angles phii+1 and psii+2 were fixed at the ideal values (phii+1=-60 degrees and psii+2=0 degrees). The other two angles (psii+1 and phii+2) were varied systematically to go from type II to type I beta-turn structures. The computational results suggest that there exists one stereospecific, concerted flip of the central peptide unit involving correlated single bond rotation that can occur with an activation barrier of the order of 3 kcal/mol. The results presented here suggest that conformational variations in beta-turns are observed in protein crystal structures and such changes may be an important dynamic feature in solution. Copyright 1998 Academic Press
NASA Astrophysics Data System (ADS)
Ghosh, Pritam; Hazra, Abhijit; Ghosh, Meenakshi; Chandra Murmu, Naresh; Banerjee, Priyabrata
2018-04-01
Biologically relevant halide salts and its solution state structural properties are always been significant. In general, exposure of halide salts into polar solution medium results in solvation which in turn separates the cationic and anionic part of the salt. However, the conventional behaviour of salts might alter in presence of any secondary amine based compound, i.e.; moderately strong Lewis acid. In its consequence, to investigate the effect of secondary amine based compound in the salt solution, novel (E)-2-(4-bromobenzylidene)-1-(perfluorophenyl) hydrazine has been synthesized and used as secondary amine source. The secondary amine compound interestingly shows a drastic color change upon exposure to fluoride salts owing to hydrogen bonding interaction. Several experimental methods, e.g.; SCXRD, UV-Vis, FT-IR, ESI-MS and DLS together with modern DFT (i.e.; DFT-D3) have been performed to explore the structural properties of the halide salts upon exposure to secondary amine based compound. The effect of counter cation of the fluoride salt in binding with secondary amine source has also been investigated.
Goldschmidt, Felix; Regoes, Roland R; Johnson, David R
2017-09-01
Successive range expansions occur within all domains of life, where one population expands first (primary expansion) and one or more secondary populations then follow (secondary expansion). In general, genetic drift reduces diversity during range expansion. However, it is not clear whether the same effect applies during successive range expansion, mainly because the secondary population must expand into space occupied by the primary population. Here we used an experimental microbial model system to show that, in contrast to primary range expansion, successive range expansion promotes local population diversity. Because of mechanical constraints imposed by the presence of the primary population, the secondary population forms fractal-like dendritic structures. This divides the advancing secondary population into many small sub-populations and promotes intermixing between the primary and secondary populations. We further developed a mathematical model to simulate the formation of dendritic structures in the secondary population during succession. By introducing mutations in the primary or dendritic secondary populations, we found that mutations are more likely to accumulate in the dendritic secondary populations. Our results thus show that successive range expansion can promote intermixing over the short term and increase genetic diversity over the long term. Our results therefore have potentially important implications for predicting the ecological processes and evolutionary trajectories of microbial communities.
D'auria, S; Barone, R; Rossi, M; Nucci, R; Barone, G; Fessas, D; Bertoli, E; Tanfani, F
1997-01-01
The effects of temperature and SDS on the three-dimensional organization and secondary structure of beta-glycosidase from the thermophilic archaeon Sulfolobus solfataricus were investigated by CD, IR spectroscopy and differential scanning calorimetry. CD spectra in the near UV region showed that the detergent caused a remarkable change in the protein tertiary structure, and far-UV CD analysis revealed only a slight effect on secondary structure. Infrared spectroscopy showed that low concentrations of the detergent (up to 0.02%) induced slight changes in the enzyme secondary structure, whereas high concentrations caused the alpha-helix content to increase at high temperatures and prevented protein aggregation. PMID:9169619
Park, Yong Bum; Lee, Christopher M.; Koo, Bon-Wook; Park, Sunkyu; Cosgrove, Daniel J.; Kim, Seong H.
2013-01-01
Sum frequency generation (SFG) vibration spectroscopy can selectively detect crystalline cellulose without spectral interference from cell wall matrix components. Here, we show that the cellulose SFG spectrum is sensitive to cellulose microfibril alignment and packing within the cell wall. SFG intensity at 2,944 cm−1 correlated well with crystalline cellulose contents of various regions of the Arabidopsis (Arabidopsis thaliana) inflorescence, while changes in the 3,320/2,944 cm−1 intensity ratio suggest subtle changes in cellulose ordering as tissues mature. SFG analysis of two cellulose synthase mutants (irx1/cesa8 and irx3/cesa7) indicates a reduction in cellulose content without evidence of altered cellulose structure. In primary cell walls of Arabidopsis, cellulose exhibited a characteristic SFG peak at 2,920 and 3,320 cm−1, whereas in secondary cell walls, it had peaks at 2,944 and 3,320 cm−1. Starch (amylose) gave an SFG peak at 2,904 cm−1 (CH methine) whose intensity increased with light exposure prior to harvest. Selective removal of matrix polysaccharides from primary cell walls by acid hydrolysis resulted in an SFG spectrum resembling that of secondary wall cellulose. Our results show that SFG spectroscopy is sensitive to the ordering of cellulose microfibrils in plant cell walls at the meso scale (nm to μm) that is important for cell wall architecture but cannot be probed by other spectroscopic or diffraction techniques. PMID:23995148
Park, Yong Bum; Lee, Christopher M; Koo, Bon-Wook; Park, Sunkyu; Cosgrove, Daniel J; Kim, Seong H
2013-10-01
Sum frequency generation (SFG) vibration spectroscopy can selectively detect crystalline cellulose without spectral interference from cell wall matrix components. Here, we show that the cellulose SFG spectrum is sensitive to cellulose microfibril alignment and packing within the cell wall. SFG intensity at 2,944 cm(-1) correlated well with crystalline cellulose contents of various regions of the Arabidopsis (Arabidopsis thaliana) inflorescence, while changes in the 3,320/2,944 cm(-1) intensity ratio suggest subtle changes in cellulose ordering as tissues mature. SFG analysis of two cellulose synthase mutants (irx1/cesa8 and irx3/cesa7) indicates a reduction in cellulose content without evidence of altered cellulose structure. In primary cell walls of Arabidopsis, cellulose exhibited a characteristic SFG peak at 2,920 and 3,320 cm(-1), whereas in secondary cell walls, it had peaks at 2,944 and 3,320 cm(-1). Starch (amylose) gave an SFG peak at 2,904 cm(-1) (CH methine) whose intensity increased with light exposure prior to harvest. Selective removal of matrix polysaccharides from primary cell walls by acid hydrolysis resulted in an SFG spectrum resembling that of secondary wall cellulose. Our results show that SFG spectroscopy is sensitive to the ordering of cellulose microfibrils in plant cell walls at the meso scale (nm to μm) that is important for cell wall architecture but cannot be probed by other spectroscopic or diffraction techniques.
Signorelli, Sara; Santini, Simona; Yamada, Tohru; Bizzarri, Anna Rita; Beattie, Craig W; Cannistraro, Salvatore
2017-04-01
Mutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a posttranslational increase in wildtype and mutant p53 restoring functionality. We use mutation analyses to explore which elements of secondary structure may be critical to p28 binding. Molecular modeling, Raman spectroscopy, Atomic Force Spectroscopy (AFS) and Surface Plasmon Resonance (SPR) were used to identify which secondary structure of site-directed and naturally occurring mutant DBDs are potentially altered by discrete changes in hydrophobicity and the molecular interaction with p28. We show that specific point mutations that alter hydrophobicity within non-mutable and mutable regions of the p53 DBD alter specific secondary structures. The affinity of p28 was positively correlated with the β-sheet content of a mutant DBD, and reduced by an increase in unstructured or random coil that resulted from a loss in hydrophobicity and redistribution of surface charge. These results help refine our knowledge of how mutations within p53-DBD alter secondary structure and provide insight on how potential structural alterations in p28 or similar molecules improve their ability to restore p53 function. Raman spectroscopy, AFS, SPR and computational modeling are useful approaches to characterize how mutations within the p53DBD potentially affect secondary structure and identify those structural elements prone to influence the binding affinity of agents designed to increase the functionality of p53. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, Xiang; He, Si-Min; Bu, Dongbo; Zhang, Fa; Wang, Zhiyong; Chen, Runsheng; Gao, Wen
2008-09-15
RNA secondary structures with pseudoknots are often predicted by minimizing free energy, which is proved to be NP-hard. Due to kinetic reasons the real RNA secondary structure often has local instead of global minimum free energy. This implies that we may improve the performance of RNA secondary structure prediction by taking kinetics into account and minimize free energy in a local area. we propose a novel algorithm named FlexStem to predict RNA secondary structures with pseudoknots. Still based on MFE criterion, FlexStem adopts comprehensive energy models that allow complex pseudoknots. Unlike classical thermodynamic methods, our approach aims to simulate the RNA folding process by successive addition of maximal stems, reducing the search space while maintaining or even improving the prediction accuracy. This reduced space is constructed by our maximal stem strategy and stem-adding rule induced from elaborate statistical experiments on real RNA secondary structures. The strategy and the rule also reflect the folding characteristic of RNA from a new angle and help compensate for the deficiency of merely relying on MFE in RNA structure prediction. We validate FlexStem by applying it to tRNAs, 5SrRNAs and a large number of pseudoknotted structures and compare it with the well-known algorithms such as RNAfold, PKNOTS, PknotsRG, HotKnots and ILM according to their overall sensitivities and specificities, as well as positive and negative controls on pseudoknots. The results show that FlexStem significantly increases the prediction accuracy through its local search strategy. Software is available at http://pfind.ict.ac.cn/FlexStem/. Supplementary data are available at Bioinformatics online.
The Role of Migration and Single Motherhood in Upper Secondary Education in Mexico
ERIC Educational Resources Information Center
Creighton, Mathew J.; Park, Hyunjoon; Teruel, Graciela M.
2009-01-01
We investigated the link between migration, family structure, and the risk of dropping out of upper secondary school in Mexico. Using two waves of the Mexican Family Life Survey, which includes 1,080 upper secondary students, we longitudinally modeled the role of family structure in the subsequent risk of dropping out, focusing on the role of…
Qin, Zhao; Fabre, Andrea; Buehler, Markus J
2013-05-01
The stability of alpha helices is important in protein folding, bioinspired materials design, and controls many biological properties under physiological and disease conditions. Here we show that a naturally favored alpha helix length of 9 to 17 amino acids exists at which the propensity towards the formation of this secondary structure is maximized. We use a combination of thermodynamical analysis, well-tempered metadynamics molecular simulation and statistical analyses of experimental alpha helix length distributions and find that the favored alpha helix length is caused by a competition between alpha helix folding, unfolding into a random coil and formation of higher-order tertiary structures. The theoretical result is suggested to be used to explain the statistical distribution of the length of alpha helices observed in natural protein structures. Our study provides mechanistic insight into fundamental controlling parameters in alpha helix structure formation and potentially other biopolymers or synthetic materials. The result advances our fundamental understanding of size effects in the stability of protein structures and may enable the design of de novo alpha-helical protein materials.
Macadam, A J; Ferguson, G; Burlison, J; Stone, D; Skuce, R; Almond, J W; Minor, P D
1992-08-01
Part of the 5' noncoding regions of all three Sabin vaccine strains of poliovirus contains determinants of attenuation that are shown here to influence the ability of these strains to grow at elevated temperatures in BGM cells. The predicted RNA secondary structure of this region (nt 464-542 in P3/Sabin) suggests that both phenotypes are due to perturbation of base-paired stems. Ts phenotypes of site-directed mutants with defined changes in this region correlated well with predicted secondary structure stabilities. Reversal of base-pair orientation had little effect whereas stem disruption led to marked increases in temperature sensitivity. Phenotypic revertants of such viruses displayed mutations on either side of the stem. Mutations destabilizing stems led to intermediate phenotypes. These results provided evidence for the biological significance of the predicted RNA secondary structure.
Crisanti, A; Leuzzi, L; Paoluzzi, M
2011-09-01
The interrelation of dynamic processes active on separated time-scales in glasses and viscous liquids is investigated using a model displaying two time-scale bifurcations both between fast and secondary relaxation and between secondary and structural relaxation. The study of the dynamics allows for predictions on the system relaxation above the temperature of dynamic arrest in the mean-field approximation, that are compared with the outcomes of the equations of motion directly derived within the Mode Coupling Theory (MCT) for under-cooled viscous liquids. By varying the external thermodynamic parameters, a wide range of phenomenology can be represented, from a very clear separation of structural and secondary peak in the susceptibility loss to excess wing structures.
ERIC Educational Resources Information Center
Bello, Suleiman; Ibi, Mustapha Baba; Bukar, Ibrahim Bulama
2016-01-01
The study determined the relationship between principals' administrative styles and students' academic performance in Taraba State secondary schools, Nigeria. The objectives of the study were to determine the relationships between initiative structure of leadership styles, consideration structure of leadership styles, participatory structure of…
Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities
NASA Astrophysics Data System (ADS)
Katnam, K. B.; Da Silva, L. F. M.; Young, T. M.
2013-08-01
Advanced composite materials have gained popularity in high-performance structural designs such as aerospace applications that require lightweight components with superior mechanical properties in order to perform in demanding service conditions as well as provide energy efficiency. However, one of the major challenges that the aerospace industry faces with advanced composites - because of their inherent complex damage behaviour - is structural repair. Composite materials are primarily damaged by mechanical loads and/or environmental conditions. If material damage is not extensive, structural repair is the only feasible solution as replacing the entire component is not cost-effective in many cases. Bonded composite repairs (e.g. scarf patches) are generally preferred as they provide enhanced stress transfer mechanisms, joint efficiencies and aerodynamic performance. With an increased usage of advanced composites in primary and secondary aerospace structural components, it is thus essential to have robust, reliable and repeatable structural bonded repair procedures to restore damaged composite components. But structural bonded repairs, especially with primary structures, pose several scientific challenges with the current existing repair technologies. In this regard, the area of structural bonded repair of composites is broadly reviewed - starting from damage assessment to automation - to identify current scientific challenges and future opportunities.
Toll-Like Receptors in Secondary Obstructive Cholangiopathy
Miranda-Díaz, A. G.; Alonso-Martínez, H.; Hernández-Ojeda, J.; Arias-Carvajal, O.; Rodríguez-Carrizalez, A. D.; Román-Pintos, L. M.
