Science.gov

Sample records for organic carbon determination

  1. Determination of elemental and organic carbon on damaged stone monuments

    NASA Astrophysics Data System (ADS)

    Ghedini, N.; Gobbi, G.; Sabbioni, C.; Zappia, G.

    An analytical methodology was developed for the discrimination and evaluation of the different types of carbon matter, particularly carbonate, elemental and organic carbon, present on monuments and historical buildings, due to interaction between materials and atmospheric pollution. With this aim samples of black patinas were analysed by a procedure consisting of three different steps. Total, noncarbonate and elemental carbon were measured by combustion-chromatographic CO 2 determination: Ct was obtained by burning the bulk samples (step 1), while Cnc and Ce were quantified after elimination of Cc with acid treatment (step 2) and elimination of Co by means of alternate attacks, followed by centrifugation, with concentrate acid and base solutions at high temperature and pressure (step 3); the carbonate carbon and the organic carbon were then calculated. Furthermore, for a complete sample characterization, oxalate, acetate, formate and the main anion contents were detected by ion chromatography. The methodology was also tested on standard samples containing the same carbon species as the black crusts. The results obtained indicate that this approach satisfactorily distinguishes between elemental and organic carbon and allows reliable elemental carbon determination at the ppm level in black damage crust samples from historic monuments and buildings.

  2. Carbon Mineralizability Determines Interactive Effects on Mineralization of Pyrogenic Organic Matter and Soil Organic Carbon

    SciTech Connect

    Whitman, Thea L.; Zhu, Zihua; Lehmann, Johannes C.

    2014-10-31

    Soil organic carbon (SOC) is a critical and active pool in the global C cycle, and the addition of pyrogenic organic matter (PyOM) has been shown to change SOC cycling, increasing or decreasing mineralization rates (often referred to as priming). We adjusted the amount of easily mineralizable C in the soil, through 1-day and 6-month pre-incubations, and in PyOM made from maple wood at 350°C, through extraction. We investigated the impact of these adjustments on C mineralization interactions, excluding pH and nutrient effects and minimizing physical effects. We found short-term increases (+20-30%) in SOC mineralization with PyOM additions in the soil pre-incubated for 6 months. Over the longer term, both the 6-month and 1-day pre-incubated soils experienced net ~10% decreases in SOC mineralization with PyOM additions. This was possibly due to stabilization of SOC on PyOM surfaces, suggested by nanoscale secondary ion mass spectrometry. Additionally, the duration of pre-incubation affected priming interactions, indicating that there may be no optimal pre-incubation time for SOC mineralization studies. We show conclusively that relative mineralizability of SOC in relation to PyOM-24 C is an important determinant of the effect of PyOM additions on SOC mineralization.

  3. Carbon mineralizability determines interactive effects on mineralization of pyrogenic organic matter and soil organic carbon.

    PubMed

    Whitman, Thea; Zhu, Zihua; Lehmann, Johannes

    2014-12-01

    Soil organic carbon (SOC) is a critical and active pool in the global C cycle, and the addition of pyrogenic organic matter (PyOM) has been shown to change SOC cycling, increasing or decreasing mineralization rates (often referred to as priming). We adjusted the amount of easily mineralizable C in the soil, through 1-day and 6-month preincubations, and in PyOM made from maple wood at 350 °C, through extraction. We investigated the impact of these adjustments on C mineralization interactions, excluding pH and nutrient effects and minimizing physical effects. We found short-term increases (+20-30%) in SOC mineralization with PyOM additions in the soil preincubated for 6 months. Over the longer term, both the 6-month and 1-day preincubated soils experienced net ∼10% decreases in SOC mineralization with PyOM additions. Additionally, the duration of preincubation affected interactions, indicating that there may be no optimal preincubation time for SOC mineralization studies. We show conclusively that mineralizability of SOC in relation to PyOM-C is an important determinant of the effect of PyOM additions on SOC mineralization. PMID:25361379

  4. Arterial Blood Carbonic Acid Inversely Determines Lactic and Organic Acids

    PubMed Central

    Aiken, Christopher Geoffrey Alexander

    2013-01-01

    Objective: To establish that arterial blood carbonic acid varies inversely with lactic acid in accordance with bicarbonate exchanging for lactate across cell membranes through the anion exchange mechanism to maintain the Gibbs-Donnan equilibrium. Study Design: Over 5 years, lactate was measured on all blood gases taken from neonatal admissions, as well as organic acid whenever electrolytes were required. Results: Arterial blood gases from 63 infants given high calcium TPN were analyzed. Twenty two needed continuous positive airways pressure (CPAP) only and 31 intermittent positive pressure ventilation (IPPV) and surfactant followed by CPAP to treat respiratory distress syndrome in 51 and meconium aspiration syndrome in 2. All survived and were free of infection. Excluded gases were those with high and falling lactate soon after delivery representing perinatal asphyxia, and those on dexamethasone. Strong inverse relations between carbonic and lactic acids were found at all gestational ages and, independent of glomerular filtration, between carbonic and organic acids. Lactate (mmol/L) = 62.53 X PCO2 -0.96(mmHg) r2 0.315, n 1232, p <0.001. Sixty divided by PCO2 is a convenient measure of physiological lactate at any given PCO2. In the first week, 9.13 ± 2.57% of arterial gases from infants on IPPV had lactates above 120/PCO2, significantly more than 4.74 ± 2.73% on CPAP (p<0.05) and 2.47 ± 2.39% on no support. Conclusion: Changes in arterial blood carbonic acid cause immediate inverse changes in lactic acid, because their anions interchange across cell membranes according to the Gibbs –Donnan equilibrium. Increasing PCO2 from 40 to 120 mmHg decreased lactate from 1.5 mmol/L to 0.5 mmol/L, so that the sum of carbonic and lactic acids increased from 2.72 mmol/L to only 4.17 mmol/L. This helps explain the neuroprotective effect of hypercapnoea and highlights the importance of avoiding any degree of hypocapnoea in infants on IPPV. PMID:24392387

  5. Determining organic carbon distributions in soil particle size fractions as a precondition of lateral carbon transport modeling at large scales

    NASA Astrophysics Data System (ADS)

    Schindewolf, Marcus; Seher, Wiebke; Pfeffer, Eduard; Schultze, Nico; Amorim, Ricardo S. S.; Schmidt, Jürgen

    2016-04-01

    The erosional transport of organic carbon has an effect on the global carbon budget, however, it is uncertain, whether erosion is a sink or a source for carbon in the atmosphere. Continuous erosion leads to a massive loss of top soils including the loss of organic carbon historically accumulated in the soil humus fraction. The colluvial organic carbon could be protected from further degradation depending on the depth of the colluvial cover and local decomposing conditions. Another part of eroded soils and organic carbon will enter surface water bodies and might be transported over long distances. The selective nature of soil erosion results in a preferential transport of fine particles while less carbonic larger particles remain on site. Consequently organic carbon is enriched in the eroded sediment compared to the origin soil. As a precondition of process based lateral carbon flux modeling, carbon distribution on soil particle size fractions has to be known. In this regard the present study refers to the determination of organic carbon contents on soil particle size separates by a combined sieve-sedimentation method for different tropical and temperate soils Our results suggest high influences of parent material and climatic conditions on carbon distribution on soil particle separates. By applying these results in erosion modeling a test slope was simulated with the EROSION 2D simulation software covering certain land use and soil management scenarios referring to different rainfall events. These simulations allow first insights on carbon loss and depletion on sediment delivery areas as well as carbon gains and enrichments on deposition areas on the landscape scale and could be used as a step forward in landscape scaled carbon redistribution modeling.

  6. Determination of the organic aerosol mass to organic carbon ratio in IMPROVE samples.

    PubMed

    El-Zanan, Hazem S; Lowenthal, Douglas H; Zielinska, Barbara; Chow, Judith C; Kumar, Naresh

    2005-07-01

    The ratio of organic mass (OM) to organic carbon (OC) in PM(2.5) aerosols at US national parks in the IMPROVE network was estimated experimentally from solvent extraction of sample filters and from the difference between PM(2.5) mass and chemical constituents other than OC (mass balance) in IMPROVE samples from 1988 to 2003. Archived IMPROVE filters from five IMPROVE sites were extracted with dichloromethane (DCM), acetone and water. The extract residues were weighed to determine OM and analyzed for OC by thermal optical reflectance (TOR). On average, successive extracts of DCM, acetone, and water contained 64%, 21%, and 15%, respectively, of the extractable OC, respectively. On average, the non-blank-corrected recovery of the OC initially measured in these samples by TOR was 115+/-42%. OM/OC ratios from the combined DCM and acetone extracts averaged 1.92 and ranged from 1.58 at Indian Gardens, AZ in the Grand Canyon to 2.58 at Mount Rainier, WA. The average OM/OC ratio determined by mass balance was 2.07 across the IMPROVE network. The sensitivity of this ratio to assumptions concerning sulfate neutralization, water uptake by hygroscopic species, soil mass, and nitrate volatilization were evaluated. These results suggest that the value of 1.4 for the OM/OC ratio commonly used for mass and light extinction reconstruction in IMPROVE is too low.

  7. Determination of the organic aerosol mass to organic carbon ratio in IMPROVE samples.

    PubMed

    El-Zanan, Hazem S; Lowenthal, Douglas H; Zielinska, Barbara; Chow, Judith C; Kumar, Naresh

    2005-07-01

    The ratio of organic mass (OM) to organic carbon (OC) in PM(2.5) aerosols at US national parks in the IMPROVE network was estimated experimentally from solvent extraction of sample filters and from the difference between PM(2.5) mass and chemical constituents other than OC (mass balance) in IMPROVE samples from 1988 to 2003. Archived IMPROVE filters from five IMPROVE sites were extracted with dichloromethane (DCM), acetone and water. The extract residues were weighed to determine OM and analyzed for OC by thermal optical reflectance (TOR). On average, successive extracts of DCM, acetone, and water contained 64%, 21%, and 15%, respectively, of the extractable OC, respectively. On average, the non-blank-corrected recovery of the OC initially measured in these samples by TOR was 115+/-42%. OM/OC ratios from the combined DCM and acetone extracts averaged 1.92 and ranged from 1.58 at Indian Gardens, AZ in the Grand Canyon to 2.58 at Mount Rainier, WA. The average OM/OC ratio determined by mass balance was 2.07 across the IMPROVE network. The sensitivity of this ratio to assumptions concerning sulfate neutralization, water uptake by hygroscopic species, soil mass, and nitrate volatilization were evaluated. These results suggest that the value of 1.4 for the OM/OC ratio commonly used for mass and light extinction reconstruction in IMPROVE is too low. PMID:15950041

  8. Determining the Carbon-Carbon Distance in an Organic Molecule with a Ruler

    ERIC Educational Resources Information Center

    Simoni, Jose A.; Tubino, Matthieu; Ricchi, Reinaldo Alberto, Jr.

    2004-01-01

    The procedure to estimate the carbon-carbon bond distance in the naphthalene molecule is described. The procedure is easily performed and can be done either at home or in the classroom, with the restriction that the mass of the naphthalene must be determined using an analytical or a precise balance.

  9. DETERMINATION OF THE ORGANIC MASS TO ORGANIC CARBON RATIO IN IMPROVE SAMPLES. (R831086)

    EPA Science Inventory

    The ratio of organic mass (OM) to organic carbon (OC) in PM2.5 aerosols at US national parks in the IMPROVE network was estimated experimentally from solvent extraction of sample filters and from the difference between PM2.5 mass and chemical constituents...

  10. Determining soil organic carbon accretion vs sequestration using physicochemical fractionation and CQESTR simulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate estimates of soil organic carbon (SOC) are needed to determine SOC changes resulting from agricultural management practices. The objectives of this study were to: (1) determine total SOC, and estimate contributions of light fraction C (LF-C) and resistant C (RC) to total SOC; and (2) simula...

  11. Interlaboratory study of a method for determining nonvolatile organic carbon in aquifer materials

    USGS Publications Warehouse

    Caughey, M.E.; Barcelona, M.J.; Powell, R.M.; Cahill, R.A.; Gron, C.; Lawrenz, D.; Meschi, P.L.

    1995-01-01

    The organic carbon fraction in aquifer materials exerts a major influence on the subsurface mobilities of organic and organic-associated contaminants. The spatial distribution of total organic carbon (TOC) in aquifer materials must be determined before the transport of hydrophobic organic pollutants in aquifers can be modeled accurately. Previous interlaboratory studies showed that it is difficult to measure TOC concentrations 1%. We have tested a new analytical method designed to improve the accuracy and precision of nonvolatile TOC quantitation in geologic materials that also contain carbonate minerals. Four authentic aquifer materials and one NIST standard reference material were selected as test materials for a blind collaborative study. Nonvolatile TOC in these materials ranged from 0.05 to 1.4%, while TIC ranged from 0.46 to 12.6%. Sample replicates were digested with sulfurous acid, dried at 40??C, and then combusted at 950??C using LECO or UIC instruments. For the three test materials that contained >2% TIC, incomplete acidification resulted in a systematic positive bias of TOC values reported by five of the six laboratories that used the test method. Participants did not have enough time to become proficient with the new method before they analyzed the test materials. A seventh laboratory successfully used an alternative method that analyzed separate liquid and solid fractions of the acidified sample residues. ?? 1995 Springer-Verlag.

  12. Clay:organic-carbon and organic carbon as determinants of the soil physical properties: reassessment of the Complexed Organic Carbon concept

    NASA Astrophysics Data System (ADS)

    Matter, Adrien; Johannes, Alice; Boivin, Pascal

    2016-04-01

    Soil Organic Carbon (SOC) is well known to largely determine the soil physical properties and fertility. Total porosity, structural porosity, aeration, structural stability among others are reported to increase linearly with increasing SOC in most studies. Is there an optimal SOC content as target in soil management, or is there no limit in physical fertility improvement with SOC? Dexter et al. (2008) investigated the relation between clay:SOC ratio and the physical properties of soils from different databases. They observed that the R2 of the relation between SOC and the physical properties were maximized when considering the SOC fraction limited to a clay:SOC ratio of 10. They concluded that this fraction of the SOC was complexed, and that the additional SOC was not influencing the physical properties as strongly as the complexed one. In this study, we reassessed this approach, on a database of 180 undisturbed soil samples collected from cambiluvisols of the Swiss Plateau, on an area of 2400 km2, and from different soil uses. The physical properties were obtained with Shrinkage Analysis, which involved the parameters used in Dexter et al., 2008. We used the same method, but detected biases in the statistical approach, which was, therefore, adapted. We showed that the relation between the bulk density and SOC was changing with the score of visual evaluation of the structure (VESS) (Ball et al., 2007). Therefore, we also worked only on the "good" structures according to VESS. All shrinkage parameters were linearly correlated to SOC regardless of the clay:SOC ratio, with R2 ranging from 0.45 to 0.8. Contrarily to Dexter et al. (2008), we did not observed an optimum in the R2 of the relation when considering a SOC fraction based on the clay:SOC ratio. R2 was increasing until a Clay:SOC of about 7, where it reached, and kept, its maximum value. The land use factor was not significant. The major difference with the former study is that we worked on the same soil group

  13. Oxygen determination in organic fluorine compounds by means of a glassy-carbon pyrolysis tube.

    PubMed

    Imaeda, K; Kuriki, T; Ohsawa, K

    1977-07-01

    A conventional apparatus for determination of oxygen in organic compounds has been improved for application to organic fluorine compounds. A feature of the apparatus is the use of a pyrolysis tube made of glassy carbon instead of quartz, which eliminates effects due to hydrogen fluoride produced in pyrolysis of the sample. Ten analyses of dexamethasone with the apparatus gave a mean value of 20.44% for oxygen (theory, 20.38%), with a standard deviation of 0.16%. Oxygen in 9 organic fluorine compounds was accurately determined by using the apparatus, with an average error of +0.1%. One analysis by a gravimetric or a coulometric method took about 40 or 25 min, respectively.

  14. Determination of organic milk authenticity using carbon and nitrogen natural isotopes.

    PubMed

    Chung, Ill-Min; Park, Inmyoung; Yoon, Jae-Yeon; Yang, Ye-Seul; Kim, Seung-Hyun

    2014-10-01

    Natural stable isotopes of carbon and nitrogen ((12)C, (13)C, (14)N, (15)N) have abundances unique to each living creature. Therefore, measurement of the stable isotope ratio of carbon and nitrogen (δ(13)C=(13)C/(12)C, δ(15)N=(15)N/(14)N) in milk provides a reliable method to determine organic milk (OM) authenticity. In the present study, the mean δ(13)C value of OM was higher than that of conventional milk (CM), whereas the mean δ(15)N value of OM was lower than that of CM; nonetheless both δ(13)C and δ(15)N values were statistically different for the OM and CM (P<0.05). Furthermore, the values of δ(13)C and δ(15)N were found to differ statistically with the collection date and the milk brand (P<0.05). The combination of δ(13)C and δ(15)N values was more effective than either value alone in distinguishing between OM and CM. The results of the present study, which is based on preliminary data from a limited sample size and sampling period, could be highly valuable and helpful for consumers, the food industry, and/or government regulatory agencies as it can prevent fraudulent labelling of organic food. Further studies include additional analyses of other milk brands and analyses over longer time periods in order to accurately determine OM authenticity using stable isotopes of carbon and nitrogen.

  15. Determinants of soil organic carbon pools in oak stands in northeastern Austria

    NASA Astrophysics Data System (ADS)

    Bruckman, Viktor J.; Hochbichler, Eduard; Yan, Shuai; Glatzel, Gerhard

    2010-05-01

    Recently deciduous forests in northeastern Austria received increased attention as potential sources of biomass for energetic utilisation. There are still substantial deficits in the knowledge on carbon pools, -sequestration and -dynamics at these forest sites. The aim of our study was therefore to identify the main determinants which control soil organic carbon (SOC) pools in differently managed Quercus petraea dominated stands. We used the chronosequence approach to test the influence of stand age and management on the SOC pool. Soil samples were systematically collected from 14 plots by means of a 70mm hand auger to a depth of max. 60cm and separated into five geometric horizons. Narrow O-layers and signs of active bioturbation on most sites suggest rapid carbon mineralisation. Carbon pools of the aboveground biomass, the O horizon as well as fine and coarse roots and decay were determined. Soils in our study are cambisols derived from fossil alluvial deposits and loess and calcic chernozems derived from loess. Total soil carbon was determined by means of dry combustion and subtraction of soil inorganic carbon (SIC, by means of the Scheibler-method) if present. Mean SOC contents ranged from 5.3 kg.m-2 to10.4 kg.m-2 in the entire study area. The highest contents were found in calcic chernozem sites (7.2-10.4 kg.m-2) followed by loamy cambisol (6.1-6.8 kg.m-2) and sandy cambisol sites (5.3-6.9 kg.m-2). Among three chronosequence sets, we found strong positive correlations with total nitrogen (Pearson correlation coefficients of +0.91 to +0.93, p<0.01) and medium strong positive correlations with fine root content (+0.27 to +0.42, p<0.01). In both cases, stronger correlations were observed at cambisol sites. Further medium correlations were found between SOC and decay (+0.23 to +0.42, p<0.01), but no influence of the soil type was observed. As expected, SOC contents decreased significantly with increasing soil depth. Tighter C/N ratios in deeper horizons suggest

  16. Biophysical properties as determinants for soil organic carbon and total nitrogen in grassland salinization.

    PubMed

    Pan, Chengchen; Zhao, Halin; Zhao, Xueyong; Han, Huibang; Wang, Yan; Li, Jin

    2013-01-01

    Grassland salinization causes considerable changes to soil and vegetation, which can lead to changes in soil organic carbon (C) and total nitrogen (N). These changes have complex causal relationships. A significant correlation between soil organic C and total N and any soil or vegetation property does not necessarily imply a significant direct effect of the property on soil organic C and total N. In this study, a field survey was conducted to investigate the changes in soil organic C and total N in grassland along a salinity gradient in Hexi corridor, China, and the direct and indirect effects of soil and vegetation properties on both stocks were quantified using a path analysis approach. Significant decrease in soil organic C and total N contents were observed with increasing salinity. Both had significant positive correlations with the Normalized Difference Vegetation Index (NDVI), soil water, and fine particles (silt+clay) content (p<0.01) and significant negative correlations with soil EC, and sand content (p<0.01). NDVI, fine particles content and soil water content had positive direct effects on soil organic C and total N stocks. Soil EC affected soil organic C and total N stocks mainly through its indirect negative effect on NDVI, soil texture, and water content. NDVI, soil texture, and moisture also indirectly affected soil organic C and total N stocks via changes in each other. These indirect effects augmented each other, although in some cases indirect effects worked in opposing directions.

  17. Biophysical Properties as Determinants for Soil Organic Carbon and Total Nitrogen in Grassland Salinization

    PubMed Central

    Pan, Chengchen; Zhao, Halin; Zhao, Xueyong; Han, Huibang; Wang, Yan; Li, Jin

    2013-01-01

    Grassland salinization causes considerable changes to soil and vegetation, which can lead to changes in soil organic carbon (C) and total nitrogen (N). These changes have complex causal relationships. A significant correlation between soil organic C and total N and any soil or vegetation property does not necessarily imply a significant direct effect of the property on soil organic C and total N. In this study, a field survey was conducted to investigate the changes in soil organic C and total N in grassland along a salinity gradient in Hexi corridor, China, and the direct and indirect effects of soil and vegetation properties on both stocks were quantified using a path analysis approach. Significant decrease in soil organic C and total N contents were observed with increasing salinity. Both had significant positive correlations with the Normalized Difference Vegetation Index (NDVI), soil water, and fine particles (silt+clay) content (p<0.01) and significant negative correlations with soil EC, and sand content (p<0.01). NDVI, fine particles content and soil water content had positive direct effects on soil organic C and total N stocks. Soil EC affected soil organic C and total N stocks mainly through its indirect negative effect on NDVI, soil texture, and water content. NDVI, soil texture, and moisture also indirectly affected soil organic C and total N stocks via changes in each other. These indirect effects augmented each other, although in some cases indirect effects worked in opposing directions. PMID:23372776

  18. Miniaturized dielectric barrier discharge carbon atomic emission spectrometry with online microwave-assisted oxidation for determination of total organic carbon.

    PubMed

    Han, Bingjun; Jiang, Xiaoming; Hou, Xiandeng; Zheng, Chengbin

    2014-07-01

    A simple, rapid, and portable system consisted of a laboratory-built miniaturized dielectric barrier discharge atomic emission spectrometer and a microwave-assisted persulfate oxidation reactor was developed for sensitive flow injection analysis or continuous monitoring of total organic carbon (TOC) in environmental water samples. The standard/sample solution together with persulfate was pumped to the reactor to convert organic compounds to CO2, which was separated from liquid phase and transported to the spectrometer for detection of the elemental specific carbon atomic emission at 193.0 nm. The experimental parameters were systematically investigated. A limit of detection of 0.01 mg L(-1) (as C) was obtained based on a 10 mL sample injection volume, and the precision was better than 6.5% (relative standard deviation, RSD) at 0.1 mg L(-1). The system was successfully applied for TOC analysis of real environmental water samples. The obtained TOC value of 30 test samples agreed well with those by the standard high-temperature combustion coupled nondispersive infrared absorption method. Most importantly, the system showed good capability of in situ continuous monitoring of total organic carbon in environmental water.

  19. Simulated In Situ Determination of Soil Profile Organic and Inorganic Carbon With LIBS and VisNIR

    NASA Astrophysics Data System (ADS)

    Bricklemyer, R. S.; Brown, D. J.; Clegg, S. M.; Barefield, J. E.

    2008-12-01

    There is growing need for rapid, accurate, and inexpensive methods to measure, and verify soil organic carbon (SOC) change for national greenhouse gas accounting and the development of a soil carbon trading market. Laser Induced Breakdown Spectroscopy (LIBS) and Visible and Near Infrared Spectroscopy (VisNIR) are complementary analytical techniques that have the potential to fill that need. The LIBS method provides precise elemental analysis of soils, but generally cannot distinguish between organic C and inorganic C. VisNIR has been established as a viable technique for measuring soil properties including SOC and inorganic carbon (IC). As part of the Big Sky Carbon Sequestration Regional Partnership, 240 intact core samples (3.8 x 50 cm) have been collected from six agricultural fields in north central Montana, USA. Each of these core samples were probed concurrently with LIBS and VisNIR at 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 35 and 45 cm (+/- 1.5 cm) depths. VisNIR measurements were taken using an Analytical Spectral Devices (ASD, Boulder, CO, USA) Agrispec spectrometer to determine the partition of SOC vs. IC in the samples. The LIBS scans were collected with the LANL LIBS Core Scanner Instrument which collected the entire 200 - 900 nm plasma emission including the 247.8 nm carbon emission line. This instrument also collected the emission from the elements typically found in inorganic carbon (Ca and Mg) and organic carbon (H, O, and N). Subsamples of soil (~ 4 g) were taken from interrogation points for laboratory determination of SOC and IC. Using this analytical data, we constructed several full spectrum multivariate VisNIR/LIBS calibration models for SOC and IC. These models were then applied to independent validation cores for model evaluation.

  20. Method 415.3, Rev. 1.2: Determination of Total Organic Carbon and Specific UV Absorbance at 254 nm in Source Water and Drinking Water

    EPA Science Inventory

    This method provides procedures for the determination of total organic carbon (TOC), dissolved organic carbon (DOC), and UV absorption at 254 nm (UVA) in source waters and drinking waters. The DOC and UVA determinations are used in the calculation of the Specific UV Absorbance (S...

  1. Flow-injection analysis for the determination of total inorganic carbon and total organic carbon in water using the H2O2-luminol-uranine chemiluminescent reaction.

    PubMed

    Fan, Shun-Li; Qu, Fang; Zhao, Lixia; Lin, Jin-Ming

    2006-12-01

    In the presence of carbonate and uranine, the chemiluminescent intensity from the reaction of luminol with hydrogen peroxide was dramatically enhanced in a basic medium. Based on this fact and coupled with the technique of flow-injection analysis, a highly sensitive method was developed for the determination of carbonate with a wide linear range. The method provided the determination of carbonate with a wide linear range of 1.0 x 10(-10)-5.0 x 10(-6) mol L(-1) and a low detection limit (S/N = 3) of carbonate of 1.2 x 10(-11) mol L(-1). The average relative standard deviation for 1.0 x 10(-9)-9.0 x 10(-7) mol L(-1) of carbonate was 3.7% (n = 11). Combined with the wet oxidation of potassium persulfate, the method was applied to the simultaneous determination of total inorganic carbon (TIC) and total organic carbon (TOC) in water. The linear ranges for TIC and TOC were 1.2 x 10(-6)-6.0 x 10(-2) mg L(-1) and 0.08-30 mg L(-1) carbon, respectively. Recoveries of 97.4-106.4% for TIC and 96.0-98.5% for TOC were obtained by adding 5 or 50 mg L(-1) of carbon to the water samples. The relative standard deviations (RSDs) were 2.6-4.8% for TIC and 4.6-6.6% for TOC (n = 5). The mechanism of the chemiluminescent reaction was also explored and a reasonable explanation about chemical energy transfer from luminol to uranine was proposed.

  2. Total organic carbon and gas chromatography-mass spectroscopy methods to determine total carbon and hydrocarbons in mercuric iodide single crystals

    NASA Astrophysics Data System (ADS)

    Steinberg, S.; Kaplan, I.; Schieber, M.; Ortale, C.; Skinner, N.; van den Berg, L.

    1989-11-01

    Total organic carbon was determined by measuring the CO2 produced by combustion in a sealed quartz vessel. The CO2 was quantified by nondispersive IR and by titration using commercial detectors. The total organic carbon was found to be around 10-100 μg/g in both starting materials and in single crystals. Gas chromatography-mass spectroscopy (GC/MS) measurements were made on hexane extracts of mercuric iodide (HgI2) dissolved in potassium iodide solution. Hydrocarbons starting with C10 (DIENE) and up to C26 were found. In addition, phthalates, such as diethyl and dioctyl phthalate were also found. Some of the organic compounds, for example, such hydrocarbons as branched nC16, nC20, nC21, nC22, nC23, and nC24, were present in some HgI2 materials in quantities of the order of weight ppm, but were eliminated in the purification process and were not found in the single crystals. Other organic compounds such as the phthalates were not always eliminated and were identified in the single crystals. In general, the GC/MS could identify only hydrocarbons of C10 and higher which account for only a few percent of the total organic carbon determined by oxidation.

  3. Intercomparison of thermal-optical methods for the determination of organic and elemental carbon: influences of aerosol composition and implications.

    PubMed

    Cheng, Yuan; Duan, Feng-kui; He, Ke-bin; Zheng, Mei; Du, Zhen-yu; Ma, Yong-liang; Tan, Ji-hua

    2011-12-01

    An intercomparison of organic carbon (OC) and elemental carbon (EC) measurements was conducted based on ambient aerosol samples collected during four seasons in Beijing, China. Dependence of OC and EC values on the temperature protocol and the charring correction method is presented and influences of aerosol composition are investigated. EC was found to decrease with the peak inert mode temperature (T(peak)) such that EC determined by the IMPROVE (the Interagency Monitoring of Protected Visual Environments)-A protocol (T(peak) was 580 °C) was 2.85 ± 1.31 and 3.83 ± 2.58 times that measured by an alternative protocol with a T(peak) of 850 °C when using the transmittance and reflectance correction, respectively. It was also found that reflectance correction tends to classify more carbon as EC compared with transmittance; results from the IMPROVE-A protocol showed that the ratio of EC defined by reflectance correction (EC(R)) to that based on transmittance (EC(T)) averaged 1.50 ± 0.42. Moreover, it was demonstrated that emissions from biomass burning would increase the discrepancy between EC values determined by different temperature protocols. On the other hand, the discrepancy between EC(R) and EC(T) was strongly associated with secondary organic aerosol (SOA) which was shown to be an important source of the organics that pyrolyze during the inert mode of thermal-optical analysis. PMID:22044188

  4. Intercomparison of thermal-optical methods for the determination of organic and elemental carbon: influences of aerosol composition and implications.

    PubMed

    Cheng, Yuan; Duan, Feng-kui; He, Ke-bin; Zheng, Mei; Du, Zhen-yu; Ma, Yong-liang; Tan, Ji-hua

    2011-12-01

    An intercomparison of organic carbon (OC) and elemental carbon (EC) measurements was conducted based on ambient aerosol samples collected during four seasons in Beijing, China. Dependence of OC and EC values on the temperature protocol and the charring correction method is presented and influences of aerosol composition are investigated. EC was found to decrease with the peak inert mode temperature (T(peak)) such that EC determined by the IMPROVE (the Interagency Monitoring of Protected Visual Environments)-A protocol (T(peak) was 580 °C) was 2.85 ± 1.31 and 3.83 ± 2.58 times that measured by an alternative protocol with a T(peak) of 850 °C when using the transmittance and reflectance correction, respectively. It was also found that reflectance correction tends to classify more carbon as EC compared with transmittance; results from the IMPROVE-A protocol showed that the ratio of EC defined by reflectance correction (EC(R)) to that based on transmittance (EC(T)) averaged 1.50 ± 0.42. Moreover, it was demonstrated that emissions from biomass burning would increase the discrepancy between EC values determined by different temperature protocols. On the other hand, the discrepancy between EC(R) and EC(T) was strongly associated with secondary organic aerosol (SOA) which was shown to be an important source of the organics that pyrolyze during the inert mode of thermal-optical analysis.

  5. Comparison of Remote Sensing Technologies for Determination of Soil Organic Carbon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil carbon sequestration is an important component of global carbon balance in the context of ameliorating the effects of carbon dioxide emissions. Remote sensing methods based upon hyperspectral quantification of soil reflectance can provide rapid and cost-effective assessment of soil properties i...

  6. Determination of an acceptable assimilable organic carbon (AOC) level for biological stability in water distribution systems with minimized chlorine residual.

    PubMed

    Ohkouchi, Yumiko; Ly, Bich Thuy; Ishikawa, Suguru; Kawano, Yoshihiro; Itoh, Sadahiko

    2013-02-01

    There is considerable interest in minimizing the chlorine residual in Japan because of increasing complaints about a chlorinous odor in drinking water. However, minimizing the chlorine residual causes the microbiological water quality to deteriorate, and stricter control of biodegradable organics in finished water is thus needed to maintain biological stability during water distribution. In this investigation, an acceptable level of assimilable organic carbon (AOC) for biologically stable water with minimized chlorine residual was determined based on the relationship between AOC, the chlorine residual, and bacterial regrowth. In order to prepare water samples containing lower AOC, the fractions of AOC and biodegradable organic matter (BOM) in tap water samples were reduced by converting into biomass after thermal hydrolysis of BOM at alkaline conditions. The batch-mode incubations at different conditions of AOC and chlorine residual were carried out at 20 °C, and the presence or absence of bacterial regrowth was determined. The determined curve for biologically stable water indicated that the acceptable AOC was 10.9 μg C/L at a minimized chlorine residual (0.05 mg Cl(2)/L). This result indicated that AOC removal during current water treatment processes in Japan should be significantly enhanced prior to minimization of the chlorine residual in water distribution.

  7. Automated determination of the stable carbon isotopic composition (δ13C) of total dissolved inorganic carbon (DIC) and total nonpurgeable dissolved organic carbon (DOC) in aqueous samples: RSIL lab codes 1851 and 1852

    USGS Publications Warehouse

    Révész, Kinga M.; Doctor, Daniel H.

    2014-01-01

    The purposes of the Reston Stable Isotope Laboratory (RSIL) lab codes 1851 and 1852 are to determine the total carbon mass and the ratio of the stable isotopes of carbon (δ13C) for total dissolved inorganic carbon (DIC, lab code 1851) and total nonpurgeable dissolved organic carbon (DOC, lab code 1852) in aqueous samples. The analysis procedure is automated according to a method that utilizes a total carbon analyzer as a peripheral sample preparation device for analysis of carbon dioxide (CO2) gas by a continuous-flow isotope ratio mass spectrometer (CF-IRMS). The carbon analyzer produces CO2 and determines the carbon mass in parts per million (ppm) of DIC and DOC in each sample separately, and the CF-IRMS determines the carbon isotope ratio of the produced CO2. This configuration provides a fully automated analysis of total carbon mass and δ13C with no operator intervention, additional sample preparation, or other manual analysis. To determine the DIC, the carbon analyzer transfers a specified sample volume to a heated (70 °C) reaction vessel with a preprogrammed volume of 10% phosphoric acid (H3PO4), which allows the carbonate and bicarbonate species in the sample to dissociate to CO2. The CO2 from the reacted sample is subsequently purged with a flow of helium gas that sweeps the CO2 through an infrared CO2 detector and quantifies the CO2. The CO2 is then carried through a high-temperature (650 °C) scrubber reactor, a series of water traps, and ultimately to the inlet of the mass spectrometer. For the analysis of total dissolved organic carbon, the carbon analyzer performs a second step on the sample in the heated reaction vessel during which a preprogrammed volume of sodium persulfate (Na2S2O8) is added, and the hydroxyl radicals oxidize the organics to CO2. Samples containing 2 ppm to 30,000 ppm of carbon are analyzed. The precision of the carbon isotope analysis is within 0.3 per mill for DIC, and within 0.5 per mill for DOC.

  8. METHODS FOR THE DETERMINATION OF TOTAL ORGANIC CARBON (TOC) IN SOILS AND SEDIMENTS

    EPA Science Inventory

    Organic matter in soils and sediments is widely distributed over the earth's surface occurring in almost all terrestrial and aquatic environments (Schnitzer, 1978). Soils and sediments contain a large variety of organic materials ranging from simple sugars and carbohydrates to th...

  9. Determination of sorbed metals, amorphic Fe, oxidic Mn, and reactive particulate organic carbon in sediments and soils

    SciTech Connect

    Jenne, E.A.; Crecelius, E.A.

    1988-10-01

    A current approach to evaluating the potential toxicity of metal pollutants (MP) in sediments requires using methods for estimating sorbed metals, amorphic Fe oxide, Mn oxides, and reactive particulate organic carbon (RPOC). Methods for estimating these variables are reevaluated and extraction conditions optimized. The hydroxylamine hydrochloride method, used to estimate the quantities of sorbed metals and amorphic Fe oxide and oxidic Mn adsorbents, was found to yield excellent recovery of MP spikes added at the beginning of the extraction, and adequate precision and selectivity for amorphic over crystalline Fe oxides. Hot KOH was tentatively selected over NH/sub 4/OH for estimating RPOC because of its greater convenience; correlations with laboratory sorption experiments will be required to provide an adequate basis for selection. Determination of both sorbed metals and RPOC are relatively insensitive to solid-to-extractant ratio. Metal pollutants and RPOC extraction are also relatively insensitive to normality of HCl and KOH, respectively. 10 refs., 2 figs.

  10. Determination of Natural 14C Abundances in Dissolved Organic Carbon in Organic-Rich Marine Sediment Porewaters by Thermal Sulfate Reduction

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Komada, T.

    2010-12-01

    The abundances of natural 14C in dissolved organic carbon (DOC) in the marine environment hold clues regarding the processes that influence the biogeochemical cycling of this large carbon reservoir. At present, UV irradiation is the widely accepted method for oxidizing seawater DOC for determination of their 14C abundances. This technique yields precise and accurate values with low blanks, but it requires a dedicated vacuum line, and hence can be difficult to implement. As an alternative technique that can be conducted on a standard preparatory vacuum line, we modified and tested a thermal sulfate reduction method that was previously developed to determine δ13C values of marine DOC (Fry B. et al., 1996. Analysis of marine DOC using a dry combustion method. Mar. Chem., 54: 191-201.) to determine the 14C abundances of DOC in marine sediment porewaters. In this method, the sample is dried in a 100 ml round-bottom Pyrex flask in the presence of excess oxidant (K2SO4) and acid (H3PO4), and combusted at 550 deg.C. The combustion products are cryogenically processed to collect and quantify CO2 using standard procedures. Materials we have oxidized to date range from 6-24 ml in volume, and 95-1500 μgC in size. The oxidation efficiency of this method was tested by processing known amounts of reagent-grade dextrose and sucrose (as examples of labile organic matter), tannic acid and humic acid (as examples of complex natural organic matter), and porewater DOC extracted from organic-rich nearshore sediments. The carbon yields for all of these materials averaged 99±4% (n=18). The 14C abundances of standard materials IAEA C-6 and IAEA C-5 processed by this method using >1mgC aliquots were within error of certified values. The size and the isotopic value of the blank were determined by a standard dilution technique using IAEA C-6 and IAEA C-5 that ranged in size from 150 to 1500 μgC (n=4 and 2, respectively). This yielded a blank size of 6.7±0.7 μgC, and a blank isotopic

  11. Determination of organic matter and organic matter to organic carbon ratios by infrared spectroscopy with application to selected sites in the IMPROVE network

    NASA Astrophysics Data System (ADS)

    Ruthenburg, Travis C.; Perlin, Pesach C.; Liu, Victor; McDade, Charles E.; Dillner, Ann M.

    2014-04-01

    Mass of ambient particulate organic matter (OM) is often estimated by multiplying the organic carbon (OC) mass by a fixed factor that typically ranges from 1.4 to 1.8. In this paper, we develop a non-destructive, mid-infrared spectroscopic (MIR) technique to measure OM in PM2.5 collected on PTFE filters (commonly called “teflon” filters). MIR techniques measure absorption by functional groups within organic molecules; that is, carbon atoms bonded to oxygen (O) or hydrogen (H), O bonded to H and other elements bonded together in organic molecules that comprise OM. We developed laboratory standards of atmospherically relevant organic compounds as the basis for calibrating the MIR absorption to the moles of functional groups. A multivariate regression technique was used to develop calibrations for quantifying alkane CH, alcohol OH, carboxylic acid OH, and carbonyl, which likely comprise the bulk of OM in most ambient samples. OM is estimated as the sum of masses attributed to these functional groups. The precision of the OM measurement is 6.9 μg (relative precision is 7%) and the minimum detection limit is 4.8 μg, corresponding to an ambient concentrations of 0.21 μg m-3 and 0.15 μg m-3 respectively, for the sampling protocol used here. The method was employed to estimate OM, OC (estimated as the sum of the mass of carbon in the alkane CH and carbonyl functional groups) and OM/OC from one year of routinely collected filters at seven Interagency Monitoring of Protected Visual Environments (IMPROVE) sites. In the IMPROVE network, OC is measured using a thermal optical method and OM is estimated for regional haze tracking simply as 1.8 × OC. Using the MIR technique on one year of samples from 7 IMPROVE sites, the median OM/OC ratio was 1.69 with the 10th and 90th percentiles of 1.46 and 2.01. Phoenix, AZ had the lowest annual-median value of 1.56 and Mesa Verde, CO had the highest of 1.83. For more than half of the sites, the lowest monthly-median OM/OC ratio

  12. Determining the impact of temporal and spatial conditions on dissolved organic carbon decomposition in the Kolyma River Watershed

    NASA Astrophysics Data System (ADS)

    Robbins, M. L.; Crowley, A.; Sobczak, W. V.; Holmes, R. M.

    2010-12-01

    The lability of dissolved organic carbon (DOC) in the Kolyma River watershed fluctuates dramatically with shifting seasonal conditions (5% versus 30% bioavailability for summer versus spring respectively) yet exhibits remarkably little variation across lakes, streams, and tributaries which feed the river during the summer base flow months. Temporal and spatial conditions were manipulated in a microcosm experiment to examine their influence on variations in DOC decomposition. Seasonally, a freshet DOC pool simulation (created with approximately 20 mg/L DOC concentration) was compared to a summer base flow DOC pool to test variations in biological oxygen demand (BOD) and DOC consumption. Bacterial community and temperature variations were also manipulated to determine the impact of seasonal conditions. Spatially, lake, stream, and estuarine bacterial communities were tested for their ability to metabolize differing fractions of the collective DOC pool. Additionally, bacterial communities were examined for a selective advantage in metabolizing local DOC when compared to those introduced by inoculation. Preliminary spatial results suggest that bacteria of the Kolyma River do not consume differing fractions of the DOC pool and local populations do not appear to have a selective advantage in processing the local DOC pool compared to introduced bacteria. These results suggest an alternative explanation is needed to explain why carbon bioavailability across the region is consistently 5% through summer base flow months. Temporal results show considerably more carbon was metabolized from the freshet DOC pool, unlimited by temperature, and the respective bacterial communities were observed to have higher metabolic rates compared to their summer counterparts. These results are significant as they quantify bioavailability variations across seasons and the differing seasonal conditions impacting the Kolyma River watershed flowing into the Arctic Ocean.

  13. Determinants of Oxygen and Carbon Dioxide Transfer during Extracorporeal Membrane Oxygenation in an Experimental Model of Multiple Organ Dysfunction Syndrome

    PubMed Central

    Park, Marcelo; Costa, Eduardo Leite Vieira; Maciel, Alexandre Toledo; Silva, Débora Prudêncio e; Friedrich, Natalia; Barbosa, Edzangela Vasconcelos Santos; Hirota, Adriana Sayuri; Schettino, Guilherme; Azevedo, Luciano Cesar Pontes

    2013-01-01

    Extracorporeal membrane oxygenation (ECMO) has gained renewed interest in the treatment of respiratory failure since the advent of the modern polymethylpentene membranes. Limited information exists, however, on the performance of these membranes in terms of gas transfers during multiple organ failure (MOF). We investigated determinants of oxygen and carbon dioxide transfer as well as biochemical alterations after the circulation of blood through the circuit in a pig model under ECMO support before and after induction of MOF. A predefined sequence of blood and sweep flows was tested before and after the induction of MOF with fecal peritonitis and saline lavage lung injury. In the multivariate analysis, oxygen transfer had a positive association with blood flow (slope = 66, P<0.001) and a negative association with pre-membrane PaCO2 (slope = −0.96, P = 0.001) and SatO2 (slope = −1.7, P<0.001). Carbon dioxide transfer had a positive association with blood flow (slope = 17, P<0.001), gas flow (slope = 33, P<0.001), pre-membrane PaCO2 (slope = 1.2, P<0.001) and a negative association with the hemoglobin (slope = −3.478, P = 0.042). We found an increase in pH in the baseline from 7.50[7.46,7.54] to 7.60[7.55,7.65] (P<0.001), and during the MOF from 7.19[6.92,7.32] to 7.41[7.13,7.5] (P<0.001). Likewise, the PCO2 fell in the baseline from 35 [32,39] to 25 [22,27] mmHg (P<0.001), and during the MOF from 59 [47,91] to 34 [28,45] mmHg (P<0.001). In conclusion, both oxygen and carbon dioxide transfers were significantly determined by blood flow. Oxygen transfer was modulated by the pre-membrane SatO2 and CO2, while carbon dioxide transfer was affected by the gas flow, pre-membrane CO2 and hemoglobin. PMID:23383011

  14. Comparison of the quantitative determination of soil organic carbon in coastal wetlands containing reduced forms of Fe and S

    NASA Astrophysics Data System (ADS)

    Passos, Tassia R. G.; Artur, Adriana G.; Nóbrega, Gabriel N.; Otero, Xosé L.; Ferreira, Tiago O.

    2016-06-01

    The performance of the Walkley-Black wet oxidation chemical method for soil organic carbon (SOC) determination in coastal wetland soils (mangroves, coastal lagoons, and hypersaline tidal flats) was evaluated in the state of Ceará along the semiarid coast of Brazil, assessing pyrite oxidation and its effects on soil C stock (SCS) quantification. SOC determined by the chemical oxidation method (CWB) was compared to that assessed by means of a standard elemental analyzer (CEA) for surficial samples (<30 cm depth) from the three wetland settings. The pyrite fraction was quantified in various steps of the chemical oxidation method, evaluating the effects of pyrite oxidation. Regardless of the method used, and consistent with site-specific physicochemical conditions, higher pyrite and SOC contents were recorded in the mangroves, whereas lower values were found in the other settings. CWB values were higher than CEA values. Significant differences in SCS calculations based on CWB and CEA were recorded for the coastal lagoons and hypersaline tidal flats. Nevertheless, the CWB and CEA values were strongly correlated, indicating that the wet oxidation chemical method can be used in such settings. In contrast, the absence of correlation for the mangroves provides evidence of the inadequacy of this method for these soils. Air drying and oxidation decrease the pyrite content, with larger effects rooted in oxidation. Thus, the wet oxidation chemical method is not recommended for mangrove soils, but seems appropriate for SOC/SCS quantification in hypersaline tidal flat and coastal lagoon soils characterized by lower pyrite contents.

  15. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory : determination of nonpurgeable suspended organic carbon by wet-chemical oxidation and infrared spectrometry

    USGS Publications Warehouse

    Burkhardt, Mark R.; Kammer, James A.; Jha, Virendra K.; O'Mara-Lopez, Peggy G.; Woodworth, Mark T.

    1997-01-01

    Precision and accuracy results are described for the determination of nonpurgeable suspended organic carbon (SOC) by silver-filter filtration, wet-chemical oxidation, and infrared determination of hte resulting carbon dioxide (CO2) used at the U.S. Geological Survey's nationalWater Quality Laboratory. An aliquot of raw water isfiltered through a 0.45-micrometer silver filter. The trapped organic material is oxidized using phosphoric acid and potassium persulfate in a scaled glass ampule,and the rseulting CO2 is measured by an infrared CO2 detector. The amount of CO3 is proportional to the concentration of chemically oxidizable nonpurgeable organic carbon in the sample. The SOC method detection limit for routine analysis is 0.2 milligram per liter. The average percent recovery is 97.1 percent and the average standard deviation is 11 percent.

  16. Soil Organic Carbon Input from Urban Turfgrasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Turfgrass is a major vegetation type in the urban and suburban environment. Management practices such as species selection, irrigation, and mowing may affect carbon input and storage in these systems. Research was conducted to determine the rate of soil organic carbon (SOC) changes, soil carbon sequ...

  17. Soil Organic Carbon Input from Urban Turfgrasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Turfgrass is a major vegetation type in the urban and suburban environment. Management practices such as species selection, irrigation, and mowing may affect carbon (C) input and storage in these systems. Research was conducted to determine the rate of soil organic carbon (SOC) changes, soil carbon ...

  18. An organic carbon budget for coastal Southern California determined by estimates of vertical nutrient flux, net community production and export

    NASA Astrophysics Data System (ADS)

    Haskell, William Z.; Prokopenko, Maria G.; Hammond, Douglas E.; Stanley, Rachel H. R.; Berelson, William M.; Baronas, J. Jotautas; Fleming, John C.; Aluwihare, Lihini

    2016-10-01

    Organic carbon export and burial in coastal upwelling regions is an important mechanism for oceanic uptake of atmospheric CO2. In order to understand how these complex systems will respond to future climate forcing, further studies of nutrient input, biological production and export are needed. Using a 7Be-based approach, we produced an 18-month record of upwelling velocity estimates at the San Pedro Ocean Time-series (SPOT), Southern California Bight. These upwelling rates and vertical nutrient distributions have been combined to make estimates of potential new production (PNP), which are compared to estimates of net community oxygen production (NOP) made using a one-dimensional, two-box non-steady state model of euphotic zone biological oxygen supersaturation. NOP agrees within uncertainty with PNP, suggesting that upwelling is the dominant mechanism for supplying the ecosystem with new nutrients in the spring season, but negligible in the fall and winter. Combining this data set with estimates of sinking particulate organic carbon (POC) flux from water column 234Th:238U disequilibrium and sediment trap deployments, and an estimate of the ratio of dissolved organic carbon (DOC):POC consumption rates, we construct a simple box model of organic carbon in the upper 200 m of our study site. This box model (with uncertainties of ±50%) suggests that in spring, 28% of net production leaves the euphotic zone as DOC, of this, 12% as horizontal export and 16% via downward mixing. The remaining 72% of net organic carbon export exits as sinking POC, with only 10% of euphotic zone export reaching 200 m. We find the metabolic requirement for the local heterotrophic community below the euphotic zone, but above 200 m, is 105±50 mmol C m-2 d-1, or 80% of net euphotic zone production in spring.

  19. Determining sources of dissolved organic carbon and disinfection byproduct precursors to the McKenzie River, Oregon

    USGS Publications Warehouse

    Kraus, T.E.C.; Anderson, C.A.; Morgenstern, K.; Downing, B.D.; Pellerin, B.A.; Bergamaschi, B.A.

    2010-01-01

    This study was conducted to determine the main sources of dissolved organic carbon (DOC) and disinfection byproduct (DBP) precursors to the McKenzie River, Oregon (USA). Water samples collected from the mainstem, tributaries, and reservoir outflows were analyzed for DOC concentration and DBP formation potentials (trihalomethanes [THMFPs] and haloacetic acids [HAAFPs]). In addition, optical properties (absorbance and fluorescence) of dissolved organic matter (DOM) were measured to provide insight into DOM composition and assess whether optical properties are useful proxies for DOC and DBP precursor concentrations. Optical properties indicative of composition suggest that DOM in the McKenzie River mainstem was primarily allochthonous - derived from soils and plant material in the upstream watershed. Downstream tributaries had higher DOC concentrations than mainstem sites (1.6 ?? 0.4 vs. 0.7 ?? 0.3 mg L-1) but comprised <5% of mainstem flows and had minimal effect on overall DBP precursor loads. Water exiting two large upstream reservoirs also had higher DOC concentrations than the mainstem site upstream of the reservoirs, but optical data did not support in situ algal production as a source of the added DOC during the study. Results suggest that the first major rain event in the fall contributes DOM with high DBP precursor content. Although there was interference in the absorbance spectra in downstream tributary samples, fluorescence data were strongly correlated to DOC concentration (R 2 = 0.98), THMFP (R2 = 0.98), and HAAFP (R2 = 0.96). These results highlight the value of using optical measurements for identifying the concentration and sources of DBP precursors in watersheds, which will help drinking water utilities improve source water monitoring and management programs. Copyright ?? 2010 by the American Society of Agronomy.

  20. Determining sources of dissolved organic carbon and disinfection byproduct precursors to the McKenzie River, Oregon.

    PubMed

    Kraus, Tamara E C; Anderson, Chauncey A; Morgenstern, Karl; Downing, Bryan D; Pellerin, Brian A; Bergamaschi, Brian A

    2010-01-01

    This study was conducted to determine the main sources of dissolved organic carbon (DOC) and disinfection byproduct (DBP) precursors to the McKenzie River, Oregon (USA). Water samples collected from the mainstem, tributaries, and reservoir outflows were analyzed for DOC concentration and DBP formation potentials (trihalomethanes [THMFPs] and haloacetic acids [HAAFPs]). In addition, optical properties (absorbance and fluorescence) of dissolved organic matter (DOM) were measured to provide insight into DOM composition and assess whether optical properties are useful proxies for DOC and DBP precursor concentrations. Optical properties indicative of composition suggest that DOM in the McKenzie River mainstem was primarily allochthonous--derived from soils and plant material in the upstream watershed. Downstream tributaries had higher DOC concentrations than mainstem sites (1.6 +/- 0.4 vs. 0.7 +/- 0.3 mg L(-1)) but comprised < 5% ofmainstem flows and had minimal effect on overall DBP precursor loads. Water exiting two large upstream reservoirs also had higher DOC concentrations than the mainstem site upstream of the reservoirs, but optical data did not support in situ algal production as a source of the added DOC during the study. Results suggest that the first major rain event in the fall contributes DOM with high DBP precursor content. Although there was interference in the absorbance spectra in downstream tributary samples, fluorescence data were strongly correlated to DOC concentration (R2 = 0.98), THMFP (R2 = 0.98), and HAAFP (R2 = 0.96). These results highlight the value of using optical measurements for identifying the concentration and sources of DBP precursors in watersheds, which will help drinking water utilities improve source water monitoring and management programs.

  1. Determining sources of dissolved organic carbon and disinfection byproduct precursors to the McKenzie River, Oregon.

    PubMed

    Kraus, Tamara E C; Anderson, Chauncey A; Morgenstern, Karl; Downing, Bryan D; Pellerin, Brian A; Bergamaschi, Brian A

    2010-01-01

    This study was conducted to determine the main sources of dissolved organic carbon (DOC) and disinfection byproduct (DBP) precursors to the McKenzie River, Oregon (USA). Water samples collected from the mainstem, tributaries, and reservoir outflows were analyzed for DOC concentration and DBP formation potentials (trihalomethanes [THMFPs] and haloacetic acids [HAAFPs]). In addition, optical properties (absorbance and fluorescence) of dissolved organic matter (DOM) were measured to provide insight into DOM composition and assess whether optical properties are useful proxies for DOC and DBP precursor concentrations. Optical properties indicative of composition suggest that DOM in the McKenzie River mainstem was primarily allochthonous--derived from soils and plant material in the upstream watershed. Downstream tributaries had higher DOC concentrations than mainstem sites (1.6 +/- 0.4 vs. 0.7 +/- 0.3 mg L(-1)) but comprised < 5% ofmainstem flows and had minimal effect on overall DBP precursor loads. Water exiting two large upstream reservoirs also had higher DOC concentrations than the mainstem site upstream of the reservoirs, but optical data did not support in situ algal production as a source of the added DOC during the study. Results suggest that the first major rain event in the fall contributes DOM with high DBP precursor content. Although there was interference in the absorbance spectra in downstream tributary samples, fluorescence data were strongly correlated to DOC concentration (R2 = 0.98), THMFP (R2 = 0.98), and HAAFP (R2 = 0.96). These results highlight the value of using optical measurements for identifying the concentration and sources of DBP precursors in watersheds, which will help drinking water utilities improve source water monitoring and management programs. PMID:21284308

  2. Development of a Total Organic Carbon method for the quantitative determination of solubility enhancement by cyclodextrins: Application to essential oils.

    PubMed

    Kfoury, Miriana; Auezova, Lizette; Greige-Gerges, Hélène; Fourmentin, Sophie

    2016-04-28

    Formation of inclusion complexes with cyclodextrins (CDs) is known to enhance guest solubility in aqueous medium. Different techniques allow determining the evolution in solubility of individual guest compounds. However, examination of mixtures solubility encapsulated in CDs is still a challenge. This is mainly related to the difference in the response of mixture components to the applied technique or to the fact that most of the conventional methods examine the signal of an individual constituent of the mixture. Thus, applying current techniques may not reflect the behavior of the whole mixture. Here, we used for the first time Total Organic Carbon (TOC) analysis to explore and assess the efficiency of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) to enhance the solubility of natural complex mixtures such as essential oils (EOs). Phase solubility studies were performed for eleven EOs with HP-β-CD. The TOC method has provided good validation parameters for linearity, precision and accuracy. For further validation of the method, phase solubility studies were performed with HP-β-CD for eugenol, as a model EO component. The eugenol solubility was determined by UV-Visible and TOC analyses in order to compare the results. Data obtained from both methods were similar (p < 0.05), thereby proving the effectiveness of the developed TOC method. Finally, the phase solubility diagrams of EOs showed that the solubilizing potential of CD increased proportionally with the decrease in EO intrinsic solubility. Results proved that TOC could be successfully applied to investigate CD/guest inclusion complexes and is expected to have a broad range of applications in the field of mixtures encapsulation. PMID:27046206

  3. Development of a Total Organic Carbon method for the quantitative determination of solubility enhancement by cyclodextrins: Application to essential oils.

    PubMed

    Kfoury, Miriana; Auezova, Lizette; Greige-Gerges, Hélène; Fourmentin, Sophie

    2016-04-28

    Formation of inclusion complexes with cyclodextrins (CDs) is known to enhance guest solubility in aqueous medium. Different techniques allow determining the evolution in solubility of individual guest compounds. However, examination of mixtures solubility encapsulated in CDs is still a challenge. This is mainly related to the difference in the response of mixture components to the applied technique or to the fact that most of the conventional methods examine the signal of an individual constituent of the mixture. Thus, applying current techniques may not reflect the behavior of the whole mixture. Here, we used for the first time Total Organic Carbon (TOC) analysis to explore and assess the efficiency of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) to enhance the solubility of natural complex mixtures such as essential oils (EOs). Phase solubility studies were performed for eleven EOs with HP-β-CD. The TOC method has provided good validation parameters for linearity, precision and accuracy. For further validation of the method, phase solubility studies were performed with HP-β-CD for eugenol, as a model EO component. The eugenol solubility was determined by UV-Visible and TOC analyses in order to compare the results. Data obtained from both methods were similar (p < 0.05), thereby proving the effectiveness of the developed TOC method. Finally, the phase solubility diagrams of EOs showed that the solubilizing potential of CD increased proportionally with the decrease in EO intrinsic solubility. Results proved that TOC could be successfully applied to investigate CD/guest inclusion complexes and is expected to have a broad range of applications in the field of mixtures encapsulation.

  4. Soil carbon determination by thermogravimetrics.

    PubMed

    Pallasser, Robert; Minasny, Budiman; McBratney, Alex B

    2013-01-01

    Determination of soil constituents and structure has a vital role in agriculture generally. Methods for the determination of soil carbon have in particular gained greater currency in recent times because of the potential that soils offer in providing offsets for greenhouse gas (CO2-equivalent) emissions. Ideally, soil carbon which can also be quite diverse in its makeup and origin, should be measureable by readily accessible, affordable and reliable means. Loss-on-ignition is still a widely used method being suitably simple and available but may have limitations for soil C monitoring. How can these limitations be better defined and understood where such a method is required to detect relatively small changes during soil-C building? Thermogravimetric (TGA) instrumentation to measure carbonaceous components has become more interesting because of its potential to separate carbon and other components using very precise and variable heating programs. TGA related studies were undertaken to assist our understanding in the quantification of soil carbon when using methods such as loss-on-ignition. Combining instrumentation so that mass changes can be monitored by mass spectrometer ion currents has elucidated otherwise hidden features of thermal methods enabling the interpretation and evaluation of mass-loss patterns. Soil thermogravimetric work has indicated that loss-on-ignition methods are best constrained to temperatures from 200 to 430 °C for reliable determination for soil organic carbon especially where clay content is higher. In the absence of C-specific detection where mass only changes are relied upon, exceeding this temperature incurs increasing contributions from inorganic sources adding to mass losses with diminishing contributions related to organic matter. The smaller amounts of probably more recalcitrant organic matter released at the higher temperatures may represent mineral associated material and/or simply more refractory forms.

  5. Development and application of an analytical method for the determination of total atmospheric biogenic non-methane organic carbon

    NASA Astrophysics Data System (ADS)

    Regnery, J.; Dindorf, T.; Hacker, L.; Andres, S.; Kleist, E.; Wildt, J.; Kesselmeier, J.

    2012-04-01

    Most of the organic carbon which is present in the atmosphere is found as volatile organic compounds (VOCs) dominantly emitted by the biosphere. This biogenic emission has a major impact on the chemical and physical properties of the atmosphere by contributing to the formation of tropospheric ozone and secondary organic aerosol (SOA). One major limitation in advancing the understanding of this ozone and aerosol generation is the technical ability to accurately measure the sum of these volatile organics. Frequently used methods focus on the detection of a defined set of non-methane organic compounds (NMOC). However, adding these single compound concentrations might only represent a lower limit of atmospheric carbon concentrations, since no available method is able to analyze all organic compounds present in the atmosphere. A few studies are known that report on total NMOC concentration measurements in ambient air but measurements of the total NMOC exchange between vegetation and the atmosphere are missing. Therefore, we investigated the analysis of the total NMOC concentration by collecting these compounds on a solid adsorbent material for subsequent total carbon analysis. This first step is necessary to separate the stable gases CO, CO2 and CH4 from the volatile NMOC fraction. NMOC was desorbed and converted to CO2 by passing an oxidation unit. The CO2 is collected on a second preconcentration unit followed by thermal desorption and detection by an infrared gas analyzer. As major difficulties we identified the separation of CO2 from the NMOC compounds on the solid adsorbent unit and the choice of the catalytic material. The measurements were accompanied by GC analysis of single calibrated VOC species from permeation devices and measurements by a PTR-MS. Plant chamber measurements with Quercus ilex showed an expected diurnal course which was confirmed by the NMOC analyzer though with a discrepancy during the day of up to 40 %.

  6. Total organic carbon analyzer

    NASA Technical Reports Server (NTRS)

    Godec, Richard G.; Kosenka, Paul P.; Smith, Brian D.; Hutte, Richard S.; Webb, Johanna V.; Sauer, Richard L.

    1991-01-01

    The development and testing of a breadboard version of a highly sensitive total-organic-carbon (TOC) analyzer are reported. Attention is given to the system components including the CO2 sensor, oxidation reactor, acidification module, and the sample-inlet system. Research is reported for an experimental reagentless oxidation reactor, and good results are reported for linearity, sensitivity, and selectivity in the CO2 sensor. The TOC analyzer is developed with gravity-independent components and is designed for minimal additions of chemical reagents. The reagentless oxidation reactor is based on electrolysis and UV photolysis and is shown to be potentially useful. The stability of the breadboard instrument is shown to be good on a day-to-day basis, and the analyzer is capable of 5 sample analyses per day for a period of about 80 days. The instrument can provide accurate TOC and TIC measurements over a concentration range of 20 ppb to 50 ppm C.

  7. Improving the accuracy of carbon-to-hydrogen ratio determination for P, N, S, O, Cl, and Br-containing organic compounds using atomic emission detection.

    PubMed

    Chernetsova, Elena S; Revelsky, Alexander I; Durst, Dupont; Sobolevsky, Tim G; Revelsky, Igor A

    2005-05-01

    The objective of this work was to investigate the dependence of atomic emission detector C and H response on microwave-induced plasma conditions and to improve the accuracy of carbon-to-hydrogen ratio determination for trialkylphosphates, herbicides, chlorophenols, and sulfur-containing organic compounds. Compounds which differed structurally from the analytes were used as reference compounds. It was found that when the oxygen concentration in the helium was the maximum for the instrument (9%) relative errors in carbon-to-hydrogen ratio determination were 3-8%, irrespective of analyte and reference compound structure, whereas when working in the mode of operation recommended by the manufacturer of the instrument (1.5% oxygen in helium) the respective errors were 10-20% or higher. This improvement in the accuracy of carbon-to-hydrogen ratio determination was accompanied by a factor of ten decrease in sensitivity. PMID:15688154

  8. Spatially governed climate factors dominate management in determining the quantity and distribution of soil organic carbon in dryland agricultural systems

    NASA Astrophysics Data System (ADS)

    Hoyle, Frances C.; O’Leary, Rebecca A.; Murphy, Daniel V.

    2016-08-01

    Few studies describe the primary drivers influencing soil organic carbon (SOC) stocks and the distribution of carbon (C) fractions in agricultural systems from semi-arid regions; yet these soils comprise one fifth of the global land area. Here we identified the primary drivers for changes in total SOC and associated particulate (POC), humus (HOC) and resistant (ROC) organic C fractions for 1347 sample points in the semi-arid agricultural region of Western Australia. Total SOC stock (0–0.3 m) varied from 4 to 209 t C ha‑1 with 79% of variation explained by measured variables. The proportion of C in POC, HOC and ROC fractions averaged 28%, 45% and 27% respectively. Climate (43%) and land management practices (32%) had the largest relative influence on variation in total SOC. Carbon accumulation was constrained where average daily temperature was above 17.2 °C and annual rainfall below 450 mm, representing approximately 42% of the 197,300 km2 agricultural region. As such large proportions of this region are not suited to C sequestration strategies. For the remainder of the region a strong influence of management practices on SOC indicate opportunities for C sequestration strategies associated with incorporation of longer pasture phases and adequate fertilisation.

  9. Spatially governed climate factors dominate management in determining the quantity and distribution of soil organic carbon in dryland agricultural systems.

    PubMed

    Hoyle, Frances C; O'Leary, Rebecca A; Murphy, Daniel V

    2016-01-01

    Few studies describe the primary drivers influencing soil organic carbon (SOC) stocks and the distribution of carbon (C) fractions in agricultural systems from semi-arid regions; yet these soils comprise one fifth of the global land area. Here we identified the primary drivers for changes in total SOC and associated particulate (POC), humus (HOC) and resistant (ROC) organic C fractions for 1347 sample points in the semi-arid agricultural region of Western Australia. Total SOC stock (0-0.3 m) varied from 4 to 209 t C ha(-1) with 79% of variation explained by measured variables. The proportion of C in POC, HOC and ROC fractions averaged 28%, 45% and 27% respectively. Climate (43%) and land management practices (32%) had the largest relative influence on variation in total SOC. Carbon accumulation was constrained where average daily temperature was above 17.2 °C and annual rainfall below 450 mm, representing approximately 42% of the 197,300 km(2) agricultural region. As such large proportions of this region are not suited to C sequestration strategies. For the remainder of the region a strong influence of management practices on SOC indicate opportunities for C sequestration strategies associated with incorporation of longer pasture phases and adequate fertilisation.

  10. Spatially governed climate factors dominate management in determining the quantity and distribution of soil organic carbon in dryland agricultural systems

    PubMed Central

    Hoyle, Frances C.; O’Leary, Rebecca A.; Murphy, Daniel V.

    2016-01-01

    Few studies describe the primary drivers influencing soil organic carbon (SOC) stocks and the distribution of carbon (C) fractions in agricultural systems from semi-arid regions; yet these soils comprise one fifth of the global land area. Here we identified the primary drivers for changes in total SOC and associated particulate (POC), humus (HOC) and resistant (ROC) organic C fractions for 1347 sample points in the semi-arid agricultural region of Western Australia. Total SOC stock (0–0.3 m) varied from 4 to 209 t C ha−1 with 79% of variation explained by measured variables. The proportion of C in POC, HOC and ROC fractions averaged 28%, 45% and 27% respectively. Climate (43%) and land management practices (32%) had the largest relative influence on variation in total SOC. Carbon accumulation was constrained where average daily temperature was above 17.2 °C and annual rainfall below 450 mm, representing approximately 42% of the 197,300 km2 agricultural region. As such large proportions of this region are not suited to C sequestration strategies. For the remainder of the region a strong influence of management practices on SOC indicate opportunities for C sequestration strategies associated with incorporation of longer pasture phases and adequate fertilisation. PMID:27530805

  11. Spatially governed climate factors dominate management in determining the quantity and distribution of soil organic carbon in dryland agricultural systems.

    PubMed

    Hoyle, Frances C; O'Leary, Rebecca A; Murphy, Daniel V

    2016-01-01

    Few studies describe the primary drivers influencing soil organic carbon (SOC) stocks and the distribution of carbon (C) fractions in agricultural systems from semi-arid regions; yet these soils comprise one fifth of the global land area. Here we identified the primary drivers for changes in total SOC and associated particulate (POC), humus (HOC) and resistant (ROC) organic C fractions for 1347 sample points in the semi-arid agricultural region of Western Australia. Total SOC stock (0-0.3 m) varied from 4 to 209 t C ha(-1) with 79% of variation explained by measured variables. The proportion of C in POC, HOC and ROC fractions averaged 28%, 45% and 27% respectively. Climate (43%) and land management practices (32%) had the largest relative influence on variation in total SOC. Carbon accumulation was constrained where average daily temperature was above 17.2 °C and annual rainfall below 450 mm, representing approximately 42% of the 197,300 km(2) agricultural region. As such large proportions of this region are not suited to C sequestration strategies. For the remainder of the region a strong influence of management practices on SOC indicate opportunities for C sequestration strategies associated with incorporation of longer pasture phases and adequate fertilisation. PMID:27530805

  12. Determining activated carbon performance

    SciTech Connect

    Naylor, W.F.; Rester, D.O.

    1995-07-01

    This article discusses the key elements involved in evaluating a system`s performance. Empty bed contact time (EBCT) is a term used to describe the length of time a liquid stream being treated is in contact with a granular activated carbon bed. The EBCT is the time required for a fluid to pass through the volume equivalent of the media bed, without the media being present. In a bed of granular activated carbon, the void volume or space between particles is usually about 45 percent. Therefore, the EBCT is about twice the true or actual time of contact between the fluid being treated and the GAC particles. The EBCT plays an important role in determining the effectiveness and longevity of granular activated carbon (GAC) used to treat liquids in a fixed-bed adsorber. Factors that influence and are influenced by EBCT, and their relationship to GAC performance in a treatment scheme include: adsorption, mass transfer zone, impurity concentration, adsorption affinity, flow rate and system design considerations.

