Visualizing water molecules in transmembrane proteins using radiolytic labeling methods†
Orban, Tivadar; Gupta, Sayan; Palczewski, Krzysztof; Chance, Mark R.
2010-01-01
Essential to cells and their organelles, water is both shuttled to where it is needed and trapped within cellular compartments and structures. Moreover, ordered waters within protein structures often co-localize with strategically placed polar or charged groups critical for protein function. Yet it is unclear if these ordered water molecules provide structural stabilization, mediate conformational changes in signaling, neutralize charged residues, or carry out a combination of all these functions. Structures of many integral membrane proteins, including G protein-coupled receptors (GPCRs), reveal the presence of ordered water molecules that may act like prosthetic groups in a manner quite unlike bulk water. Identification of ‘ordered’ waters within a crystalline protein structure requires sufficient occupancy of water to enable its detection in the protein's X-ray diffraction pattern and thus the observed waters likely represent a subset of tightly-bound functional waters. In this review, we highlight recent studies that suggest the structures of ordered waters within GPCRs are as conserved (and thus as important) as conserved side chains. In addition, methods of radiolysis, coupled to structural mass spectrometry (protein footprinting), reveal dynamic changes in water structure that mediate transmembrane signaling. The idea of water as a prosthetic group mediating chemical reaction dynamics is not new in fields such as catalysis. However, the concept of water as a mediator of conformational dynamics in signaling is just emerging, owing to advances in both crystallographic structure determination and new methods of protein footprinting. Although oil and water do not mix, understanding the roles of water is essential to understanding the function of membrane proteins. PMID:20047303
Microscopic structural descriptor of liquid water
NASA Astrophysics Data System (ADS)
Shi, Rui; Tanaka, Hajime
2018-03-01
The microscopic structure of liquid water has been believed to be the key to the understanding of the unique properties of this extremely important substance. Many structural descriptors have been developed for revealing local structural order in water, but their properties are still not well understood. The essential difficulty comes from structural fluctuations due to thermal noise, which are intrinsic to the liquid state. The most popular and widely used descriptors are the local structure index (LSI) and d5. Recently, Russo and Tanaka [Nat. Commun. 3, 3556 (2014)] introduced a new descriptor ζ which measures the translational order between the first and second shells considering hydrogen bonding (H-bonding) in the first shell. In this work, we compare the performance of these three structural descriptors for a popular water model known as TIP5P water. We show that local structural ordering can be properly captured only by the structural descriptor ζ, but not by the other two descriptors particularly at a high temperature, where thermal noise effects are severe. The key difference of ζ from LSI and d5 is that only ζ considers H-bonding which is crucial to detect high translational and tetrahedral order of not only oxygen but also hydrogen atoms. The importance of H-bonding is very natural, considering the fact that the locally favored structures are stabilized by energy gain due to the formation of four hydrogen bonds between the central water molecule and its neighboring ones in the first shell. Our analysis of the water structure by using ζ strongly supports the two-state model of water: water is a dynamic mixture of locally favored (ordered) and normal-liquid (disordered) structures. This work demonstrates the importance of H-bonding in the characterization of water's structures and provides a useful structural descriptor for water-type tetrahedral liquids to study their structure and dynamics.
NASA Astrophysics Data System (ADS)
Yan, Zhenyu; Buldyrev, Sergey V.; Kumar, Pradeep; Giovambattista, Nicolas; Debenedetti, Pablo G.; Stanley, H. Eugene
2007-11-01
We perform molecular dynamics simulations of water using the five-site transferable interaction potential (TIP5P) model to quantify structural order in both the first shell (defined by four nearest neighbors) and second shell (defined by twelve next-nearest neighbors) of a central water molecule. We find that the anomalous decrease of orientational order upon compression occurs in both shells, but the anomalous decrease of translational order upon compression occurs mainly in the second shell. The decreases of translational order and orientational order upon compression (called the “structural anomaly”) are thus correlated only in the second shell. Our findings quantitatively confirm the qualitative idea that the thermodynamic, structural, and hence dynamic anomalies of water are related to changes upon compression in the second shell.
Variations of water's local-structure induced by solvation of NaCl
NASA Astrophysics Data System (ADS)
Gu, Bin; Zhang, Feng-Shou; Huang, Yu-Gai; Fang, Xia
2010-03-01
The researches on the structure of water and its changes induced by solutes are of enduring interests. The changes of the local structure of liquid water induced by NaCl solute under ambient conditions are studied and presented quantitatively with some order parameters and visualized with 2-body and 3-body correlation functions. The results show that, after the NaCl are solvated, the translational order t of water is decreased for the suppression of the second hydration shells around H2O molecules; the tetrahedral order (q) of water is also decreased and its favorite distribution peak moves from 0.76 to 0.5. In addition, the orientational freedom k and the diffusion coefficient D of water molecules are reduced because of new formed hydrogen-bonding structures between water and solvated ions.
Yang, Ding-Shyue; Zewail, Ahmed H.
2009-01-01
Interfacial water has unique properties in various functions. Here, using 4-dimensional (4D), ultrafast electron crystallography with atomic-scale spatial and temporal resolution, we report study of structure and dynamics of interfacial water assembly on a hydrophobic surface. Structurally, vertically stacked bilayers on highly oriented pyrolytic graphite surface were determined to be ordered, contrary to the expectation that the strong hydrogen bonding of water on hydrophobic surfaces would dominate with suppressed interfacial order. Because of its terrace morphology, graphite plays the role of a template. The dynamics is also surprising. After the excitation of graphite by an ultrafast infrared pulse, the interfacial ice structure undergoes nonequilibrium “phase transformation” identified in the hydrogen-bond network through the observation of structural isosbestic point. We provide the time scales involved, the nature of ice-graphite structural dynamics, and relevance to properties related to confined water. PMID:19246378
Liu, Siyuan; Cai, Panfu; Li, Xiaoxi; Chen, Ling; Li, Lin; Li, Bing
2016-12-10
To improve the water vapor resistance of starch-based films, Na-MMT (Na-montmorillonite) as nanofillers were fabricated into hydroxypropyl starch and the multi-scale structural changes (including intermolecular interaction, short-range conformation, long-range ordered structure and the aggregated structure of the film) were revealed. The elongation of the water vapor molecule pathway by tortuous path is generally recognized as the main reason for the improvement of water resistance. However this study observed the lowest water vapor permeability (WVP) was at the 3% Na-MMT/hydroxypropyl starch (HPS) ratio instead of 5% even nanofillers were partially exfoliated at both ratio. Except for the "tortuous path" caused by nanofillers, this observation proposed that the short-range conformation of HPS chains, long-range ordered structure and the aggregated structure likely influenced the water barrier property. The relationship between WVP and multi-scale structure of the film was investigated. The results suggested that a good balance of short-range conformationin the amorphous region, long-range ordered structure and the aggregated structure of the film was required for the improvement of water vapor barrier property. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rudling, Axel; Orro, Adolfo; Carlsson, Jens
2018-02-26
Water plays a major role in ligand binding and is attracting increasing attention in structure-based drug design. Water molecules can make large contributions to binding affinity by bridging protein-ligand interactions or by being displaced upon complex formation, but these phenomena are challenging to model at the molecular level. Herein, networks of ordered water molecules in protein binding sites were analyzed by clustering of molecular dynamics (MD) simulation trajectories. Locations of ordered waters (hydration sites) were first identified from simulations of high resolution crystal structures of 13 protein-ligand complexes. The MD-derived hydration sites reproduced 73% of the binding site water molecules observed in the crystal structures. If the simulations were repeated without the cocrystallized ligands, a majority (58%) of the crystal waters in the binding sites were still predicted. In addition, comparison of the hydration sites obtained from simulations carried out in the absence of ligands to those identified for the complexes revealed that the networks of ordered water molecules were preserved to a large extent, suggesting that the locations of waters in a protein-ligand interface are mainly dictated by the protein. Analysis of >1000 crystal structures showed that hydration sites bridged protein-ligand interactions in complexes with different ligands, and those with high MD-derived occupancies were more likely to correspond to experimentally observed ordered water molecules. The results demonstrate that ordered water molecules relevant for modeling of protein-ligand complexes can be identified from MD simulations. Our findings could contribute to development of improved methods for structure-based virtual screening and lead optimization.
Molecular dynamics simulations of proton-ordered water confined in low-diameter carbon nanotubes.
Li, Shujuan; Schmidt, Burkhard
2015-03-21
The present work deals with molecular dynamics simulations of water confined in single-walled carbon nanotubes (CNTs), with emphasis on the proton-ordering of water and its polarization. First, the water occupancy of open-ended armchair and zigzag CNTs immersed in water under ambient NPT conditions is calculated for various water models, and for varying Lennard-Jones parameters of the water-carbon interaction. As a function of the CNT diameter, the water density displays several oscillations before converging to the bulk value. Based on these results, the water structures encapsulated in 10 nm long armchair CNTs (n,n) with 5 ≤ n ≤ 10, are investigated under NVT conditions. Inside the smallest nanotubes (n = 5, 6) highly ferroelectric (FE), quasi-one-dimensional water chains are found while inside the other CNTs water molecules assemble into single-walled ice nanotubes (INTs). There are several, near-degenerate minimum energy INT structures: single helical structures were found for 7 ≤ n ≤ 10, in all cases in FE arrangement. In addition, a double helical INT structure was found for n = 8 with an even higher polarization. Prism-like structures were found only for 8 ≤ n ≤ 10 with various FE, ferrielectric (FI), and antiferroelectric (AF, n = 9, 10) proton ordering. The coexistence of the nearly iso-energetic FE, FI, and AF INT structures separated by high barriers renders the molecular dynamics highly metastable, typically with nanosecond timescales at room temperature. Hence, the replica exchange simulation method is used to obtain populations of different INT states at finite temperatures. Many of the FE INT structures confined in low-diameter CNTs are still prevalent at room temperature. Both helix-helix and helix-prism structural transitions are detected which can be either continuous (around 470 K for n = 8) or discontinuous (at 218 K for n = 9). Also melting-like transitions are found in which the INT structures are disrupted leading to a loss of FE or FI ordering of the water orientations. Also these transitions can be either smooth (for n = 7, 8) or abrupt, first-order transitions, at T = 362 K for n = 9 and at T = 285 K for n = 10.
Molecular Design of Branched and Binary Molecules at Ordered Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genson, Kirsten Larson
2005-01-01
This study examined five different branched molecular architectures to discern the effect of design on the ability of molecules to form ordered structures at interfaces. Photochromic monodendrons formed kinked packing structures at the air-water interface due to the cross-sectional area mismatch created by varying number of alkyl tails and the hydrophilic polar head group. The lower generations formed orthorhombic unit cell with long range ordering despite the alkyl tails tilted to a large degree. Favorable interactions between liquid crystalline terminal groups and the underlying substrate were observed to compel a flexible carbosilane dendrimer core to form a compressed elliptical conformationmore » which packed stagger within lamellae domains with limited short range ordering. A twelve arm binary star polymer was observed to form two dimensional micelles at the air-water interface attributed to the higher polystyrene block composition. Linear rod-coil molecules formed a multitude of packing structures at the air-water interface due to the varying composition. Tree-like rod-coil molecules demonstrated the ability to form one-dimensional structures at the air-water interface and at the air-solvent interface caused by the preferential ordering of the rigid rod cores. The role of molecular architecture and composition was examined and the influence chemically competing fragments was shown to exert on the packing structure. The amphiphilic balance of the different molecular series exhibited control on the ordering behavior at the air-water interface and within bulk structures. The shell nature and tail type was determined to dictate the preferential ordering structure and molecular reorganization at interfaces with the core nature effect secondary.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshmukh, Sanket; Solomon, Lee A.; Kamath, Ganesh
Understanding the role of water in governing the kinetics of the self-assembly processes of amphiphilic peptides has still remained elusive. Here, using a multi-stage atomistic-coarse-grained approach, complemented by circular dichroism/infra-red spectroscopy and dynamic light scattering experiments, we highlight the dual nature of water in dictating the mechanism and dynamics of self-assembly of peptide amphiphiles (PAs). Our computational study shows that (i) Water cage formation and breakage near the hydrophobic groups controls the fusion dynamics and aggregation of PAs in the micellar stage, and (ii) Enhanced structural ordering of vicinal water near the hydrophilic amino acids shifts the equilibrium towards themore » fiber phase and stimulates structure and order in the PAs when they assemble into a hexagonal nanofiber architecture. Finally, spectroscopy and microscopy studies authenticate our computational observation that water ordering near the PAs increases with increase in time. The measured infra-red O-H bond stretch frequency reminiscent of ice-like suggests that the solvated water becomes increasingly solid-like with increased structural order in the assembled peptide network – thus shedding light on the role of water in a self-assembly process.« less
Deshmukh, Sanket; Solomon, Lee A.; Kamath, Ganesh; ...
2016-08-24
Understanding the role of water in governing the kinetics of the self-assembly processes of amphiphilic peptides has still remained elusive. Here, using a multi-stage atomistic-coarse-grained approach, complemented by circular dichroism/infra-red spectroscopy and dynamic light scattering experiments, we highlight the dual nature of water in dictating the mechanism and dynamics of self-assembly of peptide amphiphiles (PAs). Our computational study shows that (i) Water cage formation and breakage near the hydrophobic groups controls the fusion dynamics and aggregation of PAs in the micellar stage, and (ii) Enhanced structural ordering of vicinal water near the hydrophilic amino acids shifts the equilibrium towards themore » fiber phase and stimulates structure and order in the PAs when they assemble into a hexagonal nanofiber architecture. Finally, spectroscopy and microscopy studies authenticate our computational observation that water ordering near the PAs increases with increase in time. The measured infra-red O-H bond stretch frequency reminiscent of ice-like suggests that the solvated water becomes increasingly solid-like with increased structural order in the assembled peptide network – thus shedding light on the role of water in a self-assembly process.« less
Structural properties of hydration shell around various conformations of simple polypeptides.
Czapiewski, Dariusz; Zielkiewicz, Jan
2010-04-08
In this paper we investigate structural properties of water within the solvation shell around the peptide core created by a well-defined conformation of polypeptide chain. The following secondary structures are investigated: linear (straight chain), and three helices PII (polyproline-like), 3(10), and alpha. We propose using the two-particle contribution to entropy as a rational measure of the water structural ordering within the solvation layer. This contribution divides into two terms, depending on the peptide-water and water-water interactions, respectively, and in this paper both terms are investigated. The structure of "solvation" water is described by the second term, and therefore it mainly attracts our attention. Determination of this term, however, is not an easy task, requiring some controversial approximations. Therefore, we have transformed this term to the form of some rational parameter which measures the local structural ordering of water within the solvation shell. Moreover, the results of several independent investigations are reported: we adopt the harmonic approximation for an independent estimation of the water entropy within the solvation shell, and we also study structure of the water-water hydrogen bond network, mean geometry of a single hydrogen bond, the self-diffusion coefficients (both translational and rotational) of water, and the mean lifetimes of water-water and water-peptide hydrogen bonds. All the obtained results lead to the conclusion that the local structure of water within the solvation shell changes only slightly in comparison to the bulk one. If so, the measure of local water ordering proposed by us is exploited with the aim to gain the deeper insight on the structural properties of "solvation" water. It has been shown that this parameter can be factored into three terms, which measure translational, configurational, and orientational ordering, respectively. Using this factoring, the ordering map for a precise description of the water local ordering has been built. An interesting correlation is observed: the points on this map lie approximately on the straight line, while the linear conformations clearly deviate from the general tendency. Further analysis of the obtained results allows us to express the supposition that an increasing local ordering of water around given secondary structure corresponds to an increasing relative stability of this structure in aqueous solution. Analyzing the geometry of the water-water hydrogen bond network within the solvation layer, we find some systematic deviations of this geometry from the bulk water properties. We also observe that the alanine peptides (excluding the linear form) disturb the hydrogen bond network in the less range, and in another way than the various conformations of polyglycine, while the linear form of polyalanine behaves very similarly to the glycine ones. Next, investigating the dynamic properties, we also conclude that water near the peptide surface creates a pseudorigid structure, a "halo" around the peptide core. This "halo" is stabilized by slightly higher energy of the hydrogen bonds network: we have found that within this region the hydrogen bonds network is slightly less distorted, the water-water hydrogen bonds are a little more stable and their mean lifetime is clearly longer that that of bulk water. Significant differences between the alanine- and glycine-based polypeptides are also visible. It has also been found that this solvation layer interacts with the polyalanine in another way than with polyglycine. Although in the case of the glycine-based polypeptide this layer slides relatively freely over the peptide surface, for the alanine-based polypeptide this sliding is strongly hindered by the presence of the methyl groups, and this effect is additionally enhanced by a rise in the solvation layer rigidity. Thus, the survey of various dynamic properties allows us to perceive and to explain distinct differences in behavior of water within the solvation shell around both glycine and alanine peptides.
Chloride ions induce order-disorder transition at water-oxide interfaces
NASA Astrophysics Data System (ADS)
Deshmukh, Sanket; Kamath, Ganesh; Ramanathan, Shriram; Sankaranarayanan, Subramanian K. R. S.
2013-12-01
Water can form quasi-two-dimensional ordered layers near a solid interface. The solvation dynamics and ionic transport phenomena through this ordered water structure is of direct relevance to a variety of problems in interface science. Molecular dynamics simulations are used to study the impact of local fluctuation of the chloride ion density in the vicinity of an oxide surface on the structure and dynamics of water layers. We demonstrate that local increase in chloride ions beyond a threshold concentration near the water-MgO (100) interface introduces an order-disorder transition of this two-dimensional layered network into bulklike water, leading to increased diffusional characteristics and reduced hydrogen bonding lifetimes. We find that the extent of this order-disorder transition can be tuned by modifying the defect chemistry and nature of the underlying substrate. The kinetic fluidity resulting from order-disorder transition at high chloride ion concentration has significance for a broad range of phenomena, ranging from freezing point depression of brine to onset of aqueous corrosion.
Long-range dipolar order and dispersion forces in polar liquids
NASA Astrophysics Data System (ADS)
Besford, Quinn Alexander; Christofferson, Andrew Joseph; Liu, Maoyuan; Yarovsky, Irene
2017-11-01
Complex solvation phenomena, such as specific ion effects, occur in polar liquids. Interpretation of these effects in terms of structure and dispersion forces will lead to a greater understanding of solvation. Herein, using molecular dynamics, we probe the structure of polar liquids through specific dipolar pair correlation functions that contribute to the potential of mean force that is "felt" between thermally rotating dipole moments. It is shown that unique dipolar order exists at separations at least up to 20 Å for all liquids studied. When the structural order is compared with a dipolar dispersion force that arises from local co-operative enhancement of dipole moments, a strong agreement is found. Lifshitz theory of dispersion forces was compared with the structural order, where the theory is validated for all liquids that do not have significant local dipole correlations. For liquids that do have significant local dipole correlations, specifically liquid water, Lifshitz theory underestimates the dispersion force by a factor of 5-10, demonstrating that the force that leads to the increased structure in liquid water is missed by Lifshitz theory of van der Waals forces. We apply similar correlation functions to an ionic aqueous system, where long-range order between water's dipole moment and a single chloride ion is found to exist at 20 Å of separation, revealing a long-range perturbation of water's structure by an ion. Furthermore, we found that waters within the 1st, 2nd, and 3rd solvation shells of a chloride ion exhibit significantly enhanced dipolar interactions, particularly with waters at larger distances of separation. Our results provide a link between structures, dispersion forces, and specific ion effects, which may lead to a more robust understanding of solvation.
Softly-confined water cluster between freestanding graphene sheets
NASA Astrophysics Data System (ADS)
Agustian, Rifan; Akaishi, Akira; Nakamura, Jun
2018-01-01
Confined water could adopt new forms not seen in the open air, such as a two-dimensional (2D) square ice trapped between two graphene sheets [Algara-Siller et al., Nature 519, 443-445 (2015)]. In this study, in order to investigate how the flexibility of graphene affects the confined structure of water molecules, we employed classical molecular dynamics simulations with Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential to produce a soft-confining property of graphene. We discovered various solid-like structures of water molecules ranging from two-dimensional to three-dimensional structure encapsulated between two freestanding graphene sheets even at room temperature (300K). A small amount of water encapsulation leads to a layered two-dimensional form with triangular structure. On the other hand, large amounts of water molecules take a three-dimensional flying-saucer-like form with the square ice intra-layer structure. There is also a metastable state where both two-dimensional and three-dimensional structures coexist.
Water diffusion in silicate glasses: the effect of glass structure
NASA Astrophysics Data System (ADS)
Kuroda, M.; Tachibana, S.
2016-12-01
Water diffusion in silicate melts (glasses) is one of the main controlling factors of magmatism in a volcanic system. Water diffusivity in silicate glasses depends on its own concentration. However, the mechanism causing those dependences has not been fully understood yet. In order to construct a general model for water diffusion in various silicate glasses, we performed water diffusion experiments in silica glass and proposed a new water diffusion model [Kuroda et al., 2015]. In the model, water diffusivity is controlled by the concentration of both main diffusion species (i.e. molecular water) and diffusion pathways, which are determined by the concentrations of hydroxyl groups and network modifier cations. The model well explains the water diffusivity in various silicate glasses from silica glass to basalt glass. However, pre-exponential factors of water diffusivity in various glasses show five orders of magnitude variations although the pre-exponential factor should ideally represent the jump frequency and the jump distance of molecular water and show a much smaller variation. Here, we attribute the large variation of pre-exponential factors to a glass structure dependence of activation energy for molecular water diffusion. It has been known that the activation energy depends on the water concentration [Nowak and Behrens, 1997]. The concentration of hydroxyls, which cut Si-O-Si network in the glass structure, increases with water concentration, resulting in lowering the activation energy for water diffusion probably due to more fragmented structure. Network modifier cations are likely to play the same role as water. With taking the effect of glass structure into account, we found that the variation of pre-exponential factors of water diffusivity in silicate glasses can be much smaller than the five orders of magnitude, implying that the diffusion of molecular water in silicate glasses is controlled by the same atomic process.
Structural and mechanical properties of glassy water in nanoscale confinement.
Lombardo, Thomas G; Giovambattista, Nicolás; Debenedetti, Pablo G
2009-01-01
We investigate the structure and mechanical properties of glassy water confined between silica-based surfaces with continuously tunable hydrophobicity and hydrophilicity by computing and analyzing minimum energy, mechanically stable configurations (inherent structures). The structured silica substrate imposes long-range order on the first layer of water molecules under hydrophobic confinement at high density (p > or = 1.0 g cm(-3)). This proximal layer is also structured in hydrophilic confinement at very low density (p approximately 0.4 g cm(-3)). The ordering of water next to the hydrophobic surface greatly enhances the mechanical strength of thin films (0.8 nm). This leads to a substantial stress anisotropy; the transverse strength of the film exceeds the normal strength by 500 MPa. The large transverse strength results in a minimum in the equation of state of the energy landscape that does not correspond to a mechanical instability, but represents disruption of the ordered layer of water next to the wall. In addition, we find that the mode of mechanical failure is dependent on the type of confinement. Under large lateral strain, water confined by hydrophilic surfaces preferentially forms voids in the middle of the film and fails cohesively. In contrast, water under hydrophobic confinement tends to form voids near the walls and fails by loss of adhesion.
Local structure of dilute aqueous DMSO solutions, as seen from molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Idrissi, Abdenacer; Marekha, Bogdan A.; Barj, Mohammed; Miannay, François Alexandre; Takamuku, Toshiyuki; Raptis, Vasilios; Samios, Jannis; Jedlovszky, Pál
2017-06-01
The information about the structure of dimethyl sulfoxide (DMSO)-water mixtures at relatively low DMSO mole fractions is an important step in order to understand their cryoprotective properties as well as the solvation process of proteins and amino acids. Classical MD simulations, using the potential model combination that best reproduces the free energy of mixing of these compounds, are used to analyze the local structure of DMSO-water mixtures at DMSO mole fractions below 0.2. Significant changes in the local structure of DMSO are observed around the DMSO mole fraction of 0.1. The array of evidence, based on the cluster and the metric and topological parameters of the Voronoi polyhedra distributions, indicates that these changes are associated with the simultaneous increase of the number of DMSO-water and decrease of water-water hydrogen bonds with increasing DMSO concentration. The inversion between the dominance of these two types of H-bonds occurs around XDMSO = 0.1, above which the DMSO-DMSO interactions also start playing an important role. In other words, below the DMSO mole fraction of 0.1, DMSO molecules are mainly solvated by water molecules, while above it, their solvation shell consists of a mixture of water and DMSO. The trigonal, tetrahedral, and trigonal bipyramidal distributions of water shift to lower corresponding order parameter values indicating the loosening of these orientations. Adding DMSO does not affect the hydrogen bonding between a reference water molecule and its first neighbor hydrogen bonded water molecules, while it increases the bent hydrogen bond geometry involving the second ones. The close-packed local structure of the third, fourth, and fifth water neighbors also is reinforced. In accordance with previous theoretical and experimental data, the hydrogen bonding between water and the first, the second, and the third DMSO neighbors is stronger than that with its corresponding water neighbors. At a given DMSO mole fraction, the behavior of the intensity of the high orientational order parameter values indicates that water molecules are more ordered in the vicinity of the hydrophilic group while their structure is close-packed near the hydrophobic group of DMSO.
Deshmukh, Sanket A; Solomon, Lee A; Kamath, Ganesh; Fry, H Christopher; Sankaranarayanan, Subramanian K R S
2016-08-24
Understanding the role of water in governing the kinetics of the self-assembly processes of amphiphilic peptides remains elusive. Here, we use a multistage atomistic-coarse-grained approach, complemented by circular dichroism/infrared spectroscopy and dynamic light scattering experiments to highlight the dual nature of water in driving the self-assembly of peptide amphiphiles (PAs). We show computationally that water cage formation and breakage near the hydrophobic groups control the fusion dynamics and aggregation of PAs in the micellar stage. Simulations also suggest that enhanced structural ordering of vicinal water near the hydrophilic amino acids shifts the equilibrium towards the fibre phase and stimulates structure and order during the PA assembly into nanofibres. Experiments validate our simulation findings; the measured infrared O-H bond stretching frequency is reminiscent of an ice-like bond which suggests that the solvated water becomes increasingly ordered with time in the assembled peptide network, thus shedding light on the role of water in a self-assembly process.
NASA Astrophysics Data System (ADS)
Kalinichev, A. G.; Faraone, A.; Udovic, T.; Kolesnikov, A. I.; de Souza, N. R.; Reinholdt, M. X.; Kirkpatrick, R.
2008-12-01
Layered double hydroxides (LDHs, anionic clays) represent excellent model systems for detailed molecular- level studies of the structure, dynamics, and energetics of nano-confined water in mineral interlayers and nano-pores, because LDH interlayers can have a well-defined structures and contain H2O molecules and a wide variety of anions in structurally well-defined positions and coordinations. [Ca2Al(OH)6]Cl·2H2O, also known as hydrocalumite or Friedel's salt, has a well- ordered Ca,Al distribution in the hydroxide layer and a very high degree of H2O,Cl ordering in the interlayer. It is also one of the only LDH phase for which a single crystal structure refinement is available. Thus, it is currently the best model compound for understanding the structure and dynamical behavior of interlayer and surface species in other, less-ordered, LDHs. We investigated the structural and dynamic behavior of water in the interlayers of hydrocalumite using inelastic (INS) and quasielastic (QENS) neutron scattering and molecular dynamics computer simulations. The comperehensive neutron scattering studies were performed for one fully hydrated and one dehydrated sample of hydrocalumite using several complementary instruments (HFBS, DCS and FANS at NCNR; HRMECS and QENS at IPNS) at temperatures above and below the previously discovered order-disorder interlayer phase transition. Together the experimental and molecular modeling results capture the important details of the dynamics of nano-confined water and the effects of the orientational ordering of H2O molecules above and below the phase transition. They provide otherwise unobtainable experimental information about the transformation of H2O librational and diffusional modes across the order-disorder phase transition and significantly add to our current understanding of the structure and dynamics of water in LDH phases based on the earlier NMR, IR, X-ray, and calorimetric measurements. The approach can now be extended to probe the dynamics of nano-confined and interfacial water in more disordered phases (LDH, clays, cement, etc.), for which much less initial structural information is available.
Cholesterol-Induced Formation of Liquid Ordered Phase-Like Structures in Non-Phospholipid Systems.
Konno, Yoshikazu; Yoshimura, Akio; Naito, Noboru; Aramaki, Kenji
2018-01-01
The formation of liquid ordered (L o ) phase-like structures in stearyltrimethylammonium chloride/cholesterol/1,3-butanediol/water and hepta(oxyethylen) octadecyl ether/cholesterol/1,3-butanediol/water systems was investigated. Differential scanning calorimetry and X-ray scattering measurements confirmed that L o phase-like structures were formed in both surfactant/cholesterol systems, similar to the lysophospholipid/cholesterol system. It was revealed that the concentration of cholesterol at which only L o phase-like structures are formed increases in the order stearyltrimethylammonium chloride < lysophospholipid < hepta(oxyethylen) octadecyl ether. In addition, for both surfactants, the interlayer spacing, d, was larger for L o phase-like structures than for α-gel structures. These results suggest that the ionicity and structure of the hydrophilic group of each surfactant play important roles.
Lenselink, Eelke B; Beuming, Thijs; Sherman, Woody; van Vlijmen, Herman W T; IJzerman, Adriaan P
2014-06-23
A major challenge in structure-based virtual screening (VS) involves the treatment of explicit water molecules during docking in order to improve the enrichment of active compounds over decoys. Here we have investigated this in the context of the adenosine A2A receptor, where water molecules have previously been shown to be important for achieving high enrichment rates with docking, and where the positions of some binding site waters are known from a high-resolution crystal structure. The effect of these waters (both their presence and orientations) on VS enrichment was assessed using a carefully curated set of 299 high affinity A2A antagonists and 17,337 decoys. We show that including certain crystal waters greatly improves VS enrichment and that optimization of water hydrogen positions is needed in order to achieve the best results. We also show that waters derived from a molecular dynamics simulation - without any knowledge of crystallographic waters - can improve enrichments to a similar degree as the crystallographic waters, which makes this strategy applicable to structures without experimental knowledge of water positions. Finally, we used decision trees to select an ensemble of structures with different water molecule positions and orientations that outperforms any single structure with water molecules. The approach presented here is validated against independent test sets of A2A receptor antagonists and decoys from the literature. In general, this water optimization strategy could be applied to any target with waters-mediated protein-ligand interactions.
Song, Bin; Molinero, Valeria
2013-08-07
Hydrophobic interactions are responsible for water-driven processes such as protein folding and self-assembly of biomolecules. Microscopic theories and molecular simulations have been used to study association of a pair of methanes in water, the paradigmatic example of hydrophobic attraction, and determined that entropy is the driving force for the association of the methane pair, while the enthalpy disfavors it. An open question is to which extent coarse-grained water models can still produce correct thermodynamic and structural signatures of hydrophobic interaction. In this work, we investigate the hydrophobic interaction between a methane pair in water at temperatures from 260 to 340 K through molecular dynamics simulations with the coarse-grained monatomic water model mW. We find that the coarse-grained model correctly represents the free energy of association of the methane pair, the temperature dependence of free energy, and the positive change in entropy and enthalpy upon association. We investigate the relationship between thermodynamic signatures and structural order of water through the analysis of the spatial distribution of the density, energy, and tetrahedral order parameter Qt of water. The simulations reveal an enhancement of tetrahedral order in the region between the first and second hydration shells of the methane molecules. The increase in tetrahedral order, however, is far from what would be expected for a clathrate-like or ice-like shell around the solutes. This work shows that the mW water model reproduces the key signatures of hydrophobic interaction without long ranged electrostatics or the need to be re-parameterized for different thermodynamic states. These characteristics, and its hundred-fold increase in efficiency with respect to atomistic models, make mW a promising water model for studying water-driven hydrophobic processes in more complex systems.
Photonic water dynamically responsive to external stimuli
Sano, Koki; Kim, Youn Soo; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Aida, Takuzo
2016-01-01
Fluids that contain ordered nanostructures with periodic distances in the visible-wavelength range, anomalously exhibit structural colours that can be rapidly modulated by external stimuli. Indeed, some fish can dynamically change colour by modulating the periodic distance of crystalline guanine sheets cofacially oriented in their fluid cytoplasm. Here we report that a dilute aqueous colloidal dispersion of negatively charged titanate nanosheets exhibits structural colours. In this ‘photonic water', the nanosheets spontaneously adopt a cofacial geometry with an ultralong periodic distance of up to 675 nm due to a strong electrostatic repulsion. Consequently, the photonic water can even reflect near-infrared light up to 1,750 nm. The structural colour becomes more vivid in a magnetic flux that induces monodomain structural ordering of the colloidal dispersion. The reflective colour of the photonic water can be modulated over the entire visible region in response to appropriate physical or chemical stimuli. PMID:27572806
Discovering local order parameters in liquid water using machine learning
NASA Astrophysics Data System (ADS)
Soto, Adrian; Lu, Deyu; Yoo, Shinjae; Fernandez-Serra, Marivi
The local arrangement of water molecules in liquid phase is still being discussed and questioned. The prevailing view is that water is composed of a mixture of two structurally different liquids. One of the main challenges has been to find order parameters that are able to discriminate the complex structures of these distinct molecular environments. Several local order parameters have been proposed and studied in all sorts of atomistic simulations of liquid water but, to date, none has been able to capture the predicted dual character. This presents an ideal problem to treat with methods capable of unveiling information from complex data. In this talk we will discuss how local order parameters can be constructed from molecular dynamics trajectories by using machine learning and other related techniques. Work was partially supported by DOE Award No. DE-FG02-09ER16052, by DOE Early Career Award No. DE-SC0003871, by BNL LDRD 16-039 project and BNL Contract No. DE-SC0012704.
Bruździak, Piotr; Panuszko, Aneta; Stangret, Janusz
2013-10-03
Results concerning the thermostability of hen egg white lysozyme in aqueous solutions with stabilizing osmolytes, trimethylamine-N-oxide (TMAO), glycine (Gly), and its N-methyl derivatives, N-methylglycine (NMG), N,N-dimethylglycine (DMG), and N,N,N-trimethylglycine (betaine, TMG), have been presented. The combination of spectroscopic (IR) and calorimetric (DSC) data allowed us to establish a link between osmolytes' influence on water structure and their ability to thermally stabilize protein molecule. Structural and energetic characteristics of stabilizing osmolytes' and lysozyme's hydration water appear to be very similar. The osmolytes increase lysozyme stabilization in the order bulk water < TMAO < TMG < Gly < DMG < NMG, which is consistent with the order corresponding to the value of the most probable oxygen-oxygen distance of water molecules affected by osmolytes in their surrounding. Obtained results verified the hypothesis concerning the role of water molecules in protein stabilization, explained the osmophobic effect, and finally helped to bring us nearer to the exact mechanism of protein stabilization by osmolytes.
Industries use large volumes of water for cooling. The water intakes pull large numbers of fish and other organisms into the cooling systems. EPA issues regulations on intake structures in order to minimize adverse environmental impacts.
Branched ZnO wire structures for water collection inspired by cacti.
Heng, Xin; Xiang, Mingming; Lu, Zhihui; Luo, Cheng
2014-06-11
In this work, motivated by an approach used in a cactus to collect fog, we have developed an artificial water-collection structure. This structure includes a large ZnO wire and an array of small ZnO wires that are branched on the large wire. All these wires have conical shapes, whose diameters gradually increase from the tip to the root of a wire. Accordingly, a water drop that is condensed on the tip of each wire is driven to the root by a capillary force induced by this diameter gradient. The lengths of stem and branched wires in the synthesized structures are in the orders of 1 mm and 100 μm, respectively. These dimensions are, respectively, comparable to and larger than their counterparts in the case of a cactus. Two groups of tests were conducted at relative humidity of 100% to compare the amounts of water collected by artificial and cactus structures within specific time durations of 2 and 35 s, respectively. The amount of water collected by either type of structures was in the order of 0.01 μL. However, on average, what has been collected by the artificial structures was 1.4-5.0 times more than that harvested by the cactus ones. We further examined the mechanism that a cactus used to absorb a collected water drop into its stem. On the basis of the gained understanding, we developed a setup to successfully collect about 6 μL of water within 30 min.
Parish, Carol A; Yarger, Matthew; Sinclair, Kent; Dure, Myrianne; Goldberg, Alla
2004-09-23
The conformational flexibility of a series of diastereomeric cyclic urea HIV-1 protease inhibitors has been examined using the Low Mode:Monte Carlo conformational search method. Force fields were validated by a comparison of the energetic ordering of the minimum energy structures on the AMBER/GBSA(water), OPLSAA/GBSA(water) and HF/6-311G/SCRF(water) surfaces. The energetic ordering of the minima on the OPLSAA /GBSA(water) surface was in better agreement with the quantum calculations than the ordering on the AMBER/GBSA(water) surface. An ensemble of low energy structures was generated using OPLSAA/GBSA(water) and used to compare the molecular shape and flexibility of each diastereomer to the experimentally determined binding affinities and crystal structures of closely related systems. The results indicate that diastereomeric solution-phase energetic stability, conformational rigidity and ability to adopt a chair conformation correlate strongly with experimental binding affinities. Rigid body docking suggests that all of the diastereomers adopt solution-phase conformations suitable for alignment with the HIV-1 protease; however, these results indicate that the binding affinities are dependent upon subtle differences in the P1/P1' and P2/P2' substituent orientations.
Pugliese, P; Conde, M M; Rovere, M; Gallo, P
2017-11-16
A very recent experimental paper importantly and unexpectedly showed that water in carbon nanotubes is already in the solid ordered phase at the temperature where bulk water boils. The water models used so far in literature for molecular dynamics simulations in carbon nanotubes show freezing temperatures lower than the experiments. We present here results from molecular dynamics simulations of water inside single walled carbon nanotubes using an extremely realistic model for both liquid and icy water, the TIP4P/ICE. The water behavior inside nanotubes of different diameters has been studied upon cooling along the isobars at ambient pressure starting from temperatures where water is in a liquid state. We studied the liquid/solid transition, and we observed freezing temperatures higher than in bulk water and that depend on the diameter of the nanotube. The maximum freezing temperature found is 390 K, which is in remarkable agreement with the recent experimental measurements. We have also analyzed the ice structure called "ice nanotube" that water forms inside the single walled carbon nanotubes when it freezes. The ice forms observed are in agreement with previous results obtained with different water models. A novel finding, a partial proton ordering, is evidenced in our ice nanotubes at finite temperature.
Correlation Between Chain Architecture and Hydration Water Structure in Polysaccharides.
Grossutti, Michael; Dutcher, John R
2016-03-14
The physical properties of confined water can differ dramatically from those of bulk water. Hydration water associated with polysaccharides provides a particularly interesting example of confined water, because differences in polysaccharide structure provide different spatially confined environments for water sorption. We have used attenuated total reflection infrared (ATR-IR) spectroscopy to investigate the structure of hydration water in films of three different polysaccharides under controlled relative humidity (RH) conditions. We compare the results obtained for films of highly branched, dendrimer-like phytoglycogen nanoparticles to those obtained for two unbranched polysaccharides, hyaluronic acid (HA), and chitosan. We find similarities between the water structuring in the two linear polysaccharides and significant differences for phytoglycogen. In particular, the results suggest that the high degree of branching in phytoglycogen leads to a much more well-ordered water structure (low density, high connectivity network water), indicating the strong influence of chain architecture on the structuring of water. These measurements provide unique insight into the relationship between the structure and hydration of polysaccharides, which is important for understanding and exploiting these sustainable nanomaterials in a wide range of applications.
Blankenship, Elise; Vahedi-Faridi, Ardeschir; Lodowski, David T
2015-12-01
Rhodopsin, a light-activated G protein coupled receptor (GPCR), has been the subject of numerous biochemical and structural investigations, serving as a model receptor for GPCRs and their activation. We present the 2.3-Å resolution structure of native source rhodopsin stabilized in a conformation competent for G protein binding. An extensive water-mediated hydrogen bond network linking the chromophore binding site to the site of G protein binding is observed, providing connections to conserved motifs essential for GPCR activation. Comparison of this extensive solvent-mediated hydrogen-bonding network with the positions of ordered solvent in earlier crystallographic structures of rhodopsin photointermediates reveals both static structural and dynamic functional water-protein interactions present during the activation process. When considered along with observations that solvent occupies similar positions in the structures of other GPCRs, these analyses strongly support an integral role for this dynamic ordered water network in both rhodopsin and GPCR activation. Copyright © 2015 Elsevier Ltd. All rights reserved.
SFG spectroscopy from 10 -8 to 1000 mbar: less-ordered CO structures and coadsorption on Pd (1 1 1)
NASA Astrophysics Data System (ADS)
Morkel, Matthias; Unterhalt, Holger; Salmeron, Miquel; Rupprechter, Günther; Freund, Hans-Joachim
2003-06-01
Vibrational sum frequency generation spectroscopy was employed to study "less-ordered" phases resulting from low-temperature CO exposure on Pd(1 1 1). Such imperfect structures may also occur under catalytic reaction conditions up to 1000 mbar and originate from the superposition of ordered structures when the CO mobility and flux were insufficient. The effect of coadsorbed hydrogen and water was also examined.
Structure and dynamics of water in mixed solutions including laponite and PEO
NASA Astrophysics Data System (ADS)
Morikubo, Satoshi; Sekine, Yurina; Ikeda-Fukazawa, Tomoko
2011-01-01
To investigate the structure and dynamics of water in mixed solutions including laponite clay particles and poly(ethylene oxide) (PEO), we measured the Raman spectra of the mixed solutions in the temperature range 283-313 K. The results show that the vibrational energies of the O-H stretching modes in the mixed solutions depend on the water content and temperature. The energy shifts of the O-H stretching modes are attributed to changes in the water structure. By applying a structural model of bulk water to the spectra in the O-H stretching region, the local structures of water in the solutions were analyzed. The result shows that the formation probability of hydrogen bonds in the solutions decreases as the water content decreases. Laponite and PEO have effects to disrupt the network structure of hydrogen bonds between water molecules. Further, it was found that laponite and PEO cause increase in the strength of hydrogen bonds of surrounding water,although the strength of the hydrogen bonds increases with the order water-laponite < water-water < water-PEO. It is concluded that water in laponite-PEO mixed solutions has a less-networked structure with strong hydrogen bonds compared with bulk water.
Biological plywood film formation from para-nematic liquid crystalline organization.
Aguilar Gutierrez, Oscar F; Rey, Alejandro D
2017-11-15
In vitro non-equilibrium chiral phase ordering processes of biomacromolecular solutions offer a systematic and reproducible way of generating material architectures found in Nature, such as biological plywoods. Accelerated progress in biomimetic engineering of mesoscopic plywoods and other fibrous structures requires a fundamental understanding of processing and transport principles. In this work we focus on collagen I based materials and structures to find processing conditions that lead to defect-free collagen films displaying the helicoidal plywood architecture. Here we report experimentally-guided theory and simulations of the chiral phase ordering of collagen molecules through water solvent evaporation of pre-aligned dilute collagen solutions. We develop, implement and a posteriori validate an integrated liquid crystal chiral phase ordering-water transport model that captures the essential features of spatio-temporal chiral structure formation in shrinking film domains due to directed water loss. Three microstructural (texture) modes are identified depending on the particular value of the time-scale ratio defined by collagen rotational diffusion to water translational diffusion. The magnitude of the time scale ratio provides the conditions for the synchronization of the helical axis morphogenesis with the increase in the mesogen concentration due to water loss. Slower than critical water removal rates leads to internal multiaxial cellular patterns, reminiscent of the classical columnar-equiaxed metallurgical casting structures. Excessive water removal rates lead to destabilization of the chiral axis and multidomain defected films. The predictions of the integrated model are in qualitative agreement with experimental results and can potentially guide solution processing of other bio-related mesogenic solutions that seek to mimic the architecture of biological fibrous composites.
NASA Astrophysics Data System (ADS)
Lambrecht, Daniel S.; McCaslin, Laura; Xantheas, Sotiris S.; Epifanovsky, Evgeny; Head-Gordon, Martin
2012-10-01
This work reports refinements of the energetic ordering of the known low-energy structures of sulphate-water clusters ? (n = 3-6) using high-level electronic structure methods. Coupled cluster singles and doubles with perturbative triples (CCSD(T)) is used in combination with an estimate of basis set effects up to the complete basis set limit using second-order Møller-Plesset theory. Harmonic zero-point energy (ZPE), included at the B3LYP/6-311 + + G(3df,3pd) level, was found to have a significant effect on the energetic ordering. In fact, we show that the energetic ordering is a result of a delicate balance between the electronic and vibrational energies. Limitations of the ZPE calculations, both due to electronic structure errors, and use of the harmonic approximation, probably constitute the largest remaining errors. Due to the often small energy differences between cluster isomers, and the significant role of ZPE, deuteration can alter the relative energies of low-lying structures, and, when it is applied in conjunction with calculated harmonic ZPEs, even alters the global minimum for n = 5. Experiments on deuterated clusters, as well as more sophisticated vibrational calculations, may therefore be quite interesting.
Zhao, Kuiwen; Wu, Huiying
2015-04-28
Determining water structure in nanopores and its influence on water transport behaviour is of great importance for understanding and regulating the transport across nanopores. Here we report an ultrafast-slow flow transition phenomenon for water transport across nanopores of carbon nanotubes owing to the change in water structure in nanopores induced by temperature. By performing extensive molecular dynamics simulations, we show the dependence of water transport behaviours on water structures. Our results indicate that owing to the change in water structure in nanopores, water flux across nanopores with certain pore sizes decreases sharply (nearly 3 orders of magnitude) with the decreasing temperature. This phenomenon is very sensitive to the pore size. The threshold temperatures for the occurrence of the ultrafast-slow flow transition for water transport are also determined for various pore sizes. These findings suggest a novel protocol for selective gating of water and proton conduction across nanopores and temperature-controlled drug release.
NASA Astrophysics Data System (ADS)
Hantal, György; Picaud, Sylvain; Hoang, Paul N. M.; Voloshin, Vladimir P.; Medvedev, Nikolai N.; Jedlovszky, Pál
2010-10-01
The grand canonical Monte Carlo method is used to simulate the adsorption isotherms of water molecules on different types of model soot particles. These soot models are constructed by first removing atoms from onion-fullerene structures in order to create randomly distributed pores inside the soot, and then performing molecular dynamics simulations, based on the reactive adaptive intermolecular reactive empirical bond order (AIREBO) description of the interaction between carbon atoms, to optimize the resulting structures. The obtained results clearly show that the main driving force of water adsorption on soot is the possibility of the formation of new water-water hydrogen bonds with the already adsorbed water molecules. The shape of the calculated water adsorption isotherms at 298 K strongly depends on the possible confinement of the water molecules in pores of the carbonaceous structure. We found that there are two important factors influencing the adsorption ability of soot. The first of these factors, dominating at low pressures, is the ability of the soot of accommodating the first adsorbed water molecules at strongly hydrophilic sites. The second factor concerns the size and shape of the pores, which should be such that the hydrogen bonding network of the water molecules filling them should be optimal. This second factor determines the adsorption properties at higher pressures.
Model for dynamic self-assembled magnetic surface structures
NASA Astrophysics Data System (ADS)
Belkin, M.; Glatz, A.; Snezhko, A.; Aranson, I. S.
2010-07-01
We propose a first-principles model for the dynamic self-assembly of magnetic structures at a water-air interface reported in earlier experiments. The model is based on the Navier-Stokes equation for liquids in shallow water approximation coupled to Newton equations for interacting magnetic particles suspended at a water-air interface. The model reproduces most of the observed phenomenology, including spontaneous formation of magnetic snakelike structures, generation of large-scale vortex flows, complex ferromagnetic-antiferromagnetic ordering of the snake, and self-propulsion of bead-snake hybrids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perera, Aurélien; Mazighi, Redha
Computer simulation studies of aqueous dimethyl sulfoxyde (DMSO) mixtures show micro-heterogeneous structures, just like aqueous alcohol mixtures. However, there is a marked difference in the aggregate structure of water between the two types of systems. While water molecules form multiconnected globular clusters in alcohols, we report herein that the typical water aggregates in aqueous DMSO mixtures are linear, favouring a 2 hydrogen bond structure per water molecule, and for all DMSO mole fractions ranging from 0.1 to 0.9. This linear-aggregate structure produces a particular signature in the water site-site structure factors, in the form of a pre-peak at k ≈more » 0.2–0.8 Å{sup −1}, depending on DMSO concentration. This pre-peak is either absent in other aqueous mixtures, such as aqueous methanol mixtures, or very difficult to see through computer simulations, such as in aqueous-t-butanol mixtures. This difference in the topology of the aggregates explains why the Kirkwood-Buff integrals of aqueous-DMSO mixture look nearly ideal, in contrast with those of aqueous alcohol mixtures, suggesting a connection between the shape of the water aggregates, its fluctuations, and the concentration fluctuations. In order to further study this discrepancy between aqueous DMSO and aqueous alcohol mixture, two models of pseudo-DMSO are introduced, where the size of the sulfur atom is increased by a factor 1.6 and 1.7, respectively, hence increasing the hydrophobicity of the molecule. The study shows that these mixtures become closer to the emulsion type seen in aqueous alcohol mixtures, with more globular clustering of the water molecules, long range domain oscillations in the water-water correlations and increased water-water Kirkwood-Buff integrals. It demonstrates that the local ordering of the water molecules is influenced by the nature of the solute molecules, with very different consequences for structural properties and related thermodynamic quantities. This study illustrates the unique plasticity of water in presence of different types of solutes.« less
Daschakraborty, Snehasis
2018-04-07
Glycerol and dimethyl sulphoxide (DMSO) have vital roles in cryoprotection of living cells, tissues, etc. The above action has been directly linked with disruption of hydrogen (H-) bond structure and dynamics of water by these cosolvents at bulk region and around various complex units, such as peptide, amino acid, protein, and lipid membrane. However, the disruption of the local structure of the water solvent around a purely hydrophobic solute is still not studied extensively. The latter is also important in the context of stabilization of protein from cold denaturation. Through all-atom molecular dynamics simulation, we have investigated the comparative effect of glycerol and DMSO on the orientational order of water around a nonpolar solute at -5 °C. A steady reduction of the tetrahedral order of water is observed at bulk (>10 Å distance from the solute) and solute interface (<5.5 Å distance from the solute) with increasing the cosolvent concentration. Contrasting roles of glycerol and DMSO have been evidenced. While DMSO affects the H-bond structure of the interfacial water more than that of the bulk water, glycerol affects the water structure almost uniformly at all regions around the solute. Furthermore, while glycerol helps to retain water molecules at the interface, DMSO significantly reduces the water content in that region. We have put forward a plausible mechanism for these contrasting roles of these cosolvents. The solute-cosolvent hydrophobic-interaction-induced orientational alignment of an interfacial cosolvent molecule determines whether the involvement of the cosolvent molecules in H-bonding with solvent water in the interface is akin to the bulk region or not.
NASA Astrophysics Data System (ADS)
Daschakraborty, Snehasis
2018-04-01
Glycerol and dimethyl sulphoxide (DMSO) have vital roles in cryoprotection of living cells, tissues, etc. The above action has been directly linked with disruption of hydrogen (H-) bond structure and dynamics of water by these cosolvents at bulk region and around various complex units, such as peptide, amino acid, protein, and lipid membrane. However, the disruption of the local structure of the water solvent around a purely hydrophobic solute is still not studied extensively. The latter is also important in the context of stabilization of protein from cold denaturation. Through all-atom molecular dynamics simulation, we have investigated the comparative effect of glycerol and DMSO on the orientational order of water around a nonpolar solute at -5 °C. A steady reduction of the tetrahedral order of water is observed at bulk (>10 Å distance from the solute) and solute interface (<5.5 Å distance from the solute) with increasing the cosolvent concentration. Contrasting roles of glycerol and DMSO have been evidenced. While DMSO affects the H-bond structure of the interfacial water more than that of the bulk water, glycerol affects the water structure almost uniformly at all regions around the solute. Furthermore, while glycerol helps to retain water molecules at the interface, DMSO significantly reduces the water content in that region. We have put forward a plausible mechanism for these contrasting roles of these cosolvents. The solute-cosolvent hydrophobic-interaction-induced orientational alignment of an interfacial cosolvent molecule determines whether the involvement of the cosolvent molecules in H-bonding with solvent water in the interface is akin to the bulk region or not.
Pandey, Poonam; Mallajosyula, Sairam S
2016-07-14
Carbohydrates are known to closely modulate their surrounding solvent structures and influence solvation dynamics. Spectroscopic investigations studying far-IR regions (below 1000 cm(-1)) have observed spectral shifts in the libration band (around 600 cm(-1)) of water in the presence of monosaccharides and polysaccharides. In this paper, we use molecular dynamics simulations to gain atomistic insight into carbohydrate-water interactions and to specifically highlight the differences between additive (nonpolarizable) and polarizable simulations. A total of six monosaccharide systems, α and β anomers of glucose, galactose, and mannose, were studied using additive and polarizable Chemistry at HARvard Macromolecular Mechanics (CHARMM) carbohydrate force fields. Solvents were modeled using three additive water models TIP3P, TIP4P, and TIP5P in additive simulations and polarizable water model SWM4 in polarizable simulations. The presence of carbohydrate has a significant effect on the microscopic water structure, with the effects being pronounced for proximal water molecules. Notably, disruption of the tetrahedral arrangement of proximal water molecules was observed due to the formation of strong carbohydrate-water hydrogen bonds in both additive and polarizable simulations. However, the inclusion of polarization resulted in significant water-bridge occupancies, improved ordered water structures (tetrahedral order parameter), and longer carbohydrate-water H-bond correlations as compared to those for additive simulations. Additionally, polarizable simulations also allowed the calculation of power spectra from the dipole-dipole autocorrelation function, which corresponds to the IR spectra. From the power spectra, we could identify spectral signatures differentiating the proximal and bulk water structures, which could not be captured from additive simulations.
Light Modulation and Water Splitting Enhancement Using a Composite Porous GaN Structure.
Yang, Chao; Xi, Xin; Yu, Zhiguo; Cao, Haicheng; Li, Jing; Lin, Shan; Ma, Zhanhong; Zhao, Lixia
2018-02-14
On the basis of the laterally porous GaN, we designed and fabricated a composite porous GaN structure with both well-ordered lateral and vertical holes. Compared to the plane GaN, the composite porous GaN structure with the combination of the vertical holes can help to reduce UV reflectance and increase the saturation photocurrent during water splitting by a factor of ∼4.5. Furthermore, we investigated the underlying mechanism for the enhancement of the water splitting performance using a finite-difference time-domain method. The results show that the well-ordered vertical holes can not only help to open the embedded pore channels to the electrolyte at both sides and reduce the migration distance of the gas bubbles during the water splitting reactions but also help to modulate the light field. Using this composite porous GaN structure, most of the incident light can be modulated and trapped into the nanoholes, and thus the electric fields localized in the lateral pores can increase dramatically as a result of the strong optical coupling. Our findings pave a new way to develop GaN photoelectrodes for highly efficient solar water splitting.
Water in a Soft Confinement: Structure of Water in Amorphous Sorbitol.
Shalaev, Evgenyi; Soper, Alan K
2016-07-28
The structure of water in 70 wt % sorbitol-30 wt % water mixture is investigated by wide-angle neutron scattering (WANS) as a function of temperature. WANS data are analyzed using empirical potential structure refinement to obtain the site-site radial distribution functions (RDFs). Orientational structure of water is represented using OW-OW-OW triangles distributions and a tetrahedrality parameter, q, while water-water correlation function is used to estimate size of water clusters. Water structure in the sorbitol matrix is compared with that of water confined in nanopores of MCM41. The results indicate the existence of voids in the sorbitol matrix with the length scale of approximately 5 Å, which are filled by water. At 298 K, positional water structure in these voids is similar to that of water in MCM41, whereas there is a difference in the tetrahedral (orientational) arrangement. Cooling to 213 K strengthens tetrahedrality, with the orientational order of water in sorbitol becoming similar to that of confined water in MCM41 at 210 K, whereas further cooling to 100 K does not introduce any additional changes in the tetrahedrality. The results obtained allow us to propose, for the first time, that such confinement of water in a sorbitol matrix is the main reason for the lack of ice formation in this system.
NASA Astrophysics Data System (ADS)
Foroutan, Masumeh; Darvishi, Mehdi; Fatemi, S. Mahmood
2017-09-01
The positioning, adsorption, and movement of water on substrates is dependent upon the chemical nature and arrangement of the atoms of the surface. Therefore the behavior of water molecules on a substrate is a reflection of properties of the surface. Based on this premise, graphene and gold substrates were chosen to study this subject from a molecular perspective. In this work, the structural and dynamical behaviors of a water nanodroplet on Au (100) and the graphene interfaces have been studied by molecular dynamics simulation. The results have shown how the structural and dynamical behaviors of water molecules at the interface reflect the characteristics of these surfaces. The results have demonstrated that residence time and hydrogen bonds' lifetime at the water-Au (100) interface are bigger than at the water-graphene interface. Energy contour map analysis indicates a more uniform surface energy on graphene than on the gold surface. The obtained results illustrate that water clusters on gold and graphene form tetramer and hexamer structures, respectively. Furthermore, the water molecules are more ordered on the gold surface than on graphene. The study of hydrogen bonds showed that the order, stability, and the number of hydrogen bonds is higher on the gold surface. The positioning pattern of water molecules is also similar to the arrangement of gold atoms while no regularity was observed on graphene. The study of dynamical behavior of water molecules revealed that the movement of water on gold is much less than on graphene which is in agreement with the strong water-gold interaction in comparison to the water-graphene interaction.
NASA Astrophysics Data System (ADS)
Ishiyama, Tatsuya; Shirai, Shinnosuke; Okumura, Tomoaki; Morita, Akihiro
2018-06-01
Molecular dynamics (MD) simulations of KCl, NaCl, and CaCl2 solution/dipalmytoylphosphatidylcholine lipid interfaces were performed to analyze heterodyne-detected vibrational sum frequency generation (HD-VSFG) spectra in relation to the interfacial water structure. The present MD simulation well reproduces the experimental spectra and elucidates a specific cation effect on the interfacial structure. The K+, Na+, and Ca2+ cation species penetrate in the lipid layer more than the anions in this order, due to the electrostatic interaction with negative polar groups of lipid, and the electric double layer between the cations and anions cancels the intrinsic orientation of water at the water/lipid interface. These mechanisms explain the HD-VSFG spectrum of the water/lipid interface and its spectral perturbation by adding the ions. The lipid monolayer reverses the order of surface preference of the cations at the solution/lipid interface from that at the solution/air interface.
The 15-K neutron structure of saccharide-free concanavalin A.
Blakeley, M P; Kalb, A J; Helliwell, J R; Myles, D A A
2004-11-23
The positions of the ordered hydrogen isotopes of a protein and its bound solvent can be determined by using neutron crystallography. Furthermore, by collecting neutron data at cryo temperatures, the dynamic disorder within a protein crystal is reduced, which may lead to improved definition of the nuclear density. It has proved possible to cryo-cool very large Con A protein crystals (>1.5 mm3) suitable for high-resolution neutron and x-ray structure analysis. We can thereby report the neutron crystal structure of the saccharide-free form of Con A and its bound water, including 167 intact D2O molecules and 60 oxygen atoms at 15 K to 2.5-A resolution, along with the 1.65-A x-ray structure of an identical crystal at 100 K. Comparison with the 293-K neutron structure shows that the bound water molecules are better ordered and have lower average B factors than those at room temperature. Overall, twice as many bound waters (as D2O) are identified at 15 K than at 293 K. We note that alteration of bound water orientations occurs between 293 and 15 K; such changes, as illustrated here with this example, could be important more generally in protein crystal structure analysis and ligand design. Methodologically, this successful neutron cryo protein structure refinement opens up categories of neutron protein crystallography, including freeze-trapped structures and cryo to room temperature comparisons.
Lokhandwala, Jameela; Silverman Y de la Vega, Rafael I; Hopkins, Hilary C; Britton, Collin W; Rodriguez-Iglesias, Aroa; Bogomolni, Roberto; Schmoll, Monika; Zoltowski, Brian D
2016-07-08
Light-oxygen-voltage (LOV) domain-containing proteins function as small light-activated modules capable of imparting blue light control of biological processes. Their small modular nature has made them model proteins for allosteric signal transduction and optogenetic devices. Despite intense research, key aspects of their signal transduction mechanisms and photochemistry remain poorly understood. In particular, ordered water has been identified as a possible key mediator of photocycle kinetics, despite the lack of ordered water in the LOV active site. Herein, we use recent crystal structures of a fungal LOV protein ENVOY to interrogate the role of Thr(101) in recruiting water to the flavin active site where it can function as an intrinsic base to accelerate photocycle kinetics. Kinetic and molecular dynamic simulations confirm a role in solvent recruitment to the active site and identify structural changes that correlate with solvent recruitment. In vivo analysis of T101I indicates a direct role of the Thr(101) position in mediating adaptation to osmotic stress, thereby verifying biological relevance of ordered water in LOV signaling. The combined studies identify position 101 as a mediator of both allostery and photocycle catalysis that can impact organism physiology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Anomalous Debye-like dielectric relaxation of water in micro-sized confined polymeric systems.
Colosi, C; Costantini, M; Barbetta, A; Cametti, C; Dentini, M
2013-12-14
While it is well known that spatial confinement on a nm scale affects the molecular dynamics of water resulting in a hindered dipolar reorientation, question of whether these effects could result at length scales larger than these, i.e., in confined regions of the order of μm or more, is still under debate. Here we use dielectric relaxation spectroscopy techniques to study the relaxation orientation dynamics of water entrapped in different polymeric matrices with pore sizes of the order of 100 μm, analyzing the frequency relaxation behaviour of the dielectric response. Our results show that, contrary to what has been generally thought, even in confinements which are not particularly high such as those realized here, regions typically hundred micrometers in size can affect the water structure, inducing a water phase with properties different from those of bulk water. In particular, we observe a dielectric dispersion centered in the range 10(5)-10(7) Hz, in between the one characteristic of ice (8.3 kHz at T = 0 °C) and the one of bulk water (19.2 GHz at T = 25 °C). The analysis of the dependence on temperature of the relaxation time of this unexpected contribution rules out the possibility that it can be attributed to an interfacial polarization (Maxwell-Wagner effect) and suggests a dipolar Debye-like origin due to a slow-down of the hydrogen-bonded network orientational polarization. Also at these scales, the confinement alters the structure of water, leading to a hindered reorientation. These properties imply that water confined within these polymeric porous matrices is more ordered than bulk water. These findings may be important in order to understand biological processes in cells and in different biological compartments, where water is physiologically confined.
Structural and dynamic characteristics in monolayer square ice.
Zhu, YinBo; Wang, FengChao; Wu, HengAn
2017-07-28
When water is constrained between two sheets of graphene, it becomes an intriguing monolayer solid with a square pattern due to the ultrahigh van der Waals pressure. However, the square ice phase has become a matter of debate due to the insufficient experimental interpretation and the slightly rhomboidal feature in simulated monolayer square-like structures. Here, we performed classical molecular dynamics simulations to reveal monolayer square ice in graphene nanocapillaries from the perspective of structure and dynamic characteristics. Monolayer square-like ice (instantaneous snapshot), assembled square-rhombic units with stacking faults, is a long-range ordered structure, in which the square and rhombic units are assembled in an order of alternative distribution, and the other rhombic unit forms stacking faults (polarized water chains). Spontaneous flipping of water molecules in monolayer square-like ice is intrinsic and induces transformations among different elementary units, resulting in the structural evolution of monolayer square ice in dynamics. The existence of stacking faults should be attributed to the spontaneous flipping behavior of water molecules under ambient temperature. Statistical averaging results (thermal average positions) demonstrate the inherent square characteristic of monolayer square ice. The simulated data and insight obtained here might be significant for understanding the topological structure and dynamic behavior of monolayer square ice.
Characterization of food additive-potato starch complexes by FTIR and X-ray diffraction.
Dankar, Iman; Haddarah, Amira; Omar, Fawaz E L; Pujolà, Montserrat; Sepulcre, Francesc
2018-09-15
Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) techniques were used to study the effect of four food additives, agar, alginate, lecithin and glycerol, at three different concentrations, 0.5, 1 and 1.5%, on the molecular structure of potato puree prepared from commercial potato powder. Vibrational spectra revealed that the amylose-amylopectin skeleton present in the raw potato starch was missing in the potato powder but could be fully recovered upon water addition when the potato puree was prepared. FTIR peaks corresponding to water were clearly present in the potato powder, indicating the important structural role of water molecules in the recovery of the initial molecular conformation. None of the studied puree samples presented a crystalline structure or strong internal order. A comparison of the FTIR and XRD results revealed that the additives exerted some effects, mainly on the long-range order of the starch structure via interacting with and changing -OH and hydrogen bond interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Recent advances in SPE (tm) water electrolyzer
NASA Technical Reports Server (NTRS)
Mcelroy, James F.
1993-01-01
A new cell structure has been introduced into the SPE Water Electrolyzer which has improved overall characteristics significantly. Weight, reliability, and efficiency are the characteristics that are improved the most, with volume having a second order improvement. This paper discusses the capabilities of the new cell structure and the impact it would have in various space applications.
Hamiltonian structures for systems of hyperbolic conservation laws
NASA Astrophysics Data System (ADS)
Olver, Peter J.; Nutku, Yavuz
1988-07-01
The bi-Hamiltonian structure for a large class of one-dimensional hyberbolic systems of conservation laws in two field variables, including the equations of gas dynamics, shallow water waves, one-dimensional elastic media, and the Born-Infeld equation from nonlinear electrodynamics, is exhibited. For polytropic gas dynamics, these results lead to a quadri-Hamiltonian structure. New higher-order entropy-flux pairs (conservation laws) and higher-order symmetries are exhibited.
Russell F. Thurow; Daniel J. Schill
1996-01-01
Biologists lack sufficient information to develop protocols for sampling the abundance and size structure of bull trout Salvelinus confluentus. We compared summer estimates of the abundance and size structure of bull trout in a second-order central Idaho stream, derived by day snorkeling, night snorkeling, and electrofishing. We also examined the influence of water...
Hou, Binyang; Kim, Seunghyun; Kim, Taeho; ...
2016-06-15
The interfacial hydration structure of yttria-stabilized cubic zirconia (110) surface in contact with water was determined with ~0.5 Å resolution by high-resolution X-ray reflectivity measurement. The terminal layer shows a reduced electron density compared to the following substrate lattice layers, which indicates there are additional defects generated by metal depletion as well as intrinsic oxygen vacancies, both of which are apparently filled by water species. Above this top surface layer, two additional adsorbed layers are observed forming a characteristic interfacial hydration structure. The first adsorbed layer shows abnormally high density as pure water and likely includes metal species, whereas themore » second layer consists of pure water. The observed interfacial hydration structure seems responsible for local equilibration of the defective surface in water and eventually regulating the long-term degradation processes. As a result, the multitude of water interactions with the zirconia surface results in the complex but highly ordered interfacial structure constituting the reaction front.« less
Structures of water molecules in carbon nanotubes under electric fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winarto,; Takaiwa, Daisuke; Yamamoto, Eiji
2015-03-28
Carbon nanotubes (CNTs) are promising for water transport through membranes and for use as nano-pumps. The development of CNT-based nanofluidic devices, however, requires a better understanding of the properties of water molecules in CNTs because they can be very different from those in the bulk. Using all-atom molecular dynamics simulations, we investigate the effect of axial electric fields on the structure of water molecules in CNTs having diameters ranging from (7,7) to (10,10). The water dipole moments were aligned parallel to the electric field, which increases the density of water inside the CNTs and forms ordered ice-like structures. The electricmore » field induces the transition from liquid to ice nanotubes in a wide range of CNT diameters. Moreover, we found an increase in the lifetime of hydrogen bonds for water structures in the CNTs. Fast librational motion breaks some hydrogen bonds, but the molecular pairs do not separate and the hydrogen bonds reform. Thus, hydrogen bonds maintain the water structure in the CNTs, and the water molecules move collectively, decreasing the axial diffusion coefficient and permeation rate.« less
Membrane formation in liquids by adding an antagonistic salt
NASA Astrophysics Data System (ADS)
Sadakane, Koichiro; Seto, Hideki
2018-03-01
Antagonistic salts are composed of hydrophilic and hydrophobic ions. In a binary mixture, such as water and organic solvent, these ion pairs preferentially dissolve to those phases, respectively, and there is a coupling between the charge density and the composition. The heterogeneous distribution of ions forms a large electric double layer at the interface between these solvents. This reduces the interfacial tension between water and organic solvent, and stabilizes an ordered structure, such as a membrane. These phenomena have been extensively studied from both theoretical and experimental point of view. In addition, the numerical simulations can reproduce such ordered structures.
Short, intermediate and long range order in amorphous ices
NASA Astrophysics Data System (ADS)
Martelli, Fausto; Torquato, Salvatore; Giovanbattista, Nicolas; Car, Roberto
Water exhibits polyamorphism, i.e., it exists in more than one amorphous state. The most common forms of glassy water are the low-density amorphous (LDA) and the high-density amorphous (HDA) ices. LDA, the most abundant form of ice in the Universe, transforms into HDA upon isothermal compression. We model the transformation of LDA into HDA under isothermal compression with classical molecular dynamics simulations. We analyze the molecular structures with a recently introduced scalar order metric to measure short and intermediate range order. In addition, we rank the structures by their degree of hyperuniformity, i.e.,the extent to which long range density fluctuations are suppressed. F.M. and R.C. acknowledge support from the Department of Energy (DOE) under Grant No. DE-SC0008626.
NASA Astrophysics Data System (ADS)
Kalinichev, A. G.; Wang, J.; Kirkpatrick, R.
2006-05-01
Fundamental molecular-level understanding of the properties of aqueous mineral interfaces is of great importance for many geochemical and environmental systems. Interaction between water and mineral surfaces substantially affects the properties of both phases, including the reactivity and functionality of the substrate surface, and the structure, dynamics, and energetics of the near surface aqueous phase. Experimental studies of interfacial water structure and dynamics using surface-sensitive techniques such as sum-frequency vibrational spectroscopy or X-ray and neutron reflectivity are not always possible for many practically important substrates, and their results often require interpretation concerning the atomistic mechanisms responsible for the observed behavior. Molecular computer simulations can provide new insight into the underlying molecular- level relationships between the inorganic substrate structure and composition and the structure, ordering, and dynamics of interfacial water. We have performed a series of molecular dynamics (MD) computer simulations of aqueous interfaces with several silicates (quartz, muscovite, and talc) and hydroxides (brucite, portlandite, gibbsite, Ca/Al and Mg/Al double hydroxides) to quantify the effects of the substrate mineral structure and composition on the structural, transport, and thermodynamic properties of water on these mineral surfaces. Due to the prevalent effects of the development of well-interconnected H-bonding networks across the mineral- water interfaces, all the hydroxide surfaces (including a fully hydroxylated quartz surface) show very similar H2O density profiles perpendicular to the interface. However, the predominant orientations of the interfacial H2O molecules and their detailed 2-dimensional near-surface structure and dynamics parallel to the interface are quite different reflecting the differences in the substrate structural charge distribution and the density and orientations of the surface OH groups. The H2O density profiles and other structural and dynamic characteristics of water at the two siloxane surfaces are very different from each other and from the hydroxide surfaces, since the muscovite surface is negatively charged and hydrophilic, while the talc surface is electrostatically neutral and hydrophobic. In general, at hydrophilic neutral surfaces both donating and accepting H-bonds from the H2O molecules are contributing to the development of the interfacial H-bond network, whereas at hydrophilic but charged surfaces only accepting or donating H-bonds with H2O molecules are possible. At the hydrophobic talc surface H-bonds among H2O molecules dominate the interfacial H-bond network and the water-surface interactions are very weak. The first water layer at all substrates is well ordered parallel to the surface, reflecting substrate crystal structures and indicating the reduced translational and orientational mobility of interfacial H2O molecules. At longer time scale (~100ps) their dynamics can be decomposed into a slow, virtually frozen, regime due to the substrate- bound H2O and a faster regime of almost free water reflecting the dynamics far from the surface. At shorter times (>10ps) the two dynamical regimes are superimposed. The much higher ordering of interfacial water (compared to bulk liquid) can not be adequately described as simply "ice-like". To some extent, it rather resembles the behavior of supercooled water.
