NASA Astrophysics Data System (ADS)
Homma, Yuto; Moriwaki, Hiroyuki; Ohki, Shigeo; Ikeda, Kazumi
2014-06-01
This paper deals with verification of three dimensional triangular prismatic discrete ordinates transport calculation code ENSEMBLE-TRIZ by comparison with multi-group Monte Carlo calculation code GMVP in a large fast breeder reactor. The reactor is a 750 MWe electric power sodium cooled reactor. Nuclear characteristics are calculated at beginning of cycle of an initial core and at beginning and end of cycle of equilibrium core. According to the calculations, the differences between the two methodologies are smaller than 0.0002 Δk in the multi-plication factor, relatively about 1% in the control rod reactivity, and 1% in the sodium void reactivity.
MCNP (Monte Carlo Neutron Photon) capabilities for nuclear well logging calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forster, R.A.; Little, R.C.; Briesmeister, J.F.
The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. The general-purpose continuous-energy Monte Carlo code MCNP (Monte Carlo Neutron Photon), part of the LARTCS, provides a computational predictive capability for many applications of interest to the nuclear well logging community. The generalized three-dimensional geometry of MCNP is well suited for borehole-tool models. SABRINA, another component of the LARTCS, is a graphics code that can be used to interactively create a complex MCNP geometry. Users can define many source and tally characteristics with standard MCNP features. The time-dependent capabilitymore » of the code is essential when modeling pulsed sources. Problems with neutrons, photons, and electrons as either single particle or coupled particles can be calculated with MCNP. The physics of neutron and photon transport and interactions is modeled in detail using the latest available cross-section data. A rich collections of variance reduction features can greatly increase the efficiency of a calculation. MCNP is written in FORTRAN 77 and has been run on variety of computer systems from scientific workstations to supercomputers. The next production version of MCNP will include features such as continuous-energy electron transport and a multitasking option. Areas of ongoing research of interest to the well logging community include angle biasing, adaptive Monte Carlo, improved discrete ordinates capabilities, and discrete ordinates/Monte Carlo hybrid development. Los Alamos has requested approval by the Department of Energy to create a Radiation Transport Computational Facility under their User Facility Program to increase external interactions with industry, universities, and other government organizations. 21 refs.« less
Los Alamos radiation transport code system on desktop computing platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briesmeister, J.F.; Brinkley, F.W.; Clark, B.A.
The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. These codes were originally developed many years ago and have undergone continual improvement. With a large initial effort and continued vigilance, the codes are easily portable from one type of hardware to another. The performance of scientific work-stations (SWS) has evolved to the point that such platforms can be used routinely to perform sophisticated radiation transport calculations. As the personal computer (PC) performance approaches that of the SWS, the hardware options for desk-top radiation transport calculations expands considerably. Themore » current status of the radiation transport codes within the LARTCS is described: MCNP, SABRINA, LAHET, ONEDANT, TWODANT, TWOHEX, and ONELD. Specifically, the authors discuss hardware systems on which the codes run and present code performance comparisons for various machines.« less
NASA Astrophysics Data System (ADS)
KIM, Jong Woon; LEE, Young-Ouk
2017-09-01
As computing power gets better and better, computer codes that use a deterministic method seem to be less useful than those using the Monte Carlo method. In addition, users do not like to think about space, angles, and energy discretization for deterministic codes. However, a deterministic method is still powerful in that we can obtain a solution of the flux throughout the problem, particularly as when particles can barely penetrate, such as in a deep penetration problem with small detection volumes. Recently, a new state-of-the-art discrete-ordinates code, ATTILA, was developed and has been widely used in several applications. ATTILA provides the capabilities to solve geometrically complex 3-D transport problems by using an unstructured tetrahedral mesh. Since 2009, we have been developing our own code by benchmarking ATTILA. AETIUS is a discrete ordinates code that uses an unstructured tetrahedral mesh such as ATTILA. For pre- and post- processing, Gmsh is used to generate an unstructured tetrahedral mesh by importing a CAD file (*.step) and visualizing the calculation results of AETIUS. Using a CAD tool, the geometry can be modeled very easily. In this paper, we describe a brief overview of AETIUS and provide numerical results from both AETIUS and a Monte Carlo code, MCNP5, in a deep penetration problem with small detection volumes. The results demonstrate the effectiveness and efficiency of AETIUS for such calculations.
3D unstructured-mesh radiation transport codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morel, J.
1997-12-31
Three unstructured-mesh radiation transport codes are currently being developed at Los Alamos National Laboratory. The first code is ATTILA, which uses an unstructured tetrahedral mesh in conjunction with standard Sn (discrete-ordinates) angular discretization, standard multigroup energy discretization, and linear-discontinuous spatial differencing. ATTILA solves the standard first-order form of the transport equation using source iteration in conjunction with diffusion-synthetic acceleration of the within-group source iterations. DANTE is designed to run primarily on workstations. The second code is DANTE, which uses a hybrid finite-element mesh consisting of arbitrary combinations of hexahedra, wedges, pyramids, and tetrahedra. DANTE solves several second-order self-adjoint forms of the transport equation including the even-parity equation, the odd-parity equation, and a new equation called the self-adjoint angular flux equation. DANTE also offers three angular discretization options:more » $$S{_}n$$ (discrete-ordinates), $$P{_}n$$ (spherical harmonics), and $$SP{_}n$$ (simplified spherical harmonics). DANTE is designed to run primarily on massively parallel message-passing machines, such as the ASCI-Blue machines at LANL and LLNL. The third code is PERICLES, which uses the same hybrid finite-element mesh as DANTE, but solves the standard first-order form of the transport equation rather than a second-order self-adjoint form. DANTE uses a standard $$S{_}n$$ discretization in angle in conjunction with trilinear-discontinuous spatial differencing, and diffusion-synthetic acceleration of the within-group source iterations. PERICLES was initially designed to run on workstations, but a version for massively parallel message-passing machines will be built. The three codes will be described in detail and computational results will be presented.« less
NASA Technical Reports Server (NTRS)
Puri, Ishwar K.
2004-01-01
Our goal has been to investigate the influence of both dilution and radiation on the extinction process of nonpremixed flames at low strain rates. Simulations have been performed by using a counterflow code and three radiation models have been included in it, namely, the optically thin, the narrowband, and discrete ordinate models. The counterflow flame code OPPDIFF was modified to account for heat transfer losses by radiation from the hot gases. The discrete ordinate method (DOM) approximation was first suggested by Chandrasekhar for solving problems in interstellar atmospheres. Carlson and Lathrop developed the method for solving multi-dimensional problem in neutron transport. Only recently has the method received attention in the field of heat transfer. Due to the applicability of the discrete ordinate method for thermal radiation problems involving flames, the narrowband code RADCAL was modified to calculate the radiative properties of the gases. A non-premixed counterflow flame was simulated with the discrete ordinate method for radiative emissions. In comparison with two other models, it was found that the heat losses were comparable with the optically thin and simple narrowband model. The optically thin model had the highest heat losses followed by the DOM model and the narrow-band model.
GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method
NASA Astrophysics Data System (ADS)
Gong, Chunye; Liu, Jie; Chi, Lihua; Huang, Haowei; Fang, Jingyue; Gong, Zhenghu
2011-07-01
Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates ( Sn) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.
NASA Technical Reports Server (NTRS)
Capo, M. A.; Disney, R. K.
1971-01-01
The work performed in the following areas is summarized: (1) Analysis of Realistic nuclear-propelled vehicle was analyzed using the Marshall Space Flight Center computer code package. This code package includes one and two dimensional discrete ordinate transport, point kernel, and single scatter techniques, as well as cross section preparation and data processing codes, (2) Techniques were developed to improve the automated data transfer in the coupled computation method of the computer code package and improve the utilization of this code package on the Univac-1108 computer system. (3) The MSFC master data libraries were updated.
Implementation of radiation shielding calculation methods. Volume 2: Seminar/Workshop notes
NASA Technical Reports Server (NTRS)
Capo, M. A.; Disney, R. K.
1971-01-01
Detailed descriptions are presented of the input data for each of the MSFC computer codes applied to the analysis of a realistic nuclear propelled vehicle. The analytical techniques employed include cross section data, preparation, one and two dimensional discrete ordinates transport, point kernel, and single scatter methods.
MCNP capabilities for nuclear well logging calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forster, R.A.; Little, R.C.; Briesmeister, J.F.
The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. This paper discusses how the general-purpose continuous-energy Monte Carlo code MCNP ({und M}onte {und C}arlo {und n}eutron {und p}hoton), part of the LARTCS, provides a computational predictive capability for many applications of interest to the nuclear well logging community. The generalized three-dimensional geometry of MCNP is well suited for borehole-tool models. SABRINA, another component of the LARTCS, is a graphics code that can be used to interactively create a complex MCNP geometry. Users can define many source and tallymore » characteristics with standard MCNP features. The time-dependent capability of the code is essential when modeling pulsed sources. Problems with neutrons, photons, and electrons as either single particle or coupled particles can be calculated with MCNP. The physics of neutron and photon transport and interactions is modeled in detail using the latest available cross-section data.« less
Shielding Analyses for VISION Beam Line at SNS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popova, Irina; Gallmeier, Franz X
2014-01-01
Full-scale neutron and gamma transport analyses were performed to design shielding around the VISION beam line, instrument shielding enclosure, beam stop, secondary shutter including a temporary beam stop for the still closed neighboring beam line to meet requirement is to achieve dose rates below 0.25 mrem/h at 30 cm from the shielding surface. The beam stop and the temporary beam stop analyses were performed with the discrete ordinate code DORT additionally to Monte Carlo analyses with the MCNPX code. Comparison of the results is presented.
Tycho 2: A Proxy Application for Kinetic Transport Sweeps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, Charles Kristopher; Warsa, James S.
2016-09-14
Tycho 2 is a proxy application that implements discrete ordinates (SN) kinetic transport sweeps on unstructured, 3D, tetrahedral meshes. It has been designed to be small and require minimal dependencies to make collaboration and experimentation as easy as possible. Tycho 2 has been released as open source software. The software is currently in a beta release with plans for a stable release (version 1.0) before the end of the year. The code is parallelized via MPI across spatial cells and OpenMP across angles. Currently, several parallelization algorithms are implemented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGhee, J.M.; Roberts, R.M.; Morel, J.E.
1997-06-01
A spherical harmonics research code (DANTE) has been developed which is compatible with parallel computer architectures. DANTE provides 3-D, multi-material, deterministic, transport capabilities using an arbitrary finite element mesh. The linearized Boltzmann transport equation is solved in a second order self-adjoint form utilizing a Galerkin finite element spatial differencing scheme. The core solver utilizes a preconditioned conjugate gradient algorithm. Other distinguishing features of the code include options for discrete-ordinates and simplified spherical harmonics angular differencing, an exact Marshak boundary treatment for arbitrarily oriented boundary faces, in-line matrix construction techniques to minimize memory consumption, and an effective diffusion based preconditioner formore » scattering dominated problems. Algorithm efficiency is demonstrated for a massively parallel SIMD architecture (CM-5), and compatibility with MPP multiprocessor platforms or workstation clusters is anticipated.« less
Verification of ARES transport code system with TAKEDA benchmarks
NASA Astrophysics Data System (ADS)
Zhang, Liang; Zhang, Bin; Zhang, Penghe; Chen, Mengteng; Zhao, Jingchang; Zhang, Shun; Chen, Yixue
2015-10-01
Neutron transport modeling and simulation are central to many areas of nuclear technology, including reactor core analysis, radiation shielding and radiation detection. In this paper the series of TAKEDA benchmarks are modeled to verify the critical calculation capability of ARES, a discrete ordinates neutral particle transport code system. SALOME platform is coupled with ARES to provide geometry modeling and mesh generation function. The Koch-Baker-Alcouffe parallel sweep algorithm is applied to accelerate the traditional transport calculation process. The results show that the eigenvalues calculated by ARES are in excellent agreement with the reference values presented in NEACRP-L-330, with a difference less than 30 pcm except for the first case of model 3. Additionally, ARES provides accurate fluxes distribution compared to reference values, with a deviation less than 2% for region-averaged fluxes in all cases. All of these confirms the feasibility of ARES-SALOME coupling and demonstrate that ARES has a good performance in critical calculation.
Some Remarks on GMRES for Transport Theory
NASA Technical Reports Server (NTRS)
Patton, Bruce W.; Holloway, James Paul
2003-01-01
We review some work on the application of GMRES to the solution of the discrete ordinates transport equation in one-dimension. We note that GMRES can be applied directly to the angular flux vector, or it can be applied to only a vector of flux moments as needed to compute the scattering operator of the transport equation. In the former case we illustrate both the delights and defects of ILU right-preconditioners for problems with anisotropic scatter and for problems with upscatter. When working with flux moments we note that GMRES can be used as an accelerator for any existing transport code whose solver is based on a stationary fixed-point iteration, including transport sweeps and DSA transport sweeps. We also provide some numerical illustrations of this idea. We finally show how space can be traded for speed by taking multiple transport sweeps per GMRES iteration. Key Words: transport equation, GMRES, Krylov subspace
Advances in Engineering Software for Lift Transportation Systems
NASA Astrophysics Data System (ADS)
Kazakoff, Alexander Borisoff
2012-03-01
In this paper an attempt is performed at computer modelling of ropeway ski lift systems. The logic in these systems is based on a travel form between the two terminals, which operates with high capacity cabins, chairs, gondolas or draw-bars. Computer codes AUTOCAD, MATLAB and Compaq-Visual Fortran - version 6.6 are used in the computer modelling. The rope systems computer modelling is organized in two stages in this paper. The first stage is organization of the ground relief profile and a design of the lift system as a whole, according to the terrain profile and the climatic and atmospheric conditions. The ground profile is prepared by the geodesists and is presented in an AUTOCAD view. The next step is the design of the lift itself which is performed by programmes using the computer code MATLAB. The second stage of the computer modelling is performed after the optimization of the co-ordinates and the lift profile using the computer code MATLAB. Then the co-ordinates and the parameters are inserted into a program written in Compaq Visual Fortran - version 6.6., which calculates 171 lift parameters, organized in 42 tables. The objective of the work presented in this paper is an attempt at computer modelling of the design and parameters derivation of the rope way systems and their computer variation and optimization.
Reformation of Regulatory Technical Standards for Nuclear Power Generation Equipments in Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikio Kurihara; Masahiro Aoki; Yu Maruyama
2006-07-01
Comprehensive reformation of the regulatory system has been introduced in Japan in order to apply recent technical progress in a timely manner. 'The Technical Standards for Nuclear Power Generation Equipments', known as the Ordinance No.622) of the Ministry of International Trade and Industry, which is used for detailed design, construction and operating stage of Nuclear Power Plants, was being modified to performance specifications with the consensus codes and standards being used as prescriptive specifications, in order to facilitate prompt review of the Ordinance with response to technological innovation. The activities on modification were performed by the Nuclear and Industrial Safetymore » Agency (NISA), the regulatory body in Japan, with support of the Japan Nuclear Energy Safety Organization (JNES), a technical support organization. The revised Ordinance No.62 was issued on July 1, 2005 and is enforced from January 1 2006. During the period from the issuance to the enforcement, JNES carried out to prepare enforceable regulatory guide which complies with each provisions of the Ordinance No.62, and also made technical assessment to endorse the applicability of consensus codes and standards, in response to NISA's request. Some consensus codes and standards were re-assessed since they were already used in regulatory review of the construction plan submitted by licensee. Other consensus codes and standards were newly assessed for endorsement. In case that proper consensus code or standards were not prepared, details of regulatory requirements were described in the regulatory guide as immediate measures. At the same time, appropriate standards developing bodies were requested to prepare those consensus code or standards. Supplementary note which provides background information on the modification, applicable examples etc. was prepared for convenience to the users of the Ordinance No. 62. This paper shows the activities on modification and the results, following the NISA's presentation at ICONE-13 that introduced the framework of the performance specifications and the modification process of the Ordinance NO. 62. (authors)« less
Validation of the WIMSD4M cross-section generation code with benchmark results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leal, L.C.; Deen, J.R.; Woodruff, W.L.
1995-02-01
The WIMSD4 code has been adopted for cross-section generation in support of the Reduced Enrichment for Research and Test (RERTR) program at Argonne National Laboratory (ANL). Subsequently, the code has undergone several updates, and significant improvements have been achieved. The capability of generating group-collapsed micro- or macroscopic cross sections from the ENDF/B-V library and the more recent evaluation, ENDF/B-VI, in the ISOTXS format makes the modified version of the WIMSD4 code, WIMSD4M, very attractive, not only for the RERTR program, but also for the reactor physics community. The intent of the present paper is to validate the procedure to generatemore » cross-section libraries for reactor analyses and calculations utilizing the WIMSD4M code. To do so, the results of calculations performed with group cross-section data generated with the WIMSD4M code will be compared against experimental results. These results correspond to calculations carried out with thermal reactor benchmarks of the Oak Ridge National Laboratory(ORNL) unreflected critical spheres, the TRX critical experiments, and calculations of a modified Los Alamos highly-enriched heavy-water moderated benchmark critical system. The benchmark calculations were performed with the discrete-ordinates transport code, TWODANT, using WIMSD4M cross-section data. Transport calculations using the XSDRNPM module of the SCALE code system are also included. In addition to transport calculations, diffusion calculations with the DIF3D code were also carried out, since the DIF3D code is used in the RERTR program for reactor analysis and design. For completeness, Monte Carlo results of calculations performed with the VIM and MCNP codes are also presented.« less
Reactor Dosimetry Applications Using RAPTOR-M3G:. a New Parallel 3-D Radiation Transport Code
NASA Astrophysics Data System (ADS)
Longoni, Gianluca; Anderson, Stanwood L.
2009-08-01
The numerical solution of the Linearized Boltzmann Equation (LBE) via the Discrete Ordinates method (SN) requires extensive computational resources for large 3-D neutron and gamma transport applications due to the concurrent discretization of the angular, spatial, and energy domains. This paper will discuss the development RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries), a new 3-D parallel radiation transport code, and its application to the calculation of ex-vessel neutron dosimetry responses in the cavity of a commercial 2-loop Pressurized Water Reactor (PWR). RAPTOR-M3G is based domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architectures. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor, yielding an efficient solution methodology for large 3-D problems. Measured neutron dosimetry responses in the reactor cavity air gap will be compared to the RAPTOR-M3G predictions. This paper is organized as follows: Section 1 discusses the RAPTOR-M3G methodology; Section 2 describes the 2-loop PWR model and the numerical results obtained. Section 3 addresses the parallel performance of the code, and Section 4 concludes this paper with final remarks and future work.
Validation of the WIMSD4M cross-section generation code with benchmark results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deen, J.R.; Woodruff, W.L.; Leal, L.E.
1995-01-01
The WIMSD4 code has been adopted for cross-section generation in support of the Reduced Enrichment Research and Test Reactor (RERTR) program at Argonne National Laboratory (ANL). Subsequently, the code has undergone several updates, and significant improvements have been achieved. The capability of generating group-collapsed micro- or macroscopic cross sections from the ENDF/B-V library and the more recent evaluation, ENDF/B-VI, in the ISOTXS format makes the modified version of the WIMSD4 code, WIMSD4M, very attractive, not only for the RERTR program, but also for the reactor physics community. The intent of the present paper is to validate the WIMSD4M cross-section librariesmore » for reactor modeling of fresh water moderated cores. The results of calculations performed with multigroup cross-section data generated with the WIMSD4M code will be compared against experimental results. These results correspond to calculations carried out with thermal reactor benchmarks of the Oak Ridge National Laboratory (ORNL) unreflected HEU critical spheres, the TRX LEU critical experiments, and calculations of a modified Los Alamos HEU D{sub 2}O moderated benchmark critical system. The benchmark calculations were performed with the discrete-ordinates transport code, TWODANT, using WIMSD4M cross-section data. Transport calculations using the XSDRNPM module of the SCALE code system are also included. In addition to transport calculations, diffusion calculations with the DIF3D code were also carried out, since the DIF3D code is used in the RERTR program for reactor analysis and design. For completeness, Monte Carlo results of calculations performed with the VIM and MCNP codes are also presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, J.; Alpan, F. A.; Fischer, G.A.
2011-07-01
Traditional two-dimensional (2D)/one-dimensional (1D) SYNTHESIS methodology has been widely used to calculate fast neutron (>1.0 MeV) fluence exposure to reactor pressure vessel in the belt-line region. However, it is expected that this methodology cannot provide accurate fast neutron fluence calculation at elevations far above or below the active core region. A three-dimensional (3D) parallel discrete ordinates calculation for ex-vessel neutron dosimetry on a Westinghouse 4-Loop XL Pressurized Water Reactor has been done. It shows good agreement between the calculated results and measured results. Furthermore, the results show very different fast neutron flux values at some of the former plate locationsmore » and elevations above and below an active core than those calculated by a 2D/1D SYNTHESIS method. This indicates that for certain irregular reactor internal structures, where the fast neutron flux has a very strong local effect, it is required to use a 3D transport method to calculate accurate fast neutron exposure. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, John C; Peplow, Douglas E.; Mosher, Scott W
2011-01-01
This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or moremore » localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial computational speed-ups, generally O(102-4), have been realized for all applications to date. This paper provides a brief review of the methods, their implementation, results of their application, and current development activities, as well as a considerable list of references for readers seeking more information about the methods and/or their applications.« less
25 CFR 11.108 - How are tribal ordinances affected by this part?
Code of Federal Regulations, 2014 CFR
2014-04-01
... 25 Indians 1 2014-04-01 2014-04-01 false How are tribal ordinances affected by this part? 11.108 Section 11.108 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER COURTS OF INDIAN OFFENSES AND LAW AND ORDER CODE Application; Jurisdiction § 11.108 How are tribal ordinances affected by...
25 CFR 11.108 - How are tribal ordinances affected by this part?
Code of Federal Regulations, 2013 CFR
2013-04-01
... 25 Indians 1 2013-04-01 2013-04-01 false How are tribal ordinances affected by this part? 11.108 Section 11.108 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER COURTS OF INDIAN OFFENSES AND LAW AND ORDER CODE Application; Jurisdiction § 11.108 How are tribal ordinances affected by...
25 CFR 11.108 - How are tribal ordinances affected by this part?
Code of Federal Regulations, 2012 CFR
2012-04-01
... 25 Indians 1 2012-04-01 2011-04-01 true How are tribal ordinances affected by this part? 11.108 Section 11.108 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER COURTS OF INDIAN OFFENSES AND LAW AND ORDER CODE Application; Jurisdiction § 11.108 How are tribal ordinances affected by...
25 CFR 11.108 - How are tribal ordinances affected by this part?
Code of Federal Regulations, 2011 CFR
2011-04-01
... 25 Indians 1 2011-04-01 2011-04-01 false How are tribal ordinances affected by this part? 11.108 Section 11.108 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER COURTS OF INDIAN OFFENSES AND LAW AND ORDER CODE Application; Jurisdiction § 11.108 How are tribal ordinances affected by...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tominaga, Nozomu; Shibata, Sanshiro; Blinnikov, Sergei I., E-mail: tominaga@konan-u.ac.jp, E-mail: sshibata@post.kek.jp, E-mail: Sergei.Blinnikov@itep.ru
We develop a time-dependent, multi-group, multi-dimensional relativistic radiative transfer code, which is required to numerically investigate radiation from relativistic fluids that are involved in, e.g., gamma-ray bursts and active galactic nuclei. The code is based on the spherical harmonic discrete ordinate method (SHDOM) which evaluates a source function including anisotropic scattering in spherical harmonics and implicitly solves the static radiative transfer equation with ray tracing in discrete ordinates. We implement treatments of time dependence, multi-frequency bins, Lorentz transformation, and elastic Thomson and inelastic Compton scattering to the publicly available SHDOM code. Our code adopts a mixed-frame approach; the source functionmore » is evaluated in the comoving frame, whereas the radiative transfer equation is solved in the laboratory frame. This implementation is validated using various test problems and comparisons with the results from a relativistic Monte Carlo code. These validations confirm that the code correctly calculates the intensity and its evolution in the computational domain. The code enables us to obtain an Eddington tensor that relates the first and third moments of intensity (energy density and radiation pressure) and is frequently used as a closure relation in radiation hydrodynamics calculations.« less
Radiation shielding quality assurance
NASA Astrophysics Data System (ADS)
Um, Dallsun
For the radiation shielding quality assurance, the validity and reliability of the neutron transport code MCNP, which is now one of the most widely used radiation shielding analysis codes, were checked with lot of benchmark experiments. And also as a practical example, follows were performed in this thesis. One integral neutron transport experiment to measure the effect of neutron streaming in iron and void was performed with Dog-Legged Void Assembly in Knolls Atomic Power Laboratory in 1991. Neutron flux was measured six different places with the methane detectors and a BF-3 detector. The main purpose of the measurements was to provide benchmark against which various neutron transport calculation tools could be compared. Those data were used in verification of Monte Carlo Neutron & Photon Transport Code, MCNP, with the modeling for that. Experimental results and calculation results were compared in both ways, as the total integrated value of neutron fluxes along neutron energy range from 10 KeV to 2 MeV and as the neutron spectrum along with neutron energy range. Both results are well matched with the statistical error +/-20%. MCNP results were also compared with those of TORT, a three dimensional discrete ordinates code which was developed by Oak Ridge National Laboratory. MCNP results are superior to the TORT results at all detector places except one. This means that MCNP is proved as a very powerful tool for the analysis of neutron transport through iron & air and further it could be used as a powerful tool for the radiation shielding analysis. For one application of the analysis of variance (ANOVA) to neutron and gamma transport problems, uncertainties for the calculated values of critical K were evaluated as in the ANOVA on statistical data.
NASA Astrophysics Data System (ADS)
Davis, S.
2004-05-01
A principal means to prevent poor exterior lighting practices is a lighting control ordinance. It is an enforceable legal restriction on specific lighting practices that are deemed unacceptable by the government body having jurisdiction. Outdoor lighting codes have proven to be effective at reducing polluting and trespassing light. A well written exterior lighting code will permit all forms of necessary illumination at reasonable intensities, but will demand shielding and other measures to prevent trespass and light pollution. A good code will also apply to all forms of outdoor lighting, including streets, highways, and exterior signs, as well as the lighting on dwellings, commercial and industrial buildings and building sites. A good code can make exceptions for special uses, provided it complies with an effective standard. The IDA Model Lighting Ordinance is a response to these requests. It is intended as an aid to communities that are seeking to take control of their outdoor lighting, to "take back the night" that is being lost to careless and excessive use of night lighting.
Ray Effect Mitigation Through Reference Frame Rotation
Tencer, John
2016-05-01
The discrete ordinates method is a popular and versatile technique for solving the radiative transport equation, a major drawback of which is the presence of ray effects. Mitigation of ray effects can yield significantly more accurate results and enhanced numerical stability for combined mode codes. Moreover, when ray effects are present, the solution is seen to be highly dependent upon the relative orientation of the geometry and the global reference frame. It is an undesirable property. A novel ray effect mitigation technique of averaging the computed solution for various reference frame orientations is proposed.
49 CFR 397.3 - State and local laws, ordinances, and regulations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS TRANSPORTATION OF HAZARDOUS MATERIALS; DRIVING AND PARKING RULES General § 397.3 State and local laws, ordinances, and regulations. Every motor vehicle containing hazardous materials must be driven...
Hybrid parallel code acceleration methods in full-core reactor physics calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Courau, T.; Plagne, L.; Ponicot, A.
2012-07-01
When dealing with nuclear reactor calculation schemes, the need for three dimensional (3D) transport-based reference solutions is essential for both validation and optimization purposes. Considering a benchmark problem, this work investigates the potential of discrete ordinates (Sn) transport methods applied to 3D pressurized water reactor (PWR) full-core calculations. First, the benchmark problem is described. It involves a pin-by-pin description of a 3D PWR first core, and uses a 8-group cross-section library prepared with the DRAGON cell code. Then, a convergence analysis is performed using the PENTRAN parallel Sn Cartesian code. It discusses the spatial refinement and the associated angular quadraturemore » required to properly describe the problem physics. It also shows that initializing the Sn solution with the EDF SPN solver COCAGNE reduces the number of iterations required to converge by nearly a factor of 6. Using a best estimate model, PENTRAN results are then compared to multigroup Monte Carlo results obtained with the MCNP5 code. Good consistency is observed between the two methods (Sn and Monte Carlo), with discrepancies that are less than 25 pcm for the k{sub eff}, and less than 2.1% and 1.6% for the flux at the pin-cell level and for the pin-power distribution, respectively. (authors)« less
24 CFR 941.203 - Design and construction standards.
Code of Federal Regulations, 2013 CFR
2013-04-01
... national building code, such as Uniform Building Code, Council of American Building Officials Code, or Building Officials Conference of America Code; (2) Applicable State and local laws, codes, ordinances, and... intended to serve. Building design and construction shall strive to encourage in residents a proprietary...
24 CFR 941.203 - Design and construction standards.
Code of Federal Regulations, 2012 CFR
2012-04-01
... national building code, such as Uniform Building Code, Council of American Building Officials Code, or Building Officials Conference of America Code; (2) Applicable State and local laws, codes, ordinances, and... intended to serve. Building design and construction shall strive to encourage in residents a proprietary...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vine, E.
1990-11-01
As part of Lawrence Berkeley Laboratory's (LBL) technical assistance to the Sustainable City Project, compliance and enforcement activities related to local and state building codes for existing and new construction were evaluated in two case studies. The analysis of the City of San Francisco's Residential Energy Conservation Ordinance (RECO) showed that a limited, prescriptive energy conservation ordinance for existing residential construction can be enforced relatively easily with little administrative costs, and that compliance with such ordinances can be quite high. Compliance with the code was facilitated by extensive publicity, an informed public concerned with the cost of energy and knowledgeablemore » about energy efficiency, the threat of punishment (Order of Abatement), the use of private inspectors, and training workshops for City and private inspectors. The analysis of California's Title 24 Standards for new residential and commercial construction showed that enforcement of this type of code for many climate zones is more complex and requires extensive administrative support for education and training of inspectors, architects, engineers, and builders. Under this code, prescriptive and performance approaches for compliance are permitted, resulting in the demand for alternative methods of enforcement: technical assistance, plan review, field inspection, and computer analysis. In contrast to existing to construction, building design and new materials and construction practices are of critical importance in new construction, creating a need for extensive technical assistance and extensive interaction between enforcement personnel and the building community. Compliance problems associated with building design and installation did occur in both residential and nonresidential buildings. 12 refs., 5 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, John C; Peplow, Douglas E.; Mosher, Scott W
2010-01-01
This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or moremore » localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial computational speed-ups, generally O(10{sup 2-4}), have been realized for all applications to date. This paper provides a brief review of the methods, their implementation, results of their application, and current development activities, as well as a considerable list of references for readers seeking more information about the methods and/or their applications.« less
[Status of law-making on animal welfare].
Polten, B
2007-03-01
Since the last report there have been major revisions of laws and ordinances. Deliberations on rules of Community law were also continued. On national level, the Act on the Shoeing of Horses amending the Animal Welfare Act and amendments of animal welfare provisions as well as the Deregulation Act were prepared, some of which have meanwhile entered into force. At legislative level, the work on the ratification laws for the Council of Europe conventions (Strasbourg) was concluded in order to enable Germany to adopt the revisions. They include (1) the European Convention for the protection of animals used for experimental purposes and (2) the European Convention for the protection of animals during international transport. At the level of ordinances, the amendment and extension of the Animal Welfare -Farm Animal Husbandry Ordinance are of vital importance for the sections on pig farming and laying hen husbandry. Another section refers to the husbandry of fur animals, on which an ordinance has been submitted to the Bundesrat (German upper house of Parliament). Deliberations on this issue have been adjourned. Drafts of a circus register were prepared to amend the Animal Welfare Act and to adopt a separate ordinance, and they are being discussed with the federal states and associations. Previously,the rules of Community law in the area of animal welfare were adopted as EC directives which the member states had to transfer in national law. This was done by incorporating them into national laws or ordinances, with non-compliance having to be sanctioned. It is the member states' responsibility to establish sanctions. Yet the Commission has introduced a directly operative animal welfare legislation by adopting EC Regulation 1/2005 on the protection of animals during transport. This means that a national implementation is not required. Nevertheless, the establishment of sanctions continues to be the responsibility of the member states. A special authorisation by the legislator is required to be able to impose sanctions based on directly applicable EC law. This is done via the already mentioned Act on the Shoeing of Horses and amendment. To establish sanctions for this Community legislation, a "Sanctions Ordinance" is currently being discussed by the different departments. This way, a link between directly applicable Community legislation and national sanctions is established. At EC level there are currently discussed (1) the "Animal Welfare Action Plan", (2) a draft directive laying down minimum rules for the protection of chickens kept for meat production and (3) preparations for a revision of the directive on the protection of animals used for experimental purposes have become known due to the preparation of a related impact assessment. At the level of international law, the Council of Europe has concluded its work on Annex A of the convention for the protection of animals used for experimental purposes. With regard to the European Convention for the protection of animals kept for farming purposes, the deliberations on fish and fattening rabbits are being continued. There is a discussion on the technical details of the Transport Convention. Since the first animal welfare conference of the International Office of epizootics (OlE) in February 2004 in Paris, two very comprehensive codes on slaughter of animals and on animal transport were adopted. The inclusion of further animal welfare issues into the OIE work programme will be discussed in the next future.
Spatial coding of ordinal information in short- and long-term memory.
Ginsburg, Véronique; Gevers, Wim
2015-01-01
The processing of numerical information induces a spatial response bias: Faster responses to small numbers with the left hand and faster responses to large numbers with the right hand. Most theories agree that long-term representations underlie this so called SNARC effect (Spatial Numerical Association of Response Codes; Dehaene et al., 1993). However, a spatial response bias was also observed with the activation of temporary position-space associations in working memory (ordinal position effect; van Dijck and Fias, 2011). Items belonging to the beginning of a memorized sequence are responded to faster with the left hand side while items at the end of the sequence are responded to faster with the right hand side. The theoretical possibility was put forward that the SNARC effect is an instance of the ordinal position effect, with the empirical consequence that the SNARC effect and the ordinal position effect cannot be observed simultaneously. In two experiments we falsify this claim by demonstrating that the SNARC effect and the ordinal position effect are not mutually exclusive. Consequently, this suggests that the SNARC effect and the ordinal position effect result from the activation of different representations. We conclude that spatial response biases can result from the activation of both pre-existing positions in long-term memory and from temporary space associations in working memory at the same time.
Multilevel acceleration of scattering-source iterations with application to electron transport
Drumm, Clif; Fan, Wesley
2017-08-18
Acceleration/preconditioning strategies available in the SCEPTRE radiation transport code are described. A flexible transport synthetic acceleration (TSA) algorithm that uses a low-order discrete-ordinates (S N) or spherical-harmonics (P N) solve to accelerate convergence of a high-order S N source-iteration (SI) solve is described. Convergence of the low-order solves can be further accelerated by applying off-the-shelf incomplete-factorization or algebraic-multigrid methods. Also available is an algorithm that uses a generalized minimum residual (GMRES) iterative method rather than SI for convergence, using a parallel sweep-based solver to build up a Krylov subspace. TSA has been applied as a preconditioner to accelerate the convergencemore » of the GMRES iterations. The methods are applied to several problems involving electron transport and problems with artificial cross sections with large scattering ratios. These methods were compared and evaluated by considering material discontinuities and scattering anisotropy. Observed accelerations obtained are highly problem dependent, but speedup factors around 10 have been observed in typical applications.« less
76 FR 77549 - Colorado River Indian Tribes-Amendment to Health & Safety Code, Article 2. Liquor
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-13
... Health & Safety Code, Article 2. Liquor AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice. SUMMARY: This notice publishes the amendment to the Colorado River Tribal Health and Safety Code, Article... Code, Article 2, Liquor by Ordinance No. 10-03 on December 13, 2010. This notice is published in...
Code of Federal Regulations, 2013 CFR
2013-07-01
... ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Certification of State Laws or Local Building Codes § 36.601... means a State law or local building code or similar ordinance, or part thereof, that establishes... designee. Certification of equivalency means a final certification that a code meets or exceeds the minimum...
Code of Federal Regulations, 2012 CFR
2012-07-01
... ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Certification of State Laws or Local Building Codes § 36.601... means a State law or local building code or similar ordinance, or part thereof, that establishes... designee. Certification of equivalency means a final certification that a code meets or exceeds the minimum...
Code of Federal Regulations, 2014 CFR
2014-07-01
... ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Certification of State Laws or Local Building Codes § 36.601... means a State law or local building code or similar ordinance, or part thereof, that establishes... designee. Certification of equivalency means a final certification that a code meets or exceeds the minimum...
Design Analysis of SNS Target StationBiological Shielding Monoligh with Proton Power Uprate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bekar, Kursat B.; Ibrahim, Ahmad M.
2017-05-01
This report documents the analysis of the dose rate in the experiment area outside the Spallation Neutron Source (SNS) target station shielding monolith with proton beam energy of 1.3 GeV. The analysis implemented a coupled three dimensional (3D)/two dimensional (2D) approach that used both the Monte Carlo N-Particle Extended (MCNPX) 3D Monte Carlo code and the Discrete Ordinates Transport (DORT) two dimensional deterministic code. The analysis with proton beam energy of 1.3 GeV showed that the dose rate in continuously occupied areas on the lateral surface outside the SNS target station shielding monolith is less than 0.25 mrem/h, which compliesmore » with the SNS facility design objective. However, the methods and codes used in this analysis are out of date and unsupported, and the 2D approximation of the target shielding monolith does not accurately represent the geometry. We recommend that this analysis is updated with modern codes and libraries such as ADVANTG or SHIFT. These codes have demonstrated very high efficiency in performing full 3D radiation shielding analyses of similar and even more difficult problems.« less
Automated variance reduction for MCNP using deterministic methods.
Sweezy, J; Brown, F; Booth, T; Chiaramonte, J; Preeg, B
2005-01-01
In order to reduce the user's time and the computer time needed to solve deep penetration problems, an automated variance reduction capability has been developed for the MCNP Monte Carlo transport code. This new variance reduction capability developed for MCNP5 employs the PARTISN multigroup discrete ordinates code to generate mesh-based weight windows. The technique of using deterministic methods to generate importance maps has been widely used to increase the efficiency of deep penetration Monte Carlo calculations. The application of this method in MCNP uses the existing mesh-based weight window feature to translate the MCNP geometry into geometry suitable for PARTISN. The adjoint flux, which is calculated with PARTISN, is used to generate mesh-based weight windows for MCNP. Additionally, the MCNP source energy spectrum can be biased based on the adjoint energy spectrum at the source location. This method can also use angle-dependent weight windows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shemon, Emily R.; Smith, Micheal A.; Lee, Changho
2016-02-16
PROTEUS-SN is a three-dimensional, highly scalable, high-fidelity neutron transport code developed at Argonne National Laboratory. The code is applicable to all spectrum reactor transport calculations, particularly those in which a high degree of fidelity is needed either to represent spatial detail or to resolve solution gradients. PROTEUS-SN solves the second order formulation of the transport equation using the continuous Galerkin finite element method in space, the discrete ordinates approximation in angle, and the multigroup approximation in energy. PROTEUS-SN’s parallel methodology permits the efficient decomposition of the problem by both space and angle, permitting large problems to run efficiently on hundredsmore » of thousands of cores. PROTEUS-SN can also be used in serial or on smaller compute clusters (10’s to 100’s of cores) for smaller homogenized problems, although it is generally more computationally expensive than traditional homogenized methodology codes. PROTEUS-SN has been used to model partially homogenized systems, where regions of interest are represented explicitly and other regions are homogenized to reduce the problem size and required computational resources. PROTEUS-SN solves forward and adjoint eigenvalue problems and permits both neutron upscattering and downscattering. An adiabatic kinetics option has recently been included for performing simple time-dependent calculations in addition to standard steady state calculations. PROTEUS-SN handles void and reflective boundary conditions. Multigroup cross sections can be generated externally using the MC2-3 fast reactor multigroup cross section generation code or internally using the cross section application programming interface (API) which can treat the subgroup or resonance table libraries. PROTEUS-SN is written in Fortran 90 and also includes C preprocessor definitions. The code links against the PETSc, METIS, HDF5, and MPICH libraries. It optionally links against the MOAB library and is a part of the SHARP multi-physics suite for coupled multi-physics analysis of nuclear reactors. This user manual describes how to set up a neutron transport simulation with the PROTEUS-SN code. A companion methodology manual describes the theory and algorithms within PROTEUS-SN.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zardecki, A.
The effect of multiple scattering on the validity of the Beer-Lambert law is discussed for a wide range of particle-size parameters and optical depths. To predict the amount of received radiant power, appropriate correction terms are introduced. For particles larger than or comparable to the wavelength of radiation, the small-angle approximation is adequate; whereas for small densely packed particles, the diffusion theory is advantageously employed. These two approaches are used in the context of the problem of laser-beam propagation in a dense aerosol medium. In addition, preliminary results obtained by using a two-dimensional finite-element discrete-ordinates transport code are described. Multiple-scatteringmore » effects for laser propagation in fog, cloud, rain, and aerosol cloud are modeled.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richers, Sherwood; Nagakura, Hiroki; Ott, Christian D.
The mechanism driving core-collapse supernovae is sensitive to the interplay between matter and neutrino radiation. However, neutrino radiation transport is very difficult to simulate, and several radiation transport methods of varying levels of approximation are available. We carefully compare for the first time in multiple spatial dimensions the discrete ordinates (DO) code of Nagakura, Yamada, and Sumiyoshi and the Monte Carlo (MC) code Sedonu, under the assumptions of a static fluid background, flat spacetime, elastic scattering, and full special relativity. We find remarkably good agreement in all spectral, angular, and fluid interaction quantities, lending confidence to both methods. The DOmore » method excels in determining the heating and cooling rates in the optically thick region. The MC method predicts sharper angular features due to the effectively infinite angular resolution, but struggles to drive down noise in quantities where subtractive cancellation is prevalent, such as the net gain in the protoneutron star and off-diagonal components of the Eddington tensor. We also find that errors in the angular moments of the distribution functions induced by neglecting velocity dependence are subdominant to those from limited momentum-space resolution. We briefly compare directly computed second angular moments to those predicted by popular algebraic two-moment closures, and we find that the errors from the approximate closures are comparable to the difference between the DO and MC methods. Included in this work is an improved Sedonu code, which now implements a fully special relativistic, time-independent version of the grid-agnostic MC random walk approximation.« less
Richers, Sherwood; Nagakura, Hiroki; Ott, Christian D.; ...
2017-10-03
The mechanism driving core-collapse supernovae is sensitive to the interplay between matter and neutrino radiation. However, neutrino radiation transport is very difficult to simulate, and several radiation transport methods of varying levels of approximation are available. In this paper, we carefully compare for the first time in multiple spatial dimensions the discrete ordinates (DO) code of Nagakura, Yamada, and Sumiyoshi and the Monte Carlo (MC) code Sedonu, under the assumptions of a static fluid background, flat spacetime, elastic scattering, and full special relativity. We find remarkably good agreement in all spectral, angular, and fluid interaction quantities, lending confidence to bothmore » methods. The DO method excels in determining the heating and cooling rates in the optically thick region. The MC method predicts sharper angular features due to the effectively infinite angular resolution, but struggles to drive down noise in quantities where subtractive cancellation is prevalent, such as the net gain in the protoneutron star and off-diagonal components of the Eddington tensor. We also find that errors in the angular moments of the distribution functions induced by neglecting velocity dependence are subdominant to those from limited momentum-space resolution. We briefly compare directly computed second angular moments to those predicted by popular algebraic two-moment closures, and we find that the errors from the approximate closures are comparable to the difference between the DO and MC methods. Finally, included in this work is an improved Sedonu code, which now implements a fully special relativistic, time-independent version of the grid-agnostic MC random walk approximation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richers, Sherwood; Nagakura, Hiroki; Ott, Christian D.
The mechanism driving core-collapse supernovae is sensitive to the interplay between matter and neutrino radiation. However, neutrino radiation transport is very difficult to simulate, and several radiation transport methods of varying levels of approximation are available. In this paper, we carefully compare for the first time in multiple spatial dimensions the discrete ordinates (DO) code of Nagakura, Yamada, and Sumiyoshi and the Monte Carlo (MC) code Sedonu, under the assumptions of a static fluid background, flat spacetime, elastic scattering, and full special relativity. We find remarkably good agreement in all spectral, angular, and fluid interaction quantities, lending confidence to bothmore » methods. The DO method excels in determining the heating and cooling rates in the optically thick region. The MC method predicts sharper angular features due to the effectively infinite angular resolution, but struggles to drive down noise in quantities where subtractive cancellation is prevalent, such as the net gain in the protoneutron star and off-diagonal components of the Eddington tensor. We also find that errors in the angular moments of the distribution functions induced by neglecting velocity dependence are subdominant to those from limited momentum-space resolution. We briefly compare directly computed second angular moments to those predicted by popular algebraic two-moment closures, and we find that the errors from the approximate closures are comparable to the difference between the DO and MC methods. Finally, included in this work is an improved Sedonu code, which now implements a fully special relativistic, time-independent version of the grid-agnostic MC random walk approximation.« less
NASA Astrophysics Data System (ADS)
Richers, Sherwood; Nagakura, Hiroki; Ott, Christian D.; Dolence, Joshua; Sumiyoshi, Kohsuke; Yamada, Shoichi
2017-10-01
The mechanism driving core-collapse supernovae is sensitive to the interplay between matter and neutrino radiation. However, neutrino radiation transport is very difficult to simulate, and several radiation transport methods of varying levels of approximation are available. We carefully compare for the first time in multiple spatial dimensions the discrete ordinates (DO) code of Nagakura, Yamada, and Sumiyoshi and the Monte Carlo (MC) code Sedonu, under the assumptions of a static fluid background, flat spacetime, elastic scattering, and full special relativity. We find remarkably good agreement in all spectral, angular, and fluid interaction quantities, lending confidence to both methods. The DO method excels in determining the heating and cooling rates in the optically thick region. The MC method predicts sharper angular features due to the effectively infinite angular resolution, but struggles to drive down noise in quantities where subtractive cancellation is prevalent, such as the net gain in the protoneutron star and off-diagonal components of the Eddington tensor. We also find that errors in the angular moments of the distribution functions induced by neglecting velocity dependence are subdominant to those from limited momentum-space resolution. We briefly compare directly computed second angular moments to those predicted by popular algebraic two-moment closures, and we find that the errors from the approximate closures are comparable to the difference between the DO and MC methods. Included in this work is an improved Sedonu code, which now implements a fully special relativistic, time-independent version of the grid-agnostic MC random walk approximation.
Chan, Winnie Wai Lan; Wong, Terry Tin-Yau
2016-08-01
People map numbers onto space. The well-replicated SNARC (spatial-numerical association of response codes) effect indicates that people have a left-sided bias when responding to small numbers and a right-sided bias when responding to large numbers. This study examined whether such spatial codes were tagged to the ordinal or magnitude information of numbers among kindergarteners and whether it was related to early numerical abilities. Based on the traditional magnitude judgment task, we developed two variant tasks-namely the month judgment task and dot judgment task-to elicit ordinal and magnitude processing of numbers, respectively. Results showed that kindergarteners oriented small numbers toward the left side and large numbers toward the right side when processing the ordinal information of numbers in the month judgment task but not when processing the magnitude information in the number judgment task and dot judgment task, suggesting that the left-to-right spatial bias was probably tagged to the ordinal but not magnitude property of numbers. Moreover, the strength of the SNARC effect was not related to early numerical abilities. These findings have important implications for the early spatial representation of numbers and its role in numerical performance among kindergarteners. Copyright © 2016 Elsevier Inc. All rights reserved.
40 CFR 21.10 - Utilization of the statement.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Utilization of the statement. 21.10 Section 21.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL SMALL BUSINESS § 21.10... law, statute, ordinance, or code (including building, health, or zoning codes). (g) An amended...
College and University Speech Codes in the Aftermath of R.A.V v. City of St. Paul.
ERIC Educational Resources Information Center
Fraleigh, Douglas
In the case of RAV v. City of St. Paul, a teenager was charged with violating the city's Bias-Motivated Crime Ordinance after being accused of burning a cross inside the fenced yard of a black family. In a 9-0 decision, the Supreme Court struck down the St. Paul ordinance, a decision which raised a question as to whether many college and…
Co-ordinated action between youth-care and sports: facilitators and barriers.
Hermens, Niels; de Langen, Lisanne; Verkooijen, Kirsten T; Koelen, Maria A
2017-07-01
In the Netherlands, youth-care organisations and community sports clubs are collaborating to increase socially vulnerable youths' participation in sport. This is rooted in the idea that sports clubs are settings for youth development. As not much is known about co-ordinated action involving professional care organisations and community sports clubs, this study aims to generate insight into facilitators of and barriers to successful co-ordinated action between these two organisations. A cross-sectional study was conducted using in-depth semi-structured qualitative interview data. In total, 23 interviews were held at five locations where co-ordinated action between youth-care and sports takes place. Interviewees were youth-care workers, representatives from community sports clubs, and Care Sport Connectors who were assigned to encourage and manage the co-ordinated action. Using inductive coding procedures, this study shows that existing and good relationships, a boundary spanner, care workers' attitudes, knowledge and competences of the participants, organisational policies and ambitions, and some elements external to the co-ordinated action were reported to be facilitators or barriers. In addition, the participants reported that the different facilitators and barriers influenced the success of the co-ordinated action at different stages of the co-ordinated action. Future research is recommended to further explore the role of boundary spanners in co-ordinated action involving social care organisations and community sports clubs, and to identify what external elements (e.g. events, processes, national policies) are turning points in the formation, implementation and continuation of such co-ordinated action. © 2017 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haghighat, A.; Sjoden, G.E.; Wagner, J.C.
In the past 10 yr, the Penn State Transport Theory Group (PSTTG) has concentrated its efforts on developing accurate and efficient particle transport codes to address increasing needs for efficient and accurate simulation of nuclear systems. The PSTTG's efforts have primarily focused on shielding applications that are generally treated using multigroup, multidimensional, discrete ordinates (S{sub n}) deterministic and/or statistical Monte Carlo methods. The difficulty with the existing public codes is that they require significant (impractical) computation time for simulation of complex three-dimensional (3-D) problems. For the S{sub n} codes, the large memory requirements are handled through the use of scratchmore » files (i.e., read-from and write-to-disk) that significantly increases the necessary execution time. Further, the lack of flexible features and/or utilities for preparing input and processing output makes these codes difficult to use. The Monte Carlo method becomes impractical because variance reduction (VR) methods have to be used, and normally determination of the necessary parameters for the VR methods is very difficult and time consuming for a complex 3-D problem. For the deterministic method, the authors have developed the 3-D parallel PENTRAN (Parallel Environment Neutral-particle TRANsport) code system that, in addition to a parallel 3-D S{sub n} solver, includes pre- and postprocessing utilities. PENTRAN provides for full phase-space decomposition, memory partitioning, and parallel input/output to provide the capability of solving large problems in a relatively short time. Besides having a modular parallel structure, PENTRAN has several unique new formulations and features that are necessary for achieving high parallel performance. For the Monte Carlo method, the major difficulty currently facing most users is the selection of an effective VR method and its associated parameters. For complex problems, generally, this process is very time consuming and may be complicated due to the possibility of biasing the results. In an attempt to eliminate this problem, the authors have developed the A{sup 3}MCNP (automated adjoint accelerated MCNP) code that automatically prepares parameters for source and transport biasing within a weight-window VR approach based on the S{sub n} adjoint function. A{sup 3}MCNP prepares the necessary input files for performing multigroup, 3-D adjoint S{sub n} calculations using TORT.« less
Parallelization of PANDA discrete ordinates code using spatial decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humbert, P.
2006-07-01
We present the parallel method, based on spatial domain decomposition, implemented in the 2D and 3D versions of the discrete Ordinates code PANDA. The spatial mesh is orthogonal and the spatial domain decomposition is Cartesian. For 3D problems a 3D Cartesian domain topology is created and the parallel method is based on a domain diagonal plane ordered sweep algorithm. The parallel efficiency of the method is improved by directions and octants pipelining. The implementation of the algorithm is straightforward using MPI blocking point to point communications. The efficiency of the method is illustrated by an application to the 3D-Ext C5G7more » benchmark of the OECD/NEA. (authors)« less
49 CFR 392.2 - Applicable operating rules.
Code of Federal Regulations, 2011 CFR
2011-10-01
... care than that law, ordinance or regulation, the Federal Motor Carrier Safety Administration regulation... Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS DRIVING OF COMMERCIAL MOTOR...
49 CFR 392.2 - Applicable operating rules.
Code of Federal Regulations, 2010 CFR
2010-10-01
... care than that law, ordinance or regulation, the Federal Motor Carrier Safety Administration regulation... Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS DRIVING OF COMMERCIAL MOTOR...
3D-radiative transfer in terrestrial atmosphere: An efficient parallel numerical procedure
NASA Astrophysics Data System (ADS)
Bass, L. P.; Germogenova, T. A.; Nikolaeva, O. V.; Kokhanovsky, A. A.; Kuznetsov, V. S.