  13. Determination of primary combustion source organic carbon-to-elemental carbon (OC / EC) ratio using ambient OC and EC measurements: secondary OC-EC correlation minimization method

    NASA Astrophysics Data System (ADS)

    Wu, Cheng; Zhen Yu, Jian

    2016-05-01

    Elemental carbon (EC) has been widely used as a tracer to track the portion of co-emitted primary organic carbon (OC) and, by extension, to estimate secondary OC (SOC) from ambient observations of EC and OC. Key to this EC tracer method is to determine an appropriate OC / EC ratio that represents primary combustion emission sources (i.e., (OC / EC)pri) at the observation site. The conventional approaches include regressing OC against EC within a fixed percentile of the lowest (OC / EC) ratio data (usually 5-20 %) or relying on a subset of sampling days with low photochemical activity and dominated by local emissions. The drawback of these approaches is rooted in its empirical nature, i.e., a lack of clear quantitative criteria in the selection of data subsets for the (OC / EC)pri determination. We examine here a method that derives (OC / EC)pri through calculating a hypothetical set of (OC / EC)pri and SOC followed by seeking the minimum of the coefficient of correlation (R2) between SOC and EC. The hypothetical (OC / EC)pri that generates the minimum R2(SOC,EC) then represents the actual (OC / EC)pri ratio if variations of EC and SOC are independent and (OC / EC)pri is relatively constant in the study period. This Minimum R Squared (MRS) method has a clear quantitative criterion for the (OC / EC)pri calculation. This work uses numerically simulated data to evaluate the accuracy of SOC estimation by the MRS method and to compare with two commonly used methods: minimum OC / EC (OC / ECmin) and OC / EC percentile (OC / EC10 %). Log-normally distributed EC and OC concentrations with known proportion of SOC are numerically produced through a pseudorandom number generator. Three scenarios are considered, including a single primary source, two independent primary sources, and two correlated primary sources. The MRS method consistently yields the most accurate SOC estimation. Unbiased SOC estimation by OC / ECmin and OC / EC10 % only occurs when the left tail of

  14. Amount, determining factors and spatial distribution of soil organic carbon storage in the Dano catchment (Southwest Burkina-Faso)

    NASA Astrophysics Data System (ADS)

    Hounkpatin, O.; Op de Hipt, F.; Bossa, A. Y.; Welp, G.; Amelung, W.

    2015-12-01

    The ability to project and to mitigate the impacts of climate change is closely related to the evaluation of soil organic carbon (SOC) content and stock across different types of land use and soil groups. Therefore, this study aimed at estimating the surface and subsoil organic carbon stocks in different land use systems and across various soil groups. A further aim was to assess the spatial variability of SOC content and stocks and how this is controlled by climate and site properties. The Random Forest (RF) modelling was used and compared to Ordinary Kriging interpolation (OK) for the topsoil SOC and stock. About 70 soil profiles were described along 16 transects with 197 samples collected from different horizons up to 1 m depth where possible. In addition, 1205 samples were collected within an intensive auger grid mapping. Mid-infrared spectroscopy and partial least-squares analysis were used as a fast and low-cost technique to handle the large amount of samples for the SOC estimation. The natural/semi natural vegetation recorded the highest SOC stock in the topsoil (28.6 t C ha-1) as compared to the cropland (25.5 t C ha-1). Over 1 m depth, Gleysols (87.4 t C ha-1) stored the highest amount of SOC stock followed by the Cambisols (76. t C ha-1) and the Plinthosols (73.1 t C ha-1) while the lowest were found in the Lixisols (57.8 t C ha-1). For the topsoil, the RF model revealed soil properties such as cation exchange capacity (CEC) and stone content as main factors affecting SOC content variability while CEC and bulk density were the major drivers for the subsoil. The carbon stock variability was mainly affected by the CEC and the reference soil group in the topsoil while horizon thickness and bulk density constituted the main factors for the subsoil. The geostatistical evaluation proved that the SOC content in the Dano catchment has a moderate spatial autocorrelation while the carbon stock was strongly spatially dependent. The RF gave a better prediction for

  15. Approaches to Determining the Oxidation State of Nitrogen and Carbon Atoms in Organic Compounds for High School Students

    ERIC Educational Resources Information Center

    Jurowski, Kamil; Krzeczkowska, Malgorzata Krystyna; Jurowska, Anna

    2015-01-01

    The concept of oxidation state (or oxidation number) and related issues have always been difficult for students. In addition, there are misunderstandings and obscurities, which can cause improper balancing of the chemical equations (mostly in organic reactions). In particular, these problems are related to determination of the oxidation state of…

  16. Simultaneous determination of mercury and organic carbon in sediment and soils using a direct mercury analyzer based on thermal decomposition-atomic absorption spectrophotometry.

    PubMed

    Chen, Jingjing; Chakravarty, Pragya; Davidson, Gregg R; Wren, Daniel G; Locke, Martin A; Zhou, Ying; Brown, Garry; Cizdziel, James V

    2015-04-29

    The purpose of this work was to study the feasibility of using a direct mercury analyzer (DMA) to simultaneously determine mercury (Hg) and organic matter content in sediment and soils. Organic carbon was estimated by re-weighing the sample boats post analysis to obtain loss-on-ignition (LOI) data. The DMA-LOI results were statistically similar (p<0.05) to the conventional muffle furnace approach. A regression equation was developed to convert DMA-LOI data to total organic carbon (TOC), which varied between 0.2% and 13.0%. Thus, mercury analyzers based on combustion can provide accurate estimates of organic carbon content in non-calcareous sediment and soils; however, weight gain from moisture (post-analysis), measurement uncertainty, and sample representativeness should all be taken into account. Sediment cores from seasonal wetland and open water areas from six oxbow lakes in the Mississippi River alluvial flood plain were analyzed. Wetland sediments generally had higher levels of Hg than open water areas owing to a greater fraction of fine particles and higher levels of organic matter. Annual loading of Hg in open water areas was estimated at 4.3, 13.4, 19.2, 20.7, 129, and 135 ng cm(-2) yr(-1) for Beasley, Roundaway, Hampton, Washington, Wolf and Sky Lakes, respectively. Generally, the interval with the highest Hg flux was dated to the 1960s and 1970s. PMID:25847156

  17. Method for determining stable isotope ratios of dissolved organic carbon in interstitial and other natural marine waters

    NASA Technical Reports Server (NTRS)

    Bauer, J. E.; Haddad, R. I.; Des Marais, D. J.

    1991-01-01

    A procedure is described for the analysis of the stable carbon isotopic composition of dissolved organic carbon (DOC) in natural waters from marine and higher-salinity environments. Rapid (less than 5 min) and complete oxidation of DOC is achieved using a modification of previous photochemical oxidation techniques. The CO2 evolved from DOC oxidation can be collected in less than 10 min for isotopic analysis. The procedure is at present suitable for oxidation and collection of 1-5 micromoles of carbon and has an associated blank of 0.1-0.2 micromole of carbon. Complete photochemical oxidation of DOC standards was demonstrated by quantitative recovery of CO2 as measured manometrically. Isotopic analyses of standards by photochemical and high-temperature sealed-tube combustion methods agreed to within 0.3%. Photochemical oxidation of DOC in a representative sediment pore-water sample was also quantitative, as shown by the excellent agreement between the photochemical and sealed-tube methods. The delta 13C values obtained for pore-water DOC using the two methods of oxidation were identical, suggesting that the modified photochemical method is adequate for the isotopically non-fractionated oxidation of pore-water DOC. The procedure was evaluated through an analysis of DOC in pond and pore waters from a hypersaline microbial mat environment. Concentrations of DOC in the water column over the mat displayed a diel pattern, but the isotopic composition of this DOC remained relatively constant (average delta 13C = -12.4%). Pore-water DOC exhibited a distinct concentration maximum in the mat surface layer, and delta 13C of pore-water DOC was nearly 8% lighter at 1.5-2.0-cm depth than in the mat surface layer (0-0.5-cm depth). These results demonstrate the effectiveness of the method in elucidating differences in DOC concentration and delta 13C over biogeochemically relevant spatial and temporal scales. Carbon isotopic analysis of DOC in natural waters, especially pore waters

  18. Mobility of organic carbon from incineration residues

    SciTech Connect

    Ecke, Holger Svensson, Malin

    2008-07-01

    Dissolved organic carbon (DOC) may affect the transport of pollutants from incineration residues when landfilled or used in geotechnical construction. The leaching of dissolved organic carbon (DOC) from municipal solid waste incineration (MSWI) bottom ash and air pollution control residue (APC) from the incineration of waste wood was investigated. Factors affecting the mobility of DOC were studied in a reduced 2{sup 6-1} experimental design. Controlled factors were treatment with ultrasonic radiation, full carbonation (addition of CO{sub 2} until the pH was stable for 2.5 h), liquid-to-solid (L/S) ratio, pH, leaching temperature and time. Full carbonation, pH and the L/S ratio were the main factors controlling the mobility of DOC in the bottom ash. Approximately 60 weight-% of the total organic carbon (TOC) in the bottom ash was available for leaching in aqueous solutions. The L/S ratio and pH mainly controlled the mobilization of DOC from the APC residue. About 93 weight-% of TOC in the APC residue was, however, not mobilized at all, which might be due to a high content of elemental carbon. Using the European standard EN 13 137 for determination of total organic carbon (TOC) in MSWI residues is inappropriate. The results might be biased due to elemental carbon. It is recommended to develop a TOC method distinguishing between organic and elemental carbon.

  19. Dispersion and separation of nanostructured carbon in organic solvents

    NASA Technical Reports Server (NTRS)

    Landi, Brian J. (Inventor); Raffaelle, Ryne P. (Inventor); Ruf, Herbert J. (Inventor); Evans, Christopher M. (Inventor)

    2011-01-01

    The present invention relates to dispersions of nanostructured carbon in organic solvents containing alkyl amide compounds and/or diamide compounds. The invention also relates to methods of dispersing nanostructured carbon in organic solvents and methods of mobilizing nanostructured carbon. Also disclosed are methods of determining the purity of nanostructured carbon.

  20. Method of Analysis by the U.S. Geological Survey California District Sacramento Laboratory-- Determination of Dissolved Organic Carbon in Water by High Temperature Catalytic Oxidation, Method Validation, and Quality-Control Practices

    USGS Publications Warehouse

    Bird, Susan M.; Fram, Miranda S.; Crepeau, Kathryn L.

    2003-01-01

    An analytical method has been developed for the determination of dissolved organic carbon concentration in water samples. This method includes the results of the tests used to validate the method and the quality-control practices used for dissolved organic carbon analysis. Prior to analysis, water samples are filtered to remove suspended particulate matter. A Shimadzu TOC-5000A Total Organic Carbon Analyzer in the nonpurgeable organic carbon mode is used to analyze the samples by high temperature catalytic oxidation. The analysis usually is completed within 48 hours of sample collection. The laboratory reporting level is 0.22 milligrams per liter.

  1. Input of organic carbon as determinant of nutrient fluxes, light climate and productivity in the Ob and Yenisey estuaries

    NASA Astrophysics Data System (ADS)

    Hessen, Dag O.; Carroll, JoLynn; Kjeldstad, Berit; Korosov, Anton A.; Pettersson, Lasse H.; Pozdnyakov, Dmitry; Sørensen, Kai

    2010-06-01

    Spectral light attenuation profiles and concentrations of total and dissolved carbon (C), nutrients and chlorophyll a (Chl a) were studied along transects running from the river mouth to the Kara Sea during late summer 2003 for the Yenisey and fall 2005 for the Ob estuaries. Earth Observation data were used to generate composite images of water color and Chl a distribution over the estuaries and the Kara Sea to reveal the spatial impact of the river efflux in terms of optical properties. High levels of total nitrogen (N), total phosphorus (P), silicate (Si) and iron (Fe), but low levels of inorganic N and P and Chl a were found in the estuaries. More than 90 % of total organic C was in dissolved form (DOC). The high concentrations of DOC, mostly terrigenous, humic compounds, gave extremely high attenuation coefficients for both visible and ultraviolet light. For UV-B, Z10% (the depth at which 10% of surface light remains) was <10 cm, while Z10% for visible light (PAR) generally ranged between 1 and 3 m for both transects. The light attenuation rapidly decreases when the freshwater is mixed with the coastal water outside off the coast. This leads to a strong light limitation and low productivity in the inner estuaries, while the high load of N and P associated with DOC eventually could promote primary production in the Kara Sea and further upstream the coastal current in the Arctic Ocean as the organic matter becomes diluted and photooxidized. On the other hand, the high inputs of colored dissolved organic matter (CDOM) provide an efficient screening of potential harmful UV-radiation over vast areas of the Arctic Ocean. A rising trend of riverine efflux to the Arctic seas is observed, and further increases in freshwater runoff as well as eventual permafrost thawing, will accentuate the freshwater impact in the estuaries and the Kara Sea.

  2. Soil organic carbon across scales.

    PubMed

    O'Rourke, Sharon M; Angers, Denis A; Holden, Nicholas M; McBratney, Alex B

    2015-10-01

    Mechanistic understanding of scale effects is important for interpreting the processes that control the global carbon cycle. Greater attention should be given to scale in soil organic carbon (SOC) science so that we can devise better policy to protect/enhance existing SOC stocks and ensure sustainable use of soils. Global issues such as climate change require consideration of SOC stock changes at the global and biosphere scale, but human interaction occurs at the landscape scale, with consequences at the pedon, aggregate and particle scales. This review evaluates our understanding of SOC across all these scales in the context of the processes involved in SOC cycling at each scale and with emphasis on stabilizing SOC. Current synergy between science and policy is explored at each scale to determine how well each is represented in the management of SOC. An outline of how SOC might be integrated into a framework of soil security is examined. We conclude that SOC processes at the biosphere to biome scales are not well understood. Instead, SOC has come to be viewed as a large-scale pool subjects to carbon flux. Better understanding exists for SOC processes operating at the scales of the pedon, aggregate and particle. At the landscape scale, the influence of large- and small-scale processes has the greatest interaction and is exposed to the greatest modification through agricultural management. Policy implemented at regional or national scale tends to focus at the landscape scale without due consideration of the larger scale factors controlling SOC or the impacts of policy for SOC at the smaller SOC scales. What is required is a framework that can be integrated across a continuum of scales to optimize SOC management.

  3. Soil organic carbon across scales.

    PubMed

    O'Rourke, Sharon M; Angers, Denis A; Holden, Nicholas M; McBratney, Alex B

    2015-10-01

    Mechanistic understanding of scale effects is important for interpreting the processes that control the global carbon cycle. Greater attention should be given to scale in soil organic carbon (SOC) science so that we can devise better policy to protect/enhance existing SOC stocks and ensure sustainable use of soils. Global issues such as climate change require consideration of SOC stock changes at the global and biosphere scale, but human interaction occurs at the landscape scale, with consequences at the pedon, aggregate and particle scales. This review evaluates our understanding of SOC across all these scales in the context of the processes involved in SOC cycling at each scale and with emphasis on stabilizing SOC. Current synergy between science and policy is explored at each scale to determine how well each is represented in the management of SOC. An outline of how SOC might be integrated into a framework of soil security is examined. We conclude that SOC processes at the biosphere to biome scales are not well understood. Instead, SOC has come to be viewed as a large-scale pool subjects to carbon flux. Better understanding exists for SOC processes operating at the scales of the pedon, aggregate and particle. At the landscape scale, the influence of large- and small-scale processes has the greatest interaction and is exposed to the greatest modification through agricultural management. Policy implemented at regional or national scale tends to focus at the landscape scale without due consideration of the larger scale factors controlling SOC or the impacts of policy for SOC at the smaller SOC scales. What is required is a framework that can be integrated across a continuum of scales to optimize SOC management. PMID:25918852

  4. Solid-phase extraction using bis(indolyl)methane-modified silica reinforced with multiwalled carbon nanotubes for the simultaneous determination of flavonoids and aromatic organic acid preservatives.

    PubMed

    Wang, Na; Liao, Yuan; Wang, Jiamin; Tang, Sheng; Shao, Shijun

    2015-12-01

    A novel bis(indolyl)methane-modified silica reinforced with multiwalled carbon nanotubes sorbent for solid-phase extraction was designed and synthesized by chemical immobilization of nitro-substituted 3,3'-bis(indolyl)methane on silica modified with multiwalled carbon nanotubes. Coupled with high-performance liquid chromatography analysis, the extraction properties of the sorbent were evaluated for flavonoids and aromatic organic acid compounds. Under optimum conditions, the sorbent can simultaneously extract five flavonoids and two aromatic organic acid preservatives in aqueous solutions in a single-step solid-phase extraction procedure. Wide linear ranges were obtained with correlation coefficients (R(2) ) ranging from 0.9843 to 0.9976, and the limits of detection were in the range of 0.5-5 μg/L for the compounds tested. Compared with the silica modified with multiwalled carbon nanotubes sorbent and the nitro-substituted 3,3'-bis(indolyl)methane-modified silica sorbent, the developed sorbent exhibited higher extraction efficiency toward the selected analytes. The synergistic effect of nitro-substituted 3,3'-bis(indolyl)methane and multiwalled carbon nanotubes not only improved the surface-to-volume ratio but also enhanced multiple intermolecular interactions, such as hydrogen bonds, π-π, and hydrophobic interactions, between the new sorbent and the selected analytes. The as-established solid-phase extraction with high-performance liquid chromatography and diode array detection method was successfully applied to the simultaneous determination of flavonoids and aromatic organic acid preservatives in grape juices with recoveries ranging from 83.9 to 112% for all the selected analytes.

  5. Automated method for determination of dissolved organic carbon-water distribution constants of structurally diverse pollutants using pre-equilibrium solid-phase microextraction.

    PubMed

    Ripszam, Matyas; Haglund, Peter

    2015-02-01

    Dissolved organic carbon (DOC) plays a key role in determining the environmental fate of semivolatile organic environmental contaminants. The goal of the present study was to develop a method using commercially available hardware to rapidly characterize the sorption properties of DOC in water samples. The resulting method uses negligible-depletion direct immersion solid-phase microextraction (SPME) and gas chromatography-mass spectrometry. Its performance was evaluated using Nordic reference fulvic acid and 40 priority environmental contaminants that cover a wide range of physicochemical properties. Two SPME fibers had to be used to cope with the span of properties, 1 coated with polydimethylsiloxane and 1 coated with polystyrene divinylbenzene polydimethylsiloxane, for nonpolar and semipolar contaminants, respectively. The measured DOC-water distribution constants showed reasonably good reproducibility (standard deviation ≤ 0.32) and good correlation (R(2)  = 0.80) with log octanol-water partition coefficients for nonpolar persistent organic pollutants. The sample pretreatment is limited to filtration, and the method is easy to adjust to different DOC concentrations. These experiments also utilized the latest SPME automation that largely decreases total cycle time (to 20 min or shorter) and increases sample throughput, which is advantageous in cases when many samples of DOC must be characterized or when the determinations must be performed quickly, for example, to avoid precipitation, aggregation, and other changes of DOC structure and properties. The data generated by this method are valuable as a basis for transport and fate modeling studies.

  6. Improved method for the determination of nonpurgeable suspended organic carbon in natural water by silver filter filtration, wet chemical oxidation, and infrared spectrometry

    USGS Publications Warehouse

    Burkhardt, M.R.; Brenton, R.W.; Kammer, J.A.; Jha, V.K.; O'Mara-Lopez, P. G.; Woodworth, M.T.

    1999-01-01

    Precision and accuracy are reported for the first time for the analysis of nonpurgeable suspended organic carbon by silver membrane filtration followed by wet chemical oxidation. A water sample is pressure filtered through a 0.45-??m-pore-size, 47-mm-diameter silver membrane filter. The silver membrane filter then is cut into ribbons and placed in a flame-sealable glass ampule. The organic material trapped on the membrane filter strips is acidified, purged with oxygen to remove inorganic carbonates and volatile organic compounds, and oxidized to carbon dioxide (CO2) using phosphoric acid and potassium persulfate in the sealed glass ampule. The resulting CO2 is measured by a nondispersive infrared CO2 detector. The amount of CO2 is proportional to the concentration of chemically oxidizable nonpurgeable organic carbon in the environmental water sample. The quantitation and method detection limit for routine analysis is 0.2 mg/L. The average percent recovery in five representative matrices was 97 ?? 11%. The errors associated with sampling and sample preparation of nonpurgeable suspended organic carbon are also described.Precision and accuracy are reported for the first time for the analysis of nonpurgeable suspended organic carbon by silver membrane filtration followed by wet chemical oxidation. A water sample is pressure filtered through a 0.45-??m-pore-size, 47-mm-diameter silver membrane filter. The silver membrane filter then is cut into ribbons and placed in a flame-sealable glass ampule. The organic material trapped on the membrane filter strips is acidified, purged with oxygen to remove inorganic carbonates and volatile organic compounds, and oxidized to carbon dioxide (CO2) using phosphoric acid and potassium persulfate in the sealed glass ampule. The resulting CO2 is measured by a nondispersive infrared CO2 detector. The amount of CO2 is proportional to the concentration of chemically oxidizable nonpurgeable organic carbon in the environmental water sample

  7. Determination of the carbon content of airborne fungal spores.

    PubMed

    Bauer, Heidi; Kasper-Giebl, Anne; Zibuschka, Franziska; Hitzenberger, Regina; Kraus, Gunther F; Puxbaum, Hans

    2002-01-01

    Airborne fungal spores contribute potentially to the organic carbon of the atmospheric aerosol, mainly in the "coarse aerosol" size range 2.5-10 microm aerodynamic equivalent diameter (aed). Here, we report about a procedure to determine the organic carbon content of fungal spores frequently observed in the atmosphere. Furthermore, we apply a new (carbon/individual) factor to quantify the amount of fungal-spores-derived organic carbon in aerosol collected at a mountain site in Austria. Spores of representatives of Cladosporium sp., Aspergillus sp., Penicillium sp., and Alternaria sp., the four predominant airborne genera, were analyzed for their carbon content using two different analytical procedures. The result was an average carbon content of 13 pg C/spore (RSD, 46%), or expressed as a carbon-per-volume ratio, 0.38 pg C/microm3 (RSD, 30%). These values are comparable to conversion factors for bacteria and some representatives of the zooplankton. Because biopolymers are suspected of interfering with elemental carbon determination by thermal methods, the amount of "fungal carbon" that might be erroneously mistaken for soot carbon was determined using the "two-step combustion" method of Cachier et al. and termed as "apparent elemental carbon" (AEC). This fraction amounted to up to 46% of the initial fungal carbon content. Although the aerosol samples were collected in March under wintry conditions, the organic carbon from fungal spores amounted to 2.9-5.4% of organic carbon in the "coarse mode" size fraction.

  8. The Quest for Organic Carbon on Mars

    NASA Technical Reports Server (NTRS)

    Eigenbrode, Jennifer

    2011-01-01

    We are entering an era of Mars exploration in which organic carbon detection, characterization, and structural identification will be key to addressing some of the outstanding science objectives of the Mars Exploration Program. Success of these missions will depend on technical, scientific, and strategic elements--all of which are strongly determined based on terrestrial experience and knowledge of organic matter formation, concentration, and preservation. Analog studies including Precambrian sediments, modern endolithic communities, and experiments help us fine-tune these approaches, but we also need to expect the unexpected. This presentation will provide perspective on the challenges of detecting organic carbon on Mars, how we may achieve such detections with the in situ instruments, such as the SAM (Science Analysis at Mars) instrument suite onboard Curiosity, the rover for the 2011 Mars Science Laboratory mission.

  9. Determination of multiple organic matter sources in aerosol PM10 from Wrocław, Poland using molecular and stable carbon isotope compositions

    NASA Astrophysics Data System (ADS)

    Górka, Maciej; Rybicki, Maciej; Simoneit, Bernd R. T.; Marynowski, Leszek

    2014-06-01

    The natural and anthropogenic contributions of hydrocarbon groups (aliphatic and aromatic), as well as total organic carbon, in atmospheric PM10 dust (particulate matter <10 μm) collected from Wrocław (SW Poland) were assessed using combined molecular (gas chromatography-mass spectrometry - GC-MS) and stable carbon isotopic (isotope-ratio mass spectrometry - IR-MS) analyses. The PM10 samples were taken in the seasonal sampling program in 2007, and represent air pollution from all months of the year. The δ13C values of the total carbon varied seasonally from -27.6 to -25.3‰. The isotopic mass balance calculations confirmed greater coal burning input, reaching 70.5%, in the heating season and dominant transported sources 47.5% in the vegetative season. The data obtained for the aliphatic fractions: carbon preference index (CPI), carbon number maximum (Cmax), wax n-alkane contents (%WNA), and δ13C values of the aliphatic fractions (-36.6 to -29.4‰), indicated a dominant anthropogenic origin (gasoline/diesel/coal combustion) and a lesser biogenic input (biomass burning and natural organic matter). Petroleum and coal combustion emissions were confirmed by the presence of hopanes and moretanes. The molecular analysis of the concentrations and diagnostic ratios of the polycyclic aromatic hydrocarbons (PAHs) and the δ13C values of the aromatic fractions (-35.4 to -26.8‰) indicated that the main PAH sources were also collectively from combustion of liquid fuels and coal. Based on PAH discrimination diagrams it is also clear that the main organic carbon source is derived from coal, biomass and petroleum combustion in both seasons. However, taking into account the PAH concentrations during the vegetative and heating seasons, coal and biomass burning seem to be their major source. Additionally, the polar organic compounds (mainly levoglucosan) confirmed a significant contribution from biomass burning to the total anthropogenic input. The general conclusion derived

  10. Self-organized permeability in carbonate aquifers.

    PubMed

    Worthington, S R H; Ford, D C

    2009-01-01

    Advances over the past 40 years have resulted in a clear understanding of how dissolution processes in carbonate rocks enhance aquifer permeability. Laboratory experiments on dissolution rates of calcite and dolomite have established that there is a precipitous drop in dissolution rates as chemical equilibrium is approached. These results have been incorporated into numerical models, simulating the effects of dissolution over time and showing that it occurs along the entire length of pathways through carbonate aquifers. The pathways become enlarged and integrated over time, forming self-organized networks of channels that typically have apertures in the millimeter to centimeter range. The networks discharge at point-located springs. Recharge type is an important factor in determining channel size and distribution, resulting in a range of aquifer types, and this is well demonstrated by examples from England. Most carbonate aquifers have a large number of small channels, but in some cases large channels (i.e., enterable caves) can also develop. Rapid velocities found in ground water tracer tests, the high incidence of large-magnitude springs, and frequent microbial contamination of wells all support the model of self-organized channel development. A large majority of carbonate aquifers have such channel networks, where ground water velocities often exceed 100 m/d.

  11. Determination of adsorbable organic fluorine from aqueous environmental samples by adsorption to polystyrene-divinylbenzene based activated carbon and combustion ion chromatography.

    PubMed

    Wagner, Andrea; Raue, Brigitte; Brauch, Heinz-Jürgen; Worch, Eckhard; Lange, Frank T

    2013-06-21

    A new method for the determination of trace levels of adsorbable organic fluorine (AOF) in water is presented. Even if the individual contributing target compounds are widely unknown, this surrogate parameter is suited to identify typical organofluorine contaminations, such as with polyfluorinated chemicals (PFCs), and represents a lower boundary of the organofluorine concentration in water bodies. It consists of the adsorption of organofluorine chemicals on a commercially available synthetic polystyrene-divinylbenzene based activated carbon (AC) followed by analysis of the loaded AC by hydropyrolysis combustion ion chromatography (CIC). Inorganic fluorine is displaced by excess nitrate during the extraction step and by washing the loaded activated carbon with an acidic sodium nitrate solution. Due to its high purity the synthetic AC had a very low and reproducible fluorine blank (0.3 μg/g) compared to natural ACs (up to approximately 9 μg/g). Using this AC, fluoride and the internal standard phosphate could be detected free of chromatographic interferences. With a sample volume of 100 mL and 2× 100 mg of AC packed into two extraction columns combined in series, a limit of quantification (LOQ), derived according to the German standard method DIN 32645, of 0.3 μg/L was achieved. The recoveries of six model PFCs were determined from tap water and a municipal wastewater treatment plant (WWTP) effluent. Except for the extremely polar perfluoroacetic acid (recovery of approximately 10%) the model substances showed fairly good (50% for perfluorobutanoic acid (PFBA)) to very good fluorine recoveries (100±20% for perfluorooctanoic acid (PFOA), perfluorobutanesulfonate (PFBS), 6:2 fluorotelomersulfonate (6:2 FTS)), both from tap water and wastewater matrix. This new analytical protocol was exemplarily applied to several surface water and groundwater samples. The obtained AOF values were compared to the fluorine content of 19 target PFCs analyzed by high performance

  12. Role of fossil fuel and wood burning emissions on Volatile Organic Compounds, Carbon monoxide and Black Carbon level and variability as determined from one-year measurements in Paris.

    NASA Astrophysics Data System (ADS)

    Sarda Esteve, R.; Gros, V.; Kalogridis, A.-C.; Sciare, J.

    2012-04-01

    Within the French program PRIMEQUAL-FRANCIPOL 2010-2013, measurements of gaseous precursors of secondary organic aerosols have been performed at the LHVP (Laboratoire d'Hygiene de la Ville de Paris), an urban background site of Paris. A continuous real-time monitoring strategy using the high sensitivity PTR-MS (Proton Transfer Reaction- Mass Spectrometer) has been implemented for the measurements of Volatile Organic Compounds (VOCs) during a whole year (02/2010-03/2011). The data were acquired in mass-scan mode thus, allowing to follow a very wide range of analytes, namely between m/z 18 and 151. This broad range of compounds includes both well-known VOCs and less studied ones, providing a great exploration potential and the opportunity to establish novel valuable information. This unique dataset will enable to acquire a better understanding of the diurnal, weekday and seasonal trends and to determine the main sources that drive VOCs variability in Paris. The preliminary results herein aim to distinguish the biomass burning from the fuel fossil emissions and to evaluate their impact on the measured volatile organic compounds using tracers Black Carbon (BC) and carbon monoxide (CO). BC was measured and separated into fuel fossil (FF) and wood burning (WB) contributions which can both be used as tracers. The obtained FF contributions to BC are well correlated with measured concentrations of acetaldehyde (m/z 45), acetone (m/z 59), hexanal (m/z 83), probably chloroethane (m/z 85), dimethylbenzene (m/z 107) and trimethylbenzene (TMB) while WB contributions to BC correlate nicely with methanol and the mass 97, maybe related to furfural which has already been identified in smoke from woodburning.

  13. Effect of organic carbon chemistry on sorption of atrazine and metsulfuron-methyl as determined by (13)C-NMR and IR spectroscopy.

    PubMed

    Dutta, Anirban; Mandal, Abhishek; Manna, Suman; Singh, S B; Berns, Anne E; Singh, Neera

    2015-10-01

    Soil organic matter (SOM) content is the major soil component affecting pesticide sorption. However, recent studies have highlighted the fact that it is not the total carbon content of the organic matter, but its chemical structure which have a profound effect on the pesticide's sorption. In the present study, sorption of atrazine and metsulfuron-methyl herbicides was studied in four SOM fractions viz. commercial humic acid, commercial lignin, as well as humic acid and humin extracted from a compost. Sorption data was fitted to the Freundlich adsorption equation. In general, the Freundlich slope (1/n) values for both the herbicides were <1. Except for atrazine sorption on commercial humic acid, metsulfuron-methyl was more sorbed. Desorption results suggested that atrazine was more desorbed than metsulfuron-methyl. Lignin, which showed least sorption of both the herbicides, showed minimum desorption. Sorption of atrazine was best positively correlated with the alkyl carbon (adjusted R (2) = 0.748) and carbonyl carbon (adjusted R (2) = 0.498) but, their effect was statistically nonsignificant (P = 0.05). Metsulfuron-methyl sorption showed best positive correlation with carbonyl carbon (adjusted R (2) = 0.960; P = 0.05) content. Sorption of both the herbicides showed negative correlation with O/N-alkyl carbon. Correlation of herbicide's sorption with alkyl and carbonyl carbon content of SOM fractions suggested their contribution towards herbicide sorption. But, sorption of metsulfuron-methyl, relatively more polar than atrazine, was mainly governed by the polar groups in SOM. IR spectra showed that H-bonds and charge-transfer bonds between SOM fraction and herbicides probably operated as mechanisms of adsorption.

  14. Determination of organic carbon and ionic accountability of various waste and product waters derived from ECLSS water recovery tests and Spacelab humidity condensate

    NASA Technical Reports Server (NTRS)

    Carter, Donald L.; Cole, Harold; Habercom, Mark; Griffith, Guy

    1992-01-01

    The development of a closed-loop water recovery system for Space Station Freedom involves many technical challenges associated with contaminant removal. Attention is presently given to the characterization of contaminants constituting total organic carbon (TOC), and to the Hubaux and Vos (1970) statistical model for low level TOC that has been employed. A tabulation is given for TOC accountability in the case of both potable and hygiene waters.

  15. Determination of carbonate carbon in geological materials by coulometric titration

    USGS Publications Warehouse

    Engleman, E.E.; Jackson, L.L.; Norton, D.R.

    1985-01-01

    A coulometric titration is used for the determination of carbonate carbon in geological materials. Carbon dioxide is evolved from the sample by the addition of 2 M perchloric acid, with heating, and is determined by automated coulometric titration. The coulometric titration showed improved speed and precision with comparable accuracy to gravimetric and gasometric techniques. ?? 1985.

  16. Temperature Dependence of Photodegradation of Dissolved Organic Matter to Dissolved Inorganic Carbon and Particulate Organic Carbon

    PubMed Central

    Porcal, Petr; Dillon, Peter J.; Molot, Lewis A.

    2015-01-01

    Photochemical transformation of dissolved organic matter (DOM) has been studied for more than two decades. Usually, laboratory or “in-situ” experiments are used to determine photodegradation variables. A common problem with these experiments is that the photodegradation experiments are done at higher than ambient temperature. Five laboratory experiments were done to determine the effect of temperature on photochemical degradation of DOM. Experimental results showed strong dependence of photodegradation on temperature. Mathematical modeling of processes revealed that two different pathways engaged in photochemical transformation of DOM to dissolved inorganic carbon (DIC) strongly depend on temperature. Direct oxidation of DOM to DIC dominated at low temperatures while conversion of DOM to intermediate particulate organic carbon (POC) prior to oxidation to DIC dominated at high temperatures. It is necessary to consider this strong dependence when the results of laboratory experiments are interpreted in regard to natural processes. Photodegradation experiments done at higher than ambient temperature will necessitate correction of rate constants. PMID:26106898

  17. Methods development for total organic carbon accountability

    NASA Technical Reports Server (NTRS)

    Benson, Brian L.; Kilgore, Melvin V., Jr.

    1991-01-01

    This report describes the efforts completed during the contract period beginning November 1, 1990 and ending April 30, 1991. Samples of product hygiene and potable water from WRT 3A were supplied by NASA/MSFC prior to contract award on July 24, 1990. Humidity condensate samples were supplied on August 3, 1990. During the course of this contract chemical analyses were performed on these samples to qualitatively determine specific components comprising, the measured organic carbon concentration. In addition, these samples and known standard solutions were used to identify and develop methodology useful to future comprehensive characterization of similar samples. Standard analyses including pH, conductivity, and total organic carbon (TOC) were conducted. Colorimetric and enzyme linked assays for total protein, bile acid, B-hydroxybutyric acid, methylene blue active substances (MBAS), urea nitrogen, ammonia, and glucose were also performed. Gas chromatographic procedures for non-volatile fatty acids and EPA priority pollutants were also performed. Liquid chromatography was used to screen for non-volatile, water soluble compounds not amenable to GC techniques. Methods development efforts were initiated to separate and quantitate certain chemical classes not classically analyzed in water and wastewater samples. These included carbohydrates, organic acids, and amino acids. Finally, efforts were initiated to identify useful concentration techniques to enhance detection limits and recovery of non-volatile, water soluble compounds.

  18. Investigation of reductive dechlorination supported by natural organic carbon

    USGS Publications Warehouse

    Rectanus, H.V.; Widdowson, M.A.; Chapelle, F.H.; Kelly, C.A.; Novak, J.T.

    2007-01-01

    Because remediation timeframes using monitored natural attenuation may span decades or even centuries at chlorinated solvent sites, new approaches are needed to assess the long-term sustainability of reductive dechlorination in ground water systems. In this study, extraction procedures were used to investigate the mass of indigenous organic carbon in aquifer sediment, and experiments were conducted to determine if the extracted carbon could support reductive dechlorination of chloroethenes. Aquifer sediment cores were collected from a site without an anthropogenic source of organic carbon where organic carbon varied from 0.02% to 0.12%. Single extraction results showed that 1% to 28% of sediment-associated organic carbon and 2% to 36% of the soft carbon were removed depending on nature and concentration of the extracting solution (Nanopure water; 0.1%, 0.5%, and 1.0% sodium pyrophosphate; and 0.5 N sodium hydroxide). Soft carbon is defined as organic carbon oxidized with potassium persulfate and is assumed to serve as a source of biodegradable carbon within the aquifer. Biodegradability studies demonstrated that 20% to 40% of extracted organic carbon was biodegraded aerobically and anaerobically by soil microorganisms in relatively brief tests (45 d). A five-step extraction procedure consisting of 0.1% pyrophosphate and base solutions was investigated to quantify bioavailable organic carbon. Using the extracted carbon as the sole electron donor source, tetrachloroethene was transformed to cis-1,2- dichloroethene and vinyl chloride in anaerobic enrichment culture experiments. Hydrogen gas was produced at levels necessary to sustain reductive dechlorination (>1 nM). ?? 2007 National Ground Water Association.

  19. Organic carbon in soil and the global carbon cycle

    SciTech Connect

    Post, W.M. III

    1991-12-31

    Soil organic matter is, simultaneously, the most inert carbon cycle component of terrestrial ecosystems, and the most dynamic component of terrestrail geologic systems placing it in a pivotal position in the biogeochemistry of carbon. The large size and potentially long residence time of the soil organic matter pool make it an important component of the global carbon cycle. Net terrestrial primary production of about 60 Pg C{center_dot}yr{sup {minus}1} is, over a several-year period of time, balanced by an equivalent flux of litter production and subsequent decomposition of detritus and soil organic matter. However, the input rates and decomposition rates for different terrestrial ecosystems vary over several orders of magnitude resulting in widely different amounts and turnover rates of soil organic matter. The amounts of carbon stored in soils and the rates of exchange of soil carbon with the atmosphere depend on many factors related to the chemistry, biology, and physics of soil and soil organic matter. This report discusses work on organic carbon in soil and aspects of the carbon cycle.

  20. Organic chemistry of Murchison meteorite: Carbon isotopic fractionation

    NASA Technical Reports Server (NTRS)

    Yuen, G. U.; Blair, N. E.; Desmarais, D. J.; Cronin, J. R.; Chang, S.

    1986-01-01

    The carbon isotopic composition of individual organic compounds of meteoritic origin remains unknown, as most reported carbon isotopic ratios are for bulk carbon or solvent extractable fractions. The researchers managed to determine the carbon isotopic ratios for individual hydrocarbons and monocarboxylic acids isolated from a Murchison sample by a freeze-thaw-ultrasonication technique. The abundances of monocarboxylic acids and saturated hydrocarbons decreased with increasing carbon number and the acids are more abundant than the hydrocarbon with the same carbon number. For both classes of compounds, the C-13 to C-12 ratios decreased with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic number than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with a kinetically controlled synthesis of higher homologues for lower ones.

  1. Simultaneous determination of mercury and organic carbon using a direct mercury analyzer: Mercury profiles in sediment cores from oxbow lakes in the Mississippi Delta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sediment cores from seasonal wetland and open water areas from six oxbow lakes in the Mississippi River alluvial flood plain were analyzed for total-mercury (Hg) using a direct mercury analyzer (DMA). In the process we evaluated the feasibility of simultaneously determining organic matter content by...

  2. Organic Carbon Dynamics in Glacier Systems

    NASA Astrophysics Data System (ADS)

    Barker, J.; Sharp, M.; Klassen, J.; Foght, J.; Turner, R.

    2004-12-01

    The biogeochemical cycling of organic carbon (OC) has important implications for aquatic system ecology because the abundance and molecular characteristics of OC influence contaminant transport and bioavailability, and determine its suitability as a substrate for microbial metabolism. There have been few studies of OC cycling in glacier systems, and questions remain regarding the abundance, provenance, and biogeochemical transformations of OC in these environments. To address these questions, the abundance and molecular characteristics of OC is investigated in three glacier systems. These systems are characterized by different thermal and hydrological regimes and have different potential OC sources. John Evans Glacier is a polythermal glacier in arctic Canada. Outre Glacier is a temperate glacier in the Coast Mountains of British Columbia, Canada. Victoria Upper Glacier is a cold-based glacier in the McMurdo Dry Valleys of Antarctica. To provide an indication of the extent to which glacier system OC dynamics are microbially mediated, microbial culturing and identification is performed and organic acid abundance and speciation is determined. Where possible, samples of supraglacial runoff, glacier ice and basal ice and subglacial meltwater were collected. The dissolved organic carbon (DOC) concentration in each sample was measured by combustion/non-dispersive infrared gas analysis. Emission and synchronous fluorescence spectroscopy were used to characterize the molecular properties of the DOC from each environment. When possible, microbial culturing and identification was performed and organic acid identification and quantification was measured by ion chromatography. DOC exists in detectable quantities (0.06-46.6 ppm) in all of the glacier systems that were investigated. The molecular characteristics of DOC vary between glaciers, between environments at the same glacier, and over time within a single environment. Viable microbes are recoverable in significant (ca

  3. METHOD 415.3 - MEASUREMENT OF TOTAL ORGANIC CARBON, DISSOLVED ORGANIC CARBON AND SPECIFIC UV ABSORBANCE AT 254 NM IN SOURCE WATER AND DRINKING WATER

    EPA Science Inventory

    2.0 SUMMARY OF METHOD

    2.1 In both TOC and DOC determinations, organic carbon in the water sample is oxidized to form carbon dioxide (CO2), which is then measured by a detection system. There are two different approaches for the oxidation of organic carbon in water sample...

  4. Determining total carbon in hydrazine

    NASA Technical Reports Server (NTRS)

    Davis, E. E.

    1977-01-01

    Procedure incorporates modified pyrolysis train. Samples are vaporized before entering furnace to be pyrolyzed at 850 C + or - 25 C. Direct collection of pyrolyzed gas reduces loss of carbon dioxide. Infrared spectroscopy can be used to analyze samples for carbon dioxide content.

  5. CQESTR Simulations of soil organic carbon dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A processed-based carbon (C) model, CQESTR (sequester), was used to predict soil organic carbon (SOC) dynamics and examine the effect of agricultural management practices on SOC accretion in three diverse regions of the USA. The three regions chosen had long-term experiments (LTEs) ranging from 23 t...

  6. Tuning Organic Carbon Dioxide Absorbents for Carbonation and Decarbonation

    PubMed Central

    Rajamanickam, Ramachandran; Kim, Hyungsoo; Park, Ji-Woong

    2015-01-01

    The reaction of carbon dioxide with a mixture of a superbase and alcohol affords a superbase alkylcarbonate salt via a process that can be reversed at elevated temperatures. To utilize the unique chemistry of superbases for carbon capture technology, it is essential to facilitate carbonation and decarbonation at desired temperatures in an easily controllable manner. Here, we demonstrate that the thermal stabilities of the alkylcarbonate salts of superbases in organic solutions can be tuned by adjusting the compositions of hydroxylic solvent and polar aprotic solvent mixtures, thereby enabling the best possible performances to be obtained from the various carbon dioxide capture agents based on these materials. The findings provides valuable insights into the design and optimization of organic carbon dioxide absorbents. PMID:26033537

  7. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  8. Worldwide organic soil carbon and nitrogen data

    SciTech Connect

    Zinke, P.J.; Stangenberger, A.G.; Post, W.M.; Emanual, W.R.; Olson, J.S.

    1986-09-01

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  9. 42 CFR 422.566 - Organization determinations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 3 2014-10-01 2014-10-01 false Organization determinations. 422.566 Section 422... (CONTINUED) MEDICARE PROGRAM (CONTINUED) MEDICARE ADVANTAGE PROGRAM Grievances, Organization Determinations and Appeals § 422.566 Organization determinations. (a) Responsibilities of the MA organization....

  10. 42 CFR 422.566 - Organization determinations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Organization determinations. 422.566 Section 422... (CONTINUED) MEDICARE PROGRAM (CONTINUED) MEDICARE ADVANTAGE PROGRAM Grievances, Organization Determinations and Appeals § 422.566 Organization determinations. (a) Responsibilities of the MA organization....

  11. 42 CFR 422.566 - Organization determinations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Organization determinations. 422.566 Section 422... (CONTINUED) MEDICARE PROGRAM MEDICARE ADVANTAGE PROGRAM Grievances, Organization Determinations and Appeals § 422.566 Organization determinations. (a) Responsibilities of the MA organization. Each MA...

  12. 42 CFR 422.566 - Organization determinations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Organization determinations. 422.566 Section 422... (CONTINUED) MEDICARE PROGRAM (CONTINUED) MEDICARE ADVANTAGE PROGRAM Grievances, Organization Determinations and Appeals § 422.566 Organization determinations. (a) Responsibilities of the MA organization....

  13. 42 CFR 422.566 - Organization determinations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Organization determinations. 422.566 Section 422... (CONTINUED) MEDICARE PROGRAM MEDICARE ADVANTAGE PROGRAM Grievances, Organization Determinations and Appeals § 422.566 Organization determinations. (a) Responsibilities of the MA organization. Each MA...

  14. Organic solvent regeneration of granular activated carbon

    NASA Astrophysics Data System (ADS)

    Cross, W. H.; Suidan, M. T.; Roller, M. A.; Kim, B. R.; Gould, J. P.

    1982-09-01

    The use of activated carbon for the treatment of industrial waste-streams was shown to be an effective treatment. The high costs associated with the replacement or thermal regeneration of the carbon have prohibited the economic feasibility of this process. The in situ solvent regeneration of activated carbon by means of organic solvent extraction was suggested as an economically alternative to thermal regeneration. The important aspects of the solvent regeneration process include: the physical and chemical characteristics of the adsorbent, the pore size distribution and energy of adsorption associated with the activated carbon; the degree of solubility of the adsorbate in the organic solvent; the miscibility of the organic solvent in water; and the temperature at which the generation is performed.

  15. [Organic carbon and carbon mineralization characteristics in nature forestry soil].

    PubMed

    Yang, Tian; Dai, Wei; An, Xiao-Juan; Pang, Huan; Zou, Jian-Mei; Zhang, Rui

    2014-03-01

    Through field investigation and indoor analysis, the organic carbon content and organic carbon mineralization characteristics of six kinds of natural forest soil were studied, including the pine forests, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed needle leaf and Korean pine and Chinese pine forest. The results showed that the organic carbon content in the forest soil showed trends of gradual decrease with the increase of soil depth; Double exponential equation fitted well with the organic carbon mineralization process in natural forest soil, accurately reflecting the mineralization reaction characteristics of the natural forest soil. Natural forest soil in each layer had the same mineralization reaction trend, but different intensity. Among them, the reaction intensity in the 0-10 cm soil of the Korean pine forest was the highest, and the intensities of mineralization reaction in its lower layers were also significantly higher than those in the same layers of other natural forest soil; comparison of soil mineralization characteristics of the deciduous broad-leaved forest and coniferous and broad-leaved mixed forest found that the differences of litter species had a relatively strong impact on the active organic carbon content in soil, leading to different characteristics of mineralization reaction.

  16. Anomalous carbon-isotope ratios in nonvolatile organic material.

    PubMed

    Kaplan, I R; Nissenbaum, A

    1966-08-12

    Organic mats are associated with sulfur deposits in Upper Pleistocene sand ridges of the coastal plain of southern Israel; black, brittle, and non-volatile, they show parallel layering but no other apparent cellular structure. Two independent carbon-14 determinations yielded ages of 27,750+/-500 and 31,370+/-1400 years. Four carbon-13:carbon-12 determinations fell within the range deltaC(13) =-82.5 to -89.3 per mille relative to the PDB standard; these appear to be the lowest values yet reported for naturally occurring high-molecular-weight organic material. The origin of the carbon is probably complex; it must have passed through at least one biologic cycle before final deposition.

  17. Organic carbon biostimulates rapid rhizodegradation of perchlorate.

    PubMed

    Yifru, Dawit D; Nzengung, Valentine A

    2008-12-01

    Previous hydroponics and field studies identified phytodegradation and rhizodegradation as the two main mechanisms by which plants metabolize perchlorate. Plant uptake and phytodegradation of perchlorate is a slower and undesired process that poses ecological risks resulting from phytoaccumulation of some fraction of the perchlorate. Meanwhile, rhizodegradation is a more rapid and favored process involving perchlorate-degrading bacteria utilizing dissolved organic carbon (DOC) as a carbon and energy (electron) source to rapidly degrade perchlorate to innocuous chloride. In the present study, rhizodegradation of perchlorate by willow trees (Salix nigra) was biostimulated using electron sources obtained from natural and artificial carbon sources. In bioreactors provided with carbon sources as 500 mg/L DOC, 25 to 40 mg/L of initial perchlorate concentrations were removed to below the ion chromatography method detection limit of 2 microg/L in approximately 9 d. For planted controls provided with no electron donors, the time required for the complete removal of the same doses of perchlorate was up to 70 d. Enhancement of rhizodegradation by organic carbon reduced the phytoaccumulated fraction of perchlorate by an order of magnitude from approximately 430 to 20 mg/kg. The implication of the present study is that the high fraction uptake and phytoaccumulation of perchlorate in agricultural products and the recycling of perchlorate into the ecosystem can be significantly curtailed by supplying electron donors derived from organic carbon sources to the root zone of plants.

  18. Carbon aging mechanisms and effects on retention of organic iodides

    SciTech Connect

    Hyder, M.L.

    1985-01-01

    The activated carbon used to treat the off-gas from the Savannah River Plant prodution reactor building was studied to determine the chemical changes occurring in this carbon during its service life. The carbon is a coconut-shell charcoal impregnated with 1% triethylenediamine (TEDA) and 2% KI. It was known that during its 30-month service life the carbon becomes more acidic and less effective for retaining iodine in organic form. The study showed that the most important change occurring in the carbon is the reaction of KI to give other chemical forms of iodine. The reacted iodine is unavailable for exchange with alkyl iodides. The results suggest that the carbon reacts with KI to form organic compounds, but small amounts of oxidized iodine may also be presnt. There is also evidence that some iodide is lost from the carbon altogether. The TEDA impregnant is lost from the carbon very quickly, and has no importance after a few months. The specific reactions by which the impregnant is lost have not been identified. However, mathematical analysis shows that the carbon performance data are consistent with the reaction of iodide impregnant with impurities in the air flowing through the carbon bed. Additional mathematical analysis, based on electron microscopic observation of the carbon particles, indicates that the external surfaces of the carbon are mainly responsible for their effectiveness in retaining iodine. Consequently, the condition of the impregnants on a relatively small fraction of the carbon surface can have a large effect on its performance. 4 refs., 14 figs., 2 tabs.

  19. Fertilization increases paddy soil organic carbon density*

    PubMed Central

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-01-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC. PMID:22467369

  20. Fertilization increases paddy soil organic carbon density.

    PubMed

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-04-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC.

  1. Monitoring dissolved organic carbon in surface and drinking waters.

    PubMed

    Volk, Christian; Wood, Larry; Johnson, Bruce; Robinson, Jeff; Zhu, Hai Wei; Kaplan, Louis

    2002-02-01

    The presence of natural organic matter (NOM) strongly impacts drinking water treatment, water quality, and water behavior during distribution. Dissolved organic carbon (DOC) concentrations were determined daily over a 22 month period in river water before and after conventional drinking water treatment using an on-line total organic carbon (TOC) analyzer. Quantitative and qualitative variations in organic matter were related to precipitation and runoff, seasons and operating conditions. Following a rainfall event, DOC levels could increase by 3.5 fold over baseflow concentrations, while color, UV absorbance values and turbidity increased by a factor of 8, 12 and 300, respectively. Treated water DOC levels were closely related to the source water quality, with an average organic matter removal of 42% after treatment.

  2. Effect of some organic solvent-water mixtures composition on precipitated calcium carbonate in carbonation process

    NASA Astrophysics Data System (ADS)

    Konopacka-Łyskawa, Donata; Kościelska, Barbara; Karczewski, Jakub

    2015-05-01

    Precipitated calcium carbonate particles were obtained during carbonation of calcium hydroxide slurry with carbon dioxide. Aqueous solutions of isopropyl alcohol, n-butanol and glycerol were used as solvents. Concentration of organic additives in the reactive mixture was from 0% to 20% (vol). Precipitation process were performed in a stirred tank reactor equipped with gas distributor. Multimodal courses of particles size distribution were determined for produced CaCO3 particles. Calcium carbonate as calcite was precipitated in all experiments. The mean Sauter diameter of CaCO3 particles decreased when the concentration of all used organic additives increased. The amount of small particle fraction in the product increased with the increasing concentration of organic solvents. Similar physical properties of used liquid phase resulted in the similar characteristics of obtained particles.

  3. 42 CFR 417.838 - Organization determinations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Organization determinations. 417.838 Section 417... (CONTINUED) MEDICARE PROGRAM HEALTH MAINTENANCE ORGANIZATIONS, COMPETITIVE MEDICAL PLANS, AND HEALTH CARE PREPAYMENT PLANS Health Care Prepayment Plans § 417.838 Organization determinations. (a) Actions that...

  4. 42 CFR 417.838 - Organization determinations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Organization determinations. 417.838 Section 417... (CONTINUED) MEDICARE PROGRAM (CONTINUED) HEALTH MAINTENANCE ORGANIZATIONS, COMPETITIVE MEDICAL PLANS, AND HEALTH CARE PREPAYMENT PLANS Health Care Prepayment Plans § 417.838 Organization determinations....

  5. 42 CFR 417.838 - Organization determinations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Organization determinations. 417.838 Section 417... (CONTINUED) MEDICARE PROGRAM (CONTINUED) HEALTH MAINTENANCE ORGANIZATIONS, COMPETITIVE MEDICAL PLANS, AND HEALTH CARE PREPAYMENT PLANS Health Care Prepayment Plans § 417.838 Organization determinations....

  6. 42 CFR 417.838 - Organization determinations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Organization determinations. 417.838 Section 417... (CONTINUED) MEDICARE PROGRAM HEALTH MAINTENANCE ORGANIZATIONS, COMPETITIVE MEDICAL PLANS, AND HEALTH CARE PREPAYMENT PLANS Health Care Prepayment Plans § 417.838 Organization determinations. (a) Actions that...

  7. 42 CFR 417.838 - Organization determinations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 3 2014-10-01 2014-10-01 false Organization determinations. 417.838 Section 417... (CONTINUED) MEDICARE PROGRAM (CONTINUED) HEALTH MAINTENANCE ORGANIZATIONS, COMPETITIVE MEDICAL PLANS, AND HEALTH CARE PREPAYMENT PLANS Health Care Prepayment Plans § 417.838 Organization determinations....

  8. Remote Sensing to Support Monitoring of Soil Organic Carbon (Invited)

    NASA Astrophysics Data System (ADS)

    McNairn, H.; Pacheco, A.

    2009-12-01

    Soil organic carbon is fundamental to the sustainability of agricultural soils and soils play an important role in the global carbon balance. Estimating soil carbon levels and monitoring changes in these levels over time requires extensive data on climate, soil properties, land cover and land management. Remote sensing technologies are capable of providing some of the data needed in modeling soil organic carbon concentrations and in tracking changes in soil carbon. The characteristics of the vegetation cover influence the amount of organic matter in the soil and cultivation impacts the rate of organic matter decomposition. Consequently land management decisions, which include cropping and tillage practices, play a vital role in determining soil carbon levels. Agriculture and Agri-Food Canada (AAFC) has developed several methods to map land management practices from multispectral and Synthetic Aperture Radar (SAR) satellite sensors. These include identification of crops grown, estimation of crop residue cover left post-harvest and identification of tillage activities. Optical and SAR data are capable of identifying crop types to accuracies consistently above 85%. Knowledge of crop type also provides information needed to establish biomass levels and residue type, both of which influence the amounts and decomposition rates of organic matter. Scientists with AAFC have also extensively validated a method to estimate percent residue cover using spectral unmixing analysis applied to multispectral satellite data. Percentages for corn, soybean and small grain residues can be estimated to accuracies of 83%, 80% and 82%, respectively. Tillage activity influences residue decomposition and AAFC is investigating methods to identify tillage occurrence using advanced polarimetric SAR information. This presentation will provide an overview of methods and results from research ongoing at AAFC. The potential contribution of these remote sensing approaches to support wide area carbon

  9. Diagenetic ferroan carbonates in modern organic-rich deltaic muds

    SciTech Connect

    Elliott, S.S.; Ferrell, R.E.

    1987-05-01

    Carbonate modules and bands are forming in lower delta plain muds of Terrebonne Parish, Louisiana. X-radiographs show diagenetic carbonate accumulating within 50 cm of the sediment surface. The precipitation of the carbonate is a result of bacterial activity and signals the onset of the first stages of pore water evolution and diagenesis. The early diagenetic carbonates are calcic siderites. Some nodules are zoned, as XRD, petrography, and microprobe analyses reveal calcite, dolomite, and pyrite around their margins. delta/sup 13/C ranges from +7.40 to -10.00 per thousand PDB and generally decreases near the nodule margin. Incipient nodules have delta/sup 13/C from about -3 to -5 per thousand, reflecting early fractionation of organic carbon isotopes in methanogenic microenvironments. Volume-percent carbonate decreases from nodule centers to margins. These variations reflect marine water intrusion associated with compaction and subsidence of deltaic sediments. In anaerobic freshwater sediments, methanogenic bacteria produce CO/sub 2/ and CH/sub 4/. Very low dissolved sulfate concentrations limit sulfate reduction. Methanogens preferentially reduce /sup 12/CO/sub 2/, so pore-water carbonate becomes enriched in /sup 13/C relative to its detrital source. Early carbonates are ferroan with higher Mn:Fe ratios than later precipitates. Marine water introduces dissolved sulfate, and sulfate-reducing bacteria generate /sup 13/C-depleted CO/sub 2/ and H/sub 2/S to form calcite and pyrite later. This study provides a modern analog for many occurrences of carbonate concretions in organic-rich mudstones. Determining mineralogy, composition, delta/sup 13/C, and volume-percent carbonate reveals a record of pore-water chemical changes with burial and original depositional environments.

  10. [Organic and elemental carbon in atmospheric particles].

    PubMed

    Lepore, Luca; Brocco, Domenico; Avino, Pasquale

    2003-01-01

    The carbonaceous material, present especially in the respirable atmospheric particulate, is emitted directly from the combustion processes and it is composed of an organic fraction, organic carbon (OC) and of a fraction which is resistant to oxidation at temperatures below approximately 400 degrees C, elemental carbon (EC). In this paper OC and EC concentrations are reported measured in downtown Rome and in a park, Villa Ada, by means of an analyzer which utilizes the thermal properties of the particles. The temporal trends of EC and OC in Rome are in good agreement during the entire period investigated (correlation coefficient between 0.86-0.90). On the other hand the comparison with Villa Ada shows a different contribution from secondary origin pollutants. The carbonaceous fraction in the total particulate mass, measured by means of a TEOM analyzer, varies between 30-40% in downtown and 20-25% in the park, respectively.

  11. [Effects of different fertilizer application on soil active organic carbon].

    PubMed

    Zhang, Rui; Zhang, Gui-Long; Ji, Yan-Yan; Li, Gang; Chang, Hong; Yang, Dian-Lin

    2013-01-01

    The variation characteristics of the content and components of soil active organic carbon under different fertilizer application were investigated in samples of calcareous fluvo-aquic soil from a field experiment growing winter wheat and summer maize in rotation in the North China Plain. The results showed that RF (recommended fertilization), CF (conventional fertilization) and NPK (mineral fertilizer alone) significantly increased the content of soil dissolved organic carbon and easily oxidized organic carbon by 24.92-38.63 mg x kg(-1) and 0.94-0.58 mg x kg(-1) respectively compared to CK (unfertilized control). The soil dissolved organic carbon content under OM (organic manure) increased greater than those under NPK and single fertilization, soil easily oxidized organic carbon content under OM and NPK increased greater than that under single chemical fertilization. OM and NPK showed no significant role in promoting the soil microbial biomass carbon, but combined application of OM and NPK significantly increased the soil microbial biomass carbon content by 36.06% and 20.69%, respectively. Soil easily oxidized organic carbon, dissolved organic carbon and microbial biomass carbon accounted for 8.41% - 14.83%, 0.47% - 0.70% and 0.89% - 1.20% of the total organic carbon (TOC), respectively. According to the results, the fertilizer application significantly increased the proportion of soil dissolved organic carbon and easily oxidized organic carbon, but there was no significant difference in the increasing extent of dissolved organic carbon. The RF and CF increased the proportion of soil easily oxidized organic carbon greater than OM or NPK, and significantly increased the proportion of microbial biomass carbon. OM or RF had no significant effect on the proportion of microbial biomass carbon. Therefore, in the field experiment, appropriate application of organic manure and chemical fertilizers played an important role for the increase of soil active organic carbon

  12. [Effects of different fertilizer application on soil active organic carbon].

    PubMed

    Zhang, Rui; Zhang, Gui-Long; Ji, Yan-Yan; Li, Gang; Chang, Hong; Yang, Dian-Lin

    2013-01-01

    The variation characteristics of the content and components of soil active organic carbon under different fertilizer application were investigated in samples of calcareous fluvo-aquic soil from a field experiment growing winter wheat and summer maize in rotation in the North China Plain. The results showed that RF (recommended fertilization), CF (conventional fertilization) and NPK (mineral fertilizer alone) significantly increased the content of soil dissolved organic carbon and easily oxidized organic carbon by 24.92-38.63 mg x kg(-1) and 0.94-0.58 mg x kg(-1) respectively compared to CK (unfertilized control). The soil dissolved organic carbon content under OM (organic manure) increased greater than those under NPK and single fertilization, soil easily oxidized organic carbon content under OM and NPK increased greater than that under single chemical fertilization. OM and NPK showed no significant role in promoting the soil microbial biomass carbon, but combined application of OM and NPK significantly increased the soil microbial biomass carbon content by 36.06% and 20.69%, respectively. Soil easily oxidized organic carbon, dissolved organic carbon and microbial biomass carbon accounted for 8.41% - 14.83%, 0.47% - 0.70% and 0.89% - 1.20% of the total organic carbon (TOC), respectively. According to the results, the fertilizer application significantly increased the proportion of soil dissolved organic carbon and easily oxidized organic carbon, but there was no significant difference in the increasing extent of dissolved organic carbon. The RF and CF increased the proportion of soil easily oxidized organic carbon greater than OM or NPK, and significantly increased the proportion of microbial biomass carbon. OM or RF had no significant effect on the proportion of microbial biomass carbon. Therefore, in the field experiment, appropriate application of organic manure and chemical fertilizers played an important role for the increase of soil active organic carbon

  13. Black Carbon Contribution to Organic Carbon Stocks in Urban Soil.

    PubMed

    Edmondson, Jill L; Stott, Iain; Potter, Jonathan; Lopez-Capel, Elisa; Manning, David A C; Gaston, Kevin J; Leake, Jonathan R

    2015-07-21

    Soil holds 75% of the total organic carbon (TOC) stock in terrestrial ecosystems. This comprises ecosystem-derived organic carbon (OC) and black carbon (BC), a recalcitrant product of the incomplete combustion of fossil fuels and biomass. Urban topsoils are often enriched in BC from historical emissions of soot and have high TOC concentrations, but the contribution of BC to TOC throughout the urban soil profile, at a regional scale is unknown. We sampled 55 urban soil profiles across the North East of England, a region with a history of coal burning and heavy industry. Through combined elemental and thermogravimetic analyses, we found very large total soil OC stocks (31-65 kg m(-2) to 1 m), exceeding typical values reported for UK woodland soils. BC contributed 28-39% of the TOC stocks, up to 23 kg C m(-2) to 1 m, and was affected by soil texture. The proportional contribution of the BC-rich fraction to TOC increased with soil depth, and was enriched in topsoil under trees when compared to grassland. Our findings establish the importance of urban ecosystems in storing large amounts of OC in soils and that these soils also capture a large proportion of BC particulates emitted within urban areas.

  14. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    SciTech Connect

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-06-25

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated

  15. Soil Organic Carbon Loss: An Overlooked Factor in the Carbon Sequestration Potential of Enhanced Mineral Weathering

    NASA Astrophysics Data System (ADS)

    Dietzen, Christiana; Harrison, Robert

    2016-04-01

    Weathering of silicate minerals regulates the global carbon cycle on geologic timescales. Several authors have proposed that applying finely ground silicate minerals to soils, where organic acids would enhance the rate of weathering, could increase carbon uptake and mitigate anthropogenic CO2 emissions. Silicate minerals such as olivine could replace lime, which is commonly used to remediate soil acidification, thereby sequestering CO2 while achieving the same increase in soil pH. However, the effect of adding this material on soil organic matter, the largest terrestrial pool of carbon, has yet to be considered. Microbial biomass and respiration have been observed to increase with decreasing acidity, but it is unclear how long the effect lasts. If the addition of silicate minerals promotes the loss of soil organic carbon through decomposition, it could significantly reduce the efficiency of this process or even create a net carbon source. However, it is possible that this initial flush of microbial activity may be compensated for by additional organic matter inputs to soil pools due to increases in plant productivity under less acidic conditions. This study aimed to examine the effects of olivine amendments on soil CO2 flux. A liming treatment representative of typical agricultural practices was also included for comparison. Samples from two highly acidic soils were split into groups amended with olivine or lime and a control group. These samples were incubated at 22°C and constant soil moisture in jars with airtight septa lids. Gas samples were extracted periodically over the course of 2 months and change in headspace CO2 concentration was determined. The effects of enhanced mineral weathering on soil organic matter have yet to be addressed by those promoting this method of carbon sequestration. This project provides the first data on the potential effects of enhanced mineral weathering in the soil environment on soil organic carbon pools.

  16. Linking soil organic carbon pools with measured fractions

    NASA Astrophysics Data System (ADS)

    Herbst, M.; Welp, G.; Amelung, W.; Vereecken, H.

    2011-12-01

    Soil organic carbon (SOC) pools play an important role for the understanding and the predictive modelling of heterotrophic respiration. One of the major issues concerning model carbon pools is their purely conceptual definition. They are just defined by a turnover rate. Despite some attempts to link the conceptual model pools to measurable SOC fractions, this challenge basically remains unsolved. In this study we introduce an empirical approach to link the model pools of RothC with measured particulate organic matter fractions and an inert carbon fraction. For 63 topsoil samples from arable fields a mid-infrared spectroscopic approach was applied to determine the carbon contents in three particle-size fractions (POM1: 2000-250 μm, POM2: 250-53 μm and POM3: 53-20 μm) and a black carbon fraction. To provide the model pools for the 63 sampling sites RothC was run into equilibrium based on site-specific soil properties and meteorological data ranging from 1961 to present. It was possible to prove a link between soil organic matter fractions and pools of RothC. The coefficient of correlation between fPOM (POM1+POM2) and the resistant plant material (RPM) pool was 0.73. However, establishing multiple linear regressions based on all measured fractions instead of using just the fraction between 2000 and 53 μm significantly improved the prediction of the RPM pool. The resultant adjusted coefficient of determination using all fractions to predict RPM was 0.94. A stepwise regression algorithm based on the Akaike information criterion retained all measured fractions in the regression, pointing to the relevance of all fractions. The same was observed when linking the humic fraction of RothC (HUM) to the measured humic fractions, which were calculated as the difference between TOC and the sum of particulate and black carbon. The adjusted coefficient of determination was 0.84. Using again all measured fractions as explanatory variables for HUM increased the coefficient of

  17. Site-Specific Carbon Isotopes in Organics

    NASA Astrophysics Data System (ADS)

    Piasecki, A.; Eiler, J. M.

    2012-12-01

    Natural organic molecules exhibit a wide range of internal site-specific isotope variation (i.e., molecules with same isotopic substitution type but different site). Such variations are generally unconstrained by bulk isotopic measurements. If known, site-specific variations might constrain temperatures of equilibrium, mechanisms of formation or consumption reactions, and possibly other details. For example, lipids can exhibit carbon isotope differences of up to 30‰ between adjacent carbon sites as a result of fractionations arising during decarboxylation of pyruvate and other steps in lipid biosynthesis(1). We present a method for site-specific carbon isotope analysis of propane, based on high-resolution, multi-collector gas source mass spectrometry, using a novel prototype instrument - the Thermo MAT 253 Ultra. This machine has an inlet system and electron bombardment ion source resembling those in conventional stable isotope gas source mass spectrometers, and the energy filter, magnet, and detector array resembling those in multi-collector ICPMS and TIMS. The detector array has 7 detector positions, 6 of which are movable, and each of which can collect ions with either a faraday cup (read through amplifiers ranging from 107-1012 ohms) or an SEM. High mass resolving power (up to 27,000, MRP = M/dM definition) is achieved through a narrow entrance slit, adjustable from 250 to 5 μm. Such resolution can cleanly separate isobaric interferences between isotopologues of organic molecules having the same cardinal mass (e.g., 13CH3 and 12CH2D). We use this technology to analyze the isotopologues and fragments of propane, and use such data to solve for the site-specific carbon isotope fractionation. By measuring isotopologues of both the one-carbon (13CH3) and the two-carbon (13C12CH4) fragment ion, we can solve for both bulk δ13C and the difference in δ13C between the terminal and central carbon position. We tested this method by analyzing mixtures between natural

  18. Green Carbon, Black Carbon, White Carbon: Simultaneous Differentiation Between Soil Organic Matter, Pyrogenic Carbon and Carbonates Using Thermal Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Plante, A. F.; Peltre, C.; Chan, J.; Baumgartl, T.; Erskine, P.; Apesteguía, M.; Virto, I.

    2014-12-01

    Quantification of soil carbon stocks and fluxes continues to be an important endeavor in assessments of soil quality, and more broadly in assessments of ecosystem functioning. The quantification of soil carbon in alkaline, carbonate-containing soils, such as those found in Mediterranean areas, is complicated by the need to differentiate between organic carbon (OC) and inorganic carbon (IC), which continues to present methodological challenges. Acidification is frequently used to eliminate carbonates prior to soil OC quantification, but when performed in the liquid phase, can promote the dissolution and loss of a portion of the OC. Acid fumigation (AF) is increasingly preferred for carbonate removal, but its effectiveness is difficult to assess using conventional elemental and isotopic analyses. The two-step approach is time, labor and cost intensive, and generates additional uncertainties from the calculations. Quantification of the actively cycling pool of soil organic C (SOC) in many soils is further complicated by the potential presence of more recalcitrant/stable forms such as pyrogenic or black carbon (BC) derived from incomplete combustion of vegetation, or even geogenic carbon such as coal. The wide spectrum of materials currently considered BC makes its quantification challenging. The chemical method using benzene polycarboxylic acids (BPCAs) as markers of condensed aromatic structures indicative of pyrogenic C is highly time, labor and cost intensive, and can generate artifacts. Several research groups are now developing method for the simultaneous identification and quantification of these various forms of soil carbon using thermal analysis techniques such as thermogravimetry, differential scanning calorimetry and evolved gas analysis. The objective of this presentation is to provide a general overview and specific examples of the current progress and technical challenges in this evolving methodology.

  19. Urban Tree Effects on Soil Organic Carbon

    PubMed Central

    Edmondson, Jill L.; O'Sullivan, Odhran S.; Inger, Richard; Potter, Jonathan; McHugh, Nicola; Gaston, Kevin J.; Leake, Jonathan R.