Characterization of a Novel Water Pocket Inside the Human Cx26 Hemichannel Structure
Araya-Secchi, Raul; Perez-Acle, Tomas; Kang, Seung-gu; Huynh, Tien; Bernardin, Alejandro; Escalona, Yerko; Garate, Jose-Antonio; Martínez, Agustin D.; García, Isaac E.; Sáez, Juan C.; Zhou, Ruhong
2014-01-01
Connexins (Cxs) are a family of vertebrate proteins constituents of gap junction channels (GJCs) that connect the cytoplasm of adjacent cells by the end-to-end docking of two Cx hemichannels. The intercellular transfer through GJCs occurs by passive diffusion allowing the exchange of water, ions, and small molecules. Despite the broad interest to understand, at the molecular level, the functional state of Cx-based channels, there are still many unanswered questions regarding structure-function relationships, perm-selectivity, and gating mechanisms. In particular, the ordering, structure, and dynamics of water inside Cx GJCs and hemichannels remains largely unexplored. In this work, we describe the identification and characterization of a believed novel water pocket—termed the IC pocket—located in-between the four transmembrane helices of each human Cx26 (hCx26) monomer at the intracellular (IC) side. Using molecular dynamics (MD) simulations to characterize hCx26 internal water structure and dynamics, six IC pockets were identified per hemichannel. A detailed characterization of the dynamics and ordering of water including conformational variability of residues forming the IC pockets, together with multiple sequence alignments, allowed us to propose a functional role for this cavity. An in vitro assessment of tracer uptake suggests that the IC pocket residue Arg-143 plays an essential role on the modulation of the hCx26 hemichannel permeability. PMID:25099799
Enthalpic Breakdown of Water Structure on Protein Active-Site Surfaces
Haider, Kamran; Wickstrom, Lauren; Ramsey, Steven; Gilson, Michael K.; Kurtzman, Tom
2016-01-01
The principles underlying water reorganization around simple non-polar solutes are well understood and provide the framework for classical hydrophobic effect, whereby water molecules structure themselves around solutes so that they maintain favorable energetic contacts with both the solute and with other water molecules. However, for certain solute surface topographies, water molecules, due to their geometry and size, are unable to simultaneously maintain favorable energetic contacts with both the surface and neighboring water molecules. In this study, we analyze the solvation of ligand-binding sites for six structurally diverse proteins using hydration site analysis and measures of local water structure, in order to identify surfaces at which water molecules are unable to structure themselves in a way that maintains favorable enthalpy relative to bulk water. These surfaces are characterized by a high degree of enclosure, weak solute-water interactions, and surface constraints that induce unfavorable pair interactions between neighboring water molecules. Additionally, we find that the solvation of charged side-chains in an active site generally results in favorable enthalpy but can also lead to pair interactions between neighboring water molecules that are significantly unfavorable relative to bulk water. We find that frustrated local structure can occur not only in apolar and weakly polar pockets, where overall enthalpy tends to be unfavorable, but also in charged pockets, where overall water enthalpy tends to be favorable. The characterization of local water structure in these terms may prove useful for evaluating the displacement of water from diverse protein active-site environments. PMID:27169482
NASA Astrophysics Data System (ADS)
Khandelwal, A.; Karpatne, A.; Kumar, V.
2017-12-01
In this paper, we present novel methods for producing surface water maps at 30 meter spatial resolution at a daily temporal resolution. These new methods will make use of the MODIS spectral data from Terra (available daily since 2000) to produce daily maps at 250 meter and 500 meter resolution, and then refine them using the relative elevation ordering of pixels at 30 meter resolution. The key component of these methods is the use of elevation structure (relative elevation ordering) of a water body. Elevation structure is not explicitly available at desired resolution for most water bodies in the world and hence it will be estimated using our previous work that uses the history of imperfect labels. In this paper, we will present a new technique that uses elevation structure (unlike existing pixel based methods) to enforce temporal consistency in surface water extents (lake area on nearby dates is likely to be very similar). This will greatly improve the quality of the MODIS scale land/water labels since daily MODIS data can have a large amount of missing (or poor quality) data due to clouds and other factors. The quality of these maps will be further improved using elevation based resolution refinement approach that will make use of elevation structure estimated at Landsat scale. With the assumption that elevation structure does not change over time, it provides a very effective way to transfer information between datasets even when they are not observed concurrently. In this work, we will derive elevation structure at Landsat scale from monthly water extent maps spanning 1984-2015, publicly available through a joint effort of Google Earth Engine and the European Commission's Joint Research Centre (JRC). This elevation structure will then be used to refine spatial resolution of Modis scale maps from 2000 onwards. We will present the analysis of these methods on a large and diverse set of water bodies across the world.
The impacts of surface polarity on the solubility of nanoparticle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jianzhuo; Su, Jiguo, E-mail: jiguosu@ysu.edu.cn; Ou, Xinwen
In order to study the dependence of water solubility and hydration behavior of nanoparticles on their surface polarity, we designed polar nanoparticles with varying surface polarity by assigning atomic partial charge to the surface of C60. The water solubility of the nanoparticle is enhanced by several orders of magnitude after the introduction of surface polarity. Nevertheless, when the atomic partial charge grows beyond a certain value (q{sub M}), the solubility continuously decreases to the level of nonpolar nanoparticle. It should be noted that such q{sub M} is comparable with atomic partial charge of a variety of functional groups. The hydrationmore » behaviors of nanoparticles were then studied to investigate the non-monotonic dependence of solubility on the surface polarity. The interaction between the polar nanoparticle and the hydration water is stronger than the nonpolar counterpart, which should facilitate the dissolution of the nanoparticles. On the other hand, the surface polarity also reduces the interaction of hydration water with the other water molecules and enhances the interaction between the nanoparticles which may hinder their dispersion. Besides, the introduction of surface polarity disturbs and even rearranges the hydration structure of nonpolar nanoparticle. Interestingly, the polar nanoparticle with less ordered hydration structure tends to have higher water solubility.« less
A second order thermodynamic perturbation theory for hydrogen bond cooperativity in water
NASA Astrophysics Data System (ADS)
Marshall, Bennett D.
2017-05-01
It has been extensively demonstrated through first principles quantum mechanics calculations that water exhibits strong hydrogen bond cooperativity. Equations of state developed from statistical mechanics typically assume pairwise additivity, meaning they cannot account for these 3-body and higher cooperative effects. In this paper, we extend a second order thermodynamic perturbation theory to correct for hydrogen bond cooperativity in 4 site water. We demonstrate that the theory predicts hydrogen bonding structure consistent spectroscopy, neutron diffraction, and molecular simulation data. Finally, we implement the approach into a general equation of state for water.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-04
..., cultural resources, land use, air quality, water quality, water resources, and other environmental... Riparian Sanctuary Unit by the Department of Water Resources in 1985 and 1986. The rock was placed in order... activities would not impact the Goose Lake overflow structure that diverts flood water into the Butte Basin...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-12
... biological resources, cultural resources, land use, air quality, water quality, water resources, and other... Riparian Sanctuary Unit by the Department of Water Resources in 1985 and 1986. The rock was placed in order... activities would not impact the Goose Lake overflow structure that diverts flood water into the Butte Basin...
Structure and dynamics of complex liquid water: Molecular dynamics simulation
NASA Astrophysics Data System (ADS)
S, Indrajith V.; Natesan, Baskaran
2015-06-01
We have carried out detailed structure and dynamical studies of complex liquid water using molecular dynamics simulations. Three different model potentials, namely, TIP3P, TIP4P and SPC-E have been used in the simulations, in order to arrive at the best possible potential function that could reproduce the structure of experimental bulk water. All the simulations were performed in the NVE micro canonical ensemble using LAMMPS. The radial distribution functions, gOO, gOH and gHH and the self diffusion coefficient, Ds, were calculated for all three models. We conclude from our results that the structure and dynamical parameters obtained for SPC-E model matched well with the experimental values, suggesting that among the models studied here, the SPC-E model gives the best structure and dynamics of bulk water.
Consequences of chirality on the dynamics of a water-soluble supramolecular polymer.
Baker, Matthew B; Albertazzi, Lorenzo; Voets, Ilja K; Leenders, Christianus M A; Palmans, Anja R A; Pavan, Giovanni M; Meijer, E W
2015-02-20
The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers: one with and one without a stereogenic methyl. Initially aiming simply to understand the molecular behaviour of these systems in water, we find that while the fibres may look identical, the introduction of homochirality imparts a higher level of internal order to the supramolecular polymer. Although this increased order does not seem to affect the basic dimensions of the supramolecular fibres, the equilibrium dynamics of the polymers differ by almost an order of magnitude. This report represents the first observation of a structure/property relationship with regard to equilibrium dynamics in water-soluble supramolecular polymers.
Consequences of chirality on the dynamics of a water-soluble supramolecular polymer
NASA Astrophysics Data System (ADS)
Baker, Matthew B.; Albertazzi, Lorenzo; Voets, Ilja K.; Leenders, Christianus M. A.; Palmans, Anja R. A.; Pavan, Giovanni M.; Meijer, E. W.
2015-02-01
The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers: one with and one without a stereogenic methyl. Initially aiming simply to understand the molecular behaviour of these systems in water, we find that while the fibres may look identical, the introduction of homochirality imparts a higher level of internal order to the supramolecular polymer. Although this increased order does not seem to affect the basic dimensions of the supramolecular fibres, the equilibrium dynamics of the polymers differ by almost an order of magnitude. This report represents the first observation of a structure/property relationship with regard to equilibrium dynamics in water-soluble supramolecular polymers.
Quantifying Hydrogen Bond Cooperativity in Water: VRT Spectroscopy of the Water Tetramer
NASA Astrophysics Data System (ADS)
Cruzan, J. D.; Braly, L. B.; Liu, Kun; Brown, M. G.; Loeser, J. G.; Saykally, R. J.
1996-01-01
Measurement of the far-infrared vibration-rotation tunneling spectrum of the perdeuterated water tetramer is described. Precisely determined rotational constants and relative intensity measurements indicate a cyclic quasi-planar minimum energy structure, which is in agreement with recent ab initio calculations. The O-O separation deduced from the data indicates a rapid exponential convergence to the ordered bulk value with increasing cluster size. Observed quantum tunneling splittings are interpreted in terms of hydrogen bond rearrangements connecting two degenerate structures.
Molecular dynamics simulations of a DMSO/water mixture using the AMBER force field.
Stachura, Slawomir S; Malajczuk, Chris J; Mancera, Ricardo L
2018-06-25
Due to its protective properties of biological samples at low temperatures and under desiccation, dimethyl sulfoxide (DMSO) in aqueous solutions has been studied widely by many experimental approaches and molecular dynamics (MD) simulations. In the case of the latter, AMBER is among the most commonly used force fields for simulations of biomolecular systems; however, the parameters for DMSO published by Fox and Kollman in 1998 have only been tested for pure liquid DMSO. We have conducted an MD simulation study of DMSO in a water mixture and computed several structural and dynamical properties such as of the mean density, self-diffusion coefficient, hydrogen bonding and DMSO and water ordering. The AMBER force field of DMSO is seen to reproduce well most of the experimental properties of DMSO in water, with the mixture displaying strong and specific water ordering, as observed in experiments and multiple other MD simulations with other non-polarizable force fields. Graphical abstract Hydration structure within hydrogen-bonding distance around a DMSOmolecule.
Speranza, Valentina; Trotta, Francesco; Drioli, Enrico; Gugliuzza, Annarosa
2010-02-01
The fabrication of well-defined interfaces is in high demand in many fields of biotechnologies. Here, high-definition membrane-like arrays are developed through the self-assembly of water droplets, which work as natural building blocks for the construction of ordered channels. Solution viscosity together with the dynamics of the water droplets can decide the final formation of three-dimensional well-ordered patterns resembling anodic structures, especially because solvents denser than water are used. Particularly, the polymer solution viscosity is demonstrated to be a powerful tool for control of the mobility of submerged droplets during the microfabrication process. The polymeric patterns are structured at very high levels of organization and exhibit well-established transport-surface property relationships, considered basics for any types of advanced biotechnologies.
Yagasaki, Takuma; Saito, Shinji; Ohmine, Iwao
2010-12-09
The solvation of halide ions at the water/vapor interface is investigated by using molecular dynamics simulations with nonpolarizable molecular mechanical (MM), polarizable MM, and quantum mechanical (QM)/MM methods. The free energy profile of the ion solvation is decomposed into the energy and the entropic contributions along the ion displacement from inside to the surface of water. It is found that the surface affinity of the ion, relative to the bulk value, is determined by a subtle balance between the energetic destabilization and the entropic stabilization with the ion displacement. The amount of energetic destabilization is found to be reduced when nonadditive interactions are included, as in the polarizable MM and QM/MM models. The structure of water around the ion at the interface is also largely modified when the higher order effects are considered. For example, the induced dipole effect enhances the solvation structure around the ion at the interface significantly and thus reduces the amount of entropic stabilization at the interface, relative to in the bulk. It is found that this induced dipole effect causes the slowing in the ion-water hydrogen bond dynamics at the interface. On the other hand, the higher order induced multipole effects in the QM/MM method suppress both the excessive enhancement of the solvation structure and the slowing of the ion-water hydrogen bond dynamics at the interface. The present study demonstrates that not only the induced dipole moment but also the higher order induced multipole moments, which are neglected in standard empirical models, are essential for the correct description of the ion solvation at the water/vapor interface.
Nebgen, Benjamin Tyler; Magurudeniya, Harsha D.; Kwock, Kevin Wen Chi; ...
2017-07-18
Molecular dynamics simulations (up to the nanoscale) were performed on the 3-methyl-1-pentylimidazolium ionic liquid cation paired with three anions; chloride, nitrate, and thiocyanate as aqueous mixtures, using the effective fragment potential (EFP) method, a computationally inexpensive way of modeling intermolecular interactions. The simulations provided insight (preferred geometries, radial distribution functions and theoretical proton NMR resonances) into the interactions within the ionic domain and are validated against 1H NMR spectroscopy and small- and wide-angle X-ray scattering experiments on 1-decyl-3-methylimidazolium. Ionic liquids containing thiocyanate typically resist gelation and form poorly ordered lamellar structures upon mixing with water. Conversely, chloride, a strongly coordinatingmore » anion, normally forms strong physical gels and produces well-ordered nanostructures adopting a variety of structural motifs over a very wide range of water compositions. Nitrate is intermediate in character, whereby upon dispersal in water it displays a range of viscosities and self-assembles into nanostructures with considerable variability in the fidelity of ordering and symmetry, as a function of water content in the binary mixtures. The observed changes in the macro and nanoscale characteristics were directly correlated to ionic domain structures and intermolecular interactions as theoretically predicted by the analysis of MD trajectories and calculated RDFs. Specifically, both chloride and nitrate are positioned in the plane of the cation. Anion to cation proximity is dependent on water content. Thiocyanate is more susceptible to water insertion into the second solvent shell. Experimental 1H NMR chemical shifts monitor the site-specific competition dependence with water content in the binary mixtures. As a result, thiocyanate preferentially sits above and below the aromatic ring plane, a state disallowing interaction with the protons on the imidazolium ring.« less
Nebgen, Benjamin T; Magurudeniya, Harsha D; Kwock, Kevin W C; Ringstrand, Bryan S; Ahmed, Towfiq; Seifert, Sönke; Zhu, Jian-Xin; Tretiak, Sergei; Firestone, Millicent A
2017-12-14
Molecular dynamics simulations (up to the nanoscale) were performed on the 3-methyl-1-pentylimidazolium ionic liquid cation paired with three anions; chloride, nitrate, and thiocyanate as aqueous mixtures, using the effective fragment potential (EFP) method, a computationally inexpensive way of modeling intermolecular interactions. The simulations provided insight (preferred geometries, radial distribution functions and theoretical proton NMR resonances) into the interactions within the ionic domain and are validated against 1 H NMR spectroscopy and small- and wide-angle X-ray scattering experiments on 1-decyl-3-methylimidazolium. Ionic liquids containing thiocyanate typically resist gelation and form poorly ordered lamellar structures upon mixing with water. Conversely, chloride, a strongly coordinating anion, normally forms strong physical gels and produces well-ordered nanostructures adopting a variety of structural motifs over a very wide range of water compositions. Nitrate is intermediate in character, whereby upon dispersal in water it displays a range of viscosities and self-assembles into nanostructures with considerable variability in the fidelity of ordering and symmetry, as a function of water content in the binary mixtures. The observed changes in the macro and nanoscale characteristics were directly correlated to ionic domain structures and intermolecular interactions as theoretically predicted by the analysis of MD trajectories and calculated RDFs. Specifically, both chloride and nitrate are positioned in the plane of the cation. Anion to cation proximity is dependent on water content. Thiocyanate is more susceptible to water insertion into the second solvent shell. Experimental 1 H NMR chemical shifts monitor the site-specific competition dependence with water content in the binary mixtures. Thiocyanate preferentially sits above and below the aromatic ring plane, a state disallowing interaction with the protons on the imidazolium ring.
NASA Astrophysics Data System (ADS)
Zhang, Liyun; Li, Yuzhi; Yuan, Yuan; Jiang, Yuanyuan; Guo, Yanzhi; Li, Menglong; Pu, Xuemei
2016-11-01
In the work, we mainly used molecular dynamics (MD) simulation and protein structure network (PSN) to study subtilisin Carlsberg (SC) immobilized onto carbon nanotube (CNT) in water, acetonitrile and heptane solvents, in order to explore activation mechanism of enzymes in non-aqueous media. The result indicates that the affinity of SC with CNT follows the decreasing order of water > acetonitrile > heptane. The overall structure of SC and the catalytic triad display strong robustness to the change of environments, responsible for the activity retaining. However, the distances between two β-strands of substrate-binding pocket are significantly expanded by the immobilization in the increasing order of water < acetonitrile < heptane, contributing to the highest substrate-binding energy in heptane media. PSN analysis further reveals that the immobilization enhances structural communication paths to the substrate-binding pocket, leading to its larger change than the free-enzymes. Interestingly, the increase in the number of the pathways upon immobilization is not dependent on the absorbed extent but the desorbed one, indicating significant role of shifting process of experimental operations in influencing the functional region. In addition, some conserved and important hot-residues in the paths are identified, providing molecular information for functional modification.
Söderberg, Charlotta
2016-12-01
Contemporary processes of environmental policymaking in general span over several territorial tiers. This also holds for the EU Water Framework Directive system of environmental quality standards (EQS), which are part of a complex multi-level institutional landscape, embracing both EU, national and sub-national level. Recent evaluations show that many EU member states, including Sweden, have not reached the ecological goals for water in 2015. Departing from theories on policy coherence and multi-level governance, this paper therefore analyses Swedish water governance as a case to further our understanding of policy implementation in complex governance structures: how does policy coherence (or the lack thereof) affect policy implementation in complex governance structures? To answer this question, the paper maps out the formal structure of the water governance system, focusing on power directions within the system, analyses policy coherence in Swedish water governance through mapping out policy conflicts between the EQS for water and other goals/regulations and explore how they are handled by national and sub-national water bureaucrats. The study concludes that without clear central guidance, 'good ecological status' for Swedish water will be difficult to achieve since incoherent policies makes policy implementation inefficient due to constant power struggles between different authorities, and since environmental goals are often overridden by economic and other societal goals. Further research is needed in order to explore if similar policy conflicts between water quality and other objectives occur in other EU member states and how bureaucrats handle such conflicts in different institutional settings. This study of the Swedish case indicates that the role of the state as a navigator and rudder-holder is important in order to improve policy implementation in complex governance structures - otherwise; bureaucrats risk being lost in an incoherent archipelago of ecological, social and economic goals. Copyright © 2016 Elsevier Ltd. All rights reserved.
A quantum chemical study of the decomposition of Keggin-structured heteropolyacids.
Janik, Michael J; Bardin, Billy B; Davis, Robert J; Neurock, Matthew
2006-03-09
Heterpolyacids (HPAs) demonstrate catalytic activity for oxidative and acid-catalyzed hydrocarbon conversion processes. Deactivation and thermal instability, however, have prevented their widespread use. Herein, ab initio density functional theory is used to study the thermal decomposition of the Keggin molecular HPA structure through the desorption of constitutional water molecules. The overall reaction energy and activation barrier are computed for the overall reaction HnXM12O40-->Hn-2XM12O39+H2O. and subsequently used to predict the effect of HPA composition on thermal stability. For example, the desorption of a constitutional water molecule is found to be increasingly endothermic in the order silicomolybdic acid (H4SiMo12O40)
NASA Astrophysics Data System (ADS)
You, Xiaofang; Wei, Hengbin; Zhu, Xianchang; Lyu, Xianjun; Li, Lin
2018-07-01
Molecular dynamics simulations were employed to study the effects of oxygen functional groups for structure and dynamics properties of interfacial water molecules on the subbituminous coal surface. Because of complex composition and structure, the graphite surface modified by hydroxyl, carboxyl and carbonyl groups was used to represent the surface model of subbituminous coal according to XPS results, and the composing proportion for hydroxyl, carbonyl and carboxyl is 25:3:5. The hydration energy with -386.28 kJ/mol means that the adsorption process between water and coal surface is spontaneous. Density profiles for oxygen atoms and hydrogen atoms indicate that the coal surface properties affect the structural and dynamic characteristics of the interfacial water molecules. The interfacial water exhibits much more ordering than bulk water. The results of radial distribution functions, mean square displacement and local self-diffusion coefficient for water molecule related to three oxygen moieties confirmed that the water molecules prefer to absorb with carboxylic groups, and adsorption of water molecules at the hydroxyl and carbonyl is similar.
Characterizing hydrophobicity at the nanoscale: a molecular dynamics simulation study.
Bandyopadhyay, Dibyendu; Choudhury, Niharendu
2012-06-14
We use molecular dynamics (MD) simulations of water near nanoscopic surfaces to characterize hydrophobic solute-water interfaces. By using nanoscopic paraffin like plates as model solutes, MD simulations in isothermal-isobaric ensemble have been employed to identify characteristic features of such an interface. Enhanced water correlation, density fluctuations, and position dependent compressibility apart from surface specific hydrogen bond distribution and molecular orientations have been identified as characteristic features of such interfaces. Tetrahedral order parameter that quantifies the degree of tetrahedrality in the water structure and an orientational order parameter, which quantifies the orientational preferences of the second solvation shell water around a central water molecule, have also been calculated as a function of distance from the plate surface. In the vicinity of the surface these two order parameters too show considerable sensitivity to the surface hydrophobicity. The potential of mean force (PMF) between water and the surface as a function of the distance from the surface has also been analyzed in terms of direct interaction and induced contribution, which shows unusual effect of plate hydrophobicity on the solvent induced PMF. In order to investigate hydrophobic nature of these plates, we have also investigated interplate dewetting when two such plates are immersed in water.
Documentation of the Goddard Laboratory for atmospheres fourth-order two-layer shallow water model
NASA Technical Reports Server (NTRS)
Takacs, L. L. (Compiler)
1986-01-01
The theory and numerical treatment used in the 2-level GLA fourth-order shallow water model are described. This model was designed to emulate the horizontal finite differences used by the GLA Fourth-Order General Circulation Model (Kalnay et al., 1983) in addition to its grid structure, form of high-latitude and global filtering, and time-integration schemes. A user's guide is also provided instructing the user on how to create initial conditions, execute the model, and post-process the data history.
Effect of dewatering on seismic performance of multi-anchor wall due to high ground water level
NASA Astrophysics Data System (ADS)
Kobayashi, Makoto; Miura, Kinya; Konami, Takeharu; Hayashi, Taketo; Sato, Hiroki
2017-10-01
Previous research reported that the ground water in the backfill of reinforced soil wall made it deteriorate. According to the damage investigation of Great East Earthquake 2011, the reinforced soil structure due to high ground water level by seismic wave were deformed remarkably. Some of them classified ultimate limit state or restorability limit state. However, more than 90% of reinforced soil structure, which suffered from this earthquake, were classified into no damage condition. Therefore, it is necessary that the seismic behaviors of multi-anchor wall due to seepage flow should be clarified in order to adopt the performance-based design in such reinforced soil structure. In this study, a series of centrifugal shaking table tests were conducted to investigate the seismic behavior of multi-anchor wall due to high ground water level. The reinforced drainage pipes were installed into the backfill in order to verify the dewatering effect and additional reinforcement. Furthermore, to check only the dewatering effect, the model tests was carried out with several ground water table that was modeled the case reinforced drainage pipes installed. The test results show unique behavior of reinforced region that moved integrally. This implies that the reinforced region has been behaved as if it became one mass, and this behavior make this structure increase seismic performance. Thus, the effectiveness of dewatering was observed remarkably because of decreasing the inertial force during earthquake.
Impact of valley fills on streamside salamanders in southern West Virginia
Wood, Petra Bohall; Williams, Jennifer M.
2013-01-01
Valley fills associated with mountaintop-removal mining bury stream headwaters and affect water quality and ecological function of reaches below fills. We quantified relative abundance of streamside salamanders in southern West Virginia during 2002 in three streams below valley fills (VFS) and in three reference streams (RS). We surveyed 36 10- × 2-m stream transects, once in summer and fall, paired by order and structure. Of 2,343 salamanders captured, 66.7% were from RS. Total salamanders (adults plus larvae) were more abundant in RS than VFS for first-order and second-order reaches. Adult salamanders had greater abundance in first-order reaches of RS than VFS. Larval salamanders were more abundant in second-order reaches of RS than VFS. No stream width or mesohabitat variables differed between VFS and RS. Only two cover variables differed. Silt cover, greater in VFS than RS first-order reaches, is a likely contributor to reduced abundance of salamanders in VFS. Second-order RS had more boulder cover than second-order VFS, which may have contributed to the higher total and larval salamander abundance in RS. Water chemistry assessments of our VFS and RS reported elevated levels of metal and ion concentrations in VFS, which can depress macroinvertebrate populations and likely affect salamander abundance. Valley fills appear to have significant negative effects on stream salamander abundance due to alterations in habitat structure, water quality and chemistry, and macroinvertebrate communities in streams below fills.
Vijayakumar, Balakrishnan; Velmurugan, Devadasan
2013-12-01
Endo-1,4-Xylanase II is an enzyme which degrades the linear polysaccharide beta-1,4-xylan into xylose. This enzyme shows highest enzyme activity around 55 °C, even without being stabilized by the disulphide bridges. A set of nine high resolution crystal structures of Xylanase II (1.11-1.80 Å) from Trichoderma reesei were selected and analyzed in order to identify the invariant water molecules, ion pairs and water-mediated ionic interactions. The crystal structure (PDB-id: 2DFB) solved at highest resolution (1.11 Å) was chosen as the reference and the remaining structures were treated as mobile molecules. These structures were then superimposed with the reference molecule to observe the invariant water molecules using 3-dimensional structural superposition server. A total of 37 water molecules were identified to be invariant molecules in all the crystal structures, of which 26 invariant molecules have hydrogen bond interactions with the back bone of residues and 21 invariant water molecules have interactions with side chain residues. The structural and functional roles of these water molecules and ion pairs have been discussed. The results show that the invariant water molecules and ion pairs may be involved in maintaining the structural architecture, dynamics and function of the Endo-1,4-Xylanase II.
Presti, Davide; Pedone, Alfonso; Mancini, Giordano; Duce, Celia; Tiné, Maria Rosaria; Barone, Vincenzo
2016-01-21
Density functional theory calculations and classical molecular dynamics simulations have been used to investigate the structure and dynamics of water molecules on kaolinite surfaces and confined in the interlayer of a halloysite model of nanometric dimension. The first technique allowed us to accurately describe the structure of the tetrahedral-octahedral slab of kaolinite in vacuum and in interaction with water molecules and to assess the performance of two widely employed empirical force fields to model water/clay interfaces. Classical molecular dynamics simulations were used to study the hydrogen bond network structure and dynamics of water adsorbed on kaolinite surfaces and confined in the halloysite interlayer. The results are in nice agreement with the few experimental data available in the literature, showing a pronounced ordering and reduced mobility of water molecules at the hydrophilic octahedral surfaces of kaolinite and confined in the halloysite interlayer, with respect to water interacting with the hydrophobic tetrahedral surfaces and in the bulk. Finally, this investigation provides new atomistic insights into the structural and dynamical properties of water-clay interfaces, which are of fundamental importance for both natural processes and industrial applications.
Ashbaugh, H S; Garde, S; Hummer, G; Kaler, E W; Paulaitis, M E
1999-01-01
Conformational free energies of butane, pentane, and hexane in water are calculated from molecular simulations with explicit waters and from a simple molecular theory in which the local hydration structure is estimated based on a proximity approximation. This proximity approximation uses only the two nearest carbon atoms on the alkane to predict the local water density at a given point in space. Conformational free energies of hydration are subsequently calculated using a free energy perturbation method. Quantitative agreement is found between the free energies obtained from simulations and theory. Moreover, free energy calculations using this proximity approximation are approximately four orders of magnitude faster than those based on explicit water simulations. Our results demonstrate the accuracy and utility of the proximity approximation for predicting water structure as the basis for a quantitative description of n-alkane conformational equilibria in water. In addition, the proximity approximation provides a molecular foundation for extending predictions of water structure and hydration thermodynamic properties of simple hydrophobic solutes to larger clusters or assemblies of hydrophobic solutes. PMID:10423414
Dahanayake, Jayangika N.; Gautam, Devaki N.; Verma, Rajni; Mitchell-Koch, Katie R.
2016-01-01
The use of enzymes in non-aqueous solvents expands the use of biocatalysts to hydrophobic substrates, with the ability to tune selectivity of reactions through solvent selection. Non-aqueous enzymology also allows for fundamental studies on the role of water and other solvents in enzyme structure, dynamics, and function. Molecular dynamics simulations serve as a powerful tool in this area, providing detailed atomic information about the effect of solvents on enzyme properties. However, a common protocol for non-aqueous enzyme simulations does not exist. If you want to simulate enzymes in non-aqueous solutions, how many and which crystallographic waters do you keep? In the present work, this question is addressed by determining which crystallographic water molecules lead most quickly to an equilibrated protein structure. Five different methods of selecting and keeping crystallographic waters are used in order to discover which crystallographic waters lead the protein structure to reach an equilibrated structure more rapidly in organic solutions. It is found that buried waters contribute most to rapid equilibration in organic solvent, with slow-diffusing waters giving similar results. PMID:27403032
Pan, Xuecong; Yang, Fangyuan; Chen, Shunli; Zhu, Xuefeng; Wang, Chuanyi
2018-05-08
Cooperative effects of a series of equimolar binary zwitterionic-ionic surfactant mixtures on the interfacial water structure at the air-water interfaces have been studied by sum frequency generation vibrational spectroscopy (SFG-VS). For zwitterionic surfactant palmityl sulfobetaine (SNC 16 ), anionic surfactant sodium hexadecyl sulfate (SHS), and cationic surfactant cetyltrimethylammonium bromide (CTAB) with the same length of alkyl chain, significantly enhanced ordering of interfacial water molecules was observed for the zwitterionic-anionic surfactant mixtures SNC 16 -SHS, indicating that SNC 16 interacts more strongly with SHS than with CTAB because of the strong headgroup-headgroup electrostatic attraction for SNC 16 -SHS. Meanwhile, the SFG amplitude ratio of methyl and methylene symmetric stretching modes was used to verify the stronger interaction between SNC 16 and SHS. The conformational order indicator increased from 0.64 for SNC 16 to 7.17 for SNC 16 -SHS but only 0.94 for SNC 16 -CTAB. In addition, another anionic surfactant sodium dodecyl sulfate (SDS) was introduced to study the influence of chain-chain interaction. Decreased SFG amplitude of interfacial water molecules for SNC 16 -SDS was observed. Therefore, both the headgroup-headgroup electrostatic interaction and chain-chain van der Waals attractive interaction of the surfactants play an important role in enhancing the ordering of interfacial water molecules. The results provided experimental and theoretical bases for practical applications of the surfactants.
Cheng, Timothy C; Bandyopadhyay, Biswajit; Mosley, Jonathan D; Duncan, Michael A
2012-08-08
The structure of ions in water at a hydrophobic interface influences important processes throughout chemistry and biology. However, experiments to measure these structures are limited by the distribution of configurations present and the inability to selectively probe the interfacial region. Here, protonated nanoclusters containing benzene and water are produced in the gas phase, size-selected, and investigated with infrared laser spectroscopy. Proton stretch, free OH, and hydrogen-bonding vibrations uniquely define protonation sites and hydrogen-bonding networks. The structures consist of protonated water clusters binding to the hydrophobic interface of neutral benzene via one or more π-hydrogen bonds. Comparison to the spectra of isolated hydronium, zundel, or eigen ions reveals the inductive effects and local ordering induced by the interface. The structures and interactions revealed here represent key features expected for aqueous hydrophobic interfaces.
Extrusion induced low-order starch matrices: Enzymic hydrolysis and structure.
Zhang, Bin; Dhital, Sushil; Flanagan, Bernadine M; Luckman, Paul; Halley, Peter J; Gidley, Michael J
2015-12-10
Waxy, normal and highwaymen maize starches were extruded with water as sole plasticizer to achieve low-order starch matrices. Of the three starches, we found that only high-amylose extrudate showed lower digestion rate/extent than starches cooked in excess water. The ordered structure of high-amylose starches in cooked and extruded forms was similar, as judged by NMR, XRD and DSC techniques, but enzyme resistance was much greater for extruded forms. Size exclusion chromatography suggested that longer chains were involved in enzyme resistance. We propose that the local molecular density of packing of amylose chains can control the digestion kinetics rather than just crystallinity, with the principle being that density sufficient to either prevent/limit binding and/or slow down catalysis can be achieved by dense amorphous packing. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Nicol, Malcolm; Johnson, Mary; Boone, Steven; Cynn, Hyunchee
1987-01-01
Several studies relative to high pressure cosmochemistry of major planetary interiors are summarized. The behavior of gas-ice mixtures at very high pressures, studies of the phase diagram of (NH3) sub x (H2O) sub 1-x at pressures to 5GPa and temperatures from 240 to 370 K, single crystal growth of ammonia dihydrate at room temperature in order to determine their structures by x-ray diffraction, spectroscopy of chemical reactions during shock compression in order to evaluate how the reactions affect the interpretation of equation of state data obtained by shock methods, and temperature and x-ray diffraction measurements made on resistively heated wire in diamond anvil cells in order to obtain phase and structural data relevant to the interiors of terrestrial planets are among the studies discussed.
Water at silica/liquid water interfaces investigated by DFT-MD simulations
NASA Astrophysics Data System (ADS)
Gaigeot, Marie-Pierre
This talk is dedicated to probing the microscopic structural organization of water at silica/liquid water interfaces including electrolytes by first principles DFT-based molecular dynamics simulations (DFT-MD). We will present our very recent DFT-MD simulations of electrolytic (KCl, NaCl, NaI) silica/liquid water interfaces in order to unravel the intertwined structural properties of water and electrolytes at the crystalline quartz/liquid water and amorphous silica/liquid water interfaces. DFT-MD simulations provide direct knowledge of the structural organization of water and the H-Bond network formed between the water molecules within the different water layers above the silica surface. One can furthermore extract vibrational signatures of the water molecules within the interfacial layers from the DFT-MD simulations, especially non-linear SFG (Sum Frequency generation) signatures that are active at solid/liquid interfaces. The strength of the simulated spectra is that a detailed analysis of the signatures in terms of the water/water H-Bond networks formed within the interfacial water layers and in terms of the water/silica or water/electrolytes H-Bond networks can be given. Comparisons of SFG spectra between quartz/water/electrolytes and amorphous silica/water/electrolytes interfaces allow us to definitely conclude on how the structural arrangements of liquid water at these electrolytic interfaces modulate the final spectroscopic signatures. Invited speaker.
Structure and Dynamics of Water Confined in Imogolite Nanotubes.
Scalfi, Laura; Fraux, Guillaume; Boutin, Anne; Coudert, François-Xavier
2018-06-12
We have studied the properties of water adsorbed inside nanotubes of hydrophilic imogolite, an aluminum silicate clay mineral, by means of molecular simulations. We used a classical force field to describe the water and the flexible imogolite nanotube and validated it against the data obtained from first-principles molecular dynamics. With it, we observe a strong structuration of the water confined in the nanotube, with specific adsorption sites and a distribution of hydrogen bond patterns. The combination of number of adsorption sites, their geometry, and the preferential tetrahedral hydrogen bonding pattern of water leads to frustration and disorder. We further characterize the dynamics of the water, as well as the hydrogen bonds formed between water molecules and the nanotube, which is found to be more than 1 order of magnitude longer than water-water hydrogen bonds.
Martín, Elisa I; Martínez, Jose M; Sánchez Marcos, Enrique
2011-01-14
A quantum and statistical study on the effects of the ions Cu(2+) and SO(3)(-) in the solvent structure around the metal-free phthalocyanine (H(2)Pc) is presented. We developed an ab initio interaction potential for the system CuPc-H(2)O based on quantum chemical calculations and studied its transferability to the H(2)Pc-H(2)O and [CuPc(SO(3))(4)](4-)-H(2)O interactions. The use of the molecular dynamics technique allows the determination of energetic and structural properties of CuPc, H(2)Pc, and [CuPc(SO(3))(4)](4-) in water and the understanding of the keys for the different behaviors of the three phthalocyanine (Pc) derivatives in water. The inclusion of the Cu(2+) cation in the Pc structure reinforces the appearance of two axial water molecules and second-shell water molecules in the solvent structure, whereas the presence of SO(3)(-) anions implies a well defined hydration shell of about eight water molecules around them making the macrocycle soluble in water. Debye-Waller factors for axial water molecules have been obtained in order to examine the potential sensitivity of the extended x-ray absorption fine structure technique to detect the axial water molecules.
National and regional comparisons between Strahler order and stream size
Water body size is one of the most important factors affecting the structure and function of aquatic ecosystems. The categorical variable, Strahler stream order, is frequently used as an indirect estimate of stream size. Other indirect estimates of stream size, such as catchmen...
Reproducibility of techniques using Archimedes' principle in measuring cancellous bone volume.
Zou, L; Bloebaum, R D; Bachus, K N
1997-01-01
Researchers have been interested in developing techniques to accurately and reproducibly measure the volume fraction of cancellous bone. Historically bone researchers have used Archimedes' principle with water to measure the volume fraction of cancellous bone. Preliminary results in our lab suggested that the calibrated water technique did not provide reproducible results. Because of this difficulty, it was decided to compare the conventional water method to a water with surfactant and a helium method using a micropycnometer. The water/surfactant and the helium methods were attempts to improve the fluid penetration into the small voids present in the cancellous bone structure. In order to compare the reproducibility of the new methods with the conventional water method, 16 cancellous bone specimens were obtained from femoral condyles of human and greyhound dog femora. The volume fraction measurements on each specimen were repeated three times with all three techniques. The results showed that the helium displacement method was more than an order of magnitudes more reproducible than the two other water methods (p < 0.05). Statistical analysis also showed that the conventional water method produced the lowest reproducibility (p < 0.05). The data from this study indicate that the helium displacement technique is a very useful, rapid and reproducible tool for quantitatively characterizing anisotropic porous tissue structures such as cancellous bone.
Highly Transparent Water-Repelling Surfaces based on Biomimetic Hierarchical Structure
NASA Astrophysics Data System (ADS)
Wooh, Sanghyuk; Koh, Jai; Yoon, Hyunsik; Char, Kookheon
2013-03-01
Nature is a great source of inspiration for creating unique structures with special functions. The representative examples of water-repelling surfaces in nature, such as lotus leaves, rose petals, and insect wings, consist of an array of bumps (or long hairs) and nanoscale surface features with different dimension scales. Herein, we introduced a method of realizing multi-dimensional hierarchical structures and water-repellancy of the surfaces with different drop impact scenarios. The multi-dimensional hierarchical structures were fabricated by soft imprinting method with TiO2 nanoparticle pastes. In order to achieve the enhanced hydrophobicity, fluorinated moieties were attached to the etched surfaces to lower the surface energy. As a result, super-hydrophobic surfaces with high transparency were realized (over 176° water contact angle), and for further investigation, these hierarchical surfaces with different drop impact scenarios were characterized by varying the impact speed, drop size, and the geometry of the surfaces.
NASA Astrophysics Data System (ADS)
Christensen, M.; Nielsen, O. F.; Jensen, P.; Schnell, U.
2005-02-01
The interaction between polyethylene glycol (PEG) and water in mixtures has been investigated with a particular emphasis on the existence of 'free' water with a tetragonal bulk-like water structure. PEG is used in museum preservation of wooden objects, where free water must be avoided due to the danger of further microbial growth, contractile capillary forces and aqueous transport in wooden archaeological artefacts. A NIR-FT-Raman instrument with excitation at 1064 nm was used for this investigation. The OH stretch region around 3200 cm-1 shows changes in intensity with changing water content and the R(νbar)-function was applied in order to observe free water in the 100-300 cm-1 region. Mixtures of PEG and water were investigated with water contents ranging from 0 to 90% volume. It was found that free water appears around 28-32% volume in a PEG 600 mixture.
Mejía, Sol M; Espinal, Juan F; Mills, Matthew J L; Mondragón, Fanor
2016-08-01
Bioethanol is one of the world's most extensively produced biofuels. However, it is difficult to purify due to the formation of the ethanol-water azeotrope. Knowledge of the azeotrope structure at the molecular level can help to improve existing purification methods. In order to achieve a better understanding of this azeotrope structure, the characterization of (ethanol)5-water heterohexamers was carried out by analyzing the results of electronic structure calculations performed at the B3LYP/6-31+G(d) level. Hexamerization energies were found to range between -36.8 and -25.8 kcal/mol. Topological analysis of the electron density confirmed the existence of primary (OH…O) hydrogen bonds (HBs), secondary (CH…O) HBs, and H…H interactions in these clusters. Comparison with three different solvated alcohol systems featuring the same types of atom-atom interactions permitted the following order of stability to be determined: (methanol)5-water > (methanol)6 > (ethanol)5-water > (ethanol)6. These findings, together with accompanying geometric and spectroscopic analyses, show that similar cooperative effects exist among the primary HBs for structures with the same arrangement of primary HBs, regardless of the nature of the molecules involved. This result provides an indication that the molecular ratio can be considered to determine the unusual behavior of the ethanol-water system. The investigation also highlights the presence of several types of weak interaction in addition to primary HBs. Graphical Abstract Water-ethanol clusters exhibit a variety of interaction types between their atoms, such as primary OH...O (blue), secondary CH...O (green) and H...H (yellow) interactions as revealed by Quantum Chemical Topology.
X-ray investigation of molten crystal hydrates H2SO4(nH2O) and HNO3(nH2O)
NASA Technical Reports Server (NTRS)
Romanova, A. V.; Skryshevskiy, A. F.
1979-01-01
Integral analysis of the intensity of the electron density distribution curve in molten crystal hydrates provided by X-ray analysis, permits the following conclusions on the structure of the complex SO and NO ions, and the short-range order in the structure of the solution. The SO4 ion in the solution has a tetrahedral structure with an S to O distance equal to 1.5 A. For the NO3 in the solution, a planar triangular shape is probable, with an N to O distance equal to 1.2 A. Preferential distances between each of the oxygens of the SO ion and the nearest molecules of water proved near to the corresponding distances in solid crystal hydrates. For an (H2SO4)(H2O) solution, the average number of water molecules surrounding each oxygen atom of the SO4 (--) ion was on the order of 1.3 molecules. Hence the preferential distances between the water molecules and the oxygen atoms of the SO ion, and the preference of their mutual position, correspond to the fixed position of these same elements of the structure in the solid crystal hydrate.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-18
... Riparian Sanctuary Unit by the Department of Water Resources in 1985 and 1986. The rock was placed in order... activities would not impact the Goose Lake overflow structure that diverts flood water into the Butte Basin..., the angle of flow and velocity of the water passing the screens will change, trapping fish against the...
Electrical properties of granite with implications for the lower crust.
Olhoeft, G.R.
1981-01-01
The electrical properties of granite appear to be dominantly controlled by the amount of free water in the granite and by temperature. Minor contributions to the electrical properties are provided by hydrostatic and lithostatic pressure, structurally bound water, oxygen fugacity, and other parameters. The effect of sulphur fugacity may be important but is experimentally unconfirmed. In addition to changing the magnitude of electrical properties, the amount and chemistry of water in granite significantly changes the temperature dependence of the electrical properties. With increasing temperature, changes in water content retain large, but lessened, effects on electrical properties. Near room temperature, a monolayer of water will decrease the electrical resistivity by an order of magnitude. Several weight-percent water may decrease the electrical resistivity by as much as nine orders of magnitude and decrease the thermal activation energy by a factor of five. At elevated temperatures just below granitic melting, a few weight-percent water may still decrease the resistivity by as much as 3 orders of magnitude and the activation energy by a factor of two.-Author
Araki, Takahiro; Kondo, Atsushi; Maeda, Kazuyuki
2015-04-13
Novel isomorphous pillared-layer-type crystalline lanthanide 1,3,5-benzenetriphosphonates were prepared with bpy and dbo as organic pillars (LnBP-bpy and LnBP-dbo; Ln: Ce, Pr, and Nd). Ab initio crystal structure solution using synchrotron X-ray powder diffraction data revealed that the organic pillars do not exist as neutral coordinating ligands but as cationic molecules. Especially the LnBP-dbo phases have ordered interlayer space filled with water molecules between the dbo pillars, and the interlayer water is successfully removed by heating under vacuum with slightly distorted but basically retained pillared layer structures. Microporosity of the materials is confirmed by adsorption of nitrogen, carbon dioxide, and hydrogen gases. Such microporous layered metal phosphonates pillared with cationic molecules should be unprecedented and should offer new strategies to design ordered microporous materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wei, Yigang; Wang, Zhichao; Wang, Huiwen; Yao, Tang; Li, Yan
2018-09-01
Water is centrally important for agricultural security, environment, people's livelihoods, and socio-economic development, particularly in the face of extreme climate changes. Due to water shortages in many cities, the conflicts between various stakeholders and sectors over water use and allocation are becoming more common and intense. Effective inclusive governance of water use is critical for relieving water use conflicts. In addition, reliable forecasting of the structure of water usage among different sectors is a basic need for effective water governance planning. Although a large number of studies have attempted to forecast water use, little is known about the forecasted structure and trends of water use in the future. This paper aims to develop a forecasting model for the structure of water usage based on compositional data. Compositional data analysis is an effective approach for investigating the internal structure of a system. A host of data transformation methods and forecasting models were adopted and compared in order to derive the best-performing model. According to mean absolute percent error for compositional data (CoMAPE), a hyperspherical-transformation-based vector autoregression model for compositional data (VAR-DRHT) is the best-performing model. The proportions of the agricultural, industrial, domestic and environmental water will be 6.11%, 5.01%, 37.48% and 51.4% by 2020. Several recommendations for water inclusive development are provided to give a better account for the optimization of the water use structure, alleviation of water shortages, and improving stake holders' wellbeing. Overall, although we focus on groundwater, this study presents a powerful framework broadly applicable to resource management. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Putnam, S. M.; Harman, C. J.
2017-12-01
Many studies have sought to unravel the influence of landscape structure and catchment state on the quantity and composition of water at the catchment outlet. These studies run into issues of equifinality where multiple conceptualizations of flow pathways or storage states cannot be discriminated against on the basis of the quantity and composition of water alone. Here we aim to parse out the influence of landscape structure, flow pathways, and storage on both the observed catchment hydrograph and chemograph, using hydrometric and water isotope data collected from multiple locations within Pond Branch, a 37-hectare Piedmont catchment of the eastern US. This data is used to infer the quantity and age distribution of water stored and released by individual hydrogeomorphic units, and the catchment as a whole, in order to test hypotheses relating landscape structure, flow pathways, and catchment storage to the hydrograph and chemograph. Initial hypotheses relating internal catchment properties or processes to the hydrograph or chemograph are formed at the catchment scale. Data from Pond Branch include spring and catchment discharge measurements, well water levels, and soil moisture, as well as three years of high frequency precipitation and surface water stable water isotope data. The catchment hydrograph is deconstructed using hydrograph separation and the quantity of water associated with each time-scale of response is compared to the quantity of discharge that could be produced from hillslope and riparian hydrogeomorphic units. Storage is estimated for each hydrogeomorphic unit as well as the vadose zone, in order to construct a continuous time series of total storage, broken down by landscape unit. Rank StorAge Selection (rSAS) functions are parameterized for each hydrogeomorphic unit as well as the catchment as a whole, and the relative importance of changing proportions of discharge from each unit as well as storage in controlling the variability in the catchment chemograph is explored. The results suggest that the quantity of quickflow can be accounted for by direct precipitation onto < 5.2% of the catchment area, representing a zero-order swale plus the riparian area. rSAS modeling suggests that quickflow is largely composed of pre-event, stored water, generated through a process such as groundwater ridging.
Water oxidation chemistry of photosystem II.
Brudvig, Gary W
2008-03-27
Photosystem II (PSII) uses light energy to split water into protons, electrons and O2. In this reaction, nature has solved the difficult chemical problem of efficient four-electron oxidation of water to yield O2 without significant amounts of reactive intermediate species such as superoxide, hydrogen peroxide and hydroxyl radicals. In order to use nature's solution for the design of artificial catalysts that split water, it is important to understand the mechanism of the reaction. The recently published X-ray crystal structures of cyanobacterial PSII complexes provide information on the structure of the Mn and Ca ions, the redox-active tyrosine called YZ and the surrounding amino acids that comprise the O2-evolving complex (OEC). The emerging structure of the OEC provides constraints on the different hypothesized mechanisms for O2 evolution. The water oxidation mechanism of PSII is discussed in the light of biophysical and computational studies, inorganic chemistry and X-ray crystallographic information.
Structure of a model TiO2 photocatalytic interface
NASA Astrophysics Data System (ADS)
Hussain, H.; Tocci, G.; Woolcot, T.; Torrelles, X.; Pang, C. L.; Humphrey, D. S.; Yim, C. M.; Grinter, D. C.; Cabailh, G.; Bikondoa, O.; Lindsay, R.; Zegenhagen, J.; Michaelides, A.; Thornton, G.
2017-04-01
The interaction of water with TiO2 is crucial to many of its practical applications, including photocatalytic water splitting. Following the first demonstration of this phenomenon 40 years ago there have been numerous studies of the rutile single-crystal TiO2(110) interface with water. This has provided an atomic-level understanding of the water-TiO2 interaction. However, nearly all of the previous studies of water/TiO2 interfaces involve water in the vapour phase. Here, we explore the interfacial structure between liquid water and a rutile TiO2(110) surface pre-characterized at the atomic level. Scanning tunnelling microscopy and surface X-ray diffraction are used to determine the structure, which is comprised of an ordered array of hydroxyl molecules with molecular water in the second layer. Static and dynamic density functional theory calculations suggest that a possible mechanism for formation of the hydroxyl overlayer involves the mixed adsorption of O2 and H2O on a partially defected surface. The quantitative structural properties derived here provide a basis with which to explore the atomistic properties and hence mechanisms involved in TiO2 photocatalysis.
Structure of a model TiO2 photocatalytic interface.
Hussain, H; Tocci, G; Woolcot, T; Torrelles, X; Pang, C L; Humphrey, D S; Yim, C M; Grinter, D C; Cabailh, G; Bikondoa, O; Lindsay, R; Zegenhagen, J; Michaelides, A; Thornton, G
2017-04-01
The interaction of water with TiO 2 is crucial to many of its practical applications, including photocatalytic water splitting. Following the first demonstration of this phenomenon 40 years ago there have been numerous studies of the rutile single-crystal TiO 2 (110) interface with water. This has provided an atomic-level understanding of the water-TiO 2 interaction. However, nearly all of the previous studies of water/TiO 2 interfaces involve water in the vapour phase. Here, we explore the interfacial structure between liquid water and a rutile TiO 2 (110) surface pre-characterized at the atomic level. Scanning tunnelling microscopy and surface X-ray diffraction are used to determine the structure, which is comprised of an ordered array of hydroxyl molecules with molecular water in the second layer. Static and dynamic density functional theory calculations suggest that a possible mechanism for formation of the hydroxyl overlayer involves the mixed adsorption of O 2 and H 2 O on a partially defected surface. The quantitative structural properties derived here provide a basis with which to explore the atomistic properties and hence mechanisms involved in TiO 2 photocatalysis.
H2O on Pt(111): structure and stability of the first wetting layer
NASA Astrophysics Data System (ADS)
Standop, Sebastian; Morgenstern, Markus; Michely, Thomas; Busse, Carsten
2012-03-01
We study the structure and stability of the first water layer on Pt(111) by variable-temperature scanning tunneling microscopy. We find that a high Pt step edge density considerably increases the long-range order of the equilibrium \\sqrt{37}\\times \\sqrt{37}{R25.3}°- and \\sqrt{39}\\times \\sqrt{39}{R16.1}°-superstructures, presumably due to the capability of step edges to trap residual adsorbates from the surface. Passivating the step edges with CO or preparing a flat metal surface leads to the formation of disordered structures, which still show the same structural elements as the ordered ones. Coadsorption of Xe and CO proves that the water layer covers the metal surface completely. Moreover, we determine the two-dimensional crystal structure of Xe on top of the chemisorbed water layer which exhibits an Xe-Xe distance close to the one in bulk Xe and a rotation angle of 90° between the close-packed directions of Xe and the close-packed directions of the underlying water layer. CO is shown to replace H2O on the Pt(111) surface as has been deduced previously. In addition, we demonstrate that tunneling of electrons into the antibonding state or from the bonding state of H2O leads to dissociation of the molecules and a corresponding reordering of the adlayer into a \\sqrt{3}\\times \\sqrt{3}{R30}°-structure. Finally, a so far not understood restructuring of the adlayer by an increased tunneling current has been observed.
Hayes, Tyler R; Bang, Jae Jin; Davis, Tyson C; Peterson, Caroline F; McMillan, David G; Claridge, Shelley A
2017-10-18
As functionalized 2D materials are incorporated into hybrid materials, ensuring large-area structural control in noncovalently adsorbed films becomes increasingly important. Noncovalent functionalization avoids disrupting electronic structure in 2D materials; however, relatively weak molecular interactions in such monolayers typically reduce stability toward solution processing and other common material handling conditions. Here, we find that controlling substrate temperature during Langmuir-Schaefer conversion of a standing phase monolayer of diynoic amphiphiles on water to a horizontally oriented monolayer on a 2D substrate routinely produces multimicrometer domains, at least an order of magnitude larger than those typically achieved through drop-casting. Following polymerization, these highly ordered monolayers retain their structures during vigorous washing with solvents including water, ethanol, tetrahydrofuran, and toluene. These findings point to a convenient and broadly applicable strategy for noncovalent functionalization of 2D materials in applications that require large-area structural control, for instance, to minimize desorption at defects during subsequent solution processing.
Gugliuzza, Annarosa; Perrotta, Maria Luisa; Drioli, Enrico
2016-01-01
This work provides additional insights into the identification of operating conditions necessary to overcome a current limitation to the scale-up of the breath figure method, which is regarded as an outstanding manufacturing approach for structurally ordered porous films. The major restriction concerns, indeed, uncontrolled touching droplets at the boundary. Herein, the bulk of polymeric solutions are properly managed to generate honeycomb membranes with a long-range structurally ordered texture. Water uptake and dynamics are explored as chemical environments are changed with the intent to modify the hydrophilic/hydrophobic balance and local water floatation. In this context, a model surfactant such as the polyoxyethylene sorbitan monolaurate is used in combination with alcohols at different chain length extents and a traditional polymer such as the polyethersufone. Changes in the interfacial tension and kinematic viscosity taking place in the bulk of composite solutions are explored and examined in relation to competitive droplet nucleation and growth rate. As a result, extensive structurally ordered honeycomb textures are obtained with the rising content of the surfactant while a broad range of well-sized pores is targeted as a function of the hydrophilic-hydrophobic balance and viscosity of the composite polymeric mixture. The experimental findings confirm the consistency of the approach and are expected to give propulsion to the commercially production of breath figures films shortly. PMID:27196938
Gugliuzza, Annarosa; Perrotta, Maria Luisa; Drioli, Enrico
2016-05-16
This work provides additional insights into the identification of operating conditions necessary to overcome a current limitation to the scale-up of the breath figure method, which is regarded as an outstanding manufacturing approach for structurally ordered porous films. The major restriction concerns, indeed, uncontrolled touching droplets at the boundary. Herein, the bulk of polymeric solutions are properly managed to generate honeycomb membranes with a long-range structurally ordered texture. Water uptake and dynamics are explored as chemical environments are changed with the intent to modify the hydrophilic/hydrophobic balance and local water floatation. In this context, a model surfactant such as the polyoxyethylene sorbitan monolaurate is used in combination with alcohols at different chain length extents and a traditional polymer such as the polyethersufone. Changes in the interfacial tension and kinematic viscosity taking place in the bulk of composite solutions are explored and examined in relation to competitive droplet nucleation and growth rate. As a result, extensive structurally ordered honeycomb textures are obtained with the rising content of the surfactant while a broad range of well-sized pores is targeted as a function of the hydrophilic-hydrophobic balance and viscosity of the composite polymeric mixture. The experimental findings confirm the consistency of the approach and are expected to give propulsion to the commercially production of breath figures films shortly.
Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid.
Um, I C; Kweon, H Y; Park, Y H; Hudson, S
2001-08-20
Structural characteristics and thermal and solution properties of the regenerated silk fibroin (SF) prepared from formic acid (FU) were compared with those of SF from water (AU). According to the turbidity and shear viscosity measurement, SF formic acid solution was stable and transparent, no molecular aggregations occurred. The sample FU exhibited the beta-sheet structure, while AU random coil conformation using Fourier transform infrared (FTIR), X-ray diffraction (XRD), and differential scanning calorimetry. The effects of methanol treatment on samples were also examined. According to the measurement of crystallinity (XRD) and crystallinity index (FTIR), the concept of long/short-range ordered structure formation was proposed. Long-range ordered crystallites are predominantly formed for methanol treated SF film while SF film cast from formic acid favors the formation of short-range ordered structure. The relaxation temperatures of SF films measured by dynamic thermomechanical analysis supported the above mechanism due to the sensitivity of relaxation temperature on the short-range order.
Higher-Order Hamiltonian Model for Unidirectional Water Waves
NASA Astrophysics Data System (ADS)
Bona, J. L.; Carvajal, X.; Panthee, M.; Scialom, M.
2018-04-01
Formally second-order correct, mathematical descriptions of long-crested water waves propagating mainly in one direction are derived. These equations are analogous to the first-order approximations of KdV- or BBM-type. The advantage of these more complex equations is that their solutions corresponding to physically relevant initial perturbations of the rest state may be accurate on a much longer timescale. The initial value problem for the class of equations that emerges from our derivation is then considered. A local well-posedness theory is straightforwardly established by a contraction mapping argument. A subclass of these equations possess a special Hamiltonian structure that implies the local theory can be continued indefinitely.
The behaviour of water and sodium chloride solution confined into asbestos nanotube
NASA Astrophysics Data System (ADS)
Fomin, Yu. D.; Ryzhov, V. N.; Tsiok, E. N.
2016-08-01
We present the molecular simulation study of the behaviour of water and sodium chloride solution confined in lizardite asbestos nanotube which is a typical example of hydrophilic confinement. The local structure and orientational and dynamic properties are studied. It is shown that at low enough temperatures there is a well-defined orientational ordering of the water molecules. At high local densities corresponding to the maxima of the density distribution function, the water molecules are oriented parallel to the axis of the tube. It is also shown that the diffusion coefficient drops about two orders of magnitude comparing to the bulk case. The behaviour of sodium chloride solutions is also considered and the formation of double layer is observed.
Time-dependent water dynamics in hydrated uranyl fluoride
Miskowiec, Andrew J.; Anderson, Brian B.; Herwig, Kenneth W.; ...
2015-09-15
In this study, uranyl fluoride is a three-layer, hexagonal structure with significant stacking disorder in the c-direction. It supports a range of unsolved ‘thermodynamic’ hydrates with 0–2.5 water molecules per uranium atom, and perhaps more. However, the relationship between water, hydrate crystal structures, and thermodynamic results, collectively representing the chemical pathway through these hydrate structures, has not been sufficiently elucidated. We used high-resolution quasielastic neutron scattering to study the dynamics of water in partially hydrated uranyl fluoride powder over the course of 4 weeks under closed conditions. The spectra are composed of two quasielastic components: one is associated with translationalmore » diffusive motion of water that is approximately five to six times slower than bulk water, and the other is a slow (on the order of 2–300 ps), spatially bounded water motion. The translational component represents water diffusing between the weakly bonded layers in the crystal, while the bounded component may represent water trapped in subnanometre ‘pockets’ formed by the space between uranium-centred polymerisation units. Complementary neutron diffraction measurements do not show any significant structural changes, suggesting that a chemical conversion of the material does not occur in the thermodynamically isolated system on this timescale.« less
Water: two liquids divided by a common hydrogen bond.
Soper, Alan K
2011-12-08
The structure of water is the subject of a long and ongoing controversy. Unlike simpler liquids, where atomic interactions are dominated by strong repulsive forces at short distances and weaker attractive (van der Waals) forces at longer distances, giving rise to local atomic coordination numbers of order 12, water has pronounced and directional hydrogen bonds which cause the dense liquid close-packed structure to open out into a disordered and dynamic network, with coordination number 4-5. Here I show that water structure can be accurately represented as a mixture of two identical, interpenetrating, molecular species separated by common hydrogen bonds. Molecules of one type can form hydrogen bonds with molecules of the other type but cannot form hydrogen bonds with molecules of the same type. These hydrogen bonds are strong along the bond but weak with respect to changes in the angle between neighboring bonds. The observed pressure and temperature dependence of water structure and thermodynamic properties follow naturally from this choice of water model, and it also gives a simple explanation of the enduring claims based on spectroscopic evidence that water is a mixture of two components. © 2011 American Chemical Society
Endotoxin-Induced Structural Transformations in Liquid Crystalline Droplets
NASA Astrophysics Data System (ADS)
Lin, I.-Hsin; Miller, Daniel S.; Bertics, Paul J.; Murphy, Christopher J.; de Pablo, Juan J.; Abbott, Nicholas L.
2011-06-01
The ordering of liquid crystals (LCs) is known to be influenced by surfaces and contaminants. Here, we report that picogram per milliliter concentrations of endotoxin in water trigger ordering transitions in micrometer-size LC droplets. The ordering transitions, which occur at surface concentrations of endotoxin that are less than 10-5 Langmuir, are not due to adsorbate-induced changes in the interfacial energy of the LC. The sensitivity of the LC to endotoxin was measured to change by six orders of magnitude with the geometry of the LC (droplet versus slab), supporting the hypothesis that interactions of endotoxin with topological defects in the LC mediate the response of the droplets. The LC ordering transitions depend strongly on glycophospholipid structure and provide new designs for responsive soft matter.
Multi-Hamiltonian structure of equations of hydrodynamic type
NASA Astrophysics Data System (ADS)
Gümral, H.; Nutku, Y.
1990-11-01
The discussion of the Hamiltonian structure of two-component equations of hydrodynamic type is completed by presenting the Hamiltonian operators for Euler's equation governing the motion of plane sound waves of finite amplitude and another quasilinear second-order wave equation. There exists a doubly infinite family of conserved Hamiltonians for the equations of gas dynamics that degenerate into one, namely, the Benney sequence, for shallow-water waves. Infinite sequences of conserved quantities for these equations are also presented. In the case of multicomponent equations of hydrodynamic type, it is shown, that Kodama's generalization of the shallow-water equations admits bi-Hamiltonian structure.
NASA Astrophysics Data System (ADS)
Dobal-Amador, Vladimir; Nieto-Cid, Mar; Guerrero-Feijoo, Elisa; Hernando-Morales, Victor; Teira, Eva; Varela-Rozados, Marta M.
2016-08-01
The processes mediated by microbial planktonic communities occur along the entire water column, yet the microbial activity and composition have been studied mainly in surface waters. This research examined the vertical variation in bacterial abundance, activity and community composition and structure from surface down to 5000 m depth following a longitudinal transect off the Galician coast (NW Iberian margin, from 43°N, 9°W to 43°N, 15°W). Community activity and composition changed with depth. The leucine incorporation rates decreased from the euphotic layer to the bathypelagic waters by three orders of magnitude, whereas prokaryotic abundance decreased only by one order of magnitude. The relative abundance of SAR11 and Alteromonas, determined by catalyzed reported deposition fluorescence in situ hybridization (CARD-FISH), decreased with depth. Meanwhile, the contribution of SAR 202 and SAR324 was significantly higher in the deeper layers (i.e. NEADW, North East Atlantic Deep Water and LDW, Lower Deep Water) than in the euphotic zone. Bacterial community structure, assessed by Automated Ribosomal Intergenic Spacer Analysis (ARISA), was depth-specific. A distance based linear model (DistLM) revealed that the variability found in bacterial community structure was mainly explained by temperature nitrate, phosphate, dissolved organic matter (DOM) fluorescence, prokaryotic abundance, leucine incorporation and to a lesser extent salinity, oxygen, CDOM absorbance and dissolved organic carbon concentration. Our results displayed a bacterial community structure shaped not only by depth-related physicochemical features but also by DOM quality, indicating that different prokaryotic taxa have the potential to metabolize particular DOM sources.
Tomoya Yokoyama; Hou-min Chang; Richard S. Reiner; Raja H. Atalla; Ira A. Weinstock; John F. Kadla
2004-01-01
The effect of lignin-biopolymer structure on the mechanism of its oxidative depolymerization by polyoxometalates (POMs) was investigated by reacting an equilibrated POM ensemble with a series of ring-substituted benzyl alcohols. Under anaerobic conditions in mixed water/methanol, observed pseudo-first order reaction rates (150°C) of 8.96 x 10â3 and 4.89 x 10â3 secâ1...
NASA Astrophysics Data System (ADS)
Mosher, J.; Kaplan, L. A.; Kan, J.; Findlay, R. H.; Podgorski, D. C.; McKenna, A. M.; Branan, T. L.; Griffith, C.
2013-12-01
The River Continuum Concept (RCC), an early meta-ecosystem idea, was developed without the benefit of new frontiers in molecular microbial ecology and ultra-high resolution mass spectrometry. We have applied technical advances in these areas to address a hypothesis implicit in the RCC that the upstream legacy of DOM processing contributes to the structure and function of downstream bacterial communities. DOM molecular structure and microbial community structure were measured across river networks within three distinct forested catchments. High-throughput pyrosequencing of bacterial 16S rRNA amplicons and phospholipid fatty acid analysis were used to characterize bacterial communities, and ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry characterized the molecular composition of stream water DOM. Total microbial biomass varied among river networks but showed a trend of decreasing biomass in sediment with increasing stream order. There were distinct shifts in bacterial community structure and a trend of decreasing richness was observed traveling downstream in both sediment and epilithic habitats. The bacterial richness in the first order stream sediment habitats was 7728 genera which decreased to 6597 genera in the second order sites and 4867 genera in the third order streams. The richness in the epilithic biofilm habitats was 2830 genera in the first order, 2322 genera in the second order and 1629 genera in the third order sites. Over 45% of the sediment biofilm genera and 37% of the epilithic genera were found in all three orders. In addition to shifts in bacterial richness, we observed a longitudinal shift in bacterial functional-types. In the sediment biofilms, Rhodoplanes spp. (containing rhodopsin pigment) and Bradyrhizobium spp. (nitrogen fixing bacteria) were predominately found in the heavily forested first order streams, while the cyanobacteria Limnothrix spp. was dominant in the second order streams. The third order streams had higher abundances of Sphingomonadaceae spp. and Nordella spp. (both Alphaproteobacteria). The cyanobacteria Chamaesiphon spp. was observed in highest abundance in the first and second order streams of the rock biofilm samples and the cyanobacteria Oscillatoria spp. was in highest abundance in the third order streams. Stream water samples from all orders had high lignin/tannin content and were enriched with carboxylic-rich alicyclic molecules (CRAM). There was an observable shift in in the molecular weight and relative abundance of the CRAM molecules with the CRAM molecules becoming less abundant and having lower molecular weight following the downstream gradient. Multivariate statistical analyses correlated the longitudinal patterns of changes in bacterial community structure to the DOM molecular structure and geochemical parameters across the river continuum.
Harbor seal vibrissa morphology suppresses vortex-induced vibrations.
Hanke, Wolf; Witte, Matthias; Miersch, Lars; Brede, Martin; Oeffner, Johannes; Michael, Mark; Hanke, Frederike; Leder, Alfred; Dehnhardt, Guido
2010-08-01
Harbor seals (Phoca vitulina) often live in dark and turbid waters, where their mystacial vibrissae, or whiskers, play an important role in orientation. Besides detecting and discriminating objects by direct touch, harbor seals use their whiskers to analyze water movements, for example those generated by prey fish or by conspecifics. Even the weak water movements left behind by objects that have passed by earlier can be sensed and followed accurately (hydrodynamic trail following). While scanning the water for these hydrodynamic signals at a swimming speed in the order of meters per second, the seal keeps its long and flexible whiskers in an abducted position, largely perpendicular to the swimming direction. Remarkably, the whiskers of harbor seals possess a specialized undulated surface structure, the function of which was, up to now, unknown. Here, we show that this structure effectively changes the vortex street behind the whiskers and reduces the vibrations that would otherwise be induced by the shedding of vortices from the whiskers (vortex-induced vibrations). Using force measurements, flow measurements and numerical simulations, we find that the dynamic forces on harbor seal whiskers are, by at least an order of magnitude, lower than those on sea lion (Zalophus californianus) whiskers, which do not share the undulated structure. The results are discussed in the light of pinniped sensory biology and potential biomimetic applications.
Effect of attractive interactions on the water-like anomalies of a core-softened model potential.
Pant, Shashank; Gera, Tarun; Choudhury, Niharendu
2013-12-28
It is now well established that water-like anomalies can be reproduced by a spherically symmetric potential with two length scales, popularly known as core-softened potential. In the present study we aim to investigate the effect of attractive interactions among the particles in a model fluid interacting with core-softened potential on the existence and location of various water-like anomalies in the temperature-pressure plane. We employ extensive molecular dynamic simulations to study anomalous nature of various order parameters and properties under isothermal compression. Order map analyses have also been done for all the potentials. We observe that all the systems with varying depth of attractive wells show structural, dynamic, and thermodynamic anomalies. As many of the previous studies involving model water and a class of core softened potentials have concluded that the structural anomaly region encloses the diffusion anomaly region, which in turn, encloses the density anomaly region, the same pattern has also been observed in the present study for the systems with less depth of attractive well. For the systems with deeper attractive well, we observe that the diffusion anomaly region shifts toward higher densities and is not always enclosed by the structural anomaly region. Also, density anomaly region is not completely enclosed by diffusion anomaly region in this case.
NASA Astrophysics Data System (ADS)
Magin, Richard L.; Akpa, Belinda S.; Neuberger, Thomas; Webb, Andrew G.
2011-12-01
We report the appearance of anomalous water diffusion in hydrophilic Sephadex gels observed using pulse field gradient (PFG) nuclear magnetic resonance (NMR). The NMR diffusion data was collected using a Varian 14.1 Tesla imaging system with a home-built RF saddle coil. A fractional order analysis of the data was used to characterize heterogeneity in the gels for the dynamics of water diffusion in this restricted environment. Several recent studies of anomalous diffusion have used the stretched exponential function to model the decay of the NMR signal, i.e., exp[-( bD) α], where D is the apparent diffusion constant, b is determined the experimental conditions (gradient pulse separation, durations and strength), and α is a measure of structural complexity. In this work, we consider a different case where the spatial Laplacian in the Bloch-Torrey equation is generalized to a fractional order model of diffusivity via a complexity parameter, β, a space constant, μ, and a diffusion coefficient, D. This treatment reverts to the classical result for the integer order case. The fractional order decay model was fit to the diffusion-weighted signal attenuation for a range of b-values (0 < b < 4000 s mm -2). Throughout this range of b values, the parameters β, μ and D, were found to correlate with the porosity and tortuosity of the gel structure.
NASA Astrophysics Data System (ADS)
Yadav, Sushma; Chandra, Amalendu
2017-12-01
We have investigated the characteristics of preferential solvation of ions, structure of solvation shells, ion pairing, and dynamics of aqueous solutions of divalent alkaline-earth metal nitrate salts at varying concentration by means of molecular dynamics simulations. Hydration shell structures and the extent of preferential solvation of the metal and nitrate ions in the solutions are investigated through calculations of radial distribution functions, tetrahedral ordering, and also spatial distribution functions. The Mg2+ ions are found to form solvent separated ion-pairs while the Ca2+ and Sr2+ ions form contact ion pairs with the nitrate ions. These findings are further corroborated by excess coordination numbers calculated through Kirkwood-Buff G factors for different ion-ion and ion-water pairs. The ion-pairing propensity is found to be in the order of Mg(NO3) 2 < C a (NO3) 2 < S r (NO3) 2, and it follows the trend given by experimental activity coefficients. It is found that proper modeling of these solutions requires the inclusion of electronic polarization of the ions which is achieved in the current study through electronic continuum correction force fields. A detailed analysis of the effects of ion-pairs on the structure and dynamics of water around the hydrated ions is done through classification of water into different subspecies based on their locations around the cations or anions only or bridged between them. We have looked at the diffusion coefficients, relaxation of orientational correlation functions, and also the residence times of different subspecies of water to explore the dynamics of water in different structural environments in the solutions. The current results show that the water molecules are incorporated into fairly well-structured hydration shells of the ions, thus decreasing the single-particle diffusivities and increasing the orientational relaxation times of water with an increase in salt concentration. The different structural motifs also lead to the presence of substantial dynamical heterogeneity in these solutions of strongly interacting ions. The current study helps us to understand the molecular details of hydration structure, ion pairing, and dynamics of water in the solvation shells and also of ion diffusion in aqueous solutions of divalent metal nitrate salts.
Structure and physical stability of hydrates and thermotropic mesophase of calcium benzoate.
