Science.gov

Sample records for organic carbon iron

  1. Selective stabilization of aliphatic organic carbon by iron oxide

    PubMed Central

    Adhikari, Dinesh; Yang, Yu

    2015-01-01

    Stabilization of organic matter in soil is important for natural ecosystem to sequestrate carbon and mitigate greenhouse gas emission. It is largely unknown what factors govern the preservation of organic carbon in soil, casting shadow on predicting the response of soil to climate change. Iron oxide was suggested as an important mineral preserving soil organic carbon. However, ferric minerals are subject to reduction, potentially releasing iron and decreasing the stability of iron-bound organic carbon. Information about the stability of iron-bound organic carbon in the redox reaction is limited. Herein, we investigated the sorptive interactions of organic matter with hematite and reductive release of hematite-bound organic matter. Impacts of organic matter composition and conformation on its sorption by hematite and release during the reduction reaction were analyzed. We found that hematite-bound aliphatic carbon was more resistant to reduction release, although hematite preferred to sorb more aromatic carbon. Resistance to reductive release represents a new mechanism that aliphatic soil organic matter was stabilized by association with iron oxide. Selective stabilization of aliphatic over aromatic carbon can greatly contribute to the widely observed accumulation of aliphatic carbon in soil, which cannot be explained by sorptive interactions between minerals and organic matter. PMID:26061259

  2. Selective stabilization of aliphatic organic carbon by iron oxide.

    PubMed

    Adhikari, Dinesh; Yang, Yu

    2015-01-01

    Stabilization of organic matter in soil is important for natural ecosystem to sequestrate carbon and mitigate greenhouse gas emission. It is largely unknown what factors govern the preservation of organic carbon in soil, casting shadow on predicting the response of soil to climate change. Iron oxide was suggested as an important mineral preserving soil organic carbon. However, ferric minerals are subject to reduction, potentially releasing iron and decreasing the stability of iron-bound organic carbon. Information about the stability of iron-bound organic carbon in the redox reaction is limited. Herein, we investigated the sorptive interactions of organic matter with hematite and reductive release of hematite-bound organic matter. Impacts of organic matter composition and conformation on its sorption by hematite and release during the reduction reaction were analyzed. We found that hematite-bound aliphatic carbon was more resistant to reduction release, although hematite preferred to sorb more aromatic carbon. Resistance to reductive release represents a new mechanism that aliphatic soil organic matter was stabilized by association with iron oxide. Selective stabilization of aliphatic over aromatic carbon can greatly contribute to the widely observed accumulation of aliphatic carbon in soil, which cannot be explained by sorptive interactions between minerals and organic matter. PMID:26061259

  3. Iron-sulfur-carbon relationships in organic-carbon-rich sequences I: Cretaceous Western Interior seaway

    USGS Publications Warehouse

    Dean, W.E.; Arthur, M.A.

    1989-01-01

    Cretaceous marine strata deposited in shallow to intermediate depths in the Western Interior seaway of North America show considerable variation in organic-carbon enrichment and degree of pyrite formation. The extreme range of paleoceanographic and depositional conditions that occurred in this seaway provide a unique opportunity to examine the effects of iron-, carbon-, and sulfur-limitation on pyrite formation in one region over about 30 my. Ternary diagrams of the system Fe-S-OC, together with some measure of the reactivity of organic matter (pyrolysis hydrogen index), provide a rapid means of recognizing iron-, carbon-, and sulfur-limitation on pyrite formation in a series of samples from a single lithologic unit. Iron limitation is indicated by a concentration of data along a line of constant S/Fe ratio on a Fe-S-OC ternary diagram. Carbon limitation is indicated by a concentration of data along a line of constant S/OC ratio. Sulfur-limitation is suggested by the lack of a systematic Fe-S-OC relationship and residual organic matter that is high in abundance and reactivity. -from Authors

  4. Importance of Iron and Soil Physicochemical Properties to Stabilize Organic Carbon in Soils

    NASA Astrophysics Data System (ADS)

    Zhao, Q.; Yang, Y.; Obrist, D.; Poulson, S.

    2015-12-01

    Global warming can potentially accelerate the decomposition of forest soil organic matter (SOM), as a source of greenhouse gas emissions. Understanding the fate of forest SOM is important for evaluating and managing the global carbon cycle during climate change. Iron minerals play an important role in stabilizing organic carbon (OC) and regulating the biogeochemical cycle in the soil environment, but there is only limited information available concerning how iron-mediated OC stabilization is affected by physicochemical properties of soil. This study investigated the behavior of iron-bound OC in soils collected from 14 forests across the United States, and the impact of soil physicochemical properties on the stabilization of OC by iron minerals. The bicarbonate-citrate-dithionite (BCD) method was used to reduce iron in soil samples, and OC content was characterized prior and after reduction to quantify iron-bound OC. We found that iron-bound OC contributed 1.2 - 57.7 weight % of total OC in forest soils. Atomic ratios of iron-bound OC:Fe ranged from 0.006 to 0.178, indicating the importance of sorptive interactions. The fraction of iron-bound OC was more closely correlated to the molar ratio of iron-bound OC:Fe than the absolute concentration of reactive iron, which is ranged from 0.08 to 19.31 mg/g. Iron-bound OC was enriched in 13C compared to the non-iron-bound SOM. There were significant correlations between the total N concentration and total or non-iron bound OC, but not with iron-bound OC. Overall, iron minerals mainly stabilize 13C-enriched non-nitrogenous OC, which was almost regulated by the sorptive association between iron and OC. Our results illustrate the importance of understanding the stabilization of OC in soil, and the coupled biogeochemical processes of carbon and iron.

  5. Asynchronous Reductive Release of Iron and Organic Carbon from Hematite-Humic Acid Complexes

    NASA Astrophysics Data System (ADS)

    Adhikari, D.; Poulson, S.; Sumaila, S.; Dynes, J.; McBeth, J. M.; Yang, Y.

    2015-12-01

    Association with solid-phase iron plays an important role in the accumulation and stabilization of soil organic matter (SOM). Ferric minerals are subject to redox reactions, which can compromise the stability of iron-bound SOM. To date, there is limited information available concerning the fate of iron-bound SOM during redox reactions. In this study, we investigated the release kinetics of hematite-bound organic carbon (OC) during the abiotic reduction of hematite-humic acid (HA) complexes by dithionite, as an analog for the fate of iron-bound SOM in natural redox reactions. Carbon 1s near edge X-ray absorption fine structure (NEXAFS) spectroscopy was used to examine the ratio of the aromatic, phenolic and carboxylic/imide functional groups of the adsorbed OC before and after reduction. Our results indicate that the reductive release of iron obeyed first-order kinetics with release rate constants of 6.67×10-3 to 13.0×10-3 min-1. The iron-bound OC was released rapidly during the initial stage with release rate constants of 0.011 to 1.49 min-1, and then became stable with residual fractions of 4.6% to 58.2% between 120 and 240 min. The release rate of aromatic OC was much faster than for the non-aromatic fraction of HA, and 90% of aromatic OC was released within the first hour for most samples. The more rapid release of aromatic OC was attributed to its potential distribution on the outer layer because of steric effects and the possible reduction of quinoids. Our findings show that in the reductive reaction the mobilization of iron-bound organic carbon was asynchronous with the reduction of iron, and aromatic carbon was released more readily than other organic components. This study illustrates the importance of evaluating the stability of iron-bound SOM, especially under aerobic-anaerobic transition conditions.

  6. Entrapment of ancient and modern organic carbon by iron on the Eurasian Arctic Shelf

    NASA Astrophysics Data System (ADS)

    Salvado, Joan A.; Tesi, Tommaso; Semiletov, Igor P.; Dudarev, Oleg V.; Gustafsson, Örjan

    2015-04-01

    Given the potential for climate-carbon feedbacks in the Siberian-Arctic land-ocean system, there is a need for improved understanding of carbon cycle processes (Vonk et al., 2012). The entrapment of organic carbon in sediments is a key factor to attenuate the outgassing of greenhouse gases to the atmosphere. In this context, there is a pressing need to understand the mechanisms that control preservation and accumulations of organic carbon in marine sediments. Recently, the role of iron oxides in the preservation of organic matter globally has been outlined (Lalonde et al., 2012). In the present study, the composition of organic carbon associated to reactive iron (OC-Fe) on the Eurasian Arctic Shelf is evaluated. For this purpose, sediment cores and grab samples were collected in the shelves of the Kara Sea, Laptev Sea and East Siberian Sea from 9 to 69 m water depth. Experiments were conducted to extract the OC-Fe from the sediments by applying a citrate-dithionite iron reduction method -accurately control corrected- and analyze the δ13C, % OC and Δ14C of the bulk and iron-associated fractions. The results show that 11.0 ± 5.5% of organic carbon in surface-sediments of the Siberian Arctic Shelf is attached to reactive iron. The Δ14C and δ13C signatures presented sharply contrasting offsets between the sedimentary bulk and the OC-Fe. The OC-Fe is much younger than the OC-bulk in the eastern East Siberian Sea and older in the Laptev Sea. The same offsets were observed using a dual-carbon endmember mixing model showing that the iron fraction is mainly composed by young marine plankton organic carbon in the eastern East Siberian Sea and pre-aged thawing permafrost in the Laptev Sea. Overall, it seems that (i) some of this pre-aged organic carbon still remains bound to iron oxides after permafrost thawing and (ii) the iron oxides are transferring dissolved organic carbon to the sediment. This study presents the first analyses of Δ14C ever done in the OC