    2014-01-01

    Urban trees sequester carbon into biomass and provide many ecosystem service benefits aboveground leading to worldwide tree planting schemes. Since soils hold ∼75% of ecosystem organic carbon, understanding the effect of urban trees on soil organic carbon (SOC) and soil properties that underpin belowground ecosystem services is vital. We use an observational study to investigate effects of three important tree genera and mixed-species woodlands on soil properties (to 1 m depth) compared to adjacent urban grasslands. Aboveground biomass and belowground ecosystem service provision by urban trees are found not to be directly coupled. Indeed, SOC enhancement relative to urban grasslands is genus-specific being highest under Fraxinus excelsior and Acer spp., but similar to grasslands under Quercus robur and mixed woodland. Tree cover type does not influence soil bulk density or C∶N ratio, properties which indicate the ability of soils to provide regulating ecosystem services such as nutrient cycling and flood mitigation. The trends observed in this study suggest that genus selection is important to maximise long-term SOC storage under urban trees, but emerging threats from genus-specific pathogens must also be considered. PMID:25003872

  20. Urban tree effects on soil organic carbon.

    PubMed

    Edmondson, Jill L; O'Sullivan, Odhran S; Inger, Richard; Potter, Jonathan; McHugh, Nicola; Gaston, Kevin J; Leake, Jonathan R

    2014-01-01

    Urban trees sequester carbon into biomass and provide many ecosystem service benefits aboveground leading to worldwide tree planting schemes. Since soils hold ∼75% of ecosystem organic carbon, understanding the effect of urban trees on soil organic carbon (SOC) and soil properties that underpin belowground ecosystem services is vital. We use an observational study to investigate effects of three important tree genera and mixed-species woodlands on soil properties (to 1 m depth) compared to adjacent urban grasslands. Aboveground biomass and belowground ecosystem service provision by urban trees are found not to be directly coupled. Indeed, SOC enhancement relative to urban grasslands is genus-specific being highest under Fraxinus excelsior and Acer spp., but similar to grasslands under Quercus robur and mixed woodland. Tree cover type does not influence soil bulk density or C∶N ratio, properties which indicate the ability of soils to provide regulating ecosystem services such as nutrient cycling and flood mitigation. The trends observed in this study suggest that genus selection is important to maximise long-term SOC storage under urban trees, but emerging threats from genus-specific pathogens must also be considered.

  1. Urban tree effects on soil organic carbon.

    PubMed

    Edmondson, Jill L; O'Sullivan, Odhran S; Inger, Richard; Potter, Jonathan; McHugh, Nicola; Gaston, Kevin J; Leake, Jonathan R

    2014-01-01

    Urban trees sequester carbon into biomass and provide many ecosystem service benefits aboveground leading to worldwide tree planting schemes. Since soils hold ∼75% of ecosystem organic carbon, understanding the effect of urban trees on soil organic carbon (SOC) and soil properties that underpin belowground ecosystem services is vital. We use an observational study to investigate effects of three important tree genera and mixed-species woodlands on soil properties (to 1 m depth) compared to adjacent urban grasslands. Aboveground biomass and belowground ecosystem service provision by urban trees are found not to be directly coupled. Indeed, SOC enhancement relative to urban grasslands is genus-specific being highest under Fraxinus excelsior and Acer spp., but similar to grasslands under Quercus robur and mixed woodland. Tree cover type does not influence soil bulk density or C∶N ratio, properties which indicate the ability of soils to provide regulating ecosystem services such as nutrient cycling and flood mitigation. The trends observed in this study suggest that genus selection is important to maximise long-term SOC storage under urban trees, but emerging threats from genus-specific pathogens must also be considered. PMID:25003872

  2. Terrestrial organic carbon contributions to sediments on the Washington margin

    SciTech Connect

    Prahl, F.G.; Sparrow, M.A.; Eversmeyer, B. ); Ertel, J.R. ); Goni, M.A. )

    1994-07-01

    Elemental and stable carbon isotopic compositions and biomarker concentrations were determined in sediments from the Columbia River basin and the Washington margin in order to evaluate geochemical approaches for quantifying terrestrial organic matter in marine sediments. The biomarkers include: an homologous series of long-chain n-alkanes derived from the surface waxes of higher plants; phenolic and hydroxyalkanoic compounds produced by CuO oxidation of two major vascular plant biopolymers, lignin and cutin. All marine sediments, including samples collected from the most remote sites in Cascadia Basin, showed organic geochemical evidence for the presence of terrestrial organic carbon. Using endmember values for the various biomarkers determined empirically by two independent means, the authors estimate that the terrestrial contribution to the Washington margin is [approximately] 60% for shelf sediments, [approximately] 30% for slope sediments, and decreases further to [le] 15% in basin sediments. Results from the same geochemical measurements made with depth in gravity core 6705-7 from Cascadia Seachannel suggest that this approach to assess terrestrial organic carbon contributions to contemporary deposits on the Washington margin can be applied to the study of sediments depositing in this region since the last glacial period.

  3. Hydrodynamic chronoamperometric method for the determination of H₂O₂ using MnO₂-based carbon paste electrodes in groundwater treated by Fenton and Fenton-like reagents for natural organic matter removal.

    PubMed

    Zbiljić, Jasmina; Vajdle, Olga; Guzsvány, Valéria; Molnar, Jelena; Agbaba, Jasmina; Dalmacija, Božo; Kalcher, Kurt

    2015-01-01

    A simple hydrodynamic chronoamperometric method based on the application of an unmodified carbon paste electrode (CPE) and bulk-modified with different contents of MnO2 was investigated for the determination of H2O2. The optimized method involving the CPE with 5% of MnO2 was applied for the determination of the H2O2 consumption in samples of groundwater from the Central Banat region (Province of Vojvodina, Serbia) treated by the Fenton (Fe(2+) and H2O2) and Fenton-like (Fe(3+) and H2O2) reagents to remove natural organic matter at different initial concentrations of iron species, and of their ratios to the initial concentration of H2O2. Under optimized conditions, with a working potential of 0.40V vs. the saturated calomel electrode and a phosphate buffer solution (pH 7.5) as supporting electrolyte, the method enabled the quantitation of H2O2 in the concentration interval from 1.4 to 65 μg mL(-1) with a relative standard deviation of less than 10%. The results obtained for the H2O2 consumption are in good agreement with those obtained by parallel measurements related to the efficiency of organic matter removal.

  4. Primary and Secondary Organic Carbon Downwind of Mexico City

    SciTech Connect

    Yu, Xiao-Ying; Cary, R.; Laulainen, Nels S.

    2009-09-18

    In order to study particulate matter transport and transformation in the Megacity environment, fine particulate carbons were measured simultaneously at two supersites, suburban T1 and rural T2, downwind of Mexico City during the MILAGRO field campaign in March 2006. Organic carbon (OC), element carbon (EC), and total carbon (TC=OC+EC) were determined near real-time by the Sunset semi-continuous field analyzer at both sites. The semi-empirical EC tracer method was used to derive primary organic carbon (POC) and secondary organic carbon (SOC). Diurnal variations of primary and secondary carbons were observed at T1 and T2, which resulted from boundary layer inversion and impacted by local traffic patterns. The majority of organic carbons at T1 and T2 were secondary. The SOC% (SOC%=SOC/TC*100%) at T1 ranged from 1.2 - 100% with an average of 80.7 ± 14.4%. The SOC% at T2 ranged from 12.8 - 100% with an average of 80.1 ± 14.0%. The average EC to PM2.5 percentage (ECPM%=EC/PM2.5*100%)) and OCPM% were 6.0 % and 20.0% over the whole sampling time. The POC to PM percentage (POCPM%) and SOCPM% were 3.7% and 16.3%, respectively. The maximum ECPM% was 21.2%, and the maximum OCPM% was 57.2%. The maximum POCPM% was 12.9%, and the maximum SOC% was 49.7%. The SOC and POC during T1 to T2 transfer favourable meteorological conditions showed similar characteristics, which indicated that transport between the two supersites took place. Strong correlations between EC and carbon monoxide (CO) and odd nitrogens (NO and NOx) were observed at T1. This indicated that EC had proximate sources such as local traffic emissions. The EC/CO ratio derived by linear regression analysis when parameters are in μgC/m3 and μg/m3, respectively, was 0.0045. A strong correlation was also seen between OC and SOC vs. the sum of oxidants such as O3 and NO2 or O3, NO2 and SO2, suggesting the secondary nature of carbons observed at T1.

  5. Organic carbon and carbonate fluxes: Links to climate change

    NASA Astrophysics Data System (ADS)

    Loubere, Paul; Siedlecki, Samantha A.; Bradtmiller, Louisa I.

    2007-03-01

    This volume is a compendium of articles derived from a Chapman conference entitled "The Role of Marine Organic Carbon and Carbonate Fluxes in Driving Global Climate Change, Past and Future", which was held at Woods Hole Oceanographic Institution in July, 2005. The conference divided the topic into units as follows: concepts and models, production of particulate matter, fluxes through the water column, and sediment record of past fluxes. The volume follows this 'vertically stratified' approach, and we use the same units to organize the articles. The Chapman conference on which this volume is based was made possible by support from The American Geophysical Union (Chapman Conference Program), the National Science Foundation, The Ocean and Climate Change Institute at Woods Hole Oceanographic Institution, and the Analytical Center for Climate and Environmental Change at Northern Illinois University. We extend special thanks to Terry Joyce at the Ocean and Climate Change Institute for his administrative help. Also, we particularly appreciated the hard work of Andrew Daly at WHOI and Melissa Ficek at AGU who managed the conference details, making it a pleasant event. The articles in this volume benefited from evaluations given by a dedicated, and most helpful, group of reviewers. It was gratifying to reach out to the community and receive such a valuable contribution of thought and expertise. We gratefully acknowledge our reviewers. Finally, we acknowledge the help and advice of John Milliman, editor for Deep-Sea Research II, who helped us attain the high standards of publication with the journal.

  6. Determination of Water Soluble Organic Carbon Collected ~1 km above the Earth's Surface during a Mid-Atlantic Air Quality Episode and Comparison to Aerosol Optical Properties

    NASA Astrophysics Data System (ADS)

    Brent, L. C.; He, H.; Arkinson, H. L.; Stehr, J. W.; Ring, A.; Marufu, L.; Reiner, J.; Sander, L. C.; Dickerson, R. R.

    2014-12-01

    Routine, light aircraft air-monitoring conducted in MD provides insight into atmospheric photochemical processing as a function of altitude in the boundary layer and lower free troposphere. We present correlations between the optical properties and chemical composition of aerosols at ~1 km altitude over Maryland. Data were collected during the peak smog day and a dissipation day during an air quality episode studied in DISCOVER-AQ, July 2011. Post flight filter sample analysis shows a positive trend between measurable carboxylate concentrations and particle size with a recirculating, aged, urban air mass influenced with southeasterly marine winds (peak day). A westerly influx of air from the Ohio River Valley on the dissipation day was depleted in carboxylates compared with samples collected over the same location two days prior. These samples contained quantifiable concentrations of cis-pinonic acid, a reaction product of pinene after ozonation and photochemical oxidation. New techniques were developed to improve airborne data collection and analysis of water soluble organic acids (WSOA), a frequently dominant fraction of particulate matter (PM). An ion chromatographic mass spectrometric method was developed using NIST Standard Referencing Material 1649b, Urban Dust, as a surrogate material to achieve separation and resolution of at least 34 organic acids. Analysis of aircraft filter samples resulted in detection of 16 organic acids of which 12 were quantified. Eight inorganic species were also quantified. Aged, re-circulated metropolitan air showed a greater number of dicarboxylic acids than new transport air from the west and may provide a useful test of SOA formation theory.

  7. Temporal evolution of hyporheic dissolved organic carbon

    NASA Astrophysics Data System (ADS)

    Gabrielsen, P. J.

    2010-12-01

    Dissolved organic carbon (DOC) is a complex suite of organic compounds present in natural ecosystems, and is particularly studied in river systems. The hyporheic zone (HZ), a region of surface water-shallow groundwater exchange, has been identified as a hotspot of DOC processing and is generally regarded as a net sink of organic matter. More recent studies into riverine DOC have shifted to examining DOC quality rather than bulk quantity. DOC quality variability has been linked to hydrologic and climatic variability, both focuses of current climate change research. This presentation examines the effect of organic and inorganic HZ DOC processes, i.e. microbial uptake and sorption, respectively, on DOC quality as measured through molecular weight distributions (MWDs). Sediment and water samples from East Fork Jemez River in northern New Mexico are used to experimentally simulate DOC processes and observe the subsequent effect on MWD evolution. Parallel factor analysis (PARAFAC) of excitation-emission matrices (EEMs) is also used to examine fluorescent properties throughout DOC process experimentation, providing a second characterizing metric. Results from this study will be applied to a field sampling campaign in the summer of 2011 along the East Fork Jemez River to study temporal and spatial variability in organic and inorganic DOC processes.

  8. Assessment of methods for organic and inorganic carbon quantification in carbonate-containing Mediterranean soils

    NASA Astrophysics Data System (ADS)

    Apesteguia, Marcos; Virto, Iñigo; Plante, Alain

    2014-05-01

    Quantification of soil organic matter (SOM) stocks and fluxes continues to be an important endeavor in assessments of soil quality, and more broadly in assessments of ecosystem functioning. The quantification of SOM in alkaline, carbonate-containing soils, such as those found in Mediterranean areas, is complicated by the need to differentiate between organic carbon (OC) and inorganic carbon (IC), which continues to present methodological challenges. Acidification is frequently used to eliminate carbonates prior to soil OC quantification, but when performed in the liquid phase, can promote the dissolution and loss of a portion of the OC. Acid fumigation (AF) is increasingly preferred for carbonate removal, but its effectiveness is difficult to assess using conventional elemental and isotopic analyses. In addition, the potential effects of AF on SOM are not well characterized. The objective of the current study was to apply a multi-method approach to determine the efficacy of carbonate removal by AF and its effects on the residual SOM. We selected a set of 24 surface agricultural soils representing a large range of textures, SOM contents and presumed carbonate contents. For each soil, OC was determined using wet combustion (Walkley-Black) and IC was determined using the calcimeter method. Samples were then subjected to elemental (total C) and isotopic (δ13C) analyses by dry combustion using a Costech autoanalyzer coupled to a Thermo Finnigan Delta Plus isotope ratio mass spectrometer (IRMS) before and after AF. IC was equated to total C determined after fumigation, and OC was estimated as the different in total C before and after AF. Samples were also subjected to ramped oxidation using a Netzsch STA109 PC Luxx thermal analyzer coupled to a LICOR 820A infrared gas analyzer (IRGA). Quantification of OC was performed using evolved gas analysis of CO2 (CO2-EGA) in the exothermic region 200-500° C associated with organic matter combustion. IC was quantified by CO2-EGA

  9. Mass/age distribution of organic carbon for the Phanerozoic

    SciTech Connect

    Hay, W.W.; Wold, C.N. Geomar, Kiel )

    1991-03-01

    The mass/age distribution of organic carbon in Phanerozoic sedimentary rocks is dominated by disseminated organic carbon in pelitic rocks. Even during the major times of coal formation, the mass of organic carbon in coal is small compared with that included in fine-grained marine sediments. The mass/age distribution shows maxima in the Middle and Late Ordovician, Late Devonian, Late Jurassic and Early Cretaceous, and Neogene. Minima in accumulation of organic carbon mark the Early Ordovician, Early Devonian, Permian and Triassic, Late Cretaceous and Paleogene. Reconstruction of the ancient fluxes of organic carbon into the sediments shows that the distribution is almost symmetrical about the Paleozoic-Mesozoic boundary. Major hydrocarbon source rock accumulations coincide with peaks of organic carbon deposition, but modes of formation of the source rocks at each peak may have been different. The peaks of organic carbon accumulation correspond to times of flooding of the continents. The Ordovician, Late Jurassic-Early Cretaceous peaks also correspond to an increase in the ratio of carbon being deposited as organic carbon relative to that deposited as carbonate; they also correspond to times of deposition of large amounts of siliceous sediment. The Lake Devonian peak also formed at a time of flooding of the continents, but shows a low ratio of organic carbon to carbonate, and few siliceous rocks accumulated contemporaneously. The Neogene peak may represent a fundamentally different accumulation mechanism, resulting mostly from coastal upwelling during a time of emergence of the continents.

  10. Linking soil organic carbon pools with measured fractions

    NASA Astrophysics Data System (ADS)

    Herbst, M.; Welp, G.; Amelung, W.; Weihermueller, L.; Vereecken, H.

    2012-04-01

    Soil organic carbon (SOC) pools play an important role for the understanding and the predictive modelling of heterotrophic respiration. One of the major issues concerning model carbon pools is their purely conceptual definition. They are just defined by a turnover rate. Despite some attempts to link the conceptual model pools to measurable SOC fractions, this challenge basically remains unsolved. In this study we introduce an empirical approach to link the model pools of RothC with measured particulate organic matter fractions and an inert carbon fraction. For 63 topsoil samples from arable fields a mid-infrared spectroscopic approach was applied to determine the carbon contents in three particle-size fractions (POM1: 2000-250 μm, POM2: 250-53 μm and POM3: 53-20 μm) and a black carbon fraction. To provide the model pools for the 63 sampling sites RothC was run into equilibrium based on site-specific soil properties and meteorological data ranging from 1961 to present. It was possible to prove a link between soil organic matter fractions and pools of RothC. The coefficient of correlation between fPOM (POM1+POM2) and the resistant plant material (RPM) pool was 0.73. However, establishing multiple linear regressions based on all measured fractions instead of using just the fraction between 2000 and 53 μm significantly improved the prediction of the RPM pool. The resultant adjusted coefficient of determination using all fractions to predict RPM was 0.94. A stepwise regression algorithm based on the Akaike information criterion retained all measured fractions in the regression, pointing to the relevance of all fractions. The same was observed when linking the humic fraction of RothC (HUM) to the measured humic fractions, which were calculated as the difference between TOC and the sum of particulate and black carbon. The adjusted R2 was 0.84. Using again all measured fractions as explanatory variables for HUM increased the R2 to 0.99. From these observations we

  11. Algae metabolism and organic carbon in sediments determining arsenic mobilisation in ground- and surface water. A field study in Doñana National Park, Spain.

    PubMed

    Kohfahl, Claus; Navarro, Daniel Sánchez-Rodas; Mendoza, Jorge Armando; Vadillo, Iñaki; Giménez-Forcada, Elena

    2016-02-15

    A study has been performed to explore the origin, spatiotemporal behaviour and mobilisation mechanism of the elevated arsenic (As) concentrations found in ground water and drinking ponds of the Doñana National Park, Southern Spain. At a larger scale, 13 piezometers and surface water samples of about 50 artificial drinking ponds and freshwater lagoons throughout the National Park were collected and analysed for major ions, metals and trace elements. At a smaller scale, 5 locations were equipped with piezometers and groundwater was sampled up to 4 times for ambient parameters, major ions, metals, trace elements and iron (Fe) speciation. As was analysed for inorganic and organic speciation. Undisturbed sediment samples were analysed for physical parameters, mineralogy, geochemistry as well as As species. Sediment analyses yielded total As between 0.1 and 18 mg/kg and are not correlated with As concentration in water. Results of the surface- and groundwater sampling revealed elevated concentration of As up to 302 μg/L within a restricted area of the National Park. Results of groundwater sampling reveals strong correlation of As with Fe(2+) pointing to As mobilisation due to reductive dissolution of hydroferric oxides (HFO) in areas of locally elevated amounts of organic matter within the sediments. High As concentrations in surface water ponds are correlated with elevated alkalinity and pH attributed to algae metabolism, leading to As desorption from HFO. The algae metabolism is responsible for the presence of methylated arsenic species in surface water, in contrast to ground water in which only inorganic As species was found. Temporal variations in surface water and groundwater are also related to changes in pH and alkalinity as a result of enhanced algae metabolism in surface water or related to changes in the redox level in the case of groundwater. PMID:26706760

  12. Algae metabolism and organic carbon in sediments determining arsenic mobilisation in ground- and surface water. A field study in Doñana National Park, Spain.

    PubMed

    Kohfahl, Claus; Navarro, Daniel Sánchez-Rodas; Mendoza, Jorge Armando; Vadillo, Iñaki; Giménez-Forcada, Elena

    2016-02-15

    A study has been performed to explore the origin, spatiotemporal behaviour and mobilisation mechanism of the elevated arsenic (As) concentrations found in ground water and drinking ponds of the Doñana National Park, Southern Spain. At a larger scale, 13 piezometers and surface water samples of about 50 artificial drinking ponds and freshwater lagoons throughout the National Park were collected and analysed for major ions, metals and trace elements. At a smaller scale, 5 locations were equipped with piezometers and groundwater was sampled up to 4 times for ambient parameters, major ions, metals, trace elements and iron (Fe) speciation. As was analysed for inorganic and organic speciation. Undisturbed sediment samples were analysed for physical parameters, mineralogy, geochemistry as well as As species. Sediment analyses yielded total As between 0.1 and 18 mg/kg and are not correlated with As concentration in water. Results of the surface- and groundwater sampling revealed elevated concentration of As up to 302 μg/L within a restricted area of the National Park. Results of groundwater sampling reveals strong correlation of As with Fe(2+) pointing to As mobilisation due to reductive dissolution of hydroferric oxides (HFO) in areas of locally elevated amounts of organic matter within the sediments. High As concentrations in surface water ponds are correlated with elevated alkalinity and pH attributed to algae metabolism, leading to As desorption from HFO. The algae metabolism is responsible for the presence of methylated arsenic species in surface water, in contrast to ground water in which only inorganic As species was found. Temporal variations in surface water and groundwater are also related to changes in pH and alkalinity as a result of enhanced algae metabolism in surface water or related to changes in the redox level in the case of groundwater.

  13. High rates of organic carbon burial in fjord sediments globally

    NASA Astrophysics Data System (ADS)

    Smith, Richard W.; Bianchi, Thomas S.; Allison, Mead; Savage, Candida; Galy, Valier

    2015-06-01

    The deposition and long-term burial of organic carbon in marine sediments has played a key role in controlling atmospheric O2 and CO2 concentrations over the past 500 million years. Marine carbon burial represents the dominant natural mechanism of long-term organic carbon sequestration. Fjords--deep, glacially carved estuaries at high latitudes--have been hypothesized to be hotspots of organic carbon burial, because they receive high rates of organic material fluxes from the watershed. Here we compile organic carbon concentrations from 573 fjord surface sediment samples and 124 sediment cores from nearly all fjord systems globally. We use sediment organic carbon content and sediment delivery rates to calculate rates of organic carbon burial in fjord systems across the globe. We estimate that about 18 Mt of organic carbon are buried in fjord sediments each year, equivalent to 11% of annual marine carbon burial globally. Per unit area, fjord organic carbon burial rates are one hundred times as large as the global ocean average, and fjord sediments contain twice as much organic carbon as biogenous sediments underlying the upwelling regions of the ocean. We conclude that fjords may play an important role in climate regulation on glacial-interglacial timescales.

  14. Soil Organic Carbon Change Monitored Over Large Areas

    SciTech Connect

    Brown, David J.; Hunt, E. Raymond; Izaurralde, Roberto C.; Paustian, Keith H.; Rice, Charles W.; Schumaker, Bonny L.; West, Tristram O.

    2010-11-23

    Soils account for the largest fraction of terrestrial carbon (C) and thus are critically important in determining global cycle dynamics. In North America, conversion of native prairies to agriculture over the past 150 years released 30- 50% of soil organic carbon (SOC) stores [Mann, 1986]. Improved agricultural practices could recover much of this SOC, storing it in biomass and soil and thereby sequestering billions of tons of atmospheric carbon dioxide (CO2). These practices involve increasing C inputs to soil (e.g., through crop rotation, higher biomass crops, and perennial crops) and decreasing losses (e.g., through reduced tillage intensity) [Janzen et al., 1998; Lal et al., 2003; Smith et al., 2007].

  15. Tracing the source of Beijing soil organic carbon: a carbon isotope approach.

    PubMed

    Guo, Qingjun; Strauss, Harald; Chen, Tong-Bin; Zhu, Guangxu; Yang, Jun; Yang, Junxing; Lei, Mei; Zhou, Xiaoyong; Peters, Marc; Xie, Yunfeng; Zhang, Hanzhi; Wei, Rongfei; Wang, Chunyu

    2013-05-01

    Bulk soil organic carbon concentration and isotopic composition characterize its sources and fate, identify the anthropogenic input of organic carbon into the soil, and trace soil carbon turnover. Coal and/or coal combustion products represent the prime anthropogenic input of organic carbon into three soil profiles located in the vicinity of a steel company. Three profiles positioned away from any direct industrial contribution display vertical pattern in soil organic carbon concentration and isotopic composition that resemble more commonly observed downward gradients in soil carbon chemistry and indicate microbial soil carbon turnover. Two additional profiles located outside of the immediate industrial area display vertical carbon isotope profiles between typical of those from industrial and non-industrial areas. Eight soil profiles and their vertical distribution of bulk organic carbon isotopic composition and concentration collected in the Beijing area reveal and distinguish both anthropogenic and natural contributions of carbon to these soils.

  16. A method for smoke marker measurements and its potential application for determining the contribution of biomass burning from wildfires and prescribed fires to ambient PM2.5 organic carbon

    NASA Astrophysics Data System (ADS)

    Sullivan, A. P.; Holden, A. S.; Patterson, L. A.; McMeeking, G. R.; Kreidenweis, S. M.; Malm, W. C.; Hao, W. M.; Wold, C. E.; Collett, J. L.

    2008-11-01

    Biomass burning is an important source of particulate organic carbon (OC) in the atmosphere. Quantifying this contribution in time and space requires a means of routinely apportioning contributions of smoke from biomass burning to OC. Smoke marker (for example, levoglucosan) measurements provide the most common approach for making this determination. A lack of source profiles for wildfires and prescribed fires and the expense and complexity of traditional smoke marker measurement methods have thus far limited routine estimates of these contributions to ambient aerosol concentrations and regional haze. We report here on the collection of source profiles for combustion of numerous wildland fuels and on the development of an inexpensive and robust technique for routine smoke marker measurements. Hi-Volume filter source samples were collected during two studies at the Fire Science Laboratory in Missoula, MT in 2006 and 2007. Levoglucosan (and other carbohydrates) were measured in these samples using high-performance anion-exchange chromatography with pulsed amperometric detection. Results of this analysis along with water-soluble potassium, OC, and elemental carbon are presented. The results show that emissions of levoglucosan are fairly correlated with OC with an average ratio of 0.031 μg C/μg C. Further, there was a definite pattern that emerged based on fuel component burned with the typical levoglucosan/OC ratio of branches > straw > needles > leaves. Additionally, this carbohydrate measurement method appears to provide fingerprint information about the type of fuel burned that could help constrain profiles chosen for aerosol source apportionment and lead to a better determination of source contributions from biomass burning.

  17. Fate of Organic Micropollutants during Hydrothermal Carbonization

    NASA Astrophysics Data System (ADS)

    Weiner, B.; Baskyr, I.; Pörschmann, J.; Kopinke, F.-D.

    2012-04-01

    The hydrothermal carbonization (HTC) is an exothermic process, in which biomass in an aqueous suspension is transformed into a bituminous coal-like material (hydrochar) at temperatures between 180-250°C and under moderate pressure. With these process conditions, little gas is generated (1-5%), and a fraction of the organic carbon is dissolved in the aqueous phase (10-30%) but the largest part is obtained as solid char. The respective yields and the molecular composition depend on the choice of educts and the process conditions, such as temperature, pH-value, and reaction time. Various biomass-educts have recently been studied, such as waste materials from agriculture, brewer's spent grains, sewage sludge, as well as wood and paper materials. Besides their use for energy generation, the hydrochars have also been investigated as soil amendments. Prior to addition of the chars to soil, these should be free of toxic components that could be released into the environment as harmful organic pollutants. Herein, the potential for the degradation of trace organic pollutants, such as pesticides and pharmaceuticals, under typical HTC conditions will be presented. The degradation of selected organic pollutants with different polarity and hydrophobicity was investigated. Scope and limitations of the degradation potential of the HTC are discussed on examples of micro pollutants such as hormones, residues of pharmaceuticals and personal care products including their metabolites, and pesticides. We will show that the target analytes are partially and in some cases completely degraded. The degree of degradation depends on the HTC process conditions such as reaction temperature and time, the solution pH value, the presence of catalysts or additional reagents. The biotic and abiotic degradation of chlorinated organic compounds, in particular chlorinated aromatics, has been a well-known environmental problem and remains a challenging issue for the development of a HTC process for

  18. Profile storage of organic/inorganic carbon in soil: from forest to desert.

    PubMed

    Wang, Yugang; Li, Yan; Ye, Xuehua; Chu, Yu; Wang, Xinping

    2010-03-15

    Understanding the distribution of organic/inorganic carbon storage in soil profile is crucial for assessing regional, continental and global soil C stores and predicting the consequences of global change. However, little is known about the organic/inorganic carbon storages in deep soil layers at various landscapes. This study was conducted to determine the soil organic/inorganic carbon storage in soil profile of 0-3m at 5 sites of natural landscape from forest to desert. Landscapes are temperate forest, temperate grassland, temperate shrub-grassland, temperate shrub desert, and temperate desert. Root mass density and carbon contents at the profile were determined for each site. The results showed that considerable decrease in root biomass and soil organic carbon content at the soil profile of 0-3m when landscape varied from forest to desert along a precipitation gradient, while soil inorganic carbon content increased significantly along the precipitation gradient. Namely, for density of soil organic carbon: forest>grassland>shrub-grassland>shrub desert>desert; for density of soil inorganic carbon: forest, grasslandcarbon storage was found in 1-3m depth. For grassland and shrub-grassland, the contribution from 1-3m was mainly in the form of organic carbon, while for shrub desert and desert the contribution from this depth was mainly in the form of inorganic carbon. The comparison of soil C storage between top 0-1m and 1-3m showed that the using top 1m of soil profile to estimate soil carbon storages would considerably underestimate soil carbon storage. This is especially true for organic soil carbon at grassland region, and for soil inorganic carbon at desert region.

  19. Reburial of fossil organic carbon in marine sediments.

    PubMed

    Dickens, Angela F; Gélinas, Yves; Masiello, Caroline A; Wakeham, Stuart; Hedges, John I

    2004-01-22

    Marine sediments act as the ultimate sink for organic carbon, sequestering otherwise rapidly cycling carbon for geologic timescales. Sedimentary organic carbon burial appears to be controlled by oxygen exposure time in situ, and much research has focused on understanding the mechanisms of preservation of organic carbon. In this context, combustion-derived black carbon has received attention as a form of refractory organic carbon that may be preferentially preserved in soils and sediments. However, little is understood about the environmental roles, transport and distribution of black carbon. Here we apply isotopic analyses to graphitic black carbon samples isolated from pre-industrial marine and terrestrial sediments. We find that this material is terrestrially derived and almost entirely depleted of radiocarbon, suggesting that it is graphite weathered from rocks, rather than a combustion product. The widespread presence of fossil graphitic black carbon in sediments has therefore probably led to significant overestimates of burial of combustion-derived black carbon in marine sediments. It could be responsible for biasing radiocarbon dating of sedimentary organic carbon, and also reveals a closed loop in the carbon cycle. Depending on its susceptibility to oxidation, this recycled carbon may be locked away from the biologically mediated carbon cycle for many geologic cycles.

  20. Comparing the methods for determination of carbon in soil

    NASA Astrophysics Data System (ADS)

    Bidló, A.; Szżcs, P.; Horváth, A.; Kámán, O.; Németh, E.; Juhász, P.

    2012-04-01

    The global climate change raised the question of carbon sequestration of forests. Forests are important natural carbon sequesters in the temperate zone. It can be ascertained, that a significant part of carbon (often more than half of it), can be found in the soil. The greater amount of carbon can be found in the organic substance of soil (humus). There are several methods for determination of carbon in soil. The most popular method is determination by dry-burning, which means that the samples are exposed to high temperature and the amount of carbon content of CO2 becomes observable with the help of thermal conductivity detector or infrared spectroscopy. The advantage of this system is that burning and carbon content determination happens in a reproducible way if the conditions are satisfactory. However, this method is limited, because e. g. in Hungary the soil contains too much lime (often above 50%) and during the burning CO2 evolves from decomposition of minerals. The previous hydrochloric destruction of carbonate is not usable for lime content during examination. In the case of soils with high lime content the application of wet oxidation by potassium dichromate for organic matter determination is correct. During our investigation we made a comparison between the results of dry and three different wet burning, in the same way we did with organic matter determination in parallel with the determination of 320 soil samples. Between the results of wet burning we detected a decided difference. The Tyurin-type humus (Benediktas 2006, Tóth and Szabó 2003) determination (which is widely applied in Eastern Europe and it is a gas burning destruction method) showed high dispersion. The other destruction method showed favourable results, this method is applied on water bath, and is corresponding to the Hungarian standard. The correlation coefficient was between 0,87 és 0,98 amongst three analytical methods. We made a comparison between results of wet and dry burning

  1. Munsell color value as related to organic carbon in Devonian shale of Appalachian basin

    USGS Publications Warehouse

    Hosterman, J.W.; Whitlow, S.I.

    1981-01-01

    Comparison of Munsell color value with organic carbon content of 880 samples from 50 drill holes in Appalachian basin shows that a power curve is the best fit for the data. A color value below 3 to 3.5 indicates the presence of organic carbon but is meaningless in determining the organic carbon content because a large increase in amount of organic carbon causes only a minor decrease in color value. Above 4, the color value is one of the factors that can be used in calculating the organic content. For samples containing equal amounts of organic carbon, calcareous shale containing more than 5% calcite is darker than shale containing less than 5% calcite.-Authors

  2. A method for quantifying bioavailable organic carbon in aquifer sediments

    USGS Publications Warehouse

    Rectanus, H.V.; Widdowson, M.; Novak, J.; Chapelle, F.

    2005-01-01

    The fact that naturally occurring microorganisms can biodegrade PCE and TCE allows the use of monitored natural attenuation (MNA) as a remediation strategy at chlorinated solvent-contaminated sites. Research at numerous chlorinated solvent sites indicates an active dechlorinating microbial population coupled with an ample supply of organic carbon are conditions needed to sustain reductive dechlorination. A series of extraction experiments was used to compare the ability of the different extractants to remove organic carbon from aquifer sediments. The different extractants included pyrophosphate, sodium hydroxide, and polished water. Pyrophosphate served as a mild extractant that minimally alters the organic structure of the extracted material. Three concentrations (0.1, 0.5, and 1%) of pyrophosphate extracted 18.8, 24.9, and 30.8% of sediment organic carbon, respectively. Under alkali conditions (0.5 N NaOH), which provided the harshest extractant, 30.7% of the sediment organic carbon was recovered. Amorphous organic carbon, measured by potassium persulfate oxidization, consisted of 44.6% of the sediment organic carbon and served as a baseline control for maximum carbon removal. Conversely, highly purified water provided a minimal extraction control and extracted 5.7% of the sediment organic carbon. The removal of organic carbon was quantified by aqueous TOC in the extract and residual sediment organic carbon content. Characterization of the organic carbon extracts by compositional analysis prior and after exposure to the mixed culture might indicate the type organic carbon and functional groups used and/or generated by the organisms. This is an abstract of a paper presented at the 8th International In Situ and On-Site Bioremediation Symposium (Baltimore, MD 6/6-9/2005).

  3. SAMPLING ARTIFACTS IN MEASUREMENT OF ELEMENTAL AND ORGANIC CARBON: LOW VOLUME SAMPLING IN INDOOR AND OUTDOOR ENVIRONMENTS

    EPA Science Inventory

    Experiments were completed to determine the extent of artifacts from sampling elemental carbon (EC) and organic carbon (OC) under sample conditions consistent with personal sampling. Two different types of experiments were completed; the first examined possible artifacts from oil...

  4. Influence of organic carbon on estuarine benthic infauna of the US west coast - March 3, 2011

    EPA Science Inventory

    Total organic carbon (TOC) is often used as an indicator of eutrophication in estuarine environments. However, the determination of biologically relevant sediment TOC criteria to indicate estuarine condition is complicated by the relationship between TOC and grain size. Both va...

  5. Influence of organic carbon on estuarine benthic infauna of the US west coast - March 3

    EPA Science Inventory

    Total organic carbon (TOC) is often used as an indicator of nutrient enrichment in estuarine environments. However, the determination of biologically relevant TOC criteria to indicate sediment condition is complicated by the relationship between TOC and grain size. Both variabl...

  6. Influence of sediment organic carbon on estuarine benthic species of the US West Coast

    EPA Science Inventory

    Total organic carbon (TOC) is often used as an indicator of nutrient enrichment in estuarine environments. However, the determination of biologically relevant TOC criteria to indicate sediment quality is complicated by the relationship between TOC and grain size. Both variables...

  7. Influence of organic carbon on estuarine benthic infauna of the US west coast

    EPA Science Inventory

    Total organic carbon (TOC) is often used as an indicator of eutrophication in estuarine environments. However, the determination of biologically relevant sediment TOC criteria to indicate estuarine condition is complicated by the relationship between TOC and grain size. Both va...

  8. Selective stabilization of aliphatic organic carbon by iron oxide

    PubMed Central

    Adhikari, Dinesh; Yang, Yu

    2015-01-01

    Stabilization of organic matter in soil is important for natural ecosystem to sequestrate carbon and mitigate greenhouse gas emission. It is largely unknown what factors govern the preservation of organic carbon in soil, casting shadow on predicting the response of soil to climate change. Iron oxide was suggested as an important mineral preserving soil organic carbon. However, ferric minerals are subject to reduction, potentially releasing iron and decreasing the stability of iron-bound organic carbon. Information about the stability of iron-bound organic carbon in the redox reaction is limited. Herein, we investigated the sorptive interactions of organic matter with hematite and reductive release of hematite-bound organic matter. Impacts of organic matter composition and conformation on its sorption by hematite and release during the reduction reaction were analyzed. We found that hematite-bound aliphatic carbon was more resistant to reduction release, although hematite preferred to sorb more aromatic carbon. Resistance to reductive release represents a new mechanism that aliphatic soil organic matter was stabilized by association with iron oxide. Selective stabilization of aliphatic over aromatic carbon can greatly contribute to the widely observed accumulation of aliphatic carbon in soil, which cannot be explained by sorptive interactions between minerals and organic matter. PMID:26061259

  9. Selective stabilization of aliphatic organic carbon by iron oxide.

    PubMed

    Adhikari, Dinesh; Yang, Yu

    2015-01-01

    Stabilization of organic matter in soil is important for natural ecosystem to sequestrate carbon and mitigate greenhouse gas emission. It is largely unknown what factors govern the preservation of organic carbon in soil, casting shadow on predicting the response of soil to climate change. Iron oxide was suggested as an important mineral preserving soil organic carbon. However, ferric minerals are subject to reduction, potentially releasing iron and decreasing the stability of iron-bound organic carbon. Information about the stability of iron-bound organic carbon in the redox reaction is limited. Herein, we investigated the sorptive interactions of organic matter with hematite and reductive release of hematite-bound organic matter. Impacts of organic matter composition and conformation on its sorption by hematite and release during the reduction reaction were analyzed. We found that hematite-bound aliphatic carbon was more resistant to reduction release, although hematite preferred to sorb more aromatic carbon. Resistance to reductive release represents a new mechanism that aliphatic soil organic matter was stabilized by association with iron oxide. Selective stabilization of aliphatic over aromatic carbon can greatly contribute to the widely observed accumulation of aliphatic carbon in soil, which cannot be explained by sorptive interactions between minerals and organic matter. PMID:26061259

  10. Organic carbon hidden in urban ecosystems.

    PubMed

    Edmondson, Jill L; Davies, Zoe G; McHugh, Nicola; Gaston, Kevin J; Leake, Jonathan R

    2012-01-01

    Urbanization is widely presumed to degrade ecosystem services, but empirical evidence is now challenging these assumptions. We report the first city-wide organic carbon (OC) budget for vegetation and soils, including under impervious surfaces. Urban soil OC storage was significantly greater than in regional agricultural land at equivalent soil depths, however there was no significant difference in storage between soils sampled beneath urban greenspaces and impervious surfaces, at equivalent depths. For a typical U.K. city, total OC storage was 17.6 kg m(-2) across the entire urban area (assuming 0 kg m(-2) under 15% of land covered by buildings). The majority of OC (82%) was held in soils, with 13% found under impervious surfaces, and 18% stored in vegetation. We reveal that assumptions underpinning current national estimates of ecosystem OC stocks, as required by Kyoto Protocol signatories, are not robust and are likely to have seriously underestimated the contributions of urban areas.

  11. Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost

    NASA Astrophysics Data System (ADS)

    Abbott, Benjamin W.; Larouche, Julia R.; Jones, Jeremy B.; Bowden, William B.; Balser, Andrew W.

    2014-10-01

    As high latitudes warm, a portion of the large organic carbon pool stored in permafrost will become available for transport to aquatic ecosystems as dissolved organic carbon (DOC). If permafrost DOC is biodegradable, much will be mineralized to the atmosphere in freshwater systems before reaching the ocean, accelerating carbon transfer from permafrost to the atmosphere, whereas if recalcitrant, it will reach marine ecosystems where it may persist over long time periods. We measured biodegradable DOC (BDOC) in water flowing from collapsing permafrost (thermokarst) on the North Slope of Alaska and tested the role of DOC chemical composition and nutrient concentration in determining biodegradability. DOC from collapsing permafrost was some of the most biodegradable reported in natural systems. However, elevated BDOC only persisted during active permafrost degradation, with a return to predisturbance levels once thermokarst features stabilized. Biodegradability was correlated with background nutrient concentration, but nutrient addition did not increase overall BDOC, suggesting that chemical composition may be a more important control on DOC processing. Despite its high biodegradability, permafrost DOC showed evidence of substantial previous microbial processing, and we present four hypotheses explaining this incongruity. Because thermokarst features form preferentially on river banks and lake shores and can remain active for decades, thermokarst may be the dominant short-term mechanism delivering sediment, nutrients, and biodegradable organic matter to aquatic systems as the Arctic warms.

  12. Hidden cycle of dissolved organic carbon in the deep ocean.

    PubMed

    Follett, Christopher L; Repeta, Daniel J; Rothman, Daniel H; Xu, Li; Santinelli, Chiara

    2014-11-25

    Marine dissolved organic carbon (DOC) is a large (660 Pg C) reactive carbon reservoir that mediates the oceanic microbial food web and interacts with climate on both short and long timescales. Carbon isotopic content provides information on the DOC source via δ(13)C and age via Δ(14)C. Bulk isotope measurements suggest a microbially sourced DOC reservoir with two distinct components of differing radiocarbon age. However, such measurements cannot determine internal dynamics and fluxes. Here we analyze serial oxidation experiments to quantify the isotopic diversity of DOC at an oligotrophic site in the central Pacific Ocean. Our results show diversity in both stable and radio isotopes at all depths, confirming DOC cycling hidden within bulk analyses. We confirm the presence of isotopically enriched, modern DOC cocycling with an isotopically depleted older fraction in the upper ocean. However, our results show that up to 30% of the deep DOC reservoir is modern and supported by a 1 Pg/y carbon flux, which is 10 times higher than inferred from bulk isotope measurements. Isotopically depleted material turns over at an apparent time scale of 30,000 y, which is far slower than indicated by bulk isotope measurements. These results are consistent with global DOC measurements and explain both the fluctuations in deep DOC concentration and the anomalous radiocarbon values of DOC in the Southern Ocean. Collectively these results provide an unprecedented view of the ways in which DOC moves through the marine carbon cycle. PMID:25385632

  13. Hidden cycle of dissolved organic carbon in the deep ocean.

    PubMed

    Follett, Christopher L; Repeta, Daniel J; Rothman, Daniel H; Xu, Li; Santinelli, Chiara

    2014-11-25

    Marine dissolved organic carbon (DOC) is a large (660 Pg C) reactive carbon reservoir that mediates the oceanic microbial food web and interacts with climate on both short and long timescales. Carbon isotopic content provides information on the DOC source via δ(13)C and age via Δ(14)C. Bulk isotope measurements suggest a microbially sourced DOC reservoir with two distinct components of differing radiocarbon age. However, such measurements cannot determine internal dynamics and fluxes. Here we analyze serial oxidation experiments to quantify the isotopic diversity of DOC at an oligotrophic site in the central Pacific Ocean. Our results show diversity in both stable and radio isotopes at all depths, confirming DOC cycling hidden within bulk analyses. We confirm the presence of isotopically enriched, modern DOC cocycling with an isotopically depleted older fraction in the upper ocean. However, our results show that up to 30% of the deep DOC reservoir is modern and supported by a 1 Pg/y carbon flux, which is 10 times higher than inferred from bulk isotope measurements. Isotopically depleted material turns over at an apparent time scale of 30,000 y, which is far slower than indicated by bulk isotope measurements. These results are consistent with global DOC measurements and explain both the fluctuations in deep DOC concentration and the anomalous radiocarbon values of DOC in the Southern Ocean. Collectively these results provide an unprecedented view of the ways in which DOC moves through the marine carbon cycle.

  14. Soil Organic Carbon Degradation, Barrow, 2013-2014

    DOE Data Explorer

    Gu, Baohua; Yang, Ziming

    2015-03-30

    This dataset provides information about soil organic carbon decomposition in Barrow soil incubation studies. The soil cores were collected from low-center polygon (Area A) and were incubated in the laboratory at different temperatures for up to 60 days. Transformations of soil organic carbon were characterized by UV and FT-IR, and small organic acids in water-soluble carbons were quantified by ion chromatography during the incubation

  15. Aged riverine particulate organic carbon in four UK catchments.

    PubMed

    Adams, Jessica L; Tipping, Edward; Bryant, Charlotte L; Helliwell, Rachel C; Toberman, Hannah; Quinton, John

    2015-12-01

    The riverine transport of particulate organic matter (POM) is a significant flux in the carbon cycle, and affects macronutrients and contaminants. We used radiocarbon to characterise POM at 9 riverine sites of four UK catchments (Avon, Conwy, Dee, Ribble) over a one-year period. High-discharge samples were collected on three or four occasions at each site. Suspended particulate matter (SPM) was obtained by centrifugation, and the samples were analysed for carbon isotopes. Concentrations of SPM and SPM organic carbon (OC) contents were also determined, and were found to have a significant negative correlation. For the 7 rivers draining predominantly rural catchments, PO14C values, expressed as percent modern carbon absolute (pMC), varied little among samplings at each site, and there was no significant difference in the average values among the sites. The overall average PO14C value for the 7 sites of 91.2 pMC corresponded to an average age of 680 14C years, but this value arises from the mixing of differently-aged components, and therefore significant amounts of organic matter older than the average value are present in the samples. Although topsoil erosion is probably the major source of the riverine POM, the average PO14C value is appreciably lower than topsoil values (which are typically 100 pMC). This is most likely explained by inputs of older subsoil OC from bank erosion, or the preferential loss of high-14C topsoil organic matter by mineralisation during riverine transport. The significantly lower average PO14C of samples from the River Calder (76.6 pMC), can be ascribed to components containing little or no radiocarbon, derived either from industrial sources or historical coal mining, and this effect is also seen in the River Ribble, downstream of its confluence with the Calder. At the global scale, the results significantly expand available information for PO14C in rivers draining catchments with low erosion rates.

  16. Aged riverine particulate organic carbon in four UK catchments.

    PubMed

    Adams, Jessica L; Tipping, Edward; Bryant, Charlotte L; Helliwell, Rachel C; Toberman, Hannah; Quinton, John

    2015-12-01

    The riverine transport of particulate organic matter (POM) is a significant flux in the carbon cycle, and affects macronutrients and contaminants. We used radiocarbon to characterise POM at 9 riverine sites of four UK catchments (Avon, Conwy, Dee, Ribble) over a one-year period. High-discharge samples were collected on three or four occasions at each site. Suspended particulate matter (SPM) was obtained by centrifugation, and the samples were analysed for carbon isotopes. Concentrations of SPM and SPM organic carbon (OC) contents were also determined, and were found to have a significant negative correlation. For the 7 rivers draining predominantly rural catchments, PO14C values, expressed as percent modern carbon absolute (pMC), varied little among samplings at each site, and there was no significant difference in the average values among the sites. The overall average PO14C value for the 7 sites of 91.2 pMC corresponded to an average age of 680 14C years, but this value arises from the mixing of differently-aged components, and therefore significant amounts of organic matter older than the average value are present in the samples. Although topsoil erosion is probably the major source of the riverine POM, the average PO14C value is appreciably lower than topsoil values (which are typically 100 pMC). This is most likely explained by inputs of older subsoil OC from bank erosion, or the preferential loss of high-14C topsoil organic matter by mineralisation during riverine transport. The significantly lower average PO14C of samples from the River Calder (76.6 pMC), can be ascribed to components containing little or no radiocarbon, derived either from industrial sources or historical coal mining, and this effect is also seen in the River Ribble, downstream of its confluence with the Calder. At the global scale, the results significantly expand available information for PO14C in rivers draining catchments with low erosion rates. PMID:26254066

  17. Aged Riverine Particulate Organic Carbon in Four UK Catchments

    NASA Astrophysics Data System (ADS)

    Adams, Jessica; Tipping, Edward; Bryant, Charlotte; Helliwell, Rachel; Toberman, Hannah; Quinton, John

    2016-04-01

    The riverine transport of particulate organic matter (POM) is a significant flux in the carbon cycle, and affects macronutrients and contaminants. We used radiocarbon to characterise POM at 9 riverine sites of four UK catchments (Avon, Conwy, Dee, Ribble) over a one-year period. High-discharge samples were collected on three or four occasions at each site. Suspended particulate matter (SPM) was obtained by centrifugation, and the samples were analysed for carbon isotopes. Concentrations of SPM and SPM organic carbon (OC) contents were also determined, and were found to have a significant negative correlation. For the 7 rivers draining predominantly rural catchments, PO14C values, expressed as percent modern carbon absolute (pMC), varied little among samplings at each site, and there was no significant difference in the average values among the sites. The overall average PO14C value for the 7 sites of 91.2 pMC corresponded to an average age of 680 14C years, but this value arises from the mixing of differently-aged components, and therefore significant amounts of organic matter older than the average value are present in the samples. Although topsoil erosion is probably the major source of the riverine POM, the average PO14C value is appreciably lower than topsoil values (which are typically 100 pMC). This is most likely explained by inputs of older subsoil OC from bank erosion, or the preferential loss of high-14C topsoil organic matter by mineralisation during riverine transport. The significantly lower average PO14C of samples from the River Calder (76.6 pMC), can be ascribed to components containing little or no radiocarbon, derived either from industrial sources or historical coal mining, and this effect is also seen in the River Ribble, downstream of its confluence with the Calder. At the global scale, the results significantly expand available information for PO14C in rivers draining catchments with low erosion rates.

  18. Method 440.0 Determination of Carbon and Nitrogen in Sediments and Particulatesof Estuarine/Coastal Waters Using Elemental Analysis

    EPA Science Inventory

    Elemental analysis is used to determine particulate carbon (PC) and particulate nitrogen (PN) in estuarine and coastal waters and sediment. The method measures the total carbon and nitrogen irrespective of source (inorganic or organic).

  19. Soil organic carbon assessments in cropping systems using isotopic techniques

    NASA Astrophysics Data System (ADS)

    Martín De Dios Herrero, Juan; Cruz Colazo, Juan; Guzman, María Laura; Saenz, Claudio; Sager, Ricardo; Sakadevan, Karuppan

    2016-04-01

    Introduction of improved farming practices are important to address the challenges of agricultural production, food security, climate change and resource use efficiency. The integration of livestock with crops provides many benefits including: (1) resource conservation, (2) ecosystem services, (3) soil quality improvements, and (4) risk reduction through diversification of enterprises. Integrated crop livestock systems (ICLS) with the combination of no-tillage and pastures are useful practices to enhance soil organic carbon (SOC) compared with continuous cropping systems (CCS). In this study, the SOC and its fractions in two cropping systems namely (1) ICLS, and (2) CCS were evaluated in Southern Santa Fe Province in Argentina, and the use of delta carbon-13 technique and soil physical fractionation were evaluated to identify sources of SOC in these systems. Two farms inside the same soil cartographic unit and landscape position in the region were compared. The ICLS farm produces lucerne (Medicago sativa Merrill) and oat (Avena sativa L.) grazed by cattle alternatively with grain summer crops sequence of soybean (Glicine max L.) and corn (Zea mays L.), and the farm under continuous cropping system (CCS) produces soybean and corn in a continuous sequence. The soil in the area is predominantly a Typic Hapludoll. Soil samples from 0-5 and 0-20 cm depths (n=4) after the harvest of grain crops were collected in each system and analyzed for total organic carbon (SOC, 0-2000 μm), particulate organic carbon (POC, 50-100 μm) and mineral organic carbon (MOC, <50 μm). Delta carbon-13 was determined by isotopic ratio mass spectrometry. In addition, a site with natural vegetation (reference site, REF) was also sampled for delta carbon-13 determination. ANOVA and Tukey statistical analysis were carried out for all data. The SOC was higher in ICLS than in CCS at both depths (20.8 vs 17.7 g kg-1 for 0-5 cm and 16.1 vs 12.7 g kg-1 at 0-20 cm, respectively, P<0.05). MOC was

  20. Temperature sensitivity of decomposition of soil organic carbon fractions

    NASA Astrophysics Data System (ADS)

    Hilasvuori, Emmi; Järvenpää, Marko; Akujärvi, Anu; Arppe, Laura; Christensen, Bent T.; Fritze, Hannu; Kaasalainen, Mikko; Karhu, Kristiina; Oinonen, Markku; Palonen, Vesa; Pitkänen, Juha-Matti; Repo, Anna; Vanhala, Pekka; Liski, Jari

    2015-04-01

    Knowing the temperature sensitivity of soil organic matter (SOM) decomposition is important for estimating the release of carbon from soil to the atmosphere in response to global warming. This temperature sensitivity is known relatively well for the most labile SOM fractions but still quite poorly for more recalcitrant fractions that represent the great majority of SOM. We report results for the temperature sensitivity of various SOM fractions in two different experiments in which we utilized natural abundances of carbon isotopes 13C and 14C combined with Bayesian mathematical modelling. In one experiment, the different age fractions were distinguished based on depth in a peat profile. In the other experiment, the age fractions were separated based on a time series of conversion from C3 vegetation to C4 vegetation. In both experiments, the temperature sensitivity of the SOM fractions was estimated by measuring the carbon isotope composition of heterotrophic soil respiration at different temperatures in laboratory. The results from these experiments suggest that the temperature sensitivity of unprotected SOM fractions increases with age, but if an environmental factor, such as bonding to soil minerals, limits decomposition of a SOM fraction, the temperature sensitivity is reduced. Our results are in agreement with the theory that suggests that in soil without environmental, physical or chemical protection, temperature sensitivity of carbon compounds is mainly determined by its chemical structure. The more complex the structure is the higher activation energy is needed and the higher its temperature sensitivity. Since SOM enriches with more complicated carbon compounds with time, this leads to increase in temperature sensitivity as SOM ages. However, our results also indicate that if the soil carbon is associated with minerals it might exhibit lower temperature sensitivities than when the carbon is "free" in the soil. Since the mineral associated carbon can have high

  1. Development of a Rapid Assimilable Organic Carbon Method for Water

    PubMed Central

    LeChevallier, Mark W.; Shaw, Nancy E.; Kaplan, Louis A.; Bott, Thomas L.

    1993-01-01

    A rapid method for measurement of assimilable organic carbon (AOC) is proposed. The time needed to perform the assay is reduced by increasing the incubation temperature and increasing the inoculum density. The ATP luciferin-luciferase method quickly enumerates the test organisms without the need for plate count media or dilution bottles. There was no significant difference between AOC values determined with strain P17 for the ATP and plate count procedures. For strain NOX, the plate count procedure underestimated bacterial levels in some samples. Comparison of AOC values obtained by the Belleville laboratory (by the ATP technique) and the Stroud Water Research Center (by plate counts) showed that values were significantly correlated and not significantly different. The study concludes that the rapid AOC method can quickly determine the bacterial growth potential of water within 2 to 4 days. PMID:16348936

  2. [Organic Carbon and Elemental Carbon in Forest Biomass Burning Smoke].

    PubMed

    Huang, Ke; Liu, Gang; Zhou, Li-min; Li, Jiu-hai; Xu, Hui; Wu, Dan; Hong, Lei; Chen, Hui-yu; Yang, Wei-zong

    2015-06-01

    Ten kinds of trees were selected for preparing dry and wet stick samples. Concentrations of organic carbon (OC), elemental carbon (EC) in particular matter produced by sticks samples in the flaming and smoldering were analyzed through the Thermal Optical Carbon Analyzer (Model 2001A). The results showed that mean values of OC (EF(OC)), EC (EF(EC)), PM (EF(PM)) emission factors were 6.8, 2.1, 16.5 g x kg(-1) in the dry stick flaming smoke, 57.5, 11.1, 130.9 g x kg(-1) in the dry stick smoldering smoke, 13.6, 3.3, 30.5 g x kg(-1) in the wet stick flaming smoke, 57.6, 9.6, 125.6 g x kg(-1) in the wet stick smoldering smoke. Compared to the flaming condition, EF(OC), EF(EC), EF(PM), were much higher in the smoldering condition. In the flaming condition, EF(OC), EF(EC), EF(PM) had positive correlations with the moisture content. The mean values of OC/PM, EC/PM, TC/PM (TC = OC + EC) were 45%, 10%, 55%, and the mass fractions of OC was much higher in smoldering condition than those in flaming condition, but the mass fractions of EC was lower in the smoldering condition. Compared to dry sticks, the smoke of wet sticks combustion had higher mass fractions of OC and lower mass fractions of EC. The mean value of OC/EC was 3.3 (2.5-5.2) in the dry stick flaming smoke, and was 5.2 (4.3-6.3) in the dry stick smoldering smoke, in the wet stick flaming smoke was 4.1 (3.1-5.3), and was 6.2 (4.2-8.4) in the wet stick smoldering smoke. Compared to the flaming condition, the mean value of OC/EC was higher in the smoldering condition, and the mean value of OC/EC was much higher in high moisture content stick combustion smoke. The correlation coefficient between OC and EC was 0.985 in dry stick combustions, and was 0.915 in wet stick combustions. So, based on the flaming and smoldering condition, the correlation between OC and EC was significant in different moisture contents of sticks.

  3. Evaluation of Different Soil Carbon Determination Methods

    SciTech Connect

    Chatterjee, Dr Amitava; Lal, Dr R; Wielopolski, Dr L; Martin, Madhavi Z; Ebinger, Dr Michael H

    2009-01-01

    Determining soil carbon (C) with high precision is an essential requisite for the success of the terrestrial C sequestration program. The informed choice of management practices for different terrestrial ecosystems rests upon accurately measuring the potential for C sequestration. Numerous methods are available for assessing soil C. Chemical analysis of field-collected samples using a dry combustion method is regarded as the standard method. However, conventional sampling of soil and their subsequent chemical analysis is expensive and time consuming. Furthermore, these methods are not sufficiently sensitive to identify small changes over time in response to alterations inmanagement practices or changes in land use. Presently, several different in situ analytic methods are being developed purportedly offering increased accuracy, precision and cost-effectiveness over traditional ex situ methods. We consider that, at this stage, a comparative discussion of different soil C determination methods will improve the understanding needed to develop a standard protocol.

  4. Transient Dissolved Organic Carbon Through Soils

    NASA Astrophysics Data System (ADS)

    Mei, Y.; Hornberger, G. M.; Kaplan, L. A.; Newbold, J. D.; Aufdenkampe, A. K.; Tsang, Y.

    2009-12-01

    Dissolved organic carbon (DOC) is an important constituent of soil solution that plays a role in many chemical and biological processes in soils; it is also an important energy source for bacteria in the soil ecosystem. Hydrology has a significant control on the transport and fate of dissolved organic carbon in the soil but mechanisms that affect said transport are not well understood. In particular, dynamic information on DOC transport through forest soils on short time scales (one or two precipitation event) is lacking at present. DOC is a very complex mix of organic compounds. A key to quantifying DOC dynamics is to establish useful approximations for behavior of this complex mixture. Biodegradable dissolved organic carbon (BDOC) is an important part of DOC. It is reported that between 12 and 44% of DOC released from the forest floor can be decomposed in solutions by indigenous microbes. In our study, we considered how DOC, BDOC, and flow interact in soil columns. In-situ soil cores with two different lengths were installed under a mixed deciduous canopy. The effects of artificial rain on DOC and BDOC transport were examined by dripping nano pure water amended with bromide on the top of soil cores and sampling the water collected at the bottom of the cores for DOC and BDOC. We used plug-flow biofilm reactors to measure the BDOC concentration. It is likely that reduced rates of decomposition in dry soils will cause microbial products of DOC to accumulate; hence DOC concentration should be high at the first flush of rain and decline as the event proceeds. The experimental results show the expected pattern, that is, the first samples we collected always had the highest DOC and BDOC concentrations. The concentrations tend to decline through the simulated precipitation event. Application of a second “storm” forty minutes after the cessation of the first application of water resulted in effluent DOC concentration increasing a small amount initially and then

  5. Association of Dissolved Mercury with Dissolved Organic Carbon in Rivers and Streams: The Role of Watershed Soil Organic Carbon

    NASA Astrophysics Data System (ADS)

    Stoken, O.; Riscassi, A.; Scanlon, T. M.

    2014-12-01

    Surface waters are an important pathway for the transport of atmospherically deposited mercury (Hg) from terrestrial watersheds. Dissolved Hg (HgD) is thought to be more bioavailable than particulate Hg and has been found to be strongly correlated with dissolved organic carbon (DOC) in numerous watersheds. The ratio of HgD to DOC is highly variable from site to site, which we hypothesize is strongly dependent on local environmental factors such as atmospheric deposition and soil organic carbon (SOC). Sixteen watersheds throughout the United States were used in this study to determine the relationship between the ratio of HgD:DOC, Hg wet deposition, and SOC. The Soil Survey Geographic database (SSURGO) and Northern Circumpolar Soil Carbon Database (NCSCD) were used to determine SOC values while HgD:DOC values were obtained from previous studies. Hg wet deposition was reported by the Mercury Deposition Network. There was no correlation found between atmospheric mercury wet deposition and HgD:DOC (r2 = 0.04; p = 0.44) but SOC was able to explain about 71% of the variation in the HgD:DOC ratio (r2 = 0.71; p < 0.01). A mathematical framework was developed to explain the power-law relationship between SOC and HgD:DOC based on soil carbon pools. The framework infers that the amount of Hg adsorbed to SOC does not increase in proportion to SOC at high SOC levels and points towards a Hg supply limitation for adsorption to soils with relatively deep carbon pools. Overall, this study identifies SOC as a first-order control on the association of HgD and DOC and indicates that globally available SOC datasets can be utilized to predict Hg transport in stream systems.

  6. Distribution of Organic Carbon in the Sediments of Xinxue River and the Xinxue River Constructed Wetland, China

    PubMed Central

    Cao, Qingqing; Wang, Renqing; Zhang, Haijie; Ge, Xiuli; Liu, Jian

    2015-01-01

    Wetland ecosystems are represented as a significant reservoir of organic carbon and play an important role in mitigating the greenhouse effect. In order to compare the compositions and distribution of organic carbon in constructed and natural river wetlands, sediments from the Xinxue River Constructed Wetland and the Xinxue River, China, were sampled at two depths (0–15 cm and 15–25 cm) in both upstream and downstream locations. Three types of organic carbon were determined: light fraction organic carbon, heavy fraction organic carbon, and dissolved organic carbon. The results show that variations in light fraction organic carbon are significantly larger between upstream and downstream locations than they are between the two wetland types; however, the opposite trend is observed for the dissolved organic carbon. There are no significant differences in the distribution of heavy fraction organic carbon between the discrete variables (e.g., between the two depths, the two locations, or the two wetland types). However, there are significant cross-variable differences; for example, the distribution patterns of heavy fraction organic carbon between wetland types and depths, and between wetland types and locations. Correlation analysis reveals that light fraction organic carbon is positively associated with light fraction nitrogen in both wetlands, while heavy fraction organic carbon is associated with both heavy fraction nitrogen and the moisture content in the constructed wetland. The results of this study demonstrate that the constructed wetland, which has a relatively low background value of heavy fraction organic carbon, is gradually accumulating organic carbon of different types, with the level of accumulation dependent on the balance between carbon accumulation and carbon decomposition. In contrast, the river wetland has relatively stable levels of organic carbon. PMID:26230255

  7. Distribution of Organic Carbon in the Sediments of Xinxue River and the Xinxue River Constructed Wetland, China.

    PubMed

    Cao, Qingqing; Wang, Renqing; Zhang, Haijie; Ge, Xiuli; Liu, Jian

    2015-01-01

    Wetland ecosystems are represented as a significant reservoir of organic carbon and play an important role in mitigating the greenhouse effect. In order to compare the compositions and distribution of organic carbon in constructed and natural river wetlands, sediments from the Xinxue River Constructed Wetland and the Xinxue River, China, were sampled at two depths (0-15 cm and 15-25 cm) in both upstream and downstream locations. Three types of organic carbon were determined: light fraction organic carbon, heavy fraction organic carbon, and dissolved organic carbon. The results show that variations in light fraction organic carbon are significantly larger between upstream and downstream locations than they are between the two wetland types; however, the opposite trend is observed for the dissolved organic carbon. There are no significant differences in the distribution of heavy fraction organic carbon between the discrete variables (e.g., between the two depths, the two locations, or the two wetland types). However, there are significant cross-variable differences; for example, the distribution patterns of heavy fraction organic carbon between wetland types and depths, and between wetland types and locations. Correlation analysis reveals that light fraction organic carbon is positively associated with light fraction nitrogen in both wetlands, while heavy fraction organic carbon is associated with both heavy fraction nitrogen and the moisture content in the constructed wetland. The results of this study demonstrate that the constructed wetland, which has a relatively low background value of heavy fraction organic carbon, is gradually accumulating organic carbon of different types, with the level of accumulation dependent on the balance between carbon accumulation and carbon decomposition. In contrast, the river wetland has relatively stable levels of organic carbon.

  8. Role of organic soils in the world carbon cycle: problem analysis and research needs

    SciTech Connect

    Armentano, T.V.

    1980-02-01

    In May 1979, The Institute of Ecology held a workshop to determine the role of organic soils in the global carbon cycle and to ascertain their past, present and future significance in world carbon flux. Wetlands ecologists and soil scientists who participated in the workshop examined such topics as Soils as Sources of Atmospheric CO/sub 2/, Organic Soils, Primary Production and Growth of Wetlands Ecosystems, and Management of Peatlands. The major finding of the workshop is that the organic soils are important in the overall carbon budget. Histosols and Gleysols, the major organic soil deposits of the world, normally sequester organic carbon fixed by plants. They may now be releasing enough carbon to account for nearly 10% of the annual rise in atmospheric content of CO/sub 2/.

  9. Organic Determinants of Learning and Behavioral Disorders.

    ERIC Educational Resources Information Center

    Philpott, William H.; And Others

    Theories regarding organic determinants of learning and behavior disorders are reviewed historically. Cases illustrating how a bio-ecologic examination can isolate the substances to which a person reacts and some of the reasons for those reactions are presented; and the role of various disorders in relation to the central nervous system is…

  10. Statistics provide guidance for indigenous organic carbon detection on Mars missions.

    PubMed

    Sephton, Mark A; Carter, Jonathan N

    2014-08-01

    Data from the Viking and Mars Science Laboratory missions indicate the presence of organic compounds that are not definitively martian in origin. Both contamination and confounding mineralogies have been suggested as alternatives to indigenous organic carbon. Intuitive thought suggests that we are repeatedly obtaining data that confirms the same level of uncertainty. Bayesian statistics may suggest otherwise. If an organic detection method has a true positive to false positive ratio greater than one, then repeated organic matter detection progressively increases the probability of indigeneity. Bayesian statistics also reveal that methods with higher ratios of true positives to false positives give higher overall probabilities and that detection of organic matter in a sample with a higher prior probability of indigenous organic carbon produces greater confidence. Bayesian statistics, therefore, provide guidance for the planning and operation of organic carbon detection activities on Mars. Suggestions for future organic carbon detection missions and instruments are as follows: (i) On Earth, instruments should be tested with analog samples of known organic content to determine their true positive to false positive ratios. (ii) On the mission, for an instrument with a true positive to false positive ratio above one, it should be recognized that each positive detection of organic carbon will result in a progressive increase in the probability of indigenous organic carbon being present; repeated measurements, therefore, can overcome some of the deficiencies of a less-than-definitive test. (iii) For a fixed number of analyses, the highest true positive to false positive ratio method or instrument will provide the greatest probability that indigenous organic carbon is present. (iv) On Mars, analyses should concentrate on samples with highest prior probability of indigenous organic carbon; intuitive desires to contrast samples of high prior probability and low prior

  11. Statistics provide guidance for indigenous organic carbon detection on Mars missions.

    PubMed

    Sephton, Mark A; Carter, Jonathan N

    2014-08-01

    Data from the Viking and Mars Science Laboratory missions indicate the presence of organic compounds that are not definitively martian in origin. Both contamination and confounding mineralogies have been suggested as alternatives to indigenous organic carbon. Intuitive thought suggests that we are repeatedly obtaining data that confirms the same level of uncertainty. Bayesian statistics may suggest otherwise. If an organic detection method has a true positive to false positive ratio greater than one, then repeated organic matter detection progressively increases the probability of indigeneity. Bayesian statistics also reveal that methods with higher ratios of true positives to false positives give higher overall probabilities and that detection of organic matter in a sample with a higher prior probability of indigenous organic carbon produces greater confidence. Bayesian statistics, therefore, provide guidance for the planning and operation of organic carbon detection activities on Mars. Suggestions for future organic carbon detection missions and instruments are as follows: (i) On Earth, instruments should be tested with analog samples of known organic content to determine their true positive to false positive ratios. (ii) On the mission, for an instrument with a true positive to false positive ratio above one, it should be recognized that each positive detection of organic carbon will result in a progressive increase in the probability of indigenous organic carbon being present; repeated measurements, therefore, can overcome some of the deficiencies of a less-than-definitive test. (iii) For a fixed number of analyses, the highest true positive to false positive ratio method or instrument will provide the greatest probability that indigenous organic carbon is present. (iv) On Mars, analyses should concentrate on samples with highest prior probability of indigenous organic carbon; intuitive desires to contrast samples of high prior probability and low prior

  12. Carbon accumulation in arid croplands of northwest China: pedogenic carbonate exceeding organic carbon.

    PubMed

    Wang, Xiujun; Wang, Jiaping; Xu, Minggang; Zhang, Wenju; Fan, Tinglu; Zhang, Juan

    2015-06-19

    Soil carbonate (SIC) exceeds organic carbon (SOC) greatly in arid lands, thus may be important for carbon sequestration. However, field data for quantifying carbonate accumulation have been lacking. This study aims to improve our understanding of SIC dynamics and its role in carbon sequestration. We analyzed two datasets of SOC and SIC and their (13)C compositions , one with over 100 soil samples collected recently from various land uses in the Yanqi Basin, Xinjiang, and the other with 18 archived soil samples from a long-term experiment (LTE) in Pingliang, Gansu. The data from the Yanqi Basin showed that SOC had a significant relationship with SIC and pedogenic carbonate (PIC); converting shrub land to cropland increased PIC stock by 5.2 kg C m(-2), which was 3.6 times of that in SOC stock. The data from the LTE showed greater accumulation of PIC (21-49 g C m(-2) year(-1)) than SOC (10-39 g C m(-2) year(-1)) over 0-20 cm. Our study points out that intensive cropping in the arid and semi-arid regions leads to an increase in both SOC and PIC. Increasing SOC through straw organic amendments enhances PIC accumulation in the arid cropland of northwestern China.