Terakita, Akira; Byrn, Stephen R
2006-05-01
The aim of this study is to investigate the hydration and the dehydration processes of calcium benzoate hydrates (trihydrate and monohydrate), thermotropic mesophases (dehydrated mesophase and lyophilized mesophase) and amorphous state, and the influence of their molecular order on those processes. X-ray analysis revealed that trihydrate has a planar structure composed of two types of planes-one from benzoic acid, water, and calcium ion and another from benzoic acid and water-and that both planes are linked by three water molecules. It was found that calcium benzoate was able to exist as thermotropic mesophases by dehydration of trihydrate and lyophilization. These mesophases were characterized by polarizing-light microscopy (PLM), X-ray powder diffraction (XRPD), differential thermal analysis (DTA), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Both mesophases prepared by two procedures showed some similar physical properties, but lyophilized mesophase seemed to have molecular structure with higher order than dehydrated mesophase. The mesophases exhibited different hydration behavior. The dehydrated mesophase showed a stepwise rehydration process where it became monohydrate first and then trihydrate. The lyophilized mesophase became trihydrate without appearance of monohydrate. An amorphous form could also be prepared and it rehydrated first to the monohydrate and then trihydrate. The results suggest that the more disordered dehydrated mesophase and amorphous state change to monohydrate whereas the more ordered lyophilized mesophase cannot change to monohydrate but only to trihydrate.
Nanoscale biomimetics studies of Salvinia molesta for micropattern fabrication.
Hunt, James; Bhushan, Bharat
2011-11-01
The emerging field of biomimetics allows one to take inspiration from nature and mimic it in order to create various products, devices and structures. There are a large number of objects, including bacteria, plants, land and aquatic animals and seashells, with properties of commercial interest. The subject of interest for this research is the water fern Salvinia molesta because of its ability to trap air. Air-retaining surfaces are of technological interest due to their ability to reduce drag when used for fluid transport, ship coatings and other submersible industrial products in which drag is a concern. The purpose of this research is to mimic the air trapping ability of S. molesta in order to prove that a structure can be created in the lab that can mimic the behavior of the fern as well as demonstrate microfabrication techniques that can be utilized in industry to produce such materials. In this work, a novel methodology for the fabrication of microstructures that mimic the water-pinning and air-trapping ability of S. molesta is introduced. Water contact angle, water roll angle and adhesive force of the new microstructure and water fern are investigated. Copyright © 2011 Elsevier Inc. All rights reserved.
Water at protein surfaces studied with femtosecond nonlinear spectroscopy
NASA Astrophysics Data System (ADS)
Bakker, Huib J.
We report on an investigation of the structure and dynamics of water molecules near protein surfaces with femtosecond nonlinear spectroscopic techniques. We measured the reorientation dynamics of water molecules near the surface of several globular protein surfaces, using polarization-resolved femtosecond infrared spectroscopy. We found that water molecules near the protein surface have a much slower reorientation than water molecules in bulk liquid water. The number of slow water molecules scales scales with the size of the hydrophobic surface of the protein. When we denature the proteins by adding an increasing amount of urea to the protein solution, we observe that the water-exposed surface increases by 50% before the secondary structure of the proteins changes. This finding indicates that protein unfolding starts with the protein structure becoming less tight, thereby allowing water to enter. With surface vibrational sum frequency generation (VSFG) spectroscopy, we studied the structure of water at the surface of antifreeze protein III. The measured VSFG spectra showed the presence of ice-like water layers at the ice-binding site of the protein in aqueous solution, at temperatures well above the freezing point. This ordered ice-like hydration layers at the protein surface likely plays an important role in the specific recognition and binding of anti-freeze protein III to nascent ice crystallites, and thus in its anti-freeze mechanism. This research is supported by the ''Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO).
Effect of Concentration on the Interfacial and Bulk Structure of Ionic Liquids in Aqueous Solution.
Cheng, H-W; Weiss, H; Stock, P; Chen, Y-J; Reinecke, C R; Dienemann, J-N; Mezger, M; Valtiner, M
2018-02-27
Bio and aqueous applications of ionic liquids (IL) such as catalysis in micelles formed in aqueous IL solutions or extraction of chemicals from biologic materials rely on surface-active and self-assembly properties of ILs. Here, we discuss qualitative relations of the interfacial and bulk structuring of a water-soluble surface-active IL ([C 8 MIm][Cl]) on chemically controlled surfaces over a wide range of water concentrations using both force probe and X-ray scattering experiments. Our data indicate that IL structuring evolves from surfactant-like surface adsorption at low IL concentrations, to micellar bulk structure adsorption above the critical micelle concentration, to planar bilayer formation in ILs with <1 wt % of water and at high charging of the surface. Interfacial structuring is controlled by mesoscopic bulk structuring at high water concentrations. Surface chemistry and surface charges decisively steer interfacial ordering of ions if the water concentration is low and/or the surface charge is high. We also demonstrate that controlling the interfacial forces by using self-assembled monolayer chemistry allows tuning of interfacial structures. Both the ratio of the head group size to the hydrophobic tail volume as well as the surface charging trigger the bulk structure and offer a tool for predicting interfacial structures. Based on the applied techniques and analyses, a qualitative prediction of molecular layering of ILs in aqueous systems is possible.
On the Fluctuations that Order and Frustrate Liquid Water
NASA Astrophysics Data System (ADS)
Limmer, David Tyler
At ambient conditions, water sits close to phase coexistence with its crystal. More so than in many other materials, this fact is manifested in the fluctuations that maintain a large degree of local order in the liquid. These fluctuations and how they result in long-ranged order, or its absence, are emergent features of many interacting molecules. Their study therefore requires using the tools of statistical mechanics for their their systematic understanding. In this dissertation we develop such an understanding. In particular, we focus on collective behavior that emerges in liquid and solid water. At room temperatures, the thermophysical properties of water are quantified and rationalized with simple molecular models. A key feature of these models is the correct characterization of the competition between entropic forces of packing and the energetic preference for tetrahedral order. At cold temperatures, the properties of ice surfaces are studied with statistical field theory. The theory we develop for the long wavelength features of ice interfaces allows us to explain the existence of a premelting layer on the surface of ice and the stability of ice in confinement. In between these extremes, the dynamics of supercooled water are considered. A detailed theory for the early stages of coarsening is developed and used to explain the peculiar observation of a transient second liquid state of water. When coarsening dynamics are arrested, the result is the formation of a glassy states of water. We show that out-of-equilibrium the phase diagram for supercooled water exhibits a rich amount of structure, including a triple point between two glass phases of water and the liquid. At the end, we explore possible technological implications for the interplay between ordering and frustration in studies of water at metal interfaces.
Nucleation processes of nanobubbles at a solid/water interface
NASA Astrophysics Data System (ADS)
Fang, Chung-Kai; Ko, Hsien-Chen; Yang, Chih-Wen; Lu, Yi-Hsien; Hwang, Ing-Shouh
2016-04-01
Experimental investigations of hydrophobic/water interfaces often return controversial results, possibly due to the unknown role of gas accumulation at the interfaces. Here, during advanced atomic force microscopy of the initial evolution of gas-containing structures at a highly ordered pyrolytic graphite/water interface, a fluid phase first appeared as a circular wetting layer ~0.3 nm in thickness and was later transformed into a cap-shaped nanostructure (an interfacial nanobubble). Two-dimensional ordered domains were nucleated and grew over time outside or at the perimeter of the fluid regions, eventually confining growth of the fluid regions to the vertical direction. We determined that interfacial nanobubbles and fluid layers have very similar mechanical properties, suggesting low interfacial tension with water and a liquid-like nature, explaining their high stability and their roles in boundary slip and bubble nucleation. These ordered domains may be the interfacial hydrophilic gas hydrates and/or the long-sought chemical surface heterogeneities responsible for contact line pinning and contact angle hysteresis. The gradual nucleation and growth of hydrophilic ordered domains renders the original homogeneous hydrophobic/water interface more heterogeneous over time, which would have great consequence for interfacial properties that affect diverse phenomena, including interactions in water, chemical reactions, and the self-assembly and function of biological molecules.
Performance analysis of underwater pump for water-air dual-use engine
NASA Astrophysics Data System (ADS)
Xia, Jun; Wang, Yun; Chen, Yu
2017-10-01
To make water-air dual-use engine work both in air and under water, the compressor of the engine should not only meet the requirements of air flight, but also must have the ability to work underwater. To verify the performance of the compressor when the water-air dual-use engine underwater propulsion mode, the underwater pumping water model of the air compressor is simulated by commercial CFD software, and the flow field analysis is carried out. The results show that conventional air compressors have a certain ability to work in the water environment, however, the blade has a great influence on the flow, and the compressor structure also affects the pump performance. Compressor can initially take into account the two modes of water and air. In order to obtain better performance, the structure of the compressor needs further improvement and optimization.
Roy, S; Gruenbaum, S M; Skinner, J L
2014-11-14
Understanding the structure of water near cell membranes is crucial for characterizing water-mediated events such as molecular transport. To obtain structural information of water near a membrane, it is useful to have a surface-selective technique that can probe only interfacial water molecules. One such technique is vibrational sum-frequency generation (VSFG) spectroscopy. As model systems for studying membrane headgroup/water interactions, in this paper we consider lipid and surfactant monolayers on water. We adopt a theoretical approach combining molecular dynamics simulations and phase-sensitive VSFG to investigate water structure near these interfaces. Our simulated spectra are in qualitative agreement with experiments and reveal orientational ordering of interfacial water molecules near cationic, anionic, and zwitterionic interfaces. OH bonds of water molecules point toward an anionic interface leading to a positive VSFG peak, whereas the water hydrogen atoms point away from a cationic interface leading to a negative VSFG peak. Coexistence of these two interfacial water species is observed near interfaces between water and mixtures of cationic and anionic lipids, as indicated by the presence of both negative and positive peaks in their VSFG spectra. In the case of a zwitterionic interface, OH orientation is toward the interface on the average, resulting in a positive VSFG peak.
Xing, Jiale; Guo, Kailu; Zou, Zehua; Cai, Minmin; Du, Jing; Xu, Cailing
2018-06-06
Well-ordered NiFe-MOF-74 is in situ grown on Ni foam by the induction of Fe2+ and directly used as an OER electrocatalyst. Benefited from the intrinsic open porous structure of MOF-74, the in situ formed MOF arrays and the synergistic effect of Ni and Fe, outstanding water oxidation activity is obtained in alkaline electrolytes with an overpotential of 223 mV at 10 mA cm-2.
Simulation of Peptides at Aqueous Interfaces
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Wilson, M.; Chipot, C.; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
Behavior of peptides at water-membrane interfaces is of great interest in studies on cellular transport and signaling, membrane fusion, and the action of toxins and antibiotics. Many peptides, which exist in water only as random coils, can form sequence-dependent, ordered structures at aqueous interfaces, incorporate into membranes and self-assembly into functional units, such as simple ion channels. Multi -nanosecond molecular dynamics simulations have been carried out to study the mechanism and energetics of interfacial folding of both non-polar and amphiphilic peptides, their insertion into membranes and association into higher-order structures. The simulations indicate that peptides fold non-sequentially, often through a series of amphiphilic intermediates. They further incorporate into the membrane in a preferred direction as folded monomers, and only then aggregate into dimers and, possibly, further into "dimers of dimers".
Phases and structures of sunset yellow and disodium cromoglycate mixtures in water.
Yamaguchi, Akihiro; Smith, Gregory P; Yi, Youngwoo; Xu, Charles; Biffi, Silvia; Serra, Francesca; Bellini, Tommaso; Zhu, Chenhui; Clark, Noel A
2016-01-01
We study phases and structures of mixtures of two representative chromonic liquid crystal materials, sunset yellow FCF (SSY) and disodium cromoglycate (DSCG), in water. A variety of combinations of isotropic, nematic (N), and columnar (also called M) phases are observed depending on their concentrations, and a phase diagram is made. We find a tendency for DSCG-rich regions to show higher-order phases while SSY-rich regions show lower-order ones. We observe uniform mesophases only when one of the materials is sparse in the N phases. Their miscibility in M phases is so low that essentially complete phase separation occurs. X-ray scattering and spectroscopy studies confirm that SSY and DSCG molecules do not mix when they form chromonic aggregates and neither do their aggregates when they form M phases.
NASA Astrophysics Data System (ADS)
Ali, Asghar; Seadawy, Aly R.; Lu, Dianchen
2018-05-01
The aim of this article is to construct some new traveling wave solutions and investigate localized structures for fourth-order nonlinear Ablowitz-Kaup-Newell-Segur (AKNS) water wave dynamical equation. The simple equation method (SEM) and the modified simple equation method (MSEM) are applied in this paper to construct the analytical traveling wave solutions of AKNS equation. The different waves solutions are derived by assigning special values to the parameters. The obtained results have their importance in the field of physics and other areas of applied sciences. All the solutions are also graphically represented. The constructed results are often helpful for studying several new localized structures and the waves interaction in the high-dimensional models.
"Structure-making" ability of Na+ in dilute aqueous solution: an ONIOM-XS MD simulation study.
Sripa, Pattrawan; Tongraar, Anan; Kerdcharoen, Teerakiat
2013-02-28
An ONIOM-XS MD simulation has been performed to characterize the "structure-making" ability of Na(+) in dilute aqueous solution. The region of most interest, i.e., a sphere that includes Na(+) and its surrounding water molecules, was treated at the HF level of accuracy using LANL2DZ and DZP basis sets for the ion and waters, respectively, whereas the rest of the system was described by classical pair potentials. Detailed analyzes of the ONIOM-XS MD trajectories clearly show that Na(+) is able to order the structure of waters in its surroundings, forming two prevalent Na(+)(H(2)O)(5) and Na(+)(H(2)O)(6) species. Interestingly, it is observed that these 5-fold and 6-fold coordinated complexes can convert back and forth with some degrees of flexibility, leading to frequent rearrangements of the Na(+) hydrates as well as numerous attempts of inner-shell water molecules to interchange with waters in the outer region. Such a phenomenon clearly demonstrates the weak "structure-making" ability of Na(+) in aqueous solution.
Structural change of the frustule of diatom by thermal treatment
NASA Astrophysics Data System (ADS)
Arasuna, Akane; Okuno, Masayuki
2018-12-01
The external skeleton, frustule, of a diatom is composed of hydrous amorphous silica and amino acids. In this study, the structural changes in the frustule of Chaetoceros calcitrans after thermal treatment up to 1200 °C were investigated using X-ray diffraction and attenuated total reflection infrared spectroscopy and Raman spectroscopy. Their structural changes after thermal treatment give important information to elucidate the unheated structure of the frustule and its crystallization process. In addition, this study is almost the first report to discuss the structure of diatom frustule in detail with Raman spectrum. The unheated structure of the frustule has the relatively ordered and dominant six-membered ring structure made of SiO4 tetrahedra. The sample heated at 800 °C has the more ordered six-membered ring structure observed in quartz or cristobalite. Water molecules and silanol (Si-OH) included in the frustule are dehydrated at this temperature. This dehydration may promote the formation of ordered and polymerized structure. The structure of the frustule after heating at 1200 °C is similar to that of low-cristobalite. However, additional heating is required for complete crystallization.
Frost induced damages within porous materials - from concrete technology to fuel cells technique
NASA Astrophysics Data System (ADS)
Palecki, Susanne; Gorelkov, Stanislav; Wartmann, Jens; Heinzel, Angelika
2017-12-01
Porous media like concrete or layers of membrane electrode assemblies (MEA) within fuel cells are affected by a cyclic frost exposure due to different damage mechanisms which could lead to essential degradation of the material. In general, frost damages can only occur in case of a specific material moisture content. In fuel cells, residual water is generally available after shut down inside the membrane i.e. the gas diffusion layer (GDL). During subsequent freezing, this could cause various damage phenomena such as frost heaves and delamination effects of the membrane electrode assembly, which depends on the location of pore water and on the pore structure itself. Porous materials possess a pore structure that could range over several orders of magnitudes with different properties and freezing behaviour of the pore water. Latter can be divided into macroscopic, structured and pre-structured water, influenced by surface interactions. Therefore below 0 °C different water modifications can coexist in a wide temperature range, so that during frost exposure a high amount of unfrozen and moveable water inside the pore system is still available. This induces transport mechanisms and shrinkage effects. The physical basics are similar for porous media. While the freezing behaviour of concrete has been studied over decades of years, in order to enhance the durability, the know-how about the influence of a frost attack on fuel cell systems is not fully understood to date. On the basis of frost damage models for concrete structures, an approach to describe the impact of cyclic freezing and thawing on membrane electrode assemblies has been developed within this research work. Major aim is beyond a better understanding of the frost induced mechanisms, the standardization of a suitable test procedure for the assessment of different MEA materials under such kind of attack. Within this contribution first results will be introduced.
Puliti, R; Mattia, C A; Paduano, L
1998-08-01
The crystallographic study of a new hydrated form of alpha-cyclodextrin (cyclohexaamylose) is reported. C36H60O30 . 11H2O; space group P2(1)2(1)2(1) with cell constants a = 13.839(3), b = 15.398(3), c = 24.209(7) A; final discrepancy index R = 0.057 for the 5182 observed reflections and 632 refined parameters. Besides four ordered water molecules placed outside alpha-cyclodextrins, the structure shows regions of severely disordered solvent mainly confined in the oligosaccharide cavities. The contribution of the observed disorder has been computed via Fourier inversions of the residual electron density and incorporated into the structure factors in further refinements of the ordered part. The alpha-cyclodextrin molecule assumes a relaxed round shape stabilised by a ring sequence of all the six possible O2 ... O3 intramolecular hydrogen bonds. The four ordered water molecules take part in an extensive network of hydrogen bonds (infinite chains and loops) without modifying the scheme of intramolecular H-bonds or the (-)gauche conformation of O-6-H hydroxyl groups. The structure shows a new molecular arrangement, for an "empty" hydrated alpha-cyclodextrin, like that "brick-type" observed for alpha-CD in the iodoanilide trihydrate complex crystallising in an isomorphous cell.
Tsuchiya, Youichi; Noguchi, Takao; Yoshihara, Daisuke; Roy, Bappaditya; Yamamoto, Tatsuhiro; Shinkai, Seiji
2016-11-29
Control of higher-order polymer structures attracts a great deal of interest for many researchers when they lead to the development of materials having various advanced functions. Among them, conjugated polymers that are useful as starting materials in the design of molecular wires are particularly attractive. However, an equilibrium existing between isolated chains and bundled aggregates is inevitable and has made their physical properties very complicated. As an attempt to simplify this situation, we previously reported that a polymer chain of a water-soluble polythiophene could be isolated through complexation with a helix-forming polysaccharide. More recently, a covalently self-threading polythiophene was reported, the main chain of which was physically protected from self-folding and chain-chain π-stacking. In this report, we wish to report a new strategy to isolate a water-soluble polythiophene and to control its higher-order structure by a supramolecular approach: that is, among a few bile acids, lithocholate can form stoichiometric complexes with cationic polythiophene to isolate the polymer chain, and the higher-order structure is changeable by the molar ratio. The optical and morphological studies have been thoroughly performed, and the resultant complex has been applied to the selective recognition of two AMP structural isomers.
Yoneda, Shigetaka; Sugawara, Yoko; Urabe, Hisako
2005-01-27
The dynamics of crystal water molecules of guanosine dihydrate are investigated in detail by molecular dynamics (MD) simulation. A 2 ns simulation is performed using a periodic boundary box composed of 4 x 5 x 8 crystallographic unit cells and using the particle-mesh Ewald method for calculation of electrostatic energy. The simulated average atomic positions and atomic displacement parameters are remarkably coincident with the experimental values determined by X-ray analysis, confirming the high accuracy of this simulation. The dynamics of crystal water are analyzed in terms of atomic displacement parameters, orientation vectors, order parameters, self-correlation functions of the orientation vectors, time profiles of hydrogen-bonding probability, and translocations. The simulation clarifies that the average structure is composed of various stable and transient structures of the molecules. The simulated guanosine crystal forms a layered structure, with four water sites per asymmetric unit, classified as either interlayer water or intralayer water. From a detailed analysis of the translocations of water molecules in the simulation, columns of intralayer water molecules along the c axis appear to represent a pathway for hydration and dehydration by a kind of molecular valve mechanism.
Water entrapment and structure ordering as protection mechanisms for protein structural preservation
NASA Astrophysics Data System (ADS)
Arsiccio, A.; Pisano, R.
2018-02-01
In this paper, molecular dynamics is used to further gain insight into the mechanisms by which typical pharmaceutical excipients preserve the protein structure. More specifically, the water entrapment scenario will be analyzed, which states that excipients form a cage around the protein, entrapping and slowing water molecules. Human growth hormone will be used as a model protein, but the results obtained are generally applicable. We will show that water entrapment, as well as the other mechanisms of protein stabilization in the dried state proposed so far, may be related to the formation of a dense hydrogen bonding network between excipient molecules. We will also present a simple phenomenological model capable of explaining the behavior and stabilizing effect provided by typical cryo- and lyo-protectants. This model uses, as input data, molecular properties which can be easily evaluated. We will finally show that the model predictions compare fairly well with experimental data.
Urbic, T.; Mohoric, T.
2017-01-01
Non–equilibrium Monte Carlo and molecular dynamics simulations are used to study the effect of translational and rotational degrees of freedom on the structural and thermodynamic properties of the simple Mercedes–Benz water model. We establish a non–equilibrium steady state where rotational and translational temperatures can be tuned. We separately show that Monte Carlo simulations can be used to study non-equilibrium properties if sampling is performed correctly. By holding one of the temperatures constant and varying the other one, we investigate the effect of faster motion in the corresponding degrees of freedom on the properties of the simple water model. In particular, the situation where the rotational temperature exceeded the translational one is mimicking the effects of microwaves on the water model. A decrease of rotational temperature leads to the higher structural order while an increase causes the structure to be more Lennard–Jones fluid like.
NASA Astrophysics Data System (ADS)
Urbic, T.; Mohoric, T.
2017-03-01
Non-equilibrium Monte Carlo and molecular dynamics simulations are used to study the effect of translational and rotational degrees of freedom on the structural and thermodynamic properties of the simple Mercedes-Benz water model. We establish a non-equilibrium steady state where rotational and translational temperatures can be tuned. We separately show that Monte Carlo simulations can be used to study non-equilibrium properties if sampling is performed correctly. By holding one of the temperatures constant and varying the other one, we investigate the effect of faster motion in the corresponding degrees of freedom on the properties of the simple water model. In particular, the situation where the rotational temperature exceeded the translational one is mimicking the effects of microwaves on the water model. A decrease of rotational temperature leads to the higher structural order while an increase causes the structure to be more Lennard-Jones fluid like.
Osti, Naresh C.; Naguib, Michael; Ostadhossein, Alireza; ...
2016-03-24
MXenes are a recently discovered class of 2D materials with an excellent potential for energy storage applications. Because MXene surfaces are hydrophilic and attractive interaction forces between the layers are relatively weak, water molecules can spontaneously intercalate at ambient humidity and significantly influence the key properties of this 2D material. Using complementary X-ray and neutron scattering techniques, we demonstrate that intercalation with potassium cations significantly improves structural homogeneity and water stability in MXenes. Furthermore, in agreement with molecular dynamics simulations, intercalated potassium ions reduce the water self-diffusion coefficient by 2 orders of magnitude, suggesting greater stability of hydrated MXene againstmore » changing environmental conditions.« less
Electric-field-induced structural changes in water confined between two graphene layers
NASA Astrophysics Data System (ADS)
Sobrino Fernández, Mario; Peeters, F. M.; Neek-Amal, M.
2016-07-01
An external electric field changes the physical properties of polar liquids due to the reorientation of their permanent dipoles. Using molecular dynamics simulations, we predict that an in-plane electric field applied parallel to the channel polarizes water molecules which are confined between two graphene layers, resulting in distinct ferroelectricity and electrical hysteresis. We found that electric fields alter the in-plane order of the hydrogen bonds: Reversing the electric field does not restore the system to the nonpolar initial state, instead a residual dipole moment remains in the system. The square-rhombic structure of 2D ice is transformed into two rhombic-rhombic structures. Our study provides insights into the ferroelectric state of water when confined in nanochannels and shows how this can be tuned by an electric field.
Game theory and shared water resource management
NASA Astrophysics Data System (ADS)
Najafi, H.; Bagheri, A.
2011-12-01
Based on the "New Periodic Table" (NPT) of 2×2 order games by Robinson and Goforth (2005) this study explores all possible game structures, representing a conflict over a shared water resource between two countries. Each game is analyzed to find the possible outcomes (equilibria), Pareto-optimal outcomes, as well as dominant strategies of the players. It is explained why in practice, parties may behave in a way, resulting in Pareto-inferior outcomes and how parties may change their behavior with the structural changes of the game. Further, how parties may develop cooperative solutions through negotiations and involvement of third parties. This work provides useful policy insights into shared water resource problems and identifies the likely structure of such games in the future and the evolution path of the games.
Mileni, Mauro; Kamtekar, Satwik; Wood, David C.; Benson, Timothy E.; Cravatt, Benjamin F.; Stevens, Raymond C.
2010-01-01
The endocannabinoid system regulates a wide range of physiological processes including pain, inflammation, and cognitive/emotional states. URB597 is one of the best characterized covalent inhibitors of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH). Here, we report the structure of the FAAH-URB597 complex at 2.3 Å resolution. The structure provides insights into mechanistic details of enzyme inactivation and experimental evidence of a previously uncharacterized active site water molecule that likely is involved in substrate deacylation. This water molecule is part of an extensive hydrogen-bonding network, and is coordinated indirectly to residues lining the cytosolic port of the enzyme. In order to corroborate our hypothesis concerning the role of this water molecule in FAAH’s catalytic mechanism, we determined the structure of FAAH conjugated to a urea-based inhibitor, PF-3845, to a higher resolution (2.4 Å) than previously reported. The higher resolution structure confirms the presence of the water molecule in a virtually identical location in the active site. Examination of the structures of serine hydrolases that are non-homologous to FAAH, such as elastase, trypsin, or chymotrypsin, shows a similarly positioned hydrolytic water molecule and suggest a functional convergence between the amidase signature enzymes and serine proteases. PMID:20493882
Mileni, Mauro; Kamtekar, Satwik; Wood, David C; Benson, Timothy E; Cravatt, Benjamin F; Stevens, Raymond C
2010-07-23
The endocannabinoid system regulates a wide range of physiological processes including pain, inflammation, and cognitive/emotional states. URB597 is one of the best characterized covalent inhibitors of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH). Here, we report the structure of the FAAH-URB597 complex at 2.3 A resolution. The structure provides insights into mechanistic details of enzyme inactivation and experimental evidence of a previously uncharacterized active site water molecule that likely is involved in substrate deacylation. This water molecule is part of an extensive hydrogen-bonding network and is coordinated indirectly to residues lining the cytosolic port of the enzyme. In order to corroborate our hypothesis concerning the role of this water molecule in FAAH's catalytic mechanism, we determined the structure of FAAH conjugated to a urea-based inhibitor, PF-3845, to a higher resolution (2.4 A) than previously reported. The higher-resolution structure confirms the presence of the water molecule in a virtually identical location in the active site. Examination of the structures of serine hydrolases that are non-homologous to FAAH, such as elastase, trypsin, or chymotrypsin, shows a similarly positioned hydrolytic water molecule and suggests a functional convergence between the amidase signature enzymes and serine proteases. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
How Properties of Solid Surfaces Modulate the Nucleation of Gas Hydrate
Bai, Dongsheng; Chen, Guangjin; Zhang, Xianren; Sum, Amadeu K.; Wang, Wenchuan
2015-01-01
Molecular dynamics simulations were performed for CO2 dissolved in water near silica surfaces to investigate how the hydrophilicity and crystallinity of solid surfaces modulate the local structure of adjacent molecules and the nucleation of CO2 hydrates. Our simulations reveal that the hydrophilicity of solid surfaces can change the local structure of water molecules and gas distribution near liquid-solid interfaces, and thus alter the mechanism and dynamics of gas hydrate nucleation. Interestingly, we find that hydrate nucleation tends to occur more easily on relatively less hydrophilic surfaces. Different from surface hydrophilicity, surface crystallinity shows a weak effect on the local structure of adjacent water molecules and on gas hydrate nucleation. At the initial stage of gas hydrate growth, however, the structuring of molecules induced by crystalline surfaces are more ordered than that induced by amorphous solid surfaces. PMID:26227239
How ions affect the structure of water.
Hribar, Barbara; Southall, Noel T; Vlachy, Vojko; Dill, Ken A
2002-10-16
We model ion solvation in water. We use the MB model of water, a simple two-dimensional statistical mechanical model in which waters are represented as Lennard-Jones disks having Gaussian hydrogen-bonding arms. We introduce a charge dipole into MB waters. We perform (NPT) Monte Carlo simulations to explore how water molecules are organized around ions and around nonpolar solutes in salt solutions. The model gives good qualitative agreement with experiments, including Jones-Dole viscosity B coefficients, Samoilov and Hirata ion hydration activation energies, ion solvation thermodynamics, and Setschenow coefficients for Hofmeister series ions, which describe the salt concentration dependence of the solubilities of hydrophobic solutes. The two main ideas captured here are (1) that charge densities govern the interactions of ions with water, and (2) that a balance of forces determines water structure: electrostatics (water's dipole interacting with ions) and hydrogen bonding (water interacting with neighboring waters). Small ions (kosmotropes) have high charge densities so they cause strong electrostatic ordering of nearby waters, breaking hydrogen bonds. In contrast, large ions (chaotropes) have low charge densities, and surrounding water molecules are largely hydrogen bonded.
Rodriguez-Cruz, S E; Jockusch, R A; Williams, E R
1999-09-29
The evaporation of water from hydrated alkaline earth metal ions, produced by electrospray ionization, was studied in a Fourier transform mass spectrometer. Zero-pressure-limit dissociation rate constants for loss of a single water molecule from the hydrated divalent metal ions, M(2+)(H(2)O)(n) (M = Mg, Ca, and Sr for n = 5-7, and M = Ba for n = 4-7), are measured as a function of temperature using blackbody infrared radiative dissociation. From these values, zero-pressure-limit Arrhenius parameters are obtained. By modeling the dissociation kinetics using a master equation formalism, threshold dissociation energies (E(o)) are determined. These reactions should have a negligible reverse activation barrier; therefore, E(o) values should be approximately equal to the binding energy or hydration enthalpy at 0 K. For the hepta- and hexahydrated ions at low temperature, binding energies follow the trend expected on the basis of ionic radii: Mg > Ca > Sr > Ba. For the hexahydrated ions at high temperature, binding energies follow the order Ca > Mg > Sr > Ba. The same order is observed for the pentahydrated ions. Collisional dissociation experiments on the tetrahydrated species result in relative dissociation rates that directly correlate with the size of the metals. These results indicate the presence of two isomers for hexahydrated magnesium ions: a low-temperature isomer in which the six water molecules are located in the first solvation shell, and a high-temperature isomer with the most likely structure corresponding to four water molecules in the inner shell and two water molecules in the second shell. These results also indicate that the pentahydrated magnesium ions have a structure with four water molecules in the first solvation shell and one in the outer shell. The dissociation kinetics for the hexa- and pentahydrated clusters of Ca(2+), Sr(2+), and Ba(2+) are consistent with structures in which all the water molecules are located in the first solvation shell.
NASA Astrophysics Data System (ADS)
Fatima, Mariyam; Perez, Cristobal; Schnell, Melanie
2017-06-01
Many biological processes, such as chemical recognition and protein folding, are mainly controlled by the interplay of hydrogen bonds and dispersive forces. This interplay also occurs between organic molecules and solvent water molecules. Broadband rotational spectroscopy studies of weakly bound complexes are able to accurately reveal the structures and internal dynamics of molecular clusters isolated in the gas phase. Amongst them, water clusters with organic molecules are of particular interest. In this work, we investigate the interplay between different types of weak intermolecular interactions and how it controls the preferred interaction sites of aromatic ethers, where dispersive interactions may play a significant role. We present our results on diphenyl ether (C_{12}H_{10}O, 1,1'-Oxydibenzene) complexed with up to three molecules of water. Diphenyl ether is a flexible molecule, and it offers two competing binding sites for water: the ether oxygen and the aromatic π system. In order to determine the structure of the diphenyl ether-water complexes, we targeted transitions in the 2-8 GHz range using broadband rotational spectroscopy. We identify two isomers with one water, one with two water, and one with three water molecules. Further analysis from isotopic substitution measurements provided accurate structural information. The preferred interactions, as well as the observed structural changes induced upon complexation, will be presented and discussed.
Water adsorption on the Fe3O4(111) surface: dissociation and network formation.
Zaki, Eman; Mirabella, Francesca; Ivars-Barceló, Francisco; Seifert, Jan; Carey, Spencer; Shaikhutdinov, Shamil; Freund, Hans-Joachim; Li, Xiaoke; Paier, Joachim; Sauer, Joachim
2018-06-13
We monitored adsorption of water on a well-defined Fe3O4(111) film surface at different temperatures as a function of coverage using infrared reflection-absorption spectroscopy, temperature programmed desorption, and single crystal adsorption calorimetry. Additionally, density functional theory was employed using a Fe3O4(111)-(2 × 2) slab model to generate 15 energy minimum structures for various coverages. Corresponding vibrational properties of the adsorbed water species were also computed. The results show that water molecules readily dissociate on regular surface Fetet1-O ion pairs to form "monomers", i.e., terminal Fe-OH and surface OH groups. Further water molecules adsorb on the hydroxyl covered surface non-dissociatively and form "dimers" and larger oligomers, which ultimately assemble into an ordered (2 × 2) hydrogen-bonded network structure with increasing coverage prior to the formation of a solid water film.
Composite structure of helicopter rotor blades studied by neutron- and X-ray radiography
NASA Astrophysics Data System (ADS)
Balaskó, M.; Veres, I.; Molnár, Gy.; Balaskó, Zs.; Sváb, E.
2004-07-01
In order to inspect the possible defects in the composite structure of helicopter rotor blades combined neutron- and X-ray radiography investigations were performed at the Budapest Research Reactor. Imperfections in the honeycomb structure, resin rich or starved areas at the core-honeycomb surfaces, inhomogeneities at the adhesive filling and water percolation at the sealing interfaces of the honeycomb sections were discovered.
Mosher, Jennifer J; Findlay, Robert H
2011-11-01
A correlative study was performed to determine if variation in streambed microbial community structure in low-order forested streams can be directly or indirectly linked to the chemical nature of the parental bedrock of the environments through which the streams flow. Total microbial and photosynthetic biomass (phospholipid phosphate [PLP] and chlorophyll a), community structure (phospholipid fatty acid analysis), and physical and chemical parameters were measured in six streams, three located in sandstone and three in limestone regions of the Bankhead National Forest in northern Alabama. Although stream water flowing through the two different bedrock types differed significantly in chemical composition, there were no significant differences in total microbial and photosynthetic biomass in the sediments. In contrast, sedimentary microbial community structure differed between the bedrock types and was significantly correlated with stream water ion concentrations. A pattern of seasonal variation in microbial community structure was also observed. Further statistical analysis indicated dissolved organic matter (DOM) quality, which was previously shown to be influenced by geological variation, correlated with variation in bacterial community structure. These results indicate that the geology of underlying bedrock influences benthic microbial communities directly via changes in water chemistry and also indirectly via stream water DOM quality.
Incipient ferroelectricity of water molecules confined to nano-channels of beryl
NASA Astrophysics Data System (ADS)
Gorshunov, B. P.; Torgashev, V. I.; Zhukova, E. S.; Thomas, V. G.; Belyanchikov, M. A.; Kadlec, C.; Kadlec, F.; Savinov, M.; Ostapchuk, T.; Petzelt, J.; Prokleška, J.; Tomas, P. V.; Pestrjakov, E. V.; Fursenko, D. A.; Shakurov, G. S.; Prokhorov, A. S.; Gorelik, V. S.; Kadyrov, L. S.; Uskov, V. V.; Kremer, R. K.; Dressel, M.
2016-09-01
Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole-dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecular dipoles has been predicted, but never unambiguously detected experimentally. In the present study we place separate H2O molecules in the structural channels of a beryl single crystal so that they are located far enough to prevent hydrogen bonding, but close enough to keep the dipole-dipole interaction, resulting in incipient ferroelectricity in the water molecular subsystem. We observe a ferroelectric soft mode that causes Curie-Weiss behaviour of the static permittivity, which saturates below 10 K due to quantum fluctuations. The ferroelectricity of water molecules may play a key role in the functioning of biological systems and find applications in fuel and memory cells, light emitters and other nanoscale electronic devices.
[Collective action around drinking water in two mid-sized cities in Mexico].
Trevino Carrillo, A H
1998-01-01
The efforts by residents of marginal neighborhoods of two medium-sized Mexican cities to obtain potable water and sewer services were compared in order to determine the forms of organization and social relations involved. The two cities, Queretaro and Celaya, are located in different states but share the same river basin. The organizational structures of the municipal water services and their relationships to the state government, the local political structures and practices, and the patterns of conflict resolution differed greatly in the two cities. The study describes the public water services, the social demand for water, the characteristics of the barrio organizations and mobilizations, and the relevant city officials in both study sites. The focus then shifts to theoretical discussion regarding collective actions and social movements and the new area of research constituted by citizen mobilizations to demand services.
Harmful effect of detergents on lipase.
Fatima, Sadaf; Ajmal, Rehan; Badr, Gamal; Khan, Rizwan H
2014-11-01
In order to study effects of detergents at molecular level, we have done activity measurements of wheat germ lipase in increasing concentration of some commercial detergents. Conformational changes in protein structure using circular dichroism and fluorescence spectroscopy were studied in increasing concentration of sodium dodecyl sulfate. Our study proves that detergents may lead to loss of enzymatic activity and structure of plant enzymes. Since detergents are common source of pollution in water bodies and the water from these resources can be used in fields, our study may prove helpful in creating awareness about harmful action of detergents.
Ice polyamorphism in the minimal Mercedes-Benz model of water.
Cartwright, Julyan H E; Piro, Oreste; Sánchez, Pedro A; Sintes, Tomás
2012-12-28
We investigate ice polyamorphism in the context of the two-dimensional Mercedes-Benz model of water. We find a first-order phase transition between a crystalline phase and a high-density amorphous phase. Furthermore, we find a reversible transformation between two amorphous structures of high and low density; however, we find this to be a continuous and not an abrupt transition, as the low-density amorphous phase does not show structural stability. We discuss the origin of this behavior and its implications with regard to the minimal generic modeling of polyamorphism.
Ice polyamorphism in the minimal Mercedes-Benz model of water
NASA Astrophysics Data System (ADS)
Cartwright, Julyan H. E.; Piro, Oreste; Sánchez, Pedro A.; Sintes, Tomás
2012-12-01
We investigate ice polyamorphism in the context of the two-dimensional Mercedes-Benz model of water. We find a first-order phase transition between a crystalline phase and a high-density amorphous phase. Furthermore, we find a reversible transformation between two amorphous structures of high and low density; however, we find this to be a continuous and not an abrupt transition, as the low-density amorphous phase does not show structural stability. We discuss the origin of this behavior and its implications with regard to the minimal generic modeling of polyamorphism.
Lake Billy Shaw Operations and Maintenance, Final Annual Report 2000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodson, Guy; Pero, Vincent
Lake Billy Shaw is a newly constructed earthen dam reservoir with a surface area of 430 acres. Construction on the dam and structures was complete in November of 1998. The fish screen structures were complete in December of 1998, with initial filling in May 1999. Upon initial filling, dam structures, monitoring wells, fish screen structures, and lake level were monitored daily, with recordings being taken three times/week. During June 1999 the water to the lake was turned off in order to complete additional construction work on the lake. This work included installation of culverts around the perimeter road, installation ofmore » boat launches, finish work on the spillway structure, pumphouse and well protection and planting 4 trees along the entrance to the boat launch area. The water was turned on again in late September 1999 with all structures having been checked, fish screens greased and maintained and well levels being monitored. In 2000 the Operations and Maintenance portion of the project began with monitoring of piezometers, water levels, biological monitoring, riparian plantings, protection of shorelines, and maintenance of structures and appurtances.« less
Ammonia-water cation and ammonia dimer cation.
Kim, Hahn; Lee, Han Myoung
2009-06-25
We have investigated the structure, interaction energy, electronic properties, and IR spectra of the ammonia-water cation (NH(3)H(2)O)(+) using density functional theory (DFT) and high-level ab initio theory. The ammonia-water cation has three minimum-energy structures of (a) H(2)NH(+)...OH(2), (b) H(3)N(+)...OH(2), and (c) H(3)NH(+)...OH. The lowest-energy structure is (a), followed by (c) and (b). The ammonia dimer cation has two minimum-energy structures [the lowest H(3)NH(+)...NH(2) structure and the second lowest (H(3)N...NH(3))(+) structure]. The minimum transition barrier for the interconversion between (a), (b), and (c) is approximately 6 kcal/mol. Most DFT calculations with various functionals, except a few cases, overstabilize the N...O and N...N binding, predicting different structures from Moller-Plesset second-order perturbation (MP2) theory and the most reliable complete basis set (CBS) limit of coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. Thus, the validity test of the DFT functionals for these ionized molecular systems would be of importance.
NASA Astrophysics Data System (ADS)
Coridan, Robert H.; Schmidt, Nathan W.; Lai, Ghee Hwee; Abbamonte, Peter; Wong, Gerard C. L.
2012-03-01
Nanoconfined water and surface-structured water impacts a broad range of fields. For water confined between hydrophilic surfaces, measurements and simulations have shown conflicting results ranging from “liquidlike” to “solidlike” behavior, from bulklike water viscosity to viscosity orders of magnitude higher. Here, we investigate how a homogeneous fluid behaves under nanoconfinement using its bulk response function: The Green's function of water extracted from a library of S(q,ω) inelastic x-ray scattering data is used to make femtosecond movies of nanoconfined water. Between two confining surfaces, the structure undergoes drastic changes as a function of surface separation. For surface separations of ≈9 Å, although the surface-associated hydration layers are highly deformed, they are separated by a layer of bulklike water. For separations of ≈6 Å, the two surface-associated hydration layers are forced to reconstruct into a single layer that modulates between localized “frozen’ and delocalized “melted” structures due to interference of density fields. These results potentially reconcile recent conflicting experiments. Importantly, we find a different delocalized wetting regime for nanoconfined water between surfaces with high spatial frequency charge densities, where water is organized into delocalized hydration layers instead of localized hydration shells, and are strongly resistant to `freezing' down to molecular distances (<6 Å).
Zhu, Jie; Li, Xiaoxi; Huang, Chen; Chen, Ling; Li, Lin
2014-04-15
This work studied the structural changes and the migration of triacetin plasticizer in starch acetate films in the presence of distilled water as food simulant. Fourier-transform infrared spectroscopy result showed that the macromolecular interaction was enhanced to form compact aggregation of amorphous chains. The characterization of aggregation structures via wide and small angle X-ray scattering techniques indicated that the orderly microregion was compressed and the crystallites inside were "squeezed" to form interference and further aggregation. The compact aggregation structures restricted the mobility of macromolecules, triacetin and water molecules. The overall kinetic and the diffusion model analysis manifested that Fick's second law was the predominant mechanism for the short-term migration of triacetin. The increasing relaxation within film matrix caused the subsequent migration to deviate from Fick's law. The safe and reasonable application of the starch-based materials with restrained plasticizer migration could be accomplished by controlling the molecular interaction and aggregation structures. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Institutional and socioeconomic aspects of water supply
NASA Astrophysics Data System (ADS)
Rauchenschwandtner, H.; Pachel, M.
2012-04-01
Institutional and socioeconomic aspects of water supply Within the project CC-WaterS the participating researchers of the Vienna University of Economics and B.A. have been responsible for the analysis of the socioeconomic aspects related to water supply and climate change, the assessment of future water demands in the City of Vienna, as well as an estimation of economic consequences of possible water shortages and possible scope for the introduction of new legal guidelines. The institutional and socioeconomic dimensions of drinking water and sanitation systems are being examined by utilisation of different prognostic scenarios in order to assess future costs of water provisioning and future demands of main water users, thus providing an information basis and recommendations for policy and decision makers in the water sector. These dimensions, for example, include EU legislation - especially the Water Framework Directive -, national legislations and strategies targeted at achieving sustainability in water usage, best practices and different forms of regulating water markets, and an analysis of the implications of demographic change. As a basis this task encompasses research of given institutional, social, and legal-political structures in the area of water supply. In this course we provide an analysis of the structural characteristics of water markets, the role of water prices, the increasing perception of water as an economic good as well as implications thereof, the public awareness in regard to climate change and water resources, as well as related legal aspects and involved actors from regional to international level; and show how water resources and the different systems of water provisioning are affected by (ideological) conflicts on various levels. Furthermore, and in order to provide a solid basis for management recommendations related to climate change and water supply, an analytical risk-assessment framework based on the concepts of new institutional economics is being developed, which provides a different analytical perspective for examining the linkages between institutions, economic processes, and societal factors.
Femtosecond movies of water near interfaces at sub-Angstrom resolution
NASA Astrophysics Data System (ADS)
Coridan, Robert; Hwee Lai, Ghee; Schmidt, Nathan; Abbamonte, Peter; Wong, Gerard C. L.
2010-03-01
The behavior of liquid water near interfaces with nanoscopic variations in chemistry influences a broad range of phenomena in biology. Using inelastic x-ray scattering (IXS) data from 3rd-generation synchrotron x-ray sources, we reconstruct the Greens function of liquid water, which describes the å-scale spatial and femtosecond-scale temporal evolution of density fluctuations. We extend this response function formalism to reconstruct the evolution of hydration structures near dynamic surfaces with different charge distributions, in order to define more precisely the molecular signature of hydrophilicity and hydrophobicity. Moreover, we investigate modifications to surface hydration structures and dynamics as the size of hydrophilic and hydrophobic patches are varied.
Effect of Fatty acids and beeswax addition on properties of sodium caseinate dispersions and films.
Fabra, M J; Jiménez, A; Atarés, L; Talens, P; Chiralt, A
2009-06-08
Edible films based on sodium caseinate and different saturated fatty acids, oleic acid, or beeswax were formulated. Film-forming emulsions were characterized in terms of particle size distribution, rheological behavior and surface tension. In order to evaluate the influence of lipids on sodium caseinate matrices, mechanical, optical, and water vapor barrier properties were studied, taking into account the effect of water content and film structure on such properties. Saturated fatty acids affected the film properties in a particular way due to the formation of bilayer structures which limited water vapor permeability, giving rise to nonflexible and more opaque films. Oleic acid and beeswax were less effective as water vapor barriers, although the former imparted more flexibility to the caseinate films and did not reduce the film transparency notably.
Morphological evidence of mechanoreceptive gravity perception in a water flea - Daphnia magna
NASA Technical Reports Server (NTRS)
Meyers, D. G.
1985-01-01
Hair-like structures or setae located in the basal membrane of the swimming antennae of the water flea, D. magna, were observed by scanning electron microscopy and compared to mechanoreceptors in the Higher Order Crustacea. Similarities in anatomy, size, attachment, number, length, and orientation support the hypothesis that the setae are rheoceptive mechanoreceptors which mediate gravity perception through deflection by water currents during the sink phase of hop-and-sink swimming behavior.
Regional water footprint evaluation in China: a case of Liaoning.
Dong, Huijuan; Geng, Yong; Sarkis, Joseph; Fujita, Tsuyoshi; Okadera, Tomohiro; Xue, Bing
2013-01-01
Water-related problems are currently second only to energy issues as threats to human society. North China is a region that is facing severe water scarcity problems. In order to provide appropriate water mitigation policies a regional study is completed. Under this circumstance, Liaoning Province, a typical heavy industrial province in north China is chosen as a case study region. The input-output analysis method is employed in order to evaluate the water footprint both from production and consumption perspectives. The results show that the total water footprint of Liaoning in 2007 was 7.30 billionm(3), a 84.6% of internal water footprint and a 15.4% external water footprint. The water trade balance of Liaoning was 2.68 billionm(3), indicating that Liaoning was a net water export region, although water shortages are becoming a more serious concern. The "Agriculture" and "Food and beverage production" sectors are found to have the highest water footprint, water intensity, water exports, and water trade balance. Based upon Liaoning realities policy implications and suggestions are made, including industrial and trade structure adjustment, application of water efficient technology and management measures, and appropriate capacity-building efforts. The methodology and findings may be useful for investigation of water footprints throughout various regions of the world. Copyright © 2012 Elsevier B.V. All rights reserved.
Excess chemical potential of small solutes across water--membrane and water--hexane interfaces
NASA Technical Reports Server (NTRS)
Pohorille, A.; Wilson, M. A.
1996-01-01
The excess chemical potentials of five small, structurally related solutes, CH4, CH3F, CH2F2, CHF3, and CF4, across the water-glycerol 1-monooleate bilayer and water-hexane interfaces were calculated at 300, 310, and 340 K using the particle insertion method. The excess chemical potentials of nonpolar molecules (CH4 and CF4) decrease monotonically or nearly monotonically from water to a nonpolar phase. In contrast, for molecules that possess permanent dipole moments (CH3F, CH2F, and CHF3), the excess chemical potentials exhibit an interfacial minimum that arises from superposition of two monotonically and oppositely changing contributions: electrostatic and nonelectrostatic. The nonelectrostatic term, dominated by the reversible work of creating a cavity that accommodates the solute, decreases, whereas the electrostatic term increases across the interface from water to the membrane interior. In water, the dependence of this term on the dipole moment is accurately described by second order perturbation theory. To achieve the same accuracy at the interface, third order terms must also be included. In the interfacial region, the molecular structure of the solvent influences both the excess chemical potential and solute orientations. The excess chemical potential across the interface increases with temperature, but this effect is rather small. Our analysis indicates that a broad range of small, moderately polar molecules should be surface active at the water-membrane and water-oil interfaces. The biological and medical significance of this result, especially in relation to the mechanism of anesthetic action, is discussed.
Ma, Dejian; Tillman, Tommy S; Tang, Pei; Meirovitch, Eva; Eckenhoff, Roderic; Carnini, Anna; Xu, Yan
2008-10-28
Structural studies of polytopic membrane proteins are often hampered by the vagaries of these proteins in membrane mimetic environments and by the difficulties in handling them with conventional techniques. Designing and creating water-soluble analogues with preserved native structures offer an attractive alternative. We report here solution NMR studies of WSK3, a water-soluble analogue of the potassium channel KcsA. The WSK3 NMR structure (PDB ID code 2K1E) resembles the KcsA crystal structures, validating the approach. By more stringent comparison criteria, however, the introduction of several charged residues aimed at improving water solubility seems to have led to the possible formations of a few salt bridges and hydrogen bonds not present in the native structure, resulting in slight differences in the structure of WSK3 relative to KcsA. NMR dynamics measurements show that WSK3 is highly flexible in the absence of a lipid environment. Reduced spectral density mapping and model-free analyses reveal dynamic characteristics consistent with an isotropically tumbling tetramer experiencing slow (nanosecond) motions with unusually low local ordering. An altered hydrogen-bond network near the selectivity filter and the pore helix, and the intrinsically dynamic nature of the selectivity filter, support the notion that this region is crucial for slow inactivation. Our results have implications not only for the design of water-soluble analogues of membrane proteins but also for our understanding of the basic determinants of intrinsic protein structure and dynamics.
Liquid structure of the urea-water system studied by dielectric spectroscopy.
Hayashi, Yoshihito; Katsumoto, Yoichi; Omori, Shinji; Kishii, Noriyuki; Yasuda, Akio
2007-02-08
Dielectric spectroscopy measurements for aqueous urea solutions were performed at 298 K through a concentration range from 0.5 to 9.0 M with frequencies between 200 MHz and 40 GHz. Observed dielectric spectra were well represented by the superposition of two Debye type relaxation processes attributable to the bulk-water clusters and the urea-water coclusters. Our quantitative analysis of the spectra shows that the number of hydration water molecules is approximately two per urea molecule for the lower concentration region below 5.0 M, while the previous molecular dynamics studies predicted approximately six water molecules. It was also indicated by those studies, however, that there are two types of hydration water molecule in urea solution, which are strongly and weakly associated to the urea molecule, respectively. Only the strongly associated water was distinguishable in our analysis, while the weakly associated water exhibited the same dynamic feature as bulk water. This implies that urea retains the weakly associated water in the tetrahedral structure and, thus, is not a strong structure breaker of water. We also verified the model of liquid water where water consists of two states: the icelike-ordered and dense-disordered phases. Our dielectric data did not agree with the theoretical prediction based on the two-phase model. The present work supports the argument that urea molecules can easily replace near-neighbor water in the hydrogen-bonding network and do not require the presence of the disordered phase of water to dissolve into water.
Bai, Yang; He, Hui-Min; Li, Ying; ...
2015-02-19
Modulation of intermolecular interactions in response to external electric fields could be fundamental to the formation of unusual forms of water, such as water whiskers. However, a detailed understanding of the nature of intermolecular interactions in such systems is lacking. In this study, we present novel theoretical results based on electron correlation calculations regarding the nature of H-bonds in water whiskers, which is revealed by studying their evolution under external electric fields with various field strengths. We find that the water whiskers consisting of 2-7 water molecules all have a chain-length dependent critical electric field. Under the critical electric field,more » the most compact chain structures are obtained, featuring very strong H-bonds, herein referred to as covalent H-bonds. In the case of a water dimer whisker, the bond length of the novel covalent H-bond shortens by 25%, the covalent bond order increases by 9 times, and accordingly the H-bond energy is strengthened by 5 times compared to the normal H-bond in a (H 2O) 2 cluster. Below the critical electric field, it is observed that with increasing field strength, H-bonding orbitals display gradual evolutions in the orbital energy, orbital ordering, and orbital nature (i.e., from typical -style orbital to unusual -style double H-bonding orbital). We also show that beyond the critical electric field, a single water whisker may disintegrate to form a loosely bound zwitterionic chain due to a relay-style proton transfer, whereas two water whiskers may undergo intermolecular cross-linking to form a quasi-two-dimensional water network. In conclusion, these results help shed new insight on the effects of electric fields on water whisker formation.« less
The role of headwater streams in downstream water quality
Alexander, R.B.; Boyer, E.W.; Smith, R.A.; Schwarz, G.E.; Moore, R.B.
2007-01-01
Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth- and higher-order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water-resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters. ?? 2007 American Water Resources Association.
Structured-Light Based 3d Laser Scanning of Semi-Submerged Structures
NASA Astrophysics Data System (ADS)
van der Lucht, J.; Bleier, M.; Leutert, F.; Schilling, K.; Nüchter, A.
2018-05-01
In this work we look at 3D acquisition of semi-submerged structures with a triangulation based underwater laser scanning system. The motivation is that we want to simultaneously capture data above and below water to create a consistent model without any gaps. The employed structured light scanner consist of a machine vision camera and a green line laser. In order to reconstruct precise surface models of the object it is necessary to model and correct for the refraction of the laser line and camera rays at the water-air boundary. We derive a geometric model for the refraction at the air-water interface and propose a method for correcting the scans. Furthermore, we show how the water surface is directly estimated from sensor data. The approach is verified using scans captured with an industrial manipulator to achieve reproducible scanner trajectories with different incident angles. We show that the proposed method is effective for refractive correction and that it can be applied directly to the raw sensor data without requiring any external markers or targets.
Croteau, T; Bertram, A K; Patey, G N
2008-10-30
Grand canonical Monte Carlo calculations are used to determine water adsorption and structure on defect-free kaolinite surfaces as a function of relative humidity at 235 K. This information is then used to gain insight into ice nucleation on kaolinite surfaces. Results for both the SPC/E and TIP5P-E water models are compared and demonstrate that the Al-surface [(001) plane] and both protonated and unprotonated edges [(100) plane] strongly adsorb at atmospherically relevant relative humidities. Adsorption on the Al-surface exhibits properties of a first-order process with evidence of collective behavior, whereas adsorption on the edges is essentially continuous and appears dominated by strong water lattice interactions. For the protonated and unprotonated edges no structure that matches hexagonal ice is observed. For the Al-surface some of the water molecules formed hexagonal rings. However, the a o lattice parameter for these rings is significantly different from the corresponding constant for hexagonal ice ( Ih). A misfit strain of 14.0% is calculated between the hexagonal pattern of water adsorbed on the Al-surface and the basal plane of ice Ih. Hence, the ring structures that form on the Al-surface are not expected to be good building-blocks for ice nucleation due to the large misfit strain.
First-principles study of water desorption from montmorillonite surface.
Zhang, Yao; Meng, Yingfeng; Liu, Houbin; Yang, Mingli
2016-05-01
Knowledge about water desorption is important to give a full picture of water diffusion in montmorillonites (MMT), which is a driving factor in MMT swelling. The desorption paths and energetics of water molecules from the surface of MMT with trapped Li(+), Na(+) or K(+) counterions were studied using periodic density functional theory calculations. Two paths--surface and vacuum desorption--were designed for water desorption starting from a stationary structure in which water bonds with both the counterion and the MMT surface. Surface desorption is energetically more favorable than vacuum desorption due to water-surface hydrogen bonds that help stabilize the intermediate structure of water released from the counterion. The energy barriers of water desorption are in the order of Li(+) > Na(+) > K(+), which can be attributed to the short ionic radius of Li(+), which favors strong binding with the water molecule. The temperature dependence of water adsorption and desorption rates were compared based on the computed activation energies. Our calculations reveal that the water desorption on the MMT surface has a different mechanism from water adsorption, which results from surface effects favoring stabilization of water conformers during the desorption process.
Dynamic analysis of a 5-MW tripod offshore wind turbine by considering fluid-structure interaction
NASA Astrophysics Data System (ADS)
Zhang, Li-wei; Li, Xin
2017-10-01
Fixed offshore wind turbines usually have large underwater supporting structures. The fluid influences the dynamic characteristics of the structure system. The dynamic model of a 5-MW tripod offshore wind turbine considering the pile-soil system and fluid structure interaction (FSI) is established, and the structural modes in air and in water are obtained by use of ANSYS. By comparing low-order natural frequencies and mode shapes, the influence of sea water on the free vibration characteristics of offshore wind turbine is analyzed. On basis of the above work, seismic responses under excitation by El-Centro waves are calculated by the time-history analysis method. The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water. The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of offshore wind turbines fixed in deep seawater.
The Role of Headwater Streams in Downstream Water Quality1
Alexander, Richard B; Boyer, Elizabeth W; Smith, Richard A; Schwarz, Gregory E; Moore, Richard B
2007-01-01
Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth- and higher-order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water-resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters. PMID:22457565
Terahertz spectroscopy of liver cirrhosis: investigating the origin of contrast
NASA Astrophysics Data System (ADS)
Sy, Stanley; Huang, Shengyang; Wang, Yi-Xiang J.; Yu, Jun; Ahuja, Anil T.; Zhang, Yuan-ting; Pickwell-MacPherson, Emma
2010-12-01
We have previously demonstrated that terahertz pulsed imaging is able to distinguish between rat tissues from different healthy organs. In this paper we report our measurements of healthy and cirrhotic liver tissues using terahertz reflection spectroscopy. The water content of the fresh tissue samples was also measured in order to investigate the correlations between the terahertz properties, water content, structural changes and cirrhosis. Finally, the samples were fixed in formalin to determine whether water was the sole source of image contrast in this study. We found that the cirrhotic tissue had a higher water content and absorption coefficient than the normal tissue and that even after formalin fixing there were significant differences between the normal and cirrhotic tissues' terahertz properties. Our results show that terahertz pulsed imaging can distinguish between healthy and diseased tissue due to differences in absorption originating from both water content and tissue structure.
Viana, Adriano G; Noseda, Miguel D; Gonçalves, Alan G; Duarte, Maria Eugênia R; Yokoya, Nair; Matulewicz, Maria C; Cerezo, Alberto S
2011-06-01
Xylans from five seaweeds belonging to the order Nemaliales (Galaxaura marginata, Galaxaura obtusata, Tricleocarpacylindrica, Tricleocarpa fragilis, and Scinaia halliae) and one of the order Palmariales (Palmaria palmata) collected on the Brazilian coasts were extracted with hot water and purified from acid xylomannans and/or xylogalactans through Cetavlon precipitation of the acid polysaccharides. The β-D-(1→4), β-D-(1→3) 'mixed linkage' structures were determined using methylation analysis and 1D and 2D NMR spectroscopy. The presence of large sequences of β-(1→4)-linked units suggests transient aggregates of ribbon- or helical-ordered structures that would explain the low optical rotations. Copyright © 2011 Elsevier Ltd. All rights reserved.
The biological function of an insect antifreeze protein simulated by molecular dynamics
Kuiper, Michael J; Morton, Craig J; Abraham, Sneha E; Gray-Weale, Angus
2015-01-01
Antifreeze proteins (AFPs) protect certain cold-adapted organisms from freezing to death by selectively adsorbing to internal ice crystals and inhibiting ice propagation. The molecular details of AFP adsorption-inhibition is uncertain but is proposed to involve the Gibbs–Thomson effect. Here we show by using unbiased molecular dynamics simulations a protein structure-function mechanism for the spruce budworm Choristoneura fumiferana AFP, including stereo-specific binding and consequential melting and freezing inhibition. The protein binds indirectly to the prism ice face through a linear array of ordered water molecules that are structurally distinct from the ice. Mutation of the ice binding surface disrupts water-ordering and abolishes activity. The adsorption is virtually irreversible, and we confirm the ice growth inhibition is consistent with the Gibbs–Thomson law. DOI: http://dx.doi.org/10.7554/eLife.05142.001 PMID:25951514
Spectral Analysis of the Wake behind a Helicopter Rotor Hub
NASA Astrophysics Data System (ADS)
Petrin, Christopher; Reich, David; Schmitz, Sven; Elbing, Brian
2016-11-01
A scaled model of a notional helicopter rotor hub was tested in the 48" Garfield Thomas Water Tunnel at the Applied Research Laboratory Penn State. LDV and PIV measurements in the far-wake consistently showed a six-per-revolution flow structure, in addition to stronger two- and four-per-revolution structures. These six-per-revolution structures persisted into the far-field, and have no direct geometric counterpart on the hub model. The current study will examine the Reynolds number dependence of these structures and present higher-order statistics of the turbulence within the wake. In addition, current activity using the EFPL Large Water Tunnel at Oklahoma State University will be presented. This effort uses a more canonical configuration to identify the source for these six-per-revolution structures, which are assumed to be a non-linear interaction between the two- and four-per-revolution structures.
Revised Atomistic Models of the Crystal Structure of C-S-H with high C/S Ratio
NASA Astrophysics Data System (ADS)
Kovačević, Goran; Nicoleau, Luc; Nonat, André; Veryazov, Valera
2016-09-01
The atomic structure of calcium-silicate-hydrate (C1.67-S-Hx) has been studied. Atomistic C-S-H models suggested in our previous study have been revised in order to perform a direct comparison of energetic stability of the different structures. An extensive set of periodic structures of C-S-H with variation of water content was created, and then optimized using molecular dynamics with reactive force field ReaxFF and quantum chemical semiempirical method PM6. All models show organization of water molecules inside the structure of C-S-H. The new geometries of C-S-H, reported in this paper, show lower relative energy with respect to the geometries from the original definition of C-S-H models. Model that corresponds to calcium enriched tobermorite structure has the lowest relative energy and the density closest to the experimental values.
Zeidel, Mark L.
2015-01-01
Alterations in water homeostasis can disturb cell size and function. Although most cells can internally regulate cell volume in response to osmolar stress, neurons are particularly at risk given a combination of complex cell function and space restriction within the calvarium. Thus, regulating water balance is fundamental to survival. Through specialized neuronal “osmoreceptors” that sense changes in plasma osmolality, vasopressin release and thirst are titrated in order to achieve water balance. Fine-tuning of water absorption occurs along the collecting duct, and depends on unique structural modifications of renal tubular epithelium that confer a wide range of water permeability. In this article, we review the mechanisms that ensure water homeostasis as well as the fundamentals of disorders of water balance. PMID:25078421
Jaeger, Vance W; Pfaendtner, Jim
2016-12-01
Ionic liquid (IL) containing solvents can change the structure, dynamics, function, and stability of proteins. In order to investigate the mechanisms by which ILs induce structural changes in a large multidomain protein, we study the interactions of human serum albumin (HSA) with two different ILs, 1-butyl-3-methylimidazolium tetrafluoroborate and choline dihydrogen phosphate. Root mean square deviation and fluctuation calculations indicate that high concentrations of ILs in mixtures with water lead to protein structures that remain close to their crystallographic structures on time scales of hundreds of nanoseconds. To overcome potential time scale limitations due to the high viscosity of the solvent, we employed enhanced sampling techniques to estimate the free energy of an experimentally determined important transition within the protein structure. Metadynamics simulations show that the free energy landscape of the unfolding of loop 1 of domain I is different in the presence of ILs than it is in water, consistent with previously published experimental evidence. We then apply essential dynamics coarse graining to systematically predict differences in the dynamics of proteins solvated in IL-water mixtures versus pure water systems. We also demonstrate that the presence of ionic liquids changes the distribution of intermolecular distances among several ligands, indicating that the protein structure swells in the presence of certain ILs, consistent with experimental evidence.
Molecular dynamics simulation of water in and around carbon nanotubes: A coarse-grained description
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pantawane, Sanwardhini; Choudhury, Niharendu, E-mail: nihcho@barc.gov.in
2016-05-23
In the present study, we intend to investigate behaviour of water in and around hydrophobic open ended carbon nanotubes (CNTs) using a coarse-grained, core-softened model potential for water. The model potential considered here for water has recently been shown to successfully reproduce dynamic, thermodynamic and structural anomalies of water. The epitome of the study is to understand the incarceration of this coarse-grained water in a single-file carbon nanotube. In order to examine the effect of fluid-water van der Waals interaction on the structure of fluid in and around the nanotube, we have simulated three different CNT-water systems with varying degreemore » of solute-water dispersion interaction. The analyses of the radial one-particle density profiles reveal varying degree of permeation and wetting of the CNT interior depending on the degree of fluid-solute attractive van der Waals interaction. A peak in the radial density profile slightly off the nanotube axis signifies a zigzag chain of water molecule around the CNT axis. The average numbers of water molecules inside the CNT have been shown to increase with the increase in fluid-water attractive dispersion interaction.« less
The magnetodynamic filters in monitoring the contaminants from polluted water systems (abstract)
NASA Astrophysics Data System (ADS)
Swarup, R.; Singh, Bharat
1994-05-01
The magnetic interaction seems to influence the ``structural memory'' of water systems which is quenched in ideally pure water. The sedentary lifetime of each water molecule is extremely short (10-10 s) and its molecular structures may be influenced by some physical effect like magnetic field treatment, it's space time gradients, water velocity, pressure drop, etc. in the interpolar space, so as to yield a noticeable temporal magnetopotential development characterizing the properties of homogeneous and heterogeneous water systems. This principle is also extended to prevailing water systems which always contain various impurities, gas, molecules, ions, microscopic particles in random order. Still the existence of structural memory may be verified by reliable experimental data. The magnetopotential curves of different water systems depict the design and develop-software package for constructing the magnetodynamic-filters superior to the existing techniques on pollution studies like remote sensing, muon spin resonance, laser spectroscopy, nuclear techniques, the gamma ray peak efficiency method, trace elemental characterization due to NBS, neutron activation analysis, and graphite furnance atomic absorption spectrometer. The physiochemical characteristics of water calibrated in terms of magnetopotential curves change with the removal of dissolved gasses, impurities, thermal activation, etc. and the algae, bacteria, phosphates, etc. have been removed at a rapid rate. The magnetodynamic study of ganga water proves it to be an extremely pure and highly resourced fluid.
Thermodynamics of water intrusion in nanoporous hydrophobic solids.
Cailliez, Fabien; Trzpit, Mickael; Soulard, Michel; Demachy, Isabelle; Boutin, Anne; Patarin, Joël; Fuchs, Alain H
2008-08-28
We report a joint experimental and molecular simulation study of water intrusion in silicalite-1 and ferrerite zeolites. The main conclusion of this study is that water condensation takes place through a genuine first-order phase transition, provided that the interconnected pores structure is 3-dimensional. In the extreme confinement situation (ferrierite zeolite), condensation takes place through a continuous transition, which is explained by a shift of both the first-order transition line and the critical point with increasing confinement. The present findings are at odds with the common belief that conventional phase transitions cannot take place in microporous solids such as zeolites. The most important features of the intrusion/extrusion process can be understood in terms of equilibrium thermodynamics considerations. We believe that these findings are very general for hydrophobic solids, i.e. for both nonwetting as well as wetting water-solid interface systems.
Hierarchical nanoparticle assemblies formed by decorating breath figures.
Böker, Alexander; Lin, Yao; Chiapperini, Kristen; Horowitz, Reina; Thompson, Mike; Carreon, Vincent; Xu, Ting; Abetz, Clarissa; Skaff, Habib; Dinsmore, A D; Emrick, Todd; Russell, Thomas P
2004-05-01
The combination of two self-assembly processes on different length scales leads to the formation of hierarchically structured nanoparticle arrays. Here, the formation of spherical cavities, or 'breath figures'-made by the condensation of micrometre-sized water droplets on the surface of a polymer solution-that self-assemble into a well-ordered hexagonal array, is combined with the self-assembly of CdSe nanoparticles at the polymer solution-water droplet interface. Complete evaporation of the solvent and water confines the particle assembly to an array of spherical cavities and allows for ex situ investigation. Fluorescence confocal, transmission electron and scanning electron microscope images show the preferential segregation of the CdSe nanoparticles to the polymer solution-water interface where they form a 5-7-nm-thick layer, thus functionalizing the walls of the holes. This process opens a new route to fabricating highly functionalized ordered microarrays of nanoparticles, potentially useful in sensory, separation membrane or catalytic applications.
Watkins, Marquita; Sizochenko, Natalia; Moore, Quentarius; Golebiowski, Marek; Leszczynska, Danuta; Leszczynski, Jerzy
2017-02-01
The presence of chlorophenols in drinking water can be hazardous to human health. Understanding the mechanisms of adsorption under specific experimental conditions would be beneficial when developing methods to remove toxic substances from drinking water during water treatment in order to limit human exposure to these contaminants. In this study, we investigated the sorption of chlorophenols on multi-walled carbon nanotubes using a density functional theory (DFT) approach. This was applied to study selected interactions between six solvents, five types of nanotubes, and six chlorophenols. Experimental data were used to construct structure-adsorption relationship (SAR) models that describe the recovery process. Specific interactions between solvents and chlorophenols were taken into account in the calculations by using novel specific mixture descriptors.
Hydration of Caffeine at High Temperature by Neutron Scattering and Simulation Studies.
Tavagnacco, L; Brady, J W; Bruni, F; Callear, S; Ricci, M A; Saboungi, M L; Cesàro, A
2015-10-22
The solvation of caffeine in water is examined with neutron diffraction experiments at 353 K. The experimental data, obtained by taking advantage of isotopic H/D substitution in water, were analyzed by empirical potential structure refinement (EPSR) in order to extract partial structure factors and site-site radial distribution functions. In parallel, molecular dynamics (MD) simulations were carried out to interpret the data and gain insight into the intermolecular interactions in the solutions and the solvation process. The results obtained with the two approaches evidence differences in the individual radial distribution functions, although both confirm the presence of caffeine stacks at this temperature. The two approaches point to different accessibility of water to the caffeine sites due to different stacking configurations.
NASA Astrophysics Data System (ADS)
Weaire, Denis
2009-03-01
The National Aquatics Center or ``Water Cube,'' constructed for the Beijing Olympics, is unusual in that its very structure has a physical significance. It consists of a massive framework of steel beams that are arranged as in the Weaire-Phelan structure of an ideal foam, with an outer facing of transparent ``cushions.'' Brilliantly conceived by Tristram Carfrae of the Arup Corporation, it makes a spectacular impression on those who enter. It provokes thoughts on aesthetics, order/disorder, optimisation, and the frequent recurrence of bubbles/foams in our literary and artistic culture. The story of the Water Cube will start in the nineteenth century, when William Thomson (Lord Kelvin) first posed the problem: what kind of foam of equal-sized bubbles minimises area (or energy)?
Li, Wei; Jin, Jing; Liu, Xiaoqing; Wang, Li
2018-06-15
The transformation effects of metal ions and temperature on the DNA bases guanine (G) metal-organic coordination motifs in water have been investigated by scanning tunneling microcopy (STM). The G molecules form an ordered hydrogen-bonded structure at the water- highly oriented pyrolytic graphite (HOPG) interface. The STM observations reveal that the canonical G/9H form can be transformed into the G/(3H, 7H) tautomer by increasing the temperature of the G solution to 38.6oC. Moreover, metal ions bind with G molecules to form G4Fe13+, G3Fe32+ and the heterochiral intermixed G4Na1+ metal-organic networks after the introduction of the alkali-metal ions in cellular environment.