2011-01-01
Secondary obstructive cholangiopathy is characterized by intra- or extrahepatic bile tract obstruction. Liver inflammation and structural alterations develop due to progressive bile stagnation. Most frequent etiologies are biliary atresia in children, and hepatolithiasis, postcholecystectomy bile duct injury, and biliary primary cirrhosis in adults, which causes chronic biliary cholangitis. Bile ectasia predisposes to multiple pathogens: viral infections in biliary atresia; Gram-positive and/or Gram-negative bacteria cholangitis found in hepatolithiasis and postcholecystectomy bile duct injury. Transmembrane toll-like receptors (TLRs) are activated by virus, bacteria, fungi, and parasite stimuli. Even though TLR-2 and TLR-4 are the most studied receptors related to liver infectious diseases, other TLRs play an important role in response to microorganism damage. Acquired immune response is not vertically transmitted and reflects the infectious diseases history of individuals; in contrast, innate immunity is based on antigen recognition by specific receptors designated as pattern recognition receptors and is transmitted vertically through the germ cells. Understanding the mechanisms for bile duct inflammation is essential for the future development of therapeutic alternatives in order to avoid immune-mediated destruction on secondary obstructive cholangiopathy. The role of TLRs in biliary atresia, hepatolithiasis, bile duct injury, and primary biliary cirrhosis is described in this paper. PMID:22114589
SL1 revisited: functional analysis of the structure and conformation of HIV-1 genome RNA.
Sakuragi, Sayuri; Yokoyama, Masaru; Shioda, Tatsuo; Sato, Hironori; Sakuragi, Jun-Ichi
2016-11-11
The dimer initiation site/dimer linkage sequence (DIS/DLS) region of HIV is located on the 5' end of the viral genome and suggested to form complex secondary/tertiary structures. Within this structure, stem-loop 1 (SL1) is believed to be most important and an essential key to dimerization, since the sequence and predicted secondary structure of SL1 are highly stable and conserved among various virus subtypes. In particular, a six-base palindromic sequence is always present at the hairpin loop of SL1 and the formation of kissing-loop structure at this position between the two strands of genomic RNA is suggested to trigger dimerization. Although the higher-order structure model of SL1 is well accepted and perhaps even undoubted lately, there could be stillroom for consideration to depict the functional SL1 structure while in vivo (in virion or cell). In this study, we performed several analyses to identify the nucleotides and/or basepairing within SL1 which are necessary for HIV-1 genome dimerization, encapsidation, recombination and infectivity. We unexpectedly found that some nucleotides that are believed to contribute the formation of the stem do not impact dimerization or infectivity. On the other hand, we found that one G-C basepair involved in stem formation may serve as an alternative dimer interactive site. We also report on our further investigation of the roles of the palindromic sequences on viral replication. Collectively, we aim to assemble a more-comprehensive functional map of SL1 on the HIV-1 viral life cycle. We discovered several possibilities for a novel structure of SL1 in HIV-1 DLS. The newly proposed structure model suggested that the hairpin loop of SL1 appeared larger, and genome dimerization process might consist of more complicated mechanism than previously understood. Further investigations would be still required to fully understand the genome packaging and dimerization of HIV.
Identifying and Addressing Themes of Job Dissatisfaction for Secondary Principals
ERIC Educational Resources Information Center
De Jong, David; Grundmeyer, Trent; Yankey, Julie
2017-01-01
Secondary principals serve in important roles that are complex, high-stress, and include demanding job responsibilities. Key stakeholders such as superintendents, school board members, and legislators must understand the challenges facing secondary principals in order to address the current themes of job dissatisfaction. Using new survey data…
76 FR 60847 - Proposed Information Collection Activity; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-30
... secondary migration of refugees within the United States after arrival. Further, INA 412(c)(1)(B)states that... secondary migration. In order to meet these statutory requirements, ORR requires each State to submit... information collected through the Web site to determine secondary migration for the purposes of formula funds...
77 FR 15374 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-15
... the secondary migration of refugees within the United States after arrival. Further, INA 412(c)(1)(B... secondary migration. In order to meet the statutory requirements, ORR requires each state to submit... ranges. ORR used the information on the ORR-11 to measure secondary migration for the purposes of formula...
ERIC Educational Resources Information Center
Sua, Tan Yao
2012-01-01
The democratization of education in Malaysia has come a long way since the early 1960s. In the early 1990s, the government decided to democratize secondary education in order to widen formal access to secondary education, especially at the upper secondary level. It is the contention of this paper that the widening of formal access to education may…
Distributed cooperative control of AC microgrids
NASA Astrophysics Data System (ADS)
Bidram, Ali
In this dissertation, the comprehensive secondary control of electric power microgrids is of concern. Microgrid technical challenges are mainly realized through the hierarchical control structure, including primary, secondary, and tertiary control levels. Primary control level is locally implemented at each distributed generator (DG), while the secondary and tertiary control levels are conventionally implemented through a centralized control structure. The centralized structure requires a central controller which increases the reliability concerns by posing the single point of failure. In this dissertation, the distributed control structure using the distributed cooperative control of multi-agent systems is exploited to increase the secondary control reliability. The secondary control objectives are microgrid voltage and frequency, and distributed generators (DGs) active and reactive powers. Fully distributed control protocols are implemented through distributed communication networks. In the distributed control structure, each DG only requires its own information and the information of its neighbors on the communication network. The distributed structure obviates the requirements for a central controller and complex communication network which, in turn, improves the system reliability. Since the DG dynamics are nonlinear and non-identical, input-output feedback linearization is used to transform the nonlinear dynamics of DGs to linear dynamics. Proposed control frameworks cover the control of microgrids containing inverter-based DGs. Typical microgrid test systems are used to verify the effectiveness of the proposed control protocols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deus, R.C.; Cortés, J.A., E-mail: leandrosrr89@gmail.com; Ramirez, M.A.
Highlights: • CeO{sub 2} nanoparticles were obtained by microwave-hydrothermal method. • Rietveld refinement reveals a cubic structure. • KOH mineralizer agent exhibit weak agglomeration at low temperature and shorter time. - Abstract: The structural and photoluminescent properties at room temperature of CeO{sub 2} and La-doped CeO{sub 2} particles were undertaken. The obtained particles were synthesized by a microwave-assisted hydrothermal method (MAH) under different lanthanum contents. X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman), Ultra-violet spectroscopy (UV–vis) and photoluminescence (PL) measurements were carried out. XRD revealed that the powders are free of secondary phases and crystallize in themore » cubic structure. Raman data show that increasing La doping content increase oxygen vacancies due to lattice expansion. The UV/vis absorption spectroscopy suggested the presence of intermediate energy levels in the band gap of structurally ordered powders. Lanthanum addition creates oxygen vacancies and shifts the photoluminescence in the low energy range leading to intense PL emission.« less
NASA Technical Reports Server (NTRS)
Wilkie, William Keats; Williams, R. Brett; Agnes, Gregory S.; Wilcox, Brian H.
2007-01-01
This paper presents a feasibility study of robotically constructing a very large aperture optical space telescope on-orbit. Since the largest engineering challenges are likely to reside in the design and assembly of the 150-m diameter primary reflector, this preliminary study focuses on this component. The same technology developed for construction of the primary would then be readily used for the smaller optical structures (secondary, tertiary, etc.). A reasonable set of ground and on-orbit loading scenarios are compiled from the literature and used to define the structural performance requirements and size the primary reflector. A surface precision analysis shows that active adjustment of the primary structure is required in order to meet stringent optical surface requirements. Two potential actuation strategies are discussed along with potential actuation devices at the current state of the art. The finding of this research effort indicate that successful technology development combined with further analysis will likely enable such a telescope to be built in the future.
Composite materials for rail transit systems
NASA Technical Reports Server (NTRS)
Griffin, O. Hayden, Jr.; Guerdal, Zafer; Herakovich, Carl T.
1987-01-01
The potential is explored for using composite materials in urban mass transit systems. The emphasis was to identify specific advantages of composite materials in order to determine their actual and potential usage for carbody and guideway structure applications. The literature was reviewed, contacts were made with major domestic system operators, designers, and builders, and an analysis was made of potential composite application to railcar construction. Composites were found to be in use throughout the transit industry, usually in secondary or auxiliary applications such as car interior and nonstructural exterior panels. More recently, considerable activity has been initiated in the area of using composites in the load bearing elements of civil engineering structures such as highway bridges. It is believed that new and improved manufacturing refinements in pultrusion and filament winding will permit the production of beam sections which can be used in guideway structures. The inherent corrosion resistance and low maintenance characteristics of composites should result in lowered maintenance costs over a prolonged life of the structure.
Structure and dynamics of spin-labeled insulin entrapped in a silica matrix by the sol-gel method.
Vanea, E; Gruian, C; Rickert, C; Steinhoff, H-J; Simon, V
2013-08-12
The structure and conformational dynamics of insulin entrapped into a silica matrix was monitored during the sol to maturated-gel transition by electron paramagnetic resonance (EPR) spectroscopy. Insulin was successfully spin-labeled with iodoacetamide and the bifunctional nitroxide reagent HO-1944. Room temperature continuous wave (cw) EPR spectra of insulin were recorded to assess the mobility of the attached spin labels. Insulin conformation and its distribution within the silica matrix were studied using double electron-electron resonance (DEER) and low-temperature cw-EPR. A porous oxide matrix seems to form around insulin molecules with pore diameters in the order of a few nanometers. Secondary structure of the encapsulated insulin investigated by Fourier transform infrared spectroscopy proved a high structural integrity of insulin even in the dried silica matrix. The results show that silica encapsulation can be used as a powerful tool to effectively isolate and functionally preserve biomolecules during preparation, storage, and release.
Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas
Hong-Hermesdorf, Anne; Miethke, Marcus; Gallaher, Sean D.; ...
2014-10-26
Here we identified a Cu-accumulating structure with a dynamic role in intracellular Cu homeostasis. During Zn limitation, Chlamydomonas reinhardtii hyperaccumulates Cu, a process dependent on the nutritional Cu sensor CRR1, but it is functionally Cu deficient. Visualization of intracellular Cu revealed major Cu accumulation sites coincident with electron-dense structures that stained positive for low pH and polyphosphate, suggesting that they are lysosome-related organelles. Nano-secondary ion MS showed colocalization of Ca and Cu, and X-ray absorption spectroscopy was consistent with Cu + accumulation in an ordered structure. Zn resupply restored Cu homeostasis concomitant with reduced abundance of these structures. Cu isotopemore » labeling demonstrated that sequestered Cu + became bioavailable for the synthesis of plastocyanin, and transcriptome profiling indicated that mobilized Cu became visible to CRR1. Cu trafficking to intracellular accumulation sites may be a strategy for preventing protein mismetallation during Zn deficiency and enabling efficient cuproprotein metallation or remetallation upon Zn resupply.« less
Van Cutsem, Emmanuel; Simonart, Géraldine; Degand, Hervé; Faber, Anne-Marie; Morsomme, Pierre; Boutry, Marc
2011-02-01
Nicotiana tabacum leaves are covered by trichomes involved in the secretion of large amounts of secondary metabolites, some of which play a major role in plant defense. However, little is known about the metabolic pathways that operate in these structures. We undertook a proteomic analysis of N. tabacum trichomes in order to identify their protein complement. Efficient trichome isolation was obtained by abrading frozen leaves. After homogenization, soluble proteins and a microsomal fraction were prepared by centrifugation. Gel-based and gel-free proteomic analyses were then performed. 2-DE analysis of soluble proteins led to the identification of 1373 protein spots, which were digested and analyzed by MS/MS, leading to 680 unique identifications. Both soluble proteins and microsomal fraction were analyzed by LC MALDI-MS/MS after trypsin digestion, leading to 858 identifications, many of which had not been identified after 2-DE, indicating that the two methods complement each other. Many enzymes putatively involved in secondary metabolism were identified, including enzymes involved in the synthesis of terpenoid precursors and in acyl sugar production. Several transporters were also identified, some of which might be involved in secondary metabolite transport. Various (a)biotic stress response proteins were also detected, supporting the role of trichomes in plant defense. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The type I fatty acid and polyketide synthases: a tale of two megasynthases
Tsai, Shiou-Chuan
2008-01-01
This review chronicles the synergistic growth of the fields of fatty acid and polyketide synthesis over the last century. In both animal fatty acid synthases and modular polyketide synthases, similar catalytic elements are covalently linked in the same order in megasynthases. Whereas in fatty acid synthases the basic elements of the design remain immutable, guaranteeing the faithful production of saturated fatty acids, in the modular polyketide synthases, the potential of the basic design has been exploited to the full for the elaboration of a wide range of secondary metabolites of extraordinary structural diversity. PMID:17898897
G-Quadruplexes in DNA Replication: A Problem or a Necessity?
Valton, Anne-Laure; Prioleau, Marie-Noëlle
2016-11-01
DNA replication is a highly regulated process that ensures the correct duplication of the genome at each cell cycle. A precise cell type-specific temporal program controls the duplication of complex vertebrate genomes in an orderly manner. This program is based on the regulation of both replication origin firing and replication fork progression. G-quadruplexes (G4s), DNA secondary structures displaying noncanonical Watson-Crick base pairing, have recently emerged as key controllers of genome duplication. Here we discuss the various means by which G4s affect this fundamental cellular process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wiseman, Alan
2003-04-01
Cytochromes P450 (EC 1.14.14.1) are mixed function oxidases (oxygenases) that can catalyse redox bioconversions of food components. Also, efficacious removal of undesirable components can be achieved using solid-support immobilised enzyme (IME) of a selection from 2700 isoforms of cytochromes P450 (CYP). Cytochromes P450 co-immobilised with other enzymes, or protein receptors, may be used to confer a secondary order of regio- or stereo-specificity of chiral bioconversion: these can be predictable in silico by utilisation of QSARs (quantitative structure/activity relationships).
ERIC Educational Resources Information Center
Saido, G. A. M.; Siraj, S.; DeWitt, D.; Al-Amedy, O. S.
2018-01-01
It is important for science students to develop higher order thinking (HOT) so that they can reason like scientists in the field. In this study, a HOT instructional model for secondary school science was developed with experts. The model would focus on reflective thinking (RT) and science process skills (SPS) among Grade 7 students. The Fuzzy…
ERIC Educational Resources Information Center
Vidergor, Hava E.
2018-01-01
The study aimed to assess the effectiveness of the multidimensional curriculum model (MdCM) in the development of higher-order thinking skills in a sample of 394 elementary and secondary school students in Israel. The study employed a quantitative quasi-experimental pre-post design, using a study module based on MdCM, comparing intervention group…
bpRNA: large-scale automated annotation and analysis of RNA secondary structure.