2003-04-01
Light propagation and scattering in terrestrial atmosphere is usually studied in the framework of the 1D radiative transfer theory [1]. However, in reality particles (e.g., ice crystals, solid and liquid aerosols, cloud droplets) are randomly distributed in 3D space. In particular, their concentrations vary both in vertical and horizontal directions. Therefore, 3D effects influence modern cloud and aerosol retrieval procedures, which are currently based on the 1D radiative transfer theory. It should be pointed out that the standard radiative transfer equation allows to study these more complex situations as well [2]. In recent year the parallel version of the 2D and 3D RADUGA code has been developed. This version is successfully used in gammas and neutrons transport problems [3]. Applications of this code to radiative transfer in atmosphere problems are contained in [4]. Possibilities of code RADUGA are presented in [5]. The RADUGA code system is an universal solver of radiative transfer problems for complicated models, including 2D and 3D aerosol and cloud fields with arbitrary scattering anisotropy, light absorption, inhomogeneous underlying surface and topography. Both delta type and distributed light sources can be accounted for in the framework of the algorithm developed. The accurate numerical procedure is based on the new discrete ordinate SWDD scheme [6]. The algorithm is specifically designed for parallel supercomputers. The version RADUGA 5.1(P) can run on MBC1000M [7] (768 processors with 10 Gb of hard disc memory for each processor). The peak productivity is equal 1 Tfl. Corresponding scalar version RADUGA 5.1 is working on PC. As a first example of application of the algorithm developed, we have studied the shadowing effects of clouds on neighboring cloudless atmosphere, depending on the cloud optical thickness, surface albedo, and illumination conditions. This is of importance for modern satellite aerosol retrieval algorithms development. [1] Sobolev, V. V., 1972: Light scattering in planetary atmosphere, M.:Nauka. [2] Evans, K. F., 1998: The spherical harmonic discrete ordinate method for three dimensional atmospheric radiative transfer, J. Atmos. Sci., 55, 429 446. [3] L.P. Bass, T.A. Germogenova, V.S. Kuznetsov, O.V. Nikolaeva. RADUGA 5.1 and RADUGA 5.1(P) codes for stationary transport equation solution in 2D and 3D geometries on one and multiprocessors computers. Report on seminar “Algorithms and Codes for neutron physical of nuclear reactor calculations” (Neutronica 2001), Obninsk, Russia, 30 October 2 November 2001. [4] T.A. Germogenova, L.P. Bass, V.S. Kuznetsov, O.V. Nikolaeva. Mathematical modeling on parallel computers solar and laser radiation transport in 3D atmosphere. Report on International Symposium CIS countries “Atmosphere radiation”, 18 21 June 2002, St. Peterburg, Russia, p. 15 16. [5] L.P. Bass, T.A. Germogenova, O.V. Nikolaeva, V.S. Kuznetsov. Radiative Transfer Universal 2D 3D Code RADUGA 5.1(P) for Multiprocessor Computer. Abstract. Poster report on this Meeting. [6] L.P. Bass, O.V. Nikolaeva. Correct calculation of Angular Flux Distribution in Strongly Heterogeneous Media and Voids. Proc. of Joint International Conference on Mathematical Methods and Supercomputing for Nuclear Applications, Saratoga Springs, New York, October 5 9, 1997, p. 995 1004. [7] http://www/jscc.ru
Multiprocessing MCNP on an IBM RS/6000 cluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKinney, G.W.; West, J.T.
1993-01-01
The advent of high-performance computer systems has brought to maturity programming concepts like vectorization, multiprocessing, and multitasking. While there are many schools of thought as to the most significant factor in obtaining order-of-magnitude increases in performance, such speedup can only be achieved by integrating the computer system and application code. Vectorization leads to faster manipulation of arrays by overlapping instruction CPU cycles. Discrete ordinates codes, which require the solving of large matrices, have proved to be major benefactors of vectorization. Monte Carlo transport, on the other hand, typically contains numerous logic statements and requires extensive redevelopment to benefit from vectorization.more » Multiprocessing and multitasking provide additional CPU cycles via multiple processors. Such systems are generally designed with either common memory access (multitasking) or distributed memory access. In both cases, theoretical speedup, as a function of the number of processors (P) and the fraction of task time that multiprocesses (f), can be formulated using Amdahl's Law S ((f,P) = 1 f + f/P). However, for most applications this theoretical limit cannot be achieved, due to additional terms not included in Amdahl's Law. Monte Carlo transport is a natural candidate for multiprocessing, since the particle tracks are generally independent and the precision of the result increases as the square root of the number of particles tracked.« less
Code of Federal Regulations, 2014 CFR
2014-01-01
... (available in any FmHA or its successor agency under Public Law 103-354 office). (e) Date of commencement of... accordance with any contract documents and applicable State or local codes and ordinances, and the FmHA or... development. (h) Development standards. Any of the following codes and standards: (1) A standard adopted by Fm...
Code of Federal Regulations, 2013 CFR
2013-01-01
... (available in any FmHA or its successor agency under Public Law 103-354 office). (e) Date of commencement of... accordance with any contract documents and applicable State or local codes and ordinances, and the FmHA or... development. (h) Development standards. Any of the following codes and standards: (1) A standard adopted by Fm...
Code of Federal Regulations, 2012 CFR
2012-01-01
... (available in any FmHA or its successor agency under Public Law 103-354 office). (e) Date of commencement of... accordance with any contract documents and applicable State or local codes and ordinances, and the FmHA or... development. (h) Development standards. Any of the following codes and standards: (1) A standard adopted by Fm...
Code of Federal Regulations, 2011 CFR
2011-01-01
... (available in any FmHA or its successor agency under Public Law 103-354 office). (e) Date of commencement of... accordance with any contract documents and applicable State or local codes and ordinances, and the FmHA or... development. (h) Development standards. Any of the following codes and standards: (1) A standard adopted by Fm...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-02
... Rights (or his or her designee) may certify that a State or local building code or similar ordinance that establishes accessibility requirements (Code) meets or exceeds the minimum requirements of the ADA for..., Policy and Planning Staff, Justice Management Division, Patrick Henry Building, Suite 1600, 601 D Street...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-18
... certify that a State or local building code or similar ordinance that establishes accessibility requirements (Code) meets or exceeds the minimum requirements of the ADA for accessibility and usability of... Management Division, Patrick Henry Building, Suite 1600, 601 D Street, NW., Washington, DC 20530. Dated: May...
Monte Carlo and discrete-ordinate simulations of spectral radiances in a coupled air-tissue system.
Hestenes, Kjersti; Nielsen, Kristian P; Zhao, Lu; Stamnes, Jakob J; Stamnes, Knut
2007-04-20
We perform a detailed comparison study of Monte Carlo (MC) simulations and discrete-ordinate radiative-transfer (DISORT) calculations of spectral radiances in a 1D coupled air-tissue (CAT) system consisting of horizontal plane-parallel layers. The MC and DISORT models have the same physical basis, including coupling between the air and the tissue, and we use the same air and tissue input parameters for both codes. We find excellent agreement between radiances obtained with the two codes, both above and in the tissue. Our tests cover typical optical properties of skin tissue at the 280, 540, and 650 nm wavelengths. The normalized volume scattering function for internal structures in the skin is represented by the one-parameter Henyey-Greenstein function for large particles and the Rayleigh scattering function for small particles. The CAT-DISORT code is found to be approximately 1000 times faster than the CAT-MC code. We also show that the spectral radiance field is strongly dependent on the inherent optical properties of the skin tissue.
NASA Astrophysics Data System (ADS)
Ofek, R.; Tsechanski, A.; Shani, G.
1988-05-01
In the present study a method used to normalize a collimated 14.7 MeV neutron beam is introduced. It combined a measurement of the fast neutron scalar flux passing through the collimator, using a copper foil activation, with a neutron transport calculation of the foil activation per unit source neutron, carried out by the discrete-ordinates transport code DOT 4.2. The geometry of the collimated neutron beam is composed of a D-T neutron source positioned 30 cm in front of a 6 cm diameter collimator, through a 120 cm thick paraffin wall. The neutron flux emitted from the D-T source was counted by an NE-213 scintillator, simultaneously with the irradiation of the copper foil. Thus, the determination of the normalization factor of the D-T source is used for an absolute flux calibration of the NE-213 scintillator. The major contributions to the uncertainty in the determination of the normalization factor, and their origins, are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vine, E.
1990-11-01
As part of Lawrence Berkeley Laboratory's (LBL) technical assistance to the Sustainable City Project, compliance and enforcement activities related to local and state building codes for existing and new construction were evaluated in two case studies. The analysis of the City of San Francisco's Residential Energy Conservation Ordinance (RECO) showed that a limited, prescriptive energy conservation ordinance for existing residential construction can be enforced relatively easily with little administrative costs, and that compliance with such ordinances can be quite high. Compliance with the code was facilitated by extensive publicity, an informed public concerned with the cost of energy and knowledgeablemore » about energy efficiency, the threat of punishment (Order of Abatement), the use of private inspectors, and training workshops for City and private inspectors. The analysis of California's Title 24 Standards for new residential and commercial construction showed that enforcement of this type of code for many climate zones is more complex and requires extensive administrative support for education and training of inspectors, architects, engineers, and builders. Under this code, prescriptive and performance approaches for compliance are permitted, resulting in the demand for alternative methods of enforcement: technical assistance, plan review, field inspection, and computer analysis. In contrast to existing construction, building design and new materials and construction practices are of critical importance in new construction, creating a need for extensive technical assistance and extensive interaction between enforcement personnel and the building community. Compliance problems associated with building design and installation did occur in both residential and nonresidential buildings. Because statewide codes are enforced by local officials, these problems may increase over time as energy standards change and become more complex and as other standards (eg, health and safety codes) remain a higher priority. The California Energy Commission realizes that code enforcement by itself is insufficient and expects that additional educational and technical assistance efforts (eg, manuals, training programs, and toll-free telephone lines) will ameliorate these problems.« less
Many organizations have developed model codes or rating systems that communities may use to develop green building programs or revise building ordinances. Some of the major options are listed on this page.
34 CFR 395.35 - Terms of permit.
Code of Federal Regulations, 2012 CFR
2012-07-01
... health, sanitation, and building codes or ordinances. (e) The permit shall further provide that... to the State licensing agency for normal cleaning, maintenance, and repair of the building structure...
34 CFR 395.35 - Terms of permit.
Code of Federal Regulations, 2014 CFR
2014-07-01
... health, sanitation, and building codes or ordinances. (e) The permit shall further provide that... to the State licensing agency for normal cleaning, maintenance, and repair of the building structure...
Arridge, S R; Dehghani, H; Schweiger, M; Okada, E
2000-01-01
We present a method for handling nonscattering regions within diffusing domains. The method develops from an iterative radiosity-diffusion approach using Green's functions that was computationally slow. Here we present an improved implementation using a finite element method (FEM) that is direct. The fundamental idea is to introduce extra equations into the standard diffusion FEM to represent nondiffusive light propagation across a nonscattering region. By appropriate mesh node ordering the computational time is not much greater than for diffusion alone. We compare results from this method with those from a discrete ordinate transport code, and with Monte Carlo calculations. The agreement is very good, and, in addition, our scheme allows us to easily model time-dependent and frequency domain problems.
Green Infrastructure Barriers and Opportunities in Dallas, Texas
This report will assist other municipalities with recognizing barriers and inconsistencies in municipal codes and ordinances which may be impeding the implementation of green infrastructure practices in their communities.
NASA Astrophysics Data System (ADS)
Christenson, J. G.; Austin, R. A.; Phillips, R. J.
2018-05-01
The phonon Boltzmann transport equation is used to analyze model problems in one and two spatial dimensions, under transient and steady-state conditions. New, explicit solutions are obtained by using the P1 and P3 approximations, based on expansions in spherical harmonics, and are compared with solutions from the discrete ordinates method. For steady-state energy transfer, it is shown that analytic expressions derived using the P1 and P3 approximations agree quantitatively with the discrete ordinates method, in some cases for large Knudsen numbers, and always for Knudsen numbers less than unity. However, for time-dependent energy transfer, the PN solutions differ qualitatively from converged solutions obtained by the discrete ordinates method. Although they correctly capture the wave-like behavior of energy transfer at short times, the P1 and P3 approximations rely on one or two wave velocities, respectively, yielding abrupt, step-changes in temperature profiles that are absent when the angular dependence of the phonon velocities is captured more completely. It is shown that, with the gray approximation, the P1 approximation is formally equivalent to the so-called "hyperbolic heat equation." Overall, these results support the use of the PN approximation to find solutions to the phonon Boltzmann transport equation for steady-state conditions. Such solutions can be useful in the design and analysis of devices that involve heat transfer at nanometer length scales, where continuum-scale approaches become inaccurate.
Three ancient hormonal cues co-ordinate shoot branching in a moss.
Coudert, Yoan; Palubicki, Wojtek; Ljung, Karin; Novak, Ondrej; Leyser, Ottoline; Harrison, C Jill
2015-03-25
Shoot branching is a primary contributor to plant architecture, evolving independently in flowering plant sporophytes and moss gametophytes. Mechanistic understanding of branching is largely limited to flowering plants such as Arabidopsis, which have a recent evolutionary origin. We show that in gametophytic shoots of Physcomitrella, lateral branches arise by re-specification of epidermal cells into branch initials. A simple model co-ordinating the activity of leafy shoot tips can account for branching patterns, and three known and ancient hormonal regulators of sporophytic branching interact to generate the branching pattern- auxin, cytokinin and strigolactone. The mode of auxin transport required in branch patterning is a key divergence point from known sporophytic pathways. Although PIN-mediated basipetal auxin transport regulates branching patterns in flowering plants, this is not so in Physcomitrella, where bi-directional transport is required to generate realistic branching patterns. Experiments with callose synthesis inhibitors suggest plasmodesmal connectivity as a potential mechanism for transport.
NASA Astrophysics Data System (ADS)
King, J. N.; Walsh, V.; Cunningham, K. J.; Evans, F. S.; Langevin, C. D.; Dausman, A.
2009-12-01
The Miami-Dade Water and Sewer Department (MDWASD) injects buoyant effluent from the North District Wastewater Treatment Plant (NDWWTP) through four Class I injection wells into the Boulder Zone---a saline (35 parts per thousand) and transmissive (105 to 106 square meters per day) hydrogeologic unit located approximately 1000 meters below land surface. Miami-Dade County is located in southeast Florida, U.S.A. Portions of the Floridan and Biscayne aquifers are located above the Boulder Zone. The Floridan and Biscayne aquifers---underground sources of drinking water---are protected by U.S. Federal Laws and Regulations, Florida Statutes, and Miami-Dade County ordinances. In 1998, MDWASD began to observe effluent constituents within the Floridan aquifer. Continuous-source and impulse-source analytical models for advective and diffusive transport of effluent are used in the present work to test contaminant flow-path hypotheses, suggest transport mechanisms, and estimate dispersivity. MDWASD collected data in the Floridan aquifer between 1996 and 2007. A parameter estimation code is used to optimize analytical model parameters by fitting model data to collected data. These simple models will be used to develop conceptual and numerical models of effluent transport at the NDWWTP, and in the vicinity of the NDWWTP.
Multiprocessing MCNP on an IBN RS/6000 cluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKinney, G.W.; West, J.T.
1993-01-01
The advent of high-performance computer systems has brought to maturity programming concepts like vectorization, multiprocessing, and multitasking. While there are many schools of thought as to the most significant factor in obtaining order-of-magnitude increases in performance, such speedup can only be achieved by integrating the computer system and application code. Vectorization leads to faster manipulation of arrays by overlapping instruction CPU cycles. Discrete ordinates codes, which require the solving of large matrices, have proved to be major benefactors of vectorization. Monte Carlo transport, on the other hand, typically contains numerous logic statements and requires extensive redevelopment to benefit from vectorization.more » Multiprocessing and multitasking provide additional CPU cycles via multiple processors. Such systems are generally designed with either common memory access (multitasking) or distributed memory access. In both cases, theoretical speedup, as a function of the number of processors P and the fraction f of task time that multiprocesses, can be formulated using Amdahl's law: S(f, P) =1/(1-f+f/P). However, for most applications, this theoretical limit cannot be achieved because of additional terms (e.g., multitasking overhead, memory overlap, etc.) that are not included in Amdahl's law. Monte Carlo transport is a natural candidate for multiprocessing because the particle tracks are generally independent, and the precision of the result increases as the square Foot of the number of particles tracked.« less
Multiprocessing MCNP on an IBM RS/6000 cluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKinney, G.W.; West, J.T.
1993-03-01
The advent of high-performance computer systems has brought to maturity programming concepts like vectorization, multiprocessing, and multitasking. While there are many schools of thought as to the most significant factor in obtaining order-of-magnitude increases in performance, such speedup can only be achieved by integrating the computer system and application code. Vectorization leads to faster manipulation of arrays by overlapping instruction CPU cycles. Discrete ordinates codes, which require the solving of large matrices, have proved to be major benefactors of vectorization. Monte Carlo transport, on the other hand, typically contains numerous logic statements and requires extensive redevelopment to benefit from vectorization.more » Multiprocessing and multitasking provide additional CPU cycles via multiple processors. Such systems are generally designed with either common memory access (multitasking) or distributed memory access. In both cases, theoretical speedup, as a function of the number of processors (P) and the fraction of task time that multiprocesses (f), can be formulated using Amdahl`s Law S ((f,P) = 1 f + f/P). However, for most applications this theoretical limit cannot be achieved, due to additional terms not included in Amdahl`s Law. Monte Carlo transport is a natural candidate for multiprocessing, since the particle tracks are generally independent and the precision of the result increases as the square root of the number of particles tracked.« less
APC: A New Code for Atmospheric Polarization Computations
NASA Technical Reports Server (NTRS)
Korkin, Sergey V.; Lyapustin, Alexei I.; Rozanov, Vladimir V.
2014-01-01
A new polarized radiative transfer code Atmospheric Polarization Computations (APC) is described. The code is based on separation of the diffuse light field into anisotropic and smooth (regular) parts. The anisotropic part is computed analytically. The smooth regular part is computed numerically using the discrete ordinates method. Vertical stratification of the atmosphere, common types of bidirectional surface reflection and scattering by spherical particles or spheroids are included. A particular consideration is given to computation of the bidirectional polarization distribution function (BPDF) of the waved ocean surface.
Mayo, Mariel Leah; Pitts, Stephanie B Jilcott; Chriqui, Jamie F
2013-12-05
Zoning ordinances and land-use plans may influence the community food environment by determining placement and access to food outlets, which subsequently support or hinder residents' attempts to eat healthfully. The objective of this study was to examine associations between healthful food zoning scores as derived from information on local zoning ordinances, county demographics, and residents' access to fruit and vegetable outlets in rural northeastern North Carolina. From November 2012 through March 2013, county and municipality zoning ordinances were identified and double-coded by using the Bridging the Gap food code/policy audit form. A healthful food zoning score was derived by assigning points for the allowed use of fruit and vegetable outlets. Pearson coefficients were calculated to examine correlations between the healthful food zoning score, county demographics, and the number of fruit and vegetable outlets. In March and April 2013, qualitative interviews were conducted among county and municipal staff members knowledgeable about local zoning and planning to ascertain implementation and enforcement of zoning to support fruit and vegetable outlets. We found a strong positive correlation between healthful food zoning scores and the number of fruit and vegetable outlets in 13 northeastern North Carolina counties (r = 0.66, P = .01). Major themes in implementation and enforcement of zoning to support fruit and vegetable outlets included strict enforcement versus lack of enforcement of zoning regulations. Increasing the range of permitted uses in zoning districts to include fruit and vegetable outlets may increase access to healthful fruit and vegetable outlets in rural communities.
Mayo, Mariel Leah; Chriqui, Jamie F.
2013-01-01
Introduction Zoning ordinances and land-use plans may influence the community food environment by determining placement and access to food outlets, which subsequently support or hinder residents’ attempts to eat healthfully. The objective of this study was to examine associations between healthful food zoning scores as derived from information on local zoning ordinances, county demographics, and residents’ access to fruit and vegetable outlets in rural northeastern North Carolina. Methods From November 2012 through March 2013, county and municipality zoning ordinances were identified and double-coded by using the Bridging the Gap food code/policy audit form. A healthful food zoning score was derived by assigning points for the allowed use of fruit and vegetable outlets. Pearson coefficients were calculated to examine correlations between the healthful food zoning score, county demographics, and the number of fruit and vegetable outlets. In March and April 2013, qualitative interviews were conducted among county and municipal staff members knowledgeable about local zoning and planning to ascertain implementation and enforcement of zoning to support fruit and vegetable outlets. Results We found a strong positive correlation between healthful food zoning scores and the number of fruit and vegetable outlets in 13 northeastern North Carolina counties (r = 0.66, P = .01). Major themes in implementation and enforcement of zoning to support fruit and vegetable outlets included strict enforcement versus lack of enforcement of zoning regulations. Conclusion Increasing the range of permitted uses in zoning districts to include fruit and vegetable outlets may increase access to healthful fruit and vegetable outlets in rural communities. PMID:24309091
NASA Technical Reports Server (NTRS)
Bogart, D. D.; Shook, D. F.; Fieno, D.
1973-01-01
Integral tests of evaluated ENDF/B high-energy cross sections have been made by comparing measured and calculated neutron leakage flux spectra from spheres of various materials. An Am-Be (alpha,n) source was used to provide fast neutrons at the center of the test spheres of Be, CH2, Pb, Nb, Mo, Ta, and W. The absolute leakage flux spectra were measured in the energy range 0.5 to 12 MeV using a calibrated NE213 liquid scintillator neutron spectrometer. Absolute calculations of the spectra were made using version 3 ENDF/B cross sections and an S sub n discrete ordinates multigroup transport code. Generally excellent agreement was obtained for Be, CH2, Pb, and Mo, and good agreement was observed for Nb although discrepancies were observed for some energy ranges. Poor comparative results, obtained for Ta and W, are attributed to unsatisfactory nonelastic cross sections. The experimental sphere leakage flux spectra are tabulated and serve as possible benchmarks for these elements against which reevaluated cross sections may be tested.
Antoine, Sophie; Ranzini, Mariagrazia; Gebuis, Titia; van Dijck, Jean-Philippe; Gevers, Wim
2017-10-01
A largely substantiated view in the domain of working memory is that the maintenance of serial order is achieved by generating associations of each item with an independent representation of its position, so-called position markers. Recent studies reported that the ordinal position of an item in verbal working memory interacts with spatial processing. This suggests that position markers might be spatial in nature. However, these interactions were so far observed in tasks implying a clear binary categorization of space (i.e., with left and right responses or targets). Such binary categorizations leave room for alternative interpretations, such as congruency between non-spatial categorical codes for ordinal position (e.g., begin and end) and spatial categorical codes for response (e.g., left and right). Here we discard this interpretation by providing evidence that this interaction can also be observed in a task that draws upon a continuous processing of space, the line bisection task. Specifically, bisections are modulated by ordinal position in verbal working memory, with lines bisected more towards the right after retrieving items from the end compared to the beginning of the memorized sequence. This supports the idea that position markers are intrinsically spatial in nature.
Hybrid discrete ordinates and characteristics method for solving the linear Boltzmann equation
NASA Astrophysics Data System (ADS)
Yi, Ce
With the ability of computer hardware and software increasing rapidly, deterministic methods to solve the linear Boltzmann equation (LBE) have attracted some attention for computational applications in both the nuclear engineering and medical physics fields. Among various deterministic methods, the discrete ordinates method (SN) and the method of characteristics (MOC) are two of the most widely used methods. The SN method is the traditional approach to solve the LBE for its stability and efficiency. While the MOC has some advantages in treating complicated geometries. However, in 3-D problems requiring a dense discretization grid in phase space (i.e., a large number of spatial meshes, directions, or energy groups), both methods could suffer from the need for large amounts of memory and computation time. In our study, we developed a new hybrid algorithm by combing the two methods into one code, TITAN. The hybrid approach is specifically designed for application to problems containing low scattering regions. A new serial 3-D time-independent transport code has been developed. Under the hybrid approach, the preferred method can be applied in different regions (blocks) within the same problem model. Since the characteristics method is numerically more efficient in low scattering media, the hybrid approach uses a block-oriented characteristics solver in low scattering regions, and a block-oriented SN solver in the remainder of the physical model. In the TITAN code, a physical problem model is divided into a number of coarse meshes (blocks) in Cartesian geometry. Either the characteristics solver or the SN solver can be chosen to solve the LBE within a coarse mesh. A coarse mesh can be filled with fine meshes or characteristic rays depending on the solver assigned to the coarse mesh. Furthermore, with its object-oriented programming paradigm and layered code structure, TITAN allows different individual spatial meshing schemes and angular quadrature sets for each coarse mesh. Two quadrature types (level-symmetric and Legendre-Chebyshev quadrature) along with the ordinate splitting techniques (rectangular splitting and PN-TN splitting) are implemented. In the S N solver, we apply a memory-efficient 'front-line' style paradigm to handle the fine mesh interface fluxes. In the characteristics solver, we have developed a novel 'backward' ray-tracing approach, in which a bi-linear interpolation procedure is used on the incoming boundaries of a coarse mesh. A CPU-efficient scattering kernel is shared in both solvers within the source iteration scheme. Angular and spatial projection techniques are developed to transfer the angular fluxes on the interfaces of coarse meshes with different discretization grids. The performance of the hybrid algorithm is tested in a number of benchmark problems in both nuclear engineering and medical physics fields. Among them are the Kobayashi benchmark problems and a computational tomography (CT) device model. We also developed an extra sweep procedure with the fictitious quadrature technique to calculate angular fluxes along directions of interest. The technique is applied in a single photon emission computed tomography (SPECT) phantom model to simulate the SPECT projection images. The accuracy and efficiency of the TITAN code are demonstrated in these benchmarks along with its scalability. A modified version of the characteristics solver is integrated in the PENTRAN code and tested within the parallel engine of PENTRAN. The limitations on the hybrid algorithm are also studied.
Three ancient hormonal cues co-ordinate shoot branching in a moss
Coudert, Yoan; Palubicki, Wojtek; Ljung, Karin; Novak, Ondrej; Leyser, Ottoline; Harrison, C Jill
2015-01-01
Shoot branching is a primary contributor to plant architecture, evolving independently in flowering plant sporophytes and moss gametophytes. Mechanistic understanding of branching is largely limited to flowering plants such as Arabidopsis, which have a recent evolutionary origin. We show that in gametophytic shoots of Physcomitrella, lateral branches arise by re-specification of epidermal cells into branch initials. A simple model co-ordinating the activity of leafy shoot tips can account for branching patterns, and three known and ancient hormonal regulators of sporophytic branching interact to generate the branching pattern- auxin, cytokinin and strigolactone. The mode of auxin transport required in branch patterning is a key divergence point from known sporophytic pathways. Although PIN-mediated basipetal auxin transport regulates branching patterns in flowering plants, this is not so in Physcomitrella, where bi-directional transport is required to generate realistic branching patterns. Experiments with callose synthesis inhibitors suggest plasmodesmal connectivity as a potential mechanism for transport. DOI: http://dx.doi.org/10.7554/eLife.06808.001 PMID:25806686
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hans D. Gougar
The Idaho National Laboratory’s deterministic neutronics analysis codes and methods were applied to the computation of the core multiplication factor of the HTR-Proteus pebble bed reactor critical facility. A combination of unit cell calculations (COMBINE-PEBDAN), 1-D discrete ordinates transport (SCAMP), and nodal diffusion calculations (PEBBED) were employed to yield keff and flux profiles. Preliminary results indicate that these tools, as currently configured and used, do not yield satisfactory estimates of keff. If control rods are not modeled, these methods can deliver much better agreement with experimental core eigenvalues which suggests that development efforts should focus on modeling control rod andmore » other absorber regions. Under some assumptions and in 1D subcore analyses, diffusion theory agrees well with transport. This suggests that developments in specific areas can produce a viable core simulation approach. Some corrections have been identified and can be further developed, specifically: treatment of the upper void region, treatment of inter-pebble streaming, and explicit (multiscale) transport modeling of TRISO fuel particles as a first step in cross section generation. Until corrections are made that yield better agreement with experiment, conclusions from core design and burnup analyses should be regarded as qualitative and not benchmark quality.« less
Orestes Kinetics Model for the Electra KrF Laser
NASA Astrophysics Data System (ADS)
Giuliani, J. L.; Kepple, P.; Lehmberg, R. H.; Myers, M. C.; Sethian, J. D.; Petrov, G.; Wolford, M.; Hegeler, F.
2003-10-01
Orestes is a first principles simulation code for the electron deposition, plasma chemistry, laser transport, and amplified spontaneous emission (ASE) in an e-beam pumped KrF laser. Orestes has been benchmarked against results from Nike at NRL and the Keio laser facility. The modeling tasks are to support ongoing oscillator experiments on the Electra laser ( 500 J), to predict performance of Electra as an amplifier, and to develop scaling relations for larger systems such as envisioned for an inertial fusion energy power plant. In Orestes the energy deposition of the primary beam electrons is assumed to be spatially uniform, but the excitation and ionization of the Ar/Kr/F2 target gas by the secondary electrons is determined from the energy distribution function as calculated by a Boltzmann code. The subsequent plasma kinetics of 23 species subject to over 100 reactions is followed with 1-D spatial resolution along the lasing axis. In addition, the vibrational relaxation among excited electronic states of the KrF molecule are included in the kinetics since lasing at 248 nm can occur from several vibrational lines of the B state. Transport of the lasing photons is solved by the method of characteristics. The time dependent ASE is calculated in 3-D using a ``local look-back'' scheme with discrete ordinates and includes specular reflection off the side walls and rear mirror. Gain narrowing is treated by multi-frequency transport of the ASE. Calculations for the gain, saturation intensity, extraction efficiency, and laser output from the Orestes model will be presented and compared with available data from Electra operated as an oscillator. Potential implications for the difference in optimal F2 concentration will be discussed along with the effects of window transmissivity at 248 nm.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-14
... alcoholic beverage business is seeking to be licensed. (e) No such license shall be transferred without the..., Chairman, Te-Moak Tribe of Western Shoshone ATTEST: /s/ Vera Johnny, Acting Recording Secretary Te-Moak...
A Kinetics Model for KrF Laser Amplifiers
NASA Astrophysics Data System (ADS)
Giuliani, J. L.; Kepple, P.; Lehmberg, R.; Obenschain, S. P.; Petrov, G.
1999-11-01
A computer kinetics code has been developed to model the temporal and spatial behavior of an e-beam pumped KrF laser amplifier. The deposition of the primary beam electrons is assumed to be spatially uniform and the energy distribution function of the nascent electron population is calculated to be near Maxwellian below 10 eV. For an initial Kr/Ar/F2 composition, the code calculates the densities of 24 species subject to over 100 reactions with 1-D spatial resolution (typically 16 zones) along the longitudinal lasing axis. Enthalpy accounting for each process is performed to partition the energy into internal, thermal, and radiative components. The electron as well as the heavy particle temperatures are followed for energy conservation and excitation rates. Transport of the lasing photons is performed along the axis on a dense subgrid using the method of characteristics. Amplified spontaneous emission is calculated using a discrete ordinates approach and includes contributions to the local intensity from the whole amplifier volume. Specular reflection off side walls and the rear mirror are included. Results of the model will be compared with data from the NRL NIKE laser and other published results.
NASA Technical Reports Server (NTRS)
Kato, S.; Smith, G. L.; Barker, H. W.
2001-01-01
An algorithm is developed for the gamma-weighted discrete ordinate two-stream approximation that computes profiles of domain-averaged shortwave irradiances for horizontally inhomogeneous cloudy atmospheres. The algorithm assumes that frequency distributions of cloud optical depth at unresolved scales can be represented by a gamma distribution though it neglects net horizontal transport of radiation. This algorithm is an alternative to the one used in earlier studies that adopted the adding method. At present, only overcast cloudy layers are permitted.
24 CFR 880.207 - Property standards.
Code of Federal Regulations, 2012 CFR
2012-04-01
... State and local laws, codes, ordinances and regulations. (g) Smoke detectors—(1) Performance requirement... smoke detector, in proper working condition, on each level of the unit. If the unit is occupied by hearing-impaired persons, smoke detectors must have an alarm system, designed for hearing-impaired persons...
24 CFR 880.207 - Property standards.
Code of Federal Regulations, 2010 CFR
2010-04-01
... State and local laws, codes, ordinances and regulations. (g) Smoke detectors—(1) Performance requirement... smoke detector, in proper working condition, on each level of the unit. If the unit is occupied by hearing-impaired persons, smoke detectors must have an alarm system, designed for hearing-impaired persons...
24 CFR 880.207 - Property standards.
Code of Federal Regulations, 2011 CFR
2011-04-01
... State and local laws, codes, ordinances and regulations. (g) Smoke detectors—(1) Performance requirement... smoke detector, in proper working condition, on each level of the unit. If the unit is occupied by hearing-impaired persons, smoke detectors must have an alarm system, designed for hearing-impaired persons...
24 CFR 880.207 - Property standards.
Code of Federal Regulations, 2014 CFR
2014-04-01
... State and local laws, codes, ordinances and regulations. (g) Smoke detectors—(1) Performance requirement... smoke detector, in proper working condition, on each level of the unit. If the unit is occupied by hearing-impaired persons, smoke detectors must have an alarm system, designed for hearing-impaired persons...
24 CFR 880.207 - Property standards.
Code of Federal Regulations, 2013 CFR
2013-04-01
... State and local laws, codes, ordinances and regulations. (g) Smoke detectors—(1) Performance requirement... smoke detector, in proper working condition, on each level of the unit. If the unit is occupied by hearing-impaired persons, smoke detectors must have an alarm system, designed for hearing-impaired persons...
Streamlining Traffic Mitigation Fees
DOT National Transportation Integrated Search
1999-01-01
The City of Lacey rewrote the ordinance governing collection of fees to mitigate : development impacts on the transportation system. Previously developers : submitted traffic generation and distribution reports prepared by qualified : traffic enginee...
44 CFR 206.118 - Disposal of housing units.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY DISASTER ASSISTANCE FEDERAL DISASTER ASSISTANCE Federal Assistance to..., has a site that complies with local codes and ordinances and part 9 of this Title. (ii) Adjustment to... providing temporary housing to disaster victims in major disasters and emergencies. As a condition of the...
Implicitly causality enforced solution of multidimensional transient photon transport equation.
Handapangoda, Chintha C; Premaratne, Malin
2009-12-21
A novel method for solving the multidimensional transient photon transport equation for laser pulse propagation in biological tissue is presented. A Laguerre expansion is used to represent the time dependency of the incident short pulse. Owing to the intrinsic causal nature of Laguerre functions, our technique automatically always preserve the causality constrains of the transient signal. This expansion of the radiance using a Laguerre basis transforms the transient photon transport equation to the steady state version. The resulting equations are solved using the discrete ordinates method, using a finite volume approach. Therefore, our method enables one to handle general anisotropic, inhomogeneous media using a single formulation but with an added degree of flexibility owing to the ability to invoke higher-order approximations of discrete ordinate quadrature sets. Therefore, compared with existing strategies, this method offers the advantage of representing the intensity with a high accuracy thus minimizing numerical dispersion and false propagation errors. The application of the method to one, two and three dimensional geometries is provided.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-05
... DEPARTMENT OF THE INTERIOR Bureau of Indian Affairs Swinomish Indian Tribal Community--Title 15.... ACTION: Notice. SUMMARY: This notice publishes Title 15, Chapter 4: Liquor Legalization, Regulation and... Indian Tribal Community Senate adopted Ordinance No. 296, Enacting Swinomish Tribal Code Title 15...
Discrete ordinates solutions of nongray radiative transfer with diffusely reflecting walls
NASA Technical Reports Server (NTRS)
Menart, J. A.; Lee, Haeok S.; Kim, Tae-Kuk
1993-01-01
Nongray gas radiation in a plane parallel slab bounded by gray, diffusely reflecting walls is studied using the discrete ordinates method. The spectral equation of transfer is averaged over a narrow wavenumber interval preserving the spectral correlation effect. The governing equations are derived by considering the history of multiple reflections between two reflecting wails. A closure approximation is applied so that only a finite number of reflections have to be explicitly included. The closure solutions express the physics of the problem to a very high degree and show relatively little error. Numerical solutions are obtained by applying a statistical narrow-band model for gas properties and a discrete ordinates code. The net radiative wail heat fluxes and the radiative source distributions are obtained for different temperature profiles. A zeroth-degree formulation, where no wall reflection is handled explicitly, is sufficient to predict the radiative transfer accurately for most cases considered, when compared with increasingly accurate solutions based on explicitly tracing a larger number of wail reflections without any closure approximation applied.
Combustion chamber analysis code
NASA Technical Reports Server (NTRS)
Przekwas, A. J.; Lai, Y. G.; Krishnan, A.; Avva, R. K.; Giridharan, M. G.
1993-01-01
A three-dimensional, time dependent, Favre averaged, finite volume Navier-Stokes code has been developed to model compressible and incompressible flows (with and without chemical reactions) in liquid rocket engines. The code has a non-staggered formulation with generalized body-fitted-coordinates (BFC) capability. Higher order differencing methodologies such as MUSCL and Osher-Chakravarthy schemes are available. Turbulent flows can be modeled using any of the five turbulent models present in the code. A two-phase, two-liquid, Lagrangian spray model has been incorporated into the code. Chemical equilibrium and finite rate reaction models are available to model chemically reacting flows. The discrete ordinate method is used to model effects of thermal radiation. The code has been validated extensively against benchmark experimental data and has been applied to model flows in several propulsion system components of the SSME and the STME.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favorite, Jeffrey A.
SENSMG is a tool for computing first-order sensitivities of neutron reaction rates, reaction-rate ratios, leakage, k eff, and α using the PARTISN multigroup discrete-ordinates code. SENSMG computes sensitivities to all of the transport cross sections and data (total, fission, nu, chi, and all scattering moments), two edit cross sections (absorption and capture), and the density for every isotope and energy group. It also computes sensitivities to the mass density for every material and derivatives with respect to all interface locations. The tool can be used for one-dimensional spherical (r) and two-dimensional cylindrical (r-z) geometries. The tool can be used formore » fixed-source and eigenvalue problems. The tool implements Generalized Perturbation Theory (GPT) as discussed by Williams and Stacey. Section II of this report describes the theory behind adjoint-based sensitivities, gives the equations that SENSMG solves, and defines the sensitivities that are output. Section III describes the user interface, including the input file and command line options. Section IV describes the output. Section V gives some notes about the coding that may be of interest. Section VI discusses verification, which is ongoing. Section VII lists needs and ideas for future work. Appendix A lists all of the input files whose results are presented in Sec. VI.« less
ERIC Educational Resources Information Center
Ruble, Lisa; McGrew, John H.; Toland, Michael D.
2012-01-01
Goal attainment scaling (GAS) holds promise as an idiographic approach for measuring outcomes of psychosocial interventions in community settings. GAS has been criticized for untested assumptions of scaling level (i.e., interval or ordinal), inter-individual equivalence and comparability, and reliability of coding across different behavioral…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-13
... beverages at certain restaurants within the community. DATES: Effective Date: This Code is effective as of... Initiative Vote of the People Regarding the Sale of Alcoholic Beverages at Certain Restaurants Within the... Premises, regardless of whether the sales of Alcoholic Beverages are made under a Restaurant License issued...
Project Fever - Fostering Electric Vehicle Expansion in the Rockies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swalnick, Natalia
2013-06-30
Project FEVER (Fostering Electric Vehicle Expansion in the Rockies) is a part of the Clean Cities Community Readiness and Planning for Plug-in Electric Vehicles and Charging Infrastructure Funding Opportunity funded by the U.S. Department of Energy (DOE) for the state of Colorado. Tasks undertaken in this project include: Electric Vehicle Grid Impact Assessment; Assessment of Electrical Permitting and Inspection for EV/EVSE (electric vehicle/electric vehicle supply equipment); Assessment of Local Ordinances Pertaining to Installation of Publicly Available EVSE;Assessment of Building Codes for EVSE; EV Demand and Energy/Air Quality Impacts Assessment; State and Local Policy Assessment; EV Grid Impact Minimization Efforts; Unificationmore » and Streamlining of Electrical Permitting and Inspection for EV/EVSE; Development of BMP for Local EVSE Ordinances; Development of BMP for Building Codes Pertaining to EVSE; Development of Colorado-Specific Assessment for EV/EVSE Energy/Air Quality Impacts; Development of State and Local Policy Best Practices; Create Final EV/EVSE Readiness Plan; Develop Project Marketing and Communications Elements; Plan and Schedule In-person Education and Outreach Opportunities.« less
Skyshine radiation from a pressurized water reactor containment dome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, W.H.
1986-06-01
The radiation dose rates resulting from airborne activities inside a postaccident pressurized water reactor containment are calculated by a discrete ordinates/Monte Carlo combined method. The calculated total dose rates and the skyshine component are presented as a function of distance from the containment at three different elevations for various gamma-ray source energies. The one-dimensional (ANISN code) is used to approximate the skyshine dose rates from the hemisphere dome, and the results are compared favorably to more rigorous results calculated by a three-dimensional Monte Carlo code.
Marsolais, Frédéric
2012-01-01
The lack of phaseolin and phytohaemagglutinin in common bean (dry bean, Phaseolus vulgaris) is associated with an increase in total cysteine and methionine concentrations by 70% and 10%, respectively, mainly at the expense of an abundant non-protein amino acid, S-methyl-cysteine. Transcripts were profiled between two genetically related lines differing for this trait at four stages of seed development using a high density microarray designed for common bean. Transcripts of multiple sulphur-rich proteins were elevated, several previously identified by proteomics, including legumin, basic 7S globulin, albumin-2, defensin, albumin-1, the Bowman–Birk type proteinase inhibitor, the double-headed trypsin inhibitor, and the Kunitz trypsin inhibitor. A co-ordinated regulation of transcripts coding for sulphate transporters, sulphate assimilatory enzymes, serine acetyltransferases, cystathionine β-lyase, homocysteine S-methyltransferase and methionine gamma-lyase was associated with changes in cysteine and methionine concentrations. Differential gene expression of sulphur-rich proteins preceded that of sulphur metabolic enzymes, suggesting a regulation by demand from the protein sink. Up-regulation of SERAT1;1 and -1;2 expression revealed an activation of cytosolic O-acetylserine biosynthesis. Down-regulation of SERAT2;1 suggested that cysteine and S-methyl-cysteine biosynthesis may be spatially separated in different subcellular compartments. Analysis of free amino acid profiles indicated that enhanced cysteine biosynthesis was correlated with a depletion of O-acetylserine. These results contribute to our understanding of the regulation of sulphur metabolism in developing seed in response to a change in the composition of endogenous proteins. PMID:23066144
Liao, Dengqun; Pajak, Agnieszka; Karcz, Steven R; Chapman, B Patrick; Sharpe, Andrew G; Austin, Ryan S; Datla, Raju; Dhaubhadel, Sangeeta; Marsolais, Frédéric
2012-10-01
The lack of phaseolin and phytohaemagglutinin in common bean (dry bean, Phaseolus vulgaris) is associated with an increase in total cysteine and methionine concentrations by 70% and 10%, respectively, mainly at the expense of an abundant non-protein amino acid, S-methyl-cysteine. Transcripts were profiled between two genetically related lines differing for this trait at four stages of seed development using a high density microarray designed for common bean. Transcripts of multiple sulphur-rich proteins were elevated, several previously identified by proteomics, including legumin, basic 7S globulin, albumin-2, defensin, albumin-1, the Bowman-Birk type proteinase inhibitor, the double-headed trypsin inhibitor, and the Kunitz trypsin inhibitor. A co-ordinated regulation of transcripts coding for sulphate transporters, sulphate assimilatory enzymes, serine acetyltransferases, cystathionine β-lyase, homocysteine S-methyltransferase and methionine gamma-lyase was associated with changes in cysteine and methionine concentrations. Differential gene expression of sulphur-rich proteins preceded that of sulphur metabolic enzymes, suggesting a regulation by demand from the protein sink. Up-regulation of SERAT1;1 and -1;2 expression revealed an activation of cytosolic O-acetylserine biosynthesis. Down-regulation of SERAT2;1 suggested that cysteine and S-methyl-cysteine biosynthesis may be spatially separated in different subcellular compartments. Analysis of free amino acid profiles indicated that enhanced cysteine biosynthesis was correlated with a depletion of O-acetylserine. These results contribute to our understanding of the regulation of sulphur metabolism in developing seed in response to a change in the composition of endogenous proteins.
Tencer, John; Carlberg, Kevin; Larsen, Marvin; ...
2017-06-17
Radiation heat transfer is an important phenomenon in many physical systems of practical interest. When participating media is important, the radiative transfer equation (RTE) must be solved for the radiative intensity as a function of location, time, direction, and wavelength. In many heat-transfer applications, a quasi-steady assumption is valid, thereby removing time dependence. The dependence on wavelength is often treated through a weighted sum of gray gases (WSGG) approach. The discrete ordinates method (DOM) is one of the most common methods for approximating the angular (i.e., directional) dependence. The DOM exactly solves for the radiative intensity for a finite numbermore » of discrete ordinate directions and computes approximations to integrals over the angular space using a quadrature rule; the chosen ordinate directions correspond to the nodes of this quadrature rule. This paper applies a projection-based model-reduction approach to make high-order quadrature computationally feasible for the DOM for purely absorbing applications. First, the proposed approach constructs a reduced basis from (high-fidelity) solutions of the radiative intensity computed at a relatively small number of ordinate directions. Then, the method computes inexpensive approximations of the radiative intensity at the (remaining) quadrature points of a high-order quadrature using a reduced-order model constructed from the reduced basis. Finally, this results in a much more accurate solution than might have been achieved using only the ordinate directions used to compute the reduced basis. One- and three-dimensional test problems highlight the efficiency of the proposed method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tencer, John; Carlberg, Kevin; Larsen, Marvin
Radiation heat transfer is an important phenomenon in many physical systems of practical interest. When participating media is important, the radiative transfer equation (RTE) must be solved for the radiative intensity as a function of location, time, direction, and wavelength. In many heat-transfer applications, a quasi-steady assumption is valid, thereby removing time dependence. The dependence on wavelength is often treated through a weighted sum of gray gases (WSGG) approach. The discrete ordinates method (DOM) is one of the most common methods for approximating the angular (i.e., directional) dependence. The DOM exactly solves for the radiative intensity for a finite numbermore » of discrete ordinate directions and computes approximations to integrals over the angular space using a quadrature rule; the chosen ordinate directions correspond to the nodes of this quadrature rule. This paper applies a projection-based model-reduction approach to make high-order quadrature computationally feasible for the DOM for purely absorbing applications. First, the proposed approach constructs a reduced basis from (high-fidelity) solutions of the radiative intensity computed at a relatively small number of ordinate directions. Then, the method computes inexpensive approximations of the radiative intensity at the (remaining) quadrature points of a high-order quadrature using a reduced-order model constructed from the reduced basis. Finally, this results in a much more accurate solution than might have been achieved using only the ordinate directions used to compute the reduced basis. One- and three-dimensional test problems highlight the efficiency of the proposed method.« less
Hackbarth, D P; Schnopp-Wyatt, D; Katz, D; Williams, J; Silvestri, B; Pfleger, M
2001-01-01
Community activists in Chicago believed their neighborhoods were being targeted by alcohol and tobacco outdoor advertisers, despite the Outdoor Advertising Association of America's voluntary code of principles, which claims to restrict the placement of ads for age-restricted products and prevent billboard saturation of urban neighborhoods. A research and action plan resulted from a 10-year collaborative partnership among Loyola University Chicago, the American Lung Association of Metropolitan Chicago (ALAMC), and community activists from a predominately African American church, St. Sabina Parish. In 1997 Loyola University and ALAMC researchers conducted a cross-sectional prevalence survey of alcohol and tobacco outdoor advertising. Computer mapping was used to locate all 4,247 licensed billboards in Chicago that were within 500- and 1,000-foot radiuses of schools, parks, and playlots. A 50% sample of billboards was visually surveyed and coded for advertising content. The percentage of alcohol and tobacco billboards within the 500- and 1,000-foot zones ranged from 0% to 54%. African American and Hispanic neighborhoods were disproportionately targeted for outdoor advertising of alcohol and tobacco. Data were used to convince the Chicago City Council to pass one of the nation's toughest anti-alcohol and tobacco billboard ordinances, based on zoning rather than advertising content. The ordinance was challenged in court by advertisers. Recent Supreme Court rulings made enactment of local billboard ordinances problematic. Nevertheless, the research, which resulted in specific legislative action, demonstrated the importance of linkages among academic, practice, and grassroots community groups in working together to diminish one of the social causes of health disparities.
Proximity Analysis and the Structure of Organization in Free Recall.
ERIC Educational Resources Information Center
Friendly, Michael L.
A method for assessing the structure of organization was developed on the basis of the ordinal separation, or proximity, between pairs ot items in recall protocols over a series of trials. The proximity measure is based on the assumption, common to all indices of organization, that items which are coded together in subjective memory units will…
Investigation of Chemically Vapor Deposited Tantalum for Medium Caliber Gun Barrel Protection
2008-10-01
electrodeposition ) by December 31, 2006. As a result of this ordinance, several efforts were initiated to investigate the use of environmentally...catalyzed reactions (i.e., heterogeneous as compared to homogeneous where the reactions nucleate in the gas phase). The occurrence of a chemical reaction...Precursor Desorption of Volatile Surface Reaction Products Adsorption of Film Precursor Nucleation and Growth Transport Transport Figure 2. Schematic
S4 solution of the transport equation for eigenvalues using Legendre polynomials
NASA Astrophysics Data System (ADS)
Öztürk, Hakan; Bülbül, Ahmet
2017-09-01
Numerical solution of the transport equation for monoenergetic neutrons scattered isotropically through the medium of a finite homogeneous slab is studied for the determination of the eigenvalues. After obtaining the discrete ordinates form of the transport equation, separated homogeneous and particular solutions are formed and then the eigenvalues are calculated using the Gauss-Legendre quadrature set. Then, the calculated eigenvalues for various values of the c0, the mean number of secondary neutrons per collision, are given in the tables.
Radiative transfer code SHARM for atmospheric and terrestrial applications
NASA Astrophysics Data System (ADS)
Lyapustin, A. I.
2005-12-01
An overview of the publicly available radiative transfer Spherical Harmonics code (SHARM) is presented. SHARM is a rigorous code, as accurate as the Discrete Ordinate Radiative Transfer (DISORT) code, yet faster. It performs simultaneous calculations for different solar zenith angles, view zenith angles, and view azimuths and allows the user to make multiwavelength calculations in one run. The Δ-M method is implemented for calculations with highly anisotropic phase functions. Rayleigh scattering is automatically included as a function of wavelength, surface elevation, and the selected vertical profile of one of the standard atmospheric models. The current version of the SHARM code does not explicitly include atmospheric gaseous absorption, which should be provided by the user. The SHARM code has several built-in models of the bidirectional reflectance of land and wind-ruffled water surfaces that are most widely used in research and satellite data processing. A modification of the SHARM code with the built-in Mie algorithm designed for calculations with spherical aerosols is also described.
Radiative transfer code SHARM for atmospheric and terrestrial applications.
Lyapustin, A I
2005-12-20
An overview of the publicly available radiative transfer Spherical Harmonics code (SHARM) is presented. SHARM is a rigorous code, as accurate as the Discrete Ordinate Radiative Transfer (DISORT) code, yet faster. It performs simultaneous calculations for different solar zenith angles, view zenith angles, and view azimuths and allows the user to make multiwavelength calculations in one run. The Delta-M method is implemented for calculations with highly anisotropic phase functions. Rayleigh scattering is automatically included as a function of wavelength, surface elevation, and the selected vertical profile of one of the standard atmospheric models. The current version of the SHARM code does not explicitly include atmospheric gaseous absorption, which should be provided by the user. The SHARM code has several built-in models of the bidirectional reflectance of land and wind-ruffled water surfaces that are most widely used in research and satellite data processing. A modification of the SHARM code with the built-in Mie algorithm designed for calculations with spherical aerosols is also described.
Numerical Modeling of Physical Vapor Transport in Contactless Crystal Growth Geometry
NASA Technical Reports Server (NTRS)
Palosz, W.; Lowry, S.; Krishnam, A.; Przekwas, A.; Grasza, K.
1998-01-01
Growth from the vapor under conditions of limited contact with the walls of the growth ampoule is beneficial for the quality of the growing crystal due to reduced stress and contamination which may be caused by interactions with the growth container. The technique may be of a particular interest for studies on crystal growth under microgravity conditions: elimination of some factors affecting the crystal quality may make interpretation of space-conducted processes more conclusive and meaningful. For that reason, and as a part of our continuing studies on 'contactless' growth technique, we have developed a computational model of crystal growth process in such system. The theoretical model was built, and simulations were performed using the commercial computational fluid dynamics code, (CFD) ACE. The code uses an implicit finite volume formulation with a gray discrete ordinate method radiation model which accounts for the diffuse absorption and reflection of radiation throughout the furnace. The three-dimensional model computes the heat transfer through the crystal, quartz, and gas both inside and outside the ampoule, and mass transport from the source to the crystal and the sink. The heat transport mechanisms by conduction, natural convection, and radiation, and mass transport by diffusion and convection are modeled simultaneously and include the heat of the phase transition at the solid-vapor interfaces. As the thermal boundary condition, temperature profile along the walls of the furnace is used. For different thermal profiles and furnace and ampoule dimensions, the crystal growth rate and development of the crystal-vapor and source-vapor interfaces (change of the interface shape and location with time) are obtained. Super/under-saturation in the ampoule is determined and critical factors determining the 'contactless' growth conditions are identified and discussed. The relative importance of the ampoule dimensions and geometry, the furnace dimensions and its temperature, and the properties of the grown material are analyzed. The results of the simulations are compared with related experimental results on growth of CdTe, CdZnTe, ZnTe, PbTe, and PbSnTe crystals by this technique.
Multivesicular bodies: co-ordinated progression to maturity
Woodman, Philip G; Futter, Clare E
2008-01-01
Multivesicular endosomes/bodies (MVBs) sort endocytosed proteins to different destinations. Many lysosomally directed membrane proteins are sorted onto intralumenal vesicles, whilst recycling proteins remain on the perimeter membrane from where they are removed via tubular extensions. MVBs move to the cell centre during this maturation process and, when all recycling proteins have been removed, fuse with lysosomes. Recent advances have identified endosomal-sorting complex required for transport (ESCRT)-dependent and ESCRT-independent pathways in intralumenal vesicle formation and mechanisms for sorting recycling cargo into tubules. Cytoskeletal motors, through interactions with these machineries and by regulating MVB movement, help to co-ordinate events leading to a mature, fusion-competent MVB. PMID:18502633
Multitasking TORT under UNICOS: Parallel performance models and measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnett, A.; Azmy, Y.Y.
1999-09-27
The existing parallel algorithms in the TORT discrete ordinates code were updated to function in a UNICOS environment. A performance model for the parallel overhead was derived for the existing algorithms. The largest contributors to the parallel overhead were identified and a new algorithm was developed. A parallel overhead model was also derived for the new algorithm. The results of the comparison of parallel performance models were compared to applications of the code to two TORT standard test problems and a large production problem. The parallel performance models agree well with the measured parallel overhead.
Community-level policy responses to state marijuana legalization in Washington State.
Dilley, Julia A; Hitchcock, Laura; McGroder, Nancy; Greto, Lindsey A; Richardson, Susan M
2017-04-01
Washington State (WA) legalized a recreational marijuana market - including growing, processing and retail sales - through voter initiative 502 in November 2012. Legalized recreational marijuana retail sales began in July 2014. In response to state legalization of recreational marijuana, some cities and counties within the state have passed local ordinances that either further regulated marijuana markets, or banned them completely. The purpose of this study is to describe local-level marijuana regulations on recreational retail sales within the context of a state that had legalized a recreational marijuana market. Marijuana-related ordinances were collected from all 142 cities in the state with more than 3000 residents and from all 39 counties. Policies that were in place as of June 30, 2016 - two years after the state's recreational market opening - to regulate recreational marijuana retail sales within communities were systematically coded. A total of 125 cities and 30 counties had passed local ordinances to address recreational marijuana retail sales. Multiple communities implemented retail market bans, including some temporary bans (moratoria) while studying whether to pursue other policy options. As of June 30, 2016, 30% of the state population lived in places that had temporarily or permanently banned retail sales. Communities most frequently enacted zoning policies explicitly regulating where marijuana businesses could be established. Other policies included in ordinances placed limits on business hours and distance requirements (buffers) between marijuana businesses and youth-related land use types or other sensitive areas. State legalization does not necessarily result in uniform community environments that regulate recreational marijuana markets. Local ordinances vary among communities within Washington following statewide legalization. Further study is needed to describe how such local policies affect variation in public health and social outcomes. Copyright © 2017 Elsevier B.V. All rights reserved.