NASA Astrophysics Data System (ADS)
Schlager, Wolfgang
2015-04-01
In contrast to the realms of magmatism and metamorphism, most depositional processes can be observed directly at the earth's surface. Observation of sediment patterns advanced significantly with the advent of remote sensing and 3D reflection seismics. Remote sensing is particularly relevant for the present topic because it documents mainly Holocene sediments - the best objects to link depositional processes to products. Classic examples of scale-invariant geometry are channel-fan systems, i.e. river-delta and canyon-fan complexes. The underlying control in both instances is the energy-dispersion of a channeled stream of water that discharges in a body of still water. The resulting fan-shaped sediment accumulations are scale-invariant over 7 orders of magnitude in linear size. The Mesozoic-Cenozoic record shows comparable trends and patterns. Further examples of depositional scale-invariance include foresets of non-cohesive sediments and braided-channel deposits. Reefs and carbonate platforms offer an example of scale-invariance related to biotic growth. Shallow-water carbonate platforms rimmed by reefs or reef-rimmed atolls with deep lagoons are characteristic morphologies of tropical carbonate deposits. The structure has been compared to a bucket where stiff reef rims hold a pile of loose sediment. Remote sensing data from the Maldive, Chagos and Laccadive archipelagos of the Indian Ocean show that bucket structures are the dominant depositional pattern from meter-size reefs to archipelagos of hundreds of kilometers in diameter, i.e. over more than 4 orders of magnitude in linear size. Over 2.5 orders of magnitude, the bucket structures qualify as statistical fractals. Ecologic and hydrodynamic studies on modern reefs suggest that the bucket structure is a form of biotic self-organization: The edge position in a reef is favored over the center position because bottom shear is higher and the diffusive boundary layer between reef and water thinner. Thus, the reef edge has easier access to nutrients. Moreover, the edge is less likely to be buried by sediment. The bucket structure is an ecologic response to these conditions. Buckets have been documented from all periods of the Phanerozoic and analogous structures from the late Proterozoic show that the microbial carbonate factory also built buckets. We conclude that a voyage through scales in the sediment realm reveals islands of scale-invariance wherever a single principle dominates the sedimentation process.
NASA Astrophysics Data System (ADS)
Miceli, Giacomo; de Gironcoli, Stefano; Pasquarello, Alfredo
2015-01-01
We investigate the structural properties of liquid water at near ambient conditions using first-principles molecular dynamics simulations based on a semilocal density functional augmented with nonlocal van der Waals interactions. The adopted scheme offers the advantage of simulating liquid water at essentially the same computational cost of standard semilocal functionals. Applied to the water dimer and to ice Ih, we find that the hydrogen-bond energy is only slightly enhanced compared to a standard semilocal functional. We simulate liquid water through molecular dynamics in the NpH statistical ensemble allowing for fluctuations of the system density. The structure of the liquid departs from that found with a semilocal functional leading to more compact structural arrangements. This indicates that the directionality of the hydrogen-bond interaction has a diminished role as compared to the overall attractions, as expected when dispersion interactions are accounted for. This is substantiated through a detailed analysis comprising the study of the partial radial distribution functions, various local order indices, the hydrogen-bond network, and the selfdiffusion coefficient. The explicit treatment of the van der Waals interactions leads to an overall improved description of liquid water.
Structured Water Layers Adjacent to Biological Membranes
Higgins, Michael J.; Polcik, Martin; Fukuma, Takeshi; Sader, John E.; Nakayama, Yoshikazu; Jarvis, Suzanne P.
2006-01-01
Water amid the restricted space of crowded biological macromolecules and at membrane interfaces is essential for cell function, though the structure and function of this “biological water” itself remains poorly defined. The force required to remove strongly bound water is referred to as the hydration force and due to its widespread importance, it has been studied in numerous systems. Here, by using a highly sensitive dynamic atomic force microscope technique in conjunction with a carbon nanotube probe, we reveal a hydration force with an oscillatory profile that reflects the removal of up to five structured water layers from between the probe and biological membrane surface. Further, we find that the hydration force can be modified by changing the membrane fluidity. For 1,2-dipalmitoyl-sn-glycero-3-phosphocholine gel (Lβ) phase bilayers, each oscillation in the force profile indicates the force required to displace a single layer of water molecules from between the probe and bilayer. In contrast, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine fluid (Lα) phase bilayers at 60°C and 1,2-dioleoyl-sn-glycero-3-phosphocholine fluid (Lα) phase bilayers at 24°C seriously disrupt the molecular ordering of the water and result predominantly in a monotonic force profile. PMID:16798815
Probabilistic analysis for identifying the driving force of protein folding
NASA Astrophysics Data System (ADS)
Tokunaga, Yoshihiko; Yamamori, Yu; Matubayasi, Nobuyuki
2018-03-01
Toward identifying the driving force of protein folding, energetics was analyzed in water for Trp-cage (20 residues), protein G (56 residues), and ubiquitin (76 residues) at their native (folded) and heat-denatured (unfolded) states. All-atom molecular dynamics simulation was conducted, and the hydration effect was quantified by the solvation free energy. The free-energy calculation was done by employing the solution theory in the energy representation, and it was seen that the sum of the protein intramolecular (structural) energy and the solvation free energy is more favorable for a folded structure than for an unfolded one generated by heat. Probabilistic arguments were then developed to determine which of the electrostatic, van der Waals, and excluded-volume components of the interactions in the protein-water system governs the relative stabilities between the folded and unfolded structures. It was found that the electrostatic interaction does not correspond to the preference order of the two structures. The van der Waals and excluded-volume components were shown, on the other hand, to provide the right order of preference at probabilities of almost unity, and it is argued that a useful modeling of protein folding is possible on the basis of the excluded-volume effect.
Kim, Ok-Hee; Cho, Yong-Hun; Kang, Soon Hyung; Park, Hee-Young; Kim, Minhyoung; Lim, Ju Wan; Chung, Dong Young; Lee, Myeong Jae; Choe, Heeman; Sung, Yung-Eun
2013-01-01
Three-dimensional, ordered macroporous materials such as inverse opal structures are attractive materials for various applications in electrochemical devices because of the benefits derived from their periodic structures: relatively large surface areas, large voidage, low tortuosity and interconnected macropores. However, a direct application of an inverse opal structure in membrane electrode assemblies has been considered impractical because of the limitations in fabrication routes including an unsuitable substrate. Here we report the demonstration of a single cell that maintains an inverse opal structure entirely within a membrane electrode assembly. Compared with the conventional catalyst slurry, an ink-based assembly, this modified assembly has a robust and integrated configuration of catalyst layers; therefore, the loss of catalyst particles can be minimized. Furthermore, the inverse-opal-structure electrode maintains an effective porosity, an enhanced performance, as well as an improved mass transfer and more effective water management, owing to its morphological advantages.
Crystal structure of the Msx-1 homeodomain/DNA complex.
Hovde, S; Abate-Shen, C; Geiger, J H
2001-10-09
The Msx-1 homeodomain protein plays a crucial role in craniofacial, limb, and nervous system development. Homeodomain DNA-binding domains are comprised of 60 amino acids that show a high degree of evolutionary conservation. We have determined the structure of the Msx-1 homeodomain complexed to DNA at 2.2 A resolution. The structure has an unusually well-ordered N-terminal arm with a unique trajectory across the minor groove of the DNA. DNA specificity conferred by bases flanking the core TAAT sequence is explained by well ordered water-mediated interactions at Q50. Most interactions seen at the TAAT sequence are typical of the interactions seen in other homeodomain structures. Comparison of the Msx-1-HD structure to all other high resolution HD-DNA complex structures indicate a remarkably well-conserved sphere of hydration between the DNA and protein in these complexes.
NASA Astrophysics Data System (ADS)
Lee, Yi-Kang
2017-09-01
Nuclear decommissioning takes place in several stages due to the radioactivity in the reactor structure materials. A good estimation of the neutron activation products distributed in the reactor structure materials impacts obviously on the decommissioning planning and the low-level radioactive waste management. Continuous energy Monte-Carlo radiation transport code TRIPOLI-4 has been applied on radiation protection and shielding analyses. To enhance the TRIPOLI-4 application in nuclear decommissioning activities, both experimental and computational benchmarks are being performed. To calculate the neutron activation of the shielding and structure materials of nuclear facilities, the knowledge of 3D neutron flux map and energy spectra must be first investigated. To perform this type of neutron deep penetration calculations with the Monte Carlo transport code, variance reduction techniques are necessary in order to reduce the uncertainty of the neutron activation estimation. In this study, variance reduction options of the TRIPOLI-4 code were used on the NAIADE 1 light water shielding benchmark. This benchmark document is available from the OECD/NEA SINBAD shielding benchmark database. From this benchmark database, a simplified NAIADE 1 water shielding model was first proposed in this work in order to make the code validation easier. Determination of the fission neutron transport was performed in light water for penetration up to 50 cm for fast neutrons and up to about 180 cm for thermal neutrons. Measurement and calculation results were benchmarked. Variance reduction options and their performance were discussed and compared.
NASA Astrophysics Data System (ADS)
Glæsner, Nadia; Leue, Marin; Magid, Jacob; Gerke, Horst H.
2016-04-01
Understanding the heterogeneous nature of soil, i.e. properties and processes occurring specifically at local scales is essential for best managing our soil resources for agricultural production. Examination of intact soil structures in order to obtain an increased understanding of how soil systems operate from small to large scale represents a large gap within soil science research. Dissolved chemicals, nutrients and particles are transported through the disturbed plow layer of agricultural soil, where after flow through the lower soil layers occur by preferential flow via macropores. Rapid movement of water through macropores limit the contact between the preferentially moving water and the surrounding soil matrix, therefore contact and exchange of solutes in the water is largely restricted to the surface area of the macropores. Organomineral complex coated surfaces control sorption and exchange properties of solutes, as well as availability of essential nutrients to plant roots and to the preferentially flowing water. DRIFT (Diffuse Reflectance infrared Fourier Transform) Mapping has been developed to examine composition of organic matter coated macropores. In this study macropore surfaces structures will be determined for organic matter composition using DRIFT from a long-term field experiment on waste application to agricultural soil (CRUCIAL, close to Copenhagen, Denmark). Parcels with 5 treatments; accelerated household waste, accelerated sewage sludge, accelerated cattle manure, NPK and unfertilized, will be examined in order to study whether agricultural management have an impact on the organic matter composition of intact structures.
Vyumvuhore, Raoul; Tfayli, Ali; Duplan, Hélène; Delalleau, Alexandre; Manfait, Michel; Baillet-Guffroy, Arlette
2013-07-21
Skin hydration plays an important role in the optimal physical properties and physiological functions of the skin. Despite the advancements in the last decade, dry skin remains the most common characteristic of human skin disorders. Thus, it is important to understand the effect of hydration on Stratum Corneum (SC) components. In this respect, our interest consists in correlating the variations of unbound and bound water content in the SC with structural and organizational changes in lipids and proteins using a non-invasive technique: Raman spectroscopy. Raman spectra were acquired on human SC at different relative humidity (RH) levels (4-75%). The content of different types of water, bound and free, was measured using the second derivative and curve fitting of the Raman bands in the range of 3100-3700 cm(-1). Changes in lipidic order were evaluated using νC-C and νC-H. To analyze the effect of RH on the protein structure, we examined in the Amide I region, the Fermi doublet of tyrosine, and the νasymCH3 vibration. The contributions of totally bound water were found not to vary with humidity, while partially bound water varied with three different rates. Unbound water increased greatly when all sites for bound water were saturated. Lipid organization as well as protein deployment was found to be optimal at intermediate RH values (around 60%), which correspond to the maximum of SC water binding capacity. This analysis highlights the relationship between bound water, the SC barrier state and the protein structure and elucidates the optimal conditions. Moreover, our results showed that increased content of unbound water in the SC induces disorder in the structures of lipids and proteins.
Local-order metric for condensed-phase environments
NASA Astrophysics Data System (ADS)
Martelli, Fausto; Ko, Hsin-Yu; Oǧuz, Erdal C.; Car, Roberto
2018-02-01
We introduce a local order metric (LOM) that measures the degree of order in the neighborhood of an atomic or molecular site in a condensed medium. The LOM maximizes the overlap between the spatial distribution of sites belonging to that neighborhood and the corresponding distribution in a suitable reference system. The LOM takes a value tending to zero for completely disordered environments and tending to one for environments that perfectly match the reference. The site-averaged LOM and its standard deviation define two scalar order parameters, S and δ S , that characterize with excellent resolution crystals, liquids, and amorphous materials. We show with molecular dynamics simulations that S , δ S , and the LOM provide very insightful information in the study of structural transformations, such as those occurring when ice spontaneously nucleates from supercooled water or when a supercooled water sample becomes amorphous upon progressive cooling.
Urban Evolution: the Role of Water
The structure, function, and services of urban ecosystems evolve over time scales from seconds to centuries as Earth's population grows, infrastructure ages, and sociopolitical values alter them. In order to systematically study changes over time, the concept of "urban evolution...
Incipient ferroelectricity of water molecules confined to nano-channels of beryl
Gorshunov, B. P.; Torgashev, V. I.; Zhukova, E. S.; Thomas, V. G.; Belyanchikov, M. A.; Kadlec, C.; Kadlec, F.; Savinov, M.; Ostapchuk, T.; Petzelt, J.; Prokleška, J.; Tomas, P. V.; Pestrjakov, E. V.; Fursenko, D. A.; Shakurov, G. S.; Prokhorov, A. S.; Gorelik, V. S.; Kadyrov, L. S.; Uskov, V. V.; Kremer, R. K.; Dressel, M.
2016-01-01
Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole–dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecular dipoles has been predicted, but never unambiguously detected experimentally. In the present study we place separate H2O molecules in the structural channels of a beryl single crystal so that they are located far enough to prevent hydrogen bonding, but close enough to keep the dipole–dipole interaction, resulting in incipient ferroelectricity in the water molecular subsystem. We observe a ferroelectric soft mode that causes Curie–Weiss behaviour of the static permittivity, which saturates below 10 K due to quantum fluctuations. The ferroelectricity of water molecules may play a key role in the functioning of biological systems and find applications in fuel and memory cells, light emitters and other nanoscale electronic devices. PMID:27687693
Water clusters in amorphous pharmaceuticals.
Authelin, Jean-Rene; MacKenzie, Alan P; Rasmussen, Don H; Shalaev, Evgenyi Y
2014-09-01
Amorphous materials, although lacking the long-range translational and rotational order of crystalline and liquid crystalline materials, possess certain local (short-range) structure. This paper reviews the distribution of one particular component present in all amorphous pharmaceuticals, that is, water. Based on the current understanding of the structure of water, water molecules can exist in either unclustered form or as aggregates (clusters) of different sizes and geometries. Water clusters are reported in a range of amorphous systems including carbohydrates and their aqueous solutions, synthetic polymers, and proteins. Evidence of water clustering is obtained by various methods that include neutron and X-ray scattering, molecular dynamics simulation, water sorption isotherm, concentration dependence of the calorimetric Tg , dielectric relaxation, and nuclear magnetic resonance. A review of the published data suggests that clustering depends on water concentration, with unclustered water molecules existing at low water contents, whereas clusters form at intermediate water contents. The transition from water clusters to unclustered water molecules can be expected to change water dependence of pharmaceutical properties, such as rates of degradation. We conclude that a mechanistic understanding of the impact of water on the stability of amorphous pharmaceuticals would require systematic studies of water distribution and clustering, while such investigations are lacking. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xianfeng; Murthy, N. Sanjeeva; Latour, Robert A.
2012-10-10
The effect of hydration on the molecular structure of amorphous poly(D,L-lactic acid) (PDLLA) with 50:50 L-to-D ratio has been studied by combining experiments with molecular simulations. X-ray diffraction measurements revealed significant changes upon hydration in the structure functions of the copolymer. Large changes in the structure functions at 10 days of incubation coincided with the large increase in the water uptake from {approx} 1 to {approx} 40% and the formation of voids in the film. Computer modeling based on the recently developed TIGER2/TIGER3 mixed sampling scheme was used to interpret these changes by efficiently equilibrating both dry and hydrated modelsmore » of PDLLA. Realistic models of bulk amorphous PDLLA structure were generated as demonstrated by close agreement between the calculated and the experimental structure functions. These molecular simulations were used to identify the interactions between water and the polymer at the atomic level including the change of positional order between atoms in the polymer due to hydration. Changes in the partial O-O structure functions, about 95% of which were due to water-polymer interactions, were apparent in the radial distribution functions. These changes, and somewhat smaller changes in the C-C and C-O partial structure functions, clearly demonstrated the ability of the model to capture the hydrogen-bonding interactions between water and the polymer, with the probability of water forming hydrogen bonds with the carbonyl oxygen of the ester group being about 4 times higher than with its ether oxygen.« less
3D ordered porous MoxC (x = 1 or 2) for advanced hydrogen evolution and Li storage.
Yu, Hong; Fan, Haosen; Wang, Jiong; Zheng, Yun; Dai, Zhengfei; Lu, Yizhong; Kong, Junhua; Wang, Xin; Kim, Young Jin; Yan, Qingyu; Lee, Jong-Min
2017-06-01
3D ordered porous structures of Mo x C are prepared with different Mo to C ratios and tested for two possible promising applications: hydrogen evolution reaction (HER) through water splitting and lithium ion batteries (LIBs). Mo 2 C and MoC with 3D periodic ordered structures are prepared with a similar process but different precursors. The 3D ordered porous MoC exhibits excellent cycling stability and rate performance as an anode material for LIBs. A discharge capacity of 450.9 mA h g -1 is maintained up to 3000 cycles at 10.0 A g -1 . The Mo 2 C with a similar ordered porous structure shows impressive electrocatalytic activity for the HER in neutral, alkaline and acidic pH solutions. In particular, Mo 2 C shows an onset potential of only 33 mV versus a reversible hydrogen electrode (RHE) and a Tafel slope of 42.5 mV dec -1 in a neutral aqueous solution (1.0 M phosphate buffer solution), which is approaching that of the commercial Pt/C catalyst.
Water in the presence of inert Lennard-Jones obstacles
NASA Astrophysics Data System (ADS)
Kurtjak, Mario; Urbic, Tomaz
2014-04-01
Water confined by the presence of a 'sea' of inert obstacles was examined. In the article, freely mobile two-dimensional Mercedes-Benz (MB) water put to a disordered, but fixed, matrix of Lennard-Jones disks was studied by the Monte Carlo computer simulations. For the MB water molecules in the matrix of Lennard-Jones disks, we explored the structures, hydrogen-bond-network formation and thermodynamics as a function of temperature and size and density of matrix particles. We found that the structure of model water is perturbed by the presence of the obstacles. Density of confined water, which was in equilibrium with the bulk water, was smaller than the density of the bulk water and the temperature dependence of the density of absorbed water did not show the density anomaly in the studied temperature range. The behaviour observed as a consequence of confinement is similar to that of increasing temperature, which can for a matrix lead to a process similar to capillary evaporation. At the same occupancy of space, smaller matrix molecules cause higher destruction effect on the absorbed water molecules than the bigger ones. We have also tested the hypothesis that at low matrix densities the obstacles induce an increased ordering and 'hydrogen bonding' of the MB model molecules, relative to pure fluid, while at high densities the obstacles reduce MB water structuring, as they prevent the fluid to form good 'hydrogen-bonding' networks. However, for the size of matrix molecules similar to that of water, we did not observe this effect.
Srivastava, Kinshuk Raj; Kumar, Anil; Goyal, Bhupesh; Durani, Susheel
2011-05-26
The competing interactions folding and unfolding protein structure remain obscure. Using homopolypeptides, we ask if poly-L structure may have a role. We mutate the structure to alternating-L,D stereochemistry and substitute water as the fold-promoting solvent with methanol and dimethyl sulfoxide (DMSO) as the fold-denaturing solvents. Circular dichroism and molecular dynamics established previously that, while both isomers were folded in water, the poly-L isomer was unfolded and alternating-L,D isomer folded in methanol. Nuclear magnetic resonance and molecular dynamics establish now that both isomers are unfolded in DMSO. We calculated energetics of folding-unfolding equilibrium with water and methanol as solvents. We have now calculated interactions of unfolded polypeptide structures with DMSO as solvent. Methanol was found to unfold and water fold poly-L structure as a dielectric. DMSO has now been found to unfold both poly-L and alternating-L,D structures by strong solvation of peptides to disrupt their hydrogen bonds. Accordingly, we propose that while linked peptides fold protein structure with hydrogen bonds they unfold the structure electrostatically due to the stereochemical effect of the poly-L structure. Protein folding to ordering of peptide hydrogen bonds with water as canonical solvent may thus involve two specific and independent solvent effects-one, strong screening of electrostatics of poly-L linked peptides, and two, weak dipolar solvation of peptides. Correspondingly, protein denaturation may involve two independent solvent effects-one, weak dielectric to unfold poly-L structure electrostatically, and two, strong polarity to disrupt peptide hydrogen bonds by solvation of peptides.
Angular resolution and range of dipole-dipole correlations in water
NASA Astrophysics Data System (ADS)
Mathias, Gerald; Tavan, Paul
2004-03-01
We investigate the dipolar correlations in liquid water at angular resolution by molecular-dynamics simulations of a large periodic simulation system containing about 40 000 molecules. Because we are particularly interested in the long-range ordering, we use a simple three-point model for these molecules. The electrostatics is treated both by Ewald summation and by minimum image truncation combined with a reaction field approach. To gain insight into the angular dependence of the simulated dipolar ordering we introduce a suitable expansion of the molecular pair distribution function into a set of two-dimensional correlation functions. We show that these functions enable detailed insights into the shell structure of the dipolar ordering around a given water molecule. For these functions we derive analytical expressions in the particular case in which liquid water is conceived as a dielectric continuum. Comparisons of these continuum models with the correlation functions derived from the simulations yield the key result that liquid water behaves like a continuum dielectric beyond distances of about 15 Å from a given water molecule. We argue that this should be a generic property of water independent of our modeling. By comparison of the results of the two different electrostatics treatments with the continuum description we show that the boundary artifacts occurring in both methods are isotropically distributed and are locally small in the respective boundary regions.
Rodriguez-Cruz, Sandra E.; Jockusch, Rebecca A.
2005-01-01
The evaporation of water from hydrated alkaline earth metal ions, produced by electrospray ionization, was studied in a Fourier transform mass spectrometer. Zero-pressure-limit dissociation rate constants for loss of a single water molecule from the hydrated divalent metal ions, M2+(H2O)n (M = Mg, Ca, and Sr for n = 5–7, and M = Ba for n = 4–7), are measured as a function of temperature using blackbody infrared radiative dissociation. From these values, zero-pressure-limit Arrhenius parameters are obtained. By modeling the dissociation kinetics using a master equation formalism, threshold dissociation energies (Eo) are determined. These reactions should have a negligible reverse activation barrier; therefore, Eo values should be approximately equal to the binding energy or hydration enthalpy at 0 K. For the hepta- and hexahydrated ions at low temperature, binding energies follow the trend expected on the basis of ionic radii: Mg > Ca > Sr > Ba. For the hexahydrated ions at high temperature, binding energies follow the order Ca > Mg > Sr > Ba. The same order is observed for the pentahydrated ions. Collisional dissociation experiments on the tetrahydrated species result in relative dissociation rates that directly correlate with the size of the metals. These results indicate the presence of two isomers for hexahydrated magnesium ions: a low-temperature isomer in which the six water molecules are located in the first solvation shell, and a high-temperature isomer with the most likely structure corresponding to four water molecules in the inner shell and two water molecules in the second shell. These results also indicate that the pentahydrated magnesium ions have a structure with four water molecules in the first solvation shell and one in the outer shell. The dissociation kinetics for the hexa- and pentahydrated clusters of Ca2+, Sr2+, and Ba2+ are consistent with structures in which all the water molecules are located in the first solvation shell. PMID:16429612
Pressure effects on collective density fluctuations in water and protein solutions
Russo, Daniela; Laloni, Alessio; Filabozzi, Alessandra; Heyden, Matthias
2017-01-01
Neutron Brillouin scattering and molecular dynamics simulations have been used to investigate protein hydration water density fluctuations as a function of pressure. Our results show significant differences between the pressure and density dependence of collective dynamics in bulk water and in concentrated protein solutions. Pressure-induced changes in the tetrahedral order of the water HB network have direct consequences for the high-frequency sound velocity and damping coefficients, which we find to be a sensitive probe for changes in the HB network structure as well as the wetting of biomolecular surfaces. PMID:29073065
Shi, Ruili; Wang, Pengju; Tang, Lingli; Huang, Xiaoming; Chen, Yonggang; Su, Yan; Zhao, Jijun
2018-04-05
Using a genetic algorithm incorporated in density functional theory, we explore the ground state structures of fluoride anion-water clusters F - (H 2 O) n with n = 1-10. The F - (H 2 O) n clusters prefer structures in which the F - anion remains at the surface of the structure and coordinates with four water molecules, as the F - (H 2 O) n clusters have strong F - -H 2 O interactions as well as strong hydrogen bonds between H 2 O molecules. The strong interaction between the F - anion and adjacent H 2 O molecule leads to a longer O-H distance in the adjacent molecule than in an individual water molecule. The simulated infrared (IR) spectra of the F - (H 2 O) 1-5 clusters obtained via second-order vibrational perturbation theory (VPT2) and including anharmonic effects reproduce the experimental results quite well. The strong interaction between the F - anion and water molecules results in a large redshift (600-2300 cm -1 ) of the adjacent O-H stretching mode. Natural bond orbital (NBO) analysis of the lowest-energy structures of the F - (H 2 O) 1-10 clusters illustrates that charge transfer from the lone pair electron orbital of F - to the antibonding orbital of the adjacent O-H is mainly responsible for the strong interaction between the F - anion and water molecules, which leads to distinctly different geometric and vibrational properties compared with neutral water clusters.
Molecular Dynamics Analysis of Lysozyme Protein in Ethanol-Water Mixed Solvent Environment
NASA Astrophysics Data System (ADS)
Ochije, Henry Ikechukwu
Effect of protein-solvent interaction on the protein structure is widely studied using both experimental and computational techniques. Despite such extensive studies molecular level understanding of proteins and some simple solvents is still not fully understood. This work focuses on detailed molecular dynamics simulations to study of solvent effect on lysozyme protein, using water, alcohol and different concentrations of water-alcohol mixtures as solvents. The lysozyme protein structure in water, alcohol and alcohol-water mixture (0-12% alcohol) was studied using GROMACS molecular dynamics simulation code. Compared to water environment, the lysozome structure showed remarkable changes in solvents with increasing alcohol concentration. In particular, significant changes were observed in the protein secondary structure involving alpha helices. The influence of alcohol on the lysozyme protein was investigated by studying thermodynamic and structural properties. With increasing ethanol concentration we observed a systematic increase in total energy, enthalpy, root mean square deviation (RMSD), and radius of gyration. a polynomial interpolation approach. Using the resulting polynomial equation, we could determine above quantities for any intermediate alcohol percentage. In order to validate this approach, we selected an intermediate ethanol percentage and carried out full MD simulation. The results from MD simulation were in reasonably good agreement with that obtained using polynomial approach. Hence, the polynomial approach based method proposed here eliminates the need for computationally intensive full MD analysis for the concentrations within the range (0-12%) studied in this work.
Ponnusamy, Thiruselvam; Lawson, Louise B.; Freytag, Lucy C.; Blake, Diane A.; Ayyala, Ramesh S.; John, Vijay T.
2012-01-01
Poly (lactic-co-glycolic acid) (PLGA) coatings on implant materials are widely used in controlled drug delivery applications. Typically, such coatings are made with non-porous films. Here, we have synthesized a thin PLGA film coating with a highly ordered microporous structure using a simple and inexpensive water templating “breath figure” technique. A single stage process combining spin coating and breath figure process was used to obtain drug incorporated porous thin films. The films were characterized by scanning electron microscope (SEM) to observe the surface and bulk features of porosity and also, degradation pattern of the films. Moreover, the effect of addition of small amount of poly (ethylene glycol) (PEG) into PLGA was characterized. SEM analysis revealed an ordered array of ~2 µm sized pores on the surface with the average film thickness measured to be 20 µm. The incorporation of hydrophilic poly (ethylene glycol) (PEG) enhances pore structure uniformity and facilitates ingress of water into the structure. A five week in vitro degradation study showed a gradual deterioration of the breath figure pores. During the course of degradation, the surface pore structure deteriorates to initially flatten the surface. This is followed by the formation of new pinprick pores that eventually grow into a macroporous film prior to film breakup. Salicylic acid (highly water soluble) and Ibuprofen (sparingly water soluble) were chosen as model drug compounds to characterize release rates, which are higher in films of the breath figure morphology rather than in non-porous films. The results are of significance in the design of biodegradable films used as coatings to modulate delivery. PMID:23507805
NASA Astrophysics Data System (ADS)
Dabkowska, Aleksandra P.; Foglia, Fabrizia; Lawrence, M. Jayne; Lorenz, Christian D.; McLain, Sylvia E.
2011-12-01
The solution structure of the phosphocholine (PC) head group in 1,2-dipropionyl-sn-glycero-3-phosphocholine (C3-PC) in 30 mol. % dimethylsulfoxide (DMSO)-water solutions has been determined by using neutron diffraction enhanced with isotopic substitution in combination with computer simulation techniques. By investigating the atomic scale hydration structure around the PC head group, a unique description of the displacement of water molecules by DMSO molecules is detailed around various locations of the head group. Specifically, DMSO molecules were found to be the most prevalent around the onium portion of the head group, with the dipoles of the DMSO molecules being aligned where the negatively charged oxygen can interact strongly with the positively charged lipid group. The phosphate group is also partially dehydrated by the presence of the DMSO molecules. However, around this group the bulkier positive end of the DMSO dipole is interacting with negatively charged groups of the lipid head group, the DMSO layer shows no obvious ordering as it cannot form hydrogen bonds with the oxygen atoms in the PO4 group such as water molecules can. Interestingly, DMSO-water contacts have also increased in the presence of the lipid molecule relative to DMSO-water contacts observed in pure DMSO/water solutions at similar concentrations.
Titanium based flat heat pipes for computer chip cooling
NASA Astrophysics Data System (ADS)
Soni, Gaurav; Ding, Changsong; Sigurdson, Marin; Bozorgi, Payam; Piorek, Brian; MacDonald, Noel; Meinhart, Carl
2008-11-01
We are developing a highly conductive flat heat pipe (called Thermal Ground Plane or TGP) for cooling computer chips. Conventional heat pipes have circular cross sections and thus can't make good contact with chip surface. The flatness of our TGP will enable conformal contact with the chip surface and thus enhance cooling efficiency. Another limiting factor in conventional heat pipes is the capillary flow of the working fluid through a wick structure. In order to overcome this limitation we have created a highly porous wick structure on a flat titanium substrate by using micro fabrication technology. We first etch titanium to create very tall micro pillars with a diameter of 5 μm, a height of 40 μm and a pitch of 10 μm. We then grow a very fine nano structured titania (NST) hairs on all surfaces of the pillars by oxidation in H202. In this way we achieve a wick structure which utilizes multiple length scales to yield high performance wicking of water. It's capable of wicking water at an average velocity of 1 cm/s over a distance of several cm. A titanium cavity is laser-welded onto the wicking substrate and a small quantity of water is hermetically sealed inside the cavity to achieve a TGP. The thermal conductivity of our preliminary TGP was measured to be 350 W/m-K, but has the potential to be several orders of magnitude higher.
NASA Astrophysics Data System (ADS)
Muda, M. R.; Ramli, M. M.; Mat Isa, S. S.; Halin, D. S. C.; Talip, L. F. A.; Mazelan, N. S.; Anhar, N. A. M.; Danial, N. A.
2017-06-01
New group of materials derived from hybridization of single walled carbon nanotubes (SWCNTs) and graphene oxide (GO) which resulting novel three dimensional (3D) materials generates an outstanding properties compared to corresponding SWCNTs and GO/Graphene. In this paper, we describe a simple approach using water processing method to develop integrated rGO/GO-SWCNT hybrids with different hybrid ratios. The hybrid ratios were varied into three divided ratio and the results were compared between pristine SWCNTs and GO in order to investigate the structural density and morphology of these carbonaceous materials. With an optimized ratio of rGO/GO-SWCNT, the hybrid shows a well-organized hybrid film structures with less defects density sites. The optimized mixture ratio emphasized the important of both rGO and SWCNTs in the hybrid structures. Morphological structural and defects density degrees were examined by Field Emission Scanning Electron Microscopy (FESEM) and Raman spectroscopy.
Thermal structural evolutions of DMPC-water biomimetic systems investigated by Raman Spectroscopy.
Fasanella, A; Cosentino, K; Beneduci, A; Chidichimo, G; Cazzanelli, E; Barberi, R C; Castriota, M
2018-06-01
Many cell membranes of living organisms can be represented as phospholipid bilayers immersed into a water environment. The physical-chemical interactions at the membranes/water interface are responsible for the stabilization of the membranes. In addition, the drug efficiency, the pharmaceutical mechanism and the improvement of the drug design can be addressed to the interactions between the membranes-water interface with the drug and to the membrane-drug interface. In this framework, it is important to find membranes models able to simulate and simultaneously simplify the biological systems to better understand both physical and chemical interactions at the interface level. Dimyristoylphosphatidylcholine (DMPC) is a synthetic phospholipid used in order to make Multilamellar Vesicle (MLV), Large Unilamellar Vesicle (LUV) and Giant Unilamellar Vesicle (GUV). In order to understand the mechanisms of vesicle formation, we have analyzed mixtures of DMPC and water by micro-Raman spectroscopy at different temperatures in the range between 10 and 35 °C. Particularly, we analyzed the temperature dependence of the CN vibrational frequency, which appears well correlated to the order degree of the various phases. These investigations, beyond the determination of phospholipid hydrocarbon chains order, provide information about the conformation of the lipid membranes. We have identified the mixture of DMPC/water that is best suited for Raman studies and can be used as an in-vitro model for biological systems. A peculiar frequency shift across the transition gel-ripple-liquid crystalline phases has been proposed as a useful diagnostic marker to detect the "order degree" and subsequently the phases of biomimetic membranes made by DMPC. Copyright © 2018 Elsevier B.V. All rights reserved.
A bicontinuous tetrahedral structure in a liquid-crystalline lipid
NASA Astrophysics Data System (ADS)
Longley, William; McIntosh, Thomas J.
1983-06-01
The structure of most lipid-water phases can be visualized as an ordered distribution of two liquid media, water and hydrocarbons, separated by a continuous surface covered by the polar groups of the lipid molecules1. In the cubic phases in particular, rod-like elements are linked into three-dimensional networks1,2. Two of these phases (space groups Ia3d and Pn3m) contain two such three-dimensional networks mutually inter-woven and unconnected. Under the constraints of energy minimization3, the interface between the components in certain of these `porous fluids' may well resemble one of the periodic minimal surface structures of the type described mathematically by Schwarz4,5. A structure of this sort has been proposed for the viscous isotropic (cubic) form of glycerol monooleate (GMO) by Larsson et al.6 who suggested that the X-ray diagrams of Lindblom et al.7 indicated a body-centred crystal structure in which lipid bilayers might be arranged as in Schwarz's octahedral surface4. We have now found that at high water contents, a primitive cubic lattice better fits the X-ray evidence with the material in the crystal arranged in a tetrahedral way. The lipid appears to form a single bilayer, continuous in three dimensions, separating two continuous interlinked networks of water. Each of the water networks has the symmetry of the diamond crystal structure and the bilayer lies in the space between them following a surface resembling Schwarz's tetrahedral surface4.
The interfacial character of antibody paratopes: analysis of antibody-antigen structures.
Nguyen, Minh N; Pradhan, Mohan R; Verma, Chandra; Zhong, Pingyu
2017-10-01
In this study, computational methods are applied to investigate the general properties of antigen engaging residues of a paratope from a non-redundant dataset of 403 antibody-antigen complexes to dissect the contribution of hydrogen bonds, hydrophobic, van der Waals contacts and ionic interactions, as well as role of water molecules in the antigen-antibody interface. Consistent with previous reports using smaller datasets, we found that Tyr, Trp, Ser, Asn, Asp, Thr, Arg, Gly, His contribute substantially to the interactions between antibody and antigen. Furthermore, antibody-antigen interactions can be mediated by interfacial waters. However, there is no reported comprehensive analysis for a large number of structured waters that engage in higher ordered structures at the antibody-antigen interface. From our dataset, we have found the presence of interfacial waters in 242 complexes. We present evidence that suggests a compelling role of these interfacial waters in interactions of antibodies with a range of antigens differing in shape complementarity. Finally, we carry out 296 835 pairwise 3D structure comparisons of 771 structures of contact residues of antibodies with their interfacial water molecules from our dataset using CLICK method. A heuristic clustering algorithm is used to obtain unique structural similarities, and found to separate into 368 different clusters. These clusters are used to identify structural motifs of contact residues of antibodies for epitope binding. This clustering database of contact residues is freely accessible at http://mspc.bii.a-star.edu.sg/minhn/pclick.html. minhn@bii.a-star.edu.sg, chandra@bii.a-star.edu.sg or zhong_pingyu@immunol.a-star.edu.sg. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
NASA Astrophysics Data System (ADS)
Hu, Xiaoye; Zheng, Peng; Meng, Guowen; Huang, Qing; Zhu, Chuhong; Han, Fangming; Huang, Zhulin; Li, Zhongbo; Wang, Zhaoming; Wu, Nianqiang
2016-09-01
An ordered array of hierarchically-structured core-nanosphere@space-layer@shell-nanoparticles has been fabricated for surface-enhanced Raman scattering (SERS) detection. To fabricate this hierarchically-structured chip, a long-range ordered array of Au/Ag-nanospheres is first patterned in the nano-bowls on the planar surface of ordered nanoporous anodic titanium oxide template. A ultra-thin alumina middle space-layer is then conformally coated on the Au/Ag-nanospheres, and Ag-nanoparticles are finally deposited on the surface of the alumina space-layer to form an ordered array of Au/Ag-nanosphere@Al2O3-layer@Ag-nanoparticles. Finite-difference time-domain simulation shows that SERS hot spots are created between the neighboring Ag-nanoparticles. The ordered array of hierarchical nanostructures is used as the SERS-substrate for a trial detection of methyl parathion (a pesticide) in water and a limit of detection of 1 nM is reached, indicating its promising potential in rapid monitoring of organic pollutants in aquatic environment.
Zhang, Ling; Shi, Zhen; Zhang, Jingping; Jiang, Zhijian; Wang, Fei; Huang, Xiaoping
2016-05-01
Heavy metal concentrations and distribution were studied in sediments, seawater, and molluscs, and the possible heavy metal sources in the coastal waters of Guangdong Province, South China were discussed. The results showed that the concentrations of Cu, Pb, Zn, and Cr in sediments in eastern coastal waters were generally higher than those in the western coastal waters. However, concentrations of most metals in seawater and molluscs in western waters were higher than in the eastern waters, which was tightly related to the local economics and urbanization development, especially, the different industrial structure in two regions. The main heavy metal sources were attributed to the industrial and agricultural effluent, domestic sewage, and even waste gas. Furthermore, heavy metal contamination assessment indicated that high contamination levels of Cd, Zn, and Pb occurred in sediments in local areas, especially in the bays and harbors. The metal accumulation levels by molluscs ranked following the order of Cd > Cu > As > Zn > Pb > Cr, and the ecological risks introduced by heavy metals in different areas were in the order of Zhanjiang > Yangmao > Shantou > Shanhui.
Extension of the TRANSURANUS burnup model to heavy water reactor conditions
NASA Astrophysics Data System (ADS)
Lassmann, K.; Walker, C. T.; van de Laar, J.
1998-06-01
The extension of the light water reactor burnup equations of the TRANSURANUS code to heavy water reactor conditions is described. Existing models for the fission of 235U and the buildup of plutonium in a heavy water reactor are evaluated. In order to overcome the limitations of the frequently used RADAR model at high burnup, a new model is presented. After verification against data for the radial distributions of Xe, Cs, Nd and Pu from electron probe microanalysis, the model is used to analyse the formation of the high burnup structure in a heavy water reactor. The new model allows the analysis of light water reactor fuel rod designs at high burnup in the OECD Halden Heavy Water Reactor.
Kaur, Surinder Pal; Sujith, K S; Ramachandran, C N
2018-04-04
The replacement of methane (CH4) from its hydrate by a mixture of nitrogen (N2) and carbon dioxide (CO2) involves the dissociation of methane hydrate leading to the formation of a CH4-N2-CO2-H2O mixture that can significantly influence the subsequent steps of the replacement process. In the present work, we study the evolution of dissolved gas molecules in this mixture by applying classical molecular dynamics simulations. Our study shows that a higher CO2 : N2 ratio in the mixture enhances the formation of nanobubbles composed of N2, CH4 and CO2 molecules. To understand how the CO2 : N2 ratio affects nanobubble nucleation, the distribution of molecules in the bubble formed is examined. It is observed that unlike N2 and CH4, the density of CO2 in the bubble reaches a maximum at the surface of the bubble. The accumulation of CO2 molecules at the surface makes the bubble more stable by decreasing the excess pressure inside the bubble as well as surface tension at its interface with water. It is found that a frequent exchange of gas molecules takes place between the bubble and the surrounding liquid and an increase in concentration of CO2 in the mixture leads to a decrease in the number of such exchanges. The effect of nanobubbles on the structural ordering of water molecules is examined by determining the number of water rings formed per unit volume in the mixture. The role of nanobubbles in water structuring is correlated to the dynamic nature of the bubble arising from the exchange of gas molecules between the bubble and the liquid.
Economic considerations and decision support tool for wastewater reuse scheme planning.
Hochstrat, R; Joksimovic, D; Wintgens, T; Melin, T; Savic, D
2007-01-01
The reuse of upgraded wastewater for beneficial uses is increasingly adopted and accepted as a tool in water management. However, funding of schemes is still a critical issue. The focus of this paper is on economic considerations of water reuse planning. A survey of pricing mechanisms for reclaimed water revealed that most schemes are subsidised to a great extent. In order to minimise these state contributions to the implementation and operation of reuse projects, their planning should identify a least cost design option. This also has to take into account the established pricing structure for conventional water resources and the possibility of gaining revenues from reclaimed water pricing. The paper presents a case study which takes into account these aspects. It evaluates different scheme designs with regard to their Net Present Value (NPV). It could be demonstrated that for the same charging level, quite different amounts of reclaimed water can be delivered while still producing an overall positive NPV. Moreover, the economic feasibility and competitiveness of a reuse scheme is highly determined by the cost structure of the conventional water market.
NASA Astrophysics Data System (ADS)
Yamamura, Sombo; Ohnuki, Maromi; Nagaoka, Hiroshi
Recently increased number of elementary school pupils brings drinks from home for their hydration at school and this phenomenon indicates the change of the role of water supply at schools. In order to investigate the potential causes and the structure of the problem, an online survey targeting mothers of grade-schoolers was carried out, taking account of psychological factors of mothers as well as their decision making process. In the questionnaire preparation, latent variables and observable variables were assumed. The identified results include: difference exists on people's choice of drinking water; more parents in western Japan wish pupils bring drinks and some parents in eastern Japan wish the same. Covariance structure analysis identified a causalmodel; in which parents' frustration to schools associated with decreased reliability to tap water cause parents' advice to pupils take drink from home. Policy makers are expected to make the most of the result of analysis.
Tansel, Berrin; Lee, Mengshan; Tansel, Derya Z
2013-08-15
First order removal rates for 15 polyaromatic hydrocarbons (PAHs) in soil, sediments and mangrove leaves were compared in relation to the parameters used in fate transport analyses (i.e., octanol-water partition coefficient, organic carbon-water partition coefficient, solubility, diffusivity in water, HOMO-LUMO gap, molecular size, molecular aspect ratio). The quantitative structure activity relationships (QSAR) and quantitative structure property relationships (QSPR) showed that the rate of disappearance of PAHs is correlated with their diffusivities in water as well as molecular volumes in different media. Strong correlations for the rate of disappearance of PAHs in sediments could not be obtained in relation to most of the parameters evaluated. The analyses showed that the QSAR and QSPR correlations developed for removal rates of PAHs in soils would not be adequate for sediments and plant tissues. Copyright © 2013 Elsevier Ltd. All rights reserved.
Numerical study on the effect of a lobed nozzle on the flow characteristics of submerged exhaust
NASA Astrophysics Data System (ADS)
Miao, T. C.; Du, T.; Wu, D. Z.; Wang, L. Q.
2016-05-01
In order to investigate the effecting mechanism of nozzle structure on the flow characteristics of submerged exhaust, the processes of air exhausted from a lobed nozzle and a round nozzle into water have been numerically simulated using realizable k - ɛ model under the framework of the volume of fluid (VOF) model. Both the flow structure and the upstream pressure fluctuations are taken into consideration. The calculated results are in good agreement with the experimental results, showing that gas exhausted from the lobed nozzle would flow along the axial direction easier. Flow structure of the gas exhausted from the lobed nozzle is more continuous and smoother. The pressure fluctuations in the upstream pipeline would also be reduced when gas exhausted from the lobed nozzle. The resulting analysis indicates that the lobed structure could deflect water flow into the gas jet. The induced water would be mixed into the gas jet in form of small droplets, making the jet more continuous. As a result, the mixed jet flow would be less obstructed by the surrounding water, and the upstream pressure fluctuation would be reduced. The work in this paper partly explained the effecting mechanism of nozzle structure on the flow characteristics of submerged exhaust. The results are useful in the designing of exhaust nozzles.
Structure of the ordered hydration of amino acids in proteins: analysis of crystal structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biedermannová, Lada, E-mail: lada.biedermannova@ibt.cas.cz; Schneider, Bohdan
2015-10-27
The hydration of protein crystal structures was studied at the level of individual amino acids. The dependence of the number of water molecules and their preferred spatial localization on various parameters, such as solvent accessibility, secondary structure and side-chain conformation, was determined. Crystallography provides unique information about the arrangement of water molecules near protein surfaces. Using a nonredundant set of 2818 protein crystal structures with a resolution of better than 1.8 Å, the extent and structure of the hydration shell of all 20 standard amino-acid residues were analyzed as function of the residue conformation, secondary structure and solvent accessibility. Themore » results show how hydration depends on the amino-acid conformation and the environment in which it occurs. After conformational clustering of individual residues, the density distribution of water molecules was compiled and the preferred hydration sites were determined as maxima in the pseudo-electron-density representation of water distributions. Many hydration sites interact with both main-chain and side-chain amino-acid atoms, and several occurrences of hydration sites with less canonical contacts, such as carbon–donor hydrogen bonds, OH–π interactions and off-plane interactions with aromatic heteroatoms, are also reported. Information about the location and relative importance of the empirically determined preferred hydration sites in proteins has applications in improving the current methods of hydration-site prediction in molecular replacement, ab initio protein structure prediction and the set-up of molecular-dynamics simulations.« less
NASA Astrophysics Data System (ADS)
Anick, David J.
2013-04-01
Of the fifteen known crystalline forms of ice, eleven consist of a single topologically connected hydrogen bond network with four H-bonds at every O. The other four, Ices VI-VIII and XV, consist of two topologically connected networks, each with four H-bonds at every O. The networks interpenetrate but do not share H-bonds. This article presents two new periodic water lattice families whose topological connectivity is "atypical": they consist of many two-dimensional layers that share no H-bonds. Layers are held together only by dispersion forces. Within each layer there are still four H-bonds at each O. Called "Hexagonal Bilayer Water" (HBW) and "Pleated Sheet Water" (PSW), they have computed densities of about 1.1 g/mL and 1.3 g/mL respectively, and nearest neighbor O-coordination is 4.5 to 5.5 and 6 to 8 respectively. Using density functional theory (BLYP-D/TZVP), various proton ordered forms of HBW and PSW are optimized and categorized. There are simple pathways connecting Ice-Ih to HBW and HBW to PSW. Their computed properties suggest similarities to the high density and very high density amorphous ices (HDA and VHDA) respectively. It is unknown whether HDA, VHDA, and Low Density Amorphous Ice (LDA) are fully disordered glasses down to the molecular level, or whether there is some short-range local order. Based on estimated radial distribution functions (RDFs), one proton ordered form of HBW matches HDA best. The idea is explored that HDA could contain islands with this underlying structure, and likewise, that VHDA could contain regions of PSW. A "microlattice model version 1" (MLM1) is presented as a device to compare key experimental data on the amorphous ices with these atypical structures and with a microlattice form of Ice-XI for LDA. Resemblances are found with the amorphs' RDFs, densities, Raman spectra, and transition behaviors. There is not enough information in the static models to assign either a microlattice structure or a partial microlattice structure to any amorphous ice phase.
Gliadins from wheat grain: an overview, from primary structure to nanostructures of aggregates.
Urade, Reiko; Sato, Nobuhiro; Sugiyama, Masaaki
2018-04-01
Gliadins are well-known wheat grain proteins, particularly important in food science. They were studied as early as the 1700s. Despite their long history, it has been difficult to identify their higher-order structure as they aggregate in aqueous solution. Consequently, most studies have been performed by extracting the proteins in 70% ethanol or dilute acidic solutions. The carboxy-terminal half of α- and γ-gliadins have α-helix-rich secondary structures stabilized with intramolecular disulfide bonds, which are present in either aqueous ethanol or pure water. The amino-terminal-repeat region of α- and γ-gliadins has poly-L-proline II and β-reverse-turn structures. ω-Gliadins also have poly-L-proline II and β-reverse-turn structures, but no α-helix structure. The size and shape of gliadin molecules have been determined by assessing a variety of parameters: their sedimentation velocity in the analytical ultracentrifuge, intrinsic viscosity, small-angle X-ray scattering profile, and images of the proteins from scanning probe microscopes such as a tunneling electron microscope and atomic force microscope. Models for gliadins are either rods or prolate ellipsoids whether in aqueous ethanol, dilute acid, or pure water. Recently, gliadins have been shown to be soluble in pure water, and a novel extraction method into pure water has been established. This has made it possible to analyze gliadins in pure water at neutral pH, and permitted the characterization of hydrated gliadins. They formed hierarchical nanoscale structures with internal density fluctuations at high protein concentrations.
Main devices design of submarine oil-water separation system
NASA Astrophysics Data System (ADS)
Cai, Wen-Bin; Liu, Bo-Hong
2017-11-01
In the process of offshore oil production, in order to thoroughly separate oil from produced fluid, solve the environment problem caused by oily sewage, and improve the economic benefit of offshore drilling, from the perspective of new oil-water separation, a set of submarine oil-water separation devices were designed through adsorption and desorption mechanism of the polymer materials for crude oil in this paper. The paper introduces the basic structure of gas-solid separation device, periodic separation device and adsorption device, and proves the rationality and feasibility of this device.
Monolayer Colloidal Crystals by Modified Air-Water Interface Self-Assembly Approach
Ye, Xin; Huang, Jin; Zeng, Yong; Sun, Lai-Xi; Geng, Feng; Liu, Hong-Jie; Wang, Feng-Rui; Jiang, Xiao-Dong; Wu, Wei-Dong; Zheng, Wan-Guo
2017-01-01
Hexagonally ordered arrays of polystyrene (PS) microspheres were prepared by a modified air-water self-assembly method. A detailed analysis of the air-water interface self-assembly process was conducted. Several parameters affect the quality of the monolayer colloidal crystals, i.e., the colloidal microsphere concentration on the latex, the surfactant concentration, the polystyrene microsphere diameter, the microsphere polydispersity, and the degree of sphericity of polystyrene microspheres. An abrupt change in surface tension was used to improve the quality of the monolayer colloidal crystal. Three typical microstructures, i.e., a cone, a pillar, and a binary structure were prepared by reactive-ion etching using a high-quality colloidal crystal mask. This study provides insight into the production of microsphere templates with flexible structures for large-area patterned materials. PMID:28946664
Spectroscopic analyses of Fe and water in clays: A Martian surface weathering study
NASA Technical Reports Server (NTRS)
Bishop, J. L.; Pieters, Carle M.; Edwards, J. O.; Coyne, L. M.; Chang, S.
1991-01-01
Martian surface morphology suggests the presence of liquid H2O on Mars in the past. Reflectance spectra of the Martian surface include features which correspond to the crystal field transitions of iron, as well as features supporting the presence of ice and minerals containing structural OH and surface water. Researchers initiated further spectroscopic studies of surface iron and water and structural OH in clays in order to determine what remotely obtained spectra can indicate about the presence of clays on Mars based on a clearer understanding of the factors influencing the spectral features. Current technology allows researchers to better correlate the low frequency fundamental stretching and bending vibrations of O-H bonds with the diagnostic near infrared overtone and combination bands used in mineral characterization and identification.
Dynamics of Ice/Water Confined in Nanoporous Alumina.
Suzuki, Yasuhito; Steinhart, Martin; Graf, Robert; Butt, Hans-Jürgen; Floudas, George
2015-11-19
Dielectric (DS), IR spectroscopy, and (1)H MAS NMR are employed in the study of ice/water confined in nanoporous alumina with pore diameters ranging from 400 nm down to 25 nm. Within nanoporous alumina there is a transformation from heterogeneous nucleation of hexagonal ice in the larger pores to homogeneous nucleation of cubic ice in the smaller pores. DS and IR show excellent agreement in the temperature interval and pore size dependence of the transformation. DS further revealed two dynamic processes under confinement. The "fast" and "slow" processes with an Arrhenius temperature dependence are attributed to ice and supercooled water relaxation, respectively. The main relaxation process of ice under confinement ("slow" process) has an activation energy of 44 ± 2 kJ/mol. The latter is in agreement with the reported relaxation times and activation energy of cubic ice prepared following a completely different route (by pressure). (1)H MAS NMR provided new insight in the state of ice structures as well as of supercooled water. Under confinement, a layer of liquid-like water coexists with ice structures. In addition, both ice structures under confinement appear to be more ordered than bulk hexagonal ice. Supercooled water in the smaller pores is different from bulk water. It shows a shift of the signal toward higher chemical shift values which may suggest stronger hydrogen bonding between the water molecules or increasing interactions with the AAO walls.
NASA Astrophysics Data System (ADS)
Gies, Hermann; Happel, Marian; Niedermayr, Andrea; Immenhauser, Adrian
2017-04-01
We present results from a structural study of the transformation of freeze dried amorphous calcium carbonate, ACC, in crystalline material using pair distribution function analysis, PDF analysis, of X-ray powder diffraction data, XPD data. PDF analysis allows for the analysis of local order of structural subunit in the range between molecular unit (1. and 2. coordination sphere) and long range periodicity as in crystalline materials. ACC was precipitated from aqueous solutions at 298 K and 278 K using different amounts of Mg cations as stabilizer. The samples were immediately separated from the solution and freeze dried. For the transformation study, the samples were heated and analysed using XPD until they were crystallized. The radial distribution obtained from the XPD data were compared to simulated radial distributions of the calcium carbonate polymorphs and their hydrated phases. An ACC precipitated from a solution with Ca:Mg:CO3 = 1:5:4 at 298 K (ration in mmol, pH = 8.2) and freeze dried right after isolation from the solution revealed a close resemblance with ikaite in its local order. Another ACC with Ca:Mg:CO3 = 1:10:1.4 (T = 298, pH = 8.7) showed distinctly different local order resembling monohydrocalcite. Both ACC, however, still had considerable amounts of water dominating the Ca-coordination sphere. During the transformation to calcite, the structural changes in the sample concerned the hydrate water coordinating Ca which was removed and replaced by the carbonate oxygens. The study shows that ACC obtained from different starting solutions show specific local order. Freeze drying leads to solid ACC powder which still contain considerable amounts of hydrate water. Structural subunits are distinct in ACC and different from the crystalline phase. The study supplements recent reports presented by Konrad et al., Purgstaller et al., and Tobler et al.. F. Konrad et al., Cryst. Growth Des. 16, 6310-6317(2016) B. Purgstaller et al., Geochimica et Cosmochimica Acta 174, 180-195(2016) DJ. Tobler et al., Cryst. Growth Des. 16, 4500-4508(2016)
Zhang, Ning; Song, Yuechun; Ruan, Xuehua; Yan, Xiaoming; Liu, Zhao; Shen, Zhuanglin; Wu, Xuemei; He, Gaohong
2016-09-21
The relationship between the proton conductive channel and the hydrated proton structure is of significant importance for understanding the deformed hydrogen bonding network of the confined protons which matches the nanochannel. In general, the structure of hydrated protons in the nanochannel of the proton exchange membrane is affected by several factors. To investigate the independent effect of each factor, it is necessary to eliminate the interference of other factors. In this paper, a one-dimensional carbon nanotube decorated with fluorine was built to investigate the independent effects of nanoscale confinement and fluorination on the structural properties of hydrated protons in the nanochannel using classical molecular dynamics simulation. In order to characterize the structure of hydrated protons confined in the channel, the hydrogen bonding interaction between water and the hydrated protons has been studied according to suitable hydrogen bond criteria. The hydrogen bond criteria were proposed based on the radial distribution function, angle distribution and pair-potential energy distribution. It was found that fluorination leads to an ordered hydrogen bonding structure of the hydrated protons near the channel surface, and confinement weakens the formation of the bifurcated hydrogen bonds in the radial direction. Besides, fluorination lowers the free energy barrier of hydronium along the nanochannel, but slightly increases the barrier for water. This leads to disintegration of the sequential hydrogen bond network in the fluorinated CNTs with small size. In the fluorinated CNTs with large diameter, the lower degree of confinement produces a spiral-like sequential hydrogen bond network with few bifurcated hydrogen bonds in the central region. This structure might promote unidirectional proton transfer along the channel without random movement. This study provides the cooperative effect of confinement dimension and fluorination on the structure and hydrogen bonding of the slightly acidic water in the nanoscale channel.
Self-assembly of short amyloidogenic peptides at the air-water interface.
Chaudhary, Nitin; Nagaraj, Ramakrishnan
2011-08-01
Short peptide stretches in amyloidogenic proteins can form amyloid fibrils in vitro and have served as good models for studying amyloid fibril formation. Recently, these amyloidogenic peptides have gained considerable attention, as non-amyloid ordered structures can be obtained from these peptides by carefully tuning the conditions of self-assembly, especially pH, temperature and presence of organic solvents. We have examined the effect of surface pressure on the self-assembled structures of two amyloidogenic peptides, Pβ(2)m (Ac-DWSFYLLYYTEFT-am) and AcPHF6 (Ac-VQIVYK-am) at the air-water interface when deposited from different solvents. Both the peptides are surface-active and form Thioflavin T (ThT) positive structures at the air-water interface. There is considerable hysteresis in the compression and expansion isotherms, suggesting the occurrence of structural rearrangements during compression. Preformed Pβ(2)m fibrillar structures at the air-water interface are disrupted as peptide is compressed to lower molecular areas but restored if the film is expanded, suggesting that the process is reversible. AcPHF6, on the other hand, shows largely sheet-like structures at lower molecular areas. The solvents used for dissolution of the peptides appear to influence the nature of the aggregates formed. Our results show that like hydrostatic pressure, surface pressure can also be utilized for modulating the self-assembly of the amyloidogenic and self-assembling peptides. Copyright © 2011 Elsevier Inc. All rights reserved.
Sensitive coating for water vapors detection based on thermally sputtered calcein thin films.
Kruglenko, I; Shirshov, Yu; Burlachenko, J; Savchenko, A; Kravchenko, S; Manera, M G; Rella, R
2010-09-15
In this paper the adsorption properties of thermally sputtered calcein thin films towards water and other polar molecules vapors are studied by different characterization techniques: quartz crystal microbalance, surface plasmon resonance and visible spectroscopy. Sensitivity of calcein thin films to water vapors resulted much higher as compared with those of a number of dyes whose structure was close to that of calcein. All types of sensors with calcein coatings have demonstrated linear concentration dependences in the wide range of water vapor pressure from low concentrations up to 27,000 ppm (close to saturation). At higher concentrations of water vapor all sensors demonstrate the abrupt increase of the response (up to two orders). A theoretical model is advanced explaining the adsorption properties of calcein thin films taking into account their chemical structure and peculiarities of molecular packing. The possibility of application of thermally sputtered calcein films in sensing technique is discussed. Copyright (c) 2010 Elsevier B.V. All rights reserved.
TRACE ELEMENT BINDING DURING STRUCTURAL TRANSFORMATION IN IRON OXIDES
Iron (hydr)oxides often control the mobility of inorganic contaminants in soils and sediments. A poorly ordered form of ferrihydrite is commonly produced during rapid oxidation of ferrous iron at sharp redox fronts encountered during discharge of anoxic/suboxic waters into terre...
Using SRμCT to define water transport capacity in Picea abies
NASA Astrophysics Data System (ADS)
Lautner, Silke; Lenz, Claudia; Hammel, Jörg; Moosmann, Julian; Kühn, Michael; Caselle, Michele; Vogelgesang, Matthias; Kopmann, Andreas; Beckmann, Felix
2017-10-01
Water transport from roots to shoots is a vital necessity in trees in order to sustain their photosynthetic activity and, hence, their physiological activity. The vascular tissue in charge is the woody body of root, stem and branches. In gymnosperm trees, like spruce trees (Picea abies (L.) Karst.), vascular tissue consists of tracheids: elongated, protoplast- free cells with a rigid cell wall that allow for axial water transport via their lumina. In order to analyze the over-all water transport capacity within one growth ring, time-consuming light microscopy analysis of the woody sample still is the conventional approach for calculating tracheid lumen area. In our investigations at the Imaging Beamline (IBL) operated by the Helmholtz-Zentrum Geesthacht (HZG) at PETRA III storage ring of the Deutsches Elektronen-Synchrotron DESY, Hamburg, we applied SRμCT on small wood samples of spruce trees in order to visualize and analyze size and formation of xylem elements and their respective lumina. The selected high-resolution phase-contrast technique makes full use of the novel 20 MPixel CMOS area detector developed within the cooperation of HZG and the Karlsruhe data by light microscopy analysis and, hence, prove, that μCT is a most appropriate method to gain valid information on xylem cell structure and tree water transport capacity.
Bias-dependent local structure of water molecules at an electrochemical interface
NASA Astrophysics Data System (ADS)
Pedroza, Luana; Brandimarte, Pedro; Rocha, Alexandre R.; Fernandez-Serra, Marivi
2015-03-01
Following the need for new - and renewable - sources of energy worldwide, fuel cells using electrocatalysts can be thought of as a viable option. Understanding the local structure of water molecules at the interfaces of the metallic electrodes is a key problem. Notably the system is under an external potential bias, which makes the task of simulating this setup difficult. A first principle description of all components of the system is the most appropriate methodology in order to advance understanding of electrochemical processes. There, the metal is usually charged. To correctly compute the effect of an external bias potential applied to electrodes, we combine density functional theory (DFT) and non-equilibrium Green's functions methods (NEGF), with and without van der Waals interactions. In this work, we apply this methodology to study the electronic properties and forces of one water molecule and water monolayer at the interface of gold electrodes. We find that the water molecule has a different torque direction depending on the sign of the bias applied. We also show that it changes the position of the most stable configuration indicating that the external bias plays an important role in the structural properties of the interface. We acknowledge financial support from FAPESP.
Tetrahedrality and hydrogen bonds in water
NASA Astrophysics Data System (ADS)
Székely, Eszter; Varga, Imre K.; Baranyai, András
2016-06-01
We carried out extensive calculations of liquid water at different temperatures and pressures using the BK3 model suggested recently [P. T. Kiss and A. Baranyai, J. Chem. Phys. 138, 204507 (2013)]. In particular, we were interested in undercooled regions to observe the propensity of water to form tetrahedral coordination of closest neighbors around a central molecule. We compared the found tetrahedral order with the number of hydrogen bonds and with the partial pair correlation functions unfolded as distributions of the closest, the second closest, etc. neighbors. We found that contrary to the number of hydrogen bonds, tetrahedrality changes substantially with state variables. Not only the number of tetrahedral arrangements increases with lowering the pressure, the density, and the temperature but the domain size of connecting tetrahedral structures as well. The difference in tetrahedrality is very pronounced between the two sides of the Widom line and even more so between the low density amorphous (LDA) and high density amorphous (HDA) phases. We observed that in liquid water and in HDA, the 5th water molecule, contrary to ice and LDA, is positioned between the first and the second coordination shell. We found no convincing evidence of structural heterogeneity or regions referring to structural transition.
A two-dimensional polymer synthesized at the air/water interface.
Schlüter, A Dieter; Müller, Vivian; Hinaut, Antoine; Moradi, Mina; Baljozovic, Milos; Jung, Thomas; Shahgaldian, Patrick; Möhwald, Helmuth; Hofer, Gregor; Kröger, Martin; King, Benjamin; Meyer, Ernst; Glatzel, Thilo
2018-06-11
A trifunctional, partially fluorinated anthracene-substituted triptycene monomer is spread at the air/water interface into a monolayer, which is transformed into a long-range ordered 2D polymer by irradiation with a standard ultraviolet lamp using 365 nm light. The polymer is analyzed by Brewster angle microscopy directly at this interface and by scanning tunneling microscopy measurements and non-contact atomic force microscopy (nc-AFM), both after transfer from below the interface onto highly oriented pyrolytic graphite and then into ultra-high vacuum. Both methods confirm a network structure, the lattice parameters of which are virtually identical to a structural model network based on X-ray diffractometry of a closely related 2D polymer unequivocally established in a single crystal. The nc-AFM images are obtained with unprecedentedly high resolution and prove long-range order over areas of at least 300 × 300 nm2. As required for a 2D polymer, the pore sizes are monodisperse, except for the regions, where the network is somewhat stretched because it spans over protrusions. Together with a previous report on the nature of the cross-links in this network, the structural information provided here leaves no doubt that a 2D polymer has been synthesized under ambient conditions at an air/water interface. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Seismic response of elevated rectangular water tanks considering soil structure interaction
NASA Astrophysics Data System (ADS)
Visuvasam, J.; Simon, J.; Packiaraj, J. S.; Agarwal, R.; Goyal, L.; Dhingra, V.
2017-11-01
The overhead staged water tanks are susceptible for high lateral forces during earthquakes. Due to which, the failure of beam-columns joints, framing elements and toppling of tanks arise. To avoid such failures, they are analyzed and designed for lateral forced induced by devastating earthquakes assuming the base of the structures are fixed and considering functional needs, response reduction, soil types and severity of ground shaking. In this paper, the flexible base was provided as spring stiffness in order to consider the effect of soil properties on the seismic behaviour of water tanks. A linear time history earthquake analysis was performed using SAP2000. Parametric studies have been carried out based on various types of soils such as soft, medium and hard. The soil stiffness values highly influence the time period and base shear of the structure. The ratios of time period of flexible to fixed base and base shear of flexible to fixed base were observed against capacities of water tank and the overall height of the system. The both responses are found to be increased as the flexibility of soil medium decreases
Study on hydraulic characteristics of mine dust-proof water supply network
NASA Astrophysics Data System (ADS)
Deng, Quanlong; Jiang, Zhongan; Han, Shuo; Fu, Enqi
2018-01-01
In order to study the hydraulic characteristics of mine dust-proof water supply network and obtain the change rule of water consumption and water pressure, according to the similarity principle and the fluid continuity equation and energy equation, the similarity criterion of mine dust-proof water supply network is deduced, and a similar model of dust-proof water supply network is established based on the prototype of Kailuan Group, the characteristics of hydraulic parameters in water supply network are studied experimentally. The results show that water pressure at each point is a dynamic process, and there is a negative correlation between water pressure and water consumption. With the increase of water consumption, the pressure of water points show a decreasing trend. According to the structure of the pipe network and the location of the water point, the influence degree on the pressure of each point is different.
NASA Astrophysics Data System (ADS)
Julian, J. P.; Doyle, M. W.; Stanley, E. H.
2006-12-01
Light is vital to the dynamics of aquatic ecosystems. It drives photosynthesis and photochemical reactions, affects thermal structure, and influences behavior of aquatic biota. Despite the fundamental role of light to riverine ecosystems, light studies in rivers have been mostly neglected because i) boundary conditions (e.g., banks, riparian vegetation) make ambient light measurements difficult, and ii) the optical water quality of rivers is highly variable and difficult to characterize. We propose a benthic light availability model (BLAM) that predicts the percent of incoming photosynthetically active radiation (PAR) available at the river bed. BLAM was developed by quantifying light attenuation of the five hydrogeomorphic controls that dictate riverine light availability: topography, riparian vegetation, channel geometry, optical water quality, and water depth. BLAM was calibrated using hydrogeomorphic data and light measurements from two rivers: Deep River - a 5th-order, turbid river in central North Carolina, and Big Spring Creek - a 2nd-order, optically clear stream in central Wisconsin. We used a series of four PAR sensors to measure i) above-canopy PAR, ii) PAR above water surface, iii) PAR below water surface, and iv) PAR on stream bed. These measurements were used to develop empirical light attenuation coefficients, which were then used in combination with optical water quality measurements, shading analyses, channel surveys, and flow records to quantify the spatial and temporal variability in riverine light availability. Finally, we apply BLAM to the Baraboo River - a 6th-order, 120-mile, unimpounded river in central Wisconsin - in order to characterize light availability along the river continuum (from headwaters to mouth).
2000-05-05
This computer graphic depicts the relative complexity of crystallizing large proteins in order to study their structures through x-ray crystallography. Insulin is a vital protein whose structure has several subtle points that scientists are still trying to determine. Large molecules such as insuline are complex with structures that are comparatively difficult to understand. For comparison, a sugar molecule (which many people have grown as hard crystals in science glass) and a water molecule are shown. These images were produced with the Macmolecule program. Photo credit: NASA/Marshall Space Flight Center (MSFC)
NASA Astrophysics Data System (ADS)
Rubinstein, A.; Sabirianov, R. F.; Mei, W. N.; Namavar, F.; Khoynezhad, A.
2010-08-01
Using a nonlocal electrostatic approach that incorporates the short-range structure of the contacting media, we evaluated the electrostatic contribution to the energy of the complex formation of two model proteins. In this study, we have demonstrated that the existence of an ordered interfacial water layer at the protein-solvent interface reduces the charging energy of the proteins in the aqueous solvent, and consequently increases the electrostatic contribution to the protein binding (change in free energy upon the complex formation of two proteins). This is in contrast with the finding of the continuum electrostatic model, which suggests that electrostatic interactions are not strong enough to compensate for the unfavorable desolvation effects.
Rubinstein, A; Sabirianov, R F; Mei, W N; Namavar, F; Khoynezhad, A
2010-08-01
Using a nonlocal electrostatic approach that incorporates the short-range structure of the contacting media, we evaluated the electrostatic contribution to the energy of the complex formation of two model proteins. In this study, we have demonstrated that the existence of an ordered interfacial water layer at the protein-solvent interface reduces the charging energy of the proteins in the aqueous solvent, and consequently increases the electrostatic contribution to the protein binding (change in free energy upon the complex formation of two proteins). This is in contrast with the finding of the continuum electrostatic model, which suggests that electrostatic interactions are not strong enough to compensate for the unfavorable desolvation effects.
On the contribution of vibrational anharmonicity to the binding energies of water clusters.
Diri, Kadir; Myshakin, Evgeniy M; Jordan, Kenneth D
2005-05-05
The second-order vibrational perturbation theory method has been used together with the B3LYP and MP2 electronic structure methods to investigate the effects of anharmonicity on the vibrational zero-point energy (ZPE) contributions to the binding energies of (H2O)n, n = 2-6, clusters. For the low-lying isomers of (H2O)6, the anharmonicity correction to the binding energy is calculated to range from -248 to -355 cm(-1). It is also demonstrated that although high-order electron correlation effects are important for the individual vibrational frequencies, they are relatively unimportant for the net ZPE contributions to the binding energies of water clusters.
A new submarine oil-water separation system
NASA Astrophysics Data System (ADS)
Cai, Wen-Bin; Liu, Bo-Hong
2017-12-01
In order to solve the oil field losses of environmental problems and economic benefit caused by the separation of lifting production liquid to offshore platforms in the current offshore oil production, from the most basic separation principle, a new oil-water separation system has been processed of adsorption and desorption on related materials, achieving high efficiency and separation of oil and water phases. And the submarine oil-water separation device has been designed. The main structure of the device consists of gas-solid phase separation device, period separating device and adsorption device that completed high efficiency separation of oil, gas and water under the adsorption and desorption principle, and the processing capacity of the device is calculated.
Structure and Dynamics of Confined Alcohol-Water Mixtures.
Bampoulis, Pantelis; Witteveen, Jorn P; Kooij, E Stefan; Lohse, Detlef; Poelsema, Bene; Zandvliet, Harold J W
2016-07-26
The effect of confinement between mica and graphene on the structure and dynamics of alcohol-water mixtures has been studied in situ and in real time at the molecular level by atomic force microscopy (AFM) at room temperature. AFM images reveal that the adsorbed molecules are segregated into faceted alcohol-rich islands on top of an ice layer on mica, surrounded by a pre-existing multilayer water-rich film. These faceted islands are in direct contact with the graphene surface, revealing a preferred adsorption site. Moreover, alcohol adsorption at low relative humidity (RH) reveals a strong preference of the alcohol molecules for the ordered ice interface. The growth dynamics of the alcohol islands is governed by supersaturation, temperature, the free energy of attachment of molecules to the island edge and two-dimensional (2D) diffusion. The measured diffusion coefficients display a size dependence on the molecular size of the alcohols, and are about 6 orders of magnitude smaller than the bulk diffusion coefficients, demonstrating the effect of confinement on the behavior of the alcohols. These experimental results provide new insights into the behavior of multicomponent fluids in confined geometries, which is of paramount importance in nanofluidics and biology.