Danaee, Padideh; Rouches, Mason; Wiley, Michelle; Deng, Dezhong; Huang, Liang; Hendrix, David
2018-05-09
While RNA secondary structure prediction from sequence data has made remarkable progress, there is a need for improved strategies for annotating the features of RNA secondary structures. Here, we present bpRNA, a novel annotation tool capable of parsing RNA structures, including complex pseudoknot-containing RNAs, to yield an objective, precise, compact, unambiguous, easily-interpretable description of all loops, stems, and pseudoknots, along with the positions, sequence, and flanking base pairs of each such structural feature. We also introduce several new informative representations of RNA structure types to improve structure visualization and interpretation. We have further used bpRNA to generate a web-accessible meta-database, 'bpRNA-1m', of over 100 000 single-molecule, known secondary structures; this is both more fully and accurately annotated and over 20-times larger than existing databases. We use a subset of the database with highly similar (≥90% identical) sequences filtered out to report on statistical trends in sequence, flanking base pairs, and length. Both the bpRNA method and the bpRNA-1m database will be valuable resources both for specific analysis of individual RNA molecules and large-scale analyses such as are useful for updating RNA energy parameters for computational thermodynamic predictions, improving machine learning models for structure prediction, and for benchmarking structure-prediction algorithms.
Sloma, Michael F.; Mathews, David H.
2016-01-01
RNA secondary structure prediction is widely used to analyze RNA sequences. In an RNA partition function calculation, free energy nearest neighbor parameters are used in a dynamic programming algorithm to estimate statistical properties of the secondary structure ensemble. Previously, partition functions have largely been used to estimate the probability that a given pair of nucleotides form a base pair, the conditional stacking probability, the accessibility to binding of a continuous stretch of nucleotides, or a representative sample of RNA structures. Here it is demonstrated that an RNA partition function can also be used to calculate the exact probability of formation of hairpin loops, internal loops, bulge loops, or multibranch loops at a given position. This calculation can also be used to estimate the probability of formation of specific helices. Benchmarking on a set of RNA sequences with known secondary structures indicated that loops that were calculated to be more probable were more likely to be present in the known structure than less probable loops. Furthermore, highly probable loops are more likely to be in the known structure than the set of loops predicted in the lowest free energy structures. PMID:27852924
Analysis on the workspace of palletizing robot based on AutoCAD
NASA Astrophysics Data System (ADS)
Li, Jin-quan; Zhang, Rui; Guan, Qi; Cui, Fang; Chen, Kuan
2017-10-01
In this paper, a four-degree-of-freedom articulated palletizing robot is used as the object of research. Based on the analysis of the overall configuration of the robot, the kinematic mathematical model is established by D-H method to figure out the workspace of the robot. In order to meet the needs of design and analysis, using AutoCAD secondary development technology and AutoLisp language to develop AutoCAD-based 2D and 3D workspace simulation interface program of palletizing robot. At last, using AutoCAD plugin, the influence of structural parameters on the shape and position of the working space is analyzed when the structure parameters of the robot are changed separately. This study laid the foundation for the design, control and planning of palletizing robots.
Frustration in protein elastic network models
NASA Astrophysics Data System (ADS)
Lezon, Timothy; Bahar, Ivet
2010-03-01
Elastic network models (ENMs) are widely used for studying the equilibrium dynamics of proteins. The most common approach in ENM analysis is to adopt a uniform force constant or a non-specific distance dependent function to represent the force constant strength. Here we discuss the influence of sequence and structure in determining the effective force constants between residues in ENMs. Using a novel method based on entropy maximization, we optimize the force constants such that they exactly reporduce a subset of experimentally determined pair covariances for a set of proteins. We analyze the optimized force constants in terms of amino acid types, distances, contact order and secondary structure, and we demonstrate that including frustrated interactions in the ENM is essential for accurately reproducing the global modes in the middle of the frequency spectrum.
Revealing the membrane-bound structure of neurokinin A using neutron diffraction
NASA Astrophysics Data System (ADS)
Darkes, Malcolm J. M.; Hauss, Thomas; Dante, Silvia; Bradshaw, Jeremy P.
2000-03-01
Neurokinin A (or substance K) belongs to the tachykinin family, a group of small amphipathic peptides that bind to specific membrane-embedded, G-protein coupled receptors. The agonist/receptor complex is quaternary in nature because the receptor binding sites are thought to be located within the lipid bilayer and because the role of water cannot be ignored. The cell membrane acts as a solvent to accumulate peptide and an inducer of peptide secondary structure. The three-dimensional shape that the peptide assumes when associated to the cell membrane will be an important parameter with regards to the receptor selectivity and affinity. Neutron diffraction measurements were carried out in order to define the location of the N-terminus of the peptide in synthetic phospholipid multi-bilayer stacks.
Deep sequencing of foot-and-mouth disease virus reveals RNA sequences involved in genome packaging.
Logan, Grace; Newman, Joseph; Wright, Caroline F; Lasecka-Dykes, Lidia; Haydon, Daniel T; Cottam, Eleanor M; Tuthill, Tobias J
2017-10-18
Non-enveloped viruses protect their genomes by packaging them into an outer shell or capsid of virus-encoded proteins. Packaging and capsid assembly in RNA viruses can involve interactions between capsid proteins and secondary structures in the viral genome as exemplified by the RNA bacteriophage MS2 and as proposed for other RNA viruses of plants, animals and human. In the picornavirus family of non-enveloped RNA viruses, the requirements for genome packaging remain poorly understood. Here we show a novel and simple approach to identify predicted RNA secondary structures involved in genome packaging in the picornavirus foot-and-mouth disease virus (FMDV). By interrogating deep sequencing data generated from both packaged and unpackaged populations of RNA we have determined multiple regions of the genome with constrained variation in the packaged population. Predicted secondary structures of these regions revealed stem loops with conservation of structure and a common motif at the loop. Disruption of these features resulted in attenuation of virus growth in cell culture due to a reduction in assembly of mature virions. This study provides evidence for the involvement of predicted RNA structures in picornavirus packaging and offers a readily transferable methodology for identifying packaging requirements in many other viruses. Importance In order to transmit their genetic material to a new host, non-enveloped viruses must protect their genomes by packaging them into an outer shell or capsid of virus-encoded proteins. For many non-enveloped RNA viruses the requirements for this critical part of the viral life cycle remain poorly understood. We have identified RNA sequences involved in genome packaging of the picornavirus foot-and-mouth disease virus. This virus causes an economically devastating disease of livestock affecting both the developed and developing world. The experimental methods developed to carry out this work are novel, simple and transferable to the study of packaging signals in other RNA viruses. Improved understanding of RNA packaging may lead to novel vaccine approaches or targets for antiviral drugs with broad spectrum activity. Copyright © 2017 Logan et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Byungchan, E-mail: bbccahn@mail.ulsan.ac.kr; Bohr, Vilhelm A.
2011-08-12
Highlights: {yields} In this study, we investigated the effect of a DNA secondary structure on the two WRN activities. {yields} We found that a DNA secondary structure of the displaced strand during unwinding stimulates WRN helicase without coordinate action of WRN exonuclease. {yields} These results imply that WRN helicase and exonuclease activities can act independently. -- Abstract: Werner syndrome (WS) is an autosomal recessive premature aging disorder characterized by aging-related phenotypes and genomic instability. WS is caused by mutations in a gene encoding a nuclear protein, Werner syndrome protein (WRN), a member of the RecQ helicase family, that interestingly possessesmore » both helicase and exonuclease activities. Previous studies have shown that the two activities act in concert on a single substrate. We investigated the effect of a DNA secondary structure on the two WRN activities and found that a DNA secondary structure of the displaced strand during unwinding stimulates WRN helicase without coordinate action of WRN exonuclease. These results imply that WRN helicase and exonuclease activities can act independently, and we propose that the uncoordinated action may be relevant to the in vivo activity of WRN.« less
Mathews, D H; Banerjee, A R; Luan, D D; Eickbush, T H; Turner, D H
1997-01-01
RNA transcripts corresponding to the 250-nt 3' untranslated region of the R2 non-LTR retrotransposable element are recognized by the R2 reverse transcriptase and are sufficient to serve as templates in the target DNA-primed reverse transcription (TPRT) reaction. The R2 protein encoded by the Bombyx mori R2 can recognize this region from both the B. mori and Drosophila melanogaster R2 elements even though these regions show little nucleotide sequence identity. A model for the RNA secondary structure of the 3' untranslated region of the D. melanogaster R2 retrotransposon was developed by sequence comparison of 10 species aided by free energy minimization. Chemical modification experiments are consistent with this prediction. A secondary structure model for the 3' untranslated region of R2 RNA from the R2 element from B. mori was obtained by a combination of chemical modification data and free energy minimization. These two secondary structure models, found independently, share several common sites. This study shows the utility of combining free energy minimization, sequence comparison, and chemical modification to model an RNA secondary structure. PMID:8990394
Aguiar, Anna Carolina Fornero; Gücker, Björn; Brauns, Mario; Hille, Sandra; Boëchat, Iola Gonçalves
2015-07-01
The aim of this study was to assess land use effects on the density, biomass, and instantaneous secondary production (IP) of benthic invertebrates in a fifth-order tropical river. Invertebrates were sampled at 11 stations along the Rio das Mortes (upper Rio Grande, Southeast Brazil) in the dry and the rainy season 2010/2011. Invertebrates were counted, determined, and measured to estimate their density, biomass, and IP. Water chemical characteristics, sediment heterogeneity, and habitat structural integrity were assessed in parallel. Total invertebrate density, biomass, and IP were higher in the dry season than those in the rainy season, but did not differ significantly among sampling stations along the river. However, taxon-specific density, biomass, and IP differed similarly among sampling stations along the river and between seasons, suggesting that these metrics had the same bioindication potential. Variability in density, biomass, and IP was mainly explained by seasonality and the percentage of sandy sediment in the riverbed, and not directly by urban or agricultural land use. Our results suggest that the consistently high degradation status of the river, observed from its headwaters to mouth, weakened the response of the invertebrate community to specific land use impacts, so that only local habitat characteristics and seasonality exerted effects.
NASA Astrophysics Data System (ADS)
Saido, G. A. M.; Siraj, S.; DeWitt, D.; Al-Amedy, O. S.
2018-05-01
It is important for science students to develop higher order thinking (HOT) so that they can reason like scientists in the field. In this study, a HOT instructional model for secondary school science was developed with experts. The model would focus on reflective thinking (RT) and science process skills (SPS) among Grade 7 students. The Fuzzy Delphi Method (FDM) was employed to determine consensus among a panel of 20 experts. First, semi-structured interviews were conducted among the experts to generate the elements required for the model. Then, a questionnaire was developed using a seven-point linguistic scale based on these elements. The defuzzification value was calculated for each item, and a threshold value (d) of 0.75 was used to determine consensus for the items in the questionnaire. The alpha-cut value of >0.5 was used to select the phases and sub-phases in the model. The elements in the model were ranked to identify the sub-phases which had to be emphasised for implementation in instruction. Consensus was achieved on the phases of the HOT instructional model: engagement, investigation, explanation, conclusion and reflection. An additional 24 learning activities to encourage RT skills and SPS among students were also identified to develop HOT skills in science.
Secondary structural analyses of ITS1 in Paramecium.
Hoshina, Ryo
2010-01-01
The nuclear ribosomal RNA gene operon is interrupted by internal transcribed spacer (ITS) 1 and ITS2. Although the secondary structure of ITS2 has been widely investigated, less is known about ITS1 and its structure. In this study, the secondary structure of ITS1 sequences for Paramecium and other ciliates was predicted. Each Paramecium ITS1 forms an open loop with three helices, A through C. Helix B was highly conserved among Paramecium, and similar helices were found in other ciliates. A phylogenetic analysis using the ITS1 sequences showed high-resolution, implying that ITS1 is a good tool for species-level analyses.
Chemical and bioactive diversities of the genus Chaetomium secondary metabolites.
Zhang, Q; Li, H-Q; Zong, S-C; Gao, J-M; Zhang, A-L
2012-02-01
The genus Chaetomium fungi are considered to be a rich source of novel and bioactive secondary metabolites of great importance. Up till now, a variety of more than 200 secondary metabolites belonging to diverse structural types of chaetoglobosins, epipolythiodioxopiperazines, azaphilones, xanthones, anthraquinones, chromones, depsidones, terpenoids, and steroids have been discovered. Most of these fungal metabolites exhibited antitumor, cytotoxic, antimalarial, enzyme inhibitory, antibiotic, and other activities. This review covers the extraction, structure elucidation, structural diversity, and biological activities of natural products isolated from about 30 fungi associated with marine- and terrestrial- origins, and highlights some bioactive compounds as well as their mechanisms of action and structure-activity relationships.
Shen, Hong-Bin; Yi, Dong-Liang; Yao, Li-Xiu; Yang, Jie; Chou, Kuo-Chen
2008-10-01
In the postgenomic age, with the avalanche of protein sequences generated and relatively slow progress in determining their structures by experiments, it is important to develop automated methods to predict the structure of a protein from its sequence. The membrane proteins are a special group in the protein family that accounts for approximately 30% of all proteins; however, solved membrane protein structures only represent less than 1% of known protein structures to date. Although a great success has been achieved for developing computational intelligence techniques to predict secondary structures in both globular and membrane proteins, there is still much challenging work in this regard. In this review article, we firstly summarize the recent progress of automation methodology development in predicting protein secondary structures, especially in membrane proteins; we will then give some future directions in this research field.
NASA Astrophysics Data System (ADS)
Toppi, M.; Battistoni, G.; Bellini, F.; Collamati, F.; De Lucia, E.; Durante, M.; Faccini, R.; Frallicciardi, P. M.; Marafini, M.; Mattei, I.; Morganti, S.; Muraro, S.; Paramatti, R.; Patera, V.; Pinci, D.; Piersanti, L.; Rucinski, A.; Russomando, A.; Sarti, A.; Sciubba, A.; Senzacqua, M.; Solfaroli Camillocci, E.; Traini, G.; Voena, C.
2016-05-01
Particle therapy is a technique that uses accelerated charged ions for cancer treatment and combines a high irradiation precision with a high biological effectiveness in killing tumor cells [1]. Informations about the secondary particles emitted in the interaction of an ion beam with the patient during a treatment can be of great interest in order to monitor the dose deposition. For this purpose an experiment at the HIT (Heidelberg Ion-Beam Therapy Center) beam facility has been performed in order to measure fluxes and emission profiles of secondary particles produced in the interaction of therapeutic beams with a PMMA target. In this contribution some preliminary results about the emission profiles and the energy spectra of the detected secondaries will be presented.
NIAS-Server: Neighbors Influence of Amino acids and Secondary Structures in Proteins.