Community-level policy responses to state marijuana legalization in Washington State
Dilley, Julia A.; Hitchcock, Laura; McGroder, Nancy; Greto, Lindsey A.; Richardson, Susan M.
2017-01-01
Background Washington State (WA) legalized a recreational marijuana market -- including growing, processing and retail sales -- through voter initiative 502 in November 2012. Legalized recreational marijuana retail sales began in July 2014. In response to state legalization of recreational marijuana, some cities and counties within the state have passed local ordinances that either further regulated marijuana markets, or banned them completely. The purpose of this study is to describe local-level marijuana regulations on recreational retail sales within the context of a state that had legalized a recreational marijuana market. Methods Marijuana-related ordinances were collected from all 142 cities in the state with more than 3,000 residents and from all 39 counties. Policies that were in place as of June 30, 2016 - two years after the state’s recreational market opening - to regulate recreational marijuana retail sales within communities were systematically coded. Results A total of 125 cities and 30 counties had passed local ordinances to address recreational marijuana retail sales. Multiple communities implemented retail market bans, including some temporary bans (moratoria) while studying whether to pursue other policy options. As of June 30, 2016, 30% of the state population lived in places that had temporarily or permanently banned retail sales. Communities most frequently enacted zoning policies explicitly regulating where marijuana businesses could be established. Other policies included in ordinances placed limits on business hours and distance requirements (buffers) between marijuana businesses and youth-related land use types or other sensitive areas. Conclusions State legalization does not necessarily result in uniform community environments that regulate recreational marijuana markets. Local ordinances vary among communities within Washington following statewide legalization. Further study is needed to describe how such local policies affect variation in public health and social outcomes. PMID:28365192
Automated Weight-Window Generation for Threat Detection Applications Using ADVANTG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosher, Scott W; Miller, Thomas Martin; Evans, Thomas M
2009-01-01
Deterministic transport codes have been used for some time to generate weight-window parameters that can improve the efficiency of Monte Carlo simulations. As the use of this hybrid computational technique is becoming more widespread, the scope of applications in which it is being applied is expanding. An active source of new applications is the field of homeland security--particularly the detection of nuclear material threats. For these problems, automated hybrid methods offer an efficient alternative to trial-and-error variance reduction techniques (e.g., geometry splitting or the stochastic weight window generator). The ADVANTG code has been developed to automate the generation of weight-windowmore » parameters for MCNP using the Consistent Adjoint Driven Importance Sampling method and employs the TORT or Denovo 3-D discrete ordinates codes to generate importance maps. In this paper, we describe the application of ADVANTG to a set of threat-detection simulations. We present numerical results for an 'active-interrogation' problem in which a standard cargo container is irradiated by a deuterium-tritium fusion neutron generator. We also present results for two passive detection problems in which a cargo container holding a shielded neutron or gamma source is placed near a portal monitor. For the passive detection problems, ADVANTG obtains an O(10{sup 4}) speedup and, for a detailed gamma spectrum tally, an average O(10{sup 2}) speedup relative to implicit-capture-only simulations, including the deterministic calculation time. For the active-interrogation problem, an O(10{sup 4}) speedup is obtained when compared to a simulation with angular source biasing and crude geometry splitting.« less
Song, Tingting; Wittkowski, Knut M.
2010-01-01
Ordinal measures are frequently encountered in travel behavior research. This paper presents a new method for combining them when a hierarchical structure of the data can be presumed. This method is applied to study the subjective assessment of the amount of travel by different transportation modes among a group of French clerical workers, along with the desire to increase or decrease the use of such modes. Some advantages of this approach over traditional data reduction technique such as factor analysis when applied to ordinal data are then illustrated. In this study, combining evidence from several variables sheds light on the observed moderately negative relationship between the personal assessment of the amount of travel and the desire to increase or decrease it, thus integrating previous partial (univariate) results. We find a latent demand for travel, thus contributing to clarify the behavioral mechanisms behind the induced traffic phenomenon. Categorizing the above relationship by transportation mode shows a desire for a less environmental-friendly mix of modes (i.e. a greater desire to use heavy motorized modes and a lower desire to use two-wheeled modes), whenever the respondents do not feel to travel extensively. This result, combined with previous theoretical investigations concerning the determinants of the desire to alter trips consumption levels, shows the importance of making people aware of how much they travel. PMID:20953273
AMPX: a modular code system for generating coupled multigroup neutron-gamma libraries from ENDF/B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, N.M.; Lucius, J.L.; Petrie, L.M.
1976-03-01
AMPX is a modular system for producing coupled multigroup neutron-gamma cross section sets. Basic neutron and gamma cross-section data for AMPX are obtained from ENDF/B libraries. Most commonly used operations required to generate and collapse multigroup cross-section sets are provided in the system. AMPX is flexibly dimensioned; neutron group structures, and gamma group structures, and expansion orders to represent anisotropic processes are all arbitrary and limited only by available computer core and budget. The basic processes provided will (1) generate multigroup neutron cross sections; (2) generate multigroup gamma cross sections; (3) generate gamma yields for gamma-producing neutron interactions; (4) combinemore » neutron cross sections, gamma cross sections, and gamma yields into final ''coupled sets''; (5) perform one-dimensional discrete ordinates transport or diffusion theory calculations for neutrons and gammas and, on option, collapse the cross sections to a broad-group structure, using the one-dimensional results as weighting functions; (6) plot cross sections, on option, to facilitate the ''evaluation'' of a particular multigroup set of data; (7) update and maintain multigroup cross section libraries in such a manner as to make it not only easy to combine new data with previously processed data but also to do it in a single pass on the computer; and (8) output multigroup cross sections in convenient formats for other codes. (auth)« less
Comparison of alternate scoring of variables on the performance of the frailty index
2014-01-01
Background The frailty index (FI) is used to measure the health status of ageing individuals. An FI is constructed as the proportion of deficits present in an individual out of the total number of age-related health variables considered. The purpose of this study was to systematically assess whether dichotomizing deficits included in an FI affects the information value of the whole index. Methods Secondary analysis of three population-based longitudinal studies of community dwelling individuals: Nova Scotia Health Survey (NSHS, n = 3227 aged 18+), Survey of Health, Ageing and Retirement in Europe (SHARE, n = 37546 aged 50+), and Yale Precipitating Events Project (Yale-PEP, n = 754 aged 70+). For each dataset, we constructed two FIs from baseline data using the deficit accumulation approach. In each dataset, both FIs included the same variables (23 in NSHS, 70 in SHARE, 33 in Yale-PEP). One FI was constructed with only dichotomous values (marking presence or absence of a deficit); in the other FI, as many variables as possible were coded as ordinal (graded severity of a deficit). Participants in each study were followed for different durations (NSHS: 10 years, SHARE: 5 years, Yale PEP: 12 years). Results Within each dataset, the difference in mean scores between the ordinal and dichotomous-only FIs ranged from 0 to 1.5 deficits. Their ability to predict mortality was identical; their absolute difference in area under the ROC curve ranged from 0.00 to 0.02, and their absolute difference between Cox Hazard Ratios ranged from 0.001 to 0.009. Conclusions Analyses from three diverse datasets suggest that variables included in an FI can be coded either as dichotomous or ordinal, with negligible impact on the performance of the index in predicting mortality. PMID:24559204
Application of the first collision source method to CSNS target station shielding calculation
NASA Astrophysics Data System (ADS)
Zheng, Ying; Zhang, Bin; Chen, Meng-Teng; Zhang, Liang; Cao, Bo; Chen, Yi-Xue; Yin, Wen; Liang, Tian-Jiao
2016-04-01
Ray effects are an inherent problem of the discrete ordinates method. RAY3D, a functional module of ARES, which is a discrete ordinates code system, employs a semi-analytic first collision source method to mitigate ray effects. This method decomposes the flux into uncollided and collided components, and then calculates them with an analytical method and discrete ordinates method respectively. In this article, RAY3D is validated by the Kobayashi benchmarks and applied to the neutron beamline shielding problem of China Spallation Neutron Source (CSNS) target station. The numerical results of the Kobayashi benchmarks indicate that the solutions of DONTRAN3D with RAY3D agree well with the Monte Carlo solutions. The dose rate at the end of the neutron beamline is less than 10.83 μSv/h in the CSNS target station neutron beamline shutter model. RAY3D can effectively mitigate the ray effects and obtain relatively reasonable results. Supported by Major National S&T Specific Program of Large Advanced Pressurized Water Reactor Nuclear Power Plant (2011ZX06004-007), National Natural Science Foundation of China (11505059, 11575061), and the Fundamental Research Funds for the Central Universities (13QN34).
Analytic approach to photoelectron transport.
NASA Technical Reports Server (NTRS)
Stolarski, R. S.
1972-01-01
The equation governing the transport of photoelectrons in the ionosphere is shown to be equivalent to the equation of radiative transfer. In the single-energy approximation this equation is solved in closed form by the method of discrete ordinates for isotropic scattering and for a single-constituent atmosphere. The results include prediction of the angular distribution of photoelectrons at all altitudes and, in particular, the angular distribution of the escape flux. The implications of these solutions in real atmosphere calculations are discussed.
Research on Evaluation of resource allocation efficiency of transportation system based on DEA
NASA Astrophysics Data System (ADS)
Zhang, Zhehui; Du, Linan
2017-06-01
In this paper, we select the time series data onto 1985-2015 years, construct the land (shoreline) resources, capital and labor as inputs. The index system of the output is freight volume and passenger volume, we use Quantitative analysis based on DEA method evaluated the resource allocation efficiency of railway, highway, water transport and civil aviation in China. Research shows that the resource allocation efficiency of various modes of transport has obvious difference, and the impact on scale efficiency is more significant. The most important two ways to optimize the allocation of resources to improve the efficiency of the combination of various modes of transport is promoting the co-ordination of various modes of transport and constructing integrated transportation system.
Insights into the post-transcriptional regulation of the mitochondrial electron transport chain.
Sirey, Tamara M; Ponting, Chris P
2016-10-15
The regulation of the mitochondrial electron transport chain is central to the control of cellular homeostasis. There are significant gaps in our understanding of how the expression of the mitochondrial and nuclear genome-encoded components of the electron transport chain are co-ordinated, and how the assembly of the protein complexes that constitute the electron transport chain are regulated. Furthermore, the role post-transcriptional gene regulation may play in modulating these processes needs to be clarified. This review summarizes the current knowledge regarding the post-transcriptional gene regulation of the electron transport chain and highlights how noncoding RNAs may contribute significantly both to complex electron transport chain regulatory networks and to mitochondrial dysfunction. © 2016 The Author(s).
Description of Transport Codes for Space Radiation Shielding
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Wilson, John W.; Cucinotta, Francis A.
2011-01-01
This slide presentation describes transport codes and their use for studying and designing space radiation shielding. When combined with risk projection models radiation transport codes serve as the main tool for study radiation and designing shielding. There are three criteria for assessing the accuracy of transport codes: (1) Ground-based studies with defined beams and material layouts, (2) Inter-comparison of transport code results for matched boundary conditions and (3) Comparisons to flight measurements. These three criteria have a very high degree with NASA's HZETRN/QMSFRG.
2002-07-01
Date Kirk A. Mathews (Advisor) James T. Moore (Dean’s Representative) Charles J. Bridgman (Member...Adler-Adler, and Kalbach -Mann representations of the scatter cross sections that are used for some isotopes in ENDF/B-VI are not included. They are not
Matías, J M; Taboada, J; Ordóñez, C; Nieto, P G
2007-08-17
This article describes a methodology to model the degree of remedial action required to make short stretches of a roadway suitable for dangerous goods transport (DGT), particularly pollutant substances, using different variables associated with the characteristics of each segment. Thirty-one factors determining the impact of an accident on a particular stretch of road were identified and subdivided into two major groups: accident probability factors and accident severity factors. Given the number of factors determining the state of a particular road segment, the only viable statistical methods for implementing the model were machine learning techniques, such as multilayer perceptron networks (MLPs), classification trees (CARTs) and support vector machines (SVMs). The results produced by these techniques on a test sample were more favourable than those produced by traditional discriminant analysis, irrespective of whether dimensionality reduction techniques were applied. The best results were obtained using SVMs specifically adapted to ordinal data. This technique takes advantage of the ordinal information contained in the data without penalising the computational load. Furthermore, the technique permits the estimation of the utility function that is latent in expert knowledge.
Synaptotagmin-Like Proteins Control Formation of a Single Apical Membrane Domain in Epithelial Cells
Gálvez-Santisteban, Manuel; Rodriguez-Fraticelli, Alejo E.; Bryant, David M.; Vergarajauregui, Silvia; Yasuda, Takao; Bañón-Rodríguez, Inmaculada; Bernascone, Ilenia; Datta, Anirban; Spivak, Natalie; Young, Kitty; Slim, Christiaan L.; Brakeman, Paul R.; Fukuda, Mitsunori; Mostov, Keith E.; Martín-Belmonte, Fernando
2012-01-01
SUMMARY The formation of epithelial tissues requires both the generation of apical-basal polarity and the co-ordination of this polarity between neighboring cells to form a central lumen. During de novo lumen formation, vectorial membrane transport contributes to formation of a singular apical membrane, resulting in contribution of each cell to only a single lumen. Here, from a functional screen for genes required for 3D epithelial architecture we identify key roles for Synaptotagmin-like proteins 2-a and 4-a (Slp2-a/4-a) in generation of a single apical surface per cell. Slp2-a localizes to the luminal membrane in a PI(4,5)P2-dependent manner, where it targets Rab27-loaded vesicles to initiate a single lumen. Vesicle tethering and fusion is controlled by Slp4-a, in conjunction with Rab27/Rab3/Rab8 and the SNARE Syntaxin-3. Together, Slp2-a/4-a co-ordinate the spatiotemporal organization of vectorial apical transport to ensure only a single apical surface, and thus formation of a single lumen, occurs per cell. PMID:22820376
A velocity-dependent anomalous radial transport model for (2-D, 2-V) kinetic transport codes
NASA Astrophysics Data System (ADS)
Bodi, Kowsik; Krasheninnikov, Sergei; Cohen, Ron; Rognlien, Tom
2008-11-01
Plasma turbulence constitutes a significant part of radial plasma transport in magnetically confined plasmas. This turbulent transport is modeled in the form of anomalous convection and diffusion coefficients in fluid transport codes. There is a need to model the same in continuum kinetic edge codes [such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory] with non-Maxwellian distributions. We present an anomalous transport model with velocity-dependent convection and diffusion coefficients leading to a diagonal transport matrix similar to that used in contemporary fluid transport models (e.g., UEDGE). Also presented are results of simulations corresponding to radial transport due to long-wavelength ExB turbulence using a velocity-independent diffusion coefficient. A BGK collision model is used to enable comparison with fluid transport codes.
SYMTRAN - A Time-dependent Symmetric Tandem Mirror Transport Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hua, D; Fowler, T
2004-06-15
A time-dependent version of the steady-state radial transport model in symmetric tandem mirrors in Ref. [1] has been coded up and first tests performed. Our code, named SYMTRAN, is an adaptation of the earlier SPHERE code for spheromaks, now modified for tandem mirror physics. Motivated by Post's new concept of kinetic stabilization of symmetric mirrors, it is an extension of the earlier TAMRAC rate-equation code omitting radial transport [2], which successfully accounted for experimental results in TMX. The SYMTRAN code differs from the earlier tandem mirror radial transport code TMT in that our code is focused on axisymmetric tandem mirrorsmore » and classical diffusion, whereas TMT emphasized non-ambipolar transport in TMX and MFTF-B due to yin-yang plugs and non-symmetric transitions between the plugs and axisymmetric center cell. Both codes exhibit interesting but different non-linear behavior.« less
Comparison of space radiation calculations for deterministic and Monte Carlo transport codes
NASA Astrophysics Data System (ADS)
Lin, Zi-Wei; Adams, James; Barghouty, Abdulnasser; Randeniya, Sharmalee; Tripathi, Ram; Watts, John; Yepes, Pablo
For space radiation protection of astronauts or electronic equipments, it is necessary to develop and use accurate radiation transport codes. Radiation transport codes include deterministic codes, such as HZETRN from NASA and UPROP from the Naval Research Laboratory, and Monte Carlo codes such as FLUKA, the Geant4 toolkit and HETC-HEDS. The deterministic codes and Monte Carlo codes complement each other in that deterministic codes are very fast while Monte Carlo codes are more elaborate. Therefore it is important to investigate how well the results of deterministic codes compare with those of Monte Carlo transport codes and where they differ. In this study we evaluate these different codes in their space radiation applications by comparing their output results in the same given space radiation environments, shielding geometry and material. Typical space radiation environments such as the 1977 solar minimum galactic cosmic ray environment are used as the well-defined input, and simple geometries made of aluminum, water and/or polyethylene are used to represent the shielding material. We then compare various outputs of these codes, such as the dose-depth curves and the flux spectra of different fragments and other secondary particles. These comparisons enable us to learn more about the main differences between these space radiation transport codes. At the same time, they help us to learn the qualitative and quantitative features that these transport codes have in common.
Phase-space finite elements in a least-squares solution of the transport equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drumm, C.; Fan, W.; Pautz, S.
2013-07-01
The linear Boltzmann transport equation is solved using a least-squares finite element approximation in the space, angular and energy phase-space variables. The method is applied to both neutral particle transport and also to charged particle transport in the presence of an electric field, where the angular and energy derivative terms are handled with the energy/angular finite elements approximation, in a manner analogous to the way the spatial streaming term is handled. For multi-dimensional problems, a novel approach is used for the angular finite elements: mapping the surface of a unit sphere to a two-dimensional planar region and using a meshingmore » tool to generate a mesh. In this manner, much of the spatial finite-elements machinery can be easily adapted to handle the angular variable. The energy variable and the angular variable for one-dimensional problems make use of edge/beam elements, also building upon the spatial finite elements capabilities. The methods described here can make use of either continuous or discontinuous finite elements in space, angle and/or energy, with the use of continuous finite elements resulting in a smaller problem size and the use of discontinuous finite elements resulting in more accurate solutions for certain types of problems. The work described in this paper makes use of continuous finite elements, so that the resulting linear system is symmetric positive definite and can be solved with a highly efficient parallel preconditioned conjugate gradients algorithm. The phase-space finite elements capability has been built into the Sceptre code and applied to several test problems, including a simple one-dimensional problem with an analytic solution available, a two-dimensional problem with an isolated source term, showing how the method essentially eliminates ray effects encountered with discrete ordinates, and a simple one-dimensional charged-particle transport problem in the presence of an electric field. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mille, M; Lee, C; Failla, G
Purpose: To use the Attila deterministic solver as a supplement to Monte Carlo for calculating out-of-field organ dose in support of epidemiological studies looking at the risks of second cancers. Supplemental dosimetry tools are needed to speed up dose calculations for studies involving large-scale patient cohorts. Methods: Attila is a multi-group discrete ordinates code which can solve the 3D photon-electron coupled linear Boltzmann radiation transport equation on a finite-element mesh. Dose is computed by multiplying the calculated particle flux in each mesh element by a medium-specific energy deposition cross-section. The out-of-field dosimetry capability of Attila is investigated by comparing averagemore » organ dose to that which is calculated by Monte Carlo simulation. The test scenario consists of a 6 MV external beam treatment of a female patient with a tumor in the left breast. The patient is simulated by a whole-body adult reference female computational phantom. Monte Carlo simulations were performed using MCNP6 and XVMC. Attila can export a tetrahedral mesh for MCNP6, allowing for a direct comparison between the two codes. The Attila and Monte Carlo methods were also compared in terms of calculation speed and complexity of simulation setup. A key perquisite for this work was the modeling of a Varian Clinac 2100 linear accelerator. Results: The solid mesh of the torso part of the adult female phantom for the Attila calculation was prepared using the CAD software SpaceClaim. Preliminary calculations suggest that Attila is a user-friendly software which shows great promise for our intended application. Computational performance is related to the number of tetrahedral elements included in the Attila calculation. Conclusion: Attila is being explored as a supplement to the conventional Monte Carlo radiation transport approach for performing retrospective patient dosimetry. The goal is for the dosimetry to be sufficiently accurate for use in retrospective epidemiological investigations.« less
Modeling anomalous radial transport in kinetic transport codes
NASA Astrophysics Data System (ADS)
Bodi, K.; Krasheninnikov, S. I.; Cohen, R. H.; Rognlien, T. D.
2009-11-01
Anomalous transport is typically the dominant component of the radial transport in magnetically confined plasmas, where the physical origin of this transport is believed to be plasma turbulence. A model is presented for anomalous transport that can be used in continuum kinetic edge codes like TEMPEST, NEO and the next-generation code being developed by the Edge Simulation Laboratory. The model can also be adapted to particle-based codes. It is demonstrated that the model with a velocity-dependent diffusion and convection terms can match a diagonal gradient-driven transport matrix as found in contemporary fluid codes, but can also include off-diagonal effects. The anomalous transport model is also combined with particle drifts and a particle/energy-conserving Krook collision operator to study possible synergistic effects with neoclassical transport. For the latter study, a velocity-independent anomalous diffusion coefficient is used to mimic the effect of long-wavelength ExB turbulence.
High-order solution methods for grey discrete ordinates thermal radiative transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maginot, Peter G., E-mail: maginot1@llnl.gov; Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu; Morel, Jim E., E-mail: morel@tamu.edu
This work presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less
High-order solution methods for grey discrete ordinates thermal radiative transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.
This paper presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less
High-order solution methods for grey discrete ordinates thermal radiative transfer
Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.
2016-09-29
This paper presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less
WWER-1000 core and reflector parameters investigation in the LR-0 reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaritsky, S. M.; Alekseev, N. I.; Bolshagin, S. N.
2006-07-01
Measurements and calculations carried out in the core and reflector of WWER-1000 mock-up are discussed: - the determination of the pin-to-pin power distribution in the core by means of gamma-scanning of fuel pins and pin-to-pin calculations with Monte Carlo code MCU-REA and diffusion codes MOBY-DICK (with WIMS-D4 cell constants preparation) and RADAR - the fast neutron spectra measurements by proton recoil method inside the experimental channel in the core and inside the channel in the baffle, and corresponding calculations in P{sub 3}S{sub 8} approximation of discrete ordinates method with code DORT and BUGLE-96 library - the neutron spectra evaluations (adjustment)more » in the same channels in energy region 0.5 eV-18 MeV based on the activation and solid state track detectors measurements. (authors)« less
Neutron skyshine from intense 14-MeV neutron source facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, T.; Hayashi, K.; Takahashi, A.
1985-07-01
The dose distribution and the spectrum variation of neutrons due to the skyshine effect have been measured with the high-efficiency rem counter, the multisphere spectrometer, and the NE-213 scintillator in the environment surrounding an intense 14-MeV neutron source facility. The dose distribution and the energy spectra of neutrons around the facility used as a skyshine source have also been measured to enable the absolute evaluation of the skyshine effect. The skyshine effect was analyzed by two multigroup Monte Carlo codes, NIMSAC and MMCR-2, by two discrete ordinates S /sub n/ codes, ANISN and DOT3.5, and by the shield structure designmore » code for skyshine, SKYSHINE-II. The calculated results show good agreement with the measured results in absolute values. These experimental results should be useful as benchmark data for shyshine analysis and for shielding design of fusion facilities.« less
Myricetin, quercetin and catechin-gallate inhibit glucose uptake in isolated rat adipocytes
2004-01-01
The facilitative glucose transporter, GLUT4, mediates insulin-stimulated glucose uptake in adipocytes and muscles, and the participation of GLUT4 in the pathogenesis of various clinical conditions associated with obesity, visceral fat accumulation and insulin resistance has been proposed. Glucose uptake by some members of the GLUT family, mainly GLUT1, is inhibited by flavonoids, the natural polyphenols present in fruits, vegetables and wine. Therefore it is of interest to establish if these polyphenolic compounds present in the diet, known to be effective antioxidants but also endowed with several other biological activities such as protein-tyrosine kinase inhibition, interfere with GLUT4 function. In the present study, we show that three flavonoids, quercetin, myricetin and catechin-gallate, inhibit the uptake of methylglucose by adipocytes over the concentration range of 10–100 μM. These three flavonoids show a competitive pattern of inhibition, with Ki=16, 33.5 and 90 μM respectively. In contrast, neither catechin nor gallic acid inhibit methylglucose uptake. To obtain a better understanding of the interaction among GLUT4 and flavonoids, we have derived a GLUT4 three-dimensional molecular comparative model, using structural co-ordinates from a GLUT3 comparative model and a mechanosensitive ion channel [PDB (Protein Data Bank) code 1MSL] solved by X-ray diffraction. On the whole, the experimental evidence and computer simulation data favour a transport inhibition mechanism in which flavonoids and GLUT4 interact directly, rather than by a mechanism related to protein-tyrosine kinase and insulin signalling inhibition. Furthermore, the results suggest that GLUT transporters are involved in flavonoid incorporation into cells. PMID:15469417
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shumaker, Dana E.; Steefel, Carl I.
The code CRUNCH_PARALLEL is a parallel version of the CRUNCH code. CRUNCH code version 2.0 was previously released by LLNL, (UCRL-CODE-200063). Crunch is a general purpose reactive transport code developed by Carl Steefel and Yabusake (Steefel Yabsaki 1996). The code handles non-isothermal transport and reaction in one, two, and three dimensions. The reaction algorithm is generic in form, handling an arbitrary number of aqueous and surface complexation as well as mineral dissolution/precipitation. A standardized database is used containing thermodynamic and kinetic data. The code includes advective, dispersive, and diffusive transport.
Quasi-heterogeneous efficient 3-D discrete ordinates CANDU calculations using Attila
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preeti, T.; Rulko, R.
2012-07-01
In this paper, 3-D quasi-heterogeneous large scale parallel Attila calculations of a generic CANDU test problem consisting of 42 complete fuel channels and a perpendicular to fuel reactivity device are presented. The solution method is that of discrete ordinates SN and the computational model is quasi-heterogeneous, i.e. fuel bundle is partially homogenized into five homogeneous rings consistently with the DRAGON code model used by the industry for the incremental cross-section generation. In calculations, the HELIOS-generated 45 macroscopic cross-sections library was used. This approach to CANDU calculations has the following advantages: 1) it allows detailed bundle (and eventually channel) power calculationsmore » for each fuel ring in a bundle, 2) it allows the exact reactivity device representation for its precise reactivity worth calculation, and 3) it eliminates the need for incremental cross-sections. Our results are compared to the reference Monte Carlo MCNP solution. In addition, the Attila SN method performance in CANDU calculations characterized by significant up scattering is discussed. (authors)« less
Recent Local and State Action in Arizona to Maintain Sky Quality
NASA Astrophysics Data System (ADS)
Hall, Jeffrey C.; Shankland, P. D.; Green, R. F.; Jannuzi, B.
2014-01-01
The large number of observatories in Arizona has led to the development of a number of lighting control ordinances around the state, some quite strict. Several factors are now contributing to an increased need for active effort at the local, County, and State levels in maintaining the quality of these codes; these factors include an expansion of competing interests in the state, the increasing use of LED lighting, and the potential for major new investments through projects such as the Cherenkov Telescope Array (CTA) and enhancements to the Navy Precision Optical Interferometer. I will review recent strategies Arizona's observatories have used to effect maintenance of ordinances and preserve sky quality; cases include (1) a statewide effort in 2012 to curb a proliferation of electronic billboards and (2) engagement of a broad group of local, County, and State officials, as well as individuals from the private sector, in support of projects like CTA, including awareness of and support for dark-sky preservation.
Emergence of spike correlations in periodically forced excitable systems
NASA Astrophysics Data System (ADS)
Reinoso, José A.; Torrent, M. C.; Masoller, Cristina
2016-09-01
In sensory neurons the presence of noise can facilitate the detection of weak information-carrying signals, which are encoded and transmitted via correlated sequences of spikes. Here we investigate the relative temporal order in spike sequences induced by a subthreshold periodic input in the presence of white Gaussian noise. To simulate the spikes, we use the FitzHugh-Nagumo model and to investigate the output sequence of interspike intervals (ISIs), we use the symbolic method of ordinal analysis. We find different types of relative temporal order in the form of preferred ordinal patterns that depend on both the strength of the noise and the period of the input signal. We also demonstrate a resonancelike behavior, as certain periods and noise levels enhance temporal ordering in the ISI sequence, maximizing the probability of the preferred patterns. Our findings could be relevant for understanding the mechanisms underlying temporal coding, by which single sensory neurons represent in spike sequences the information about weak periodic stimuli.
Role of the node in controlling traffic of cadmium, zinc, and manganese in rice
Yamaguchi, Noriko; Ishikawa, Satoru; Abe, Tadashi; Baba, Koji; Terada, Yasuko
2012-01-01
Heavy metals are transported to rice grains via the phloem. In rice nodes, the diffuse vascular bundles (DVBs), which enclose the enlarged elliptical vascular bundles (EVBs), are connected to the panicle and have a morphological feature that facilitates xylem-to-phloem transfer. To find a mechanism for restricting cadmium (Cd) transport into grains, the distribution of Cd, zinc (Zn), manganese (Mn), and sulphur (S) around the vascular bundles in node I (the node beneath the panicle) of Oryza sativa ‘Koshihikari’ were compared 1 week after heading. Elemental maps of Cd, Zn, Mn, and S in the vascular bundles of node I were obtained by synchrotron micro-X-ray fluorescence spectrometry and electron probe microanalysis. In addition, Cd K-edge microfocused X-ray absorption near-edge structure analyses were used to identify the elements co-ordinated with Cd. Both Cd and S were mainly distributed in the xylem of the EVB and in the parenchyma cell bridge (PCB) surrounding the EVB. Zn accumulated in the PCB, and Mn accumulated around the protoxylem of the EVB. Cd was co-ordinated mainly with S in the xylem of the EVB, but with both S and O in the phloem of the EVB and in the PCB. The EVB in the node retarded horizontal transport of Cd toward the DVB. By contrast, Zn was first stored in the PCB and then efficiently transferred toward the DVB. Our results provide evidence that transport of Cd, Zn, and Mn is differentially controlled in rice nodes, where vascular bundles are functionally interconnected. PMID:22291135
A Deterministic Transport Code for Space Environment Electrons
NASA Technical Reports Server (NTRS)
Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamczyk, Anne M.
2010-01-01
A deterministic computational procedure has been developed to describe transport of space environment electrons in various shield media. This code is an upgrade and extension of an earlier electron code. Whereas the former code was formulated on the basis of parametric functions derived from limited laboratory data, the present code utilizes well established theoretical representations to describe the relevant interactions and transport processes. The shield material specification has been made more general, as have the pertinent cross sections. A combined mean free path and average trajectory approach has been used in the transport formalism. Comparisons with Monte Carlo calculations are presented.
Results of the Simulation of the HTR-Proteus Core 4.2 Using PEBBED-COMBINE: FY10 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hans Gougar
2010-07-01
ABSTRACT The Idaho National Laboratory’s deterministic neutronics analysis codes and methods were applied to the computation of the core multiplication factor of the HTR-Proteus pebble bed reactor critical facility. This report is a follow-on to INL/EXT-09-16620 in which the same calculation was performed but using earlier versions of the codes and less developed methods. In that report, results indicated that the cross sections generated using COMBINE-7.0 did not yield satisfactory estimates of keff. It was concluded in the report that the modeling of control rods was not satisfactory. In the past year, improvements to the homogenization capability in COMBINE havemore » enabled the explicit modeling of TRIS particles, pebbles, and heterogeneous core zones including control rod regions using a new multi-scale version of COMBINE in which the 1-dimensional discrete ordinate transport code ANISN has been integrated. The new COMBINE is shown to yield benchmark quality results for pebble unit cell models, the first step in preparing few-group diffusion parameters for core simulations. In this report, the full critical core is modeled once again but with cross sections generated using the capabilities and physics of the improved COMBINE code. The new PEBBED-COMBINE model enables the exact modeling of the pebbles and control rod region along with better approximation to structures in the reflector. Initial results for the core multiplication factor indicate significant improvement in the INL’s tools for modeling the neutronic properties of a pebble bed reactor. Errors on the order of 1.6-2.5% in keff are obtained; a significant improvement over the 5-6% error observed in the earlier This is acceptable for a code system and model in the early stages of development but still too high for a production code. Analysis of a simpler core model indicates an over-prediction of the flux in the low end of the thermal spectrum. Causes of this discrepancy are under investigation. New homogenization techniques and assumptions were used in this analysis and as such, they require further confirmation and validation. Further refinement and review of the complex Proteus core model are likely to reduce the errors even further.« less
Comparison of Space Radiation Calculations from Deterministic and Monte Carlo Transport Codes
NASA Technical Reports Server (NTRS)
Adams, J. H.; Lin, Z. W.; Nasser, A. F.; Randeniya, S.; Tripathi, r. K.; Watts, J. W.; Yepes, P.
2010-01-01
The presentation outline includes motivation, radiation transport codes being considered, space radiation cases being considered, results for slab geometry, results from spherical geometry, and summary. ///////// main physics in radiation transport codes hzetrn uprop fluka geant4, slab geometry, spe, gcr,
Implementation of an anomalous radial transport model for continuum kinetic edge codes
NASA Astrophysics Data System (ADS)
Bodi, K.; Krasheninnikov, S. I.; Cohen, R. H.; Rognlien, T. D.
2007-11-01
Radial plasma transport in magnetic fusion devices is often dominated by plasma turbulence compared to neoclassical collisional transport. Continuum kinetic edge codes [such as the (2d,2v) transport version of TEMPEST and also EGK] compute the collisional transport directly, but there is a need to model the anomalous transport from turbulence for long-time transport simulations. Such a model is presented and results are shown for its implementation in the TEMPEST gyrokinetic edge code. The model includes velocity-dependent convection and diffusion coefficients expressed as a Hermite polynominals in velocity. The specification of the Hermite coefficients can be set, e.g., by specifying the ratio of particle and energy transport as in fluid transport codes. The anomalous transport terms preserve the property of no particle flux into unphysical regions of velocity space. TEMPEST simulations are presented showing the separate control of particle and energy anomalous transport, and comparisons are made with neoclassical transport also included.
Criticality Calculations with MCNP6 - Practical Lectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.; Rising, Michael Evan; Alwin, Jennifer Louise
2016-11-29
These slides are used to teach MCNP (Monte Carlo N-Particle) usage to nuclear criticality safety analysts. The following are the lecture topics: course information, introduction, MCNP basics, criticality calculations, advanced geometry, tallies, adjoint-weighted tallies and sensitivities, physics and nuclear data, parameter studies, NCS validation I, NCS validation II, NCS validation III, case study 1 - solution tanks, case study 2 - fuel vault, case study 3 - B&W core, case study 4 - simple TRIGA, case study 5 - fissile mat. vault, criticality accident alarm systems. After completion of this course, you should be able to: Develop an input modelmore » for MCNP; Describe how cross section data impact Monte Carlo and deterministic codes; Describe the importance of validation of computer codes and how it is accomplished; Describe the methodology supporting Monte Carlo codes and deterministic codes; Describe pitfalls of Monte Carlo calculations; Discuss the strengths and weaknesses of Monte Carlo and Discrete Ordinants codes; The diffusion theory model is not strictly valid for treating fissile systems in which neutron absorption, voids, and/or material boundaries are present. In the context of these limitations, identify a fissile system for which a diffusion theory solution would be adequate.« less
Common radiation analysis model for 75,000 pound thrust NERVA engine (1137400E)
NASA Technical Reports Server (NTRS)
Warman, E. A.; Lindsey, B. A.
1972-01-01
The mathematical model and sources of radiation used for the radiation analysis and shielding activities in support of the design of the 1137400E version of the 75,000 lbs thrust NERVA engine are presented. The nuclear subsystem (NSS) and non-nuclear components are discussed. The geometrical model for the NSS is two dimensional as required for the DOT discrete ordinates computer code or for an azimuthally symetrical three dimensional Point Kernel or Monte Carlo code. The geometrical model for the non-nuclear components is three dimensional in the FASTER geometry format. This geometry routine is inherent in the ANSC versions of the QAD and GGG Point Kernal programs and the COHORT Monte Carlo program. Data are included pertaining to a pressure vessel surface radiation source data tape which has been used as the basis for starting ANSC analyses with the DASH code to bridge into the COHORT Monte Carlo code using the WANL supplied DOT angular flux leakage data. In addition to the model descriptions and sources of radiation, the methods of analyses are briefly described.
Benchmarking NNWSI flow and transport codes: COVE 1 results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayden, N.K.
1985-06-01
The code verification (COVE) activity of the Nevada Nuclear Waste Storage Investigations (NNWSI) Project is the first step in certification of flow and transport codes used for NNWSI performance assessments of a geologic repository for disposing of high-level radioactive wastes. The goals of the COVE activity are (1) to demonstrate and compare the numerical accuracy and sensitivity of certain codes, (2) to identify and resolve problems in running typical NNWSI performance assessment calculations, and (3) to evaluate computer requirements for running the codes. This report describes the work done for COVE 1, the first step in benchmarking some of themore » codes. Isothermal calculations for the COVE 1 benchmarking have been completed using the hydrologic flow codes SAGUARO, TRUST, and GWVIP; the radionuclide transport codes FEMTRAN and TRUMP; and the coupled flow and transport code TRACR3D. This report presents the results of three cases of the benchmarking problem solved for COVE 1, a comparison of the results, questions raised regarding sensitivities to modeling techniques, and conclusions drawn regarding the status and numerical sensitivities of the codes. 30 refs.« less
Goal-based h-adaptivity of the 1-D diamond difference discrete ordinate method
NASA Astrophysics Data System (ADS)
Jeffers, R. S.; Kópházi, J.; Eaton, M. D.; Févotte, F.; Hülsemann, F.; Ragusa, J.
2017-04-01
The quantity of interest (QoI) associated with a solution of a partial differential equation (PDE) is not, in general, the solution itself, but a functional of the solution. Dual weighted residual (DWR) error estimators are one way of providing an estimate of the error in the QoI resulting from the discretisation of the PDE. This paper aims to provide an estimate of the error in the QoI due to the spatial discretisation, where the discretisation scheme being used is the diamond difference (DD) method in space and discrete ordinate (SN) method in angle. The QoI are reaction rates in detectors and the value of the eigenvalue (Keff) for 1-D fixed source and eigenvalue (Keff criticality) neutron transport problems respectively. Local values of the DWR over individual cells are used as error indicators for goal-based mesh refinement, which aims to give an optimal mesh for a given QoI.
Beam-dynamics codes used at DARHT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Jr., Carl August
Several beam simulation codes are used to help gain a better understanding of beam dynamics in the DARHT LIAs. The most notable of these fall into the following categories: for beam production – Tricomp Trak orbit tracking code, LSP Particle in cell (PIC) code, for beam transport and acceleration – XTR static envelope and centroid code, LAMDA time-resolved envelope and centroid code, LSP-Slice PIC code, for coasting-beam transport to target – LAMDA time-resolved envelope code, LSP-Slice PIC code. These codes are also being used to inform the design of Scorpius.
Modification and benchmarking of MCNP for low-energy tungsten spectra.
Mercier, J R; Kopp, D T; McDavid, W D; Dove, S B; Lancaster, J L; Tucker, D M
2000-12-01
The MCNP Monte Carlo radiation transport code was modified for diagnostic medical physics applications. In particular, the modified code was thoroughly benchmarked for the production of polychromatic tungsten x-ray spectra in the 30-150 kV range. Validating the modified code for coupled electron-photon transport with benchmark spectra was supplemented with independent electron-only and photon-only transport benchmarks. Major revisions to the code included the proper treatment of characteristic K x-ray production and scoring, new impact ionization cross sections, and new bremsstrahlung cross sections. Minor revisions included updated photon cross sections, electron-electron bremsstrahlung production, and K x-ray yield. The modified MCNP code is benchmarked to electron backscatter factors, x-ray spectra production, and primary and scatter photon transport.
Flow of rarefied gases over two-dimensional bodies
NASA Technical Reports Server (NTRS)
Jeng, Duen-Ren; De Witt, Kenneth J.; Keith, Theo G., Jr.; Chung, Chan-Hong
1989-01-01
A kinetic-theory analysis is made of the flow of rarefied gases over two-dimensional bodies of arbitrary curvature. The Boltzmann equation simplified by a model collision integral is written in an arbitrary orthogonal curvilinear coordinate system, and solved by means of finite-difference approximation with the discrete ordinate method. A numerical code is developed which can be applied to any two-dimensional submerged body of arbitrary curvature for the flow regimes from free-molecular to slip at transonic Mach numbers. Predictions are made for the case of a right circular cylinder.
Deterministic Modeling of the High Temperature Test Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortensi, J.; Cogliati, J. J.; Pope, M. A.
2010-06-01
Idaho National Laboratory (INL) is tasked with the development of reactor physics analysis capability of the Next Generation Nuclear Power (NGNP) project. In order to examine INL’s current prismatic reactor deterministic analysis tools, the project is conducting a benchmark exercise based on modeling the High Temperature Test Reactor (HTTR). This exercise entails the development of a model for the initial criticality, a 19 column thin annular core, and the fully loaded core critical condition with 30 columns. Special emphasis is devoted to the annular core modeling, which shares more characteristics with the NGNP base design. The DRAGON code is usedmore » in this study because it offers significant ease and versatility in modeling prismatic designs. Despite some geometric limitations, the code performs quite well compared to other lattice physics codes. DRAGON can generate transport solutions via collision probability (CP), method of characteristics (MOC), and discrete ordinates (Sn). A fine group cross section library based on the SHEM 281 energy structure is used in the DRAGON calculations. HEXPEDITE is the hexagonal z full core solver used in this study and is based on the Green’s Function solution of the transverse integrated equations. In addition, two Monte Carlo (MC) based codes, MCNP5 and PSG2/SERPENT, provide benchmarking capability for the DRAGON and the nodal diffusion solver codes. The results from this study show a consistent bias of 2–3% for the core multiplication factor. This systematic error has also been observed in other HTTR benchmark efforts and is well documented in the literature. The ENDF/B VII graphite and U235 cross sections appear to be the main source of the error. The isothermal temperature coefficients calculated with the fully loaded core configuration agree well with other benchmark participants but are 40% higher than the experimental values. This discrepancy with the measurement stems from the fact that during the experiments the control rods were adjusted to maintain criticality, whereas in the model, the rod positions were fixed. In addition, this work includes a brief study of a cross section generation approach that seeks to decouple the domain in order to account for neighbor effects. This spectral interpenetration is a dominant effect in annular HTR physics. This analysis methodology should be further explored in order to reduce the error that is systematically propagated in the traditional generation of cross sections.« less
76 FR 2744 - Disclosure of Code-Share Service by Air Carriers and Sellers of Air Transportation
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-14
... DEPARTMENT OF TRANSPORTATION Office of the Secretary Disclosure of Code-Share Service by Air Carriers and Sellers of Air Transportation AGENCY: Office of the Secretary, Department of Transportation..., their agents, and third party sellers of air transportation in view of recent amendments to 49 U.S.C...
Computer Code for Transportation Network Design and Analysis
DOT National Transportation Integrated Search
1977-01-01
This document describes the results of research into the application of the mathematical programming technique of decomposition to practical transportation network problems. A computer code called Catnap (for Control Analysis Transportation Network A...
Posterior Predictive Bayesian Phylogenetic Model Selection
Lewis, Paul O.; Xie, Wangang; Chen, Ming-Hui; Fan, Yu; Kuo, Lynn
2014-01-01
We present two distinctly different posterior predictive approaches to Bayesian phylogenetic model selection and illustrate these methods using examples from green algal protein-coding cpDNA sequences and flowering plant rDNA sequences. The Gelfand–Ghosh (GG) approach allows dissection of an overall measure of model fit into components due to posterior predictive variance (GGp) and goodness-of-fit (GGg), which distinguishes this method from the posterior predictive P-value approach. The conditional predictive ordinate (CPO) method provides a site-specific measure of model fit useful for exploratory analyses and can be combined over sites yielding the log pseudomarginal likelihood (LPML) which is useful as an overall measure of model fit. CPO provides a useful cross-validation approach that is computationally efficient, requiring only a sample from the posterior distribution (no additional simulation is required). Both GG and CPO add new perspectives to Bayesian phylogenetic model selection based on the predictive abilities of models and complement the perspective provided by the marginal likelihood (including Bayes Factor comparisons) based solely on the fit of competing models to observed data. [Bayesian; conditional predictive ordinate; CPO; L-measure; LPML; model selection; phylogenetics; posterior predictive.] PMID:24193892
Quadratic Finite Element Method for 1D Deterministic Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolar, Jr., D R; Ferguson, J M
2004-01-06
In the discrete ordinates, or SN, numerical solution of the transport equation, both the spatial ({und r}) and angular ({und {Omega}}) dependences on the angular flux {psi}{und r},{und {Omega}}are modeled discretely. While significant effort has been devoted toward improving the spatial discretization of the angular flux, we focus on improving the angular discretization of {psi}{und r},{und {Omega}}. Specifically, we employ a Petrov-Galerkin quadratic finite element approximation for the differencing of the angular variable ({mu}) in developing the one-dimensional (1D) spherical geometry S{sub N} equations. We develop an algorithm that shows faster convergence with angular resolution than conventional S{sub N} algorithms.
Levin, S G; Young, R W; Stohler, R L
1992-11-01
This paper presents an estimate of the median lethal dose for humans exposed to total-body irradiation and not subsequently treated for radiation sickness. The median lethal dose was estimated from calculated doses to young adults who were inside two reinforced concrete buildings that remained standing in Nagasaki after the atomic detonation. The individuals in this study, none of whom have previously had calculated doses, were identified from a detailed survey done previously. Radiation dose to the bone marrow, which was taken as the critical radiation site, was calculated for each individual by the Engineering Physics and Mathematics Division of the Oak Ridge National Laboratory using a new three-dimensional discrete-ordinates radiation transport code that was developed and validated for this study using the latest site geometry, radiation yield, and spectra data. The study cohort consisted of 75 individuals who either survived > 60 d or died between the second and 60th d postirradiation due to radiation injury, without burns or other serious injury. Median lethal dose estimates were calculated using both logarithmic (2.9 Gy) and linear (3.4 Gy) dose scales. Both calculations, which met statistical validity tests, support previous estimates of the median lethal dose based solely on human data, which cluster around 3 Gy.
Correlating Fast Fluence to dpa in Atypical Locations
NASA Astrophysics Data System (ADS)
Drury, Thomas H.
2016-02-01
Damage to a nuclear reactor's materials by high-energy neutrons causes changes in the ductility and fracture toughness of the materials. The reactor vessel and its associated piping's ability to withstand stress without brittle fracture are paramount to safety. Theoretically, the material damage is directly related to the displacements per atom (dpa) via the residual defects from induced displacements. However in practice, the material damage is based on a correlation to the high-energy (E > 1.0 MeV) neutron fluence. While the correlated approach is applicable when the material in question has experienced the same neutron spectrum as test specimens which were the basis of the correlation, this approach is not generically acceptable. Using Monte Carlo and discrete ordinates transport codes, the energy dependent neutron flux is determined throughout the reactor structures and the reactor vessel. Results from the models provide the dpa response in addition to the high-energy neutron flux. Ratios of dpa to fast fluence are calculated throughout the models. The comparisons show a constant ratio in the areas of historical concern and thus the validity of the correlated approach to these areas. In regions above and below the fuel however, the flux spectrum has changed significantly. The correlated relationship of material damage to fluence is not valid in these regions without adjustment. An adjustment mechanism is proposed.
Processing Ordinality and Quantity: The Case of Developmental Dyscalculia
Rubinsten, Orly; Sury, Dana
2011-01-01
In contrast to quantity processing, up to date, the nature of ordinality has received little attention from researchers despite the fact that both quantity and ordinality are embodied in numerical information. Here we ask if there are two separate core systems that lie at the foundations of numerical cognition: (1) the traditionally and well accepted numerical magnitude system but also (2) core system for representing ordinal information. We report two novel experiments of ordinal processing that explored the relation between ordinal and numerical information processing in typically developing adults and adults with developmental dyscalculia (DD). Participants made “ordered” or “non-ordered” judgments about 3 groups of dots (non-symbolic numerical stimuli; in Experiment 1) and 3 numbers (symbolic task: Experiment 2). In contrast to previous findings and arguments about quantity deficit in DD participants, when quantity and ordinality are dissociated (as in the current tasks), DD participants exhibited a normal ratio effect in the non-symbolic ordinal task. They did not show, however, the ordinality effect. Ordinality effect in DD appeared only when area and density were randomized, but only in the descending direction. In the symbolic task, the ordinality effect was modulated by ratio and direction in both groups. These findings suggest that there might be two separate cognitive representations of ordinal and quantity information and that linguistic knowledge may facilitate estimation of ordinal information. PMID:21935374
Processing ordinality and quantity: the case of developmental dyscalculia.
Rubinsten, Orly; Sury, Dana
2011-01-01
In contrast to quantity processing, up to date, the nature of ordinality has received little attention from researchers despite the fact that both quantity and ordinality are embodied in numerical information. Here we ask if there are two separate core systems that lie at the foundations of numerical cognition: (1) the traditionally and well accepted numerical magnitude system but also (2) core system for representing ordinal information. We report two novel experiments of ordinal processing that explored the relation between ordinal and numerical information processing in typically developing adults and adults with developmental dyscalculia (DD). Participants made "ordered" or "non-ordered" judgments about 3 groups of dots (non-symbolic numerical stimuli; in Experiment 1) and 3 numbers (symbolic task: Experiment 2). In contrast to previous findings and arguments about quantity deficit in DD participants, when quantity and ordinality are dissociated (as in the current tasks), DD participants exhibited a normal ratio effect in the non-symbolic ordinal task. They did not show, however, the ordinality effect. Ordinality effect in DD appeared only when area and density were randomized, but only in the descending direction. In the symbolic task, the ordinality effect was modulated by ratio and direction in both groups. These findings suggest that there might be two separate cognitive representations of ordinal and quantity information and that linguistic knowledge may facilitate estimation of ordinal information.
User's manual for a material transport code on the Octopus Computer Network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naymik, T.G.; Mendez, G.D.
1978-09-15
A code to simulate material transport through porous media was developed at Oak Ridge National Laboratory. This code has been modified and adapted for use at Lawrence Livermore Laboratory. This manual, in conjunction with report ORNL-4928, explains the input, output, and execution of the code on the Octopus Computer Network.
Comparison of heavy-ion transport simulations: Collision integral in a box
NASA Astrophysics Data System (ADS)
Zhang, Ying-Xun; Wang, Yong-Jia; Colonna, Maria; Danielewicz, Pawel; Ono, Akira; Tsang, Manyee Betty; Wolter, Hermann; Xu, Jun; Chen, Lie-Wen; Cozma, Dan; Feng, Zhao-Qing; Das Gupta, Subal; Ikeno, Natsumi; Ko, Che-Ming; Li, Bao-An; Li, Qing-Feng; Li, Zhu-Xia; Mallik, Swagata; Nara, Yasushi; Ogawa, Tatsuhiko; Ohnishi, Akira; Oliinychenko, Dmytro; Papa, Massimo; Petersen, Hannah; Su, Jun; Song, Taesoo; Weil, Janus; Wang, Ning; Zhang, Feng-Shou; Zhang, Zhen
2018-03-01
Simulations by transport codes are indispensable to extract valuable physical information from heavy-ion collisions. In order to understand the origins of discrepancies among different widely used transport codes, we compare 15 such codes under controlled conditions of a system confined to a box with periodic boundary, initialized with Fermi-Dirac distributions at saturation density and temperatures of either 0 or 5 MeV. In such calculations, one is able to check separately the different ingredients of a transport code. In this second publication of the code evaluation project, we only consider the two-body collision term; i.e., we perform cascade calculations. When the Pauli blocking is artificially suppressed, the collision rates are found to be consistent for most codes (to within 1 % or better) with analytical results, or completely controlled results of a basic cascade code. In orderto reach that goal, it was necessary to eliminate correlations within the same pair of colliding particles that can be present depending on the adopted collision prescription. In calculations with active Pauli blocking, the blocking probability was found to deviate from the expected reference values. The reason is found in substantial phase-space fluctuations and smearing tied to numerical algorithms and model assumptions in the representation of phase space. This results in the reduction of the blocking probability in most transport codes, so that the simulated system gradually evolves away from the Fermi-Dirac toward a Boltzmann distribution. Since the numerical fluctuations are weaker in the Boltzmann-Uehling-Uhlenbeck codes, the Fermi-Dirac statistics is maintained there for a longer time than in the quantum molecular dynamics codes. As a result of this investigation, we are able to make judgements about the most effective strategies in transport simulations for determining the collision probabilities and the Pauli blocking. Investigation in a similar vein of other ingredients in transport calculations, like the mean-field propagation or the production of nucleon resonances and mesons, will be discussed in the future publications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pace, J.V. III; Cramer, S.N.; Knight, J.R.
1980-09-01
Calculations of the skyshine gamma-ray dose rates from three spent fuel storage pools under worst case accident conditions have been made using the discrete ordinates code DOT-IV and the Monte Carlo code MORSE and have been compared to those of two previous methods. The DNA 37N-21G group cross-section library was utilized in the calculations, together with the Claiborne-Trubey gamma-ray dose factors taken from the same library. Plots of all results are presented. It was found that the dose was a strong function of the iron thickness over the fuel assemblies, the initial angular distribution of the emitted radiation, and themore » photon source near the top of the assemblies. 16 refs., 11 figs., 7 tabs.« less
Verification and benchmark testing of the NUFT computer code
NASA Astrophysics Data System (ADS)
Lee, K. H.; Nitao, J. J.; Kulshrestha, A.
1993-10-01
This interim report presents results of work completed in the ongoing verification and benchmark testing of the NUFT (Nonisothermal Unsaturated-saturated Flow and Transport) computer code. NUFT is a suite of multiphase, multicomponent models for numerical solution of thermal and isothermal flow and transport in porous media, with application to subsurface contaminant transport problems. The code simulates the coupled transport of heat, fluids, and chemical components, including volatile organic compounds. Grid systems may be cartesian or cylindrical, with one-, two-, or fully three-dimensional configurations possible. In this initial phase of testing, the NUFT code was used to solve seven one-dimensional unsaturated flow and heat transfer problems. Three verification and four benchmarking problems were solved. In the verification testing, excellent agreement was observed between NUFT results and the analytical or quasianalytical solutions. In the benchmark testing, results of code intercomparison were very satisfactory. From these testing results, it is concluded that the NUFT code is ready for application to field and laboratory problems similar to those addressed here. Multidimensional problems, including those dealing with chemical transport, will be addressed in a subsequent report.