  13. Carbon accumulation in arid croplands of northwest China: pedogenic carbonate exceeding organic carbon

    NASA Astrophysics Data System (ADS)

    Wang, Xiujun; Wang, Jiaping; Xu, Minggang; Zhang, Wenju; Fan, Tinglu; Zhang, Juan

    2015-06-01

    Soil carbonate (SIC) exceeds organic carbon (SOC) greatly in arid lands, thus may be important for carbon sequestration. However, field data for quantifying carbonate accumulation have been lacking. This study aims to improve our understanding of SIC dynamics and its role in carbon sequestration. We analyzed two datasets of SOC and SIC and their 13C compositions , one with over 100 soil samples collected recently from various land uses in the Yanqi Basin, Xinjiang, and the other with 18 archived soil samples from a long-term experiment (LTE) in Pingliang, Gansu. The data from the Yanqi Basin showed that SOC had a significant relationship with SIC and pedogenic carbonate (PIC); converting shrub land to cropland increased PIC stock by 5.2 kg C m-2, which was 3.6 times of that in SOC stock. The data from the LTE showed greater accumulation of PIC (21-49 g C m-2 year-1) than SOC (10-39 g C m-2 year-1) over 0-20 cm. Our study points out that intensive cropping in the arid and semi-arid regions leads to an increase in both SOC and PIC. Increasing SOC through straw organic amendments enhances PIC accumulation in the arid cropland of northwestern China.

  14. Carbon accumulation in arid croplands of northwest China: pedogenic carbonate exceeding organic carbon

    PubMed Central

    Wang, Xiujun; Wang, Jiaping; Xu, Minggang; Zhang, Wenju; Fan, Tinglu; Zhang, Juan

    2015-01-01

    Soil carbonate (SIC) exceeds organic carbon (SOC) greatly in arid lands, thus may be important for carbon sequestration. However, field data for quantifying carbonate accumulation have been lacking. This study aims to improve our understanding of SIC dynamics and its role in carbon sequestration. We analyzed two datasets of SOC and SIC and their 13C compositions , one with over 100 soil samples collected recently from various land uses in the Yanqi Basin, Xinjiang, and the other with 18 archived soil samples from a long-term experiment (LTE) in Pingliang, Gansu. The data from the Yanqi Basin showed that SOC had a significant relationship with SIC and pedogenic carbonate (PIC); converting shrub land to cropland increased PIC stock by 5.2 kg C m−2, which was 3.6 times of that in SOC stock. The data from the LTE showed greater accumulation of PIC (21–49 g C m−2 year−1) than SOC (10–39 g C m−2 year−1) over 0–20 cm. Our study points out that intensive cropping in the arid and semi-arid regions leads to an increase in both SOC and PIC. Increasing SOC through straw organic amendments enhances PIC accumulation in the arid cropland of northwestern China. PMID:26091554

  15. Carbon tetrachloride replacement compounds for organic vapor air-purifying respirator cartridge and activated carbon testing--a review.

    PubMed

    Moyer, E S; Smith, S J; Wood, G O

    2001-01-01

    This article reviews efforts by researchers and organizations around the world to identify chemicals as substitutes for carbon tetrachloride in measuring activated carbon activity (adsorption capacity) or organic vapor air-purifying respirator cartridge (or other packed carbon bed) breakthrough times. Such measurements usually are done to determine if a minimum performance standard is met. Different criteria have been established, supporting data developed and used, and conclusions reached. This article presents relevant published, unpublished, obscure, and recalculated data which the reader can use to make a choice of replacement chemical and testing conditions. No recommendations for a specific replacement chemical are endorsed or promoted in this review. PMID:11549144

  16. Erosion of soil organic carbon: implications for carbon sequestration

    USGS Publications Warehouse

    Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.; McPherson, B.J.; Sundquist, E.T.

    2009-01-01

    Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.

  17. Ecological determinism increases with organism size.

    PubMed

    Farjalla, Vinicius F; Srivastava, Diane S; Marino, Nicholas A C; Azevedo, Fernanda D; Dib, Viviane; Lopes, Paloma M; Rosado, Alexandre S; Bozelli, Reinaldo L; Esteves, Francisco A

    2012-07-01

    After much debate, there is an emerging consensus that the composition of many ecological communities is determined both by species traits, as proposed by niche theory, as well as by chance events. A critical question for ecology is, therefore, which attributes of species predict the dominance of deterministic or stochastic processes. We outline two hypotheses by which organism size could determine which processes structure ecological communities, and we test these hypotheses by comparing the community structure in bromeliad phytotelmata of three groups of organisms (bacteria, zooplankton, and macroinvertebrates) that encompass a 10 000-fold gradient in body size, but live in the same habitat. Bacteria had no habitat associations, as would be expected from trait-neutral stochastic processes, but still showed exclusion among species pairs, as would be expected from niche-based processes. Macroinvertebrates had strong habitat and species associations, indicating niche-based processes. Zooplankton, with body size between bacteria and macroinvertebrates, showed intermediate habitat associations. We concluded that a key niche process, habitat filtering, strengthened with organism size, possibly because larger organisms are both less plastic in their fundamental niches and more able to be selective in dispersal. These results suggest that the relative importance of deterministic and stochastic processes may be predictable from organism size.

  18. Stable carbon isotope ratios of ambient aromatic volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Kornilova, Anna; Huang, Lin; Saccon, Marina; Rudolph, Jochen

    2016-09-01

    Measurements of mixing ratios and stable carbon isotope ratios of aromatic volatile organic compounds (VOC) in the atmosphere were made in Toronto (Canada) in 2009 and 2010. Consistent with the kinetic isotope effect for reactions of aromatic VOC with the OH radical the observed stable carbon isotope ratios are on average significantly heavier than the isotope ratios of their emissions. The change of carbon isotope ratio between emission and observation is used to determine the extent of photochemical processing (photochemical age, [OH]dt) of the different VOC. It is found that [OH]dt of different VOC depends strongly on the VOC reactivity. This demonstrates that for this set of observations the assumption of a uniform [OH]dt for VOC with different reactivity is not justified and that the observed values for [OH]dt are the result of mixing of VOC from air masses with different values for [OH]dt. Based on comparison between carbon isotope ratios and VOC concentration ratios it is also found that the varying influence of sources with different VOC emission ratios has a larger impact on VOC concentration ratios than photochemical processing. It is concluded that for this data set the use of VOC concentration ratios to determine [OH]dt would result in values for [OH]dt inconsistent with carbon isotope ratios and that the concept of a uniform [OH]dt for an air mass has to be replaced by the concept of individual values of an average [OH]dt for VOC with different reactivity.

  19. Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Analysis of high-molecular-weight dissolved organic matter (DOM) from two estuaries in the northwest Atlantic Ocean reveals that black carbon (BC) is a significant component of previously uncharacterized DOM, suggesting that river-estuary systems are important exporters of recalcitrant dissolved organic carbon to the ocean.

  20. Organic carbon accumulation in Brazilian mangal sediments

    NASA Astrophysics Data System (ADS)

    Sanders, Christian J.; Smoak, Joseph M.; Sanders, Luciana M.; Sathy Naidu, A.; Patchineelam, Sambasiva R.

    2010-12-01

    This study reviews the organic carbon (OC) accumulation rates in mangrove forests, margins and intertidal mudflats in geographically distinct areas along the Brazilian coastline (Northeastern to Southern). Our initial results indicate that the mangrove forests in the Northeastern region of Brazil are accumulating more OC (353 g/m 2/y) than in the Southeastern areas (192 g/m 2/y) being that the sediment accumulation rates, 2.8 and 2.5 mm/y, and OC content ˜7.1% and ˜5.8% (dry sediment weight) were contributing factors to the discrepancies between the forests. The intertidal mudflats on the other hand showed substantially greater OC accumulation rates, sedimentation rates and content 1129 g/m 2/y and 234 g/m 2/y; 7.3 and 3.4 mm/y; 10.3% and ˜2.7% (OC of dry sediment weight content), respectively, in the Northeastern compared to the Southeastern region. Mangrove forests in the South-Southeastern regions of Brazil may be more susceptible to the rising sea level, as they are geographically constricted by the vast mountain ranges along the coastline.

  1. Organic carbon hidden in urban ecosystems

    PubMed Central

    Edmondson, Jill L.; Davies, Zoe G.; McHugh, Nicola; Gaston, Kevin J.; Leake, Jonathan R.

    2012-01-01

    Urbanization is widely presumed to degrade ecosystem services, but empirical evidence is now challenging these assumptions. We report the first city-wide organic carbon (OC) budget for vegetation and soils, including under impervious surfaces. Urban soil OC storage was significantly greater than in regional agricultural land at equivalent soil depths, however there was no significant difference in storage between soils sampled beneath urban greenspaces and impervious surfaces, at equivalent depths. For a typical U.K. city, total OC storage was 17.6 kg m−2 across the entire urban area (assuming 0 kg m−2 under 15% of land covered by buildings). The majority of OC (82%) was held in soils, with 13% found under impervious surfaces, and 18% stored in vegetation. We reveal that assumptions underpinning current national estimates of ecosystem OC stocks, as required by Kyoto Protocol signatories, are not robust and are likely to have seriously underestimated the contributions of urban areas. PMID:23236585

  2. Organic carbon inventories in natural and restored Ecuadorian mangrove forests.

    PubMed

    DelVecchia, Amanda G; Bruno, John F; Benninger, Larry; Alperin, Marc; Banerjee, Ovik; de Dios Morales, Juan

    2014-01-01

    Mangroves can capture and store organic carbon and their protection and therefore their restoration is a component of climate change mitigation. However, there are few empirical measurements of long-term carbon storage in mangroves or of how storage varies across environmental gradients. The context dependency of this process combined with geographically limited field sampling has made it difficult to generalize regional and global rates of mangrove carbon sequestration. This has in turn hampered the inclusion of sequestration by mangroves in carbon cycle models and in carbon offset markets. The purpose of this study was to estimate the relative carbon capture and storage potential in natural and restored mangrove forests. We measured depth profiles of soil organic carbon content in 72 cores collected from six sites (three natural, two restored, and one afforested) surrounding Muisne, Ecuador. Samples up to 1 m deep were analyzed for organic matter content using loss-on-ignition and values were converted to organic carbon content using an accepted ratio of 1.72 (g/g). Results suggest that average soil carbon storage is 0.055 ± 0.002 g cm(-3) (11.3 ± 0.8% carbon content by dry mass, mean ± 1 SE) up to 1 m deep in natural sites, and 0.058 ± 0.002 g cm(-3) (8.0 ± 0.3%) in restored sites. These estimates are concordant with published global averages. Evidence of equivalent carbon stocks in restored and afforested mangrove patches emphasizes the carbon sink potential for reestablished mangrove systems. We found no relationship between sediment carbon storage and aboveground biomass, forest structure, or within-patch location. Our results demonstrate the long-term carbon storage potential of natural mangroves, high effectiveness of mangrove restoration and afforestation, a lack of predictability in carbon storage strictly based on aboveground parameters, and the need to establish standardized protocol for quantifying mangrove sediment carbon stocks. PMID:24883249

  3. Organic carbon inventories in natural and restored Ecuadorian mangrove forests

    PubMed Central

    Bruno, John F.; Benninger, Larry; Alperin, Marc; de Dios Morales, Juan

    2014-01-01

    Mangroves can capture and store organic carbon and their protection and therefore their restoration is a component of climate change mitigation. However, there are few empirical measurements of long-term carbon storage in mangroves or of how storage varies across environmental gradients. The context dependency of this process combined with geographically limited field sampling has made it difficult to generalize regional and global rates of mangrove carbon sequestration. This has in turn hampered the inclusion of sequestration by mangroves in carbon cycle models and in carbon offset markets. The purpose of this study was to estimate the relative carbon capture and storage potential in natural and restored mangrove forests. We measured depth profiles of soil organic carbon content in 72 cores collected from six sites (three natural, two restored, and one afforested) surrounding Muisne, Ecuador. Samples up to 1 m deep were analyzed for organic matter content using loss-on-ignition and values were converted to organic carbon content using an accepted ratio of 1.72 (g/g). Results suggest that average soil carbon storage is 0.055 ± 0.002 g cm−3 (11.3 ± 0.8% carbon content by dry mass, mean ± 1 SE) up to 1 m deep in natural sites, and 0.058 ± 0.002 g cm−3 (8.0 ± 0.3%) in restored sites. These estimates are concordant with published global averages. Evidence of equivalent carbon stocks in restored and afforested mangrove patches emphasizes the carbon sink potential for reestablished mangrove systems. We found no relationship between sediment carbon storage and aboveground biomass, forest structure, or within-patch location. Our results demonstrate the long-term carbon storage potential of natural mangroves, high effectiveness of mangrove restoration and afforestation, a lack of predictability in carbon storage strictly based on aboveground parameters, and the need to establish standardized protocol for quantifying mangrove sediment carbon stocks. PMID:24883249

  4. Inferring Absorbing Organic Carbon Content from AERONET Data

    NASA Technical Reports Server (NTRS)

    Arola, A.; Schuster, G.; Myhre, G.; Kazadzis, S.; Dey, S.; Tripathi, S. N.

    2011-01-01

    Black carbon, light-absorbing organic carbon (often called brown carbon) and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated globally the amount of light absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon) levels in biomass burning regions of South-America and Africa are relatively high (about 15-20 magnesium per square meters during biomass burning season), while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30-35 magnesium per square meters during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while opposite is true in urban areas in India and China.

  5. Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin

    USGS Publications Warehouse

    Wynn, J.G.; Harden, J.W.; Fries, T.L.

    2006-01-01

    Analysis of depth trends of 13C abundance in soil organic matter and of 13C abundance from soil-respired CO2 provides useful indications of the dynamics of the terrestrial carbon cycle and of paleoecological change. We measured depth trends of 13C abundance from cropland and control pairs of soils in the lower Mississippi Basin, as well as the 13C abundance of soil-respired CO2 produced during approximately 1-year soil incubation, to determine the role of several candidate processes on the 13C depth profile of soil organic matter. Depth profiles of 13C from uncultivated control soils show a strong relationship between the natural logarithm of soil organic carbon concentration and its isotopic composition, consistent with a model Rayleigh distillation of 13C in decomposing soil due to kinetic fractionation during decomposition. Laboratory incubations showed that initially respired CO 2 had a relatively constant 13C content, despite large differences in the 13C content of bulk soil organic matter. Initially respired CO2 was consistently 13C-depleted with respect to bulk soil and became increasingly 13C-depleted during 1-year, consistent with the hypothesis of accumulation of 13C in the products of microbial decomposition, but showing increasing decomposition of 13C-depleted stable organic components during decomposition without input of fresh biomass. We use the difference between 13C / 12C ratios (calculated as ??-values) between respired CO 2 and bulk soil organic carbon as an index of the degree of decomposition of soil, showing trends which are consistent with trends of 14C activity, and with results of a two-pooled kinetic decomposition rate model describing CO2 production data recorded during 1 year of incubation. We also observed inconsistencies with the Rayleigh distillation model in paired cropland soils and reasons for these inconsistencies are discussed. ?? 2005 Elsevier B.V. All rights reserved.

  6. Stability of organic carbon in deep soil layers controlled by fresh carbon supply.

    PubMed

    Fontaine, Sébastien; Barot, Sébastien; Barré, Pierre; Bdioui, Nadia; Mary, Bruno; Rumpel, Cornelia

    2007-11-01

    The world's soils store more carbon than is present in biomass and in the atmosphere. Little is known, however, about the factors controlling the stability of soil organic carbon stocks and the response of the soil carbon pool to climate change remains uncertain. We investigated the stability of carbon in deep soil layers in one soil profile by combining physical and chemical characterization of organic carbon, soil incubations and radiocarbon dating. Here we show that the supply of fresh plant-derived carbon to the subsoil (0.6-0.8 m depth) stimulated the microbial mineralization of 2,567 +/- 226-year-old carbon. Our results support the previously suggested idea that in the absence of fresh organic carbon, an essential source of energy for soil microbes, the stability of organic carbon in deep soil layers is maintained. We propose that a lack of supply of fresh carbon may prevent the decomposition of the organic carbon pool in deep soil layers in response to future changes in temperature. Any change in land use and agricultural practice that increases the distribution of fresh carbon along the soil profile could however stimulate the loss of ancient buried carbon.

  7. [Organic and element carbon in foliar smoke].

    PubMed

    Chen, Hui-yu; Liu Gang; Xu, Hui; Li, Jiu-hai; Wu, Dan

    2015-03-01

    A home-made combustion and sampling apparatus was used to burn green leaves under flaming and smoldering conditions and to collect the smoke generated. The smoke was measured with Organic/Elemental Carbon (OC/EC) Analyzer using IMPROVE thermal-optical reflectance (TOR) method, to investigate the mass fractions and the distribution of OC, EC and eight carbon fractions in foliar smoke. The results showed that in smoldering condition, the mean OC, EC mass fractions of ten foliar smokes were 48.9% and 4.5%, respectively. The mean mass fraction of char-EC (EC1 - POC) was 4.4%. The average emission factors (EF) of particulate matters, OC and EC in smoldering foliar smoke were 102.4 g x kg(-1), 50.0 g x kg(-1) and 4.7 g x kg(-1), respectively. The mean ratios of OC/EC, OC1/OC2 and char-EC/soot-EC (EC1 - POC/EC2 + EC3) in this condition were 11.5, 1.9 and 48.1, respectively. For the foliar smoke emitted in flaming condition, the mean mass fractions of OC, EC and char-EC were 44.9%, 10.9% and 10.7%, respectively. The average EF of PM, OC and EC in flaming smoke were 59.2 g x kg(-1), 26.6 g x kg(-1) and 6.0 g x kg(-1). And the three ratios mentioned above in this condition were 4.8, 1.1 and 133.0, respectively. In conclusion, foliar smoke had higher OC1 mass fractions and OC1/OC2 values in smoldering condition. While flaming foliar smoke had higher char-EC mass fractions and char-EC/soot-EC values. The compositions of OC, EC in foliar smoke varied between different tree species and different combustion conditions. The composition was also obviously different from those of other biomass smoke.

  8. Organic carbon flow in a swamp-stream ecosystem

    SciTech Connect

    Mulholland, P.J.

    1981-01-01

    An annual organic carbon budget is presented for an 8-km segment of Creeping Swamp, an undisturbed, third-order swamp-stream in the Coastal Plain of North Carolina, USA. Annual input of organic carbon (588 gC/m/sup 2/) was 96% allochthonous and was dominated by leaf litter inputs (36%) and fluvial, dissolved organic carbon (DOC) inputs (31%). Although the swamp-stream was primarily heterotrophic, autochthonous organic carbon input, primarily from filamentous algae, was important during February and March when primary production/ecosystem respiration (P/R) ratios of the flooded portions were near one. Annual output of organic carbon via fluvial processes (214 gC/m/sup 2/), 95% as DOC, was 36% of total annual inputs, indicating that the swamp-stream segment ecosystem was 64% efficient at retaining organic carbon. Organic carbon dynamics in the Creeping Swamp segment were compared to those reported for upland stream segments using indices of organic matter processing suggested by Fisher (1977) and a loading potential index suggested here. Creeping Swamp, while loading at a high rate, retains a much larger portion of its organic carbon inputs than two upland streams. Despite the high degree of retention and oxidation of organic inputs to Creeping Swamp, there is a net annual fluvial export of 21 gC/m/sup 2/, mostly in the dissolved form. Watersheds drained by swamp-streams in the southeastern United States are thought to have large organic carbon exports compared to upland forested drainages, because the stream network covers a much greater proportion of the total watershed area.

  9. Input related microbial carbon dynamic of soil organic matter in particle size fractions

    NASA Astrophysics Data System (ADS)

    Gude, A.; Kandeler, E.; Gleixner, G.

    2012-04-01

    This paper investigated the flow of carbon into different groups of soil microorganisms isolated from different particle size fractions. Two agricultural sites of contrasting organic matter input were compared. Both soils had been submitted to vegetation change from C3 (Rye/Wheat) to C4 (Maize) plants, 25 and 45 years ago. Soil carbon was separated into one fast-degrading particulate organic matter fraction (POM) and one slow-degrading organo-mineral fraction (OMF). The structure of the soil microbial community were investigated using phospholipid fatty acids (PLFA), and turnover of single PLFAs was calculated from the changes in their 13C content. Soil enzyme activities involved in the degradation of carbohydrates was determined using fluorogenic MUF (methyl-umbelliferryl phosphate) substrates. We found that fresh organic matter input drives soil organic matter dynamic. Higher annual input of fresh organic matter resulted in a higher amount of fungal biomass in the POM-fraction and shorter mean residence times. Fungal activity therefore seems essential for the decomposition and incorporation of organic matter input into the soil. As a consequence, limited litter input changed especially the fungal community favouring arbuscular mycorrhizal fungi. Altogether, supply and availability of fresh plant carbon changed the distribution of microbial biomass, the microbial community structure and enzyme activities and resulted in different priming of soil organic matter. Most interestingly we found that only at low input the OMF fraction had significantly higher calculated MRT for Gram-positive and Gram-negative bacteria suggesting high recycling of soil carbon or the use of other carbon sources. But on average all microbial groups had nearly similar carbon uptake rates in all fractions and both soils, which contrasted the turnover times of bulk carbon. Hereby the microbial carbon turnover was always faster than the soil organic carbon turnover and higher carbon input

  10. Dispersion of carbon nanotubes using organic solvents.

    PubMed

    Dumonteil, S; Demortier, A; Detriche, S; Raes, C; Fonseca, A; Rühle, M; Nagy, J B

    2006-05-01

    Phenyl ethyl alcohol was used for fast and stable dispersion of carbon nanotubes. This solvent, more effective than ethanol and toluene, allows easy dispersion of carbon nanotubes for TEM characterization. For TEM grids prepared at high dilution, it is possible to observe each tube separately. Applying that solvent, it was possible to measure the length, the diameter and the solubility of different carbon nanotubes samples.

  11. Temporal evolution of organic carbon concentrations in Swiss lakes: trends of allochthonous and autochthonous organic carbon.

    PubMed

    Rodríguez-Murillo, J C; Filella, M

    2015-07-01

    Evaluation of time series of organic carbon (OC) concentrations in lakes is useful for monitoring some of the effects of global change on lakes and their catchments. Isolating the evolution of autochthonous and allochthonous lake OC might be a useful way to differentiate between drivers of soil and photosynthetic OC related changes. However, there are no temporal series for autochthonous and allochthonous lake OC. In this study, a new approach has been developed to construct time series of these two categories of OC from existing dissolved organic carbon (DOC) data. First, temporal series (longer than ten years) of OC have been compiled for seven big Swiss lakes and another 27 smaller ones and evaluated by using appropriate non-parametric statistical methods. Subsequently, the new approach has been applied to construct time series of autochthonous and allochthonous lake OC in the seven big lakes. Doing this was possible because long term series of DOC concentrations at different depths are available for these lakes. Organic carbon concentrations generally increase in big lakes and decrease in smaller ones, although only in some cases are these trends statistically significant. The magnitude of the observed changes is generally small in big lakes (<1% annual change) and larger in smaller lakes. Autochthonous DOC concentrations in big lakes increase or decrease depending on the lake and the station but allochthonous DOC concentrations generally increase. This pattern is consistent with an increase in the OC input from the lakes' catchments and/or an increase in the refractoriness of the OC in question, and with a temporal evolution of autochthonous DOC depending on the degree of recovery from past eutrophication of each particular lake. In small lakes, OC dynamics are mainly driven by decreasing biological productivity, which in many, but not all cases, outweighs the probable increase of allochthonous OC.

  12. Spatiotemporal modeling of soil organic carbon stocks across a subtropical region.

    PubMed

    Ross, Christopher Wade; Grunwald, Sabine; Myers, David Brenton

    2013-09-01

    Given the significance and complex nature of soil organic carbon in the context of the global carbon cycle, the need exists for more accurate and economically feasible means of soil organic carbon analysis and its underlying spatial variation at regional scale. The overarching goal of this study was to assess both the spatial and temporal variability of soil organic carbon within a subtropical region of Florida, USA. Specifically, the objectives were to: i) quantify regional soil organic carbon stocks for historical and current conditions and ii) determine whether the soils have acted as a net sink or a net source for atmospheric carbon-dioxide over an approximate 40 year time period. To achieve these objectives, geostatistical interpolation models were used in conjunction with "historical" and "current" datasets to predict soil organic carbon stocks for the upper 20 cm soil profile of the study area. Soil organic carbon estimates derived from the models ranged from 102 to 108 Tg for historical conditions and 211 to 320 Tg for current conditions, indicating that soils in the study area have acted as a net sink for atmospheric carbon over the last 40 years. A paired resampling of historical sites supported the geostatistical estimates, and resulted in an average increase of 0.8 g carbon m(-2) yr(-1) across all collocated samples. Accurately assessing the spatial and temporal state of soil organic carbon at regional scale is critical to further our understanding of global carbon stocks and provide a baseline so that the effects sustainable land use policy can be evaluated.

  13. Variation in assimilable organic carbon formation during chlorination of Microcystis aeruginosa extracellular organic matter solutions.

    PubMed

    Sun, Xingbin; Yuan, Ting; Ni, Huishan; Li, Yanpeng; Hu, Yang

    2016-07-01

    This study investigated the chlorination of Microcystis aeruginosa extracellular organic matter (EOM) solutions under different conditions, to determine how the metabolites produced by these organisms affect water safety and the formation of assimilable organic carbon (AOC). The effects of chlorine dosages, coagulant dosage, reaction time and temperature on the formation of AOC were investigated during the disinfection of M.aeruginosa metabolite solutions. The concentration of AOC followed a decreasing and then increasing pattern with increasing temperature and reaction time. The concentration of AOC decreased and then increased with increasing chlorination dosage, followed by a slight decrease at the highest level of chlorination. However, the concentration of AOC decreased continuously with increasing coagulant dosage. The formation of AOC can be suppressed under appropriate conditions. In this study, chlorination at 4mg/L, combined with a coagulant dose of 40mg/L at 20°C over a reaction time of 12hr, produced the minimum AOC. PMID:27372113

  14. Determination of soil organic phosphorus exchange sensitivity

    NASA Astrophysics Data System (ADS)

    Shand, Charles; Wendler, Renate; Lumsdon, David; Cooper, Pat; George, Timothy; Brown, Lawrie; Giles, Courtney; Stutter, Marc; Menezes-Blackburn, Daniel; Zhang, Hao; Wearing, Catherine; Haygarth, Philip; Blackwell, Martin; Darch, Tegan

    2015-04-01

    Soils contain both organic and inorganic phosphorus (P) species in varying proportions. Studies have shown that many soils contain substantial amounts of inositol hexaphosphate (IHP) and there is much interest worldwide in developing strategies to make some use of this recalcitrant resource for plant growth to reduce P fertilizer inputs. Little is known about the preference of ion exchange processes in the solubilisation of organic vs inorganic P forms in soils, an important first step in making P forms bioavailable. Although they do not possess biotic functions, resins provides a simple means to deplete P forms in soil allowing investigation of exchange selectivity between inorganic and organic P forms. The aim of our work was to determine new understanding of exchange selectivity in soils and provide insight into potential depletion and plant uptake of soil phosphorus, with emphasis on organic forms such as IHP. For our study we used a Cambisol sampled from an agricultural area (Tayport) near Dundee in Scotland. The soil had a high Olsen (0.5 M sodium bicarbonate at pH 8.5) extractable P status (84 mg P/kg) and P-31 nuclear magnetic resonance analysis of its NaOH/EDTA extract showed it contained a substantial proportion of IHP (21 % of total extractable P). For resin extraction we used anion exchange resin sheets (4.17 cm each side) in bicarbonate form to minimise pH related solubilisation effects. We used 3.5 g of soil in 75 ml of water and added 1, 2 or 3 resin squares. After equilibration the resin squares were removed and replaced with fresh resin squares a further 3 times. Phosphorus was recovered from the resin sheets by elution with 0.25 M sulphuric acid and analysed by inductively coupled plasma spectroscopy to determine total P, and colorimetrically with malachite green to determine inorganic P with the remainder assigned to organic P. The data showed that the resin preferentially removed inorganic P and even after four sequential extractions little or

  15. [Distribution of soil organic carbon storage and carbon density in Gahai Wetland ecosystem].

    PubMed

    Ma, Wei-Wei; Wang, Hui; Huang, Rong; Li, Jun-Zhen; Li, De-Yu

    2014-03-01

    The profile distribution and accumulation characteristics of organic carbon of four typical marshes (herbaceous peat, marsh wetland, mountain wetland, subalpine meadow) were studied in Gahai Wetlands of Gannan in July 2011. The results showed that the soil bulk densities of the four typical marshes ranged from 0.22 to 1.29 g x cm(-3). The content of soil organic carbon in the herbaceous peat was higher than in other types, with its average content of organic carbon (286. 80 g x kg(-1)) being about 2.91, 4.99, 7.31 times as much as that of the marsh wetland, mountain wetland and subalpine meadow, respectively. The average organic carbon densities were in order of herbaceous peat > subalpine meadow > marsh wetland > mountain wetland, with the highest in the 0-10 cm layer. The change of organic carbon density along the soil profile was basically in accordance with the organic carbon content in the four typical marshes, but fluctuated with soil depth. There were obviously two carbon storage layers (0-10 and 20-40 cm, respectively) in the four typical marshes. The amounts of organic carbon stored in the 0-60 cm layer of the four typical marshes were 369.46, 278.83, 276.16, 292.23 t x hm(-2), respectively. The total amount of organic carbon stored in the 0-60 cm of the four typical marshes was about 9.50 x 10(6) t.

  16. Tracing organic matter sources and carbon burial in mangrove sediments over the past 160 years

    NASA Astrophysics Data System (ADS)

    Gonneea, Meagan Eagle; Paytan, Adina; Herrera-Silveira, Jorge A.

    2004-10-01

    Mangrove ecosystems may be a source of organic carbon and nutrients to adjacent coastal systems on one hand and provide a sedimentary sink for organic carbon on the other. The balance between these two functions may be sensitive to both natural and anthropogenically induced variability, yet these effects have not been thoroughly evaluated in mangrove ecosystems. We determine organic matter sources and carbon burial rates over the past 160 years in three lagoons on the Yucatan Peninsula, Mexico. Carbon isotopes and C/N elemental ratios are utilized to trace the three sources contributing to sedimentary organic matter, mangroves, seagrasses and phytoplankton, while nitrogen isotopes are used to elucidate potential post-depositional biogeochemical transformations in mangrove lagoon sediments. All three organic matter sources contribute to organic carbon burial. Phytoplankton and mangroves are the dominant sources of organic matter in lagoon bank sediments and seagrasses are a significant source to central lagoon sediments. Organic carbon burial rates are higher at the lagoon fringes, where mangrove vegetation dominates, than in seagrass-dominated mid-lagoon areas. A reduction in mangrove contribution to the sedimentary organic matter pool concurrent with reduced total organic carbon burial rates is observed in the recent past at all three lagoons studied. Natural cycles in sediment organic matter source over the past 160 years are observed in a high-resolution core. These fluctuations correspond to climatic variability in this region, as recorded in deep-sea foraminiferal assemblages. Additional work is required in order to differentiate between recent anthropogenic perturbations and natural variability in organic carbon sources and burial rates within these ecosystems.

  17. Environmental analyse of soil organic carbon stock changes in Slovakia

    NASA Astrophysics Data System (ADS)

    Koco, Š.; Barančíková, G.; Skalský, R.; Tarasovičová, Z.; Gutteková, M.; Halas, J.; Makovníková, J.; Novákova, M.

    2012-04-01

    still growing. At colder agroclimatic regions, at flysch region especially where cambisols are present with low of SOM stability since 1994 stability or decreasing of SOC stock is resulting. This is result of climatic impact (lower temperatures, higher humidity) as well as the way of soil management because at colder region the number of glasslands is increased in comparison to arable land. Close relationship between SOC stock and soil production potential index representing the official basis for soil quality evaluation in Slovakia was also determined and a polynomial model was found which describes the relation at the 95% confidence level. From the obtained results it can be concluded, that the amount of crop residues and farmyard manure coming to the soil both in the first and second simulation period (1970 - 1995 and 1996 - 2007) was responsible for general trends in SOC stock dynamics. Achieved results also show different amount and changes of SOC stock in different agroclimatic regions. It was also found that that value of soil production potential index generally used for soil quality assessment in Slovakia corresponds well with simulated values of SOC stocks in top-soils of cropland soils. Key words Soil organic carbon stock, modelling, agricultural soils, agroclimatic regions, Slovakia Acknowledgements This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0333-06.

  18. Soil organic carbon enrichment of dust emissions: Magnitude, mechanisms and its implications for the carbon cycle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion is an important component of the global carbon cycle. However, little attention has been given to the role of aeolian processes in influencing soil organic carbon (SOC) flux and the release of greenhouse gasses, such as carbon-dioxide (CO2), to the atmosphere. Understanding the magnitu...

  19. Limits to soil carbon stability; Deep, ancient soil carbon decomposition stimulated by new labile organic inputs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil carbon (C) pools store about one-third of the total terrestrial organic carbon. Deep soil C pools (below 1 m) are thought to be stable due to their low biodegradability, but little is known about soil microbial processes and carbon dynamics below the soil surface, or how global change might aff...

  20. Organic carbon isotope constraints on the dissolved organic carbon (DOC) reservoir at the Cryogenian-Ediacaran transition

    NASA Astrophysics Data System (ADS)

    Jiang, Ganqing; Wang, Xinqiang; Shi, Xiaoying; Zhang, Shihong; Xiao, Shuhai; Dong, Jin

    2010-10-01

    Prominent negative carbonate carbon isotope (δ 13C carb) anomalies from some Ediacaran successions are accompanied by invariant or decoupled organic carbon isotope (δ 13C org) values and have been interpreted as resulting from the remineralization of a large dissolved organic carbon (DOC) reservoir capable of buffering carbon isotopes of organic matter. This inferred oceanic DOC reservoir was thought to have initiated with the onset of Cryogenian glaciations (ca. 720 Ma) and lasted for millions of years until the late Ediacaran Period (< 560 Ma). Carbon isotope analyses of the basal Doushantuo Formation (ca. 635 Ma) in south China reveal that (1) the cap carbonate has δ 13C org around -26‰ (VPDB) and relatively low Δδ 13C (22 ± 2‰) and (2) the overlying organic-rich black shale and shaly dolostone have more negative δ 13C org (-28‰ to -35‰) and higher Δδ 13C (28‰-30‰). Both δ 13C carb and δ 13C org show a + 6‰ shift within a 4-m-thick interval overlying the Doushantuo cap carbonate. The δ 13C org values of the cap carbonate are associated with low TOC (mostly < 0.1%); their paleoceanographic significance requires further tests in other Ediacaran basins. The co-varying positive shift in δ 13C carb and δ 13C org following cap carbonate deposition is best interpreted as resulting from a rapid increase in organic carbon burial, which may have resulted in the rise of oxygen and heralded the first appearance of animals a few meters above the Doushantuo cap carbonate. The data suggest that a large oceanic DOC reservoir did not exist in the early Ediacaran ocean. Excess oceanic DOC required to explain the Ediacaran Shuram and upper Doushantuo δ 13C excursions, if it existed, had to be developed during the Ediacaran Period after cap carbonate deposition.

  1. [Effects of Chinese fir litter on soil organic carbon decomposition and microbial biomass carbon].

    PubMed

    Wang, Xiao-Feng; Wang, Si-Long; Zhang, Wei-Dong

    2013-09-01

    By using 13C stable isotope tracer technique, this paper studied the effects of Chinese fir litter addition on the soil organic carbon (SOC) decomposition, microbial biomass carbon, and dissolved organic carbon in 0-5 cm and 40-45 cm layers. The decomposition rate of SOC in 40-45 cm layer was significantly lower than that in 0-5 cm layer, but the priming effect induced by the Chinese fir litter addition showed an opposite trend. The Chinese fir litter addition increased the soil total microbial biomass carbon and the microbial biomass carbon derived from native soil significantly, but had less effects on the soil dissolved organic carbon. Turning over the subsoil to the surface of the woodland could accelerate the soil carbon loss in Chinese fir plantation due to the priming effect induced by the litters. PMID:24417093

  2. [Effects of Chinese fir litter on soil organic carbon decomposition and microbial biomass carbon].

    PubMed

    Wang, Xiao-Feng; Wang, Si-Long; Zhang, Wei-Dong

    2013-09-01

    By using 13C stable isotope tracer technique, this paper studied the effects of Chinese fir litter addition on the soil organic carbon (SOC) decomposition, microbial biomass carbon, and dissolved organic carbon in 0-5 cm and 40-45 cm layers. The decomposition rate of SOC in 40-45 cm layer was significantly lower than that in 0-5 cm layer, but the priming effect induced by the Chinese fir litter addition showed an opposite trend. The Chinese fir litter addition increased the soil total microbial biomass carbon and the microbial biomass carbon derived from native soil significantly, but had less effects on the soil dissolved organic carbon. Turning over the subsoil to the surface of the woodland could accelerate the soil carbon loss in Chinese fir plantation due to the priming effect induced by the litters.

  3. Soil organic carbon of an intensively reclaimed region in China: Current status and carbon sequestration potential.

    PubMed

    Deng, Xunfei; Zhan, Yu; Wang, Fei; Ma, Wanzhu; Ren, Zhouqiao; Chen, Xiaojia; Qin, Fangjin; Long, Wenli; Zhu, Zhenling; Lv, Xiaonan

    2016-09-15

    Land reclamation has been highly intensive in China, resulting in a large amount of soil organic carbon (SOC) loss to the atmosphere. Evaluating the factors which drive SOC dynamics and carbon sequestration potential in reclaimed land is critical for improving soil fertility and mitigating global warming. This study aims to determine the current status and factors important to the SOC density in a typical reclaimed land located in Eastern China, where land reclamation has been undergoing for centuries. A total of 4746 topsoil samples were collected from 2007 to 2010. The SOC density of the reclaimed land (3.18±0.05kgCm(-2); mean±standard error) is significantly lower than that of the adjacent non-reclaimed land (5.71±0.04kgCm(-2)) (p<0.05). A Random Forest model is developed and it captures the relationships between the SOC density and the environmental/anthropogenic factors (R(2)=0.59). The soil pH, land use, and elevation are the most important factors for determining SOC dynamics. In contrast, the effect of the reclamation age on the SOC density is negligible, where SOC content in the land reclaimed during years 1047-1724 is as low as that reclaimed during years 1945-2004. The scenario analysis results indicate that the carbon sequestration potential of the reclaimed lands may achieve a maximum of 5.80±1.81kgCO2m(-2) (mean±SD) when dryland is converted to flooded land with vegetable-rice cropping system and soil pH of ~5.9. Note that in some scenarios the methane emission substantially offsets the carbon sequestration potential, especially for continuous rice cropping system. With the optimal setting for carbon sequestration, it is estimated that the dryland reclaimed in the last 50years in China is able to sequester 0.12milliontons CO2 equivalent per year.

  4. Carbon dioxide capture and use: organic synthesis using carbon dioxide from exhaust gas.

    PubMed

    Kim, Seung Hyo; Kim, Kwang Hee; Hong, Soon Hyeok

    2014-01-13

    A carbon capture and use (CCU) strategy was applied to organic synthesis. Carbon dioxide (CO2) captured directly from exhaust gas was used for organic transformations as efficiently as hyper-pure CO2 gas from a commercial source, even for highly air- and moisture-sensitive reactions. The CO2 capturing aqueous ethanolamine solution could be recycled continuously without any diminished reaction efficiency.

  5. A reduced organic carbon component in martian basalts.

    PubMed

    Steele, A; McCubbin, F M; Fries, M; Kater, L; Boctor, N Z; Fogel, M L; Conrad, P G; Glamoclija, M; Spencer, M; Morrow, A L; Hammond, M R; Zare, R N; Vicenzi, E P; Siljeström, S; Bowden, R; Herd, C D K; Mysen, B O; Shirey, S B; Amundsen, H E F; Treiman, A H; Bullock, E S; Jull, A J T

    2012-07-13

    The source and nature of carbon on Mars have been a subject of intense speculation. We report the results of confocal Raman imaging spectroscopy on 11 martian meteorites, spanning about 4.2 billion years of martian history. Ten of the meteorites contain abiotic macromolecular carbon (MMC) phases detected in association with small oxide grains included within high-temperature minerals. Polycyclic aromatic hydrocarbons were detected along with MMC phases in Dar al Gani 476. The association of organic carbon within magmatic minerals indicates that martian magmas favored precipitation of reduced carbon species during crystallization. The ubiquitous distribution of abiotic organic carbon in martian igneous rocks is important for understanding the martian carbon cycle and has implications for future missions to detect possible past martian life. PMID:22628557

  6. A reduced organic carbon component in martian basalts.

    PubMed

    Steele, A; McCubbin, F M; Fries, M; Kater, L; Boctor, N Z; Fogel, M L; Conrad, P G; Glamoclija, M; Spencer, M; Morrow, A L; Hammond, M R; Zare, R N; Vicenzi, E P; Siljeström, S; Bowden, R; Herd, C D K; Mysen, B O; Shirey, S B; Amundsen, H E F; Treiman, A H; Bullock, E S; Jull, A J T

    2012-07-13

    The source and nature of carbon on Mars have been a subject of intense speculation. We report the results of confocal Raman imaging spectroscopy on 11 martian meteorites, spanning about 4.2 billion years of martian history. Ten of the meteorites contain abiotic macromolecular carbon (MMC) phases detected in association with small oxide grains included within high-temperature minerals. Polycyclic aromatic hydrocarbons were detected along with MMC phases in Dar al Gani 476. The association of organic carbon within magmatic minerals indicates that martian magmas favored precipitation of reduced carbon species during crystallization. The ubiquitous distribution of abiotic organic carbon in martian igneous rocks is important for understanding the martian carbon cycle and has implications for future missions to detect possible past martian life.

  7. Evaluation of organic carbon analyzers for space application. [for water reclamation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The state-of-the-art technology for organic carbon analysis in space applications is evaluated. An investigation into total organic carbon (TOC) analysis has identified a variety of schemes which include different methods for: (1) separation of inorganic carbon from organic carbon and/or differentiation of inorganic carbon from organic carbon; (2) reaction of organic carbon to form a quantifiable species; and (3) detection and measurement of that species. Each method option is discussed.

  8. Floodplain Organic Carbon Storage in the Central Yukon River Basin

    NASA Astrophysics Data System (ADS)

    Lininger, K.; Wohl, E.

    2014-12-01

    Floodplain storage of organic carbon is an important aspect of the global carbon cycle that is not well understood or quantified. Although it is understood that rivers transport organic carbon to the ocean, little is known about the quantity of stored carbon in boreal floodplains and the influence of fluvial processes on this storage. We present results on total organic carbon (TOC) content within the floodplains of two rivers, the Dall River and Preacher Creek, in the central Yukon River Basin in the Yukon Flats National Wildlife Refuge of Alaska. The results indicate that organic carbon storage is influenced by fluvial disturbance and grain size. The Dall River, which contains a large amount of floodplain carbon, is meandering and incised, with well-developed floodplain soils, a greater percentage of relatively old floodplain surfaces and a slower floodplain turnover time, and finer grain sizes. Preacher Creek stores less TOC, transports coarser grain sizes, and has higher rates of avulsion and floodplain turnover time. Within the floodplain of a particular river, large spatial heterogeneity in TOC content also exists as a function of depositional environment and age and vegetation community of the site. In addition, saturated regions of the floodplains, such as abandoned channels and oxbow lakes, contain more TOC compared to drier floodplain environments. Frozen alluvial soils likely contain carbon that could be released into the environment with melting permafrost, and thus quantifying the organic carbon content in the active layer of floodplain soils could provide insight into the characteristics of the permafrost beneath. The hydrology in these regions is changing due to permafrost melt, and floodplain areas usually saturated could be dried out, causing breakdown and outgassing of carbon stored in previously saturated soils. Ongoing work will result in a first-order estimate of active-layer floodplain carbon storage for the central Yukon River Basin.

  9. PBDE and PCB accumulation in benthos near marine wastewater outfalls: the role of sediment organic carbon.

    PubMed

    Dinn, Pamela M; Johannessen, Sophia C; Ross, Peter S; Macdonald, Robie W; Whiticar, Michael J; Lowe, Christopher J; van Roodselaar, Albert

    2012-12-01

    Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) were measured in sediments and benthic invertebrates near submarine municipal outfalls in Victoria and Vancouver, B.C., Canada, two areas with contrasting receiving environments. PBDE concentrations in wastewater exceeded those of the legacy PCBs by eight times at Vancouver and 35 times at Victoria. Total PBDE concentrations in benthic invertebrates were higher near Vancouver than Victoria, despite lower concentrations in sediments, and correlated with organic carbon-normalized concentrations in sediment. Principal Components Analysis indicated uptake of individual PBDE congeners was determined by sediment properties (organic carbon, grain size), while PCB congener uptake was governed by physico-chemical properties (octanol-water partitioning coefficient). Results suggest the utility of sediment quality guidelines for PBDEs and likely PCBs benefit if based on organic carbon-normalized concentrations. Also, where enhanced wastewater treatment increases the PBDEs to particulate organic carbon ratio in effluent, nearfield benthic invertebrates may face increased PBDE accumulation.

  10. Unimodal response of fish yield to dissolved organic carbon.

    PubMed

    Finstad, Anders G; Helland, Ingeborg P; Ugedal, Ola; Hesthagen, Trygve; Hessen, Dag O

    2014-01-01

    Here, we demonstrate a contrasting effect of terrestrial coloured dissolved organic material on the secondary production of boreal nutrient poor lakes. Using fish yield from standardised brown trout gill-net catches as a proxy, we show a unimodal response of lake secondary productivity to dissolved organic carbon (DOC). This suggests a trade-off between positive and negative effects, where the initial increase may hinge upon several factors such as energy subsidising, screening of UV-radiation or P and N load being associated with organic carbon. The subsequent decline in production with further increase in DOC is likely associated with light limitations of primary production. We also show that shallow lakes switch from positive to negative effects at higher carbon loads than deeper lakes. These results underpin the major role of organic carbon for structuring productivity of boreal lake ecosystems. PMID:24165396

  11. Dissolved organic carbon and its potential predictors in eutrophic lakes.

    PubMed

    Toming, Kaire; Kutser, Tiit; Tuvikene, Lea; Viik, Malle; Nõges, Tiina

    2016-10-01

    Understanding of the true role of lakes in the global carbon cycle requires reliable estimates of dissolved organic carbon (DOC) and there is a strong need to develop remote sensing methods for mapping lake carbon content at larger regional and global scales. Part of DOC is optically inactive. Therefore, lake DOC content cannot be mapped directly. The objectives of the current study were to estimate the relationships of DOC and other water and environmental variables in order to find the best proxy for remote sensing mapping of lake DOC. The Boosted Regression Trees approach was used to clarify in which relative proportions different water and environmental variables determine DOC. In a studied large and shallow eutrophic lake the concentrations of DOC and coloured dissolved organic matter (CDOM) were rather high while the seasonal and interannual variability of DOC concentrations was small. The relationships between DOC and other water and environmental variables varied seasonally and interannually and it was challenging to find proxies for describing seasonal cycle of DOC. Chlorophyll a (Chl a), total suspended matter and Secchi depth were correlated with DOC and therefore are possible proxies for remote sensing of seasonal changes of DOC in ice free period, while for long term interannual changes transparency-related variables are relevant as DOC proxies. CDOM did not appear to be a good predictor of the seasonality of DOC concentration in Lake Võrtsjärv since the CDOM-DOC coupling varied seasonally. However, combining the data from Võrtsjärv with the published data from six other eutrophic lakes in the world showed that CDOM was the most powerful predictor of DOC and can be used in remote sensing of DOC concentrations in eutrophic lakes. PMID:27318445

  12. Dissolved organic carbon and its potential predictors in eutrophic lakes.

    PubMed

    Toming, Kaire; Kutser, Tiit; Tuvikene, Lea; Viik, Malle; Nõges, Tiina

    2016-10-01

    Understanding of the true role of lakes in the global carbon cycle requires reliable estimates of dissolved organic carbon (DOC) and there is a strong need to develop remote sensing methods for mapping lake carbon content at larger regional and global scales. Part of DOC is optically inactive. Therefore, lake DOC content cannot be mapped directly. The objectives of the current study were to estimate the relationships of DOC and other water and environmental variables in order to find the best proxy for remote sensing mapping of lake DOC. The Boosted Regression Trees approach was used to clarify in which relative proportions different water and environmental variables determine DOC. In a studied large and shallow eutrophic lake the concentrations of DOC and coloured dissolved organic matter (CDOM) were rather high while the seasonal and interannual variability of DOC concentrations was small. The relationships between DOC and other water and environmental variables varied seasonally and interannually and it was challenging to find proxies for describing seasonal cycle of DOC. Chlorophyll a (Chl a), total suspended matter and Secchi depth were correlated with DOC and therefore are possible proxies for remote sensing of seasonal changes of DOC in ice free period, while for long term interannual changes transparency-related variables are relevant as DOC proxies. CDOM did not appear to be a good predictor of the seasonality of DOC concentration in Lake Võrtsjärv since the CDOM-DOC coupling varied seasonally. However, combining the data from Võrtsjärv with the published data from six other eutrophic lakes in the world showed that CDOM was the most powerful predictor of DOC and can be used in remote sensing of DOC concentrations in eutrophic lakes.

  13. Anomalous 13C enrichment in modern marine organic carbon

    USGS Publications Warehouse

    Arthur, M.A.; Dean, W.E.; Claypool, G.E.

    1985-01-01

    Marine organic carbon is heavier isotopically (13C enriched) than most land-plant or terrestrial organic C1. Accordingly, ??13C values of organic C in modern marine sediments are routinely interpreted in terms of the relative proportions of marine and terrestrial sources of the preserved organic matter2,3. When independent geochemical techniques are used to evaluate the source of organic matter in Cretaceous or older rocks, those rocks containing mostly marine organic C are found typically to have lighter (more-negative) ??13C values than rocks containing mostly terrestrial organic C. Here we conclude that marine photosynthesis in mid-Cretaceous and earlier oceans generally resulted in a greater fractionation of C isotopes and produced organic C having lighter ??13C values. Modern marine photosynthesis may be occurring under unusual geological conditions (higher oceanic primary production rates, lower PCO2) that limit dissolved CO2 availability and minimize carbon isotope fractionation4. ?? 1985 Nature Publishing Group.

  14. Real World of Industrial Chemistry: Organic Chemicals from Carbon Monoxide.

    ERIC Educational Resources Information Center

    Kolb, Kenneth E.; Kolb, Doris

    1983-01-01

    Carbon Monoxide obtained from coal may serve as the source for a wide variety of organic compounds. Several of these compounds are discussed, including phosgene, benzaldehyde, methanol, formic acid and its derivatives, oxo aldehydes, acrylic acids, and others. Commercial reactions of carbon monoxide are highlighted in a table. (JN)

  15. Determination of carbon content in bainitic ferrite and carbon distribution in austenite by using CBKLDP

    SciTech Connect

    Zhang, M.X.; Kelly, P.M.

    1998-03-01

    Convergent beam Kikuchi line diffraction patterns taken with a 10nm-diameter electron beam have been used to determine the lattice parameter and hence the carbon concentration in both ferrite and austenite. The experimental results show that bainitic ferrite is supersaturated in carbon and that, during ageing of austenite prior to the precipitation of cementite, the original carbon distribution across a grain becomes very nonuniform with distinct regions of both carbon enrichment and carbon depletion.

  16. Variability of sedimentary organic carbon in patchy seagrass landscapes.

    PubMed

    Ricart, Aurora M; York, Paul H; Rasheed, Michael A; Pérez, Marta; Romero, Javier; Bryant, Catherine V; Macreadie, Peter I

    2015-11-15

    Seagrass ecosystems, considered among the most efficient carbon sinks worldwide, encompass a wide variety of spatial configurations in the coastal landscape. Here we evaluated the influence of the spatial configuration of seagrass meadows at small scales (metres) on carbon storage in seagrass sediments. We intensively sampled carbon stocks and other geochemical properties (δ(13)C, particle size, depositional fluxes) across seagrass-sand edges in a Zostera muelleri patchy seagrass landscape. Carbon stocks were significantly higher (ca. 20%) inside seagrass patches than at seagrass-sand edges and bare sediments. Deposition was similar among all positions and most of the carbon was from allochthonous sources. Patch level attributes (e.g. edge distance) represent important determinants of the spatial heterogeneity of carbon stocks within seagrass ecosystems. Our findings indicate that carbon stocks of seagrass areas have likely been overestimated by not considering the influence of meadow landscapes, and have important relevance for the design of seagrass carbon stock assessments. PMID:26428624

  17. Variability of sedimentary organic carbon in patchy seagrass landscapes.

    PubMed

    Ricart, Aurora M; York, Paul H; Rasheed, Michael A; Pérez, Marta; Romero, Javier; Bryant, Catherine V; Macreadie, Peter I

    2015-11-15

    Seagrass ecosystems, considered among the most efficient carbon sinks worldwide, encompass a wide variety of spatial configurations in the coastal landscape. Here we evaluated the influence of the spatial configuration of seagrass meadows at small scales (metres) on carbon storage in seagrass sediments. We intensively sampled carbon stocks and other geochemical properties (δ(13)C, particle size, depositional fluxes) across seagrass-sand edges in a Zostera muelleri patchy seagrass landscape. Carbon stocks were significantly higher (ca. 20%) inside seagrass patches than at seagrass-sand edges and bare sediments. Deposition was similar among all positions and most of the carbon was from allochthonous sources. Patch level attributes (e.g. edge distance) represent important determinants of the spatial heterogeneity of carbon stocks within seagrass ecosystems. Our findings indicate that carbon stocks of seagrass areas have likely been overestimated by not considering the influence of meadow landscapes, and have important relevance for the design of seagrass carbon stock assessments.

  18. Gravimetric Determination of Calcium as Calcium Carbonate Hydrate.

    ERIC Educational Resources Information Center

    Henrickson, Charles H.; Robinson, Paul R.

    1979-01-01

    The gravimetric determination of calcium as calcium carbonate is described. This experiment is suitable for undergraduate quantitative analysis laboratories. It is less expensive than determination of chloride as silver chloride. (BB)

  19. Influence of dissolved organic carbon content on modelling natural organic matter acid-base properties.

    PubMed

    Garnier, Cédric; Mounier, Stéphane; Benaïm, Jean Yves

    2004-10-01

    Natural organic matter (NOM) behaviour towards proton is an important parameter to understand NOM fate in the environment. Moreover, it is necessary to determine NOM acid-base properties before investigating trace metals complexation by natural organic matter. This work focuses on the possibility to determine these acid-base properties by accurate and simple titrations, even at low organic matter concentrations. So, the experiments were conducted on concentrated and diluted solutions of extracted humic and fulvic acid from Laurentian River, on concentrated and diluted model solutions of well-known simple molecules (acetic and phenolic acids), and on natural samples from the Seine river (France) which are not pre-concentrated. Titration experiments were modelled by a 6 acidic-sites discrete model, except for the model solutions. The modelling software used, called PROSECE (Programme d'Optimisation et de SpEciation Chimique dans l'Environnement), has been developed in our laboratory, is based on the mass balance equilibrium resolution. The results obtained on extracted organic matter and model solutions point out a threshold value for a confident determination of the studied organic matter acid-base properties. They also show an aberrant decreasing carboxylic/phenolic ratio with increasing sample dilution. This shift is neither due to any conformational effect, since it is also observed on model solutions, nor to ionic strength variations which is controlled during all experiments. On the other hand, it could be the result of an electrode troubleshooting occurring at basic pH values, which effect is amplified at low total concentration of acidic sites. So, in our conditions, the limit for a correct modelling of NOM acid-base properties is defined as 0.04 meq of total analysed acidic sites concentration. As for the analysed natural samples, due to their high acidic sites content, it is possible to model their behaviour despite the low organic carbon concentration.

  20. Investigation of organic carbon transformation in soils of dominant dissolved organic carbon source zones

    NASA Astrophysics Data System (ADS)

    Pissarello, Anna; Miltner, Anja; Oosterwoud, Marieke; Fleckenstein, Jan; Kästner, Matthias

    2014-05-01

    Over the past 20 years both a decrease in soil organic matter (SOM) and an increase in the dissolved organic carbon (DOC) concentrations in surface water bodies, including drinking water reservoirs, have been recorded in the northern hemisphere. This development has severe consequences for soil fertility and for drinking water purification. As both processes occur simultaneously, we assume that microbial SOM degradation, which transforms SOM into CO2 and DOC, is a possible source of the additional DOC in the surface water. In addition we speculate that both processes are initially triggered by physical mechanisms, resulting in a modification of the organic matter solubility equilibria and thus in higher SOM availability and DOC mobilization. The general hypothesis of the study is therefore that SOM loss and DOC increase are combined consequences of enhanced microbial degradation of SOM and that this is a result of climate variations and global change, e.g. the increase of the temperature, the alteration of the water regime (i.e. increase of the frequency of drying and rewetting cycles and a higher number of heavy rain events), but also the decrease of the atmospheric acid deposition resulting in an increase of soil pH values. The general goal of the study is the identification of the dominant processes and controlling factors involved in soil microbial carbon turnover and mobilization of DOC in soils from catchment areas that contribute DOC to the receiving waters and the downstream Rappbode reservoir, which showed a pronounced increase in DOC concentration in recent years. This reservoir is the source of drinking water for about one million people in northern Germany. Preliminary screening experiments, consisting of 65-day soil batch incubation experiments, have been conducted in order to select the parameters (and the parameter ranges) of relevance for further in-depth experiments. During the experiments, different soil systems were exposed to different

  1. RT-MATRIX: Measuring Total Organic Carbon by Photocatalytic Oxidation of Volatile Organic Compounds

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Volatile organic compounds (VOCs) inevitably accumulate in enclosed habitats such as the International Space Station and the Crew Exploration Vehicle (CEV) as a result of human metabolism, material off-gassing, and leaking equipment. Some VOCs can negatively affect the quality of the crew's life, health, and performance; and consequently, the success of the mission. Air quality must be closely monitored to ensure a safe living and working environment. Currently, there is no reliable air quality monitoring system that meets NASA's stringent requirements for power, mass, volume, or performance. The ultimate objective of the project -- the development of a Real-Time, Miniaturized, Autonomous Total Risk Indicator System (RT.MATRIX).is to provide a portable, dual-function sensing system that simultaneously determines total organic carbon (TOC) and individual contaminants in air streams.

  2. Photochemical Control of Organic Carbon Availability to Coastal Microbial Communities

    NASA Astrophysics Data System (ADS)

    Miller, W. L.; Reader, H. E.; Powers, L. C.

    2010-12-01

    Chromophoric dissolved organic matter (CDOM) is the fraction of dissolved organic matter that absorbs solar radiation. In terrestrially influenced locations high concentrations of CDOM help to shield the biological community from harmful UV radiation. Although CDOM is largely biologically refractory in nature, photochemistry has the potential to transform biologically refractory carbon into more biolabile forms. Studies suggest that in marine systems, the effect of UVR on carbon availability and subsequent bacterial production varies widely, ranging from a +200% increase to a -75% decrease (Mopper and Kieber, 2002). Evidence suggests that the largely negative or “no-effect” samples are from oligotrophic waters and that terrestrially influenced samples experience a more positive effect on the biolability of carbon after irradiation. To quantify the effects of photochemistry on the biolability of DOC in a terrestrially influenced system, a quarterly sampling effort was undertaken at three estuarine locations off the coast of Georgia, USA for a total of 14 apparent quantum yield (AQY) determinations. Large expanses of salt marsh on the coast of Georgia, create a large non-point source of DOC to the coastal ocean. Sapelo Sound, the northernmost sampling site, is dominated by offshore waters and receives little to no freshwater input throughout the year. Altamaha Sound, the southernmost sampling site, is strongly influenced by the Altamaha River, which drains the largest watershed in the state of Georgia. Doboy Sound, situated between these two sites, is largely marine dominated but is influenced by fresh water during periods of high river flow. Each sample was 0.2um filter-sterilized before irradiation in a Suntest Solar Simulator; using optical filters to create 7 distinct radiance spectra in 15 samples for determination of AQY spectra for release of biolabile DOC. Irradiated samples were consequently inoculated with the natural microbial community concentrated

  3. Carbon isotopic studies of organic matter in Precambrian rocks.

    NASA Technical Reports Server (NTRS)

    Oehler, D. Z.; Schopf, J. W.; Kvenvolden, K. A.

    1972-01-01

    A survey has been undertaken of the carbon composition of the total organic fraction of a suite of Precambrian sediments to detect isotopic trends possibly correlative with early evolutionary events. Early Precambrian cherts of the Fig Tree and upper and middle Onverwacht groups of South Africa were examined for this purpose. Reduced carbon in these cherts was found to be isotopically similar to photosynthetically produced organic matter of younger geological age. Reduced carbon in lower Onverwacht cherts was found to be anomalously heavy; it is suggested that this discontinuity may reflect a major event in biological evolution.

  4. [Relationships between soil organic carbon and environmental factors in gully watershed of the Loess Plateau].

    PubMed

    Wei, Xiao-Rong; Shao, Ming-An; Gao, Jian-Lun

    2008-10-01

    Understanding the distribution of organic carbon fractions in soils and their relationships with environmental factors are very important for appraising soil organic carbon status and assessing carbon cycling in the Loess Plateau. In this research, through field investigation and laboratory analysis, we studied the relationships between soil organic carbon and environmental factors in a gully watershed of the Loess Plateau. The environmental factors are landforms, land use conditions and soil types. The results showed that total soil organic carbon presented less variance, while high labile organic carbon presented greater variance. The variation coefficients of them are 34% and 43%, respectively, indicating that the variability of organic carbon in soils increased with the increasing of their activities. Total soil organic carbon, labile organic carbon, middle and high labile organic carbon were highly interrelated and presented similar distribution trend with environmental factors. Among different landforms, land uses, and soil types, the highest contents of organic carbon in different fractions were observed in plateau land, forest and farm lands, and black loessial soils, while the lowest contents of them were observed in gully bottom, grass land, and rubified soils, respectively. The relationships between organic carbon and environmental factors indicate that environmental factors not only directly influence the distribution of soil organic carbon, but also indirectly influence them through affecting the relationships among organic carbon fractions. The relationship between total organic carbon and labile organic carbon responses rapidly to environmental factors, while that between middle labile organic carbon and high labile organic carbon responses slowly to environmental factors. PMID:19143389

  5. Short-range vertical variation in organic carbon, carbonate carbon, total sulfur contents and Munsell color values in a core from the Upper Pennsylvanian Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas

    USGS Publications Warehouse

    Stanton, M.R.; Leventhal, Joel S.; Hatch, Joseph R.

    1983-01-01

    Organic carbon, total sulfur, carbonate carbon and Munsell color value were determined for 21 successive samples from a 53-cm-thick section of drill core. These samples are from the Stark Shale Member of the Dennis Limestone of Upper Pennsylvanian age, Wabaunsee County, Kansas. The data confirm previous results (Hosterman and Whitlow, 1981) which showed that a limited relationship of color value to organic carbon exists for shales containing about 7 percent or less organic carbon. For samples with 7 percent or more organic carbon, color values are nearly all the same. The color value is useful in screening samples before trace element analysis and in estimating the organic carbon content and metal potential of the shale (Leventhal and others, 1982).

  6. Towards a paradigm shift in the modeling of soil organic carbon decomposition for earth system models

    NASA Astrophysics Data System (ADS)

    He, Yujie

    Soils are the largest terrestrial carbon pools and contain approximately 2200 Pg of carbon. Thus, the dynamics of soil carbon plays an important role in the global carbon cycle and climate system. Earth System Models are used to project future interactions between terrestrial ecosystem carbon dynamics and climate. However, these models often predict a wide range of soil carbon responses and their formulations have lagged behind recent soil science advances, omitting key biogeochemical mechanisms. In contrast, recent mechanistically-based biogeochemical models that explicitly account for microbial biomass pools and enzyme kinetics that catalyze soil carbon decomposition produce notably different results and provide a closer match to recent observations. However, a systematic evaluation of the advantages and disadvantages of the microbial models and how they differ from empirical, first-order formulations in soil decomposition models for soil organic carbon is still needed. This dissertation consists of a series of model sensitivity and uncertainty analyses and identifies dominant decomposition processes in determining soil organic carbon dynamics. Poorly constrained processes or parameters that require more experimental data integration are also identified. This dissertation also demonstrates the critical role of microbial life-history traits (e.g. microbial dormancy) in the modeling of microbial activity in soil organic matter decomposition models. Finally, this study surveys and synthesizes a number of recently published microbial models and provides suggestions for future microbial model developments.

  7. Soil organic carbon mining versus priming - controls of soil organic carbon stocks along a management gradient

    NASA Astrophysics Data System (ADS)

    Blanes, M. Carmen; Reinsch, Sabine; Glanville, Helen C.; Jones, Davey L.; Carreira, José A.; Pastrana, David N.; Emmett, Bridget A.

    2015-04-01

    Soil carbon (C), nitrogen (N) and phosphorous (P) are assumed to be connected stoichiometrically and C:N(:P) ratios are frequently used to interpret the soils nutrient status. However, plants are capable of initiating the supply of nutrients by releasing rhizodeposits into the soil, thereby stimulating soil organic matter decomposition mediated by the rhizosphere microbial community. To test the relative importance of the two mechanisms across a fertility gradient in the UK we carried out a laboratory experiment. Intact soil cores from two depths (0-15 cm and 85-100 cm) were incubated and C, N and P were added in all possible combinations resulting in a total of 216 soil cores. Soil respiration was measured (1 h incubation, 10 oC) nine times over a 2 week period. Preliminary results indicate that all soils were C limited at the surface as measured as increased soil CO2 efflux. N additions increased soil respiration only marginally, whereas C+N stimulated microbial activity on the surface, and was even more pronounced in the deeper soil layer. Belowground responses to C+P were small and even smaller for N+P but similar for both soil depths. Our results indicate nutrient controls on soil organic matter turnover differ not only across a management/fertility gradient but also vertically down the soil profile.

  8. COSOLVENT EFFECTS ON ORGANIC CHEMICAL PARTITIONING TO SEDIMENT ORGANIC CARBON

    EPA Science Inventory

    Sorption-desorption hysteresis, slow desorption kinetics and resultant bioavailability, and other nonideal phenomena have been attributed to the differing sorptive characteristics of the natural organic polymers associated with soils and sediments. The objectives of this study we...

  9. Microbial Contribution to Organic Carbon Sequestration in Mineral Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil productivity and sustainability are dependent on soil organic matter (SOM). Our understanding on how organic inputs to soil from microbial processes become converted to SOM is still limited. This study aims to understand how microbes affect carbon (C) sequestration and the formation of recalcit...

  10. Organic farming enhances soil carbon and its benefits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing soil carbon through systematic agricultural practices provides an array of societal and farmer/producer benefits. Organic methods have been utilized for over 6000 years to conserve soil, water, energy, and biological resources. Many of the benefits of organic technologies identified in ...

  11. Soil Organic Carbon Change Monitored Over Large Areas

    SciTech Connect

    Brown, David J.; Hunt, E. Raymond; Izaurralde, Roberto C.; Paustian, Keith H.; Rice, Charles W.; West, Tristram O.; Schumaker, Bonny L.

    2010-08-31

    Soils account for the largest fraction of terrestrial carbon (C); thus, they are critically important in determining global C cycle dynamics. In North America, conversion of native prairies to agricultural land use over 150 years ago released 30-50% of the soil organic carbon (SOC). Improved agricultural practices have the capacity to recover much of this SOC, storing it in biomass and soil and thereby removing billions of tons of atmospheric CO2. These practices involve increasing C inputs to soil (e.g., by crop rotations, increased use of higher biomass crops, perennial crops) and decreased losses (e.g., reduced tillage intensity) [Janzen et al., 1998; Lal et al., 2003; Smith et al., 2007]. Managing agricultural soils to increase SOC storage is a significant, immediately available, low-cost option for mitigating CO2 emissions, with a technical potential to offset as much as 800 Tg CO2/yr in the US (~13% of US CO2 emissions) [Lal et al., 2003] and 5000 Tg CO2/yr globally (~17% of global CO2 emissions) [Smith et al., 2007].

  12. [The organic carbon--issues of hygienic regulation and harmonization].

    PubMed

    Kuz'mina, E A; Kuznetsov, E O; Smagina, N V; Slyshkina, T V; Akramov, R L; Brusnitsina, L A; Nitsak, G B; Nikonova, S V

    2013-01-01

    This study is devoted to the investigation of possibility to use the total organic carbon as regulated index in drinking water as well as to the issues of hygienic regulation and harmonizing this index with the standards of other countries. Basing on the results of 3 years lasting investigation carried out by Municipal Unitary Enterprise "Vodokanal" of Yekaterinburg city permits to propose as the most informative and reliable index of the presence of organic substances in drinking water the content of total organic carbon in comparison with currently regulated permanganate oxidability, chemical and biochemical oxygen consumption.

  13. Assimilation of aged organic carbon in a glacial river food web

    NASA Astrophysics Data System (ADS)

    Fellman, J.; Hood, E. W.; Raymond, P. A.; Bozeman, M.; Hudson, J.; Arimitsu, M.

    2013-12-01

    Identifying the key sources of organic carbon supporting fish and invertebrate consumers is fundamental to our understanding of stream ecosystems. Recent laboratory bioassays highlight that aged organic carbon from glacier environments is highly bioavailable to stream bacteria relative to carbon originating from ice-free areas. However, there is little evidence suggesting that this aged, bioavailable organic carbon is also a key basal carbon source for stream metazoa. We used natural abundance of Δ14C, δ13C, and δ15N to determine if fish and invertebrate consumers are subsidized by aged organic carbon in a glacial river in southeast Alaska. We collected biofilm, leaf litter, three different species of macroinvertebrates, and resident juvenile salmonids from a reference stream and two sites (one site is directly downstream of the glacial outflow and one site is upstream of the tidal estuary) on the heavily glaciated Herbert River. Key producers, fish, and invertebrate consumers in the reference stream had carbon isotope values that ranged from -26 to -30‰ for δ13C and from -12 to 53‰ for Δ14C, reflecting a food web sustained mainly on contemporary primary production. In contrast, biofilm in the two glacial sites was highly Δ14C depleted (-203 to -215‰) relative to the reference site. Although biofilm may consist of both bacteria and benthic algae utilizing carbon depleted in Δ14C, δ13C values for biofilm (-24.1‰), dissolved inorganic carbon (-5.9‰), and dissolved organic carbon (-24.0‰) suggest that biofilm consist of bacteria sustained in part by glacier-derived, aged organic carbon. Invertebrate consumers (mean Δ14C of -80.5, mean δ13C of -26.5) and fish (mean Δ14C of -63.3, mean δ13C of -25.7) in the two glacial sites had carbon isotope values similar to biofilm. These results similarly show that aged organic carbon is incorporated into the metazoan food web. Overall, our findings indicate that continued watershed deglaciation and

  14. Organic carbon dominated trichloroethene sorption in a clay-rich glacial deposit

    SciTech Connect

    Allen-King, R.M.; McKay, L.D.; Trudell, M.R.