NASA Astrophysics Data System (ADS)
Xie, Beibei; Kong, Lingfu; Kong, Deming; Kong, Weihang; Li, Lei; Liu, Xingbin; Chen, Jiliang
2017-11-01
In order to accurately measure the flow rate under the low yield horizontal well conditions, an auto-cumulative flowmeter (ACF) was proposed. Using the proposed flowmeter, the oil flow rate in horizontal oil-water two-phase segregated flow can be finely extracted. The computational fluid dynamics software Fluent was used to simulate the fluid of the ACF in oil-water two-phase flow. In order to calibrate the simulation measurement of the ACF, a novel oil flow rate measurement method was further proposed. The models of the ACF were simulated to obtain and calibrate the oil flow rate under different total flow rates and oil cuts. Using the finite-element method, the structure of the seven conductance probes in the ACF was simulated. The response values for the probes of the ACF under the conditions of oil-water segregated flow were obtained. The experiments for oil-water segregated flow under different heights of the oil accumulation in horizontal oil-water two-phase flow were carried out to calibrate the ACF. The validity of the oil flow rate measurement in horizontal oil-water two-phase flow was verified by simulation and experimental results.
Xie, Beibei; Kong, Lingfu; Kong, Deming; Kong, Weihang; Li, Lei; Liu, Xingbin; Chen, Jiliang
2017-11-01
In order to accurately measure the flow rate under the low yield horizontal well conditions, an auto-cumulative flowmeter (ACF) was proposed. Using the proposed flowmeter, the oil flow rate in horizontal oil-water two-phase segregated flow can be finely extracted. The computational fluid dynamics software Fluent was used to simulate the fluid of the ACF in oil-water two-phase flow. In order to calibrate the simulation measurement of the ACF, a novel oil flow rate measurement method was further proposed. The models of the ACF were simulated to obtain and calibrate the oil flow rate under different total flow rates and oil cuts. Using the finite-element method, the structure of the seven conductance probes in the ACF was simulated. The response values for the probes of the ACF under the conditions of oil-water segregated flow were obtained. The experiments for oil-water segregated flow under different heights of the oil accumulation in horizontal oil-water two-phase flow were carried out to calibrate the ACF. The validity of the oil flow rate measurement in horizontal oil-water two-phase flow was verified by simulation and experimental results.
NASA Astrophysics Data System (ADS)
Ibarra-Castanedo, C.; Brault, L.; Marcotte, F.; Genest, M.; Farley, V.; Maldague, X.
2012-06-01
Water ingress in honeycomb structures is of great concern for the civil and military aerospace industries. Pressure and temperature variations during take-off and landing produce considerable stress on aircraft structures, promoting moisture ingress (by diffusion through fibers or by direct ingress through voids, cracks or unsealed joints) into the core. The presence of water (or other fluids such as kerosene, hydraulic fluid and de-icing agents) in any of its forms (gas vapor, liquid or ice) promotes corrosion, cell breakage, and induce composite layer delaminations and skin disbonds. In this study, testing specimens were produced from unserviceable parts from military aircraft. In order to simulate atmospheric conditions during landing, selected core areas were filled with measured quantities of water and then frozen in a cold chamber. The specimens were then removed from the chamber and monitored for over 20 minutes as they warm up using a cooled high-resolution infrared camera. Results have shown that detection and quantification of water ingress on honeycomb sandwich structures by passive infrared thermography is possible using a HD mid-wave infrared cameras for volumes of water as low as 0.2 ml and from a distance as far as 20 m from the target.
Metastable liquid-liquid transition in a molecular model of water
NASA Astrophysics Data System (ADS)
Palmer, Jeremy C.; Martelli, Fausto; Liu, Yang; Car, Roberto; Panagiotopoulos, Athanassios Z.; Debenedetti, Pablo G.
2014-06-01
Liquid water's isothermal compressibility and isobaric heat capacity, and the magnitude of its thermal expansion coefficient, increase sharply on cooling below the equilibrium freezing point. Many experimental, theoretical and computational studies have sought to understand the molecular origin and implications of this anomalous behaviour. Of the different theoretical scenarios put forward, one posits the existence of a first-order phase transition that involves two forms of liquid water and terminates at a critical point located at deeply supercooled conditions. Some experimental evidence is consistent with this hypothesis, but no definitive proof of a liquid-liquid transition in water has been obtained to date: rapid ice crystallization has so far prevented decisive measurements on deeply supercooled water, although this challenge has been overcome recently. Computer simulations are therefore crucial for exploring water's structure and behaviour in this regime, and have shown that some water models exhibit liquid-liquid transitions and others do not. However, recent work has argued that the liquid-liquid transition has been mistakenly interpreted, and is in fact a liquid-crystal transition in all atomistic models of water. Here we show, by studying the liquid-liquid transition in the ST2 model of water with the use of six advanced sampling methods to compute the free-energy surface, that two metastable liquid phases and a stable crystal phase exist at the same deeply supercooled thermodynamic condition, and that the transition between the two liquids satisfies the thermodynamic criteria of a first-order transition. We follow the rearrangement of water's coordination shell and topological ring structure along a thermodynamically reversible path from the low-density liquid to cubic ice. We also show that the system fluctuates freely between the two liquid phases rather than crystallizing. These findings provide unambiguous evidence for a liquid-liquid transition in the ST2 model of water, and point to the separation of time scales between crystallization and relaxation as being crucial for enabling it.
Metastable liquid-liquid transition in a molecular model of water.
Palmer, Jeremy C; Martelli, Fausto; Liu, Yang; Car, Roberto; Panagiotopoulos, Athanassios Z; Debenedetti, Pablo G
2014-06-19
Liquid water's isothermal compressibility and isobaric heat capacity, and the magnitude of its thermal expansion coefficient, increase sharply on cooling below the equilibrium freezing point. Many experimental, theoretical and computational studies have sought to understand the molecular origin and implications of this anomalous behaviour. Of the different theoretical scenarios put forward, one posits the existence of a first-order phase transition that involves two forms of liquid water and terminates at a critical point located at deeply supercooled conditions. Some experimental evidence is consistent with this hypothesis, but no definitive proof of a liquid-liquid transition in water has been obtained to date: rapid ice crystallization has so far prevented decisive measurements on deeply supercooled water, although this challenge has been overcome recently. Computer simulations are therefore crucial for exploring water's structure and behaviour in this regime, and have shown that some water models exhibit liquid-liquid transitions and others do not. However, recent work has argued that the liquid-liquid transition has been mistakenly interpreted, and is in fact a liquid-crystal transition in all atomistic models of water. Here we show, by studying the liquid-liquid transition in the ST2 model of water with the use of six advanced sampling methods to compute the free-energy surface, that two metastable liquid phases and a stable crystal phase exist at the same deeply supercooled thermodynamic condition, and that the transition between the two liquids satisfies the thermodynamic criteria of a first-order transition. We follow the rearrangement of water's coordination shell and topological ring structure along a thermodynamically reversible path from the low-density liquid to cubic ice. We also show that the system fluctuates freely between the two liquid phases rather than crystallizing. These findings provide unambiguous evidence for a liquid-liquid transition in the ST2 model of water, and point to the separation of time scales between crystallization and relaxation as being crucial for enabling it.
Wang, Ping; Wu, Tun-Hua; Zhang, Yong
2014-01-01
An established synchronous solid surface fluorimetry (S-SSF) was utilized for in situ study the photolysis processes of anthracene (An) and pyrene (Py) adsorbed on the leaf surfaces of Kandelia obovata seedlings (Ko) and Aegiceras corniculata (L.) Blanco seedlings (Ac). Experimental results demonstrated that the photolysis of An and Py adsorbed on the leaf surfaces of two mangrove species under the laboratory conditions, followed first-order kinetics with their photolysis rates in the order of Ac>Ko. In addition, with the same amount of substances, the photolysis rate of An adsorbed on the same mangrove leaf surfaces was much faster than the adsorbed Py. In order to investigate further, the photolysis processes of An and Py in water were also studied for comparison. And the photolysis of An and Py in water also followed first-order kinetics. Moreover, for the same initial amount, the photolysis rate of the PAH in water was faster than that adsorbed on the leaf surfaces of two mangrove species. Therefore, photochemical behaviors of PAHs were dependent not only on their molecular structures but also the physical-chemical properties of the substrates on which they are adsorbed. PMID:24404158
Qiu, Yuqing; Odendahl, Nathan; Hudait, Arpa; Mason, Ryan; Bertram, Allan K; Paesani, Francesco; DeMott, Paul J; Molinero, Valeria
2017-03-01
Heterogeneous nucleation of ice induced by organic materials is of fundamental importance for climate, biology, and industry. Among organic ice-nucleating surfaces, monolayers of long chain alcohols are particularly effective, while monolayers of fatty acids are significantly less so. As these monolayers expose to water hydroxyl groups with an order that resembles the one in the basal plane of ice, it was proposed that lattice matching between ice and the surface controls their ice-nucleating efficiency. Organic monolayers are soft materials and display significant fluctuations. It has been conjectured that these fluctuations assist in the nucleation of ice. Here we use molecular dynamic simulations and laboratory experiments to investigate the relationship between the structure and fluctuations of hydroxylated organic surfaces and the temperature at which they nucleate ice. We find that these surfaces order interfacial water to form domains with ice-like order that are the birthplace of ice. Both mismatch and fluctuations decrease the size of the preordered domains and monotonously decrease the ice freezing temperature. The simulations indicate that fluctuations depress the freezing efficiency of monolayers of alcohols or acids to half the value predicted from lattice mismatch alone. The model captures the experimental trend in freezing efficiencies as a function of chain length and predicts that alcohols have higher freezing efficiency than acids of the same chain length. These trends are mostly controlled by the modulation of the structural mismatch to ice. We use classical nucleation theory to show that the freezing efficiencies of the monolayers are directly related to their free energy of binding to ice. This study provides a general framework to relate the equilibrium thermodynamics of ice binding to a surface and the nonequilibrium ice freezing temperature and suggests that these could be predicted from the structure of interfacial water.
Pérez-Hernández, Guillermo; Schmidt, Burkhard
2013-04-14
Effective Lennard-Jones models for the water-carbon interaction are derived from existing high-level ab initio calculations of water adsorbed on graphene models. The resulting potential energy well (εCO + 2εCH ≈ 1 kJ mol(-1)) is deeper than most of the previously used values in the literature on water in carbon nanotubes (CNTs). Moreover, a substantial anisotropy of the water-carbon interaction (εCO ≈ 2εCH) is obtained, which is neglected in most of the literature. We systematically investigate the effect of this anisotropy on structure and dynamics of TIP5P water confined in narrow, single-walled CNTs by means of molecular dynamics simulations for T = 300 K. While for isotropic models water usually forms one-dimensional, ordered chains inside (6,6) CNTs, we find frequent chain ruptures in simulations with medium to strongly anisotropic potentials. Here, the water molecules tend to form denser clusters displaying a liquid-like behaviour, allowing for self-diffusion along the CNT axis, in contrast to all previous simulations employing spherical (εCH = 0) interaction models. For (7,7) CNTs we observe structures close to trigonal, helical ice nanotubes which exhibit a non-monotonous dependence on the anisotropy of the water-carbon interaction. Both for vanishing and for large values of εCH we find increased fluctuations leading to a more liquid-like behaviour, with enhanced axial diffusion. In contrast, structure and dynamics of water inside (8,8) CNTs are found to be almost independent of the anisotropy of the underlying potential, which is attributed to the higher stability of the non-helical fivefold water prisms. We predict this situation to also prevail for larger CNTs, as the influence of the water-water interaction dominates over that of the water-carbon interaction.
Canonical structures for dispersive waves in shallow water
NASA Astrophysics Data System (ADS)
Neyzi, Fahrünisa; Nutku, Yavuz
1987-07-01
The canonical Hamiltonian structure of the equations of fluid dynamics obtained in the Boussinesq approximation are considered. New variational formulations of these equations are proposed and it is found that, as in the case of the KdV equation and the equations governing long waves in shallow water, they are degenerate Lagrangian systems. Therefore, in order to cast these equations into canonical form it is again necessary to use Dirac's theory of constraints. It is found that there are primary and secondary constraints which are second class and it is possible to construct the Hamiltonian in terms of canonical variables. Among the examples of Boussinesq equations that are discussed are the equations of Whitham-Broer-Kaup which Kupershmidt has recently expressed in symmetric form and shown to admit tri-Hamiltonian structure.
Dureckova, Hana; Woo, Tom K; Udachin, Konstantin A; Ripmeester, John A; Alavi, Saman
2017-10-13
Clathrate hydrate phases of Cl 2 and Br 2 guest molecules have been known for about 200 years. The crystal structure of these phases was recently re-determined with high accuracy by single crystal X-ray diffraction. In these structures, the water oxygen-halogen atom distances are determined to be shorter than the sum of the van der Waals radii, which indicates the action of some type of non-covalent interaction between the dihalogens and water molecules. Given that in the hydrate phases both lone pairs of each water oxygen atom are engaged in hydrogen bonding with other water molecules of the lattice, the nature of the oxygen-halogen interactions may not be the standard halogen bonds characterized recently in the solid state materials and enzyme-substrate compounds. The nature of the halogen-water interactions for the Cl 2 and Br 2 molecules in two isolated clathrate hydrate cages has recently been studied with ab initio calculations and Natural Bond Order analysis (Ochoa-Resendiz et al. J. Chem. Phys. 2016, 145, 161104). Here we present the results of ab initio calculations and natural localized molecular orbital analysis for Cl 2 and Br 2 guests in all cage types observed in the cubic structure I and tetragonal structure I clathrate hydrates to characterize the orbital interactions between the dihalogen guests and water. Calculations with isolated cages and cages with one shell of coordinating molecules are considered. The computational analysis is used to understand the nature of the halogen bonding in these materials and to interpret the guest positions in the hydrate cages obtained from the X-ray crystal structures.
Bicontinuous structured liquids with sub-micrometre domains using nanoparticle surfactants
Huang, Caili; Forth, Joe; Wang, Weiyu; ...
2017-09-25
Bicontinuous jammed emulsions (or bijels) are tortuous, interconnected structures of two immiscible liquids, kinetically trapped by colloidal particles that are irreversibly bound to the oil–water interface. A wealth of applications has been proposed for bijels in catalysis, energy storage and molecular encapsulation, but large domain sizes (on the order of 5 µm or larger) and difficulty in fabrication pose major barriers to their use. In this paper, we show that bijels with sub-micrometre domains can be formed via homogenization, rather than spinodal decomposition. We achieve this by using nanoparticle surfactants: polymers and nanoparticles of complementary functionality (for example, ion-pairing) thatmore » bind to one another at the oil–water interface. This allows the stabilization of the bijel far from the demixing point of the liquids, with interfacial tensions on the order of 20 mN m -1. Finally, furthermore, our strategy is extremely versatile, as solvent, nanoparticle and ligand can all be varied.« less
Bicontinuous structured liquids with sub-micrometre domains using nanoparticle surfactants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Caili; Forth, Joe; Wang, Weiyu
Bicontinuous jammed emulsions (or bijels) are tortuous, interconnected structures of two immiscible liquids, kinetically trapped by colloidal particles that are irreversibly bound to the oil–water interface. A wealth of applications has been proposed for bijels in catalysis, energy storage and molecular encapsulation, but large domain sizes (on the order of 5 µm or larger) and difficulty in fabrication pose major barriers to their use. In this paper, we show that bijels with sub-micrometre domains can be formed via homogenization, rather than spinodal decomposition. We achieve this by using nanoparticle surfactants: polymers and nanoparticles of complementary functionality (for example, ion-pairing) thatmore » bind to one another at the oil–water interface. This allows the stabilization of the bijel far from the demixing point of the liquids, with interfacial tensions on the order of 20 mN m -1. Finally, furthermore, our strategy is extremely versatile, as solvent, nanoparticle and ligand can all be varied.« less
Shi, Li; Zhou, Wei; Li, Zhao; Koul, Supriya; Kushima, Akihiro; Yang, Yang
2018-06-18
Nonmetallic materials with localized surface plasmon resonance (LSPR) have a great potential for solar energy harvesting applications. Exploring nonmetallic plasmonic materials is desirable yet challenging. Herein, an efficient nonmetallic plasmonic perovskite photoelectrode, namely, SrTiO 3 , with a periodically ordered nanoporous structure showing an intense LSPR in the visible light region is reported. The crystalline-core@amorphous-shell structure of the SrTiO 3 photoelectrode enables a strong LSPR due to the high charge carrier density induced by oxygen vacancies in the amorphous shell. The reversible tunability in LSPR of the SrTiO 3 photoelectrode was observed by oxidation/reduction treatment and incident angle adjusting. Such a nonmetallic plasmonic SrTiO 3 photoelectrode displays a dramatic plasmon-enhanced photoelectrochemical water splitting performance with a photocurrent density of 170.0 μA cm -2 under visible light illumination and a maximum incident photon-to-current-conversion efficiency of 4.0% in the visible light region, which are comparable to the state-of-the-art plasmonic noble metal sensitized photoelectrodes.
Probing the triplet correlation function in liquid water by experiments and molecular simulations.
Dhabal, Debdas; Wikfeldt, Kjartan Thor; Skinner, Lawrie B; Chakravarty, Charusita; Kashyap, Hemant K
2017-01-25
Despite very significant developments in scattering experiments like X-ray and neutron diffraction, it has been challenging to elucidate the nature of tetrahedral molecular configurations in liquid water. A key question is whether the pair correlation functions, which can be obtained from scattering experiments, are sufficient to describe the tetrahedral ordering of water molecules. In our previous study (Dhabal et al., J. Chem. Phys., 2014, 141, 174504), using data-sets generated from reverse Monte Carlo and molecular dynamics simulations, we showed that the triplet correlation functions contain important information on the tetrahedrality of water in the liquid state. In the present study, X-ray scattering experiments and molecular dynamics (MD) simulations are used to link the isothermal pressure derivative of the structure factor with the triplet correlation functions for water. Triplet functions are determined for water up to 3.3 kbar at 298 K to display the effect of pressure on the water structure. The results suggest that triplet functions (H[combining tilde](q)) obtained using a rigid-body TIP4P/2005 water model are consistent with the experimental results. The triplet functions obtained in experiment as well as in simulations evince that in the case of tetrahedral liquids, exertion of higher pressure leads to a better agreement with the Kirkwood superposition approximation (KSA). We further validate this observation using the triplet correlation functions (g (3) (r,s,t)) calculated directly from simulation trajectory, revealing that both H[combining tilde](q) in q-space and g (3) (r,s,t) in real-space contain similar information on the tetrahedrality of liquids. This study demonstrates that the structure factor, even though it has only pair correlation information of the liquid structure, can shed light on three-body correlations in liquid water through its isothermal pressure derivative term.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trong, I.Le; Stenkamp, R.E.; Ibarra, C.
2005-08-22
Cytosolic glutathione S-transferases (GSTs) play a critical role in xenobiotic binding and metabolism, as well as in modulation of oxidative stress. Here, the high-resolution X-ray crystal structures of homodimeric human GSTA1-1 in the apo form and in complex with S-hexyl glutathione (two data sets) are reported at 1.8, 1.5, and 1.3A respectively. At this level of resolution, distinct conformations of the alkyl chain of S-hexyl glutathione are observed, reflecting the nonspecific nature of the hydrophobic substrate binding site (H-site). Also, an extensive network of ordered water, including 75 discrete solvent molecules, traverses the open subunit-subunit interface and connects the glutathionemore » binding sites in each subunit. In the highest-resolution structure, three glycerol moieties lie within this network and directly connect the amino termini of the glutathione molecules. A search for ligand binding sites with the docking program Molecular Operating Environment identified the ordered water network binding site, lined mainly with hydrophobic residues, suggesting an extended ligand binding surface for nonsubstrate ligands, the so-called ligandin site. Finally, detailed comparison of the structures reported here with previously published X-ray structures reveal a possible reaction coordinate for ligand-dependent conformational changes in the active site and the C-terminus.« less
Costantini, Federica; Carlesi, Lorenzo; Abbiati, Marco
2013-01-01
While shallow water red coral populations have been overharvested in the past, nowadays, commercial harvesting shifted its pressure on mesophotic organisms. An understanding of red coral population structure, particularly larval dispersal patterns and connectivity among harvested populations is paramount to the viability of the species. In order to determine patterns of genetic spatial structuring of deep water Corallium rubrum populations, for the first time, colonies found between 58–118 m depth within the Tyrrhenian Sea were collected and analyzed. Ten microsatellite loci and two regions of mitochondrial DNA (mtMSH and mtC) were used to quantify patterns of genetic diversity within populations and to define population structuring at spatial scales from tens of metres to hundreds of kilometres. Microsatellites showed heterozygote deficiencies in all populations. Significant levels of genetic differentiation were observed at all investigated spatial scales, suggesting that populations are likely to be isolated. This differentiation may by the results of biological interactions, occurring within a small spatial scale and/or abiotic factors acting at a larger scale. Mitochondrial markers revealed significant genetic structuring at spatial scales greater then 100 km showing the occurrence of a barrier to gene flow between northern and southern Tyrrhenian populations. These findings provide support for the establishment of marine protected areas in the deep sea and off-shore reefs, in order to effectively maintain genetic diversity of mesophotic red coral populations. PMID:23646109
Costantini, Federica; Carlesi, Lorenzo; Abbiati, Marco
2013-01-01
While shallow water red coral populations have been overharvested in the past, nowadays, commercial harvesting shifted its pressure on mesophotic organisms. An understanding of red coral population structure, particularly larval dispersal patterns and connectivity among harvested populations is paramount to the viability of the species. In order to determine patterns of genetic spatial structuring of deep water Corallium rubrum populations, for the first time, colonies found between 58-118 m depth within the Tyrrhenian Sea were collected and analyzed. Ten microsatellite loci and two regions of mitochondrial DNA (mtMSH and mtC) were used to quantify patterns of genetic diversity within populations and to define population structuring at spatial scales from tens of metres to hundreds of kilometres. Microsatellites showed heterozygote deficiencies in all populations. Significant levels of genetic differentiation were observed at all investigated spatial scales, suggesting that populations are likely to be isolated. This differentiation may by the results of biological interactions, occurring within a small spatial scale and/or abiotic factors acting at a larger scale. Mitochondrial markers revealed significant genetic structuring at spatial scales greater then 100 km showing the occurrence of a barrier to gene flow between northern and southern Tyrrhenian populations. These findings provide support for the establishment of marine protected areas in the deep sea and off-shore reefs, in order to effectively maintain genetic diversity of mesophotic red coral populations.
NASA Astrophysics Data System (ADS)
Steinbacher, Frank; Baran, Ramona; Dobler, Wolfgang; Aufleger, Markus
2013-04-01
Repetitive surveying of inshore waters and coastal zones is becoming more and more essential in order to evaluate water-level dynamics, structural and zonal variations of rivers and riparian areas, river degradation, water flow, reservoir sedimentation, delta growth, as well as coastal processes. This can only be achieved in an effective manner by employing hydrographic airborne laser scanning (hydromapping). A new laser scanner is introduced, which has been specifically designed for the acquisition of high-resolution hydrographic data in order to survey and monitor inland waters and shallow coastal zones. Recently, this scanner has been developed within the framework of an Austrian research cooperation between Riegl LMS and the Unit of Hydraulic Engineering at the University of Innsbruck. We present exemplary measurement results obtained with the compact airborne laser-scanning system during our project work. Along the Baltic Sea coast northeast of Kiel city, northern Germany, we obtained measurement depths up to 8 m under clear-water conditions. Moreover, we detect underwater dune-structures and the accumulation of sediment within groin structures. In contrast, under turbid water conditions we obtained depths of approximately 3 m along the Rhine River at Rheinfelden, German-Swiss border east of Basel city. Nevertheless, we were able to map small-scale and complex morphologic features within a fish ramp or bedrock cliffs. The laser data had been combined with sonar measurements displaying the bathymetry at depths of ca. 2-25 m in order to document comprehensively the actual hydrographic setting after the new construction of the hydropower plant Rheinfelden. In summary, a high-resolution spatial view on the ground of various waterbodies is now possible for the first time with point densities in the usual range of approximately 10-20 points/m². However, the combination of these data with high-resolution aerial (approximately < 5 cm/pixel) or spectral images offers a variety of new opportunities for further analysis. Lastly, the combined datasets - all of them captured during a single flight including topography, bathymetry, aerial and spectral pictures - provide a comprehensive and homogeneous database for the detailed and precise description of river- or coastal-bed hydraulic, morphologic and ecohydraulic processes. The high density and accuracy (less than 10 cm) of information offer the extended possibility for monitoring and supervisory purposes.
Amphiphile-Induced Reorganization of Nematic Liquid Crystals at Aqueous Interfaces
NASA Astrophysics Data System (ADS)
Rahimi, Amin; Ramezani-Dakhel, Hadi; Pendery, Joel; Abbott, Nicholas; de Pablo, Juan; Juan de Pablo Team, Prof; Nicholas Abbott Collaboration, Prof
Recent studies have shown that ordering transitions in 4-cyano-4'-pentylbiphenyl (5CB) molecules can be triggered by the self-assembly of specific amphiphiles near a flat aqueous-LC interface. In the absence of adsorbed amphiphiles, LC molecules adopt a parallel orientation at the aqueous interface. Self-assembly of amphiphile molecules at the LC-aqueous interface triggers a spontaneous reorientation of the LC at the aqueous interface. A number of observations indicate that the hydrophilic headgroup of the surfactant has marginal effect on the orientation of 5CB whereas the aliphatic tail structure, length, and conformation greatly affect the ordering of the LC. The structural reorganization of liquid crystals at aqueous interfaces has been primarily ascribed to a weakening of the surface anchoring strength induced by amphiphile molecules. Such explanations, however, have only been supported by a posteriorimicroscopic observations. The underlying mechanism of such an ordering transition and the effect of amphiphile structure remain poorly understood. Here, we study the nature of molecular interactions between amphiphiles, 5CB, and water to understand the mechanism of ordering transitions using atomistic molecular dynamics simulations.
Rostad, C.E.; Sanford, W.E.
2009-01-01
Pore waters from the Chesapeake Bay impact structure cores recovered at Eyreville Farm, Northampton County, Virginia, were analyzed to characterize the dissolved organic carbon. After squeezing or centrifuging, a small volume of pore water, 100 ??L, was taken for analysis by electrospray ionization-mass spectrometry. Porewater samples were analyzed directly without filtration or fractionation, in positive and negative mode, for polar organic compounds. Spectra in both modes were dominated by low-molecular-weight ions. Negative mode had clusters of ions differing by -60 daltons, possibly due to increasing concentrations of inorganic salts. The numberaverage molecular weight and weight-average molecular weight values for the pore waters from the Chesapeake Bay impact structure are higher than those reported for other aquatic sources of natural dissolved organic carbon as determined by electrospray ionization-mass spectrometry. In order to address the question of whether drilling mud fluids may have contaminated the pore waters during sample collection, spectra from the pore waters were compared to spectra from drilling mud fluids. Ions indicative of drilling mud fluids were not found in spectra from the pore waters, indicating there was no detectable contamination, and highlighting the usefulness of this analytical technique for detecting potential contamination during sample collection. ?? 2009 The Geological Society of America.
High density liquid structure enhancement in glass forming aqueous solution of LiCl.
Camisasca, G; De Marzio, M; Rovere, M; Gallo, P
2018-06-14
We investigate using molecular dynamics simulations the dynamical and structural properties of LiCl:6H 2 O aqueous solution upon supercooling. This ionic solution is a glass forming liquid of relevant interest in connection with the study of the anomalies of supercooled water. The LiCl:6H 2 O solution is easily supercooled and the liquid state can be maintained over a large decreasing temperature range. We performed simulations from ambient to 200 K in order to investigate how the presence of the salt modifies the behavior of supercooled water. The study of the relaxation time of the self-density correlation function shows that the system follows the prediction of the mode coupling theory and behaves like a fragile liquid in all the range explored. The analysis of the changes in the water structure induced by the salt shows that while the salt preserves the water hydrogen bonds in the system, it strongly affects the tetrahedral hydrogen bond network. Following the interpretation of the anomalies of water in terms of a two-state model, the modifications of the oxygen radial distribution function and the angular distribution function of the hydrogen bonds in water indicate that LiCl has the role of enhancing the high density liquid component of water with respect to the low density component. This is in agreement with recent experiments on aqueous ionic solutions.
High density liquid structure enhancement in glass forming aqueous solution of LiCl
NASA Astrophysics Data System (ADS)
Camisasca, G.; De Marzio, M.; Rovere, M.; Gallo, P.
2018-06-01
We investigate using molecular dynamics simulations the dynamical and structural properties of LiCl:6H2O aqueous solution upon supercooling. This ionic solution is a glass forming liquid of relevant interest in connection with the study of the anomalies of supercooled water. The LiCl:6H2O solution is easily supercooled and the liquid state can be maintained over a large decreasing temperature range. We performed simulations from ambient to 200 K in order to investigate how the presence of the salt modifies the behavior of supercooled water. The study of the relaxation time of the self-density correlation function shows that the system follows the prediction of the mode coupling theory and behaves like a fragile liquid in all the range explored. The analysis of the changes in the water structure induced by the salt shows that while the salt preserves the water hydrogen bonds in the system, it strongly affects the tetrahedral hydrogen bond network. Following the interpretation of the anomalies of water in terms of a two-state model, the modifications of the oxygen radial distribution function and the angular distribution function of the hydrogen bonds in water indicate that LiCl has the role of enhancing the high density liquid component of water with respect to the low density component. This is in agreement with recent experiments on aqueous ionic solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, Royce K.; Smith, Jacob W.; Saykally, Richard J., E-mail: saykally@berkeley.edu
While methanol and ethanol are macroscopically miscible with water, their mixtures exhibit negative excess entropies of mixing. Despite considerable effort in both experiment and theory, there remains significant disagreement regarding the origin of this effect. Different models for the liquid mixture structure have been proposed to address this behavior, including the enhancement of the water hydrogen bonding network around the alcohol hydrophobic groups and microscopic immiscibility or clustering. We have investigated mixtures of methanol, ethanol, and isopropanol with water by liquid microjet X-ray absorption spectroscopy on the oxygen K-edge, an atom-specific probe providing details of both inter- and intra-molecular structure.more » The measured spectra evidence a significant enhancement of hydrogen bonding originating from the methanol and ethanol hydroxyl groups upon the addition of water. These additional hydrogen bonding interactions would strengthen the liquid-liquid interactions, resulting in additional ordering in the liquid structures and leading to a reduction in entropy and a negative enthalpy of mixing, consistent with existing thermodynamic data. In contrast, the spectra of the isopropanol-water mixtures exhibit an increase in the number of broken alcohol hydrogen bonds for mixtures containing up to 0.5 water mole fraction, an observation consistent with existing enthalpy of mixing data, suggesting that the measured negative excess entropy is a result of clustering or micro-immiscibility.« less
Young, Suzanne; Nayak, Bina; Sun, Shan; Badgley, Brian D; Rohr, Jason R; Harwood, Valerie J
2016-09-15
Sewage spills can release antibiotic-resistant bacteria into surface waters, contributing to environmental reservoirs and potentially impacting human health. Vancomycin-resistant enterococci (VRE) are nosocomial pathogens that have been detected in environmental habitats, including soil, water, and beach sands, as well as wildlife feces. However, VRE harboring vanA genes that confer high-level resistance have infrequently been found outside clinical settings in the United States. This study found culturable Enterococcus faecium harboring the vanA gene in water and sediment for up to 3 days after a sewage spill, and the quantitative PCR (qPCR) signal for vanA persisted for an additional week. Culturable levels of enterococci in water exceeded recreational water guidelines for 2 weeks following the spill, declining about five orders of magnitude in sediments and two orders of magnitude in the water column over 6 weeks. Analysis of bacterial taxa via 16S rRNA gene sequencing showed changes in community structure through time following the sewage spill in sediment and water. The spread of opportunistic pathogens harboring high-level vancomycin resistance genes beyond hospitals and into the broader community and associated habitats is a potential threat to public health, requiring further studies that examine the persistence, occurrence, and survival of VRE in different environmental matrices. Vancomycin-resistant enterococci (VRE) are harmful bacteria that are resistant to the powerful antibiotic vancomycin, which is used as a last resort against many infections. This study followed the release of VRE in a major sewage spill and their persistence over time. Such events can act as a means of spreading vancomycin-resistant bacteria in the environment, which can eventually impact human health. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Young, Suzanne; Nayak, Bina; Sun, Shan; Badgley, Brian D.; Rohr, Jason R.
2016-01-01
ABSTRACT Sewage spills can release antibiotic-resistant bacteria into surface waters, contributing to environmental reservoirs and potentially impacting human health. Vancomycin-resistant enterococci (VRE) are nosocomial pathogens that have been detected in environmental habitats, including soil, water, and beach sands, as well as wildlife feces. However, VRE harboring vanA genes that confer high-level resistance have infrequently been found outside clinical settings in the United States. This study found culturable Enterococcus faecium harboring the vanA gene in water and sediment for up to 3 days after a sewage spill, and the quantitative PCR (qPCR) signal for vanA persisted for an additional week. Culturable levels of enterococci in water exceeded recreational water guidelines for 2 weeks following the spill, declining about five orders of magnitude in sediments and two orders of magnitude in the water column over 6 weeks. Analysis of bacterial taxa via 16S rRNA gene sequencing showed changes in community structure through time following the sewage spill in sediment and water. The spread of opportunistic pathogens harboring high-level vancomycin resistance genes beyond hospitals and into the broader community and associated habitats is a potential threat to public health, requiring further studies that examine the persistence, occurrence, and survival of VRE in different environmental matrices. IMPORTANCE Vancomycin-resistant enterococci (VRE) are harmful bacteria that are resistant to the powerful antibiotic vancomycin, which is used as a last resort against many infections. This study followed the release of VRE in a major sewage spill and their persistence over time. Such events can act as a means of spreading vancomycin-resistant bacteria in the environment, which can eventually impact human health. PMID:27422829
Allosteric modulation of Ras positions Q61 for a direct role in catalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buhrman, Greg; Holzapfel, Genevieve; Fetics, Susan
2010-11-03
Ras and its effector Raf are key mediators of the Ras/Raf/MEK/ERK signal transduction pathway. Mutants of residue Q61 impair the GTPase activity of Ras and are found prominently in human cancers. Yet the mechanism through which Q61 contributes to catalysis has been elusive. It is thought to position the catalytic water molecule for nucleophilic attack on the {gamma}-phosphate of GTP. However, we previously solved the structure of Ras from crystals with symmetry of the space group R32 in which switch II is disordered and found that the catalytic water molecule is present. Here we present a structure of wild-type Rasmore » with calcium acetate from the crystallization mother liquor bound at a site remote from the active site and likely near the membrane. This results in a shift in helix 3/loop 7 and a network of H-bonding interactions that propagates across the molecule, culminating in the ordering of switch II and placement of Q61 in the active site in a previously unobserved conformation. This structure suggests a direct catalytic role for Q61 where it interacts with a water molecule that bridges one of the {gamma}-phosphate oxygen atoms to the hydroxyl group of Y32 to stabilize the transition state of the hydrolysis reaction. We propose that Raf together with the binding of Ca{sup 2+} and a negatively charged group mimicked in our structure by the acetate molecule induces the ordering of switch I and switch II to complete the active site of Ras.« less
Tompa, Peter; Han, Kyou-Hoon; Bokor, Mónika; Kamasa, Pawel; Tantos, Ágnes; Fritz, Beáta; Kim, Do-Hyoung; Lee, Chewook; Verebélyi, Tamás; Tompa, Kálmán
2016-01-01
Wide-line 1H NMR intensity and differential scanning calorimetry measurements were carried out on the intrinsically disordered 73-residue full transactivation domain (TAD) of the p53 tumor suppressor protein and two peptides: one a wild type p53 TAD peptide with a helix pre-structuring property, and a mutant peptide with a disabled helix-forming propensity. Measurements were carried out in order to characterize their water and ion binding characteristics. By quantifying the number of hydrate water molecules, we provide a microscopic description for the interactions of water with a wild-type p53 TAD and two p53 TAD peptides. The results provide direct evidence that intrinsically disordered proteins (IDPs) and a less structured peptide not only have a higher hydration capacity than globular proteins, but are also able to bind a larger amount of charged solute ions. [BMB Reports 2016; 49(9): 497-501] PMID:27418282
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hormain, Laureline; Monnerville, Maurice, E-mail: maurice.monnerville@univ-lille1.fr; Toubin, Céline
The chlorine/water interface is of crucial importance in the context of atmospheric chemistry. Modeling the structure and dynamics at this interface requires an accurate description of the interaction potential energy surfaces. We propose here an analytical intermolecular potential that reproduces the interaction between the Cl{sub 2} molecule and a water molecule. Our functional form is fitted to a set of high level ab initio data using the coupled-cluster single double (triple)/aug-cc-p-VTZ level of electronic structure theory for the Cl{sub 2} − H{sub 2}O complex. The potential fitted to reproduce the three minima structures of 1:1 complex is validated by themore » comparison of ab initio results of Cl{sub 2} interacting with an increasing number of water molecules. Finally, the model potential is used to study the physisorption of Cl{sub 2} on a perfectly ordered hexagonal ice slab. The calculated adsorption energy, in the range 0.27 eV, shows a good agreement with previous experimental results.« less
Structural and thermodynamic properties of the Cm III ion solvated by water and methanol
Kelley, Morgan P.; Yang, Ping; Clark, Sue B.; ...
2016-04-27
The geometric and electronic structures of the 9-coordinate Cm 3+ ion solvated with both water and methanol are systematically investigated in the gas phase at each possible solvent-shell composition and configuration using density functional theory and second-order Møller–Plesset perturbation theory. Ab initio molecular dynamics simulations are employed to assess the effects of second and third solvent shells on the gas-phase structure. The ion–solvent dissociation energy for methanol is greater than that of water, potentially because of increased charge donation to the ion made possible by the electron-rich methyl group. Further, the ion–solvent dissociation energy and the ion–solvent distance are shownmore » to be dependent on the solvent-shell composition. Furthermore, this has implications for solvent exchange, which is generally the rate-limiting step in complexation reactions utilized in the separation of curium from complex metal mixtures that derive from the advanced nuclear fuel cycle.« less
Jiménez-Moreno, Ester; Jiménez-Osés, Gonzalo; Gómez, Ana M; Santana, Andrés G; Corzana, Francisco; Bastida, Agatha; Jiménez-Barbero, Jesus; Asensio, Juan Luis
2015-11-13
CH/π interactions play a key role in a large variety of molecular recognition processes of biological relevance. However, their origins and structural determinants in water remain poorly understood. In order to improve our comprehension of these important interaction modes, we have performed a quantitative experimental analysis of a large data set comprising 117 chemically diverse carbohydrate/aromatic stacking complexes, prepared through a dynamic combinatorial approach recently developed by our group. The obtained free energies provide a detailed picture of the structure-stability relationships that govern the association process, opening the door to the rational design of improved carbohydrate-based ligands or carbohydrate receptors. Moreover, this experimental data set, supported by quantum mechanical calculations, has contributed to the understanding of the main driving forces that promote complex formation, underlining the key role played by coulombic and solvophobic forces on the stabilization of these complexes. This represents the most quantitative and extensive experimental study reported so far for CH/π complexes in water.
NASA Astrophysics Data System (ADS)
Sampath, Sujatha; Jones, Justin; Harris, Thomas; Lewis, Randolph
2015-03-01
With a combination of high strength and extensibility, spider silk's (SS) mechanical properties surpass those of any man made fiber. The superior properties are due to the primary protein composition and the complex hierarchical structural organization from nanoscale to macroscopic length scales. Considerable progress has been made to synthetically mimic the production of fibers based on SS proteins. We present synchrotron x-ray micro diffraction (SyXRD) results on new fibers and gels (hydrogels, lyogels) from recombinant SS protein water-soluble dopes. Novelty in these materials is two-fold: water based rather than widely used HFIP acid synthesis, makes them safe in medical applications (replacement for tendons & ligaments). Secondly, hydrogels morphology render them as excellent carriers for targeted drug delivery biomedical applications. SyXRD results reveal semi-crystalline structure with ordered beta-sheets and relatively high degree of axial orientation in the fibers, making them the closest yet to natural spider silks. SyXRD on the gels elucidate the structural transformations during the self-recovery process through mechanical removal and addition of water. Studies correlating the observed structural changes to mechanical properties are underway.
Nominally hydrous magmatism on the Moon
McCubbin, Francis M.; Steele, Andrew; Hauri, Erik H.; Nekvasil, Hanna; Yamashita, Shigeru; Hemley, Russell J.
2010-01-01
For the past 40 years, the Moon has been described as nearly devoid of indigenous water; however, evidence for water both on the lunar surface and within the lunar interior have recently emerged, calling into question this long-standing lunar dogma. In the present study, hydroxyl (as well as fluoride and chloride) was analyzed by secondary ion mass spectrometry in apatite [Ca5(PO4)3(F,Cl,OH)] from three different lunar samples in order to obtain quantitative constraints on the abundance of water in the lunar interior. This work confirms that hundreds to thousands of ppm water (of the structural form hydroxyl) is present in apatite from the Moon. Moreover, two of the studied samples likely had water preserved from magmatic processes, which would qualify the water as being indigenous to the Moon. The presence of hydroxyl in apatite from a number of different types of lunar rocks indicates that water may be ubiquitous within the lunar interior, potentially as early as the time of lunar formation. The water contents analyzed for the lunar apatite indicate minimum water contents of their lunar source region to range from 64 ppb to 5 ppm H2O. This lower limit range of water contents is at least two orders of magnitude greater than the previously reported value for the bulk Moon, and the actual source region water contents could be significantly higher. PMID:20547878
Nominally hydrous magmatism on the Moon.
McCubbin, Francis M; Steele, Andrew; Hauri, Erik H; Nekvasil, Hanna; Yamashita, Shigeru; Hemley, Russell J
2010-06-22
For the past 40 years, the Moon has been described as nearly devoid of indigenous water; however, evidence for water both on the lunar surface and within the lunar interior have recently emerged, calling into question this long-standing lunar dogma. In the present study, hydroxyl (as well as fluoride and chloride) was analyzed by secondary ion mass spectrometry in apatite [Ca(5)(PO(4))(3)(F,Cl,OH)] from three different lunar samples in order to obtain quantitative constraints on the abundance of water in the lunar interior. This work confirms that hundreds to thousands of ppm water (of the structural form hydroxyl) is present in apatite from the Moon. Moreover, two of the studied samples likely had water preserved from magmatic processes, which would qualify the water as being indigenous to the Moon. The presence of hydroxyl in apatite from a number of different types of lunar rocks indicates that water may be ubiquitous within the lunar interior, potentially as early as the time of lunar formation. The water contents analyzed for the lunar apatite indicate minimum water contents of their lunar source region to range from 64 ppb to 5 ppm H(2)O. This lower limit range of water contents is at least two orders of magnitude greater than the previously reported value for the bulk Moon, and the actual source region water contents could be significantly higher.
Water-Rich Fluid Material Containing Orderly Condensed Proteins.
Nojima, Tatsuya; Iyoda, Tomokazu
2017-01-24
A fluid material with high protein content (120-310 mg mL -1 ) was formed through the ordered self-assembly of native proteins segregated from water. This material is instantly prepared by the simple mixing of a protein solution with anionic and cationic surfactants. By changing the ratio of the surfactants based on the electrostatic characteristics of the target protein, we observed that the surfactants could function as a versatile molecular glue for protein assembly. Moreover, these protein assemblies could be disassembled back into an aqueous solution depending on the salt conditions. Owing to the water-retaining properties of the hydrophilic part of surfactants, the proteins in this material are in a water-rich environment, which maintains their native structure and function. The inclusion of water also provides functional extensibility to this material, as demonstrated by the preparation of an enzymatically active gel. We anticipate that the unique features of this material will permit the use of proteins not only in solution but also as elements of integrated functionalized materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flach, C R; Brauner, J W; Taylor, J W; Baldwin, R C; Mendelsohn, R
1994-01-01
A Fourier transform infrared spectrometer has been interfaced with a surface balance and a new external reflection infrared sampling accessory, which permits the acquisition of spectra from protein monolayers in situ at the air/water interface. The accessory, a sample shuttle that permits the collection of spectra in alternating fashion from sample and background troughs, reduces interference from water vapor rotation-vibration bands in the amide I and amide II regions of protein spectra (1520-1690 cm-1) by nearly an order of magnitude. Residual interference from water vapor absorbance ranges from 50 to 200 microabsorbance units. The performance of the device is demonstrated through spectra of synthetic peptides designed to adopt alpha-helical, antiparallel beta-sheet, mixed beta-sheet/beta-turn, and unordered conformations at the air/water interface. The extent of exchange on the surface can be monitored from the relative intensities of the amide II and amide I modes. Hydrogen-deuterium exchange may lower the amide I frequency by as much as 11-12 cm-1 for helical secondary structures. This shifts the vibrational mode into a region normally associated with unordered structures and leads to uncertainties in the application of algorithms commonly used for determination of secondary structure from amide I contours of proteins in D2O solution. PMID:7919013
NASA Astrophysics Data System (ADS)
Obeidat, Abdalla; Abu-Ghazleh, Hind
2018-06-01
Two intermolecular potential models of methanol (TraPPE-UA and OPLS-AA) have been used in order to examine their validity in reproducing the selected structural, dynamical, and thermodynamic properties in the unary and binary systems. These two models are combined with two water models (SPC/E and TIP4P). The temperature dependence of density, surface tension, diffusion and structural properties for the unary system has been computed over specific range of temperatures (200-300K). The very good performance of the TraPPE-UA potential model in predicting surface tension, diffusion, structure, and density of the unary system led us to examine its accuracy and performance in its aqueous solution. In the binary system the same properties were examined, using different mole fractions of methanol. The TraPPE-UA model combined with TIP4P-water shows a very good agreement with the experimental results for density and surface tension properties; whereas the OPLS-AA combined with SPCE-water shows a very agreement with experimental results regarding the diffusion coefficients. Two different approaches have been used in calculating the diffusion coefficient in the mixture, namely the Einstein equation (EE) and Green-Kubo (GK) method. Our results show the advantageous of applying GK over EE in reproducing the experimental results and in saving computer time.
NASA Astrophysics Data System (ADS)
Park, Hyeji; Um, Teakyung; Hong, Kicheol; Kang, Jin Soo; Nam, Ho-Seok; Kwon, Kyungjung; Sung, Yung-Eun; Choe, Heeman
2018-06-01
With its well-known popularity in structural applications, considerable attention has recently been paid to iron (Fe) and its oxides for its promising functional applications such as biodegradable implants, water-splitting electrodes, and the anode of lithium-ion batteries. For these applications, iron and its oxides can be even further utilized in the form of porous structures. In order to control the pore size, shape, and amount, we synthesized Fe foams using suspensions of micrometric Fe2O3 powder reduced to Fe via freeze casting in water or liquid camphene as a solvent through sublimation of either ice or camphene under 5 pct H2/Ar gas and sintering. We then compared them and found that the resulting Fe foam using water as a solvent (p = 71.7 pct) showed aligned lamellar macropores replicating ice dendrite colonies, while Fe foam using camphene as a solvent (p = 68.0 pct) exhibited interconnected equiaxed macropores replicating camphene dendrites. For all directions with respect to the loading axis, the compressive behavior of the water-based Fe foam with a directional elongated wall pore structure was anisotropic (11.6 ± 0.9 MPa vs 7.8 ± 0.8 MPa), whereas that of the camphene-based Fe foam with a random round pore structure was nearly isotropic (12.0 ± 1.1 MPa vs 11.6 ± 0.4 MPa).
NASA Astrophysics Data System (ADS)
Liang, Yongping; Gao, Xubo; Zhao, Chunhong; Tang, Chunlei; Shen, Haoyong; Wang, Zhiheng; Wang, Yanxin
2018-05-01
In Northern China, karst systems in widely distributed carbonate rocks are one of the most important water supplies for local inhabitants. Constrained by the specific geological and geomorphological conditions, most karst water in this region is discharged as individual or groups of springs. This paper summarizes the characteristics, chemistry, and environmental quality of these karst systems in Northern China. Five structural models of karst water systems were identified based on the relationships between the karst geological strata and karst groundwater flow fields. These specific structural models may closely relate to the attendant environmental geological issues and consistent risks from pollution. Over the past 40 years, the karst water systems in Northern China have suffered from various environmental problems, including deteriorating water quality, the drying up of springs, a continuous decline in the level of karst water, and so on. Based on the field investigation and previous data, a preliminary summary is provided of the environmental problems related to the development and evolutionary trends of karst water in this region. The results highlight the significant challenges associated with karst water, and it is essential that all segments of society be made aware of the situation in order to demand change. In addition, the study provides a scientific basis for the management, protection, and sustainable utilization of karst water resources.
Controlling Molecular Ordering in Solution-State Conjugated Polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jiahua; Han, Youngkyu; Kumar, Rajeev
Rationally encoding molecular interactions that can control the assembly structure and functional expression in solution of conjugated polymers holds great potential for enabling optimal organic optoelectronic and sensory materials. In this work, we show that thermally-controlled and surfactant-guided assembly of water-soluble conjugated polymers in aqueous solution is a simple and effective strategy to generate optoelectronic materials with desired molecular ordering. We have studied a conjugated polymer consisting of a hydrophobic thiophene backbone and hydrophilic, thermo-responsive ethylene oxide side groups, which shows a step-wise, multi-dimensional assembly in water. By incorporating the polymer into phase-segregated domains of an amphiphilic surfactant in solution,more » we demonstrate that both chain conformation and degree of molecular ordering of the conjugated polymer can be tuned in hexagonal, micellar and lamellar phases of the surfactant solution. The controlled molecular ordering in conjugated polymer assembly is demonstrated as a key factor determining the electronic interaction and optical function.« less
Controlling Molecular Ordering in Solution-State Conjugated Polymers
Zhu, Jiahua; Han, Youngkyu; Kumar, Rajeev; ...
2015-07-17
Rationally encoding molecular interactions that can control the assembly structure and functional expression in solution of conjugated polymers holds great potential for enabling optimal organic optoelectronic and sensory materials. In this work, we show that thermally-controlled and surfactant-guided assembly of water-soluble conjugated polymers in aqueous solution is a simple and effective strategy to generate optoelectronic materials with desired molecular ordering. We have studied a conjugated polymer consisting of a hydrophobic thiophene backbone and hydrophilic, thermo-responsive ethylene oxide side groups, which shows a step-wise, multi-dimensional assembly in water. By incorporating the polymer into phase-segregated domains of an amphiphilic surfactant in solution,more » we demonstrate that both chain conformation and degree of molecular ordering of the conjugated polymer can be tuned in hexagonal, micellar and lamellar phases of the surfactant solution. The controlled molecular ordering in conjugated polymer assembly is demonstrated as a key factor determining the electronic interaction and optical function.« less
Jencso, Kelsey G.; McGlynn, Brian L.; Gooseff, Michael N.; Wondzell, Steven M.; Bencala, Kenneth E.; Marshall, Lucy A.
2009-01-01
The relationship between catchment structure and runoff characteristics is poorly understood. In steep headwater catchments with shallow soils the accumulation of hillslope area (upslope accumulated area (UAA)) is a hypothesized first‐order control on the distribution of soil water and groundwater. Hillslope‐riparian water table connectivity represents the linkage between the dominant catchment landscape elements (hillslopes and riparian zones) and the channel network. Hydrologic connectivity between hillslope‐riparian‐stream (HRS) landscape elements is heterogeneous in space and often temporally transient. We sought to test the relationship between UAA and the existence and longevity of HRS shallow groundwater connectivity. We quantified water table connectivity based on 84 recording wells distributed across 24 HRS transects within the Tenderfoot Creek Experimental Forest (U.S. Forest Service), northern Rocky Mountains, Montana. Correlations were observed between the longevity of HRS water table connectivity and the size of each transect's UAA (r2 = 0.91). We applied this relationship to the entire stream network to quantify landscape‐scale connectivity through time and ascertain its relationship to catchment‐scale runoff dynamics. We found that the shape of the estimated annual landscape connectivity duration curve was highly related to the catchment flow duration curve (r2 = 0.95). This research suggests internal catchment landscape structure (topography and topology) as a first‐order control on runoff source area and whole catchment response characteristics.
Polak, Roberta; Pitombo, Ronaldo N M
2011-10-01
Bovine pericardium (BP) tissue is widely used in the manufacture of bioprosthetics. The effects of freeze-drying on the BP tissue have been studied by some researchers in order to decrease their cytotoxicity due to preservation in formaldehyde solution, and to increase the lifetime of the product in storage. This study was undertaken in order to study the effect of freeze-drying in the structure of BP. To perform this study BP samples were freeze-dried in two different types of freeze-dryers available in our laboratory: a laboratory freeze-dryer, in which it was not possible to control parameters and a pilot freeze-dryer, wherein all parameters during freezing and drying were controlled. After freeze-drying processes, samples were analyzed by SEM, Raman spectroscopy, tensile strength, water uptake tests and TEM. In summary, it has been demonstrated that damages occur in collagen fibers by the loss of bulk water of collagen structure implicating in a drastic decreasing of BP mechanical properties due to its structural alterations. Moreover, it was proven that the collagen fibrils suffered breakage at some points, which can be attributed to the uncontrolled parameters during drying. Copyright © 2011 Elsevier Inc. All rights reserved.
Sachs, Jonathan N.; Nanda, Hirsh; Petrache, Horia I.; Woolf, Thomas B.
2004-01-01
The association between monovalent salts and neutral lipid bilayers is known to influence global bilayer structural properties such as headgroup conformational fluctuations and the dipole potential. The local influence of the ions, however, has been unknown due to limited structural resolution of experimental methods. Molecular dynamics simulations are used here to elucidate local structural rearrangements upon association of a series of monovalent Na+ salts to a palmitoyl-oleoyl-phosphatidylcholine bilayer. We observe association of all ion types in the interfacial region. Larger anions, which are meant to rationalize data regarding a Hofmeister series of anions, bind more deeply within the bilayer than either Cl− or Na+. Although the simulations are able to reproduce experimentally measured quantities, the analysis is focused on local properties currently invisible to experiments, which may be critical to biological systems. As such, for all ion types, including Cl−, we show local ion-induced perturbations to headgroup tilt, the extent and direction of which is sensitive to ion charge and size. Additionally, we report salt-induced ordering of the water well beyond the interfacial region, which may be significant in terms of hydration repulsion between stacked bilayers. PMID:15189873
Adsorption, folding, and packing of an amphiphilic peptide at the air/water interface.
Engin, Ozge; Sayar, Mehmet
2012-02-23
Peptide oligomers play an essential role as model compounds for identifying key motifs in protein structure formation and protein aggregation. Here, we present our results, based on extensive molecular dynamics simulations, on adsorption, folding, and packing within a surface monolayer of an amphiphilic peptide at the air/water interface. Experimental results suggest that these molecules spontaneously form ordered monolayers at the interface, adopting a β-hairpin-like structure within the surface layer. Our results reveal that the β-hairpin structure can be observed both in bulk and at the air/water interface. However, the presence of an interface leads to ideal partitioning of the hydrophobic and hydrophilic residues, and therefore reduces the conformational space for the molecule and increases the stability of the hairpin structure. We obtained the adsorption free energy of a single β-hairpin at the air/water interface, and analyzed the enthalpic and entropic contributions. The adsorption process is favored by two main factors: (1) Free-energy reduction due to desolvation of the hydrophobic side chains of the peptide and release of the water molecules which form a cage around these hydrophobic groups in bulk water. (2) Reduction of the total air/water contact area at the interface upon adsorption of the peptide amphiphile. By performing mutations on the original molecule, we demonstrated the relative role of key design features of the peptide. Finally, by analyzing the potential of mean force among two peptides at the interface, we investigated possible packing mechanisms for these molecules within the surface monolayer. © 2012 American Chemical Society
Ice as a Construction Material
NASA Technical Reports Server (NTRS)
Zuppero, Anthony; Lewis, J.
1998-01-01
This presentation shows how water and ice can enable exceptionally simple ways to construct structures in deep space. Practicality is underscored by applying advanced tank methods being developed for Mars missions. Water or ice is now known to be present or abundant on most objects in the solar system, starting with the planet Mercury. Thermal processes alone can be used to melt ice . The cold of space can refreeze water back into ice. The anomalous low vapor pressure of water, about 7 mm Hg, permits bladder containers. Tanks or bladders made with modern polymer fiber and film can exhibit very small (<0.1 %) equivalent tankage and ullage fractions and thus hold thousands of tons of water per ton bladder. Injecting water into a bladder whose shape when inflated is the desired final shape, such as a space vehicle, provides a convenient way to construct large structures. In space, structures of 1O,OOO-T mass become feasible because the bladder mass is low enough to be launched. The bladder can weigh 1OOO times less than its contents, or 10 T. The bladder would be packed like a parachute. Shaped memory materials and/or gas inflation could reestablish the desired structure shape after unpacking. The water comes from space resources. An example examines construction of torus space vehicle with 100-m nominal dimension. People would live inside the torus. A torus, like a tire on an automobile, would spin and provide synthetic gravity at its inner surface. A torus of order 100 m across would provide a gravity with gradients low enough to mitigate against vertigo.
Molecular Modeling of a Probe in 2D IR Spectroscopy
NASA Astrophysics Data System (ADS)
Cooper, Anthony; Larini, Luca
Proteins must adopt a precise three dimensional structure in the folding process in order to perform its designated function. Although much has been learned about folding, there are still many details in structural dynamics that are difficult to characterize by existing experimental techniques. In order to overcome these challenges, novel infrared and fluorescent spectroscopic techniques have recently been employed to probe the molecular structure at the atomistic scale. These techniques rely on the spectroscopic properties of the nitrile group attached to a phenylalanine. In this study, we model this probe and we compute its properties in different solvents. This is done by performing Molecular Dynamics simulations with a PheCN solvated in water, urea and TMAO. We measure the decay rate of the vibrational stretching of the CN group in order to characterize the effects of different solvents on the local structure of the molecule. This data can be used to identify non-trivial conformational changes of the protein in the folding process. Preliminary results show agreement with current experimental data on 2D IR spectroscopy.
In silico studies of the properties of water hydrating a small protein
NASA Astrophysics Data System (ADS)
Sinha, Sudipta Kumar; Jana, Madhurima; Chakraborty, Kausik; Bandyopadhyay, Sanjoy
2014-12-01
Atomistic molecular dynamics simulation of an aqueous solution of the small protein HP-36 has been carried out with explicit solvent at room temperature. Efforts have been made to explore the influence of the protein on the relative packing and ordering of water molecules around its secondary structures, namely, three α-helices. The calculations reveal that the inhomogeneous water ordering and density distributions around the helices are correlated with their relative hydrophobicity. Importantly, we have identified the existence of a narrow relatively dehydrated region containing randomly organized "quasi-free" water molecules beyond the first layer of "bound" waters at the protein surface. These water molecules with relatively weaker binding energies form the transition state separating the "bound" and "free" water molecules at the interface. Further, increased contribution of solid-like caging motions of water molecules around the protein is found to be responsible for reduced fluidity of the hydration layer. Interestingly, we notice that the hydration layer of helix-3 is more fluidic with relatively higher entropy as compared to the hydration layers of the other two helical segments. Such characteristics of helix-3 hydration layer correlate well with the activity of HP-36, as helix-3 contains the active site of the protein.
NASA Astrophysics Data System (ADS)
Conti, Claudia; Casati, Marco; Colombo, Chiara; Realini, Marco; Brambilla, Luigi; Zerbi, Giuseppe
2014-07-01
New data on vibrational properties of calcium oxalates and their controversial transformation mechanism are presented. We have focused on whewellite (CaC2O4·H2O) and weddellite [CaC2O4·(2 + x) H2O], the most common phases of calcium oxalate; these compounds occur in many organisms, in kidney stones and in particular kinds of films found on the surface of many works of art. Low temperature experiments carried out by Fourier transform infrared spectroscopy have highlighted both the high structural order in the crystalline state of whewellite and the disordered distribution of the zeolitic water molecules in weddellite. The synthesised nanocrystals of weddellite have been kept under different hygrometric conditions in order to study, by X-ray powder diffraction, the role of “external” water molecules on their stability. Moreover, in order to identify the different kinds of water molecules, a re-investigation, supported by quantum chemical calculations, of the observed vibrational spectra (IR and Raman) of whewellite has been conducted.
Hydration water dynamics and instigation of protein structuralrelaxation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russo, Daniela; Hura, Greg; Head-Gordon, Teresa
2003-09-01
Until a critical hydration level is reached, proteins do not function. This critical level of hydration is analogous to a similar lack of protein function observed for temperatures below a dynamical temperature range of 180-220K that also is connected to the dynamics of protein surface water. Restoration of some enzymatic activity is observed in partially hydrated protein powders, sometimes corresponding to less than a single hydration layer on the protein surface, which indicates that the dynamical and structural properties of the surface water is intimately connected to protein stability and function. Many elegant studies using both experiment and simulation havemore » contributed important information about protein hydration structure and timescales. The molecular mechanism of the solvent motion that is required to instigate the protein structural relaxation above a critical hydration level or transition temperature has yet to be determined. In this work we use experimental quasi-elastic neutron scattering (QENS) and molecular dynamics simulation to investigate hydration water dynamics near a greatly simplified protein system. We consider the hydration water dynamics near the completely deuterated N-acetyl-leucine-methylamide (NALMA) solute, a hydrophobic amino acid side chain attached to a polar blocked polypeptide backbone, as a function of concentration between 0.5M-2.0M under ambient conditions. We note that roughly 50-60% of a folded protein's surface is equally distributed between hydrophobic and hydrophilic domains, domains whose lengths are on the order of a few water diameters, that justify our study of hydration dynamics of this simple model protein system. The QENS experiment was performed at the NIST Center for Neutron Research, using the disk chopper time of flight spectrometer (DCS). In order to separate the translational and rotational components in the spectra, two sets of experiments were carried out using different incident neutron wavelengths of 7.5{angstrom} and 5.5{angstrom} to give two different time resolutions. All the spectra have been measure at room temperature. The spectra were corrected for the sample holder contribution and normalized using the vanadium standard. The resulting data were analyzed with DAVE programs (http://www.ncnr.nist.gov/dave/). The AMBER force field and SPCE water model were used for modeling the NALMA solute and water, respectively. For the analysis of the water dynamics in the NALMA aqueous solutions, we performed simulations of a dispersed solute configuration consistent with our previous structural analysis, where we had primarily focused on the structural organization of these peptide solutions and their connection to protein folding. Further details of the QENS experiment and molecular dynamics simulations are reported elsewhere.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Rakesh S.; Debenedetti, Pablo G.; Biddle, John W.
Water shows intriguing thermodynamic and dynamic anomalies in the supercooled liquid state. One possible explanation of the origin of these anomalies lies in the existence of a metastable liquid-liquid phase transition (LLPT) between two (high and low density) forms of water. While the anomalies are observed in experiments on bulk and confined water and by computer simulation studies of different water-like models, the existence of a LLPT in water is still debated. Unambiguous experimental proof of the existence of a LLPT in bulk supercooled water is hampered by fast ice nucleation which is a precursor of the hypothesized LLPT. Moreover,more » the hypothesized LLPT, being metastable, in principle cannot exist in the thermodynamic limit (infinite size, infinite time). Therefore, computer simulations of water models are crucial for exploring the possibility of the metastable LLPT and the nature of the anomalies. In this work, we present new simulation results in the NVT ensemble for one of the most accurate classical molecular models of water, TIP4P/2005. To describe the computed properties and explore the possibility of a LLPT, we have applied two-structure thermodynamics, viewing water as a non-ideal mixture of two interconvertible local structures (“states”). The results suggest the presence of a liquid-liquid critical point and are consistent with the existence of a LLPT in this model for the simulated length and time scales. We have compared the behavior of TIP4P/2005 with other popular water-like models, namely, mW and ST2, and with real water, all of which are well described by two-state thermodynamics. In view of the current debate involving different studies of TIP4P/2005, we discuss consequences of metastability and finite size in observing the liquid-liquid separation. We also address the relationship between the phenomenological order parameter of two-structure thermodynamics and the microscopic nature of the low-density structure.« less
NASA Astrophysics Data System (ADS)
Casillas, Danielle Courtney
Solar energy has the potential to supply more than enough energy to meet humanity's energy demands. Here, a method for thermochemical solar energy storage through fuel production is presented. A porous non-stoichiometric oxide, ceria, undergoes partial thermal reduction and oxidation with concentrated solar energy as a heat source, and water as an oxidant. The resulting yields for hydrogen fuel and oxygen are produced in two discrete steps, while the starting material maintains its original phase. Ordered porosity has been shown superior to random porosity for thermochemical fuel production applications, but stability limits for these structures are currently undefined. Ceria-based inverse opals are currently being investigated to assess the architectural influence on thermochemical hydrogen production. Low tortuosity and continuous interconnected pore network allow for facile gas transport and improved reaction kinetics. Ceria-based ordered materials have recently been shown to increase maximum hydrogen production over non-ordered porous ceria. Thermal stability of ordered porosity was quantified using quantitative image analysis. Fourier analysis was applied to SEM images of the material. The algorithm results in an order parameter gamma that describes the degree of long range order maintained by these structures, where gamma>4 signifies ordered porosity. According to this metric, a minimum zirconium content of 20 atomic percent (at%) is necessary for these architectures to survive aggressive annealing up to 1000°C. Zirconium substituted ceria (ZSC) with Zr loadings in excess of 20at% developed undesired tetragonal phases. Through gamma, we were able to find a balance between the benefit of zirconium additions on structural stability and its negative impact on phase. This work demonstrates the stability of seemingly delicate architectures, and the operational limit for ceria based inverse opals to be 1000°C for 1microm pore size. Inverse opals having sub-micron pores did not sustain ordered structures after heating, and those larger than 1microm had reinforced structural stability. Furthermore, this analysis was applied to materials which underwent isothermal hydrogen/water redox cycles. ZDC20 inverse opals having 300, 650 and 1000nm pore sizes maintained ordered porosity at 800°C, indicating a novel opportunity for use at higher temperatures. The mechanism of inverse opal degradation was investigated. Both in situ and ex situ electron microscopy studies were performed on inverse opals subjected to high temperatures. Coarsening by surface diffusion was found to be the dominant grain growth mechanism. The inverse opal grain growth mechanism was found to deviate from that of porous materials due to the high porosity and an upper limit to grain size caused by structural confinement. Furthermore, in situ experiments enabled correlation of nano-scale grain growth to micro-scale feature changes, resulting in an empirical relationship. Lastly, this dissertation presents an investigation of the effect of ordered porosity on hydrogen production rate and quantity. These results differ from those presented in literature, and an opportunity for further investigation is proposed.
Assessment the effect of homogenized soil on soil hydraulic properties and soil water transport
NASA Astrophysics Data System (ADS)
Mohawesh, O.; Janssen, M.; Maaitah, O.; Lennartz, B.
2017-09-01
Soil hydraulic properties play a crucial role in simulating water flow and contaminant transport. Soil hydraulic properties are commonly measured using homogenized soil samples. However, soil structure has a significant effect on the soil ability to retain and to conduct water, particularly in aggregated soils. In order to determine the effect of soil homogenization on soil hydraulic properties and soil water transport, undisturbed soil samples were carefully collected. Five different soil structures were identified: Angular-blocky, Crumble, Angular-blocky (different soil texture), Granular, and subangular-blocky. The soil hydraulic properties were determined for undisturbed and homogenized soil samples for each soil structure. The soil hydraulic properties were used to model soil water transport using HYDRUS-1D.The homogenized soil samples showed a significant increase in wide pores (wCP) and a decrease in narrow pores (nCP). The wCP increased by 95.6, 141.2, 391.6, 3.9, 261.3%, and nCP decreased by 69.5, 10.5, 33.8, 72.7, and 39.3% for homogenized soil samples compared to undisturbed soil samples. The soil water retention curves exhibited a significant decrease in water holding capacity for homogenized soil samples compared with the undisturbed soil samples. The homogenized soil samples showed also a decrease in soil hydraulic conductivity. The simulated results showed that water movement and distribution were affected by soil homogenizing. Moreover, soil homogenizing affected soil hydraulic properties and soil water transport. However, field studies are being needed to find the effect of these differences on water, chemical, and pollutant transport under several scenarios.
NASA Astrophysics Data System (ADS)
Housaindokht, Mohammad Reza; Moosavi, Fatemeh
2018-06-01
The effect of magnetization on the properties of a system containing a peptide model is studied by molecular dynamics simulation at a range of 298-318 K. Two mole fractions of 0.001 and 0.002 of peptide were simulated and the variation of hydrogen bond number, orientational ordering parameter, gyration radius, mean square displacement, as well as radial distribution function, were under consideration. The results show that applying magnetic field will increase the number of hydrogen bonds between water molecules by clustering them and decreases the interaction of water and peptide. This reduction may cause more available free space and enhance the movement of the peptide. As a result, the diffusion coefficient of the peptide becomes greater and its conformation changes. Orientational ordering parameter besides radius of gyration demonstrates that peptide is expanded by static magnetic field and its orientational ordering parameter is affected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamm, Peter; Fanourgakis, George S.; Xantheas, Sotiris S.
Nuclear quantum effects in liquid water have profound implications for several of its macroscopic properties related to structure, dynamics, spectroscopy and transport. Although several of water’s macroscopic properties can be reproduced by classical descriptions of the nuclei using potentials effectively parameterized for a narrow range of its phase diagram, a proper account of the nuclear quantum effects is required in order to ensure that the underlying molecular interactions are transferable across a wide temperature range covering different regions of that diagram. When performing an analysis of the hydrogen bonded structural networks in liquid water resulting from the classical (class.) andmore » quantum (q.m.) descriptions of the nuclei with the transferable, flexible, polarizable TTM3-F interaction potential, we found that the two results can be superimposed over the temperature range of T=270-350 K using a surprisingly simple, linear scaling of the two temperatures according to T(q.m.)=aT(class)- T , where a=1.2 and T=51 K. The linear scaling and constant shift of the temperature scale can be considered as a generalization of the previously reported temperature shifts (corresponding to structural changes and the melting T) induced by quantum effects in liquid water.« less
Acetobacter xylinum Mutant with High Cellulose Productivity and an Ordered Structure.
Watanabe, K; Tabuchi, M; Ishikawa, A; Takemura, H; Tsuchida, T; Morinaga, Y; Yoshinaga, F
1998-01-01
Acetobacter xylinum subsp. sucrofermentans BPR2001, a cellulose-producing bacterium, that was newly isolated from a natural source, produced large amounts of the water-soluble polysaccharide, acetan. UDP-glucose is known to be the direct precursor in the synthetic pathways of both cellulose and acetan. We attempted to breed mutant strains and succeeded in obtaining one, BPR3001A, which produced 65% more bacterial cellulose and accumulated 83% less acetan than the parent strain, BPR2001. The cellulose formed was found to be structurally ordered, with higher degrees of polymerization and crystallinity and larger crystallite size than those produced by BPR2001 and other conventional strains. Furthermore, a processed dry sheet of this cellulose exhibited a higher Young's modulus than that of the wild strain. The ordered structure of the cellulose obtained was probably due to the decreased amount of acetan which may reflect the ribbon assembly of cellulose fibrils without prevention of hydrogen bonding between microfibrils.
Characterization of the Virtual Water Commodity Network of Major U.S. Cities
NASA Astrophysics Data System (ADS)
Garcia, S.; Ahams, I. C.; Ruddell, B. L.; Mejia, A.
2016-12-01
Cities, through their socioeconomic power and consumption patterns, drive an intricate web of commodity flows that gives rise to an underlying network of indirect transfers of energy and water. The virtual water content of a commodity represents the water embedded in its production. It can serve as a measure of city water consumption that, along with direct, metabolic consumption, exposes the dependence of cities on distant regions and the potential vulnerabilities of the network to shocks and stresses. Using the U.S. network of commodities flows, together with their associated virtual water content, we use network theory to analyze first-order and higher-order topological properties of virtual water flows for major U.S. cities, defined by their metropolitan boundaries. They are represented as nodes and weighted directed links, symbolizing the volume and direction of the virtual water flows associated with the transfer of agricultural, livestock and industrial commodities. We find that network properties, generally, vary across commodities and reveal complex structures such as the appearance of hubs like Chicago, Houston, and New Orleans for industrial commodities and the formation of communities (megaregions). Additionally, using scaling arguments, we find that increasing city size makes larger cities more water efficient and hydroeconomically productive than smaller ones. This work represents an initial step towards understanding the role played by cities in the U.S. commodity network and food-energy-water (FEW) nexus.