Borguesan, Bruno; Inostroza-Ponta, Mario; Dorn, Márcio
2017-03-01
The exponential growth in the number of experimentally determined three-dimensional protein structures provide a new and relevant knowledge about the conformation of amino acids in proteins. Only a few of probability densities of amino acids are publicly available for use in structure validation and prediction methods. NIAS (Neighbors Influence of Amino acids and Secondary structures) is a web-based tool used to extract information about conformational preferences of amino acid residues and secondary structures in experimental-determined protein templates. This information is useful, for example, to characterize folds and local motifs in proteins, molecular folding, and can help the solution of complex problems such as protein structure prediction, protein design, among others. The NIAS-Server and supplementary data are available at http://sbcb.inf.ufrgs.br/nias .
Artificial Intelligence in Prediction of Secondary Protein Structure Using CB513 Database
Avdagic, Zikrija; Purisevic, Elvir; Omanovic, Samir; Coralic, Zlatan
2009-01-01
In this paper we describe CB513 a non-redundant dataset, suitable for development of algorithms for prediction of secondary protein structure. A program was made in Borland Delphi for transforming data from our dataset to make it suitable for learning of neural network for prediction of secondary protein structure implemented in MATLAB Neural-Network Toolbox. Learning (training and testing) of neural network is researched with different sizes of windows, different number of neurons in the hidden layer and different number of training epochs, while using dataset CB513. PMID:21347158
NASA Astrophysics Data System (ADS)
Dou, Kun; Yang, Zhenguo; Liu, Qing; Huang, Yunhua; Dong, Hongbiao
2017-07-01
A cellular automaton-finite element coupling model for high-carbon continuously cast bloom of GCr15 steel is established to simulate the solidification structure and to investigate the influence of different secondary cooling modes on characteristic parameters such as equiaxed crystal ratio, grain size and secondary dendrite arm spacing, in which the effect of phase transformation and electromagnetic stirring is taken into consideration. On this basis, evolution of carbon macro-segregation for GCr15 steel bloom is researched correspondingly via industrial tests. Based on above analysis, the relationship among secondary cooling modes, characteristic parameters for solidification structure as well as carbon macro-segregation is illustrated to obtain optimum secondary cooling strategy and alleviate carbon macro-segregation degree for GCr15 steel bloom in continuous casting process. The evaluating method for element macro-segregation is applicable in various steel types.
Rolled-up transformer structure for a radiofrequency integrated circuit (RFIC)
Li, Xiuling; Huang, Wen
2016-05-03
A rolled-up transformer structure comprises a multilayer sheet having a rolled configuration comprising multiple turns about a longitudinal axis. The multilayer sheet comprises more than one conductive pattern layer on a strain-relieved layer, including a first conductive film and a second conductive film separated from the first conductive film in a thickness direction. The first conductive film comprises an even number of primary conductive strips, where each primary conductive strip has a length extending in the rolling direction, and the second conductive film comprises an even number of secondary conductive strips, where each secondary conductive strip has a length extending in the rolling direction. In the rolled configuration, turns of the primary conductive strips and turns of the secondary conductive strips wrap around the longitudinal axis. The primary conductive strips serve as a primary winding and the secondary conductive strips serve as a secondary winding of the rolled-up transformer structure.
ERIC Educational Resources Information Center
Ellerbrock, Cheryl R.; Kiefer, Sarah M.
2013-01-01
Understanding the developmental responsiveness of secondary school environments may be an important factor in supporting students as they make the transition from one school to the next. Students' needs may or may not be met depending on the nature of the fit between their basic and developmental needs and secondary school structures at the middle…
ERIC Educational Resources Information Center
Weiqi, Chen
2007-01-01
This study used the results of a questionnaire survey of 230 secondary school teachers to analyze the factors constituting job satisfaction and its effects on teacher attrition and work enthusiasm. The results show that (a) the structure of secondary school teacher job satisfaction is made up of ten components and is consistent with the model put…
Vector-borne disease risk indexes in spatially structured populations
Anzo-Hernández, Andrés; Bonilla-Capilla, Beatriz; Soto-Bajo, Moisés; Fraguela-Collar, Andrés
2018-01-01
There are economic and physical limitations when applying prevention and control strategies for urban vector borne diseases. Consequently, there are increasing concerns and interest in designing efficient strategies and regulations that health agencies can follow in order to reduce the imminent impact of viruses like Dengue, Zika and Chikungunya. That includes fumigation, abatization, reducing the hatcheries, picking up trash, information campaigns. A basic question that arise when designing control strategies is about which and where these ones should focus. In other words, one would like to know whether preventing the contagion or decrease vector population, and in which area of the city, is more efficient. In this work, we propose risk indexes based on the idea of secondary cases from patch to patch. Thus, they take into account human mobility and indicate which patch has more chance to be a corridor for the spread of the disease and which is more vulnerable, i.e. more likely to have cases?. They can also indicate the neighborhood where hatchery control will reduce more the number of potential cases. In order to illustrate the usefulness of these indexes, we run a set of numerical simulations in a mathematical model that takes into account the urban mobility and the differences in population density among the areas of a city. If we label by i a particular neighborhood, the transmission risk index (TRi) measures the potential secondary cases caused by a host in that neighborhood. The vector transmission risk index (VTRi) measures the potential secondary cases caused by a vector. Finally, the vulnerability risk index (VRi) measures the potential secondary cases in the neighborhood. Transmission indexes can be used to give geographical priority to some neighborhoods when applying prevention and control measures. On the other hand, the vulnerability index can be useful to implement monitoring campaigns or public health investment. PMID:29432455
NASA Astrophysics Data System (ADS)
Liwo, Adam; Czaplewski, Cezary; Pillardy, Jarosław; Scheraga, Harold A.
2001-08-01
A general method to derive site-site or united-residue potentials is presented. The basic principle of the method is the separation of the degrees of freedom of a system into the primary and secondary ones. The primary degrees of freedom describe the basic features of the system, while the secondary ones are averaged over when calculating the potential of mean force, which is hereafter referred to as the restricted free energy (RFE) function. The RFE can be factored into one-, two-, and multibody terms, using the cluster-cumulant expansion of Kubo. These factors can be assigned the functional forms of the corresponding lowest-order nonzero generalized cumulants, which can, in most cases, be evaluated analytically, after making some simplifying assumptions. This procedure to derive coarse-grain force fields is very valuable when applied to multibody terms, whose functional forms are hard to deduce in another way (e.g., from structural databases). After the functional forms have been derived, they can be parametrized based on the RFE surfaces of model systems obtained from all-atom models or on the statistics derived from structural databases. The approach has been applied to our united-residue force field for proteins. Analytical expressions were derived for the multibody terms pertaining to the correlation between local and electrostatic interactions within the polypeptide backbone; these expressions correspond to up to sixth-order terms in the cumulant expansion of the RFE. These expressions were subsequently parametrized by fitting to the RFEs of selected peptide fragments, calculated with the empirical conformational energy program for peptides force field. The new multibody terms enable not only the heretofore predictable α-helical segments, but also regular β-sheets, to form as the lowest-energy structures, as assessed by test calculations on a model helical protein A, as well as a model 20-residue polypeptide (betanova); the latter was not possible without introducing these new terms.
Vleut, Ivar; Levy-Tacher, Samuel Israel; de Boer, Willem Frederik; Galindo-González, Jorge; Vazquez, Luis-Bernardo
2013-01-01
Most studies on frugivorous bat assemblages in secondary forests have concentrated on differences among successional stages, and have disregarded the effect of forest management. Secondary forest management practices alter the vegetation structure and fruit availability, important factors associated with differences in frugivorous bat assemblage structure, and fruit consumption and can therefore modify forest succession. Our objective was to elucidate factors (forest structural variables and fruit availability) determining bat diversity, abundance, composition and species-specific abundance of bats in (i) secondary forests managed by Lacandon farmers dominated by Ochroma pyramidale, in (ii) secondary forests without management, and in (iii) mature rain forests in Chiapas, Southern Mexico. Frugivorous bat species diversity (Shannon H’) was similar between forest types. However, bat abundance was highest in rain forest and O. pyramidale forests. Bat species composition was different among forest types with more Carollia sowelli and Sturnira lilium captures in O. pyramidale forests. Overall, bat fruit consumption was dominated by early-successional shrubs, highest late-successional fruit consumption was found in rain forests and more bats consumed early-successional shrub fruits in O. pyramidale forests. Ochroma pyramidale forests presented a higher canopy openness, tree height, lower tree density and diversity of fruit than secondary forests. Tree density and canopy openness were negatively correlated with bat species diversity and bat abundance, but bat abundance increased with fruit abundance and tree height. Hence, secondary forest management alters forests’ structural characteristics and resource availability, and shapes the frugivorous bat community structure, and thereby the fruit consumption by bats. PMID:24147029
Vleut, Ivar; Levy-Tacher, Samuel Israel; de Boer, Willem Frederik; Galindo-González, Jorge; Vazquez, Luis-Bernardo
2013-01-01
Most studies on frugivorous bat assemblages in secondary forests have concentrated on differences among successional stages, and have disregarded the effect of forest management. Secondary forest management practices alter the vegetation structure and fruit availability, important factors associated with differences in frugivorous bat assemblage structure, and fruit consumption and can therefore modify forest succession. Our objective was to elucidate factors (forest structural variables and fruit availability) determining bat diversity, abundance, composition and species-specific abundance of bats in (i) secondary forests managed by Lacandon farmers dominated by Ochroma pyramidale, in (ii) secondary forests without management, and in (iii) mature rain forests in Chiapas, Southern Mexico. Frugivorous bat species diversity (Shannon H') was similar between forest types. However, bat abundance was highest in rain forest and O. pyramidale forests. Bat species composition was different among forest types with more Carollia sowelli and Sturnira lilium captures in O. pyramidale forests. Overall, bat fruit consumption was dominated by early-successional shrubs, highest late-successional fruit consumption was found in rain forests and more bats consumed early-successional shrub fruits in O. pyramidale forests. Ochroma pyramidale forests presented a higher canopy openness, tree height, lower tree density and diversity of fruit than secondary forests. Tree density and canopy openness were negatively correlated with bat species diversity and bat abundance, but bat abundance increased with fruit abundance and tree height. Hence, secondary forest management alters forests' structural characteristics and resource availability, and shapes the frugivorous bat community structure, and thereby the fruit consumption by bats.
Rate Constant and Reaction Coordinate of Trp-Cage Folding in Explicit Water
Juraszek, Jarek; Bolhuis, Peter G.
2008-01-01
We report rate constant calculations and a reaction coordinate analysis of the rate-limiting folding and unfolding process of the Trp-cage mini-protein in explicit solvent using transition interface sampling. Previous transition path sampling simulations revealed that in this (un)folding process the protein maintains its compact configuration, while a (de)increase of secondary structure is observed. The calculated folding rate agrees reasonably with experiment, while the unfolding rate is 10 times higher. We discuss possible origins for this mismatch. We recomputed the rates with the forward flux sampling method, and found a discrepancy of four orders of magnitude, probably caused by the method's higher sensitivity to the choice of order parameter with respect to transition interface sampling. Finally, we used the previously computed transition path-sampling ensemble to screen combinations of many order parameters for the best model of the reaction coordinate by employing likelihood maximization. We found that a combination of the root mean-square deviation of the helix and of the entire protein was, of the set of tried order parameters, the one that best describes the reaction coordination. PMID:18676648
Rigidity of poly-L-glutamic acid scaffolds: Influence of secondary and supramolecular structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nickels, Jonathan D.; Perticaroli, Stefania; Ehlers, Georg
Poly-L-glutamic acid (PGA) is a widely used biomaterial, with applications ranging from drug delivery and biological glues to food products and as a tissue engineering scaffold. A biodegradable material with flexible conjugation functional groups, tunable secondary structure, and mechanical properties, PGA has potential as a tunable matrix material in mechanobiology. Some recent studies in proteins connecting dynamics, nanometer length scale rigidity, and secondary structure suggest a new point of view from which to analyze and develop this promising material. Our paper characterizes the structure, topology, and rigidity properties of PGA prepared with different molecular weights and secondary structures through variousmore » techniques including scanning electron microscopy, FTIR, light, and neutron scattering spectroscopy. On the length scale of a few nanometers, rigidity is determined by hydrogen bonding interactions in the presence of neutral species and by electrostatic interactions when the polypeptide is negatively charged. Finally, when probed over hundreds of nanometers, the rigidity of these materials is modified by long range intermolecular interactions that are introduced by the supramolecular structure.« less
Evaluating minimalist mimics by exploring key orientations on secondary structures (EKOS)☟
Xin, Dongyue; Ko, Eunhwa; Perez, Lisa M.; Ioerger, Thomas R.; Burgess, Kevin
2013-01-01
Peptide mimics that display amino acid side-chains on semi-rigid scaffolds (not peptide polyamides) can be referred to as minimalist mimics. Accessible conformations of these scaffolds may overlay with secondary structures giving, for example, “minimalist helical mimics”. It is difficult for researchers who want to apply minimalist mimics to decide which one to use because there is no widely accepted protocol for calibrating how closely these compounds mimic secondary structures. Moreover, it is also difficult for potential practitioners to evaluate which ideal minimalist helical mimics are preferred for a particular set of side-chains. For instance, what mimic presents i, i+4, i+7 side-chains in orientations that best resemble an ideal α-helix, and is a different mimic required for a i, i+3, i+7 helical combination? This article describes a protocol for fitting each member of an array of accessible scaffold conformations on secondary structures. The protocol involves: (i) use quenched molecular dynamics (QMD) to generate an ensemble consisting of hundreds of accessible, low energy conformers of the mimics; (ii) representation of each of these as a set of Cα and Cβ coordinates corresponding to three amino acid side-chains displayed by the scaffolds;(iii) similar representation of each combination of three side-chains in each ideal secondary structure as a set of Cα and Cβ coordinates corresponding to three amino acid side-chains displayed by the scaffolds; and, (iv) overlay Cα and Cβ coordinates of all the conformers on all the sets of side-chain “triads” in the ideal secondary structures and express the goodness of fit in terms of root mean squared deviation (RMSD, Å) for each overlay. We refer to this process as Exploring Key Orientations on Secondary structures (EKOS). Application of this procedure reveals the relative bias of a scaffold to overlay on different secondary structures, the “side-chain correspondences” (eg i, i+4, i+7 or i, i+3, i+4) of those overlays, and the energy of this state relative to the minimum located. This protocol was tested on some of the most widely cited minimalist α-helical mimics (1 – 8 in the text). The data obtained indicates several of these compounds preferentially exist in conformations that resemble other secondary structures as well as α-helices, and many of the α-helical conformations have unexpected side-chain correspondences. These observations imply the featured minimalist mimics have more scope for disrupting PPI interfaces than previously anticipated. Finally, the same simulation method was used to match preferred conformations of minimalist mimics with actual protein/peptide structures at interfaces providing quantitative comparisons of predicted fits of the test mimics at protein-protein interaction sites. PMID:24121516
Evaluating minimalist mimics by exploring key orientations on secondary structures (EKOS).