    1997-01-01

    The relative contributions of organic carbon and mineral matter to trichloroethene (TCE) sorption were determined for a natural, clay-rich till from Sarnia, Ont. using laboratory batch tests. Linear TCE sorption coefficients of the two till samples (approximately 12 to 15 m depth) were 64.2 l/kg and 151 l/kg and the organic carbon contents (f{sub oc}) were 0.68% and 1.95%, respectively. To ascertain the importance of sorption to mineral matter versus organic carbon, till samples were treated by baking. The f{sub oc} was reduced by 44 to 90% in treated samples compared to natural samples. TCE sorption coefficients were also reduced to 0.48 to 4.64 l/kg in treated samples. Surface area measurements suggested that treating the till samples appeared to have little effect on the mineral matter. The results indicated that TCE sorption is dominated by the naturally occurring organic carbon. The organic carbon normalized sorption coefficients (K{sub oc}) for the natural (untreated) samples were 16 to 500 times greater than those typically reported for sediment and soil samples, indicating the more lipophilic character of the organic matter in the till. K{sub oc} estimates which accounted for the oxidation state of the organic carbon in the till assuming the carbon is primarily from Devonian-age shale fragments resulted in values close to (within a factor of 2 to 5) those observed. Thus, both the nature and amount of organic carbon in the till play major roles in controlling the magnitude of TCE sorption in this clay-rich deposit.

  15. Substrate and environmental controls on microbial assimilation of soil organic carbon: a framework for Earth System Models

    SciTech Connect

    Xu, Xiaofeng; Schimel, Joshua; Thornton, Peter E; Song, Xia; Yuan, Fengming; Goswami, Santonu

    2014-01-01

    Microbial assimilation of soil organic carbon is one of the fundamental processes of global carbon cycling and it determines the magnitude of microbial biomass in soils. Mechanistic understanding of microbial assimilation of soil organic carbon and its controls is important for to improve Earth system models ability to simulate carbon-climate feedbacks. Although microbial assimilation of soil organic carbon is broadly considered to be an important parameter, it really comprises two separate physiological processes: one-time assimilation efficiency and time-dependent microbial maintenance energy. Representing of these two mechanisms is crucial to more accurately simulate carbon cycling in soils. In this study, a simple modeling framework was developed to evaluate the substrate and environmental controls on microbial assimilation of soil organic carbon using a new term: microbial annual active period (the length of microbes remaining active in one year). Substrate quality has a positive effect on microbial assimilation of soil organic carbon: higher substrate quality (lower C:N ratio) leads to higher ratio of microbial carbon to soil organic carbon and vice versa. Increases in microbial annual active period from zero stimulate microbial assimilation of soil organic carbon; however, when microbial annual active period is longer than an optimal threshold, increasing this period decreases microbial biomass. The simulated ratios of soil microbial biomass to soil organic carbon are reasonably consistent with a recently compiled global dataset at the biome-level. The modeling framework of microbial assimilation of soil organic carbon and its controls developed in this study offers an applicable ways to incorporate microbial contributions to the carbon cycling into Earth system models for simulating carbon-climate feedbacks and to explain global patterns of microbial biomass.

  16. Total organic carbon in aggregates as a soil recovery indicator

    NASA Astrophysics Data System (ADS)

    Luciene Maltoni, Katia; Rodrigues Cassiolato, Ana Maria; Amorim Faria, Glaucia; Dubbin, William

    2015-04-01

    The soil aggregation promotes physical protection of organic matter, preservation of which is crucial to improve soil structure, fertility and ensure the agro-ecosystems sustainability. The no-tillage cultivation system has been considered as one of the strategies to increase total soil organic carbono (TOC) contents and soil aggregation, both are closely related and influenced by soil management systems. The aim of this study was to evaluate the distribution of soil aggregates and the total organic carbon inside aggregates, with regard to soil recovery, under 3 different soil management systems, i.e. 10 and 20 years of no-tillage cultivation as compared with soil under natural vegetation (Cerrado). Undisturbed soils (0-5; 5-10; and 10-20 cm depth) were collected from Brazil, Central Region. The soils, Oxisols from Cerrado, were collected from a field under Natural Vegetation-Cerrado (NV), and from fields that were under conventional tillage since 1970s, and 10 and 20 years ago were changed to no-tillage cultivation system (NT-10; NT-20 respectively). The undisturbed samples were sieved (4mm) and the aggregates retained were further fractionated by wet sieving through five sieves (2000, 1000, 500, 250, and 50 μm) with the aggregates distribution expressed as percentage retained by each sieve. The TOC was determined, for each aggregate size, by combustion (Thermo-Finnigan). A predominance of aggregates >2000 μm was observed under NV treatment (92, 91, 82 %), NT-10 (64, 73, 61 %), and NT-20 (71, 79, 63 %) for all three depths (0-5; 5-10; 10-20 cm). In addition greater quantities of aggregates in sizes 1000, 500, 250 and 50 μm under NT-10 and NT-20 treatments, explain the lower aggregate stability under these treatments compared to the soil under NV. The organic C concentration for NV in aggregates >2000 μm was 24,4; 14,2; 8,7 mg/g for each depth (0-5; 5-10; 10-20 cm, respectively), higher than in aggregates sized 250-50 μm (7,2; 5,5; 4,4 mg/g) for all depths

  17. Organic carbon sources to SE Asian coastal sediments

    NASA Astrophysics Data System (ADS)

    Kennedy, H.; Gacia, E.; Kennedy, D. P.; Papadimitriou, S.; Duarte, C. M.

    2004-05-01

    The carbon, nitrogen and the stable carbon isotopic composition, δ13C, of organic matter has been used to elucidate the source(s) of this material to coastal sediments. Sediments were collected at 15 coastal locations in the Philippines and Vietnam, which broadly represented different depositional environments ranging from seagrass meadows, through seagrass meadows located near mangroves and to mangrove stands. In addition, short-term sediment traps were deployed at 12 of the sites where seagrass was present. Mean sediment organic carbon concentration and C/N increased and δ13C of organic matter decreased from seagrass to mangrove dominated settings. The organic carbon flux measured by the sediment trap deployments was very variable (32±3 to ˜700 mmol m -2 d -1) and represented only a small fraction of the total particle flux. The importance of seagrass as a source of organic matter to the sediments was assessed by using a simple mixing model and the average δ13C values for seagrass, their epiphytic community and surface water particulate matter (seston). A positive correlation between seagrass leaf biomass and sediment δ13C in seagrass dominated settings suggests that these macrophytes do significantly influence the composition of sedimentary organic matter. Seagrass was however rarely found to be the dominant source of organic matter to the underlying sediments. Both sediment trap and sediment data suggest that material of planktonic origin was the dominant source of sedimentary organic matter in these settings. At the sites dominated by mangroves the concentration of organic matter ( ˜1-13 ×10 3 mmol g-1) in the sediment is generally higher than at seagrass dominated sites due to the outwelling of organic matter from the mangrove stands. Mangrove organic matter often dominates the sedimentary input but other sources of organic matter must contribute to cause the observed range in sediment δ13C.

  18. Organics on Titan : Carbon Rings and Carbon Cycles (Invited)

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2010-12-01

    The photochemical conversion of methane into heavier organics which would cover Titan’s surface has been a principal motif of Titan science for the last 4 decades. Broadly, this picture has held up against Cassini observations, but organics on Titan turn out to have some surprising characteristics. First, the surface deposits of organics are segregated into at least two distinct major reservoirs - equatorial dune sands and polar seas. Second, the rich array of compounds detected as ions and molecules even 1000km above Titan’s surface has proven much more complex than expected, including two-ring anthracene and compounds with m/z>1000. Radar and near-IR mapping shows that Titan’s vast dunefields, covering >10% of Titan’s surface, contain ~0.3 million km^3 of material. This material is optically dark and has a low dielectric constant, consistent with organic particulates. Furthermore, the dunes are associated with a near-IR spectral signature attributed to aromatic compounds such as benzene, which has been sampled in surprising abundance in Titan’s upper atmosphere. The polar seas and lakes of ethane (and presumably at least some methane) may have a rather lower total volume than the dune sands, and indeed may contain little more, if any, methane than the atmosphere itself. The striking preponderance of liquid deposits in the north, notably the 500- and 1000-km Ligeia and Kraken, contrasts with the apparently shallow and shrinking Ontario Lacus in the south, and perhaps attests to volatile migration on astronomical (Croll-Milankovich) timescales as well as seasonal methane transport. Against this appealing picture, many questions remain. What is the detailed composition of the seas, and can chemistry in a nonpolar solvent yield compounds of astrobiological interest ? Are there ‘groundwater’ reservoirs of methane seething beneath the surface, perhaps venting to form otherwise improbable equatorial clouds? And what role, if any, do clathrates play today

  19. [Roles of soil dissolved organic carbon in carbon cycling of terrestrial ecosystems: a review].

    PubMed

    Li, Ling; Qiu, Shao-Jun; Liu, Jing-Tao; Liu, Qing; Lu, Zhao-Hua

    2012-05-01

    Soil dissolved organic carbon (DOC) is an active fraction of soil organic carbon pool, playing an important role in the carbon cycling of terrestrial ecosystems. In view of the importance of the carbon cycling, this paper summarized the roles of soil DOC in the soil carbon sequestration and greenhouse gases emission, and in considering of our present ecological and environmental problems such as soil acidification and climate warming, discussed the effects of soil properties, environmental factors, and human activities on the soil DOC as well as the response mechanisms of the DOC. This review could be helpful to the further understanding of the importance of soil DOC in the carbon cycling of terrestrial ecosystems and the reduction of greenhouse gases emission.

  20. Potential Influence of Perchlorate on Organic Carbon in Martian Regolith

    NASA Astrophysics Data System (ADS)

    Oze, C.; Vithanage, M. S.; Kumarathilaka, P. R.; Indraratne, S.; Horton, T. W.

    2014-12-01

    Perchlorate is a strong oxidizer present at elevated concentrations in surface martian regolith. Chemical and isotopic modification of potential organic carbon with perchlorate in martian regolith during H2O(l) interactions is unknown. Here we assess the relationship between martian levels of perchlorate and organic carbon present in life harbouring geologic material from Earth. These materials represent chemical (i.e., processed serpentine soils from Sri Lanka) and temperature (i.e., hydrothermal jarosite/goethite deposit from White Island, New Zealand) extremes to where life exists on Earth. Preliminary evidence demonstrates that organic carbon decreases and δ13C values are modified for ultramafic sediment in both perchlorate kinetic and incubation experiments. In hydrothermal jarosite/goethite with microbial communities present, total and organic carbon is maintained and little modification in δ13C values is apparent. These preliminary results suggest that surface hydrothermal deposits with mineralogically 'protected' organic carbon are preferable sites to assess the potential of life on Mars.

  1. [Dynamics of unprotected soil organic carbon with the restoration process of Pinus massoniana plantation in red soil erosion area].

    PubMed

    Lü, Mao-Kui; Xie, Jin-Sheng; Zhou, Yan-Xiang; Zeng, Hong-Da; Jiang, Jun; Chen, Xi-Xiang; Xu, Chao; Chen, Tan; Fu, Lin-Chi

    2014-01-01

    By the method of spatiotemporal substitution and taking the bare land and secondary forest as the control, we measured light fraction and particulate organic carbon in the topsoil under the Pinus massoniana woodlands of different ages with similar management histories in a red soil erosion area, to determine their dynamics and evaluate the conversion processes from unprotected to protected organic carbon. The results showed that the content and storage of soil organic carbon increased significantly along with ages in the process of vegetation restoration (P < 0.01). The unprotected soil organic carbon content and distribution proportion to the total soil organic carbon increased significantly (P < 0.05) after 7-11 years' restoration but stabilized after 27 and 30 years of restoration. It suggested that soil organic carbon mostly accumulated in the form of unprotected soil organic carbon during the initial restoration period, and reached a stable level after long-term vegetation restoration. Positive correlations were found between restoration years and the rate constant for C transferring from the unprotected to the protected soil pool (k) in 0-10 cm and 10-20 cm soil layers, which demonstrated that the unprotected soil organic carbon gradually transferred to the protected soil organic carbon in the process of vegetation restoration. PMID:24765840

  2. [Dynamics of unprotected soil organic carbon with the restoration process of Pinus massoniana plantation in red soil erosion area].

    PubMed

    Lü, Mao-Kui; Xie, Jin-Sheng; Zhou, Yan-Xiang; Zeng, Hong-Da; Jiang, Jun; Chen, Xi-Xiang; Xu, Chao; Chen, Tan; Fu, Lin-Chi

    2014-01-01

    By the method of spatiotemporal substitution and taking the bare land and secondary forest as the control, we measured light fraction and particulate organic carbon in the topsoil under the Pinus massoniana woodlands of different ages with similar management histories in a red soil erosion area, to determine their dynamics and evaluate the conversion processes from unprotected to protected organic carbon. The results showed that the content and storage of soil organic carbon increased significantly along with ages in the process of vegetation restoration (P < 0.01). The unprotected soil organic carbon content and distribution proportion to the total soil organic carbon increased significantly (P < 0.05) after 7-11 years' restoration but stabilized after 27 and 30 years of restoration. It suggested that soil organic carbon mostly accumulated in the form of unprotected soil organic carbon during the initial restoration period, and reached a stable level after long-term vegetation restoration. Positive correlations were found between restoration years and the rate constant for C transferring from the unprotected to the protected soil pool (k) in 0-10 cm and 10-20 cm soil layers, which demonstrated that the unprotected soil organic carbon gradually transferred to the protected soil organic carbon in the process of vegetation restoration.

  3. Mass balance of organic carbon fractions in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Alves, CéLia; Carvalho, Abel; Pio, Casimiro

    2002-11-01

    Total suspended particulate matter was collected in two Portuguese urban areas (Lisbon and Aveiro) and in a Finnish forested site. Samples were sequentially extracted with dichloromethane and water. The solvent extract was separated by flash chromatography into aliphatics, aromatics, carbonyls, alcohols, and an acidic fraction, and analyzed by gas chromatography-mass spectrometry. An organic/black carbon analyzer was used to evaluate the carbonaceous matter in filters, the water-soluble fraction, solvent extractable material, and the content of different organic classes. Results showed that the common simple extraction with dichloromethane is able to dissolve less than 50% of the particulate organic material. The successive extraction with water removes an important quantity of the leftover organic polar compounds. The sum of both extractions recovers between 70% and 90% of the organic carbon present. The amount of oxygenated compounds is frequently more than 70% of the extracted material, with a large predominance of organic acids and alcohols, especially for particles with diameters less than 0.49 μm. The organic compounds identified in the extractable atmospheric particulate matter are represented by primary compounds with both anthropogenic and biogenic origin, which mainly derive from vegetation waxes and from petrogenic sources. Secondary products resulting from the oxidation of volatile organic compounds were also detected. The water-soluble fraction contains essentially oxocarboxylic and dicarboxylic acids, and cellulosic constituents. In accordance with the anthropogenic characteristics of the sampling sites, nonpolar fractions constitute up to 24% of the extracted organic carbon in Lisbon and present high levels of petroleum markers, while in the forested station these compounds represent 8%. The oxygenated organic compounds account for 76-92% of the extracted carbon in samples from Aveiro and Finland. Owing to favorable photochemical conditions during

  4. Evaluation of estimation methods for organic carbon normalized sorption coefficients

    USGS Publications Warehouse

    Baker, James R.; Mihelcic, James R.; Luehrs, Dean C.; Hickey, James P.

    1997-01-01

    A critically evaluated set of 94 soil water partition coefficients normalized to soil organic carbon content (Koc) is presented for 11 classes of organic chemicals. This data set is used to develop and evaluate Koc estimation methods using three different descriptors. The three types of descriptors used in predicting Koc were octanol/water partition coefficient (Kow), molecular connectivity (mXt) and linear solvation energy relationships (LSERs). The best results were obtained estimating Koc from Kow, though a slight improvement in the correlation coefficient was obtained by using a two-parameter regression with Kow and the third order difference term from mXt. Molecular connectivity correlations seemed to be best suited for use with specific chemical classes. The LSER provided a better fit than mXt but not as good as the correlation with Koc. The correlation to predict Koc from Kow was developed for 72 chemicals; log Koc = 0.903* log Kow + 0.094. This correlation accounts for 91% of the variability in the data for chemicals with log Kow ranging from 1.7 to 7.0. The expression to determine the 95% confidence interval on the estimated Koc is provided along with an example for two chemicals of different hydrophobicity showing the confidence interval of the retardation factor determined from the estimated Koc. The data showed that Koc is not likely to be applicable for chemicals with log Kow < 1.7. Finally, the Koc correlation developed using Kow as a descriptor was compared with three nonclass-specific correlations and two 'commonly used' class-specific correlations to determine which method(s) are most suitable.

  5. Influence of carbonization methods on the aromaticity of pyrogenic dissolved organic carbon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved organic carbon (DOC) components of soil amendments such as biochar will influence the fundamental soil chemistry including the metal speciation, nutrient availability, and microbial activity. Quantitative correlation is necessary between (i) pyrogenic DOC components of varying aromaticity...

  6. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production

    SciTech Connect

    Zeikus, J.G.; Jain, M.

    1993-12-31

    The project deals with understanding the fundamental biochemical mechanisms that physiologically control and regulate carbon and electron flow in anaerobic chemosynthetic bacteria that couple metabolism of single carbon compounds and hydrogen to the production of organic acids (formic, acetic, butyric, and succinic) or methane. The authors compare the regulation of carbon dioxide and hydrogen metabolism by fermentation, enzyme, and electron carrier analysis using Butyribacterium methylotrophicum, Anaeroblospirillum succiniciproducens, Methanosarcina barkeri, and a newly isolated tri-culture composed of a syntrophic butyrate degrader strain IB, Methanosarcina mazei and Methanobacterium formicicum as model systems. To understand the regulation of hydrogen metabolism during butyrate production or acetate degradation, hydrogenase activity in B. methylotrophicum or M. barkeri is measured in relation to growth substrate and pH; hydrogenase is purified and characterized to investigate number of hydrogenases; their localization and functions; and, their sequences are determined. To understand the mechanism for catabolic CO{sub 2} fixation to succinate the PEP carboxykinase enzyme and gene of A. succiniciproducens are purified and characterized. Genetically engineered strains of Escherichia coli containing the phosphoenolpyruvate (PEP) carboxykinase gene are examined for their ability to produce succinate in high yield. To understand the mechanism of fatty acid degradation by syntrophic acetogens during mixed culture methanogenesis formate and hydrogen production are characterized by radio tracer studies. It is intended that these studies provide strategies to improve anaerobic fermentations used for the production of organic acids or methane and, new basic understanding on catabolic CO{sub 2} fixation mechanisms and on the function of hydrogenase in anaerobic bacteria.

  7. Chemistry of organic carbon in soil with relationship to the global carbon cycle

    SciTech Connect

    Post, W.M. III

    1988-01-01

    Various ecosystem disturbances alter the balances between production of organic matter and its decomposition and therefore change the amount of carbon in soil. The most severe perturbation is conversion of natural vegetation to cultivated crops. Conversion of natural vegetation to cultivated crops results in a lowered input of slowly decomposing material which causes a reduction in overall carbon levels. Disruption of soil matrix structure by cultivation leads to lowered physical protection of organic matter resulting in an increased net mineralization rate of soil carbon. Climate change is another perturbation that affects the amount and composition of plant production, litter inputs, and decomposition regimes but does not affect soil structure directly. Nevertheless, large changes in soil carbon storage are probable with anticipated CO2 induced climate change, particularly in northern latitudes where anticipated climate change will be greatest (MacCracken and Luther 1985) and large amounts of soil organic matter are found. It is impossible, given the current state of knowledge of soil organic matter processes and transformations to develop detailed process models of soil carbon dynamics. Largely phenomenological models appear to be developing into predictive tools for understanding the role of soil organic matter in the global carbon cycle. In particular, these models will be useful in quantifying soil carbon changes due to human land-use and to anticipated global climate and vegetation changes. 47 refs., 7 figs., 2 tabs.

  8. Dissolved Organic Carbon Fluxes in Rivers of the Conterminous United States: Influence of Terrestrial - Aquatic Linkages

    NASA Astrophysics Data System (ADS)

    Stackpoole, S. M.; Butman, D. E.; Stets, E.; Striegl, R. G.; Bachelet, D. M.; Zhu, Z.; Liu, S.

    2015-12-01

    Management of terrestrial carbon stocks in natural ecosystems has been proposed as a sustainable approach to counteracting the anthropogenic contribution of carbon dioxide to the atmosphere. One factor of uncertainty in carbon accounting is that a portion of carbon assumed to be sequestered in soils may in fact be transported to river networks. The primary objectives of this study are to: 1) determine if the magnitude of empirical estimates of dissolved organic carbon (DOC) export in rivers correlates with simulated soil DOC leachate values from terrestrial carbon models, and 2) quantify terrestrial loading of DOC to river networks across the conterminous US. We evaluated the magnitude of riverine DOC fluxes relative to carbon storage in terrestrial biomass and soils using the aggregated results from the terrestrial carbon models included in the LandCarbon and Multi-scale Synthesis and Terrestrial Model Intercomparison Projects. We also compared gridded terrestrial DOC leaching values to downstream DOC fluxes in rivers estimated by the USGS LOADEST model. Quantification of terrestrial-aquatic linkages is necessary to better evaluate ecosystem carbon sequestration as a potential tool for mitigating anthropogenic perturbance to the global carbon cycle.

  9. A Raman Study of Carbonates and Organic Contents in Five CM Chondrites

    NASA Technical Reports Server (NTRS)

    Chan, Q. H. S.; Zolensky, M. E.; Bodnar, R. J.; Farley, C.; Cheung, J. C. H.

    2016-01-01

    Carbonates comprise the second most abundant class of carbon-bearing phases in carbonaceous chondrites after organic matter (approximately 2 wt.%), followed by other C-bearing phases such as diamond, silicon carbide, and graphite. Therefore, understanding the abundances of carbonates and the associated organic matter provide critical insight into the genesis of major carbonaceous components in chondritic materials. Carbonates in CM chondrites mostly occur as calcite (of varying composition) and dolomite. Properly performed, Raman spectroscopy provides a non-destructive technique for characterizing meteorite mineralogy and organic chemistry. It is sensitive to many carbonaceous phases, allows the differentiation of organic from inorganic materials, and the interpretation of their spatial distribution. Here, with the use of Raman spectroscopy, we determine the structure of the insoluble organic matter (IOM) in the matrix and carbonate phases in five CM chondrites: Jbilet Winselwan, Murchison, Nogoya, Santa Cruz, and Wisconsin Range (WIS) 91600, and interpret the relative timing of carbonate precipitation and the extent of the associated alteration events.

  10. The Oxidant Budget of Dissolved Organic Carbon Driven Isotope Excursions

    NASA Astrophysics Data System (ADS)

    Bristow, T. F.; Kennedy, M. J.

    2008-12-01

    Negative carbon isotope values, falling below the mantle average of about -5 per mil, in carbonate phases of Ediacaran age sedimentary rocks are widely regarded as reflecting negative excursions in the carbon isotopic composition of seawater lasting millions of years. These isotopic signals form the basis of chemostratigraphic correlations between Ediacaran aged sections in different parts of the world, and have been used to track the oxidation of the biosphere. However, these isotopic values are difficult to accommodate within limits prescribed by the current understanding of the carbon cycle, and a hypothetical Precambrian ocean dissolved organic carbon (DOC) pool 100 to 1000 times the size of the modern provides a potential source of depleted carbon not considered in Phanerozoic carbon cycle budgets. We present box model results that show the remineralization of such a DOC pool to drive an isotope excursion of the magnitude observed in the geological record exhausts global budgets of free oxygen and sulfate in 800 k.y. These results are incompatible with the estimated duration of late Ediacaran isotope excursions of more than 10 m.y., as well as geochemical and biological indicators that oceanic sulfate and oxygen levels were maintained or even increased at the same time. Therefore the carbon isotope record is probably not a useful tool for monitoring oxygen levels in the atmosphere and ocean. Covariation between the carbon and oxygen isotope records is often observed during negative excursions and is indicative of local processes or diagenetic overprinting.

  11. Carbon isotopic studies of organic matter in precambrian rocks.

    PubMed

    Oehler, D Z; Schopf, J W; Kvenvolden, K A

    1972-03-17

    Reduced carbon in early Precambrian cherts of the Fig Tree and upper and middle Onverwacht groups of South Africa is isotopically similar (the average value of delta(13)C(PDB) is -28.7 per mil) to photosynthetically produced organic matter of younger geological age. Reduced carbon in lower Onverwacht cherts (Theespruit formation) is anomalously heavy (the average value of delta(13)C(PDB) is -16.5 per mil). This discontinuity may reflect a major event in biological evolution.

  12. Maximum organic carbon limits at different melter feed rates (U)

    SciTech Connect

    Choi, A.S.

    1995-12-31

    This report documents the results of a study to assess the impact of varying melter feed rates on the maximum total organic carbon (TOC) limits allowable in the DWPF melter feed. Topics discussed include: carbon content; feed rate; feed composition; melter vapor space temperature; combustion and dilution air; off-gas surges; earlier work on maximum TOC; overview of models; and the results of the work completed.

  13. Charcoal bed operation for optimal organic carbon removal

    SciTech Connect

    Merritt, C.M.; Scala, F.R.

    1995-05-01

    Historically, evaporation, reverse osmosis or charcoal-demineralizer systems have been used to remove impurities in liquid radwaste processing systems. At Nine Mile point, we recently replaced our evaporators with charcoal-demineralizer systems to purify floor drain water. A comparison of the evaporator to the charcoal-demineralizer system has shown that the charcoal-demineralizer system is more effective in organic carbon removal. We also show the performance data of the Granulated Activated Charcoal (GAC) vessel as a mechanical filter. Actual data showing that frequent backflushing and controlled flow rates through the GAC vessel dramatically increases Total Organic Carbon (TOC) removal efficiency. GAC vessel dramatically increases Total Organic Carbon (TOC) removal efficiency. Recommendations are provided for operating the GAC vessel to ensure optimal performance.

  14. [Organic carbon decomposition rate in different soil types].

    PubMed

    Yin, Yun-Feng; Cai, Zu-Cong

    2007-10-01

    With incubation experiment, this paper studied the decomposition rate of organic carbon in black soil, fluvo-aquic soil, and red soil. It was shown that these three soil types had significantly different decomposition rate constant of organic carbon (P < 0.05 ), with the corresponding value being 2.2 x 10(-4) x d(-1), 6.0 x 10(-4) x d(-1), and 3.4 x 10(-4) x d(-1), respectively. The decomposition rate constant had a significant correlation with soil pH, which was increased greatly when the soil pH was < 5.5 or > 8.0, and a significant negative correlation with the contents of soil clay and silt, indicating that soil clay and silt content was one of the dominant factors affecting the decomposition rate of organic carbon in these soil types.

  15. Soil Organic Carbon dynamics in agricultural soils of Veneto Region

    NASA Astrophysics Data System (ADS)

    Bampa, F. B.; Morari, F. M.; Hiederer, R. H.; Toth, G. T.; Giandon, P. G.; Vinci, I. V.; Montanarella, L. M.; Nocita, M.

    2012-04-01

    One of the eight soil threats expressed in the European Commission's Thematic Strategy for Soil Protection (COM (2006)231 final) it's the decline in Soil Organic Matter (SOM). His preservation is recognized as with the objective to ensure that the soils of Europe remain healthy and capable of supporting human activities and ecosystems. One of the key goals of the strategy is to maintain and improve Soil Organic Carbon (SOC) levels. As climate change is identified as a common element in many of the soil threats, the European Commission (EC) intends to assess the actual contribution of the soil protection to climate change mitigation and the effects of climate change on the possible depletion of SOM. A substantial proportion of European land is occupied by agriculture, and consequently plays a crucial role in maintaining natural resources. Organic carbon preservation and sequestration in the EU's agricultural soils could have some potential to mitigate the effects of climate change, particularly linked to preventing certain land use changes and maintaining SOC stocks. The objective of this study is to assess the SOC dynamics in agricultural soils (cropland and grassland) at regional scale, focusing on changes due to land use. A sub-objective would be the evaluation of the most used land management practices and their effect on SOC content. This assessment aims to determine the geographical distribution of the potential GHG mitigation options, focusing on hot spots in the EU, where mitigation actions would be particularly efficient and is linked with the on-going work in the JRC SOIL Action. The pilot area is Veneto Region. The data available are coming from different sources, timing and involve different variables as: soil texture, climate, soil disturbance, managements and nutrients. The first source of data is the LUCAS project (Land Use/Land Cover Area Frame statistical Survey). Started in 2001, the LUCAS project aims to monitor changes in land cover/use and

  16. Experimental determination of carbon dioxide evolution during aerobic composting of agro-wastes.

    PubMed

    Tripathi, Shilpa; Srivastava, J K

    2012-10-01

    This work aims at optimal composting of agro-wastes like sugarcane bagasse, wood straw and soya husk. A mixture of these substances along with small quantity of food waste as the seed was composted aerobically and carbon dioxide evolved was determined experimentally using a composting system comprising aerobic digester, operating in near-optimal conditions with regard to adequacy of oxygen and temperature in the system. During aerobic composting of agro-waste carbon dioxide is produced due to degradation of different carbon fractions in the substrate. Carbon dioxide production rate, which is a measure of bacterial/fungal activity in composting systems, can be related to various process parameters like different carbon fractions present in the substrate and their reaction rates, progress and termination of compost phenomenon and stabilization of organic matter. This gives a balanced compromise between complexity of mathematical model and extensive experimentation, and can be used for determining optimum conditions for composting. PMID:25151714

  17. Raman spectroscopy: Caution when interpreting organic carbon from oxidising environments

    NASA Astrophysics Data System (ADS)

    Brolly, Connor; Parnell, John; Bowden, Stephen

    2016-02-01

    Oxidation on Mars is primarily caused by the high influx of cosmic and solar radiation which interacts with the Martian surface. The evidence of this can be seen in the ubiquitous red colouration of the Martian sediment. This radiation will destroy most signals of life in the top few metres of the Martian surface. If organic carbon (one of the building blocks of life) is present within the accessible Martian sediments, it is very likely that it will have experienced some oxidation. ESA's ExoMars mission set to fly in 2018, has on board a miniaturised Raman spectrometer. As Raman spectroscopy is sensitive to carbonaceous material and will be primarily used to characterise organics, it is essential that the effect oxidation has on the Raman carbon signal is assessed. Oxidised carbonaceous shales were analysed using Raman spectroscopy to assess this issue. Results show that haematite has a band which occurs in the same frequency as the carbon D band, which cannot be distinguished from each other. This can lead to a misidentification of the carbon D band and a misinterpretation of the carbon order. Consequently, caution must be taken when applying Raman spectroscopy for organic carbon analysis in oxidised terrestrial and extraterrestrial environments, including on Mars.

  18. Erosion of organic carbon in the Arctic as a geological carbon dioxide sink.

    PubMed

    Hilton, Robert G; Galy, Valier; Gaillardet, Jérôme; Dellinger, Mathieu; Bryant, Charlotte; O'Regan, Matt; Gröcke, Darren R; Coxall, Helen; Bouchez, Julien; Calmels, Damien

    2015-08-01

    Soils of the northern high latitudes store carbon over millennial timescales (thousands of years) and contain approximately double the carbon stock of the atmosphere. Warming and associated permafrost thaw can expose soil organic carbon and result in mineralization and carbon dioxide (CO2) release. However, some of this soil organic carbon may be eroded and transferred to rivers. If it escapes degradation during river transport and is buried in marine sediments, then it can contribute to a longer-term (more than ten thousand years), geological CO2 sink. Despite this recognition, the erosional flux and fate of particulate organic carbon (POC) in large rivers at high latitudes remains poorly constrained. Here, we quantify the source of POC in the Mackenzie River, the main sediment supplier to the Arctic Ocean, and assess its flux and fate. We combine measurements of radiocarbon, stable carbon isotopes and element ratios to correct for rock-derived POC. Our samples reveal that the eroded biospheric POC has resided in the basin for millennia, with a mean radiocarbon age of 5,800 ± 800 years, much older than the POC in large tropical rivers. From the measured biospheric POC content and variability in annual sediment yield, we calculate a biospheric POC flux of 2.2(+1.3)(-0.9) teragrams of carbon per year from the Mackenzie River, which is three times the CO2 drawdown by silicate weathering in this basin. Offshore, we find evidence for efficient terrestrial organic carbon burial over the Holocene period, suggesting that erosion of organic carbon-rich, high-latitude soils may result in an important geological CO2 sink. PMID:26245581

  19. Erosion of organic carbon in the Arctic as a geological carbon dioxide sink.

    PubMed

    Hilton, Robert G; Galy, Valier; Gaillardet, Jérôme; Dellinger, Mathieu; Bryant, Charlotte; O'Regan, Matt; Gröcke, Darren R; Coxall, Helen; Bouchez, Julien; Calmels, Damien

    2015-08-01

    Soils of the northern high latitudes store carbon over millennial timescales (thousands of years) and contain approximately double the carbon stock of the atmosphere. Warming and associated permafrost thaw can expose soil organic carbon and result in mineralization and carbon dioxide (CO2) release. However, some of this soil organic carbon may be eroded and transferred to rivers. If it escapes degradation during river transport and is buried in marine sediments, then it can contribute to a longer-term (more than ten thousand years), geological CO2 sink. Despite this recognition, the erosional flux and fate of particulate organic carbon (POC) in large rivers at high latitudes remains poorly constrained. Here, we quantify the source of POC in the Mackenzie River, the main sediment supplier to the Arctic Ocean, and assess its flux and fate. We combine measurements of radiocarbon, stable carbon isotopes and element ratios to correct for rock-derived POC. Our samples reveal that the eroded biospheric POC has resided in the basin for millennia, with a mean radiocarbon age of 5,800 ± 800 years, much older than the POC in large tropical rivers. From the measured biospheric POC content and variability in annual sediment yield, we calculate a biospheric POC flux of 2.2(+1.3)(-0.9) teragrams of carbon per year from the Mackenzie River, which is three times the CO2 drawdown by silicate weathering in this basin. Offshore, we find evidence for efficient terrestrial organic carbon burial over the Holocene period, suggesting that erosion of organic carbon-rich, high-latitude soils may result in an important geological CO2 sink.

  20. An electrochemically based total organic carbon analyzer for planetary and terrestrial on-site applications.

    PubMed

    Stroble, Shannon T; Kounaves, Samuel P

    2012-07-17

    The search for organics on Mars began over 30 years ago. Neither the Viking GC/MS nor the more recent thermal and evolved gas analyzer (TEGA) aboard Phoenix were successful in detecting organics in the Martian soil. The most recent hypothesis for the "missing" Martian organics is thermal decomposition of organic material to CO(2) during the pyrolysis step of these analyses caused by the recently discovered ~1 wt % perchlorate in the Martian soil. To avoid this problem, an entirely different approach for the analysis of organics on Mars has been developed using an electrochemically based total organic carbon (TOC) analyzer, designated the Mars Organic Carbon Analyzer (MOCA). MOCA is designed as a small, lightweight, low-power instrument that electrochemically oxidizes organics to CO(2). The CO(2) is subsequently detected and quantified to determine the amount of TOC in the soil. MOCA can use the perchlorate present in the Martian soil to its advantage as an electrolyte, thus requiring only a buffered solution. Through a series of proof-of-concept tests, MOCA is shown to oxidize a variety of low-molecular-weight 1-5-carbon-containing molecules, including those containing carbon-13 using platinum and boron-doped diamond (BDD) electrodes at concentrations as low as 10 mg/kg. MOCA can also be used in terrestrial settings for on-site analysis of dissolved TOC. PMID:22725848

  1. Factors influencing organic carbon preservation in marine sediments

    NASA Technical Reports Server (NTRS)

    Canfield, D. E.

    1994-01-01

    The organic matter that escapes decomposition is buried and preserved in marine sediments, with much debate as to whether the amount depends on bottom-water O2 concentration. One group argues that decomposition is more efficient with O2, and hence, organic carbon will be preferentially oxidized in its presence, and preserved in its absence. Another group argues that the kinetics of organic matter decomposition are similar in the presence and absence of O2, and there should be no influence of O2 on preservation. A compilation of carbon preservation shows that both groups are right, depending on the circumstances of deposition. At high rates of deposition, such as near continental margins, little difference in preservation is found with varying bottom-water O2. It is important that most carbon in these sediments decomposes by anaerobic pathways regardless of bottom-water O2. Hence, little influence of bottom-water O2 on preservation would, in fact, be expected. As sedimentation rate drops, sediments deposited under oxygenated bottom water become progressively more aerobic, while euxinic sediments remain anaerobic. Under these circumstances, the relative efficiencies of aerobic and anaerobic decomposition could affect preservation. Indeed, enhanced preservation is observed in low-O2 and euxinic environments. To explore in detail the factors contributing to this enhanced carbon preservation, aspects of the biochemistries of the aerobic and anaerobic process are reviewed. Other potential influences on preservation are also explored. Finally, a new model for organic carbon decomposition, the "pseudo-G" model, is developed. This model couples the degradation of refractory organic matter to the overall metabolic activity of the sediment, and has consequences for carbon preservation due to the mixing together of labile and refractory organic matter by bioturbation.

  2. Soil organic carbon of an intensively reclaimed region in China: Current status and carbon sequestration potential.

    PubMed

    Deng, Xunfei; Zhan, Yu; Wang, Fei; Ma, Wanzhu; Ren, Zhouqiao; Chen, Xiaojia; Qin, Fangjin; Long, Wenli; Zhu, Zhenling; Lv, Xiaonan

    2016-09-15

    Land reclamation has been highly intensive in China, resulting in a large amount of soil organic carbon (SOC) loss to the atmosphere. Evaluating the factors which drive SOC dynamics and carbon sequestration potential in reclaimed land is critical for improving soil fertility and mitigating global warming. This study aims to determine the current status and factors important to the SOC density in a typical reclaimed land located in Eastern China, where land reclamation has been undergoing for centuries. A total of 4746 topsoil samples were collected from 2007 to 2010. The SOC density of the reclaimed land (3.18±0.05kgCm(-2); mean±standard error) is significantly lower than that of the adjacent non-reclaimed land (5.71±0.04kgCm(-2)) (p<0.05). A Random Forest model is developed and it captures the relationships between the SOC density and the environmental/anthropogenic factors (R(2)=0.59). The soil pH, land use, and elevation are the most important factors for determining SOC dynamics. In contrast, the effect of the reclamation age on the SOC density is negligible, where SOC content in the land reclaimed during years 1047-1724 is as low as that reclaimed during years 1945-2004. The scenario analysis results indicate that the carbon sequestration potential of the reclaimed lands may achieve a maximum of 5.80±1.81kgCO2m(-2) (mean±SD) when dryland is converted to flooded land with vegetable-rice cropping system and soil pH of ~5.9. Note that in some scenarios the methane emission substantially offsets the carbon sequestration potential, especially for continuous rice cropping system. With the optimal setting for carbon sequestration, it is estimated that the dryland reclaimed in the last 50years in China is able to sequester 0.12milliontons CO2 equivalent per year. PMID:27196991

  3. Black Carbon - Soil Organic Matter abiotic and biotic interactions

    NASA Astrophysics Data System (ADS)

    Cotrufo, Francesca; Boot, Claudia; Denef, Karolien; Foster, Erika; Haddix, Michelle; Jiang, Xinyu; Soong, Jennifer; Stewart, Catherine

    2014-05-01

    Wildfires, prescribed burns and the use of char as a soil amendment all add large quantities of black carbon to soils, with profound, yet poorly understood, effects on soil biology and chemical-physical structure. We will present results emerging from our black carbon program, which addresses questions concerning: 1) black carbon-soil organic matter interactions, 2) char decomposition and 3) impacts on microbial community structure and activities. Our understanding derives from a complementary set of post-fire black carbon field surveys and laboratory and field experiments with grass and wood char amendments, in which we used molecular (i.e., BPCA, PLFA) and isotopic (i.e., 13C and 15N labelled char) tracers. Overall, emerging results demonstrate that char additions to soil are prone to fast erosion, but a fraction remains that increases water retention and creates a better environment for the microbial community, particularly favoring gram negative bacteria. However, microbial decomposition of black carbon only slowly consumes a small fraction of it, thus char still significantly contributes to soil carbon sequestration. This is especially true in soils with little organic matter, where black carbon additions may even induce negative priming.

  4. Environmental Drivers of Global Riverine Organic Carbon Age

    NASA Astrophysics Data System (ADS)

    McIntosh, H.; Buffam, I. D.; McCallister, S. L.

    2015-12-01

    The transport of terrestrial organic carbon (OC) to downstream systems via the fluvial network represents a "leakage" of terrestrial net primary production. The age of OC exported ranges from modern OC, derived from surficial soils and leaf litter, to ancient OC that had been stored for millennia on land. The age and ultimately the fate of this OC has ramifications for both the terrestrial carbon balance and the anthropogenic CO2 budget. Consequently, it is critical to understand the environmental and landscape associated factors that influence the age of OC laterally transferred to aquatic systems. We compiled radiocarbon data for both dissolved OC (DOC) (n = 670) and particulate OC (POC) (n = 722) for both rivers and streams. Sampling locations (n = 382) and their associated watersheds (1x10-2 km2 to 4.7x106 km2) encompassed a range from 38.7 oS to 74.9 oN. These radiocarbon values were paired with associated ancillary data, when available (OC concentration, δ13C), and subsequently combined with a spatial dataset developed in ArcGIS for corresponding watersheds. The spatial dataset contained a range of landscape parameters including mean elevation, relief, mean slope, and stream order as well as soil typology and land use. Δ14CDOC ranged from -974 ‰ to +383 ‰ (mean = 3 ‰, standard deviation (s.d.) = 150 ‰) and Δ14CPOC ranged from -992 ‰ to +227 ‰ (mean = -234 ‰, s.d. = 253 ‰) demonstrating a trend of younger DOC relative to its particulate counterpart. Landscape characteristics were first analyzed for their influence on radiocarbon ages of DOC and POC at a global scale. The data were then aggregated by biome (n = 14) to assess the role of regional environmental characteristics (i.e. precipitation, temperature, soil organic carbon) on DOC and POC age. Models were derived to determine the principle drivers of the radiocarbon age of OC in streams and rivers, among the landscape and environmental characteristics, for each biome.

  5. Pathways of organic carbon oxidation in three continental margin sediments.

    PubMed

    Canfield, D E; Jorgensen, B B; Fossing, H; Glud, R; Gundersen, J; Ramsing, N B; Thamdrup, B; Hansen, J W; Nielsen, L P; Hall, P O

    1993-01-01

    We have combined several different methodologies to quantify rates of organic carbon mineralization by the various electron acceptors in sediments from the coast of Denmark and Norway. Rates of NH4+ and Sigma CO2 liberation sediment incubations were used with O2 penetration depths to conclude that O2 respiration accounted for only between 3.6-17.4% of the total organic carbon oxidation. Dentrification was limited to a narrow zone just below the depth of O2 penetration, and was not a major carbon oxidation pathway. The processes of Fe reduction, Mn reduction and sulfate reduction dominated organic carbon mineralization, but their relative significance varied depending on the sediment. Where high concentrations of Mn-oxide were found (3-4 wt% Mn), only Mn reduction occurred. With lower Mn oxide concentrations more typical of coastal sediments, Fe reduction and sulfate reduction were most important and of a similar magnitude. Overall, most of the measured O2 flux into the sediment was used to oxidized reduced inorganic species and not organic carbon. We suspect that the importance of O2 respiration in many coastal sediments has been overestimated, whereas metal oxide reduction (both Fe and Mn reduction) has probably been well underestimated.

  6. Pathways of organic carbon oxidation in three continental margin sediments

    NASA Technical Reports Server (NTRS)

    Canfield, D. E.; Jorgensen, B. B.; Fossing, H.; Glud, R.; Gundersen, J.; Ramsing, N. B.; Thamdrup, B.; Hansen, J. W.; Nielsen, L. P.; Hall, P. O.

    1993-01-01

    We have combined several different methodologies to quantify rates of organic carbon mineralization by the various electron acceptors in sediments from the coast of Denmark and Norway. Rates of NH4+ and Sigma CO2 liberation sediment incubations were used with O2 penetration depths to conclude that O2 respiration accounted for only between 3.6-17.4% of the total organic carbon oxidation. Dentrification was limited to a narrow zone just below the depth of O2 penetration, and was not a major carbon oxidation pathway. The processes of Fe reduction, Mn reduction and sulfate reduction dominated organic carbon mineralization, but their relative significance varied depending on the sediment. Where high concentrations of Mn-oxide were found (3-4 wt% Mn), only Mn reduction occurred. With lower Mn oxide concentrations more typical of coastal sediments, Fe reduction and sulfate reduction were most important and of a similar magnitude. Overall, most of the measured O2 flux into the sediment was used to oxidized reduced inorganic species and not organic carbon. We suspect that the importance of O2 respiration in many coastal sediments has been overestimated, whereas metal oxide reduction (both Fe and Mn reduction) has probably been well underestimated.

  7. Determining the Pressure inside an Unopened Carbonated Beverage

    ERIC Educational Resources Information Center

    de Grys, Hans

    2007-01-01

    New methodologies for determining the pressure inside an unopened carbonated beverage are presented. Such investigations also help the students to think deeply about a subject, giving them better understanding.

  8. Use of inorganic dryer-salts in the determination of organic contaminants in air

    SciTech Connect

    Simonov, V.A.

    1985-09-01

    This paper presents results of a study of the adsorptive activity of a number of inorganic salts relative to water vapor and to organic vapors in air under the dynamic conditions which are uses in the indicator tube method. Data are also given on the properties of dryer salts having a surface modified with glycerin. It is shown that lithium chloride on porcelain and potassium carbonate having a surface modified with glycerin can be used to dry air in determining contaminants of nonpolar and polar organic substances in it. Anhydrone on porcelain, calcium chloride, and potassium carbonate absorb some substances which are being determined and therefore are less suitable.

  9. Petroleum pollutants in surface and groundwater as indicated by the carbon-14 activity of dissolved organic carbon.

    PubMed

    Spiker, E C; Rubin, M

    1975-01-10

    The (14)C activity of dissolved organic carbon (DOC) can be used to distinguish between the fossil organic carbon due to petrochemical effluents and modern organic carbon due to domestic wastes and natural decaying organic matter. Rivers polluted by petrochemical effluents show varying amounts of depression of the DOC (14)C activity, reflecting concentrations of (14)C-deficient fossil carbon of as much as about 40 percent of the total DOC.

  10. Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulphur batteries.

    PubMed

    Xi, Kai; Cao, Shuai; Peng, Xiaoyu; Ducati, Caterina; Kumar, R Vasant; Cheetham, Anthony K

    2013-03-18

    This paper presents a novel method and rationale for utilizing carbonized MOFs for sulphur loading to fabricate cathode structures for lithium-sulphur batteries. Unique carbon materials with differing hierarchical pore structures were synthesized from four types of zinc-containing metal-organic frameworks (MOFs). It is found that cathode materials made from MOFs-derived carbons with higher mesopore (2-50 nm) volumes exhibit increased initial discharge capacities, whereas carbons with higher micropore (<2 nm) volumes lead to cathode materials with better cycle stability.

  11. [Soil organic carbon fractionation methods and their applications in farmland ecosystem research: a review].

    PubMed

    Zhang, Guo; Cao, Zhi-ping; Hu, Chan-juan

    2011-07-01

    Soil organic carbon is of heterogeneity in components. The active components are sensitive to agricultural management, while the inert components play an important role in carbon fixation. Soil organic carbon fractionation mainly includes physical, chemical, and biological fractionations. Physical fractionation is to separate the organic carbon into active and inert components based on the density, particle size, and its spatial distribution; chemical fractionation is to separate the organic carbon into various components based on the solubility, hydrolizability, and chemical reactivity of organic carbon in a variety of extracting agents. In chemical fractionation, the dissolved organic carbon is bio-available, including organic acids, phenols, and carbohydrates, and the acid-hydrolyzed organic carbon can be divided into active and inert organic carbons. Simulated enzymatic oxidation by using KMnO4 can separate organic carbon into active and non-active carbon. Biological fractionation can differentiate microbial biomass carbon and potential mineralizable carbon. Under different farmland management practices, the chemical composition and pool capacity of soil organic carbon fractions will have different variations, giving different effects on soil quality. To identify the qualitative or quantitative relationships between soil organic carbon components and carbon deposition, we should strengthen the standardization study of various fractionation methods, explore the integrated application of different fractionation methods, and sum up the most appropriate organic carbon fractionation method or the appropriate combined fractionation methods for different farmland management practices. PMID:22007474

  12. Modeling Soil Organic Carbon Turnover in Four Temperate Forests Based on Radiocarbon Measurements of Heterotrophic Respiration and Soil Organic Carbon

    NASA Astrophysics Data System (ADS)

    Ahrens, B.; Borken, W.; Muhr, J.; Schrumpf, M.; Savage, K. E.; Wutzler, T.; Trumbore, S.; Reichstein, M.

    2011-12-01

    Soils of temperate forests store significant amounts of soil organic matter and are considered to be net sinks of atmospheric CO2. Soil organic carbon (SOC) dynamics have been studied using the Δ14C signature of bulk SOC or different SOC fractions as observational constraints in SOC models. Further, the Δ14C signature of CO2 evolved during the incubation of soil and roots has been widely used together with Δ14C of total soil respiration to partition soil respiration into heterotrophic respiration (Rh) and root respiration. However, these data have rarely been used together as observational constraints to determine SOC turnover times. Here, we present a multiple constraints approach, where we used SOC stock and its Δ14C signature, and heterotrophic respiration and its Δ14C signature to estimate SOC turnover times of a simple serial two-pool model via Bayesian optimization. We used data from four temperate forest ecosystems in Germany and the USA with different disturbance and management histories from selective logging to afforestation in the late 19th and early 20th century. The Δ14C signature of the atmosphere with its prominent bomb peak was used as a proxy for the Δ14C signature of aboveground and belowground litterfall. The Δ14C signature of litterfall was lagged behind the atmospheric signal to account for the period between photosynthetic fixation of carbon and its addition to SOC pools. We showed that the combined use of Δ14C measurements of Rh and SOC stocks helped to better constrain turnover times of the fast pool (primarily by Δ14C of Rh) and the slow pool (primarily by Δ14C of SOC). In particular, by introducing two additional parameters that describe the deviation from steady state of the fast and slow cycling pool for both SOC and SO14C, we were able to demonstrate that we cannot maintain the often used steady-state assumption of SOC models in general. Furthermore, a new transport version of our model, including SOC transport via

  13. Great Plains climate and land-use effects on soil organic carbon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil organic carbon (SOC) is essential to agricultural productivity and sustainability in response to climate and land-use change. Here, we examine 14 sites across the US Great Plains to determine the sensitivity of important SOC fractions to climatic gradients (temperature and precipitation) and l...

  14. TOWARDS A STANDARD METHOD FOR THE MEASUREMENT OF ORGANIC CARBON IN SEDIMENTS

    EPA Science Inventory

    The precisions achieved by two different methods for analysis of organic carbon in soils and sediments were determined and compared. The first method is a rapid dichromate oxidation technique (Walkley-Black) that has long been a standard in soil chemistry. The second is an automa...

  15. Stock assessment and balance of organic carbon in the Eastern European steppe ecosystems tree windbreaks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reserves and balance of organic carbon in ecosystems of windbreaks planted in the mid-1950s within the Forest-Steppe of Central Eastern Europe were determined from field sampling. Windbreaks were represented by 5-6-row plantings of Populus nigra and Betula pendula ("Streletskaya Steppe"), Acer negun...

  16. Interpreting carbonate and organic carbon isotope covariance in the sedimentary record.

    PubMed

    Oehlert, Amanda M; Swart, Peter K

    2014-08-19

    Many negative δ(13)C excursions in marine carbonates from the geological record are interpreted to record significant biogeochemical events in early Earth history. The assumption that no post-depositional processes can simultaneously alter carbonate and organic δ(13)C values towards more negative values is the cornerstone of this approach. However, the effects of post-depositional alteration on the relationship between carbonate and organic δ(13)C values have not been directly evaluated. Here we present paired carbonate and organic δ(13)C records that exhibit a coupled negative excursion resulting from multiple periods of meteoric alteration of the carbonate δ(13)C record, and consequent contributions of isotopically negative terrestrial organic matter to the sedimentary record. The possibility that carbonate and organic δ(13)C records can be simultaneously shifted towards lower δ(13)C values during periods of subaerial exposure may necessitate the reappraisal of some of the δ(13)C anomalies associated with noteworthy biogeochemical events throughout Earth history.

  17. Selective Sorption of Dissolved Organic Carbon Compounds by Temperate Soils

    SciTech Connect

    Jagadamma, Sindhu; Mayes, Melanie; Phillips, Jana Randolph

    2012-01-01

    Physico-chemical sorption of dissolved organic carbon (DOC) on soil minerals is one of the major processes of organic carbon (OC) stabilization in soils, especially in deeper layers. The attachment of C on soil solids is related to the reactivity of the soil minerals and the chemistry of the sorbate functional groups, but the sorption studies conducted without controlling microbial activity may overestimate the sorption potential of soil. This study was conducted to examine the sorptive characteristics of a diverse functional groups of simple OC compounds (D-glucose, L-alanine, oxalic acid, salicylic acid, and sinapyl alcohol) on temperate climate soil orders (Mollisols, Ultisols and Alfisols) with and without biological degradative processes. Equilibrium batch experiments were conducted using 0-100 mg C L-1 at a solid-solution ratio of 1:60 for 48 hrs and the sorption parameters were calculated by Langmuir model fitting. The amount of added compounds that remained in the solution phase was detected by high performance liquid chromatography (HPLC) and total organic C (TOC) analysis. Soil sterilization was performed by -irradiation technique and experiments were repeated to determine the contribution of microbial degradation to apparent sorption. Overall, Ultisols did not show a marked preference for apparent sorption of any of the model compounds, as indicated by a narrower range of maximum sorption capacity (Smax) of 173-527 mg kg soil-1 across compounds. Mollisols exhibited a strong preference for apparent sorption of oxalic acid (Smax of 5290 mg kg soil-1) and sinapyl alcohol (Smax of 2031 mg kg soil-1) over the other compounds. The propensity for sorption of oxalic acid is mainly attributed to the precipitation of insoluble Ca-oxalate due to the calcareous nature of most Mollisol subsoils and its preference for sinapyl alcohol could be linked to the polymerization of this lignin monomer on 2:2 mineral dominated soils. The reactivity of Alfisols to DOC was in

  18. Origin of particulate organic carbon in the marine atmosphere as indicated by it stable carbon isotopic composition

    SciTech Connect

    Chesselet, R.; Fontugne, M.; Buat-Menard, P.; Ezat, U.; Lambert, C.E.

    1981-04-01

    Organic carbon concentration and isotopic composition were determined in samples of atmospheric particulate matter collected in 1979 at remote marine locations (Enewetak atoll, Sargasso Sea) during the SEAREX (Sea-Air Exchange) program field experiments. Atmospheric Particulate Organic Carbon (POC) concentrations were found to be in the range of 0.3 to 1.2 mg. m/sup -3/, in agreement with previous literature data. The major mass of POC was found on the smallest particles (r<0.5 mm). The /sup 13/C//sup 12/C of the small particles is close to the one expected (d/sup 13/C = 26 +- 2/sup 0///sub infinity/) for atmospheric POC of continental origin. For all the samples analysed so far, it appears that more than 80% of atmospheric POC over remote marine areas is of continental origin. This can be explained either by long-range transport of small sized continental organic aserosols or by the production of POC in the marine atmosphere from a vapor phase organic carbon pool of continental origin. The POC in the large size fraction of marine aerosols (<20% of the total concentration) is likely to have a direct marine origin since its carbon isotopic composition is close to the expected value (d/sup 13/C = -21 +- 2/sup 0///sub 00/) for POC associated with sea-salt droplets transported to the marine atmosphere.

  19. Constraints on Early Triassic carbon cycle dynamics from paired organic and inorganic carbon isotope records

    NASA Astrophysics Data System (ADS)

    Meyer, K. M.; Yu, M.; Payne, J.

    2010-12-01

    Marine anoxia and euxinia are widely cited as a leading cause of the end-Permian mass extinction and a factor limiting recovery during the Early Triassic. Middle Triassic diversification coincided with the waning of anoxia and stabilization of the global carbon cycle, suggesting that environment-ecosystem linkages were important to biological recovery. However, the mechanisms responsible for these phenomena remain poorly constrained. Here we employ a carbon isotope approach to examine the nature of the carbon cycle from Late Permian to Middle Triassic time. We measured the carbon isotopic composition of carbonates (δ13Ccarb) and organic matter (δ13Corg) from an exceptionally preserved carbonate platform in the Nanpanjiang Basin of south China. The δ13Ccarb of limestones from 5 stratigraphic sections spanning a paleoenvironmental gradient in south China records multiple large isotope excursions characteristic of the Lower Triassic. Previous modeling suggests that the carbon isotope record is best explained by multiple pulses carbon release to the ocean-atmosphere system. Addition of Δ13C values (δ13Ccarb - δ13Corg) for this interval allows us to evaluate whether the carbon cycle perturbations are indeed due to changes in atmospheric CO2 or from changing sources of organic matter input or fluctuating redox state of the oceans during this interval.

  20. Are we overestimating organic carbon concentrations in soils containing inorganic carbon?

    NASA Astrophysics Data System (ADS)

    Cunliffe, Andrew; Brazier, Richard; Vernon, Ian

    2014-05-01

    The concentration of carbon in soils is often measured via chromatographic analysis of elemental gases following dry combustion of a soil sample. This quantifies total carbon (TC), and, in soils which can be assumed to contain no inorganic carbon (IC), TC can be interpreted as organic carbon (OC). Soils containing IC are commonly subjected to an acid digestion to remove IC, prior to analysis for OC concentration; with IC being assigned as the difference between TC and OC. However, the removal of IC reduces the sample mass. Therefore, analysing acid-washed samples reveals the carbon concentration of the non-inorganic carbon sample mass, rather than the actual sample mass, as is generally assumed. This results in the overestimation of OC concentrations and consequent underestimation of IC concentrations, although TC concentrations are correct. The magnitude of the error is proportional to both IC concentration, and the ratio OC/IC, and consequently is greater in carbonate-rich samples. We present a revised protocol for accurately calculating OC and IC concentrations, using the carbon concentrations of the total sample and the acid-washed sample. The revised protocol is easily applicable to existing data, and corrects a known bias in apportioning carbon between organic and inorganic pools. Propagating the error through an example dataset from a semiarid environment, we find it can make a substantial (>10%) difference to estimated total OC pools. We recommend that this new protocol is used whenever elemental analysers are used to quantify OC concentrations in acid-washed sediments.

  1. Soil organic matter dynamics and the global carbon cycle

    SciTech Connect

    Post, W.M.; Emanuel, W.R.; King, A.W.

    1992-01-01

    The large size and potentially long residence time of the soil organic matter pool make it an important component of the global carbon cycle. Net terrestrial primary production of about 60 Pg C[center dot]yr[sup -1] is, over a several-year period of time, balanced by an equivalent flux of litter production and subsequent decomposition of detritus and soil organic matter. We will review many of the major factors that influence soil organic matter dynamics that need to be explicitly considered in development of global estimates of carbon turnover in the world's soils. We will also discuss current decomposition models that are general enough to be used to develop a representation of global soil organic matter dynamics.

  2. Soil organic matter dynamics and the global carbon cycle

    SciTech Connect

    Post, W.M.; Emanuel, W.R.; King, A.W.

    1992-12-01

    The large size and potentially long residence time of the soil organic matter pool make it an important component of the global carbon cycle. Net terrestrial primary production of about 60 Pg C{center_dot}yr{sup -1} is, over a several-year period of time, balanced by an equivalent flux of litter production and subsequent decomposition of detritus and soil organic matter. We will review many of the major factors that influence soil organic matter dynamics that need to be explicitly considered in development of global estimates of carbon turnover in the world`s soils. We will also discuss current decomposition models that are general enough to be used to develop a representation of global soil organic matter dynamics.

  3. Spatial distribution of soil organic carbon stocks in France

    NASA Astrophysics Data System (ADS)

    Martin, M. P.; Wattenbach, M.; Smith, P.; Meersmans, J.; Jolivet, C.; Boulonne, L.; Arrouays, D.

    2010-11-01

    Soil organic carbon plays a major role in the global carbon budget, and can act as a source or a sink of atmospheric carbon, whereby it can influence the course of climate change. Changes in soil organic soil stocks (SOCS) are now taken into account in international negotiations regarding climate change. Consequently, developing sampling schemes and models for estimating the spatial distribution of SOCS is a priority. The French soil monitoring network has been established on a 16 km × 16 km grid and the first sampling campaign has recently been completed, providing circa 2200 measurements of stocks of soil organic carbon, obtained through an in situ composite sampling, uniformly distributed over the French territory. We calibrated a boosted regression tree model on the observed stocks, modelling SOCS as a function of other variables such as climatic parameters, vegetation net primary productivity, soil properties and land use. The calibrated model was evaluated through cross-validation and eventually used for estimating SOCS for the whole of metropolitan France. Two other models were calibrated on forest and agricultural soils separately, in order to assess more precisely the influence of pedo-climatic variables on soil organic carbon for such soils. The boosted regression tree model showed good predictive ability, and enabled quantification of relationships between SOCS and pedo-climatic variables (plus their interactions) over the French territory. These relationship strongly depended on the land use, and more specifically differed between forest soils and cultivated soil. The total estimate of SOCS in France was 3.260 ± 0.872 PgC for the first 30 cm. It was compared to another estimate, based on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC. We demonstrate that the present estimate might better represent the actual SOCS distributions of France, and consequently that the previously published approach at the European

  4. Standardizing Organic Carbon Measurements for Modern and Geologic Timescales

    NASA Astrophysics Data System (ADS)

    Wang, R. Z.; Yager, J. A.; Rollins, N.; Berelson, W.; West, A. J.; Li, G.

    2015-12-01

    Accurate reconstruction of carbon isotope records (as well as accurate characterization of the modern carbon cycle, e.g., in soils) relies on reliably separating organic carbon (Corg) from carbonate-derived carbon (Ccarb). These fractions are characterized by very different isotope composition, so small carbonate contamination can strongly bias Corg results, and vice versa. Several criteria must be met for accurate %C and d13C analysis. In the case of analyzing Corg, these include: (1) Ccarb must be removed through a process called "decarbonation." (2) Ccarb can be removed by acid dissolution, but if the acid is too strong then the Corg itself may solubilize, causing inaccurate results. (3) The preparation process for decarbonation can also unintentionally add carbon to samples and create a methodological blank that also will bias results. This study tested decarbonation methods with the above criteria in mind. The focus was on (i) heated treatment with weak liquid acid, e.g., 1M HCl ("liquid phase decarbonation") and (ii) heated treatment with vapor from concentrated acid ("vapor phase decarbonation"). Our results confirm that heated treatment is critical to producing reliable records; recalcitrant carbonate phases are not removed during room temperature decarbonation and can bias carbon isotope values. Vapor phase decarbonation may prevent loss in solution that is known to occur using liquid phase methods. However, our results show that blanks must be very carefully monitored and can be a concern during vapor phase treatment. Moreover, we still observe some loss of organics during vapor phase treatment, as evidenced by changes in Corg and d13C with length of reaction time. The length of vapor phase treatment must be carefully considered depending on the type of sample being tested. Overall, our work emphasizes the importance of carefully considering sample-specific decarbonation methodology in order to produce reliable values for %Corg and d13C.

  5. Isotopic Composition of Organic and Inorganic Carbon in Desert Biological Soil Crust Systems

    NASA Astrophysics Data System (ADS)

    Alexander, K.; Hartnett, H.; Anbar, A.; Beraldi, H.; Garcia-Pichel, F.

    2006-12-01

    Biological soil crusts (BSCs) are microbial communities that colonize soil surfaces in many arid regions. BSCs are important sources for fixed carbon and nitrogen in these ecosystems, and they greatly influence the structure, function, and appearance of desert soils. Biological activity of BSCs occurs during pulses of hydration requiring desert crusts to tolerate extremes in UV radiation, temperature, and desiccation. These characteristics make desert crusts unique systems that have received little consideration in the study of biogeochemical processes in extreme environments. This project investigates the impact of BSCs on carbon dynamics within desert soils. Soil cores ranging in depth from 8 to 12 cm were taken in March, 2006 from deserts near Moab, Utah. Two major BSC classes were identified: lichen-dominated (dark and pinnacled) soil crusts and cyanobacteria-dominated (light and flat) soil crusts. These two surface morphologies are related to the different biological communities. Carbon content and stable carbon isotopic composition were determined for the bulk carbon pool, as well as for the organic and inorganic carbon fractions of the soils. Expectedly, there was a net decrease in organic carbon content with depth (0.39-0.27 percent). Stable carbon isotope values for the organic fraction ranged from -5.8 per mil to -24.0 per mil (Avg: -14.4 per mil, S.D: 6.42 per mil). Stable carbon isotope values for the inorganic fraction ranged from 0.3 per mil to -3.6 per mil (Avg: -2.4 per mil, S.D.: 1.05 per mil). The variation in the isotopic composition of the organic carbon was due to a strong depletion below the surface soil value occurring between 3 and 5 cm depth, with an enrichment above the original surface value at depths below 6 to 10 cm. These data suggest that within desert soil crust systems the carbon isotopic signal is complex with both a clear biological imprint (lighter organic carbon) as well as evidence for some mechanism that results in

  6. Estimations of Soil organic carbons pools in Southern Greenland

    NASA Astrophysics Data System (ADS)

    Ogric, Mateja; Chellasamy, Menaka; Knadel, Maria; Greve, Mogens H.; Adhikari, Kabindra; Jakobsen, Bjarne H.; Kristiansen, Søren M.

    2015-04-01

    Terrestrial areas hold large pools of soil organic carbon (SOC), which is a fundamental soil feature. It is known that SOC can be destabilized due to climate changes and land use, what can lead to accelerated emissions of greenhouse gasses into the atmosphere. Arctic soil, which is strongly sensitive to climate changes, stores about 14% of the Earth's organic carbon (Elberling et al., 2004). Therefore, the high-latitude soils are an important factor for investigation and determination of carbon pools. Recent advances in analytical methods offer various improvements regarding data acquisition. For example, near-infrared spectroscopy (NIRS) analyses of soils is often cost-effective and faster as compared to traditional wet-chemical methods for C and N determination, while it also gives reliable results. The aim of this study is i) to estimate the SOC pool in a remote area with poor soil data, i.e. Southern Greenland, and ii) to compare estimation techniques based on two independent SOC analytical approaches. The study area comprises approx. 17,500 km2 large non-glaciated land in south Greenland, from the Labrador Sea coast line to the margins of the Greenland Ice Sheet (46° 47'W-44° 16'W and 60° 07'N-61° 24'N). A large number of the abandoned Norse Viking Age settlements, i.e. Gardar, Hvalsø and Igaliku, are found here. A soil resource database was compiled from existing sources and recently collected soil samples to improve the data density for the area. The majority of the dataset represents 233 soil samples, which were collected in summer 2013 following Globalsoilmap.net specifications (Ogric et al., 2014). The focus of the investigation was on the top soil (down to 25 cm depth). These samples were analyzed for total soil carbon, nitrogen, and sulphur contents. The NIRS method was used on the same soil samples in an attempt to improve the data interpretation. Chemometric methods of NIRS data were applied with The Unscrambler X (Camo, 2014). Next, all known

  7. Bacterial survival governed by organic carbon release from senescent oceanic phytoplankton

    NASA Astrophysics Data System (ADS)

    Lasternas, S.; Agustí, S.

    2013-10-01

    Bacteria recycle vast amounts of organic carbon, playing key biogeochemical and ecological roles in the ocean. Bacterioplankton dynamics are expected to be dependent on phytoplankton primary production, but there is a high diversity of processes (e.g. sloppy feeding, cell exudation, viral lysis) involved in the transference of primary production to dissolved organic carbon available to bacteria. Here we show cell survival of heterotrophic bacterioplankton in the subtropical Atlantic Ocean to be determined by phytoplankton extracellular carbon release (PER). PER represents the fraction of primary production released as dissolved organic carbon, and changes in the PER variability was explained by phytoplankton cell death, with the communities experiencing the highest phytoplankton cell mortality showing a larger proportion of extracellular carbon release. Both PER and the percent of dead phytoplankton cells increased from eutrophic to oligotrophic waters, while heterotrophic bacteria communities, including 60 to 95% of living cells (%LC), increased from the productive to the most oligotrophic waters. The percentage of living heterotrophic bacterial cells increased with increasing phytoplankton extracellular carbon release, across oligotrophic to productive waters in the NE Atlantic, where lower PER have resulted in a decrease in the flux of phytoplankton DOC per bacterial cell. The results highlight phytoplankton cell death as a process influencing the flow of dissolved photosynthetic carbon in the NE Atlantic Ocean, and demonstrated a close coupling between the fraction of primary production released and heterotrophic bacteria survival.

  8. Quantification of functional soil organic carbon pools in a chronosequence of land abandonment in southern Spain.

    NASA Astrophysics Data System (ADS)

    Trigalet, Sylvain; Gabarrón-Galeote, Miguel A.; Van Oost, Kristof; van Wesemael, Bas

    2015-04-01

    Land abandonment is the dominant land use change in the Mediterranean, and determines the soil organic carbon (SOC) as the vegetation recovers during secondary succession. The rate of SOC recovery is influenced by environmental factors such as precipitation, soil properties or other local factors. Using aerial photographs taken in 1956, 1977, 1984, 1998, 2001 and 2009, a chronosequence of crop land abandonment was designed and topsoil samples were taken at each stage of recovery in a region North of Málaga. As SOC is a mixture of functional pools, it is important to isolate organic carbon with distinct functional properties to better understand the overall dynamic over decades. Using fractionation scheme introduced by Zimmermann et al. (2007), five fractions were isolated based on particle size, density and resistance: particulate organic matter (POM), dissolved organic carbon (DOC), SOC linked to silt and clay (s & c), SOC attached to sand particles or occluded in aggregates (S+A) and a chemically resistant fraction obtained by NaOCl oxidation (rSOC). Although there were no significant changes in particle-size distribution between the recovery stages (except for the croplands), there was a significant increase of S+A fraction over time (16 to 38%) at the expense of the s & c fraction (84 to 58%), indicating aggregation processes. Carbon concentrations within fractions S+A or rSOC did not change over time. Rather, carbon associated with silt and clay particles (s &c) was significantly affected after a few decades of abandonment. It increased from 5.7 gC.kg-1 in croplands to 10.3 gC.kg-1 in semi-natural plots. The chronosequence showed that carbon can be stored in more stable fractions. Taking into account active carbon (DOC + POM) and intermediate carbon (s & c, S+A) as indicators for carbon dynamics, we showed that the proportion of active carbon increased from 11% to 34% within the chronosequence. On the other hand, the proportion of slow cycling carbon

  9. An isotopic study of biogeochemical relationships between carbonates and organic carbon in the Greenhorn Formation

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Popp, Brian N.; Takigiku, Ray; Johnson, Marcus W.