Zhang, Bin; Dhital, Sushil; Flanagan, Bernadine M; Gidley, Michael J
2014-01-22
After heating in excess water under little or no shear, starch granules do not dissolve completely but persist as highly swollen fragile forms, commonly termed granule "ghosts". The macromolecular architecture of these ghosts has not been defined, despite their importance in determining characteristic properties of starches. In this study, amylase digestion of isolated granule ghosts from maize and potato starches is used as a probe to study the mechanism of ghost formation, through microstructural, mesoscopic, and molecular scale analyses of structure before and after digestion. Digestion profiles showed that neither integral nor surface proteins/lipids were crucial for control of either ghost digestion or integrity. On the basis of the molecular composition and conformation of enzyme-resistant fractions, it was concluded that the condensed polymeric surface structure of ghost particles is mainly composed of nonordered but entangled amylopectin (and some amylose) molecules, with limited reinforcement through partially ordered enzyme-resistant structures based on amylose (for maize starch; V-type order) or amylopectin (for potato starch; B-type order). The high level of branching and large molecular size of amylopectin is proposed to be the origin for the unusual stability of a solid structure based primarily on temporary entanglements.
Hosoya, Masahiro; Otani, Yuko; Kawahata, Masatoshi; Yamaguchi, Kentaro; Ohwada, Tomohiko
2010-10-27
Helical structures of oligomers of non-natural β-amino acids are significantly stabilized by intramolecular hydrogen bonding between main-chain amide moieties in many cases, but the structures are generally susceptible to the environment; that is, helices may unfold in protic solvents such as water. For the generation of non-hydrogen-bonded ordered structures of amides (tertiary amides in most cases), control of cis-trans isomerization is crucial, even though there is only a small sterical difference with respect to cis and trans orientations. We have established methods for synthesis of conformationally constrained β-proline mimics, that is, bridgehead-substituted 7-azabicyclo[2.2.1]heptane-2-endo-carboxylic acids. Our crystallographic, 1D- and 2D-NMR, and CD spectroscopic studies in solution revealed that a bridgehead methoxymethyl substituent completely biased the cis-trans equilibrium to the cis-amide structure along the main chain, and helical structures based on the cis-amide linkage were generated independently of the number of residues, from the minimalist dimer through the tetramer, hexamer, and up to the octamer, and irrespective of the solvent (e.g., water, alcohol, halogenated solvents, and cyclohexane). Generality of the control of the amide equilibrium by bridgehead substitution was also examined.
Silva, A C; Higuchi, P; van den Berg, E
2010-08-01
In order to determine the influence of soil water table fluctuation on tree species richness and structure of alluvial forest fragments, 24 plots were allocated in a point bar forest and 30 plots in five forest fragments located in a floodplain, in the municipality of São Sebastião da Bela Vista, Southeast Brazil, totalizing 54, 10 X 20 m, plots. The information recorded in each plot were the soil water table level, diameter at breast height (dbh), total height and botanical identity off all trees with dbh > 5 cm. The water table fluctuation was assessed through 1 m deep observation wells in each plot. Correlations analysis indicated that sites with shallower water table in the flooding plains had a low number of tree species and high tree density. Although the water table in the point bar remained below the wells during the study period, low tree species richness was observed. There are other events taking place within the point bar forest that assume a high ecological importance, such as the intensive water velocity during flooding and sedimentation processes.
Effect of water availability in opening containers of breeding site on Aedes aegypti life cycle
NASA Astrophysics Data System (ADS)
Tokachil, Najir; Yusoff, Nuraini; Saaid, Alif; Appandi, Najwa; Harun, Farhana
2017-11-01
The distribution of rainfall is one of the factors which contribute to the development of Aedes aegypti life cycle. The fluctuation of rainfall might influence the acceleration of Aedes aegypti growth by providing sufficient breeding sites. In this research, the availability of water in an opening container of the breeding site is considered as a significant variable which affects the distinct stages structure in mosquito life cycle which egg, larva, pupa, and adult. A stage-structured Lefkovitch matrix model was used by considering the quantity of water contains in an opening container and life cycle of Aedes aegypti. The maximum depth of water in the container was also taken into account in order to find the time duration of mosquito life cycle to complete. We found that the maximum depth of water availability in mosquito breeding site influenced the abundance of the mosquito population. Hence, the containers are filled with sufficient water be able to stand from hot temperature for several days before drying out might continue to provide mosquito breeding site. In the future, it is recommended to consider other factors which affect the quantity of water in mosquito breeding sites such as heavy rain and wind blows.
Performance of pervious pavement parking bays storing rainwater in the north of Spain.
Gomez-Ullate, E; Bayon, J R; Coupe, S; Castro-Fresno, D
2010-01-01
Pervious pavements are drainage techniques that improve urban water management in a sustainable manner. An experimental pervious pavement parking area has been constructed in the north of Spain (Santander), with the aim of harvesting good quality rainwater. Forty-five pervious pavement structures have been designed and constructed to measure stored water quantity and quality simultaneously. Ten of these structures are specifically constructed with different geotextile layers for improving water storage within the pavements. Following the confirmation in previous laboratory experiments that the geotextile influenced on water storage, two different geosynthetics (Inbitex and a One Way evaporation control membrane) and control pervious pavements with no geotextile layers were tested in the field. Weather conditions were monitored in order to find correlations with the water storage within the pervious pavement models tested. During one year of monitoring the three different pervious pavement types tested remained at their maximum storage capacity. The heavy rain events which occurred during the experimental period caused evaporation rates within the pervious pavements to be not significant, but allowed the researchers to observe certain trends in the water storage. Temperature was the most closely correlated weather factor with the level of the water stored within the pervious pavements tested.
A Semi-Structured MODFLOW-USG Model to Evaluate Local Water Sources to Wells for Decision Support.
Feinstein, Daniel T; Fienen, Michael N; Reeves, Howard W; Langevin, Christian D
2016-07-01
In order to better represent the configuration of the stream network and simulate local groundwater-surface water interactions, a version of MODFLOW with refined spacing in the topmost layer was applied to a Lake Michigan Basin (LMB) regional groundwater-flow model developed by the U.S. Geological. Regional MODFLOW models commonly use coarse grids over large areas; this coarse spacing precludes model application to local management issues (e.g., surface-water depletion by wells) without recourse to labor-intensive inset models. Implementation of an unstructured formulation within the MODFLOW framework (MODFLOW-USG) allows application of regional models to address local problems. A "semi-structured" approach (uniform lateral spacing within layers, different lateral spacing among layers) was tested using the LMB regional model. The parent 20-layer model with uniform 5000-foot (1524-m) lateral spacing was converted to 4 layers with 500-foot (152-m) spacing in the top glacial (Quaternary) layer, where surface water features are located, overlying coarser resolution layers representing deeper deposits. This semi-structured version of the LMB model reproduces regional flow conditions, whereas the finer resolution in the top layer improves the accuracy of the simulated response of surface water to shallow wells. One application of the semi-structured LMB model is to provide statistical measures of the correlation between modeled inputs and the simulated amount of water that wells derive from local surface water. The relations identified in this paper serve as the basis for metamodels to predict (with uncertainty) surface-water depletion in response to shallow pumping within and potentially beyond the modeled area, see Fienen et al. (2015a). Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
What is the minimum number of water molecules required to dissolve a potassium chloride molecule?
Sen, Anik; Ganguly, Bishwajit
2010-12-01
This work answers an unsolved question that consists of determining the least number of water molecules necessary to separate a potassium chloride molecule. The answer based on accurate quantum chemical calculations suggests that tetramers are the smallest clusters necessary to dissociate KCl molecules. The study was made with Møller-Plesset second-order perturbation theory modified with the cluster theory having single, double, and perturbative triple excitations. With this extensive study, the dissociation of KCl molecule in different water clusters was evaluated. The calculated results show that four water molecules stabilize a solvent separated K(+)/Cl(-) ion-pair in prismatic structure and with six water molecules further dissociation was observed. Attenuated total reflection infrared spectroscopy of KCl dissolved in water establishes that clusters are made of closely bound ions with a mean of five water molecules per ion-pair [K(+)(H(2)O)(5)Cl(-)]. (Max and Chapados, Appl Spectrosc 1999, 53, 1601; Max and Chapados, J Chem Phys 2001, 115, 2664.) The calculated results tend to support that five water molecules leads toward the formation of contact ion-pair. The structures, energies, and infrared spectra of KCl molecules in different water clusters are also discussed. © 2010 Wiley Periodicals, Inc.
Structure/property relationships in polymer membranes for water purification and energy applications
NASA Astrophysics Data System (ADS)
Geise, Geoffrey
Providing sustainable supplies of purified water and energy is a critical global challenge for the future, and polymer membranes will play a key role in addressing these clear and pressing global needs for water and energy. Polymer membrane-based processes dominate the desalination market, and polymer membranes are crucial components in several rapidly developing power generation and storage applications that rely on membranes to control rates of water and/or ion transport. Much remains unknown about the influence of polymer structure on intrinsic water and ion transport properties, and these relationships must be developed to design next generation polymer membrane materials. For desalination applications, polymers with simultaneously high water permeability and low salt permeability are desirable in order to prepare selective membranes that can efficiently desalinate water, and a tradeoff relationship between water/salt selectivity and water permeability suggests that attempts to prepare such materials should rely on approaches that do more than simply vary polymer free volume. One strategy is to functionalize hydrocarbon polymers with fixed charge groups that can ionize upon exposure to water, and the presence of charged groups in the polymer influences transport properties. Additionally, in many emerging energy applications, charged polymers are exposed to ions that are very different from sodium and chloride. Specific ion effects have been observed in charged polymers, and these effects must be understood to prepare charged polymers that will enable emerging energy technologies. This presentation discusses research aimed at further understanding fundamental structure/property relationships that govern water and ion transport in charged polymer films considered for desalination and electric potential field-driven applications that can help address global needs for clean water and energy.
Geometry-dependent atomic multipole models for the water molecule.
Loboda, O; Millot, C
2017-10-28
Models of atomic electric multipoles for the water molecule have been optimized in order to reproduce the electric potential around the molecule computed by ab initio calculations at the coupled cluster level of theory with up to noniterative triple excitations in an augmented triple-zeta quality basis set. Different models of increasing complexity, from atomic charges up to models containing atomic charges, dipoles, and quadrupoles, have been obtained. The geometry dependence of these atomic multipole models has been investigated by changing bond lengths and HOH angle to generate 125 molecular structures (reduced to 75 symmetry-unique ones). For several models, the atomic multipole components have been fitted as a function of the geometry by a Taylor series of fourth order in monomer coordinate displacements.
Geometry-dependent atomic multipole models for the water molecule
NASA Astrophysics Data System (ADS)
Loboda, O.; Millot, C.
2017-10-01
Models of atomic electric multipoles for the water molecule have been optimized in order to reproduce the electric potential around the molecule computed by ab initio calculations at the coupled cluster level of theory with up to noniterative triple excitations in an augmented triple-zeta quality basis set. Different models of increasing complexity, from atomic charges up to models containing atomic charges, dipoles, and quadrupoles, have been obtained. The geometry dependence of these atomic multipole models has been investigated by changing bond lengths and HOH angle to generate 125 molecular structures (reduced to 75 symmetry-unique ones). For several models, the atomic multipole components have been fitted as a function of the geometry by a Taylor series of fourth order in monomer coordinate displacements.
NASA Astrophysics Data System (ADS)
Gueudré, C.; Marrec, L. Le; Chekroun, M.; Moysan, J.; Chassignole, B.; Corneloup, G.
2011-06-01
Multipass welds made in austenitic stainless steel, in the primary circuit of nuclear power plants with pressurized water reactors, are characterized by an anisotropic and heterogeneous structure that disturbs the ultrasonic propagation and challenge the ultrasonic non-destructive testing. The simulation in this type of structure is now possible thanks to the MINA code which allows the grain orientation modeling taking into account the welding process, and the ATHENA code to exactly simulate the ultrasonic propagation. We propose studying the case where the order of the passes is unknown to estimate the possibility of reconstructing this important parameter by ultrasound measures. The first results are presented.
Two-order-parameter description of liquid Al under five different pressures
NASA Astrophysics Data System (ADS)
Li, Y. D.; Hao, Qing-Hai; Cao, Qi-Long; Liu, C. S.
2008-11-01
In the present work, using the glue potential, the constant pressure molecular-dynamics simulations of liquid Al under five various pressures and a systematic analysis of the local atomic structures have been performed in order to test the two-order-parameter model proposed by Tanaka [Phys. Rev. Lett. 80, 5750 (1998)] originally for explaining the unusual behaviors of liquid water. The temperature dependence of the bond order parameter Q6 in liquid Al under five different pressures can be well fitted by the functional expression (Q6)/(1-Q6)=Q60exp((ΔE-PΔV)/(kBT)) which produces the energy gain ΔE and the volume change upon the formation of a locally favored structure: ΔE=0.025eV and ΔV=-0.27(Å)3 . ΔE is nearly equal to the difference between the average bond energy of the other type I bonds and the average bond energy of 1551 bonds (characterizing the icosahedronlike local structure); ΔV could be explained as the average volume occupied by one atom in icosahedra minus that occupied by one atom in other structures. With the obtained ΔE and ΔV , it is satisfactorily explained that the density of liquid Al displays a much weaker nonlinear dependence on temperature under lower pressures. So it is demonstrated that the behavior of liquid Al can be well described by the two-order-parameter model.
Coupling between the Dynamics of Water and Surfactants in Lyotropic Liquid Crystals.
McDaniel, Jesse G; Yethiraj, Arun
2017-05-18
Bilayers composed of lipid or surfactant molecules are central to biological membranes and lamellar lyotropic liquid crystalline (LLC) phases. Common to these systems are phases that exhibit either ordered or disordered packing of the hydrophobic tails. In this work, we study the impact of surfactant ordering, i.e., disordered L α and ordered L β LLC phases, on the dynamics of water and sodium ions in the lamellar phases of dicarboxylate gemini surfactants. We study the different phases at identical hydration levels by changing the length of the hydrophobic tails; surfactants with shorter tails form L α phases and those with longer tails form L β phases. We find that the L α phases exhibit lower density and greater compressibility than the L β phases, with a hydration-dependent headgroup surface area. These structural differences significantly affect the relative dynamic properties of the phases, primarily the mobility of the surfactant molecules tangential to the bilayer surface, as well as the rates of water and ion diffusion. We find ∼20-50% faster water diffusion in the L α phases compared to the L β phases, with the differences most pronounced at low hydration. This coupling between water dynamics and surfactant mobility is verified using additional simulations in which the surfactant tails are frozen. Our study indicates that gemini surfactant LLCs provide an important prototypical system for characterizing properties shared with more complex biological lipid membranes.
NASA Astrophysics Data System (ADS)
MacDermaid, Christopher M.; DeVane, Russell H.; Klein, Michael L.; Fiorin, Giacomo
2014-12-01
The level of hydration controls the cohesion between apposed lamellae of saturated free fatty acids found in the lipid matrix of stratum corneum, the outermost layer of mammalian skin. This multilamellar lipid matrix is highly impermeable to water and ions, so that the local hydration shell of its fatty acids may not always be in equilibrium with the acidity and relative humidity, which significantly change over a course of days during skin growth. The homeostasis of the stratum corneum at each moment of its growth likely requires a balance between two factors, which affect in opposite ways the diffusion of hydrophilic species through the stratum corneum: (i) an increase in water order as the lipid lamellae come in closer contact, and (ii) a decrease in water order as the fraction of charged fatty acids is lowered by pH. Herein molecular dynamics simulations are employed to estimate the impact of both effects on water molecules confined between lamellae of fatty acids. Under conditions where membrane undulations are energetically favorable, the charged fatty acids are able to sequester cations around points of contact between lamellae that are fully dehydrated, while essentially maintaining a multilamellar structure for the entire system. This observation suggests that the undulations of the fatty acid lamellae control the diffusion of hydrophilic species through the water phase by altering the positional and rotational order of water molecules in the embedded/occluded "droplets."
Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels
Tobias Köhnke; Thomas Elder; Hans Theliander; Arthur J. Ragauskas
2014-01-01
Structured xylan-based hydrogels, reinforced with cellulose nanocrystals (CNCs), have successfully been prepared from water suspensions by cross-linking during freeze-casting. In order to induce cross-linking during the solidification/sublimation operation, xylan was first oxidized using sodium periodate to introduce dialdehydes. The oxidized xylan was then mixed with...
Relative Sizes of Organic Molecules
NASA Technical Reports Server (NTRS)
2000-01-01
This computer graphic depicts the relative complexity of crystallizing large proteins in order to study their structures through x-ray crystallography. Insulin is a vital protein whose structure has several subtle points that scientists are still trying to determine. Large molecules such as insuline are complex with structures that are comparatively difficult to understand. For comparison, a sugar molecule (which many people have grown as hard crystals in science glass) and a water molecule are shown. These images were produced with the Macmolecule program. Photo credit: NASA/Marshall Space Flight Center (MSFC)
Chou, Shin G; Soper, Alan K; Khodadadi, Sheila; Curtis, Joseph E; Krueger, Susan; Cicerone, Marcus T; Fitch, Andrew N; Shalaev, Evgenyi Y
2012-04-19
In this study, the structure of concentrated d-sorbitol-water mixtures is studied by wide- and small-angle neutron scattering (WANS and SANS) as a function of temperature. The mixtures are prepared using both deuterated and regular sorbitol and water at a molar fraction of sorbitol of 0.19 (equivalent to 70% by weight of regular sorbitol in water). Retention of an amorphous structure (i.e., absence of crystallinity) is confirmed for this system over the entire temperature range, 100-298 K. The glass transition temperature, Tg, is found from differential scanning calorimetry to be approximately 200 K. WANS data are analyzed using empirical potential structure refinement, to obtain the site-site radial distribution functions (RDFs) and coordination numbers. This analysis reveals the presence of nanoscaled water clusters surrounded by (and interacting with) sorbitol molecules. The water clusters appear more structured compared to bulk water and, especially at the lowest temperatures, resemble the structure of low-density amorphous ice (LDA). Upon cooling to 100 K the peaks in the water RDFs become markedly sharper, with increased coordination number, indicating enhanced local (nanometer-scale) ordering, with changes taking place both above and well below the Tg. On the mesoscopic (submicrometer) scale, although there are no changes between 298 and 213 K, cooling the sample to 100 K results in a significant increase in the SANS signal, which is indicative of pronounced inhomogeneities. This increase in the scattering is partly reversed during heating, although some hysteresis is observed. Furthermore, a power law analysis of the SANS data indicates the existence of domains with well-defined interfaces on the submicrometer length scale, probably as a result of the appearance and growth of microscopic voids in the glassy matrix. Because of the unusual combination of small and wide scattering data used here, the present results provide new physical insight into the structure of aqueous glasses over a broad temperature and length scale, leading to an improved understanding of the mechanisms of temperature- and water-induced (de)stabilization of various systems, including proteins, pharmaceuticals, and biological objects.
Microscopic mechanism of protein cryopreservation in an aqueous solution with trehalose
Corradini, Dario; Strekalova, Elena G.; Stanley, H. Eugene; Gallo, Paola
2013-01-01
In order to investigate the cryoprotective mechanism of trehalose on proteins, we use molecular dynamics computer simulations to study the microscopic dynamics of water upon cooling in an aqueous solution of lysozyme and trehalose. We find that the presence of trehalose causes global retardation of the dynamics of water. Comparing aqueous solutions of lysozyme with/without trehalose, we observe that the dynamics of water in the hydration layers close to the protein is dramatically slower when trehalose is present in the system. We also analyze the structure of water and trehalose around the lysozyme and find that the trehalose molecules form a cage surrounding the protein that contains very slow water molecules. We conclude that the transient cage of trehalose molecules that entraps and slows the water molecules prevents the crystallisation of protein hydration water upon cooling. PMID:23390573
Microscopic mechanism of protein cryopreservation in an aqueous solution with trehalose.
Corradini, Dario; Strekalova, Elena G; Stanley, H Eugene; Gallo, Paola
2013-01-01
In order to investigate the cryoprotective mechanism of trehalose on proteins, we use molecular dynamics computer simulations to study the microscopic dynamics of water upon cooling in an aqueous solution of lysozyme and trehalose. We find that the presence of trehalose causes global retardation of the dynamics of water. Comparing aqueous solutions of lysozyme with/without trehalose, we observe that the dynamics of water in the hydration layers close to the protein is dramatically slower when trehalose is present in the system. We also analyze the structure of water and trehalose around the lysozyme and find that the trehalose molecules form a cage surrounding the protein that contains very slow water molecules. We conclude that the transient cage of trehalose molecules that entraps and slows the water molecules prevents the crystallisation of protein hydration water upon cooling.
Molecular Dynamics of Peptide Folding at Aqueous Interfaces
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Chipot, Christophe; Chang, Sherwood (Technical Monitor)
1997-01-01
Even though most monomeric peptides are disordered in water they can adopt sequence-dependent, ordered structures, such as a-helices, at aqueous interfaces. This property is relevant to cellular signaling, membrane fusion, and the action of toxins and antibiotics. The mechanism of folding nonpolar peptides at the water-hexane interface was studied in the example of an 11-mer, of poly-L-leucine. Initially placed as a random coil on the water side of the interface, the peptide folded into an a-helix in 36 ns. Simultaneously, the peptide translocated into the hexane side of the interface. Folding was not sequential and involved a 3/10-helix as an intermediate. The folded peptide was either parallel to the interface or had its C-terminus exposed to water. An 11-mer, LQQLLQQLLQL, composed of leucine (L) and glutamine (G), was taken as a model amphiphilic peptide. It rapidly adopted an amphiphilic, disordered structure at the interface. Further folding proceeded through a series of amphiphilic intermediates.
De Los Ríos, A; Echavarri-Erasun, B; Lacorte, S; Sánchez-Ávila, J; De Jonge, M; Blust, R; Orbea, A; Juanes, J A; Cajaraville, M P
2016-10-01
Data obtained in a pollution survey performed in estuarine areas were integrated using multivariate statistics. The sites selected for the study were areas affected by treated and untreated urban discharges, harbours or industrial activities as well as reference sites. Mussels were transplanted to each site and after different times of exposure, samples of water, sediments and mussels were collected. Biomarkers were analysed on mussels after 3 and 21 days of transplant whereas concentrations of contaminants were measured in water, sediments and mussels after 21 days of transplant. The structure of macroinvertebrate benthic communities was studied in sediment samples. Studied variables were organised into 5 datasets, each one constituting a line of evidence (LOE): contaminants in water, contaminants in sediments, contaminants accumulated by transplanted mussels, biomarkers in transplanted mussels and changes in the structure of macroinvertebrate benthic communities of each sampling site. Principal Component Analysis (PCA) identified the variables of each LOE best explaining variability among sites. In order to know how LOEs relate to each other, Pearson's correlations were performed. Contaminants in sediments were not correlated with the rest of LOEs. Contaminants in water were significantly correlated with contaminants and biomarkers in mussels and with structure of macroinvertebrate benthic communities. Similarly, significant correlations were found between contaminants and biomarkers in mussels and between biomarkers in mussels and structure of macroinvertebrate benthic communities. In conclusion, biomarker responses give relevant information on pollution in estuarine areas and provide a link between chemical and ecological statuses of water bodies in the context of the Water Framework Directive. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hegde, Govind A.; Bharadwaj, Vivek S.; Kinsinger, Corey L.
2016-08-14
The recalcitrance of lignocellulosic biomass poses a major challenge that hinders the economical utilization of biomass for the production of biofuel, plastics, and chemicals. Ionic liquids have become a promising solvent that addresses many issues in both the pretreatment process and the hydrolysis of the glycosidic bond for the deconstruction of cellulosic materials. However, to make the use of ionic liquids economically viable, either the cost of ionic liquids must be reduced, or a less expensive solvent (e.g., water) may be added to reduce the overall amount of ionic liquid used in addition to reducing the viscosity of the binarymore » liquid mixture. In this work, we employ atomistic molecular dynamics simulations to investigate the impact of water dilution on the overall liquid structure and properties of three imidazolium based ionic liquids. It is found that ionic liquid-water mixtures exhibit characteristics that can be grouped into two distinct regions, which are a function of the ionic liquid concentration. The trends observed in each region are found to correlate with the ordering in the local structure of the ionic liquid that arises from the dynamic interactions between the ion pairs. Simulation results suggest that there is a high level of local ordering in the molecular structure at high concentrations of ionic liquids that is driven by the aggregation of the cationic tails and the anion-water interactions. It is found that as the concentration of ionic liquids in the binary mixture is decreased, there is a point at which the competing self and cross interaction energies between the ionic liquid and water shifts away from a cation-anion dominated regime, which results in a significant change in the mixture properties. This break point, which occurs around 75% w/w ionic liquids, corresponds to the point at which water molecules percolate into the ionic liquid network disrupting the ionic liquids’ nanostructure. It is observed that as the cationic alkyl tail length increases, the changes in the binary mixtures’ properties become more pronounced.« less
Ab initio investigation of the first hydration shell of protonated glycine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Zhichao; Chen, Dong, E-mail: dongchen@henu.edu.cn, E-mail: boliu@henu.edu.cn; Zhao, Huiling
2014-02-28
The first hydration shell of the protonated glycine is built up using Monte Carlo multiple minimum conformational search analysis with the MMFFs force field. The potential energy surfaces of the protonated glycine and its hydration complexes with up to eight water molecules have been scanned and the energy-minimized structures are predicted using the ab initio calculations. First, three favorable structures of protonated glycine were determined, and the micro-hydration processes showed that water can significantly stabilize the unstable conformers, and then their first hydration shells were established. Finally, we found that seven water molecules are required to fully hydrate the firstmore » hydration shell for the most stable conformer of protonated glycine. In order to analyse the hydration process, the dominant hydration sites located around the ammonium and carboxyl groups are studied carefully and systemically. The results indicate that, water molecules hydrate the protonated glycine in an alternative dynamic hydration process which is driven by the competition between different hydration sites. The first three water molecules are strongly attached by the ammonium group, while only the fourth water molecule is attached by the carboxyl group in the ultimate first hydration shell of the protonated glycine. In addition, the first hydration shell model has predicted most identical structures and a reasonable accord in hydration energy and vibrational frequencies of the most stable conformer with the conductor-like polarizable continuum model.« less
Method for analyzing soil structure according to the size of structural elements
NASA Astrophysics Data System (ADS)
Wieland, Ralf; Rogasik, Helmut
2015-02-01
The soil structure in situ is the result of cropping history and soil development over time. It can be assessed by the size distribution of soil structural elements such as air-filled macro-pores, aggregates and stones, which are responsible for important water and solute transport processes, gas exchange, and the stability of the soil against compacting and shearing forces exerted by agricultural machinery. A method was developed to detect structural elements of the soil in selected horizontal slices of soil core samples with different soil structures in order for them to be implemented accordingly. In the second step, a fitting tool (Eureqa) based on artificial programming was used to find a general function to describe ordered sets of detected structural elements. It was shown that all the samples obey a hyperbolic function: Y(k) = A /(B + k) , k ∈ { 0 , 1 , 2 , … }. This general behavior can be used to develop a classification method based on parameters {A and B}. An open source software program in Python was developed, which can be downloaded together with a selection of soil samples.
Grudinin, Sergei; Büldt, Georg; Gordeliy, Valentin; Baumgaertner, Artur
2005-01-01
Protein crystallography provides the structure of a protein, averaged over all elementary cells during data collection time. Thus, it has only a limited access to diffusive processes. This article demonstrates how molecular dynamics simulations can elucidate structure-function relationships in bacteriorhodopsin (bR) involving water molecules. The spatial distribution of water molecules and their corresponding hydrogen-bonded networks inside bR in its ground state (G) and late M intermediate conformations were investigated by molecular dynamics simulations. The simulations reveal a much higher average number of internal water molecules per monomer (28 in the G and 36 in the M) than observed in crystal structures (18 and 22, respectively). We found nine water molecules trapped and 19 diffusive inside the G-monomer, and 13 trapped and 23 diffusive inside the M-monomer. The exchange of a set of diffusive internal water molecules follows an exponential decay with a 1/e time in the order of 340 ps for the G state and 460 ps for the M state. The average residence time of a diffusive water molecule inside the protein is ∼95 ps for the G state and 110 ps for the M state. We have used the Grotthuss model to describe the possible proton transport through the hydrogen-bonded networks inside the protein, which is built up in the picosecond-to-nanosecond time domains. Comparing the water distribution and hydrogen-bonded networks of the two different states, we suggest possible pathways for proton hopping and water movement inside bR. PMID:15731388
Using CV-GLUE procedure in analysis of wetland model predictive uncertainty.
Huang, Chun-Wei; Lin, Yu-Pin; Chiang, Li-Chi; Wang, Yung-Chieh
2014-07-01
This study develops a procedure that is related to Generalized Likelihood Uncertainty Estimation (GLUE), called the CV-GLUE procedure, for assessing the predictive uncertainty that is associated with different model structures with varying degrees of complexity. The proposed procedure comprises model calibration, validation, and predictive uncertainty estimation in terms of a characteristic coefficient of variation (characteristic CV). The procedure first performed two-stage Monte-Carlo simulations to ensure predictive accuracy by obtaining behavior parameter sets, and then the estimation of CV-values of the model outcomes, which represent the predictive uncertainties for a model structure of interest with its associated behavior parameter sets. Three commonly used wetland models (the first-order K-C model, the plug flow with dispersion model, and the Wetland Water Quality Model; WWQM) were compared based on data that were collected from a free water surface constructed wetland with paddy cultivation in Taipei, Taiwan. The results show that the first-order K-C model, which is simpler than the other two models, has greater predictive uncertainty. This finding shows that predictive uncertainty does not necessarily increase with the complexity of the model structure because in this case, the more simplistic representation (first-order K-C model) of reality results in a higher uncertainty in the prediction made by the model. The CV-GLUE procedure is suggested to be a useful tool not only for designing constructed wetlands but also for other aspects of environmental management. Copyright © 2014 Elsevier Ltd. All rights reserved.
Order and Jamming on Curved Surfaces
NASA Astrophysics Data System (ADS)
Burke, Christopher J.
Geometric frustration occurs when a physical system's preferred ordering (e.g. spherical particles packing in a hexagonal lattice) is incompatible with the system's geometry. An example of this occurs in arrested relaxation in Pickering emulsions. Pickering emulsions are emulsions (e.g. mixtures of oil and water) with colloidal particles mixed in. The particles tend to lie at an oil-water interface, and can coat the surface of droplets within the emulsion (e.g. an oil droplet surrounded by water.) If a droplet is deformed from its spherical ground state, more particles adsorb at the surface, and the droplet is allowed to relax, then the particles on the surface can become close packed and prevent further relaxation, arresting the droplet in a non-spherical shape. The resulting structures tend to be relatively well ordered with regions of highly hexagonal packings; however, the curvature of the surface prevents perfect ordering and defects in the packing are required. These defects may influence the stability of these structures, making it important to understand how to predict and control them for applications in the food, cosmetic, oil, and medical industries. In this work, we use simulations to study the ordering and stability of sphere packings on arrested emulsions droplets. We first isolate the role of surface geometry by creating packings on a static ellipsoidal surface. Next we perform simulations which include dynamic effects that are present in the experimental Pickering emulsion system. Packings are created by evolving an ellipsoidal surface towards a spherical shape at fixed volume; the effects of relaxation rate, interparticle attraction, and gravity are determined. Finally, we study jamming on curved surfaces. Packings of hard particles are used to study marginally stable packings and the role curvature plays in constraining them. We also study packings of soft particles, compressed beyond marginal stability, and find that geometric frustration plays an important role in determining their mechanical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, J; Park, S; Jeong, J
Purpose: In particle therapy and radiobiology, the investigation of mechanisms leading to the death of target cancer cells induced by ionising radiation is an active field of research. Recently, several studies based on Monte Carlo simulation codes have been initiated in order to simulate physical interactions of ionising particles at cellular scale and in DNA. Geant4-DNA is the one of them; it is an extension of the general purpose Geant4 Monte Carlo simulation toolkit for the simulation of physical interactions at sub-micrometre scale. In this study, we present Geant4-DNA Monte Carlo simulations for the prediction of DNA strand breakage usingmore » a geometrical modelling of DNA structure. Methods: For the simulation of DNA strand breakage, we developed a specific DNA geometrical structure. This structure consists of DNA components, such as the deoxynucleotide pairs, the DNA double helix, the nucleosomes and the chromatin fibre. Each component is made of water because the cross sections models currently available in Geant4-DNA for protons apply to liquid water only. Also, at the macroscopic-scale, protons were generated with various energies available for proton therapy at the National Cancer Center, obtained using validated proton beam simulations developed in previous studies. These multi-scale simulations were combined for the validation of Geant4-DNA in radiobiology. Results: In the double helix structure, the deposited energy in a strand allowed to determine direct DNA damage from physical interaction. In other words, the amount of dose and frequency of damage in microscopic geometries was related to direct radiobiological effect. Conclusion: In this report, we calculated the frequency of DNA strand breakage using Geant4- DNA physics processes for liquid water. This study is now on-going in order to develop geometries which use realistic DNA material, instead of liquid water. This will be tested as soon as cross sections for DNA material become available in Geant4-DNA.« less
Improving Drinking Water Quality by Remineralisation.
Luptáková, Anna; Derco, Ján
2015-01-01
The reason of low mineral content in source water is its origin in poorly soluble mineral geological structures. There are many areas with very soft low-mineralised water around the world. All people involved in drinking water treatment as well as some public health experts and producers of chemicals used for water treatment may be interested in the study. Enrichment of drinking water by minerals including calcium and magnesium is very important particularly in regions where drinking water is prepared by desalination. The aim of this work was to study and intensify the recarbonization process. Half-calcined dolomite in combination with carbon dioxide constitutes the chemistry of the applied method. Advantages of using a fluidised bed reactor contributed also significantly to the process efficiency enhancement. Continuous input of carbon dioxide into the fluidised bed recarbonization reactor resulted in an increase in the recarbonization rate by about one order of magnitude compared with the process in without carbon dioxide addition. Very good fit of experimental data for hydrodynamic characteristics of fluidised bed was obtained using simple model based on the Richardson and Zaki expansion equation. The first order model describes kinetic data from the recarbonization process with a good accuracy. Higher recarbonization rates were observed with smaller particles of half-calcined dolomite.
Comparison of liquid-state anomalies in Stillinger-Weber models of water, silicon, and germanium
NASA Astrophysics Data System (ADS)
Dhabal, Debdas; Chakravarty, Charusita; Molinero, Valeria; Kashyap, Hemant K.
2016-12-01
We use molecular dynamics simulations to compare and contrast the liquid-state anomalies in the Stillinger-Weber models of monatomic water (mW), silicon (Si), and germanium (Ge) over a fairly wide range of temperatures and densities. The relationships between structure, entropy, and mobility, as well as the extent of the regions of anomalous behavior, are discussed as a function of the degree of tetrahedrality. We map out the cascade of density, structural, pair entropy, excess entropy, viscosity, and diffusivity anomalies for these three liquids. Among the three liquids studied here, only mW displays anomalies in the thermal conductivity, and this anomaly is evident only at very low temperatures. Diffusivity and viscosity, on the other hand, show pronounced anomalous regions for the three liquids. The temperature of maximum density of the three liquids shows re-entrant behavior consistent with either singularity-free or liquid-liquid critical point scenarios proposed to explain thermodynamic anomalies. The order-map, which shows the evolution of translational versus tetrahedral order in liquids, is different for Ge than for Si and mW. We find that although the monatomic water reproduces several thermodynamic and dynamic properties of rigid-body water models (e.g., SPC/E, TIP4P/2005), its sequence of anomalies follows, the same as Si and Ge, the silica-like hierarchy: the region of dynamic (diffusivity and viscosity) anomalies encloses the region of structural anomalies, which in turn encloses the region of density anomaly. The hierarchy of the anomalies based on excess entropy and Rosenfeld scaling, on the other hand, reverses the order of the structural and dynamic anomalies, i.e., predicts that the three Stillinger-Weber liquids follow a water-like hierarchy of anomalies. We investigate the scaling of diffusivity, viscosity, and thermal conductivity with the excess entropy of the liquid and find that for dynamical properties that present anomalies there is no universal scaling of the reduced property with excess entropy for the whole range of temperatures and densities. Instead, Rosenfeld's scaling holds for all the three liquids at high densities and high temperatures, although deviations from simple exponential dependence are observed for diffusivity and viscosity at lower temperatures and intermediate densities. The slope of the scaling of transport properties obtained for Ge is comparable to that obtained for simple liquids, suggesting that this low tetrahedrality liquid, although it stabilizes a diamond crystal, is already close to simple liquid behavior for certain properties.
Comparison of liquid-state anomalies in Stillinger-Weber models of water, silicon, and germanium.
Dhabal, Debdas; Chakravarty, Charusita; Molinero, Valeria; Kashyap, Hemant K
2016-12-07
We use molecular dynamics simulations to compare and contrast the liquid-state anomalies in the Stillinger-Weber models of monatomic water (mW), silicon (Si), and germanium (Ge) over a fairly wide range of temperatures and densities. The relationships between structure, entropy, and mobility, as well as the extent of the regions of anomalous behavior, are discussed as a function of the degree of tetrahedrality. We map out the cascade of density, structural, pair entropy, excess entropy, viscosity, and diffusivity anomalies for these three liquids. Among the three liquids studied here, only mW displays anomalies in the thermal conductivity, and this anomaly is evident only at very low temperatures. Diffusivity and viscosity, on the other hand, show pronounced anomalous regions for the three liquids. The temperature of maximum density of the three liquids shows re-entrant behavior consistent with either singularity-free or liquid-liquid critical point scenarios proposed to explain thermodynamic anomalies. The order-map, which shows the evolution of translational versus tetrahedral order in liquids, is different for Ge than for Si and mW. We find that although the monatomic water reproduces several thermodynamic and dynamic properties of rigid-body water models (e.g., SPC/E, TIP4P/2005), its sequence of anomalies follows, the same as Si and Ge, the silica-like hierarchy: the region of dynamic (diffusivity and viscosity) anomalies encloses the region of structural anomalies, which in turn encloses the region of density anomaly. The hierarchy of the anomalies based on excess entropy and Rosenfeld scaling, on the other hand, reverses the order of the structural and dynamic anomalies, i.e., predicts that the three Stillinger-Weber liquids follow a water-like hierarchy of anomalies. We investigate the scaling of diffusivity, viscosity, and thermal conductivity with the excess entropy of the liquid and find that for dynamical properties that present anomalies there is no universal scaling of the reduced property with excess entropy for the whole range of temperatures and densities. Instead, Rosenfeld's scaling holds for all the three liquids at high densities and high temperatures, although deviations from simple exponential dependence are observed for diffusivity and viscosity at lower temperatures and intermediate densities. The slope of the scaling of transport properties obtained for Ge is comparable to that obtained for simple liquids, suggesting that this low tetrahedrality liquid, although it stabilizes a diamond crystal, is already close to simple liquid behavior for certain properties.
A charge-driven molecular water pump.
Gong, Xiaojing; Li, Jingyuan; Lu, Hangjun; Wan, Rongzheng; Li, Jichen; Hu, Jun; Fang, Haiping
2007-11-01
Understanding and controlling the transport of water across nanochannels is of great importance for designing novel molecular devices, machines and sensors and has wide applications, including the desalination of seawater. Nanopumps driven by electric or magnetic fields can transport ions and magnetic quanta, but water is charge-neutral and has no magnetic moment. On the basis of molecular dynamics simulations, we propose a design for a molecular water pump. The design uses a combination of charges positioned adjacent to a nanopore and is inspired by the structure of channels in the cellular membrane that conduct water in and out of the cell (aquaporins). The remarkable pumping ability is attributed to the charge dipole-induced ordering of water confined in the nanochannels, where water can be easily driven by external fields in a concerted fashion. These findings may provide possibilities for developing water transport devices that function without osmotic pressure or a hydrostatic pressure gradient.
Nonlinear vibrational spectroscopy of surfactants at liquid interfaces
NASA Astrophysics Data System (ADS)
Miranda, Paulo Barbeitas
Surfactants are widely used to modify physical and chemical properties of interfaces. They play an important role in many technological problems. Surfactant monolayers are also of great scientific interest because they are two-dimensional systems that may exhibit a very rich phase transition behavior and can also be considered as a model system for biological interfaces. In this Thesis, we use a second-order nonlinear optical technique (Sum-Frequency Generation - SFG) to obtain vibrational spectra of surfactant monolayers at liquid/vapor and solid/liquid interfaces. The technique has several advantages: it is intrinsically surface-specific, can be applied to buried interfaces, has submonolayer sensitivity and is remarkably sensitive to the conformational order of surfactant monolayers. The first part of the Thesis is concerned with surfactant monolayers at the air/water interface (Langmuir films). Surface crystallization of an alcohol Langmuir film and of liquid alkanes are studied and their phase transition behaviors are found to be of different nature, although driven by similar intermolecular interactions. The effect of crystalline order of Langmuir monolayers on the interfacial water structure is also investigated. It is shown that water forms a well-ordered hydrogen-bonded network underneath an alcohol monolayer, in contrast to a fatty acid monolayer which induces a more disordered structure. In the latter case, ionization of the monolayer becomes more significant with increase of the water pH value, leading to an electric-field-induced ordering of interfacial water molecules. We also show that the orientation and conformation of fairly complicated molecules in a Langmuir monolayer can be completely mapped out using a combination of SFG and second harmonic generation (SHG). For a quantitative analysis of molecular orientation at an interface, local-field corrections must be included. The second part is a study of self-assembled surfactant monolayers at the solid/liquid interface. It is shown that the conformation of a monolayer adsorbed onto a solid substrate and immersed in a liquid is highly dependent on the monolayer surface density and on the nature of intermolecular interactions in the liquid. Fully packed monolayers are well ordered in any environment due to strong surfactant-surfactant interactions and limited liquid penetration into the monolayer. In contrast, loosely packed monolayers are very sensitive to the liquid environment. Non-polar liquids cause a mild increase in the surfactant conformational disorder. Polar liquids induce more disorder and hydrogen-bonding liquids produce highly disordered conformations due to the hydrophobic effect. When immersed in alkanes, under certain conditions the surfactant chains may become highly ordered due to their interaction with the liquid molecules (chain-chain interaction). In the case of long-chain alcohols, competition between the hydrophobic effect and chain-chain interaction is observed.
Self-assembled block copolymer-nanoparticle hybrids: interplay between enthalpy and entropy.
Sarkar, Biswajit; Alexandridis, Paschalis
2012-11-13
The dispersion of nanoparticles in ordered block copolymer nanostructures can provide control over particle location and orientation, and pave the way for engineered nanomaterials that have enhanced mechanical, electrical, or optical properties. Fundamental questions pertaining to the role of enthalpic and entropic particle-polymer interactions remain open and motivate the present work. We consider here a system of 10.6 nm silica nanoparticles (NPs) dispersed in ordered cylinders formed by hydrated poly(ethylene oxide)-poly(propylene oxide) block copolymers (Pluronic P105: EO(37)PO(56)EO(37)). Protonation of silica was used to vary the NP-polymer enthalpic interactions, while polar organic solvents (glycerol, DMSO, ethanol, and DMF) were used to modulate the NP-polymer entropic interactions. The introduction of deprotonated NPs in the place of an equal mass of water did not affect the lattice parameter of the PEO-PPO-PEO block copolymer hexagonal lyotropic liquid crystalline structures. However, the dispersion of protonated NPs led to an increase in the lattice parameter, which was attributed to stronger NP-polymer hydrogen bonding (enthalpic) interactions. Dispersion of protonated NPs into cylindrical structures formed by Pluronic P105 in 80/20 water/organic solvents does not influence the lattice parameter, different from the case of protonated NP in plain water. Organic solvents appear to screen the NP-polymer hydrogen bonding interactions.
Single chain structure of a poly(N-isopropylacrylamide) surfactant in water.
Abbott, Lauren J; Tucker, Ashley K; Stevens, Mark J
2015-03-05
We present atomistic simulations of a single PNIPAM-alkyl copolymer surfactant in aqueous solution at temperatures below and above the LCST of PNIPAM. We compare properties of the surfactant with pure PNIPAM oligomers of similar lengths, such as the radius of gyration and solvent accessible surface area, to determine the differences in their structures and transition behavior. We also explore changes in polymer-polymer and polymer-water interactions, including hydrogen bond formation. The expected behavior is observed in the pure PNIPAM oligomers, where the backbone folds onto itself above the LCST in order to shield the hydrophobic groups from water. The surfactant, on the other hand, does not show much conformational change as a function of temperature, but instead folds to bring the hydrophobic alkyl tail and PNIPAM headgroup together at all temperatures. The atomic detail available from these simulations offers important insight into understanding how the transition behavior is changed in PNIPAM-based systems.
NASA Astrophysics Data System (ADS)
McGowan, L. E.; Dahlke, H. E.; Paw U, K. T.
2015-12-01
Snow cover is a critical driver of the Earth's surface energy budget, climate change, and water resources. Variations in snow cover not only affect the energy budget of the land surface but also represent a major water supply source. In California, US estimates of snow depth, extent, and melt in the Sierra Nevada are critical to estimating the amount of water available for both California agriculture and urban users. However, accurate estimates of snow cover and snow melt processes in forested area still remain a challenge. Canopy structure influences the vertical and spatiotemporal distribution of snow, and therefore ultimately determines the degree and extent by which snow alters both the surface energy balance and water availability in forested regions. In this study we use the Advanced Canopy-Atmosphere-Soil algorithm (ACASA), a multi-layer soil-vegetation-atmosphere numerical model, to simulate the effect of different snow-covered canopy structures on the energy budget, and temperature and other scalar profiles within different forest types in the Sierra Nevada, California. ACASA incorporates a higher order turbulence closure scheme which allows the detailed simulation of turbulent fluxes of heat and water vapor as well as the CO2 exchange of several layers within the canopy. As such ACASA can capture the counter gradient fluxes within canopies that may occur frequently, but are typically unaccounted for, in most snow hydrology models. Six different canopy types were modeled ranging from coniferous forests (e.g. most biomass near the ground) to top-heavy (e.g. most biomass near the top of the crown) deciduous forests to multi-layered forest canopies (e.g. mixture of young and mature trees). Preliminary results indicate that the canopy shape and structure associated with different canopy types fundamentally influence the vertical scalar profiles (including those of temperature, moisture, and wind speed) in the canopy and thus alter the interception and snow melt dynamics in forested land surfaces. The turbulent transport dynamics, including counter-gradient fluxes, and radiation features including land surface albedo, are discussed in the context of the snow energy balance.
Ordering Interfluves: a Simple Proposal for Understanding Critical Zone Evolution and Function
NASA Astrophysics Data System (ADS)
Brecheisen, Z. S.; Richter, D., Jr.; Moon, S.; Halpin, P. N.
2015-12-01
A geomorphic interfluve ordering system, a reciprocal to the Hortonian-Strahler stream network order, is envisioned at the Calhoun Critical Zone Observatory (CCZO) in the South Carolina Piedmont. In this system the narrowest and most highly dissected interfluves (gentle ridges and hilltops) are 1st order and increase in rank dendritically through interfluve branching and broadening. Interfluve order attends to the structure, function, and management of residual porous-solid systems in the transport of water, solutes, and eroded solids in our deeply weathered (>30m soil/saprolite) critical zone. Recently generated geospatial data regarding the interactions of geomorphology, human land use, and forest ecology further strengthen the utility of this system. These upland networks and corresponding "land-sheds" have potential in linking recent work in the fields of geophysics and geomorphology regarding bedrock weathering front dynamics. Patterns of bedrock weathering depth, landcover & land-use change, and soil erosion are considered as they correspond to interfluve order. With LiDAR mapping and the burgeoning development and utilization of geophysical techniques and models enabling new quantitative research of critical zone landscape structure and function, many physiographic regions could benefit from a system that delineates and orders interfluve networks.
Shi, Ruili; Li, Keyao; Su, Yan; Tang, Lingli; Huang, Xiaoming; Sai, Linwei; Zhao, Jijun
2018-05-07
Using a genetic algorithm incorporated with density functional theory, we explore the ground state structures of protonated water clusters H + (H 2 O) n with n = 10-17. Then we re-optimize the isomers at B97-D/aug-cc-pVDZ level of theory. The extra proton connects with a H 2 O molecule to form a H 3 O + ion in all H + (H 2 O) 10-17 clusters. The lowest-energy structures adopt a monocage form at n = 10-16 and core-shell structure at n = 17 based on the MP2/aug-cc-pVTZ//B97-D/aug-cc-pVDZ+ZPE single-point-energy calculation. Using second-order vibrational perturbation theory, we further calculate the infrared spectra with anharmonic correction for the ground state structures of H + (H 2 O) 10-17 clusters at the PBE0/aug-cc-pVDZ level. The anharmonic correction to the spectra is crucial since it reproduces the experimental results quite well. The extra proton weakens the O-H bond strength in the H 3 O + ion since the Wiberg bond order of the O-H bond in the H 3 O + ion is smaller than that in H 2 O molecules, which causes a red shift of the O-H stretching mode in the H 3 O + ion.
NASA Astrophysics Data System (ADS)
Shi, Ruili; Li, Keyao; Su, Yan; Tang, Lingli; Huang, Xiaoming; Sai, Linwei; Zhao, Jijun
2018-05-01
Using a genetic algorithm incorporated with density functional theory, we explore the ground state structures of protonated water clusters H+(H2O)n with n = 10-17. Then we re-optimize the isomers at B97-D/aug-cc-pVDZ level of theory. The extra proton connects with a H2O molecule to form a H3O+ ion in all H+(H2O)10-17 clusters. The lowest-energy structures adopt a monocage form at n = 10-16 and core-shell structure at n = 17 based on the MP2/aug-cc-pVTZ//B97-D/aug-cc-pVDZ+ZPE single-point-energy calculation. Using second-order vibrational perturbation theory, we further calculate the infrared spectra with anharmonic correction for the ground state structures of H+(H2O)10-17 clusters at the PBE0/aug-cc-pVDZ level. The anharmonic correction to the spectra is crucial since it reproduces the experimental results quite well. The extra proton weakens the O-H bond strength in the H3O+ ion since the Wiberg bond order of the O-H bond in the H3O+ ion is smaller than that in H2O molecules, which causes a red shift of the O-H stretching mode in the H3O+ ion.
Vescovi Rosa, Beatriz Figueiraujo Jabour; de Oliveira, Vívian Campos; Alves, Roberto da Gama
2011-01-01
The Chironomidae occupy different habitats along the lotic system with their distribution determined by different factors such as the substrate characteristics and water speed. The input of vegetable material from the riparian forest allows a higher habitat diversity and food to the benthic fauna. The main aim of this paper is to verify the structure and spatial distribution of the Chironomidae fauna in different mesohabitats in a first order stream located at a Biological Reserve in the southeast of Brazil. In the months of July, August, and September 2007, and in January, February, and March 2008, samples were collected with a hand net (250 µm) in the following mesohabitats: litter from riffles, litter from pools, and sediment from pools. The community structure of each mesohabitat was analyzed through the abundance of organisms, taxa richness, Pielou's evenness, Shannon's diversity, and taxa dominance. Similarity among the mesohabitats was obtained by Cluster analysis, and Chironomidae larvae distribution through the Correspondence analysis. Indicator species analysis was used to identify possible taxa preference for a determined mesohabitat. The analyzed mesohabitats showed high species richness and diversity favored by the large environmental heterogeneity. Some taxa were indicators of the type of mesohabitat. The substrate was the main factor that determined taxa distribution in relation to water flow differences (riffle and pool). Stream characteristics such as low water speed and the presence of natural mechanisms of retention may have provided a higher faunistic similarity between the areas with different flows. The results showed that the physical characteristics of each environment presented a close relationship with the structure and spatial distribution of the Chironomidae fauna in lotic systems. PMID:21529258
Eklouh-Molinier, Christophe; Happillon, Teddy; Bouland, Nicole; Fichel, Caroline; Diébold, Marie-Danièle; Angiboust, Jean-François; Manfait, Michel; Brassart-Pasco, Sylvie; Piot, Olivier
2015-09-21
Upon chronological aging, human skin undergoes structural and molecular modifications, especially at the level of type I collagen. This macromolecule is one of the main dermal structural proteins and presents several age-related alterations. It exhibits a triple helical structure and assembles itself to form fibrils and fibers. In addition, water plays an important role in stabilizing the collagen triple helix by forming hydrogen-bonds between collagen residues. However, the influence of water on changes of dermal collagen fiber orientation with age has not been yet understood. Polarized-Fourier Transform Infrared (P-FTIR) imaging is an interesting biophotonic approach to determine in situ the orientation of type I collagen fibers, as we have recently shown by comparing skin samples of different ages. In this work, P-FTIR spectral imaging was performed on skin samples from two age groups (35- and 38-year-old on the one hand, 60- and 66-year-old on the other hand), and our analyses were focused on the effect of H2O/D2O substitution. Spectral data were processed with fuzzy C-means (FCM) clustering in order to distinguish different orientations of collagen fibers. We demonstrated that the orientation was altered with aging, and that D2O treatment, affecting primarily highly bound water molecules, is more marked for the youngest skin samples. Collagen-bound water-related spectral markers were also highlighted. Our results suggest a weakening of water/collagen interactions with age. This non-destructive and label-free methodology allows us to understand better the importance of bound water in collagen fiber orientation alterations occurring with skin aging. Obtaining such structural information could find benefits in dermatology as well as in cosmetics.
Spectroscopic Analysis of Temporal Changes in Leaf Moisture and Dry Matter Content
NASA Astrophysics Data System (ADS)
Qi, Y.; Dennison, P. E.; Brewer, S.; Jolly, W. M.; Kropp, R.
2013-12-01
Live fuel moisture (LFM), the ratio of water content to dry matter content (DMC) in live fuel, is critical for determining fire danger and behavior. Remote sensing estimation of LFM often relies on an assumption of changing water content and stable DMC over time. In order to advance understanding of temporal variation in LFM and DMC, we collected field samples and spectroscopic data for two species, lodgepole pine (Pinus contorta) and big sagebrush (Artemisia tridentata), to explore seasonal trends and spectral expression of these trends. New and old needles were measured separately for lodgepole pine. All samples were measured using a visible/NIR/SWIR spectrometer, and coincident samples were processed to provide LFM, DMC, water content and chemical components including structural and non-structural carbohydrates. New needles initially exhibited higher LFM and a smaller proportion of DMC, but differences between new and old needles converged as the new needles hardened. DMC explained more variation in LFM than water content for new pine needles and sagebrush leaves. Old pine needles transported non-structural carbohydrates to new needles to accumulate DMC during the growth season, resulting decreasing LFM in new needles. DMC and water content co-varied with vegetation chemical components and physical structure. Spectral variation in response to changing DMC is difficulty to isolate from the spectral signatures of multiple chemical components. Partial least square regression combined with hyperspectral data may increase modeling performance in LFM estimation.
Charge ordering and scattering pre-peaks in ionic liquids and alcohols.
Perera, Aurélien
2017-01-04
The structural properties of ionic liquids and alcohols are viewed under the charge ordering process as a common basis to explain the peculiarity of their radiation scattering properties, namely the presence, or absence, of a scattering pre-peak. Through the analysis of models, it is shown that the presence, or absence, of a radiation scattering pre-peak is principally related to the symmetry breaking, or not, of the global charge order, induced by the peculiarities of the molecular shapes. This symmetry breaking is achieved, in practice, by the emergence of specific types of clusters, which manifests how the global charge order has changed into a local form. Various atom-atom correlations witness the symmetry breaking induced by this re organization, and this is manifested into a pre-peak in the structure factor. This approach explains why associated liquids such as water do not show a scattering pre-peak. It also explains under which conditions core-soft models can mimic associating liquids.
[Using fractional polynomials to estimate the safety threshold of fluoride in drinking water].
Pan, Shenling; An, Wei; Li, Hongyan; Yang, Min
2014-01-01
To study the dose-response relationship between fluoride content in drinking water and prevalence of dental fluorosis on the national scale, then to determine the safety threshold of fluoride in drinking water. Meta-regression analysis was applied to the 2001-2002 national endemic fluorosis survey data of key wards. First, fractional polynomial (FP) was adopted to establish fixed effect model, determining the best FP structure, after that restricted maximum likelihood (REML) was adopted to estimate between-study variance, then the best random effect model was established. The best FP structure was first-order logarithmic transformation. Based on the best random effect model, the benchmark dose (BMD) of fluoride in drinking water and its lower limit (BMDL) was calculated as 0.98 mg/L and 0.78 mg/L. Fluoride in drinking water can only explain 35.8% of the variability of the prevalence, among other influencing factors, ward type was a significant factor, while temperature condition and altitude were not. Fractional polynomial-based meta-regression method is simple, practical and can provide good fitting effect, based on it, the safety threshold of fluoride in drinking water of our country is determined as 0.8 mg/L.
Structure and dynamics of water inside endohedrally functionalized carbon nanotubes.
Paul, Sanjib; Abi, T G; Taraphder, Srabani
2014-05-14
We have carried out classical molecular dynamics simulations on the formation of extended water chains inside single-walled carbon nanotubes (SWCNTs) in water in the presence of selected functional groups covalently attached to the inner wall of the tube. Analogues of polar amino acid sidechains have been chosen to carry out the endohedral functionalization of SWCNTs. Our results show a spontaneous and asymmetric filling of the nanotube with dynamical water chains in all the cases studied. The presence of Asp- and Glu-like sidechains is found to result in the formation of well-ordered water chains across the tube having the maximum number of water molecules being retained within the core with the largest residence times. The presence of methyl or methylene groups along the suspended chain is observed to disrupt the formation of water chains with higher length and/or longer residence times. The importance of hydrogen bonding in forming these water chains is assessed in terms of the relaxations of different hydrogen bond correlation functions. For a given dimension of the hydrophobic nanopore, we thus obtain a scale comparing the ability of carboxylic, alcohol, and imidazole groups in controlling the structure and dynamics of water in it. Our results also suggest that SWCNTs of varying lengths, endohedrally functionalized with Asp- and Glu-like sidechains, may be used as design templates in CNT-based water storage devices.
Conformational Properties, Spectroscopy and Structure of ISATIN-(WATER)_{n=1-3} Clusters
NASA Astrophysics Data System (ADS)
Singh, Milind K.; Upadhya, D. M.; Singh, Vipin B.
2009-06-01
The structure, stability and vibrational characteristics of Isatin-(Water)_n clusters with n=1=3 have been investigated using second order Moller-Plesset (MP2) perturbation tehory and Density Functional Theory (with B3LYP) methods employing the basis set 6-31+G(d). The vertical excitation energies for these complexes have been also computed using the time-dependent density functional theory. The three stable conformational isomers, each for Isatin-(Water)_1 and Isatin-(Water)_2 clusters were obtained. It is shown that in the most stable isomer of Isatin-(Water)_1 cluster hydrogen bond between amide hydrogen and oxygen of water is found stronger as compared to the H-bond in Indole-(Water)_1 cluster. For a particular position of complexation of water, between the carbonyl oxygen's, results an unusual increase in the dipole moment due to an electronic charge displacement from the N atom to the C atom of the neighboring carbonyl bond. This causes a large separation between the effective charges forming the dipole. The complexes involving this position of water are expected to show a small charge transfer character. The experimentally observed electronic absorption peaks are reasonably reproduced by the TD-DFT calculations and it is found that the longest wavelength absorption peak of isatin at 406 nm is significantly red shifted after addition of a water molecule.
Observations of Seafloor Roughness in a Tidally Modulated Inlet
NASA Astrophysics Data System (ADS)
Lippmann, T. C.; Hunt, J.
2014-12-01
The vertical structure of shallow water flows are influenced by the presence of a bottom boundary layer, which spans the water column for long period waves or mean flows. The nature of the boundary is determined in part by the roughness elements that make up the seafloor, and includes sometimes complex undulations associated with regular and irregular shaped bedforms whose scales range several orders of magnitude from orbital wave ripples (10-1 m) to mega-ripples (100 m) and even larger features (101-103) such as sand waves, bars, and dunes. Modeling efforts often parameterize the effects of roughness elements on flow fields, depending on the complexity of the boundary layer formulations. The problem is exacerbated by the transient nature of bedforms and their large spatial extent and variability. This is particularly important in high flow areas with large sediment transport, such as tidally dominated sandy inlets like New River Inlet, NC. Quantification of small scale seafloor variability over large spatial areas requires the use of mobile platforms that can measure with fine scale (order cm) accuracy in wide swaths. The problem is difficult in shallow water where waves and currents are large, and water clarity is often limited. In this work, we present results from bathymetric surveys obtained with the Coastal Bathymetry Survey System, a personal watercraft equipped with a Imagenex multibeam acoustic echosounder and Applanix POS-MV 320 GPS-aided inertial measurement unit. This system is able to measure shallow water seafloor bathymetry and backscatter intensity with very fine scale (10-1 m) resolution and over relatively large scales (103 m) in the presence of high waves and currents. Wavenumber spectra show that the noise floor of the resolved multibeam bathymetry is on the order of 2.5 - 5 cm in amplitude, depending on water depths ranging 2 - 6 m, and about 30 cm in wavelength. Seafloor roughness elements are estimated from wavenumber spectra across the inlet from bathymetric maps of the seafloor obtained with 10-25 cm horizontal resolution. Implications of the effects of the bottom variability on the vertical structure of the currents will be discussed. This work was supported by ONR and NOAA.
Salomone-Stagni, Marco; Musiani, Francesco; Benini, Stefano
2016-12-01
AmsI is a low-molecular-weight protein tyrosine phosphatase that regulates the production of amylovoran in the Gram-negative bacterium Erwinia amylovora, a specific pathogen of rosaceous plants such as apple, pear and quince. Amylovoran is an exopolysaccharide that is necessary for successful infection. In order to shed light on AmsI, its structure was solved at 1.57 Å resolution at the same pH as its highest measured activity (pH 5.5). In the active site, a water molecule, bridging between the catalytic Arg15 and the reaction-product analogue sulfate, might be representative of the water molecule attacking the phospho-cysteine intermediate in the second step of the reaction mechanism.
Physicochemical hydrodynamics of porous structures in vascular plants
NASA Astrophysics Data System (ADS)
Ryu, Jeongeun; Ahn, Sungsook; Kim, Seung-Gon; Kim, Taejoo; Lee, Sang Joon
2013-11-01
Transport of sap flow through xylem conduits of vascular plants has been considered as a passive process, because the xylem conduits are regarded as inert, dead wood. However, plants can actively regulate water transport using ion-mediated response for adapting to environmental changes. In order to understand the active regulation mechanism of physicochemical hydrodynamics of porous structures in vascular plants, the effects of specific ion types and their ionic ratios on the water transport were experimentally investigated under in vivocondition. Based on the experimental results, the principle of ionic effects will be explained through in-vitro comparative experiments and theoretical considerations. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIP) (No. 2008-0061991).
Masuda, Yosuke; Yamaotsu, Noriyuki; Hirono, Shuichi
2017-01-01
In order to predict the potencies of mechanism-based reversible covalent inhibitors, the relationships between calculated Gibbs free energy of hydrolytic water molecule in acyl-trypsin intermediates and experimentally measured catalytic rate constants (k cat ) were investigated. After obtaining representative solution structures by molecular dynamics (MD) simulations, hydration thermodynamics analyses using WaterMap™ were conducted. Consequently, we found for the first time that when Gibbs free energy of the hydrolytic water molecule was lower, logarithms of k cat were also lower. The hydrolytic water molecule with favorable Gibbs free energy may hydrolyze acylated serine slowly. Gibbs free energy of hydrolytic water molecule might be a useful descriptor for computer-aided discovery of mechanism-based reversible covalent inhibitors of hydrolytic enzymes.
How war, drought, and management impact water supply in the Tigris/Euphrates
NASA Astrophysics Data System (ADS)
Hasan, M.; Moody, A.; Benninger, L. K.
2017-12-01
The fast-paced conflicts in the Middle East have the potential to disrupt management and supply of water resources in the region, particularly on structures such as Mosul and Haditha dams, and the Ramadi and Falluja Barrages, all of which have experienced threats or changes in sovereignty. Water supply is also under pressure from upstream dam management and drought. In this research, we use the normalized difference water index (NDWI) applied to Landsat imagery in order to monitor changes in the extent of various water bodies (1985-present). We looked to see if significant anomalies from expected surface area were best explained by conflict, drought, or dam management. Conflict (though not every conflict) produced the greatest sudden changes in water supply; drought produced the greatest absolute changes, but at a gentle pace. Drought impacts are strongest in the furthest downstream reservoirs. Conflict-driven changes were tied to very specific human manipulations in water supply in order to either advance military objectives, "punish" civilians on the wrong side of the fight, or to prevent humanitarian catastrophe. Satellite images allow for an objective analysis of how strong these manipulations were. The information may not be as exact as on-the-ground information, but when the flow of information is disrupted by war, satellite data can be an alternative source of insights into water supply changes.
NASA Astrophysics Data System (ADS)
Voegelin, A.; Frommer, J.; Vantelon, D.; Kaegi, R.; Hug, S. J.
2009-04-01
The oxidation of Fe(II) in water leads to the formation of Fe(III)-precipitates that strongly affect the fate of nutrients and contaminants in natural and engineered systems. Examples include the cycling of As in rice fields irrigated with As-rich groundwater or the treatment of drinking water for As removal. Knowledge of the types of Fe(III)-precipitates forming in such systems is essential for the quantitative modeling of nutrient and contaminant dynamics and for the optimization of water purification techniques on the basis of a mechanistic understanding of the relevant biogeochemical processes. In this study, we investigated the local coordination of Fe, P, and Ca in Fe(III)-precipitates formed by aeration of synthetic Fe(II)-containing groundwater with variable composition (pH 7, 2-30 mg/L Fe(II), 2-20 mg/L phosphate-P, 2-20 mg/L silicate-Si, 8 mM Na-bicarbonate or 2.5 mM Ca-&1.5 mM Mg-bicarbonate). After 4 hours of oxidation, Fe(III)-precipitates were collected on 0.2 µm nylon filters and dried. The precipitates were analyzed by Fe K-edge EXAFS (XAS beamline, ANKA, Germany) and by P and Ca K-edge XANES spectroscopy (LUCIA beamline, SLS, Switzerland). The Fe K-edge EXAFS spectra indicated that local Fe coordination in the precipitates systematically shifted with water composition. As long as water contained P, mainly short-range-ordered Fe(III)-phosphate formed (with molar P/Fe ~0.5). In the absence of P, Fe(III) precipitated as hydrous ferric oxide at high Si/Fe>0.5, as ferrihydrite at intermediate Si/Fe, and mainly as lepidocrocite at Si/Fe<0.2. Analysis of the EXAFS by shell-fitting indicated that Fe(III)-phosphates mainly contained mono- or oligomeric (edge- or corner-sharing) Fe and that the linkage between neighboring Fe(III)-octahedra changed from predominantly edge-sharing in Si-rich hydrous ferric oxide to edge- and corner-sharing in ferrihydrite. Electron microscopic data showed that changes in local precipitate structure were systematically reflected in particle morphology and SAED patterns. The P K-edge XANES spectra revealed that phosphate was bound to both Fe as well as Ca (if present). The Ca K-edge XANES spectra showed that the mode of Ca uptake by the Fe(III)-precipitates shifted from mainly adsorption at high Fe/P to coprecipitation at low Fe/P ratio. Despite oversaturation, neither calcite nor hydroxyapatite formed to a significant extent. The results from this study indicated that, depending on water composition, Fe(II) oxidation in natural waters leads to different types of short-range-ordered Fe(III)-phases. Since these phases are expected to differ in their effect on contaminant and nutrient dynamics, their specific physical and chemical properties warrant further research. Methodologically, this work demonstrated the usefulness of investigating the local structure of short-range-ordered precipitates along compositional gradients and by combining the element-selective information from different X-ray absorption edges.
Oxidation of indometacin by ferrate (VI): kinetics, degradation pathways, and toxicity assessment.
Huang, Junlei; Wang, Yahui; Liu, Guoguang; Chen, Ping; Wang, Fengliang; Ma, Jingshuai; Li, Fuhua; Liu, Haijin; Lv, Wenying
2017-04-01
The oxidation of indometacin (IDM) by ferrate(VI) (Fe(VI)) was investigated to determine the reaction kinetics, transformation products, and changes in toxicity. The reaction between IDM and Fe(VI) followed first-order kinetics with respect to each reactant. The apparent second-order rate constants (k app ) decreased from 9.35 to 6.52 M -1 s -1 , as the pH of the solution increased from 7.0 to 10.0. The pH dependence of k app might be well explained by considering the species-specific rate constants of the reactions of IDM with Fe(VI). Detailed product studies using liquid chromatography-tandem mass spectrometry (LC-MS/MS) indicated that the oxidation products were primarily derived from the hydrolysis of amide linkages, the addition of hydroxyl groups, and electrophilic oxidation. The toxicity of the oxidation products was evaluated using the Microtox test, which indicated that transformation products exhibited less toxicity to the Vibrio fischeri bacteria. Quantitative structure-activity relationship (QSAR) analysis calculated by the ecological structure activity relationship (ECOSAR) revealed that all of the identified products exhibited lower acute and chronic toxicity than the parent pharmaceutical for fish, daphnid, and green algae. Furthermore, Fe(VI) was effective in the degradation IDM in water containing carbonate ions or fulvic acid (FA), and in lake water samples; however, higher Fe(VI) dosages would be required to completely remove IDM in lake water in contrast to deionized water.
Electrostatics at the oil–water interface, stability, and order in emulsions and colloids
Leunissen, Mirjam E.; van Blaaderen, Alfons; Hollingsworth, Andrew D.; Sullivan, Matthew T.; Chaikin, Paul M.
2007-01-01
Oil–water mixtures are ubiquitous in nature and are particularly important in biology and industry. Usually additives are used to prevent the liquid droplets from coalescing. Here, we show that stabilization can also be obtained from electrostatics, because of the well known remarkable properties of water. Preferential ion uptake leads to a tunable droplet charge and surprisingly stable, additive-free, water-in-oil emulsions that can crystallize. For particle-stabilized (“Pickering”) emulsions we find that even extremely hydrophobic, nonwetting particles can be strongly bound to (like-charged) oil–water interfaces because of image charge effects. These basic insights are important for emulsion production, encapsulation, and (self-)assembly, as we demonstrate by fabricating a diversity of structures in bulk, on surfaces, and in confined geometries. PMID:17307876
A (very) Simple Model for the Aspect Ratio of High-Order River Basins
NASA Astrophysics Data System (ADS)
Shelef, E.
2017-12-01
The structure of river networks dictates the distribution of elevation, water, and sediments across Earth's surface. Despite its intricate shape, the structure of high-order river networks displays some surprising regularities such as the consistent aspect ratio (i.e., basin's width over length) of river basins along linear mountain fronts. This ratio controls the spacing between high-order channels as well as the spacing between the depositional bodies they form. It is generally independent of tectonic and climatic conditions and is often attributed to the initial topography over which the network was formed. This study shows that a simple, cross-like channel model explains this ratio via a requirement for equal elevation gain between the outlets and drainage-divides of adjacent channels at topographic steady state. This model also explains the dependence of aspect ratio on channel concavity and the location of the widest point on a drainage divide.
Probing methane hydrate nucleation through the forward flux sampling method.
Bi, Yuanfei; Li, Tianshu
2014-11-26
Understanding the nucleation of hydrate is the key to developing effective strategies for controlling methane hydrate formation. Here we present a computational study of methane hydrate nucleation, by combining the forward flux sampling (FFS) method and the coarse-grained water model mW. To facilitate the application of FFS in studying the formation of methane hydrate, we developed an effective order parameter λ on the basis of the topological analysis of the tetrahedral network. The order parameter capitalizes the signature of hydrate structure, i.e., polyhedral cages, and is capable of efficiently distinguishing hydrate from ice and liquid water while allowing the formation of different hydrate phases, i.e., sI, sII, and amorphous. Integration of the order parameter λ with FFS allows explicitly computing hydrate nucleation rates and obtaining an ensemble of nucleation trajectories under conditions where spontaneous hydrate nucleation becomes too slow to occur in direct simulation. The convergence of the obtained hydrate nucleation rate was found to depend crucially on the convergence of the spatial distribution for the spontaneously formed hydrate seeds obtained from the initial sampling of FFS. The validity of the approach is also verified by the agreement between the calculated nucleation rate and that inferred from the direct simulation. Analyzing the obtained large ensemble of hydrate nucleation trajectories, we show hydrate formation at 220 K and 500 bar is initiated by the nucleation events occurring in the vicinity of water-methane interface, and facilitated by a gradual transition from amorphous to crystalline structure. The latter provides the direct support to the proposed two-step nucleation mechanism of methane hydrate.
29 CFR 1917.16 - Line handling. (See also § 1917.95(b)).
Code of Federal Regulations, 2011 CFR
2011-07-01
... also § 1917.95(b)). (a) In order to provide safe access for handling lines while mooring and unmooring... be used. (b) When stringpiece or apron width is insufficient for safe footing, grab lines or rails... the water edge of a berth and a shed or other structure.) ...
29 CFR 1917.16 - Line handling. (See also § 1917.95(b)).
Code of Federal Regulations, 2010 CFR
2010-07-01
... also § 1917.95(b)). (a) In order to provide safe access for handling lines while mooring and unmooring... be used. (b) When stringpiece or apron width is insufficient for safe footing, grab lines or rails... the water edge of a berth and a shed or other structure.) ...