Xin, Dongyue; Ko, Eunhwa; Perez, Lisa M; Ioerger, Thomas R; Burgess, Kevin
2013-11-28
Peptide mimics that display amino acid side-chains on semi-rigid scaffolds (not peptide polyamides) can be referred to as minimalist mimics. Accessible conformations of these scaffolds may overlay with secondary structures giving, for example, "minimalist helical mimics". It is difficult for researchers who want to apply minimalist mimics to decide which one to use because there is no widely accepted protocol for calibrating how closely these compounds mimic secondary structures. Moreover, it is also difficult for potential practitioners to evaluate which ideal minimalist helical mimics are preferred for a particular set of side-chains. For instance, what mimic presents i, i + 4, i + 7 side-chains in orientations that best resemble an ideal α-helix, and is a different mimic required for a i, i + 3, i + 7 helical combination? This article describes a protocol for fitting each member of an array of accessible scaffold conformations on secondary structures. The protocol involves: (i) use quenched molecular dynamics (QMD) to generate an ensemble consisting of hundreds of accessible, low energy conformers of the mimics; (ii) representation of each of these as a set of Cα and Cβ coordinates corresponding to three amino acid side-chains displayed by the scaffolds; (iii) similar representation of each combination of three side-chains in each ideal secondary structure as a set of Cα and Cβ coordinates corresponding to three amino acid side-chains displayed by the scaffolds; and, (iv) overlay Cα and Cβ coordinates of all the conformers on all the sets of side-chain "triads" in the ideal secondary structures and express the goodness of fit in terms of root mean squared deviation (RMSD, Å) for each overlay. We refer to this process as Exploring Key Orientations on Secondary structures (EKOS). Application of this procedure reveals the relative bias of a scaffold to overlay on different secondary structures, the "side-chain correspondences" (e.g. i, i + 4, i + 7 or i, i + 3, i + 4) of those overlays, and the energy of this state relative to the minimum located. This protocol was tested on some of the most widely cited minimalist α-helical mimics (1-8 in the text). The data obtained indicates several of these compounds preferentially exist in conformations that resemble other secondary structures as well as α-helices, and many of the α-helical conformations have unexpected side-chain correspondences. These observations imply the featured minimalist mimics have more scope for disrupting PPI interfaces than previously anticipated. Finally, the same simulation method was used to match preferred conformations of minimalist mimics with actual protein/peptide structures at interfaces providing quantitative comparisons of predicted fits of the test mimics at protein-protein interaction sites.
Rishinaramangalam, Ashwin K.; Mishkat Ul Masabih, Saadat; Fairchild, Michael N.; ...
2014-10-21
In our paper, we demonstrate the growth of ordered arrays of nonpolar {101 ¯ 0} core–shell nanowalls and semipolar {101 ¯ 1} core–shell pyramidal nanostripes on c-plane (0001) sapphire substrates using selective-area epitaxy and metal organic chemical vapor deposition. The nanostructure arrays are controllably patterned into LED mesa regions, demonstrating a technique to impart secondary lithography features into the arrays. Moreover, we study the dependence of the nanostructure cores on the epitaxial growth conditions and show that the geometry and morphology are strongly influenced by growth temperature, V/III ratio, and pulse interruption time. We also demonstrate the growth of InGaNmore » quantum well shells on the nanostructures and characterize the structures by using micro-photoluminescence and cross-section scanning tunneling electron microscopy.« less
Lecerf, Thierry; Canivez, Gary L
2018-06-01
Interpretation of the French Wechsler Intelligence Scale for Children-Fifth Edition (French WISC-V; Wechsler, 2016a) is based on a 5-factor model including Verbal Comprehension (VC), Visual Spatial (VS), Fluid Reasoning (FR), Working Memory (WM), and Processing Speed (PS). Evidence for the French WISC-V factorial structure was established exclusively through confirmatory factor analyses (CFAs). However, as recommended by Carroll (1995); Reise (2012), and Brown (2015), factorial structure should derive from both exploratory factor analysis (EFA) and CFA. The first goal of this study was to examine the factorial structure of the French WISC-V using EFA. The 15 French WISC-V primary and secondary subtest scaled scores intercorrelation matrix was used and factor extraction criteria suggested from 1 to 4 factors. To disentangle the contribution of first- and second-order factors, the Schmid and Leiman (1957) orthogonalization transformation (SLT) was applied. Overall, no EFA evidence for 5 factors was found. Results indicated that the g factor accounted for about 67% of the common variance and that the contributions of the first-order factors were weak (3.6 to 11.9%). CFA was used to test numerous alternative models. Results indicated that bifactor models produced better fit to these data than higher-order models. Consistent with previous studies, findings suggested dominance of the general intelligence factor and that users should thus emphasize the Full Scale IQ (FSIQ) when interpreting the French WISC-V. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Secondary metabolites of cyanobacteria Nostoc sp.
NASA Astrophysics Data System (ADS)
Kobayashi, Akio; Kajiyama, Shin-Ichiro
1998-03-01
Cyanobacteria attracted much attention recently because of their secondary metabolites with potent biological activities and unusual structures. This paper reviews some recent studies on the isolation, structural, elucidation and biological activities of the bioactive compounds from cyanobacteria Nostoc species.
Validation study of the Questionnaire on School Maladjustment Problems (QSMP).
de la Fuente Arias, Jesús; Peralta Sánchez, Francisco Javier; Sánchez Roda, María Dolores; Trianes Torres, María Victoria
2012-05-01
The aim of this study was to analyze the exploratory and confirmatory structure, as well as other psychometric properties, of the Cuestionario de Problemas de Convivencia Escolar (CPCE; in Spanish, the Questionnaire on School Maladjustment Problems [QSMP]), using a sample of Spanish adolescents. The instrument was administered to 60 secondary education teachers (53.4% females and 46.6% males) between the ages of 28 and 54 years (M= 41.2, SD= 11.5), who evaluated a total of 857 adolescent students. The first-order exploratory factor analysis identified 7 factors, explaining a total variance of 62%. A second-order factor analysis yielded three dimensions that explain 84% of the variance. A confirmatory factor analysis was subsequently performed in order to reduce the number of factors obtained in the exploratory analysis as well as the number of items. Lastly, we present the results of reliability, internal consistency, and validity indices. These results and their implications for future research and for the practice of educational guidance and intervention are discussed in the conclusions.
Middle Eastern rhinoplasty in the United States: Part II. Secondary rhinoplasty.
Daniel, Rollin K
2009-11-01
There have been relatively few articles in the English language on secondary Middle Eastern rhinoplasty. This article analyzes the cause and treatment of secondary Middle Eastern rhinoplasty. A prospective study of 40 consecutive female secondary Middle Eastern rhinoplasty patients was completed. The majority of secondary rhinoplasty patients were older than 25 years. Half of the patients had undergone a single prior rhinoplasty and the other half had undergone multiple operations, ranging in number from two to five. A wide variety of surgical techniques was necessary because of the broad range of presenting deformities, patients' requests, and the author's preferred procedures. The principal reasons for secondary rhinoplasty in Middle Eastern patients were a failure to correct the original deformity and the presence of visible surgical stigmata. The persistent complaints were a poorly defined tip and a long, droopy nose. Surprisingly, most secondary rhinoplasty patients had thin skin (55 percent), which necessitated fascia or dermis grafts to conceal surgical stigmata. At the time of secondary surgery, there was an absence of structure in these noses as evidenced by the prior 0 percent insertion of spreader grafts and the 10 percent use of columellar struts in prior open cases. Also, there was little evidence of other structural grafts, including alar rim, alar battens, or lateral crural strut grafts. Insertion of structural support appears essential to control primary deformities and to repair secondary deformities.
Song, Jiangning; Burrage, Kevin; Yuan, Zheng; Huber, Thomas
2006-03-09
The majority of peptide bonds in proteins are found to occur in the trans conformation. However, for proline residues, a considerable fraction of Prolyl peptide bonds adopt the cis form. Proline cis/trans isomerization is known to play a critical role in protein folding, splicing, cell signaling and transmembrane active transport. Accurate prediction of proline cis/trans isomerization in proteins would have many important applications towards the understanding of protein structure and function. In this paper, we propose a new approach to predict the proline cis/trans isomerization in proteins using support vector machine (SVM). The preliminary results indicated that using Radial Basis Function (RBF) kernels could lead to better prediction performance than that of polynomial and linear kernel functions. We used single sequence information of different local window sizes, amino acid compositions of different local sequences, multiple sequence alignment obtained from PSI-BLAST and the secondary structure information predicted by PSIPRED. We explored these different sequence encoding schemes in order to investigate their effects on the prediction performance. The training and testing of this approach was performed on a newly enlarged dataset of 2424 non-homologous proteins determined by X-Ray diffraction method using 5-fold cross-validation. Selecting the window size 11 provided the best performance for determining the proline cis/trans isomerization based on the single amino acid sequence. It was found that using multiple sequence alignments in the form of PSI-BLAST profiles could significantly improve the prediction performance, the prediction accuracy increased from 62.8% with single sequence to 69.8% and Matthews Correlation Coefficient (MCC) improved from 0.26 with single local sequence to 0.40. Furthermore, if coupled with the predicted secondary structure information by PSIPRED, our method yielded a prediction accuracy of 71.5% and MCC of 0.43, 9% and 0.17 higher than the accuracy achieved based on the singe sequence information, respectively. A new method has been developed to predict the proline cis/trans isomerization in proteins based on support vector machine, which used the single amino acid sequence with different local window sizes, the amino acid compositions of local sequence flanking centered proline residues, the position-specific scoring matrices (PSSMs) extracted by PSI-BLAST and the predicted secondary structures generated by PSIPRED. The successful application of SVM approach in this study reinforced that SVM is a powerful tool in predicting proline cis/trans isomerization in proteins and biological sequence analysis.
The influence of ignoring secondary structure on divergence time estimates from ribosomal RNA genes.
Dohrmann, Martin
2014-02-01
Genes coding for ribosomal RNA molecules (rDNA) are among the most popular markers in molecular phylogenetics and evolution. However, coevolution of sites that code for pairing regions (stems) in the RNA secondary structure can make it challenging to obtain accurate results from such loci. While the influence of ignoring secondary structure on multiple sequence alignment and tree topology has been investigated in numerous studies, its effect on molecular divergence time estimates is still poorly known. Here, I investigate this issue in Bayesian Markov Chain Monte Carlo (BMCMC) and penalized likelihood (PL) frameworks, using empirical datasets from dragonflies (Odonata: Anisoptera) and glass sponges (Porifera: Hexactinellida). My results indicate that highly biased inferences under substitution models that ignore secondary structure only occur if maximum-likelihood estimates of branch lengths are used as input to PL dating, whereas in a BMCMC framework and in PL dating based on Bayesian consensus branch lengths, the effect is far less severe. I conclude that accounting for coevolution of paired sites in molecular dating studies is not as important as previously suggested, as long as the estimates are based on Bayesian consensus branch lengths instead of ML point estimates. This finding is especially relevant for studies where computational limitations do not allow the use of secondary-structure specific substitution models, or where accurate consensus structures cannot be predicted. I also found that the magnitude and direction (over- vs. underestimating node ages) of bias in age estimates when secondary structure is ignored was not distributed randomly across the nodes of the phylogenies, a phenomenon that requires further investigation. Copyright © 2013 Elsevier Inc. All rights reserved.
RNA folding kinetics using Monte Carlo and Gillespie algorithms.
Clote, Peter; Bayegan, Amir H
2018-04-01
RNA secondary structure folding kinetics is known to be important for the biological function of certain processes, such as the hok/sok system in E. coli. Although linear algebra provides an exact computational solution of secondary structure folding kinetics with respect to the Turner energy model for tiny ([Formula: see text]20 nt) RNA sequences, the folding kinetics for larger sequences can only be approximated by binning structures into macrostates in a coarse-grained model, or by repeatedly simulating secondary structure folding with either the Monte Carlo algorithm or the Gillespie algorithm. Here we investigate the relation between the Monte Carlo algorithm and the Gillespie algorithm. We prove that asymptotically, the expected time for a K-step trajectory of the Monte Carlo algorithm is equal to [Formula: see text] times that of the Gillespie algorithm, where [Formula: see text] denotes the Boltzmann expected network degree. If the network is regular (i.e. every node has the same degree), then the mean first passage time (MFPT) computed by the Monte Carlo algorithm is equal to MFPT computed by the Gillespie algorithm multiplied by [Formula: see text]; however, this is not true for non-regular networks. In particular, RNA secondary structure folding kinetics, as computed by the Monte Carlo algorithm, is not equal to the folding kinetics, as computed by the Gillespie algorithm, although the mean first passage times are roughly correlated. Simulation software for RNA secondary structure folding according to the Monte Carlo and Gillespie algorithms is publicly available, as is our software to compute the expected degree of the network of secondary structures of a given RNA sequence-see http://bioinformatics.bc.edu/clote/RNAexpNumNbors .