    1989-01-01

    Carbon-isotopic compositions of total carbonate, inoceramid carbonate, micritic carbonate, secondary cements, total organic carbon, and geoporphyrins have been measured in 76 different beds within a 17-m interval of a core through the Greenhorn Formation, an interbedded limestone and calcareous shale unit of Cretaceous age from the Western Interior Seaway of North America. Results are considered in terms of variations in the processes of primary production and in secondary processes. It is shown that the porphyrin isotopic record reflects primary isotopic variations more closely than the TOC isotopic record and that, in these sediments, TOC is enriched in C-13 relative to its primary precursor by 0.6 to 2.8 percent. This enrichment is attributed to isotope effects within the consumer foodweb and is associated with respiratory heterotrophy. Variation in this secondary enrichment are correlated with variations in the isotopic composition of marine carbonate.

  10. Determination of nicotine, tar, volatile organic compounds and carbonyls in mainstream cigarette smoke using a glass filter and a sorbent cartridge followed by the two-phase/one-pot elution method with carbon disulfide and methanol.

    PubMed

    Uchiyama, Shigehisa; Hayashida, Hideki; Izu, Rina; Inaba, Yohei; Nakagome, Hideki; Kunugita, Naoki

    2015-12-24

    We have developed a new analytical method for the determination of nicotine, tar, volatile organic compounds and carbonyls in main-stream cigarette smoke using a sorbent cartridge packed with Carboxen 572 (CX-572) and a Cambridge filter pad (CFP) followed by the two-phase/one-pot elution method. A CX-572 cartridge is installed between the intake of the CFP and the pump of the smoking machine. Gaseous compounds collected with the CX-572 cartridge and total particulate matter (TPM) collected with the CFP are coeluted simultaneously in the same vial and then analyzed by high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC/MS) and gas chromatograph-thermal conductivity detector (GC/TCD). Carbonyl compounds are determined by adding derivatizing reagent (2,4-dinitrophenylhydrazine, DNPH) to the eluate followed by HPLC analysis. VOCs and nicotine are determined by GC/MS, and water is determined by GC/TCD. The same sample eluate solution is used for HPLC, GC/MS and GC/TCD analyses. As a result of measuring main-stream cigarette smoke generated from reference cigarettes, almost all carbonyl compounds and VOCs except formaldehyde were passed through a CFP and trapped in a CX-572 cartridge. 100% of nicotine, tar and TPM were trapped in a CFP. 50% of water and 53% of formaldehyde were trapped in a CFP. The one-pot data is almost equal to the sums of CFP (particulate matter) and CX-572 (gaseous compounds) data. The two-phase/one-pot elution method can simultaneously measure nicotine, tar, volatile organic compounds and carbonyl compounds in cigarette smoke with simple operation and small amounts of reagents.

  11. Determination of nicotine, tar, volatile organic compounds and carbonyls in mainstream cigarette smoke using a glass filter and a sorbent cartridge followed by the two-phase/one-pot elution method with carbon disulfide and methanol.

    PubMed

    Uchiyama, Shigehisa; Hayashida, Hideki; Izu, Rina; Inaba, Yohei; Nakagome, Hideki; Kunugita, Naoki

    2015-12-24

    We have developed a new analytical method for the determination of nicotine, tar, volatile organic compounds and carbonyls in main-stream cigarette smoke using a sorbent cartridge packed with Carboxen 572 (CX-572) and a Cambridge filter pad (CFP) followed by the two-phase/one-pot elution method. A CX-572 cartridge is installed between the intake of the CFP and the pump of the smoking machine. Gaseous compounds collected with the CX-572 cartridge and total particulate matter (TPM) collected with the CFP are coeluted simultaneously in the same vial and then analyzed by high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC/MS) and gas chromatograph-thermal conductivity detector (GC/TCD). Carbonyl compounds are determined by adding derivatizing reagent (2,4-dinitrophenylhydrazine, DNPH) to the eluate followed by HPLC analysis. VOCs and nicotine are determined by GC/MS, and water is determined by GC/TCD. The same sample eluate solution is used for HPLC, GC/MS and GC/TCD analyses. As a result of measuring main-stream cigarette smoke generated from reference cigarettes, almost all carbonyl compounds and VOCs except formaldehyde were passed through a CFP and trapped in a CX-572 cartridge. 100% of nicotine, tar and TPM were trapped in a CFP. 50% of water and 53% of formaldehyde were trapped in a CFP. The one-pot data is almost equal to the sums of CFP (particulate matter) and CX-572 (gaseous compounds) data. The two-phase/one-pot elution method can simultaneously measure nicotine, tar, volatile organic compounds and carbonyl compounds in cigarette smoke with simple operation and small amounts of reagents. PMID:26653840

  12. Aerosol organic carbon to black carbon ratios: Analysis of published data and implications for climate forcing

    NASA Astrophysics Data System (ADS)

    Novakov, T.; Menon, S.; Kirchstetter, T. W.; Koch, D.; Hansen, J. E.

    2005-11-01

    Measurements of organic carbon (OC) and black carbon (BC) concentrations over a variety of locations worldwide have been analyzed to infer the spatial distributions of the ratios of OC to BC. Since these ratios determine the relative amounts of scattering and absorption, they are often used to estimate the radiative forcing due to aerosols. An artifact in the protocol for filter measurements of OC has led to widespread overestimates of the ratio of OC to BC in atmospheric aerosols. We developed a criterion to correct for this artifact and analyze corrected OC to BC ratios. The OC to BC ratios, ranging from 1.3 to 2.4, appear relatively constant and are generally unaffected by seasonality, sources, or technology changes, at the locations considered here. The ratios compare well with emission inventories over Europe and China but are a factor of 2 lower in other regions. The reduced estimate for OC/BC in aerosols strengthens the argument that reduction of soot emissions maybe a useful approach to slow global warming.

  13. Aerosol organic carbon to black carbon ratios: Analysis ofpublished data and implications for climate forcing

    SciTech Connect

    Novakov, T.; Menon, S.; Kirchstetter, T.W.; Koch, D.; Hansen, J.E.

    2005-07-11

    Measurements of organic carbon (OC) and black carbon (BC)concentrations over a variety of locations worldwide, have been analyzed to infer the spatial distributions of the ratios of OC to BC. Since these ratios determine the relative amounts of scattering and absorption, they are often used to estimate the radiative forcing due to aerosols. An artifact in the protocol for filter measurements of OC has led to widespread overestimates of the ratio of OC to BC in atmospheric aerosols. We developed a criterion to correct for this artifact and analyze corrected OC to BC ratios. The OC to BC ratios, ranging from 1.3to 2.4, appear relatively constant and are generally unaffected by seasonality, sources or technology changes, at the locations considered here. The ratios compare well with emission inventories over Europe and China but are a factor of two lower in other regions. The reduced estimate for OC/BC in aerosols strengthens the argument that reduction of soot emissions maybe a useful approach to slow global warming.

  14. Topographic effects on soil organic carbon in louisiana watersheds.

    PubMed

    Zhong, Biao; Xu, Y Jun

    2009-04-01

    Terrestrial carbon storage is influenced by a number of environmental factors, among which topographic and geomorphological features are of special significance. This study was designed to examine the relationships of soil organic carbon (SOC) density to various terrain parameters and watershed characteristics across Louisiana, USA. A polygon data set of 484 watersheds and 12 river drainage basins for Louisiana was used to form the landscape units. SOC densities were calculated for each soil map unit using the State Soil Geographic (STATSGO) database. Average drainage densities and average slopes at watershed and basin scales were quantified with the 1:24 K Digital Elevation Models (DEM) data, and the Louisiana hydrographic water features. Correlation and regression analyses were performed to determine relationships among drainage density, slope, elevation, and SOC. The study found an average watershed drainage density of 1.6 km/km(2) and an average watershed slope of 2.9 degrees in Louisiana. The results revealed that SOC density at both watershed and basin scales was closely related to drainage density, slope, and elevation. SOC density was positively correlated with watershed drainage density, but negatively correlated with watershed slope gradient and elevation. Regression models were developed for predicting SOC density at watershed and basin scales, obtaining regression coefficients (r (2)) ranging from 0.43 to 0.83. The study showed that estimation of SOC at watershed and drainage basin scales combining DEM data can be a feasible approach to improve the understanding of the relationships among SOC, topographic, and geomorphological features. PMID:18704564

  15. Carbonaceous aerosols influencing atmospheric radiation: Black and organic carbon

    SciTech Connect

    Penner, J.E.

    1994-09-01

    Carbonaceous particles in the atmosphere may both scatter and absorb solar radiation. The fraction associated with the absorbing component is generally referred to as black carbon (BC) and is mainly produced from incomplete combustion processes. The fraction associated with condensed organic compounds is generally referred to as organic carbon (OC) or organic matter and is mainly scattering. Absorption of solar radiation by carbonaceous aerosols may heat the atmosphere, thereby altering the vertical temperature profile, while scattering of solar radiation may lead to a net cooling of the atmosphere/ocean system. Carbonaceous aerosols may also enhance the concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the fine particle (D < 2.5 {mu}m) source rates of both OC and BC. The source rates for anthropogenic organic aerosols may be as large as the source rates for anthropogenic sulfate aerosols, suggesting a similar magnitude of direct forcing of climate. The role of BC in decreasing the amount of reflected solar radiation by OC and sulfates is discussed. The total estimated forcing depends on the source estimates for organic and black carbon aerosols which are highly uncertain. The role of organic aerosols acting as cloud condensation nuclei (CCN) is also described.

  16. Assessing Impacts of 20 yr Old Miscanthus on Soil Organic Carbon Quality

    NASA Astrophysics Data System (ADS)

    Hu, Yaxian; Schäfer, Gerhard; Kuhn, Nikolaus

    2015-04-01

    The use of biomass as a renewable energy source has become increasingly popular in Upper Rhine Region to meet the demand for renewable energy. Miscanthus is one of the most favorite biofuel crops, due to its long life and large yields, as well as low energy and fertilizer inputs. However, current research on Miscanthus is mostly focused on the techniques and economics to produce biofuel or the impacts of side products such as ash and sulfur emissions to human health. Research on the potential impacts of Miscanthus onto soil quality, especially carbon quality after long-term adoption, is very limited. Some positive benefits, such as sequestrating organic carbon, have been repeatedly reported in previous research. Yet the quality of newly sequestrated organic carbon and its potential impacts onto global carbon cycling remain unclear. To fully account for the risks and benefits of Miscanthus, it is required to investigate the quality as well as the potential CO2 emissions of soil organic carbon on Miscanthus fields. As a part of the Interreg Project to assess the environmental impacts of biomass production in the Upper Rhine Region, this study aims to evaluate the carbon quality and the potential CO2 emissions after long-term Miscanthus adoption. Soils were sampled at 0-10, 10-40, 40-70, and 70-100 cm depths on three Miscanthus fields with up to 20 years of cultivation in Ammerzwiller France, Münchenstein Switzerland, and Farnsburg Switzerland. Soil texture, pH, organic carbon and nitrogen content were measured for each sampled layer. Topsoils of 0-10 cm and subsoils of 10-40 cm were also incubated for 40 days to determine the mineralization potential of the soil organic matter. Our results show that: 1) only in top soils of 0-10 cm, the 20 year old Miscanthus field has significantly higher soil organic carbon concentrations, than the control site. No significant differences were observed in deeper soil layers. Similar tendencies were also observed for organic

  17. Estimation of organic carbon loss potential in north of Iran

    NASA Astrophysics Data System (ADS)

    Shahriari, A.; Khormali, F.; Kehl, M.; Welp, G.; Scholz, Ch.

    2009-04-01

    The development of sustainable agricultural systems requires techniques that accurately monitor changes in the amount, nature and breakdown rate of soil organic matter and can compare the rate of breakdown of different plant or animal residues under different management systems. In this research, the study area includes the southern alluvial and piedmont plains of Gorgan River extended from east to west direction in Golestan province, Iran. Samples from 10 soil series and were collected from cultivation depth (0-30 cm). Permanganate-oxidizable carbon (POC) an index of soil labile carbon, was used to show soil potential loss of organic carbon. In this index shows the maximum loss of OC in a given soil. Maximum loss of OC for each soil series was estimated through POC and bulk density (BD). The potential loss of OC were estimated between 1253263 and 2410813 g/ha Carbon. Stable organic constituents in the soil include humic substances and other organic macromolecules that are intrinsically resistant against microbial attack, or that are physically protected by adsorption on mineral surfaces or entrapment within clay and mineral aggregates. However, the (Clay + Silt)/OC ratio had a negative significant (p < 0.001) correlation with POC content, confirming the preserving effect of fine particle.

  18. Photoproduction of Carbon Monoxide from Natural Organic Matter

    EPA Science Inventory

    Pioneering studies by Valentine provided early kinetic results that used carbon monoxide (CO) production to evaluate the photodecomposition of aquatic natural organic matter (NOM) . (ES&T 1993 27 409-412). Comparatively few kinetic studies have been conducted of the photodegradat...

  19. Isotope tracers of organic carbon during artificial recharge

    SciTech Connect

    Davisson, M.L.

    1998-02-09

    This project developed an analytical technique for measuring the isotope abundance for 14C and 13C in total organic carbon (TOC) in order to test whether these measurements can trace TOC interaction with sedimentary material at the bottom of rivers and lakes, soils, and subsurface aquifer rocks.

  20. Inorganic carbon and fossil organic carbon are source of bias for quantification of sequestered carbon in mine spoil

    NASA Astrophysics Data System (ADS)

    Vindušková, Olga; Frouz, Jan

    2016-04-01

    Carbon sequestration in mine soils has been studied as a possibility to mitigate the rising atmospheric CO2 levels and to improve mine soil quality (Vindu\\vsková and Frouz, 2013). Moreover, these soils offer an unique opportunity to study soil carbon dynamics using the chronosequence approach (using a set of sites of different age on similar parent material). However, quantification of sequestered carbon in mine soils is often complicated by fossil organic carbon (e.g., from coal or kerogen) or inorganic carbon present in the spoil. We present a methodology for quantification of both of these common constituents of mine soils. Our recommendations are based on experiments done on post-mining soils in Sokolov basin, Czech Republic. Here, fossil organic carbon is present mainly as kerogen Type I and II and represents 2-6 wt.% C in these soils. Inorganic carbon in these soils is present mainly as siderite (FeCO3), calcite (CaCO3), and dolomite (CaMg(CO3)2). All of these carbonates are often found in the overburden of coal seams thus being a common constituent of post-mining soils in the world. Vindu\\vsková O, Frouz J, 2013. Soil carbon accumulation after open-cast coal and oil shale mining in Northern Hemisphere: a quantitative review. ENVIRONMENTAL EARTH SCIENCES, 69: 1685-1698. Vindu\\vsková O, Dvořáček V, Prohasková A, Frouz J. 2014. Distinguishing recent and fossil organic matter - A critical step in evaluation of post-mining soil development - using near infrared spectroscopy. ECOLOGICAL ENGINEERING. 73: 643-648. Vindu\\vsková O, Sebag D, Cailleau G, Brus J, Frouz J. 2015. Methodological comparison for quantitative analysis of fossil and recently derived carbon in mine soils with high content of aliphatic kerogen. ORGANIC GEOCHEMISTRY, 89-90:14-22.

  1. Enhanced concentration of dispersed carbon nanofibres in organic solvents through their functionalization by fluorination.

    PubMed

    Nomède-Martyr, Nadiège; Disa, Elodie; Guérin, Katia; Dubois, Marc; Frezet, Lawrence; Hamwi, André

    2013-06-15

    Covalent functionalization through pure molecular gaseous fluorination has been applied on carbon nanofibres. Nuclear magnetic resonance and thermal gravimetric analysis investigations have been performed on fluorinated carbon nanofibres in order to determine the chemical and thermal stability of the C-F bonding. The high covalency obtained allows no significant modification of the physicochemical nanostructure of fluorinated carbon nanofibres after sonification. Such modification of surface chemistry leads to a high increase in the limit concentration of dispersed carbon nanofibres in organic solvents without surfactant. An exciting maximum of 570 mg L(-1) of fluorinated nanofibres can be homogeneously dispersed in N-methylpyrrolidone, whereas 310 mg L(-1) is the maximum for non-fluorinated carbon nanofibres. In order to understand such dispersibility differences, Hildebrand and Hansen solubility theory has been used.

  2. Can carbon monoxide-poisoned victims be organ donors?

    PubMed

    Fujisaki, Noritomo; Nakao, Atsunori; Osako, Takaaki; Nishimura, Takeshi; Yamada, Taihei; Kohama, Keisuke; Sakata, Hiroyuki; Ishikawa-Aoyama, Michiko; Kotani, Joji

    2014-01-01

    The increasing demand for organ allografts to treat end-stage organ failure has driven changes in traditional donor criteria. Patients who have succumbed to carbon monoxide (CO) poisoning, a common cause of toxicological mortality, are usually rejected as organ donors. To fulfill the increasing demand, selection criteria must be expanded to include CO-poisoned donors. However, the use of allografts exposed to high CO concentrations is still under debate. Basic research and literature review data suggest that patients with brain death caused by CO poisoning should be considered appropriate organ donors. Accepting organs from CO-poisoned victims could increase the number of potential donors and lower the death rate of patients on the waiting lists. This review and reported cases may increase awareness among emergency department physicians, as well as transplant teams, that patients dying of CO exposure may be acceptable organ donors.

  3. Spatial distribution of soil organic carbon stocks in France

    NASA Astrophysics Data System (ADS)

    Martin, M. P.; Wattenbach, M.; Smith, P.; Meersmans, J.; Jolivet, C.; Boulonne, L.; Arrouays, D.

    2011-05-01

    Soil organic carbon plays a major role in the global carbon budget, and can act as a source or a sink of atmospheric carbon, thereby possibly influencing the course of climate change. Changes in soil organic carbon (SOC) stocks are now taken into account in international negotiations regarding climate change. Consequently, developing sampling schemes and models for estimating the spatial distribution of SOC stocks is a priority. The French soil monitoring network has been established on a 16 km × 16 km grid and the first sampling campaign has recently been completed, providing around 2200 measurements of stocks of soil organic carbon, obtained through an in situ composite sampling, uniformly distributed over the French territory. We calibrated a boosted regression tree model on the observed stocks, modelling SOC stocks as a function of other variables such as climatic parameters, vegetation net primary productivity, soil properties and land use. The calibrated model was evaluated through cross-validation and eventually used for estimating SOC stocks for mainland France. Two other models were calibrated on forest and agricultural soils separately, in order to assess more precisely the influence of pedo-climatic variables on SOC for such soils. The boosted regression tree model showed good predictive ability, and enabled quantification of relationships between SOC stocks and pedo-climatic variables (plus their interactions) over the French territory. These relationships strongly depended on the land use, and more specifically, differed between forest soils and cultivated soil. The total estimate of SOC stocks in France was 3.260 ± 0.872 PgC for the first 30 cm. It was compared to another estimate, based on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC. We demonstrate that the present estimate might better represent the actual SOC stock distributions of France, and consequently that the previously published approach at the

  4. Hyperspectral Analysis of Soil Nitrogen, Carbon, Carbonate, and Organic Matter Using Regression Trees

    PubMed Central

    Gmur, Stephan; Vogt, Daniel; Zabowski, Darlene; Moskal, L. Monika

    2012-01-01

    The characterization of soil attributes using hyperspectral sensors has revealed patterns in soil spectra that are known to respond to mineral composition, organic matter, soil moisture and particle size distribution. Soil samples from different soil horizons of replicated soil series from sites located within Washington and Oregon were analyzed with the FieldSpec Spectroradiometer to measure their spectral signatures across the electromagnetic range of 400 to 1,000 nm. Similarity rankings of individual soil samples reveal differences between replicate series as well as samples within the same replicate series. Using classification and regression tree statistical methods, regression trees were fitted to each spectral response using concentrations of nitrogen, carbon, carbonate and organic matter as the response variables. Statistics resulting from fitted trees were: nitrogen R2 0.91 (p < 0.01) at 403, 470, 687, and 846 nm spectral band widths, carbonate R2 0.95 (p < 0.01) at 531 and 898 nm band widths, total carbon R2 0.93 (p < 0.01) at 400, 409, 441 and 907 nm band widths, and organic matter R2 0.98 (p < 0.01) at 300, 400, 441, 832 and 907 nm band widths. Use of the 400 to 1,000 nm electromagnetic range utilizing regression trees provided a powerful, rapid and inexpensive method for assessing nitrogen, carbon, carbonate and organic matter for upper soil horizons in a nondestructive method. PMID:23112620

  5. [Effects of gaps on distribution of soil aggregates and organic carbon in Pinus massoniana plantation].

    PubMed

    Song, Xiao-Yan; Zhang, Dan-Ju; Zhang, Jian; Li, Jian-Ping; Deng, Chang-Chun; Deng, Chao

    2014-11-01

    The effects of forest gap size on the distribution of soil aggregates, organic carbon and labile organic carbon were investigated in a 39-year-old Pinus massoniana plantation in Yibin, Sichuan Province. The results showed that the composition of soil aggregates was dominated by particles > 2 mm, which accounted for 51.7%-78.7% of the whole soil samples under different sized forest gaps and beneath P. massoniana plantation. Soil organic carbon content and labile organic carbon content in > 5 mm aggregates were significantly positively correlated with the soil organic carbon and labile organic carbon contents. Furthermore, the amounts of organic carbon and labile organic carbon storage > 5 mm particles were higher than those in other size particles. Therefore, particles > 5 mm of aggregates dominated the soil carbon pool. Compared with those P. massoniana plantations, the contents of organic carbon in aggregates and total topsoil decreased during the formation of forest gaps, whereas the soil organic carbon storage under 1225 m2 gap was higher. In addition, the soil labile organic carbon content under 225 and 400 m2 gaps and the labile organic carbon storage under 225, 400, 900 and 1225 m2 gaps were higher than those the plantations, but were lower than under the other gaps. It was suggested that an appropriate size of forest gap would increase the accumulation of soil organic carbon and labile organic carbon content. The size of forest gap had significant effects on the distribution of soil aggregates, organic carbon and labile organic carbon. The soil sample under 1225 m2 gap had the highest organic carbon content and storage and a better aggregate proportion, and the higher labile organic carbon storage. Therefore, it was suggested that 1225 m2 gap might be an optimal logging gap size.

  6. Organic carbon burial efficiency in a subtropical hydroelectric reservoir

    NASA Astrophysics Data System (ADS)

    Mendonça, Raquel; Kosten, Sarian; Sobek, Sebastian; Jaqueline Cardoso, Simone; Figueiredo-Barros, Marcos Paulo; Henrique Duque Estrada, Carlos; Roland, Fábio

    2016-06-01

    Hydroelectric reservoirs bury significant amounts of organic carbon (OC) in their sediments. Many reservoirs are characterized by high sedimentation rates, low oxygen concentrations in bottom water and a high share of terrestrially derived OC, and all of these factors have been linked to a high efficiency of OC burial. However, investigations of OC burial efficiency (OCBE, i.e., the ratio between buried and deposited OC) in reservoirs are limited to a few studies, none of which include spatially resolved analyses. In this study we determined the spatial variation in OCBE in a large subtropical reservoir and related it to sediment characteristics. Our results show that the sediment accumulation rate explains up to 92 % of the spatial variability in OCBE, outweighing the effect of other variables, such as OC source and oxygen exposure time. OCBE at the pelagic sites varied from 48 to 86 % (mean 67 %) and decreased towards the dam. At the margins, OCBE was lower (9-17 %) due to the low sediment accumulation in shallow areas. Our data show that the variability in OCBE both along the rivers-dam and the margin-pelagic axes must be considered in whole-reservoir assessments. Combining these results with a spatially resolved assessment of sediment accumulation and OC burial in the studied reservoir, we estimated a spatially resolved mean OC burial efficiency of 57 %. Being the first assessment of OCBE with such a high spatial resolution in a reservoir, these results suggest that reservoirs may bury OC more efficiently than natural lakes.

  7. Organic carbon burial efficiency in a large tropical hydroelectric reservoir

    NASA Astrophysics Data System (ADS)

    Mendonça, R.; Kosten, S.; Sobek, S.; Cardoso, S. J.; Figueiredo-Barros, M. P.; Estrada, C. H. D.; Roland, F.

    2015-11-01

    Hydroelectric reservoirs bury significant amounts of organic carbon (OC) in their sediments. Many reservoirs are characterized by high sedimentation rates, low oxygen concentrations in bottom water, and a high share of terrestrially derived OC, and all of these factors have been linked to a high efficiency of OC burial. However, investigations of OC burial efficiency (OCBE, i.e. the ratio between OC buried and deposited) in reservoirs is limited to a few studies, none of which include spatially resolved analyses. In this study we determined the spatial variation in OCBE in a large tropical reservoir and related it to sediment characteristics. Our results show that the sediment accumulation rate explains up to 92 % of the spatial variability in OCBE, outweighing the effect of other variables, such as OC source and oxygen exposure time. OCBE at the pelagic sites varied from 48 to 86 % (mean 67 %) and decreased towards the dam. At the margins, OCBE was lower (9 to 17 %) due to the low sediment accumulation in shallow areas. Our data show that the variability in OCBE both along the rivers-dam and the margin-pelagic axes must be considered in whole-reservoir assessments. Combining these results with a spatially resolved assessment of sediment accumulation and OC burial in the studied reservoir, we estimated a whole-basin OC burial efficiency of 57 %. Being the first whole-basin assessment of OCBE in a reservoir, these results suggest that reservoirs may bury OC more efficiently than natural lakes.

  8. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system.

    PubMed

    Galy, Valier; France-Lanord, Christian; Beyssac, Olivier; Faure, Pierre; Kudrass, Hermann; Palhol, Fabien

    2007-11-15

    Continental erosion controls atmospheric carbon dioxide levels on geological timescales through silicate weathering, riverine transport and subsequent burial of organic carbon in oceanic sediments. The efficiency of organic carbon deposition in sedimentary basins is however limited by the organic carbon load capacity of the sediments and organic carbon oxidation in continental margins. At the global scale, previous studies have suggested that about 70 per cent of riverine organic carbon is returned to the atmosphere, such as in the Amazon basin. Here we present a comprehensive organic carbon budget for the Himalayan erosional system, including source rocks, river sediments and marine sediments buried in the Bengal fan. We show that organic carbon export is controlled by sediment properties, and that oxidative loss is negligible during transport and deposition to the ocean. Our results indicate that 70 to 85 per cent of the organic carbon is recent organic matter captured during transport, which serves as a net sink for atmospheric carbon dioxide. The amount of organic carbon deposited in the Bengal basin represents about 10 to 20 per cent of the total terrestrial organic carbon buried in oceanic sediments. High erosion rates in the Himalayas generate high sedimentation rates and low oxygen availability in the Bay of Bengal that sustain the observed extreme organic carbon burial efficiency. Active orogenic systems generate enhanced physical erosion and the resulting organic carbon burial buffers atmospheric carbon dioxide levels, thereby exerting a negative feedback on climate over geological timescales.

  9. Organic carbon storage in four ecosystem types in the karst region of southwestern China.

    PubMed

    Liu, Yuguo; Liu, Changcheng; Wang, Shijie; Guo, Ke; Yang, Jun; Zhang, Xinshi; Li, Guoqing

    2013-01-01

    Karst ecosystems are important landscape types that cover about 12% of the world's land area. The role of karst ecosystems in the global carbon cycle remains unclear, due to the lack of an appropriate method for determining the thickness of the solum, a representative sampling of the soil and data of organic carbon stocks at the ecosystem level. The karst region in southwestern China is the largest in the world. In this study, we estimated biomass, soil quantity and ecosystem organic carbon stocks in four vegetation types typical of karst ecosystems in this region, shrub grasslands (SG), thorn shrubbery (TS), forest - shrub transition (FS) and secondary forest (F). The results showed that the biomass of SG, TS, FS, and F is 0.52, 0.85, 5.9 and 19.2 kg m(-2), respectively and the corresponding organic cabon storage is 0.26, 0.40, 2.83 and 9.09 kg m(-2), respectively. Nevertheless, soil quantity and corresponding organic carbon storage are very small in karst habitats. The quantity of fine earth overlaying the physical weathering zone of the carbonate rock of SG, TS, FS and F is 38.10, 99.24, 29.57 and 61.89 kg m(-2), respectively, while the corresponding organic carbon storage is only 3.34, 4.10, 2.37, 5.25 kg m(-2), respectively. As a whole, ecosystem organic carbon storage of SG, TS, FS, and F is 3.81, 4.72, 5.68 and 15.1 kg m(-2), respectively. These are very low levels compared to other ecosystems in non-karst areas. With the restoration of degraded vegetation, karst ecosystems in southwestern China may play active roles in mitigating the increasing CO2 concentration in the atmosphere.

  10. Fossil organic carbon in Siberian Yedoma and thermokarst deposits

    NASA Astrophysics Data System (ADS)

    Strauss, J.; Schirrmeister, L.; Wetterich, S.

    2011-12-01

    During the late Quaternary, a large pool of organic carbon accumulated in the ice-rich syngenetic frozen deposits and soils preserved in the arctic and subarctic permafrost zone. Because of the potential release of organic carbon from degrading permafrost, the organic-matter (OM) inventory in Yedoma deposits and its degradation features are relevant to current concerns about the effects of global warming. In this context, it is essential to improve the understanding permafrost-stored OM composition and availability. The objective of this study is to develop an approach of OM quantification in frozen deposits including OM quality estimation. We analyzed OM characteristics like total organic carbon content, stable carbon isotopes and carbon-nitrogen ratios. Moreover, lipid biomarkers (alkanes, fatty acids and glycerol dialkyl glycerol tetraether) and sediment parameters like grain size and bulk density of Yedoma and thermokarst deposits exposed at Duvanny Yar (lower Kolyma River, Siberia) and the west coast of Buor Khaya Peninsula (Laptev Sea, Siberia) were studied. With the biomarker approach it is possible to distinguish deposits which were accumulated and frozen during the Pleistocene and Holocene. Biomarker indices, like the compound specific index, average chain length and tetraether characteristics supply feasible results for past permafrost environments. Late Pleistocene biomarker records indicate cold conditions during the growth/summer period for the late Pleistocene and generally low degradation of the stored OM. In contrast, Holocene thermokarst deposits indicate warmer conditions. The averaged volumetric OM content of the studied Yedoma and thermokarst deposits are greater than 10 kg/m^3 and do not exceed 30 kg/m^3. Given that Yedoma deposits accumulated at relatively fast rates and at low temperatures, the OM underwent a short time of decomposition before it was incorporated into a permanently-frozen state. Consequently, such deposits contain a labile

  11. Latitudinal Gradients in Degradation of Marine Dissolved Organic Carbon

    PubMed Central

    Arnosti, Carol; Steen, Andrew D.; Ziervogel, Kai; Ghobrial, Sherif; Jeffrey, Wade H.

    2011-01-01

    Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC). The specific means by which these communities mediate the transformations of organic carbon are largely unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars). Genomic investigations provide information about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76°S to 79°N to hydrolyze a range of high molecular weight organic substrates and thereby initiate organic matter degradation. These data demonstrate the existence of a latitudinal gradient in the range of complex substrates available to heterotrophic microbial communities, paralleling the global gradient in bacterial species richness. As changing climate increasingly affects the marine environment, changes in the spectrum of substrates accessible by microbial communities may lead to shifts in the location and rate at which marine DOC is respired. Since the inventory of DOC in the ocean is comparable in magnitude to the atmospheric CO2 reservoir, such a change could profoundly affect the global carbon cycle. PMID:22216139

  12. Tracing the sources of organic carbon in freshwater systems

    NASA Astrophysics Data System (ADS)

    Glendell, Miriam; Meersmans, Jeroen; Barclay, Rachel; Yvon-Durocher, Gabriel; Barker, Sam; Jones, Richard; Hartley, Iain; Dungait, Jennifer; Quine, Timothy

    2016-04-01

    both terrestrial and aquatic sources as recorded in lake sediments to the measured rates of soil erosion and terrestrial & aquatic CO2 respiration rates, this study has paved a way towards a novel and cross-disciplinary approach to investigate and further improve current status of knowledge as regards C-cycling across the entire terrestrial-aquatic continuum. 137Cs was found to be useful to understand the dynamics and spatial pattern of lateral fluxes of sediment & C at the catchment scale, while tracing chemical composition of C using n-alkanes and stable isotopes (δ13C, δ15N) allowed distinguishing between the terrestrial vs. aquatic origin of C and determining main sources of particulate organic carbon in the aquatic environment within the two study catchments.

  13. A new organic carbon detector for size exclusion chromatography.

    PubMed

    Allpike, Bradley P; Heitz, Anna; Joll, Cynthia A; Kagi, Robert I

    2007-07-20

    A novel organic carbon detector (OCD) for size exclusion chromatography (SEC), and its application to the characterisation of aquatic natural organic matter (NOM) in natural and treated potable water samples, is described. The instrument uses a conventional UV-persulfate oxidation technique to convert organic carbon to CO(2). The novelty of the technique is detection of the evolved CO(2) using a sensitive Fourier transform infrared (FTIR) spectroscopy 'lightpipe' detector originally designed for detection of analytes after gas chromatographic separation. With the exception of the lightpipe, the OCD system was constructed using simple, inexpensive, readily available components. The system was designed to minimise deadvolume, allowing for use of smaller sample sizes and smaller columns, substantially shortening analysis time, while maintaining chromatographic integrity through the OCD system. Downscaling resulted in some loss of separation but it was shown that this was caused by the lower separation efficiency of the smaller capacity column, rather than from sample dispersion within the OCD system.

  14. The fate of organic carbon in the Gulf of California

    SciTech Connect

    Pride, C.J.; Thunell, R.C.; Tappa, E.J.

    1996-12-31

    The Gulf of California is an ideal site to study the controls on sedimentary organic carbon (OC) accumulation and preservation. A 5-year sediment trap record provides an estimate of export production in the Gulf. Low C/N ratios (7.3) and heavy {delta}{sup 13}C{sub org} values (-20.5{per_thousand}) of trapped OC show that it is predominantly of marine origin. Surface productivity is not the only control of OC deposition in the Gulf, This is shown by OC fluxes that can be high even under oligotrophic summer conditions. These high summer fluxes cannot be attributed to input of terrestrial biomass since variability in the C/N ratio is not seasonal. The efficiency of scavenging and transport mechanisms may play an important role in determining OC export. OC fluxes correlate better with the fluxes of total bulk sediment and of lithogenic sediments than they do with fluxes of opal and of productivity-sensitive foraminiferal species. The efficiency of recycling within the photic zone is also important in controlling OC export. At most, 3% of surface production escapes recycling within the photic zone. A comparison of sediment trap results with OC accumulation rates in Underlying box cores, shows that there is more sedimentary OC than can be accounted for by export production alone. Controls on OC preservation are tested by a comparison of box cores from within and below the oxygen minimum zone. The deeper oxic cores consistently had greater OC A.R. and %OC than did the anoxic cores. Preferential preservation within anoxic sediments is thus not a significant control on OC accumulation in the Gulf and downslope transport must contribute to the organic content of slope sediments.

  15. The fate of organic carbon in the Gulf of California

    SciTech Connect

    Pride, C.J.; Thunell, R.C.; Tappa, E.J. )

    1996-01-01

    The Gulf of California is an ideal site to study the controls on sedimentary organic carbon (OC) accumulation and preservation. A 5-year sediment trap record provides an estimate of export production in the Gulf. Low C/N ratios (7.3) and heavy [delta][sup 13]C[sub org] values (-20.5[per thousand]) of trapped OC show that it is predominantly of marine origin. Surface productivity is not the only control of OC deposition in the Gulf, This is shown by OC fluxes that can be high even under oligotrophic summer conditions. These high summer fluxes cannot be attributed to input of terrestrial biomass since variability in the C/N ratio is not seasonal. The efficiency of scavenging and transport mechanisms may play an important role in determining OC export. OC fluxes correlate better with the fluxes of total bulk sediment and of lithogenic sediments than they do with fluxes of opal and of productivity-sensitive foraminiferal species. The efficiency of recycling within the photic zone is also important in controlling OC export. At most, 3% of surface production escapes recycling within the photic zone. A comparison of sediment trap results with OC accumulation rates in Underlying box cores, shows that there is more sedimentary OC than can be accounted for by export production alone. Controls on OC preservation are tested by a comparison of box cores from within and below the oxygen minimum zone. The deeper oxic cores consistently had greater OC A.R. and %OC than did the anoxic cores. Preferential preservation within anoxic sediments is thus not a significant control on OC accumulation in the Gulf and downslope transport must contribute to the organic content of slope sediments.

  16. A linear solvation energy relationship model of organic chemical partitioning to particulate organic carbon in soils and sediments.

    PubMed

    Kipka, Undine; Di Toro, Dominic M

    2011-09-01

    Predicting the association of contaminants with particulate organic matter in the environment is critical in determining the fate and bioavailability of chemicals. A ubiquitous measure of contaminant association with soil and sediment particulate organic matter is the organic carbon partition coefficient K(OC) . Chemical class-specific models relating the K(OC) to the octanol-water partition coefficient K(OW) have been used to predict the partitioning to organic carbon in the water column and sediment for nonpolar hydrophobic pollutants and some polar pollutants. A single linear solvation energy relationship (LSER) is proposed as a simpler and chemically based alternative for predicting K(OC) for a more diverse set of compounds. A chemically diverse set of K(OC) data is used to obtain a more robust and more universally representative model of organic carbon partitioning than previously available LSER models. The resulting model has a root mean square error (RMSE) of prediction for log K(OC) of RMSE = 0.48 for the fitted data set and RMSE = 0.55 for an independent data set. An analysis of LSER coefficients highlights the relative importance of hydrogen bonding interactions.

  17. Long-term tillage and drainage influences on soil organic carbon dynamics, aggregate stability, and corn yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Labile pools of soil organic carbon (SOC) and nitrogen (N) affect the carbon (C) and N fluxes from terrestrial soils, whereas, long-term C and N storage is determined by the long-lived recalcitrant fractions. Tillage influences these labile pools, however effect of the tillage systems may be differe...

  18. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation.

    PubMed

    Wiesmeier, Martin; Hübner, Rico; Spörlein, Peter; Geuß, Uwe; Hangen, Edzard; Reischl, Arthur; Schilling, Bernd; von Lützow, Margit; Kögel-Knabner, Ingrid

    2014-02-01

    Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global CO2 mitigation. However, the potential of soils to sequester soil organic carbon (SOC) in a stable form, which is limited by the stabilization of SOC against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential SOC saturation of silt and clay particles according to Hassink [Plant and Soil 191 (1997) 77] on the basis of 516 soil profiles. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long-term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC. A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse-textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO2 -equivalents could theoretically be stored in A horizons of cultivated soils - four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to CO2 mitigation. Moreover, increasing SOC stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity.

  19. Prediction of soil organic carbon concentration and soil bulk density of mineral soils for soil organic carbon stock estimation

    NASA Astrophysics Data System (ADS)

    Putku, Elsa; Astover, Alar; Ritz, Christian

    2016-04-01

    Soil monitoring networks provide a powerful base for estimating and predicting nation's soil status in many aspects. The datasets of soil monitoring are often hierarchically structured demanding sophisticated data analyzing methods. The National Soil Monitoring of Estonia was based on a hierarchical data sampling scheme as each of the monitoring site was divided into four transects with 10 sampling points on each transect. We hypothesized that the hierarchical structure in Estonian Soil Monitoring network data requires a multi-level mixed model approach to achieve good prediction accuracy of soil properties. We used this database to predict soil bulk density and soil organic carbon concentration of mineral soils in arable land using different statistical methods: median approach, linear regression and mixed model; additionally, random forests for SOC concentration. We compared the prediction results and selected the model with the best prediction accuracy to estimate soil organic carbon stock. The mixed model approach achieved the best prediction accuracy in both soil organic carbon (RMSE 0.22%) and bulk density (RMSE 0.09 g cm-3) prediction. Other considered methods under- or overestimated higher and lower values of soil parameters. Thus, using these predictions we calculated the soil organic carbon stock of mineral arable soils and applied the model to a specific case of Tartu County in Estonia. Average estimated SOC stock of Tartu County is 54.8 t C ha-1 and total topsoil SOC stock 1.8 Tg in humus horizon.

  20. Volatile organic compound emissions in relation to plant carbon fixation and the terrestrial carbon budget

    NASA Astrophysics Data System (ADS)

    Kesselmeier, Jürgen; Ciccioli, Paolo; Kuhn, Uwe; Stefani, Paolo; Biesenthal, Thomas; Rottenberger, Stefanie; Wolf, Annette; Vitullo, Marina; Valentini, Ricardo; Nobre, Antonio; Kabat, Pavel; Andreae, Meinrat O.

    2002-12-01

    A substantial amount of carbon is emitted by terrestrial vegetation as biogenic volatile organic compounds (VOC), which contributes to the oxidative capacity of the atmosphere, to particle production and to the carbon cycle. With regard to the carbon budget of the terrestrial biosphere, a release of these carbon compounds is regarded as a loss of photosynthetically fixed carbon. The significance of this loss for the regional and global carbon cycles is controversial. We estimate the amount of VOC carbon emitted in relation to the CO2 taken up, based on our own enclosure and micrometeorological flux measurements of VOC emissions and CO2 exchange within the Mediterranean area and the tropical rainforest in Amazonia and on literature data. While VOC flux estimates are small in relation to net primary productivity and gross primary productivity, the amount of carbon lost as VOC emissions can be highly significant relative to net ecosystem productivity. In fact, VOC losses are of the same order of magnitude as net biome productivity. Although we must assume that large amounts of these reemissions are recycled within the biosphere, a substantial part can be assumed to be lost into longer-lived oxidation products that are lost from the terrestrial biosphere by transport. However, our current knowledge does not allow a reliable estimation of this carbon loss.

  1. [Photosynthesis and flows of organic carbon, carbon dioxide, and oxygen in the ocean].

    PubMed

    Kuznetsov, A P; Vinogradov, M E

    2001-01-01

    The modern concept of photosynthesis as a mechanism for utilizing the energy of solar radiation is used as the basis for assessing the scale of photosynthetic production of initial organic matter in the ocean (primary biological production), its destruction, the carbon and carbon dioxide cycles (flows) involved in this process, and the size of oil- and gas-bearing hydrocarbonaceous formations originating in sedimentary deposits.

  2. Cyanobacterial reuse of extracellular organic carbon in microbial mats.

    PubMed

    Stuart, Rhona K; Mayali, Xavier; Lee, Jackson Z; Craig Everroad, R; Hwang, Mona; Bebout, Brad M; Weber, Peter K; Pett-Ridge, Jennifer; Thelen, Michael P

    2016-05-01

    Cyanobacterial organic matter excretion is crucial to carbon cycling in many microbial communities, but the nature and bioavailability of this C depend on unknown physiological functions. Cyanobacteria-dominated hypersaline laminated mats are a useful model ecosystem for the study of C flow in complex communities, as they use photosynthesis to sustain a more or less closed system. Although such mats have a large C reservoir in the extracellular polymeric substances (EPSs), the production and degradation of organic carbon is not well defined. To identify extracellular processes in cyanobacterial mats, we examined mats collected from Elkhorn Slough (ES) at Monterey Bay, California, for glycosyl and protein composition of the EPS. We found a prevalence of simple glucose polysaccharides containing either α or β (1,4) linkages, indicating distinct sources of glucose with differing enzymatic accessibility. Using proteomics, we identified cyanobacterial extracellular enzymes, and also detected activities that indicate a capacity for EPS degradation. In a less complex system, we characterized the EPS of a cyanobacterial isolate from ES, ESFC-1, and found the extracellular composition of biofilms produced by this unicyanobacterial culture were similar to that of natural mats. By tracing isotopically labeled EPS into single cells of ESFC-1, we demonstrated rapid incorporation of extracellular-derived carbon. Taken together, these results indicate cyanobacteria reuse excess organic carbon, constituting a dynamic pool of extracellular resources in these mats. PMID:26495994

  3. Cyanobacterial reuse of extracellular organic carbon in microbial mats

    PubMed Central

    Stuart, Rhona K; Mayali, Xavier; Lee, Jackson Z; Craig Everroad, R; Hwang, Mona; Bebout, Brad M; Weber, Peter K; Pett-Ridge, Jennifer; Thelen, Michael P

    2016-01-01

    Cyanobacterial organic matter excretion is crucial to carbon cycling in many microbial communities, but the nature and bioavailability of this C depend on unknown physiological functions. Cyanobacteria-dominated hypersaline laminated mats are a useful model ecosystem for the study of C flow in complex communities, as they use photosynthesis to sustain a more or less closed system. Although such mats have a large C reservoir in the extracellular polymeric substances (EPSs), the production and degradation of organic carbon is not well defined. To identify extracellular processes in cyanobacterial mats, we examined mats collected from Elkhorn Slough (ES) at Monterey Bay, California, for glycosyl and protein composition of the EPS. We found a prevalence of simple glucose polysaccharides containing either α or β (1,4) linkages, indicating distinct sources of glucose with differing enzymatic accessibility. Using proteomics, we identified cyanobacterial extracellular enzymes, and also detected activities that indicate a capacity for EPS degradation. In a less complex system, we characterized the EPS of a cyanobacterial isolate from ES, ESFC-1, and found the extracellular composition of biofilms produced by this unicyanobacterial culture were similar to that of natural mats. By tracing isotopically labeled EPS into single cells of ESFC-1, we demonstrated rapid incorporation of extracellular-derived carbon. Taken together, these results indicate cyanobacteria reuse excess organic carbon, constituting a dynamic pool of extracellular resources in these mats. PMID:26495994

  4. Formation of Intermediate Carbon Phases in Hydrothermal Abiotic Organic Synthesis

    NASA Astrophysics Data System (ADS)

    Fu, Q.; Foustoukos, D. I.; Seyfried, W. E.

    2005-12-01

    With high dissolved concentrations of methane and other hydrocarbon species revealed at the Rainbow and Logatchev vent systems on the Mid-Atlantic Ridge, it is essential to better understand reaction pathways of abiotic organic synthesis in hydrothermal systems. Thus, we performed a hydrothermal carbon reduction experiment with 13C labeled carbon source at temperature and pressure conditions that approximate those inferred for ultramafic-hosted hydrothermal systems. Pentlandite, a common alteration mineral phase in subseafloor reaction zones, acted as a potential catalyst. Surface analysis techniques (XPS and ToF-SIMS) were used to characterize intermediate carbon species within this process. Time series dissolved H2 and H2S concentrations indicated thermodynamic equilibrium. Dissolved H2 and H2S concentrations of 13 and 2 mmol/kg, respectively, are approximately equivalent to measured values in Rainbow and Logatchev hydrothermal systems. Isotopically pure 13C methane and other alkane species (C2H6 and C3H8) were observed throughout the experiment, and attained steady state conditions. XPS analysis on mineral product surface indicated carbon enrichment on mineral surface following reaction. The majority of surface carbon involves species containing C-C or C-H bonds, such as alkyl or methylene groups. Alcohol and carboxyl groups in fewer amounts were also observed. ToF-SIMS analysis, which can offer isotope identification with high mass resolution, showed that most of these carbon species were 13C-labeled. Unlike gas phase Fischer-Tropsch synthesis, no carbide was observed on mineral product surface during the experiment. Therefore, a reaction pathway is proposed for formation of dissolved linear alkane species in hydrothermal abiotic organic synthesis, where oxygen-bearing organic compounds are expected to form in aqueous products by way of alcohol and carboxyl groups on mineral catalyst surface.

  5. The Carboniferous carbon isotope record from sedimentary organic matter: can we disentangle the carbon cycle?

    NASA Astrophysics Data System (ADS)

    Davies, S. J.; Bennett, C. E.; Leng, M. J.; Kearsey, T.; Marshall, J. E.; Millward, D.; Reeves, E. J.; Snelling, A.; Sherwin, J. E.

    2014-12-01

    A comprehensive analysis of the δ13C composition of sedimentary organic matter from Euramerican Carboniferous successions indicates there are significant shifts in δ13C through this key time interval. Our studies have revealed that, at an individual location, the source and delivery mechanism of the sediment contribute to the type of organic matter preserved and, in turn this influences the measured δ13C values from bulk sedimentary organic matter of organic matter. In general, where marine-derived organic matter is dominant in these Carboniferous successions then δ13C values are characteristically lower compared to the higher values encountered where terrestrial plant-derived material is most abundant. The implication of these observations is that an apparent carbon isotope excursion identified from the bulk organic matter may reflect a change in transport processes, or depositional environment, rather than a perturbation in the global carbon cycle. In our most recent studies, however, we compare δ13C values from specific wood fragments and bulk sedimentary organic matter from non-marine, marine basinal, and marine shelfal successions from the earliest Mississippian through to the early Pennsylvanian. These data indicate that early Mississippian δ13C of organic matter is far less negative (around -22%0) than material of Late Mississippian age (around -26%0), however by the early Pennsylvanian, δ13C values return to -22%0. There are some δ13C data from brachiopod carbonate from this time interval and similar shifts are indicated. Our data are beginning to address whether we can identify a primary carbon cycle signal from the Carboniferous record using δ13C from a range of sedimentary environments. If we can, there are still questions around what the record is telling us about the global carbon cycle during a period when plant groups, including lycopods and seed ferns, rapidly diversified.

  6. Dynamics of maize carbon contribution to soil organic carbon in association with soil type and fertility level.

    PubMed

    Pei, Jiubo; Li, Hui; Li, Shuangyi; An, Tingting; Farmer, John; Fu, Shifeng; Wang, Jingkuan

    2015-01-01

    Soil type and fertility level influence straw carbon dynamics in the agroecosystems. However, there is a limited understanding of the dynamic processes of straw-derived and soil-derived carbon and the influence of the addition of straw carbon on soil-derived organic carbon in different soils associated with different fertility levels. In this study, we applied the in-situ carborundum tube method and 13C-labeled maize straw (with and without maize straw) at two cropland (Phaeozem and Luvisol soils) experimental sites in northeast China to quantify the dynamics of maize-derived and soil-derived carbon in soils associated with high and low fertility, and to examine how the addition of maize carbon influences soil-derived organic carbon and the interactions of soil type and fertility level with maize-derived and soil-derived carbon. We found that, on average, the contributions of maize-derived carbon to total organic carbon in maize-soil systems during the experimental period were differentiated among low fertility Luvisol (from 62.82% to 42.90), high fertility Luvisol (from 53.15% to 30.00%), low fertility Phaeozem (from 58.69% to 36.29%) and high fertility Phaeozem (from 41.06% to 16.60%). Furthermore, the addition of maize carbon significantly decreased the remaining soil-derived organic carbon in low and high fertility Luvisols and low fertility Phaeozem before two months. However, the increasing differences in soil-derived organic carbon between both soils with and without maize straw after two months suggested that maize-derived carbon was incorporated into soil-derived organic carbon, thereby potentially offsetting the loss of soil-derived organic carbon. These results suggested that Phaeozem and high fertility level soils would fix more maize carbon over time and thus were more beneficial for protecting soil-derived organic carbon from maize carbon decomposition.

  7. Dynamics of Maize Carbon Contribution to Soil Organic Carbon in Association with Soil Type and Fertility Level

    PubMed Central

    Pei, Jiubo; Li, Hui; Li, Shuangyi; An, Tingting; Farmer, John; Fu, Shifeng; Wang, Jingkuan

    2015-01-01

    Soil type and fertility level influence straw carbon dynamics in the agroecosystems. However, there is a limited understanding of the dynamic processes of straw-derived and soil-derived carbon and the influence of the addition of straw carbon on soil-derived organic carbon in different soils associated with different fertility levels. In this study, we applied the in-situ carborundum tube method and 13C-labeled maize straw (with and without maize straw) at two cropland (Phaeozem and Luvisol soils) experimental sites in northeast China to quantify the dynamics of maize-derived and soil-derived carbon in soils associated with high and low fertility, and to examine how the addition of maize carbon influences soil-derived organic carbon and the interactions of soil type and fertility level with maize-derived and soil-derived carbon. We found that, on average, the contributions of maize-derived carbon to total organic carbon in maize-soil systems during the experimental period were differentiated among low fertility Luvisol (from 62.82% to 42.90), high fertility Luvisol (from 53.15% to 30.00%), low fertility Phaeozem (from 58.69% to 36.29%) and high fertility Phaeozem (from 41.06% to 16.60%). Furthermore, the addition of maize carbon significantly decreased the remaining soil-derived organic carbon in low and high fertility Luvisols and low fertility Phaeozem before two months. However, the increasing differences in soil-derived organic carbon between both soils with and without maize straw after two months suggested that maize-derived carbon was incorporated into soil-derived organic carbon, thereby potentially offsetting the loss of soil-derived organic carbon. These results suggested that Phaeozem and high fertility level soils would fix more maize carbon over time and thus were more beneficial for protecting soil-derived organic carbon from maize carbon decomposition. PMID:25774529

  8. Aqueous adsorption and removal of organic contaminants by carbon nanotubes.

    PubMed

    Yu, Jin-Gang; Zhao, Xiu-Hui; Yang, Hua; Chen, Xiao-Hong; Yang, Qiaoqin; Yu, Lin-Yan; Jiang, Jian-Hui; Chen, Xiao-Qing

    2014-06-01

    Organic contaminants have become one of the most serious environmental problems, and the removal of organic contaminants (e.g., dyes, pesticides, and pharmaceuticals/drugs) and common industrial organic wastes (e.g., phenols and aromatic amines) from aqueous solutions is of special concern because they are recalcitrant and persistent in the environment. In recent years, carbon nanotubes (CNTs) have been gradually applied to the removal of organic contaminants from wastewater through adsorption processes. This paper reviews recent progress (145 studies published from 2010 to 2013) in the application of CNTs and their composites for the removal of toxic organic pollutants from contaminated water. The paper discusses removal efficiencies and adsorption mechanisms as well as thermodynamics and reaction kinetics. CNTs are predicted to have considerable prospects for wider application to wastewater treatment in the future. PMID:24657369

  9. Chemical and carbon isotopic composition of dissolved organic carbon in a regional confined methanogenic aquifer

    USGS Publications Warehouse

    Aravena, R.; Wassenaar, L.I.; Spiker, E. C.

    2004-01-01

    This study demonstrates the advantage of a combined use of chemical and isotopic tools to understand the dissolved organic carbon (DOC) cycle in a regional confined methanogenic aquifer. DOC concentration and carbon isotopic data demonstrate that the soil zone is a primary carbon source of groundwater DOC in areas close to recharge zones. An in-situ DOC source linked to organic rich sediments present in the aquifer matrix is controlling the DOC pool in the central part of the groundwater flow system. DOC fractions, 13C-NMR on fulvic acids and 14C data on DOC and CH4 support the hypothesis that the in-situ DOC source is a terrestrial organic matter and discard the Ordovician bedrock as a source of DOC. ?? 2004 Taylor and Francis Ltd.

  10. Removal of organic impurities from liquid carbon dioxide

    NASA Astrophysics Data System (ADS)

    Zito, Richard R.

    2002-09-01

    The use of a high velocity stream of carbon dioxide snowflakes to clean large optics is well known, and has gained widespread acceptance in the astronomical community as a telescope maintenance technique. Ultimately, however, the success of carbon dioxide snow cleaning depends on the availability of high purity carbon dioxide. The higher the purity of the carbon dioxide, the longer will be the time interval between required mirror washings. The highest grades of commercially produced liquid carbon dioxide are often not available in the more remote regions of the world - such as where major astronomical observatories are often located. Furthermore, the purity of even the highest grades of carbon dioxide are only nominal, and wide variations are known to occur from tank to tank. Occasionally, visible deposits of organic impurities are left behind during cleaning with carbon dioxide that is believed to be 99.999% pure. A zeolite molecular sieve based filtration system has proven to be very effective in removing these organic impurities. A zeolite is a complex alumino-silicate. One example has an empirical formula of Na2O(Al2O3)(SiO2)2yH2O, where y=0 to 8. The zeolites have an open crystal structure and are capable of trapping impurities like 8-methylheptadecane (an oil) and 2,6-octadine-1-ol,3,7- dimethyl-,(E)- (a fatty acid). In fact, a zeolite can trap 29.5% of its own weight in SAE 20 lubricant at 25 degree(s)C. After filtration of liquid CO2 through zeolites, the concentration of measured impurities was below the detection limit for state-of-the-art gas chromatography systems.

  11. Modeling stable isotope and organic carbon in hillslope stormflow

    NASA Astrophysics Data System (ADS)

    Dusek, Jaromir; Vogel, Tomas; Dohnal, Michal; Marx, Anne; Jankovec, Jakub; Sanda, Martin; Votrubova, Jana; Barth, Johannes A. C.; Cislerova, Milena

    2016-04-01

    Reliable prediction of water movement and fluxes of dissolved substances (such as stable isotopes and organic carbon) at both the hillslope and the catchment scales remains a challenge due to complex boundary conditions and soil spatial heterogeneity. In addition, microbially mediated transformations of dissolved organic carbon (DOC) are known to affect balance of DOC in soils, hence the transformations need to be included in a conceptual model of a DOC transport. So far, only few studies utilized stable isotope information in modeling and even fewer linked dissolved carbon fluxes to mixing and/or transport models. In this study, stormflow dynamics of oxygen-18 isotope and dissolved organic carbon was analyzed using a physically based modeling approach. One-dimensional dual-continuum vertical flow and transport model, based on Richards and advection-dispersion equations, was used to simulate the subsurface transport processes in a forest soil during several observed rainfall-runoff episodes. The transport of heat in the soil profile was described by conduction-advection equation. Water flow and transport of solutes and heat were assumed to take place in two mutually communicating porous domains, the soil matrix and the network of preferential pathways. The rate of microbial transformations of DOC was assumed to depend on soil water content and soil temperature. Oxygen-18 and dissolved organic carbon concentrations were observed in soil pore water, hillslope stormflow (collected in the experimental hillslope trench), and stream discharge (at the catchment outlet). The modeling was used to analyze the transformation of input solute signals into output hillslope signals observed in the trench stormflow. Signatures of oxygen-18 isotope in hillslope stormflow as well as isotope concentration in soil pore water were predicted reasonably well. Due to complex nature of microbial transformations, prediction of DOC rate and transport was associated with a high uncertainty.

  12. Importance of microbial soil organic matter processing in dissolved organic carbon production.

    PubMed

    Malik, Ashish; Gleixner, Gerd

    2013-10-01

    Soil dissolved organic carbon (DOC) sources and its seasonal dynamics are poorly known. We aimed to determine the contribution of plant and soil organic matter (SOM) to size classes of DOC in a field experiment with C3 to C4 vegetation change on two soil types through different seasons. Stable isotope ratios of DOC size classes were measured using size exclusion chromatography (SEC) coupled online to liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). SEC resolved DOC into three size classes: very high molecular weight/vHMW (> 10 kDa), high molecular weight/HMW (0.4-10 kDa), and low molecular weight/LMW (< 0.4 kDa). HMW DOC was most abundant in all seasons, soil types, and depths. In contrast, vHMW DOC was only seen postsnowmelt in upper 20 cm and was mainly (87 ± 9%) plant-derived. Through all seasons, HMW and LMW DOC had less than 30% recent plant contribution. Similar size range and source of DOC size classes and soil chloroform fumigation extracts suggest microbial origin of DOC. Thus, microbial SOM recycling is an important process in DOC production. We suggest that DOC molecules get partitioned manifold between soil solution and the mineral matrix (chromatography), thereby getting constantly decomposed, altered, or produced anew by soil microorganisms (reactive transport).

  13. Organic farming and soil carbon sequestration: what do we really know about the benefits?

    PubMed

    Leifeld, Jens; Fuhrer, Jürg

    2010-12-01

    Organic farming is believed to improve soil fertility by enhancing soil organic matter (SOM) contents. An important co-benefit would be the sequestration of carbon from atmospheric CO2. Such a positive effect has been suggested based on data from field experiments though many studies were not designed to address the issue of carbon sequestration. The aim of our study was to examine published data in order to identify possible flaws such as missing a proper baseline, carbon mass measurements, or lack of a clear distinction between conventional and organic farming practices, thereby attributing effects of specific practices to organic farming, which are not uniquely organic. A total of 68 data sets were analyzed from 32 peer-reviewed publications aiming to compare conventional with organic farming. The analysis revealed that after conversion, soil C content (SOC) in organic systems increased annually by 2.2% on average, whereas in conventional systems SOC did not change significantly. The majority of publications reported SOC concentrations rather than amounts thus neglecting possible changes in soil bulk density. 34 out of 68 data sets missed a true control with well-defined starting conditions. In 37 out of 50 cases, the amount of organic fertilizer in the organic system exceeded that applied in the compared conventional system, and in half of the cases crop rotations differed between systems. In the few studies where crop rotation and organic fertilization were comparable in both systems no consistent difference in SOC was found. From this data analysis, we conclude that the claim for beneficial effects of organic farming on SOC is premature and that reported advantages of organic farming for SOC are largely determined by higher and often disproportionate application of organic fertilizer compared to conventional farming.

  14. Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon

    NASA Astrophysics Data System (ADS)

    Neubauer, S. C.; Franklin, R. B.; Berrier, D. J.

    2013-12-01

    Environmental perturbations in wetlands affect the integrated plant-microbial-soil system, causing biogeochemical responses that can manifest at local to global scales. The objective of this study was to determine how saltwater intrusion affects carbon mineralization and greenhouse gas production in coastal wetlands. Working with tidal freshwater marsh soils that had experienced ~ 3.5 yr of in situ saltwater additions, we quantified changes in soil properties, measured extracellular enzyme activity associated with organic matter breakdown, and determined potential rates of anaerobic carbon dioxide (CO2) and methane (CH4) production. Soils from the field plots treated with brackish water had lower carbon content and higher C : N ratios than soils from freshwater plots, indicating that saltwater intrusion reduced carbon availability and increased organic matter recalcitrance. This was reflected in reduced activities of enzymes associated with the hydrolysis of cellulose and the oxidation of lignin, leading to reduced rates of soil CO2 and CH4 production. The effects of long-term saltwater additions contrasted with the effects of short-term exposure to brackish water during three-day laboratory incubations, which increased rates of CO2 production but lowered rates of CH4 production. Collectively, our data suggest that the long-term effect of saltwater intrusion on soil CO2 production is indirect, mediated through the effects of elevated salinity on the quantity and quality of autochthonous organic matter inputs to the soil. In contrast, salinity, organic matter content, and enzyme activities directly influence CH4 production. Our analyses demonstrate that saltwater intrusion into tidal freshwater marshes affects the entire process of carbon mineralization, from the availability of organic carbon through its terminal metabolism to CO2 and/or CH4, and illustrate that long-term shifts in biogeochemical functioning are not necessarily consistent with short

  15. Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon

    NASA Astrophysics Data System (ADS)

    Neubauer, S. C.; Franklin, R. B.; Berrier, D. J.

    2013-07-01

    Environmental perturbations in wetlands affect the integrated plant-microbial-soil system, causing biogeochemical responses that can manifest at local to global scales. The objective of this study was to determine how saltwater intrusion affects carbon mineralization and greenhouse gas production in coastal wetlands. Working with tidal freshwater marsh soils that had experienced roughly 3.5 yr of in situ saltwater additions, we quantified changes in soil properties, measured extracellular enzyme activity associated with organic matter breakdown, and determined potential rates of anaerobic carbon dioxide (CO2) and methane (CH4) production. Soils from the field plots treated with brackish water had lower carbon content and higher C : N ratios than soils from freshwater plots, indicating that saltwater intrusion reduced carbon availability and increased organic matter recalcitrance. This was reflected in reduced activities of enzymes associated with the hydrolysis of cellulose and the oxidation of lignin, leading to reduced rates of soil CO2 and CH4 production. The effects of long-term saltwater additions contrasted with the effects of short-term exposure to brackish water during three-day laboratory incubations, which increased rates of CO2 production but lowered rates of CH4 production. Collectively, our data suggest that the long-term effect of saltwater intrusion on soil CO2 production is indirect, mediated through the effects of elevated salinity on the quantity and quality of autochthonous organic matter inputs to the soil. In contrast, salinity, organic matter content, and enzyme activities directly influence CH4 production. Our analyses demonstrate that saltwater intrusion into tidal freshwater marshes affects the entire process of carbon mineralization, from the availability of organic carbon through its terminal metabolism to CO2 and/or CH4, and illustrate that long-term shifts in biogeochemical functioning are not necessarily consistent with short

  16. Soil organic carbon stocks and fluxes due to land use conversions at the European scale

    NASA Astrophysics Data System (ADS)

    Gobin, A.; Campling, P.

    2012-04-01

    (HOC) assimilated depends on the yields, as these directly relate to potential residue production, and on the prevailing climate with cold temperatures and dry moisture regimes being less favourable. Incorporating all crop residues into the soil results in HOC fluxes that range from 1.36 tonnes HOC/ha for oilseed and 1.14 tonnes HOC/ha for cereal to 0.54 tonnes/ha for sugar beet. The HOC fluxes drop to 0.69, 0.58 and 0.05 tonnes HOC/ha respectively when all residues are removed, e.g. for bio-energy purposes. Taking into account the projected areas for cereals (65 Mha), oilseed (10 Mha) and sugarbeet (2 Mha) in 2030, shows that residue management of cereals has a much larger impact on carbon fluxes to the agricultural soil than oilseed and sugar beet. The removal of all crop residues result in a lowering of soil organic carbon stocks, a reduction of humified organic carbon fluxes into the soil and an increase of carbon dioxide concentrations in the atmosphere. A significant minimum percentage of crop residues should be retained in the soils. Land management, land use changes and climate change have a significant influence on soil organic carbon stocks and fluxes across the EU-27. Determining the soil sequestration potential necessitates soil monitoring to provide evidence on the state of, and change, in agricultural soils, allowing to evaluate its effectiveness.

  17. Determination of organic-matter content of Appalachian Devonian shales from gamma-ray logs.

    USGS Publications Warehouse

    Schmoker, J.W.

    1981-01-01

    The organic-matter content of the Devonian shale of the Appalachian basin is important for assessing natural-gas resources. In most of the western part of the Appalachian basin the organic-matter content of the Devonian shale can be estimated from gamma-ray wire-line logs. Organic-matter contents estimated using these logs are compared with determinations from direct laboratory analyses of organic carbon for 74 intervals of varying thickness from 12 widely separated wells. The cumulative pool of gamma-ray logs for the Devonian shale forms a large and geographically broad data base. The approach may also be applicable to other formations.-from Author

  18. Determination of polar organic solutes in oil-shale retort water

    USGS Publications Warehouse

    Leenheer, J.A.; Noyes, T.I.; Stuber, H.A.

    1982-01-01

    A variety of analytical methods were used to quantitatively determine polar organic solutes in process retort water and a gas-condensate retort water produced in a modified in situ oil-shale retort. Specific compounds accounting for 50% of the dissolved organic carbon were identified in both retort waters. In the process water, 42% of the dissolved organic carbon consisted of a homologous series of fatty acids from C2 to C10. Dissolved organic carbon percentages for other identified compound classes were as follows: aliphatic dicarboxylic acids, 1.4%; phenols, 2.2%; hydroxypyridines, 1.1%; aliphatic amides, 1.2%. In the gas-condensate retort water, aromatic amines were most abundant at 19.3% of the dissolved organic carbon, followed by phenols (17.8%), nitriles (4.3%), aliphatic alcohols (3.5%), aliphatic ketones (2.4%), and lactones (1.3%). Steam-volatile organic solutes were enriched in the gas-condensate retort water, whereas nonvolatile acids and polyfunctional neutral compounds were predominant organic constituents of the process retort water.

  19. Retardation of volatile organic compounds in ground water in low organic carbon sediments

    SciTech Connect

    Hoffman, F.

    1995-04-01

    It is postulated that adsorption onto aquifer matrix surfaces is only one of the processes that retard contaminants in ground water in unconsolidated sediments; others include hydrodynamic dispersion, abiotic/biotic degradation, matrix diffusion, partitioning to organic carbon, diffusion into and retention in dead-end pores, etc. This work aims at these processes in defining the K{sub d} of VOCs in sediments with low organic carbon content. Experiments performed include an initial column experiment for VOC (TCE and perchloroethylene(PCE)) retardation tests on geological materials, PCE and TCE data from LLNL sediments, and a preliminary multilayer sampler experiment. The VOC K{sub d}s in low organic carbon permeable aquifer materials are dependent on the VOC composition and independent of aquifer grain size, indicating that sorption was not operative and that the primary retarding factors are diffusion controlled. The program of future experiments is described.

  20. Organic carbon and nitrogen content associated with colloids and suspended particulates from the Mississippi River and some of its tributaries

    USGS Publications Warehouse

    Rostad, C.E.; Leenheer, J.A.; Daniel, S.R.

    1997-01-01

    Suspended material samples were collected at 16 sites along the Mississippi River and some of its tributaries during July-August 1991, October-November 1991, and April-May 1992, and separated into colloid and particulate fractions to determine the organic carbon content of these two fractions of suspended material. Sample collection involved centrifugation to isolate the suspended particulate fraction and ultrafiltration to isolate the colloid fraction. For the first time, particulate and colloid concentrations and organic carbon and nitrogen content were investigated along the entire reach of the Mississippi River from above Minneapolis, Minnesota, to below New Orleans, Louisiana. Organic carbon content of the colloid (15.2 percent) was much higher than organic carbon content of the particulate material (4.8 percent). Carbon/nitrogen ratios of colloid and particulate phases were more similar to ratios for microorganisms than to ratios for soils, humic materials, or plants.Suspended material samples were collected at 16 sites along the Mississippi River and some of its tributaries during July-August 1991, October-November 1991, and April-May 1992, and separated into colloid and particulate fractions to determine the organic carbon content of these two fractions of suspended material. Sample collection involved centrifugation to isolate the suspended particulate fraction and ultrafiltration to isolate the colloid fraction. For the first time, particulate and colloid concentrations and organic carbon and nitrogen content were investigated along the entire reach of the Mississippi River from above Minneapolis, Minnesota, to below New Orleans, Louisiana. Organic carbon content of the colloid (15.2 percent) was much higher than organic carbon content of the particulate material (4.8 percent). Carbon/nitrogen ratios of colloid and particulate phases were more similar to ratios for microorganisms than to ratios for soils, humic materials, or plants.