In order to develop efficient photocatalytic TiO2 films and membranes for application in water and wastewater treatment and reuse systems, there is a great need to tailor-design the structural properties of TiO2 material and enhance its photocatalytic activity. Through...
Isolated glyoxylic acid-water 1:1 complexes in low temperature argon matrices.
Lundell, Jan; Olbert-Majkut, Adriana
2015-02-05
The 1:1 hydrogen bonded complexes between glyoxylic acid (GA) and water are studied in low temperature argon matrices. Four different complex structures were found in deposited matrices. The lowest energy conformer (T1) of GA was found to form complex, where the water molecule was attached to the opposite side of the intramolecular hydrogen bond in the molecule (T1B). Interestingly, this complex was estimated to be+8.0 kJ mol(-1) higher in energy than the most stable structure (T1A), where the water is inserted into the internal hydrogen bond, and also found in solid argon but in smaller abundance. For the second-lowest energy conformer of GA (T2), the two lowest-energy complex structures were identified, with the most stable complex structure (T2A) also being the most abundant in the matrices. The difference between experiment and computational energetic order of the two complex structures of the same GA conformer is explained by contributions of deformation energy upon complexation and the effect of the environment. The computed BSSE-corrected interaction energies are for the two most stable complexes of the two GA conformers for T1A and T2A -42.11 and -45.03 kJ mol(-1), respectively, at the CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ level of theory. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Li; Yan, Jiejuan; Liu, Cailong
2015-11-16
The effect of crystallization water on the structural and electrical properties of CuWO{sub 4} under high pressure has been investigated by in situ X-ray diffraction and alternating current impedance spectra measurements. The crystallization water was found to be a key role in modulating the structural stability of CuWO{sub 4} at high pressures. The anhydrous CuWO{sub 4} undergoes two pressure-induced structural transitions at 8.8 and 18.5 GPa, respectively, while CuWO{sub 4}·2H{sub 2}O keeps its original structure up to 40.5 GPa. Besides, the crystallization water makes the electrical transport behavior of anhydrous CuWO{sub 4} and CuWO{sub 4}·2H{sub 2}O quite different. The charge carrier transportationmore » is always isotropic in CuWO{sub 4}·2H{sub 2}O, but anisotropic in the triclinic and the third phase of anhydrous CuWO{sub 4}. The grain resistance of CuWO{sub 4}·2H{sub 2}O is always larger than that of anhydrous CuWO{sub 4} in the entire pressure range. By analyzing the relaxation response, we found that the large number of hydrogen bonds can soften the grain characteristic frequency of CuWO{sub 4}·2H{sub 2}O over CuWO{sub 4} by one order of magnitude.« less
Molecular simulation of hydrophobin adsorption at an oil-water interface.
Cheung, David L
2012-06-12
Hydrophobins are small, amphiphilic proteins expressed by strains of filamentous fungi. They fulfill a number of biological functions, often related to adsorption at hydrophobic interfaces, and have been investigated for a number of applications in materials science and biotechnology. In order to understand the biological function and applications of these proteins, a microscopic picture of the adsorption of these proteins at interfaces is needed. Using molecular dynamics simulations with a chemically detailed coarse-grained potential, the behavior of typical hydrophobins at the water-octane interface is studied. Calculation of the interfacial adsorption strengths indicates that the adsorption is essentially irreversible, with adsorption strengths of the order of 100 k(B)T (comparable to values determined for synthetic nanoparticles but significantly larger than small molecule surfactants and biomolecules). The protein structure at the interface is unchanged at the interface, which is consistent with the biological function of these proteins. Comparison of native proteins with pseudoproteins that consist of uniform particles shows that the surface structure of these proteins has a large effect on the interfacial adsorption strengths, as does the flexibility of the protein.
NASA Astrophysics Data System (ADS)
Altabet, Y. Elia; Debenedetti, Pablo G.
2017-12-01
Liquid water confined between nanoscale hydrophobic objects can become metastable with respect to its vapor at nanoscale separations. While the separations are only several molecular diameters, macroscopic theories are often invoked to interpret the thermodynamics and kinetics of water under confinement. We perform detailed rate and free energy calculations via molecular simulations in order to assess the dependence of the rate of evaporation, free energy barriers, and free energy differences between confined liquid and vapor upon object separation and compare them to the relevant macroscopic theories. At small enough separations, the rate of evaporation appears to deviate significantly from the predictions of classical nucleation theory, and we attribute such deviations to changes in the structure of the confined liquid film. However, the free energy difference between the confined liquid and vapor phases agrees quantitatively with macroscopic theory, and the free energy barrier to condensation displays qualitative agreement. Overall, the present work suggests that theories attempting to capture the kinetic behavior of nanoscale systems should incorporate structural details rather than treating it as a continuum.
NASA Astrophysics Data System (ADS)
Crespi-Abril, Augusto C.; Morsan, Enrique M.; Williams, Gabriela N.; Gagliardini, Domingo A.
2013-03-01
Traditionally, it was assumed that major spawning activity of Illex argentinus occurs in discrete pulses along the outer-shelf/slope off Argentina/southern Brazil during late-fall/winter and that early life stages develop near the Brazil-Malvinas Confluence (BMC). However, a novel hypothesis of the population structuring of the species was proposed that states that coastal waters may be important as spawning and feeding grounds. Here, we analyzed the spatial distribution of Illex argentinus inside San Matias Gulf based on the position of the CPUE of jiggers in order to improve the knowledge of the population structuring in coastal regions. Squids were mainly concentrated on the northern region of the gulf where favorable oceanographic conditions (e.g. water stratification, chlorophyll-a concentration peaks) to feeding and spawning are present. These results provided empirical evidences that individuals of I. argentinus use Argentinean coastal waters, particularly San Matias Gulf, as permanent feeding and spawning grounds which supports the new hypothesis.
Carmona, P; Ruiz-Capillas, C; Jiménez-Colmenero, F; Pintado, T; Herrero, A M
2011-12-28
This article reports an infrared spectroscopic (FT-IR) study on lipids and protein structural characteristics in frankfurters as affected by an emulsified olive oil stabilizing system used as a pork backfat replacer. The oil-in-water emulsions were stabilized with sodium caseinate, without (F/SC) and with microbial transglutaminase (F/SC+MTG). Proximate composition and textural characteristics were also evaluated. Frankfurters F/SC+MTG showed the highest (P < 0.05) hardness and lowest (P < 0.05) adhesiveness. These products also showed the lowest (P < 0.05) half-bandwidth of the 2922 cm(-1) band, which could be related to the fact that the lipid chain was more orderly than that in the frankfurters formulated with animal fat and F/SC. The spectral results revealed modifications in the amide I band profile when the olive oil-in-water emulsion replaced animal fat. This fact is indicative of a greater content of aggregated intermolecular β-sheets. Structural characteristics in both proteins and lipids could be associated with the specific textural properties of frankfurters.
Najafpour, Mohammad Mahdi; Ghobadi, Mohadeseh Zarei; Sarvi, Bahram; Haghighi, Behzad
2015-09-14
Synthesis of new efficient catalysts inspired by Nature is a key goal in the production of clean fuel. Different compounds based on manganese oxide have been investigated in order to find their water-oxidation activity. Herein, we introduce a novel engineered polypeptide containing tyrosine around nano-sized manganese-calcium oxide, which was shown to be a highly active catalyst toward water oxidation at low overpotential (240 mV), with high turnover frequency of 1.5 × 10(-2) s(-1) at pH = 6.3 in the Mn(III)/Mn(IV) oxidation range. The compound is a novel structural and efficient functional model for the water-oxidizing complex in Photosystem II. A new proposed clever strategy used by Nature in water oxidation is also discussed. The new model of the water-oxidizing complex opens a new perspective for synthesis of efficient water-oxidation catalysts.
Atomic force microscopy of hydrated phosphatidylethanolamine bilayers.
Zasadzinski, J A; Helm, C A; Longo, M L; Weisenhorn, A L; Gould, S A; Hansma, P K
1991-01-01
We present images of the polar or headgroup regions of bilayers of dimyristoyl-phosphatidylethanolamine (DMPE), deposited by Langmuir-Blodgett deposition onto mica substrates at high surface pressures and imaged under water at room temperature with the optical lever atomic force microscope. The lattice structure of DMPE is visualized with sufficient resolution that the location of individual headgroups can be determined. The forces are sufficiently small that the same area can be repeatedly imaged with a minimum of damage. The DMPE molecules in the bilayer appear to have relatively good long-range orientational order, but rather short-range and poor positional order. These results are in good agreement with x-ray measurements of unsupported lipid monolayers on the water surface, and with electron diffraction of adsorbed monolayers. Images FIGURE 1 FIGURE 2 PMID:2049529
NASA Astrophysics Data System (ADS)
Qu, Jiangqi; Jia, Chengxia; Zhao, Meng; Li, Wentong; Liu, Pan; Yang, Mu; Zhang, Qingjing
2018-02-01
Miyun reservoir is a typical temperate deep reservoir located in the northeast of Beijing, China. In order to explore the effect of thermal stratification on microbial community diversity, structure and its influencing environmental factors, stratified sampling at three sites was conducted during the summer period. Field observations indicate that the water temperature and dissolved oxygen concentrations dropped to 11.9 °C and 1.57 mg/L, respectively, leading to the development of anoxia in the hypolimnetic layer. The Illumina Miseq sequencing results showed that microbial communities from different thermal stratification showed obvious differences, the highest microbial diversity and richness in the hypolimnion samples. RDA ordination analysis suggested that the microbial communities in the epilimnion and metalimnion were mainly affected by water temperature, pH and dissolved oxygen, while total nitrogen was the key environmental factor which shaped the microbial structure in hypolimnion.
NASA Astrophysics Data System (ADS)
Frotscher, M.; Kahleyss, F.; Simon, T.; Biermann, D.; Eggeler, G.
2011-07-01
NiTi shape memory alloys (SMA) are used for a variety of applications including medical implants and tools as well as actuators, making use of their unique properties. However, due to the hardness and strength, in combination with the high elasticity of the material, the machining of components can be challenging. The most common machining techniques used today are laser cutting and electrical discharge machining (EDM). In this study, we report on the machining of small structures into binary NiTi sheets, applying alternative processing methods being well-established for other metallic materials. Our results indicate that water jet machining and micro milling can be used to machine delicate structures, even in very thin NiTi sheets. Further work is required to optimize the cut quality and the machining speed in order to increase the cost-effectiveness and to make both methods more competitive.
NASA Astrophysics Data System (ADS)
Liu, Lei; Hu, Cui-E.; Tang, Mei; Chen, Xiang-Rong; Cai, Ling-Cang
2016-10-01
The low-lying isomers of cationic water cluster (H2O)6+ have been globally explored by using particle swarm optimization algorithm in conjunction with quantum chemical calculations. Compared with previous results, our searching method covers a wide range of structural isomers of (H2O)6+ and therefore turns out to be more effective. With these local minima, geometry optimization and vibrational analysis are performed for the most interesting clusters at second-order Møller-Plesset (MP2)/aug-cc-pVDZ level, and their energies are further refined at MP2/aug-cc-pVTZ and coupled-cluster theory with single, double, and perturbative triple excitations/aug-cc-pVDZ level. The interaction energies using the complete basis set limits at MP2 level are also reported. The relationships between their structure arrangement and their energies are discussed. Based on the results of thermal simulation, structural change from a four-numbered ring to a tree-like structure occurs at T ≈ 45 K, and the relative population of six lowest-free-energy isomers is found to exceed 4% at some point within the studied temperature range. Studies reveal that, among these six isomers, two new-found isomers constitute 10% of isomer population at 180 K, and the experimental spectra can be better explained with inclusions of the two isomers. The molecular orbitals for six representative cationic water clusters are also studied. Through topological and reduced density gradient analysis, we investigated the structural characteristics and the bonding strengths of these water cluster radical cations.
Karthikeyan, S; Kim, Kwang S
2009-08-13
Protonated water clusters H+(H2O)n favor two-dimensional (2D) structures for n < or = 7 at low temperatures. At 0 K, the 2D and three-dimensional (3D) structures for n = 8 are almost isoenergetic, and the 3D structures for n > 9 tend to be more stable. However, for n = 9, the netlike structures are likely to be more stable above 150 K. In this regard, we investigate the case of n = 10 to find which structure is more stable between the 3D structure and the netlike structure around 150 and 250 K. We use density functional theory, Møller-Plesset second-order perturbation theory, and coupled cluster theory with single, double, and perturbative triple excitations (CCSD(T)). At the complete basis set limit for the CCSD(T) level of theory, three isomers of 3D cage structure are much more stable in zero point energy corrected binding energy and in free binding energies at 150 K than the lowest energy netlike structures, while the netlike structure would be more stable around approximately 250 K. The predicted vibrational spectra are in good agreement with the experiment. One of the three isomers explains the experimental IR observation of an acceptor (A) type peak of a dangling hydrogen atom.
Banerjee, Debamalya; Bhat, Shrivalli N.; Bhat, Subray V.; Leporini, Dino
2012-01-01
The structure of the hydrogen bond network is a key element for understanding water's thermodynamic and kinetic anomalies. While ambient water is strongly believed to be a uniform, continuous hydrogen-bonded liquid, there is growing consensus that supercooled water is better described in terms of distinct domains with either a low-density ice-like structure or a high-density disordered one. We evidenced two distinct rotational mobilities of probe molecules in interstitial supercooled water of polycrystalline ice [Banerjee D, et al. (2009) ESR evidence for 2 coexisting liquid phases in deeply supercooled bulk water. Proc Natl Acad Sci USA 106: 11448–11453]. Here we show that, by increasing the confinement of interstitial water, the mobility of probe molecules, surprisingly, increases. We argue that loose confinement allows the presence of ice-like regions in supercooled water, whereas a tighter confinement yields the suppression of this ordered fraction and leads to higher fluidity. Compelling evidence of the presence of ice-like regions is provided by the probe orientational entropy barrier which is set, through hydrogen bonding, by the configuration of the surrounding water molecules and yields a direct measure of the configurational entropy of the same. We find that, under loose confinement of supercooled water, the entropy barrier surmounted by the slower probe fraction exceeds that of equilibrium water by the melting entropy of ice, whereas no increase of the barrier is observed under stronger confinement. The lower limit of metastability of supercooled water is discussed. PMID:23049747
Bartolomei, Massimiliano; Carmona-Novillo, Estela; Hernández, Marta I; Campos-Martínez, José; Pirani, Fernando; Giorgi, Giacomo; Yamashita, Koichi
2014-02-20
Graphynes are novel two-dimensional carbon-based materials that have been proposed as molecular filters, especially for water purification technologies. We carry out first-principles electronic structure calculations at the MP2C level of theory to assess the interaction between water and graphyne, graphdiyne, and graphtriyne pores. The computed penetration barriers suggest that water transport is unfeasible through graphyne while being unimpeded for graphtriyne. For graphdiyne, with a pore size almost matching that of water, a low barrier is found that in turn disappears if an active hydrogen bond with an additional water molecule on the opposite side of the opening is considered. Thus, in contrast with previous determinations, our results do not exclude graphdiyne as a promising membrane for water filtration. In fact, present calculations lead to water permeation probabilities that are 2 orders of magnitude larger than estimations based on common force fields. A new pair potential for the water-carbon noncovalent component of the interaction is proposed for molecular dynamics simulations involving graphdiyne and water.
Predicting vertically-nonsequential wetting patterns with a source-responsive model
Nimmo, John R.; Mitchell, Lara
2013-01-01
Water infiltrating into soil of natural structure often causes wetting patterns that do not develop in an orderly sequence. Because traditional unsaturated flow models represent a water advance that proceeds sequentially, they fail to predict irregular development of water distribution. In the source-responsive model, a diffuse domain (D) represents flow within soil matrix material following traditional formulations, and a source-responsive domain (S), characterized in terms of the capacity for preferential flow and its degree of activation, represents preferential flow as it responds to changing water-source conditions. In this paper we assume water undergoing rapid source-responsive transport at any particular time is of negligibly small volume; it becomes sensible at the time and depth where domain transfer occurs. A first-order transfer term represents abstraction from the S to the D domain which renders the water sensible. In tests with lab and field data, for some cases the model shows good quantitative agreement, and in all cases it captures the characteristic patterns of wetting that proceed nonsequentially in the vertical direction. In these tests we determined the values of the essential characterizing functions by inverse modeling. These functions relate directly to observable soil characteristics, rendering them amenable to evaluation and improvement through hydropedologic development.
Adaptation of water resource systems to an uncertain future
NASA Astrophysics Data System (ADS)
Walsh, Claire L.; Blenkinsop, Stephen; Fowler, Hayley J.; Burton, Aidan; Dawson, Richard J.; Glenis, Vassilis; Manning, Lucy J.; Jahanshahi, Golnaz; Kilsby, Chris G.
2016-05-01
Globally, water resources management faces significant challenges from changing climate and growing populations. At local scales, the information provided by climate models is insufficient to support the water sector in making future adaptation decisions. Furthermore, projections of change in local water resources are wrought with uncertainties surrounding natural variability, future greenhouse gas emissions, model structure, population growth, and water consumption habits. To analyse the magnitude of these uncertainties, and their implications for local-scale water resource planning, we present a top-down approach for testing climate change adaptation options using probabilistic climate scenarios and demand projections. An integrated modelling framework is developed which implements a new, gridded spatial weather generator, coupled with a rainfall-runoff model and water resource management simulation model. We use this to provide projections of the number of days and associated uncertainty that will require implementation of demand saving measures such as hose pipe bans and drought orders. Results, which are demonstrated for the Thames Basin, UK, indicate existing water supplies are sensitive to a changing climate and an increasing population, and that the frequency of severe demand saving measures are projected to increase. Considering both climate projections and population growth, the median number of drought order occurrences may increase 5-fold by the 2050s. The effectiveness of a range of demand management and supply options have been tested and shown to provide significant benefits in terms of reducing the number of demand saving days. A decrease in per capita demand of 3.75 % reduces the median frequency of drought order measures by 50 % by the 2020s. We found that increased supply arising from various adaptation options may compensate for increasingly variable flows; however, without reductions in overall demand for water resources such options will be insufficient on their own to adapt to uncertainties in the projected changes in climate and population. For example, a 30 % reduction in overall demand by 2050 has a greater impact on reducing the frequency of drought orders than any of the individual or combinations of supply options; hence, a portfolio of measures is required.
Shi, Wendong; Wang, Lei; Chen, Baiyang
2017-04-01
Haloacetonitriles (HANs) are a group of nitrogenous disinfection by-products (DBPs) commonly found in treated water with potential carcinogenic, cytotoxic, and genotoxic risks. In order to control HANs and understand their real intake levels by people via drinking water, this study evaluated a list of structural, operational, and environmental factors affecting the treatment of HANs by two domestic heating devices, i.e., an electric boiler and a microwave oven. Results show that the concentrations of HANs decreased exponentially over time with increasing temperature, water turbulence, and bubbles, and the phenomena were most likely due to a combined effect of volatilization and hydrolysis. Among HANs, the lability increased with increasing halogenation degrees (i.e., tri- > di- > mono- HANs) yet decreasing halogen molecular weights (i.e., Cl- > Br- > I- HANs); such trends were well captured by quantitative structure activity relationship models (R 2 = 0.99). Operational factors played critical roles in controlling HANs too, including the rate of heating, water volume, water temperature at time of pouring, cooling method, and capping condition, suggesting that people could benefit from proper handling methods and procedures. In addition, HANs added to tap water exhibited higher removals than those added to ultrapure water, probably because of the presence of free chlorine in tap water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Removal of trace organic micropollutants by drinking water biological filters.
Zearley, Thomas L; Summers, R Scott
2012-09-04
The long-term removal of 34 trace organic micropollutants (<1 μg L(-1)) was evaluated and modeled in drinking water biological filters with sand media from a full-scale plant. The micropollutants included pesticides, pharmaceuticals, and personal care products, some of which are endocrine disrupting chemicals, and represent a wide range of uses, chemical structures, adsorbabilities, and biodegradabilities. Micropollutant removal ranged from no measurable removal (<15%) for 13 compounds to removal below the detection limit and followed one of four trends over the one year study period: steady state removal throughout, increasing removal to steady state (acclimation), decreasing removal, or no removal (recalcitrant). Removals for all 19 nonrecalcitrant compounds followed first-order kinetics when at steady state with increased removal at longer empty bed contact times (EBCT). Rate constants were calculated, 0.02-0.37 min(-1), and used in a pseudo-first-order rate model with the EBCT to predict removals in laboratory biofilters at a different EBCT and influent conditions. Drinking water biofiltration has the potential to be an effective process for the control of many trace organic contaminants and a pseudo-first-order model can serve as an appropriate method for approximating performance.
Crystal pathologies in macromolecular crystallography.
Dauter, Zbigniew; Jaskólski, Mariusz
Macromolecules, such as proteins or nucleic acids, form crystals with a large volume fraction of water, ~50% on average. Apart from typical physical defects and rather trivial poor quality problems, macromolecular crystals, as essentially any crystals, can also suffer from several kinds of pathologies, in which everything seems to be perfect, except that from the structural point of view the interpretation may be very difficult, sometimes even impossible. A frequent nuisance is pseudosymmetry, or non-crystallographic symmetry (NCS), which is particularly nasty when it has translational character. Lattice-translocation defects, also called order-disorder twinning (OD-twinning), occur when molecules are packed regularly in layers but the layers are stacked (without rotation) in two (or more) discrete modes, with a unique translocation vector. Crystal twinning arises when twin domains have different orientations, incompatible with the symmetry of the crystal structure. There are also crystals in which the periodic (lattice) order is broken or absent altogether. When the strict short-range translational order from one unit cell to the next is lost but the long-range order is restored by a periodic modulation, we have a modulated crystal structure. In quasicrystals (not observed for macromolecules yet), the periodic order (in 3D space) is lost completely and the diffraction pattern (which is still discrete) cannot be even indexed using three hkl indices. In addition, there are other physical defects and phenomena (such as high mosaicity, diffraction anisotropy, diffuse scattering, etc.) which make diffraction data processing and structure solution difficult or even impossible.
Decoupling structural and environmental determinants of sap velocity
NASA Astrophysics Data System (ADS)
Caylor, K. K.; Dragoni, D.
2007-12-01
Characterization of transpiration based on the water use of individual tress has the advantage of preserving vital information on the plant-environment functional links and flux partitioning between species and landscape areas. Whole-tree transpiration has been estimated by means of sap velocity probes, which offer the dual advantages of practicality and repeatability. However, the assumptions underlying the technique require careful verification in order to determine total sap flow from point-based estimates of sap velocity. Our work presents a novel theoretical framework for the study of individual tree sap flow that incorporates both spatial and temporal variability in sap velocities. The instantaneous sap velocity at any point in the radial profile of xylem tissue is defined as the product of two components: (1) a time-invariant sap velocity distribution linked to the species- specific anatomical and structural properties of the conducting xylem, and (2) a time-varying term linked to the dynamics of the atmospheric water demand and available soil moisture. The separation of structural and temporal variation in sap velocity observations provides a direct mechanism for investigating how sap flow is governed by variation in environmental conditions as well as a means for comparing characteristic rates of plant water use among individuals of varying size. Most critically, this approach allows for a consistent and physically meaningful method for extrapolating point observations of sap velocity across the entire depth of conducting xylem. Experimental evidence supports our theoretical framework in the case of a population of sugar maples in a mixed deciduous forest, where observations were taken from a wide range of tree sizes, under varying soil water availability and atmospheric transpiration demand. We have also applied our approach to a small homogeneous sample of dwarf apple trees in a managed orchard, with favorable results. While these results require further confirmation in order to be generalized, they nevertheless offer the basis to improve both the specific sampling strategies used to estimate whole-tree transpiration using sap velocity probes as well as methods employed to upscale water use of individual trees to larger scales for evaluation of landscape water balance.
Coupling between the Dynamics of Water and Surfactants in Lyotropic Liquid Crystals
McDaniel, Jesse G.; Yethiraj, Arun
2017-04-26
Bilayers composed of lipid or surfactant molecules are central to biological membranes and lamellar lyotropic liquid crystalline (LLC) phases. Common to these systems are phases that exhibit either ordered or disordered packing of the hydrophobic tails. In this work, we study the impact of surfactant ordering, i.e., disordered L α and ordered L β LLC phases, on the dynamics of water and sodium ions in the lamellar phases of dicarboxylate gemini surfactants. We study the different phases at identical hydration levels by changing the length of the hydrophobic tails; surfactants with shorter tails form L α phases and those withmore » longer tails form L β phases. We find that the L α phases exhibit lower density and greater compressibility than the L β phases, with a hydration-dependent headgroup surface area. These structural differences significantly affect the relative dynamic properties of the phases, primarily the mobility of the surfactant molecules tangential to the bilayer surface, as well as the rates of water and ion diffusion. We find ~20–50% faster water diffusion in the L α phases compared to the L β phases, with the differences most pronounced at low hydration. This coupling between water dynamics and surfactant mobility is verified using additional simulations in which the surfactant tails are frozen. Our study indicates that gemini surfactant LLCs provide an important prototypical system for characterizing properties shared with more complex biological lipid membranes.« less
Solid-liquid critical behavior of water in nanopores.
Mochizuki, Kenji; Koga, Kenichiro
2015-07-07
Nanoconfined liquid water can transform into low-dimensional ices whose crystalline structures are dissimilar to any bulk ices and whose melting point may significantly rise with reducing the pore size, as revealed by computer simulation and confirmed by experiment. One of the intriguing, and as yet unresolved, questions concerns the observation that the liquid water may transform into a low-dimensional ice either via a first-order phase change or without any discontinuity in thermodynamic and dynamic properties, which suggests the existence of solid-liquid critical points in this class of nanoconfined systems. Here we explore the phase behavior of a model of water in carbon nanotubes in the temperature-pressure-diameter space by molecular dynamics simulation and provide unambiguous evidence to support solid-liquid critical phenomena of nanoconfined water. Solid-liquid first-order phase boundaries are determined by tracing spontaneous phase separation at various temperatures. All of the boundaries eventually cease to exist at the critical points and there appear loci of response function maxima, or the Widom lines, extending to the supercritical region. The finite-size scaling analysis of the density distribution supports the presence of both first-order and continuous phase changes between solid and liquid. At around the Widom line, there are microscopic domains of two phases, and continuous solid-liquid phase changes occur in such a way that the domains of one phase grow and those of the other evanesce as the thermodynamic state departs from the Widom line.
Liquid crystals of carbon nanotubes and graphene.
Zakri, Cécile; Blanc, Christophe; Grelet, Eric; Zamora-Ledezma, Camilo; Puech, Nicolas; Anglaret, Eric; Poulin, Philippe
2013-04-13
Liquid crystal ordering is an opportunity to develop novel materials and applications with spontaneously aligned nanotubes or graphene particles. Nevertheless, achieving high orientational order parameter and large monodomains remains a challenge. In addition, our restricted knowledge of the structure of the currently available materials is a limitation for fundamental studies and future applications. This paper presents recent methodologies that have been developed to achieve large monodomains of nematic liquid crystals. These allow quantification and increase of their order parameters. Nematic ordering provides an efficient way to prepare conductive films that exhibit anisotropic properties. In particular, it is shown how the electrical conductivity anisotropy increases with the order parameter of the nematic liquid crystal. The order parameter can be tuned by controlling the length and entanglement of the nanotubes. In the second part of the paper, recent results on graphene liquid crystals are reported. The possibility to obtain water-based liquid crystals stabilized by surfactant molecules is demonstrated. Structural and thermodynamic characterizations provide indirect but statistical information on the dimensions of the graphene flakes. From a general point of view, this work presents experimental approaches to optimize the use of nanocarbons as liquid crystals and provides new methodologies for the still challenging characterization of such materials.
Seasonal water demand in Benin's agriculture.
Gruber, Ina; Kloos, Julia; Schopp, Marion
2009-01-01
This paper describes and analyzes agricultural water demands for Benin, West Africa. Official statistical data regarding water quantities as well as knowledge on factors influencing the demand for water are extremely rare and often reveal national trends without considering regional or local differences. Thus policy makers usually work with this estimated and aggregated data, which make it very difficult to adequately address regional and local development goals. In the framework of an interdisciplinary analysis the following paper provides insight into water quantification and detects water problems under seasonal aspects for agriculture according to regional differences. Following the definition of the Food and Agriculture Organization [FAO, 1995. Water Report 7. Irrigation in Africa in Figures. Rome] agriculture is divided into irrigation and livestock watering, which were analyzed using different field methods. The study reveals that although water supply in absolute terms seems to be sufficient in Benin, seasonal water problems occur both in irrigation and in livestock management. Thus arising seasonal water problems are not the consequence of general water scarcity but more linked to three major problems. These problems emerge from difficulties in technical equipment and financial means of farmers, from the specific local conditions influencing the access to water sources and the extraction of groundwater, and third from the overall low organizational structure of water management. Therefore regional differences as well as a general improvement of knowledge on better management structures, technical know how, and access to credits for farmers need to be considered in national strategies in order to improve the agricultural water usage in Benin.
Origin of diverse time scales in the protein hydration layer solvation dynamics: A simulation study
NASA Astrophysics Data System (ADS)
Mondal, Sayantan; Mukherjee, Saumyak; Bagchi, Biman
2017-10-01
In order to inquire the microscopic origin of observed multiple time scales in solvation dynamics, we carry out several computer experiments. We perform atomistic molecular dynamics simulations on three protein-water systems, namely, lysozyme, myoglobin, and sweet protein monellin. In these experiments, we mutate the charges of the neighbouring amino acid side chains of certain natural probes (tryptophan) and also freeze the side chain motions. In order to distinguish between different contributions, we decompose the total solvation energy response in terms of various components present in the system. This allows us to capture the interplay among different self- and cross-energy correlation terms. Freezing the protein motions removes the slowest component that results from side chain fluctuations, but a part of slowness remains. This leads to the conclusion that the slow component approximately in the 20-80 ps range arises from slow water molecules present in the hydration layer. While the more than 100 ps component has multiple origins, namely, adjacent charges in amino acid side chains, hydrogen bonded water molecules and a dynamically coupled motion between side chain and water. In addition, the charges enforce a structural ordering of nearby water molecules and helps to form a local long-lived hydrogen bonded network. Further separation of the spatial and temporal responses in solvation dynamics reveals different roles of hydration and bulk water. We find that the hydration layer water molecules are largely responsible for the slow component, whereas the initial ultrafast decay arises predominantly (approximately 80%) due to the bulk. This agrees with earlier theoretical observations. We also attempt to rationalise our results with the help of a molecular hydrodynamic theory that was developed using classical time dependent density functional theory in a semi-quantitative manner.
Effect of Long-Period Ordering of the Structure of a Plant on the Initial Stages of Photosynthesis
NASA Astrophysics Data System (ADS)
Korshunov, M. A.; Shabanov, A. V.; Bukhanov, E. R.; Shabanov, V. F.
2018-01-01
Using data on the structure of plant leaves, specific features of light propagation in biophotoniccrystal structures have been established by the transfer matrix method. Splitting of the stopband in two bands has been found. The density of photonic states and the electromagnetic field value have been calculated. The occurrence of two photosystems (splitting of the stopband in two bands), the peculiarity of the long-wavelength quantum yield and its enhancement (Emerson effect), and water dissociation in the soft mode due to an increase in the electromagnetic field on the layers are explained.
Structural Transition in Liquid Crystal Bubbles Generated from Fluidic Nanocellulose Colloids.
Chu, Guang; Vilensky, Rita; Vasilyev, Gleb; Deng, Shengwei; Qu, Dan; Xu, Yan; Zussman, Eyal
2017-07-17
The structural transition in micrometer-sized liquid crystal bubbles (LCBs) derived from rod-like cellulose nanocrystals (CNCs) was studied. The CNC-based LCBs were suspended in nematic or chiral nematic liquid-crystalline CNCs, which generated topological defects and distinct birefringent textures around them. The ordering and structure of the LCBs shifted from a nematic to chiral nematic arrangement as water evaporation progressed. These packed LCBs exhibited a specific photonic cross-communication property that is due to a combination of Bragg reflection and bubble curvature and size. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Correlation between physical structure and magnetic anisotropy of a magnetic nanoparticle colloid.
Dennis, C L; Jackson, A J; Borchers, J A; Gruettner, C; Ivkov, R
2018-05-25
We show the effects of a time-invariant magnetic field on the physical structure and magnetic properties of a colloid comprising 44 nm diameter magnetite magnetic nanoparticles, with a 24 nm dextran shell, in water. Structural ordering in this colloid parallel to the magnetic field occurs simultaneously with the onset of a colloidal uniaxial anisotropy. Further increases in the applied magnetic field cause the nanoparticles to order perpendicular to the field, producing unexpected colloidal unidirectional and trigonal anisotropies. This magnetic behavior is distinct from the cubic magnetocrystalline anisotropy of the magnetite and has its origins in the magnetic interactions among the mobile nanoparticles within the colloid. Specifically, these field-induced anisotropies and colloidal rearrangements result from the delicate balance between the magnetostatic and steric forces between magnetic nanoparticles. These magnetic and structural rearrangements are anticipated to influence applications that rely upon time-dependent relaxation of the magnetic colloids and fluid viscosity, such as magnetic hyperthermia and shock absorption.
Correlation between physical structure and magnetic anisotropy of a magnetic nanoparticle colloid
NASA Astrophysics Data System (ADS)
Dennis, C. L.; Jackson, A. J.; Borchers, J. A.; Gruettner, C.; Ivkov, R.
2018-05-01
We show the effects of a time-invariant magnetic field on the physical structure and magnetic properties of a colloid comprising 44 nm diameter magnetite magnetic nanoparticles, with a 24 nm dextran shell, in water. Structural ordering in this colloid parallel to the magnetic field occurs simultaneously with the onset of a colloidal uniaxial anisotropy. Further increases in the applied magnetic field cause the nanoparticles to order perpendicular to the field, producing unexpected colloidal unidirectional and trigonal anisotropies. This magnetic behavior is distinct from the cubic magnetocrystalline anisotropy of the magnetite and has its origins in the magnetic interactions among the mobile nanoparticles within the colloid. Specifically, these field-induced anisotropies and colloidal rearrangements result from the delicate balance between the magnetostatic and steric forces between magnetic nanoparticles. These magnetic and structural rearrangements are anticipated to influence applications that rely upon time-dependent relaxation of the magnetic colloids and fluid viscosity, such as magnetic hyperthermia and shock absorption.
Ice-nucleating bacteria control the order and dynamics of interfacial water
Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A.; ...
2016-04-22
Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering onmore » the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. Finally, the freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy.« less
Ice haze, snow, and the Mars water cycle
NASA Technical Reports Server (NTRS)
Kahn, Ralph
1990-01-01
Light curves and extinction profiles derived from Martian limb observations are used to constrain the atmospheric temperature structure in regions of the atmosphere with thin haze and to analyze the haze particle properties and atmospheric eddy mixing. Temperature between 170 and 190 K are obtained for three cases at levels in the atmosphere ranging from 20 to 50 km. Eddy diffusion coefficients around 100,000 sq cm/s, typical of a nonconvecting atmosphere, are derived in the haze regions at times when the atmosphere is relatively clear of dust. This parameter apparently changes by more than three orders of magnitude with season and local conditions. The derived particle size parameter varies systematically by more than an order of magnitude with condensation level, in such a way that the characteristic fall time is always about one Martian day. Ice hazes provide a mechanism for scavenging water vapor in the thin Mars atmosphere and may play a key role in the seasonal cycle of water on Mars.
AB-stacked square-like bilayer ice in graphene nanocapillaries.
Zhu, YinBo; Wang, FengChao; Bai, Jaeil; Zeng, Xiao Cheng; Wu, HengAn
2016-08-10
Water, when constrained between two graphene sheets and under ultrahigh pressure, can manifest dramatic differences from its bulk counterparts such as the van der Waals pressure induced water-to-ice transformation, known as the metastability limit of two-dimensional (2D) liquid. Here, we present result of a new crystalline structure of bilayer ice with the AB-stacking order, observed from molecular dynamics simulations of constrained water. This AB-stacked bilayer ice (BL-ABI) is transformed from the puckered monolayer square-like ice (pMSI) under higher lateral pressure in the graphene nanocapillary at ambient temperature. BL-ABI is a proton-ordered ice with square-like pattern. The transition from pMSI to BL-ABI is through crystal-to-amorphous-to-crystal pathway with notable hysteresis-loop in the potential energy during the compression/decompression process, reflecting the compression/tensile limit of the 2D monolayer/bilayer ice. In a superheating process, the BL-ABI transforms into the AB-stacked bilayer amorphous ice with the square-like pattern.
Ice-nucleating bacteria control the order and dynamics of interfacial water
Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A.; Fischer, Sean A.; Pfaendtner, Jim; Backus, Ellen H. G.; Nagata, Yuki; Fröhlich-Nowoisky, Janine; Schmüser, Lars; Mauri, Sergio; Scheel, Jan F.; Knopf, Daniel A.; Pöschl, Ulrich; Bonn, Mischa; Weidner, Tobias
2016-01-01
Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering on the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice-active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. The freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy. PMID:27152346
Andoh, Yoshimichi; Aoki, Noriyuki; Okazaki, Susumu
2016-02-28
Molecular dynamics (MD) calculations of lipid bilayers modeling the plasma membranes of normal mouse hepatocytes and hepatomas in water have been performed under physiological isothermal-isobaric conditions (310.15 K and 1 atm). The changes in the membrane properties induced by hepatic canceration were investigated and were compared with previous MD calculations included in our previous study of the changes in membrane properties induced by murine thymic canceration. The calculated model membranes for normal hepatocytes and hepatomas comprised 23 and 24 kinds of lipids, respectively. These included phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. We referred to previously published experimental values for the mole fraction of the lipids adopted in the present calculations. The calculated structural and dynamic properties of the membranes such as lateral structure, order parameters, lateral self-diffusion constants, and rotational correlation times all showed that hepatic canceration causes plasma membranes to become more ordered laterally and less fluid. Interestingly, this finding contrasts with the less ordered structure and increased fluidity of plasma membranes induced by thymic canceration observed in our previous MD study.
NASA Astrophysics Data System (ADS)
Andoh, Yoshimichi; Aoki, Noriyuki; Okazaki, Susumu
2016-02-01
Molecular dynamics (MD) calculations of lipid bilayers modeling the plasma membranes of normal mouse hepatocytes and hepatomas in water have been performed under physiological isothermal-isobaric conditions (310.15 K and 1 atm). The changes in the membrane properties induced by hepatic canceration were investigated and were compared with previous MD calculations included in our previous study of the changes in membrane properties induced by murine thymic canceration. The calculated model membranes for normal hepatocytes and hepatomas comprised 23 and 24 kinds of lipids, respectively. These included phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. We referred to previously published experimental values for the mole fraction of the lipids adopted in the present calculations. The calculated structural and dynamic properties of the membranes such as lateral structure, order parameters, lateral self-diffusion constants, and rotational correlation times all showed that hepatic canceration causes plasma membranes to become more ordered laterally and less fluid. Interestingly, this finding contrasts with the less ordered structure and increased fluidity of plasma membranes induced by thymic canceration observed in our previous MD study.
Crystal structure of a DNA/Ba2+ G-quadruplex containing a water-mediated C-tetrad.
Zhang, Diana; Huang, Terry; Lukeman, Philip S; Paukstelis, Paul J
2014-12-01
We have determined the 1.50 Å crystal structure of the DNA decamer, d(CCA(CNV)KGCGTGG) ((CNV)K, 3-cyanovinylcarbazole), which forms a G-quadruplex structure in the presence of Ba(2+). The structure contains several unique features including a bulged nucleotide and the first crystal structure observation of a C-tetrad. The structure reveals that water molecules mediate contacts between the divalent cations and the C-tetrad, allowing Ba(2+) ions to occupy adjacent steps in the central ion channel. One ordered Mg(2+) facilitates 3'-3' stacking of two quadruplexes in the asymmetric unit, while the bulged nucleotide mediates crystal contacts. Despite the high diffraction limit, the first four nucleotides including the (CNV)K nucleoside are disordered though they are still involved in crystal packing. This work suggests that the bulky hydrophobic groups may locally influence the formation of non-Watson-Crick structures from otherwise complementary sequences. These observations lead to the intriguing possibility that certain types of DNA damage may act as modulators of G-quadruplex formation. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Structure of peat soils and implications for biogeochemical processes and hydrological flow
NASA Astrophysics Data System (ADS)
Rezanezhad, F.; McCarter, C. P. R.; Gharedaghloo, B.; Kleimeier, C.; Milojevic, T.; Liu, H.; Weber, T. K. D.; Price, J. S.; Quinton, W. L.; Lenartz, B.; Van Cappellen, P.
2017-12-01
Permafrost peatlands contain globally important amounts of soil organic carbon and play major roles in global water, nutrient and biogeochemical cycles. The structure of peatland soils (i.e., peat) are highly complex with unique physical and hydraulic properties; where significant, and only partially reversible, shrinkage occurs during dewatering (including water table fluctuations), compression and/or decomposition. These distinct physical and hydraulic properties controls water flow, which in turn affect reactive and non-reactive solute transport (such as, sorption or degradation) and biogeochemical functions. Additionally, peat further attenuates solute migration through molecular diffusion into the inactive pores of Sphagnum dominated peat. These slow, diffusion-limited solute exchanges between the pore regions may give rise to pore-scale chemical gradients and heterogeneous distributions of microbial habitats and activity in peat soils. Permafrost peat plateaus have the same essential subsurface characteristics as other widely organic soil-covered peatlands, where the hydraulic conductivity is related to the degree of decomposition and soil compression. Increasing levels of decomposition correspond with a reduction of effective pore diameter and consequently restrict water and solute flow (by several orders of magnitude in hydraulic conductivity between the ground surface and a depth of 50 cm). In this presentation, we present the current knowledge of key physical and hydraulic properties related to the structure of globally available peat soils and discuss their implications for water storage, flow and the migration of solutes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyakuno, Haruka, E-mail: h-kyakuno@kanagawa-u.ac.jp; Institute of Physics, Faculty of Engineering, Kanagawa University, Yokohama 221-8686; Fukasawa, Mamoru
Single-wall carbon nanotubes (SWCNTs) are a good model system that provides atomically smooth nanocavities. It has been reported that water-SWCNTs exhibit hydrophobicity depending on the temperature T and the SWCNT diameter D. SWCNTs adsorb water molecules spontaneously in their cylindrical pores around room temperature, whereas they exhibit a hydrophilic-hydrophobic transition or wet-dry transition (WDT) at a critical temperature T{sub wd} ≈ 220-230 K and above a critical diameter D{sub c} ≈ 1.4-1.6 nm. However, details of the WDT phenomenon and its mechanism remain unknown. Here, we report a systematic experimental study involving X-ray diffraction, optical microscopy, and differential scanning calorimetry.more » It is found that water molecules inside thick SWCNTs (D > D{sub c}) evaporate and condense into ice Ih outside the SWCNTs at T{sub wd} upon cooling, and the ice Ih evaporates and condenses inside the SWCNTs upon heating. On the other hand, residual water trapped inside the SWCNTs below T{sub wd} freezes. Molecular dynamics simulations indicate that upon lowering T, the hydrophobicity of thick SWCNTs increases without any structural transition, while the water inside thin SWCNTs (D < D{sub c}) exhibits a structural transition, forming an ordered ice. This ice has a well-developed hydrogen bonding network adapting to the cylindrical pores of the SWCNTs. Thus, the unusual diameter dependence of the WDT is attributed to the adaptability of the structure of water to the pore dimension and shape.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Tuan Anh; Ogitsu, Tadashi; Lau, Edmond Y.
Establishing an accurate and predictive computational framework for the description of complex aqueous solutions is an ongoing challenge for density functional theory based first-principles molecular dynamics (FPMD) simulations. In this context, important advances have been made in recent years, including the development of sophisticated exchange-correlation functionals. On the other hand, simulations based on simple generalized gradient approximation (GGA) functionals remain an active field, particularly in the study of complex aqueous solutions due to a good balance between the accuracy, computational expense, and the applicability to a wide range of systems. In such simulations we often perform them at elevated temperaturesmore » to artificially “correct” for GGA inaccuracies in the description of liquid water; however, a detailed understanding of how the choice of temperature affects the structure and dynamics of other components, such as solvated ions, is largely unknown. In order to address this question, we carried out a series of FPMD simulations at temperatures ranging from 300 to 460 K for liquid water and three representative aqueous solutions containing solvated Na +, K +, and Cl - ions. We show that simulations at 390–400 K with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional yield water structure and dynamics in good agreement with experiments at ambient conditions. Simultaneously, this computational setup provides ion solvation structures and ion effects on water dynamics consistent with experiments. These results suggest that an elevated temperature around 390–400 K with the PBE functional can be used for the description of structural and dynamical properties of liquid water and complex solutions with solvated ions at ambient conditions.« less
Pham, Tuan Anh; Ogitsu, Tadashi; Lau, Edmond Y.; ...
2016-10-17
Establishing an accurate and predictive computational framework for the description of complex aqueous solutions is an ongoing challenge for density functional theory based first-principles molecular dynamics (FPMD) simulations. In this context, important advances have been made in recent years, including the development of sophisticated exchange-correlation functionals. On the other hand, simulations based on simple generalized gradient approximation (GGA) functionals remain an active field, particularly in the study of complex aqueous solutions due to a good balance between the accuracy, computational expense, and the applicability to a wide range of systems. In such simulations we often perform them at elevated temperaturesmore » to artificially “correct” for GGA inaccuracies in the description of liquid water; however, a detailed understanding of how the choice of temperature affects the structure and dynamics of other components, such as solvated ions, is largely unknown. In order to address this question, we carried out a series of FPMD simulations at temperatures ranging from 300 to 460 K for liquid water and three representative aqueous solutions containing solvated Na +, K +, and Cl - ions. We show that simulations at 390–400 K with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional yield water structure and dynamics in good agreement with experiments at ambient conditions. Simultaneously, this computational setup provides ion solvation structures and ion effects on water dynamics consistent with experiments. These results suggest that an elevated temperature around 390–400 K with the PBE functional can be used for the description of structural and dynamical properties of liquid water and complex solutions with solvated ions at ambient conditions.« less
Nine steps towards a better water meter management.
Arregui, F J; Soriano, J; Cabrera, E; Cobacho, R
2012-01-01
The paper provides a comprehensive perspective of the critical aspects to be taken into account when planning the long-term management of water meters in a utility. In order to facilitate their quick understanding and practical implementation, they have been structured into nine steps. Ranging from an initial audit up to the final periodic meter replacement planning, these steps cover three aspects of the problem - field work, laboratory work and management tasks; and each one is developed in detail paying attention to the particular data needed and noting the practical outcome it will yield.
Molecular absorption by atmospheric gases in the 100-1000 GHz region
NASA Astrophysics Data System (ADS)
Llewellyn-Jones, D. T.; Knight, R. J.
The two principal atmospheric absorbers in the near-mm wavelength region are oxygen and water vapor. In order to measure the degree of water vapor absorption with the required precision, a large untuned resonator was constructed, consisting of a copper cylindrical structure with a Q-value close to one million at 100 GHz. A comparison of observed absorption values with theoretical predictions show a marked discrepancy. Without laboratory measurements such as the present, existing atmospheric attenuation models are likely to be inaccurate and misleading, especially at the lower range of tropospheric temperatures.
Vertebrobasilar Dolichoectasia Induced Hydrocephalus: the Water-Hammer Effect
Zisimopoulou, Vaso; Ntouniadaki, Aikaterini; Aggelidakis, Panagiotis; Siatouni, Anna; Gatzonis, Stylianos; Tavernarakis, Antonios
2015-01-01
Vertebrobasilar dolichoectasia is a clinical entity associated rarely with obstructive hydrocephalus. We present a 48-year old male with a profound dilatation of the ventricular system due to a dolichoectatic basilar artery, as appeared in imaging studies. The patient suffered from longstanding hydrocephalus and presenile dementia. The underlying mechanism for obstructive hydrocephalus due to vertebrobasilar dolichoectasia is considered to be both a water-hammer effect and a direct compression of adjacent structures. We suggest prompt surgical intervention upon diagnosis as a first choice treatment in order to avoid further complications. PMID:26236456
Vertebrobasilar Dolichoectasia Induced Hydrocephalus: the Water-Hammer Effect.
Zisimopoulou, Vaso; Ntouniadaki, Aikaterini; Aggelidakis, Panagiotis; Siatouni, Anna; Gatzonis, Stylianos; Tavernarakis, Antonios
2015-04-24
Vertebrobasilar dolichoectasia is a clinical entity associated rarely with obstructive hydrocephalus. We present a 48-year old male with a profound dilatation of the ventricular system due to a dolichoectatic basilar artery, as appeared in imaging studies. The patient suffered from longstanding hydrocephalus and presenile dementia. The underlying mechanism for obstructive hydrocephalus due to vertebrobasilar dolichoectasia is considered to be both a water-hammer effect and a direct compression of adjacent structures. We suggest prompt surgical intervention upon diagnosis as a first choice treatment in order to avoid further complications.
NASA Astrophysics Data System (ADS)
Bolintineanu, Dan S.; Lane, J. Matthew D.; Grest, Gary S.
2013-03-01
We report fully atomistic molecular dynamics simulations of alkanethiol coated gold nanoparticles solvated in water and decane. The structure of the coatings is analyzed as a function of various functional end groups, including amine and carboxyl groups in different neutralization states. We study the effects of charge in the end groups for two different chain lengths (10 and 18 carbons) and different counterions (mono- and divalent). For the longer alkanes we find significant local phase segregation of chains on the nanoparticle surface, which results in highly asymmetric coating structures. In general, the charged end groups attenuate this effect by enhancing the water solubility of the nanoparticles. Based on the coating structures and density profiles, we can qualitatively infer the overall solubility of the nanoparticles. The asymmetry in the alkanethiol coatings is also likely to have a significant effect on aggregation behavior. More importantly, our simulations suggest the ability to modulate end group charge states (e.g. by changing the pH of the solution) in order to control coating structure, and therefore control solubility and aggregation behavior.
Structure Study of the Chiral Lactide Molecules by Chirped-Pulse Ftmw Spectroscopy
NASA Astrophysics Data System (ADS)
Zaleski, Daniel P.; Neill, Justin L.; Pate, Brooks H.; Bialkowska-Jaworska, Ewa; Kisiel, Zbigniew
2011-06-01
Lactide is a six member cyclic diester with two chiral centers that forms from lactic acid in the presence of heat and an acid catalyst. It can form either a homo-chiral (RR) structure with both methyl groups equatorial or a hetero-chiral (RS) structure where one methyl group is equatorial and the other methyl group is axial. Structurally lactide is similar to lactic acid dimer; however, the kinked ring is covalently bonded and two waters are lost. And unlike lactic acid dimer, which has a very small dipole moment, the dipole moment of lactide is on the order of 3 Debye. Here the microwave spectra of the highly rigid homo- and hetero-chiral lactides are presented, which were first assigned in a heated lactic acid spectrum where the chemistry took place in the reservoir nozzles. Further isotopic information from a commercial sample of predominately homo-chiral lactide was obtained leading to a Kraitchman substitution structure of the homo-chiral lactide. Preliminary results of the cluster of homo-chiral lactide with one water molecule attached are also presented.
NASA Astrophysics Data System (ADS)
Mao, Mao; Li, Zucheng; Pan, Yuanming
2013-02-01
Single-crystal electron paramagnetic resonance spectra of gamma-ray-irradiated hemimorphite (Mapimi, Durango, Mexico) after storage at room temperature for 3 months, measured from 4 to 275 K, reveal a hydroperoxy radical HO2 derived from the water molecule in the channel. The EPR spectra of the HO2 radical confirm that hemimorphite undergoes two reversible phase transitions at ~98 and ~21 K and allow determinations of its spin Hamiltonian parameters, including superhyperfine coupling constants of two more-distant protons from the neighboring hydroxyl groups, at 110, 85, 40 and 7 K. These EPR results show that the HO2 radical changes in site symmetry from monoclinic to triclinic related to the ordering and rotation of its precursor water molecule in the channel at <98 K. The monoclinic structure of hemimorphite with completely ordered O-H systems at low temperature has been evaluated by both the EPR spectra of the HO2 radical at <21 K and periodic density functional theory calculations.
A Qualitative Study on the Interconnected Nature of HIV, Water, and Family.
Ramirez-Ortiz, Daisy; Zolnikov, Tara Rava
2017-03-01
Human immunodeficiency virus infection/acquired immunodeficiency syndrome (HIV/AIDS) and poor access to water are two primary global health issues. Poor access to water may significantly affect families infected with HIV and result in adverse social and health consequences. A qualitative study used semi-structured interviews to understand health and social outcomes of families after the implementation of water interventions in rural Kenya. One major sub-theme emerged during this research, which included the effects of water on an HIV-affected family. Prior to the water interventions, common adverse health effects from lack of nutrition, water, and poor hygiene were experienced. After receiving access to water, nutrition and hygiene were improved and additional time was gained and used to reinforce relationships and spread awareness about HIV/AIDS. This study provides need-based evidence for access to safe drinking water in order to decrease adverse health outcomes and improve the quality of life for HIV-affected individuals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Margareta; Lackner, Peter; Seiler, Steffen
Changes in chemical and physical properties resulting from water adsorption play an important role in the characterization and performance of device-relevant materials. Studies of model oxides with well-characterized surfaces can provide detailed information that is vital for a general understanding of water–oxide interactions. In this work, we study single crystals of indium oxide, the prototypical transparent contact material that is heavily used in a wide range of applications and most prominently in optoelectronic technologies. Water adsorbs dissociatively already at temperatures as low as 100 K, as confirmed by scanning tunneling microscopy (STM), photoelectron spectroscopy, and density functional theory. This dissociationmore » takes place on lattice sites of the defect-free surface. While the In 2O 3(111)-(1 × 1) surface offers four types of surface oxygen atoms (12 atoms per unit cell in total), water dissociation happens exclusively at one of them together with a neighboring pair of 5-fold coordinated In atoms. These O–In groups are symmetrically arranged around the 6-fold coordinated In atoms at the surface. At room temperature, the In 2O 3(111) surface thus saturates at three dissociated water molecules per unit cell, leading to a well-ordered hydroxylated surface with (1 × 1) symmetry, where the three water OWH groups plus the surface OSH groups are imaged together as one bright triangle in STM. Manipulations with the STM tip by means of voltage pulses preferentially remove the H atom of one surface OSH group per triangle. The change in contrast due to strong local band bending provides insights into the internal structure of these bright triangles. The experimental results are further confirmed by quantitative simulations of the STM image corrugation.« less
Wagner, Margareta; Lackner, Peter; Seiler, Steffen; ...
2017-11-01
Changes in chemical and physical properties resulting from water adsorption play an important role in the characterization and performance of device-relevant materials. Studies of model oxides with well-characterized surfaces can provide detailed information that is vital for a general understanding of water–oxide interactions. In this work, we study single crystals of indium oxide, the prototypical transparent contact material that is heavily used in a wide range of applications and most prominently in optoelectronic technologies. Water adsorbs dissociatively already at temperatures as low as 100 K, as confirmed by scanning tunneling microscopy (STM), photoelectron spectroscopy, and density functional theory. This dissociationmore » takes place on lattice sites of the defect-free surface. While the In 2O 3(111)-(1 × 1) surface offers four types of surface oxygen atoms (12 atoms per unit cell in total), water dissociation happens exclusively at one of them together with a neighboring pair of 5-fold coordinated In atoms. These O–In groups are symmetrically arranged around the 6-fold coordinated In atoms at the surface. At room temperature, the In 2O 3(111) surface thus saturates at three dissociated water molecules per unit cell, leading to a well-ordered hydroxylated surface with (1 × 1) symmetry, where the three water OWH groups plus the surface OSH groups are imaged together as one bright triangle in STM. Manipulations with the STM tip by means of voltage pulses preferentially remove the H atom of one surface OSH group per triangle. The change in contrast due to strong local band bending provides insights into the internal structure of these bright triangles. The experimental results are further confirmed by quantitative simulations of the STM image corrugation.« less
Simulation of multistatic and backscattering cross sections for airborne radar
NASA Astrophysics Data System (ADS)
Biggs, Albert W.
1986-07-01
In order to determine susceptibilities of airborne radar to electronic countermeasures and electronic counter-countermeasures simulations of multistatic and backscattering cross sections were developed as digital modules in the form of algorithms. Cross section algorithms are described for prolate (cigar shape) and oblate (disk shape) spheroids. Backscattering cross section algorithms are also described for different categories of terrain. Backscattering cross section computer programs were written for terrain categorized as vegetation, sea ice, glacial ice, geological (rocks, sand, hills, etc.), oceans, man-made structures, and water bodies. PROGRAM SIGTERRA is a file for backscattering cross section modules of terrain (TERRA) such as vegetation (AGCROP), oceans (OCEAN), Arctic sea ice (SEAICE), glacial snow (GLASNO), geological structures (GEOL), man-made structures (MAMMAD), or water bodies (WATER). AGCROP describes agricultural crops, trees or forests, prairies or grassland, and shrubs or bush cover. OCEAN has the SLAR or SAR looking downwind, upwind, and crosswind at the ocean surface. SEAICE looks at winter ice and old or polar ice. GLASNO is divided into a glacial ice and snow or snowfields. MANMAD includes buildings, houses, roads, railroad tracks, airfields and hangars, telephone and power lines, barges, trucks, trains, and automobiles. WATER has lakes, rivers, canals, and swamps. PROGRAM SIGAIR is a similar file for airborne targets such as prolate and oblate spheroids.
Phase diagram of supercooled water confined to hydrophilic nanopores
NASA Astrophysics Data System (ADS)
Limmer, David T.; Chandler, David
2012-07-01
We present a phase diagram for water confined to cylindrical silica nanopores in terms of pressure, temperature, and pore radius. The confining cylindrical wall is hydrophilic and disordered, which has a destabilizing effect on ordered water structure. The phase diagram for this class of systems is derived from general arguments, with parameters taken from experimental observations and computer simulations and with assumptions tested by computer simulation. Phase space divides into three regions: a single liquid, a crystal-like solid, and glass. For large pores, radii exceeding 1 nm, water exhibits liquid and crystal-like behaviors, with abrupt crossovers between these regimes. For small pore radii, crystal-like behavior is unstable and water remains amorphous for all non-zero temperatures. At low enough temperatures, these states are glasses. Several experimental results for supercooled water can be understood in terms of the phase diagram we present.
Xiang, Yang; Ru, Xudong; Shi, Jinguo; Song, Jiang; Zhao, Haidong; Liu, Yaqing; Guo, Dongdong; Lu, Xin
2017-12-20
A new semi-interpenetrating polymer network (semi-IPN) slow-release fertilizer (SISRF) with water absorbency, based on the kaolin-g-poly(acrylic acid-co-acrylic amide) (kaolin-g-P(AA-co-AM)) network and linear urea-formaldehyde oligomers (UF), was prepared by solution polymerization. Nutrients phosphorus and potassium were supplied by adding dipotassium hydrogen phosphate during the preparation process. The structure and properties of SISRF were characterized by various characterization methods. SISRF showed excellent water absorbency of 68 g g -1 in tap water. The slow-release behavior of nutrients and water-retention capacity of SISRF were also measured. Meanwhile, the swelling kinetics was well described by a pseudo-second-order kinetics model. Results suggested the formation of SISRF with simultaneously good slow-release and water-retention capacity, which was expected to apply in modern agriculture and horticulture.
NASA Astrophysics Data System (ADS)
Li, Xiaolong; Zheng, Yang; Gou, Qian; Feng, Gang; Xia, Zhining
2018-01-01
In order to explore the -CF3 substitution effect on the complexation of pyridine, we investigated the 2-(trifluoromethyl)pyridine⋯water complex by using pulsed jet Fourier transform microwave spectroscopy complemented with quantum chemical calculations. Experimental assignment and ab initio calculations confirmed that the observed complex is stabilized through N⋯H-O and O⋯H-C hydrogen bonds forming a five-membered ring structure. The bonding distance in N⋯H-O is determined to be 2.027(2) Å, whilst that in O⋯H-C interaction is 2.728(2) Å. The quantum theory of atoms in molecules analysis indicates that the interaction energy of N⋯H-O hydrogen bond is ˜22 kJ mol-1 and that for O⋯H-C hydrogen bond is ˜5 kJ mol-1. The water molecule lies almost in the plane of the aromatic ring in the complex. The -CF3 substitution to pyridine quenches the tunneling splitting path of the internal motion of water molecule.
Tetrahedrality and structural order for hydrophobic interactions in a coarse-grained water model
NASA Astrophysics Data System (ADS)
Chaimovich, Aviel; Shell, M. Scott
2014-02-01
The hydrophobic interaction manifests two separate regimes in terms of size: Small nonpolar bodies exhibit a weak oscillatory force (versus distance) while large nonpolar surfaces exhibit a strong monotonic one. This crossover in hydrophobic behavior is typically explained in terms of water's tetrahedral structure: Its tetrahedrality is enhanced near small solutes and diminished near large planar ones. Here, we demonstrate that water's tetrahedral correlations signal this switch even in a highly simplified, isotropic, "core-softened" water model. For this task, we introduce measures of tetrahedrality based on the angular distribution of water's nearest neighbors. On a quantitative basis, the coarse-grained model of course is only approximate: (1) While greater than simple Lennard-Jones liquids, its bulk tetrahedrality remains lower than that of fully atomic models; and (2) the decay length of the large-scale hydrophobic interaction is less than has been found in experiments. Even so, the qualitative behavior of the model is surprisingly rich and exhibits numerous waterlike hydrophobic behaviors, despite its simplicity. We offer several arguments for the manner in which it should be able to (at least partially) reproduce tetrahedral correlations underlying these effects.
Tetrahedrality and structural order for hydrophobic interactions in a coarse-grained water model.
Chaimovich, Aviel; Shell, M Scott
2014-02-01
The hydrophobic interaction manifests two separate regimes in terms of size: Small nonpolar bodies exhibit a weak oscillatory force (versus distance) while large nonpolar surfaces exhibit a strong monotonic one. This crossover in hydrophobic behavior is typically explained in terms of water's tetrahedral structure: Its tetrahedrality is enhanced near small solutes and diminished near large planar ones. Here, we demonstrate that water's tetrahedral correlations signal this switch even in a highly simplified, isotropic, "core-softened" water model. For this task, we introduce measures of tetrahedrality based on the angular distribution of water's nearest neighbors. On a quantitative basis, the coarse-grained model of course is only approximate: (1) While greater than simple Lennard-Jones liquids, its bulk tetrahedrality remains lower than that of fully atomic models; and (2) the decay length of the large-scale hydrophobic interaction is less than has been found in experiments. Even so, the qualitative behavior of the model is surprisingly rich and exhibits numerous waterlike hydrophobic behaviors, despite its simplicity. We offer several arguments for the manner in which it should be able to (at least partially) reproduce tetrahedral correlations underlying these effects.
García-Prieto, Francisco F; Fdez Galván, Ignacio; Aguilar, Manuel A; Martín, M Elena
2011-11-21
The ASEP/MD method has been employed for studying the solvent effect on the conformational equilibrium of the alanine dipeptide in water solution. MP2 and density functional theory (DFT) levels of theory were used and results were compared. While in gas phase cyclic structures showing intramolecular hydrogen bonds were found to be the most stable, the stability order is reversed in water solution. Intermolecular interaction with the solvent causes the predominance of extended structures as the stabilizing contacts dipeptide-water are favoured. Free-energy differences in solution were calculated and PPII, α(R), and C5 conformers were identified as the most stable at MP2 level. Experimental data from Raman and IR techniques show discrepancies about the relative abundance of α(R) y C5, our results support the Raman data. The DFT level of theory agrees with MP2 in the location and stability of PPII and α(R) forms but fails in the location of C5. MP2 results suggest the possibility of finding traces of C7eq conformer in water solution, in agreement with recent experiments.
Pratt, Bethany; Chang, Heejun
2012-03-30
The relationship among land cover, topography, built structure and stream water quality in the Portland Metro region of Oregon and Clark County, Washington areas, USA, is analyzed using ordinary least squares (OLS) and geographically weighted (GWR) multiple regression models. Two scales of analysis, a sectional watershed and a buffer, offered a local and a global investigation of the sources of stream pollutants. Model accuracy, measured by R(2) values, fluctuated according to the scale, season, and regression method used. While most wet season water quality parameters are associated with urban land covers, most dry season water quality parameters are related topographic features such as elevation and slope. GWR models, which take into consideration local relations of spatial autocorrelation, had stronger results than OLS regression models. In the multiple regression models, sectioned watershed results were consistently better than the sectioned buffer results, except for dry season pH and stream temperature parameters. This suggests that while riparian land cover does have an effect on water quality, a wider contributing area needs to be included in order to account for distant sources of pollutants. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Novakovskaya, Yu. V.; Stepanov, N. F.
Structures of water cluster cations (H_{2}O)^{+}_{n} with n ≤ 5 are optimized at the unrestricted Hartree-Fock level with the 4 - 31 + +G** basis set. Energetic characteristics of the cations are then estimated taking into account the second order perturbation corrections (MP2). After the electron detachment from a neutral cluster, the structure of the latter substantially changes, so that OH and H3O+ fragments can be distinguished in it. In some cations H3O+ is so strongly bonded to water molecules that it is reasonable to speak of the [H2n-1On-1]+ fragments. According to the position of OH, the structures form two groups. In one group, OH acts exclusively as the proton acceptor in H-bonds with water molecules, thus being terminal in the chain-like structures; in the other group it is directly bonded to H3O and, as a proton donor, forms an H-bond with water molecule. Cluster cations do not tend to dissociate into the fragments. However, an external influence of ≤ 0.4 eV is sufficient for the cations of the first group to dissociate into a free OH radical and a protonated cluster H+(H2O)n-1. Extrapolation of the calculated adiabatic ionization potentials of the water clusters to n → ∞ provides a value of 8.6 eV, which can be considered as an estimation of the electron work function of water. This value is close to the experimental photoelectric thresholds of amorphous ice (8.7 ± 0.1 eV) and water (9.39 ± 0.3 eV). Solvation of the electron lowers the value, and an energy of 7 eV can be sufficient for initiating conductivity. This prediction is in accord with the experiment: irradiating ice with ultraviolet light of the photon energy 6.5-6.8 eV initiates photoconductivity, and hydrogen peroxide and H3O+ ions are observed.
Development of Coarse Grained Models for Long Chain Alkanes
NASA Astrophysics Data System (ADS)
Gyawali, Gaurav; Sternfield, Samuel; Hwang, In Chul; Rick, Steven; Kumar, Revati; Rick Group Team; Kumar Group Team
Modeling aggregation in aqueous solution is a challenge for molecular simulations as it involves long time scales, a range of length scales, and the correct balance of hydrophobic and hydrophilic interactions. We have developed a coarse-grained model fast enough for the rapid testing of molecular structures for their aggregation properties. This model, using the Stillinger-Weber potential, achieves efficiency through a reduction in the number of interaction sites and the use of short-ranged interactions. The model can be two to three orders of magnitude more efficient than conventional all atom simulations, yet through a careful parameterization process and the use of many-body interactions can be remarkably accurate. We have developed models for long chain alkanes in water that reproduce the thermodynamics and structure of water-alkane and liquid alkane systems.
Water Oxidation Catalysis via Size-Selected Iridium Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halder, Avik; Liu, Cong; LIU, ZHUN
The detailed mechanism and efficacy of four electron electrochemical water oxidation depend critically upon the detailed atomic structure of each catalytic site, which are numerous and diverse in most metal oxides anodes. In order to limit the diversity of sites, arrays of discrete iridium clusters with identical metal atom number (Ir-2, Ir-4, or Ir-8) were deposited in submonolayer coverage on conductive oxide supports, and the electrochemical properties and activity of each was evaluated. Exceptional electroactivity for the oxygen evolving reaction (OER) was observed for all cluster samples in acidic electrolyte. Reproducible cluster-size-dependent trends in redox behavior were also resolved. First-principlesmore » computational models of the individual discrete-size clusters allow correlation of catalytic-site structure and multiplicity with redox behavior.« less
Adaptation of water resource systems to an uncertain future
NASA Astrophysics Data System (ADS)
Walsh, C. L.; Blenkinsop, S.; Fowler, H. J.; Burton, A.; Dawson, R. J.; Glenis, V.; Manning, L. J.; Kilsby, C. G.
2015-09-01
Globally, water resources management faces significant challenges from changing climate and growing populations. At local scales, the information provided by climate models is insufficient to support the water sector in making future adaptation decisions. Furthermore, projections of change in local water resources are wrought with uncertainties surrounding natural variability, future greenhouse gas emissions, model structure, population growth and water consumption habits. To analyse the magnitude of these uncertainties, and their implications for local scale water resource planning, we present a top-down approach for testing climate change adaptation options using probabilistic climate scenarios and demand projections. An integrated modelling framework is developed which implements a new, gridded spatial weather generator, coupled with a rainfall-runoff model and water resource management simulation model. We use this to provide projections of the number of days, and associated uncertainty that will require implementation of demand saving measures such as hose pipe bans and drought orders. Results, which are demonstrated for the Thames basin, UK, indicate existing water supplies are sensitive to a changing climate and an increasing population, and that the frequency of severe demand saving measures are projected to increase. Considering both climate projections and population growth the median number of drought order occurrences may increase five-fold. The effectiveness of a range of demand management and supply options have been tested and shown to provide significant benefits in terms of reducing the number of demand saving days. We found that increased supply arising from various adaptation options may compensate for increasingly variable flows; however, without reductions in overall demand for water resources such options will be insufficient on their own to adapt to uncertainties in the projected changes in climate and population. For example, a 30 % reduction in overall demand by 2050 has a greater impact on reducing the frequency of drought orders than any of the individual or combinations of supply options; hence a portfolio of measures are required.
A semi-structured MODFLOW-USG model to evaluate local water sources to wells for decision support
Feinstein, Daniel T.; Fienen, Michael N.; Reeves, Howard W.; Langevin, Christian D.
2016-01-01
In order to better represent the configuration of the stream network and simulate local groundwater-surface water interactions, a version of MODFLOW with refined spacing in the topmost layer was applied to a Lake Michigan Basin (LMB) regional groundwater-flow model developed by the U.S. Geological. Regional MODFLOW models commonly use coarse grids over large areas; this coarse spacing precludes model application to local management issues (e.g., surface-water depletion by wells) without recourse to labor-intensive inset models. Implementation of an unstructured formulation within the MODFLOW framework (MODFLOW-USG) allows application of regional models to address local problems. A “semi-structured” approach (uniform lateral spacing within layers, different lateral spacing among layers) was tested using the LMB regional model. The parent 20-layer model with uniform 5000-foot (1524-m) lateral spacing was converted to 4 layers with 500-foot (152-m) spacing in the top glacial (Quaternary) layer, where surface water features are located, overlying coarser resolution layers representing deeper deposits. This semi-structured version of the LMB model reproduces regional flow conditions, whereas the finer resolution in the top layer improves the accuracy of the simulated response of surface water to shallow wells. One application of the semi-structured LMB model is to provide statistical measures of the correlation between modeled inputs and the simulated amount of water that wells derive from local surface water. The relations identified in this paper serve as the basis for metamodels to predict (with uncertainty) surface-water depletion in response to shallow pumping within and potentially beyond the modeled area, see Fienen et al. (2015a).
Das, Subhadip; Baghel, Vikesh Singh; Roy, Sudip; Kumar, Rajnish
2015-04-14
One of the options suggested for methane recovery from natural gas hydrates is molecular replacement of methane by suitable guests like CO2 and N2. This approach has been found to be feasible through many experimental and molecular dynamics simulation studies. However, the long term stability of the resultant hydrate needs to be evaluated; the decomposition rate of these hydrates is expected to depend on the interaction between these guest and water molecules. In this work, molecular dynamics simulation has been performed to illustrate the effect of guest molecules with different sizes and interaction strengths with water on structure I (SI) hydrate decomposition and hence the stability. The van der Waals interaction between water of hydrate cages and guest molecules is defined by Lennard Jones potential parameters. A wide range of parameter spaces has been scanned by changing the guest molecules in the SI hydrate, which acts as a model gas for occupying the small and large cages of the SI hydrate. All atomistic simulation results show that the stability of the hydrate is sensitive to the size and interaction of the guest molecules with hydrate water. The increase in the interaction of guest molecules with water stabilizes the hydrate, which in turn shows a slower rate of hydrate decomposition. Similarly guest molecules with a reasonably small (similar to Helium) or large size increase the decomposition rate. The results were also analyzed by calculating the structural order parameter to understand the dynamics of crystal structure and correlated with the release rate of guest molecules from the solid hydrate phase. The results have been explained based on the calculation of potential energies felt by guest molecules in amorphous water, hydrate bulk and hydrate-water interface regions.