How In-Training Secondary Education Teachers Think. Avenues for Intervention
ERIC Educational Resources Information Center
Perez-Sanchez, Antonio Miguel; Gilar-Corbi, Raquel; Gonzales-Gomez, Carla
2007-01-01
Introduction: The aim of this research is to analyse the thinking of teachers-in-training for compulsory secondary education, in order to facilitate the work of education and guidance at secondary schools. Method: The participants were 265 students in the "CAP" program (course for the Pedagogical Aptitude Certificate). The instrument…
Samandoulgou, Idrissa; Hammami, Riadh; Morales Rayas, Rocio; Fliss, Ismail; Jean, Julie
2015-11-01
Loss of ordered molecular structure in proteins is known to increase their adhesion to surfaces. The aim of this work was to study the stability of norovirus secondary and tertiary structures and its implications for viral adhesion to fresh foods and agrifood surfaces. The pH, ionic strength, and temperature conditions studied correspond to those prevalent in the principal vehicles of viral transmission (vomit and feces) and in the food processing and handling environment (pasteurization and refrigeration). The structures of virus-like particles representing GI.1, GII.4, and feline calicivirus (FCV) were studied using circular dichroism and intrinsic UV fluorescence. The particles were remarkably stable under most of the conditions. However, heating to 65°C caused losses of β-strand structure, notably in GI.1 and FCV, while at 75°C the α-helix content of GII.4 and FCV decreased and tertiary structures unfolded in all three cases. Combining temperature with pH or ionic strength caused variable losses of structure depending on the particle type. Regardless of pH, heating to pasteurization temperatures or higher would be required to increase GII.4 and FCV adhesion, while either low or high temperatures would favor GI.1 adhesion. Regardless of temperature, increased ionic strength would increase GII.4 adhesion but would decrease GI.1 adhesion. FCV adsorption would be greater at refrigeration, pasteurization, or high temperature combined with a low salt concentration or at a higher NaCl concentration regardless of temperature. Norovirus adhesion mediated by hydrophobic interaction may depend on hydrophobic residues normally exposed on the capsid surface at pH 3, pH 8, physiological ionic strength, and low temperature, while at pasteurization temperatures it may rely more on buried hydrophobic residues exposed upon structural rearrangement. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
2017-01-01
Light-chain (AL)-associated amyloidosis is a systemic disorder involving the formation and deposition of immunoglobulin AL fibrils in various bodily organs. One severe instance of AL disease is exhibited by the patient-derived variable domain (VL) of the light chain AL-09, a 108 amino acid residue protein containing seven mutations relative to the corresponding germline protein, κI O18/O8 VL. Previous work has demonstrated that the thermodynamic stability of native AL-09 VL is greatly lowered by two of these mutations, Y87H and N34I, whereas a third mutation, K42Q, further increases the kinetics of fibril formation. However, detailed knowledge regarding the residues that are responsible for stabilizing the misfolded fibril structure is lacking. In this study, using solid-state NMR spectroscopy, we show that the majority of the AL-09 VL sequence is immobilized in the fibrils and that the N- and C-terminal portions of the sequence are particularly well-structured. Thus, AL-09 VL forms an extensively ordered and β-strand-rich fibril structure. Furthermore, we demonstrate that the predominant β-sheet secondary structure and rigidity observed for in vitro prepared AL-09 VL fibrils are qualitatively similar to those observed for AL fibrils extracted from postmortem human spleen tissue, suggesting that this conformation may be representative of a common feature of AL fibrils. PMID:28261692
RNA2D3D: a program for generating, viewing, and comparing 3-dimensional models of RNA.
Martinez, Hugo M; Maizel, Jacob V; Shapiro, Bruce A
2008-06-01
Using primary and secondary structure information of an RNA molecule, the program RNA2D3D automatically and rapidly produces a first-order approximation of a 3-dimensional conformation consistent with this information. Applicable to structures of arbitrary branching complexity and pseudoknot content, it features efficient interactive graphical editing for the removal of any overlaps introduced by the initial generating procedure and for making conformational changes favorable to targeted features and subsequent refinement. With emphasis on fast exploration of alternative 3D conformations, one may interactively add or delete base-pairs, adjacent stems can be coaxially stacked or unstacked, single strands can be shaped to accommodate special constraints, and arbitrary subsets can be defined and manipulated as rigid bodies. Compaction, whereby base stacking within stems is optimally extended into connecting single strands, is also available as a means of strategically making the structures more compact and revealing folding motifs. Subsequent refinement of the first-order approximation, of modifications, and for the imposing of tertiary constraints is assisted with standard energy refinement techniques. Previously determined coordinates for any part of the molecule are readily incorporated, and any part of the modeled structure can be output as a PDB or XYZ file. Illustrative applications in the areas of ribozymes, viral kissing loops, viral internal ribosome entry sites, and nanobiology are presented.
2011-01-01
Background Previously, the hypothetical protein, KPN00728 from Klebsiella pneumoniae MGH78578 was the Succinate dehydrogenase (SDH) chain C subunit via structural prediction and molecular docking simulation studies. However, due to limitation in docking simulation, an in-depth understanding of how SDH interaction occurs across the transmembrane of mitochondria could not be provided. Results In this present study, molecular dynamics (MD) simulation of KPN00728 and SDH chain D in a membrane was performed in order to gain a deeper insight into its molecular role as SDH. Structural stability was successfully obtained in the calculation for area per lipid, tail order parameter, thickness of lipid and secondary structural properties. Interestingly, water molecules were found to be highly possible in mediating the interaction between Ubiquinone (UQ) and SDH chain C via interaction with Ser27 and Arg31 residues as compared with earlier docking study. Polar residues such as Asp95 and Glu101 (KPN00728), Asp15 and Glu78 (SDH chain D) might have contributed in the creation of a polar environment which is essential for electron transport chain in Krebs cycle. Conclusions As a conclusion, a part from the structural stability comparability, the dynamic of the interacting residues and hydrogen bonding analysis had further proved that the interaction of KPN00728 as SDH is preserved and well agreed with our postulation earlier. PMID:22372825
[A review on fundamental studies of secondary forest management].
Zhu, Jiaojun
2002-12-01
Secondary forest is also called as natural secondary forest, which regenerates on native forest that has been disturbed by severe natural or anthropogenic disturbances. The structural and dynamic organizations, growth, productivity and stand environment of secondary forests are significantly different from those of natural and artificial forests. Such significant differences make secondary forests have their own special characteristics in forestry. Secondary forests are the main body of forests in China. Therefore, their management plays a very important role in the projects of natural forest conservation and the construction of ecological environment in China or in the world. Based on a wide range of literature collection on secondary forest research, the fundamental studies of secondary forest management were discussed. The major topics are as follows: 1) basic characteristics of secondary forest, 2) principles of secondary forest management, 3) types of secondary forest, 4) community structure and succession dynamics of secondary forest, including niches, biodiversity, succession and so on, 5) main ecological processes of secondary forest, including regeneration, forest soil and forest environment. Additionally, the research needs and tendency related to secondary forest in the future were also given, based on the analyses of the main results and the problems in current management of secondary forest. The review may be helpful to the research of secondary forest management, and to the projects of natural forest conservation in China.
Vitovic, Pavol; Weis, Martin; Tomcík, Pavol; Cirák, Július; Hianik, Tibor
2007-05-01
We applied methods of measurement Maxwell displacement current (MDC) pressure-area isotherms and dipole potential for analysis of the properties of gramicidin A (gA) and mixed gA/DMPC monolayers at an air-water interface. The MDC method allowed us to observe the kinetics of formation of secondary structure of gA in monolayers at an air-water interface. We showed, that secondary structure starts to form at rather low area per molecule at which gA monolayers are in gaseous state. Changes of the MDC during compression can be attributed to the reorientation of dipole moments in a gA double helix at area 7 nm(2)/molecule, followed by the formation of intertwined double helix of gA. The properties of gA in mixed monolayers depend on the molar fraction of gA/DMPC. At higher molar fractions of gA (around 0.5) the shape of the changes of dipole moment of mixed monolayer was similar to that for pure gA. The analysis of excess free energy in a gel (18( ) degrees C) and in a liquid-crystalline phase (28( ) degrees C) allowed us to show influence of the monolayer structural state on the interaction between gA and the phospholipids. In a gel state and at the gA/DMPC molar ratio below 0.17 the aggregates of gA were formed, while above this molar ratio gA interacts favorably with DMPC. In contrast, for DMPC in a liquid-crystalline state aggregation of gA was observed for all molar fractions studied. The effect of formation ordered structures between gA and DMPC is more pronounced at low temperatures.
Passive Isolators for use on the International Space Station
NASA Technical Reports Server (NTRS)
Houston, Janice; Gattis, Christy
2003-01-01
The value of the International Space Station (ISS) as a premier microgravity environment is currently at risk due to structure-borne vibration. The vibration sources are varied and include crew activities such as exercising or simply moving from module to module, and electro- mechanical equipment such as fans and pumps. Given such potential degradation of usable microgravity, anything that can be done to dampen vibration on-orbit will significantly benefit microgravity users. Most vibration isolation schemes, both active and passive, have proven to be expensive - both operationally and from the cost of integrating isolation systems into primary/secondary structural interfaces (e.g., the ISS module/rack interface). Recently, passively absorptive materials have been tested at the bolt interfaces between the operating equipment and support structure (secondary/tertiary structural interfaces). The results indicate that these materials may prove cost-effective in mitigating the vibrational problems of the ISS. We report herein tests of passive absorbers placed at the interface of a vibration-inducing component: the Development Distillation Assembly, a subassembly of the Urine Processing Assembly, which is a rotating centrifuge and cylinder assembly attached to a mounting plate. Passive isolators were installed between this mounting plate and its support shelf. Three materials were tested: BISCO HT-800, Sorbothane 30 and Sorbothane 50, plus a control test with a hard shim. In addition, four distinct combinations of the HT-800 and Sorbothane 50 were tested. Results show a significant (three orders of magnitude) reduction of transmitted energy, as measured in power spectral density (PSD), using the isolation materials. It is noted, however, that passive materials cannot prevent the transmission of very strong forces or absorb the total energy induced from structural resonances.
NASA Astrophysics Data System (ADS)
Phan, The-Long; Ho, T. A.; Dang, N. T.; Nguyen, Manh Cuong; Dao, Van-Duong
2017-07-01
We prepared well-aligned Zn1-x Mn x O:yP nanocolumns (x = 0-0.02, and y = 0 and 1 mol%) on SiO2/Si(0 0 1) substrates by using pulsed laser deposition (PLD) and then investigated their electronic structure and optical and magnetic properties at room temperature. The analyses of x-ray photoelectron and x-ray absorption fine structure spectra revealed Mn2+ and/or P ions existing in nanocolumns, where Mn2+ ions are situated in the Zn2+ site of the ZnO-wurtzite structure. Although the incorporation of Mn2+ and/or P ions did not form secondary phases, as confirmed by x-ray and electron diffraction patterns, more lattice defects were created, and consequently changed the band-gap energy as well as the electron-phonon interactions in the nanocolumns. Magnetization versus magnetic-field measurements revealed that all the samples exhibited FM order. In particular, the (Mn, P) co-doping with x = 0.02 and y = 1 remarkably enhanced the magnetic moment up to 2.92 µ B/Mn. Based on the results obtained from analyzing the electronic structures, UV-Vis absorption and resonant Raman scattering spectra, and theoretical calculations, we believe that the enhancement of the FM order in (Mn, P)-doped ZnO nanocolumns is due to exchange interactions taking place between vacancy-mediated Mn2+ ions.
Huan, Jianya Y; Meza-Romero, Roberto; Mooney, Jeffery L; Chou, Yuan K; Edwards, David M; Rich, Cathleen; Link, Jason M; Vandenbark, Arthur A; Bourdette, Dennis N; Bächinger, Hans-Peter; Burrows, Gregory G
2012-01-01
Single-chain human recombinant T cell receptor ligands derived from the peptide binding/TCR recognition domain of human HLA-DR2b (DRA*0101/DRB1*1501) produced in Escherichia coli with and without amino-terminal extensions containing antigenic peptides have been described previously. While molecules with the native sequence retained biological activity, they formed higher order aggregates in solution. In this study, we used site-directed mutagenesis to modify the β-sheet platform of the DR2-derived RTLs, obtaining two variants that were monomeric in solution by replacing hydrophobic residues with polar (serine) or charged (aspartic acid) residues. Size exclusion chromatography and dynamic light scattering demonstrated that the modified RTLs were monomeric in solution, and structural characterization using circular dichroism demonstrated the highly ordered secondary structure of the RTLs. Peptide binding to the `empty' RTLs was quantified using biotinylated peptides, and functional studies showed that the modified RTLs containing covalently tethered peptides were able to inhibit antigen-specific T cell proliferation in vitro, as well as suppress experimental autoimmune encephalomyelitis in vivo. These studies demonstrated that RTLs encoding the Ag-binding/TCR recognition domain of MHC class II molecules are innately very robust structures, capable of retaining potent biological activity separate from the Ig-fold domains of the progenitor class II structure, with prevention of aggregation accomplished by modification of an exposed surface that was buried in the progenitor structure. PMID:22973070
Ziegler, Alexander; Faber, Cornelius; Bartolomaeus, Thomas
2009-06-09
The axial complex of echinoderms (Echinodermata) is composed of various primary and secondary body cavities that interact with each other. In sea urchins (Echinoidea), structural differences of the axial complex in "regular" and irregular species have been observed, but the reasons underlying these differences are not fully understood. In addition, a better knowledge of axial complex diversity could not only be useful for phylogenetic inferences, but improve also an understanding of the function of this enigmatic structure. We therefore analyzed numerous species of almost all sea urchin orders by magnetic resonance imaging, dissection, histology, and transmission electron microscopy and compared the results with findings from published studies spanning almost two centuries. These combined analyses demonstrate that the axial complex is present in all sea urchin orders and has remained structurally conserved for a long time, at least in the "regular" species. Within the Irregularia, a considerable morphological variation of the axial complex can be observed with gradual changes in topography, size, and internal architecture. These modifications are related to the growing size of the gastric caecum as well as to the rearrangement of the morphology of the digestive tract as a whole. The structurally most divergent axial complex can be observed in the highly derived Atelostomata in which the reorganization of the digestive tract is most pronounced. Our findings demonstrate a structural interdependence of various internal organs, including digestive tract, mesenteries, and the axial complex.
Singh, Surinder M; Bandi, Swati; Jones, David N M; Mallela, Krishna M G
2017-12-01
We examined how polysorbate 20 (PS20; Tween 20) and polysorbate 80 (PS80; Tween 80) affect the higher-order structure of a monoclonal antibody (mAb) and its antigen-binding (Fab) and crystallizable (Fc) fragments, using near-UV circular dichroism and 2D nuclear magnetic resonance (NMR). Both polysorbates bind to the mAb with submillimolar affinity. Binding causes significant changes in the tertiary structure of mAb with no changes in its secondary structure. 2D 13 C- 1 H methyl NMR indicates that with increasing concentration of polysorbates, the Fab region showed a decrease in crosspeak volumes. In addition to volume changes, PS20 caused significant changes in the chemical shifts compared to no changes in the case of PS80. No such changes in crosspeak volumes or chemical shifts were observed in the case of Fc region, indicating that polysorbates predominantly affect the Fab region compared to the Fc region. This differential effect of polysorbates on the Fab and Fc regions was because of the lesser thermodynamic stability of the Fab compared to the Fc. These results further indicate that PS80 is the preferred polysorbate for this mAb formulation, because it offers higher protection against aggregation, causes lesser structural perturbation, and has weaker binding affinity with fewer binding sites compared to PS20. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Lee, John Chi-Kin
2017-01-01
Demand has risen for the introduction of career education in senior secondary schooling to enhance students' transition from study to work. Against such a background, this paper aims to discuss the curriculum reforms and supporting structures in schools and to explore the challenges of life skills planning for secondary school students in China…
Rauscher, S; Flamm, C; Mandl, C W; Heinz, F X; Stadler, P F
1997-07-01
The prediction of the complete matrix of base pairing probabilities was applied to the 3' noncoding region (NCR) of flavivirus genomes. This approach identifies not only well-defined secondary structure elements, but also regions of high structural flexibility. Flaviviruses, many of which are important human pathogens, have a common genomic organization, but exhibit a significant degree of RNA sequence diversity in the functionally important 3'-NCR. We demonstrate the presence of secondary structures shared by all flaviviruses, as well as structural features that are characteristic for groups of viruses within the genus reflecting the established classification scheme. The significance of most of the predicted structures is corroborated by compensatory mutations. The availability of infectious clones for several flaviviruses will allow the assessment of these structural elements in processes of the viral life cycle, such as replication and assembly.