Joint Knowledge Generation Between Climate Science and Infrastructure Engineering
NASA Astrophysics Data System (ADS)
Stoner, A. M. K.; Hayhoe, K.; Jacobs, J. M.
2015-12-01
Over the past decade the engineering community has become increasingly aware of the need to incorporate climate projections into the planning and design of sensitive infrastructure. However, this is a task that is easier said than done. This presentation will discuss some of the successes and hurdles experiences through the past year, from a climate scientist's perspective, working with engineers in infrastructure research and applied engineering through the Infrastructure & Climate Network (ICNet). Engineers rely on strict building codes and ordinances, and can be the subject of lawsuits if those codes are not followed. Matters are further complicated by the uncertainty inherent to climate projections, which include short-term natural variability, as well as the influence of scientific uncertainty and even human behavior on the rate and magnitude of change. Climate scientists typically address uncertainty by creating projections based on multiple models following different future scenarios. This uncertainty is difficult to incorporate into engineering projects, however, due to the fact that they cannot build two different bridges, one allowing for a lower amount of change, and another for a higher. More often than not there is a considerable difference between the costs of building two such bridges, which means that available funds often are the deciding factor. Discussions of climate science are often well received with engineers who work in the research area of infrastructure; going a step further, however, and implementing it in applied engineering projects can be challenging. This presentation will discuss some of the challenges and opportunities inherent to collaborations between climate scientists and transportation engineers, drawing from a range of studies including truck weight restrictions on roads during the spring thaw, and bridge deck performance due to environmental forcings.
49 CFR Appendix C to Part 229 - FRA Locomotive Standards-Code of Defects
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false FRA Locomotive Standards-Code of Defects C Appendix C to Part 229 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Pt. 229, App. C...
49 CFR Appendix C to Part 229 - FRA Locomotive Standards-Code of Defects
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false FRA Locomotive Standards-Code of Defects C Appendix C to Part 229 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Pt. 229, App. C...
49 CFR Appendix C to Part 229 - FRA Locomotive Standards-Code of Defects
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false FRA Locomotive Standards-Code of Defects C Appendix C to Part 229 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Pt. 229, App. C...
The effect of ordinances requiring smoke-free restaurants and bars on revenues: a follow-up.
Glantz, S A; Smith, L R
1997-01-01
OBJECTIVES: The purpose of this study was to extend an earlier evaluation of the economic effects of ordinances requiring smoke-free restaurants and bars. METHODS: Sales tax data for 15 cities with smoke-free restaurant ordinances, 5 cities and 2 counties with smoke-free bar ordinances, and matched comparison locations were analyzed by multiple regression, including time and a dummy variable for the ordinance. RESULTS: Ordinances had no significant effect on the fraction of total retail sales that went to eating and drinking places or on the ratio between sales in communities with ordinances and sales in comparison communities. Ordinances requiring smoke-free bars had no significant effect on the fraction of revenues going to eating and drinking places that serve all types of liquor. CONCLUSIONS: Smoke-free ordinances do not adversely affect either restaurant or bar sales. PMID:9357356
49 CFR Appendix C to Part 215 - FRA Freight Car Standards Defect Code
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false FRA Freight Car Standards Defect Code C Appendix C... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Pt. 215, App. C Appendix C to Part 215—FRA Freight Car Standards Defect Code The following defect code has been established for use...
49 CFR Appendix C to Part 215 - FRA Freight Car Standards Defect Code
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false FRA Freight Car Standards Defect Code C Appendix C... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Pt. 215, App. C Appendix C to Part 215—FRA Freight Car Standards Defect Code The following defect code has been established for use...
49 CFR Appendix C to Part 215 - FRA Freight Car Standards Defect Code
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false FRA Freight Car Standards Defect Code C Appendix C... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Pt. 215, App. C Appendix C to Part 215—FRA Freight Car Standards Defect Code The following defect code has been established for use...
49 CFR Appendix C to Part 215 - FRA Freight Car Standards Defect Code
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false FRA Freight Car Standards Defect Code C Appendix C... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Pt. 215, App. C Appendix C to Part 215—FRA Freight Car Standards Defect Code The following defect code has been established for use...
Methods of treating complex space vehicle geometry for charged particle radiation transport
NASA Technical Reports Server (NTRS)
Hill, C. W.
1973-01-01
Current methods of treating complex geometry models for space radiation transport calculations are reviewed. The geometric techniques used in three computer codes are outlined. Evaluations of geometric capability and speed are provided for these codes. Although no code development work is included several suggestions for significantly improving complex geometry codes are offered.
Comparisons of anomalous and collisional radial transport with a continuum kinetic edge code
NASA Astrophysics Data System (ADS)
Bodi, K.; Krasheninnikov, S.; Cohen, R.; Rognlien, T.
2009-05-01
Modeling of anomalous (turbulence-driven) radial transport in controlled-fusion plasmas is necessary for long-time transport simulations. Here the focus is continuum kinetic edge codes such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory, but the model also has wider application. Our previously developed anomalous diagonal transport matrix model with velocity-dependent convection and diffusion coefficients allows contact with typical fluid transport models (e.g., UEDGE). Results are presented that combine the anomalous transport model and collisional transport owing to ion drift orbits utilizing a Krook collision operator that conserves density and energy. Comparison is made of the relative magnitudes and possible synergistic effects of the two processes for typical tokamak device parameters.
Olbrant, Edgar; Frank, Martin
2010-12-01
In this paper, we study a deterministic method for particle transport in biological tissues. The method is specifically developed for dose calculations in cancer therapy and for radiological imaging. Generalized Fokker-Planck (GFP) theory [Leakeas and Larsen, Nucl. Sci. Eng. 137 (2001), pp. 236-250] has been developed to improve the Fokker-Planck (FP) equation in cases where scattering is forward-peaked and where there is a sufficient amount of large-angle scattering. We compare grid-based numerical solutions to FP and GFP in realistic medical applications. First, electron dose calculations in heterogeneous parts of the human body are performed. Therefore, accurate electron scattering cross sections are included and their incorporation into our model is extensively described. Second, we solve GFP approximations of the radiative transport equation to investigate reflectance and transmittance of light in biological tissues. All results are compared with either Monte Carlo or discrete-ordinates transport solutions.
CERT tribal internship program. Final intern report: Melinda Jacquez, 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-09-01
The purpose of the intern project was to write a comprehensive booklet on all state legislation proposed in 1995 on Native American issues. A second purpose was to contact tribal governments and request an ordinance, law or resolution on hazardous and nuclear waste transportation. This intern report contains a summary of bills proposed in 37 state legislatures pertaining to Native American issues. Time ran out before the second project objective could be met.
2015-04-01
model mesh with elements (vertical co-ordinate in meters). ....................... 5 Figure 3. Ocean tidal boundary (Hour 0 = 1 Jan 1990, 12:00 a.m...7 Figure 4. Ocean salt boundary (Hour 0 = 1 Jan 1990, 12:00 a.m...channel and the connections of Galveston Bay to the open ocean . Figures 1 and 2 illustrate the distribution of vertical layers and resolution in the
Light transport feature for SCINFUL.
Etaati, G R; Ghal-Eh, N
2008-03-01
An extended version of the scintillator response function prediction code SCINFUL has been developed by incorporating PHOTRACK, a Monte Carlo light transport code. Comparisons of calculated and experimental results for organic scintillators exposed to neutrons show that the extended code improves the predictive capability of SCINFUL.
First ERO2.0 modeling of Be erosion and non-local transport in JET ITER-like wall
NASA Astrophysics Data System (ADS)
Romazanov, J.; Borodin, D.; Kirschner, A.; Brezinsek, S.; Silburn, S.; Huber, A.; Huber, V.; Bufferand, H.; Firdaouss, M.; Brömmel, D.; Steinbusch, B.; Gibbon, P.; Lasa, A.; Borodkina, I.; Eksaeva, A.; Linsmeier, Ch; Contributors, JET
2017-12-01
ERO is a Monte-Carlo code for modeling plasma-wall interaction and 3D plasma impurity transport for applications in fusion research. The code has undergone a significant upgrade (ERO2.0) which allows increasing the simulation volume in order to cover the entire plasma edge of a fusion device, allowing a more self-consistent treatment of impurity transport and comparison with a larger number and variety of experimental diagnostics. In this contribution, the physics-relevant technical innovations of the new code version are described and discussed. The new capabilities of the code are demonstrated by modeling of beryllium (Be) erosion of the main wall during JET limiter discharges. Results for erosion patterns along the limiter surfaces and global Be transport including incident particle distributions are presented. A novel synthetic diagnostic, which mimics experimental wide-angle 2D camera images, is presented and used for validating various aspects of the code, including erosion, magnetic shadowing, non-local impurity transport, and light emission simulation.
HZETRN: A heavy ion/nucleon transport code for space radiations
NASA Technical Reports Server (NTRS)
Wilson, John W.; Chun, Sang Y.; Badavi, Forooz F.; Townsend, Lawrence W.; Lamkin, Stanley L.
1991-01-01
The galactic heavy ion transport code (GCRTRN) and the nucleon transport code (BRYNTRN) are integrated into a code package (HZETRN). The code package is computer efficient and capable of operating in an engineering design environment for manned deep space mission studies. The nuclear data set used by the code is discussed including current limitations. Although the heavy ion nuclear cross sections are assumed constant, the nucleon-nuclear cross sections of BRYNTRN with full energy dependence are used. The relation of the final code to the Boltzmann equation is discussed in the context of simplifying assumptions. Error generation and propagation is discussed, and comparison is made with simplified analytic solutions to test numerical accuracy of the final results. A brief discussion of biological issues and their impact on fundamental developments in shielding technology is given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William
ITS is a powerful and user-friendly software package permitting state of the art Monte Carlo solution of linear time-independent couple electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theoristsmore » alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2)multigroup codes with adjoint transport capabilities, and (3) parallel implementations of all ITS codes. Moreover the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.« less
IPOLE - semi-analytic scheme for relativistic polarized radiative transport
NASA Astrophysics Data System (ADS)
Mościbrodzka, M.; Gammie, C. F.
2018-03-01
We describe IPOLE, a new public ray-tracing code for covariant, polarized radiative transport. The code extends the IBOTHROS scheme for covariant, unpolarized transport using two representations of the polarized radiation field: In the coordinate frame, it parallel transports the coherency tensor; in the frame of the plasma it evolves the Stokes parameters under emission, absorption, and Faraday conversion. The transport step is implemented to be as spacetime- and coordinate- independent as possible. The emission, absorption, and Faraday conversion step is implemented using an analytic solution to the polarized transport equation with constant coefficients. As a result, IPOLE is stable, efficient, and produces a physically reasonable solution even for a step with high optical depth and Faraday depth. We show that the code matches analytic results in flat space, and that it produces results that converge to those produced by Dexter's GRTRANS polarized transport code on a complicated model problem. We expect IPOLE will mainly find applications in modelling Event Horizon Telescope sources, but it may also be useful in other relativistic transport problems such as modelling for the IXPE mission.
SOPHAEROS code development and its application to falcon tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lajtha, G.; Missirlian, M.; Kissane, M.
1996-12-31
One of the key issues in source-term evaluation in nuclear reactor severe accidents is determination of the transport behavior of fission products released from the degrading core. The SOPHAEROS computer code is being developed to predict fission product transport in a mechanistic way in light water reactor circuits. These applications of the SOPHAEROS code to the Falcon experiments, among others not presented here, indicate that the numerical scheme of the code is robust, and no convergence problems are encountered. The calculation is also very fast being three times longer on a Sun SPARC 5 workstation than real time and typicallymore » {approx} 10 times faster than an identical calculation with the VICTORIA code. The study demonstrates that the SOPHAEROS 1.3 code is a suitable tool for prediction of the vapor chemistry and fission product transport with a reasonable level of accuracy. Furthermore, the fexibility of the code material data bank allows improvement of understanding of fission product transport and deposition in the circuit. Performing sensitivity studies with different chemical species or with different properties (saturation pressure, chemical equilibrium constants) is very straightforward.« less
Intact coding region of the serotonin transporter gene in obsessive-compulsive disorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altemus, M.; Murphy, D.L.; Greenberg, B.
1996-07-26
Epidemiologic studies indicate that obsessive-compulsive disorder is genetically transmitted in some families, although no genetic abnormalities have been identified in individuals with this disorder. The selective response of obsessive-compulsive disorder to treatment with agents which block serotonin reuptake suggests the gene coding for the serotonin transporter as a candidate gene. The primary structure of the serotonin-transporter coding region was sequenced in 22 patients with obsessive-compulsive disorder, using direct PCR sequencing of cDNA synthesized from platelet serotonin-transporter mRNA. No variations in amino acid sequence were found among the obsessive-compulsive disorder patients or healthy controls. These results do not support a rolemore » for alteration in the primary structure of the coding region of the serotonin-transporter gene in the pathogenesis of obsessive-compulsive disorder. 27 refs.« less
Squeezing Interval Change From Ordinal Panel Data: Latent Growth Curves With Ordinal Outcomes
ERIC Educational Resources Information Center
Mehta, Paras D.; Neale, Michael C.; Flay, Brian R.
2004-01-01
A didactic on latent growth curve modeling for ordinal outcomes is presented. The conceptual aspects of modeling growth with ordinal variables and the notion of threshold invariance are illustrated graphically using a hypothetical example. The ordinal growth model is described in terms of 3 nested models: (a) multivariate normality of the…
NASA Astrophysics Data System (ADS)
Estrada, P. R.; Durisen, R. H.; Cuzzi, J. N.
2014-04-01
We introduce improved numerical techniques for simulating the structural and compositional evolution of planetary rings due to micrometeoroid bombardment and subsequent ballistic transport of impact ejecta. Our current, robust code, which is based on the original structural code of [1] and on the pollution transport code of [3], is capable of modeling structural changes and pollution transport simultaneously over long times on both local and global scales. We provide demonstrative simulations to compare with, and extend upon previous work, as well as examples of how ballistic transport can maintain the observed structure in Saturn's rings using available Cassini occultation optical depth data.
Boatwright, J.; Thywissen, K.; Seekins, L.C.
2001-01-01
We analyze the correlations between intensity and a set of groundmotion parameters obtained from 66 free-field stations in Los Angeles County that recorded the 1994 Northridge earthquake. We use the tagging intensities from Thywissen and Boatwright (1998) because these intensities are determined independently on census tracts, rather than interpolated from zip codes, as are the modified Mercalli isoseismals from Dewey et al. (1995). The ground-motion parameters we consider are the peak ground acceleration (PGA), the peak ground velocity (PGV), the 5% damped pseudovelocity response spectral (PSV) ordinates at 14 periods from 0.1 to 7.5 sec, and the rms average of these spectral ordinates from 0.3 to 3 sec. Visual comparisons of the distribution of tagging intensity with contours of PGA, PGV, and the average PSV suggest that PGV and the average PSV are better correlated with the intensity than PGA. The correlation coefficients between the intensity and the ground-motion parameters bear this out: r = 0.75 for PGA, 0.85 for PGV, and 0.85 for the average PSV. Correlations between the intensity and the PSV ordinates, as a function of period, are strongest at 1.5 sec (r = 0.83) and weakest at 0.2 sec (r = 0.66). Regressing the intensity on the logarithms of these ground-motion parameters yields relations I ?? mlog?? with 3.0 ??? m ??? 5.2 for the parameters analyzed, where m = 4.4 ?? 0.7 for PGA, 3.4 ?? 0.4 for PGV, and 3.6 ?? 0.5 for the average PSV.
Comparing Turbulence Simulation with Experiment in DIII-D
NASA Astrophysics Data System (ADS)
Ross, D. W.; Bravenec, R. V.; Dorland, W.; Beer, M. A.; Hammett, G. W.; McKee, G. R.; Murakami, M.; Jackson, G. L.
2000-10-01
Gyrofluid simulations of DIII-D discharges with the GRYFFIN code(D. W. Ross et al.), Transport Task Force Workshop, Burlington, VT, (2000). are compared with transport and fluctuation measurements. The evolution of confinement-improved discharges(G. R. McKee et al.), Phys. Plasmas 7, 1870 (200) is studied at early times following impurity injection, when EXB rotational shear plays a small role. The ion thermal transport predicted by the code is consistent with the experimental values. Experimentally, changes in density profiles resulting from the injection of neon, lead to reduction in fluctuation levels and transport following the injection. This triggers subsequent changes in the shearing rate that further reduce the turbulence.(M. Murakami et al.), European Physical Society, Budapest (2000); M. Murakami et al., this meeting. Estimated uncertainties in the plasma profiles, however, make it difficult to simulate these reductions with the code. These cases will also be studied with the GS2 gyrokinetic code.
Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas (GPS - TTBP) Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chame, Jacqueline
2011-05-27
The goal of this project is the development of the Gyrokinetic Toroidal Code (GTC) Framework and its applications to problems related to the physics of turbulence and turbulent transport in tokamaks,. The project involves physics studies, code development, noise effect mitigation, supporting computer science efforts, diagnostics and advanced visualizations, verification and validation. Its main scientific themes are mesoscale dynamics and non-locality effects on transport, the physics of secondary structures such as zonal flows, and strongly coherent wave-particle interaction phenomena at magnetic precession resonances. Special emphasis is placed on the implications of these themes for rho-star and current scalings and formore » the turbulent transport of momentum. GTC-TTBP also explores applications to electron thermal transport, particle transport; ITB formation and cross-cuts such as edge-core coupling, interaction of energetic particles with turbulence and neoclassical tearing mode trigger dynamics. Code development focuses on major initiatives in the development of full-f formulations and the capacity to simulate flux-driven transport. In addition to the full-f -formulation, the project includes the development of numerical collision models and methods for coarse graining in phase space. Verification is pursued by linear stability study comparisons with the FULL and HD7 codes and by benchmarking with the GKV, GYSELA and other gyrokinetic simulation codes. Validation of gyrokinetic models of ion and electron thermal transport is pursed by systematic stressing comparisons with fluctuation and transport data from the DIII-D and NSTX tokamaks. The physics and code development research programs are supported by complementary efforts in computer sciences, high performance computing, and data management.« less
Overview of Recent Radiation Transport Code Comparisons for Space Applications
NASA Astrophysics Data System (ADS)
Townsend, Lawrence
Recent advances in radiation transport code development for space applications have resulted in various comparisons of code predictions for a variety of scenarios and codes. Comparisons among both Monte Carlo and deterministic codes have been made and published by vari-ous groups and collaborations, including comparisons involving, but not limited to HZETRN, HETC-HEDS, FLUKA, GEANT, PHITS, and MCNPX. In this work, an overview of recent code prediction inter-comparisons, including comparisons to available experimental data, is presented and discussed, with emphases on those areas of agreement and disagreement among the various code predictions and published data.
Eye Carduino: A Car Control System using Eye Movements
NASA Astrophysics Data System (ADS)
Kumar, Arjun; Nagaraj, Disha; Louzardo, Joel; Hegde, Rajeshwari
2011-12-01
Modern automotive systems are rapidly becoming highly of transportation, but can be a web integrated media centre. This paper explains the implementation of a vehicle control defined and characterized by embedded electronics and software. With new technologies, the vehicle industry is facing new opportunities and also new challenges. Electronics have improved the performance of vehicles and at the same time, new more complex applications are introduced. Examples of high level applications include adaptive cruise control and electronic stability programs (ESP). Further, a modern vehicle does not have to be merely a means using only eye movements. The EyeWriter's native hardware and software work to return the co-ordinates of where the user is looking. These co-ordinates are then used to control the car. A centre-point is defined on the screen. The higher on the screen the user's gaze is, the faster the car will accelerate. Braking is done by looking below centre. Steering is done by looking left and right on the screen.
Bahadori, Amir A; Sato, Tatsuhiko; Slaba, Tony C; Shavers, Mark R; Semones, Edward J; Van Baalen, Mary; Bolch, Wesley E
2013-10-21
NASA currently uses one-dimensional deterministic transport to generate values of the organ dose equivalent needed to calculate stochastic radiation risk following crew space exposures. In this study, organ absorbed doses and dose equivalents are calculated for 50th percentile male and female astronaut phantoms using both the NASA High Charge and Energy Transport Code to perform one-dimensional deterministic transport and the Particle and Heavy Ion Transport Code System to perform three-dimensional Monte Carlo transport. Two measures of radiation risk, effective dose and risk of exposure-induced death (REID) are calculated using the organ dose equivalents resulting from the two methods of radiation transport. For the space radiation environments and simplified shielding configurations considered, small differences (<8%) in the effective dose and REID are found. However, for the galactic cosmic ray (GCR) boundary condition, compensating errors are observed, indicating that comparisons between the integral measurements of complex radiation environments and code calculations can be misleading. Code-to-code benchmarks allow for the comparison of differential quantities, such as secondary particle differential fluence, to provide insight into differences observed in integral quantities for particular components of the GCR spectrum.
NASA Astrophysics Data System (ADS)
Bahadori, Amir A.; Sato, Tatsuhiko; Slaba, Tony C.; Shavers, Mark R.; Semones, Edward J.; Van Baalen, Mary; Bolch, Wesley E.
2013-10-01
NASA currently uses one-dimensional deterministic transport to generate values of the organ dose equivalent needed to calculate stochastic radiation risk following crew space exposures. In this study, organ absorbed doses and dose equivalents are calculated for 50th percentile male and female astronaut phantoms using both the NASA High Charge and Energy Transport Code to perform one-dimensional deterministic transport and the Particle and Heavy Ion Transport Code System to perform three-dimensional Monte Carlo transport. Two measures of radiation risk, effective dose and risk of exposure-induced death (REID) are calculated using the organ dose equivalents resulting from the two methods of radiation transport. For the space radiation environments and simplified shielding configurations considered, small differences (<8%) in the effective dose and REID are found. However, for the galactic cosmic ray (GCR) boundary condition, compensating errors are observed, indicating that comparisons between the integral measurements of complex radiation environments and code calculations can be misleading. Code-to-code benchmarks allow for the comparison of differential quantities, such as secondary particle differential fluence, to provide insight into differences observed in integral quantities for particular components of the GCR spectrum.
Multitasking TORT Under UNICOS: Parallel Performance Models and Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azmy, Y.Y.; Barnett, D.A.
1999-09-27
The existing parallel algorithms in the TORT discrete ordinates were updated to function in a UNI-COS environment. A performance model for the parallel overhead was derived for the existing algorithms. The largest contributors to the parallel overhead were identified and a new algorithm was developed. A parallel overhead model was also derived for the new algorithm. The results of the comparison of parallel performance models were compared to applications of the code to two TORT standard test problems and a large production problem. The parallel performance models agree well with the measured parallel overhead.
1987-02-15
this chapter. NO - If shipment is not second des - tination transportation , obtain fund cite per yes response for question 2 above. 4. For Direct Support...return . . . . . . . . .0 . . . . . . . a. . .. A820 (8) LOGAIR/QUICKTRANS. Transportation Account Codes de - signed herein are applicable to the...oo~• na~- Transportation Tis Document Contains Tasotto Missing Page/s That Are Unavailable In The And Original Document Movement sdocument has boon
Computational analysis of Variable Thrust Engine (VTE) performance
NASA Technical Reports Server (NTRS)
Giridharan, M. G.; Krishnan, A.; Przekwas, A. J.
1993-01-01
The Variable Thrust Engine (VTE) of the Orbital Maneuvering Vehicle (OMV) uses a hypergolic propellant combination of Monomethyl Hydrazine (MMH) and Nitrogen Tetroxide (NTO) as fuel and oxidizer, respectively. The performance of the VTE depends on a number of complex interacting phenomena such as atomization, spray dynamics, vaporization, turbulent mixing, convective/radiative heat transfer, and hypergolic combustion. This study involved the development of a comprehensive numerical methodology to facilitate detailed analysis of the VTE. An existing Computational Fluid Dynamics (CFD) code was extensively modified to include the following models: a two-liquid, two-phase Eulerian-Lagrangian spray model; a chemical equilibrium model; and a discrete ordinate radiation heat transfer model. The modified code was used to conduct a series of simulations to assess the effects of various physical phenomena and boundary conditions on the VTE performance. The details of the models and the results of the simulations are presented.
Transport calculations and accelerator experiments needed for radiation risk assessment in space.
Sihver, Lembit
2008-01-01
The major uncertainties on space radiation risk estimates in humans are associated to the poor knowledge of the biological effects of low and high LET radiation, with a smaller contribution coming from the characterization of space radiation field and its primary interactions with the shielding and the human body. However, to decrease the uncertainties on the biological effects and increase the accuracy of the risk coefficients for charged particles radiation, the initial charged-particle spectra from the Galactic Cosmic Rays (GCRs) and the Solar Particle Events (SPEs), and the radiation transport through the shielding material of the space vehicle and the human body, must be better estimated Since it is practically impossible to measure all primary and secondary particles from all possible position-projectile-target-energy combinations needed for a correct risk assessment in space, accurate particle and heavy ion transport codes must be used. These codes are also needed when estimating the risk for radiation induced failures in advanced microelectronics, such as single-event effects, etc., and the efficiency of different shielding materials. It is therefore important that the models and transport codes will be carefully benchmarked and validated to make sure they fulfill preset accuracy criteria, e.g. to be able to predict particle fluence, dose and energy distributions within a certain accuracy. When validating the accuracy of the transport codes, both space and ground based accelerator experiments are needed The efficiency of passive shielding and protection of electronic devices should also be tested in accelerator experiments and compared to simulations using different transport codes. In this paper different multipurpose particle and heavy ion transport codes will be presented, different concepts of shielding and protection discussed, as well as future accelerator experiments needed for testing and validating codes and shielding materials.
Arthur, Jennifer; Bahran, Rian; Hutchinson, Jesson; ...
2018-06-14
Historically, radiation transport codes have uncorrelated fission emissions. In reality, the particles emitted by both spontaneous and induced fissions are correlated in time, energy, angle, and multiplicity. This work validates the performance of various current Monte Carlo codes that take into account the underlying correlated physics of fission neutrons, specifically neutron multiplicity distributions. The performance of 4 Monte Carlo codes - MCNP®6.2, MCNP®6.2/FREYA, MCNP®6.2/CGMF, and PoliMi - was assessed using neutron multiplicity benchmark experiments. In addition, MCNP®6.2 simulations were run using JEFF-3.2 and JENDL-4.0, rather than ENDF/B-VII.1, data for 239Pu and 240Pu. The sensitive benchmark parameters that in this workmore » represent the performance of each correlated fission multiplicity Monte Carlo code include the singles rate, the doubles rate, leakage multiplication, and Feynman histograms. Although it is difficult to determine which radiation transport code shows the best overall performance in simulating subcritical neutron multiplication inference benchmark measurements, it is clear that correlations exist between the underlying nuclear data utilized by (or generated by) the various codes, and the correlated neutron observables of interest. This could prove useful in nuclear data validation and evaluation applications, in which a particular moment of the neutron multiplicity distribution is of more interest than the other moments. It is also quite clear that, because transport is handled by MCNP®6.2 in 3 of the 4 codes, with the 4th code (PoliMi) being based on an older version of MCNP®, the differences in correlated neutron observables of interest are most likely due to the treatment of fission event generation in each of the different codes, as opposed to the radiation transport.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arthur, Jennifer; Bahran, Rian; Hutchinson, Jesson
Historically, radiation transport codes have uncorrelated fission emissions. In reality, the particles emitted by both spontaneous and induced fissions are correlated in time, energy, angle, and multiplicity. This work validates the performance of various current Monte Carlo codes that take into account the underlying correlated physics of fission neutrons, specifically neutron multiplicity distributions. The performance of 4 Monte Carlo codes - MCNP®6.2, MCNP®6.2/FREYA, MCNP®6.2/CGMF, and PoliMi - was assessed using neutron multiplicity benchmark experiments. In addition, MCNP®6.2 simulations were run using JEFF-3.2 and JENDL-4.0, rather than ENDF/B-VII.1, data for 239Pu and 240Pu. The sensitive benchmark parameters that in this workmore » represent the performance of each correlated fission multiplicity Monte Carlo code include the singles rate, the doubles rate, leakage multiplication, and Feynman histograms. Although it is difficult to determine which radiation transport code shows the best overall performance in simulating subcritical neutron multiplication inference benchmark measurements, it is clear that correlations exist between the underlying nuclear data utilized by (or generated by) the various codes, and the correlated neutron observables of interest. This could prove useful in nuclear data validation and evaluation applications, in which a particular moment of the neutron multiplicity distribution is of more interest than the other moments. It is also quite clear that, because transport is handled by MCNP®6.2 in 3 of the 4 codes, with the 4th code (PoliMi) being based on an older version of MCNP®, the differences in correlated neutron observables of interest are most likely due to the treatment of fission event generation in each of the different codes, as opposed to the radiation transport.« less
Year End Progress Report on Rattlesnake Improvements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yaqi; DeHart, Mark David; Gleicher, Frederick Nathan
Rattlesnake is a MOOSE-based radiation transport application developed at INL to support modern multi-physics simulations. At the beginning of the last year, Rattlesnake was able to perform steady-state, transient and eigenvalue calculations for the multigroup radiation transport equations. Various discretization schemes, including continuous finite element method (FEM) with discrete ordinates method (SN) and spherical harmonics expansion method (PN) for the self-adjoint angular flux (SAAF) formulation, continuous FEM (CFEM) with SN for the least square (LS) formulation, diffusion approximation with CFEM and discontinuous FEM (DFEM), have been implemented. A separate toolkit, YAKXS, for multigroup cross section management was developed to supportmore » Rattlesnake calculations with feedback both from changes in the field variables, such as fuel temperature, coolant density, and etc., and in isotope inventory. The framework for doing nonlinear diffusion acceleration (NDA) within Rattlesnake has been set up, and both NDA calculations with SAAF-SN-CFEM scheme and Monte Carlo with OpenMC have been performed. It was also used for coupling BISON and RELAP-7 for the full-core multiphysics simulations. Within the last fiscal year, significant improvements have been made in Rattlesnake. Rattlesnake development was migrated into our internal GITLAB development environment at the end of year 2014. Since then total 369 merge requests has been accepted into Rattlesnake. It is noted that the MOOSE framework that Rattlesnake is based on is under continuous developments. Improvements made in MOOSE can improve the Rattlesnake. It is acknowledged that MOOSE developers spent efforts on patching Rattlesnake for the improvements made on the framework side. This report will not cover the code restructuring for better readability and modularity and documentation improvements, which we have spent tremendous effort on. It only details some of improvements in the following sections.« less
An approach to solve group-decision-making problems with ordinal interval numbers.
Fan, Zhi-Ping; Liu, Yang
2010-10-01
The ordinal interval number is a form of uncertain preference information in group decision making (GDM), while it is seldom discussed in the existing research. This paper investigates how the ranking order of alternatives is determined based on preference information of ordinal interval numbers in GDM problems. When ranking a large quantity of ordinal interval numbers, the efficiency and accuracy of the ranking process are critical. A new approach is proposed to rank alternatives using ordinal interval numbers when every ranking ordinal in an ordinal interval number is thought to be uniformly and independently distributed in its interval. First, we give the definition of possibility degree on comparing two ordinal interval numbers and the related theory analysis. Then, to rank alternatives, by comparing multiple ordinal interval numbers, a collective expectation possibility degree matrix on pairwise comparisons of alternatives is built, and an optimization model based on this matrix is constructed. Furthermore, an algorithm is also presented to rank alternatives by solving the model. Finally, two examples are used to illustrate the use of the proposed approach.
Clean Indoor Air Ordinance Coverage in the Appalachian Region of the United States
Liber, Alex; Pennell, Michael; Nealy, Darren; Hammer, Jana; Berman, Micah
2010-01-01
Objectives. We sought to quantitatively examine the pattern of, and socioeconomic factors associated with, adoption of clean indoor air ordinances in Appalachia. Methods. We collected and reviewed clean indoor air ordinances in Appalachian communities in 6 states and rated the ordinances for completeness of coverage in workplaces, restaurants, and bars. Additionally, we computed a strength score to measure coverage in 7 locations. We fit mixed-effects models to determine whether the presence of a comprehensive ordinance and the ordinance strength were related to community socioeconomic disadvantage. Results. Of the 332 communities included in the analysis, fewer than 20% had adopted a comprehensive workplace, restaurant, or bar ordinance. Most ordinances were weak, achieving on average only 43% of the total possible points. Communities with a higher unemployment rate were less likely and those with a higher education level were more likely to have a strong ordinance. Conclusions. The majority of residents in these communities are not protected from secondhand smoke. Efforts to pass strong statewide clean indoor air laws should take priority over local initiatives in these states. PMID:20466957
Full 3D visualization tool-kit for Monte Carlo and deterministic transport codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frambati, S.; Frignani, M.
2012-07-01
We propose a package of tools capable of translating the geometric inputs and outputs of many Monte Carlo and deterministic radiation transport codes into open source file formats. These tools are aimed at bridging the gap between trusted, widely-used radiation analysis codes and very powerful, more recent and commonly used visualization software, thus supporting the design process and helping with shielding optimization. Three main lines of development were followed: mesh-based analysis of Monte Carlo codes, mesh-based analysis of deterministic codes and Monte Carlo surface meshing. The developed kit is considered a powerful and cost-effective tool in the computer-aided design formore » radiation transport code users of the nuclear world, and in particular in the fields of core design and radiation analysis. (authors)« less
Radiation Transport Tools for Space Applications: A Review
NASA Technical Reports Server (NTRS)
Jun, Insoo; Evans, Robin; Cherng, Michael; Kang, Shawn
2008-01-01
This slide presentation contains a brief discussion of nuclear transport codes widely used in the space radiation community for shielding and scientific analyses. Seven radiation transport codes that are addressed. The two general methods (i.e., Monte Carlo Method, and the Deterministic Method) are briefly reviewed.
Comparison of Transport Codes, HZETRN, HETC and FLUKA, Using 1977 GCR Solar Minimum Spectra
NASA Technical Reports Server (NTRS)
Heinbockel, John H.; Slaba, Tony C.; Tripathi, Ram K.; Blattnig, Steve R.; Norbury, John W.; Badavi, Francis F.; Townsend, Lawrence W.; Handler, Thomas; Gabriel, Tony A.; Pinsky, Lawrence S.;
2009-01-01
The HZETRN deterministic radiation transport code is one of several tools developed to analyze the effects of harmful galactic cosmic rays (GCR) and solar particle events (SPE) on mission planning, astronaut shielding and instrumentation. This paper is a comparison study involving the two Monte Carlo transport codes, HETC-HEDS and FLUKA, and the deterministic transport code, HZETRN. Each code is used to transport ions from the 1977 solar minimum GCR spectrum impinging upon a 20 g/cm2 Aluminum slab followed by a 30 g/cm2 water slab. This research is part of a systematic effort of verification and validation to quantify the accuracy of HZETRN and determine areas where it can be improved. Comparisons of dose and dose equivalent values at various depths in the water slab are presented in this report. This is followed by a comparison of the proton fluxes, and the forward, backward and total neutron fluxes at various depths in the water slab. Comparisons of the secondary light ion 2H, 3H, 3He and 4He fluxes are also examined.
City curfew ordinances and teenage motor vehicle injury.
Preusser, D F; Williams, A F; Lund, A K; Zador, P L
1990-08-01
Several U.S. cities have curfew ordinances that limit the late night activities of minor teenagers in public places including highways. Detroit, Cleveland, and Columbus, which have curfew ordinances, were compared to Cincinnati, which does not have such an ordinance. The curfew ordinances were associated with a 23% reduction in motor vehicle related injury for 13- to 17-year-olds as passengers, drivers, pedestrians, or bicyclists during the curfew hours. It was concluded that city curfew ordinances, like the statewide driving curfews studied in other states, can reduce motor vehicle injury to teenagers during the particularly hazardous late night hours.
2009-01-01
proton PARMA PHITS -based Analytical Radiation Model in the Atmosphere PCAIRE Predictive Code for Aircrew Radiation Exposure PHITS Particle and...radiation transport code utilized is called PARMA ( PHITS based Analytical Radiation Model in the Atmosphere) [36]. The particle fluxes calculated from the...same dose equivalent coefficient regulations from the ICRP-60 regulations. As a result, the transport codes utilized by EXPACS ( PHITS ) and CARI-6
2009-07-05
proton PARMA PHITS -based Analytical Radiation Model in the Atmosphere PCAIRE Predictive Code for Aircrew Radiation Exposure PHITS Particle and Heavy...transport code utilized is called PARMA ( PHITS based Analytical Radiation Model in the Atmosphere) [36]. The particle fluxes calculated from the input...dose equivalent coefficient regulations from the ICRP-60 regulations. As a result, the transport codes utilized by EXPACS ( PHITS ) and CARI-6 (PARMA
Moving from Batch to Field Using the RT3D Reactive Transport Modeling System
NASA Astrophysics Data System (ADS)
Clement, T. P.; Gautam, T. R.
2002-12-01
The public domain reactive transport code RT3D (Clement, 1997) is a general-purpose numerical code for solving coupled, multi-species reactive transport in saturated groundwater systems. The code uses MODFLOW to simulate flow and several modules of MT3DMS to simulate the advection and dispersion processes. RT3D employs the operator-split strategy which allows the code solve the coupled reactive transport problem in a modular fashion. The coupling between reaction and transport is defined through a separate module where the reaction equations are specified. The code supports a versatile user-defined reaction option that allows users to define their own reaction system through a Fortran-90 subroutine, known as the RT3D-reaction package. Further a utility code, known as BATCHRXN, allows the users to independently test and debug their reaction package. To analyze a new reaction system at a batch scale, users should first run BATCHRXN to test the ability of their reaction package to model the batch data. After testing, the reaction package can simply be ported to the RT3D environment to study the model response under 1-, 2-, or 3-dimensional transport conditions. This paper presents example problems that demonstrate the methods for moving from batch to field-scale simulations using BATCHRXN and RT3D codes. The first example describes a simple first-order reaction system for simulating the sequential degradation of Tetrachloroethene (PCE) and its daughter products. The second example uses a relatively complex reaction system for describing the multiple degradation pathways of Tetrachloroethane (PCA) and its daughter products. References 1) Clement, T.P, RT3D - A modular computer code for simulating reactive multi-species transport in 3-Dimensional groundwater aquifers, Battelle Pacific Northwest National Laboratory Research Report, PNNL-SA-28967, September, 1997. Available at: http://bioprocess.pnl.gov/rt3d.htm.
The Washington, DC, Youth Curfew: effect on transports of injured youth and homicides.
Moscovitz, H; Milzman, D; Haywood, Y
2000-01-01
Curfews are implemented to curtail youth violence. Trauma systems and emergency medical services (EMS) may need to prepare for changes in patient volume resulting from local ordinances. This study evaluated the impact of the 1995 Washington, DC, Juvenile Curfew Act on EMS transports of injured youth and on youth homicides. A retrospective, comparative cohort study was performed. Transports of injured youth and youth homicides were counted in corresponding months of 1994 and 1995. Cohorts were formed by year, time of day, age group, and mechanism of injury. Year-to-year statistical comparisons of injury proportions were performed using the chi square and Fisher's exact tests. One thousand forty-eight transports were included. No significant difference was observed in transports with curfew implementation. Most assaults on youth occurred outside the curfew time. No effect of the curfew on homicides was detected. Of 67 homicides, only two victims were under the curfew. No effect of the curfew on transports for injuries or on homicides was demonstrated. The curfew was not in effect during the period of highest risk.
NASA Astrophysics Data System (ADS)
Jacques, Diederik; Gérard, Fréderic; Mayer, Uli; Simunek, Jirka; Leterme, Bertrand
2016-04-01
A large number of organic matter degradation, CO2 transport and dissolved organic matter models have been developed during the last decades. However, organic matter degradation models are in many cases strictly hard-coded in terms of organic pools, degradation kinetics and dependency on environmental variables. The scientific input of the model user is typically limited to the adjustment of input parameters. In addition, the coupling with geochemical soil processes including aqueous speciation, pH-dependent sorption and colloid-facilitated transport are not incorporated in many of these models, strongly limiting the scope of their application. Furthermore, the most comprehensive organic matter degradation models are combined with simplified representations of flow and transport processes in the soil system. We illustrate the capability of generic reactive transport codes to overcome these shortcomings. The formulations of reactive transport codes include a physics-based continuum representation of flow and transport processes, while biogeochemical reactions can be described as equilibrium processes constrained by thermodynamic principles and/or kinetic reaction networks. The flexibility of these type of codes allows for straight-forward extension of reaction networks, permits the inclusion of new model components (e.g.: organic matter pools, rate equations, parameter dependency on environmental conditions) and in such a way facilitates an application-tailored implementation of organic matter degradation models and related processes. A numerical benchmark involving two reactive transport codes (HPx and MIN3P) demonstrates how the process-based simulation of transient variably saturated water flow (Richards equation), solute transport (advection-dispersion equation), heat transfer and diffusion in the gas phase can be combined with a flexible implementation of a soil organic matter degradation model. The benchmark includes the production of leachable organic matter and inorganic carbon in the aqueous and gaseous phases, as well as different decomposition functions with first-order, linear dependence or nonlinear dependence on a biomass pool. In addition, we show how processes such as local bioturbation (bio-diffusion) can be included implicitly through a Fickian formulation of transport of soil organic matter. Coupling soil organic matter models with generic and flexible reactive transport codes offers a valuable tool to enhance insights into coupled physico-chemical processes at different scales within the scope of C-biogeochemical cycles, possibly linked with other chemical elements such as plant nutrients and pollutants.
49 CFR 171.25 - Additional requirements for the use of the IMDG Code.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Packages containing primary lithium batteries and cells that are transported in accordance with Special Provision 188 of the IMDG Code must be marked “PRIMARY LITHIUM BATTERIES—FORBIDDEN FOR TRANSPORT ABOARD PASSENGER AIRCRAFT” or “LITHIUM METAL BATTERIES—FORBIDDEN FOR TRANSPORT ABOARD PASSENGER AIRCRAFT.” This...
77 FR 18716 - Transportation Security Administration Postal Zip Code Change; Technical Amendment
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-28
... organizational changes and it has no substantive effect on the public. DATES: Effective March 28, 2012. FOR... No. 1572-9] Transportation Security Administration Postal Zip Code Change; Technical Amendment AGENCY: Transportation Security Administration, DHS. ACTION: Final rule. SUMMARY: This rule is a technical change to...
Two centuries of masting data for European beech and Norway spruce across the European continent.
Ascoli, Davide; Maringer, Janet; Hacket-Pain, Andy; Conedera, Marco; Drobyshev, Igor; Motta, Renzo; Cirolli, Mara; Kantorowicz, Władysław; Zang, Christian; Schueler, Silvio; Croisé, Luc; Piussi, Pietro; Berretti, Roberta; Palaghianu, Ciprian; Westergren, Marjana; Lageard, Jonathan G A; Burkart, Anton; Gehrig Bichsel, Regula; Thomas, Peter A; Beudert, Burkhard; Övergaard, Rolf; Vacchiano, Giorgio
2017-05-01
Tree masting is one of the most intensively studied ecological processes. It affects nutrient fluxes of trees, regeneration dynamics in forests, animal population densities, and ultimately influences ecosystem services. Despite a large volume of research focused on masting, its evolutionary ecology, spatial and temporal variability, and environmental drivers are still matter of debate. Understanding the proximate and ultimate causes of masting at broad spatial and temporal scales will enable us to predict tree reproductive strategies and their response to changing environment. Here we provide broad spatial (distribution range-wide) and temporal (century) masting data for the two main masting tree species in Europe, European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) H. Karst.). We collected masting data from a total of 359 sources through an extensive literature review and from unpublished surveys. The data set has a total of 1,747 series and 18,348 yearly observations from 28 countries and covering a time span of years 1677-2016 and 1791-2016 for beech and spruce, respectively. For each record, the following information is available: identification code; species; year of observation; proxy of masting (flower, pollen, fruit, seed, dendrochronological reconstructions); statistical data type (ordinal, continuous); data value; unit of measurement (only in case of continuous data); geographical location (country, Nomenclature of Units for Territorial Statistics NUTS-1 level, municipality, coordinates); first and last record year and related length; type of data source (field survey, peer reviewed scientific literature, gray literature, personal observation); source identification code; date when data were added to the database; comments. To provide a ready-to-use masting index we harmonized ordinal data into five classes. Furthermore, we computed an additional field where continuous series with length >4 yr where converted into a five classes ordinal index. To our knowledge, this is the most comprehensive published database on species-specific masting behavior. It is useful to study spatial and temporal patterns of masting and its proximate and ultimate causes, to refine studies based on tree-ring chronologies, to understand dynamics of animal species and pests vectored by these animals affecting human health, and it may serve as calibration-validation data for dynamic forest models. © 2017 by the Ecological Society of America.
Gap-minimal systems of notations and the constructible hierarchy
NASA Technical Reports Server (NTRS)
Lucian, M. L.
1972-01-01
If a constructibly countable ordinal alpha is a gap ordinal, then the order type of the set of index ordinals smaller than alpha is exactly alpha. The gap ordinals are the only points of discontinuity of a certain ordinal-valued function. The notion of gap minimality for well ordered systems of notations is defined, and the existence of gap-minimal systems of notations of arbitrarily large constructibly countable length is established.
78 FR 54670 - Miami Tribe of Oklahoma-Liquor Control Ordinance
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-05
... Tribe of Oklahoma--Liquor Control Ordinance AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice. SUMMARY: This notice publishes the Miami Tribe of Oklahoma--Liquor Control Ordinance. This Ordinance... Oklahoma, increases the ability of the tribal government to control the distribution and possession of...
McMillen, Robert; Shackelford, Signe
2012-10-01
There is no safe level of exposure to tobacco smoke. More than 60 Mississippi communities have passed smoke-free ordinances in the past six years. Opponents claim that these ordinances harm local businesses. Mississippi law allows municipalities to place a tourism and economic development (TED) tax on local restaurants and hotels/motels. The objective of this study is to examine the impact of these ordinances on TED tax revenues. This study applies a pre/post quasi-experimental design to compare TED tax revenue before and after implementing ordinances. Descriptive analyses indicated that inflation-adjusted tax revenues increased during the 12 months following implementation of smoke-free ordinances while there was no change in aggregated control communities. Multivariate fixed-effects analyses found no statistically significant effect of smoke-free ordinances on hospitality tax revenue. No evidence was found that smoke-free ordinances have an adverse effect on the local hospitality industry.
Recession, debt and mental health: challenges and solutions
2009-01-01
Background During the economic downturn, the link between recession and health has featured in many countries' media, political, and medical debate. This paper focuses on the previously neglected relationship between personal debt and mental health. Aims Using the UK as a case study, this paper considers the public health challenges presented by debt to mental health. We then propose solutions identified in workshops held during the UK Government's Foresight Review of Mental Capital and Wellbeing. Results Within their respective sectors, health professionals should receive basic ‘debt first aid’ training, whilst all UK financial sector codes of practice should – as a minimum – recognise the existence of customers with mental health problems. Further longitudinal research is also needed to ‘unpack’ the relationship between debt and mental health. Across sectors, a lack of co-ordinated activity across health, money advice, and creditor organisations remains a weakness. A renewed emphasis on co-ordinated ‘debt care pathways’ and better communication between local health and advice services is needed. Discussion The relationship between debt and mental health presents a contemporary public health challenge. Solutions exist, but will require action and investment at a time of competition for funds. PMID:22477896
Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium
NASA Technical Reports Server (NTRS)
Hunt, J. L.; Boney, L. R.
1973-01-01
Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.
High-fidelity plasma codes for burn physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooley, James; Graziani, Frank; Marinak, Marty
Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental datamore » and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.« less
Penal Code (Ordinance No. 12 of 1983), 1 July 1984.
1987-01-01
This document contains provisions of the 1984 Penal Code of Montserrat relating to sexual offenses, abortion, offenses relating to marriage, homicide and other offenses against the person, and neglect endangering life or health. Part 8 of the Code holds that a man found guilty of raping a woman is liable to life imprisonment. Rape is deemed to involve unlawful (extramarital) sexual intercourse with a woman without her consent (this is determined if the rape involved force, threats, administration of drugs, or false representation). The Code also defines offenses in cases of incest, child abuse, prostitution, abduction, controlling the actions and finances of a prostitute, and having unlawful sexual intercourse with a mentally defective woman. Part 9 of the Code outlaws abortion unless it is conducted in an approved establishment after two medical practitioners have determined that continuing the pregnancy would risk the life or physical/mental health of the pregnant woman or if a substantial risk exists that the child would have serious abnormalities. Part 10 outlaws bigamy, and part 12 holds that infanticide performed by a mother suffering postpartum imbalances can be prosecuted as manslaughter. This part also outlaws concealment of the body of a newborn, whether that child died before, at, or after birth, and aggravated assault on any child not more than 14 years old. Part 12 makes it an offense to subject any child to neglect endangering its life or health.
75 FR 65373 - Klamath Tribes Liquor Control Ordinance
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-22
... DEPARTMENT OF THE INTERIOR Bureau of Indian Affairs Klamath Tribes Liquor Control Ordinance AGENCY... certification of the amendment to the Klamath Tribes Liquor Control Ordinance. The first Ordinance was published... and controls the sale, possession and distribution of liquor within the tribal lands. The tribal lands...
Development of a 1.5D plasma transport code for coupling to full orbit runaway electron simulations
NASA Astrophysics Data System (ADS)
Lore, J. D.; Del Castillo-Negrete, D.; Baylor, L.; Carbajal, L.
2017-10-01
A 1.5D (1D radial transport + 2D equilibrium geometry) plasma transport code is being developed to simulate runaway electron generation, mitigation, and avoidance by coupling to the full-orbit kinetic electron transport code KORC. The 1.5D code solves the time-dependent 1D flux surface averaged transport equations with sources for plasma density, pressure, and poloidal magnetic flux, along with the Grad-Shafranov equilibrium equation for the 2D flux surface geometry. Disruption mitigation is simulated by introducing an impurity neutral gas `pellet', with impurity densities and electron cooling calculated from ionization, recombination, and line emission rate coefficients. Rapid cooling of the electrons increases the resistivity, inducing an electric field which can be used as an input to KORC. The runaway electron current is then included in the parallel Ohm's law in the transport equations. The 1.5D solver will act as a driver for coupled simulations to model effects such as timescales for thermal quench, runaway electron generation, and pellet impurity mixtures for runaway avoidance. Current progress on the code and details of the numerical algorithms will be presented. Work supported by the US DOE under DE-AC05-00OR22725.
Benchmarking a Visual-Basic based multi-component one-dimensional reactive transport modeling tool
NASA Astrophysics Data System (ADS)
Torlapati, Jagadish; Prabhakar Clement, T.
2013-01-01
We present the details of a comprehensive numerical modeling tool, RT1D, which can be used for simulating biochemical and geochemical reactive transport problems. The code can be run within the standard Microsoft EXCEL Visual Basic platform, and it does not require any additional software tools. The code can be easily adapted by others for simulating different types of laboratory-scale reactive transport experiments. We illustrate the capabilities of the tool by solving five benchmark problems with varying levels of reaction complexity. These literature-derived benchmarks are used to highlight the versatility of the code for solving a variety of practical reactive transport problems. The benchmarks are described in detail to provide a comprehensive database, which can be used by model developers to test other numerical codes. The VBA code presented in the study is a practical tool that can be used by laboratory researchers for analyzing both batch and column datasets within an EXCEL platform.
Ordinal probability effect measures for group comparisons in multinomial cumulative link models.
Agresti, Alan; Kateri, Maria
2017-03-01
We consider simple ordinal model-based probability effect measures for comparing distributions of two groups, adjusted for explanatory variables. An "ordinal superiority" measure summarizes the probability that an observation from one distribution falls above an independent observation from the other distribution, adjusted for explanatory variables in a model. The measure applies directly to normal linear models and to a normal latent variable model for ordinal response variables. It equals Φ(β/2) for the corresponding ordinal model that applies a probit link function to cumulative multinomial probabilities, for standard normal cdf Φ and effect β that is the coefficient of the group indicator variable. For the more general latent variable model for ordinal responses that corresponds to a linear model with other possible error distributions and corresponding link functions for cumulative multinomial probabilities, the ordinal superiority measure equals exp(β)/[1+exp(β)] with the log-log link and equals approximately exp(β/2)/[1+exp(β/2)] with the logit link, where β is the group effect. Another ordinal superiority measure generalizes the difference of proportions from binary to ordinal responses. We also present related measures directly for ordinal models for the observed response that need not assume corresponding latent response models. We present confidence intervals for the measures and illustrate with an example. © 2016, The International Biometric Society.
Ordinality and the nature of symbolic numbers.
Lyons, Ian M; Beilock, Sian L
2013-10-23
The view that representations of symbolic and nonsymbolic numbers are closely tied to one another is widespread. However, the link between symbolic and nonsymbolic numbers is almost always inferred from cardinal processing tasks. In the current work, we show that considering ordinality instead points to striking differences between symbolic and nonsymbolic numbers. Human behavioral and neural data show that ordinal processing of symbolic numbers (Are three Indo-Arabic numerals in numerical order?) is distinct from symbolic cardinal processing (Which of two numerals represents the greater quantity?) and nonsymbolic number processing (ordinal and cardinal judgments of dot-arrays). Behaviorally, distance-effects were reversed when assessing ordinality in symbolic numbers, but canonical distance-effects were observed for cardinal judgments of symbolic numbers and all nonsymbolic judgments. At the neural level, symbolic number-ordering was the only numerical task that did not show number-specific activity (greater than control) in the intraparietal sulcus. Only activity in left premotor cortex was specifically associated with symbolic number-ordering. For nonsymbolic numbers, activation in cognitive-control areas during ordinal processing and a high degree of overlap between ordinal and cardinal processing networks indicate that nonsymbolic ordinality is assessed via iterative cardinality judgments. This contrasts with a striking lack of neural overlap between ordinal and cardinal judgments anywhere in the brain for symbolic numbers, suggesting that symbolic number processing varies substantially with computational context. Ordinal processing sheds light on key differences between symbolic and nonsymbolic number processing both behaviorally and in the brain. Ordinality may prove important for understanding the power of representing numbers symbolically.
Social Host Ordinances and Policies. Prevention Update
ERIC Educational Resources Information Center
Higher Education Center for Alcohol, Drug Abuse, and Violence Prevention, 2011
2011-01-01
Social host liability laws (also known as teen party ordinances, loud or unruly gathering ordinances, or response costs ordinances) target the location in which underage drinking takes place. Social host liability laws hold noncommercial individuals responsible for underage drinking events on property they own, lease, or otherwise control. They…
25 CFR 522.8 - Publication of class III ordinance and approval.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Section 522.8 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR APPROVAL OF CLASS II AND CLASS III ORDINANCES AND RESOLUTIONS SUBMISSION OF GAMING ORDINANCE OR RESOLUTION § 522.8 Publication of class III ordinance and approval. The Chairman shall publish a class III tribal gaming...