  7. Effects of iron-aluminium oxides and organic carbon on aggregate stability of bauxite residues.

    PubMed

    Zhu, Feng; Li, Yubing; Xue, Shengguo; Hartley, William; Wu, Hao

    2016-05-01

    In order to successfully establish vegetation on bauxite residue, properties such as aggregate structure and stability require improvement. Spontaneous plant colonization on the deposits in Central China over the last 20 years has revealed that natural processes may improve the physical condition of bauxite residues. Samples from three different stacking ages were selected to determine aggregate formation and stability and its relationship with iron-aluminium oxides and organic carbon. The residue aggregate particles became coarser in both dry and wet sieving processes. The mean weight diameter (MWD) and geometry mean diameter (GMD) increased significantly, and the proportion of aggregate destruction (PAD) decreased. Natural stacking processes could increase aggregate stability and erosion resistant of bauxite residues. Free iron oxides and amorphous aluminium oxides were the major forms in bauxite residues, but there was no significant correlation between the iron-aluminium oxides and aggregate stability. Aromatic-C, alkanes-C, aliphatic-C and alkenes-C were the major functional groups present in the residues. With increasing stacking age, total organic carbon content and aggregate-associated organic carbon both increased. Alkanes-C, aliphatic-C and alkenes-C increased and were mainly distributed in macro-aggregates, whereas aromatic-C was mainly distributed in <0.05-mm aggregates. Organic carbon stability in micro-aggregates was higher than that in macro-aggregates and became more stable. Organic carbon contents in total residues, and within different aggregate sizes, were all negatively correlated with PAD. It indicated that organic materials had a more significant effect on macro-aggregate stability and the effects of iron-aluminium oxides maybe more important for stability of micro-aggregates.

  8. Enhancing zero valent iron based natural organic matter removal by mixing with dispersed carbon cathodes.

    PubMed

    Liu, Peng; Keller, Jurg; Gernjak, Wolfgang

    2016-04-15

    Former studies have shown that adding granular activated carbon (GAC) cathodes could enhance the overall performance of the zero valent iron (ZVI) process for organics removal. The present study evaluates for the first time the performance of such an enhanced ZVI process to remove natural organic matter (NOM), an important water quality parameter in drinking water. Lab-scale batch tests were conducted with surface reservoir feed water from a drinking water plant. In the GAC enhanced ZVI process dissolved organic carbon (DOC) and UV254 were reduced by 61±3% and 70±2%, respectively, during 24h treatment corresponding to 1.8min empty bed contact time. The process was superior to ZVI alone, particularly during the earlier stages of the process due to the synergistically increased iron dissolution rate. Besides GAC, graphite and anthracite also prove to be suitable and potentially more cost-effective options as cathode materials for the enhanced ZVI process, whereby electrically conductive graphite clearly outperformed anthracite. The dominant mechanisms in terms of NOM removal from surface water were found to be coagulation following iron dissolution and adsorption in the case of employing GAC. Oxidation was also occurring to a lesser degree, converting some non-biodegradable into biodegradable DOC.

  9. Enhancing zero valent iron based natural organic matter removal by mixing with dispersed carbon cathodes.

    PubMed

    Liu, Peng; Keller, Jurg; Gernjak, Wolfgang

    2016-04-15

    Former studies have shown that adding granular activated carbon (GAC) cathodes could enhance the overall performance of the zero valent iron (ZVI) process for organics removal. The present study evaluates for the first time the performance of such an enhanced ZVI process to remove natural organic matter (NOM), an important water quality parameter in drinking water. Lab-scale batch tests were conducted with surface reservoir feed water from a drinking water plant. In the GAC enhanced ZVI process dissolved organic carbon (DOC) and UV254 were reduced by 61±3% and 70±2%, respectively, during 24h treatment corresponding to 1.8min empty bed contact time. The process was superior to ZVI alone, particularly during the earlier stages of the process due to the synergistically increased iron dissolution rate. Besides GAC, graphite and anthracite also prove to be suitable and potentially more cost-effective options as cathode materials for the enhanced ZVI process, whereby electrically conductive graphite clearly outperformed anthracite. The dominant mechanisms in terms of NOM removal from surface water were found to be coagulation following iron dissolution and adsorption in the case of employing GAC. Oxidation was also occurring to a lesser degree, converting some non-biodegradable into biodegradable DOC. PMID:26808400

  10. Distinct iron isotope signatures in suspended matter in the northern Baltic Sea; implications for cycling of organic carbon and phosphorus

    NASA Astrophysics Data System (ADS)

    Ingri, Johan; Conrad, Sarah

    2015-04-01

    Two distinct groups of iron isotope signatures can be identified both in river water and in the Bothnian Bay, northern Baltic Sea. Particles and colloids with negative iron isotope signatures (enriched in the light isotope) are mobilised in the riparian zone during high discharge. Due to high concentration of DOC the oxidation of Fe(II) is incomplete, and un-oxidised Fe(II) is associated with Fe(III)-OH and OC (organic carbon), forming Fe(II,III)-OC colloids, and particles, with a negative iron isotope signature. Colloidal iron with a negative signature is a labile fraction that transforms during freshwater transport. Photo reduction of Fe(II,III)-OC particles and colloids will release Fe(II) and reduce Fe(III) to Fe(II), and formed Fe(II) is oxidised forming Fe(III)-OH colloids with a heavy iron isotope signature. Phosphorus and organic carbon are to different extent associated to these two suspended iron complexes during transport and early diagenesis. Flocculation of negative Fe(II,III)-OC colloids produce negative Fe(II,III)-OC particles, without changes in the isotopic composition. Most of the suspended iron is rapidly removed below 1.0 psu, due to flocculation and sedimentation. Negative Fe(II,III)-OC particles may serve as an efficient 'rusty sink' for organic carbon, when deposited in the coastal zone.

  11. Variation in stable carbon isotopes in organic matter from the Gunflint Iron Formation. [Precambrian rock analysis

    NASA Technical Reports Server (NTRS)

    Barghoorn, E. S.; Knoll, A. H.; Dembicki, H., Jr.; Meinschein, W. G.

    1977-01-01

    Results are presented for an isotopic analysis of the kerogen separated from 15 samples of the Gunflint Iron Formation, Ontario, and the conformably overlying Rove Formation. Reasons for which the Gunflint Iron Formation is suitable for such a study of a single Precambrian formation are identified. The general geology of the formation is outlined along with sample selection, description, and preparation. Major conclusions are that the basal Gunflint algal chert and shale facies are depleted in C-13 relative to the chert-carbonate and taconite facies, that differences in the delta C-13 values between Gunflint facies correlate with marked differences in their biological source materials as evidenced by their respective microbiotas, that the anthraxolites are anomalously depleted in C-13 relative to the kerogen of their encompassing cherts and shales, and that the effects of igneous intrusion and concomitant thermal alteration are shown by a marked loss of C-12 at the contact. The demonstration that not all kerogens are isotopically alike stresses the importance of facies data to the interpretation of C-13/C-12 ratios of ancient organic matter.

  12. The effect of induced anoxia and reoxygenation on benthic fluxes of organic carbon, phosphate, iron, and manganese.

    PubMed

    Skoog, Annelie C; Arias-Esquivel, Victor A

    2009-11-15

    Eutrophication causes seasonally anoxic bottom waters in coastal environments, but we lack information on effects of onset of anoxia and subsequent reoxygenation on benthic fluxes of redox-sensitive minerals and associated organic carbon (OC). As the first study, we determined the effect of inducing anoxia and subsequently restoring oxic conditions in mesocosms with surface sediment and water from a coastal environment. These concentration changes were compared with those in an oxygenated control. We determined water column concentrations of dissolved organic carbon (DOC), particulate organic carbon (POC), iron, manganese, and phosphate. Benthic fluxes of DOC, POC, and iron increased at the onset of anoxia in oxygen-depleted treatments. DOC and iron concentrations increased concomitantly towards maxima, which may have indicated reductive dissolution of FeOOH and release of associated OC. The subsequent concomitant concentration decreases may have been the result of coprecipitation of OC with iron-containing minerals. In contrast, the phosphate-concentration increase occurred several days after the onset of anoxia and the manganese concentration was not affected by the onset of anoxia. Restoring oxic conditions resulted in a decrease in DOC, POC, and phosphate concentrations, which may indicate coprecipitation of OC with phosphate-containing minerals. The high DOC fluxes at the onset of anoxia indicate that redox oscillations may be important in OC degradation. Further, our results indicate a close coupling between OC cycling and dissolution/precipitation of iron-containing minerals in intermittently anoxic sediments.