A Method for WD40 Repeat Detection and Secondary Structure Prediction
Wang, Yang; Jiang, Fan; Zhuo, Zhu; Wu, Xian-Hui; Wu, Yun-Dong
2013-01-01
WD40-repeat proteins (WD40s), as one of the largest protein families in eukaryotes, play vital roles in assembling protein-protein/DNA/RNA complexes. WD40s fold into similar β-propeller structures despite diversified sequences. A program WDSP (WD40 repeat protein Structure Predictor) has been developed to accurately identify WD40 repeats and predict their secondary structures. The method is designed specifically for WD40 proteins by incorporating both local residue information and non-local family-specific structural features. It overcomes the problem of highly diversified protein sequences and variable loops. In addition, WDSP achieves a better prediction in identifying multiple WD40-domain proteins by taking the global combination of repeats into consideration. In secondary structure prediction, the average Q3 accuracy of WDSP in jack-knife test reaches 93.7%. A disease related protein LRRK2 was used as a representive example to demonstrate the structure prediction. PMID:23776530
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, Charles; Kaganovich, Igor D.
Complex structures on a material surface can significantly reduce the total secondary electron emission from that surface. The reduction occurs due to the capture of low-energy, true secondary electrons emitted at one point of the structure and intersecting another. We performed Monte Carlo calculations to demonstrate that fractal surfaces can reduce net secondary electron emission produced by the surface as compared to the flat surface. Specifically, we describe one surface, a “feathered” surface, which reduces the secondary electron emission yield more effectively than other previously considered configurations. Specifically, feathers grown onto a surface suppress secondary electron emission from shallow anglesmore » of incidence more effectively than velvet. Here, we find that, for the surface simulated, secondary electron emission yield remains below 20% of its un-suppressed value, even for shallow incident angles, where the velvet-only surface gives reduction factor of only 50%.« less
Swanson, Charles; Kaganovich, Igor D.
2017-07-24
Complex structures on a material surface can significantly reduce the total secondary electron emission from that surface. The reduction occurs due to the capture of low-energy, true secondary electrons emitted at one point of the structure and intersecting another. We performed Monte Carlo calculations to demonstrate that fractal surfaces can reduce net secondary electron emission produced by the surface as compared to the flat surface. Specifically, we describe one surface, a “feathered” surface, which reduces the secondary electron emission yield more effectively than other previously considered configurations. Specifically, feathers grown onto a surface suppress secondary electron emission from shallow anglesmore » of incidence more effectively than velvet. Here, we find that, for the surface simulated, secondary electron emission yield remains below 20% of its un-suppressed value, even for shallow incident angles, where the velvet-only surface gives reduction factor of only 50%.« less
NASA Astrophysics Data System (ADS)
Swanson, Charles; Kaganovich, Igor D.
2017-07-01
Complex structures on a material surface can significantly reduce the total secondary electron emission from that surface. The reduction occurs due to the capture of low-energy, true secondary electrons emitted at one point of the structure and intersecting another. We performed Monte Carlo calculations to demonstrate that fractal surfaces can reduce net secondary electron emission produced by the surface as compared to the flat surface. Specifically, we describe one surface, a "feathered" surface, which reduces the secondary electron emission yield more effectively than other previously considered configurations. Specifically, feathers grown onto a surface suppress secondary electron emission from shallow angles of incidence more effectively than velvet. We find that, for the surface simulated, secondary electron emission yield remains below 20% of its un-suppressed value, even for shallow incident angles, where the velvet-only surface gives reduction factor of only 50%.
Structure-Based Annotation of a Novel Sugar Isomerase from the Pathogenic E. coli O157:H7
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Staalduinen, L.; Park, C; Yeom, S
2010-01-01
Prokaryotes can use a variety of sugars as carbon sources in order to provide a selective survival advantage. The gene z5688 found in the pathogenic Escherichia coli O157:H7 encodes a 'hypothetical' protein of unknown function. Sequence analysis identified the gene product as a putative member of the cupin superfamily of proteins, but no other functional information was known. We have determined the crystal structure of the Z5688 protein at 1.6 {angstrom} resolution and identified the protein as a novel E. coli sugar isomerase (EcSI) through overall fold analysis and secondary-structure matching. Extensive substrate screening revealed that EcSI is capable ofmore » acting on D-lyxose and D-mannose. The complex structure of EcSI with fructose allowed the identification of key active-site residues, and mutagenesis confirmed their importance. The structure of EcSI also suggested a novel mechanism for substrate binding and product release in a cupin sugar isomerase. Supplementation of a nonpathogenic E. coli strain with EcSI enabled cell growth on the rare pentose d-lyxose.« less
SSEP: secondary structural elements of proteins
Shanthi, V.; Selvarani, P.; Kiran Kumar, Ch.; Mohire, C. S.; Sekar, K.
2003-01-01
SSEP is a comprehensive resource for accessing information related to the secondary structural elements present in the 25 and 90% non-redundant protein chains. The database contains 1771 protein chains from 1670 protein structures and 6182 protein chains from 5425 protein structures in 25 and 90% non-redundant protein chains, respectively. The current version provides information about the α-helical segments and β-strand fragments of varying lengths. In addition, it also contains the information about 310-helix, β- and ν-turns and hairpin loops. The free graphics program RASMOL has been interfaced with the search engine to visualize the three-dimensional structures of the user queried secondary structural fragment. The database is updated regularly and is available through Bioinformatics web server at http://cluster.physics.iisc.ernet.in/ssep/ or http://144.16.71.148/ssep/. PMID:12824336
On the prediction of turbulent secondary flows
NASA Technical Reports Server (NTRS)
Speziale, C. G.; So, R. M. C.; Younis, B. A.
1992-01-01
The prediction of turbulent secondary flows, with Reynolds stress models, in circular pipes and non-circular ducts is reviewed. Turbulence-driven secondary flows in straight non-circular ducts are considered along with turbulent secondary flows in pipes and ducts that arise from curvature or a system rotation. The physical mechanisms that generate these different kinds of secondary flows are outlined and the level of turbulence closure required to properly compute each type is discussed in detail. Illustrative computations of a variety of different secondary flows obtained from two-equation turbulence models and second-order closures are provided to amplify these points.
NASA Astrophysics Data System (ADS)
Oikonomou, Foteini; Murase, Kohta; Kotera, Kumiko
2014-08-01
High frequency peaked, high redshift blazars, are extreme in the sense that their spectrum is particularly hard and peaks at TeV energies. Standard leptonic scenarios require peculiar source parameters and/or a special setup in order to account for these observations. Electromagnetic cascades seeded by ultra-high energy cosmic rays (UHECR) in the intergalactic medium have also been invoked, assuming a very low intergalactic magnetic field (IGMF). Here we study the synchrotron emission of UHECR secondaries produced in blazars located in magnetised environments, and show that it can provide an alternative explanation to these challenged channels, for sources embedded in structured regions with magnetic field strengths of the order of 10-7 G. To demonstrate this, we focus on three extreme blazars: 1ES 0229+200, RGB J0710+591, and 1ES 1218+304. We model the expected gamma-ray signal from these sources through a combination of numerical Monte Carlo simulations and solving the kinetic equations of the particles in our simulations, and explore the UHECR source and intergalactic medium parameter space to test the robustness of the emission. We show that the generated synchrotron-pair halo and echo flux at the peak energy is not sensitive to variations in the overall IGMF strength. This signal is unavoidable in contrast to the inverse Compton-pair halo and echo intensity, which is appealing in view of the large uncertainties on the IGMF in voids of large scale structure. It is also shown that the variability of blazar gamma-ray emission can be accommodated by the synchrotron emission of secondary products of UHE neutral beams if these are emitted by UHECR accelerators inside magnetised regions.
NASA Astrophysics Data System (ADS)
Mao, Jingchao; Xu, Minyi; Liu, Qinghan; Shen, Weimin
2016-10-01
With the development of unmanned airborne vehicle (UAV) remote sensing technology, miniature high-resolution imaging spectrometers are greatly needed. In order to improve remote sensing efficiency and get wider coverage, it's urgent to design and develop fore-optics with wide field of view and waveband for imaging spectrometer. As the refractive system has no central obscuration and it's conducive to manufacture and assemble, so it's used for our fore-optics. The key is the correction of secondary spectrum of systems working in broad waveband and meeting the requirement of imagery telecentricity to be appropriate for linear pushbroom imaging system. Suitable glasses are selected on the Glass Map, from where each glass has an Abbe number υd and Partial Dispersion. Based on the theory of Gaussian Optics and Seidel third-order aberration theory, the paper derives apochromatic formula, and the power of individual lenses can be calculated. Then with a required value of spherical aberration and coma, this paper derives equations to calculate the initial structure of apochromatic optical systems. Finally, optimized refractive SWIR fore-optics working in 1μm-2.5μm with effective focal length (EFFL) of 11mm is reported. Its full field and F-number are respectively 40°, F/2.8. The system has many advantages such as simple and compact structure, small size, near diffraction-limited imaging quality, small secondary spectrum and imagery telecentricity. Especially it consists of spherical surfaces that can greatly reduce the difficulty and the cost of manufacture as well as test, which is applicable for SWIR imaging spectrometer with wide field of view.
Nanolayered Features of Collagen-like Peptides
NASA Technical Reports Server (NTRS)
Valluzzi, Regina; Bini, Elisabetta; Haas, Terry; Cebe, Peggy; Kaplan, David L.
2003-01-01
We have been investigating collagen-like model oligopeptides as molecular bases for complex ordered biomimetic materials. The collagen-like molecules incorporate aspects of native collagen sequence and secondary structure. Designed modifications to native primary and secondary structure have been incorporated to control the nanostructure and microstructure of the collagen-like materials produced. We find that the collagen-like molecules form a number of lyotropic rod liquid crystalline phases, which because of their strong temperature dependence in the liquid state can also be viewed as solvent intercalated thermotropic liquid crystals. The liquid crystalline phases formed by the molecules can be captured in the solid state by drying off solvent, resulting in solid nanopatterned (chemically and physically) thermally stable (to greater than 100 C) materials. Designed sequences which stabilize smectic phases have allowed a variety of nanoscale multilayered biopolymeric materials to be developed. Preliminary investigations suggest that chemical patterns running perpendicular to the smectic layer plane can be functionalized and used to localize a variety of organic, inorganic, and organometallic moieties in very simple multilayered nanocomposites. The phase behavior of collagen-like oligopeptide materials is described, emphasizing the correlation between mesophase, molecular orientation, and chemical patterning at the microscale and nanoscale. In many cases, the textures observed for smectic and hexatic phase collagens are remarkably similar to the complex (and not fully understood) helicoids observed in biological collagen-based tissues. Comparisons between biological morphologies and collagen model liquid crystalline (and solidified materials) textures may help us understand the molecular features which impart order and function to the extracellular matrix and to collagen-based mineralized tissues. Initial studies have utilized synthetic collagen-like peptides while future work will also focus on similar sequences generated via genetic engineering methods.
Lin, A; McNally, J; Wool, I G
1983-09-10
The covalent structure of the rat liver 60 S ribosomal subunit protein L37 was determined. Twenty-four tryptic peptides were purified and the sequence of each was established; they accounted for all 111 residues of L37. The sequence of the first 30 residues of L37, obtained previously by automated Edman degradation of the intact protein, provided the alignment of the first 9 tryptic peptides. Three peptides (CN1, CN2, and CN3) were produced by cleavage of protein L37 with cyanogen bromide. The sequence of CN1 (65 residues) was established from the sequence of secondary peptides resulting from cleavage with trypsin and chymotrypsin. The sequence of CN1 in turn served to order tryptic peptides 1 through 14. The sequence of CN2 (15 residues) was determined entirely by a micromanual procedure and allowed the alignment of tryptic peptides 14 through 18. The sequence of the NH2-terminal 28 amino acids of CN3 (31 residues) was determined; in addition the complete sequences of the secondary tryptic and chymotryptic peptides were done. The sequence of CN3 provided the order of tryptic peptides 18 through 24. Thus the sequence of the three cyanogen bromide peptides also accounted for the 111 residues of protein L37. The carboxyl-terminal amino acids were identified after carboxypeptidase A treatment. There is a disulfide bridge between half-cystinyl residues at positions 40 and 69. Rat liver ribosomal protein L37 is homologous with yeast YP55 and with Escherichia coli L34. Moreover, there is a segment of 17 residues in rat L37 that occurs, albeit with modifications, in yeast YP55 and in E. coli S4, L20, and L34.
ITS2 data corroborate a monophyletic chlorophycean DO-group (Sphaeropleales)
2008-01-01
Background Within Chlorophyceae the ITS2 secondary structure shows an unbranched helix I, except for the 'Hydrodictyon' and the 'Scenedesmus' clade having a ramified first helix. The latter two are classified within the Sphaeropleales, characterised by directly opposed basal bodies in their flagellar apparatuses (DO-group). Previous studies could not resolve the taxonomic position of the 'Sphaeroplea' clade within the Chlorophyceae without ambiguity and two pivotal questions remain open: (1) Is the DO-group monophyletic and (2) is a branched helix I an apomorphic feature of the DO-group? In the present study we analysed the secondary structure of three newly obtained ITS2 sequences classified within the 'Sphaeroplea' clade and resolved sphaeroplealean relationships by applying different phylogenetic approaches based on a combined sequence-structure alignment. Results The newly obtained ITS2 sequences of Ankyra judayi, Atractomorpha porcata and Sphaeroplea annulina of the 'Sphaeroplea' clade do not show any branching in the secondary structure of their helix I. All applied phylogenetic methods highly support the 'Sphaeroplea' clade as a sister group to the 'core Sphaeropleales'. Thus, the DO-group is monophyletic. Furthermore, based on characteristics in the sequence-structure alignment one is able to distinguish distinct lineages within the green algae. Conclusion In green algae, a branched helix I in the secondary structure of the ITS2 evolves past the 'Sphaeroplea' clade. A branched helix I is an apomorph characteristic within the monophyletic DO-group. Our results corroborate the fundamental relevance of including the secondary structure in sequence analysis and phylogenetics. PMID:18655698
BEAM web server: a tool for structural RNA motif discovery.