Radimy, Raymond Tojo; Dudoignon, Patrick; Hillaireau, Jean Michel; Deboute, Elise
2013-01-01
The French Atlantic marshlands, reclaimed since the Middle Age, have been successively used for extensive grazing and more recently for cereal cultivation from 1970. The soils have acquired specific properties which have been induced by the successive reclaiming and drainage works and by the response of the clay dominant primary sediments, that is, structure, moisture, and salinity profiles. Based on the whole survey of the Marais Poitevin and Marais de Rochefort and in order to explain the mechanisms of marsh soil behavior, the work focuses on two typical spots: an undrained grassland since at least 1964 and a drained cereal cultivated field. The structure-hydromechanical profiles relationships have been established thanks to the clay matrix shrinkage curve. They are confronted to the hydraulic functioning including the fresh-to-salt water transfers and to the recording of tensiometer profiles. The CE1/5 profiles supply the water geochemical and geophysical data by their better accuracy. Associated to the available water capacity calculation they allow the representation of the parallel evolution of the residual available water capacity profiles and salinity profiles according to the plant growing and rooting from the mesophile systems of grassland to the hygrophile systems of drained fields.
Wang, Kui; Yiming, Wubulikasimu; Saththasivam, Jayaprakash; Liu, Zhaoyang
2017-07-06
Polymeric and ceramic asymmetric membranes have dominated commercial membranes for water treatment. However, polymeric membranes are prone to becoming fouled, while ceramic membranes are mechanically fragile. Here, we report a novel concept to develop asymmetric membranes based on ultra-long ceramic/polymeric fibers, with the combined merits of good mechanical stability, excellent fouling resistance and high oil/water selectivity, in order to meet the stringent requirements for practical oil/water separation. The ultra-long dimensions of ceramic nanofibers/polymeric microfibers endow this novel membrane with mechanical flexibility and robustness, due to the integrated and intertwined structure. This membrane is capable of separating oil/water emulsions with high oil-separation efficiency (99.9%), thanks to its nanoporous selective layer made of ceramic nanofibers. Further, this membrane also displays superior antifouling properties due to its underwater superoleophobicity and ultra-low oil adhesion of the ceramic-based selective layer. This membrane exhibits high water permeation flux (6.8 × 10 4 L m -2 h -1 bar -1 ) at low operation pressures, which is attributed to its 3-dimensional (3D) interconnected fiber-based structure throughout the membrane. In addition, the facile fabrication process and inexpensive materials required for this membrane suggest its significant potential for industrial applications.
Radimy, Raymond Tojo; Dudoignon, Patrick; Hillaireau, Jean Michel; Deboute, Elise
2013-01-01
The French Atlantic marshlands, reclaimed since the Middle Age, have been successively used for extensive grazing and more recently for cereal cultivation from 1970. The soils have acquired specific properties which have been induced by the successive reclaiming and drainage works and by the response of the clay dominant primary sediments, that is, structure, moisture, and salinity profiles. Based on the whole survey of the Marais Poitevin and Marais de Rochefort and in order to explain the mechanisms of marsh soil behavior, the work focuses on two typical spots: an undrained grassland since at least 1964 and a drained cereal cultivated field. The structure-hydromechanical profiles relationships have been established thanks to the clay matrix shrinkage curve. They are confronted to the hydraulic functioning including the fresh-to-salt water transfers and to the recording of tensiometer profiles. The CE1/5 profiles supply the water geochemical and geophysical data by their better accuracy. Associated to the available water capacity calculation they allow the representation of the parallel evolution of the residual available water capacity profiles and salinity profiles according to the plant growing and rooting from the mesophile systems of grassland to the hygrophile systems of drained fields. PMID:23990758
Taylor, Jonathon; Biddulph, Phillip; Davies, Michael; Lai, Ka man
2013-01-01
London is expected to experience more frequent periods of intense rainfall and tidal surges, leading to an increase in the risk of flooding. Damp and flooded dwellings can support microbial growth, including mould, bacteria, and protozoa, as well as persistence of flood-borne microorganisms. The amount of time flooded dwellings remain damp will depend on the duration and height of the flood, the contents of the flood water, the drying conditions, and the building construction, leading to particular properties and property types being prone to lingering damp and human pathogen growth or persistence. The impact of flooding on buildings can be simulated using Heat Air and Moisture (HAM) models of varying complexity in order to understand how water can be absorbed and dry out of the building structure. This paper describes the simulation of the drying of building archetypes representative of the English building stock using the EnergyPlus based tool 'UCL-HAMT' in order to determine the drying rates of different abandoned structures flooded to different heights and during different seasons. The results are mapped out using GIS in order to estimate the spatial risk across London in terms of comparative flood vulnerability, as well as for specific flood events. Areas of South and East London were found to be particularly vulnerable to long-term microbial exposure following major flood events. Copyright © 2012 Elsevier Ltd. All rights reserved.
Polymeric assembly of gluten proteins in an aqueous ethanol solvent.
Dahesh, Mohsen; Banc, Amélie; Duri, Agnès; Morel, Marie-Hélène; Ramos, Laurence
2014-09-25
The supramolecular organization of wheat gluten proteins is largely unknown due to the intrinsic complexity of this family of proteins and their insolubility in water. We fractionate gluten in a water/ethanol mixture (50/50 v/v) and obtain a protein extract which is depleted in gliadin, the monomeric part of wheat gluten proteins, and enriched in glutenin, the polymeric part of wheat gluten proteins. We investigate the structure of the proteins in the solvent used for extraction over a wide range of concentration, by combining X-ray scattering and multiangle static and dynamic light scattering. Our data show that, in the ethanol/water mixture, the proteins display features characteristic of flexible polymer chains in a good solvent. In the dilute regime, the proteins form very loose structures of characteristic size 150 nm, with an internal dynamics which is quantitatively similar to that of branched polymer coils. In more concentrated regimes, data highlight a hierarchical structure with one characteristic length scale of the order of a few nm, which displays the scaling with concentration expected for a semidilute polymer in good solvent, and a fractal arrangement at a much larger length scale. This structure is strikingly similar to that of polymeric gels, thus providing some factual knowledge to rationalize the viscoelastic properties of wheat gluten proteins and their assemblies.
Crystal Structure of an Insect Antifreeze Protein and Its Implications for Ice Binding*
Hakim, Aaron; Nguyen, Jennifer B.; Basu, Koli; Zhu, Darren F.; Thakral, Durga; Davies, Peter L.; Isaacs, Farren J.; Modis, Yorgo; Meng, Wuyi
2013-01-01
Antifreeze proteins (AFPs) help some organisms resist freezing by binding to ice crystals and inhibiting their growth. The molecular basis for how these proteins recognize and bind ice is not well understood. The longhorn beetle Rhagium inquisitor can supercool to below −25 °C, in part by synthesizing the most potent antifreeze protein studied thus far (RiAFP). We report the crystal structure of the 13-kDa RiAFP, determined at 1.21 Å resolution using direct methods. The structure, which contains 1,914 nonhydrogen protein atoms in the asymmetric unit, is the largest determined ab initio without heavy atoms. It reveals a compressed β-solenoid fold in which the top and bottom sheets are held together by a silk-like interdigitation of short side chains. RiAFP is perhaps the most regular structure yet observed. It is a second independently evolved AFP type in beetles. The two beetle AFPs have in common an extremely flat ice-binding surface comprising regular outward-projecting parallel arrays of threonine residues. The more active, wider RiAFP has four (rather than two) of these arrays between which the crystal structure shows the presence of ice-like waters. Molecular dynamics simulations independently reproduce the locations of these ordered crystallographic waters and predict additional waters that together provide an extensive view of the AFP interaction with ice. By matching several planes of hexagonal ice, these waters may help freeze the AFP to the ice surface, thus providing the molecular basis of ice binding. PMID:23486477
Adalbjörnsson, Björn V; Toogood, Helen S; Fryszkowska, Anna; Pudney, Christopher R; Jowitt, Thomas A; Leys, David; Scrutton, Nigel S
2010-01-25
We report the crystal structure of a thermophilic "ene" reductase (TOYE) isolated from Thermoanaerobacter pseudethanolicus E39. The crystal structure reveals a tetrameric enzyme and an active site that is relatively large compared to most other structurally determined and related Old Yellow Enzymes. The enzyme adopts higher order oligomeric states (octamers and dodecamers) in solution, as revealed by sedimentation velocity and multiangle laser light scattering. Bead modelling indicates that the solution structure is consistent with the basic tetrameric structure observed in crystallographic studies and electron microscopy. TOYE is stable at high temperatures (T(m)>70 degrees C) and shows increased resistance to denaturation in water-miscible organic solvents compared to the mesophilic Old Yellow Enzyme family member, pentaerythritol tetranitrate reductase. TOYE has typical ene-reductase properties of the Old Yellow Enzyme family. There is currently major interest in using Old Yellow Enzyme family members in the preparative biocatalysis of a number of activated alkenes. The increased stability of TOYE in organic solvents is advantageous for biotransformations in which water-miscible organic solvents and biphasic reaction conditions are required to both deliver novel substrates and minimize product racemisation.
Wang, Yu; Wen, Jianchuan; Peng, Bo; Hu, Bingwen; Chen, Xin; Shao, Zhengzhong
2018-02-23
Like most major ampullate silks of spider, the length of Antheraea pernyi silkworm silk can shrink to a certain degree when the fiber is in contact with water. However, what happens in terms of molecule chain level and how it correlates to the mechanical properties of the silk during its contraction is not yet fully understood. Here, we investigate the water-induced mechanical property changes as well as the structure transition of two kinds of A. pernyi silk fiber, which are forcibly reeled from two different individuals (silkworm a and silkworm b; the silk fiber from either one represents the lower and upper limit of the distribution of mechanical properties, respectively). The tensile test results present that most of the mechanical parameters except the post-yield modulus and breaking strain for both silk fibers have the same variation trend before and after their water contraction. Synchrotron FTIR and Raman spectra show that the native filament from silkworm a contains more α-helix structures than that in silkworm b filament, and these α-helices are partially converted to β-sheet structures after the contraction of the fibers, while the order of both β-sheet and α-helix slightly increase. On the other side, the content and orientation of both secondary structural components in silkworm b fiber keep unchanged, no matter if it is native or contracted. 13 C CP/MAS NMR results further indicate that the α-helix/random coil to β-sheet conformational transition that occurred in the silk of silkworm a corresponds the Ala residues. Based upon these results, the detailed structure transition models of both as-reeled A. pernyi silk fibers during water contraction are proposed finally to interpret their properties transformation.
NASA Astrophysics Data System (ADS)
Callegaro, Chiara; Ursino, Nadia
2016-04-01
Self-organizing vegetation patterns are natural water harvesting systems in arid and semi-arid regions of the world and should be imitated when designing man-managed water-harvesting systems for rain-fed crop. Disconnected vegetated and bare zones, functioning as a source-sink system of resources, sustain vegetation growth and reduce water and soil losses. Mechanisms such as soil crusting over bare areas and soil loosening in vegetated areas feed back to the local net facilitation effect and contribute to maintain the patterned landscape structure. Dis-connectivity of run-off production and run-on infiltration sites reduces runoff production at the landscape scale, and increases water retention in the vegetated patches. What is the effect of species adaptation to different resource niches on the landscape structure? A minimal model for two coexisting species and soil moisture balance was formulated, to improve our understanding of the effects of species differentiation on the dynamics of plants and water at single-pattern and landscape scale within a tiger bush type ecosystem. A basic assumption of our model was that soil moisture availability is a proxy for the environmental niche of plant species. Connectivity and dis-connectivity of specific niches of adaptation of two differing plant species was an input parameter of our model, in order to test the effect of coexistence on the ecosystem structure. The ecosystem structure is the model outcome, including: patterns persistence of coexisting species; patterns persistence of one species with exclusion of the other; patterns decline with just one species surviving in a non organized structure; bare landscape with loss of both species. Results suggest that pattern-forming-species communities arise as a result of complementary niche adaptation (niche dis-connecivity), whereas niche superposition (niche connectivity) may lead to impoverishment of environmental resources and loss of vegetation cover and diversity.
Electromagnetic Studies Using The Cam-1 (lisbon-madeira) Submarine Cable
NASA Astrophysics Data System (ADS)
Monteiro Santos, F.; Soares, A.; Rodrigues, H.; Luzio, R.; Nolasco, R.; Iso-3D Team
Data of electrical voltage measured between the ends of the CAM-1 cable have been analysed in order to determine the electrical stability of the cable and to obtain some preliminary information related to water transport. The monthly average of the po- tential measured during days with low geomagnetic activity suggests a periodicity of 120 days that was tentatively interpreted as having origin in water flow. These results show a small trend that is compatible with no drift in the cable. The mean electric field estimated from quiet days is 0.206 s´ 0.022 mV/km. The voltage measurements have been used, in combination with magnetic observations carried out in the geomagnetic observatory of Guimar (Canary Islands), to estimate the deep geoelectrical structure beneath the ocean. Apparent resistivities and phases were calculated from those data sets. Magnetic transfer function (tipper) measured in two long period (magnetovari- ational) stations located near the coast line, and the invariant apparent resistivity and phase obtained at one site in SW Iberia were used in the modelling in order to bet- ter constraint some model parameters. The result obtained by one- two- and three- dimensional trial-and-error modelling suggests a three-layer geoelectrical structure beneath the ocean. The conductance of the uppermost layer, representing sea-water and marine sediments, is most likely in the range between 15700 and 18500 S. The most probable order of the integral resistivity of the lithosphere layer in marine part is 4x107 ohm m2. ISO-3D team: M. Sinha (U. Cambridge/U. Southampton), J.M. Miranda (CGUL), A. Junge (U. Frankfurt), A. Flosadottir (HALO), N. Lourenço and J. Luís (U. Algarve), L. MacGregor, S. Dean, N. Barker, S. Riches and Z. Cheng (U. Cambridge/U. Southamp- ton).
NASA Astrophysics Data System (ADS)
Cowley, Kirsten L.; Fryirs, Kirstie A.; Hose, Grant C.
2018-06-01
Temperate Highland Peat Swamps on Sandstone (THPSS) are a type of wetland found in low-order streams on the plateaus of eastern Australia. They are sediment and organic matter accumulation zones, which combined with a climate of high rainfall and low evaporation function as water storage systems. Changes to the geomorphic structure of these systems via incision and channelisation can have profound impacts on their hydrological function. The aim of this study was to develop an understanding of how changes to the geomorphic structure of these systems alter their hydrological function, measured as changes and variability in swamp water table levels and discharge. We monitored the water table levels and discharges of three intact and three channelised THPSS in the Blue Mountains between March 2015 and June 2016. We found that water levels in intact swamps were largely stable over the monitoring period. Water levels rose only in high rainfall events, returned quickly to antecedent levels after rain, and drawdown during dry periods was not significant. In contrast, the water table levels in channelised THPSS were highly variable. Water levels rose quickly after almost all rainfall events and declined significantly during dry periods. Discharge also showed marked differences with the channelised THPSS discharging 13 times more water than intact swamps, even during dry periods. Channelised THPSS also had flashier storm hydrographs than intact swamps. These results have profound implications for the capacity of these swamps to act as water storage reservoirs in the headwaters of catchments and for their ability to maintain base flow to downstream catchments during dry times. Changes to geomorphic structure and hydrological function also have important implications for a range of other swamp functions such as carbon storage, emission and exports, contaminant sorption, downstream water quality and biodiversity, as well as the overall fate of these swamps under a changing climate.
Water demand management in times of drought: What matters for water conservation
NASA Astrophysics Data System (ADS)
Maggioni, Elena
2015-01-01
Southern California is subject to long droughts and short wet spells. Its water agencies have put in place voluntary, mandatory, and market-based conservation strategies since the 1980s. By analyzing water agencies' data between 2006 and 2010, this research studies whether rebates for water efficient fixtures, water rates, or water ordinances have been effective, and tests whether structural characteristics of water agencies have affected the policy outcome. It finds that mandates to curb outdoor water uses are correlated with reductions in residential per capita water usage, while water rates and subsidies for water saving devices are not. It also confirms that size is a significant policy implementation factor. In a policy perspective, the transition from a water supply to a water demand management-oriented strategy appears guided by mandates and by contextual factors such as the economic cycle and the weather that occur outside the water governance system. Three factors could improve the conservation effort: using prices as a conservation tool, not only as a cost recovering instrument; investing in water efficient tools only when they provide significant water savings; supporting smaller agencies in order to give them opportunities to implement conservation strategies more effectively or to help them consolidate.
NASA Astrophysics Data System (ADS)
Wang, Shujun; Zhang, Xiu; Wang, Shuo; Copeland, Les
2016-06-01
A thorough understanding of starch gelatinization is extremely important for precise control of starch functional properties for food processing and human nutrition. Here we reveal the molecular mechanism of starch gelatinization by differential scanning calorimetry (DSC) in conjunction with a protocol using the rapid viscosity analyzer (RVA) to generate material for analysis under conditions that simulated the DSC heating profiles. The results from DSC, FTIR, Raman, X-ray diffraction and small angle X-ray scattering (SAXS) analyses all showed that residual structural order remained in starch that was heated to the DSC endotherm end temperature in starch:water mixtures of 0.5 to 4:1 (v/w). We conclude from this study that the DSC endotherm of starch at a water:starch ratio of 2 to 4 (v/w) does not represent complete starch gelatinization. The DSC endotherm of starch involves not only the water uptake and swelling of amorphous regions, but also the melting of starch crystallites.
The role of the hydrophobic phase in the unique rheological properties of saponin adsorption layers.
Golemanov, Konstantin; Tcholakova, Slavka; Denkov, Nikolai; Pelan, Eddie; Stoyanov, Simeon D
2014-09-28
Saponins are a diverse class of natural, plant derived surfactants, with peculiar molecular structure consisting of a hydrophobic scaffold and one or several hydrophilic oligosaccharide chains. Saponins have strong surface activity and are used as natural emulsifiers and foaming agents in food and beverage, pharmaceutical, ore processing, and other industries. Many saponins form adsorption layers at the air-water interface with extremely high surface elasticity and viscosity. The molecular origin of the observed unique interfacial visco-elasticity of saponin adsorption layers is of great interest from both scientific and application viewpoints. In the current study we demonstrate that the hydrophobic phase in contact with water has a very strong effect on the interfacial properties of saponins and that the interfacial elasticity and viscosity of the saponin adsorption layers decrease in the order: air > hexadecane ≫ tricaprylin. The molecular mechanisms behind these trends are analyzed and discussed in the context of the general structure of the surfactant adsorption layers at various nonpolar phase-water interfaces.
Specific and reversible DNA-directed self-assembly of oil-in-water emulsion droplets
Hadorn, Maik; Boenzli, Eva; Sørensen, Kristian T.; Fellermann, Harold; Eggenberger Hotz, Peter; Hanczyc, Martin M.
2012-01-01
Higher-order structures that originate from the specific and reversible DNA-directed self-assembly of microscopic building blocks hold great promise for future technologies. Here, we functionalized biotinylated soft colloid oil-in-water emulsion droplets with biotinylated single-stranded DNA oligonucleotides using streptavidin as an intermediary linker. We show the components of this modular linking system to be stable and to induce sequence-specific aggregation of binary mixtures of emulsion droplets. Three length scales were thereby involved: nanoscale DNA base pairing linking microscopic building blocks resulted in macroscopic aggregates visible to the naked eye. The aggregation process was reversible by changing the temperature and electrolyte concentration and by the addition of competing oligonucleotides. The system was reset and reused by subsequent refunctionalization of the emulsion droplets. DNA-directed self-assembly of oil-in-water emulsion droplets, therefore, offers a solid basis for programmable and recyclable soft materials that undergo structural rearrangements on demand and that range in application from information technology to medicine. PMID:23175791
Single Chain Structure of a Poly(N-isopropylacrylamide) Surfactant in Water
Abbott, Lauren J.; Tucker, Ashley K.; Stevens, Mark J.
2015-02-10
In this paper, we present atomistic simulations of a single PNIPAM–alkyl copolymer surfactant in aqueous solution at temperatures below and above the LCST of PNIPAM. We compare properties of the surfactant with pure PNIPAM oligomers of similar lengths, such as the radius of gyration and solvent accessible surface area, to determine the differences in their structures and transition behavior. We also explore changes in polymer–polymer and polymer–water interactions, including hydrogen bond formation. The expected behavior is observed in the pure PNIPAM oligomers, where the backbone folds onto itself above the LCST in order to shield the hydrophobic groups from water.more » The surfactant, on the other hand, does not show much conformational change as a function of temperature, but instead folds to bring the hydrophobic alkyl tail and PNIPAM headgroup together at all temperatures. Finally, the atomic detail available from these simulations offers important insight into understanding how the transition behavior is changed in PNIPAM-based systems.« less
Wang, Shujun; Zhang, Xiu; Wang, Shuo; Copeland, Les
2016-01-01
A thorough understanding of starch gelatinization is extremely important for precise control of starch functional properties for food processing and human nutrition. Here we reveal the molecular mechanism of starch gelatinization by differential scanning calorimetry (DSC) in conjunction with a protocol using the rapid viscosity analyzer (RVA) to generate material for analysis under conditions that simulated the DSC heating profiles. The results from DSC, FTIR, Raman, X-ray diffraction and small angle X-ray scattering (SAXS) analyses all showed that residual structural order remained in starch that was heated to the DSC endotherm end temperature in starch:water mixtures of 0.5 to 4:1 (v/w). We conclude from this study that the DSC endotherm of starch at a water:starch ratio of 2 to 4 (v/w) does not represent complete starch gelatinization. The DSC endotherm of starch involves not only the water uptake and swelling of amorphous regions, but also the melting of starch crystallites. PMID:27319782
NASA Astrophysics Data System (ADS)
Arango-Galvan, C.; Flores-Marquez, E.; Prol-Ledesma, R.; Working Group, I.
2007-05-01
The lack of sufficient drinking water in México has become a very serious problem, especially in the northern desert regions of the country. In order to give a real solution to this phenomenon the IMPULSA research program has been created to develope novel technologies based on desalination of sea and brackish water using renewable sources of energy to face the problem. The Punta Banda geothermal anomaly is located towards the northern part of Baja California Peninsula (Mexico). High water temperatures in some wells along the coast depicted a geothermal anomaly. An audiomagnetotelluric survey was carried out in the area as a preliminary study, both to understand the process generating these anomalous temperatures and to assess its potential exploitation to supply hot water to desalination plants. Among the electromagnetic methods, the audiomagnetotellurics (AMT) method is appropriated for deep groundwater and geothermal studies. The survey consisted of 27 AMT stations covering a 5 km profile along the Agua Blanca Fault. The employed array allowed us to characterize the geoelectrical properties of the main structures up to 500 m depth. Two main geoelectrical zones were identified: 1) a shallow low resistivity media located at the central portion of the profile, coinciding with the Maneadero valley and 2) two high resitivity structures bordering the conductive zone possibly related to NS faulting, already identified by previous geophysical studies. These results suggest that the main geothermal anomalies are controlled by the dominant structural regime in the zone.
Testing inhomogeneous solvation theory in structure-based ligand discovery.
Balius, Trent E; Fischer, Marcus; Stein, Reed M; Adler, Thomas B; Nguyen, Crystal N; Cruz, Anthony; Gilson, Michael K; Kurtzman, Tom; Shoichet, Brian K
2017-08-15
Binding-site water is often displaced upon ligand recognition, but is commonly neglected in structure-based ligand discovery. Inhomogeneous solvation theory (IST) has become popular for treating this effect, but it has not been tested in controlled experiments at atomic resolution. To do so, we turned to a grid-based version of this method, GIST, readily implemented in molecular docking. Whereas the term only improves docking modestly in retrospective ligand enrichment, it could be added without disrupting performance. We thus turned to prospective docking of large libraries to investigate GIST's impact on ligand discovery, geometry, and water structure in a model cavity site well-suited to exploring these terms. Although top-ranked docked molecules with and without the GIST term often overlapped, many ligands were meaningfully prioritized or deprioritized; some of these were selected for testing. Experimentally, 13/14 molecules prioritized by GIST did bind, whereas none of the molecules that it deprioritized were observed to bind. Nine crystal complexes were determined. In six, the ligand geometry corresponded to that predicted by GIST, for one of these the pose without the GIST term was wrong, and three crystallographic poses differed from both predictions. Notably, in one structure, an ordered water molecule with a high GIST displacement penalty was observed to stay in place. Inclusion of this water-displacement term can substantially improve the hit rates and ligand geometries from docking screens, although the magnitude of its effects can be small and its impact in drug binding sites merits further controlled studies.
Time-dependent Second Order Scattering Theory for Weather Radar with a Finite Beam Width
NASA Technical Reports Server (NTRS)
Kobayashi, Satoru; Tanelli, Simone; Im, Eastwood; Ito, Shigeo; Oguchi, Tomohiro
2006-01-01
Multiple scattering effects from spherical water particles of uniform diameter are studied for a W-band pulsed radar. The Gaussian transverse beam-profile and the rectangular pulse-duration are used for calculation. An second-order analytical solution is derived for a single layer structure, based on a time-dependent radiative transfer theory as described in the authors' companion paper. When the range resolution is fixed, increase in footprint radius leads to increase in the second order reflectivity that is defined as the ratio of the second order return to the first order one. This feature becomes more serious as the range increases. Since the spaceborne millimeter-wavelength radar has a large footprint radius that is competitive to the mean free path, the multiple scattering effect must be taken into account for analysis.
Niether, Doreen; Di Lecce, Silvia; Bresme, Fernando; Wiegand, Simone
2018-01-03
Urea is widely used as a protein denaturant in aqueous solutions. Experimental and computer simulation studies have shown that it dissolves in water almost ideally at high concentrations, introducing little disruption in the water hydrogen bonded structure. However, at concentrations of the order of 5 M or higher, urea induces denaturation in a wide range of proteins. The origin of this behaviour is not completely understood, but it is believed to stem from a balance between urea-protein and urea-water interactions, with urea becoming possibly hydrophobic at a specific concentration range. The small changes observed in the water structure make it difficult to connect the denaturation effects to the solvation properties. Here we show that the exquisite sensitivity of thermodiffusion to solute-water interactions allows the identification of the onset of hydrophobicity of urea-water mixtures. The hydrophobic behaviour is reflected in a sign reversal of the temperature dependent slope of the Soret coefficient, which is observed, both in experiments and non-equilibrium computer simulations at ∼5 M concentration of urea in water. This concentration regime corresponds to the one where abrupt changes in the denaturation of proteins are commonly observed. We show that the onset of hydrophobicity is intrinsically connected to the urea-water interactions. Our results allow us to identify correlations between the Soret coefficient and the partition coefficient, log P, hence establishing the thermodiffusion technique as a powerful approach to study hydrophobicity.
Wang, Chun; Ma, Ruiyang; Wu, Qiuhua; Sun, Meng; Wang, Zhi
2014-09-26
In this paper, porous carbon with a highly ordered structure was synthesized using zeolite ZSM-5 as a template and sucrose as a carbon source. Through the in situ reduction of Fe(3+), magnetic property was successfully introduced into the ordered porous carbon, resulting in a magnetic porous carbon (MPC). MPC was used as an adsorbent for the extraction of some chlorophenols (2-chlorophenol, 3-chlorophenol, 2,3-dichlorophenol and 3,4-dichlorophenol) from water and peach juice samples followed by high performance liquid chromatography-ultraviolet detection. Good linearity was observed in the range 1.0-100.0 ng mL(-1) and 2.0-100.0 ng mL(-1) for water and peach juice sample, respectively. The limits of detection (S/N=3) were between 0.10 and 0.30 ng mL(-1). The relative standard deviations were less than 5.3% and the recoveries of the method for the compounds were in the range from 87.8% to 102.3%. The results demonstrated that the MPC had a high adsorptive capability toward the four chlorophenols from water and peach juice samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Guo, Kaiheng; Wu, Zihao; Shang, Chii; Yao, Bo; Hou, Shaodong; Yang, Xin; Song, Weihua; Fang, Jingyun
2017-09-19
The UV/chlorine process is an emerging advanced oxidation process (AOP) used for the degradation of micropollutants. However, the radical chemistry of this AOP is largely unknown for the degradation of numerous structurally diverse micropollutants in water matrices of varying quality. These issues were addressed by grouping 34 pharmaceuticals and personal care products (PPCPs) according to the radical chemistry of their degradation in the UV/chlorine process at practical PPCP concentrations (1 μg L -1 ) and in different water matrices. The contributions of HO • and reactive chlorine species (RCS), including Cl • , Cl 2 •- , and ClO • , to the degradation of different PPCPs were compound specific. RCS showed considerable reactivity with olefins and benzene derivatives, such as phenols, anilines, and alkyl-/alkoxybenzenes. A good linear relationship was found between the RCS reactivity and negative values of the Hammett ∑σ p + constant for aromatic PPCPs, indicating that electron-donating groups promote the attack of benzene derivatives by RCS. The contribution of HO • , but not necessarily RCS, to PPCP removal decreased with increasing pH. ClO • showed high reactivity with some PPCPs, such as carbamazepine, caffeine, and gemfibrozil, with second-order rate constants of 9.2 × 10 7 , 1.03 × 10 8 , and 4.16 × 10 8 M -1 s -1 , respectively, which contributed to their degradation. Natural organic matter (NOM) induced significant scavenging of ClO • and greatly decreased the degradation of PPCPs that was attributable to ClO • , with a second-order rate constant of 4.5 × 10 4 (mg L -1 ) -1 s -1 . Alkalinity inhibited the degradation of PPCPs that was primarily attacked by HO • and Cl • but had negligible effects on the degradation of PPCPs by ClO • . This is the first study on the reactivity of RCS, particularly ClO • , with structurally diverse PPCPs under simulated drinking water condition.
Lyotropic liquid crystal preconcentrates for the treatment of periodontal disease.
Fehér, A; Urbán, E; Eros, I; Szabó-Révész, P; Csányi, E
2008-06-24
The aim of our study was to develop water-free lyotropic liquid crystalline preconcentrates, which consist of oils and surfactants with good physiological tolerance and spontaneously form lyotropic liquid crystalline phase in aqueous environment. In this way these preconcentrates having low viscosity can be injected into the periodontal pocket, where they are transformed into highly viscous liquid crystalline phase, so that the preparation is prevented from flowing out of the pocket due to its great viscosity, while drug release is controlled by the liquid crystalline texture. In order to follow the structure alteration upon water absorption polarization microscopical and rheological examinations were performed. The water absorption mechanism of the samples was examined by the Enslin-method. Metronidazole-benzoate was used as active agent the release of which was characterized via in vitro investigations performed by means of modified Kirby-Bauer disk diffusion method. On the grounds of the results it can be stated that the 4:1 mixture of the investigated surfactants (Cremophor EL, Cremophor RH40) and oil (Miglyol 810) formed lyotopic liquid crystalline phases upon water addition. Polarization microscopic examinations showed that samples with 10-40% water content possessed anisotropic properties. On the basis of water absorption, rheological and drug release studies it can be concluded that the amount of absorbed water and stiffness of lyotropic structure influenced by the chemical entity of the surfactant exerted major effect on the drug release.
NASA Technical Reports Server (NTRS)
Goetz, A. F. H. (Principal Investigator); Billingsley, F. C.; Elston, D. P.; Lucchita, I.; Shoemaker, E. M.
1974-01-01
The author has identified the following significant results. In the course of the ERTS investigation in the Cataract Creek Basin of the Coconino Plateau it was recognized that shallow perched ground water associated with the Kaibab Limestone could be discovered by means of drilling guided by geologic mapping aided by the use of ERTS imagery. At the Globe Ranch, the perched water table is only 5 meters beneath the surface at the site of the original, hand dug well. Recharge occurs from local runoff and from direct precipitation on the outcrop belt of the sandstone. This well provides water for the ranch at the rate of about 1,000 gallons a week. In order to explore the possibility of further developing this aquifer, unit 5 was mapped over an area of about 50 square miles in the vicinity of the hand-dug well, with negative results. A new location was then picked for drilling based on the occurrence of unit 5 in a favorable structural setting. This location was along a normal fault, and it was anticipated that water might be structurally trapped within the down-dropped block of the fault. Four shallow testholes were drilled and all encountered water. These four water-bearing holes are currently being monitored and will be tested to determine potential production of water from the local sandstone aquifer.
Huang, Mingchao; Wang, Yuyu; Liu, Xingyue; Li, Weihai; Kang, Zehui; Wang, Kai; Li, Xuankun; Yang, Ding
2015-02-15
The Plecoptera (stoneflies) is a hemimetabolous order of insects, whose larvae are usually used as indicators for fresh water biomonitoring. Herein, we describe the complete mitochondrial (mt) genome of a stonefly species, namely Acroneuria hainana Wu belonging to the family Perlidae. This mt genome contains 13 PCGs, 22 tRNA-coding genes and 2 rRNA-coding genes that are conserved in most insect mt genomes, and it also has the identical gene order with the insect ancestral gene order. However, there are three special initiation codons of ND1, ND5 and COI in PCGs: TTG, GTG and CGA, coding for L, V and R, respectively. Additionally, the 899-bp control region, with 73.30% A+T content, has two long repeated sequences which are found at the 3'-end closing to the tRNA(Ile) gene. Both of them can be folded into a stem-loop structure, whose adjacent upstream and downstream sequences can be also folded into stem-loop structures. It is presumed that the four special structures in series could be associated with the D-loop replication. It might be able to adjust the replication speed of two replicate directions. Copyright © 2014 Elsevier B.V. All rights reserved.
Stable Ordering in Langmuir-Blodgett Films
NASA Astrophysics Data System (ADS)
Takamoto, Dawn Y.; Aydil, Eray; Zasadzinski, Joseph A.; Ivanova, Ani T.; Schwartz, Daniel K.; Yang, Tinglu; Cremer, Paul S.
2001-08-01
Defects in the layering of Langmuir-Blodgett (LB) films can be eliminated by depositing from the appropriate monolayer phase at the air-water interface. LB films deposited from the hexagonal phase of cadmium arachidate (CdA2) at pH 7 spontaneously transform into the bulk soap structure, a centrosymmetric bilayer with an orthorhombic herringbone packing. A large wavelength folding mechanism accelerates the conversion between the two structures, leading to a disruption of the desired layering. At pH > 8.5, though it is more difficult to draw LB films, almost perfect layering is obtained due to the inability to convert from the as-deposited structure to the equilibrium one.
Simulation of air admission in a propeller hydroturbine during transient events
NASA Astrophysics Data System (ADS)
Nicolle, J.; Morissette, J.-F.
2016-11-01
In this study, multiphysic simulations are carried out in order to model fluid loading and structural stresses on propeller blades during startup and runaway. It is found that air admission plays an important role during these transient events and that biphasic simulations are therefore required. At the speed no load regime, a large air pocket with vertical free surface forms in the centre of the runner displacing the water flow near the shroud. This significantly affects the torque developed on the blades and thus structural loading. The resulting pressures are applied to a quasi-static structural model and good agreement is obtained with experimental strain gauge data.
The exploration and prevention of mine water invasion in Feicheng area based on RS
NASA Astrophysics Data System (ADS)
Zheng, Yong-Guo; Wang, Ping; Ting, He
2004-10-01
Recently, when the ninth and tenth were mined in Feiching city mining area, several mine wells occurred on water invasion. Based on systematic interpretation of TMimages in Fei Cheng mining area, authors find that there are five zones of NS trending lineaments, which nearly distribute in radial in TM images. Image processing can be divided into three types, they are spectrum enhancement, spatial filtering and data fusion, the useful methods in this area are auto-adaptive enhancement, density slicing and K-L transform. With ninth and tenth seam coals mined, three mines of east area have broken out serious accidents of water. Statistical materials and the test of water quality drawing off five limestone indicates water-yielding zone near NS, NNE, and NW trending faults, or near intersection point of its and others. In order to solve the problem, using remote sensing and other techniques, we try to find some influential factors on mine flow. Further analyses, such as, the exploration of geology on earth, and microcosmic from rock slice, the authors find that there are some reasons which lead to water invasion such as geological structure, karsts, index and so on, in which the main reason might be north-south deep fracture which is the pathway of well water's distribution, migration and recharge of mine water. There being more complicate geologic structure in the west of mine area, at last, with RS authors point out important zone of mine water invasion which the prevention-control of hazards from mine water and some measures to avoid water blast in future.
Ranieri, Gaetano
2014-01-01
This paper deals with the ambient vibration tests performed in an arch dam in two different working conditions in order to assess the effect produced by two different reservoir water levels on the structural vibration properties. The study consists of an experimental part and a numerical part. The experimental tests were carried out in two different periods of the year, at the beginning of autumn (October 2012) and at the end of winter (March 2013), respectively. The measurements were performed using a fast technique based on asynchronous records of microtremor time-series. In-contact single-station measurements were done by means of one single high resolution triaxial tromometer and two low-frequency seismometers, placed in different points of the structure. The Standard Spectral Ratio method has been used to evaluate the natural frequencies of vibration of the structure. A 3D finite element model of the arch dam-reservoir-foundation system has been developed to verify analytically determined vibration properties, such as natural frequencies and mode shapes, and their changes linked to water level with the experimental results. PMID:25003146
Shaitan, K V; Armeev, G A; Shaytan, A K
2016-01-01
We discuss the effect of isothermal and adiabatic evaporation of water on the state of a water-protein droplet. The discussed problem is of current importance due to development of techniques to perform single molecule experiments using free electron lasers. In such structure-dynamic experiments the delivery of a sample into the X-ray beam is performed using the microdroplet injector. The time between the injection and delivery is in the order of microseconds. In this paper we developed a specialized variant of all-atom molecular dynamics simulations for the study of irreversible isothermal evaporation of the droplet. Using in silico experiments we determined the parameters of isothermal evaporation of the water-protein droplet with the sodium and chloride ions in the concentration range of 0.3 M at different temperatures. The energy of irreversible evaporation determined from in silico experiments at the initial stages of evaporation virtually coincides with the specific heat of evaporation for water. For the kinetics of irreversible adiabatic evaporation an exact analytical solution was obtained in the limit of high thermal conductivity of the droplet (or up to the droplet size of -100 Å). This analytical solution incorporates parameters that are determined using in silico. experiments on isothermal droplet evaporation. We show that the kinetics of adiabatic evaporation and cooling of the droplet scales with the droplet size. Our estimates of the water-protemi droplet. freezing rate in the adiabatic regime in a vacuum chamber show that additional techniques for stabilizing the temperature inside the droplet should be used in order to study the conformational transitions of the protein in single molecules. Isothermal and quasi-isothermal conditions are most suitable for studying the conformational transitions upon object functioning. However, in this case it is necessary to take into account the effects of dehydration and rapid increase of ionic strength in an aqueous microenvironment surrounding the protein.
NASA Astrophysics Data System (ADS)
Zillig, Wolfram; Schnabel, Ralf; Tu, Jenn; Stetter, Karl Otto
1982-05-01
DNA-dependent RNA polymerases of archaebacteria are distinct from those of eubacteria both in structure and in function. They show similarities to those of the eukaryotic cytoplasm. Extremely thermophilic anaerobic sulfur-respiring archaebacteria isolated from solfataric waters represent four different families, the Thermoproteaceae, the “stiff filaments”, the Desulfurococcaceae and the Thermococcaceae, of a novel order, Thermoproteales. Together with the Sulfolobales, they form the second branch of the urkingdom of the archaebacteria besides that of the methanogens and extreme halophiles. Thermoplasma appears isolated.
Franzblau, S G; White, K E; O'Sullivan, J F
1989-01-01
In a previous study of structure-activity relationships of selected phenazines against Mycobacterium leprae in vitro, compounds containing a 2,2,6,6-tetramethylpiperidine substitution at the imino nitrogen were most active. Therefore, the effect of substitution at the para positions of the phenyl and anilino groups in tetramethylpiperidine-substituted phenazines was assessed. As determined by radiorespirometry, activity in ascending order was observed in compounds substituted with hydrogens or fluorines, ethoxy groups, methyl groups, chlorines, and bromines and correlated with partition coefficients in octanol-water. PMID:2692516
Holland, Pat; Shoop, Nancy M
2002-01-01
Flexible endoscopes are complex medical instruments that are easily damaged. In order to maintain the flexible endoscope in optimum working condition, the user must have a thorough understanding of the structure and function of the instrument. This is the fourth in a series of articles presenting an in-depth look at the care and handling of the flexible endoscope. The first three articles discussed the air-water system, the suction channel system, and the mechanical system. This article will focus specifically on the endoscopic retrograde cholangiopancreatography elevator system.
Charge-induced equilibrium dynamics and structure at the Ag(001)–electrolyte interface
Karl Jr., Robert M.; Barbour, Andi; Komanicky, Vladimir; ...
2015-06-08
We have measured the applied potential dependent rate of atomic step motion of the Ag (001) surface in weak NaF electrolyte using a new extension of the technique of X-ray Photon Correlation Spectroscopy (XPCS). Furthermore, concurrent specular x-ray scattering measurements reveal how the ordering of the water layers at the interface correlates with the dynamics.
Water Retention and Rheology of Ti-doped, Synthetic Olivine
NASA Astrophysics Data System (ADS)
Faul, U.; Jackson, I.; Fitz Gerald, J. D.
2012-12-01
Upper mantle flow laws are currently based almost entirely on experiments with olivine from San Carlos in Arizona. Synthetically produced olivine enables the exploration of the effects of trace elements on the rheology. We have conducted a range of experiments in a gas medium apparatus with solution-gelation derived olivine that show that titanium is the most effective in binding water in the olivine structure. The FTIR signature of this structurally bound water is most similar to that of water-undersaturated natural olivine with absorption bands at 3575 and 3525 cm-1. Water added, titanium-free solgel contains little water after hotpressing and shows adsorption bands at wavenumbers near 3200 cm-1. Noble metal capsules such as Pt or AuPd, providing more oxidizing conditions, are more effective in retaining water. Experiments with NiFe-lined welded Pt capsules retain no more water than NiFe lined samples without Pt capsule. Water retention is, however, again dependent on trace element content, with Ti doped samples containing tens of ppm after hotpressing. By comparison undoped samples run under the same conditions contain little water, again with different FTIR spectra to Ti-doped samples. Our experiments suggest that Ti by itself, or with water contents at the FTIR detection limit enhances diffusion creep rates relative to undoped, dry solgel olivine. Water contents around 10 ppm in NiFe wrapped samples show an enhancement of strain rates of more than one order of magnitude. The addition of Ti, together with the presence of water, also enhances grain growth. For more coarse-grained samples in the dislocation creep regime the enhancement of the stain rate as a function of water content is approximately consistent with the flow laws of Hirth and Kohlstedt (2003).
NASA Astrophysics Data System (ADS)
Rahmanian, Omid; Maleki, Mohammad Hassan; Dinari, Mohammad
2017-11-01
A novel adsorbent of nickel aluminum layered double hydroxide (Ni/Al-LDH) was prepared through the precipitation of metal nitrates by ultrasonically assisted solvothermal method. The surface morphology, chemical structure and thermal properties of this compound were examined by X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) techniques. The XRD, TEM and FE-SEM results established that the synthesized LDH have a well-ordered layer structure with good crystalline nature. Then it was applied to remove excessive Cd(II) ions from water and the effects of contact time, pH and adsorbent dose were examined at initial Cd(II) concentration of 10 mg/L. Results show that the time required to reach equilibrium was fast (40 min) and working pH solution was neutral (pH 7). Langmuir and Freundlich model of adsorption isotherms were explored; the results show that the Freundlich model was better fitted than that Langmuir model. This results predicting a multilayer adsorption of Cd(II) on LDH. The equilibrium kinetic adsorption data were fixed to the pseudo-second order kinetic equation.
An Assessment of Research Gaps Related to Deep Water Wellbore Integrity
NASA Astrophysics Data System (ADS)
Tkach, M. K.; Radonjic, M.; Kutchko, B. G.
2017-12-01
In order for a deep-water wellbore to uphold its integrity under high pressure - high temperature conditions, the wellbore must possess complete zonal isolation while surrounded in an extreme environment. Highly variable temperature and pressure ranges, shallow flow zones, as well as potentially corrosive fluids and gasses all present unique challenges to the job of the cement which maintains that zonal isolation. As such, alternative options to mainstream choices often present themselves as attractive avenues of discovery. As it is of utmost importance to maintain structural integrity under HPHT conditions, cement slurries are pumped downhole to provide zonal isolation and structural support to offshore wells. The wellbore system potentially faces a variety of temperature and pressure fluctuations from the immediate onset. These fluctuations may affect the hydration properties of the cement. It is also important to consider the chemical interactions that the cement may have at the rock-cement interface where potential degradation or annulus gaps may occur further risking a decrease in zonal isolation. This presentation intends to review some of the important issues regarding zonal isolation in HPHT conditions and to highlight critical knowledge gaps in order to generate important research questions.
An impact-induced terrestrial atmosphere and iron-water reactions during accretion of the Earth
NASA Technical Reports Server (NTRS)
Lange, M. A.; Ahrens, T. J.
1985-01-01
Shock wave data and theoretical calculations were used to derive models of an impact-generated terrestrial atmosphere during accretion of the Earth. The models showed that impacts of infalling planetesimals not only provided the entire budget of terrestrial water but also led to a continuous depletion of near-surface layers of water-bearing minerals of their structural water. This resulted in a final atmospheric water reservoir comparable to the present day total water budget of the Earth. The interaction of metallic iron with free water at the surface of the accreting Earth is considered. We carried out model calcualtions simulating these processes during accretion. It is assumed that these processes are the prime source of the terrestrial FeO component of silicates and oxides. It is demonstrated that the iron-water reaction would result in the absence of atmospheric/hydrospheric water, if homogeneous accretion is assumed. In order to obtain the necessary amount of terrestrial water, slightly heterogeneous accretion with initially 36 wt% iron planetesimals, as compared with a homogeneous value of 34 wt% is required.
FTIR study of CO2 and H2O/CO2 nanoparticles and their temporal evolution at 80 K.
Taraschewski, M; Cammenga, H K; Tuckermann, R; Bauerecker, S
2005-04-21
Fourier transform infrared (FTIR) spectroscopy combined with a long-path collisional cooling cell was used to investigate the temporal evolution of CO2 nanoparticles and binary H2O/CO2 nanocomposites in the aerosol phase at 80 K. The experimental conditions for the formation of different CO2 particle shapes as slab, shell, sphere, cube, and needle have been studied by comparison with calculated data from the literature. The H2O/CO2 nanoparticles were generated with a newly developed multiple-pulse injection technique and with the simpler flow-in technique. The carbon dioxide nu3-vibration band at 2360 cm(-1) and the water ice OH-dangling band at 3700 cm(-1) were used to study the evolution of structure, shape, and contact area of the nanocomposites over 150 s. Different stages of binary nanocomposites with primary water ice cores were identified dependent on the injected CO2 portion: (a) disordered (amorphous) CO2 slabs on water particle surfaces, (b) globular crystalline CO2 humps sticking on the water cores, and (c) water cores being completely enclosed in bigger predominantly crystalline CO2 nanoparticles. However, regular CO2 shell structures on primary water particles showing both longitudinal (LO) and transverse (TO) optical mode features of the nu3-vibration band could not be observed. Experiments with reversed nucleation order indicate that H2O/CO2 composite particles with different initial structures evolve toward similar molecular nanocomposites with separated CO2 and H2O regions.
Metastable phase in binary and ternary 12-carat gold alloys at low temperature
NASA Astrophysics Data System (ADS)
Lamiri, Imene; Abdelbaky, Mohammed S. M.; Hamana, Djamel; García-Granda, Santiago
2018-04-01
Low temperature phase transitions in 12-carat gold alloys have been investigated for binary Au-Cu and ternary Au-Cu-Ag compositions. The thermal analyses investigations using differential scanning calorimetry (DSC) and the dilatometry were performed in the 50–300 °C temperature range in order to detect the structural transformations. The thermal analyses were carried out on annealed samples at 700 °C for two hour followed by water quenching. They reveal an important new reaction for both used compositions and both thermal techniques confirm each other. This reaction has been assessed as pre-ordering reaction. SEM and STM imaging were performed on annealed samples at 700 °C for two hours and water quenched followed by a heating from room temperature up to the temperature of the new peaks obtained in the thermal study. The imaging reveals the relationship between the pre-ordering reaction and the surface aspect presented in the fact of dendrite precipitates. A series of SEM observation have been performed in order to follow the kinetic of the observed precipitates by the way of several series of heating up, from 140 to 220 °C for the binary composition and from 100 to 180 °C for the ternary composition. Furthermore, this study shows that the silver accelerates the ordering reaction.
NASA Astrophysics Data System (ADS)
Heinze, T.; Budler, J.; Weigand, M.; Kemna, A.
2017-12-01
Water content distribution in the ground is essential for hazard analysis during monitoring of landslide prone hills. Geophysical methods like electrical resistivity tomography (ERT) can be utilized to determine the spatial distribution of water content using established soil physical relationships between bulk electrical resistivity and water content. However, often more dominant electrical contrasts due to lithological structures outplay these hydraulic signatures and blur the results in the inversion process. Additionally, the inversion of ERT data requires further constraints. In the standard Occam inversion method, a smoothness constraint is used, assuming that soil properties change softly in space. While this applies in many scenarios, sharp lithological layers with strongly divergent hydrological parameters, as often found in landslide prone hillslopes, are typically badly resolved by standard ERT. We use a structurally constrained ERT inversion approach for improving water content estimation in landslide prone hills by including a-priori information about lithological layers. The smoothness constraint is reduced along layer boundaries identified using seismic data. This approach significantly improves water content estimations, because in landslide prone hills often a layer of rather high hydraulic conductivity is followed by a hydraulic barrier like clay-rich soil, causing higher pore pressures. One saturated layer and one almost drained layer typically result also in a sharp contrast in electrical resistivity, assuming that surface conductivity of the soil does not change in similar order. Using synthetic data, we study the influence of uncertainties in the a-priori information on the inverted resistivity and estimated water content distribution. We find a similar behavior over a broad range of models and depths. Based on our simulation results, we provide best-practice recommendations for field applications and suggest important tests to obtain reliable, reproducible and trustworthy results. We finally apply our findings to field data, compare conventional and improved analysis results, and discuss limitations of the structurally-constrained inversion approach.
Liu, Huihua; Wang, Bo; Barrow, Colin J; Adhikari, Benu
2014-01-15
The objectives of this study were to quantify the relationship between secondary structure of gelatin and its adsorption at the fish-oil/water interface and to quantify the implication of the adsorption on the dynamic interfacial tension (DST) and emulsion stability. The surface hydrophobicity of the gelatin solutions decreased when the pH increased from 4.0 to 6.0, while opposite tend was observed in the viscosity of the solution. The DST values decreased as the pH increased from 4.0 to 6.0, indicating that higher positive charges (measured trough zeta potential) in the gelatin solution tended to result in higher DST values. The adsorption kinetics of the gelatin solution was examined through the calculated diffusion coefficients (Deff). The addition of acid promoted the random coil and β-turn structures at the expense of α-helical structure. The addition of NaOH decreased the β-turn and increased the α-helix and random coil. The decrease in the random coil and triple helix structures in the gelatin solution resulted into increased Deff values. The highest diffusion coefficients, the highest emulsion stability and the lowest amount of random coil and triple helix structures were observed at pH=4.8. The lowest amount of random coil and triple helix structures in the interfacial protein layer correlated with the highest stability of the emulsion (highest ESI value). The lower amount of random coil and triple helix structures allowed higher coverage of the oil-water interface by relatively highly ordered secondary structure of gelatin. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nicolae Lerma, Alexandre; Bulteau, Thomas; Elineau, Sylvain; Paris, François; Durand, Paul; Anselme, Brice; Pedreros, Rodrigo
2018-01-01
A modelling chain was implemented in order to propose a realistic appraisal of the risk in coastal areas affected by overflowing as well as overtopping processes. Simulations are performed through a nested downscaling strategy from regional to local scale at high spatial resolution with explicit buildings, urban structures such as sea front walls and hydraulic structures liable to affect the propagation of water in urban areas. Validation of the model performance is based on hard and soft available data analysis and conversion of qualitative to quantitative information to reconstruct the area affected by flooding and the succession of events during two recent storms. Two joint probability approaches (joint exceedance contour and environmental contour) are used to define 100-year offshore conditions scenarios and to investigate the flood response to each scenario in terms of (1) maximum spatial extent of flooded areas, (2) volumes of water propagation inland and (3) water level in flooded areas. Scenarios of sea level rise are also considered in order to evaluate the potential hazard evolution. Our simulations show that for a maximising 100-year hazard scenario, for the municipality as a whole, 38 % of the affected zones are prone to overflow flooding and 62 % to flooding by propagation of overtopping water volume along the seafront. Results also reveal that for the two kinds of statistic scenarios a difference of about 5 % in the forcing conditions (water level, wave height and period) can produce significant differences in terms of flooding like +13.5 % of water volumes propagating inland or +11.3 % of affected surfaces. In some areas, flood response appears to be very sensitive to the chosen scenario with differences of 0.3 to 0.5 m in water level. The developed approach enables one to frame the 100-year hazard and to characterize spatially the robustness or the uncertainty over the results. Considering a 100-year scenario with mean sea level rise (0.6 m), hazard characteristics are dramatically changed with an evolution of the overtopping / overflowing process ratio and an increase of a factor 4.84 in volumes of water propagating inland and 3.47 in flooded surfaces.
Hischen, Florian; Reiswich, Vladislav; Kupsch, Desirée; De Mecquenem, Ninon; Riedel, Michael; Himmelsbach, Markus; Weth, Agnes; Heiss, Ernst; Armbruster, Oskar; Heitz, Johannes; Baumgartner, Werner
2017-08-15
The neotropical flat bug species Dysodius lunatus and Dysodius magnus show a fascinating camouflage principle, as their appearance renders the animal hardly visible on the bark of trees. However, when getting wet due to rain, bark changes its colour and gets darker. In order to keep the camouflage effect, it seems that some Dysodius species benefit from their ability to hold a water film on their cuticle and therefore change their optical properties when also wetted by water. This camouflage behaviour requires the insect to have a hydrophilic surface and passive surface structures which facilitate the liquid spreading. Here we show morphological and chemical characterisations of the surface, especially the cuticular waxes of D. magnus Scanning electron microscopy revealed that the animal is covered with pillar-like microstructures which, in combination with a surprising chemical hydrophilicity of the cuticle waxes, render the bug almost superhydrophilic: water spreads immediately across the surface. We could theoretically model this behaviour assuming the effect of hemi-wicking (a state in which a droplet sits on a rough surface, partwise imbibing the structure around). Additionally the principle was abstracted and a laser-patterned polymer surface, mimicking the structure and contact angle of Dysodius wax, shows exactly the behaviour of the natural role model - immediate spreading of water and the formation of a thin continuous water film changing optical properties of the surface. © 2017. Published by The Company of Biologists Ltd.
Reiswich, Vladislav; Kupsch, Desirée; De Mecquenem, Ninon; Riedel, Michael; Himmelsbach, Markus; Weth, Agnes; Heiss, Ernst; Armbruster, Oskar; Heitz, Johannes; Baumgartner, Werner
2017-01-01
ABSTRACT The neotropical flat bug species Dysodius lunatus and Dysodius magnus show a fascinating camouflage principle, as their appearance renders the animal hardly visible on the bark of trees. However, when getting wet due to rain, bark changes its colour and gets darker. In order to keep the camouflage effect, it seems that some Dysodius species benefit from their ability to hold a water film on their cuticle and therefore change their optical properties when also wetted by water. This camouflage behaviour requires the insect to have a hydrophilic surface and passive surface structures which facilitate the liquid spreading. Here we show morphological and chemical characterisations of the surface, especially the cuticular waxes of D. magnus. Scanning electron microscopy revealed that the animal is covered with pillar-like microstructures which, in combination with a surprising chemical hydrophilicity of the cuticle waxes, render the bug almost superhydrophilic: water spreads immediately across the surface. We could theoretically model this behaviour assuming the effect of hemi-wicking (a state in which a droplet sits on a rough surface, partwise imbibing the structure around). Additionally the principle was abstracted and a laser-patterned polymer surface, mimicking the structure and contact angle of Dysodius wax, shows exactly the behaviour of the natural role model – immediate spreading of water and the formation of a thin continuous water film changing optical properties of the surface. PMID:28811303
Coherent structures in wind shear induced wave–turbulence–vegetation interaction in water bodies
Banerjee, Tirtha; Vercauteren, Nikki; Muste, Marian; ...
2017-08-26
Flume experiments with particle imaging velocimetry (PIV) were conducted recently to study a complex flow problem where wind shear acts on the surface of a static water body in presence of flexible emergent vegetation and induces a rich dynamics of wave–turbulence–vegetation interaction inside the water body without any gravitational gradient. The experiments were aimed at mimicking realistic vegetated wetlands and the present work is targeted to improve the understanding of the coherent structures associated with this interaction by employing a combination of techniques such as quadrant analysis, proper orthogonal decomposition (POD), Shannon entropy and mutual information content (MIC). The turbulentmore » transfer of momentum is found to be dominated by organized motions such as sweeps and ejections, while the wave component of vertical momentum transport does not show any such preference. Furthermore, by reducing the data using POD we see that wave energy for large flow depths and turbulent energy for all water depths is concentrated among the top few modes, which can allow development of simple reduced order models. Vegetation flexibility is found to induce several roll type structures, however if the vegetation density is increased, drag effects dominate over flexibility and organize the flow. The interaction between waves and turbulence is also found to be highest among flexible sparse vegetation. But, rapidly evolving parts of the flow such as the air–water interface reduces wave–turbulence interaction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, J.; Martí, J., E-mail: jordi.marti@upc.edu; Calero, C.
2014-03-14
Microscopic structure and dynamics of water and lipids in a fully hydrated dimyristoylphosphatidylcholine phospholipid lipid bilayer membrane in the liquid-crystalline phase have been analyzed with all-atom molecular dynamics simulations based on the recently parameterized CHARMM36 force field. The diffusive dynamics of the membrane lipids and of its hydration water, their reorientational motions as well as their corresponding spectral densities, related to the absorption of radiation, have been considered for the first time using the present force field. In addition, structural properties such as density and pressure profiles, a deuterium-order parameter, surface tension, and the extent of water penetration in themore » membrane have been analyzed. Molecular self-diffusion, reorientational motions, and spectral densities of atomic species reveal a variety of time scales playing a role in membrane dynamics. The mechanisms of lipid motion strongly depend on the time scale considered, from fast ballistic translation at the scale of picoseconds (effective diffusion coefficients of the order of 10{sup −5} cm{sup 2}/s) to diffusive flow of a few lipids forming nanodomains at the scale of hundreds of nanoseconds (diffusion coefficients of the order of 10{sup −8} cm{sup 2}/s). In the intermediate regime of sub-diffusion, collisions with nearest neighbors prevent the lipids to achieve full diffusion. Lipid reorientations along selected directions agree well with reported nuclear magnetic resonance data and indicate two different time scales, one about 1 ns and a second one in the range of 2–8 ns. We associated the two time scales of reorientational motions with angular distributions of selected vectors. Calculated spectral densities corresponding to lipid and water reveal an overall good qualitative agreement with Fourier transform infrared spectroscopy experiments. Our simulations indicate a blue-shift of the low frequency spectral bands of hydration water as a result of its interaction with lipids. We have thoroughly analyzed the physical meaning of all spectral features from lipid atomic sites and correlated them with experimental data. Our findings include a “wagging of the tails” frequency around 30 cm{sup −1}, which essentially corresponds to motions of the tail-group along the instantaneous plane formed by the two lipid tails, i.e., in-plane oscillations are clearly of bigger importance than those along the normal-to-the plane direction.« less
Chemically programmed self-sorting of gelator networks.
Morris, Kyle L; Chen, Lin; Raeburn, Jaclyn; Sellick, Owen R; Cotanda, Pepa; Paul, Alison; Griffiths, Peter C; King, Stephen M; O'Reilly, Rachel K; Serpell, Louise C; Adams, Dave J
2013-01-01
Controlling the order and spatial distribution of self-assembly in multicomponent supramolecular systems could underpin exciting new functional materials, but it is extremely challenging. When a solution of different components self-assembles, the molecules can either coassemble, or self-sort, where a preference for like-like intermolecular interactions results in coexisting, homomolecular assemblies. A challenge is to produce generic and controlled 'one-pot' fabrication methods to form separate ordered assemblies from 'cocktails' of two or more self-assembling species, which might have relatively similar molecular structures and chemistry. Self-sorting in supramolecular gel phases is hence rare. Here we report the first example of the pH-controlled self-sorting of gelators to form self-assembled networks in water. Uniquely, the order of assembly can be predefined. The assembly of each component is preprogrammed by the pK(a) of the gelator. This pH-programming method will enable higher level, complex structures to be formed that cannot be accessed by simple thermal gelation.
Amorphous ices explained in terms of nonequilibrium phase transitions in supercooled water
NASA Astrophysics Data System (ADS)
Limmer, David; Chandler, David
2013-03-01
We analyze the phase diagram of supercooled water out-of-equilibrium using concepts from space-time thermodynamics and the dynamic facilitation theory of the glass transition, together with molecular dynamics simulations. We find that when water is driven out-of-equilibrium, it can exist in multiple amorphous states. In contrast, we find that when water is at equilibrium, it can exist in only one liquid state. The amorphous non-equilibrium states are solids, distinguished from the liquid by their lack of mobility, and distinguished from each other by their different densities and local structure. This finding explains the experimentally observed polyamorphism of water as a class of nonequilibrium phenomena involving glasses of different densities. While the amorphous solids can be long lived, they are thermodynamically unstable. When allowed to relax to equilibrium, they crystallize with pathways that pass first through liquid state configurations and then to ordered ice.
Temperature field study of hot water circulation pump shaft system
NASA Astrophysics Data System (ADS)
Liu, Y. Y.; Kong, F. Y.; Daun, X. H.; Zhao, R. J.; Hu, Q. L.
2016-05-01
In the process of engineering application under the condition of hot water circulation pump, problems of stress concentration caused by the temperature rise may happen. In order to study the temperature field in bearing and electric motor chamber of the hot water circulation pump and optimize the structure, in present paper, the model of the shaft system is created through CREO. The model is analyzed by ANSYS workbench, in which the thermal boundary conditions are applied to calculate, which include the calorific values from the bearings, the thermal loss from electric motor and the temperature from the transporting medium. From the result, the finite element model can reflect the distribution of thermal field in hot water circulation pump. Further, the results show that the maximum temperature locates in the bearing chamber.The theoretical guidance for the electric motor heat dissipation design of the hot water circulation pump can be achieved.
Chen, Min; Singh, Leena; Xu, Ningning; Singh, Ranjan; Zhang, Weili; Xie, Lijuan
2017-06-26
Terahertz sensing of highly absorptive aqueous solutions remains challenging due to strong absorption of water in the terahertz regime. Here, we experimentally demonstrate a cost-effective metamaterial-based sensor integrated with terahertz time-domain spectroscopy for highly absorptive water-methanol mixture sensing. This metamaterial has simple asymmetric wire structures that support multiple resonances including a fundamental Fano resonance and higher order dipolar resonance in the terahertz regime. Both the resonance modes have strong intensity in the transmission spectra which we exploit for detection of the highly absorptive water-methanol mixtures. The experimentally characterized sensitivities of the Fano and dipole resonances for the water-methanol mixtures are found to be 160 and 305 GHz/RIU, respectively. This method provides a robust route for metamaterial-assisted terahertz sensing of highly absorptive chemical and biochemical materials with multiple resonances and high accuracy.
Abrupt climate shift in the Western Mediterranean Sea.
Schroeder, K; Chiggiato, J; Bryden, H L; Borghini, M; Ben Ismail, S
2016-03-11
One century of oceanographic measurements has evidenced gradual increases in temperature and salinity of western Mediterranean water masses, even though the vertical stratification has basically remained unchanged. Starting in 2005, the basic structure of the intermediate and deep layers abruptly changed. We report here evidence of reinforced thermohaline variability in the deep western basin with significant dense water formation events producing large amounts of warmer, saltier and denser water masses than ever before. We provide a detailed chronological order to these changes, giving an overview of the new water masses and following their route from the central basin interior to the east (toward the Tyrrhenian) and toward the Atlantic Ocean. As a consequence of this climate shift, new deep waters outflowing through Gibraltar will impact the North Atlantic in terms of salt and heat input. In addition, modifications in the Mediterranean abyssal ecosystems and biogeochemical cycles are to be expected.
Abrupt climate shift in the Western Mediterranean Sea
Schroeder, K.; Chiggiato, J.; Bryden, H. L.; Borghini, M.; Ben Ismail, S.
2016-01-01
One century of oceanographic measurements has evidenced gradual increases in temperature and salinity of western Mediterranean water masses, even though the vertical stratification has basically remained unchanged. Starting in 2005, the basic structure of the intermediate and deep layers abruptly changed. We report here evidence of reinforced thermohaline variability in the deep western basin with significant dense water formation events producing large amounts of warmer, saltier and denser water masses than ever before. We provide a detailed chronological order to these changes, giving an overview of the new water masses and following their route from the central basin interior to the east (toward the Tyrrhenian) and toward the Atlantic Ocean. As a consequence of this climate shift, new deep waters outflowing through Gibraltar will impact the North Atlantic in terms of salt and heat input. In addition, modifications in the Mediterranean abyssal ecosystems and biogeochemical cycles are to be expected. PMID:26965790
WScore: A Flexible and Accurate Treatment of Explicit Water Molecules in Ligand-Receptor Docking.
Murphy, Robert B; Repasky, Matthew P; Greenwood, Jeremy R; Tubert-Brohman, Ivan; Jerome, Steven; Annabhimoju, Ramakrishna; Boyles, Nicholas A; Schmitz, Christopher D; Abel, Robert; Farid, Ramy; Friesner, Richard A
2016-05-12
We have developed a new methodology for protein-ligand docking and scoring, WScore, incorporating a flexible description of explicit water molecules. The locations and thermodynamics of the waters are derived from a WaterMap molecular dynamics simulation. The water structure is employed to provide an atomic level description of ligand and protein desolvation. WScore also contains a detailed model for localized ligand and protein strain energy and integrates an MM-GBSA scoring component with these terms to assess delocalized strain of the complex. Ensemble docking is used to take into account induced fit effects on the receptor conformation, and protein reorganization free energies are assigned via fitting to experimental data. The performance of the method is evaluated for pose prediction, rank ordering of self-docked complexes, and enrichment in virtual screening, using a large data set of PDB complexes and compared with the Glide SP and Glide XP models; significant improvements are obtained.
Dundua, Alexander; Landfester, Katharina; Taden, Andreas
2014-11-01
Hydrophobic association and stimuli-responsiveness is a powerful tool towards water-based adhesives with strongly improved properties, which is demonstrated based on the example of hydrophobically modified alkali-soluble latexes (HASE) with modulated association. Their rheological properties are highly tunable due to the hydrophobic domains that act as physical crosslinking sites of adjustable interaction strength. Ethanol, propanol, and butanol are used as water-soluble model additives with different hydrophobicity in order to specifically target the association sites and impact the viscoelastic properties and stimuli-responsiveness. The rheological and mechanical property response upon dilution with water can be tailored, and dilution-resistant or even dilution-thickening systems are obtained. The investigations are of high importance for water-based adhesives, as our findings provide insight into general structure-property relationships to improve their setting behavior, especially upon contact with wet substrates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sharip, Zati; Zaki, Ahmad Taqiyuddin Ahmad
2014-08-01
Thermal structure and water quality in a large and shallow lake in Malaysia were studied between January 2012 and June 2013 in order to understand variations in relation to water level fluctuations and in-stream mining activities. Environmental variables, namely temperature, turbidity, dissolved oxygen, pH, electrical conductivity, chlorophyll-A and transparency, were measured using a multi-parameter probe and a Secchi disk. Measurements of environmental variables were performed at 0.1 m intervals from the surface to the bottom of the lake during the dry and wet seasons. High water level and strong solar radiation increased temperature stratification. River discharges during the wet season, and unsustainable sand mining activities led to an increased turbidity exceeding 100 NTU, and reduced transparency, which changed the temperature variation and subsequently altered the water quality pattern.
NASA Astrophysics Data System (ADS)
Warriner, Heidi E.; Davidson, Patrick; Slack, Nelle L.; Schellhorn, Matthias; Eiselt, Petra; Idziak, Stefan H. J.; Schmidt, Hans-Werner; Safinya, Cyrus R.
1997-09-01
A series of four polymer-surfactant macromolecules, each consisting of a double-chain hydrophobic moiety attached onto a monofunctional polyethylene glycol (PEG) polymer chain, were synthesized in order to study their effect upon the fluid lamellar liquid crystalline (Lα) phase of the dimyristoylphosphatidylcholine/pentanol/water system. The main finding of this study is that the addition of these compounds induces a new lamellar gel, called Lα,g. We have determined the phase diagrams as a function of PEG-surfactant concentration, cPEG, and weight fraction water, ΦW. All phase diagrams are qualitatively similar and show the existence of the gel. Unlike more common polymer physical gels, this gel can be induced either by increasing cPEG or by adding water at constant cPEG. In particular, less polymer is required for gelation as water concentration increases. Moreover, the gel phase is attained at concentrations of PEG-surfactant far below that required for classical polymer gels and is stable at temperatures comparable to the lower critical solution temperature of free PEG-water mixtures. Small angle x-ray experiments demonstrate the lamellar structure of the gel phase, while wide angle x-ray scattering experiments prove that the structure is Lα, not Lβ' (a common chain-ordered phase which is also a gel). The rheological behavior of the Lα,g phase demonstrates the existence of three dimensional elastic properties. Polarized light microscopy of Lα,g samples reveals that the Lα,g is induced by a proliferation of defect structures, including whispy lines, spherulitic defects, and a nematiclike Schlieren texture. We propose a model of topological defects created by the aggregation of PEG-surfactant into highly curved regions within the membranes. This model accounts for both the inverse relationship between ΦW and cPEG observed along the gel transition line and the scaling dependence of the interlayer spacing at the gel transition with the PEG molecular weight. These Lα hydrogels could serve as the matrix for membrane-anchored peptides, proteins or other drug molecules, creating a "bioactive gel" with mechanical stability deriving from the polymer-lipid minority component.
Di Mundo, Rosa; Bottiglione, Francesco; Palumbo, Fabio; Notarnicola, Michele; Carbone, Giuseppe
2016-11-15
Micro-scale textured Teflon surfaces, resulting from plasma etching modification, show extremely high water contact angle values and fairly good resistance to water penetration when hit by water drops at medium-high speed. This behavior is more pronounced when these surfaces present denser and smaller micrometric reliefs. Tailoring the top of these reliefs with a structure which further stabilizes the air may further increase resistance to wetting (water penetration) under static and dynamic conditions. Conditions of the oxygen fed plasma were tuned in order to explore the possibility of obtaining differently topped structures on the surface of the polymer. Scanning Electron Microscopy (SEM) was used to explore topography and X-ray Photoelectron Spectroscopy (XPS) to assess chemical similarity of the modified surfaces. Beside the usual advancing and receding water contact angle (WCA) measurements, surfaces were subjected to high speed impacting drops and immersion in water. At milder, i.e. shorter time and lower input power, plasma conditions formation of peculiar filaments is observed on the top of the sculpted reliefs. Filamentary topped surfaces result in a lower WCA than the spherical ones, appearing in this sense less superhydrophobic. However, these surfaces give rise to the formation of a more pronounced air layer when placed underwater. Further, when hit by water drops falling at medium/high speed, they show a higher resistance to water penetration and a sensitively lower surface-liquid contact time. The contact time is as low as previously observed only on heated solids. This behavior may be ascribed to the cavities formed beneath the filaments which, similarly with the salvinia leaf structures, require a surplus of pressure to be filled by water. Also, it suggests a different concept of superhydrophobicity, which cannot be expected on the basis of the conventional water contact angle characterization. Copyright © 2016 Elsevier Inc. All rights reserved.
Influence of the cytoplasmic domains of aquaporin-4 on water conduction and array formation.
Mitsuma, Tadanori; Tani, Kazutoshi; Hiroaki, Yoko; Kamegawa, Akiko; Suzuki, Hiroshi; Hibino, Hiroshi; Kurachi, Yoshihisa; Fujiyoshi, Yoshinori
2010-10-01
Phosphorylation of Ser180 in cytoplasmic loop D has been shown to reduce the water permeability of aquaporin (AQP) 4, the predominant water channel in the brain. However, when the structure of the S180D mutant (AQP4M23S180D), which was generated to mimic phosphorylated Ser180, was determined to 2.8 Å resolution using electron diffraction patterns, it showed no significant differences from the structure of the wild-type channel. High-resolution density maps usually do not resolve protein regions that are only partially ordered, but these can sometimes be seen in lower-resolution density maps calculated from electron micrographs. We therefore used images of two-dimensional crystals and determined the structure of AQP4M23S180D at 10 A resolution. The features of the 10-A density map are consistent with those of the previously determined atomic model; in particular, there were no indications of any obstruction near the cytoplasmic pore entrance. In addition, water conductance measurements, both in vitro and in vivo, show the same water permeability for wild-type and mutant AQP4M23, suggesting that the S180D mutation neither reduces water conduction through a conformational change nor reduces water conduction by interacting with a protein that would obstruct the cytoplasmic channel entrance. Finally, the 10-A map shows a cytoplasmic density in between four adjacent tetramers that most likely represents the association of four N termini. This finding supports the critical role of the N terminus of AQP4 in the stabilization of orthogonal arrays, as well as their interference through lipid modification of cysteine residues in the longer N-terminal isoform. Copyright © 2010 Elsevier Ltd. All rights reserved.