27 CFR 478.24 - Compilation of State laws and published ordinances.
Code of Federal Regulations, 2010 CFR
2010-04-01
... and published ordinances. 478.24 Section 478.24 Alcohol, Tobacco Products, and Firearms BUREAU OF... published ordinances. (a) The Director shall annually revise and furnish Federal firearms licensees with a compilation of State laws and published ordinances which are relevant to the enforcement of this part. The...
Multiple component codes based generalized LDPC codes for high-speed optical transport.
Djordjevic, Ivan B; Wang, Ting
2014-07-14
A class of generalized low-density parity-check (GLDPC) codes suitable for optical communications is proposed, which consists of multiple local codes. It is shown that Hamming, BCH, and Reed-Muller codes can be used as local codes, and that the maximum a posteriori probability (MAP) decoding of these local codes by Ashikhmin-Lytsin algorithm is feasible in terms of complexity and performance. We demonstrate that record coding gains can be obtained from properly designed GLDPC codes, derived from multiple component codes. We then show that several recently proposed classes of LDPC codes such as convolutional and spatially-coupled codes can be described using the concept of GLDPC coding, which indicates that the GLDPC coding can be used as a unified platform for advanced FEC enabling ultra-high speed optical transport. The proposed class of GLDPC codes is also suitable for code-rate adaption, to adjust the error correction strength depending on the optical channel conditions.
Development of a new version of the Vehicle Protection Factor Code (VPF3)
NASA Astrophysics Data System (ADS)
Jamieson, Terrance J.
1990-10-01
The Vehicle Protection Factor (VPF) Code is an engineering tool for estimating radiation protection afforded by armoured vehicles and other structures exposed to neutron and gamma ray radiation from fission, thermonuclear, and fusion sources. A number of suggestions for modifications have been offered by users of early versions of the code. These include: implementing some of the more advanced features of the air transport rating code, ATR5, used to perform the air over ground radiation transport analyses; allowing the ability to study specific vehicle orientations within the free field; implementing an adjoint transport scheme to reduce the number of transport runs required; investigating the possibility of accelerating the transport scheme; and upgrading the computer automated design (CAD) package used by VPF. The generation of radiation free field fluences for infinite air geometries as required for aircraft analysis can be accomplished by using ATR with the air over ground correction factors disabled. Analysis of the effects of fallout bearing debris clouds on aircraft will require additional modelling of VPF.
A Monte Carlo Code for Relativistic Radiation Transport Around Kerr Black Holes
NASA Technical Reports Server (NTRS)
Schnittman, Jeremy David; Krolik, Julian H.
2013-01-01
We present a new code for radiation transport around Kerr black holes, including arbitrary emission and absorption mechanisms, as well as electron scattering and polarization. The code is particularly useful for analyzing accretion flows made up of optically thick disks and optically thin coronae. We give a detailed description of the methods employed in the code and also present results from a number of numerical tests to assess its accuracy and convergence.
Benchmarking of Neutron Production of Heavy-Ion Transport Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remec, Igor; Ronningen, Reginald M.; Heilbronn, Lawrence
Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in design and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models andmore » codes and additional benchmarking are required.« less
Benchmarking of Heavy Ion Transport Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remec, Igor; Ronningen, Reginald M.; Heilbronn, Lawrence
Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in designing and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models andmore » codes and additional benchmarking are required.« less
Burn, K W; Daffara, C; Gualdrini, G; Pierantoni, M; Ferrari, P
2007-01-01
The question of Monte Carlo simulation of radiation transport in voxel geometries is addressed. Patched versions of the MCNP and MCNPX codes are developed aimed at transporting radiation both in the standard geometry mode and in the voxel geometry treatment. The patched code reads an unformatted FORTRAN file derived from DICOM format data and uses special subroutines to handle voxel-to-voxel radiation transport. The various phases of the development of the methodology are discussed together with the new input options. Examples are given of employment of the code in internal and external dosimetry and comparisons with results from other groups are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostin, Mikhail; Mokhov, Nikolai; Niita, Koji
A parallel computing framework has been developed to use with general-purpose radiation transport codes. The framework was implemented as a C++ module that uses MPI for message passing. It is intended to be used with older radiation transport codes implemented in Fortran77, Fortran 90 or C. The module is significantly independent of radiation transport codes it can be used with, and is connected to the codes by means of a number of interface functions. The framework was developed and tested in conjunction with the MARS15 code. It is possible to use it with other codes such as PHITS, FLUKA andmore » MCNP after certain adjustments. Besides the parallel computing functionality, the framework offers a checkpoint facility that allows restarting calculations with a saved checkpoint file. The checkpoint facility can be used in single process calculations as well as in the parallel regime. The framework corrects some of the known problems with the scheduling and load balancing found in the original implementations of the parallel computing functionality in MARS15 and PHITS. The framework can be used efficiently on homogeneous systems and networks of workstations, where the interference from the other users is possible.« less
Using ordinal partition transition networks to analyze ECG data
NASA Astrophysics Data System (ADS)
Kulp, Christopher W.; Chobot, Jeremy M.; Freitas, Helena R.; Sprechini, Gene D.
2016-07-01
Electrocardiogram (ECG) data from patients with a variety of heart conditions are studied using ordinal pattern partition networks. The ordinal pattern partition networks are formed from the ECG time series by symbolizing the data into ordinal patterns. The ordinal patterns form the nodes of the network and edges are defined through the time ordering of the ordinal patterns in the symbolized time series. A network measure, called the mean degree, is computed from each time series-generated network. In addition, the entropy and number of non-occurring ordinal patterns (NFP) is computed for each series. The distribution of mean degrees, entropies, and NFPs for each heart condition studied is compared. A statistically significant difference between healthy patients and several groups of unhealthy patients with varying heart conditions is found for the distributions of the mean degrees, unlike for any of the distributions of the entropies or NFPs.
Confirmatory Factor Analysis of Ordinal Variables with Misspecified Models
ERIC Educational Resources Information Center
Yang-Wallentin, Fan; Joreskog, Karl G.; Luo, Hao
2010-01-01
Ordinal variables are common in many empirical investigations in the social and behavioral sciences. Researchers often apply the maximum likelihood method to fit structural equation models to ordinal data. This assumes that the observed measures have normal distributions, which is not the case when the variables are ordinal. A better approach is…
75 FR 51102 - Liquor Ordinance of the Wichita and Affiliated Tribes; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-18
... Tribes; Correction AGENCY: Bureau of Indian Affairs, Interior ACTION: Notice; correction SUMMARY: The... Liquor Ordinance of the Wichita and Affiliated Tribes. The notice refers to an amended ordinance of the Wichita and Affiliated Tribes when in fact the Liquor Ordinance adopted by Resolution No. WT-10-31 on May...
ERIC Educational Resources Information Center
Gadermann, Anne M.; Guhn, Martin; Zumbo, Bruno D.
2012-01-01
This paper provides a conceptual, empirical, and practical guide for estimating ordinal reliability coefficients for ordinal item response data (also referred to as Likert, Likert-type, ordered categorical, or rating scale item responses). Conventionally, reliability coefficients, such as Cronbach's alpha, are calculated using a Pearson…
The effect of ordinances requiring smoke-free restaurants on restaurant sales.
Glantz, S A; Smith, L R
1994-01-01
OBJECTIVES: The effect on restaurant revenues of local ordinances requiring smoke-free restaurants is an important consideration for restauranteurs themselves and the cities that depend on sales tax revenues to provide services. METHODS: Data were obtained from the California State Board of Equalization and Colorado State Department of Revenue on taxable restaurant sales from 1986 (1982 for Aspen) through 1993 for all 15 cities where ordinances were in force, as well as for 15 similar control communities without smoke-free ordinances during this period. These data were analyzed using multiple regression, including time and a dummy variable for whether an ordinance was in force. Total restaurant sales were analyzed as a fraction of total retail sales and restaurant sales in smoke-free cities vs the comparison cities similar in population, median income, and other factors. RESULTS. Ordinances had no significant effect on the fraction of total retail sales that went to restaurants or on the ratio of restaurant sales in communities with ordinances compared with those in the matched control communities. CONCLUSIONS. Smoke-free restaurant ordinances do not adversely affect restaurant sales. PMID:8017529
Ordinal measures for iris recognition.
Sun, Zhenan; Tan, Tieniu
2009-12-01
Images of a human iris contain rich texture information useful for identity authentication. A key and still open issue in iris recognition is how best to represent such textural information using a compact set of features (iris features). In this paper, we propose using ordinal measures for iris feature representation with the objective of characterizing qualitative relationships between iris regions rather than precise measurements of iris image structures. Such a representation may lose some image-specific information, but it achieves a good trade-off between distinctiveness and robustness. We show that ordinal measures are intrinsic features of iris patterns and largely invariant to illumination changes. Moreover, compactness and low computational complexity of ordinal measures enable highly efficient iris recognition. Ordinal measures are a general concept useful for image analysis and many variants can be derived for ordinal feature extraction. In this paper, we develop multilobe differential filters to compute ordinal measures with flexible intralobe and interlobe parameters such as location, scale, orientation, and distance. Experimental results on three public iris image databases demonstrate the effectiveness of the proposed ordinal feature models.
Food marketing to children through toys: response of restaurants to the first U.S. toy ordinance.
Otten, Jennifer J; Hekler, Eric B; Krukowski, Rebecca A; Buman, Matthew P; Saelens, Brian E; Gardner, Christopher D; King, Abby C
2012-01-01
On August 9, 2010, Santa Clara County CA became the first U.S. jurisdiction to implement an ordinance that prohibits the distribution of toys and other incentives to children in conjunction with meals, foods, or beverages that do not meet minimal nutritional criteria. Restaurants had many different options for complying with this ordinance, such as introducing more healthful menu options, reformulating current menu items, or changing marketing or toy distribution practices. To assess how ordinance-affected restaurants changed their child menus, marketing, and toy distribution practices relative to non-affected restaurants. Children's menu items and child-directed marketing and toy distribution practices were examined before and at two time points after ordinance implementation (from July through November 2010) at ordinance-affected fast-food restaurants compared with demographically matched unaffected same-chain restaurants using the Children's Menu Assessment tool. Affected restaurants showed a 2.8- to 3.4-fold improvement in Children's Menu Assessment scores from pre- to post-ordinance with minimal changes at unaffected restaurants. Response to the ordinance varied by restaurant. Improvements were seen in on-site nutritional guidance; promotion of healthy meals, beverages, and side items; and toy marketing and distribution activities. The ordinance appears to have positively influenced marketing of healthful menu items and toys as well as toy distribution practices at ordinance-affected restaurants, but did not affect the number of healthful food items offered. Copyright © 2012 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rabie, M.; Franck, C. M.
2016-06-01
We present a freely available MATLAB code for the simulation of electron transport in arbitrary gas mixtures in the presence of uniform electric fields. For steady-state electron transport, the program provides the transport coefficients, reaction rates and the electron energy distribution function. The program uses established Monte Carlo techniques and is compatible with the electron scattering cross section files from the open-access Plasma Data Exchange Project LXCat. The code is written in object-oriented design, allowing the tracing and visualization of the spatiotemporal evolution of electron swarms and the temporal development of the mean energy and the electron number due to attachment and/or ionization processes. We benchmark our code with well-known model gases as well as the real gases argon, N2, O2, CF4, SF6 and mixtures of N2 and O2.
STELLTRANS: A Transport Analysis Suite for Stellarators
NASA Astrophysics Data System (ADS)
Mittelstaedt, Joseph; Lazerson, Samuel; Pablant, Novimir; Weir, Gavin; W7-X Team
2016-10-01
The stellarator transport code STELLTRANS allows us to better analyze the power balance in W7-X. Although profiles of temperature and density are measured experimentally, geometrical factors are needed in conjunction with these measurements to properly analyze heat flux densities in stellarators. The STELLTRANS code interfaces with VMEC to find an equilibrium flux surface configuration and with TRAVIS to determine the RF heating and current drive in the plasma. Stationary transport equations are then considered which are solved using a boundary value differential equation solver. The equations and quantities considered are averaged over flux surfaces to reduce the system to an essentially one dimensional problem. We have applied this code to data from W-7X and were able to calculate the heat flux coefficients. We will also present extensions of the code to a predictive capacity which would utilize DKES to find neoclassical transport coefficients to update the temperature and density profiles.
25 CFR 522.7 - Disapproval of a class III ordinance.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 2 2010-04-01 2010-04-01 false Disapproval of a class III ordinance. 522.7 Section 522.7 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR APPROVAL OF CLASS II AND CLASS III ORDINANCES AND RESOLUTIONS SUBMISSION OF GAMING ORDINANCE OR RESOLUTION § 522.7 Disapproval of a class III...
25 CFR 522.5 - Disapproval of a class II ordinance.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 2 2010-04-01 2010-04-01 false Disapproval of a class II ordinance. 522.5 Section 522.5 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR APPROVAL OF CLASS II AND CLASS III ORDINANCES AND RESOLUTIONS SUBMISSION OF GAMING ORDINANCE OR RESOLUTION § 522.5 Disapproval of a class II...
Ordinary Least Squares Estimation of Parameters in Exploratory Factor Analysis with Ordinal Data
ERIC Educational Resources Information Center
Lee, Chun-Ting; Zhang, Guangjian; Edwards, Michael C.
2012-01-01
Exploratory factor analysis (EFA) is often conducted with ordinal data (e.g., items with 5-point responses) in the social and behavioral sciences. These ordinal variables are often treated as if they were continuous in practice. An alternative strategy is to assume that a normally distributed continuous variable underlies each ordinal variable.…
Local Area Co-Ordination: Strengthening Support for People with Learning Disabilities in Scotland
ERIC Educational Resources Information Center
Stalker, Kirsten Ogilvie; Malloch, Margaret; Barry, Monica Anne; Watson, June Ann
2008-01-01
This paper reports the findings of a study commissioned by the Scottish Executive which examined the introduction and implementation of local area co-ordination (LAC) in Scotland. A questionnaire about their posts was completed by 44 local area co-ordinators, interviews were conducted with 35 local area co-ordinators and 14 managers and case…
Electron transport model of dielectric charging
NASA Technical Reports Server (NTRS)
Beers, B. L.; Hwang, H. C.; Lin, D. L.; Pine, V. W.
1979-01-01
A computer code (SCCPOEM) was assembled to describe the charging of dielectrics due to irradiation by electrons. The primary purpose for developing the code was to make available a convenient tool for studying the internal fields and charge densities in electron-irradiated dielectrics. The code, which is based on the primary electron transport code POEM, is applicable to arbitrary dielectrics, source spectra, and current time histories. The code calculations are illustrated by a series of semianalytical solutions. Calculations to date suggest that the front face electric field is insufficient to cause breakdown, but that bulk breakdown fields can easily be exceeded.
Capabilities overview of the MORET 5 Monte Carlo code
NASA Astrophysics Data System (ADS)
Cochet, B.; Jinaphanh, A.; Heulers, L.; Jacquet, O.
2014-06-01
The MORET code is a simulation tool that solves the transport equation for neutrons using the Monte Carlo method. It allows users to model complex three-dimensional geometrical configurations, describe the materials, define their own tallies in order to analyse the results. The MORET code has been initially designed to perform calculations for criticality safety assessments. New features has been introduced in the MORET 5 code to expand its use for reactor applications. This paper presents an overview of the MORET 5 code capabilities, going through the description of materials, the geometry modelling, the transport simulation and the definition of the outputs.
TH-AB-BRA-09: Stability Analysis of a Novel Dose Calculation Algorithm for MRI Guided Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelyak, O; Fallone, B; Cross Cancer Institute, Edmonton, AB
2016-06-15
Purpose: To determine the iterative deterministic solution stability of the Linear Boltzmann Transport Equation (LBTE) in the presence of magnetic fields. Methods: The LBTE with magnetic fields under investigation is derived using a discrete ordinates approach. The stability analysis is performed using analytical and numerical methods. Analytically, the spectral Fourier analysis is used to obtain the convergence rate of the source iteration procedures based on finding the largest eigenvalue of the iterative operator. This eigenvalue is a function of relevant physical parameters, such as magnetic field strength and material properties, and provides essential information about the domain of applicability requiredmore » for clinically optimal parameter selection and maximum speed of convergence. The analytical results are reinforced by numerical simulations performed using the same discrete ordinates method in angle, and a discontinuous finite element spatial approach. Results: The spectral radius for the source iteration technique of the time independent transport equation with isotropic and anisotropic scattering centers inside infinite 3D medium is equal to the ratio of differential and total cross sections. The result is confirmed numerically by solving LBTE and is in full agreement with previously published results. The addition of magnetic field reveals that the convergence becomes dependent on the strength of magnetic field, the energy group discretization, and the order of anisotropic expansion. Conclusion: The source iteration technique for solving the LBTE with magnetic fields with the discrete ordinates method leads to divergent solutions in the limiting cases of small energy discretizations and high magnetic field strengths. Future investigations into non-stationary Krylov subspace techniques as an iterative solver will be performed as this has been shown to produce greater stability than source iteration. Furthermore, a stability analysis of a discontinuous finite element space-angle approach (which has been shown to provide the greatest stability) will also be investigated. Dr. B Gino Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta bi-planar linac MR for commercialization)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleman, S.E.
This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media.
Adaptive Nodal Transport Methods for Reactor Transient Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas Downar; E. Lewis
2005-08-31
Develop methods for adaptively treating the angular, spatial, and time dependence of the neutron flux in reactor transient analysis. These methods were demonstrated in the DOE transport nodal code VARIANT and the US NRC spatial kinetics code, PARCS.
The Athena Astrophysical MHD Code in Cylindrical Geometry
NASA Astrophysics Data System (ADS)
Skinner, M. A.; Ostriker, E. C.
2011-10-01
We have developed a method for implementing cylindrical coordinates in the Athena MHD code (Skinner & Ostriker 2010). The extension has been designed to alter the existing Cartesian-coordinates code (Stone et al. 2008) as minimally and transparently as possible. The numerical equations in cylindrical coordinates are formulated to maintain consistency with constrained transport, a central feature of the Athena algorithm, while making use of previously implemented code modules such as the eigensystems and Riemann solvers. Angular-momentum transport, which is critical in astrophysical disk systems dominated by rotation, is treated carefully. We describe modifications for cylindrical coordinates of the higher-order spatial reconstruction and characteristic evolution steps as well as the finite-volume and constrained transport updates. Finally, we have developed a test suite of standard and novel problems in one-, two-, and three-dimensions designed to validate our algorithms and implementation and to be of use to other code developers. The code is suitable for use in a wide variety of astrophysical applications and is freely available for download on the web.
Transport and equilibrium in field-reversed mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, J.K.
Two plasma models relevant to compact torus research have been developed to study transport and equilibrium in field reversed mirrors. In the first model for small Larmor radius and large collision frequency, the plasma is described as an adiabatic hydromagnetic fluid. In the second model for large Larmor radius and small collision frequency, a kinetic theory description has been developed. Various aspects of the two models have been studied in five computer codes ADB, AV, NEO, OHK, RES. The ADB code computes two dimensional equilibrium and one dimensional transport in a flux coordinate. The AV code calculates orbit average integralsmore » in a harmonic oscillator potential. The NEO code follows particle trajectories in a Hill's vortex magnetic field to study stochasticity, invariants of the motion, and orbit average formulas. The OHK code displays analytic psi(r), B/sub Z/(r), phi(r), E/sub r/(r) formulas developed for the kinetic theory description. The RES code calculates resonance curves to consider overlap regions relevant to stochastic orbit behavior.« less
Benchmarking of neutron production of heavy-ion transport codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remec, I.; Ronningen, R. M.; Heilbronn, L.
Document available in abstract form only, full text of document follows: Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in design and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondarymore » neutron production. Results are encouraging; however, further improvements in models and codes and additional benchmarking are required. (authors)« less
Tourism and hotel revenues before and after passage of smoke-free restaurant ordinances.
Glantz, S A; Charlesworth, A
1999-05-26
Claims that ordinances requiring smoke-free restaurants will adversely affect tourism have been used to argue against passing such ordinances. Data exist regarding the validity of these claims. To determine the changes in hotel revenues and international tourism after passage of smoke-free restaurant ordinances in locales where the effect has been debated. Comparison of hotel revenues and tourism rates before and after passage of 100% smoke-free restaurant ordinances and comparison with US hotel revenue overall. Three states (California, Utah, and Vermont) and 6 cities (Boulder, Colo; Flagstaff, Ariz; Los Angeles, Calif; Mesa, Ariz; New York, NY; and San Francisco, Calif) in which the effect on tourism of smoke-free restaurant ordinances had been debated. Hotel room revenues and hotel revenues as a fraction of total retail sales compared with preordinance revenues and overall US revenues. In constant 1997 dollars, passage of the smoke-free restaurant ordinance was associated with a statistically significant increase in the rate of change of hotel revenues in 4 localities, no significant change in 4 localities, and a significant slowing in the rate of increase (but not a decrease) in 1 locality. There was no significant change in the rate of change of hotel revenues as a fraction of total retail sales (P=.16) or total US hotel revenues associated with the ordinances when pooled across all localities (P = .93). International tourism was either unaffected or increased following implementation of the smoke-free ordinances. Smoke-free ordinances do not appear to adversely affect, and may increase, tourist business.
Method for calculating internal radiation and ventilation with the ADINAT heat-flow code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butkovich, T.R.; Montan, D.N.
1980-04-01
One objective of the spent fuel test in Climax Stock granite (SFTC) is to correctly model the thermal transport, and the changes in the stress field and accompanying displacements from the application of the thermal loads. We have chosen the ADINA and ADINAT finite element codes to do these calculations. ADINAT is a heat transfer code compatible to the ADINA displacement and stress analysis code. The heat flow problem encountered at SFTC requires a code with conduction, radiation, and ventilation capabilities, which the present version of ADINAT does not have. We have devised a method for calculating internal radiation andmore » ventilation with the ADINAT code. This method effectively reproduces the results from the TRUMP multi-dimensional finite difference code, which correctly models radiative heat transport between drift surfaces, conductive and convective thermal transport to and through air in the drifts, and mass flow of air in the drifts. The temperature histories for each node in the finite element mesh calculated with ADINAT using this method can be used directly in the ADINA thermal-mechanical calculation.« less
2013-07-01
also simulated in the models. Data was derived from calculations using the three-dimensional Monte Carlo radiation transport code MCNP (Monte Carlo N...32 B. MCNP PHYSICS OPTIONS ......................................................................................... 33 C. HAZUS...input deck’) for the MCNP , Monte Carlo N-Particle, radiation transport code. MCNP is a general-purpose code designed to simulate neutron, photon
Considerations of MCNP Monte Carlo code to be used as a radiotherapy treatment planning tool.
Juste, B; Miro, R; Gallardo, S; Verdu, G; Santos, A
2005-01-01
The present work has simulated the photon and electron transport in a Theratron 780® (MDS Nordion)60Co radiotherapy unit, using the Monte Carlo transport code, MCNP (Monte Carlo N-Particle). This project explains mainly the different methodologies carried out to speedup calculations in order to apply this code efficiently in radiotherapy treatment planning.
Survey of local forestry-related ordinances and regulations in the south
Jonathan J. Spink; Karry L. Haney; John L. Greene
2000-01-01
A survey of the 13 southern states was conducted in 1999-2000 to obtain a comprehensive list of forestry-related ordinances enacted by various local governments. Each ordinance was examined to determine the date of adoption, regulatory objective, and its regu1atory provisions. Based on the regulatory objective, the ordinances were categorized into five general types:...
CTViz: A tool for the visualization of transport in nanocomposites.
Beach, Benjamin; Brown, Joshua; Tarlton, Taylor; Derosa, Pedro A
2016-05-01
A visualization tool (CTViz) for charge transport processes in 3-D hybrid materials (nanocomposites) was developed, inspired by the need for a graphical application to assist in code debugging and data presentation of an existing in-house code. As the simulation code grew, troubleshooting problems grew increasingly difficult without an effective way to visualize 3-D samples and charge transport in those samples. CTViz is able to produce publication and presentation quality visuals of the simulation box, as well as static and animated visuals of the paths of individual carriers through the sample. CTViz was designed to provide a high degree of flexibility in the visualization of the data. A feature that characterizes this tool is the use of shade and transparency levels to highlight important details in the morphology or in the transport paths by hiding or dimming elements of little relevance to the current view. This is fundamental for the visualization of 3-D systems with complex structures. The code presented here provides these required capabilities, but has gone beyond the original design and could be used as is or easily adapted for the visualization of other particulate transport where transport occurs on discrete paths. Copyright © 2016 Elsevier Inc. All rights reserved.
Knowledge of the ordinal position of list items in pigeons.
Scarf, Damian; Colombo, Michael
2011-10-01
Ordinal knowledge is a fundamental aspect of advanced cognition. It is self-evident that humans represent ordinal knowledge, and over the past 20 years it has become clear that nonhuman primates share this ability. In contrast, evidence that nonprimate species represent ordinal knowledge is missing from the comparative literature. To address this issue, in the present experiment we trained pigeons on three 4-item lists and then tested them with derived lists in which, relative to the training lists, the ordinal position of the items was either maintained or changed. Similar to the findings with human and nonhuman primates, our pigeons performed markedly better on the maintained lists compared to the changed lists, and displayed errors consistent with the view that they used their knowledge of ordinal position to guide responding on the derived lists. These findings demonstrate that the ability to acquire ordinal knowledge is not unique to the primate lineage. (PsycINFO Database Record (c) 2011 APA, all rights reserved).
Path Toward a Unified Geometry for Radiation Transport
NASA Astrophysics Data System (ADS)
Lee, Kerry
The Direct Accelerated Geometry for Radiation Analysis and Design (DAGRAD) element of the RadWorks Project under Advanced Exploration Systems (AES) within the Space Technology Mission Directorate (STMD) of NASA will enable new designs and concepts of operation for radiation risk assessment, mitigation and protection. This element is designed to produce a solution that will allow NASA to calculate the transport of space radiation through complex CAD models using the state-of-the-art analytic and Monte Carlo radiation transport codes. Due to the inherent hazard of astronaut and spacecraft exposure to ionizing radiation in low-Earth orbit (LEO) or in deep space, risk analyses must be performed for all crew vehicles and habitats. Incorporating these analyses into the design process can minimize the mass needed solely for radiation protection. Transport of the radiation fields as they pass through shielding and body materials can be simulated using Monte Carlo techniques or described by the Boltzmann equation, which is obtained by balancing changes in particle fluxes as they traverse a small volume of material with the gains and losses caused by atomic and nuclear collisions. Deterministic codes that solve the Boltzmann transport equation, such as HZETRN (high charge and energy transport code developed by NASA LaRC), are generally computationally faster than Monte Carlo codes such as FLUKA, GEANT4, MCNP(X) or PHITS; however, they are currently limited to transport in one dimension, which poorly represents the secondary light ion and neutron radiation fields. NASA currently uses HZETRN space radiation transport software, both because it is computationally efficient and because proven methods have been developed for using this software to analyze complex geometries. Although Monte Carlo codes describe the relevant physics in a fully three-dimensional manner, their computational costs have thus far prevented their widespread use for analysis of complex CAD models, leading to the creation and maintenance of toolkit specific simplistic geometry models. The work presented here builds on the Direct Accelerated Geometry Monte Carlo (DAGMC) toolkit developed for use with the Monte Carlo N-Particle (MCNP) transport code. The work-flow for doing radiation transport on CAD models using MCNP and FLUKA has been demonstrated and the results of analyses on realistic spacecraft/habitats will be presented. Future work is planned that will further automate this process and enable the use of multiple radiation transport codes on identical geometry models imported from CAD. This effort will enhance the modeling tools used by NASA to accurately evaluate the astronaut space radiation risk and accurately determine the protection provided by as-designed exploration mission vehicles and habitats.
NASA Technical Reports Server (NTRS)
Adams, Thomas; VanBaalen, Mary
2009-01-01
The Radiation Health Office (RHO) determines each astronaut s cancer risk by using models to associate the amount of radiation dose that astronauts receive from spaceflight missions. The baryon transport codes (BRYNTRN), high charge (Z) and energy transport codes (HZETRN), and computer risk models are used to determine the effective dose received by astronauts in Low Earth orbit (LEO). This code uses an approximation of the Boltzman transport formula. The purpose of the project is to run this code for various International Space Station (ISS) flight parameters in order to gain a better understanding of how this code responds to different scenarios. The project will determine how variations in one set of parameters such as, the point of the solar cycle and altitude can affect the radiation exposure of astronauts during ISS missions. This project will benefit NASA by improving mission dosimetry.
NASA Astrophysics Data System (ADS)
Zerr, Robert Joseph
2011-12-01
The integral transport matrix method (ITMM) has been used as the kernel of new parallel solution methods for the discrete ordinates approximation of the within-group neutron transport equation. The ITMM abandons the repetitive mesh sweeps of the traditional source iterations (SI) scheme in favor of constructing stored operators that account for the direct coupling factors among all the cells and between the cells and boundary surfaces. The main goals of this work were to develop the algorithms that construct these operators and employ them in the solution process, determine the most suitable way to parallelize the entire procedure, and evaluate the behavior and performance of the developed methods for increasing number of processes. This project compares the effectiveness of the ITMM with the SI scheme parallelized with the Koch-Baker-Alcouffe (KBA) method. The primary parallel solution method involves a decomposition of the domain into smaller spatial sub-domains, each with their own transport matrices, and coupled together via interface boundary angular fluxes. Each sub-domain has its own set of ITMM operators and represents an independent transport problem. Multiple iterative parallel solution methods have investigated, including parallel block Jacobi (PBJ), parallel red/black Gauss-Seidel (PGS), and parallel GMRES (PGMRES). The fastest observed parallel solution method, PGS, was used in a weak scaling comparison with the PARTISN code. Compared to the state-of-the-art SI-KBA with diffusion synthetic acceleration (DSA), this new method without acceleration/preconditioning is not competitive for any problem parameters considered. The best comparisons occur for problems that are difficult for SI DSA, namely highly scattering and optically thick. SI DSA execution time curves are generally steeper than the PGS ones. However, until further testing is performed it cannot be concluded that SI DSA does not outperform the ITMM with PGS even on several thousand or tens of thousands of processors. The PGS method does outperform SI DSA for the periodic heterogeneous layers (PHL) configuration problems. Although this demonstrates a relative strength/weakness between the two methods, the practicality of these problems is much less, further limiting instances where it would be beneficial to select ITMM over SI DSA. The results strongly indicate a need for a robust, stable, and efficient acceleration method (or preconditioner for PGMRES). The spatial multigrid (SMG) method is currently incomplete in that it does not work for all cases considered and does not effectively improve the convergence rate for all values of scattering ratio c or cell dimension h. Nevertheless, it does display the desired trend for highly scattering, optically thin problems. That is, it tends to lower the rate of growth of number of iterations with increasing number of processes, P, while not increasing the number of additional operations per iteration to the extent that the total execution time of the rapidly converging accelerated iterations exceeds that of the slower unaccelerated iterations. A predictive parallel performance model has been developed for the PBJ method. Timing tests were performed such that trend lines could be fitted to the data for the different components and used to estimate the execution times. Applied to the weak scaling results, the model notably underestimates construction time, but combined with a slight overestimation in iterative solution time, the model predicts total execution time very well for large P. It also does a decent job with the strong scaling results, closely predicting the construction time and time per iteration, especially as P increases. Although not shown to be competitive up to 1,024 processing elements with the current state of the art, the parallelized ITMM exhibits promising scaling trends. Ultimately, compared to the KBA method, the parallelized ITMM may be found to be a very attractive option for transport calculations spatially decomposed over several tens of thousands of processes. Acceleration/preconditioning of the parallelized ITMM once developed will improve the convergence rate and improve its competitiveness. (Abstract shortened by UMI.)
Simulations of neutron transport at low energy: a comparison between GEANT and MCNP.
Colonna, N; Altieri, S
2002-06-01
The use of the simulation tool GEANT for neutron transport at energies below 20 MeV is discussed, in particular with regard to shielding and dose calculations. The reliability of the GEANT/MICAP package for neutron transport in a wide energy range has been verified by comparing the results of simulations performed with this package in a wide energy range with the prediction of MCNP-4B, a code commonly used for neutron transport at low energy. A reasonable agreement between the results of the two codes is found for the neutron flux through a slab of material (iron and ordinary concrete), as well as for the dose released in soft tissue by neutrons. These results justify the use of the GEANT/MICAP code for neutron transport in a wide range of applications, including health physics problems.
SHIELD and HZETRN comparisons of pion production cross sections
NASA Astrophysics Data System (ADS)
Norbury, John W.; Sobolevsky, Nikolai; Werneth, Charles M.
2018-03-01
A program of comparing American (NASA) and Russian (ROSCOSMOS) space radiation transport codes has recently begun, and the first paper directly comparing the NASA and ROSCOSMOS space radiation transport codes, HZETRN and SHIELD respectively has recently appeared. The present work represents the second time that NASA and ROSCOSMOS calculations have been directly compared, and the focus here is on models of pion production cross sections used in the two transport codes mentioned above. It was found that these models are in overall moderate agreement with each other and with experimental data. Disagreements that were found are discussed.
NASA Astrophysics Data System (ADS)
Han, B. X.; Welton, R. F.; Stockli, M. P.; Luciano, N. P.; Carmichael, J. R.
2008-02-01
Beam simulation codes PBGUNS, SIMION, and LORENTZ-3D were evaluated by modeling the well-diagnosed SNS base line ion source and low energy beam transport (LEBT) system. Then, an investigation was conducted using these codes to assist our ion source and LEBT development effort which is directed at meeting the SNS operational and also the power-upgrade project goals. A high-efficiency H- extraction system as well as magnetic and electrostatic LEBT configurations capable of transporting up to 100mA is studied using these simulation tools.
On the Development of a Deterministic Three-Dimensional Radiation Transport Code
NASA Technical Reports Server (NTRS)
Rockell, Candice; Tweed, John
2011-01-01
Since astronauts on future deep space missions will be exposed to dangerous radiations, there is a need to accurately model the transport of radiation through shielding materials and to estimate the received radiation dose. In response to this need a three dimensional deterministic code for space radiation transport is now under development. The new code GRNTRN is based on a Green's function solution of the Boltzmann transport equation that is constructed in the form of a Neumann series. Analytical approximations will be obtained for the first three terms of the Neumann series and the remainder will be estimated by a non-perturbative technique . This work discusses progress made to date and exhibits some computations based on the first two Neumann series terms.
1991-03-06
This Law sets forth the Labor Code for the French territory of Mayotte. The Code contains the following provisions relating to sex discrimination, maternity leave, night work, and the employment of foreigners: a) employers are prohibited from discriminating against women who are pregnant; b) women are entitled to fully paid maternity leave of 14 weeks, 8 weeks before and 6 weeks after giving birth; c) the employer and the Government will each pay for half of the worker's salary during this leave; d) discrimination on the basis of sex or family situation is prohibited in advertisements, offers of employment, hiring, firing, pay, training, job classification, and promotion; e) retaliation for instituting an action for sex discrimination is prohibited; f) men and women are guaranteed equal pay for equal work or work of an equivalent value; g) women may not perform work at night in factories, mines, building sites, workshops, public or ministerial offices, places of professional work, companies, unions, or associations of any sort, unless they are in management positions; and h) a foreigner may not engage in a professional activity in Mayotte without authorization. The Law prescribes penalties for violations of these provisions.
Urban Runoff: Model Ordinances for Erosion and Sediment Control
The model ordinance in this section borrows language from the erosion and sediment control ordinance features that might help prevent erosion and sedimentation and protect natural resources more fully.
Accelerating execution of the integrated TIGER series Monte Carlo radiation transport codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, L.M.; Hochstedler, R.D.
1997-02-01
Execution of the integrated TIGER series (ITS) of coupled electron/photon Monte Carlo radiation transport codes has been accelerated by modifying the FORTRAN source code for more efficient computation. Each member code of ITS was benchmarked and profiled with a specific test case that directed the acceleration effort toward the most computationally intensive subroutines. Techniques for accelerating these subroutines included replacing linear search algorithms with binary versions, replacing the pseudo-random number generator, reducing program memory allocation, and proofing the input files for geometrical redundancies. All techniques produced identical or statistically similar results to the original code. Final benchmark timing of themore » accelerated code resulted in speed-up factors of 2.00 for TIGER (the one-dimensional slab geometry code), 1.74 for CYLTRAN (the two-dimensional cylindrical geometry code), and 1.90 for ACCEPT (the arbitrary three-dimensional geometry code).« less
AN OPEN-SOURCE NEUTRINO RADIATION HYDRODYNAMICS CODE FOR CORE-COLLAPSE SUPERNOVAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Connor, Evan, E-mail: evanoconnor@ncsu.edu; CITA, Canadian Institute for Theoretical Astrophysics, Toronto, M5S 3H8
2015-08-15
We present an open-source update to the spherically symmetric, general-relativistic hydrodynamics, core-collapse supernova (CCSN) code GR1D. The source code is available at http://www.GR1Dcode.org. We extend its capabilities to include a general-relativistic treatment of neutrino transport based on the moment formalisms of Shibata et al. and Cardall et al. We pay special attention to implementing and testing numerical methods and approximations that lessen the computational demand of the transport scheme by removing the need to invert large matrices. This is especially important for the implementation and development of moment-like transport methods in two and three dimensions. A critical component of neutrinomore » transport calculations is the neutrino–matter interaction coefficients that describe the production, absorption, scattering, and annihilation of neutrinos. In this article we also describe our open-source neutrino interaction library NuLib (available at http://www.nulib.org). We believe that an open-source approach to describing these interactions is one of the major steps needed to progress toward robust models of CCSNe and robust predictions of the neutrino signal. We show, via comparisons to full Boltzmann neutrino-transport simulations of CCSNe, that our neutrino transport code performs remarkably well. Furthermore, we show that the methods and approximations we employ to increase efficiency do not decrease the fidelity of our results. We also test the ability of our general-relativistic transport code to model failed CCSNe by evolving a 40-solar-mass progenitor to the onset of collapse to a black hole.« less
Reactive transport modeling in fractured rock: A state-of-the-science review
NASA Astrophysics Data System (ADS)
MacQuarrie, Kerry T. B.; Mayer, K. Ulrich
2005-10-01
The field of reactive transport modeling has expanded significantly in the past two decades and has assisted in resolving many issues in Earth Sciences. Numerical models allow for detailed examination of coupled transport and reactions, or more general investigation of controlling processes over geologic time scales. Reactive transport models serve to provide guidance in field data collection and, in particular, enable researchers to link modeling and hydrogeochemical studies. In this state-of-science review, the key objectives were to examine the applicability of reactive transport codes for exploring issues of redox stability to depths of several hundreds of meters in sparsely fractured crystalline rock, with a focus on the Canadian Shield setting. A conceptual model of oxygen ingress and redox buffering, within a Shield environment at time and space scales relevant to nuclear waste repository performance, is developed through a review of previous research. This conceptual model describes geochemical and biological processes and mechanisms materially important to understanding redox buffering capacity and radionuclide mobility in the far-field. Consistent with this model, reactive transport codes should ideally be capable of simulating the effects of changing recharge water compositions as a result of long-term climate change, and fracture-matrix interactions that may govern water-rock interaction. Other aspects influencing the suitability of reactive transport codes include the treatment of various reaction and transport time scales, the ability to apply equilibrium or kinetic formulations simultaneously, the need to capture feedback between water-rock interactions and porosity-permeability changes, and the representation of fractured crystalline rock environments as discrete fracture or dual continuum media. A review of modern multicomponent reactive transport codes indicates a relatively high-level of maturity. Within the Yucca Mountain nuclear waste disposal program, reactive transport codes of varying complexity have been applied to investigate the migration of radionuclides and the geochemical evolution of host rock around the planned disposal facility. Through appropriate near- and far-field application of dual continuum codes, this example demonstrates how reactive transport models have been applied to assist in constraining historic water infiltration rates, interpreting the sealing of flow paths due to mineral precipitation, and investigating post-closure geochemical monitoring strategies. Natural analogue modeling studies, although few in number, are also of key importance as they allow the comparison of model results with hydrogeochemical and paleohydrogeological data over geologic time scales.
Glycans: bioactive signals decoded by lectins.
Gabius, Hans-Joachim
2008-12-01
The glycan part of cellular glycoconjugates affords a versatile means to build biochemical signals. These oligosaccharides have an exceptional talent in this respect. They surpass any other class of biomolecule in coding capacity within an oligomer (code word). Four structural factors account for this property: the potential for variability of linkage points, anomeric position and ring size as well as the aptitude for branching (first and second dimensions of the sugar code). Specific intermolecular recognition is favoured by abundant potential for hydrogen/co-ordination bonds and for C-H/pi-interactions. Fittingly, an array of protein folds has developed in evolution with the ability to select certain glycans from the natural diversity. The thermodynamics of this reaction profits from the occurrence of these ligands in only a few energetically favoured conformers, comparing favourably with highly flexible peptides (third dimension of the sugar code). Sequence, shape and local aspects of glycan presentation (e.g. multivalency) are key factors to regulate the avidity of lectin binding. At the level of cells, distinct glycan determinants, a result of enzymatic synthesis and dynamic remodelling, are being defined as biomarkers. Their presence gains a functional perspective by co-regulation of the cognate lectin as effector, for example in growth regulation. The way to tie sugar signal and lectin together is illustrated herein for two tumour model systems. In this sense, orchestration of glycan and lectin expression is an efficient means, with far-reaching relevance, to exploit the coding potential of oligosaccharides physiologically and medically.
Deep generative learning of location-invariant visual word recognition.
Di Bono, Maria Grazia; Zorzi, Marco
2013-01-01
It is widely believed that orthographic processing implies an approximate, flexible coding of letter position, as shown by relative-position and transposition priming effects in visual word recognition. These findings have inspired alternative proposals about the representation of letter position, ranging from noisy coding across the ordinal positions to relative position coding based on open bigrams. This debate can be cast within the broader problem of learning location-invariant representations of written words, that is, a coding scheme abstracting the identity and position of letters (and combinations of letters) from their eye-centered (i.e., retinal) locations. We asked whether location-invariance would emerge from deep unsupervised learning on letter strings and what type of intermediate coding would emerge in the resulting hierarchical generative model. We trained a deep network with three hidden layers on an artificial dataset of letter strings presented at five possible retinal locations. Though word-level information (i.e., word identity) was never provided to the network during training, linear decoding from the activity of the deepest hidden layer yielded near-perfect accuracy in location-invariant word recognition. Conversely, decoding from lower layers yielded a large number of transposition errors. Analyses of emergent internal representations showed that word selectivity and location invariance increased as a function of layer depth. Word-tuning and location-invariance were found at the level of single neurons, but there was no evidence for bigram coding. Finally, the distributed internal representation of words at the deepest layer showed higher similarity to the representation elicited by the two exterior letters than by other combinations of two contiguous letters, in agreement with the hypothesis that word edges have special status. These results reveal that the efficient coding of written words-which was the model's learning objective-is largely based on letter-level information.
On the ordinality of numbers: A review of neural and behavioral studies.
Lyons, I M; Vogel, S E; Ansari, D
2016-01-01
The last several years have seen steady growth in research on the cognitive and neuronal mechanisms underlying how numbers are represented as part of ordered sequences. In the present review, we synthesize what is currently known about numerical ordinality from behavioral and neuroimaging research, point out major gaps in our current knowledge, and propose several hypotheses that may bear further investigation. Evidence suggests that how we process ordinality differs from how we process cardinality, but that this difference depends strongly on context-in particular, whether numbers are presented symbolically or nonsymbolically. Results also reveal many commonalities between numerical and nonnumerical ordinal processing; however, the degree to which numerical ordinality can be reduced to domain-general mechanisms remains unclear. One proposal is that numerical ordinality relies upon more general short-term memory mechanisms as well as more numerically specific long-term memory representations. It is also evident that numerical ordinality is highly multifaceted, with symbolic representations in particular allowing for a wide range of different types of ordinal relations, the complexity of which appears to increase over development. We examine the proposal that these relations may form the basis of a richer set of associations that may prove crucial to the emergence of more complex math abilities and concepts. In sum, ordinality appears to be an important and relatively understudied facet of numerical cognition that presents substantial opportunities for new and ground-breaking research. © 2016 Elsevier B.V. All rights reserved.
Blanket activation and afterheat for the Compact Reversed-Field Pinch Reactor
NASA Astrophysics Data System (ADS)
Davidson, J. W.; Battat, M. E.
A detailed assessment has been made of the activation and afterheat for a Compact Reversed-Field Pinch Reactor (CRFPR) blanket using a two-dimensional model that included the limiter, the vacuum ducts, and the manifolds and headers for cooling the limiter and the first and second walls. Region-averaged, multigroup fluxes and prompt gamma-ray/neutron heating rates were calculated using the two-dimensional, discrete-ordinates code TRISM. Activation and depletion calculations were performed with the code FORIG using one-group cross sections generated with the TRISM region-averaged fluxes. Afterheat calculations were performed for regions near the plasma, i.e., the limiter, first wall, etc. assuming a 10-day irradiation. Decay heats were computed for decay periods up to 100 minutes. For the activation calculations, the irradiation period was taken to be one year and blanket activity inventories were computed for decay times to 4 x 10 years. These activities were also calculated as the toxicity-weighted biological hazard potential (BHP).
Multidimensional Modeling of Atmospheric Effects and Surface Heterogeneities on Remote Sensing
NASA Technical Reports Server (NTRS)
Gerstl, S. A. W.; Simmer, C.; Zardecki, A. (Principal Investigator)
1985-01-01
The overall goal of this project is to establish a modeling capability that allows a quantitative determination of atmospheric effects on remote sensing including the effects of surface heterogeneities. This includes an improved understanding of aerosol and haze effects in connection with structural, angular, and spatial surface heterogeneities. One important objective of the research is the possible identification of intrinsic surface or canopy characteristics that might be invariant to atmospheric perturbations so that they could be used for scene identification. Conversely, an equally important objective is to find a correction algorithm for atmospheric effects in satellite-sensed surface reflectances. The technical approach is centered around a systematic model and code development effort based on existing, highly advanced computer codes that were originally developed for nuclear radiation shielding applications. Computational techniques for the numerical solution of the radiative transfer equation are adapted on the basis of the discrete-ordinates finite-element method which proved highly successful for one and two-dimensional radiative transfer problems with fully resolved angular representation of the radiation field.
Reactive transport codes for subsurface environmental simulation
Steefel, C. I.; Appelo, C. A. J.; Arora, B.; ...
2014-09-26
A general description of the mathematical and numerical formulations used in modern numerical reactive transport codes relevant for subsurface environmental simulations is presented. The formulations are followed by short descriptions of commonly used and available subsurface simulators that consider continuum representations of flow, transport, and reactions in porous media. These formulations are applicable to most of the subsurface environmental benchmark problems included in this special issue. The list of codes described briefly here includes PHREEQC, HPx, PHT3D, OpenGeoSys (OGS), HYTEC, ORCHESTRA, TOUGHREACT, eSTOMP, HYDROGEOCHEM, CrunchFlow, MIN3P, and PFLOTRAN. The descriptions include a high-level list of capabilities for each of themore » codes, along with a selective list of applications that highlight their capabilities and historical development.« less
Semi-supervised learning for ordinal Kernel Discriminant Analysis.
Pérez-Ortiz, M; Gutiérrez, P A; Carbonero-Ruz, M; Hervás-Martínez, C
2016-12-01
Ordinal classification considers those classification problems where the labels of the variable to predict follow a given order. Naturally, labelled data is scarce or difficult to obtain in this type of problems because, in many cases, ordinal labels are given by a user or expert (e.g. in recommendation systems). Firstly, this paper develops a new strategy for ordinal classification where both labelled and unlabelled data are used in the model construction step (a scheme which is referred to as semi-supervised learning). More specifically, the ordinal version of kernel discriminant learning is extended for this setting considering the neighbourhood information of unlabelled data, which is proposed to be computed in the feature space induced by the kernel function. Secondly, a new method for semi-supervised kernel learning is devised in the context of ordinal classification, which is combined with our developed classification strategy to optimise the kernel parameters. The experiments conducted compare 6 different approaches for semi-supervised learning in the context of ordinal classification in a battery of 30 datasets, showing (1) the good synergy of the ordinal version of discriminant analysis and the use of unlabelled data and (2) the advantage of computing distances in the feature space induced by the kernel function. Copyright © 2016 Elsevier Ltd. All rights reserved.
An S N Algorithm for Modern Architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Randal Scott
2016-08-29
LANL discrete ordinates transport packages are required to perform large, computationally intensive time-dependent calculations on massively parallel architectures, where even a single such calculation may need many months to complete. While KBA methods scale out well to very large numbers of compute nodes, we are limited by practical constraints on the number of such nodes we can actually apply to any given calculation. Instead, we describe a modified KBA algorithm that allows realization of the reductions in solution time offered by both the current, and future, architectural changes within a compute node.
Acoustical design economic trade off for transport aircraft
NASA Astrophysics Data System (ADS)
Benito, A.
The effects of ICAO fixed certification limits and local ordinances on acoustic emissions from jets on commercial transport aircraft and costs of operations are explored. The regulations effectively ban some aircraft from operation over populated areas, impose curfews on airports and, in conjunction with local civil aviation rules, levy extra taxes and quotas on noisier equipment. Jet engine manufacturers have attempted to increase the flow laminarity, decrease the exhaust speed and develop acoustic liners for selected duct areas. Retrofits are, however, not usually cost effective due to increased operational costs, e.g., fuel consumption can increase after engine modification because of increased weight. Finally, an attempt is made to assess, monetarily, the costs of noise pollution, wherein fines are levied for noisy aircraft and the money is spent insulating homes from noise.
Dust-Particle Transport in Tokamak Edge Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pigarov, A Y; Krasheninnikov, S I; Soboleva, T K
2005-09-12
Dust particulates in the size range of 10nm-100{micro}m are found in all fusion devices. Such dust can be generated during tokamak operation due to strong plasma/material-surface interactions. Some recent experiments and theoretical estimates indicate that dust particles can provide an important source of impurities in the tokamak plasma. Moreover, dust can be a serious threat to the safety of next-step fusion devices. In this paper, recent experimental observations on dust in fusion devices are reviewed. A physical model for dust transport simulation, and a newly developed code DUSTT, are discussed. The DUSTT code incorporates both dust dynamics due to comprehensivemore » dust-plasma interactions as well as the effects of dust heating, charging, and evaporation. The code tracks test dust particles in realistic plasma backgrounds as provided by edge-plasma transport codes. Results are presented for dust transport in current and next-step tokamaks. The effect of dust on divertor plasma profiles and core plasma contamination is examined.« less
Robust image region descriptor using local derivative ordinal binary pattern
NASA Astrophysics Data System (ADS)
Shang, Jun; Chen, Chuanbo; Pei, Xiaobing; Liang, Hu; Tang, He; Sarem, Mudar
2015-05-01
Binary image descriptors have received a lot of attention in recent years, since they provide numerous advantages, such as low memory footprint and efficient matching strategy. However, they utilize intermediate representations and are generally less discriminative than floating-point descriptors. We propose an image region descriptor, namely local derivative ordinal binary pattern, for object recognition and image categorization. In order to preserve more local contrast and edge information, we quantize the intensity differences between the central pixels and their neighbors of the detected local affine covariant regions in an adaptive way. These differences are then sorted and mapped into binary codes and histogrammed with a weight of the sum of the absolute value of the differences. Furthermore, the gray level of the central pixel is quantized to further improve the discriminative ability. Finally, we combine them to form a joint histogram to represent the features of the image. We observe that our descriptor preserves more local brightness and edge information than traditional binary descriptors. Also, our descriptor is robust to rotation, illumination variations, and other geometric transformations. We conduct extensive experiments on the standard ETHZ and Kentucky datasets for object recognition and PASCAL for image classification. The experimental results show that our descriptor outperforms existing state-of-the-art methods.
Nikita, Efthymia
2014-03-01
The current article explores whether the application of generalized linear models (GLM) and generalized estimating equations (GEE) can be used in place of conventional statistical analyses in the study of ordinal data that code an underlying continuous variable, like entheseal changes. The analysis of artificial data and ordinal data expressing entheseal changes in archaeological North African populations gave the following results. Parametric and nonparametric tests give convergent results particularly for P values <0.1, irrespective of whether the underlying variable is normally distributed or not under the condition that the samples involved in the tests exhibit approximately equal sizes. If this prerequisite is valid and provided that the samples are of equal variances, analysis of covariance may be adopted. GLM are not subject to constraints and give results that converge to those obtained from all nonparametric tests. Therefore, they can be used instead of traditional tests as they give the same amount of information as them, but with the advantage of allowing the study of the simultaneous impact of multiple predictors and their interactions and the modeling of the experimental data. However, GLM should be replaced by GEE for the study of bilateral asymmetry and in general when paired samples are tested, because GEE are appropriate for correlated data. Copyright © 2013 Wiley Periodicals, Inc.
Reduction from cost-sensitive ordinal ranking to weighted binary classification.
Lin, Hsuan-Tien; Li, Ling
2012-05-01
We present a reduction framework from ordinal ranking to binary classification. The framework consists of three steps: extracting extended examples from the original examples, learning a binary classifier on the extended examples with any binary classification algorithm, and constructing a ranker from the binary classifier. Based on the framework, we show that a weighted 0/1 loss of the binary classifier upper-bounds the mislabeling cost of the ranker, both error-wise and regret-wise. Our framework allows not only the design of good ordinal ranking algorithms based on well-tuned binary classification approaches, but also the derivation of new generalization bounds for ordinal ranking from known bounds for binary classification. In addition, our framework unifies many existing ordinal ranking algorithms, such as perceptron ranking and support vector ordinal regression. When compared empirically on benchmark data sets, some of our newly designed algorithms enjoy advantages in terms of both training speed and generalization performance over existing algorithms. In addition, the newly designed algorithms lead to better cost-sensitive ordinal ranking performance, as well as improved listwise ranking performance.
Modular coils and finite-β operation of a quasi-axially symmetric tokamak
NASA Astrophysics Data System (ADS)
Drevlak, M.