  13. Iron-bound organic carbon in forest soils: quantification and characterization

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Poulson, Simon R.; Obrist, Daniel; Sumaila, Samira; Dynes, James J.; McBeth, Joyce M.; Yang, Yu

    2016-08-01

    Iron oxide minerals play an important role in stabilizing organic carbon (OC) and regulating the biogeochemical cycles of OC on the earth surface. To predict the fate of OC, it is essential to understand the amount, spatial variability, and characteristics of Fe-bound OC in natural soils. In this study, we investigated the concentrations and characteristics of Fe-bound OC in soils collected from 14 forests in the United States and determined the impact of ecogeographical variables and soil physicochemical properties on the association of OC and Fe minerals. On average, Fe-bound OC contributed 37.8 % of total OC (TOC) in forest soils. Atomic ratios of OC : Fe ranged from 0.56 to 17.7, with values of 1-10 for most samples, and the ratios indicate the importance of both sorptive and incorporative interactions. The fraction of Fe-bound OC in TOC (fFe-OC) was not related to the concentration of reactive Fe, which suggests that the importance of association with Fe in OC accumulation was not governed by the concentration of reactive Fe. Concentrations of Fe-bound OC and fFe-OC increased with latitude and reached peak values at a site with a mean annual temperature of 6.6 °C. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and near-edge X-ray absorption fine structure (NEXAFS) analyses revealed that Fe-bound OC was less aliphatic than non-Fe-bound OC. Fe-bound OC also was more enriched in 13C compared to the non-Fe-bound OC, but C / N ratios did not differ substantially. In summary, 13C-enriched OC with less aliphatic carbon and more carboxylic carbon was associated with Fe minerals in the soils, with values of fFe-OC being controlled by both sorptive and incorporative associations between Fe and OC. Overall, this study demonstrates that Fe oxides play an important role in regulating the biogeochemical cycles of C in forest soils and uncovers the governing factors for the spatial variability and characteristics of Fe-bound OC.

  14. Distributions of Manganese, Iron, and Manganese-Oxidizing Bacteria In Lake Superior Sediments of Different Organic Carbon Content

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.; Nealson, Kenneth H.

    1989-01-01

    Profiles of oxygen, soluble and particulate manganese and iron, organic carbon and nitrogen were examined in Lake Superior sediment cores, along with the distribution and abundance of heterotrophic and manganese oxidizing bacteria. Analyses were performed using cores collected with the submersible Johnson Sea Link II. Three cores, exhibiting a range of organic carbon content, were collected from the deepest basin in Lake Superior and the north and south ends of the Caribou trough, and brought to the surface for immediate analysis. Minielectrode profiles of oxygen concentration of the three cores were carried out using a commercially available minielectrode apparatus. Oxygen depletion to less than 1% occurred within 4 cm of the surface for two of the cores, but not until approximately 15 cm for the core from the south basin of the Caribou trough. The three cores exhibited very different profiles of soluble, as well as leachable, manganese and iron, suggesting different degrees of remobilization of these metals in the sediments. Vertical profiles of viable bacteria and Mn oxidizing bacteria, determined by plating and counting, showed that aerobic (and facultatively aerobic) heterotrophic bacteria were present at the highest concentrations near the surface and decreased steadily with depth, while Mn oxidizing bacteria were concentrations primarily at and above the oxic/anoxic interface. Soluble manganese in the pore waters, along with abundant organic carbon, appeared to enhance the presence of manganese oxidizing bacteria, even below the oxic/anoxic interface. Profiles of solid-phase leachable manganese suggested a microbial role in manganese reprecipitation in these sediments.

  15. Distributions of manganese, iron, and manganese-oxidizing bacteria in Lake Superior sediments of different organic carbon content

    SciTech Connect

    Richardson, L.L.; Nealson, K.H.

    1989-01-01

    Profiles of oxygen, soluble and particulate manganese and iron, organic carbon and nitrogen were examined in Lake Superior sediment cores, along with the distribution and abundance of heterotrophic and manganese oxidizing bacteria. Analyses were performed using cores collected with the submersible Johnson Sea Link II. Three cores, exhibiting a range of organic carbon content, were collected from the deepest basin in Lake Superior and the north and south ends of the Caribou trough, and brought to the surface for immediate analysis. Minielectrode profiles of oxygen concentration of the three cores were carried out using a commercially available minielectrode apparatus. Oxygen depletion to less than 1% occurred within 4 cm of the surface for two of the cores, but not until approximately 15 cm for the core from the south basin of the Caribou trough. The three cores exhibited very different profiles of soluble, as well as leachable, manganese and iron, suggesting different degrees of remobilization of these metals in the sediments. Vertical profiles of viable bacterial and Mn oxidizing bacteria, determined by plating and counting, showed that aerobic heterotrophic bacteria were present at the highest concentrations near the surface and decreased steadily with depth, while Mn oxidizing bacteria were concentrated primarily at and above the oxic/anoxic interface. Soluble manganese in the pore waters, along with abundant organic carbon, appeared to enhance the presence of manganese oxidizing bacteria, even below the oxic/anoxic interface. Profiles of solid-phase leachable manganese suggested a microbial role in manganese reprecipitation in these sediments.

  16. Activated carbons impregnated with iron oxide nanoparticles for enhanced removal of bisphenol A and natural organic matter.

    PubMed

    Park, Hak-Soon; Koduru, Janardhan Reddy; Choo, Kwang-Ho; Lee, Byungwhan

    2015-04-01

    The removal of bisphenol A (BPA) is important for the provision of safe drinking water, but its removal in the presence of natural organic matter (NOM) is challenging. Thus, the present study involved the fabrication and characterization of powdered activated carbons impregnated with iron oxide nanoparticles (IONPACs) with respect to the simultaneous removal of BPA and NOM. The number of Fe ions loaded into the PAC pores was optimized in terms of exposure time. Impregnation with iron oxide reduced the surface area and pore volume, but the pore size was maintained. IONPAC adsorbents had considerably greater sorption capabilities for BPA and NOM compared to native, bare PAC particles. The adsorption capacities of BPA and NOM were in the following sequence: bare PACiron oxides (e.g., hydroxyl groups) and organics (e.g., phenolic/carboxyl groups). Iron oxide impregnation enabled the BPA uptake to be maintained in the presence of NOM, indicating that the hybrid adsorbent provided synergistic adsorption characteristics for BPA and NOM. Although the solution pH had a negligible impact on BPA uptake, the ionic strength showed a significant effect, particularly in the presence of divalent Ca ions. PMID:25594935

  17. Organic carbon remobilized from thawing permafrost is resequestered by reactive iron on the Eurasian Arctic Shelf

    NASA Astrophysics Data System (ADS)

    Salvadó, Joan A.; Tesi, Tommaso; Andersson, August; Ingri, Johan; Dudarev, Oleg V.; Semiletov, Igor P.; Gustafsson, Örjan

    2015-10-01

    Given the potential for permafrost carbon (PF/C)-climate feedbacks in the Siberian-Arctic land-ocean system, there is a need for understanding the fate of thawed-out PF/C. Here we show that the sequestration of OC by reactive iron (OC-Fe) ranges between 0.5 and 22% on the Eurasian Arctic Shelf, with higher values in the Kara Sea (KS) (18 ± 6%) and the Laptev Sea (LS) (14 ± 4%). The Δ14C/δ13C signatures of the OC-Fe are substantially older and more terrestrial than the bulk sediment OC in the LS but younger and more dominated by marine plankton sources in the East Siberian Sea (ESS). Statistical source apportionment modeling reveal that reactive iron phases resequestered 15 ± 5% of thawing PF/C in the LS and 6.4 ± 5% in the ESS, derived from both coastal erosion of ice complex deposit and thawing topsoil. This Fe-associated trap of PF/C constitutes a reduction of the degradation/outgassing and thus also an attenuation of the PF/C-climate feedback.

  18. Iron, phytoplankton growth, and the carbon cycle.

    PubMed

    Street, Joseph H; Paytan, Adina

    2005-01-01

    Iron is an essential nutrient for all living organisms. Iron is required for the synthesis of chlorophyll and of several photosynthetic electron transport proteins and for the reduction of CO2, SO4(2-), and NO3(-) during the photosynthetic production of organic compounds. Iron concentrations in vast areas of the ocean are very low (<1 nM) due to the low solubility of iron in oxic seawater. Low iron concentrations have been shown to limit primary production rates, biomass accumulation, and ecosystem structure in a variety of open-ocean environments, including the equatorial Pacific, the subarctic Pacific and the Southern Ocean and even in some coastal areas. Oceanic primary production, the transfer of carbon dioxide into organic carbon by photosynthetic plankton (phytoplankton), is one process by which atmospheric CO2 can be transferred to the deep ocean and sequestered for long periods of time. Accordingly, iron limitation of primary producers likely plays a major role in the global carbon cycle. It has been suggested that variations in oceanic primary productivity, spurred by changes in the deposition of iron in atmospheric dust, control atmospheric CO2 concentrations, and hence global climate, over glacial-interglacial timescales. A contemporary application of this "iron hypothesis" promotes the large-scale iron fertilization of ocean regions as a means of enhancing the ability of the ocean to store anthropogenic CO2 and mitigate 21st century climate change. Recent in situ iron enrichment experiments in the HNLC regions, however, cast doubt on the efficacy and advisability of iron fertilization schemes. The experiments have confirmed the role of iron in regulating primary productivity, but resulted in only small carbon export fluxes to the depths necessary for long-term sequestration. Above all, these experiments and other studies of iron biogeochemistry over the last two decades have begun to illustrate the great complexity of the ocean system. Attempts to

  19. Impact of organic carbon and iron bioavailability on the magnetic susceptibility of soils

    NASA Astrophysics Data System (ADS)

    Porsch, Katharina; Rijal, Moti L.; Borch, Thomas; Troyer, Lyndsay D.; Behrens, Sebastian; Wehland, Florian; Appel, Erwin; Kappler, Andreas