  1. Soil organic carbon pools in olive groves of different age

    NASA Astrophysics Data System (ADS)

    Massaccesi, Luisa; De Feudis, Mauro; Nasini, Luigi; Regni, Luca; D'Ascoli, Rosaria; Castaldi, Simona; Proietti, Primo; Agnelli, Alberto

    2016-04-01

    In the last years, the practices which favor the increase of soil organic carbon in the agroecosystem have been widely studied because of their influence on the reduction of atmospheric CO2 (Lal, 1993; Schlesinger, 2000). The accumulation of the organic carbon into the soil depends to a great extent upon climate and pedological properties (Burke et al., 1989; Miller et al., 1994), although in the agricultural soils the cultivation system also plays a key role. The olive grove might potentially represent a relevant land use to improve C sequestration in soil, but there are few data available to support this hypothesis. In a study site located in central Italy (Deruta, PG), we analyzed the soil organic carbon (SOC) pools in two olive groves of different age (7 and 30 years) and, as control, in a site adjacent to the groves cropped with cereals for at least 30 years. With the aim to isolate and quantify the active, intermediate and passive functional SOC pools in the olive groves and in the control, we used a combined physical and chemical fractionation method (Zimmermann et al., 2007). The main results shown that the total organic carbon content in the Ap horizons was the highest in the 30-years-old olive grove, followed by the 7-years-old olive grove, and then by the control soil. The content of active C, in form of particulate organic matter (POM) and water soluble organic matter (WEOM), was greater in the olive grove compared to the control soil and increase with the age of the grove. About the amount of C in the intermediate and passive pools, no significant differences were found among the olive groves and the control. These preliminary results indicated that the greater total organic C content occurred in the 30-year-old olive grove with respect to the 7-years-old grove and the control, has to be ascribed to the greater content of active organic matter (POM and WEOM), and not to the accumulation in soil of organic C in a more stabilised form.

  2. Comparison of assimilable organic carbon and UV-oxidizable carbon for evaluation of ultrapure-water systems.

    PubMed Central

    Governal, R A; Yahya, M T; Gerba, C P; Shadman, F

    1992-01-01

    Bacterial growth potential was measured in an ultrapure-water pilot plant by modified assimilable organic carbon (AOC) and UV-oxidizable carbon tests. An ion-exchange unit increased UV-oxidizable carbon, yet did not significantly (P greater than or equal to 0.05) alter AOC values. UV radiation decreased UV-oxidizable carbon and increased AOC. PMID:1610195

  3. Dissolved Organic Carbon in Headwater Streams and Riparian Soil Organic Carbon along an Altitudinal Gradient in the Wuyi Mountains, China

    PubMed Central

    Huang, Wei; McDowell, William H.; Zou, Xiaoming; Ruan, Honghua; Wang, Jiashe; Li, Liguang

    2013-01-01

    Stream water dissolved organic carbon (DOC) correlates positively with soil organic carbon (SOC) in many biomes. Does this relationship hold in a small geographic region when variations of temperature, precipitation and vegetation are driven by a significant altitudinal gradient? We examined the spatial connectivity between concentrations of DOC in headwater stream and contents of riparian SOC and water-soluble soil organic carbon (WSOC), riparian soil C:N ratio, and temperature in four vegetation types along an altitudinal gradient in the Wuyi Mountains, China. Our analyses showed that annual mean concentrations of headwater stream DOC were lower in alpine meadow (AM) than in subtropical evergreen broadleaf forest (EBF), coniferous forest (CF), and subalpine dwarf forest (SDF). Headwater stream DOC concentrations were negatively correlated with riparian SOC as well as WSOC contents, and were unrelated to riparian soil C:N ratio. Our findings suggest that DOC concentrations in headwater streams are affected by different factors at regional and local scales. The dilution effect of higher precipitation and adsorption of soil DOC to higher soil clay plus silt content at higher elevation may play an important role in causing lower DOC concentrations in AM stream of the Wuyi Mountains. Our results suggest that upscaling and downscaling of the drivers of DOC export from forested watersheds when exploring the response of carbon flux to climatic change or other drivers must done with caution. PMID:24265737

  4. Dissolved organic carbon in headwater streams and riparian soil organic carbon along an altitudinal gradient in the Wuyi Mountains, China.

    PubMed

    Huang, Wei; McDowell, William H; Zou, Xiaoming; Ruan, Honghua; Wang, Jiashe; Li, Liguang

    2013-01-01

    Stream water dissolved organic carbon (DOC) correlates positively with soil organic carbon (SOC) in many biomes. Does this relationship hold in a small geographic region when variations of temperature, precipitation and vegetation are driven by a significant altitudinal gradient? We examined the spatial connectivity between concentrations of DOC in headwater stream and contents of riparian SOC and water-soluble soil organic carbon (WSOC), riparian soil C:N ratio, and temperature in four vegetation types along an altitudinal gradient in the Wuyi Mountains, China. Our analyses showed that annual mean concentrations of headwater stream DOC were lower in alpine meadow (AM) than in subtropical evergreen broadleaf forest (EBF), coniferous forest (CF), and subalpine dwarf forest (SDF). Headwater stream DOC concentrations were negatively correlated with riparian SOC as well as WSOC contents, and were unrelated to riparian soil C:N ratio. Our findings suggest that DOC concentrations in headwater streams are affected by different factors at regional and local scales. The dilution effect of higher precipitation and adsorption of soil DOC to higher soil clay plus silt content at higher elevation may play an important role in causing lower DOC concentrations in AM stream of the Wuyi Mountains. Our results suggest that upscaling and downscaling of the drivers of DOC export from forested watersheds when exploring the response of carbon flux to climatic change or other drivers must done with caution.

  5. Mineralization of allochthonous organic carbon in lake sediments, from lake to landscape scale

    NASA Astrophysics Data System (ADS)

    Gudasz, C.; Ask, J.; Tranvik, L. J.; Karlsson, J.

    2012-04-01

    Lake sediments are well-recognized sites for the processing as well as sequestration of organic carbon. In particular boreal lake sediments have been recognized as important sites for the sequestration of organic carbon, comparable to soils or living biomass. Lakes in the boreal zone import large amounts of terrestrially derived organic carbon. Part of this organic carbon reaches the sediment surface through flocculation and sedimentation. The microbial processing of organic carbon represents one of the main factors that regulate the balance between sequestration of organic carbon and emission of green house gasses in boreal lake sediments. Recently, it has been shown a strong constrained microbial processing of allochthonous organic carbon in boreal lake sediments. However, a clear picture about the extent of the allochthonous organic carbon influence on the mineralization of sediment organic carbon in lakes and its significance at a large scale is currently lacking. We conducted a study, which explored the effect of allochthonous organic carbon on sediment organic carbon mineralization along a gradient of lakes characterized by increasing terrestrial organic carbon influence. We show a strong negative effect on sediment mineralization in lakes with increasing allochthonous organic carbon influence, which applies to a large number of lakes in the boreal zone.

  6. BOREAS TGB-10 Volatile Organic Carbon Data over the SSA

    NASA Technical Reports Server (NTRS)

    Westberg, Hal; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Hall, Brad; Jackson, Andrea V.

    2000-01-01

    The BOREAS TGB-10 team collected several trace gas data sets in its efforts to determine the role of biogenic hydrocarbon emissions with respect to boreal forest carbon cycles. This data set contains measured VOC concentrations. These data were obtained at the SSA-OJP site from May to September 1994. The data are stored in tabular ASCII files.

  7. Soil Organic Carbon Stocks in Depositional Landscapes of Bavaria

    NASA Astrophysics Data System (ADS)

    Kriegs, Stefanie; Schwindt, Daniel; Völkel, Jörg; Kögel-Knabner, Ingrid

    2016-04-01

    Erosion leads to redistribution and accumulation of soil organic matter (SOM) within agricultural landscapes. These fluvic and colluvic deposits are characterized by a highly diverse vertical structure and can contain high amounts of soil organic carbon (SOC) over the whole soil profile. Depositional landscapes are therefore not only productive sites for agricultural use but also influence carbon dynamics which is of great interest with regard on the recent climate change debate. The aim of our study is to elucidate the spatial distribution of organic carbon stocks, as well as its depth function and the role of these landscapes as a reservoir for SOM. Therefore we compare two representative depositional landscapes in Bavaria composed of different parent materials (carbonate vs. granitic). We hypothesize that the soils associated with different depositional processes (fluvial vs. colluvial) differ in SOC contents and stocks, also because of different hydromorphic regimes in fluvic versus colluvic soil profiles. Sampling sites are located in the Alpine Foreland (quaternary moraines with carbonatic parent material) and the foothills of the Bavarian Forest (Granite with Loess) with the main soil types Fluvisols, Gleysols and Luvisols. At both sites we sampled twelve soil profiles up to 150 cm depth, six in the floodplain and six along a vertical slope transect. We took undisturbed soil samples from each horizon and analyzed them for bulk density, total Carbon (OC and IC) and total Nitrogen (N) concentrations. This approach allows to calculate total OC contents and OC stocks and to investigate vertical and horizontal distribution of OC stocks. It will also reveal differences in OC stocks due to the location of the soil profile in fluvic or colluvic deposition scenarios.

  8. Enhanced top soil carbon stocks under organic farming.

    PubMed

    Gattinger, Andreas; Muller, Adrian; Haeni, Matthias; Skinner, Colin; Fliessbach, Andreas; Buchmann, Nina; Mäder, Paul; Stolze, Matthias; Smith, Pete; Scialabba, Nadia El-Hage; Niggli, Urs

    2012-10-30

    It has been suggested that conversion to organic farming contributes to soil carbon sequestration, but until now a comprehensive quantitative assessment has been lacking. Therefore, datasets from 74 studies from pairwise comparisons of organic vs. nonorganic farming systems were subjected to metaanalysis to identify differences in soil organic carbon (SOC). We found significant differences and higher values for organically farmed soils of 0.18 ± 0.06% points (mean ± 95% confidence interval) for SOC concentrations, 3.50 ± 1.08 Mg C ha(-1) for stocks, and 0.45 ± 0.21 Mg C ha(-1) y(-1) for sequestration rates compared with nonorganic management. Metaregression did not deliver clear results on drivers, but differences in external C inputs and crop rotations seemed important. Restricting the analysis to zero net input organic systems and retaining only the datasets with highest data quality (measured soil bulk densities and external C and N inputs), the mean difference in SOC stocks between the farming systems was still significant (1.98 ± 1.50 Mg C ha(-1)), whereas the difference in sequestration rates became insignificant (0.07 ± 0.08 Mg C ha(-1) y(-1)). Analyzing zero net input systems for all data without this quality requirement revealed significant, positive differences in SOC concentrations and stocks (0.13 ± 0.09% points and 2.16 ± 1.65 Mg C ha(-1), respectively) and insignificant differences for sequestration rates (0.27 ± 0.37 Mg C ha(-1) y(-1)). The data mainly cover top soil and temperate zones, whereas only few data from tropical regions and subsoil horizons exist. Summarizing, this study shows that organic farming has the potential to accumulate soil carbon.

  9. Enhanced top soil carbon stocks under organic farming

    PubMed Central

    Gattinger, Andreas; Muller, Adrian; Haeni, Matthias; Skinner, Colin; Fliessbach, Andreas; Buchmann, Nina; Mäder, Paul; Stolze, Matthias; Smith, Pete; Scialabba, Nadia El-Hage; Niggli, Urs

    2012-01-01

    It has been suggested that conversion to organic farming contributes to soil carbon sequestration, but until now a comprehensive quantitative assessment has been lacking. Therefore, datasets from 74 studies from pairwise comparisons of organic vs. nonorganic farming systems were subjected to metaanalysis to identify differences in soil organic carbon (SOC). We found significant differences and higher values for organically farmed soils of 0.18 ± 0.06% points (mean ± 95% confidence interval) for SOC concentrations, 3.50 ± 1.08 Mg C ha−1 for stocks, and 0.45 ± 0.21 Mg C ha−1 y−1 for sequestration rates compared with nonorganic management. Metaregression did not deliver clear results on drivers, but differences in external C inputs and crop rotations seemed important. Restricting the analysis to zero net input organic systems and retaining only the datasets with highest data quality (measured soil bulk densities and external C and N inputs), the mean difference in SOC stocks between the farming systems was still significant (1.98 ± 1.50 Mg C ha−1), whereas the difference in sequestration rates became insignificant (0.07 ± 0.08 Mg C ha−1 y−1). Analyzing zero net input systems for all data without this quality requirement revealed significant, positive differences in SOC concentrations and stocks (0.13 ± 0.09% points and 2.16 ± 1.65 Mg C ha−1, respectively) and insignificant differences for sequestration rates (0.27 ± 0.37 Mg C ha−1 y−1). The data mainly cover top soil and temperate zones, whereas only few data from tropical regions and subsoil horizons exist. Summarizing, this study shows that organic farming has the potential to accumulate soil carbon. PMID:23071312

  10. Carbon isotope fractionation of sapropelic organic matter during early diagenesis

    USGS Publications Warehouse

    Spiker, E. C.; Hatcher, P.G.

    1984-01-01

    Study of an algal, sapropelic sediment from Mangrove Lake, Bermuda shows that the mass balance of carbon and stable carbon isotopes in the major organic constituents is accounted for by a relatively straightforward model of selective preservation during diagenesis. The loss of 13C-enriched carbohydrates is the principal factor controlling the intermolecular mass balance of 13C in the sapropel. Results indicate that labile components are decomposed leaving as a residual concentrate in the sediment an insoluble humic substance that may be an original biochemical component of algae and associated bacteria. An overall decrease of up to about 4??? in the ?? 13C values of the organic matter is observed as a result of early diagenesis. ?? 1984.

  11. Adaptation of the Unterzaucher procedure for determination of oxygen-18 in organic substances

    SciTech Connect

    Santrock, J.; Hayes, J.M.

    1987-01-01

    A method for the preparation of carbon dioxide from complex organic material for oxygen isotopic analysis is described. A commercial elemental analyzer has been modified so that oxygen contained in the organic material is quantitatively converted to carbon dioxide by the Schuetze-Unterzaucher technique, chromatographically purified, and transferred to a sample container for subsequent analysis by isotope ratio mass spectrometry. The organic sample is pyrolyzed, and the products of pyrolysis are equilibrated with elemental carbon at 1060 /sup 0/C to produce CO, and the CO is oxidized to CO/sub 2/ by I/sub 2/O/sub 5/. The details of these processes are considered, and a quantitative model is developed to allow correction for contamination of the carbon dioxide oxygen pool by an oxygen blank, oxygen from previous samples (memory), an oxygen from iodine pentoxide. Procedures for determination of the parameters used in the mathematical correction and routine application of the model to isotopic analysis are outlined. At natural abundance, the standard deviation for determination of the fractional abundance of oxygen-18 in a sample of organic material is 2 x 10/sup -7/ (equivalent to 0.1%). The detection limit for /sup 18/O as a tracer in biological materials is better than 1 atom excess/10/sup 6/ atoms total O. Analyses of independently established standards show that results obtained by the mathematical correction procedure are accurate and allow determination of abundances of /sup 18/O in the sucrose standards prepared by Hardcastle and Friedman.

  12. Temperature controls organic carbon sequestration in a subarctic lake

    NASA Astrophysics Data System (ADS)

    Rantala, Marttiina V.; Luoto, Tomi P.; Nevalainen, Liisa

    2016-10-01

    Widespread ecological reorganizations and increases in organic carbon (OC) in lakes across the Northern Hemisphere have raised concerns about the impact of the ongoing climate warming on aquatic ecosystems and carbon cycling. We employed diverse biogeochemical techniques on a high-resolution sediment record from a subarctic lake in northern Finland (70°N) to examine the direction, magnitude and mechanism of change in aquatic carbon pools prior to and under the anthropogenic warming. Coupled variation in the elemental and isotopic composition of the sediment and a proxy-based summer air temperature reconstruction tracked changes in aquatic production, depicting a decline during a cool climate interval between ~1700–1900 C.E. and a subsequent increase over the 20th century. OC accumulation rates displayed similar coeval variation with temperature, mirroring both changes in aquatic production and terrestrial carbon export. Increase in sediment organic content over the 20th century together with high inferred aquatic UV exposure imply that the 20th century increase in OC accumulation is primarily connected to elevated lake production rather than terrestrial inputs. The changes in the supply of autochthonous energy sources were further reflected higher up the benthic food web, as evidenced by biotic stable isotopic fingerprints.

  13. Recent Advances in Carbon Capture with Metal-Organic Frameworks.

    PubMed

    Stylianou, Kyriakos C; Queen, Wendy L

    2015-01-01

    The escalating level of CO(2) in the atmosphere is one of the most critical environmental issues of our age. The carbon capture and storage from pilot test plants represents an option for reducing CO(2) emissions, however, the energy cost associated with post-combustion carbon capture process alone is ∼30% of the total energy generated by the power plant. Thus, the generation of carbon capture adsorbents with high uptake capacities, great separation performance and low cost is of paramount importance. Metal-organic frameworks are infinite networks of metal-containing nodes bridged by organic ligands through coordination bonds into porous extended structures and several reports have revealed that they are ideal candidates for the selective capture of CO(2). In this review we summarize recent advances related to the synthesis of porous MOFs and the latest strategies to enhance the CO(2) adsorption enthalpies and capacities at low-pressures, increase hydrolytic and mechanical stabilities, and improve the ease of regeneration. Although they show great promise for post-combustion carbon capture, there are still major challenges that must be overcome before they can be used for such a large-scale application.

  14. Temperature controls organic carbon sequestration in a subarctic lake

    PubMed Central

    Rantala, Marttiina V.; Luoto, Tomi P.; Nevalainen, Liisa

    2016-01-01

    Widespread ecological reorganizations and increases in organic carbon (OC) in lakes across the Northern Hemisphere have raised concerns about the impact of the ongoing climate warming on aquatic ecosystems and carbon cycling. We employed diverse biogeochemical techniques on a high-resolution sediment record from a subarctic lake in northern Finland (70°N) to examine the direction, magnitude and mechanism of change in aquatic carbon pools prior to and under the anthropogenic warming. Coupled variation in the elemental and isotopic composition of the sediment and a proxy-based summer air temperature reconstruction tracked changes in aquatic production, depicting a decline during a cool climate interval between ~1700–1900 C.E. and a subsequent increase over the 20th century. OC accumulation rates displayed similar coeval variation with temperature, mirroring both changes in aquatic production and terrestrial carbon export. Increase in sediment organic content over the 20th century together with high inferred aquatic UV exposure imply that the 20th century increase in OC accumulation is primarily connected to elevated lake production rather than terrestrial inputs. The changes in the supply of autochthonous energy sources were further reflected higher up the benthic food web, as evidenced by biotic stable isotopic fingerprints. PMID:27708382

  15. Effects of organic carbon sequestration strategies on soil enzymatic activities

    NASA Astrophysics Data System (ADS)

    Puglisi, E.; Suciu, N.; Botteri, L.; Ferrari, T.; Coppolecchia, D.; Trevisan, M.; Piccolo, A.

    2009-04-01

    Greenhouse gases emissions can be counterbalanced with proper agronomical strategies aimed at sequestering carbon in soils. These strategies must be tested not only for their ability in reducing carbon dioxide emissions, but also for their impact on soil quality: enzymatic activities are related to main soil ecological quality, and can be used as early and sensitive indicators of alteration events. Three different strategies for soil carbon sequestration were studied: minimum tillage, protection of biodegradable organic fraction by compost amendment and oxidative polimerization of soil organic matter catalyzed by biometic porfirins. All strategies were compared with a traditional agricultural management based on tillage and mineral fertilization. Experiments were carried out in three Italian soils from different pedo-climatic regions located respectively in Piacenza, Turin and Naples and cultivated with maize or wheat. Soil samples were taken for three consecutive years after harvest and analyzed for their content in phosphates, ß-glucosidase, urease and invertase. An alteration index based on these enzymatic activities levels was applied as well. The biomimetic porfirin application didn't cause changes in enzymatic activities compared to the control at any treatment or location. Enzymatic activities were generally higher in the minimum tillage and compost treatment, while differences between location and date of samplings were limited. Application of the soil alteration index based on enzymatic activities showed that soils treated with compost or subjected to minimum tillage generally have a higher biological quality. The work confirms the environmental sustainability of the carbon sequestering agronomical practices studied.

  16. Determination of organic emissions from new carpeting

    SciTech Connect

    Pleil, J.D.; Whiton, R.S.

    1990-01-01

    New carpeting has been the source of a number of indoor air health and odor complaints. Investigations of a variety of carpet samples have shown that there is a diversity of organic emissions among carpet types; some of the compounds found have been listed in the NIOSH Registry of Toxic Effects of Chemical Substances. The paper describes two complementary analytical methods for screening carpet samples: a 'headspace' method for volatile emissions and a Soxhlet extraction method using methylene chloride for the semi-volatile and non-volatile compounds. The analytical results from seven carpet types are presented with special emphasis on the compound 4-phenylcyclohexene, one of the causes of 'new carpet smell,' which has also been anectdotally linked to adverse short term health effects. Other compounds of possible interest that were found include dichlorobenzene, bis(2-ethylhexyl)-phthalate, triethyl phosphate, epsilon-caprolactam, and methylene-bis(4-isocyanatobenzene).

  17. Treatment of small samples of particulate organic carbon (POC) for radiocarbon dating of ice

    NASA Astrophysics Data System (ADS)

    Drosg, Roswitha; Kutschera, Walter; Scholz, Kathrin; Steier, Peter; Wagenbach, Dietmar; Wild, Eva Maria

    2007-06-01

    A filtration method for radiocarbon determination on particulate organic carbon (POC) in glacier ice is explored at VERA (Vienna Environmental Research Accelerator). Previous work on true samples has shown that laboratory contamination is the limiting factor. By systematic investigations on the origin of carbon contamination, we were able to reduce the background significantly. In two first measurements using artificially produced clean ice a blank level as low as 1.3 μgC/kg ice could be achieved. These results were obtained by a simplified combustion scheme using valve-sealed vials. The combustion yield for organic materials was found to be 80% with a very low background typically below 1 μgC. Outliers turned out to be the main obstacle when dealing with such minute carbon amounts.

  18. Prediction of activated carbon adsorption capacities for organic vapors using quantitative structure-activity relationship methods

    SciTech Connect

    Nirmalakhandan, N.N. ); Speece, R.E. )

    1993-08-01

    Quantitative structure-activity relationship (QSAR) methods were used to develop models to estimate and predict activated carbon adsorption capacities for organic vapors. Literature isothermal data from two sources for 22 organic contaminants on six different carbons were merged to form a training set of 75 data points. Two different QSAR approaches were evaluated: the molecular connectivity approach and the linear solvation energy relationship approach. The QSAR model developed in this study using the molecular connectivity approach was able to fit the experimental data with r = 0.96 and standard error of 0.09. The utility of the model was demonstrated by using predicted k values to calculate adsorption capacities of 12 chemicals on two different carbons and comparing them with experimentally determined values. 9 refs., 1 fig., 3 tabs.

  19. 42 CFR 422.570 - Expediting certain organization determinations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... furnished.) (b) How to make a request. (1) To ask for an expedited determination, an enrollee or a physician must submit an oral or written request directly to the MA organization or, if applicable, to the entity... or written support for a request for an expedited determination. (c) How the MA organization...

  20. 42 CFR 422.570 - Expediting certain organization determinations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... furnished.) (b) How to make a request. (1) To ask for an expedited determination, an enrollee or a physician must submit an oral or written request directly to the MA organization or, if applicable, to the entity... or written support for a request for an expedited determination. (c) How the MA organization...

  1. 7 CFR 281.4 - Determining Indian tribal organization capability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 4 2011-01-01 2011-01-01 false Determining Indian tribal organization capability. 281... FOOD STAMP PROGRAM ON INDIAN RESERVATIONS § 281.4 Determining Indian tribal organization capability. (a..., and establishment and collection of claims for both Indian and any non-Indian participants. The...

  2. 7 CFR 281.4 - Determining Indian tribal organization capability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Determining Indian tribal organization capability. 281... FOOD STAMP PROGRAM ON INDIAN RESERVATIONS § 281.4 Determining Indian tribal organization capability. (a..., and establishment and collection of claims for both Indian and any non-Indian participants. The...

  3. Carbon Dioxide Separation with Novel Microporous Metal Organic Frameworks

    SciTech Connect

    Richard Willis; Annabelle Benin; John Low; Ganesh Venimadhavan; Syed Faheem; David Lesch; Adam Matzger; Randy Snurr

    2008-02-04

    The goal of this program was to develop a low cost novel sorbent to remove carbon dioxide from flue gas and gasification streams in electric utilities. Porous materials named metal-organic frameworks (MOFs) were found to have good capacity and selectivity for the capture of carbon dioxide. Several materials from the initial set of reference MOFs showed extremely high CO{sub 2} adsorption capacities and very desirable linear isotherm shapes. Sample preparation occurred at a high level, with a new family of materials suitable for intellectual property protection prepared and characterized. Raman spectroscopy was shown to be useful for the facile characterization of MOF materials during adsorption and especially, desorption. Further, the development of a Raman spectroscopic-based method of determining binary adsorption isotherms was initiated. It was discovered that a stronger base functionality will need to be added to MOF linkers in order to enhance CO{sub 2} selectivity over other gases via a chemisorption mechanism. A concentrated effort was expended on being able to accurately predict CO{sub 2} selectivities and on the calculation of predicted MOF surface area values from first principles. A method of modeling hydrolysis on MOF materials that correlates with experimental data was developed and refined. Complimentary experimental data were recorded via utilization of a combinatorial chemistry heat treatment unit and high-throughput X-ray diffractometer. The three main Deliverables for the project, namely (a) a MOF for pre-combustion (e.g., IGCC) CO{sub 2} capture, (b) a MOF for post-combustion (flue gas) CO{sub 2} capture, and (c) an assessment of commercial potential for a MOF in the IGCC application, were completed. The key properties for MOFs to work in this application - high CO{sub 2} capacity, good adsorption/desorption rates, high adsorption selectivity for CO{sub 2} over other gases such as methane and nitrogen, high stability to contaminants, namely

  4. Storage and release of organic carbon from glaciers and ice sheets

    USGS Publications Warehouse

    Hood, Eran; Battin, Tom J.; Fellman, Jason; O'Neel, Shad; Spencer, Robert G. M.

    2015-01-01

    Polar ice sheets and mountain glaciers, which cover roughly 11% of the Earth's land surface, store organic carbon from local and distant sources and then release it to downstream environments. Climate-driven changes to glacier runoff are expected to be larger than climate impacts on other components of the hydrological cycle, and may represent an important flux of organic carbon. A compilation of published data on dissolved organic carbon from glaciers across five continents reveals that mountain and polar glaciers represent a quantitatively important store of organic carbon. The Antarctic Ice Sheet is the repository of most of the roughly 6 petagrams (Pg) of organic carbon stored in glacier ice, but the annual release of glacier organic carbon is dominated by mountain glaciers in the case of dissolved organic carbon and the Greenland Ice Sheet in the case of particulate organic carbon. Climate change contributes to these fluxes: approximately 13% of the annual flux of glacier dissolved organic carbon is a result of glacier mass loss. These losses are expected to accelerate, leading to a cumulative loss of roughly 15 teragrams (Tg) of glacial dissolved organic carbon by 2050 due to climate change — equivalent to about half of the annual flux of dissolved organic carbon from the Amazon River. Thus, glaciers constitute a key link between terrestrial and aquatic carbon fluxes, and will be of increasing importance in land-to-ocean fluxes of organic carbon in glacierized regions.

  5. Determination of total dissolved inorganic carbon in freshwaters by reagent-free ion chromatography.

    PubMed

    Polesello, Stefano; Tartari, Gabriele; Giacomotti, Paola; Mosello, Rosario; Cavalli, Silvano

    2006-06-16

    Studies of inorganic carbon cycle in natural waters provide important information on the biological productivity and buffer capacity. Determination of total inorganic carbon, alkalinity and dissolved carbon dioxide gives an indication of the balance between photosynthesis and respiration by biota, both within the water column and sediments, and carbon dioxide transfers from the water column to the atmosphere. There are few methods to measure and distinguish the different forms of inorganic carbon, but all require a measure or an indirect quantification of total inorganic carbon. A direct measurement of TIC in water is made possible by the introduction of electrolytic generated hydroxide eluent in ion chromatography which allows to detect a chromatographic peak for carbonate. The advantage of this method is that all the inorganic forms of carbon are converted in carbonate at eluent pH and can be detected as a single peak by conductivity detection. Repeatability of carbonate peak was evaluated at different levels from 0.02 to 6 mequiv.l(-1) both in high purity water and in real samples and ranged from 1 to 9%. The calibration curve was not linear and has to be fitted by a quadratic curve. Limit of detection was estimated to be 0.02 mequiv.l(-1). Accuracy has been estimated by comparing ion chromatography method with total inorganic carbon calculated from alkalinity and pH. The correlation between the two methods was good (R(2)=0.978, n=141). The IC method has been applied to different typologies of surface waters (alpine and subalpine lakes and rivers) characterised by different chemical characteristics (alkalinity from 0.05 to 2 mequiv.l(-1) and pH from 6.7 to 8.5) and low total organic carbon concentrations. This analytical method allowed to describe the distribution of TIC along the water column of two Italian deep lakes. PMID:16620857

  6. PHOTOCHEMICALLY-INDUCED ALTERATION OF STABLE CARBON ISOTOPE RATIOS (DELTA C-13) IN TERRIGENOUS DISSOLVED ORGANIC CARBON

    EPA Science Inventory

    Exposure of riverine waters to natural sunlight initiated alterations in stable carbon isotope ratios (delta C-13) of the associated dissolved organic carbon (DOC). Water samples were collected from two compositionally distinct coastal river systems in the southeastern United Sta...

  7. Carbon storage in Organic Soils (COrS): Quantifying past variations in carbon accumulation in peatlands of South Wales, UK.

    NASA Astrophysics Data System (ADS)

    Carless, Donna; Kulessa, Bernd; Street-Perrott, Alayne; Davies, Siwan; Sinnadurai, Paul

    2014-05-01

    Globally, peatlands comprise a vital terrestrial carbon sink, currently estimated to be around 500 PgC (Yu et al., 2011, Gorham, 1991). Within the UK, peatlands represent the single most important terrestrial carbon store (IUCN, 2011). In particular, blanket and raised bogs account for around 23,000 square kilometres or 9.5 percent of the UK land area, with current estimates indicating that they store approximately 3.2 PgC (IUCN, 2011). Recent studies suggest that carbon-sequestration rates have been highly variable during the Holocene (Frolking & Roulet, 2007). Reconstructing these past fluctuations is essential to assess how peatlands will respond to future climate change, particularly the possibility that large amounts of respired below-ground carbon will be released as a result of enhanced rates of decomposition, causing positive climate feedback. Quantitative estimates of past variations in carbon accumulation provide valuable insights into the factors controlling carbon budgets. Recent developments have illustrated how ground-penetrating radar (GPR) can improve constraints on peat thickness (Holden et al., 2002, Warner et al., 1990), facilitating site-specific peat-volume estimates for carbon quantification. We shall present initial results from the COrS project, which brings together a novel combination of geophysical and proxy techniques to reconstruct variations in long-term carbon accumulation in 6 ombrotrophic peat bogs, located across the Brecon Beacons National Park (BBNP), South Wales, UK (51°55'30" N, 3°29'18" W). Detailed GPR surveys are being used to provide comprehensive estimates of total peat extent and thickness at these sites. Combined with surface-elevation data from LiDAR imagery, 3D models are being created, from which total peat-volume estimates will be extracted. Carbon-accumulation rates will be inferred from these bog-volume estimates, coupled with total organic carbon (TOC) measurements and high-resolution radiocarbon dating. In

  8. Mesoporous carbon-zirconium oxide nanocomposite derived from carbonized metal organic framework: A coating for solid-phase microextraction.

    PubMed

    Saraji, Mohammad; Mehrafza, Narges

    2016-08-19

    In this paper, a mesoporous carbon-ZrO2 nanocomposite was fabricated on a stainless steel wire for the first time and used as the solid-phase microextraction coating. The fiber was synthesized with the direct carbonization of a Zr-based metal organic framework. With the utilization of the metal organic framework as the precursor, no additional carbon source was used for the synthesis of the mesoporous carbon-ZrO2 nanocomposite coating. The fiber was applied for the determination of BTEX compounds (benzene, toluene, ethylbenzene and m, p-xylenes) in different water samples prior to gas chromatography-flame ionization detection. Such important experimental factors as synthesis time and temperature, salt concentration, equilibrium and extraction time, extraction temperature, desorption time and desorption temperature were studied and optimized. Good linearity in the concentration range of 0.2-200μgL(-1) and detection limits in the range of 0.05-0.56μgL(-1) was achieved for BTEX compounds. The intra- and inter-day relative standard deviations were in the range of 3.5-4.8% and 4.9-6.7%, respectively. The prepared fiber showed high capability for the analysis of BTEX compounds in different water and wastewater samples with good relative recoveries in the range of 93-107%. PMID:27451259

  9. Mesoporous carbon-zirconium oxide nanocomposite derived from carbonized metal organic framework: A coating for solid-phase microextraction.

    PubMed

    Saraji, Mohammad; Mehrafza, Narges

    2016-08-19

    In this paper, a mesoporous carbon-ZrO2 nanocomposite was fabricated on a stainless steel wire for the first time and used as the solid-phase microextraction coating. The fiber was synthesized with the direct carbonization of a Zr-based metal organic framework. With the utilization of the metal organic framework as the precursor, no additional carbon source was used for the synthesis of the mesoporous carbon-ZrO2 nanocomposite coating. The fiber was applied for the determination of BTEX compounds (benzene, toluene, ethylbenzene and m, p-xylenes) in different water samples prior to gas chromatography-flame ionization detection. Such important experimental factors as synthesis time and temperature, salt concentration, equilibrium and extraction time, extraction temperature, desorption time and desorption temperature were studied and optimized. Good linearity in the concentration range of 0.2-200μgL(-1) and detection limits in the range of 0.05-0.56μgL(-1) was achieved for BTEX compounds. The intra- and inter-day relative standard deviations were in the range of 3.5-4.8% and 4.9-6.7%, respectively. The prepared fiber showed high capability for the analysis of BTEX compounds in different water and wastewater samples with good relative recoveries in the range of 93-107%.

  10. Carbon uptake in low dissolved inorganic carbon environments: the effect of limited carbon availability on photosynthetic organisms in thermal waters

    NASA Astrophysics Data System (ADS)

    Myers, K. D.; Omelon, C. R.; Bennett, P.

    2010-12-01

    Photosynthesis is the primary carbon fixation process in thermal waters below 70°C, but some hydrothermal waters have extremely low dissolved inorganic carbon (DIC), potentially limiting the growth of inorganic carbon fixing organisms such as algae and cyanobacteria. To address the issue of how carbon is assimilated by phototrophs in these environments, we conducted experiments to compare inorganic carbon uptake mechanisms by two phylogenetically distinct organisms collected from geographically distinct carbon limited systems: the neutral pH geothermal waters of El Tatio, Chile, and the acidic geothermal waters of Tantalus Creek in Norris Geyser Basin, Yellowstone National Park. Discharge waters at El Tatio have low total DIC concentrations (2 to 6 ppm) found mainly as HCO3-; this is in contrast to even lower measured DIC values in Tantalus Creek (as low as 0.13 ppm) that, due to a measured pH of 2.5, exists primarily as CO2. Cyanobacteria and algae are innately physiologically plastic, and we are looking to explore the possibility that carbon limitation in these environments is extreme enough to challenge that plasticity and lead to a suite of carbon uptake adaptations. We hypothesize that these microorganisms utilize adaptive modes of Ci uptake that allow them to survive under these limiting conditions. Cyanobacteria (primarily Synechococcus spp.) isolated from El Tatio can utilize either passive CO2 uptake or active HCO3- uptake mechanisms, in contrast to the eukaryotic alga Cyanidium spp. from Tantalus Creek, which is restricted to an energy-dependent CO2 uptake mechanism. To test this hypothesis, we conducted pH drift experiments (Omelon et al., 2008) to examine changes in pH and [DIC] under a range of pH and [DIC] culture conditions. This work provides baseline information upon which we will begin to investigate the effects of low [DIC] on the growth of phototrophs collected from these and other less carbon limited systems.

  11. DETERMINING INTERSTELLAR CARBON ABUNDANCES FROM STRONG-LINE TRANSITIONS

    SciTech Connect

    Sofia, U. J.; Parvathi, V. S.; Babu, B. R. S.; Murthy, J.

    2011-01-15

    Carbon is arguably the most important element in the interstellar medium, yet its abundance in gas and dust is poorly understood due to a paucity of data. We explore the possibility of substantially increasing our knowledge of interstellar carbon by applying and assessing a new method for determining the column density of the dominant ion of interstellar carbon in diffuse neutral lines of sight. The method relies on profile fitting of the strong transition of C II at 1334 A in spectra continuum normalized with stellar models. We apply our method to six sight lines for which the carbon abundance has previously been determined with a weak intersystem absorption transition. Our strong-line method consistently shows a significantly lower gas-phase C abundance than the measurements from the weak lines. This result implies that more carbon could reside in dust than was previously thought. This has implications for dust models, which often suffer from a lack of sufficient carbon to plausibly explain extinction. There is no immediately clear explanation for the difference found between the strong- and weak-line C II determinations, but there are indications that the results from the method presented here have advantages over the weak-line column densities. If this is the case, then the reported oscillator strength for the C II transition at 2325 A may be too small. Our findings further suggest that damping wings modeled with a single absorption component may not produce accurate abundances. This problem could affect a large number of H I abundances determined through absorption line analysis that are reported in the literature.

  12. Bioluminescence-Based Method for Measuring Assimilable Organic Carbon in Pretreatment Water for Reverse Osmosis Membrane Desalination ▿

    PubMed Central

    Weinrich, Lauren A.; Schneider, Orren D.; LeChevallier, Mark W.

    2011-01-01

    A bioluminescence-based assimilable organic carbon (AOC) test was developed for determining the biological growth potential of seawater within the reverse osmosis desalination pretreatment process. The test uses Vibrio harveyi, a marine organism that exhibits constitutive luminescence and is nutritionally robust. AOC was measured in both a pilot plant and a full-scale desalination plant pretreatment. PMID:21148685

  13. Bioluminescence-based method for measuring assimilable organic carbon in pretreatment water for reverse osmosis membrane desalination.

    PubMed

    Weinrich, Lauren A; Schneider, Orren D; LeChevallier, Mark W

    2011-02-01

    A bioluminescence-based assimilable organic carbon (AOC) test was developed for determining the biological growth potential of seawater within the reverse osmosis desalination pretreatment process. The test uses Vibrio harveyi, a marine organism that exhibits constitutive luminescence and is nutritionally robust. AOC was measured in both a pilot plant and a full-scale desalination plant pretreatment.

  14. Impacts of crop rotations on soil organic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Gobin, Anne; Vos, Johan; Joris, Ingeborg; Van De Vreken, Philippe

    2013-04-01

    Agricultural land use and crop rotations can greatly affect the amount of carbon sequestered in the soil. We developed a framework for modelling the impacts of crop rotations on soil carbon sequestration at the field scale with test case Flanders. A crop rotation geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System) to elicit the most common crop rotation on major soil types in Flanders. In order to simulate the impact of crop cover on carbon sequestration, the Roth-C model was adapted to Flanders' environment and coupled to common crop rotations extracted from the IACS geodatabases and statistical databases on crop yield. Crop allometric models were used to calculate crop residues from common crops in Flanders and subsequently derive stable organic matter fluxes to the soil (REGSOM). The REGSOM model was coupled to Roth-C model was run for 30 years and for all combinations of seven main arable crops, two common catch crops and two common dosages of organic manure. The common crops are winter wheat, winter barley, sugar beet, potato, grain maize, silage maize and winter rapeseed; the catch crops are yellow mustard and Italian ryegrass; the manure dosages are 35 ton/ha cattle slurry and 22 ton/ha pig slurry. Four common soils were simulated: sand, loam, sandy loam and clay. In total more than 2.4 million simulations were made with monthly output of carbon content for 30 years. Results demonstrate that crop cover dynamics influence carbon sequestration for a very large percentage. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. Crop residues of grain maize and winter wheat followed by catch crops contribute largely to the total carbon sequestered. This implies that agricultural policies that impact on agricultural land management influence soil carbon sequestration for a large percentage. The framework is therefore

  15. [Effects of tillage type on soil organic carbon and its distribution in oasis irrigation area].

    PubMed

    Ma, Zhong-ming; Lyu, Xiao-dong; Liu, Li-li

    2015-01-01

    A long-term trial was established in 2005 in the oasis irrigation area to determine the impact on the accumulation and distribution of total organic carbon (TOC) , particulate organic carbon (POC) and soil microbial biomass carbon (SMBC) in 0-90 cm soil layer of 4 types of tillage including conventional tillage (CT), fresh raised-bed (FRB), permanent raised-bed (PRB) and zero tillage with control traffic on flat field (ZT). The results revealed that the distribution characteristics of TOC, POC and SMBC in the soil profile were similar in the four tillage treatments, and the carbon content decreased with depth, meanwhile the difference among treatments gradually decreased. PRB significantly increased the TOC, POC contents and SMBC, which presented in the order of PRB>ZT>FRB>CT in the 0-90 cm soil layer. In 0-10 cm soil layer, the TOC was increased by 11.1%-24.8% for PRB, 9.1%-18.7% for ZT and 7.8%-8.2% for FRB when compared with CT; POC was increased by 24.1%-26.5% for PRB, 17.3%-18.7% for ZT, and -8.2% to 10.8% for FRB; SMBC was increased by 20.5%-28.3% for PRB, 10.4%-15.2% for ZT and 3.5%-3.7% for FRB. TOC had a significant promotion effect on POC. PRB significantly increased the proportion of soil POC and enhanced the overall accumulation of organic carbon.

  16. Stable Carbon Isotopic Signatures of Abiotic Organics from Hydrothermal Synthesis Experiments

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Summers, David P.; Kubo, Mike; Yassar, Saima

    2006-01-01

    Stable carbon isotopes can be powerful biogeochemical markers in the study of life's origins. Biogenic carbon fixation produces organics that are depleted in C-13 by about -20 to -30%0. Less attention has been paid to the isotopic signatures of abiotic processes. The possibility of abiotic processes producing organics with morphologies and isotopic signatures in the biogenic range has been at the center of recent debate over the Earth's earliest microfossils. The abiotic synthesis of organic compounds in hydrothermal environments is one possible source of endogenous organic matter to the prebiotic earth. Simulated hydrothermal settings have been shown to synthesize, among other things, single chain amphiphiles and simple lipids from a mix of CO, CO2, and H2. A key characteristic of these amphiphilic molecules is the ability to self-assemble in aqueous phases into more organized structures called vesicles, which form a selectively permeable boundary and serve the function of containing and concentrating other organic molecules. The ability to form cell like structures also makes these compounds more likely to be mistaken for biogenic. Hydrothermal simulation experiments were conducted from oxalic or formic acid in water at 175 C for 72 hr. The molecular and isotopic composition of the products of these reactions were determined and compared to biogenic fractionations . Preliminary results indicate isotopic fractionation during abiotic hydrocarbon synthesis in hydrothermal environments is on par with biological carbon fixation.

  17. Fate of Soil Organic Carbon and Polycyclic Aromatic Hydrocarbons in a Vineyard Soil Treated with Biochar.

    PubMed

    Rombolà, Alessandro G; Meredith, Will; Snape, Colin E; Baronti, Silvia; Genesio, Lorenzo; Vaccari, Francesco Primo; Miglietta, Franco; Fabbri, Daniele

    2015-09-15

    The effect of biochar addition on the levels of black carbon (BC) and polcyclic aromatic hydrocarbons (PAHs) in a vineyard soil in central Italy was investigated within a two year period. Hydropyrolysis (HyPy) was used to determine the contents of BC (BCHyPy) in the amended and control soils, while the hydrocarbon composition of the semi-labile (non-BCHyPy) fraction released by HyPy was determined by gas chromatography-mass spectrometry, together with the solvent-extractable PAHs. The concentrations of these three polycyclic aromatic carbon reservoirs changed and impacted differently the soil organic carbon over the period of the trial. The addition of biochar (33 ton dry biochar ha(-1)) gave rise to a sharp increase in soil organic carbon, which could be accounted for by an increase in BCHyPy. Over time, the concentration of BCHyPy decreased significantly from 36 to 23 mg g(-1) and as a carbon percentage from 79% to 61%. No clear time trends were observed for the non-BCHyPy PAHs varying from 39 to 34 μg g(-1) in treated soils, not significantly different from control soils. However, the concentrations of extractable PAHs increased markedly in the amended soils and decreased with time from 153 to 78 ng g(-1) remaining always higher than those in untreated soil. The extent of the BCHyPy loss was more compatible with physical rather than chemical processes.

  18. Estimating organic micro-pollutant removal potential of activated carbons using UV absorption and carbon characteristics.

    PubMed

    Zietzschmann, Frederik; Altmann, Johannes; Ruhl, Aki Sebastian; Dünnbier, Uwe; Dommisch, Ingvild; Sperlich, Alexander; Meinel, Felix; Jekel, Martin

    2014-06-01

    Eight commercially available powdered activated carbons (PAC) were examined regarding organic micro-pollutant (OMP) removal efficiencies in wastewater treatment plant (WWTP) effluent. PAC characteristic numbers such as B.E.T. surface, iodine number and nitrobenzene number were checked for their potential to predict the OMP removal of the PAC products. Furthermore, the PAC-induced removal of UV254 nm absorption (UVA254) in WWTP effluent was determined and also correlated with OMP removal. None of the PAC characteristic numbers can satisfactorily describe OMP removal and accordingly, these characteristics have little informative value on the reduction of OMP concentrations in WWTP effluent. In contrast, UVA254 removal and OMP removal correlate well for carbamazepine, diclofenac, and several iodinated x-ray contrast media. Also, UVA254 removal can roughly describe the average OMP removal of all measured OMP, and can accordingly predict PAC performance in OMP removal. We therefore suggest UVA254 as a handy indicator for the approximation of OMP removal in practical applications where direct OMP concentration quantification is not always available. In continuous operation of large-scale plants, this approach allows for the efficient adjustment of PAC dosing to UVA254, in order to ensure reliable OMP removal whilst minimizing PAC consumption. PMID:24651017

  19. [Composition of organic carbon/elemental carbon and water-soluble ions in rice straw burning].

    PubMed

    Hong, Lei; Liu, Gang; Yang, Meng; Xu, Hui; Li, Jiu-hai; Chen, Hui-yu; Huang, Ke; Yang, Wei-zong; Wu, Dan

    2015-01-01

    Six types of rice straw were selected in China in this paper, the homemade biomass combustion devices were used to simulate the outdoor burning. The concentrations of organic carbon (OC), elemental carbon (C) and water-soluble ions in particular matter produced by the flaming and smoldering were analyzed using Thermal Optical Carbon Analyzer (Model 2001A) and Ion Chromatography(ISC 2000/ISC 3000). The results showed that the mean value of OC (EFoc) and EC (EFEC) emission factors were (6.37 +/- 1.86) g x kg(-1) and (1.07 +/- 0.30) g x kg(-1) under the flaming conditions, respectively, while under the smoldering conditions the two mean values were (37.63 +/- 6.26) g x kg(-1) and (4.98 x 1.42) g x kg(-1). PM, OC and EC emitted from the same kind of rice straw had similar change trends. The average values of OC/EC under flaming and smoldering were 5.96 and 7.80, and the value of OC/PM was almost unchanged along with the combustion state. Nevertheless, the values of EC/PM under flaming and smoldering were 0.06-0.08 and 0.08-0.11, respectively. The trend of combustion state could be determined using the ratio of EC/PM and the RZ of emitted OC and EC through those two types of combustion reached 0. 97, which was significantly correlated at the 0. 01 level. Among the anions, Cl- showed the highest concentration, the results indicated that the average value of of Cl- emission factor was (0.246 +/- 0.150) g x kg(-1) under flaming, while it was (0.301 +/- 0.274) g x kg(-1) under smoldering. However, A big difference between flaming and smoldering was found in the average value of K+ emission factor, where (0.118 +/- 0.051) g x kg(-1) of the former was significantly higher than the latter (0.053 +/- 0.031) g x kg(-1). When it came to Na, the result of smoldering was significantly higher than that of flaming. The correlation between water-soluble ions in flaming was more significant than smoldering. Rice straw burning could be distinguished from fossil fuels and some other

  20. Organic carbon redistribution due to erosion at various spatial scales

    NASA Astrophysics Data System (ADS)

    Jakab, Gergely; Szabó, Judit; Szalai, Zoltán; Mészáros, Erzsébet; Szabó, Boglárka; Centeri, Csaba

    2016-04-01

    Soil organic carbon (SOC) has a crucial role both in terms of crop production and climate change mitigation. Soil could be an effective sink of atmospheric carbon since in agricultural areas the carbon content of the soil is much lower than its capacity. The main obstacle against carbon charge of the soils is cultivation and erosion. Soil detachment, delivery and deposition are rather scale dependent processes that is why it is difficult to compare or extrapolate results among scales. Present case study aims to compare the SOC content and soil organic matter (SOM) compound of the detached soil particles on the ridge to those that are deposited at the bottom of the catena in order to clarify the role of delivery in soil erosion. Initial soil erosion was modelled using a laboratory rainfall simulator at the point scale. Deposition was surveyed and analysed by 3D sampling from drillings on the sedimentary parts at the field scale. At the detachment phase carbon enrichment (50-100%) and C/N ratio increase were found in each aggregate size class of the detached soil particles. Variations in SOM compounds suggested that a very intensive SOM exchange took place during initial erosion processes and delivery. In addition to the selective erosion selective SOC deposition were also found at the field scale. Two topographical hotspots were identified as the place of SOC surplus deposition. In these patches SOM compounds were deposited separately due to different geomorphologic positions. The lower patch next to the end of an ephemeral gully was dominated by less polymerized more aromatic SOM, while the upper one was ruled by high molecular weighted aliphatic SOM. Difference in SOM compound was manifested also in different sediment morphology. The topographically higher deposition patch were covered by aggregates while the lower one was found to be sealed by individual soil particles. Present study was supported by the National Hungarian Research Found K100180, G. Jakab was

  1. Dissolved organic carbon (DOC) in Arctic ground ice

    NASA Astrophysics Data System (ADS)

    Fritz, M.; Opel, T.; Tanski, G.; Herzschuh, U.; Meyer, H.; Eulenburg, A.; Lantuit, H.

    2015-01-01

    Thermal permafrost degradation and coastal erosion in the Arctic remobilize substantial amounts of organic carbon (OC) and nutrients which have been accumulated in late Pleistocene and Holocene unconsolidated deposits. Their vulnerability to thaw subsidence, collapsing coastlines and irreversible landscape change is largely due to the presence of large amounts of massive ground ice such as ice wedges. However, ground ice has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements, which are important for ecosystems and carbon cycling. Here we show, using geochemical data from a large number of different ice bodies throughout the Arctic, that ice wedges have the greatest potential for DOC storage with a maximum of 28.6 mg L-1 (mean: 9.6 mg L-1). Variation in DOC concentration is positively correlated with and explained by the concentrations and relative amounts of typically terrestrial cations such as Mg2+ and K+. DOC sequestration into ground ice was more effective during the late Pleistocene than during the Holocene, which can be explained by rapid sediment and OC accumulation, the prevalence of more easily degradable vegetation and immediate incorporation into permafrost. We assume that pristine snowmelt is able to leach considerable amounts of well-preserved and highly bioavailable DOC as well as other elements from surface sediments, which are rapidly stored in ground ice, especially in ice wedges, even before further degradation. In the Yedoma region ice wedges represent a significant DOC (45.2 Tg) and DIC (33.6 Tg) pool in permafrost areas and a fresh-water reservoir of 4172 km3. This study underlines the need to discriminate between particulate OC and DOC to assess the availability and vulnerability of the permafrost carbon pool for ecosystems and climate feedback upon mobilization.

  2. Dissolved organic carbon (DOC) in Arctic ground ice

    NASA Astrophysics Data System (ADS)

    Fritz, M.; Opel, T.; Tanski, G.; Herzschuh, U.; Meyer, H.; Eulenburg, A.; Lantuit, H.

    2015-04-01

    Thermal permafrost degradation and coastal erosion in the Arctic remobilize substantial amounts of organic carbon (OC) and nutrients which have accumulated in late Pleistocene and Holocene unconsolidated deposits. Permafrost vulnerability to thaw subsidence, collapsing coastlines and irreversible landscape change are largely due to the presence of large amounts of massive ground ice such as ice wedges. However, ground ice has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements which are important for ecosystems and carbon cycling. Here we show, using biogeochemical data from a large number of different ice bodies throughout the Arctic, that ice wedges have the greatest potential for DOC storage, with a maximum of 28.6 mg L-1 (mean: 9.6 mg L-1). Variation in DOC concentration is positively correlated with and explained by the concentrations and relative amounts of typically terrestrial cations such as Mg2+ and K+. DOC sequestration into ground ice was more effective during the late Pleistocene than during the Holocene, which can be explained by rapid sediment and OC accumulation, the prevalence of more easily degradable vegetation and immediate incorporation into permafrost. We assume that pristine snowmelt is able to leach considerable amounts of well-preserved and highly bioavailable DOC as well as other elements from surface sediments, which are rapidly frozen and stored in ground ice, especially in ice wedges, even before further degradation. We found that ice wedges in the Yedoma region represent a significant DOC (45.2 Tg) and DIC (33.6 Tg) pool in permafrost areas and a freshwater reservoir of 4200 km2. This study underlines the need to discriminate between particulate OC and DOC to assess the availability and vulnerability of the permafrost carbon pool for ecosystems and climate feedback upon mobilization.

  3. Three powerful dinuclear metal-organic catalysts for converting CO2 into organic carbonates.

    PubMed

    Zhao, Dan; Liu, Xiao-Hui; Shi, Zhuang-Zhi; Zhu, Chen-Dan; Zhao, Yue; Wang, Peng; Sun, Wei-Yin

    2016-09-28

    Developing efficient catalysts for converting carbon dioxide (CO2) into varied organic carbonates is an important scientific goal. By using the NH2-functionalized tripodal ligand 2-((bis(2-aminoethyl)amino)methyl)phenol (HL), three dinuclear metal-organic complexes [Zn(L)]2·2ClO4 (1), [Cu(L)]2·2ClO4·2H2O (2) and [Cd(L)]2·2ClO4 (3) have been successfully isolated and structurally characterized using single-crystal X-ray diffraction analyses. Considering the dinuclear metal centers and the NH2-functional groups in the structures, 1-3 were investigated as catalysts for converting CO2 into organic carbonates, and the results show that 1-3 exhibit an outstanding ability for converting CO2 into varied organic carbonates at atmospheric pressure (0.1 MPa). The catalytic system also displays a wide substrate scope and high catalytic activity, and the reaction mechanism has been proposed herein. PMID:27530724

  4. Computational evaluation of optoelectronic properties for organic/carbon materials.

    PubMed

    Shuai, Zhigang; Wang, Dong; Peng, Qian; Geng, Hua

    2014-11-18

    CONSPECTUS: Organic optoelectronic materials are used in a variety of devices, including light-emitting diodes, field-effect transistors, photovoltaics, thermoelectrics, spintronics, and chemico- and biosensors. The processes that determine the intrinsic optoelectronic properties occur either in the photoexcited states or within the electron-pumped charged species, and computations that predict these optical and electrical properties would help researchers design new materials. In this Account, we describe recent advances in related density functional theory (DFT) methods and present case studies that examine the efficiency of light emission, carrier mobility, and thermoelectric figures of merit by calculation of the electron-vibration couplings. First we present a unified vibrational correlation function formalism to evaluate the excited-state radiative decay rate constant kr, the nonradiative decay rate constant knr, the intersystem crossing rate constant kISC, and the optical spectra. The molecular parameters that appear in the formalism, such as the electronic excited-state energy, vibrational modes, and vibronic couplings, require extensive DFT calculations. We used experiments for anthracene at both low and ambient temperatures to benchmark the calculated photophysical parameters. In the framework of Fermi's golden rule, we incorporated the non-adiabatic coupling and the spin-orbit coupling to evaluate the phosphorescence efficiency and emission spectrum. Both of these are in good agreement with experimental results for anthracene and iridium compounds. Band electron scattering and relaxation processes within Boltzmann theory can describe charge transport in two-dimensional carbon materials and closely packed organic solids. For simplicity, we considered only the acoustic phonon scattering as modeled by the deformation potential approximation coupled with extensive DFT calculations for band structures. We then related the carrier mobility to the band

  5. Soil organic carbon, macropore networks and preferential transport

    NASA Astrophysics Data System (ADS)

    Larsbo, Mats; Koestel, John; Kätterer, Thomas; Jarvis, Nick

    2016-04-01

    Agricultural management practices such as tillage, crop rotations, residue management and fertilization can have a strong influence on soil organic carbon (SOC) stocks. An increase in SOC content will generally improve soil structure, which in turn determines the solute transport pathways through the soil. The aim of this study was to quantify the architecture of macropore networks in undisturbed soil columns (15 cm high, 12.7 cm diameter) sampled along a transect with natural variations in SOC using X-ray tomography and to relate the network characteristics to the degree of preferential transport in the columns. Two tracer experiments were carried out at constant irrigation rates of 2 and 5 mm h-1. We used the normalised 5% arrival time which reflects the tendency for early arrival of the solutes as a measure of the degree of preferential transport. The soil macropore networks were analysed in cylindrical sub-volumes (8 cm high, 10 cm diameter) located centrally within the soil columns. These sub-volumes were considered unaffected by sampling artefacts. Analyses were also carried out the for whole sample volumes to enable comparisons with the results from the transport experiments. Image processing and analysis were carried out in ImageJ and R. The same grey value threshold was applied to all images after harmonisation of grey values using the PVC column walls and the air outside the columns. This approach resulted in a satisfactory separation between the pore space and the surrounding soil matrix and organic matter. The SOC content along the transect, which varied from 4.2 to 15% , was correlated to all measures of the pore network for the sub-volumes except for the connectivity probability. Columns with high SOC content were associated with large macroporosities (both total and connected), large specific surface areas, large fractal dimensions and small mean pore thicknesses. The SOC content for whole sample volumes was positively correlated to 5% arrival times

  6. Determinism, chaos, self-organization and entropy.

    PubMed

    Pontes, José

    2016-01-01

    We discuss two changes of paradigms that occurred in science along the XXth century: the end of the mechanist determinism, and the end of the apparent incompatibility between biology, where emergence of order is law, and physics, postulating a progressive loss of order in natural systems. We recognize today that three mechanisms play a major role in the building of order: the nonlinear nature of most evolution laws, along with distance to equilibrium, and with the new paradigm, that emerged in the last forty years, as we recognize that networks present collective order properties not found in the individual nodes. We also address the result presented by Blumenfeld (L.A. Blumenfeld, Problems of Biological Physics, Springer, Berlin, 1981) showing that entropy decreases resulting from building one of the most complex biological structures, the human being, are small and may be trivially compensated for compliance with thermodynamics. Life is made at the expense of very low thermodynamic cost, so thermodynamics does not pose major restrictions to the emergence of life. Besides, entropy does not capture our idea of order in biological systems. The above questions show that science is not free of confl icts and backlashes, often resulting from excessive extrapolations. PMID:27331802

  7. Adsorption equilibrium of organic vapors on single-walled carbon nanotubes

    USGS Publications Warehouse

    Agnihotri, S.; Rood, M.J.; Rostam-Abadi, M.

    2005-01-01

    Gravimetric techniques were employed to determine the adsorption capacities of commercially available purified electric arc and HiPco single-walled carbon nanotubes (SWNTs) for organic compounds (toluene, methyl ethyl ketone (MEK), hexane and cyclohexane) at relative pressures, p/p0, ranging from 1 ?? 10-4 to 0.95 and at isothermal conditions of 25, 37 and 50 ??C. The isotherms displayed both type I and type II characteristics. Adsorption isotherm modeling showed that SWNTs are heterogeneous adsorbents, and the Freundlich equation best describes the interaction between organic molecules and SWNTs. The heats of adsorption were 1-4 times the heats of vaporization, which is typical for physical adsorption of organic vapors on porous carbons. ?? 2005 Elsevier Ltd. All rights reserved.

  8. Organic carbon burial in a mangrove forest, margin and intertidal mud flat

    NASA Astrophysics Data System (ADS)

    Sanders, Christian J.; Smoak, Joseph M.; Naidu, A. Sathy; Sanders, Luciana M.; Patchineelam, Sambasiva R.

    2010-12-01

    The flux of total organic carbon (TOC) to depositional facies (intertidal mud flat, margin and forest) was quantified for a tropical mangrove forest in Brazil. Results indicate that these mangrove margins and intertidal mudflats are sites of large TOC accumulation, almost four times greater than the global averages for mangrove forests. The TOC burial rates were determined from organic carbon content in sediment cores which were dated using 210Pb. Burial rates were calculated to be 1129, 949, and 353 (g m -2 yr -1), for the mud flat, margin and forest, respectively. Sediment accumulation rates (SAR) were estimated to be 7.3, 5.0 and 2.8 mm yr -1. Sediment characterization (δ 13C, δ 15N, TOC/TN and mud fraction) indicated a representative mangrove system with a record of consistent organic matter flux of up to 100 years. Because of substantial burial of organic carbon in mangrove ecosystems, their role in the global carbon budget must be considered. More importantly, as climate change influences temperature and sea level, mangrove ecosystems will respond to specific climatic conditions.

  9. Effects of iron-aluminium oxides and organic carbon on aggregate stability of bauxite residues.

    PubMed

    Zhu, Feng; Li, Yubing; Xue, Shengguo; Hartley, William; Wu, Hao

    2016-05-01

    In order to successfully establish vegetation on bauxite residue, properties such as aggregate structure and stability require improvement. Spontaneous plant colonization on the deposits in Central China over the last 20 years has revealed that natural processes may improve the physical condition of bauxite residues. Samples from three different stacking ages were selected to determine aggregate formation and stability and its relationship with iron-aluminium oxides and organic carbon. The residue aggregate particles became coarser in both dry and wet sieving processes. The mean weight diameter (MWD) and geometry mean diameter (GMD) increased significantly, and the proportion of aggregate destruction (PAD) decreased. Natural stacking processes could increase aggregate stability and erosion resistant of bauxite residues. Free iron oxides and amorphous aluminium oxides were the major forms in bauxite residues, but there was no significant correlation between the iron-aluminium oxides and aggregate stability. Aromatic-C, alkanes-C, aliphatic-C and alkenes-C were the major functional groups present in the residues. With increasing stacking age, total organic carbon content and aggregate-associated organic carbon both increased. Alkanes-C, aliphatic-C and alkenes-C increased and were mainly distributed in macro-aggregates, whereas aromatic-C was mainly distributed in <0.05-mm aggregates. Organic carbon stability in micro-aggregates was higher than that in macro-aggregates and became more stable. Organic carbon contents in total residues, and within different aggregate sizes, were all negatively correlated with PAD. It indicated that organic materials had a more significant effect on macro-aggregate stability and the effects of iron-aluminium oxides maybe more important for stability of micro-aggregates.

  10. Colloidal stability and ecotoxicity of multiwalled carbon nanotubes: Influence of select organic matters.

    PubMed

    Cerrillo, Cristina; Barandika, Gotzone; Igartua, Amaya; Areitioaurtena, Olatz; Uranga, Nerea; Mendoza, Gemma

    2016-01-01

    In the last few years, the release of multiwalled carbon nanotubes (MWCNTs) into the environment has raised serious concerns regarding their fate and potential impacts. Aquatic organisms constitute an important pathway for their entrance and transfer throughout the food web, and the current demand for standardization of methodologies to analyze the interactions of MWCNTs with them requires aquatic media that represent natural systems. However, the inherent hydrophobicity of MWCNTs and the substances present in natural waters may greatly affect their stability and bioavailability. The present study analyzes the influence of the most referenced synthetic and natural organic matters (Sigma-Aldrich humic acid and Suwannee River natural organic matter) in the agglomeration kinetics and ecotoxicity of MWCNTs, with the aim of determining their suitability to fulfill the current standardization requirements. Natural organic matter provides increased colloidal stability to the MWCNTs' dispersions, which results in higher adverse effects on the key invertebrate organism Daphnia magna. Furthermore, the results obtained with this type of organic matter allow for observation of the important role of the outer diameter and content impurities of MWCNTs in their stability and ecotoxicity on daphnids. Sigma-Aldrich humic acid appeared to alter the response of the organisms to carbon nanotubes compared with that observed in the presence of natural organic matter.

  11. Colloidal stability and ecotoxicity of multiwalled carbon nanotubes: Influence of select organic matters.

    PubMed

    Cerrillo, Cristina; Barandika, Gotzone; Igartua, Amaya; Areitioaurtena, Olatz; Uranga, Nerea; Mendoza, Gemma

    2016-01-01

    In the last few years, the release of multiwalled carbon nanotubes (MWCNTs) into the environment has raised serious concerns regarding their fate and potential impacts. Aquatic organisms constitute an important pathway for their entrance and transfer throughout the food web, and the current demand for standardization of methodologies to analyze the interactions of MWCNTs with them requires aquatic media that represent natural systems. However, the inherent hydrophobicity of MWCNTs and the substances present in natural waters may greatly affect their stability and bioavailability. The present study analyzes the influence of the most referenced synthetic and natural organic matters (Sigma-Aldrich humic acid and Suwannee River natural organic matter) in the agglomeration kinetics and ecotoxicity of MWCNTs, with the aim of determining their suitability to fulfill the current standardization requirements. Natural organic matter provides increased colloidal stability to the MWCNTs' dispersions, which results in higher adverse effects on the key invertebrate organism Daphnia magna. Furthermore, the results obtained with this type of organic matter allow for observation of the important role of the outer diameter and content impurities of MWCNTs in their stability and ecotoxicity on daphnids. Sigma-Aldrich humic acid appeared to alter the response of the organisms to carbon nanotubes compared with that observed in the presence of natural organic matter. PMID:26189503

  12. Determination of optimum electrolyte composition for molten carbonate fuel cells

    SciTech Connect

    Yuh, C.Y.; Pigeaud, A.

    1987-01-01

    The objective of this study is to determine the optimum electrolyte composition for molten carbonate fuel cells. To accomplish this, the contractor will provide: (1) Comprehensive reports of on-going efforts to optimize carbonate composition. (2) A list of characteristics affected by electrolyte composition variations (e.g. ionic conductivity, vapor pressure, melting range, gas solubility, exchange current densities on NiO, corrosion and cathode dissolution effects). (3) Assessment of the overall effects that these characteristics have on state-of-the-art cell voltage and lifetime.

  13. Determination of optimum electrolyte composition for molten carbonate fuel cells

    SciTech Connect

    Yuh, C.Y.; Pigeaud, A.

    1988-03-01

    The objective of this study is to determine the optimum electrolyte composition for molten carbonate fuel cells. To accomplish this, the contractor will provide: (1) Comprehensive reports of on-going efforts to optimize carbonate composition. (2) A list of characteristics affected by electrolyte composition variations (e.g. ionic conductivity, vapor pressure, melting range, gas solubility, exchange current densities on NiO, corrosion and cathode dissolution effects). (3) Assessment of the overall effects that these characteristics have on state-of-the-art cell voltage and lifetime.

  14. Determination of optimum electrolyte composition for molten carbonate fuel cells

    SciTech Connect

    Yuh, C.Y.; Pigeaud, A.

    1987-01-01

    The objective of this study is to determine the optimum electrolyte composition for molten carbonate fuel cells. To accomplish this, the contractor will provide: (1) Comprehensive reports of on-going efforts to optimize carbonate composition. (2) A list of characteristics affected by electrolyte composition variations (e.g. ionic conductivity, vapor pressure, melting range, gas solubility, exchange current densities on NiO, corrosion and cathode dissolution effects). (3) Assessment of the overall effects that these characteristics have state-of-the-art cell voltage and lifetime.

  15. Determination of optimum electrolyte composition for molten carbonate fuel cells

    SciTech Connect

    Yuh, C.Y.; Pigeaud, A.

    1988-06-01

    The objective of this study is to determine the optimum electrolyte composition for molten carbonate fuel cells. To accomplish this, the contractor will provide: (1) Comprehensive reports of on-going efforts to optimize carbonate composition. (2) A list of characteristics affected by electrolyte composition variations (e.g. ionic conductivity, vapor pressure, melting range, gas solubility, exchange current densities on NiO, corrosion and cathode dissolution effects). (3) Assessment of the overall effects that these characteristics have on state-of-the-art cell voltage and lifetime.

  16. Organic carbon in glacial fjords of Chilean Patagonia

    NASA Astrophysics Data System (ADS)

    Pantoja, Silvio; Gutiérrez, Marcelo; Tapia, Fabián; Abarzúa, Leslie; Daneri, Giovanni; Reid, Brian; Díez, Beatriz

    2016-04-01

    The Southern Ice Field in Chilean Patagonia is the largest (13,000 km2) temperate ice mass in the Southern hemisphere, yearly transporting ca. 40 km3 of freshwater to fjords. This volume of fresh and cold water likely affects adjacent marine ecosystems by changing circulation, productivity, food web dynamics, and the abundance and distribution of planktonic and benthic organisms. We hypothesize that freshwater-driven availability of inorganic nutrient and transport of organic and inorganic suspended matter, as well as microbes, become a controlling factor for productivity in the fjord associated with the Baker river and Jorge Montt glacier. Both appear to be sources of silicic acid, but not of nitrate and particulate organic carbon, especially during summer, when surface PAR and glacier thawing are maximal. In contrast to Baker River, the Jorge Montt glacier is also a source of dissolved organic carbon towards a proglacial fjord and the Baker Channel, indicating that a thorough chemical description of sources (tidewater glacier and glacial river) is needed. Nitrate in fiord waters reaches ca. 15 μM at 25 m depth with no evidence of mixing up during summer. Stable isotope composition of particulate organic nitrogen reaches values as low as 3 per mil in low-salinity waters near both glacier and river. Nitrogen fixation could be depleting δ15N in organic matter, as suggested by the detection at surface waters of nif H genes belonging to diazotrophs near the Montt glacier. As diazotrophs have also been detected in other cold marine waters (e.g. Baltic Sea, Arctic Ocean) as well as glaciers and polar terrestrial waters, there is certainly a potential for both marine and freshwater microbes to contribute and have a significant impact on the Patagonian N and C budgets. Assessing the impact of freshwater on C and N fluxes and the microbial community structure in Patagonian waters will allow understanding future scenarios of rapid glacier melting. This research was funded

  17. The energetic and chemical fingerprints of persistent soil organic carbon

    NASA Astrophysics Data System (ADS)

    Barré, Pierre; Plante, Alain F.; Cécillon, Lauric; Lutfalla, Suzanne; Baudin, François; Bernard, Sylvain; Christensen, Bent T.; Fernandez, Jose M.; Houot, Sabine; Kätterer, Thomas; Macdonald, Andy; van Oort, Folkert; Le Guillou, Corentin; Chenu, Claire

    2016-04-01

    A better understanding of soil organic carbon (SOC) persistence is needed to better predict SOC vulnerability to global change. The absence of convincing physical or chemical procedures to define, characterize or isolate relatively labile versus persistent SOC pools makes the study of persistent SOC difficult. Long-term bare fallow (LTBF) experiments, in which C inputs have been stopped for several decades, provide a unique opportunity to study persistent SOC without the inherent artefacts induced by extraction procedures, the hypothesis being that SOC is gradually enriched in persistent C with time as labile components decompose. We determined the evolution of thermal and chemical characteristics of bulk SOC in five LTBF experiments across Europe: Askov (DK), Grignon (FR), Rothamsted (UK), Ultuna (SW) and Versailles (FR), using a multi-technique approach involving Rock-Eval pyrolysis, thermogravimetry and differential scanning calorimetry (TG-DSC), mid-infrared diffuse reflectance spectroscopy (DRIFT-MIRS), and Near Edge X-Ray Absorption Fine Structure (NEXAFS). Results of Rock-Eval and TG analyses showed that the temperature needed to combust the SOC increased with bare fallow duration at all sites. Conversely, SOC energy density (in mJ mg-1 C) measured by DSC decreased with bare fallow duration. Rock-Eval pyrolysis results showed that hydrogen index (HI) tended to decrease with bare fallow duration whereas the oxygen index (OI) did not show consistent trends across sites. NEXAFS signals presented little differences and were dominated by carboxyl peak. Nonetheless, NEXAFS results showed a trend of increasing carboxyl groups and decreasing ketone and amide groups with bare fallow duration. Due to the mineral matrix, only a reduced part of the DRIFT-MIRS signals has been used. We observed that the bulk chemistry of aliphatic SOC (CH3 vs. CH2 functional groups) showed different trends for the different sites. Our results showed that in spite of the heterogeneity of

  18. Iron-sulfur-carbon relationships in organic-carbon-rich sequences I: Cretaceous Western Interior seaway

    USGS Publications Warehouse

    Dean, W.E.; Arthur, M.A.