1998-09-01
Quasi-axially symmetric tokamaks (QA tokamaks) are an extension of the conventional tokamak concept. In these devices the magnetic field strength is independent of the generalized toroidal magnetic co-ordinate even though the cross-sectional shape changes. An optimized plasma equilibrium belonging to the class of QA tokamaks has been proposed by Nührenberg. It features the small aspect ratio of a tokamak while allowing part of the rotational transform to be generated by the external field. In this article, two particular aspects of the viability of QA tokamaks are explored, namely the feasibility of modular coils and the possibility of maintaining quasi-axial symmetry in the free-boundary equilibria obtained with the coils found. A set of easily feasible modular coils for the configuration is presented. It was designed using the extended version of the NESCOIL code (Merkel, P., Nucl. Fusion 27 (1987) 867). Using this coil system, free-boundary calculations of the plasma equilibrium were carried out using the NEMEC code (Hirshman, S.P., Van Rij, W.I., Merkel, P., Comput. Phys. Commun. 43 (1986) 143). It is observed that the effects of finite β and net toroidal plasma current can be compensated for with good precision by applying a vertical magnetic field and by separately adjusting the currents of the modular coils. A set of fully three dimensional (3-D) auxiliary coils is proposed to exert control on the rotational transform in the plasma. Deterioration of the quasi-axial symmetry induced by the auxiliary coils can be avoided by adequate adjustment of the currents in the primary coils. Finally, the neoclassical transport properties of the configuration are examined. It is observed that optimization with respect to confinement of the alpha particles can be maintained at operation with finite toroidal current if the aforementioned corrective measures are used. In this case, the neoclassical behaviour is shown to be very similar to that of a conventional tokamak.
Pritikin, Joshua N; Brick, Timothy R; Neale, Michael C
2018-04-01
A novel method for the maximum likelihood estimation of structural equation models (SEM) with both ordinal and continuous indicators is introduced using a flexible multivariate probit model for the ordinal indicators. A full information approach ensures unbiased estimates for data missing at random. Exceeding the capability of prior methods, up to 13 ordinal variables can be included before integration time increases beyond 1 s per row. The method relies on the axiom of conditional probability to split apart the distribution of continuous and ordinal variables. Due to the symmetry of the axiom, two similar methods are available. A simulation study provides evidence that the two similar approaches offer equal accuracy. A further simulation is used to develop a heuristic to automatically select the most computationally efficient approach. Joint ordinal continuous SEM is implemented in OpenMx, free and open-source software.
Study of no-man's land physics in the total-f gyrokinetic code XGC1
NASA Astrophysics Data System (ADS)
Ku, Seung Hoe; Chang, C. S.; Lang, J.
2014-10-01
While the ``transport shortfall'' in the ``no-man's land'' has been observed often in delta-f codes, it has not yet been observed in the global total-f gyrokinetic particle code XGC1. Since understanding the interaction between the edge and core transport appears to be a critical element in the prediction for ITER performance, understanding the no-man's land issue is an important physics research topic. Simulation results using the Holland case will be presented and the physics causing the shortfall phenomenon will be discussed. Nonlinear nonlocal interaction of turbulence, secondary flows, and transport appears to be the key.
Wheeler, David C.; Archer, Kellie J.; Burstyn, Igor; Yu, Kai; Stewart, Patricia A.; Colt, Joanne S.; Baris, Dalsu; Karagas, Margaret R.; Schwenn, Molly; Johnson, Alison; Armenti, Karla; Silverman, Debra T.; Friesen, Melissa C.
2015-01-01
Objectives: To evaluate occupational exposures in case–control studies, exposure assessors typically review each job individually to assign exposure estimates. This process lacks transparency and does not provide a mechanism for recreating the decision rules in other studies. In our previous work, nominal (unordered categorical) classification trees (CTs) generally successfully predicted expert-assessed ordinal exposure estimates (i.e. none, low, medium, high) derived from occupational questionnaire responses, but room for improvement remained. Our objective was to determine if using recently developed ordinal CTs would improve the performance of nominal trees in predicting ordinal occupational diesel exhaust exposure estimates in a case–control study. Methods: We used one nominal and four ordinal CT methods to predict expert-assessed probability, intensity, and frequency estimates of occupational diesel exhaust exposure (each categorized as none, low, medium, or high) derived from questionnaire responses for the 14983 jobs in the New England Bladder Cancer Study. To replicate the common use of a single tree, we applied each method to a single sample of 70% of the jobs, using 15% to test and 15% to validate each method. To characterize variability in performance, we conducted a resampling analysis that repeated the sample draws 100 times. We evaluated agreement between the tree predictions and expert estimates using Somers’ d, which measures differences in terms of ordinal association between predicted and observed scores and can be interpreted similarly to a correlation coefficient. Results: From the resampling analysis, compared with the nominal tree, an ordinal CT method that used a quadratic misclassification function and controlled tree size based on total misclassification cost had a slightly better predictive performance that was statistically significant for the frequency metric (Somers’ d: nominal tree = 0.61; ordinal tree = 0.63) and similar performance for the probability (nominal = 0.65; ordinal = 0.66) and intensity (nominal = 0.65; ordinal = 0.65) metrics. The best ordinal CT predicted fewer cases of large disagreement with the expert assessments (i.e. no exposure predicted for a job with high exposure and vice versa) compared with the nominal tree across all of the exposure metrics. For example, the percent of jobs with expert-assigned high intensity of exposure that the model predicted as no exposure was 29% for the nominal tree and 22% for the best ordinal tree. Conclusions: The overall agreements were similar across CT models; however, the use of ordinal models reduced the magnitude of the discrepancy when disagreements occurred. As the best performing model can vary by situation, researchers should consider evaluating multiple CT methods to maximize the predictive performance within their data. PMID:25433003
Development of Safety Analysis Code System of Beam Transport and Core for Accelerator Driven System
NASA Astrophysics Data System (ADS)
Aizawa, Naoto; Iwasaki, Tomohiko
2014-06-01
Safety analysis code system of beam transport and core for accelerator driven system (ADS) is developed for the analyses of beam transients such as the change of the shape and position of incident beam. The code system consists of the beam transport analysis part and the core analysis part. TRACE 3-D is employed in the beam transport analysis part, and the shape and incident position of beam at the target are calculated. In the core analysis part, the neutronics, thermo-hydraulics and cladding failure analyses are performed by the use of ADS dynamic calculation code ADSE on the basis of the external source database calculated by PHITS and the cross section database calculated by SRAC, and the programs of the cladding failure analysis for thermoelastic and creep. By the use of the code system, beam transient analyses are performed for the ADS proposed by Japan Atomic Energy Agency. As a result, the rapid increase of the cladding temperature happens and the plastic deformation is caused in several seconds. In addition, the cladding is evaluated to be failed by creep within a hundred seconds. These results have shown that the beam transients have caused a cladding failure.
Forward Monte Carlo Computations of Polarized Microwave Radiation
NASA Technical Reports Server (NTRS)
Battaglia, A.; Kummerow, C.
2000-01-01
Microwave radiative transfer computations continue to acquire greater importance as the emphasis in remote sensing shifts towards the understanding of microphysical properties of clouds and with these to better understand the non linear relation between rainfall rates and satellite-observed radiance. A first step toward realistic radiative simulations has been the introduction of techniques capable of treating 3-dimensional geometry being generated by ever more sophisticated cloud resolving models. To date, a series of numerical codes have been developed to treat spherical and randomly oriented axisymmetric particles. Backward and backward-forward Monte Carlo methods are, indeed, efficient in this field. These methods, however, cannot deal properly with oriented particles, which seem to play an important role in polarization signatures over stratiform precipitation. Moreover, beyond the polarization channel, the next generation of fully polarimetric radiometers challenges us to better understand the behavior of the last two Stokes parameters as well. In order to solve the vector radiative transfer equation, one-dimensional numerical models have been developed, These codes, unfortunately, consider the atmosphere as horizontally homogeneous with horizontally infinite plane parallel layers. The next development step for microwave radiative transfer codes must be fully polarized 3-D methods. Recently a 3-D polarized radiative transfer model based on the discrete ordinate method was presented. A forward MC code was developed that treats oriented nonspherical hydrometeors, but only for plane-parallel situations.
NASA Astrophysics Data System (ADS)
Kurceren, Ragip; Modestino, James W.
1998-12-01
The use of forward error-control (FEC) coding, possibly in conjunction with ARQ techniques, has emerged as a promising approach for video transport over ATM networks for cell-loss recovery and/or bit error correction, such as might be required for wireless links. Although FEC provides cell-loss recovery capabilities it also introduces transmission overhead which can possibly cause additional cell losses. A methodology is described to maximize the number of video sources multiplexed at a given quality of service (QoS), measured in terms of decoded cell loss probability, using interlaced FEC codes. The transport channel is modelled as a block interference channel (BIC) and the multiplexer as single server, deterministic service, finite buffer supporting N users. Based upon an information-theoretic characterization of the BIC and large deviation bounds on the buffer overflow probability, the described methodology provides theoretically achievable upper limits on the number of sources multiplexed. Performance of specific coding techniques using interlaced nonbinary Reed-Solomon (RS) codes and binary rate-compatible punctured convolutional (RCPC) codes is illustrated.
Clean Energy in City Codes: A Baseline Analysis of Municipal Codification across the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Jeffrey J.; Aznar, Alexandra; Dane, Alexander
Municipal governments in the United States are well positioned to influence clean energy (energy efficiency and alternative energy) and transportation technology and strategy implementation within their jurisdictions through planning, programs, and codification. Municipal governments are leveraging planning processes and programs to shape their energy futures. There is limited understanding in the literature related to codification, the primary way that municipal governments enact enforceable policies. The authors fill the gap in the literature by documenting the status of municipal codification of clean energy and transportation across the United States. More directly, we leverage online databases of municipal codes to develop nationalmore » and state-specific representative samples of municipal governments by population size. Our analysis finds that municipal governments with the authority to set residential building energy codes within their jurisdictions frequently do so. In some cases, communities set codes higher than their respective state governments. Examination of codes across the nation indicates that municipal governments are employing their code as a policy mechanism to address clean energy and transportation.« less
ITS Version 6 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William
2008-04-01
ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of lineartime-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a methodmore » for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 6, the latest version of ITS, contains (1) improvements to the ITS 5.0 codes, and (2) conversion to Fortran 90. The general user friendliness of the software has been enhanced through memory allocation to reduce the need for users to modify and recompile the code.« less
Impact of San Francisco's toy ordinance on restaurants and children's food purchases, 2011-2012.
Otten, Jennifer J; Saelens, Brian E; Kapphahn, Kristopher I; Hekler, Eric B; Buman, Matthew P; Goldstein, Benjamin A; Krukowski, Rebecca A; O'Donohue, Laura S; Gardner, Christopher D; King, Abby C
2014-07-17
In 2011, San Francisco passed the first citywide ordinance to improve the nutritional standards of children's meals sold at restaurants by preventing the giving away of free toys or other incentives with meals unless nutritional criteria were met. This study examined the impact of the Healthy Food Incentives Ordinance at ordinance-affected restaurants on restaurant response (eg, toy-distribution practices, change in children's menus), and the energy and nutrient content of all orders and children's-meal-only orders purchased for children aged 0 through 12 years. Restaurant responses were examined from January 2010 through March 2012. Parent-caregiver/child dyads (n = 762) who were restaurant customers were surveyed at 2 points before and 1 seasonally matched point after ordinance enactment at Chain A and B restaurants (n = 30) in 2011 and 2012. Both restaurant chains responded to the ordinance by selling toys separately from children's meals, but neither changed their menus to meet ordinance-specified nutrition criteria. Among children for whom children's meals were purchased, significant decreases in kilocalories, sodium, and fat per order were likely due to changes in children's side dishes and beverages at Chain A. Although the changes at Chain A did not appear to be directly in response to the ordinance, the transition to a more healthful beverage and default side dish was consistent with the intent of the ordinance. Study results underscore the importance of policy wording, support the concept that more healthful defaults may be a powerful approach for improving dietary intake, and suggest that public policies may contribute to positive restaurant changes.
Path Toward a Unifid Geometry for Radiation Transport
NASA Technical Reports Server (NTRS)
Lee, Kerry; Barzilla, Janet; Davis, Andrew; Zachmann
2014-01-01
The Direct Accelerated Geometry for Radiation Analysis and Design (DAGRAD) element of the RadWorks Project under Advanced Exploration Systems (AES) within the Space Technology Mission Directorate (STMD) of NASA will enable new designs and concepts of operation for radiation risk assessment, mitigation and protection. This element is designed to produce a solution that will allow NASA to calculate the transport of space radiation through complex computer-aided design (CAD) models using the state-of-the-art analytic and Monte Carlo radiation transport codes. Due to the inherent hazard of astronaut and spacecraft exposure to ionizing radiation in low-Earth orbit (LEO) or in deep space, risk analyses must be performed for all crew vehicles and habitats. Incorporating these analyses into the design process can minimize the mass needed solely for radiation protection. Transport of the radiation fields as they pass through shielding and body materials can be simulated using Monte Carlo techniques or described by the Boltzmann equation, which is obtained by balancing changes in particle fluxes as they traverse a small volume of material with the gains and losses caused by atomic and nuclear collisions. Deterministic codes that solve the Boltzmann transport equation, such as HZETRN [high charge and energy transport code developed by NASA Langley Research Center (LaRC)], are generally computationally faster than Monte Carlo codes such as FLUKA, GEANT4, MCNP(X) or PHITS; however, they are currently limited to transport in one dimension, which poorly represents the secondary light ion and neutron radiation fields. NASA currently uses HZETRN space radiation transport software, both because it is computationally efficient and because proven methods have been developed for using this software to analyze complex geometries. Although Monte Carlo codes describe the relevant physics in a fully three-dimensional manner, their computational costs have thus far prevented their widespread use for analysis of complex CAD models, leading to the creation and maintenance of toolkit-specific simplistic geometry models. The work presented here builds on the Direct Accelerated Geometry Monte Carlo (DAGMC) toolkit developed for use with the Monte Carlo N-Particle (MCNP) transport code. The workflow for achieving radiation transport on CAD models using MCNP and FLUKA has been demonstrated and the results of analyses on realistic spacecraft/habitats will be presented. Future work is planned that will further automate this process and enable the use of multiple radiation transport codes on identical geometry models imported from CAD. This effort will enhance the modeling tools used by NASA to accurately evaluate the astronaut space radiation risk and accurately determine the protection provided by as-designed exploration mission vehicles and habitats
Boltzmann Transport Code Update: Parallelization and Integrated Design Updates
NASA Technical Reports Server (NTRS)
Heinbockel, J. H.; Nealy, J. E.; DeAngelis, G.; Feldman, G. A.; Chokshi, S.
2003-01-01
The on going efforts at developing a web site for radiation analysis is expected to result in an increased usage of the High Charge and Energy Transport Code HZETRN. It would be nice to be able to do the requested calculations quickly and efficiently. Therefore the question arose, "Could the implementation of parallel processing speed up the calculations required?" To answer this question two modifications of the HZETRN computer code were created. The first modification selected the shield material of Al(2219) , then polyethylene and then Al(2219). The modified Fortran code was labeled 1SSTRN.F. The second modification considered the shield material of CO2 and Martian regolith. This modified Fortran code was labeled MARSTRN.F.
NASA Astrophysics Data System (ADS)
Andre, R.; Carlsson, J.; Gorelenkova, M.; Jardin, S.; Kaye, S.; Poli, F.; Yuan, X.
2016-10-01
TRANSP is an integrated interpretive and predictive transport analysis tool that incorporates state of the art heating/current drive sources and transport models. The treatments and transport solvers are becoming increasingly sophisticated and comprehensive. For instance, the ISOLVER component provides a free boundary equilibrium solution, while the PT- SOLVER transport solver is especially suited for stiff transport models such as TGLF. TRANSP incorporates high fidelity heating and current drive source models, such as NUBEAM for neutral beam injection, the beam tracing code TORBEAM for EC, TORIC for ICRF, the ray tracing TORAY and GENRAY for EC. The implementation of selected components makes efficient use of MPI for speed up of code calculations. Recently the GENRAY-CQL3D solver for modeling of LH heating and current drive has been implemented and currently being extended to multiple antennas, to allow modeling of EAST discharges. Also, GENRAY+CQL3D is being extended to the use of EC/EBW and of HHFW for NSTX-U. This poster will describe present uses of the code worldwide, as well as plans for upgrading the physics modules and code framework. Work supported by the US Department of Energy under DE-AC02-CH0911466.
BRYNTRN: A baryon transport model
NASA Technical Reports Server (NTRS)
Wilson, John W.; Townsend, Lawrence W.; Nealy, John E.; Chun, Sang Y.; Hong, B. S.; Buck, Warren W.; Lamkin, S. L.; Ganapol, Barry D.; Khan, Ferdous; Cucinotta, Francis A.
1989-01-01
The development of an interaction data base and a numerical solution to the transport of baryons through an arbitrary shield material based on a straight ahead approximation of the Boltzmann equation are described. The code is most accurate for continuous energy boundary values, but gives reasonable results for discrete spectra at the boundary using even a relatively coarse energy grid (30 points) and large spatial increments (1 cm in H2O). The resulting computer code is self-contained, efficient and ready to use. The code requires only a very small fraction of the computer resources required for Monte Carlo codes.
ecode - Electron Transport Algorithm Testing v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franke, Brian C.; Olson, Aaron J.; Bruss, Donald Eugene
2016-10-05
ecode is a Monte Carlo code used for testing algorithms related to electron transport. The code can read basic physics parameters, such as energy-dependent stopping powers and screening parameters. The code permits simple planar geometries of slabs or cubes. Parallelization consists of domain replication, with work distributed at the start of the calculation and statistical results gathered at the end of the calculation. Some basic routines (such as input parsing, random number generation, and statistics processing) are shared with the Integrated Tiger Series codes. A variety of algorithms for uncertainty propagation are incorporated based on the stochastic collocation and stochasticmore » Galerkin methods. These permit uncertainty only in the total and angular scattering cross sections. The code contains algorithms for simulating stochastic mixtures of two materials. The physics is approximate, ranging from mono-energetic and isotropic scattering to screened Rutherford angular scattering and Rutherford energy-loss scattering (simple electron transport models). No production of secondary particles is implemented, and no photon physics is implemented.« less
Effect of temperature oscillation on thermal characteristics of an aluminum thin film
NASA Astrophysics Data System (ADS)
Ali, H.; Yilbas, B. S.
2014-12-01
Energy transport in aluminum thin film is examined due to temperature disturbance at the film edge. Thermal separation of electron and lattice systems is considered in the analysis, and temperature variation in each sub-system is formulated. The transient analysis of frequency-dependent and frequency-independent phonon radiative transport incorporating electron-phonon coupling is carried out in the thin film. The dispersion relations of aluminum are used in the frequency-dependent analysis. Temperature at one edge of the film is oscillated at various frequencies, and temporal response of phonon intensity distribution in the film is predicted numerically using the discrete ordinate method. To assess the phonon transport characteristics, equivalent equilibrium temperature is introduced. It is found that equivalent equilibrium temperature in the electron and lattice sub-systems oscillates due to temperature oscillation at the film edge. The amplitude of temperature oscillation reduces as the distance along the film thickness increases toward the low-temperature edge of the film. Equivalent equilibrium temperature attains lower values for the frequency-dependent solution of the phonon transport equation than that corresponding to frequency-independent solution.
Vectorization of transport and diffusion computations on the CDC Cyber 205
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Shumays, I.K.
1986-01-01
The development and testing of alternative numerical methods and computational algorithms specifically designed for the vectorization of transport and diffusion computations on a Control Data Corporation (CDC) Cyber 205 vector computer are described. Two solution methods for the discrete ordinates approximation to the transport equation are summarized and compared. Factors of 4 to 7 reduction in run times for certain large transport problems were achieved on a Cyber 205 as compared with run times on a CDC-7600. The solution of tridiagonal systems of linear equations, central to several efficient numerical methods for multidimensional diffusion computations and essential for fluid flowmore » and other physics and engineering problems, is also dealt with. Among the methods tested, a combined odd-even cyclic reduction and modified Cholesky factorization algorithm for solving linear symmetric positive definite tridiagonal systems is found to be the most effective for these systems on a Cyber 205. For large tridiagonal systems, computation with this algorithm is an order of magnitude faster on a Cyber 205 than computation with the best algorithm for tridiagonal systems on a CDC-7600.« less
Differential Cross Section Kinematics for 3-dimensional Transport Codes
NASA Technical Reports Server (NTRS)
Norbury, John W.; Dick, Frank
2008-01-01
In support of the development of 3-dimensional transport codes, this paper derives the relevant relativistic particle kinematic theory. Formulas are given for invariant, spectral and angular distributions in both the lab (spacecraft) and center of momentum frames, for collisions involving 2, 3 and n - body final states.
49 CFR 171.25 - Additional requirements for the use of the IMDG Code.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 176 of this subchapter. (3) Packages containing primary lithium batteries and cells that are transported in accordance with Special Provision 188 of the IMDG Code must be marked “PRIMARY LITHIUM BATTERIES—FORBIDDEN FOR TRANSPORT ABOARD PASSENGER AIRCRAFT” or “LITHIUM METAL BATTERIES—FORBIDDEN FOR...
49 CFR 171.25 - Additional requirements for the use of the IMDG Code.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 176 of this subchapter. (3) Packages containing primary lithium batteries and cells that are transported in accordance with Special Provision 188 of the IMDG Code must be marked “PRIMARY LITHIUM BATTERIES—FORBIDDEN FOR TRANSPORT ABOARD PASSENGER AIRCRAFT” or “LITHIUM METAL BATTERIES—FORBIDDEN FOR...
49 CFR 171.25 - Additional requirements for the use of the IMDG Code.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 176 of this subchapter. (3) Packages containing primary lithium batteries and cells that are transported in accordance with Special Provision 188 of the IMDG Code must be marked “PRIMARY LITHIUM BATTERIES—FORBIDDEN FOR TRANSPORT ABOARD PASSENGER AIRCRAFT” or “LITHIUM METAL BATTERIES—FORBIDDEN FOR...
Goodman, William M; Ma, Zhenfeng; Andrade, Angie
2015-06-01
This four-stage study culminated in a game interface designed to calibrate people's perceptions of net risk (combining frequency and severity), in contexts where risks are elevated from their accepted, "typical" values, as when avalanche threats elevate the risks of "skiing" above levels skiers normally accept. Risk prompts are displayed dynamically, in naturalistic language, and not, for example, as static displays of dollar amounts or probabilities. Individual differences are measured. In Stage 1 (pilot), focus groups (n=9) piloted procedures, visual prompts, and examples of contexts where risks elevated from the "usual," for use in upcoming stages. In Stage 2 (exploratory), participants (primarily students; n=119; mean age, 20.1 years; 64 percent male) were assigned to risk contexts, answered demographic and risk-history questions, and then matched risk-description prompts to perceived "appropriate" levels along an ordinal risk scale. Descriptive measures and graphs showed response distributions; chi-squared analyses compared responses for different demographics. In Stage 3 (manipulating "cards"), participants (n=80; mean age, 37 years; 60 percent male) matched naturalistic risk prompts with ordinal risk positions. Regressions compared cards' placements with their "expected" (per exploratory Stage 2) placements. In Stage 4, the interface was coded in the Unity(®) (implemented at Business and IT Capstone, University of Ontario Institute of Technology, Oshawa, ON, Canada) development environment. In Stage 1, ambiguities in draft wordings/displays for Stage 2 were identified and corrected. Three risk contexts emerged: traffic/hidden intersection; skiing/avalanche; and swimming/drowning. In Stage 2, for traffic and skiing contexts, responses relating ordinal risk categories to realistic examples were observed to cluster around values potentially usable as markers. No associations appeared with demographic variables. In Stage 3, actual and "expected" ordinal-risk-category assignments for naturalistic risk markers were well correlated. "Approximate mappings" between markers and categories appeared stable. In Stage 4, the interface design incorporated the "approximate mappings"-yet also incorporated a "tuning phase," for measuring and recording individual differences. The interface can capture individual differences in risk perception on two key dimensions (frequency and severity)-viewed in dynamic, naturalistic scenarios, where risk levels are increased.
Nonperturbative methods in HZE ion transport
NASA Technical Reports Server (NTRS)
Wilson, John W.; Badavi, Francis F.; Costen, Robert C.; Shinn, Judy L.
1993-01-01
A nonperturbative analytic solution of the high charge and energy (HZE) Green's function is used to implement a computer code for laboratory ion beam transport. The code is established to operate on the Langley Research Center nuclear fragmentation model used in engineering applications. Computational procedures are established to generate linear energy transfer (LET) distributions for a specified ion beam and target for comparison with experimental measurements. The code is highly efficient and compares well with the perturbation approximations.
Overstatement in happiness reporting with ordinal, bounded scale.
Tanaka, Saori C; Yamada, Katsunori; Kitada, Ryo; Tanaka, Satoshi; Sugawara, Sho K; Ohtake, Fumio; Sadato, Norihiro
2016-02-18
There are various methods by which people can express subjective evaluations quantitatively. For example, happiness can be measured on a scale from 1 to 10, and has been suggested as a measure of economic policy. However, there is resistance to these types of measurement from economists, who often regard welfare to be a cardinal, unbounded quantity. It is unclear whether there are differences between subjective evaluation reported on ordinal, bounded scales and on cardinal, unbounded scales. To answer this question, we developed functional magnetic resonance imaging experimental tasks for reporting happiness from monetary gain and the perception of visual stimulus. Subjects tended to report higher values when they used ordinal scales instead of cardinal scales. There were differences in neural activation between ordinal and cardinal reporting scales. The posterior parietal area showed greater activation when subjects used an ordinal scale instead of a cardinal scale. Importantly, the striatum exhibited greater activation when asked to report happiness on an ordinal scale than when asked to report on a cardinal scale. The finding that ordinal (bounded) scales are associated with higher reported happiness and greater activation in the reward system shows that overstatement bias in happiness data must be considered.
75 FR 75694 - Klamath Tribes Liquor Control Ordinance Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-06
... DEPARTMENT OF THE INTERIOR Bureau of Indian Affairs Klamath Tribes Liquor Control Ordinance... Control Ordinance of the Klamath Tribes. This correction removes incorrect references to an amended... follows: SUMMARY: This notice publishes the Secretary's certification of the Klamath Tribes Liquor Control...
NASA Technical Reports Server (NTRS)
Ladson, C. L.; Brooks, Cuyler W., Jr.
1975-01-01
A computer program developed to calculate the ordinates and surface slopes of any thickness, symmetrical or cambered NACA airfoil of the 4-digit, 4-digit modified, 5-digit, and 16-series airfoil families is presented. The program produces plots of the airfoil nondimensional ordinates and a punch card output of ordinates in the input format of a readily available program for determining the pressure distributions of arbitrary airfoils in subsonic potential viscous flow.
NASA Astrophysics Data System (ADS)
Zamani, K.; Bombardelli, F. A.
2014-12-01
Verification of geophysics codes is imperative to avoid serious academic as well as practical consequences. In case that access to any given source code is not possible, the Method of Manufactured Solution (MMS) cannot be employed in code verification. In contrast, employing the Method of Exact Solution (MES) has several practical advantages. In this research, we first provide four new one-dimensional analytical solutions designed for code verification; these solutions are able to uncover the particular imperfections of the Advection-diffusion-reaction equation, such as nonlinear advection, diffusion or source terms, as well as non-constant coefficient equations. After that, we provide a solution of Burgers' equation in a novel setup. Proposed solutions satisfy the continuity of mass for the ambient flow, which is a crucial factor for coupled hydrodynamics-transport solvers. Then, we use the derived analytical solutions for code verification. To clarify gray-literature issues in the verification of transport codes, we designed a comprehensive test suite to uncover any imperfection in transport solvers via a hierarchical increase in the level of tests' complexity. The test suite includes hundreds of unit tests and system tests to check vis-a-vis the portions of the code. Examples for checking the suite start by testing a simple case of unidirectional advection; then, bidirectional advection and tidal flow and build up to nonlinear cases. We design tests to check nonlinearity in velocity, dispersivity and reactions. The concealing effect of scales (Peclet and Damkohler numbers) on the mesh-convergence study and appropriate remedies are also discussed. For the cases in which the appropriate benchmarks for mesh convergence study are not available, we utilize symmetry. Auxiliary subroutines for automation of the test suite and report generation are designed. All in all, the test package is not only a robust tool for code verification but it also provides comprehensive insight on the ADR solvers capabilities. Such information is essential for any rigorous computational modeling of ADR equation for surface/subsurface pollution transport. We also convey our experiences in finding several errors which were not detectable with routine verification techniques.
Numerical developments for short-pulsed Near Infra-Red laser spectroscopy. Part I: direct treatment
NASA Astrophysics Data System (ADS)
Boulanger, Joan; Charette, André
2005-03-01
This two part study is devoted to the numerical treatment of short-pulsed laser near infra-red spectroscopy. The overall goal is to address the possibility of numerical inverse treatment based on a recently developed direct model to solve the transient radiative transfer equation. This model has been constructed in order to incorporate the last improvements in short-pulsed laser interaction with semi-transparent media and combine a discrete ordinates computing of the implicit source term appearing in the radiative transfer equation with an explicit treatment of the transport of the light intensity using advection schemes, a method encountered in reactive flow dynamics. The incident collimated beam is analytically solved through Bouger Beer Lambert extinction law. In this first part, the direct model is extended to fully non-homogeneous materials and tested with two different spatial schemes in order to be adapted to the inversion methods presented in the following second part. As a first point, fundamental methods and schemes used in the direct model are presented. Then, tests are conducted by comparison with numerical simulations given as references. In a third and last part, multi-dimensional extensions of the code are provided. This allows presentation of numerical results of short pulses propagation in 1, 2 and 3D homogeneous and non-homogeneous materials given some parametrical studies on medium properties and pulse shape. For comparison, an integral method adapted to non-homogeneous media irradiated by a pulsed laser beam is also developed for the 3D case.
Benchmark measurements and calculations of a 3-dimensional neutron streaming experiment
NASA Astrophysics Data System (ADS)
Barnett, D. A., Jr.
1991-02-01
An experimental assembly known as the Dog-Legged Void assembly was constructed to measure the effect of neutron streaming in iron and void regions. The primary purpose of the measurements was to provide benchmark data against which various neutron transport calculation tools could be compared. The measurements included neutron flux spectra at four places and integral measurements at two places in the iron streaming path as well as integral measurements along several axial traverses. These data have been used in the verification of Oak Ridge National Laboratory's three-dimensional discrete ordinates code, TORT. For a base case calculation using one-half inch mesh spacing, finite difference spatial differencing, an S(sub 16) quadrature and P(sub 1) cross sections in the MUFT multigroup structure, the calculated solution agreed to within 18 percent with the spectral measurements and to within 24 percent of the integral measurements. Variations on the base case using a fewgroup energy structure and P(sub 1) and P(sub 3) cross sections showed similar agreement. Calculations using a linear nodal spatial differencing scheme and fewgroup cross sections also showed similar agreement. For the same mesh size, the nodal method was seen to require 2.2 times as much CPU time as the finite difference method. A nodal calculation using a typical mesh spacing of 2 inches, which had approximately 32 times fewer mesh cells than the base case, agreed with the measurements to within 34 percent and yet required on 8 percent of the CPU time.
The added value of ordinal analysis in clinical trials: an example in traumatic brain injury.
Roozenbeek, Bob; Lingsma, Hester F; Perel, Pablo; Edwards, Phil; Roberts, Ian; Murray, Gordon D; Maas, Andrew Ir; Steyerberg, Ewout W
2011-01-01
In clinical trials, ordinal outcome measures are often dichotomized into two categories. In traumatic brain injury (TBI) the 5-point Glasgow outcome scale (GOS) is collapsed into unfavourable versus favourable outcome. Simulation studies have shown that exploiting the ordinal nature of the GOS increases chances of detecting treatment effects. The objective of this study is to quantify the benefits of ordinal analysis in the real-life situation of a large TBI trial. We used data from the CRASH trial that investigated the efficacy of corticosteroids in TBI patients (n = 9,554). We applied two techniques for ordinal analysis: proportional odds analysis and the sliding dichotomy approach, where the GOS is dichotomized at different cut-offs according to baseline prognostic risk. These approaches were compared to dichotomous analysis. The information density in each analysis was indicated by a Wald statistic. All analyses were adjusted for baseline characteristics. Dichotomous analysis of the six-month GOS showed a non-significant treatment effect (OR = 1.09, 95% CI 0.98 to 1.21, P = 0.096). Ordinal analysis with proportional odds regression or sliding dichotomy showed highly statistically significant treatment effects (OR 1.15, 95% CI 1.06 to 1.25, P = 0.0007 and 1.19, 95% CI 1.08 to 1.30, P = 0.0002), with 2.05-fold and 2.56-fold higher information density compared to the dichotomous approach respectively. Analysis of the CRASH trial data confirmed that ordinal analysis of outcome substantially increases statistical power. We expect these results to hold for other fields of critical care medicine that use ordinal outcome measures and recommend that future trials adopt ordinal analyses. This will permit detection of smaller treatment effects.
Impact of San Francisco’s Toy Ordinance on Restaurants and Children’s Food Purchases, 2011–2012
Saelens, Brian E.; Kapphahn, Kristopher I.; Hekler, Eric B.; Buman, Matthew P.; Goldstein, Benjamin A.; Krukowski, Rebecca A.; O’Donohue, Laura S.; Gardner, Christopher D.; King, Abby C.
2014-01-01
Introduction In 2011, San Francisco passed the first citywide ordinance to improve the nutritional standards of children’s meals sold at restaurants by preventing the giving away of free toys or other incentives with meals unless nutritional criteria were met. This study examined the impact of the Healthy Food Incentives Ordinance at ordinance-affected restaurants on restaurant response (eg, toy-distribution practices, change in children’s menus), and the energy and nutrient content of all orders and children’s-meal–only orders purchased for children aged 0 through 12 years. Methods Restaurant responses were examined from January 2010 through March 2012. Parent–caregiver/child dyads (n = 762) who were restaurant customers were surveyed at 2 points before and 1 seasonally matched point after ordinance enactment at Chain A and B restaurants (n = 30) in 2011 and 2012. Results Both restaurant chains responded to the ordinance by selling toys separately from children’s meals, but neither changed their menus to meet ordinance-specified nutrition criteria. Among children for whom children’s meals were purchased, significant decreases in kilocalories, sodium, and fat per order were likely due to changes in children’s side dishes and beverages at Chain A. Conclusion Although the changes at Chain A did not appear to be directly in response to the ordinance, the transition to a more healthful beverage and default side dish was consistent with the intent of the ordinance. Study results underscore the importance of policy wording, support the concept that more healthful defaults may be a powerful approach for improving dietary intake, and suggest that public policies may contribute to positive restaurant changes. PMID:25032837
Multivariate decoding of brain images using ordinal regression.
Doyle, O M; Ashburner, J; Zelaya, F O; Williams, S C R; Mehta, M A; Marquand, A F
2013-11-01
Neuroimaging data are increasingly being used to predict potential outcomes or groupings, such as clinical severity, drug dose response, and transitional illness states. In these examples, the variable (target) we want to predict is ordinal in nature. Conventional classification schemes assume that the targets are nominal and hence ignore their ranked nature, whereas parametric and/or non-parametric regression models enforce a metric notion of distance between classes. Here, we propose a novel, alternative multivariate approach that overcomes these limitations - whole brain probabilistic ordinal regression using a Gaussian process framework. We applied this technique to two data sets of pharmacological neuroimaging data from healthy volunteers. The first study was designed to investigate the effect of ketamine on brain activity and its subsequent modulation with two compounds - lamotrigine and risperidone. The second study investigates the effect of scopolamine on cerebral blood flow and its modulation using donepezil. We compared ordinal regression to multi-class classification schemes and metric regression. Considering the modulation of ketamine with lamotrigine, we found that ordinal regression significantly outperformed multi-class classification and metric regression in terms of accuracy and mean absolute error. However, for risperidone ordinal regression significantly outperformed metric regression but performed similarly to multi-class classification both in terms of accuracy and mean absolute error. For the scopolamine data set, ordinal regression was found to outperform both multi-class and metric regression techniques considering the regional cerebral blood flow in the anterior cingulate cortex. Ordinal regression was thus the only method that performed well in all cases. Our results indicate the potential of an ordinal regression approach for neuroimaging data while providing a fully probabilistic framework with elegant approaches for model selection. Copyright © 2013. Published by Elsevier Inc.
Integrated modelling framework for short pulse high energy density physics experiments
NASA Astrophysics Data System (ADS)
Sircombe, N. J.; Hughes, S. J.; Ramsay, M. G.
2016-03-01
Modelling experimental campaigns on the Orion laser at AWE, and developing a viable point-design for fast ignition (FI), calls for a multi-scale approach; a complete description of the problem would require an extensive range of physics which cannot realistically be included in a single code. For modelling the laser-plasma interaction (LPI) we need a fine mesh which can capture the dispersion of electromagnetic waves, and a kinetic model for each plasma species. In the dense material of the bulk target, away from the LPI region, collisional physics dominates. The transport of hot particles generated by the action of the laser is dependent on their slowing and stopping in the dense material and their need to draw a return current. These effects will heat the target, which in turn influences transport. On longer timescales, the hydrodynamic response of the target will begin to play a role as the pressure generated from isochoric heating begins to take effect. Recent effort at AWE [1] has focussed on the development of an integrated code suite based on: the particle in cell code EPOCH, to model LPI; the Monte-Carlo electron transport code THOR, to model the onward transport of hot electrons; and the radiation hydrodynamics code CORVUS, to model the hydrodynamic response of the target. We outline the methodology adopted, elucidate on the advantages of a robustly integrated code suite compared to a single code approach, demonstrate the integrated code suite's application to modelling the heating of buried layers on Orion, and assess the potential of such experiments for the validation of modelling capability in advance of more ambitious HEDP experiments, as a step towards a predictive modelling capability for FI.
The Outlier Detection for Ordinal Data Using Scalling Technique of Regression Coefficients
NASA Astrophysics Data System (ADS)
Adnan, Arisman; Sugiarto, Sigit
2017-06-01
The aims of this study is to detect the outliers by using coefficients of Ordinal Logistic Regression (OLR) for the case of k category responses where the score from 1 (the best) to 8 (the worst). We detect them by using the sum of moduli of the ordinal regression coefficients calculated by jackknife technique. This technique is improved by scalling the regression coefficients to their means. R language has been used on a set of ordinal data from reference distribution. Furthermore, we compare this approach by using studentised residual plots of jackknife technique for ANOVA (Analysis of Variance) and OLR. This study shows that the jackknifing technique along with the proper scaling may lead us to reveal outliers in ordinal regression reasonably well.
25 CFR 522.2 - Submission requirements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR APPROVAL OF CLASS II AND CLASS III ORDINANCES AND RESOLUTIONS SUBMISSION OF GAMING ORDINANCE OR RESOLUTION § 522.2 Submission requirements. A tribe... officials and key employees; (d) Copies of all tribal gaming regulations; (e) When an ordinance or...
Cable Television Report and Suggested Ordinance.
ERIC Educational Resources Information Center
League of California Cities, Sacramento.
Guidelines and suggested ordinances for cable television regulation by local governments are comprehensively discussed in this report. The emphasis is placed on franchising the cable operator. Seventeen legal aspects of franchising are reviewed, and an exemplary ordinance is presented. In addition, current statistics about cable franchising in…
Borton, J
1996-12-01
This paper examines the co-ordination strategies developed to respond to the Great Lakes crisis following the events of April 1994. It analyses the different functions and mechanisms which sought to achieve a co-ordinated response--ranging from facilitation at one extreme to management and direction at the other. The different regimes developed to facilitate co-ordination within Rwanda and neighbouring countries, focusing on both inter-agency and inter-country co-ordination issues, are then analysed. Finally, the paper highlights the absence of mechanisms to achieve coherence between the humanitarian, political and security domains. It concludes that effective co-ordination is critical not only to achieve programme efficiency, but to ensure that the appropriate instruments and strategies to respond to complex political emergencies are in place. It proposes a radical re-shaping of international humanitarian, political and security institutions, particularly the United Nations, to improve the effectiveness of humanitarian and political responses to crises such as that in the Great Lakes.
No toy for you! The healthy food incentives ordinance: paternalism or consumer protection?
Etow, Alexis M
2012-01-01
The newest approach to discouraging children's unhealthy eating habits, amidst increasing rates of childhood obesity and other diet-related diseases, seeks to ban something that is not even edible. In 2010, San Francisco enacted the Healthy Food Incentives Ordinance, which prohibits toys in kids' meals if the meals do not meet certain nutritional requirements. Notwithstanding the Ordinance's impact on interstate commerce or potential infringement on companies' commercial speech rights and on parents' rights to determine what their children eat, this Comment argues that the Ordinance does not violate the dormant Commerce Clause, the First Amendment, or substantive due process. The irony is that although the Ordinance likely avoids the constitutional hurdles that hindered earlier measures aimed at childhood obesity, it intrudes on civil liberties more than its predecessors. This Comment analyzes the legality of the Healthy Food Incentives Ordinance to understand its implications on subsequent legislation aimed at combating childhood obesity and on the progression of public health law.
Muon simulation codes MUSIC and MUSUN for underground physics
NASA Astrophysics Data System (ADS)
Kudryavtsev, V. A.
2009-03-01
The paper describes two Monte Carlo codes dedicated to muon simulations: MUSIC (MUon SImulation Code) and MUSUN (MUon Simulations UNderground). MUSIC is a package for muon transport through matter. It is particularly useful for propagating muons through large thickness of rock or water, for instance from the surface down to underground/underwater laboratory. MUSUN is designed to use the results of muon transport through rock/water to generate muons in or around underground laboratory taking into account their energy spectrum and angular distribution.
Approximate Green's function methods for HZE transport in multilayered materials
NASA Technical Reports Server (NTRS)
Wilson, John W.; Badavi, Francis F.; Shinn, Judy L.; Costen, Robert C.
1993-01-01
A nonperturbative analytic solution of the high charge and energy (HZE) Green's function is used to implement a computer code for laboratory ion beam transport in multilayered materials. The code is established to operate on the Langley nuclear fragmentation model used in engineering applications. Computational procedures are established to generate linear energy transfer (LET) distributions for a specified ion beam and target for comparison with experimental measurements. The code was found to be highly efficient and compared well with the perturbation approximation.
TEMPEST code simulations of hydrogen distribution in reactor containment structures. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trent, D.S.; Eyler, L.L.
The mass transport version of the TEMPEST computer code was used to simulate hydrogen distribution in geometric configurations relevant to reactor containment structures. Predicted results of Battelle-Frankfurt hydrogen distribution tests 1 to 6, and 12 are presented. Agreement between predictions and experimental data is good. Best agreement is obtained using the k-epsilon turbulence model in TEMPEST in flow cases where turbulent diffusion and stable stratification are dominant mechanisms affecting transport. The code's general analysis capabilities are summarized.
14 CFR 257.6 - Effective and compliance dates.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the selling carrier is not the transporting carrier and (ii) Of the transporting carrier's identity... transportation involving a code-share arrangement of the transporting carrier's corporate name and any other name...
14 CFR 257.6 - Effective and compliance dates.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the selling carrier is not the transporting carrier and (ii) Of the transporting carrier's identity... transportation involving a code-share arrangement of the transporting carrier's corporate name and any other name...
14 CFR 257.6 - Effective and compliance dates.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the selling carrier is not the transporting carrier and (ii) Of the transporting carrier's identity... transportation involving a code-share arrangement of the transporting carrier's corporate name and any other name...
14 CFR 257.6 - Effective and compliance dates.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the selling carrier is not the transporting carrier and (ii) Of the transporting carrier's identity... transportation involving a code-share arrangement of the transporting carrier's corporate name and any other name...
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-05-17
PelePhysics is a suite of physics packages that provides functionality of use to reacting hydrodynamics CFD codes. The initial release includes an interface to reaction rate mechanism evaluation, transport coefficient evaluation, and a generalized equation of state (EOS) facility. Both generic evaluators and interfaces to code from externally available tools (Fuego for chemical rates, EGLib for transport coefficients) are provided.
Analysis of JT-60SA operational scenarios
NASA Astrophysics Data System (ADS)
Garzotti, L.; Barbato, E.; Garcia, J.; Hayashi, N.; Voitsekhovitch, I.; Giruzzi, G.; Maget, P.; Romanelli, M.; Saarelma, S.; Stankiewitz, R.; Yoshida, M.; Zagórski, R.
2018-02-01
Reference scenarios for the JT-60SA tokamak have been simulated with one-dimensional transport codes to assess the stationary state of the flat-top phase and provide a profile database for further physics studies (e.g. MHD stability, gyrokinetic analysis) and diagnostics design. The types of scenario considered vary from pulsed standard H-mode to advanced non-inductive steady-state plasmas. In this paper we present the results obtained with the ASTRA, CRONOS, JINTRAC and TOPICS codes equipped with the Bohm/gyro-Bohm, CDBM and GLF23 transport models. The scenarios analysed here are: a standard ELMy H-mode, a hybrid scenario and a non-inductive steady state plasma, with operational parameters from the JT-60SA research plan. Several simulations of the scenarios under consideration have been performed with the above mentioned codes and transport models. The results from the different codes are in broad agreement and the main plasma parameters generally agree well with the zero dimensional estimates reported previously. The sensitivity of the results to different transport models and, in some cases, to the ELM/pedestal model has been investigated.
NASA Astrophysics Data System (ADS)
Papior, Nick; Lorente, Nicolás; Frederiksen, Thomas; García, Alberto; Brandbyge, Mads
2017-03-01
We present novel methods implemented within the non-equilibrium Green function code (NEGF) TRANSIESTA based on density functional theory (DFT). Our flexible, next-generation DFT-NEGF code handles devices with one or multiple electrodes (Ne ≥ 1) with individual chemical potentials and electronic temperatures. We describe its novel methods for electrostatic gating, contour optimizations, and assertion of charge conservation, as well as the newly implemented algorithms for optimized and scalable matrix inversion, performance-critical pivoting, and hybrid parallelization. Additionally, a generic NEGF "post-processing" code (TBTRANS/PHTRANS) for electron and phonon transport is presented with several novelties such as Hamiltonian interpolations, Ne ≥ 1 electrode capability, bond-currents, generalized interface for user-defined tight-binding transport, transmission projection using eigenstates of a projected Hamiltonian, and fast inversion algorithms for large-scale simulations easily exceeding 106 atoms on workstation computers. The new features of both codes are demonstrated and bench-marked for relevant test systems.
Morse Monte Carlo Radiation Transport Code System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emmett, M.B.
1975-02-01
The report contains sections containing descriptions of the MORSE and PICTURE codes, input descriptions, sample problems, deviations of the physical equations and explanations of the various error messages. The MORSE code is a multipurpose neutron and gamma-ray transport Monte Carlo code. Time dependence for both shielding and criticality problems is provided. General three-dimensional geometry may be used with an albedo option available at any material surface. The PICTURE code provide aid in preparing correct input data for the combinatorial geometry package CG. It provides a printed view of arbitrary two-dimensional slices through the geometry. By inspecting these pictures one maymore » determine if the geometry specified by the input cards is indeed the desired geometry. 23 refs. (WRF)« less
NASA Astrophysics Data System (ADS)
Jara, Daniel; de Dreuzy, Jean-Raynald; Cochepin, Benoit
2017-12-01
Reactive transport modeling contributes to understand geophysical and geochemical processes in subsurface environments. Operator splitting methods have been proposed as non-intrusive coupling techniques that optimize the use of existing chemistry and transport codes. In this spirit, we propose a coupler relying on external geochemical and transport codes with appropriate operator segmentation that enables possible developments of additional splitting methods. We provide an object-oriented implementation in TReacLab developed in the MATLAB environment in a free open source frame with an accessible repository. TReacLab contains classical coupling methods, template interfaces and calling functions for two classical transport and reactive software (PHREEQC and COMSOL). It is tested on four classical benchmarks with homogeneous and heterogeneous reactions at equilibrium or kinetically-controlled. We show that full decoupling to the implementation level has a cost in terms of accuracy compared to more integrated and optimized codes. Use of non-intrusive implementations like TReacLab are still justified for coupling independent transport and chemical software at a minimal development effort but should be systematically and carefully assessed.
Hormone- and light-regulated nucleocytoplasmic transport in plants: current status.
Lee, Yew; Lee, Hak-Soo; Lee, June-Seung; Kim, Seong-Ki; Kim, Soo-Hwan
2008-01-01
The gene regulation mechanisms underlying hormone- and light-induced signal transduction in plants rely not only on post-translational modification and protein degradation, but also on selective inclusion and exclusion of proteins from the nucleus. For example, plant cells treated with light or hormones actively transport many signalling regulatory proteins, transcription factors, and even photoreceptors and hormone receptors into the nucleus, while actively excluding other proteins. The nuclear envelope (NE) is the physical and functional barrier that mediates this selective partitioning, and nuclear transport regulators transduce hormone- or light-initiated signalling pathways across the membrane to mediate nuclear activities. Recent reports revealed that mutating the proteins regulating nuclear transport through the pores, such as nucleoporins, alters the plant's response to a stimulus. In this review, recent works are introduced that have revealed the importance of regulated nucleocytoplasmic partitioning. These important findings deepen our understanding about how co-ordinated plant hormone and light signal transduction pathways facilitate communication between the cytoplasm and the nucleus. The roles of nucleoporin components within the nuclear pore complex (NPC) are also emphasized, as well as nuclear transport cargo, such as Ran/TC4 and its binding proteins (RanBPs), in this process. Recent findings concerning these proteins may provide a possible direction by which to characterize the regulatory potential of hormone- or light-triggered nuclear transport.
77 FR 34981 - Stillaguamish Tribe of Indians-Liquor Control Ordinance
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-12
... DEPARTMENT OF THE INTERIOR Bureau of Indian Affairs Stillaguamish Tribe of Indians--Liquor Control... publishes the Stillaguamish Tribe of Indians' Liquor Control Ordinance. The Ordinance regulates and controls... of the Stillaguamish Tribe of Indians, will increase the ability of the tribal government to control...
7 CFR 1901.204 - Compliance reviews.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Administrator, Community and Business Programs, for each recipient. (4) Mandatory hook-up ordinance. Compliance... under the provisions of a mandatory hook-up ordinance will consist of a certification by the borrower or grantee that the ordinance is still in effect and is being enforced. (5) Forwarding noncompliance report...
7 CFR 1901.204 - Compliance reviews.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Administrator, Community and Business Programs, for each recipient. (4) Mandatory hook-up ordinance. Compliance... under the provisions of a mandatory hook-up ordinance will consist of a certification by the borrower or grantee that the ordinance is still in effect and is being enforced. (5) Forwarding noncompliance report...
7 CFR 1901.204 - Compliance reviews.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Administrator, Community and Business Programs, for each recipient. (4) Mandatory hook-up ordinance. Compliance... under the provisions of a mandatory hook-up ordinance will consist of a certification by the borrower or grantee that the ordinance is still in effect and is being enforced. (5) Forwarding noncompliance report...
7 CFR 1901.204 - Compliance reviews.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Administrator, Community and Business Programs, for each recipient. (4) Mandatory hook-up ordinance. Compliance... under the provisions of a mandatory hook-up ordinance will consist of a certification by the borrower or grantee that the ordinance is still in effect and is being enforced. (5) Forwarding noncompliance report...
Sato, Tatsuhiko; Watanabe, Ritsuko; Sihver, Lembit; Niita, Koji
2012-01-01
Microdosimetric quantities such as lineal energy are generally considered to be better indices than linear energy transfer (LET) for expressing the relative biological effectiveness (RBE) of high charge and energy particles. To calculate their probability densities (PD) in macroscopic matter, it is necessary to integrate microdosimetric tools such as track-structure simulation codes with macroscopic particle transport simulation codes. As an integration approach, the mathematical model for calculating the PD of microdosimetric quantities developed based on track-structure simulations was incorporated into the macroscopic particle transport simulation code PHITS (Particle and Heavy Ion Transport code System). The improved PHITS enables the PD in macroscopic matter to be calculated within a reasonable computation time, while taking their stochastic nature into account. The microdosimetric function of PHITS was applied to biological dose estimation for charged-particle therapy and risk estimation for astronauts. The former application was performed in combination with the microdosimetric kinetic model, while the latter employed the radiation quality factor expressed as a function of lineal energy. Owing to the unique features of the microdosimetric function, the improved PHITS has the potential to establish more sophisticated systems for radiological protection in space as well as for the treatment planning of charged-particle therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pautz, Shawn D.; Bailey, Teresa S.
Here, the efficiency of discrete ordinates transport sweeps depends on the scheduling algorithm, the domain decomposition, the problem to be solved, and the computational platform. Sweep scheduling algorithms may be categorized by their approach to several issues. In this paper we examine the strategy of domain overloading for mesh partitioning as one of the components of such algorithms. In particular, we extend the domain overloading strategy, previously defined and analyzed for structured meshes, to the general case of unstructured meshes. We also present computational results for both the structured and unstructured domain overloading cases. We find that an appropriate amountmore » of domain overloading can greatly improve the efficiency of parallel sweeps for both structured and unstructured partitionings of the test problems examined on up to 10 5 processor cores.« less
Pautz, Shawn D.; Bailey, Teresa S.
2016-11-29
Here, the efficiency of discrete ordinates transport sweeps depends on the scheduling algorithm, the domain decomposition, the problem to be solved, and the computational platform. Sweep scheduling algorithms may be categorized by their approach to several issues. In this paper we examine the strategy of domain overloading for mesh partitioning as one of the components of such algorithms. In particular, we extend the domain overloading strategy, previously defined and analyzed for structured meshes, to the general case of unstructured meshes. We also present computational results for both the structured and unstructured domain overloading cases. We find that an appropriate amountmore » of domain overloading can greatly improve the efficiency of parallel sweeps for both structured and unstructured partitionings of the test problems examined on up to 10 5 processor cores.« less
ipole: Semianalytic scheme for relativistic polarized radiative transport
NASA Astrophysics Data System (ADS)
Moscibrodzka, Monika; Gammie, Charles F.
2018-04-01
ipole is a ray-tracing code for covariant, polarized radiative transport particularly useful for modeling Event Horizon Telescope sources, though may also be used for other relativistic transport problems. The code extends the ibothros scheme for covariant, unpolarized transport using two representations of the polarized radiation field: in the coordinate frame, it parallel transports the coherency tensor, and in the frame of the plasma, it evolves the Stokes parameters under emission, absorption, and Faraday conversion. The transport step is as spacetime- and coordinate- independent as possible; the emission, absorption, and Faraday conversion step is implemented using an analytic solution to the polarized transport equation with constant coefficients. As a result, ipole is stable, efficient, and produces a physically reasonable solution even for a step with high optical depth and Faraday depth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Christopher J.; Stone, James M.; Gammie, Charles F.