    2014-03-01

    Microorganisms are known to couple the degradation of hydrocarbons to Fe(III) reduction leading to the dissolution and (trans)formation of Fe minerals including ferro(i)magnetic Fe minerals such as magnetite. The screening of soil magnetic properties, in particular magnetic susceptibility (MS), has the potential to assist in locating and assessing hydrocarbon (e.g. gasoline) contamination in the environment. In order to evaluate this, it must be understood how changes in soil geochemistry and hydrocarbon input impact MS. To this end, we incubated microcosms with soils from six different field sites anoxically and followed the changes in soil MS. In parallel we simulated hydrocarbon (i.e., gasoline) contamination in the same soils under anoxic conditions. We found that in microbially active microcosms both with or without added gasoline, average changes in MS of 6.9 ± 2.6% occurred, whereas in sterile controls the changes were less than 2.5% demonstrating that microbial metabolism played a major role in the (trans)formation of ferro(i)magnetic minerals. The microcosms reached stable MS values after a few weeks to months in four out of the six soils showing an increase in MS while in two soils the MS decreased over time. After stable MS values were reached, further addition of labile organic carbon (i.e., lactate/acetate) did not lead to further changes in MS, but the addition of Fe(III) oxyhydroxides (ferrihydrite) led to increases in MS suggesting that the changes in MS were limited by bioavailable Fe and not by bioavailable organic carbon. In the control experiments without carbon amendment, we observed that natural organic matter was mobilized from the soil matrix by water or microbial growth medium (0.33-0.47 mL/g field moist soil) added to the microcosms, and that this mobilized organic matter also stimulated microbial Fe metabolism and thus also led to a microbially driven change in MS. This study shows that changes in MS after an increase of the amount of

  20. Reactive-transport modeling of iron diagenesis and associated organic carbon remineralization in a Florida (USA) subterranean estuary

    USGS Publications Warehouse

    Roy, Moutusi; Martin, Jonathan B.; Smith, Christopher G.; Cable, Jaye E.

    2011-01-01

    Iron oxides are important terminal electron acceptors for organic carbon (OC) remineralization in subterranean estuaries, particularly where oxygen and nitrate concentrations are low. In Indian River Lagoon, Florida, USA, terrestrial Fe-oxides dissolve at the seaward edge of the seepage face and flow upward into overlying marine sediments where they precipitate as Fe-sulfides. The dissolved Fe concentrations vary by over three orders of magnitude, but Fe-oxide dissolution rates are similar across the 25-m wide seepage face, averaging around 0.21 mg/cm2/yr. The constant dissolution rate, but differing concentrations, indicate Fe dissolution is controlled by a combination of increasing lability of dissolved organic carbon (DOC) and slower porewater flow velocities with distance offshore. In contrast, the average rate constants of Fe-sulfide precipitation decrease from 21.9 × 10-8 s-1 to 0.64 × 10-8 s-1 from the shoreline to the seaward edge of the seepage face as more oxygenated surface water circulates through the sediment. The amount of OC remineralized by Fe-oxides varies little across the seepage face, averaging 5.34 × 10-2 mg/cm2/yr. These rates suggest about 3.4 kg of marine DOC was remineralized in a 1-m wide, shore-perpendicular strip of the seepage face as the terrestrial sediments were transgressed over the past 280 years. During this time, about 10 times more marine solid organic carbon (SOC) accumulated in marine sediments than were removed from the underlying terrestrial sediments. Indian River Lagoon thus appears to be a net sink for marine OC.

  1. Reactive-transport modeling of iron diagenesis and associated organic carbon remineralization in a Florida (USA) subterranean estuary

    NASA Astrophysics Data System (ADS)

    Roy, Moutusi; Martin, Jonathan B.; Smith, Christopher G.; Cable, Jaye E.

    2011-04-01

    Iron oxides are important terminal electron acceptors for organic carbon (OC) remineralization in subterranean estuaries, particularly where oxygen and nitrate concentrations are low. In Indian River Lagoon, Florida, USA, terrestrial Fe-oxides dissolve at the seaward edge of the seepage face and flow upward into overlying marine sediments where they precipitate as Fe-sulfides. The dissolved Fe concentrations vary by over three orders of magnitude, but Fe-oxide dissolution rates are similar across the 25-m wide seepage face, averaging around 0.21 mg/cm 2/yr. The constant dissolution rate, but differing concentrations, indicate Fe dissolution is controlled by a combination of increasing lability of dissolved organic carbon (DOC) and slower porewater flow velocities with distance offshore. In contrast, the average rate constants of Fe-sulfide precipitation decrease from 21.9 × 10 - 8 s - 1 to 0.64 × 10 - 8 s - 1 from the shoreline to the seaward edge of the seepage face as more oxygenated surface water circulates through the sediment. The amount of OC remineralized by Fe-oxides varies little across the seepage face, averaging 5.34 × 10 - 2 mg/cm 2/yr. These rates suggest about 3.4 kg of marine DOC was remineralized in a 1-m wide, shore-perpendicular strip of the seepage face as the terrestrial sediments were transgressed over the past 280 years. During this time, about 10 times more marine solid organic carbon (SOC) accumulated in marine sediments than were removed from the underlying terrestrial sediments. Indian River Lagoon thus appears to be a net sink for marine OC.

  2. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    SciTech Connect

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  3. Impact of Temperature and Hydrological Residence Time on the Fate and Transport of Iron and Organic Carbon in Subalpine Wetlands

    NASA Astrophysics Data System (ADS)

    Schneider, L. M.; Borch, T.; Rhoades, C.; Pallud, C. E.

    2015-12-01

    Wetlands contain one third of the planet's soil carbon (C) and are characterized by markedly different chemical and physical environments than terrestrial ecosystems. The hydrologic residence time and temperature in wetlands influences their redox conditions and thus biogeochemical reaction rates. In these environments, transformation and movement of C and iron (Fe) are closely linked due to the sorption of organic C by solid Fe(III)-phases. Therefore, changes in Fe biogeochemical cycling will influence the size and turnover rate of soil C pools, which could negatively impact water quality and C storage. We examined the effects of hydrologic residence time and temperature on reduction of autochtonous Fe(III)-oxides. Fe(II)-export rates, used as a lower bound for bulk Fe(III)-reduction rates, and dissolved organic carbon (DOC) export rates were measured on intact mineral soil cores using flow-through reactor experiments exposed to temperatures based on mean annual conditions (6°, 12°, and 18°C). Soils were from a slope and a depressional subalpine wetland (USDA Fraser Experimental Forest, CO, USA), characterized by different hydrologic residence times, were compared. In the depressional wetland we observed the shallower soil depths have higher overall Fe(II)-export rates than the deeper soil depths. As temperature increases, Fe(II)-export rate increases, with a more than doubling in magnitude from 12 to 18° C. In comparing sites that are continuously inundated to those that are seasonally inundated, surprisingly we see higher Fe(II)-export rates in the seasonally inundated sites for all temperatures and depths. In the slope wetland we observed an opposite trend with depth and with temperature, with Fe(II)-export rates declining by almost an order of magnitude between 6 and 12°C. In addition, our results showed a positive correlation between Fe(II)-export rates and DOC export rates suggesting Fe(III)-reduction exerts a biogeochemical control on water quality

  4. Treatment of dissolved perchlorate, nitrate, and sulfate using zero-valent iron and organic carbon.

    PubMed

    Liu, YingYing; Ptacek, Carol J; Blowes, David W

    2014-05-01

    Waters containing ClO and dissolved NO, derived from detonated explosives and solid propellants, often also contain elevated concentrations of other dissolved constituents, including SO. Four column experiments, containing mixtures of silica sand, zero-valent Fe (ZVI) and organic C (OC) were conducted to evaluate the potential for simultaneous removal of NO, SO and ClO. Initially, the flow rate was maintained at 0.5 pore volumes (PV) d and then decreased to 0.1 PV d after 100 PV of flow. Nitrate concentrations decreased from 10.8 mg L (NO-N) to trace levels through NO reduction to NH using ZVI alone and through denitrification using OC. Observations from the mixture of ZVI and OC suggest a combination of NO reduction and denitrification. Up to 71% of input SO (24.5 ± 3.5 mg L) was removed in the column containing OC, and >99.7% of the input ClO (857 ± 63 μg L) was removed by the OC- and (ZVI + OC)-containing columns as the flow rate was maintained at 0.1 PV d. Nitrate and ClO removal followed first-order and zero-order rates, respectively. Nitrate >2 mg L (NO-N) inhibited ClO removal in the OC-containing column but not in the (ZVI + OC)-containing column. Sulfate did not inhibit ClO degradation within any of the columns.

  5. Variations of iron flux and organic carbon remineralization in a subterranean estuary caused by interannual variations in recharge

    USGS Publications Warehouse

    Roy, Moutusi; Martin, Jonathan B.; Cable, Jaye E.; Smith, Christopher G.