Pietrosanto, Marco; Adinolfi, Marta; Casula, Riccardo; Ausiello, Gabriele; Ferrè, Fabrizio; Helmer-Citterich, Manuela
2018-03-15
RNA structural motif finding is a relevant problem that becomes computationally hard when working on high-throughput data (e.g. eCLIP, PAR-CLIP), often represented by thousands of RNA molecules. Currently, the BEAM server is the only web tool capable to handle tens of thousands of RNA in input with a motif discovery procedure that is only limited by the current secondary structure prediction accuracies. The recently developed method BEAM (BEAr Motifs finder) can analyze tens of thousands of RNA molecules and identify RNA secondary structure motifs associated to a measure of their statistical significance. BEAM is extremely fast thanks to the BEAR encoding that transforms each RNA secondary structure in a string of characters. BEAM also exploits the evolutionary knowledge contained in a substitution matrix of secondary structure elements, extracted from the RFAM database of families of homologous RNAs. The BEAM web server has been designed to streamline data pre-processing by automatically handling folding and encoding of RNA sequences, giving users a choice for the preferred folding program. The server provides an intuitive and informative results page with the list of secondary structure motifs identified, the logo of each motif, its significance, graphic representation and information about its position in the RNA molecules sharing it. The web server is freely available at http://beam.uniroma2.it/ and it is implemented in NodeJS and Python with all major browsers supported. marco.pietrosanto@uniroma2.it. Supplementary data are available at Bioinformatics online.
Protein flexibility in the light of structural alphabets
Craveur, Pierrick; Joseph, Agnel P.; Esque, Jeremy; Narwani, Tarun J.; Noël, Floriane; Shinada, Nicolas; Goguet, Matthieu; Leonard, Sylvain; Poulain, Pierre; Bertrand, Olivier; Faure, Guilhem; Rebehmed, Joseph; Ghozlane, Amine; Swapna, Lakshmipuram S.; Bhaskara, Ramachandra M.; Barnoud, Jonathan; Téletchéa, Stéphane; Jallu, Vincent; Cerny, Jiri; Schneider, Bohdan; Etchebest, Catherine; Srinivasan, Narayanaswamy; Gelly, Jean-Christophe; de Brevern, Alexandre G.
2015-01-01
Protein structures are valuable tools to understand protein function. Nonetheless, proteins are often considered as rigid macromolecules while their structures exhibit specific flexibility, which is essential to complete their functions. Analyses of protein structures and dynamics are often performed with a simplified three-state description, i.e., the classical secondary structures. More precise and complete description of protein backbone conformation can be obtained using libraries of small protein fragments that are able to approximate every part of protein structures. These libraries, called structural alphabets (SAs), have been widely used in structure analysis field, from definition of ligand binding sites to superimposition of protein structures. SAs are also well suited to analyze the dynamics of protein structures. Here, we review innovative approaches that investigate protein flexibility based on SAs description. Coupled to various sources of experimental data (e.g., B-factor) and computational methodology (e.g., Molecular Dynamic simulation), SAs turn out to be powerful tools to analyze protein dynamics, e.g., to examine allosteric mechanisms in large set of structures in complexes, to identify order/disorder transition. SAs were also shown to be quite efficient to predict protein flexibility from amino-acid sequence. Finally, in this review, we exemplify the interest of SAs for studying flexibility with different cases of proteins implicated in pathologies and diseases. PMID:26075209
Web-Beagle: a web server for the alignment of RNA secondary structures.
Mattei, Eugenio; Pietrosanto, Marco; Ferrè, Fabrizio; Helmer-Citterich, Manuela
2015-07-01
Web-Beagle (http://beagle.bio.uniroma2.it) is a web server for the pairwise global or local alignment of RNA secondary structures. The server exploits a new encoding for RNA secondary structure and a substitution matrix of RNA structural elements to perform RNA structural alignments. The web server allows the user to compute up to 10 000 alignments in a single run, taking as input sets of RNA sequences and structures or primary sequences alone. In the latter case, the server computes the secondary structure prediction for the RNAs on-the-fly using RNAfold (free energy minimization). The user can also compare a set of input RNAs to one of five pre-compiled RNA datasets including lncRNAs and 3' UTRs. All types of comparison produce in output the pairwise alignments along with structural similarity and statistical significance measures for each resulting alignment. A graphical color-coded representation of the alignments allows the user to easily identify structural similarities between RNAs. Web-Beagle can be used for finding structurally related regions in two or more RNAs, for the identification of homologous regions or for functional annotation. Benchmark tests show that Web-Beagle has lower computational complexity, running time and better performances than other available methods. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Zheng, Ce; Kurgan, Lukasz
2008-10-10
beta-turn is a secondary protein structure type that plays significant role in protein folding, stability, and molecular recognition. To date, several methods for prediction of beta-turns from protein sequences were developed, but they are characterized by relatively poor prediction quality. The novelty of the proposed sequence-based beta-turn predictor stems from the usage of a window based information extracted from four predicted three-state secondary structures, which together with a selected set of position specific scoring matrix (PSSM) values serve as an input to the support vector machine (SVM) predictor. We show that (1) all four predicted secondary structures are useful; (2) the most useful information extracted from the predicted secondary structure includes the structure of the predicted residue, secondary structure content in a window around the predicted residue, and features that indicate whether the predicted residue is inside a secondary structure segment; (3) the PSSM values of Asn, Asp, Gly, Ile, Leu, Met, Pro, and Val were among the top ranked features, which corroborates with recent studies. The Asn, Asp, Gly, and Pro indicate potential beta-turns, while the remaining four amino acids are useful to predict non-beta-turns. Empirical evaluation using three nonredundant datasets shows favorable Q total, Q predicted and MCC values when compared with over a dozen of modern competing methods. Our method is the first to break the 80% Q total barrier and achieves Q total = 80.9%, MCC = 0.47, and Q predicted higher by over 6% when compared with the second best method. We use feature selection to reduce the dimensionality of the feature vector used as the input for the proposed prediction method. The applied feature set is smaller by 86, 62 and 37% when compared with the second and two third-best (with respect to MCC) competing methods, respectively. Experiments show that the proposed method constitutes an improvement over the competing prediction methods. The proposed prediction model can better discriminate between beta-turns and non-beta-turns due to obtaining lower numbers of false positive predictions. The prediction model and datasets are freely available at http://biomine.ece.ualberta.ca/BTNpred/BTNpred.html.
Zheng, Ce; Kurgan, Lukasz
2008-01-01
Background β-turn is a secondary protein structure type that plays significant role in protein folding, stability, and molecular recognition. To date, several methods for prediction of β-turns from protein sequences were developed, but they are characterized by relatively poor prediction quality. The novelty of the proposed sequence-based β-turn predictor stems from the usage of a window based information extracted from four predicted three-state secondary structures, which together with a selected set of position specific scoring matrix (PSSM) values serve as an input to the support vector machine (SVM) predictor. Results We show that (1) all four predicted secondary structures are useful; (2) the most useful information extracted from the predicted secondary structure includes the structure of the predicted residue, secondary structure content in a window around the predicted residue, and features that indicate whether the predicted residue is inside a secondary structure segment; (3) the PSSM values of Asn, Asp, Gly, Ile, Leu, Met, Pro, and Val were among the top ranked features, which corroborates with recent studies. The Asn, Asp, Gly, and Pro indicate potential β-turns, while the remaining four amino acids are useful to predict non-β-turns. Empirical evaluation using three nonredundant datasets shows favorable Qtotal, Qpredicted and MCC values when compared with over a dozen of modern competing methods. Our method is the first to break the 80% Qtotal barrier and achieves Qtotal = 80.9%, MCC = 0.47, and Qpredicted higher by over 6% when compared with the second best method. We use feature selection to reduce the dimensionality of the feature vector used as the input for the proposed prediction method. The applied feature set is smaller by 86, 62 and 37% when compared with the second and two third-best (with respect to MCC) competing methods, respectively. Conclusion Experiments show that the proposed method constitutes an improvement over the competing prediction methods. The proposed prediction model can better discriminate between β-turns and non-β-turns due to obtaining lower numbers of false positive predictions. The prediction model and datasets are freely available at . PMID:18847492
ERIC Educational Resources Information Center
Harle, Marissa; Towns, Marcy H.
2013-01-01
The interdisciplinary nature of biochemistry courses requires students to use both chemistry and biology knowledge to understand biochemical concepts. Research that has focused on external representations in biochemistry has uncovered student difficulties in comprehending and interpreting external representations in addition to a fragmented…
ERIC Educational Resources Information Center
Yavuz, Mustafa
2009-01-01
Discovering what determines students' success in the Secondary Education Institutional Exam is very important to parents and it is also critical for students, teachers, directors, and researchers. Research was carried out by studying the related literature and structural equation modeling techniques. A structural model was created that consisted…
Sloma, Michael F; Mathews, David H
2016-12-01
RNA secondary structure prediction is widely used to analyze RNA sequences. In an RNA partition function calculation, free energy nearest neighbor parameters are used in a dynamic programming algorithm to estimate statistical properties of the secondary structure ensemble. Previously, partition functions have largely been used to estimate the probability that a given pair of nucleotides form a base pair, the conditional stacking probability, the accessibility to binding of a continuous stretch of nucleotides, or a representative sample of RNA structures. Here it is demonstrated that an RNA partition function can also be used to calculate the exact probability of formation of hairpin loops, internal loops, bulge loops, or multibranch loops at a given position. This calculation can also be used to estimate the probability of formation of specific helices. Benchmarking on a set of RNA sequences with known secondary structures indicated that loops that were calculated to be more probable were more likely to be present in the known structure than less probable loops. Furthermore, highly probable loops are more likely to be in the known structure than the set of loops predicted in the lowest free energy structures. © 2016 Sloma and Mathews; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
An Adaptive Defect Weighted Sampling Algorithm to Design Pseudoknotted RNA Secondary Structures
Zandi, Kasra; Butler, Gregory; Kharma, Nawwaf
2016-01-01
Computational design of RNA sequences that fold into targeted secondary structures has many applications in biomedicine, nanotechnology and synthetic biology. An RNA molecule is made of different types of secondary structure elements and an important RNA element named pseudoknot plays a key role in stabilizing the functional form of the molecule. However, due to the computational complexities associated with characterizing pseudoknotted RNA structures, most of the existing RNA sequence designer algorithms generally ignore this important structural element and therefore limit their applications. In this paper we present a new algorithm to design RNA sequences for pseudoknotted secondary structures. We use NUPACK as the folding algorithm to compute the equilibrium characteristics of the pseudoknotted RNAs, and describe a new adaptive defect weighted sampling algorithm named Enzymer to design low ensemble defect RNA sequences for targeted secondary structures including pseudoknots. We used a biological data set of 201 pseudoknotted structures from the Pseudobase library to benchmark the performance of our algorithm. We compared the quality characteristics of the RNA sequences we designed by Enzymer with the results obtained from the state of the art MODENA and antaRNA. Our results show our method succeeds more frequently than MODENA and antaRNA do, and generates sequences that have lower ensemble defect, lower probability defect and higher thermostability. Finally by using Enzymer and by constraining the design to a naturally occurring and highly conserved Hammerhead motif, we designed 8 sequences for a pseudoknotted cis-acting Hammerhead ribozyme. Enzymer is available for download at https://bitbucket.org/casraz/enzymer. PMID:27499762
NASA Astrophysics Data System (ADS)
Blodgett, Karl N.; Zwier, Timothy S.
2017-06-01
Synthetic foldamers are non-natural polymers designed to fold into unique secondary structures that either mimic nature's preferred secondary structures, or expand their possibilities. Among the most studied synthetic foldamers are β-peptides, which lengthen the distance between amide groups from the single substituted carbon spacer in α-peptides by one (β) additional carbon. Cyclically constrained β-amino acids can impart rigidity to the secondary structure of oligomers by locking in a particular conformation. The β-residue cis-2-aminocyclohexanecarboxylic acid (cis-ACHC) is one such amino acid which has been shown to drive vastly different secondary structures as a function of the local conformation of the cyclohexane ring. We present data on two diastereomers of the mixed α/β tri-peptide Ac-Ala-β_{ACHC}-Ala-NHBn which differ from one another by the chirality along the ACHC residue (SRSS vs. SSRS). The first oligomer is known to crystallize to a 9/11 mixed helix while the second forms no intramolecular hydrogen bonds in the crystal state. This talk will describe the conformation-specific IR and UV spectroscopy of the above two diastereomers under jet cooled conditions in the gas phase. Assignments based on comparison with calculations show the presence of incipient 9/11 mixed helices and competing structures containing more tightly folded hydrogen-bonded networks. The calculated global minimum structures are observed in each case, and in each case these folded structures are reminiscent of a β-turn.
INFO-RNA--a fast approach to inverse RNA folding.
Busch, Anke; Backofen, Rolf
2006-08-01
The structure of RNA molecules is often crucial for their function. Therefore, secondary structure prediction has gained much interest. Here, we consider the inverse RNA folding problem, which means designing RNA sequences that fold into a given structure. We introduce a new algorithm for the inverse folding problem (INFO-RNA) that consists of two parts; a dynamic programming method for good initial sequences and a following improved stochastic local search that uses an effective neighbor selection method. During the initialization, we design a sequence that among all sequences adopts the given structure with the lowest possible energy. For the selection of neighbors during the search, we use a kind of look-ahead of one selection step applying an additional energy-based criterion. Afterwards, the pre-ordered neighbors are tested using the actual optimization criterion of minimizing the structure distance between the target structure and the mfe structure of the considered neighbor. We compared our algorithm to RNAinverse and RNA-SSD for artificial and biological test sets. Using INFO-RNA, we performed better than RNAinverse and in most cases, we gained better results than RNA-SSD, the probably best inverse RNA folding tool on the market. www.bioinf.uni-freiburg.de?Subpages/software.html.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kandare, S. P.; Dhole, S. D.; Bhoraskar, V. N.
Cu{sub 2}ZnSnS{sub 4} (CZTS) nanoflakes were synthesized in one step by microwave irradiation method. Controlling the secondary phases in Copper Zinc Tin Sulfide (CZTS) material is critical, but it is necessary to control secondary phases in order to achieve the high efficiency solar cells made from CZTS. In the recent years, CZTS has shown its growing importance in thin film photovoltaic application because of its favorable optical and electrical properties. In this work, a systematic study has been carried out by properly controlling the copper concentration to get the pure phase of CZTS. X-ray diffraction shows the CZTS kesterite structure.more » Optical band gap estimated from UV-Visible spectroscopy was around 1.37eV. Systematic Raman study reveals the suppression of Cu{sub 2}S peak with variation in copper concentration which otherwise was not clear from XRD and UV-visible data.« less