2016-08-01
We present a new general relativistic magnetohydrodynamics (GRMHD) code integrated into the Athena++ framework. Improving upon the techniques used in most GRMHD codes, ours allows the use of advanced, less diffusive Riemann solvers, in particular HLLC and HLLD. We also employ a staggered-mesh constrained transport algorithm suited for curvilinear coordinate systems in order to maintain the divergence-free constraint of the magnetic field. Our code is designed to work with arbitrary stationary spacetimes in one, two, or three dimensions, and we demonstrate its reliability through a number of tests. We also report on its promising performance and scalability.
Common Errors in the Calculation of Aircrew Doses from Cosmic Rays
NASA Astrophysics Data System (ADS)
O'Brien, Keran; Felsberger, Ernst; Kindl, Peter
2010-05-01
Radiation doses to air crew are calculated using flight codes. Flight codes integrate dose rates over the aircraft flight path, which were calculated by transport codes or obtained by measurements from take off at a specific airport to landing at another. The dose rates are stored in various ways, such as by latitude and longitude, or in terms of the geomagnetic vertical cutoff. The transport codes are generally quite satisfactory, but the treatment of the boundary conditions is frequently incorrect. Both the treatment of solar modulation and of the effect of the geomagnetic field are often defective, leading to the systematic overestimate of the crew doses.
49 CFR 178.905 - Large Packaging identification codes.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Large Packaging identification codes. 178.905... FOR PACKAGINGS Large Packagings Standards § 178.905 Large Packaging identification codes. Large packaging code designations consist of: two numerals specified in paragraph (a) of this section; followed by...
PFLOTRAN: Reactive Flow & Transport Code for Use on Laptops to Leadership-Class Supercomputers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan
PFLOTRAN, a next-generation reactive flow and transport code for modeling subsurface processes, has been designed from the ground up to run efficiently on machines ranging from leadership-class supercomputers to laptops. Based on an object-oriented design, the code is easily extensible to incorporate additional processes. It can interface seamlessly with Fortran 9X, C and C++ codes. Domain decomposition parallelism is employed, with the PETSc parallel framework used to manage parallel solvers, data structures and communication. Features of the code include a modular input file, implementation of high-performance I/O using parallel HDF5, ability to perform multiple realization simulations with multiple processors permore » realization in a seamless manner, and multiple modes for multiphase flow and multicomponent geochemical transport. Chemical reactions currently implemented in the code include homogeneous aqueous complexing reactions and heterogeneous mineral precipitation/dissolution, ion exchange, surface complexation and a multirate kinetic sorption model. PFLOTRAN has demonstrated petascale performance using 2{sup 17} processor cores with over 2 billion degrees of freedom. Accomplishments achieved to date include applications to the Hanford 300 Area and modeling CO{sub 2} sequestration in deep geologic formations.« less
Morrison, Zoe; Fernando, Bernard; Kalra, Dipak; Cresswell, Kathrin; Sheikh, Aziz
2014-01-01
We aimed to explore stakeholder views, attitudes, needs, and expectations regarding likely benefits and risks resulting from increased structuring and coding of clinical information within electronic health records (EHRs). Qualitative investigation in primary and secondary care and research settings throughout the UK. Data were derived from interviews, expert discussion groups, observations, and relevant documents. Participants (n=70) included patients, healthcare professionals, health service commissioners, policy makers, managers, administrators, systems developers, researchers, and academics. Four main themes arose from our data: variations in documentation practice; patient care benefits; secondary uses of information; and informing and involving patients. We observed a lack of guidelines, co-ordination, and dissemination of best practice relating to the design and use of information structures. While we identified immediate benefits for direct care and secondary analysis, many healthcare professionals did not see the relevance of structured and/or coded data to clinical practice. The potential for structured information to increase patient understanding of their diagnosis and treatment contrasted with concerns regarding the appropriateness of coded information for patients. The design and development of EHRs requires the capture of narrative information to reflect patient/clinician communication and computable data for administration and research purposes. Increased structuring and/or coding of EHRs therefore offers both benefits and risks. Documentation standards within clinical guidelines are likely to encourage comprehensive, accurate processing of data. As data structures may impact upon clinician/patient interactions, new models of documentation may be necessary if EHRs are to be read and authored by patients.
Morrison, Zoe; Fernando, Bernard; Kalra, Dipak; Cresswell, Kathrin; Sheikh, Aziz
2014-01-01
Objective We aimed to explore stakeholder views, attitudes, needs, and expectations regarding likely benefits and risks resulting from increased structuring and coding of clinical information within electronic health records (EHRs). Materials and methods Qualitative investigation in primary and secondary care and research settings throughout the UK. Data were derived from interviews, expert discussion groups, observations, and relevant documents. Participants (n=70) included patients, healthcare professionals, health service commissioners, policy makers, managers, administrators, systems developers, researchers, and academics. Results Four main themes arose from our data: variations in documentation practice; patient care benefits; secondary uses of information; and informing and involving patients. We observed a lack of guidelines, co-ordination, and dissemination of best practice relating to the design and use of information structures. While we identified immediate benefits for direct care and secondary analysis, many healthcare professionals did not see the relevance of structured and/or coded data to clinical practice. The potential for structured information to increase patient understanding of their diagnosis and treatment contrasted with concerns regarding the appropriateness of coded information for patients. Conclusions The design and development of EHRs requires the capture of narrative information to reflect patient/clinician communication and computable data for administration and research purposes. Increased structuring and/or coding of EHRs therefore offers both benefits and risks. Documentation standards within clinical guidelines are likely to encourage comprehensive, accurate processing of data. As data structures may impact upon clinician/patient interactions, new models of documentation may be necessary if EHRs are to be read and authored by patients. PMID:24186957
Darrah, J; Wiart, L; Magill-Evans, J; Ray, L; Andersen, J
2012-01-01
Family-centred service, functional goal setting and co-ordination of a child's move between programmes are important concepts of rehabilitation services for children with cerebral palsy identified in the literature. We examined whether these three concepts could be objectively identified in programmes providing services to children with cerebral palsy in Alberta, Canada. Programme managers (n= 37) and occupational and physical therapists (n= 54) representing 59 programmes participated in individual 1-h semi-structured interviews. Thirty-nine parents participated in eleven focus groups or two individual interviews. Evidence of family-centred values in mission statements and advisory boards was evaluated. Therapists were asked to identify three concepts of family-centred service and to complete the Measures of Process of Care for Service Providers. Therapists also identified therapy goals for children based on clinical case scenarios. The goals were coded using the components of the International Classification of Functioning Disability and Health. Programme managers and therapists discussed the processes in their programmes for goal setting and for preparing children and their families for their transition to other programmes. Parents reflected on their experiences with their child's rehabilitation related to family-centredness, goal setting and co-ordination between programmes. All respondents expressed commitment to the three concepts, but objective indicators of family-centred processes were lacking in many programmes. In most programmes, the processes to implement the three concepts were informal rather than standardized. Both families and therapists reported limited access to general information regarding community supports. Lack of formal processes for delivery of family-centred service, goal-setting and co-ordination between children's programmes may result in inequitable opportunities for families to participate in their children's rehabilitation despite attending the same programme. Standardized programme processes and policies may provide a starting point to ensure that all families have equitable opportunities to participate in their child's rehabilitation programme. © 2010 Blackwell Publishing Ltd.
DOT National Transportation Integrated Search
1990-10-01
In the absence of a statewide law, a local ordinance was passed by the Lexington-Fayette Urban County Government mandating use of safety belts. The objective of this study was to conduct surveys before the ordinance was passed, during the implementat...
Introducing Students to Plant Geography: Polar Ordination Applied to Hanging Gardens.
ERIC Educational Resources Information Center
Malanson, George P.; And Others
1993-01-01
Reports on a research study in which college students used a statistical ordination method to reveal relationships among plant community structures and physical, disturbance, and spatial variables. Concludes that polar ordination helps students understand the methodology of plant geography and encourages further student research. (CFR)
Cardination and Ordination Learning in Young Children.
ERIC Educational Resources Information Center
Stock, William; Flora, June
This paper analyzes Brainerd's work in assessing the developmental sequence or ordination and cardination concepts of number, and describes a study which investigated the hypothesis that task-specific difficulty could explain Brainers's data. Three new tasks were designed for the assessment of ordination and cardination and administered to a…
25 CFR 522.6 - Approval requirements for class III ordinances.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Section 522.6 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR APPROVAL OF CLASS II AND CLASS III ORDINANCES AND RESOLUTIONS SUBMISSION OF GAMING ORDINANCE OR RESOLUTION § 522.6 Approval...) The tribe shall have the sole proprietary interest in and responsibility for the conduct of any gaming...
36 CFR 28.15 - Approval of local zoning ordinances.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Approval of local zoning ordinances. 28.15 Section 28.15 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR FIRE ISLAND NATIONAL SEASHORE: ZONING STANDARDS Federal Standards and Approval of Local Ordinances...
ERIC Educational Resources Information Center
Ferrari, Pier Alda; Barbiero, Alessandro
2012-01-01
The increasing use of ordinal variables in different fields has led to the introduction of new statistical methods for their analysis. The performance of these methods needs to be investigated under a number of experimental conditions. Procedures to simulate from ordinal variables are then required. In this article, we deal with simulation from…
Bayesian Adaptive Lasso for Ordinal Regression with Latent Variables
ERIC Educational Resources Information Center
Feng, Xiang-Nan; Wu, Hao-Tian; Song, Xin-Yuan
2017-01-01
We consider an ordinal regression model with latent variables to investigate the effects of observable and latent explanatory variables on the ordinal responses of interest. Each latent variable is characterized by correlated observed variables through a confirmatory factor analysis model. We develop a Bayesian adaptive lasso procedure to conduct…
36 CFR 28.15 - Approval of local zoning ordinances.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Approval of local zoning ordinances. 28.15 Section 28.15 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR FIRE ISLAND NATIONAL SEASHORE: ZONING STANDARDS Federal Standards and Approval of Local Ordinances...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 2 2010-04-01 2010-04-01 false Do tribal employment rights ordinances apply to... OF THE INTERIOR, AND INDIAN HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES CONTRACTS UNDER... rights ordinances apply to construction contracts and subcontracts? Yes. Tribal employment rights...
Tsoukalas, Theodore; Glantz, Stanton A.
2003-01-01
Case study methodology was used to investigate the tobacco industry’s strategies to fight local tobacco control efforts in Duluth, Minn. The industry opposed the clean indoor air ordinance indirectly through allies and front groups and directly in a referendum. Health groups failed to win a strong ordinance because they framed it as a youth issue rather than a workplace issue and failed to engage the industry’s economic claims. Opponents’ overexploitation of weaknesses in the ordinance allowed health advocates to construct a stronger version. Health advocates should assume that the tobacco industry will oppose all local tobacco control measures indirectly, directly, or both. Clean indoor air ordinances should be framed as workplace safety issues. PMID:12893598
Ordinal feature selection for iris and palmprint recognition.
Sun, Zhenan; Wang, Libin; Tan, Tieniu
2014-09-01
Ordinal measures have been demonstrated as an effective feature representation model for iris and palmprint recognition. However, ordinal measures are a general concept of image analysis and numerous variants with different parameter settings, such as location, scale, orientation, and so on, can be derived to construct a huge feature space. This paper proposes a novel optimization formulation for ordinal feature selection with successful applications to both iris and palmprint recognition. The objective function of the proposed feature selection method has two parts, i.e., misclassification error of intra and interclass matching samples and weighted sparsity of ordinal feature descriptors. Therefore, the feature selection aims to achieve an accurate and sparse representation of ordinal measures. And, the optimization subjects to a number of linear inequality constraints, which require that all intra and interclass matching pairs are well separated with a large margin. Ordinal feature selection is formulated as a linear programming (LP) problem so that a solution can be efficiently obtained even on a large-scale feature pool and training database. Extensive experimental results demonstrate that the proposed LP formulation is advantageous over existing feature selection methods, such as mRMR, ReliefF, Boosting, and Lasso for biometric recognition, reporting state-of-the-art accuracy on CASIA and PolyU databases.
NASA Astrophysics Data System (ADS)
Joung Lim, Mi; Maeng, Young Jae; Fero, Arnold H.; Anderson, Stanwood L.
2016-02-01
The 2D/1D synthesis methodology has been used to calculate the fast neutron (E > 1.0 MeV) exposure to the beltline region of the reactor pressure vessel. This method uses the DORT 3.1 discrete ordinates code and the BUGLE-96 cross-section library based on ENDF/B-VI. RAPTOR-M3G (RApid Parallel Transport Of Radiation-Multiple 3D Geometries) which performs full 3D calculations was developed and is based on domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architecture. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor. Both methods are applied to surveillance test results for the Korea Standard Nuclear Plant (KSNP)-OPR (Optimized Power Reactor) 1000 MW. The objective of this paper is to compare the results of the KSNP surveillance program between 2D/1D synthesis and RAPTOR-M3G. Each operating KSNP has a reactor vessel surveillance program consisting of six surveillance capsules located between the core and the reactor vessel in the downcomer region near the reactor vessel wall. In addition to the In-Vessel surveillance program, an Ex-Vessel Neutron Dosimetry (EVND) program has been implemented. In order to estimate surveillance test results, cycle-specific forward transport calculations were performed by 2D/1D synthesis and by RAPTOR-M3G. The ratio between measured and calculated (M/C) reaction rates will be discussed. The current plan is to install an EVND system in all of the Korea PWRs including the new reactor type, APR (Advanced Power Reactor) 1400 MW. This work will play an important role in establishing a KSNP-specific database of surveillance test results and will employ RAPTOR-M3G for surveillance dosimetry location as well as positions in the KSNP reactor vessel.
Microdosimetric investigation of the spectra from YAYOI by use of the Monte Carlo code PHITS.
Nakao, Minoru; Baba, Hiromi; Oishi, Ayumu; Onizuka, Yoshihiko
2010-07-01
The purpose of this study was to obtain the neutron energy spectrum on the surface of the moderator of the Tokyo University reactor YAYOI and to investigate the origins of peaks observed in the neutron energy spectrum by use of the Monte Carlo Code PHITS for evaluating biological studies. The moderator system was modeled with the use of details from an article that reported a calculation result and a measurement result for a neutron spectrum on the surface of the moderator of the reactor. Our calculation results with PHITS were compared to those obtained with the discrete ordinate code ANISN described in the article. In addition, the changes in the neutron spectrum at the boundaries of materials in the moderator system were examined with PHITS. Also, microdosimetric energy distributions of secondary charged particles from neutron recoil or reaction were calculated by use of PHITS and compared with a microdosimetric experiment. Our calculations of the neutron energy spectrum with PHITS showed good agreement with the results of ANISN in terms of the energy and structure of the peaks. However, the microdosimetric dose distribution spectrum with PHITS showed a remarkable discrepancy with the experimental one. The experimental spectrum could not be explained by PHITS when we used neutron beams of two mono-energies.
Sclafani, F; Starace, A
1978-01-01
The Republic of San Marino adopted a new Penal Code which came into force on Ist January 1975; it replaced the former one of 15th Sept. 1865. After having stated the typical aspects of the Penal Procedure System therein enforceable, the Authors examine the rules concerning criminal responsibility and the danger of committing new crimes. They point out and criticize the relevant contradictions. In explaining the measures regarding punishment and educational rehabilitation provided for by the San Marino's legal system, the Authors later consider them from a juridical and criminological viewpoint. If some reforms must be approved (for example: biopsychical inquiry on the charged person, probation, week-end imprisonments, fines according to the incomes of the condemned, etc.). the Authors stress that some legal provisions may appear useless and unrealistic when one considers the environmental conditions of the little Republic. The Authors conclude that Penal Procedure Law is not in accordance with Penal Law and, consequently, they hope that a new reform will be grounded on the needs arising from the crimes perpetrated in loco. It shall be, however, necessary to plan a co-ordination among the two Codes within a framework of de-criminalization of many acts which are now punishable as crime.
Use of Existing CAD Models for Radiation Shielding Analysis
NASA Technical Reports Server (NTRS)
Lee, K. T.; Barzilla, J. E.; Wilson, P.; Davis, A.; Zachman, J.
2015-01-01
The utility of a radiation exposure analysis depends not only on the accuracy of the underlying particle transport code, but also on the accuracy of the geometric representations of both the vehicle used as radiation shielding mass and the phantom representation of the human form. The current NASA/Space Radiation Analysis Group (SRAG) process to determine crew radiation exposure in a vehicle design incorporates both output from an analytic High Z and Energy Particle Transport (HZETRN) code and the properties (i.e., material thicknesses) of a previously processed drawing. This geometry pre-process can be time-consuming, and the results are less accurate than those determined using a Monte Carlo-based particle transport code. The current work aims to improve this process. Although several Monte Carlo programs (FLUKA, Geant4) are readily available, most use an internal geometry engine. The lack of an interface with the standard CAD formats used by the vehicle designers limits the ability of the user to communicate complex geometries. Translation of native CAD drawings into a format readable by these transport programs is time consuming and prone to error. The Direct Accelerated Geometry -United (DAGU) project is intended to provide an interface between the native vehicle or phantom CAD geometry and multiple particle transport codes to minimize problem setup, computing time and analysis error.
Status and Plans for the TRANSP Interpretive and Predictive Simulation Code
NASA Astrophysics Data System (ADS)
Kaye, Stanley; Andre, Robert; Marina, Gorelenkova; Yuan, Xingqui; Hawryluk, Richard; Jardin, Steven; Poli, Francesca
2015-11-01
TRANSP is an integrated interpretive and predictive transport analysis tool that incorporates state of the art heating/current drive sources and transport models. The treatments and transport solvers are becoming increasingly sophisticated and comprehensive. For instance, the ISOLVER component provides a free boundary equilibrium solution, while the PT_SOLVER transport solver is especially suited for stiff transport models such as TGLF. TRANSP also incorporates such source models as NUBEAM for neutral beam injection, GENRAY, TORAY, TORBEAM, TORIC and CQL3D for ICRH, LHCD, ECH and HHFW. The implementation of selected components makes efficient use of MPI for speed up of code calculations. TRANSP has a wide international user-base, and it is run on the FusionGrid to allow for timely support and quick turnaround by the PPPL Computational Plasma Physics Group. It is being used as a basis for both analysis and development of control algorithms and discharge operational scenarios, including simulation of ITER plasmas. This poster will describe present uses of the code worldwide, as well as plans for upgrading the physics modules and code framework. Progress on implementing TRANSP as a component in the ITER IMAS will also be described. This research was supported by the U.S. Department of Energy under contracts DE-AC02-09CH11466.
Cosmic-ray propagation with DRAGON2: I. numerical solver and astrophysical ingredients
NASA Astrophysics Data System (ADS)
Evoli, Carmelo; Gaggero, Daniele; Vittino, Andrea; Di Bernardo, Giuseppe; Di Mauro, Mattia; Ligorini, Arianna; Ullio, Piero; Grasso, Dario
2017-02-01
We present version 2 of the DRAGON code designed for computing realistic predictions of the CR densities in the Galaxy. The code numerically solves the interstellar CR transport equation (including inhomogeneous and anisotropic diffusion, either in space and momentum, advective transport and energy losses), under realistic conditions. The new version includes an updated numerical solver and several models for the astrophysical ingredients involved in the transport equation. Improvements in the accuracy of the numerical solution are proved against analytical solutions and in reference diffusion scenarios. The novel features implemented in the code allow to simulate the diverse scenarios proposed to reproduce the most recent measurements of local and diffuse CR fluxes, going beyond the limitations of the homogeneous galactic transport paradigm. To this end, several applications using DRAGON2 are presented as well. This new version facilitates the users to include their own physical models by means of a modular C++ structure.
Laser Blow-Off Impurity Injection Experiments at the HSX Stellarator
NASA Astrophysics Data System (ADS)
Castillo, J. F.; Bader, A.; Likin, K. M.; Anderson, D. T.; Anderson, F. S. B.; Kumar, S. T. A.; Talmadge, J. N.
2017-10-01
Results from the HSX laser blow-off experiment are presented and compared to a synthetic diagnostic implemented in the STRAHL impurity transport modeling code in order to measure the impurity transport diffusivity and convective velocity. A laser blow-off impurity injection system is used to rapidly deposit a small, controlled quantity of aluminum into the confinement volume. Five AXUV photodiode arrays are used to take time-resolved measurements of the impurity radiation. The spatially one-dimensional impurity transport code STRAHL is used to calculate a time-dependent plasma emissivity profile. Modeled intensity signals calculated from a synthetic diagnostic code provide direct comparison between plasma simulation and experimental results. An optimization algorithm with impurity transport coefficients acting as free parameters is used to fit the model to experimental data. This work is supported by US DOE Grant DE-FG02-93ER54222.
The LBM program at the EPFL/LOTUS Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
File, J.; Jassby, D.L.; Tsang, F.Y.
1986-11-01
An experimental program of neutron transport studies of the Lithium Blanket Module (LBM) is being carried out with the LOTUS point-neutron source facility at Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland. Preliminary experiments use passive neutron dosimetry within the fuel rods in the LBM central zone, as well as, both thermal extraction and dissolution methods to assay tritium bred in Li/sub 2/O diagnostic wafers and LBM pellets. These measurements are being compared and reconciled with each other and with the predictions of two-dimensional discrete-ordinates and continuous-energy Monte-Carlo analyses of the Lotus/LBM system.
New Parallel computing framework for radiation transport codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostin, M.A.; /Michigan State U., NSCL; Mokhov, N.V.
A new parallel computing framework has been developed to use with general-purpose radiation transport codes. The framework was implemented as a C++ module that uses MPI for message passing. The module is significantly independent of radiation transport codes it can be used with, and is connected to the codes by means of a number of interface functions. The framework was integrated with the MARS15 code, and an effort is under way to deploy it in PHITS. Besides the parallel computing functionality, the framework offers a checkpoint facility that allows restarting calculations with a saved checkpoint file. The checkpoint facility canmore » be used in single process calculations as well as in the parallel regime. Several checkpoint files can be merged into one thus combining results of several calculations. The framework also corrects some of the known problems with the scheduling and load balancing found in the original implementations of the parallel computing functionality in MARS15 and PHITS. The framework can be used efficiently on homogeneous systems and networks of workstations, where the interference from the other users is possible.« less
FLUKA: A Multi-Particle Transport Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrari, A.; Sala, P.R.; /CERN /INFN, Milan
2005-12-14
This report describes the 2005 version of the Fluka particle transport code. The first part introduces the basic notions, describes the modular structure of the system, and contains an installation and beginner's guide. The second part complements this initial information with details about the various components of Fluka and how to use them. It concludes with a detailed history and bibliography.
Adapting HYDRUS-1D to simulate overland flow and reactive transport during sheet flow deviations
USDA-ARS?s Scientific Manuscript database
The HYDRUS-1D code is a popular numerical model for solving the Richards equation for variably-saturated water flow and solute transport in porous media. This code was adapted to solve rather than the Richards equation for subsurface flow the diffusion wave equation for overland flow at the soil sur...
Modeling of boron species in the Falcon 17 and ISP-34 integral tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazaridis, M.; Capitao, J.A.; Drossinos, Y.
1996-09-01
The RAFT computer code for aerosol formation and transport was modified to include boron species in its chemical database. The modification was necessary to calculate fission product transport and deposition in the FAL-17 and ISP-34 Falcon tests, where boric acid was injected. The experimental results suggest that the transport of cesium is modified in the presence of boron. The results obtained with the modified RAFT code are presented; they show good agreement with experimental results for cesium and partial agreement for boron deposition in the Falcon silica tube. The new version of the RAFT code predicts the same behavior formore » iodine deposition as the previous version, where boron species were not included.« less
Comparison of Stopping Power and Range Databases for Radiation Transport Study
NASA Technical Reports Server (NTRS)
Tai, H.; Bichsel, Hans; Wilson, John W.; Shinn, Judy L.; Cucinotta, Francis A.; Badavi, Francis F.
1997-01-01
The codes used to calculate stopping power and range for the space radiation shielding program at the Langley Research Center are based on the work of Ziegler but with modifications. As more experience is gained from experiments at heavy ion accelerators, prudence dictates a reevaluation of the current databases. Numerical values of stopping power and range calculated from four different codes currently in use are presented for selected ions and materials in the energy domain suitable for space radiation transport. This study of radiation transport has found that for most collision systems and for intermediate particle energies, agreement is less than 1 percent, in general, among all the codes. However, greater discrepancies are seen for heavy systems, especially at low particle energies.
Ali, Shehzad; Ronaldson, Sarah
2012-09-01
The predominant method of economic evaluation is cost-utility analysis, which uses cardinal preference elicitation methods, including the standard gamble and time trade-off. However, such approach is not suitable for understanding trade-offs between process attributes, non-health outcomes and health outcomes to evaluate current practices, develop new programmes and predict demand for services and products. Ordinal preference elicitation methods including discrete choice experiments and ranking methods are therefore commonly used in health economics and health service research. Cardinal methods have been criticized on the grounds of cognitive complexity, difficulty of administration, contamination by risk and preference attitudes, and potential violation of underlying assumptions. Ordinal methods have gained popularity because of reduced cognitive burden, lower degree of abstract reasoning, reduced measurement error, ease of administration and ability to use both health and non-health outcomes. The underlying assumptions of ordinal methods may be violated when respondents use cognitive shortcuts, or cannot comprehend the ordinal task or interpret attributes and levels, or use 'irrational' choice behaviour or refuse to trade-off certain attributes. CURRENT USE AND GROWING AREAS: Ordinal methods are commonly used to evaluate preference for attributes of health services, products, practices, interventions, policies and, more recently, to estimate utility weights. AREAS FOR ON-GOING RESEARCH: There is growing research on developing optimal designs, evaluating the rationalization process, using qualitative tools for developing ordinal methods, evaluating consistency with utility theory, appropriate statistical methods for analysis, generalizability of results and comparing ordinal methods against each other and with cardinal measures.
Statistical Analysis of CFD Solutions from the Third AIAA Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Morrison, Joseph H.; Hemsch, Michael J.
2007-01-01
The first AIAA Drag Prediction Workshop, held in June 2001, evaluated the results from an extensive N-version test of a collection of Reynolds-Averaged Navier-Stokes CFD codes. The code-to-code scatter was more than an order of magnitude larger than desired for design and experimental validation of cruise conditions for a subsonic transport configuration. The second AIAA Drag Prediction Workshop, held in June 2003, emphasized the determination of installed pylon-nacelle drag increments and grid refinement studies. The code-to-code scatter was significantly reduced compared to the first DPW, but still larger than desired. However, grid refinement studies showed no significant improvement in code-to-code scatter with increasing grid refinement. The third Drag Prediction Workshop focused on the determination of installed side-of-body fairing drag increments and grid refinement studies for clean attached flow on wing alone configurations and for separated flow on the DLR-F6 subsonic transport model. This work evaluated the effect of grid refinement on the code-to-code scatter for the clean attached flow test cases and the separated flow test cases.
ERIC Educational Resources Information Center
Kaufmann, L.; Vogel, S. E.; Starke, M.; Kremser, C.; Schocke, M.
2009-01-01
Ordinality is--beyond numerical magnitude (i.e., quantity)--an important characteristic of the number system. There is converging empirical evidence that (intra)parietal brain regions mediate number magnitude processing. Furthermore, recent findings suggest that the human intraparietal sulcus (IPS) supports magnitude and ordinality in a…
25 CFR 522.1 - Scope of this part.
Code of Federal Regulations, 2010 CFR
2010-04-01
... INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR APPROVAL OF CLASS II AND CLASS III ORDINANCES AND RESOLUTIONS SUBMISSION OF GAMING ORDINANCE OR RESOLUTION § 522.1 Scope of this part. This part applies to any gaming ordinance or resolution adopted by a tribe after February 22, 1993. Part 523 of this chapter...
Land and Liberty: The Ordinances of the 1780s.
ERIC Educational Resources Information Center
Sheehan, Bernard W.
The U.S. Constitution established the broad legal frame for the U.S. political order; the ordinances provided the indispensable means for the expansion of that order across the continent. The first effort at organizing the northwest occurred in 1784. Written by Thomas Jefferson, the Ordinance of 1784 defined the stages through which territories…
Educational Legislation in Colonial Zimbabwe (1899-1979)
ERIC Educational Resources Information Center
Richards, Kimberly; Govere, Ephraim
2003-01-01
This article focuses on a historical series of education acts that impacted on education in Rhodesia. These Acts are the: (1) 1899 Education Ordinance; (2) 1903 Education Ordinance; (3) 1907 Education Ordinance; (4) 1929 Department of Native Development Act; (5) 1930 Compulsory Education Act; (6) 1959 African Education Act; (7) 1973 Education Act;…
Zhang, Shuo; DePaolo, Donald J.; Zheng, Liange; ...
2014-12-31
Carbon stable isotopes can be used in characterization and monitoring of CO 2 sequestration sites to track the migration of the CO 2 plume and identify leakage sources, and to evaluate the chemical reactions that take place in the CO 2-water-rock system. However, there are few tools available to incorporate stable isotope information into flow and transport codes used for CO 2 sequestration problems. We present a numerical tool for modeling the transport of stable carbon isotopes in multiphase reactive systems relevant to geologic carbon sequestration. The code is an extension of the reactive transport code TOUGHREACT. The transport modulemore » of TOUGHREACT was modified to include separate isotopic species of CO 2 gas and dissolved inorganic carbon (CO 2, CO 3 2-, HCO 3 -,…). Any process of transport or reaction influencing a given carbon species also influences its isotopic ratio. Isotopic fractionation is thus fully integrated within the dynamic system. The chemical module and database have been expanded to include isotopic exchange and fractionation between the carbon species in both gas and aqueous phases. The performance of the code is verified by modeling ideal systems and comparing with theoretical results. Efforts are also made to fit field data from the Pembina CO 2 injection project in Canada. We show that the exchange of carbon isotopes between dissolved and gaseous carbon species combined with fluid flow and transport, produce isotopic effects that are significantly different from simple two-component mixing. These effects are important for understanding the isotopic variations observed in field demonstrations.« less
Arabaci, Murat; Djordjevic, Ivan B; Saunders, Ross; Marcoccia, Roberto M
2010-02-01
In order to achieve high-speed transmission over optical transport networks (OTNs) and maximize its throughput, we propose using a rate-adaptive polarization-multiplexed coded multilevel modulation with coherent detection based on component non-binary quasi-cyclic (QC) LDPC codes. Compared to prior-art bit-interleaved LDPC-coded modulation (BI-LDPC-CM) scheme, the proposed non-binary LDPC-coded modulation (NB-LDPC-CM) scheme not only reduces latency due to symbol- instead of bit-level processing but also provides either impressive reduction in computational complexity or striking improvements in coding gain depending on the constellation size. As the paper presents, compared to its prior-art binary counterpart, the proposed NB-LDPC-CM scheme addresses the needs of future OTNs, which are achieving the target BER performance and providing maximum possible throughput both over the entire lifetime of the OTN, better.
TDA : Transportation Development Act : statutes and California codes of regulations.
DOT National Transportation Integrated Search
2009-03-01
The Mills-Alquist-Deddeh Act (SB 325) was enacted by the California Legislature to improve : existing public transportation services and encourage regional transportation coordination. : Known as the Transportation Development Act (TDA) of 1971, this...
Steil, Justin Peter; Vasi, Ion Bogdan
2014-01-01
Analyzing oppositional social movements in the context of municipal immigration ordinances, the authors examine whether the explanatory power of resource mobilization, political process, and strain theories of social movements' impact on policy outcomes differs when considering proactive as opposed to reactive movements. The adoption of pro-immigrant (proactive) ordinances was facilitated by the presence of immigrant community organizations and of sympathetic local political allies. The adoption of anti-immigrant (reactive) ordinances was influenced by structural social changes, such as rapid increases in the local Latino population, that were framed as threats. The study also finds that pro-immigrant protest events can influence policy in two ways, contributing both to the passage of pro-immigrant ordinances in the locality where protests occur and also inhibiting the passage of anti-immigrant ordinances in neighboring cities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, T.D. Jr.
1996-05-01
The Monte Carlo Model System (MCMS) for the Washington State University (WSU) Radiation Center provides a means through which core criticality and power distributions can be calculated, as well as providing a method for neutron and photon transport necessary for BNCT epithermal neutron beam design. The computational code used in this Model System is MCNP4A. The geometric capability of this Monte Carlo code allows the WSU system to be modeled very accurately. A working knowledge of the MCNP4A neutron transport code increases the flexibility of the Model System and is recommended, however, the eigenvalue/power density problems can be run withmore » little direct knowledge of MCNP4A. Neutron and photon particle transport require more experience with the MCNP4A code. The Model System consists of two coupled subsystems; the Core Analysis and Source Plane Generator Model (CASP), and the BeamPort Shell Particle Transport Model (BSPT). The CASP Model incorporates the S({alpha}, {beta}) thermal treatment, and is run as a criticality problem yielding, the system eigenvalue (k{sub eff}), the core power distribution, and an implicit surface source for subsequent particle transport in the BSPT Model. The BSPT Model uses the source plane generated by a CASP run to transport particles through the thermal column beamport. The user can create filter arrangements in the beamport and then calculate characteristics necessary for assessing the BNCT potential of the given filter want. Examples of the characteristics to be calculated are: neutron fluxes, neutron currents, fast neutron KERMAs and gamma KERMAs. The MCMS is a useful tool for the WSU system. Those unfamiliar with the MCNP4A code can use the MCMS transparently for core analysis, while more experienced users will find the particle transport capabilities very powerful for BNCT filter design.« less
NASA Astrophysics Data System (ADS)
Sharma, Diksha; Badal, Andreu; Badano, Aldo
2012-04-01
The computational modeling of medical imaging systems often requires obtaining a large number of simulated images with low statistical uncertainty which translates into prohibitive computing times. We describe a novel hybrid approach for Monte Carlo simulations that maximizes utilization of CPUs and GPUs in modern workstations. We apply the method to the modeling of indirect x-ray detectors using a new and improved version of the code \\scriptsize{{MANTIS}}, an open source software tool used for the Monte Carlo simulations of indirect x-ray imagers. We first describe a GPU implementation of the physics and geometry models in fast\\scriptsize{{DETECT}}2 (the optical transport model) and a serial CPU version of the same code. We discuss its new features like on-the-fly column geometry and columnar crosstalk in relation to the \\scriptsize{{MANTIS}} code, and point out areas where our model provides more flexibility for the modeling of realistic columnar structures in large area detectors. Second, we modify \\scriptsize{{PENELOPE}} (the open source software package that handles the x-ray and electron transport in \\scriptsize{{MANTIS}}) to allow direct output of location and energy deposited during x-ray and electron interactions occurring within the scintillator. This information is then handled by optical transport routines in fast\\scriptsize{{DETECT}}2. A load balancer dynamically allocates optical transport showers to the GPU and CPU computing cores. Our hybrid\\scriptsize{{MANTIS}} approach achieves a significant speed-up factor of 627 when compared to \\scriptsize{{MANTIS}} and of 35 when compared to the same code running only in a CPU instead of a GPU. Using hybrid\\scriptsize{{MANTIS}}, we successfully hide hours of optical transport time by running it in parallel with the x-ray and electron transport, thus shifting the computational bottleneck from optical to x-ray transport. The new code requires much less memory than \\scriptsize{{MANTIS}} and, as a result, allows us to efficiently simulate large area detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsdell, J.V. Jr.; Simonen, C.A.; Burk, K.W.
1994-02-01
The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses that individuals may have received from operations at the Hanford Site since 1944. This report deals specifically with the atmospheric transport model, Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). RATCHET is a major rework of the MESOILT2 model used in the first phase of the HEDR Project; only the bookkeeping framework escaped major changes. Changes to the code include (1) significant changes in the representation of atmospheric processes and (2) incorporation of Monte Carlo methods for representing uncertainty in input data, model parameters,more » and coefficients. To a large extent, the revisions to the model are based on recommendations of a peer working group that met in March 1991. Technical bases for other portions of the atmospheric transport model are addressed in two other documents. This report has three major sections: a description of the model, a user`s guide, and a programmer`s guide. These sections discuss RATCHET from three different perspectives. The first provides a technical description of the code with emphasis on details such as the representation of the model domain, the data required by the model, and the equations used to make the model calculations. The technical description is followed by a user`s guide to the model with emphasis on running the code. The user`s guide contains information about the model input and output. The third section is a programmer`s guide to the code. It discusses the hardware and software required to run the code. The programmer`s guide also discusses program structure and each of the program elements.« less
Wilson, Bethany J; Nicholas, Frank W; James, John W; Wade, Claire M; Thomson, Peter C
2013-01-01
Canine hip dysplasia (CHD) is a serious and common musculoskeletal disease of pedigree dogs and therefore represents both an important welfare concern and an imperative breeding priority. The typical heritability estimates for radiographic CHD traits suggest that the accuracy of breeding dog selection could be substantially improved by the use of estimated breeding values (EBVs) in place of selection based on phenotypes of individuals. The British Veterinary Association/Kennel Club scoring method is a complex measure composed of nine bilateral ordinal traits, intended to evaluate both early and late dysplastic changes. However, the ordinal nature of the traits may represent a technical challenge for calculation of EBVs using linear methods. The purpose of the current study was to calculate EBVs of British Veterinary Association/Kennel Club traits in the Australian population of German Shepherd Dogs, using linear (both as individual traits and a summed phenotype), binary and ordinal methods to determine the optimal method for EBV calculation. Ordinal EBVs correlated well with linear EBVs (r = 0.90-0.99) and somewhat well with EBVs for the sum of the individual traits (r = 0.58-0.92). Correlation of ordinal and binary EBVs varied widely (r = 0.24-0.99) depending on the trait and cut-point considered. The ordinal EBVs have increased accuracy (0.48-0.69) of selection compared with accuracies from individual phenotype-based selection (0.40-0.52). Despite the high correlations between linear and ordinal EBVs, the underlying relationship between EBVs calculated by the two methods was not always linear, leading us to suggest that ordinal models should be used wherever possible. As the population of German Shepherd Dogs which was studied was purportedly under selection for the traits studied, we examined the EBVs for evidence of a genetic trend in these traits and found substantial genetic improvement over time. This study suggests the use of ordinal EBVs could increase the rate of genetic improvement in this population.
Minerva: Cylindrical coordinate extension for Athena
NASA Astrophysics Data System (ADS)
Skinner, M. Aaron; Ostriker, Eve C.
2013-02-01
Minerva is a cylindrical coordinate extension of the Athena astrophysical MHD code of Stone, Gardiner, Teuben, and Hawley. The extension follows the approach of Athena's original developers and has been designed to alter the existing Cartesian-coordinates code as minimally and transparently as possible. The numerical equations in cylindrical coordinates are formulated to maintain consistency with constrained transport (CT), a central feature of the Athena algorithm, while making use of previously implemented code modules such as the Riemann solvers. Angular momentum transport, which is critical in astrophysical disk systems dominated by rotation, is treated carefully.
Solar Proton Transport within an ICRU Sphere Surrounded by a Complex Shield: Combinatorial Geometry
NASA Technical Reports Server (NTRS)
Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.
2015-01-01
The 3DHZETRN code, with improved neutron and light ion (Z (is) less than 2) transport procedures, was recently developed and compared to Monte Carlo (MC) simulations using simplified spherical geometries. It was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in general combinatorial geometry. A more complex shielding structure with internal parts surrounding a tissue sphere is considered and compared against MC simulations. It is shown that even in the more complex geometry, 3DHZETRN agrees well with the MC codes and maintains a high degree of computational efficiency.
Shielding evaluation for solar particle events using MCNPX, PHITS and OLTARIS codes
NASA Astrophysics Data System (ADS)
Aghara, S. K.; Sriprisan, S. I.; Singleterry, R. C.; Sato, T.
2015-01-01
Detailed analyses of Solar Particle Events (SPE) were performed to calculate primary and secondary particle spectra behind aluminum, at various thicknesses in water. The simulations were based on Monte Carlo (MC) radiation transport codes, MCNPX 2.7.0 and PHITS 2.64, and the space radiation analysis website called OLTARIS (On-Line Tool for the Assessment of Radiation in Space) version 3.4 (uses deterministic code, HZETRN, for transport). The study is set to investigate the impact of SPEs spectra transporting through 10 or 20 g/cm2 Al shield followed by 30 g/cm2 of water slab. Four historical SPE events were selected and used as input source spectra particle differential spectra for protons, neutrons, and photons are presented. The total particle fluence as a function of depth is presented. In addition to particle flux, the dose and dose equivalent values are calculated and compared between the codes and with the other published results. Overall, the particle fluence spectra from all three codes show good agreement with the MC codes showing closer agreement compared to the OLTARIS results. The neutron particle fluence from OLTARIS is lower than the results from MC codes at lower energies (E < 100 MeV). Based on mean square difference analysis the results from MCNPX and PHITS agree better for fluence, dose and dose equivalent when compared to OLTARIS results.
Woodrich, Lisa E.; Tiernan, Kristin A.
2012-01-01
Although Western psychological mindfulness shares many common features with Buddhist mindfulness, subtle differences in the way in which it is practiced and assessed may have important implications. Therefore, the primary goal of this qualitative study was to evaluate the cultural validity of the Five Facet Mindfulness Questionnaire (FFMQ) and Toronto Mindfulness Scale (TMS) by using cognitive interviews among a sample of Buddhist clergy and laypersons to assess their perceptions of these two scales. Participants were 14 Zen Buddhists (7 laypersons, 6 Zen priests, and 1 in priest the ordination process) recruited from a monastery in the Pacific Northwestern U.S. Each participant completed a cognitive interview using the FFMQ and TMS. We developed a coding schema to identify and categorize participant responses, and then applied the final coding framework to all 14 interviews. Results revealed perceived concerns and strengths of each scale, as well as concerns regarding content deemed missing from both scales and general issues related to mindfulness self-assessment. These findings suggest that Buddhist and Western psychological conceptualizations of mindfulness may have important differences. PMID:24976872
Visualization of nuclear particle trajectories in nuclear oil-well logging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Case, C.R.; Chiaramonte, J.M.
Nuclear oil-well logging measures specific properties of subsurface geological formations as a function of depth in the well. The knowledge gained is used to evaluate the hydrocarbon potential of the surrounding oil field. The measurements are made by lowering an instrument package into an oil well and slowly extracting it at a constant speed. During the extraction phase, neutrons or gamma rays are emitted from the tool, interact with the formation, and scatter back to the detectors located within the tool. Even though only a small percentage of the emitted particles ever reach the detectors, mathematical modeling has been verymore » successful in the accurate prediction of these detector responses. The two dominant methods used to model these devices have been the two-dimensional discrete ordinates method and the three-dimensional Monte Carlo method has routinely been used to investigate the response characteristics of nuclear tools. A special Los Alamos National Laboratory version of their standard MCNP Monte carlo code retains the details of each particle history of later viewing within SABRINA, a companion three-dimensional geometry modeling and debugging code.« less
NASA Technical Reports Server (NTRS)
Lavelle, Tom
2003-01-01
The objective is to increase the usability of the current NPSS code/architecture by incorporating an advanced space transportation propulsion system capability into the existing NPSS code and begin defining advanced capabilities for NPSS and provide an enhancement for the NPSS code/architecture.
Correlational Analysis of Ordinal Data: From Pearson's "r" to Bayesian Polychoric Correlation
ERIC Educational Resources Information Center
Choi, Jaehwa; Peters, Michelle; Mueller, Ralph O.
2010-01-01
Correlational analyses are one of the most popular quantitative methods, yet also one of the mostly frequently misused methods in social and behavioral research, especially when analyzing ordinal data from Likert or other rating scales. Although several correlational analysis options have been developed for ordinal data, there seems to be a lack…
Reliability of Total Test Scores When Considered as Ordinal Measurements
ERIC Educational Resources Information Center
Biswas, Ajoy Kumar
2006-01-01
This article studies the ordinal reliability of (total) test scores. This study is based on a classical-type linear model of observed score (X), true score (T), and random error (E). Based on the idea of Kendall's tau-a coefficient, a measure of ordinal reliability for small-examinee populations is developed. This measure is extended to large…
Economic Analysis of a Living Wage Ordinance.
ERIC Educational Resources Information Center
Tolley, George; Bernstein, Peter
A study estimated the costs of the "Chicago Jobs and Living Wage Ordinance" that would require firms that receive assistance from the city of Chicago to pay their workers an hourly wage of at least $7.60. An estimate of the additional labor cost that would result from the proposed Ordinance was calculated. Results of a survey of…
ERIC Educational Resources Information Center
Kirby, Amanda; Sugden, David; Beveridge, Sally; Edwards, Lisa; Edwards, Rachel
2008-01-01
Developmental co-ordination disorder (DCD) is a developmental disorder affecting motor co-ordination. The "Diagnostics Statistics Manual"--IV classification for DCD describes difficulties across a range of activities of daily living, impacting on everyday skills and academic performance in school. Recent evidence has shown that…
ERIC Educational Resources Information Center
Kirby, Amanda; Edwards, Lisa; Sugden, David; Rosenblum, Sara
2010-01-01
Developmental Co-ordination Disorder (DCD), also known as Dyspraxia in the United Kingdom (U.K.), is a developmental disorder affecting motor co-ordination. In the past this was regarded as a childhood disorder, however there is increasing evidence that a significant number of children will continue to have persistent difficulties into adulthood.…
How to Plan an Ordinance: An Outline and Some Examples.
ERIC Educational Resources Information Center
Cable Television Information Center, Washington, DC.
Designed for public officials who must make policy decisions concerning cable television, this booklet forms a checklist to ensure that all basic questions have been considered in drafting an ordinance. The purpose of a cable television ordinance is to develop a law listing the specifications and obligations that will govern the franchising of a…
Proposed Ordinance for the Regulation of Cable Television. Working Draft.
ERIC Educational Resources Information Center
Chicago City Council, IL.
A model ordinance is proposed for the regulation of cable television in the city of Chicago. It defines the language of the ordinance, sets forth the method of granting franchises, and describes the terms of the franchises. The duties of a commission to regulate cable television are listed and the method of selecting commission members is…
An Algorithm for Converting Ordinal Scale Measurement Data to Interval/Ratio Scale
ERIC Educational Resources Information Center
Granberg-Rademacker, J. Scott
2010-01-01
The extensive use of survey instruments in the social sciences has long created debate and concern about validity of outcomes, especially among instruments that gather ordinal-level data. Ordinal-level survey measurement of concepts that could be measured at the interval or ratio level produce errors because respondents are forced to truncate or…
30 CFR 206.56 - Transportation allowances-general.
Code of Federal Regulations, 2010 CFR
2010-07-01
... oil has been determined under § 206.52 or § 206.53 of this subpart at a point (e.g., sales point or... sales type code may not exceed 50 percent of the value of the oil at the point of sale as determined under § 206.52 of this subpart. Transportation costs cannot be transferred between sales type codes or...
LLNL Mercury Project Trinity Open Science Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Shawn A.
The Mercury Monte Carlo particle transport code is used to simulate the transport of radiation through urban environments. These challenging calculations include complicated geometries and require significant computational resources to complete. In the proposed Trinity Open Science calculations, I will investigate computer science aspects of the code which are relevant to convergence of the simulation quantities with increasing Monte Carlo particle counts.
NASA Astrophysics Data System (ADS)
Wei, Xiaohui; Li, Weishan; Tian, Hailong; Li, Hongliang; Xu, Haixiao; Xu, Tianfu
2015-07-01
The numerical simulation of multiphase flow and reactive transport in the porous media on complex subsurface problem is a computationally intensive application. To meet the increasingly computational requirements, this paper presents a parallel computing method and architecture. Derived from TOUGHREACT that is a well-established code for simulating subsurface multi-phase flow and reactive transport problems, we developed a high performance computing THC-MP based on massive parallel computer, which extends greatly on the computational capability for the original code. The domain decomposition method was applied to the coupled numerical computing procedure in the THC-MP. We designed the distributed data structure, implemented the data initialization and exchange between the computing nodes and the core solving module using the hybrid parallel iterative and direct solver. Numerical accuracy of the THC-MP was verified through a CO2 injection-induced reactive transport problem by comparing the results obtained from the parallel computing and sequential computing (original code). Execution efficiency and code scalability were examined through field scale carbon sequestration applications on the multicore cluster. The results demonstrate successfully the enhanced performance using the THC-MP on parallel computing facilities.
NASA Astrophysics Data System (ADS)
Fernandez, Eduardo; Borelli, Noah; Cappelli, Mark; Gascon, Nicolas
2003-10-01
Most current Hall thruster simulation efforts employ either 1D (axial), or 2D (axial and radial) codes. These descriptions crucially depend on the use of an ad-hoc perpendicular electron mobility. Several models for the mobility are typically invoked: classical, Bohm, empirically based, wall-induced, as well as combinations of the above. Experimentally, it is observed that fluctuations and electron transport depend on axial distance and operating parameters. Theoretically, linear stability analyses have predicted a number of unstable modes; yet the nonlinear character of the fluctuations and/or their contribution to electron transport remains poorly understood. Motivated by these observations, a 2D code in the azimuthal and axial coordinates has been written. In particular, the simulation self-consistently calculates the azimuthal disturbances resulting in fluctuating drifts, which in turn (if properly correlated with plasma density disturbances) result in fluctuation-driven electron transport. The characterization of the turbulence at various operating parameters and across the channel length is also the object of this study. A description of the hybrid code used in the simulation as well as the initial results will be presented.
Nonambipolar Transport and Torque in Perturbed Equilibria
NASA Astrophysics Data System (ADS)
Logan, N. C.; Park, J.-K.; Wang, Z. R.; Berkery, J. W.; Kim, K.; Menard, J. E.
2013-10-01
A new Perturbed Equilibrium Nonambipolar Transport (PENT) code has been developed to calculate the neoclassical toroidal torque from radial current composed of both passing and trapped particles in perturbed equilibria. This presentation outlines the physics approach used in the development of the PENT code, with emphasis on the effects of retaining general aspect-ratio geometric effects. First, nonambipolar transport coefficients and corresponding neoclassical toroidal viscous (NTV) torque in perturbed equilibria are re-derived from the first order gyro-drift-kinetic equation in the ``combined-NTV'' PENT formalism. The equivalence of NTV torque and change in potential energy due to kinetic effects [J-K. Park, Phys. Plas., 2011] is then used to showcase computational challenges shared between PENT and stability codes MISK and MARS-K. Extensive comparisons to a reduced model, which makes numerous large aspect ratio approximations, are used throughout to emphasize geometry dependent physics such as pitch angle resonances. These applications make extensive use of the PENT code's native interfacing with the Ideal Perturbed Equilibrium Code (IPEC), and the combination of these codes is a key step towards an iterative solver for self-consistent perturbed equilibrium torque. Supported by US DOE contract #DE-AC02-09CH11466 and the DOE Office of Science Graduate Fellowship administered by the Oak Ridge Institute for Science & Education under contract #DE-AC05-06OR23100.
The Initial Atmospheric Transport (IAT) Code: Description and Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrow, Charles W.; Bartel, Timothy James
The Initial Atmospheric Transport (IAT) computer code was developed at Sandia National Laboratories as part of their nuclear launch accident consequences analysis suite of computer codes. The purpose of IAT is to predict the initial puff/plume rise resulting from either a solid rocket propellant or liquid rocket fuel fire. The code generates initial conditions for subsequent atmospheric transport calculations. The Initial Atmospheric Transfer (IAT) code has been compared to two data sets which are appropriate to the design space of space launch accident analyses. The primary model uncertainties are the entrainment coefficients for the extended Taylor model. The Titan 34Dmore » accident (1986) was used to calibrate these entrainment settings for a prototypic liquid propellant accident while the recent Johns Hopkins University Applied Physics Laboratory (JHU/APL, or simply APL) large propellant block tests (2012) were used to calibrate the entrainment settings for prototypic solid propellant accidents. North American Meteorology (NAM )formatted weather data profiles are used by IAT to determine the local buoyancy force balance. The IAT comparisons for the APL solid propellant tests illustrate the sensitivity of the plume elevation to the weather profiles; that is, the weather profile is a dominant factor in determining the plume elevation. The IAT code performed remarkably well and is considered validated for neutral weather conditions.« less
McEvoy, Phil; Escott, Diane; Bee, Penny
2011-01-01
This study is based on a formative evaluation of a case management service for high-intensity service users in Northern England. The evaluation had three main purposes: (i) to assess the quality of the organisational infrastructure; (ii) to obtain a better understanding of the key influences that played a role in shaping the development of the service; and (iii) to identify potential changes in practice that may help to improve the quality of service provision. The evaluation was informed by Gittell's relational co-ordination theory, which focuses upon cross-boundary working practices that facilitate task integration. The Assessment of Chronic Illness Care Survey was used to assess the organisational infrastructure and qualitative interviews with front line staff were conducted to explore the key influences that shaped the development of the service. A high level of strategic commitment and political support for integrated working was identified. However, the quality of care co-ordination was variable. The most prominent operational factor that appeared to influence the scope and quality of care co-ordination was the pattern of interaction between the case managers and their co-workers. The co-ordination of patient care was much more effective in integrated co-ordination networks. Key features included clearly defined, task focussed, relational workspaces with interactive forums where case managers could engage with co-workers in discussions about the management of interdependent care activities. In dispersed co-ordination networks with fewer relational workspaces, the case managers struggled to work as effectively. The evaluation concluded that the creation of flexible and efficient task focused relational workspaces that are systemically managed and adequately resourced could help to improve the quality of care co-ordination, particularly in dispersed networks. © 2010 Blackwell Publishing Ltd.
Projected health impact of the Los Angeles City living wage ordinance
Cole, B.; Shimkhada, R.; Morgenstern, H.; Kominski, G.; Fielding, J.; Wu, S.
2005-01-01
Study objective: To estimate the relative health effects of the income and health insurance provisions of the Los Angeles City living wage ordinance. Setting and participants: About 10 000 employees of city contractors are subject to the Los Angeles City living wage ordinance, which establishes an annually adjusted minimum wage ($7.99 per hour in July 2002) and requires employers to contribute $1.25 per hour worked towards employees' health insurance, or, if health insurance is not provided, to add this amount to wages. Design: As part of a comprehensive health impact assessment (HIA), we used estimates of the effects of health insurance and income on mortality from the published literature to construct a model to estimate and compare potential reductions in mortality attributable to the increases in wage and changes in health insurance status among workers covered by the Los Angeles City living wage ordinance. Results: The model predicts that the ordinance currently reduces mortality by 1.4 deaths per year per 10 000 workers at a cost of $27.5 million per death prevented. If the ordinance were modified so that all uninsured workers received health insurance, mortality would be reduced by eight deaths per year per 10 000 workers at a cost of $3.4 million per death prevented. Conclusions: The health insurance provisions of the ordinance have the potential to benefit the health of covered workers far more cost effectively than the wage provisions of the ordinance. This analytical model can be adapted and used in other health impact assessments of related policy actions that might affect either income or access to health insurance in the affected population. PMID:16020640
Projected health impact of the Los Angeles City living wage ordinance.