    2013-01-01

    We determine the inter-annual variations in diagenetic reaction rates of sedimentary iron (Fe ) in an east Florida subterranean estuary and evaluate the connection between metal fluxes and recharge to the coastal aquifer. Over the three-year study period (from 2004 to 2007), the amount of Fe-oxides reduced at the study site decreased from 192 g/yr to 153 g/yr and associated organic carbon (OC) remineralization decreased from 48 g/yr to 38 g/yr. These reductions occurred although the Fe-oxide reduction rates remained constant around 1 mg/cm2/yr. These results suggest that changes in flow rates of submarine groundwater discharge (SGD) related to changes in precipitation may be important to fluxes of the diagenetic reaction products. Rainfall at a weather station approximately 5 km from the field area decreased from 12.6 cm/month to 8.4 cm/month from 2004 to 2007. Monthly potential evapotranspiration (PET) calculated from Thornthwaite’s method indicated potential evapotranspiration cycled from about 3 cm/month in the winter to about 15 cm/month in the summer so that net annual recharge to the aquifer decreased from 40 cm in 2004 to -10 cm in 2007. Simultaneously, with the decrease in recharge of groundwater, freshwater SGD decreased by around 20% and caused the originally 25 m wide freshwater seepage face to decrease in width by about 5 m. The smaller seepage face reduced the area under which Fe-oxides were undergoing reductive dissolution. Consequently, the observed decrease in Fe flux is controlled by hydrology of the subterranean estuary. These results point out the need to better understand linkages between temporal variations in diagenetic reactions and changes in flow within subterranean estuaries in order to accurately constrain their contribution to oceanic fluxes of solutes from subterranean estuaries.

  6. Mechanistic investigations of Se(VI) treatment in anoxic groundwater using granular iron and organic carbon: an EXAFS study.

    PubMed

    Gibson, Blair D; Blowes, David W; Lindsay, Matthew B J; Ptacek, Carol J

    2012-11-30

    The removal of aqueous Se(VI) from a simulated groundwater by granular iron (GI), organic carbon (OC), and a mixture of these reactive materials (GI-OC) was evaluated in laboratory batch experiments. The experiments were performed under anoxic conditions to simulate subsurface treatment. A total reaction time of 120 h (5 d) was chosen to investigate the rapid changes in speciation occurring over reaction times that are reasonable for permeable reactive barrier (PRB) systems. After 120 h, concentrations of Se decreased by >90% in the GI system, 15% in the OC system and 35% in the GI-OC mixture. Analysis of the materials after contact with Se using synchrotron-radiation based X-ray absorption spectroscopy (XAS) indicated the presence of Se(IV) and Se(0) on the margins of GI grains after 6h with evidence of SeO and SeSe bonding, whereas Se(VI) was not observed. After 72 h, Se(0) was the only form of Se present in the GI experiments. In the OC batches, the XAS analysis indicated binding consistent with sorption of aqueous Se(VI) onto the OC with only minor reduction to Se(IV) and Se(0) after 120 h. Selenium XAS spectra collected for the GI-OC mixture were consistent with spectra for Se(IV) and Se(0) on both the margins of GI grains and OC particles, suggesting that the presence of dissolved Fe may have mediated the reduction of sorbed Se(VI). The results suggest that the application of granular Fe is effective at inducing aqueous Se removal in anoxic conditions through reductive precipitation processes.

  7. Optical Measurements Reveal Interplay Between Surface and Bottom Processes Involving Phytoplankton, Organic Carbon, Iron, Light, and Oxygen in Two Stratified Mesotrophic Lakes

    NASA Astrophysics Data System (ADS)

    Hargreaves, B. R.; Vaidya, A.; Wiles, K. A.

    2009-12-01

    Water column distribution of phytoplankton, organic carbon, particulate and dissolved iron are described through detailed vertical optical measurements that include downwelling cosine irradiance, turbidity, dissolved oxygen, fluorescence by CDOM, Chl-a, phycobilin pigments, and diffuse attenuation for several UV wavebands, plus pH, temperature, and specific conductance. These measurements were completed with a group of profiling instruments during summer in two mid-latitude small lakes. Special calibration allowed for correcting the impact of CDOM and turbidity on the pigment fluorescence signals. These in situ data were combined with laboratory analysis of discrete water column samples for methanol-extracted chlorophyll-a, spectral absorbance of particles, concentration of particulates (dry mass and ash-free mass), total particulate and "dissolved" iron, DOC and CDOM (the "dissolved fraction" passes through a GF/F filter). Surface processes revealed by these measurement include solar heating and photobleaching of CDOM (partly distributed by wind-driven mixing), and nonphotochemical quenching of phytoplankton chlorophyll-a fluorescence. Bottom processes revealed by these measurements include oxygen consumption by net heterotrophic metabolism, release of DOC, CDOM, and iron from anoxic bottom sediments, and the development of a biological community structured by the light and temperature gradients and absence or scarcity of dissolved oxygen near the bottom. The iron associated with CDOM and particles in the deep samples substantially increased the latter's DOC-specific absorption once there was an opportunity for oxidation. A model for mass-specific spectral absorption of particulates accounts for the contribution of organic matter and iron associated with the particles. A detailed hydrologic budget for one of the lakes will allow the water column processes to be explored further by accounting for inputs and outputs of water and organic carbon (via precipitation

  8. Export fluxes in a naturally iron-fertilized area of the Southern Ocean - Part 1: Seasonal dynamics of particulate organic carbon export from a moored sediment trap

    NASA Astrophysics Data System (ADS)

    Rembauville, M.; Salter, I.; Leblond, N.; Gueneugues, A.; Blain, S.

    2015-06-01

    A sediment trap moored in the naturally iron-fertilized Kerguelen Plateau in the Southern Ocean provided an annual record of particulate organic carbon and nitrogen fluxes at 289 m. At the trap deployment depth, current speeds were typically low (~ 10 cm s-1) and primarily tidal-driven (M2 tidal component). Although advection was weak, the sediment trap may have been subject to hydrodynamical and biological (swimmer feeding on trap funnel) biases. Particulate organic carbon (POC) flux was generally low (< 0.5 mmol m-2 d-1), although two episodic export events (< 14 days) of 1.5 mmol m-2 d-1 were recorded. These increases in flux occurred with a 1-month time lag from peaks in surface chlorophyll and together accounted for approximately 40% of the annual flux budget. The annual POC flux of 98.2 ± 4.4 mmol m-2 yr-1 was low considering the shallow deployment depth but comparable to independent estimates made at similar depths (~ 300 m) over the plateau, and to deep-ocean (> 2 km) fluxes measured from similarly productive iron-fertilized blooms. Although undertrapping cannot be excluded in shallow moored sediment trap deployment, we hypothesize that grazing pressure, including mesozooplankton and mesopelagic fishes, may be responsible for the low POC flux beneath the base of the winter mixed layer. The importance of plankton community structure in controlling the temporal variability of export fluxes is addressed in a companion paper.

  9. Sorption of dissolved organic carbon by hydrous aluminum and iron oxides occurring at the confluence of deer creek with the Snake River, Summit County, Colorado

    USGS Publications Warehouse

    McKnight, Diane M.; Bencala, K.E.; Zellweger, G.W.; Aiken, G.R.; Feder, G.L.; Thorn, K.A.

    1992-01-01

    Organic solute sorption by hydrous iron and aluminum oxides was studied in an acidic, metal-enriched stream (the Snake River) at its confluence with a pristine stream (Deer Creek). From 1979 to 1986, typically 40% of the dissolved organic carbon (DOC) was removed from solution by sorption onto aluminum and iron oxides, which precipitate as the two streamwaters mix. Upstream DOC concentrations, which increase during snowmelt, were identified as the most significant variables in a multiple regression for determining the DOC concentration below the confluence, and the extent of Al and Fe precipitation was much less significant. On hourly timescales, removal of Al and Fe varied erratically but DOC removal was steady, indicating that "sorbable" organic solutes are sorbed either by precipitating oxides or by oxides on the streambed. Characterization of two reactive DOC fractions (fulvic and hydrophilic acids) showed that sorption results in chemical fractionation. Molecules with greater contents of aromatic moieties, carboxylic acid groups, and amino acid residues were preferentially sorbed, which is consistent with the ligand exchange-surface complexation model.

  10. Promotion and nucleation of carbonate precipitation during microbial iron reduction.

    PubMed

    Zeng, Z; Tice, M M

    2014-07-01

    Iron-bearing early diagenetic carbonate cements are common in sedimentary rocks, where they are thought to be associated with microbial iron reduction. However, little is yet known about how local environments around actively iron-reducing cells affect carbonate mineral precipitation rates and compositions. Precipitation experiments with the iron-reducing bacterium Shewanella oneidensis MR-1 were conducted to examine the potential role of cells in promoting precipitation and to explore the possible range of precipitate compositions generated in varying fluid compositions. Actively iron-reducing cells induced increased carbonate mineral saturation and nucleated precipitation on their poles. However, precipitation only occurred when calcium was present in solution, suggesting that cell surfaces lowered local ferrous iron concentrations by adsorption or intracellular iron oxide precipitation even as they locally raised pH. Resultant precipitates were a range of thermodynamically unstable calcium-rich siderites that would likely act as precursors to siderite, calcite, or even dolomite in nature. By modifying local pH, providing nucleation sites, and altering metal ion concentrations around cell surfaces, iron-reducing micro-organisms could produce a wide range of carbonate cements in natural sediments. PMID:24862734

  11. Promotion and nucleation of carbonate precipitation during microbial iron reduction.

    PubMed

    Zeng, Z; Tice, M M

    2014-07-01

    Iron-bearing early diagenetic carbonate cements are common in sedimentary rocks, where they are thought to be associated with microbial iron reduction. However, little is yet known about how local environments around actively iron-reducing cells affect carbonate mineral precipitation rates and compositions. Precipitation experiments with the iron-reducing bacterium Shewanella oneidensis MR-1 were conducted to examine the potential role of cells in promoting precipitation and to explore the possible range of precipitate compositions generated in varying fluid compositions. Actively iron-reducing cells induced increased carbonate mineral saturation and nucleated precipitation on their poles. However, precipitation only occurred when calcium was present in solution, suggesting that cell surfaces lowered local ferrous iron concentrations by adsorption or intracellular iron oxide precipitation even as they locally raised pH. Resultant precipitates were a range of thermodynamically unstable calcium-rich siderites that would likely act as precursors to siderite, calcite, or even dolomite in nature. By modifying local pH, providing nucleation sites, and altering metal ion concentrations around cell surfaces, iron-reducing micro-organisms could produce a wide range of carbonate cements in natural sediments.