    1989-01-01

    Cretaceous marine strata deposited in shallow to intermediate depths in the Western Interior seaway of North America show considerable variation in organic-carbon enrichment and degree of pyrite formation. The extreme range of paleoceanographic and depositional conditions that occurred in this seaway provide a unique opportunity to examine the effects of iron-, carbon-, and sulfur-limitation on pyrite formation in one region over about 30 my. Ternary diagrams of the system Fe-S-OC, together with some measure of the reactivity of organic matter (pyrolysis hydrogen index), provide a rapid means of recognizing iron-, carbon-, and sulfur-limitation on pyrite formation in a series of samples from a single lithologic unit. Iron limitation is indicated by a concentration of data along a line of constant S/Fe ratio on a Fe-S-OC ternary diagram. Carbon limitation is indicated by a concentration of data along a line of constant S/OC ratio. Sulfur-limitation is suggested by the lack of a systematic Fe-S-OC relationship and residual organic matter that is high in abundance and reactivity. -from Authors

  19. Soil Carbon Cycling - More than Changes in Soil Organic Carbon Stocks

    NASA Astrophysics Data System (ADS)

    Lorenz, K.

    2015-12-01

    Discussions about soil carbon (C) sequestration generally focus on changes in soil organic carbon (SOC) stocks. Global SOC mass in the top 1 m was estimated at about 1325 Pg C, and at about 3000 Pg C when deeper soil layers were included. However, both inorganically and organically bound carbon forms are found in soil but estimates on global soil inorganic carbon (SIC) mass are even more uncertain than those for SOC. Globally, about 947 Pg SIC may be stored in the top 1 m, and especially in arid and semi-arid regions SIC stocks can be many times great than SOC stocks. Both SIC and SOC stocks are vulnerable to management practices, and stocks may be enhanced, for example, by optimizing net primary production (NPP) by fertilization and irrigation (especially optimizing belowground NPP for enhancing SOC stocks), adding organic matter (including black C for enhancing SOC stocks), and reducing soil disturbance. Thus, studies on soil C stocks, fluxes, and vulnerability must look at both SIC and SOC stocks in soil profiles to address large scale soil C cycling.

  20. Wet Removal of Organic and Black Carbon Aerosols

    NASA Astrophysics Data System (ADS)

    Torres, A.; Bond, T. C.; Lehmann, C.

    2012-12-01

    Organic carbon (OC) and black carbon (BC) aerosols derived from the combustion of fossil fuels and biomass are significant atmospheric pollutants that alter the Earth's radiation balance and affect human health. Carbonaceous aerosol lifetime and extent of its effects are mainly controlled by its wet removal, especially by rain. Limited work has been done to measure both BC and OC from rain events even though these aerosols are co-emitted and exist together in the atmosphere. The choices of analytical techniques for measuring OC and BC in water are limited, and researchers often employ the same techniques used for measuring atmospheric carbon particles. There is no agreement in the methods employed for monitoring carbon concentration in precipitation. As part of the method development, the Single Particle Soot Photometer (SP2), Thermal-Optical Analysis (TOA), Ultraviolet/Visible (UV/VIS) Spectrophotometer, and the Total Organic Carbon (TOC) Analyzer were evaluated for measuring BC suspended in water, water insoluble OC (WIOC) and dissolved OC (DOC). The study also monitored the concentration of BC, WIOC, and DOC in rainwater collected at Bondville (Illinois) for 18 months. Results indicated that 34% (±3%) of the BC mass was lost in the SP2 analysis, most probably during the nebulization process. Filtration required for TOA also had large losses (>75%) because quartz fiber filters were ineffective for capturing BC particles from water. Addition of NH4H2PO4 as a coagulant improved (>95%) the capture efficiency of the filters. UV/VIS spectrophotometry had good linearity, but the sensitivity for detecting BC particles (±20 μg/L) suspended in water was inadequate. TOC analysis was a robust technique for measuring both DOC and total carbon (BC + OC). The chosen techniques were TOC analysis for DOC, and TOA with an optimized filtration procedure for BC and WIOC. The mean concentrations in rainwater were 8.72 (±9.84) μg/L of BC, 88.97 (±62.64) μg/L of WIOC, and 1

  1. Determination of carbon by the oxidation reduction reaction with chromium

    NASA Technical Reports Server (NTRS)

    Mashkovich, L.; Kuteynikov, A. F.

    1978-01-01

    Free carbon was determined in silicon and boron carbides in ash, oxides, and other materials by oxidation to carbon dioxide with a mixture of K2Cr2O7 + H2SO4. The determination was made from the amount of CR(6) consumed, by adding excess Mohr's salt and titrating with a standard solution of KMnO4. The amount of Cr(6) self reduced was determined in a blank test. Optimum oxidation and conditions were achieved when the volumes of 5% k2Cr2Oz and H2SO4 were equal. The mixture was boiled for 1-2 hours using a reflex condenser. The volume should not be reduced, in order to avoid an increase in the sulfuric acid concentration. The relative error was 4-7% for 0.005-0.04 g C and less than or equal to 3.5% for 0.1 g C.

  2. Carbon-catalyzed gasification of organic feedstocks in supercritical water

    SciTech Connect

    Xu, X.; Matsumura, Y.; Stenberg, J.; Antal, M.J. Jr.

    1996-08-01

    Spruce wood charcoal, macadamia shell charcoal, coal activated carbon, and coconut shell activated carbon catalyze the gasification of organic compounds in supercritical water. Feedstocks studied in this paper include glycerol, glucose, cellobiose, whole biomass feedstocks (depithed bagasse liquid extract and sewage sludge), and representative Department of Defense (DoD) wastes (methanol, methyl ethyl ketone, ethylene glycol, acetic acid, and phenol). The effects of temperature, pressure, reactant concentration, weight hourly space velocity, and the type of catalyst on the gasification of glucose are reported. Complete conversion of glucose (22% by weight in water) to a hydrogen-rich synthesis gas was realized at a weight hourly space velocity (WHSV) of 22.2 h{sup {minus}1} in supercritical water at 600 C, 34.5 MPa. Complete conversions of the whole biomass feeds were also achieved at the same temperature and pressure. The destruction efficiencies for the representative DoD wastes were also high. Deactivation of the carbon catalyst was observed after 4 h of operation without swirl in the entrance region of the reactor, but the carbon gasification efficiency remained near 100% for more than 6 h when a swirl generator was employed in the entrance of the reactor.

  3. Distribution of soil organic carbon in the conterminous United States

    USGS Publications Warehouse

    Bliss, Norman B.; Waltman, Sharon W.; West, Larry T.; Neale, Anne; Mehaffey, Megan; Hartemink, Alfred E.; McSweeney, Kevin M.

    2014-01-01

    The U.S. Soil Survey Geographic (SSURGO) database provides detailed soil mapping for most of the conterminous United States (CONUS). These data have been used to formulate estimates of soil carbon stocks, and have been useful for environmental models, including plant productivity models, hydrologic models, and ecological models for studies of greenhouse gas exchange. The data were compiled by the U.S. Department of Agriculture Natural Resources Conservation Service (NRCS) from 1:24,000-scale or 1:12,000-scale maps. It was found that the total soil organic carbon stock in CONUS to 1 m depth is 57 Pg C and for the total profile is 73 Pg C, as estimated from SSURGO with data gaps filled from the 1:250,000-scale Digital General Soil Map. We explore the non-linear distribution of soil carbon on the landscape and with depth in the soil, and the implications for sampling strategies that result from the observed soil carbon variability.

  4. Calcium isotope evidence for suppression of carbonate dissolution in carbonate-bearing organic-rich sediments

    NASA Astrophysics Data System (ADS)

    Turchyn, Alexandra V.; DePaolo, Donald J.

    2011-11-01

    Pore fluid calcium isotope, calcium concentration and strontium concentration data are used to measure the rates of diagenetic dissolution and precipitation of calcite in deep-sea sediments containing abundant clay and organic material. This type of study of deep-sea sediment diagenesis provides unique information about the ultra-slow chemical reactions that occur in natural marine sediments that affect global geochemical cycles and the preservation of paleo-environmental information in carbonate fossils. For this study, calcium isotope ratios (δ 44/40Ca) of pore fluid calcium from Ocean Drilling Program (ODP) Sites 984 (North Atlantic) and 1082 (off the coast of West Africa) were measured to augment available pore fluid measurements of calcium and strontium concentration. Both study sites have high sedimentation rates and support quantitative sulfate reduction, methanogenesis and anaerobic methane oxidation. The pattern of change of δ 44/40Ca of pore fluid calcium versus depth at Sites 984 and 1082 differs markedly from that of previously studied deep-sea Sites like 590B and 807, which are composed of nearly pure carbonate sediment. In the 984 and 1082 pore fluids, δ 44/40Ca remains elevated near seawater values deep in the sediments, rather than shifting rapidly toward the δ 44/40Ca of carbonate solids. This observation indicates that the rate of calcite dissolution is far lower than at previously studied carbonate-rich sites. The data are fit using a numerical model, as well as more approximate analytical models, to estimate the rates of carbonate dissolution and precipitation and the relationship of these rates to the abundance of clay and organic material. Our models give mutually consistent results and indicate that calcite dissolution rates at Sites 984 and 1082 are roughly two orders of magnitude lower than at previously studied carbonate-rich sites, and the rate correlates with the abundance of clay. Our calculated rates are conservative for these

  5. Soil Organic Carbon and Below Ground Biomass: Development of New GLOBE Special Measurements

    NASA Technical Reports Server (NTRS)

    Levine, Elissa; Haskett, Jonathan

    1999-01-01

    A scientific consensus is building that changes in the atmospheric concentrations of radiatively active gases are changing the climate (IPCC, 1990). One of these gases CO2 has been increasing in concentration due to additions from anthropogenic sources that are primarily industrial and land use related. The soil contains a very large pool of carbon, estimated at 1550 Gt (Lal 1995) which is larger than the atmospheric and biosphere pools of carbon combined (Greenland, 1995). The flux between the soil and the atmosphere is very large, 60 Pg C/yr (Lal 1997), and is especially important because the soil can act as either a source or a sink for carbon. On any given landscape, as much as 50% of the biomass that provides the major source of carbon can be below ground. In addition, the movement of carbon in and out of the soil is mediated by the living organisms. At present, there is no widespread sampling of soil biomass in any consistent or coordinated manner. Current large scale estimates of soil carbon are limited by the number and widely dispersed nature of the data points available. A measurement of the amount of carbon in the soil would supplement existing carbon data bases as well as provide a benchmark that can be used to determine whether the soil is storing carbon or releasing it to the atmosphere. Information on the below ground biomass would be a valuable addition to our understanding of net primary productivity and standing biomass. The addition of these as special measurements within GLOBE would be unique in terms of areal extent and continuity, and make a real contribution to scientific understanding of carbon dynamics.

  6. The soil organic carbon content of anthropogenically altered organic soils effects the dissolved organic matter quality, but not the dissolved organic carbon concentrations

    NASA Astrophysics Data System (ADS)

    Frank, Stefan; Tiemeyer, Bärbel; Bechtold, Michel; Lücke, Andreas; Bol, Roland

    2016-04-01

    Dissolved organic carbon (DOC) is an important link between terrestrial and aquatic ecosystems. This is especially true for peatlands which usually show high concentrations of DOC due to the high stocks of soil organic carbon (SOC). Most previous studies found that DOC concentrations in the soil solution depend on the SOC content. Thus, one would expect low DOC concentrations in peatlands which have anthropogenically been altered by mixing with sand. Here, we want to show the effect of SOC and groundwater level on the quantity and quality of the dissolved organic matter (DOM). Three sampling sites were installed in a strongly disturbed bog. Two sites differ in SOC (Site A: 48%, Site B: 9%) but show the same mean annual groundwater level of 15 and 18 cm below ground, respectively. The SOC content of site C (11%) is similar to Site B, but the groundwater level is much lower (-31 cm) than at the other two sites. All sites have a similar depth of the organic horizon (30 cm) and the same land-use (low-intensity sheep grazing). Over two years, the soil solution was sampled bi-weekly in three depths (15, 30 and 60 cm) and three replicates. All samples were analyzed for DOC and selected samples for dissolved organic nitrogen (DON) and delta-13C and delta-15N. Despite differences in SOC and groundwater level, DOC concentrations did not differ significantly (A: 192 ± 62 mg/L, B: 163 ± 55 mg/L and C: 191 ± 97 mg/L). At all sites, DOC concentrations exceed typical values for peatlands by far and emphasize the relevance even of strongly disturbed organic soils for DOC losses. Individual DOC concentrations were controlled by the temperature and the groundwater level over the preceding weeks. Differences in DOM quality were clearer. At site B with a low SOC content, the DOC:DON ratio of the soil solution equals the soil's C:N ratio, but the DOC:DON ratio is much higher than the C:N ratio at site A. In all cases, the DOC:DON ratio strongly correlates with delta-13C. There is no

  7. EFFECT OF OZONATED WATER ON THE ASSIMILABLE ORGANIC CARBON AND COLIFORM GROWTH RESPONSE VALUES AND ON PATHOGENIC BACTERIA SURVIVAL

    EPA Science Inventory

    The assimilable organic carbon (AOC) and coliform growth response (CGR) are bioassays used to determine water quality. AOC and CGR are better indexes in determining whether water can support the growth of bacteria than biological oxygen demand (BOD). The AOC value of reconditione...

  8. [Reserves and spatial distribution characteristics of soil organic carbon in Guangdong Province].

    PubMed

    Gan, Haihua; Wu, Shunhui; Fan, Xiudan

    2003-09-01

    Soil organic carbon is the main part of terrestrial carbon reservoir and important part of soil fertility. The spatial distribution and reserves of soil organic carbon are very important for studying soil carbon cycle. According to the data from the second soil survey, soil organic carbon reserves was estimated and its spatial distribution was analysed by using GIS technique. The results showed that the total amount of soil organic carbon is about 17.52 x 10(8) t. The carbon density of laterite, lateritic red soil and red soil in Guangdong Province is 8.83, 10.31, 9.15 kg.m-2, respectively; lower than the mean carbon density of China. The carbon density of yellow soil and rice soil is 12.08, 12.17 kg.m-2, respectively; higher than the mean carbon density of China. Soil carbon density is about 10.44 kg.m-2 in Guangdong. The spatial distribution characteristic of soil organic carbon density in Guangdong is that the carbon density in south Guangdong Province is higher than that in north Guangdong Province, in that soil organic carbon density in north and middle Guangdong Province is 5-10 kg.m-2 and in east Guangdong Province is 10-15 kg.m-2. Soil organic carbon density mostly vary among 5-15 kg.m-2. PMID:14733007

  9. [Reserves and spatial distribution characteristics of soil organic carbon in Guangdong Province].

    PubMed

    Gan, Haihua; Wu, Shunhui; Fan, Xiudan

    2003-09-01

    Soil organic carbon is the main part of terrestrial carbon reservoir and important part of soil fertility. The spatial distribution and reserves of soil organic carbon are very important for studying soil carbon cycle. According to the data from the second soil survey, soil organic carbon reserves was estimated and its spatial distribution was analysed by using GIS technique. The results showed that the total amount of soil organic carbon is about 17.52 x 10(8) t. The carbon density of laterite, lateritic red soil and red soil in Guangdong Province is 8.83, 10.31, 9.15 kg.m-2, respectively; lower than the mean carbon density of China. The carbon density of yellow soil and rice soil is 12.08, 12.17 kg.m-2, respectively; higher than the mean carbon density of China. Soil carbon density is about 10.44 kg.m-2 in Guangdong. The spatial distribution characteristic of soil organic carbon density in Guangdong is that the carbon density in south Guangdong Province is higher than that in north Guangdong Province, in that soil organic carbon density in north and middle Guangdong Province is 5-10 kg.m-2 and in east Guangdong Province is 10-15 kg.m-2. Soil organic carbon density mostly vary among 5-15 kg.m-2.

  10. A molecular organic carbon isotope record of miocene climate changes.

    PubMed

    Schoell, M; Schouten, S; Damsté, J S; de Leeuw, J W; Summons, R E

    1994-02-25

    The difference in carbon-13 ((13)C) contents of hopane and sterane biomarkers in the Monterey formation (Naples Beach, California) parallels the Miocene inorganic record of the change in (18)O (delta(18)O), reflecting the Miocene evolution from a well-mixed to a highly stratified photic zone (upper 100 meters) in the Pacific. Steranes (delta(13)C = 25.4 +/- 0.7 per mil versus the Pee Dee belemnite standard) from shallow photic-zone organisms do not change isotopically throughout the Miocene. In contrast, sulfur-bound C(35) hopanes (likely derived from bacterial plankton living at the base of the photic zone) have systematically decreasing (13)C concentrations in Middle and Late Miocene samples (delta(13)C = -29.5 to -31.5 per mil), consistent with the Middle Miocene formation of a carbon dioxide-rich cold water mass at the base of the photic zone.

  11. Dissolved Organic Carbon in the North Atlantic Meridional Overturning Circulation

    PubMed Central

    Fontela, Marcos; García-Ibáñez, Maribel I.; Hansell, Dennis A.; Mercier, Herlé; Pérez, Fiz F.

    2016-01-01

    The quantitative role of the Atlantic Meridional Overturning Circulation (AMOC) in dissolved organic carbon (DOC) export is evaluated by combining DOC measurements with observed water mass transports. In the eastern subpolar North Atlantic, both upper and lower limbs of the AMOC transport high-DOC waters. Deep water formation that connects the two limbs of the AMOC results in a high downward export of non-refractory DOC (197 Tg-C·yr−1). Subsequent remineralization in the lower limb of the AMOC, between subpolar and subtropical latitudes, consumes 72% of the DOC exported by the whole Atlantic Ocean. The contribution of DOC to the carbon sequestration in the North Atlantic Ocean (62 Tg-C·yr−1) is considerable and represents almost a third of the atmospheric CO2 uptake in the region. PMID:27240625

  12. Sulfur and carbon cycling in organic-rich marine sediments

    NASA Technical Reports Server (NTRS)

    Martens, C. S.

    1985-01-01

    Nearshore, continental shelf, and slope sediments are important sites of microbially mediated carbon and sulfur cycling. Marine geochemists investigated the rates and mechanisms of cycling processes in these environments by chemical distribution studies, in situ rate measurements, and steady state kinetic modeling. Pore water chemical distributions, sulfate reduction rates, and sediment water chemical fluxes were used to describe cycling on a ten year time scale in a small, rapidly depositing coastal basin, Cape Lookout Bight, and at general sites on the upper continental slope off North Carolina, U.S.A. In combination with 210 Pb sediment accumulation rates, these data were used to establish quantitative carbon and sulfur budgets as well as the relative importance of sulfate reduction and methanogeneis as the last steps in the degradation of organic matter.

  13. [Effects of climate change on forest soil organic carbon storage: a review].

    PubMed

    Zhou, Xiao-yu; Zhang, Cheng-yi; Guo, Guang-fen

    2010-07-01

    Forest soil organic carbon is an important component of global carbon cycle, and the changes of its accumulation and decomposition directly affect terrestrial ecosystem carbon storage and global carbon balance. Climate change would affect the photosynthesis of forest vegetation and the decomposition and transformation of forest soil organic carbon, and further, affect the storage and dynamics of organic carbon in forest soils. Temperature, precipitation, atmospheric CO2 concentration, and other climatic factors all have important influences on the forest soil organic carbon storage. Understanding the effects of climate change on this storage is helpful to the scientific management of forest carbon sink, and to the feasible options for climate change mitigation. This paper summarized the research progress about the distribution of organic carbon storage in forest soils, and the effects of elevated temperature, precipitation change, and elevated atmospheric CO2 concentration on this storage, with the further research subjects discussed.

  14. Particulate carbon and nitrogen determinations in tracer studies: The neglected variables.

    PubMed

    Collos, Yves; Jauzein, Cécile; Hatey, Elise

    2014-12-01

    We address two issues in the determination of particulate carbon and nitrogen in suspended matter of aquatic environments. One is the adsorption of dissolved organic matter on filters, leading to overestimate particulate matter. The second is the material loss during filtration due to fragile algal cells breaking up. Examples from both laboratory cultures and natural samples are presented. We recommend using stacked filters in order to estimate the first and filtering different volumes of water in order to evaluate the second.

  15. Effect of organic fertilizer and biochar application on soil macro-aggregate formation and organic carbon turnover

    NASA Astrophysics Data System (ADS)

    Grunwald, Dennis; Kaiser, Michael; Ludwig, Bernard

    2015-04-01

    Macro-aggregates are important for the organic matter dynamic and thus the productivity of sustainably managed soils. To date, less is known about the influence of biochar in comparison to other commonly used organic soil additives on the formation of macro-aggregates and organic carbon turnover. Here we aimed to analyze the effects of biochar applied individually and in combination with slurry versus the effects of the individual application of slurry and manure on macro-aggregate yield, the associated organic carbon concentration, and the organic carbon mineralization. For this, we crushed the macro-aggregate fraction (>250 μm) of two different soils that were then mixed with biochar (combustion temperature: 550° C, feedstock: woodchips) and/or cattle-slurry or cattle-manure and incubated within a microcosm experiment at 5° C, 15° C, and 25° C. We monitored the CO2 evolution during the incubation experiment. After four and eight weeks, we determined the dry mass and the carbon concentration of the newly formed macro-aggregates (>250 μm) and the microbial biomass carbon concentration. Carbon mineralization was modelled assuming first-order kinetics and using a rate modifying factor for the temperature (taken from the RothC-26.3 model). Two pools were considered (mineralization of the native organic matter from the control soils and mineralization of the substrates added) in each treatment and the models were calibrated to the C mineralization data at 25° C, whereas the data for 15° C and 5° C were used for validation. Independent from the incubation temperature and the duration of the experiment, the individual application of biochar did not show significant effects on the macro-aggregate yield, the associated carbon concentration, or the CO2 emission rate compared to the control sample receiving no amendments. For the application of biochar in combination with slurry, we observed only for the 15° C treatment higher CO2 emission rates in combination with

  16. Organic carbon decomposition rates controlled by water retention time across inland waters

    NASA Astrophysics Data System (ADS)

    Catalán, Núria; Marcé, Rafael; Kothawala, Dolly N.; Tranvik, Lars. J.

    2016-07-01

    The loss of organic carbon during passage through the continuum of inland waters from soils to the sea is a critical component of the global carbon cycle. Yet, the amount of organic carbon mineralized and released to the atmosphere during its transport remains an open question, hampered by the absence of a common predictor of organic carbon decay rates. Here we analyse a compilation of existing field and laboratory measurements of organic carbon decay rates and water residence times across a wide range of aquatic ecosystems and climates. We find a negative relationship between the rate of organic carbon decay and water retention time across systems, entailing a decrease in organic carbon reactivity along the continuum of inland waters. We find that the half-life of organic carbon is short in inland waters (2.5 +/- 4.7 yr) compared to terrestrial soils and marine ecosystems, highlighting that freshwaters are hotspots of organic carbon degradation. Finally, we evaluate the response of organic carbon decay rates to projected changes in runoff. We calculate that regions projected to become drier or wetter as the global climate warms will experience changes in organic carbon decay rates of up to about 10%, which illustrates the influence of hydrological variability on the inland waters carbon cycle.

  17. Organic Carbon--water Concentration Quotients (IIsocS and [pi]pocS): Measuring Apparent Chemical Disequilibria and Exploring the Impact of Black Carbon in Lake Michigan

    EPA Science Inventory

    When black carbon (bc) and biologically derived organic carbon (bioc) phases are present in sediments or suspended particulates, both forms of carbon act additively to sorb organic chemicals but the bc phase has more sorption capacity per unit mass. . . .

  18. Assessment of relative accuracy in the determination of organic matter concentrations in aquatic systems

    USGS Publications Warehouse

    Aiken, G.; Kaplan, L.A.; Weishaar, J.

    2002-01-01

    Accurate determinations of total (TOC), dissolved (DOC) and particulate (POC) organic carbon concentrations are critical for understanding the geochemical, environmental, and ecological roles of aquatic organic matter. Of particular significance for the drinking water industry, TOC measurements are the basis for compliance with US EPA regulations. The results of an interlaboratory comparison designed to identify problems associated with the determination of organic matter concentrations in drinking water supplies are presented. The study involved 31 laboratories and a variety of commercially available analytical instruments. All participating laboratories performed well on samples of potassium hydrogen phthalate (KHP), a compound commonly used as a standard in carbon analysis. However, problems associated with the oxidation of difficult to oxidize compounds, such as dodecylbenzene sulfonic acid and caffeine, were noted. Humic substances posed fewer problems for analysts. Particulate organic matter (POM) in the form of polystyrene beads, freeze-dried bacteria and pulverized leaf material were the most difficult for all analysts, with a wide range of performances reported. The POM results indicate that the methods surveyed in this study are inappropriate for the accurate determination of POC and TOC concentration. Finally, several analysts had difficulty in efficiently separating inorganic carbon from KHP solutions, thereby biasing DOC results.

  19. Threshold of carbonate saturation state determined by CO2 control experiment

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.; Kayanne, H.; Terai, M.; Watanabe, A.; Kato, K.; Negishi, A.; Nozaki, K.

    2012-04-01

    Acidification of the oceans by increasing anthropogenic CO2 emissions will cause a decrease in biogenic calcification and an increase in carbonate dissolution. Previous studies have suggested that carbonate dissolution will occur in polar regions and in the deep sea where saturation state with respect to carbonate minerals (Ω) will be <1 by 2100. Recent reports demonstrate nocturnal carbonate dissolution of reefs, despite a Ωa (aragonite saturation state) value of >1. This is probably related to the dissolution of reef carbonate (Mg-calcite), which is more soluble than aragonite. However, the threshold of Ω for the dissolution of natural sediments has not been clearly determined. We designed an experimental dissolution system with conditions mimicking those of a natural coral reef, and measured the dissolution rates of aragonite in corals, and of Mg-calcite excreted by other marine organisms, under conditions of Ωa > 1, with controlled seawater pCO2. The experimental data show that dissolution of bulk carbonate sediments sampled from a coral reef occurs at Ωa values of 3.7 to 3.8. Mg-calcite derived from foraminifera and coralline algae dissolves at Ωa values between 3.0 and 3.2, and coralline aragonite starts to dissolve when Ωa = 1.0. We show that nocturnal carbonate dissolution of coral reefs occurs mainly by the dissolution of foraminiferans and coralline algae in reef sediments.

  20. Watershed Fire Regime Effects On Particulate Organic Carbon Composition in Oregon and California Coast Range Rivers

    NASA Astrophysics Data System (ADS)

    Hatten, J. A.; Goni, M. A.; Wheatcroft, R. A.; Borgeld, J. C.; Padgett, J. S.; Pasternack, G. B.; Gray, A. B.; Watson, E. B.; Warrick, J. A.

    2010-12-01

    Fire causes major changes to organic carbon, converting biological organic materials to pyrogenic-derived organic carbon (Py-OC), including black carbon. Wildfire also dramatically affects hydrological and erosion processes within watersheds, potentially increasing the erosion and discharge of Py-OC as particulate organic carbon (POC). We hypothesize that the proportion of the POC being discharged as Py-OC will be affected by the watershed’s fire regime, increasing with annual proportion of the watershed burned. During the 2008 and 2009 water years, suspended sediment samples were collected from the Alsea, Umpqua, Eel, Salinas, and Arroyo Seco Rivers draining the Coast Ranges of Oregon and California. Events and discharges of various magnitudes were captured in this sample set. This sample set also included suspended sediment collected from the Arroyo Seco River after a 2008 wildfire burned through a large portion of its watershed. Fine (<63 μm) and coarse (>63 μm) particulate material was analyzed for OC and N. We used cupric oxide oxidation to determine the contribution of Py-OC and unburned organic matter to the POC load of these rivers. The area weighted mean fire return interval decreases from the Douglas fir dominated forests in the Alsea River watershed in the north to the chaparral dominated Arroyo Seco River watershed in the south (Alsea > Umpqua > Eel > Salinas > Arroyo Seco). This translated into an increase in the proportion of each watershed burned from north to south. With the increase in annual proportion of watershed burned we found that the Py-OC content of coarse and fine POC increased from north to south. These results suggest that fire plays an important role in delivering POC to long-term carbon sinks in the coastal and ocean environment.

  1. Soil organic carbon sequestration and tillage systems in Mediterranean environments

    NASA Astrophysics Data System (ADS)

    Francaviglia, Rosa; Di Bene, Claudia; Marchetti, Alessandro; Farina, Roberta

    2016-04-01

    Soil carbon sequestration is of special interest in Mediterranean areas, where rainfed cropping systems are prevalent, inputs of organic matter to soils are low and mostly rely on crop residues, while losses are high due to climatic and anthropic factors such as intensive and non-conservative farming practices. The adoption of reduced or no tillage systems, characterized by a lower soil disturbance in comparison with conventional tillage, has proved to be positively effective on soil organic carbon (SOC) conservation and other physical and chemical processes, parameters or functions, e.g. erosion, compaction, ion retention and exchange, buffering capacity, water retention and aggregate stability. Moreover, soil biological and biochemical processes are usually improved by the reduction of tillage intensity. The work deals with some results available in the scientific literature, and related to field experiment on arable crops performed in Italy, Greece, Morocco and Spain. Data were organized in a dataset containing the main environmental parameters (altitude, temperature, rainfall), soil tillage system information (conventional, minimum and no-tillage), soil parameters (bulk density, pH, particle size distribution and texture), crop type, rotation, management and length of the experiment in years, initial SOCi and final SOCf stocks. Sampling sites are located between 33° 00' and 43° 32' latitude N, 2-860 m a.s.l., with mean annual temperature and rainfall in the range 10.9-19.6° C and 355-900 mm. SOC data, expressed in t C ha-1, have been evaluated both in terms of Carbon Sequestration Rate, given by [(SOCf-SOCi)/length in years], and as percentage change in comparison with the initial value [(SOCf-SOCi)/SOCi*100]. Data variability due to the different environmental, soil and crop management conditions that influence SOC sequestration and losses will be examined.

  2. Aggregate distribution and associated organic carbon influenced by cover crops

    NASA Astrophysics Data System (ADS)

    Barquero, Irene; García-González, Irene; Benito, Marta; Gabriel, Jose Luis; Quemada, Miguel; Hontoria, Chiquinquirá

    2013-04-01

    Replacing fallow with cover crops during the non-cropping period seems to be a good alternative to diminish soil degradation by enhancing soil aggregation and increasing organic carbon. The aim of this study was to analyze the effect of replacing fallow by different winter cover crops (CC) on the aggregate distribution and C associated of an Haplic Calcisol. The study area was located in Central Spain, under semi-arid Mediterranean climate. A 4-year field trial was conducted using Barley (Hordeum vulgare L.) and Vetch (Vicia sativa L.) as CC during the intercropping period of maize (Zea mays L.) under irrigation. All treatments were equally irrigated and fertilized. Maize was directly sown over CC residues previously killed in early spring. Composite samples were collected at 0-5 and 5-20 cm depths in each treatment on autumn of 2010. Soil samples were separated by wet sieving into four aggregate-size classes: large macroaggregates ( >2000 µm); small macroaggregates (250-2000 µm); microaggregates (53-250 µm); and < 53 µm (silt + clay size). Organic carbon associated to each aggregate-size class was measured by Walkley-Black Method. Our preliminary results showed that the aggregate-size distribution was dominated by microaggregates (48-53%) and the <53 µm fraction (40-44%) resulting in a low mean weight diameter (MWD). Both cover crops increased aggregate size resulting in a higher MWD (0.28 mm) in comparison with fallow (0.20 mm) in the 0-5 cm layer. Barley showed a higher MWD than fallow also in 5-20 cm layer. Organic carbon concentrations in aggregate-size classes at top layer followed the order: large macroaggregates > small macroaggregates > microaggregates > silt + clay size. Treatments did not influence C concentration in aggregate-size classes. In conclusion, cover crops improved soil structure increasing the proportion of macroaggregates and MWD being Barley more effective than Vetch at subsurface layer.

  3. Soil organic carbon sequestration and tillage systems in Mediterranean environments

    NASA Astrophysics Data System (ADS)

    Francaviglia, Rosa; Di Bene, Claudia; Marchetti, Alessandro; Farina, Roberta

    2016-04-01

    Soil carbon sequestration is of special interest in Mediterranean areas, where rainfed cropping systems are prevalent, inputs of organic matter to soils are low and mostly rely on crop residues, while losses are high due to climatic and anthropic factors such as intensive and non-conservative farming practices. The adoption of reduced or no tillage systems, characterized by a lower soil disturbance in comparison with conventional tillage, has proved to be positively effective on soil organic carbon (SOC) conservation and other physical and chemical processes, parameters or functions, e.g. erosion, compaction, ion retention and exchange, buffering capacity, water retention and aggregate stability. Moreover, soil biological and biochemical processes are usually improved by the reduction of tillage intensity. The work deals with some results available in the scientific literature, and related to field experiment on arable crops performed in Italy, Greece, Morocco and Spain. Data were organized in a dataset containing the main environmental parameters (altitude, temperature, rainfall), soil tillage system information (conventional, minimum and no-tillage), soil parameters (bulk density, pH, particle size distribution and texture), crop type, rotation, management and length of the experiment in years, initial SOCi and final SOCf stocks. Sampling sites are located between 33° 00' and 43° 32' latitude N, 2-860 m a.s.l., with mean annual temperature and rainfall in the range 10.9-19.6° C and 355-900 mm. SOC data, expressed in t C ha‑1, have been evaluated both in terms of Carbon Sequestration Rate, given by [(SOCf-SOCi)/length in years], and as percentage change in comparison with the initial value [(SOCf-SOCi)/SOCi*100]. Data variability due to the different environmental, soil and crop management conditions that influence SOC sequestration and losses will be examined.

  4. Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions.

    PubMed

    Ersan, Gamze; Kaya, Yasemin; Apul, Onur G; Karanfil, Tanju

    2016-09-15

    The effect of NOM preloading on the adsorption of phenanthrene (PNT) and trichloroethylene (TCE) by pristine graphene nanosheets (GNS) and graphene oxide nanosheet (GO) was investigated and compared with those of a single-walled carbon nanotube (SWCNT), a multi-walled carbon nanotube (MWCNT), and two coal based granular activated carbons (GACs). PNT uptake was higher than TCE by all adsorbents on both mass and surface area bases. This was attributed to the hydrophobicity of PNT. The adsorption capacities of PNT and TCE depend on the accessibility of the organic molecules to the inner regions of the adsorbent which was influenced from the molecular size of OCs. The adsorption capacities of all adsorbents decreased as a result of NOM preloading due to site competition and/or pore/interstice blockage. However, among all adsorbents, GO was generally effected least from the NOM preloading for PNT, whereas there was not observed any trend of NOM competition with a specific adsorbent for TCE. In addition, SWCNT was generally affected most from the NOM preloading for TCE and there was not any trend for PNT. The overall results indicated that the fate and transport of organic contaminants by GNSs and CNTs type of nanoadsorbents and GACs in different natural systems will be affected by water quality parameters, characteristics of adsorbent, and properties of adsorbate.

  5. Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions.

    PubMed

    Ersan, Gamze; Kaya, Yasemin; Apul, Onur G; Karanfil, Tanju

    2016-09-15

    The effect of NOM preloading on the adsorption of phenanthrene (PNT) and trichloroethylene (TCE) by pristine graphene nanosheets (GNS) and graphene oxide nanosheet (GO) was investigated and compared with those of a single-walled carbon nanotube (SWCNT), a multi-walled carbon nanotube (MWCNT), and two coal based granular activated carbons (GACs). PNT uptake was higher than TCE by all adsorbents on both mass and surface area bases. This was attributed to the hydrophobicity of PNT. The adsorption capacities of PNT and TCE depend on the accessibility of the organic molecules to the inner regions of the adsorbent which was influenced from the molecular size of OCs. The adsorption capacities of all adsorbents decreased as a result of NOM preloading due to site competition and/or pore/interstice blockage. However, among all adsorbents, GO was generally effected least from the NOM preloading for PNT, whereas there was not observed any trend of NOM competition with a specific adsorbent for TCE. In addition, SWCNT was generally affected most from the NOM preloading for TCE and there was not any trend for PNT. The overall results indicated that the fate and transport of organic contaminants by GNSs and CNTs type of nanoadsorbents and GACs in different natural systems will be affected by water quality parameters, characteristics of adsorbent, and properties of adsorbate. PMID:27107611

  6. The Isiokpo oil-pipeline leakage: total organic carbon/organic matter contents of affected soils.

    PubMed

    Osuji, Leo C; Adesiyan, Samuel O

    2005-08-01

    The environmental impact of the 1997 leakage of the high-pressure crude-oil pipeline at Isiokpo in the Niger Delta in the southeast of Nigeria was evaluated, with particular reference to total-organic-carbon (TOC) and total-organic-matter (TOM) contents of soils within the vicinity of the oil spillage. The soils, taken from depths of 0-15 cm (surface) and 15-30 cm (subsurface), were found to be more acidic (pH 4.2-5.6) than the unpolluted soils, with a high average moisture content of 6.8%. The extractable hydrocarbon content ranged from 2.71-3.48 mg/kg, indicating hydrocarbon contamination. However, contrary to expectation, the TOC and TOM contents of the polluted soils did not show any significant increase in concentration, supposedly due to natural rehabilitation of the affected mat layer of soils. Thus, notwithstanding the possible proliferation of heterotrophic organisms by the presence of the added petroleum hydrocarbons, environmental conditions such as weathering and climatic predispositions, as well as physico-chemical parameters such as pH, moisture content, and temperature must have encumbered the carbon-mineralizing capacity of the heterotrophs, thereby reducing the turnover of carbon and the decomposition of organic matter. The restrictions by high moisture content might not come directly from H(2)O itself, but are probably a consequence of hindered soil ventilation, which reduces O(2) supply and gaseous diffusion, conditions that might have been substantially aggravated by the added petroleum hydrocarbons.

  7. Natural versus wastewater derived dissolved organic carbon: implications for the environmental fate of organic micropollutants.

    PubMed

    Neale, Peta A; Antony, Alice; Gernjak, Wolfgang; Leslie, Greg; Escher, Beate I

    2011-08-01

    The interaction of organic micropollutants with dissolved organic carbon (DOC) can influence their transport, degradation and bioavailability. While this has been well established for natural organic carbon, very little is known regarding the influence of DOC on the fate of micropollutants during wastewater treatment and water recycling. Dissolved organic carbon-water partition coefficients (K(DOC)) for wastewater derived and reference DOC were measured for a range of micropollutants using a depletion method with polydimethylsiloxane disks. For micropollutants with an octanol-water partition coefficient (log K(OW)) greater than 4 there was a significant difference in K(DOC) between reference and wastewater derived DOC, with partitioning to wastewater derived DOC over 1000 times lower for the most hydrophobic micropollutants. The interaction of nonylphenol with wastewater derived DOC from different stages of a wastewater and advanced water treatment train was studied, but little difference in K(DOC) was observed. Organic carbon characterisation revealed that reference and wastewater derived DOC had very different properties due to their different origins. Consequently, the reduced sorption capacity of wastewater derived DOC may be related to their microbial origin which led to reduced aromaticity and lower molecular weight. This study suggests that for hydrophobic micropollutants (log K(OW) > 4) a higher concentration of freely dissolved and thus bioavailable micropollutants is expected in the presence of wastewater derived DOC than predicted using K(DOC) values quantified using reference DOC. The implication is that naturally derived DOC may not be an appropriate surrogate for wastewater derived DOC as a matrix for assessing the fate of micropollutants in engineered systems. PMID:21703657

  8. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons.

    PubMed

    Brooks, A J; Lim, Hyung-nam; Kilduff, James E

    2012-07-27

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  9. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    NASA Astrophysics Data System (ADS)

    Brooks, A. J.; Lim, Hyung-nam; Kilduff, James E.

    2012-07-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  10. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons.

    PubMed

    Brooks, A J; Lim, Hyung-nam; Kilduff, James E

    2012-07-27

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  11. Driving Factors of Carbon Distribution in Soils as Determined by z*

    NASA Astrophysics Data System (ADS)

    Mnich, M.; Lawrence, C. R.; Harden, J. W.; Treat, C. C.; Schulz, M. S.

    2015-12-01

    Terrestrial soils store approximately three times the amount of carbon(C) stored in the atmosphere. Understanding the mechanisms resulting in soil organic carbon stabilization is necessary for predicting the fate of this carbon and potential feedbacks to climate change. Here, we explore how soil carbon depth gradients are influenced by factors such as age, parent material, mean annual temperature (MAT) and a modeled moisture/leaching index (LI). Specifically, we calculate a quantitative metric reflecting the depth gradient of organic carbon, z*, described by Rosenbloom et al. 2006, which describes the depth attenuation of C turnover by fitting the %C by depth relationship with an exponential decay function. We compare z* across several soil chronosequences (n=33) spanning a broad array of ecosystems and climates. The compiled chronosequence data were collected from previously published studies and ongoing USGS work. Each sequence consisted of at least two soils spanning a developmental age gradient and each soil included depth resolved carbon concentrations, with at least four different depths sampled in vertical profile. When the soil profile data were integrated across all depths, we found only weak relationships between total C in these profiles with various soil forming factors. Comparing depth resolved concentrations provided an opportunity to determine the significance of depth resolved gradients and particularly the importance of deep soil C. We found a significant positive relationship between z* and age, (R2=0.57, p=4.0*10-13), a significant negative relationship between z* and LI (R2=0.02, p=0.02), a significant relationship between (age x LI) and z* (R2=0.02, p=0.02, a positive relationship between z* and MAT (R2=0.1 p=0.01), and no relationship between z* and general parent material type (felsic, mafic, calcareous ; R2=0.04, p=0.01). These findings aid in determining the drivers of soil carbon storage across sites.

  12. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers

    SciTech Connect

    Mayorga, E; Aufdenkampe, A K; Masiello, C A; Krusche, A V; Hedges, J I; Quay, P D; Richey, J E; Brown, T A

    2005-06-23

    Rivers are generally supersaturated with respect to carbon dioxide, resulting in large gas evasion fluxes that can be a significant component of regional net carbon budgets. Amazonian rivers were recently shown to outgas more than ten times the amount of carbon exported to the ocean in the form of total organic carbon or dissolved inorganic carbon. High carbon dioxide concentrations in rivers originate largely from in situ respiration of organic carbon, but little agreement exists about the sources or turnover times of this carbon. Here we present results of an extensive survey of the carbon isotope composition ({sup 13}C and {sup 14}C) of dissolved inorganic carbon and three size-fractions of organic carbon across the Amazonian river system. We find that respiration of contemporary organic matter (less than 5 years old) originating on land and near rivers is the dominant source of excess carbon dioxide that drives outgassing in mid-size to large rivers, although we find that bulk organic carbon fractions transported by these rivers range from tens to thousands of years in age. We therefore suggest that a small, rapidly cycling pool of organic carbon is responsible for the large carbon fluxes from land to water to atmosphere in the humid tropics.

  13. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers.

    PubMed

    Mayorga, Emilio; Aufdenkampe, Anthony K; Masiello, Caroline A; Krusche, Alex V; Hedges, John I; Quay, Paul D; Richey, Jeffrey E; Brown, Thomas A

    2005-07-28

    Rivers are generally supersaturated with respect to carbon dioxide, resulting in large gas evasion fluxes that can be a significant component of regional net carbon budgets. Amazonian rivers were recently shown to outgas more than ten times the amount of carbon exported to the ocean in the form of total organic carbon or dissolved inorganic carbon. High carbon dioxide concentrations in rivers originate largely from in situ respiration of organic carbon, but little agreement exists about the sources or turnover times of this carbon. Here we present results of an extensive survey of the carbon isotope composition (13C and 14C) of dissolved inorganic carbon and three size-fractions of organic carbon across the Amazonian river system. We find that respiration of contemporary organic matter (less than five years old) originating on land and near rivers is the dominant source of excess carbon dioxide that drives outgassing in medium to large rivers, although we find that bulk organic carbon fractions transported by these rivers range from tens to thousands of years in age. We therefore suggest that a small, rapidly cycling pool of organic carbon is responsible for the large carbon fluxes from land to water to atmosphere in the humid tropics.

  14. Variation and removal efficiency of assimilable organic carbon (AOC) in an advanced water treatment system.

    PubMed

    Lou, Jie-Chung; Chen, Bi-Hsiang; Chang, Ting-Wei; Yang, Hung-Wen; Han, Jia-Yun

    2011-07-01

    This study investigates the microorganism growth indicator and determines the assimilable organic carbon (AOC) content at the Cheng-Ching Lake Advanced Water Treatment Plant (CCLAWTP) in Kaohsiung, Taiwan. Notably, AOC is associated with the biological stability within the water distribution network and has garnered considerable attention in the environmental engineering field in recent years. Water samples were collected from the effluent of each unit in CCLAWTP once monthly during December 2008 to November 2009. Items of water quality related to carbon concentration levels, including AOC, total organic carbon, dissolved organic carbon, UV(254), and specific ultraviolent absorbance were analyzed. Analytical results demonstrate that the average AOC concentration in raw water was 83.61 μg/L and reduced in freshwater was controlled at an average of 50 μg/L after an advanced treatment system of roughly 54% of AOC was removed in compliance with treatment plant standards. If AOC concentrations in freshwater can be reduced, study results can provide a direction for improving water treatment capabilities. PMID:20835921

  15. Analytical methods for the determination of carbon tetrachloride in soils.

    SciTech Connect

    Alvarado, J. S.; Spokas, K.; Taylor, J.

    1999-06-01

    Improved methods for the determination of carbon tetrachloride are described. These methods incorporate purge-and-trap concentration of heated dry samples, an improved methanol extraction procedure, and headspace sampling. The methods minimize sample pretreatment, accomplish solvent substitution, and save time. The methanol extraction and headspace sampling procedures improved the method detection limits and yielded better sensitivity, good recoveries, and good performance. Optimization parameters are shown. Results obtained with these techniques are compared for soil samples from contaminated sites.

  16. Biospheric and petrogenic organic carbon flux along southeast Alaska

    NASA Astrophysics Data System (ADS)

    Cui, Xingqian; Bianchi, Thomas S.; Jaeger, John M.; Smith, Richard W.

    2016-10-01

    Holocene fjords store ca. 11-12% of the total organic carbon (OC) buried in marine sediments with fjords along southeast (SE) Alaska possibly storing half of this OC (Smith et al., 2015). However, the respective burial of biospheric (OCbio) and petrogenic OC (OCpetro) remains poorly constrained, particularly across glaciated versus non-glaciated systems. Here, we use surface sediment samples to quantify the sources and burial of sedimentary OC along SE Alaska fjord-coastal systems, and conduct a latitudinal comparison across a suite of fjords and river-coastal systems with distinctive OC sources. Our results for SE Alaska show that surface sediments in northern fjords (north of Icy Strait) with headwater glaciers are dominated by OCpetro, in contrast to marine and terrestrially-derived fresh OC in non-glaciated southern fjords. Along the continental shelf of the Gulf of Alaska, terrestrial OC is exported from rivers. Using end-member mixing models, we determine that glaciated fjords have significantly higher burial rates of OCpetro (∼ 1.1 ×103 gOC m-2yr-1) than non-glaciated fjords and other coastal systems, making SE Alaska potentially the largest sink of OCpetro in North America. In contrast, non-glaciated fjords in SE Alaska are effective in burying marine OC (OCbio-mari) (13-82 g OC m-2yr-1). Globally, OC in fjord sediments are comprised of a mixture of OCpetro and fresh OCbio, in contrast to the pre-aged OC from floodplain river-coastal systems. We find that there may be a general latitudinal trend in the role of fjords in processing OC, where high-latitude temperate glacial fjords (e.g., Yakutat Bay, SE Alaska) rebury OCpetro and non-glacial mid-latitude fjords (e.g., Doubtful Sound, Fiordland) sequester CO2 from phytoplankton and/or temperate forests. Overall, we propose that fjords are effective in sequestering OCbio and re-burying OCpetro. Based on our study, we hypothesize that climate change will have a semi-predictable impact on fjords' OC cycling in

  17. Space Station Freedom Water Recovery test total organic carbon accountability

    NASA Technical Reports Server (NTRS)

    Davidson, Michael W.; Slivon, Laurence; Sheldon, Linda; Traweek, Mary

    1991-01-01

    Marshall Space Flight Center's (MSFC) Water Recovery Test (WRT) addresses the concept of integrated hygiene and potable reuse water recovery systems baselined for Space Station Freedom (SSF). To assess the adequacy of water recovery system designs and the conformance of reclaimed water quality to established specifications, MSFC has initiated an extensive water characterization program. MSFC's goal is to quantitatively account for a large percentage of organic compounds present in waste and reclaimed hygiene and potable waters from the WRT and in humidity condensate from Spacelab missions. The program is coordinated into Phase A and B. Phase A's focus is qualitative and semi-quantitative. Precise quantitative analyses are not emphasized. Phase B's focus centers on a near complete quantitative characterization of all water types. Technical approaches along with Phase A and partial Phase B investigations on the compositional analysis of Total Organic Carbon (TOC) Accountability are presented.

  18. Determining Sorption Properties of Pyrogenic Black Carbon for Some Heavy Metals

    NASA Astrophysics Data System (ADS)

    Nicholls, P.; Cadol, D. D.; Galanter, A.

    2014-12-01

    There have been two major fires in the Valles Caldera, located in the Jemez Mountains of Northern New Mexico, within the last three years: the Thompson Ridge fire (June 2013) and the Las Conchas fire (July 2011). During forest fires, contaminants are released from the incomplete combustion of organic matter, from mineral assemblages of the natural soil, and from pre-existing contaminants that have accumulated in biomass and soils. The transport and sequestration of these contaminants is an important factor in determining environmental soil and water quality following fires. Soils containing black carbon (BC) have high sorption capacities for certain contaminants due to its high surface area and cation exchange capacity. The purpose of this project is to quantify the sorption properties of pyrogenic black carbon (PyC), or black carbon formed after the incomplete combustion of organic carbon during forest fires, and soils found in recently burned areas of Northern NM and to determine the environmental impact of soils containing PyC. We used batch equilibrium experiments to determine the sorption properties of BC for selected metals (chromium, lead, and arsenic). Samples tested include naturally occurring soils, concentrated PyC, mixtures of soil and PyC, industrial BC, and a control with low carbon and sorption. Contaminant concentrations were also measured from the soils sampled in the field site. Preliminary results suggest that industrial BC has the highest sorption capacity for heavy metals and the quickest time to equilibrium. As PyC concentrations in the soil increase, sorption capacity is expected to increase. With complete results, the environmental significance of black carbon in the soil, including how PyC affects the transport of solutes in soils, will be evaluated.

  19. Unusually high stable carbon isotopic values of methane from low organic carbon Mars analog hypersaline environments

    NASA Astrophysics Data System (ADS)

    Kelley, C. A.; Poole, J. A.; Tazaz, A.; Chanton, J.; Bebout, B.

    2010-12-01

    Motivated by the Mars rovers’ findings of past hypersaline environments and the discovery of methane in the atmosphere of Mars, we examined methanogenesis in hypersaline ponds in Baja California Sur and in the Don Edwards National Wildlife Refuge in northern California. Methane-rich bubbles were observed to be released from below gypsum/halite crusts in these environments. The stable carbon isotopic composition of these bubbles ranged from about -30 to -40 ‰. Methane with these relatively high isotopic values would typically be considered non-biogenic, however incubations of crust and sediments samples over time resulted in the production of methane. We therefore undertook a series of measurements aimed at understanding the isotopic composition of methane in these environments. The concentrations and isotopic composition of the particulate organic carbon (POC) in these environments were measured. POC content was low (relative to most methane-producing sedimentary environments), generally less than 1%, and always less than 2% of the total mass. The isotopic composition of the POC ranged from -13 to -22 ‰. To determine the substrates used by the methanogens, 13C-labeled trimethylamine (TMA), monomethylamine, methanol, acetate and bicarbonate were added to incubation vials and the methane produced was monitored for 13C content. The main substrates used by the methanogens in these hypersaline environments were the non-competitive substrates, the methylamines and methanol. When unlabeled, but isotopically known, TMA was added to incubation vials in varying concentrations, the isotopic composition of the methane produced also varied. Little, if any, difference in the isotopic composition between the TMA and methane occurred at the lowest TMA concentration (10 µM final concentration). The lowest methane δ13C values (and so greatest fractionation between methane and TMA) occurred when the most TMA was added (1000 µM final concentration). This change in the

  20. Influence of Litter Diversity on Dissolved Organic Matter Release and Soil Carbon Formation in a Mixed Beech Forest

    PubMed Central

    Scheibe, Andrea; Gleixner, Gerd

    2014-01-01

    We investigated the effect of leaf litter on below ground carbon export and soil carbon formation in order to understand how litter diversity affects carbon cycling in forest ecosystems. 13C labeled and unlabeled leaf litter of beech (Fagus sylvatica) and ash (Fraxinus excelsior), characterized by low and high decomposability, were used in a litter exchange experiment in the Hainich National Park (Thuringia, Germany). Litter was added in pure and mixed treatments with either beech or ash labeled with 13C. We collected soil water in 5 cm mineral soil depth below each treatment biweekly and determined dissolved organic carbon (DOC), δ13C values and anion contents. In addition, we measured carbon concentrations and δ13C values in the organic and mineral soil (collected in 1 cm increments) up to 5 cm soil depth at the end of the experiment. Litter-derived C contributes less than 1% to dissolved organic matter (DOM) collected in 5 cm mineral soil depth. Better decomposable ash litter released significantly more (0.50±0.17%) litter carbon than beech litter (0.17±0.07%). All soil layers held in total around 30% of litter-derived carbon, indicating the large retention potential of litter-derived C in the top soil. Interestingly, in mixed (ash and beech litter) treatments we did not find a higher contribution of better decomposable ash-derived carbon in DOM, O horizon or mineral soil. This suggest that the known selective decomposition of better decomposable litter by soil fauna has no or only minor effects on the release and formation of litter-derived DOM and soil organic matter. Overall our experiment showed that 1) litter-derived carbon is of low importance for dissolved organic carbon release and 2) litter of higher decomposability is faster decomposed, but litter diversity does not influence the carbon flow. PMID:25486628

  1. Influence of litter diversity on dissolved organic matter release and soil carbon formation in a mixed beech forest.

    PubMed

    Scheibe, Andrea; Gleixner, Gerd

    2014-01-01

    We investigated the effect of leaf litter on below ground carbon export and soil carbon formation in order to understand how litter diversity affects carbon cycling in forest ecosystems. 13C labeled and unlabeled leaf litter of beech (Fagus sylvatica) and ash (Fraxinus excelsior), characterized by low and high decomposability, were used in a litter exchange experiment in the Hainich National Park (Thuringia, Germany). Litter was added in pure and mixed treatments with either beech or ash labeled with 13C. We collected soil water in 5 cm mineral soil depth below each treatment biweekly and determined dissolved organic carbon (DOC), δ13C values and anion contents. In addition, we measured carbon concentrations and δ13C values in the organic and mineral soil (collected in 1 cm increments) up to 5 cm soil depth at the end of the experiment. Litter-derived C contributes less than 1% to dissolved organic matter (DOM) collected in 5 cm mineral soil depth. Better decomposable ash litter released significantly more (0.50±0.17%) litter carbon than beech litter (0.17±0.07%). All soil layers held in total around 30% of litter-derived carbon, indicating the large retention potential of litter-derived C in the top soil. Interestingly, in mixed (ash and beech litter) treatments we did not find a higher contribution of better decomposable ash-derived carbon in DOM, O horizon or mineral soil. This suggest that the known selective decomposition of better decomposable litter by soil fauna has no or only minor effects on the release and formation of litter-derived DOM and soil organic matter. Overall our experiment showed that 1) litter-derived carbon is of low importance for dissolved organic carbon release and 2) litter of higher decomposability is faster decomposed, but litter diversity does not influence the carbon flow.

  2. Sources and distribution of organic and carbonate carbon in surface sediments of Pyramid Lake, Nevada

    SciTech Connect

    Tenzer, G.E.; Meyers, P.A.; Knoop, P.

    1997-09-01

    Surface sediment samples from 32 sites in Pyramid Lake, Nevada, have been studied to investigate the sources and distribution of carbon within a large, terminal lake basin. The origins of organic and inorganic carbon in the sediments of this lake are predominantly from in-lake sources. Dilution of these sedimentary materials by land-derived clastic components occurs near the mouth of the Truckee River, the only perennial river entering the lake. Total organic carbon (TOC) concentrations and CaCO{sub 3} concentrations and {delta}{sup 18}O values increase while organic matter C/N atomic ratios and {delta}{sup 13}C values decrease with increasing distance from the river mouth as the proportion of river-derived components decreases. Aragonite precipitates from lake water and dominates CaCO{sub 3} deposition in most parts of the lake, except near underlake springs, where calcite precipitates. TOC concentrations increase as water depth increases, reflecting grain sorting as smaller particles are resuspended and focused toward the deep basin center.

  3. Measurement of fine particulate matter nonvolatile and semi-volatile organic material with the Sunset Laboratory Carbon Aerosol Monitor.

    PubMed

    Grover, Brett D; Kleinman, Michael; Eatough, Norman L; Eatough, Delbert J; Cary, Robert A; Hopke, Philip K; Wilson, William E

    2008-01-01

    Semi-volatile organic material (SVOM) in fine particles is not reliably measured with conventional semicontinuous carbon monitors because SVOM is lost from the collection media during sample collection. We have modified a Sunset Laboratory Carbon Aerosol Monitor to allow for the determination of SVOM. In a conventional Sunset monitor, gas-phase organic compounds are removed in the sampled airstream by a diffusion denuder employing charcoal-impregnated cellulose filter (CIF) surfaces. Subsequently, particles are collected on a quartz filter and the instrument then determines both the organic carbon and elemental carbon fractions of the aerosol using a thermal/optical method. However, some of the SVOM is lost from the filter during collection, and therefore is not determined. Because the interfering gas-phase organic compounds are removed before aerosol collection, the SVOM can be determined by filtering the particles at the instrument inlet and then replacing the quartz filter in the monitor with a charcoal-impregnated glass fiber filter (CIG), which retains the SVOM lost from particles collected on the inlet filter. The resulting collected SVOM is then determined in the analysis step by measurement of the carbonaceous material thermally evolved from the CIG filter. This concept was tested during field studies in February 2003 in Lindon, UT, and in July 2003 in Rubidoux, CA. The results obtained were validated by comparison with Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS) results. The sum of nonvolatile organic material determined with a conventional Sunset monitor and SVOM determined with the modified Sunset monitor agree with the PC-BOSS results. Linear regression analysis of total carbon concentrations determined by the PC-BOSS and the Sunset resulted in a zero-intercept slope of 0.99 +/- 0.02 (R2 = 0.92) and a precision of sigma = +/- 1.5 microg C/m3 (8%).

  4. Simplified method to assess soil organic matter in landscape and carbon sequestration studies

    NASA Astrophysics Data System (ADS)

    Pallasser, Robert; Minasny, Budiman; McBratney, Alex; de Bruyn, Hank

    2010-05-01

    Soil organic matter (SOM) is composed of a variety of carbon bearing forms which are variably susceptible to degradation, itself a function of soil conditions (moisture, permeability, pH, Eh). Stability and residence time have become key questions relevant to soil carbon storage. Interestingly, organic matter types also differ in terms of their refractory stabilities making thermal analysis potentially an ideal way to resolve and analyse SOM. Elemental analyses of soils are routinely used to provide accurate total carbon determinations for the subsamples in question but cannot yield information about the relative amounts of labile to more stable carbon without involved chemical pre-treatment. Thermogravimetric analyses (TGA) have been commonly used to characterise chemical decomposition and to provide distinctive fingerprints (due to discrete mass changes) for mineral and organic materials. Such discrete changes in mass appear as peaks when registered on a DTGA (differential TGA) plot and correspond with dehydration, denaturing or oxidation events. Soil being a more complex continuum of organic and inorganic substances, many from fermentation reactions and microbial waste, does not have one particular fingerprint. Nonetheless, a number of relevant organic substances have characteristically different but consistent ignition temperatures (Lopez-Capel et. al., 2006; Laird et al., 2008; Xie et. al., 2009) allowing carbon pools to be distinguished thermally. In our studies, oxidative DTGA analyses of soils using a TA 2590 were typified by a bimodal distribution in SOM representing one less stable and one more stable group, a pattern similarly described by Siewert (2004). Current experiments indicate that the relative proportions of these SOM pulses are fairly reproducible but vary depending on soils and sampling depth (i.e. conditions) enabling it as a diagnostic parameter when considering SOM dynamics and humification. In order to compare this property numerically

  5. Spring Hydrology Determines Summer Net Carbon Uptake in Northern Ecosystems

    NASA Technical Reports Server (NTRS)

    Yi, Yonghong; Kimball, John; Reichle, Rolf H.

    2014-01-01

    Increased photosynthetic activity and enhanced seasonal CO2 exchange of northern ecosystems have been observed from a variety of sources including satellite vegetation indices (such as the Normalized Difference Vegetation Index; NDVI) and atmospheric CO2 measurements. Most of these changes have been attributed to strong warming trends in the northern high latitudes (greater than or equal to 50N). Here we analyze the interannual variation of summer net carbon uptake derived from atmospheric CO2 measurements and satellite NDVI in relation to surface meteorology from regional observational records. We find that increases in spring precipitation and snow pack promote summer net carbon uptake of northern ecosystems independent of air temperature effects. However, satellite NDVI measurements still show an overall benefit of summer photosynthetic activity from regional warming and limited impact of spring precipitation. This discrepancy is attributed to a similar response of photosynthesis and respiration to warming and thus reduced sensitivity of net ecosystem carbon uptake to temperature. Further analysis of boreal tower eddy covariance CO2 flux measurements indicates that summer net carbon uptake is positively correlated with early growing-season surface soil moisture, which is also strongly affected by spring precipitation and snow pack based on analysis of satellite soil moisture retrievals. This is attributed to strong regulation of spring hydrology on soil respiration in relatively wet boreal and arctic ecosystems. These results document the important role of spring hydrology in determining summer net carbon uptake and contrast with prevailing assumptions of dominant cold temperature limitations to high-latitude ecosystems. Our results indicate potentially stronger coupling of boreal/arctic water and carbon cycles with continued regional warming trends.

  6. Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Black carbon (BC) in ultrafiltered high-molecular-weight DOM (UDOM) was measured in surface waters of Delaware Bay, Chesapeake Bay and the adjacent Atlantic Ocean (USA) to ascertain the importance of riverine and estuarine DOM as a source of BC to the ocean. BC comprised 5-72% of UDOM-C (27+/-l7%) and on average 8.9+/-6.5% of dissolved organic carbon (DOC) with higher values in the turbid region of the Delaware Estuary and lower yields in the river and coastal ocean. The spatial and seasonal distributions of BC along the salinity gradient of Delaware Bay suggest that the higher levels of BC in surface water UDOM originated from localized sources, possibly from atmospheric deposition or released from resuspended sediments. Black carbon comprised 4 to 7% of the DOC in the coastal Atlantic Ocean, revealing that river-estuary systems are important exporters of colloidal BC to the ocean. The annual flux of BC from Delaware Bay UDOM to the Atlantic Ocean was estimated at 2.4x10(exp 10) g BC yr(exp -1). The global river flux of BC through DOM to the ocean could be on the order of 5.5x1O(exp 12)g BC yr (exp -1). These results support the hypothesis that the DOC pool is the intermediate reservoir in which BC ages prior to sedimentary deposition.

  7. Soil salinity decreases global soil organic carbon stocks.

    PubMed

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas.

  8. Unexpected capacity for organic carbon assimilation by Thermosynechococcus elongatus, a crucial photosynthetic model organism.

    PubMed

    Zilliges, Yvonne; Dau, Holger

    2016-04-01

    Genetic modification of key residues of photosystems is essential to identify functionally crucial processes by spectroscopic and crystallographic investigation; the required protein stability favours use of thermophilic species. The currently unique thermophilic photosynthetic model organism is the cyanobacterial genus Thermosynechococcus. We report the ability of Thermosynechococcus elongatus to assimilate organic carbon, specifically D-fructose. Growth in the presence of a photosynthesis inhibitor opens the door towards crucial amino acid substitutions in photosystems by the rescue of otherwise lethal mutations. Yet depression of batch-culture growth after 7 days implies that additional developments are needed. PMID:26935247

  9. REMOVAL OF ORGANIC POLLUTANTS FROM SUBCRITICAL WATER WITH ACTIVATED CARBON

    SciTech Connect

    Steven B. Hawthorne; Arnaud J. Lagadec

    1999-08-01

    The Energy & Environmental Research Center (EERC) has demonstrated that controlling the temperature (and to a lesser extent, the pressure) of water can dramatically change its ability to extract organics and inorganics from matrices ranging from soils and sediments to waste sludges and coal. The dielectric constant of water can be changed from about 80 (a very polar solvent) to <5 (similar to a nonpolar organic solvent) by controlling the temperature (from ambient to about 400 C) and pressure (from about 5 to 350 bar). The EERC has shown that hazardous organic pollutants such as pesticides, PACS (polycyclic aromatic hydrocarbons), and PCBs (polychlorinated biphenyls) can be completely removed from soils, sludges, and sediments at temperatures (250 C) and pressures (<50 atm) that are much milder than typically used for supercritical water processes (temperature >374 C, pressure >221 atm). In addition, the process has been demonstrated to be particularly effective for samples containing very high levels of contaminants (e.g., part per thousand). Current projects include demonstrating the subcritical water remediation process at the pilot scale using an 8-liter system constructed under separate funding during 1997. To date, subcritical water has been shown to be an effective extraction fluid for removing a variety of organic pollutants from soils and sludges contaminated with fossil fuel products and waste products, including PACS from soil (e.g., town gas sites), refining catalysts, and petroleum tank bottom sludges; PCBs from soil and sediments; toxic gasoline components (e.g., benzene) from soil and waste sludge; and phenols from petroleum refinery sludges. The obvious need to clean the wastewater from subcritical water processes led to preliminary experiments with activated carbon placed in line after the extractor. Initial experiments were performed before and after cooling the extractant water (e.g., with water at 200 C and with water cooled to 25 C

  10. Fates of eroded soil organic carbon: Mississippi Basin case study

    USGS Publications Warehouse

    Smith, S.V.; Sleezer, R.O.; Renwick, W.H.; Buddemeier, R.W.

    2005-01-01

    We have developed a mass balance analysis of organic carbon (OC) across the five major river subsystems of the Mississippi (MS) Basin (an area of 3.2 ?? 106 km2). This largely agricultural landscape undergoes a bulk soil erosion rate of ???480 t??km -2??yr-1 (???1500 ?? 106 t/yr, across the MS Basin), and a soil organic carbon (SOC) erosion rate of ???7 t??km-2??yr-1 (???22 ?? 106 t/yr). Erosion translocates upland SOC to alluvial deposits, water impoundments, and the ocean. Soil erosion is generally considered to be a net source of CO2 release to the atmosphere in global budgets. However, our results indicate that SOC erosion and relocation of soil apparently can reduce the net SOC oxidation rate of the original upland SOC while promoting net replacement of eroded SOC in upland soils that were eroded. Soil erosion at the MS Basin scale is, therefore, a net CO2 sink rather than a source. ?? 2005 by the Ecological Society of America.

  11. Soil Organic Carbon Mapping by Geostatistics in Europe Scale

    NASA Astrophysics Data System (ADS)

    Aksoy, E.; Panagos, P.; Montanarella, L.

    2013-12-01

    Accuracy in assessing the distribution of soil organic carbon (SOC) is an important issue because SOC is an important soil component that plays key roles in the functions of both natural ecosystems and agricultural systems. The SOC content varies from place to place and it is strongly related with climate variables (temperature and rainfall), terrain features, soil texture, parent material, vegetation, land-use types, and human management (management and degradation) at different spatial scales. Geostatistical techniques allow for the prediction of soil properties using soil information and environmental covariates. In this study, assessment of SOC distribution has been predicted with Regression-Kriging method in Europe scale. In this prediction, combination of the soil samples which were collected from the LUCAS (European Land Use/Cover Area frame statistical Survey) & BioSoil Projects, with local soil data which were collected from six different CZOs in Europe and ten spatial predictors (slope, aspect, elevation, CTI, CORINE land-cover classification, parent material, texture, WRB soil classification, annual average temperature and precipitation) were used. Significant correlation between the covariates and the organic carbon dependent variable was found. Moreover, investigating the contribution of local dataset in watershed scale into regional dataset in European scale was an important challenge.

  12. Codeposition of organic carbon and arsenic in Bengal Delta aquifers.

    PubMed

    Meharg, Andrew A; Scrimgeour, Charlie; Hossain, Shahid A; Fuller, Kenneth; Cruickshank, Kenneth; Williams, Paul N; Kinniburgh, David G

    2006-08-15

    We present data showing that arsenic (As) was codeposited with organic carbon (OC) in Bengal Delta sediments as As and OC concentrations are highly (p < 0.001) positively correlated in core profiles collected from widely dispersed geographical sites with different sedimentary depositional histories. Analysis of modern day depositional environments revealed that the As-OC correlations observed in cores are due to As retention and high OC inputs in vegetated zones of the deltaic environment. We hypothesize that elevat