Cole, Brian L; Shimkhada, Riti; Morgenstern, Hal; Kominski, Gerald; Fielding, Jonathan E; Wu, Sheng
2005-08-01
To estimate the relative health effects of the income and health insurance provisions of the Los Angeles City living wage ordinance. About 10 000 employees of city contractors are subject to the Los Angeles City living wage ordinance, which establishes an annually adjusted minimum wage (7.99 US dollars per hour in July 2002) and requires employers to contribute 1.25 US dollars per hour worked towards employees' health insurance, or, if health insurance is not provided, to add this amount to wages. As part of a comprehensive health impact assessment (HIA), we used estimates of the effects of health insurance and income on mortality from the published literature to construct a model to estimate and compare potential reductions in mortality attributable to the increases in wage and changes in health insurance status among workers covered by the Los Angeles City living wage ordinance. The model predicts that the ordinance currently reduces mortality by 1.4 deaths per year per 10,000 workers at a cost of 27.5 million US dollars per death prevented. If the ordinance were modified so that all uninsured workers received health insurance, mortality would be reduced by eight deaths per year per 10,000 workers at a cost of 3.4 million US dollars per death prevented. The health insurance provisions of the ordinance have the potential to benefit the health of covered workers far more cost effectively than the wage provisions of the ordinance. This analytical model can be adapted and used in other health impact assessments of related policy actions that might affect either income or access to health insurance in the affected population.
Transport studies in high-performance field reversed configuration plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, S., E-mail: sgupta@trialphaenergy.com; Barnes, D. C.; Dettrick, S. A.
2016-05-15
A significant improvement of field reversed configuration (FRC) lifetime and plasma confinement times in the C-2 plasma, called High Performance FRC regime, has been observed with neutral beam injection (NBI), improved edge stability, and better wall conditioning [Binderbauer et al., Phys. Plasmas 22, 056110 (2015)]. A Quasi-1D (Q1D) fluid transport code has been developed and employed to carry out transport analysis of such C-2 plasma conditions. The Q1D code is coupled to a Monte-Carlo code to incorporate the effect of fast ions, due to NBI, on the background FRC plasma. Numerically, the Q1D transport behavior with enhanced transport coefficients (butmore » with otherwise classical parametric dependencies) such as 5 times classical resistive diffusion, classical thermal ion conductivity, 20 times classical electron thermal conductivity, and classical fast ion behavior fit with the experimentally measured time evolution of the excluded flux radius, line-integrated density, and electron/ion temperature. The numerical study shows near sustainment of poloidal flux for nearly 1 ms in the presence of NBI.« less
McKenzie, J.M.; Voss, C.I.; Siegel, D.I.
2007-01-01
In northern peatlands, subsurface ice formation is an important process that can control heat transport, groundwater flow, and biological activity. Temperature was measured over one and a half years in a vertical profile in the Red Lake Bog, Minnesota. To successfully simulate the transport of heat within the peat profile, the U.S. Geological Survey's SUTRA computer code was modified. The modified code simulates fully saturated, coupled porewater-energy transport, with freezing and melting porewater, and includes proportional heat capacity and thermal conductivity of water and ice, decreasing matrix permeability due to ice formation, and latent heat. The model is verified by correctly simulating the Lunardini analytical solution for ice formation in a porous medium with a mixed ice-water zone. The modified SUTRA model correctly simulates the temperature and ice distributions in the peat bog. Two possible benchmark problems for groundwater and energy transport with ice formation and melting are proposed that may be used by other researchers for code comparison. ?? 2006 Elsevier Ltd. All rights reserved.
2006 Interregional Transportation Improvement Program.
DOT National Transportation Integrated Search
2006-01-01
The Department of Transportations (Department) five-year Interregional Transportation : Improvement Program (ITIP) is prepared pursuant to Government Code 14526 and : consists of projects funded from the interregional share, which is 25 percent of...
Overview of Existing Wind Energy Ordinances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oteri, F.
2008-12-01
Due to increased energy demand in the United States, rural communities with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by entities with plans to develop the resource. Although these opportunities can create new revenue in the form of construction jobs and land lease payments, they also create a new responsibility on the part of local governments to ensure that ordinances will be established to aid the development of safe facilities that will be embraced by the community. The purpose of this reportmore » is to educate and engage state and local governments, as well as policymakers, about existing large wind energy ordinances. These groups will have a collection of examples to utilize when they attempt to draft a new large wind energy ordinance in a town or county without existing ordinances.« less
Gentry, Amanda Elswick; Jackson-Cook, Colleen K; Lyon, Debra E; Archer, Kellie J
2015-01-01
The pathological description of the stage of a tumor is an important clinical designation and is considered, like many other forms of biomedical data, an ordinal outcome. Currently, statistical methods for predicting an ordinal outcome using clinical, demographic, and high-dimensional correlated features are lacking. In this paper, we propose a method that fits an ordinal response model to predict an ordinal outcome for high-dimensional covariate spaces. Our method penalizes some covariates (high-throughput genomic features) without penalizing others (such as demographic and/or clinical covariates). We demonstrate the application of our method to predict the stage of breast cancer. In our model, breast cancer subtype is a nonpenalized predictor, and CpG site methylation values from the Illumina Human Methylation 450K assay are penalized predictors. The method has been made available in the ordinalgmifs package in the R programming environment.
Comparison of EGS4 and MCNP Monte Carlo codes when calculating radiotherapy depth doses.
Love, P A; Lewis, D G; Al-Affan, I A; Smith, C W
1998-05-01
The Monte Carlo codes EGS4 and MCNP have been compared when calculating radiotherapy depth doses in water. The aims of the work were to study (i) the differences between calculated depth doses in water for a range of monoenergetic photon energies and (ii) the relative efficiency of the two codes for different electron transport energy cut-offs. The depth doses from the two codes agree with each other within the statistical uncertainties of the calculations (1-2%). The relative depth doses also agree with data tabulated in the British Journal of Radiology Supplement 25. A discrepancy in the dose build-up region may by attributed to the different electron transport algorithims used by EGS4 and MCNP. This discrepancy is considerably reduced when the improved electron transport routines are used in the latest (4B) version of MCNP. Timing calculations show that EGS4 is at least 50% faster than MCNP for the geometries used in the simulations.
Michener, Thomas E.; Rector, David R.; Cuta, Judith M.
2017-09-01
COBRA-SFS, a thermal-hydraulics code developed for steady-state and transient analysis of multi-assembly spent-fuel storage and transportation systems, has been incorporated into the Used Nuclear Fuel-Storage, Transportation and Disposal Analysis Resource and Data System tool as a module devoted to spent fuel package thermal analysis. This paper summarizes the basic formulation of the equations and models used in the COBRA-SFS code, showing that COBRA-SFS fully captures the important physical behavior governing the thermal performance of spent fuel storage systems, with internal and external natural convection flow patterns, and heat transfer by convection, conduction, and thermal radiation. Of particular significance is themore » capability for detailed thermal radiation modeling within the fuel rod array.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michener, Thomas E.; Rector, David R.; Cuta, Judith M.
COBRA-SFS, a thermal-hydraulics code developed for steady-state and transient analysis of multi-assembly spent-fuel storage and transportation systems, has been incorporated into the Used Nuclear Fuel-Storage, Transportation and Disposal Analysis Resource and Data System tool as a module devoted to spent fuel package thermal analysis. This paper summarizes the basic formulation of the equations and models used in the COBRA-SFS code, showing that COBRA-SFS fully captures the important physical behavior governing the thermal performance of spent fuel storage systems, with internal and external natural convection flow patterns, and heat transfer by convection, conduction, and thermal radiation. Of particular significance is themore » capability for detailed thermal radiation modeling within the fuel rod array.« less
Radiation Transport and Shielding for Space Exploration and High Speed Flight Transportation
NASA Technical Reports Server (NTRS)
Maung, Khin Maung; Trapathi, R. K.
1997-01-01
Transportation of ions and neutrons in matter is of direct interest in several technologically important and scientific areas, including space radiation, cosmic ray propagation studies in galactic medium, nuclear power plants and radiological effects that impact industrial and public health. For the proper assessment of radiation exposure, both reliable transport codes and accurate data are needed. Nuclear cross section data is one of the essential inputs into the transport codes. In order to obtain an accurate parametrization of cross section data, theoretical input is indispensable especially for processes where there is little or no experimental data available. In this grant period work has been done on the studies of the use of relativistic equations and their one-body limits. The results will be useful in choosing appropriate effective one-body equation for reaction calculations. Work has also been done to improve upon the data base needed for the transport codes used in the studies of radiation transport and shielding for space exploration and high speed flight transportation. A phenomenological model was developed for the total absorption cross sections valid for any system of charged and/or uncharged collision pairs for the entire energy range. The success of the model is gratifying. It is being used by other federal agencies, national labs and universities. A list of publications based on the work during the grant period is given below and copies are enclosed with this report.
Oxygen in the regulation of intestinal epithelial transport
Ward, Joseph B J; Keely, Simon J; Keely, Stephen J
2014-01-01
The transport of fluid, nutrients and electrolytes to and from the intestinal lumen is a primary function of epithelial cells. Normally, the intestine absorbs approximately 9 l of fluid and 1 kg of nutrients daily, driven by epithelial transport processes that consume large amounts of cellular energy and O2. The epithelium exists at the interface of the richly vascularised mucosa, and the anoxic luminal environment and this steep O2 gradient play a key role in determining the expression pattern of proteins involved in fluid, nutrient and electrolyte transport. However, the dynamic nature of the splanchnic circulation necessitates that the epithelium can evoke co-ordinated responses to fluctuations in O2 availability, which occur either as a part of the normal digestive process or as a consequence of several pathophysiological conditions. While it is known that hypoxia-responsive signals, such as reactive oxygen species, AMP-activated kinase, hypoxia-inducible factors, and prolyl hydroxylases are all important in regulating epithelial responses to altered O2 supply, our understanding of the molecular mechanisms involved is still limited. Here, we aim to review the current literature regarding the role that O2 plays in regulating intestinal transport processes and to highlight areas of research that still need to be addressed. PMID:24710059
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begovich, C.L.; Eckerman, K.F.; Schlatter, E.C.
1981-08-01
The DARTAB computer code combines radionuclide environmental exposure data with dosimetric and health effects data to generate tabulations of the predicted impact of radioactive airborne effluents. DARTAB is independent of the environmental transport code used to generate the environmental exposure data and the codes used to produce the dosimetric and health effects data. Therefore human dose and risk calculations need not be added to every environmental transport code. Options are included in DARTAB to permit the user to request tabulations by various topics (e.g., cancer site, exposure pathway, etc.) to facilitate characterization of the human health impacts of the effluents.more » The DARTAB code was written at ORNL for the US Environmental Protection Agency, Office of Radiation Programs.« less
Transoptr — A second order beam transport design code with optimization and constraints
NASA Astrophysics Data System (ADS)
Heighway, E. A.; Hutcheon, R. M.
1981-08-01
This code was written initially to design an achromatic and isochronous reflecting magnet and has been extended to compete in capability (for constrained problems) with TRANSPORT. Its advantage is its flexibility in that the user writes a routine to describe his transport system. The routine allows the definition of general variables from which the system parameters can be derived. Further, the user can write any constraints he requires as algebraic equations relating the parameters. All variables may be used in either a first or second order optimization.
MPACT Standard Input User s Manual, Version 2.2.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Benjamin S.; Downar, Thomas; Fitzgerald, Andrew
The MPACT (Michigan PArallel Charactistics based Transport) code is designed to perform high-fidelity light water reactor (LWR) analysis using whole-core pin-resolved neutron transport calculations on modern parallel-computing hardware. The code consists of several libraries which provide the functionality necessary to solve steady-state eigenvalue problems. Several transport capabilities are available within MPACT including both 2-D and 3-D Method of Characteristics (MOC). A three-dimensional whole core solution based on the 2D-1D solution method provides the capability for full core depletion calculations.
Programmers manual for a one-dimensional Lagrangian transport model
Schoellhamer, D.H.; Jobson, H.E.
1986-01-01
A one-dimensional Lagrangian transport model for simulating water-quality constituents such as temperature, dissolved oxygen , and suspended sediment in rivers is presented in this Programmers Manual. Lagrangian transport modeling techniques, the model 's subroutines, and the user-written decay-coefficient subroutine are discussed in detail. Appendices list the program codes. The Programmers Manual is intended for the model user who needs to modify code either to adapt the model to a particular need or to use reaction kinetics not provided with the model. (Author 's abstract)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Bryan Scott; MacQuigg, Michael Robert; Wysong, Andrew Russell
In this document, the code MCNP is validated with ENDF/B-VII.1 cross section data under the purview of ANSI/ANS-8.24-2007, for use with uranium systems. MCNP is a computer code based on Monte Carlo transport methods. While MCNP has wide reading capability in nuclear transport simulation, this validation is limited to the functionality related to neutron transport and calculation of criticality parameters such as k eff.
Young Children's Ability to Use Ordinal Labels in a Spatial Search Task
ERIC Educational Resources Information Center
Miller, Stephanie E.; Marcovitch, Stuart; Boseovski, Janet J.; Lewkowicz, David J.
2015-01-01
The use and understanding of ordinal terms (e.g., "first" and "second") is a developmental milestone that has been relatively unexplored in the preschool age range. In the present study, 4- and 5-year-olds watched as a reward was placed in one of three train cars labeled by the experimenter with an ordinal (e.g.,…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-13
... land. The tribal land is located on trust land and this Ordinance allows for the possession and sale of alcoholic beverages. This Ordinance will increase the ability of the tribal government to control the distribution and possession of liquor within their tribal land, and at the same time will provide an important...
The assignment of scores procedure for ordinal categorical data.
Chen, Han-Ching; Wang, Nae-Sheng
2014-01-01
Ordinal data are the most frequently encountered type of data in the social sciences. Many statistical methods can be used to process such data. One common method is to assign scores to the data, convert them into interval data, and further perform statistical analysis. There are several authors who have recently developed assigning score methods to assign scores to ordered categorical data. This paper proposes an approach that defines an assigning score system for an ordinal categorical variable based on underlying continuous latent distribution with interpretation by using three case study examples. The results show that the proposed score system is well for skewed ordinal categorical data.
Regenerating time series from ordinal networks.
McCullough, Michael; Sakellariou, Konstantinos; Stemler, Thomas; Small, Michael
2017-03-01
Recently proposed ordinal networks not only afford novel methods of nonlinear time series analysis but also constitute stochastic approximations of the deterministic flow time series from which the network models are constructed. In this paper, we construct ordinal networks from discrete sampled continuous chaotic time series and then regenerate new time series by taking random walks on the ordinal network. We then investigate the extent to which the dynamics of the original time series are encoded in the ordinal networks and retained through the process of regenerating new time series by using several distinct quantitative approaches. First, we use recurrence quantification analysis on traditional recurrence plots and order recurrence plots to compare the temporal structure of the original time series with random walk surrogate time series. Second, we estimate the largest Lyapunov exponent from the original time series and investigate the extent to which this invariant measure can be estimated from the surrogate time series. Finally, estimates of correlation dimension are computed to compare the topological properties of the original and surrogate time series dynamics. Our findings show that ordinal networks constructed from univariate time series data constitute stochastic models which approximate important dynamical properties of the original systems.
Regenerating time series from ordinal networks
NASA Astrophysics Data System (ADS)
McCullough, Michael; Sakellariou, Konstantinos; Stemler, Thomas; Small, Michael
2017-03-01
Recently proposed ordinal networks not only afford novel methods of nonlinear time series analysis but also constitute stochastic approximations of the deterministic flow time series from which the network models are constructed. In this paper, we construct ordinal networks from discrete sampled continuous chaotic time series and then regenerate new time series by taking random walks on the ordinal network. We then investigate the extent to which the dynamics of the original time series are encoded in the ordinal networks and retained through the process of regenerating new time series by using several distinct quantitative approaches. First, we use recurrence quantification analysis on traditional recurrence plots and order recurrence plots to compare the temporal structure of the original time series with random walk surrogate time series. Second, we estimate the largest Lyapunov exponent from the original time series and investigate the extent to which this invariant measure can be estimated from the surrogate time series. Finally, estimates of correlation dimension are computed to compare the topological properties of the original and surrogate time series dynamics. Our findings show that ordinal networks constructed from univariate time series data constitute stochastic models which approximate important dynamical properties of the original systems.
NASA Technical Reports Server (NTRS)
Armstrong, T. W.
1972-01-01
Several Monte Carlo radiation transport computer codes are used to predict quantities of interest in the fields of radiotherapy and radiobiology. The calculational methods are described and comparisions of calculated and experimental results are presented for dose distributions produced by protons, neutrons, and negatively charged pions. Comparisons of calculated and experimental cell survival probabilities are also presented.
SQA of finite element method (FEM) codes used for analyses of pit storage/transport packages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russel, E.
1997-11-01
This report contains viewgraphs on the software quality assurance of finite element method codes used for analyses of pit storage and transport projects. This methodology utilizes the ISO 9000-3: Guideline for application of 9001 to the development, supply, and maintenance of software, for establishing well-defined software engineering processes to consistently maintain high quality management approaches.
49 CFR Appendix C to Part 215 - FRA Freight Car Standards Defect Code
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false FRA Freight Car Standards Defect Code C Appendix C... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Pt. 215, App. C Appendix C to... 13/4″. (C)(1) Rim thickness is 11/16″ or less; (2) Rim thickness is 5/8″ or less; (3) Rim thickness...
Zarb, Francis; McEntee, Mark F; Rainford, Louise
2015-06-01
To evaluate visual grading characteristics (VGC) and ordinal regression analysis during head CT optimisation as a potential alternative to visual grading assessment (VGA), traditionally employed to score anatomical visualisation. Patient images (n = 66) were obtained using current and optimised imaging protocols from two CT suites: a 16-slice scanner at the national Maltese centre for trauma and a 64-slice scanner in a private centre. Local resident radiologists (n = 6) performed VGA followed by VGC and ordinal regression analysis. VGC alone indicated that optimised protocols had similar image quality as current protocols. Ordinal logistic regression analysis provided an in-depth evaluation, criterion by criterion allowing the selective implementation of the protocols. The local radiology review panel supported the implementation of optimised protocols for brain CT examinations (including trauma) in one centre, achieving radiation dose reductions ranging from 24 % to 36 %. In the second centre a 29 % reduction in radiation dose was achieved for follow-up cases. The combined use of VGC and ordinal logistic regression analysis led to clinical decisions being taken on the implementation of the optimised protocols. This improved method of image quality analysis provided the evidence to support imaging protocol optimisation, resulting in significant radiation dose savings. • There is need for scientifically based image quality evaluation during CT optimisation. • VGC and ordinal regression analysis in combination led to better informed clinical decisions. • VGC and ordinal regression analysis led to dose reductions without compromising diagnostic efficacy.
Study of negative ion transport phenomena in a plasma source
NASA Astrophysics Data System (ADS)
Riz, D.; Paméla, J.
1996-07-01
NIETZSCHE (Negative Ions Extraction and Transport ZSimulation Code for HydrogEn species) is a negative ion (NI) transport code developed at Cadarache. This code calculates NI trajectories using a 3D Monte-Carlo technique, taking into account the main destruction processes, as well as elastic collisions (H-/H+) and charge exchanges (H-/H0). It determines the extraction probability of a NI created at a given position. According to the simulations, we have seen that in the case of volume production, only NI produced close to the plasma grid (PG) can be extracted. Concerning the surface production, we have studied how NI produced on the PG and accelerated by the plasma sheath backward into the source could be extracted. We demonstrate that elastic collisions and charge exchanges play an important role, which in some conditions dominates the magnetic filter effect, which acts as a magnetic mirror. NI transport in various conditions will be discussed: volume/surface production, high/low plasmas density, tent filter/transverse filter.
Cosmic-ray propagation with DRAGON2: I. numerical solver and astrophysical ingredients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evoli, Carmelo; Gaggero, Daniele; Vittino, Andrea
2017-02-01
We present version 2 of the DRAGON code designed for computing realistic predictions of the CR densities in the Galaxy. The code numerically solves the interstellar CR transport equation (including inhomogeneous and anisotropic diffusion, either in space and momentum, advective transport and energy losses), under realistic conditions. The new version includes an updated numerical solver and several models for the astrophysical ingredients involved in the transport equation. Improvements in the accuracy of the numerical solution are proved against analytical solutions and in reference diffusion scenarios. The novel features implemented in the code allow to simulate the diverse scenarios proposed tomore » reproduce the most recent measurements of local and diffuse CR fluxes, going beyond the limitations of the homogeneous galactic transport paradigm. To this end, several applications using DRAGON2 are presented as well. This new version facilitates the users to include their own physical models by means of a modular C++ structure.« less
Culbertson, C N; Wangerin, K; Ghandourah, E; Jevremovic, T
2005-08-01
The goal of this study was to evaluate the COG Monte Carlo radiation transport code, developed and tested by Lawrence Livermore National Laboratory, for neutron capture therapy related modeling. A boron neutron capture therapy model was analyzed comparing COG calculational results to results from the widely used MCNP4B (Monte Carlo N-Particle) transport code. The approach for computing neutron fluence rate and each dose component relevant in boron neutron capture therapy is described, and calculated values are shown in detail. The differences between the COG and MCNP predictions are qualified and quantified. The differences are generally small and suggest that the COG code can be applied for BNCT research related problems.
Un-collided-flux preconditioning for the first order transport equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigley, M.; Koebbe, J.; Drumm, C.
2013-07-01
Two codes were tested for the first order neutron transport equation using finite element methods. The un-collided-flux solution is used as a preconditioner for each of these methods. These codes include a least squares finite element method and a discontinuous finite element method. The performance of each code is shown on problems in one and two dimensions. The un-collided-flux preconditioner shows good speedup on each of the given methods. The un-collided-flux preconditioner has been used on the second-order equation, and here we extend those results to the first order equation. (authors)
Nuclide Depletion Capabilities in the Shift Monte Carlo Code
Davidson, Gregory G.; Pandya, Tara M.; Johnson, Seth R.; ...
2017-12-21
A new depletion capability has been developed in the Exnihilo radiation transport code suite. This capability enables massively parallel domain-decomposed coupling between the Shift continuous-energy Monte Carlo solver and the nuclide depletion solvers in ORIGEN to perform high-performance Monte Carlo depletion calculations. This paper describes this new depletion capability and discusses its various features, including a multi-level parallel decomposition, high-order transport-depletion coupling, and energy-integrated power renormalization. Several test problems are presented to validate the new capability against other Monte Carlo depletion codes, and the parallel performance of the new capability is analyzed.
Agmatine is transported into liver mitochondria by a specific electrophoretic mechanism
Salvi, Mauro; Battaglia, Valentina; Mancon, Mario; Colombatto, Sebastiano; Cravanzola, Carlo; Calheiros, Rita; Marques, Maria P. M.; Grillo, Maria A.; Toninello, Antonio
2006-01-01
Agmatine, a divalent diamine with two positive charges at physiological pH, is transported into the matrix of liver mitochondria by an energy-dependent mechanism the driving force of which is ΔΨ (electrical membrane potential). Although this process showed strict electrophoretic behaviour, qualitatively similar to that of polyamines, agmatine is most probably transported by a specific uniporter. Shared transport with polyamines by means of their transporter is excluded, as divalent putrescine and cadaverine are ineffective in inhibiting agmatine uptake. Indeed, the use of the electroneutral transporter of basic amino acids can also be discarded as ornithine, arginine and lysine are completely ineffective at inducing the inhibition of agmatine uptake. The involvement of the monoamine transporter or the existence of a leak pathway are also unlikely. Flux-voltage analysis and the determination of activation enthalpy, which is dependent upon the valence of agmatine, are consistent with the hypothesis that the mitochondrial agmatine transporter is a channel or a single-binding centre-gated pore. The transport of agmatine was non-competitively inhibited by propargylamines, in particular clorgilyne, that are known to be inhibitors of MAO (monoamine oxidase). However, agmatine is normally transported in mitoplasts, thus excluding the involvement of MAO in this process. The I2 imidazoline receptor, which binds agmatine to the mitochondrial membrane, can also be excluded as a possible transporter since its inhibitor, idazoxan, was ineffective at inducing the inhibition of agmatine uptake. Scatchard analysis of membrane binding revealed two types of binding site, S1 and S2, both with mono-co-ordination, and exhibiting high-capacity and low-affinity binding for agmatine compared with polyamines. Agmatine transport in liver mitochondria may be of physiological importance as an indirect regulatory system of cytochrome c oxidase activity and as an inducer mechanism of mitochondrial-mediated apoptosis. PMID:16509824
Sacramento's parking lot shading ordinance: environmental and economic costs of compliance
E.G. McPherson
2001-01-01
A survey of 15 Sacramento parking lots and computer modeling were used to evaluate parking capacity and compliance with the 1983 ordinance requiring 50% shade of paved areas (PA) 15 years after development. There were 6% more parking spaces than required by ordinance, and 36% were vacant during peak use periods. Current shade was 14% with 44% of this amount provided by...
Code of Federal Regulations, 2011 CFR
2011-01-01
... government has a smoke-free ordinance that is more strict than the smoking policy for Federal facilities... REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Smoking § 102-74.351 If a state or local government has a smoke-free ordinance that is more strict than the smoking policy for Federal facilities...
Code of Federal Regulations, 2014 CFR
2014-01-01
... government has a smoke-free ordinance that is more strict than the smoking policy for Federal facilities... REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Smoking § 102-74.351 If a state or local government has a smoke-free ordinance that is more strict than the smoking policy for Federal facilities...
Code of Federal Regulations, 2010 CFR
2010-07-01
... government has a smoke-free ordinance that is more strict than the smoking policy for Federal facilities... REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Smoking § 102-74.351 If a state or local government has a smoke-free ordinance that is more strict than the smoking policy for Federal facilities...
Code of Federal Regulations, 2013 CFR
2013-07-01
... government has a smoke-free ordinance that is more strict than the smoking policy for Federal facilities... REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Smoking § 102-74.351 If a state or local government has a smoke-free ordinance that is more strict than the smoking policy for Federal facilities...
Code of Federal Regulations, 2012 CFR
2012-01-01
... government has a smoke-free ordinance that is more strict than the smoking policy for Federal facilities... REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Smoking § 102-74.351 If a state or local government has a smoke-free ordinance that is more strict than the smoking policy for Federal facilities...
Track-structure simulations for charged particles.
Dingfelder, Michael
2012-11-01
Monte Carlo track-structure simulations provide a detailed and accurate picture of radiation transport of charged particles through condensed matter of biological interest. Liquid water serves as a surrogate for soft tissue and is used in most Monte Carlo track-structure codes. Basic theories of radiation transport and track-structure simulations are discussed and differences compared to condensed history codes highlighted. Interaction cross sections for electrons, protons, alpha particles, and light and heavy ions are required input data for track-structure simulations. Different calculation methods, including the plane-wave Born approximation, the dielectric theory, and semi-empirical approaches are presented using liquid water as a target. Low-energy electron transport and light ion transport are discussed as areas of special interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas
Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of acid mine drainage remediation, waste disposal sites, hydrothermal convection, contaminant transport, and groundwater quality. We have developed a comprehensive numerical simulator, TOUGHREACT, which considers non-isothermal multi-component chemical transport in both liquid and gas phases. A wide range of subsurface thermo-physical-chemical processes is considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. The code can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity.
Shielding evaluation for solar particle events using MCNPX, PHITS and OLTARIS codes.
Aghara, S K; Sriprisan, S I; Singleterry, R C; Sato, T
2015-01-01
Detailed analyses of Solar Particle Events (SPE) were performed to calculate primary and secondary particle spectra behind aluminum, at various thicknesses in water. The simulations were based on Monte Carlo (MC) radiation transport codes, MCNPX 2.7.0 and PHITS 2.64, and the space radiation analysis website called OLTARIS (On-Line Tool for the Assessment of Radiation in Space) version 3.4 (uses deterministic code, HZETRN, for transport). The study is set to investigate the impact of SPEs spectra transporting through 10 or 20 g/cm(2) Al shield followed by 30 g/cm(2) of water slab. Four historical SPE events were selected and used as input source spectra particle differential spectra for protons, neutrons, and photons are presented. The total particle fluence as a function of depth is presented. In addition to particle flux, the dose and dose equivalent values are calculated and compared between the codes and with the other published results. Overall, the particle fluence spectra from all three codes show good agreement with the MC codes showing closer agreement compared to the OLTARIS results. The neutron particle fluence from OLTARIS is lower than the results from MC codes at lower energies (E<100 MeV). Based on mean square difference analysis the results from MCNPX and PHITS agree better for fluence, dose and dose equivalent when compared to OLTARIS results. Copyright © 2015 The Committee on Space Research (COSPAR). All rights reserved.
Aerothermo-Structural Analysis of Low Cost Composite Nozzle/Inlet Components
NASA Technical Reports Server (NTRS)
Shivakumar, Kuwigai; Challa, Preeli; Sree, Dave; Reddy, D.
1999-01-01
This research is a cooperative effort among the Turbomachinery and Propulsion Division of NASA Glenn, CCMR of NC A&T State University, and the Tuskegee University. The NC A&T is the lead center and Tuskegee University is the participating institution. Objectives of the research were to develop an integrated aerodynamic, thermal and structural analysis code for design of aircraft engine components, such as, nozzles and inlets made of textile composites; conduct design studies on typical inlets for hypersonic transportation vehicles and setup standards test examples and finally manufacture a scaled down composite inlet. These objectives are accomplished through the following seven tasks: (1) identify the relevant public domain codes for all three types of analysis; (2) evaluate the codes for the accuracy of results and computational efficiency; (3) develop aero-thermal and thermal structural mapping algorithms; (4) integrate all the codes into one single code; (5) write a graphical user interface to improve the user friendliness of the code; (6) conduct test studies for rocket based combined-cycle engine inlet; and finally (7) fabricate a demonstration inlet model using textile preform composites. Tasks one, two and six are being pursued. Selected and evaluated NPARC for flow field analysis, CSTEM for in-depth thermal analysis of inlets and nozzles and FRAC3D for stress analysis. These codes have been independently verified for accuracy and performance. In addition, graphical user interface based on micromechanics analysis for laminated as well as textile composites was developed. Demonstration of this code will be made at the conference. A rocket based combined cycle engine was selected for test studies. Flow field analysis of various inlet geometries were studied. Integration of codes is being continued. The codes developed are being applied to a candidate example of trailblazer engine proposed for space transportation. A successful development of the code will provide a simpler, faster and user-friendly tool for conducting design studies of aircraft and spacecraft engines, applicable in high speed civil transport and space missions.
Recent Progress in the Development of a Multi-Layer Green's Function Code for Ion Beam Transport
NASA Technical Reports Server (NTRS)
Tweed, John; Walker, Steven A.; Wilson, John W.; Tripathi, Ram K.
2008-01-01
To meet the challenge of future deep space programs, an accurate and efficient engineering code for analyzing the shielding requirements against high-energy galactic heavy radiation is needed. To address this need, a new Green's function code capable of simulating high charge and energy ions with either laboratory or space boundary conditions is currently under development. The computational model consists of combinations of physical perturbation expansions based on the scales of atomic interaction, multiple scattering, and nuclear reactive processes with use of the Neumann-asymptotic expansions with non-perturbative corrections. The code contains energy loss due to straggling, nuclear attenuation, nuclear fragmentation with energy dispersion and downshifts. Previous reports show that the new code accurately models the transport of ion beams through a single slab of material. Current research efforts are focused on enabling the code to handle multiple layers of material and the present paper reports on progress made towards that end.
1993-06-01
1•) + ) •,(v)(•,L) = ()(Q)+ sEXT (F). (4) The scalar flux, 0, is related to the angular flux, W, by (F)= f (dQ Vh) (5) and the particle current, J...J," v,p’) u +at(U, v) w(u, U, p’)= as(u, v) O(u, v) + SEXT (uv)] (92) 0 Ul,(V) I Assuming the area of the triangle is sufficiently small that cross...M + SEXT () (98) Wvn and WoUT are angular flux averages along the input and output edges, respectively, and are defined by WD Iv = f- ds. V(s.v) (99
Fully-kinetic Ion Simulation of Global Electrostatic Turbulent Transport in C-2U
NASA Astrophysics Data System (ADS)
Fulton, Daniel; Lau, Calvin; Bao, Jian; Lin, Zhihong; Tajima, Toshiki; TAE Team
2017-10-01
Understanding the nature of particle and energy transport in field-reversed configuration (FRC) plasmas is a crucial step towards an FRC-based fusion reactor. The C-2U device at Tri Alpha Energy (TAE) achieved macroscopically stable plasmas and electron energy confinement time which scaled favorably with electron temperature. This success led to experimental and theoretical investigation of turbulence in C-2U, including gyrokinetic ion simulations with the Gyrokinetic Toroidal Code (GTC). A primary objective of TAE's new C-2W device is to explore transport scaling in an extended parameter regime. In concert with the C-2W experimental campaign, numerical efforts have also been extended in A New Code (ANC) to use fully-kinetic (FK) ions and a Vlasov-Poisson field solver. Global FK ion simulations are presented. Future code development is also discussed.
Simulations of 4D edge transport and dynamics using the TEMPEST gyro-kinetic code
NASA Astrophysics Data System (ADS)
Rognlien, T. D.; Cohen, B. I.; Cohen, R. H.; Dorr, M. R.; Hittinger, J. A. F.; Kerbel, G. D.; Nevins, W. M.; Xiong, Z.; Xu, X. Q.
2006-10-01
Simulation results are presented for tokamak edge plasmas with a focus on the 4D (2r,2v) option of the TEMPEST continuum gyro-kinetic code. A detailed description of a variety of kinetic simulations is reported, including neoclassical radial transport from Coulomb collisions, electric field generation, dynamic response to perturbations by geodesic acoustic modes, and parallel transport on open magnetic-field lines. Comparison is made between the characteristics of the plasma solutions on closed and open magnetic-field line regions separated by a magnetic separatrix, and simple physical models are used to qualitatively explain the differences observed in mean flow and electric-field generation. The status of extending the simulations to 5D turbulence will be summarized. The code structure used in this ongoing project is also briefly described, together with future plans.
Statistical Analysis of the AIAA Drag Prediction Workshop CFD Solutions
NASA Technical Reports Server (NTRS)
Morrison, Joseph H.; Hemsch, Michael J.
2007-01-01
The first AIAA Drag Prediction Workshop (DPW), held in June 2001, evaluated the results from an extensive N-version test of a collection of Reynolds-Averaged Navier-Stokes CFD codes. The code-to-code scatter was more than an order of magnitude larger than desired for design and experimental validation of cruise conditions for a subsonic transport configuration. The second AIAA Drag Prediction Workshop, held in June 2003, emphasized the determination of installed pylon-nacelle drag increments and grid refinement studies. The code-to-code scatter was significantly reduced compared to the first DPW, but still larger than desired. However, grid refinement studies showed no significant improvement in code-to-code scatter with increasing grid refinement. The third AIAA Drag Prediction Workshop, held in June 2006, focused on the determination of installed side-of-body fairing drag increments and grid refinement studies for clean attached flow on wing alone configurations and for separated flow on the DLR-F6 subsonic transport model. This report compares the transonic cruise prediction results of the second and third workshops using statistical analysis.
Prompt Radiation Protection Factors
2018-02-01
dimensional Monte-Carlo radiation transport code MCNP (Monte Carlo N-Particle) and the evaluation of the protection factors (ratio of dose in the open to...radiation was performed using the three dimensional Monte- Carlo radiation transport code MCNP (Monte Carlo N-Particle) and the evaluation of the protection...by detonation of a nuclear device have placed renewed emphasis on evaluation of the consequences in case of such an event. The Defense Threat
Space Radiation Transport Codes: A Comparative Study for Galactic Cosmic Rays Environment
NASA Astrophysics Data System (ADS)
Tripathi, Ram; Wilson, John W.; Townsend, Lawrence W.; Gabriel, Tony; Pinsky, Lawrence S.; Slaba, Tony
For long duration and/or deep space human missions, protection from severe space radiation exposure is a challenging design constraint and may be a potential limiting factor. The space radiation environment consists of galactic cosmic rays (GCR), solar particle events (SPE), trapped radiation, and includes ions of all the known elements over a very broad energy range. These ions penetrate spacecraft materials producing nuclear fragments and secondary particles that damage biological tissues, microelectronic devices, and materials. In deep space missions, where the Earth's magnetic field does not provide protection from space radiation, the GCR environment is significantly enhanced due to the absence of geomagnetic cut-off and is a major component of radiation exposure. Accurate risk assessments critically depend on the accuracy of the input information as well as radiation transport codes used, and so systematic verification of codes is necessary. In this study, comparisons are made between the deterministic code HZETRN2006 and the Monte Carlo codes HETC-HEDS and FLUKA for an aluminum shield followed by a water target exposed to the 1977 solar minimum GCR spectrum. Interaction and transport of high charge ions present in GCR radiation environment provide a more stringent constraint in the comparison of the codes. Dose, dose equivalent and flux spectra are compared; details of the comparisons will be discussed, and conclusions will be drawn for future directions.
Biernacki, Marcin; Tarnowski, Adam
2008-01-01
When assessing the psychological suitability for the profession of a pilot, it is important to consider personality traits and psychomotor abilities. Our study aimed at estimating the role of temperamental traits as components of pilots' personality in eye-hand co-ordination. The assumption was that differences in the escalation of the level of temperamental traits, as measured with the Formal Characteristic of Behaviour-Temperament Inventory (FCB-TI), will significantly influence eye-hand co-ordination. At the level of general scores, enhanced briskness proved to be the most important trait for eye-hand co-ordination. An analysis of partial scores additionally underlined the importance of sensory sensitivity, endurance and activity. The application of eye-hand co-ordination tasks, which involve energetic and temporal dimensions of performance, helped to disclose the role of biologically-based personality traits in psychomotor performance. The implication of these findings for selecting pilots is discussed.
Genomic-Enabled Prediction of Ordinal Data with Bayesian Logistic Ordinal Regression.
Montesinos-López, Osval A; Montesinos-López, Abelardo; Crossa, José; Burgueño, Juan; Eskridge, Kent
2015-08-18
Most genomic-enabled prediction models developed so far assume that the response variable is continuous and normally distributed. The exception is the probit model, developed for ordered categorical phenotypes. In statistical applications, because of the easy implementation of the Bayesian probit ordinal regression (BPOR) model, Bayesian logistic ordinal regression (BLOR) is implemented rarely in the context of genomic-enabled prediction [sample size (n) is much smaller than the number of parameters (p)]. For this reason, in this paper we propose a BLOR model using the Pólya-Gamma data augmentation approach that produces a Gibbs sampler with similar full conditional distributions of the BPOR model and with the advantage that the BPOR model is a particular case of the BLOR model. We evaluated the proposed model by using simulation and two real data sets. Results indicate that our BLOR model is a good alternative for analyzing ordinal data in the context of genomic-enabled prediction with the probit or logit link. Copyright © 2015 Montesinos-López et al.
Transportation fuel research and development : statistically validated codes and standards
DOT National Transportation Integrated Search
2007-08-28
The recent establishment of the National University Transportation Center at MST under the "Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users," expands the research and education activities to include alternative tr...
ERIC Educational Resources Information Center
Moustaki, Irini; Joreskog, Karl G.; Mavridis, Dimitris
2004-01-01
We consider a general type of model for analyzing ordinal variables with covariate effects and 2 approaches for analyzing data for such models, the item response theory (IRT) approach and the PRELIS-LISREL (PLA) approach. We compare these 2 approaches on the basis of 2 examples, 1 involving only covariate effects directly on the ordinal variables…
Code of Federal Regulations, 2010 CFR
2010-01-01
... this part: (a) Air transportation means foreign air transportation or interstate air transportation as defined in 49 U.S.C. 40102 (a)(23) and (25) respectively. (b) Carrier means any air carrier or foreign air... scheduled passenger air transportation, including by wet lease. (c) Code-sharing arrangement means an...
Legislations combating counterfeit drugs in Hong Kong.
Lai, C W; Chan, W K
2013-08-01
To understand legislation combating counterfeit drugs in Hong Kong. This study consisted of two parts. In part I, counterfeit drugs–related ordinances and court cases were reviewed. In part II, indepth interviews of the stakeholders were described. Hong Kong. All Hong Kong ordinances were screened manually to identify those combating counterfeit drugs. Court cases were searched for each of the identified cases. Then, the relevant judgement justifications were analysed to identify sentencing issues. Indepth interviews with the stakeholders were conducted to understand their perceptions about such legislation. Trade Marks Ordinance, Patents Ordinance, Trade Descriptions Ordinance, and Pharmacy and Poisons Ordinance were current legislative items combating counterfeit drugs. Sentencing criteria depended on: intention to deceive, quantity of seized drugs, presence of expected therapeutic effect or toxic ingredients, previous criminal records, cooperativeness with Customs officers, honest confessions, pleas of guilty, types of drugs, and precautionary measures to prevent sale of counterfeit drugs. Stakeholders’ perceptions were explored with respect to legislation regarding the scale and significance of the counterfeit drug problem, penalties and deterrents, drug-specific legislation and authority, and inspections and enforcement. To plug the loopholes, a specific law with heavy penalties should be adopted. This could be supplemented by non-legal measures like education of judges, lawyers, and the public; publishing the names of offending pharmacies; and emphasising the role of pharmacists to the public.
Extension of the BRYNTRN code to monoenergetic light ion beams
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Wilson, John W.; Badavi, Francis F.
1994-01-01
A monoenergetic version of the BRYNTRN transport code is extended to beam transport of light ions (H-2, H-3, He-3, and He-4) in shielding materials (thick targets). The redistribution of energy in nuclear reactions is included in transport solutions that use nuclear fragmentation models. We also consider an equilibrium target-fragment spectrum for nuclei with mass number greater than four to include target fragmentation effects in the linear energy transfer (LET) spectrum. Illustrative results for water and aluminum shielding, including energy and LET spectra, are discussed for high-energy beams of H-2 and He-4.
Green's function methods in heavy ion shielding
NASA Technical Reports Server (NTRS)
Wilson, John W.; Costen, Robert C.; Shinn, Judy L.; Badavi, Francis F.
1993-01-01
An analytic solution to the heavy ion transport in terms of Green's function is used to generate a highly efficient computer code for space applications. The efficiency of the computer code is accomplished by a nonperturbative technique extending Green's function over the solution domain. The computer code can also be applied to accelerator boundary conditions to allow code validation in laboratory experiments.
Care co-ordination for older people in the third sector: scoping the evidence.
Abendstern, Michele; Hughes, Jane; Jasper, Rowan; Sutcliffe, Caroline; Challis, David
2018-05-01
The third sector has played a significant role internationally in the delivery of adult social care services for many years. Its contribution to care co-ordination activities for older people, however, in England and elsewhere, is relatively unknown. A scoping review was therefore conducted to ascertain the character of the literature, the nature and extent of third sector care co-ordination activity, and to identify evidence gaps. It was undertaken between autumn 2013 and summer 2014 and updated with additional searches in 2016. Electronic and manual searches of international literature using distinct terms for different approaches to care co-ordination were undertaken. From a total of 835 papers, 26 met inclusion criteria. Data were organised in relation to care co-ordination approaches, types of third sector organisation and care recipients. Papers were predominantly from the UK and published this century. Key findings included that: a minority of literature focused specifically on older people and that those doing so described only one care co-ordination approach; third sector services tended to be associated with independence and person-centred practice; and working with the statutory sector, a prerequisite of care co-ordination, was challenging and required a range of features to be in place to support effective partnerships. Strengths and weaknesses of care co-ordination practice in the third sector according to key stakeholder groups were also highlighted. Areas for future research included the need for: a specific focus on older people's experiences; an investigation of workforce issues; detailed examination of third sector practices, outcomes and costs; interactions with the statutory sector; and an examination of quality assurance systems and their appropriateness to third sector practice. The main implication of the findings is a need to nurture variety within the third sector in order to provide older people and other adults with the range of service options desired. © 2017 John Wiley & Sons Ltd.
A Green's function method for heavy ion beam transport
NASA Technical Reports Server (NTRS)
Shinn, J. L.; Wilson, J. W.; Schimmerling, W.; Shavers, M. R.; Miller, J.; Benton, E. V.; Frank, A. L.; Badavi, F. F.
1995-01-01
The use of Green's function has played a fundamental role in transport calculations for high-charge high-energy (HZE) ions. Two recent developments have greatly advanced the practical aspects of implementation of these methods. The first was the formulation of a closed-form solution as a multiple fragmentation perturbation series. The second was the effective summation of the closed-form solution through nonperturbative techniques. The nonperturbative methods have been recently extended to an inhomogeneous, two-layer transport media to simulate the lead scattering foil present in the Lawrence Berkeley Laboratories (LBL) biomedical beam line used for cancer therapy. Such inhomogeneous codes are necessary for astronaut shielding in space. The transport codes utilize the Langley Research Center atomic and nuclear database. Transport code and database evaluation are performed by comparison with experiments performed at the LBL Bevalac facility using 670 A MeV 20Ne and 600 A MeV 56Fe ion beams. The comparison with a time-of-flight and delta E detector measurement for the 20Ne beam and the plastic nuclear track detectors for 56Fe show agreement up to 35%-40% in water and aluminium targets, respectively.
Thick-target transmission method for excitation functions of interaction cross sections
NASA Astrophysics Data System (ADS)
Aikawa, M.; Ebata, S.; Imai, S.
2016-09-01
We propose a method, called as thick-target transmission (T3) method, to obtain an excitation function of interaction cross sections. In an ordinal experiment to measure the excitation function of interaction cross sections by the transmission method, we need to change the beam energy for each cross section. In the T3 method, the excitation function is derived from the beam attenuations measured at the targets of different thicknesses without changing the beam energy. The advantage of the T3 method is the simplicity and availability for radioactive beams. To confirm the availability, we perform a simulation for the 12C + 27Al system with the PHITS code instead of actual experiments. Our results have large uncertainties but well reproduce the tendency of the experimental data.
Progress in Dark Sky Protection in Southern Arizona
NASA Astrophysics Data System (ADS)
Green, Richard F.; Allen, L.; Alvarez Del Castillo, E. M.; Brocious, D. K.; Corbally, C. J.; Davis, D. R.; Falco, E. E.; Gabor, P.; Hall, J. C.; Jannuzi, B.; Larson, S. M.; Mighell, K. J.; Nance, C.; Shankland, P. D.; Walker, C. E.; Williams, G.; Zaritsky, D. F.
2014-01-01
Arizona has many observatories dedicated to scientific research and a rapidly growing population. Continuous interaction with governmental entities and education of the public are required to take advantage of the good intentions of lighting control ordinances in place around the state. We give several recent examples of active engagement of observatories: * Interaction of Mt. Graham International Observatory with the State prison and major copper mine. * Interaction of Smithsonian Astrophysical Observatory, acting on behalf of MMT Observatory and Steward Observatory, with the US Forest Service on the prospects of developing the Rosemont Copper Mine * Defense of the Outdoor Lighting and Sign Codes in Pima County and the City of Tucson * Coordinated observatory approach to statewide issues, including the establishment of radial zones of protection from LED billboards around observatory sites.
1978-01-01
complex, applications of the code . NASCAP CODE DESCRIPTION The NASCAP code is a finite-element spacecraft-charging simulation that is written in FORTRAN ...transport code POEM (ref. 1), is applicable to arbitrary dielectrics, source spectra, and current time histories. The code calculations are illustrated by...iaxk ’. Vlbouced _DstributionL- 9TNA Availability Codes %ELECTEf Nationa Aeronautics and Dist. Spec al TAvalland/or. MAY 2 21980 Space Administration
Linear energy transfer in water phantom within SHIELD-HIT transport code
NASA Astrophysics Data System (ADS)
Ergun, A.; Sobolevsky, N.; Botvina, A. S.; Buyukcizmeci, N.; Latysheva, L.; Ogul, R.
2017-02-01
The effect of irradiation in tissue is important in hadron therapy for the dose measurement and treatment planning. This biological effect is defined by an equivalent dose H which depends on the Linear Energy Transfer (LET). Usually, H can be expressed in terms of the absorbed dose D and the quality factor K of the radiation under consideration. In literature, various types of transport codes have been used for modeling and simulation of the interaction of the beams of protons and heavier ions with tissue-equivalent materials. In this presentation we used SHIELD-HIT code to simulate decomposition of the absorbed dose by LET in water for 16O beams. A more detailed description of capabilities of the SHIELD-HIT code can be found in the literature.
Overview of Edge Simulation Laboratory (ESL)
NASA Astrophysics Data System (ADS)
Cohen, R. H.; Dorr, M.; Hittinger, J.; Rognlien, T.; Umansky, M.; Xiong, A.; Xu, X.; Belli, E.; Candy, J.; Snyder, P.; Colella, P.; Martin, D.; Sternberg, T.; van Straalen, B.; Bodi, K.; Krasheninnikov, S.
2006-10-01
The ESL is a new collaboration to build a full-f electromagnetic gyrokinetic code for tokamak edge plasmas using continuum methods. Target applications are edge turbulence and transport (neoclassical and anomalous), and edge-localized modes. Initially the project has three major threads: (i) verification and validation of TEMPEST, the project's initial (electrostatic) edge code which can be run in 4D (neoclassical and transport-timescale applications) or 5D (turbulence); (ii) design of the next generation code, which will include more complete physics (electromagnetics, fluid equation option, improved collisions) and advanced numerics (fully conservative, high-order discretization, mapped multiblock grids, adaptivity), and (iii) rapid-prototype codes to explore the issues attached to solving fully nonlinear gyrokinetics with steep radial gradiens. We present a brief summary of the status of each of these activities.
Benchmarking Heavy Ion Transport Codes FLUKA, HETC-HEDS MARS15, MCNPX, and PHITS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronningen, Reginald Martin; Remec, Igor; Heilbronn, Lawrence H.
Powerful accelerators such as spallation neutron sources, muon-collider/neutrino facilities, and rare isotope beam facilities must be designed with the consideration that they handle the beam power reliably and safely, and they must be optimized to yield maximum performance relative to their design requirements. The simulation codes used for design purposes must produce reliable results. If not, component and facility designs can become costly, have limited lifetime and usefulness, and could even be unsafe. The objective of this proposal is to assess the performance of the currently available codes PHITS, FLUKA, MARS15, MCNPX, and HETC-HEDS that could be used for designmore » simulations involving heavy ion transport. We plan to access their performance by performing simulations and comparing results against experimental data of benchmark quality. Quantitative knowledge of the biases and the uncertainties of the simulations is essential as this potentially impacts the safe, reliable and cost effective design of any future radioactive ion beam facility. Further benchmarking of heavy-ion transport codes was one of the actions recommended in the Report of the 2003 RIA R&D Workshop".« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles A. Wemple; Joshua J. Cogliati
2005-04-01
A univel geometry, neutral particle Monte Carlo transport code, written entirely in the Java programming language, is under development for medical radiotherapy applications. The code uses ENDF-VI based continuous energy cross section data in a flexible XML format. Full neutron-photon coupling, including detailed photon production and photonuclear reactions, is included. Charged particle equilibrium is assumed within the patient model so that detailed transport of electrons produced by photon interactions may be neglected. External beam and internal distributed source descriptions for mixed neutron-photon sources are allowed. Flux and dose tallies are performed on a univel basis. A four-tap, shift-register-sequence random numbermore » generator is used. Initial verification and validation testing of the basic neutron transport routines is underway. The searchlight problem was chosen as a suitable first application because of the simplicity of the physical model. Results show excellent agreement with analytic solutions. Computation times for similar numbers of histories are comparable to other neutron MC codes written in C and FORTRAN.« less
NASA Astrophysics Data System (ADS)
van Dijk, Jan; Hartgers, Bart; van der Mullen, Joost
2006-10-01
Self-consistent modelling of plasma sources requires a simultaneous treatment of multiple physical phenomena. As a result plasma codes have a high degree of complexity. And with the growing interest in time-dependent modelling of non-equilibrium plasma in three dimensions, codes tend to become increasingly hard to explain-and-maintain. As a result of these trends there has been an increased interest in the software-engineering and implementation aspects of plasma modelling in our group at Eindhoven University of Technology. In this contribution we will present modern object-oriented techniques in C++ to solve an old problem: that of the discretisation of coupled linear(ized) equations involving multiple field variables on ortho-curvilinear meshes. The `LinSys' code has been tailored to the transport equations that occur in transport physics. The implementation has been made both efficient and user-friendly by using modern idiom like expression templates and template meta-programming. Live demonstrations will be given. The code is available to interested parties; please visit www.dischargemodelling.org.
22 CFR 228.22 - Air transportation.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Air transportation. 228.22 Section 228.22... § 228.22 Air transportation. The Fly America Act, Title 49 of the United States Code, Subtitle VII, part A, subpart I, Chapter 401, 40118—Government-Financed Air Transportation, is applicable to all...
22 CFR 228.22 - Air transportation.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Air transportation. 228.22 Section 228.22... § 228.22 Air transportation. The Fly America Act, Title 49 of the United States Code, Subtitle VII, part A, subpart I, Chapter 401, 40118—Government-Financed Air Transportation, is applicable to all...
22 CFR 228.22 - Air transportation.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Air transportation. 228.22 Section 228.22... § 228.22 Air transportation. The Fly America Act, Title 49 of the United States Code, Subtitle VII, part A, subpart I, Chapter 401, 40118—Government-Financed Air Transportation, is applicable to all...
Modeling of ion orbit loss and intrinsic toroidal rotation with the COGENT code
NASA Astrophysics Data System (ADS)
Dorf, M.; Dorr, M.; Cohen, R.; Rognlien, T.; Hittinger, J.
2014-10-01
We discuss recent advances in cross-separatrix neoclassical transport simulations with COGENT, a continuum gyro-kinetic code being developed by the Edge Simulation Laboratory (ESL) collaboration. The COGENT code models the axisymmetric transport properties of edge plasmas including the effects of nonlinear (Fokker-Planck) collisions and a self-consistent electrostatic potential. Our recent work has focused on studies of ion orbit loss and the associated toroidal rotation driven by this mechanism. The results of the COGENT simulations are discussed and analyzed for the parameters of the DIII-D experiment. Work performed for USDOE at LLNL under Contract DE-AC52-07NA27344.
Development of the V4.2m5 and V5.0m0 Multigroup Cross Section Libraries for MPACT for PWR and BWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kang Seog; Clarno, Kevin T.; Gentry, Cole
2017-03-01
The MPACT neutronics module of the Consortium for Advanced Simulation of Light Water Reactors (CASL) core simulator is a 3-D whole core transport code being developed for the CASL toolset, Virtual Environment for Reactor Analysis (VERA). Key characteristics of the MPACT code include (1) a subgroup method for resonance selfshielding and (2) a whole-core transport solver with a 2-D/1-D synthesis method. The MPACT code requires a cross section library to support all the MPACT core simulation capabilities which would be the most influencing component for simulation accuracy.