  12. Impact of Organic Carbon Electron Donors on Microbial Community Development under Iron- and Sulfate-Reducing Conditions.

    PubMed

    Kwon, Man Jae; O'Loughlin, Edward J; Boyanov, Maxim I; Brulc, Jennifer M; Johnston, Eric R; Kemner, Kenneth M; Antonopoulos, Dionysios A

    2016-01-01

    Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over time revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. These data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface environments

  13. Impact of Organic Carbon Electron Donors on Microbial Community Development under Iron- and Sulfate-Reducing Conditions

    PubMed Central

    Kwon, Man Jae; O’Loughlin, Edward J.; Boyanov, Maxim I.; Brulc, Jennifer M.; Johnston, Eric R.; Kemner, Kenneth M.; Antonopoulos, Dionysios A.

    2016-01-01

    Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over time revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. These data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface environments

  14. Surface-Plasmon-Enhanced Photodriven CO2 Reduction Catalyzed by Metal-Organic-Framework-Derived Iron Nanoparticles Encapsulated by Ultrathin Carbon Layers.

    PubMed

    Zhang, Huabin; Wang, Tao; Wang, Junjie; Liu, Huimin; Dao, Thang Duy; Li, Mu; Liu, Guigao; Meng, Xianguang; Chang, Kun; Shi, Li; Nagao, Tadaaki; Ye, Jinhua

    2016-05-01

    Highly efficient utilization of solar light with an excellent reduction capacity is achieved for plasmonic Fe@C nanostructures. By carbon layer coating, the optimized catalyst exhibits enhanced selectivity and stability applied to the solar-driven reduction of CO2 into CO. The surface-plasmon effect of iron particles is proposed to excite CO2 molecules, and thereby facilitates the final reaction activity. PMID:27001900

  15. Surface-Plasmon-Enhanced Photodriven CO2 Reduction Catalyzed by Metal-Organic-Framework-Derived Iron Nanoparticles Encapsulated by Ultrathin Carbon Layers.

    PubMed

    Zhang, Huabin; Wang, Tao; Wang, Junjie; Liu, Huimin; Dao, Thang Duy; Li, Mu; Liu, Guigao; Meng, Xianguang; Chang, Kun; Shi, Li; Nagao, Tadaaki; Ye, Jinhua

    2016-05-01

    Highly efficient utilization of solar light with an excellent reduction capacity is achieved for plasmonic Fe@C nanostructures. By carbon layer coating, the optimized catalyst exhibits enhanced selectivity and stability applied to the solar-driven reduction of CO2 into CO. The surface-plasmon effect of iron particles is proposed to excite CO2 molecules, and thereby facilitates the final reaction activity.

  16. Binding of dinitrogen to an iron-sulfur-carbon site

    NASA Astrophysics Data System (ADS)

    Čorić, Ilija; Mercado, Brandon Q.; Bill, Eckhard; Vinyard, David J.; Holland, Patrick L.

    2015-10-01

    Nitrogenases are the enzymes by which certain microorganisms convert atmospheric dinitrogen (N2) to ammonia, thereby providing essential nitrogen atoms for higher organisms. The most common nitrogenases reduce atmospheric N2 at the FeMo cofactor, a sulfur-rich iron-molybdenum cluster (FeMoco). The central iron sites that are coordinated to sulfur and carbon atoms in FeMoco have been proposed to be the substrate binding sites, on the basis of kinetic and spectroscopic studies. In the resting state, the central iron sites each have bonds to three sulfur atoms and one carbon atom. Addition of electrons to the resting state causes the FeMoco to react with N2, but the geometry and bonding environment of N2-bound species remain unknown. Here we describe a synthetic complex with a sulfur-rich coordination sphere that, upon reduction, breaks an Fe-S bond and binds N2. The product is the first synthetic Fe-N2 complex in which iron has bonds to sulfur and carbon atoms, providing a model for N2 coordination in the FeMoco. Our results demonstrate that breaking an Fe-S bond is a chemically reasonable route to N2 binding in the FeMoco, and show structural and spectroscopic details for weakened N2 on a sulfur-rich iron site.

  17. Binding of dinitrogen to an iron-sulfur-carbon site.

    PubMed

    Čorić, Ilija; Mercado, Brandon Q; Bill, Eckhard; Vinyard, David J; Holland, Patrick L

    2015-10-01

    Nitrogenases are the enzymes by which certain microorganisms convert atmospheric dinitrogen (N2) to ammonia, thereby providing essential nitrogen atoms for higher organisms. The most common nitrogenases reduce atmospheric N2 at the FeMo cofactor, a sulfur-rich iron-molybdenum cluster (FeMoco). The central iron sites that are coordinated to sulfur and carbon atoms in FeMoco have been proposed to be the substrate binding sites, on the basis of kinetic and spectroscopic studies. In the resting state, the central iron sites each have bonds to three sulfur atoms and one carbon atom. Addition of electrons to the resting state causes the FeMoco to react with N2, but the geometry and bonding environment of N2-bound species remain unknown. Here we describe a synthetic complex with a sulfur-rich coordination sphere that, upon reduction, breaks an Fe-S bond and binds N2. The product is the first synthetic Fe-N2 complex in which iron has bonds to sulfur and carbon atoms, providing a model for N2 coordination in the FeMoco. Our results demonstrate that breaking an Fe-S bond is a chemically reasonable route to N2 binding in the FeMoco, and show structural and spectroscopic details for weakened N2 on a sulfur-rich iron site.

  18. Analytical Carbon Probe Measurements on Iron Meteorites

    NASA Astrophysics Data System (ADS)

    Meibom, A.; Rasmussen, K. L.; Hornshoj, P.; Rud, N.; Heinemeier, J.

    1992-07-01

    Using a tandem accelerator the process ^12C(d,p)^13C reaction has been used to measure the carbon contents of stony meteorites (Oberheuser et al. 1983; Van der Stap et al. 1986). Carbon has been measured in iron meteorites primarily by combustion and subsequent determination of the amount of CO2 produced (Moore et al. 1969; Lewis and Moore 1971). We use a tandem accelerator and the ^12C(d,p)^13C reaction to non-destructively measure the carbon contents of iron meteorites. The precise measurement of carbon in iron meteorites might prove to be important for determination of metallographical cooling rates. The effect of the analogous element P on the Fe-Ni phase diagram and diffusion coefficients is pronounced, but investigations of the similar effects for carbon have never been undertaken due to lack of proper analytical tools with the needed detection limit and spatial resolution. Very low abundance levels can be expected. Our estimated detection limit for carbon is ca. 10 micrograms/g, although we have not yet achieved this level (Haack 1991). The surface contamination on the samples is a severe problem in such low concentration ranges. In order to remove surface contamination we use an argon sputter source to clean off the surface layer. We have prepared standards for irons as well as for silicates. References: Haack, H. (1991) Unpublished Thesis. Lewis, C.F. and Moore, C.B. (1971) Meteoritics, 6, 195-205. Moore, C.B., Lewis, C.F., and Nava, D. (1969) In: Meteorite Research (ed. P. Millman), 738-748. Oberheuser, G., Katherin, H., Demortier, G., Gonska, H., and Freund, F. (1983) Geochim. Cosmochim. Acta, 47, 1117-1129. Van der Stap, C.C.A.H., Heymann, D., Vis, R.D., and Verheul, H. (1986) Proc. LPSC 16th, JGR, 91, D373-D377.

  19. Iron traps terrestrially derived dissolved organic matter at redox interfaces.

    PubMed

    Riedel, Thomas; Zak, Dominik; Biester, Harald; Dittmar, Thorsten

    2013-06-18

    Reactive iron and organic carbon are intimately associated in soils and sediments. However, to date, the organic compounds involved are uncharacterized on the molecular level. At redox interfaces in peatlands, where the biogeochemical cycles of iron and dissolved organic matter (DOM) are coupled, this issue can readily be studied. We found that precipitation of iron hydroxides at the oxic surface layer of two rewetted fens removed a large fraction of DOM via coagulation. On aeration of anoxic fen pore waters, >90% of dissolved iron and 27 ± 7% (mean ± SD) of dissolved organic carbon were rapidly (within 24 h) removed. Using ultra-high-resolution MS, we show that vascular plant-derived aromatic and pyrogenic compounds were preferentially retained, whereas the majority of carboxyl-rich aliphatic acids remained in solution. We propose that redox interfaces, which are ubiquitous in marine and terrestrial settings, are selective yet intermediate barriers that limit the flux of land-derived DOM to oceanic waters. PMID:23733946

  20. Voronoi analysis of the short-range atomic structure in iron and iron-carbon melts

    NASA Astrophysics Data System (ADS)

    Sobolev, Andrey; Mirzoev, Alexander

    2015-08-01

    In this work, we simulated the atomic structure of liquid iron and iron-carbon alloys by means of ab initio molecular dynamics. Voronoi analysis was used to highlight changes in the close environments of Fe atoms as carbon concentration in the melt increases. We have found, that even high concentrations of carbon do not affect short-range atomic order of iron atoms — it remains effectively the same as in pure iron melts.

  1. Synthesis of carbon nanostructures on iron nanopowders

    NASA Astrophysics Data System (ADS)

    Koshanova, A.; Partizan, G.; Mansurov, B.; Medyanova, B.; Mansurova, M.; Aliev, B.; Jiang, Xin

    2016-08-01

    This work presents the results of experiments on synthesis of carbon nanostructures (CNs) by the method of thermal chemical vapor deposition using iron nanopowders obtained by the method of electrical explosion of wires as catalysts. To study the process of nucleation and growth of individual carbon nanostructures, experiments were conducted not only on nanopowders, but also on the separated clusters. To determine the optimum conditions of the carbon nanostructures synthesis and lower temperature limit, experiments were performed at different temperatures (300-700°C) and pressures (100-400 mbar). The experiments have shown that the lower temperature limit for carbon nanostructures synthesis on the iron nanopowders is 350°C and in this process the growth of carbon nanostructures is not so massive. Stable growth of carbon nanostructures for nanopowders began from 400°C during the entire range of pressures. The analysis of Raman spectroscopy showed that the most optimum conditions for obtaining nanotubes of high quality are P = 100 mbar and T = 425°C.

  2. Soil Iron Content as a Predictor of Carbon and Nutrient Mobilization in Rewetted Fens

    PubMed Central

    Emsens, Willem-Jan; Aggenbach, Camiel J. S.; Schoutens, Ken; Smolders, Alfons J. P.; Zak, Dominik; van Diggelen, Rudy

    2016-01-01

    Rewetted, previously drained fens often remain sources rather than sinks for carbon and nutrients. To date, it is poorly understood which soil characteristics stimulate carbon and nutrient mobilization upon rewetting. Here, we assess the hypothesis that a large pool of iron in the soil negatively affects fen restoration success, as flooding-induced iron reduction (Fe3+ to Fe2+) causes a disproportionate breakdown of organic matter that is coupled with a release of inorganic compounds. We collected intact soil cores in two iron-poor and two iron-rich drained fens, half of which were subjected to a rewetting treatment while the other half was kept drained. Prolonged drainage led to the mobilization of nitrate (NO3-, > 1 mmol L-1) in all cores, regardless of soil iron content. In the rewetted iron-rich cores, a sharp increase in pore water iron (Fe) concentrations correlated with concentrations of inorganic carbon (TIC, > 13 mmol L-1) and dissolved organic carbon (DOC, > 16 mmol L-1). Additionally, ammonium (NH4+) accumulated up to phytotoxic concentrations of 1 mmol L-1 in the pore water of the rewetted iron-rich cores. Disproportionate mobilization of Fe, TIC, DOC and NH4+ was absent in the rewetted iron-poor cores, indicating a strong interaction between waterlogging and iron-mediated breakdown of organic matter. Concentrations of dissolved phosphorus (P) rose slightly in all cores upon rewetting, but remained low throughout the experiment. Our results suggest that large pools of iron in the top soil of drained fens can hamper the restoration of the fen’s sink-service for ammonium and carbon upon rewetting. We argue that negative effects of iron should be most apparent in fens with fluctuating water levels, as temporary oxygenation allows frequent regeneration of Fe3+. We conclude that rewetting of iron-poor fens may be more feasible for restoration. PMID:27050837

  3. Soil Iron Content as a Predictor of Carbon and Nutrient Mobilization in Rewetted Fens.

    PubMed

    Emsens, Willem-Jan; Aggenbach, Camiel J S; Schoutens, Ken; Smolders, Alfons J P; Zak, Dominik; van Diggelen, Rudy

    2016-01-01

    Rewetted, previously drained fens often remain sources rather than sinks for carbon and nutrients. To date, it is poorly understood which soil characteristics stimulate carbon and nutrient mobilization upon rewetting. Here, we assess the hypothesis that a large pool of iron in the soil negatively affects fen restoration success, as flooding-induced iron reduction (Fe3+ to Fe2+) causes a disproportionate breakdown of organic matter that is coupled with a release of inorganic compounds. We collected intact soil cores in two iron-poor and two iron-rich drained fens, half of which were subjected to a rewetting treatment while the other half was kept drained. Prolonged drainage led to the mobilization of nitrate (NO3-, > 1 mmol L-1) in all cores, regardless of soil iron content. In the rewetted iron-rich cores, a sharp increase in pore water iron (Fe) concentrations correlated with concentrations of inorganic carbon (TIC, > 13 mmol L-1) and dissolved organic carbon (DOC, > 16 mmol L-1). Additionally, ammonium (NH4+) accumulated up to phytotoxic concentrations of 1 mmol L-1 in the pore water of the rewetted iron-rich cores. Disproportionate mobilization of Fe, TIC, DOC and NH4+ was absent in the rewetted iron-poor cores, indicating a strong interaction between waterlogging and iron-mediated breakdown of organic matter. Concentrations of dissolved phosphorus (P) rose slightly in all cores upon rewetting, but remained low throughout the experiment. Our results suggest that large pools of iron in the top soil of drained fens can hamper the restoration of the fen's sink-service for ammonium and carbon upon rewetting. We argue that negative effects of iron should be most apparent in fens with fluctuating water levels, as temporary oxygenation allows frequent regeneration of Fe3+. We conclude that rewetting of iron-poor fens may be more feasible for restoration.

  4. Soil Iron Content as a Predictor of Carbon and Nutrient Mobilization in Rewetted Fens.

    PubMed

    Emsens, Willem-Jan; Aggenbach, Camiel J S; Schoutens, Ken; Smolders, Alfons J P; Zak, Dominik; van Diggelen, Rudy

    2016-01-01

    Rewetted, previously drained fens often remain sources rather than sinks for carbon and nutrients. To date, it is poorly understood which soil characteristics stimulate carbon and nutrient mobilization upon rewetting. Here, we assess the hypothesis that a large pool of iron in the soil negatively affects fen restoration success, as flooding-induced iron reduction (Fe3+ to Fe2+) causes a disproportionate breakdown of organic matter that is coupled with a release of inorganic compounds. We collected intact soil cores in two iron-poor and two iron-rich drained fens, half of which were subjected to a rewetting treatment while the other half was kept drained. Prolonged drainage led to the mobilization of nitrate (NO3-, > 1 mmol L-1) in all cores, regardless of soil iron content. In the rewetted iron-rich cores, a sharp increase in pore water iron (Fe) concentrations correlated with concentrations of inorganic carbon (TIC, > 13 mmol L-1) and dissolved organic carbon (DOC, > 16 mmol L-1). Additionally, ammonium (NH4+) accumulated up to phytotoxic concentrations of 1 mmol L-1 in the pore water of the rewetted iron-rich cores. Disproportionate mobilization of Fe, TIC, DOC and NH4+ was absent in the rewetted iron-poor cores, indicating a strong interaction between waterlogging and iron-mediated breakdown of organic matter. Concentrations of dissolved phosphorus (P) rose slightly in all cores upon rewetting, but remained low throughout the experiment. Our results suggest that large pools of iron in the top soil of drained fens can hamper the restoration of the fen's sink-service for ammonium and carbon upon rewetting. We argue that negative effects of iron should be most apparent in fens with fluctuating water levels, as temporary oxygenation allows frequent regeneration of Fe3+. We conclude that rewetting of iron-poor fens may be more feasible for restoration. PMID:27050837

  5. Study of adsorption process of iron colloid substances on activated carbon by ultrasound

    NASA Astrophysics Data System (ADS)

    Machekhina, K. I.; Shiyan, L. N.; Yurmazova, T. A.; Voyno, D. A.

    2015-04-01

    The paper reports on the adsorption of iron colloid substances on activated carbon (PAC) Norit SA UF with using ultrasound. It is found that time of adsorption is equal to three hours. High-frequency electrical oscillation is 35 kHz. The adsorption capacity of activated carbon was determined and it is equal to about 0.25 mg iron colloid substances /mg PAC. The iron colloid substances size ranging from 30 to 360 nm was determined. The zeta potential of iron colloid substances which consists of iron (III) hydroxide, silicon compounds and natural organic substances is about (-38mV). The process of destruction iron colloid substances occurs with subsequent formation of a precipitate in the form of Fe(OH)3 as a result of the removal of organic substances from the model solution.

  6. Fabrication of Iron-Containing Carbon Materials From Graphite Fluoride

    NASA Technical Reports Server (NTRS)

    Hung, Ching-cheh

    1996-01-01

    Carbon materials containing iron alloy, iron metal, iron oxide or iron halide were fabricated. Typical samples of these metals were estimated to contain 1 iron atom per 3.5 to 5 carbon atoms. Those carbon materials containing iron alloy, iron metal, and/or Fe3O4 were magnetic. The kinetics of the fabrication process were studied by exposing graphite fluoride (CF(0.68)) to FeCl3 over a 280 to 420 C temperature range. Between 280 and 295 C, FeCl3 quickly entered the structure of CF(0.68), broke the carbon-fluorine bonds, and within 10 to 30 min, completely converted it to carbon made up of graphite planes between which particles of crystalline FeF3 and noncrystalline FeCl3 were located. Longer reaction times (e.g., 28 hr) or higher reaction temperatures (e.g., 420 C) produced materials containing graphite, a FeCl3-graphite intercalation compound, FeCl2(center dot)4H2O, and FeCl2(center dot)2H2O. These products were further heat treated to produce iron-containing carbon materials. When the heating temperature was kept in the 750 to 850 C range, and the oxygen supply was kept at the optimum level, the iron halides in the carbon structure were converted to iron oxides. Raising the heat to temperatures higher than 900 C reduced such iron oxides to iron metal. The kinetics of these reactions were used to suggest processes for fabricating carbon materials containing iron alloy. Such processes were then tested experimentally. In one of the successful trial runs, commercially purchased CF(0.7) powder was used as the reactant, and NiO was added during the final heating to 1200 C as a source of both nickel and oxygen. The product thus obtained was magnetic and was confirmed to be a nickel-iron alloy in carbon.

  7. Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume

    SciTech Connect

    Toner, Brandy M.; Fakra, Sirine C.; Manganini, Steven J.; Santelli, Cara M.; Marcus, Matthew A.; Moffett, James W.; Rouxel, Olivier; German, Christopher R.; Edwards, Katrina J.

    2008-09-20

    Hydrothermal venting associated with mid-ocean ridge volcanism is globally widespread. This venting is responsible for a dissolved iron flux to the ocean that is approximately equal to that associated with continental riverine runoff. For hydrothermal fluxes, it has long been assumed that most of the iron entering the oceans is precipitated in inorganic forms. However, the possibility of globally significant fluxes of iron escaping these mass precipitation events and entering open-ocean cycles is now being debated, and two recent studies suggest that dissolved organic ligands might influence the fate of hydrothermally vented metals. Here we present spectromicroscopic measurements of iron and carbon in hydrothermal plume particles at the East Pacific Rise mid-ocean ridge. We show that organic carbon-rich matrices, containing evenly dispersed iron(II)-rich materials, are pervasive in hydrothermal plume particles. The absence of discrete iron(II) particles suggests that the carbon and iron associate through sorption or complexation. We suggest that these carbon matrices stabilize iron(II) released from hydrothermal vents in the region, preventing its oxidation and/or precipitation as insoluble minerals. Our findings have implications for deep-sea biogeochemical cycling of iron, a widely recognized limiting nutrient in the oceans.

  8. Synthesis and properties of a novel structural binder utilizing the chemistry of iron carbonation.

    PubMed

    Das, Sumanta; Souliman, Beshoy; Stone, David; Neithalath, Narayanan

    2014-06-11

    This paper explores, for the first time, the possibility of carbonating waste metallic iron powder to develop sustainable binder systems for concrete. The fundamental premise of this work is that metallic iron will react with aqueous CO2 under controlled conditions to form complex iron carbonates which have binding capabilities. Chosen additives containing silica and alumina are added to facilitate iron dissolution and to obtain beneficial rheological and later-age properties. Water is generally only a medium for mass transfer in these systems thereby making the common reaction schemes in portland cement concretes inapplicable. The compressive and flexural strengths of the chosen iron-based binder systems increase with carbonation duration and the specimens carbonated for 4 days exhibit mechanical properties that are comparable to those of companion ordinary portland cement systems that are most commonly used as the binder in building and infrastructural construction. The influence of the additives, carbonation duration, and the air curing duration after carbonation are explored in detail. Thermogravimetric analysis demonstrate the presence of an organic carbonate complex (the dissolution agent used to dissolve iron is organic), the amount of which increases with carbonation duration. Thermal analysis also confirms the participation of some amount of limestone powder in the reaction product formation. The viability of this binder type for concrete applications is proved in this study.

  9. Synthesis and properties of a novel structural binder utilizing the chemistry of iron carbonation.

    PubMed

    Das, Sumanta; Souliman, Beshoy; Stone, David; Neithalath, Narayanan

    2014-06-11

    This paper explores, for the first time, the possibility of carbonating waste metallic iron powder to develop sustainable binder systems for concrete. The fundamental premise of this work is that metallic iron will react with aqueous CO2 under controlled conditions to form complex iron carbonates which have binding capabilities. Chosen additives containing silica and alumina are added to facilitate iron dissolution and to obtain beneficial rheological and later-age properties. Water is generally only a medium for mass transfer in these systems thereby making the common reaction schemes in portland cement concretes inapplicable. The compressive and flexural strengths of the chosen iron-based binder systems increase with carbonation duration and the specimens carbonated for 4 days exhibit mechanical properties that are comparable to those of companion ordinary portland cement systems that are most commonly used as the binder in building and infrastructural construction. The influence of the additives, carbonation duration, and the air curing duration after carbonation are explored in detail. Thermogravimetric analysis demonstrate the presence of an organic carbonate complex (the dissolution agent used to dissolve iron is organic), the amount of which increases with carbonation duration. Thermal analysis also confirms the participation of some amount of limestone powder in the reaction product formation. The viability of this binder type for concrete applications is proved in this study. PMID:24840162

  10. Total organic carbon analyzer

    NASA Technical Reports Server (NTRS)

    Godec, Richard G.; Kosenka, Paul P.; Smith, Brian D.; Hutte, Richard S.; Webb, Johanna V.; Sauer, Richard L.

    1991-01-01

    The development and testing of a breadboard version of a highly sensitive total-organic-carbon (TOC) analyzer are reported. Attention is given to the system components including the CO2 sensor, oxidation reactor, acidification module, and the sample-inlet system. Research is reported for an experimental reagentless oxidation reactor, and good results are reported for linearity, sensitivity, and selectivity in the CO2 sensor. The TOC analyzer is developed with gravity-independent components and is designed for minimal additions of chemical reagents. The reagentless oxidation reactor is based on electrolysis and UV photolysis and is shown to be potentially useful. The stability of the breadboard instrument is shown to be good on a day-to-day basis, and the analyzer is capable of 5 sample analyses per day for a period of about 80 days. The instrument can provide accurate TOC and TIC measurements over a concentration range of 20 ppb to 50 ppm C.

  11. Iron hydroxy carbonate formation in zerovalent iron permeable reactive barriers: characterization and evaluation of phase stability.

    PubMed

    Lee, Tony R; Wilkin, Richard T

    2010-07-30

    Predicting the long-term potential of permeable reactive barriers for treating contaminated groundwater relies on understanding the endpoints of biogeochemical reactions between influent groundwater and the reactive medium. Iron hydroxy carbonate (chukanovite) is frequently observed as a secondary mineral precipitate in granular iron PRBs. Mineralogical characterization was carried out using X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and X-ray absorption spectroscopy on materials collected from three field-based PRBs in the US (East Helena, MT; Elizabeth City, NC; Denver Federal Center, CO). These PRBs were installed to treat a range of contaminants, including chlorinated organics, hexavalent chromium, and arsenic. Results obtained indicate that chukanovite is a prevalent secondary precipitate in the PRBs. Laboratory experiments on high-purity chukanovite separates were carried out to constrain the room-temperature solubility for this mineral. An estimated Gibbs energy of formation (Delta(f)G degrees) for chukanovite is -1174.4 +/- 6 kJ/mol. A mineral stability diagram is consistent with observations from the field. Water chemistry from the three reactive barriers falls inside the predicted stability field for chukanovite, at inorganic carbon concentrations intermediate to the stability fields of siderite and ferrous hydroxide. These new data will aid in developing better predictive models of mineral accumulation in zerovalent iron PRBs.

  12. Carbon disulfide removal by zero valent iron.

    PubMed

    McGeough, Karen L; Kalin, Robert M; Myles, Philip

    2007-07-01

    The use of zero valent iron (Fe0) for the remediation of water contaminated with carbon disulfide (CS2), a common groundwater contaminant, has been evaluated in this study. Mineralogical analysis of Fe0 filings and polished Fe0 cross-sections indicates that iron sulfide is formed due to the removal of carbon disulfide from solution by Fe0. The kinetics of CS2 removal by Fe0 was examined through both batch and column testing, and it is demonstrated that CS2 is removed rapidly from solution. A linear relationship was observed, through batch testing, between the pseudo-first-order rate constant (k(obs)) and the surface area concentration of Fe0 (rho(a)). Data obtained from kinetic batch tests performed at four temperature levels conformed to the Arrhenius equation, and the calculated apparent activation energy (E(a)) was 37 +/- 2.3 kJ mol(-1), indicating that the kinetics of CS2 removal by Fe0 is controlled by a chemical surface reaction. The temperature correction factors for CS2 from a reference of 25 degrees C were x 1.4 for 18 degrees C, x 1.7 for 15 degrees C, x 2.0 for 12 degrees C, and x 2.3 for 9 degrees C. Surface area normalization of k(obs) obtained through batch and column testing gives specific reaction rate constants (k(SA)) within 1 order of magnitude, indicating that k(SA) values are useful as a general descriptor of CS2-Fe0 reaction kinetics and that these values provide a clear starting point for design calculations prior to commencing site-specific treatability studies for permeable reactive barrier design.

  13. The Iron Metallome in Eukaryotic Organisms

    PubMed Central

    Dlouhy, Adrienne C.; Outten, Caryn E.

    2013-01-01

    This chapter is focused on the iron metallome in eukaryotes at the cellular and subcellular level, including properties, utilization in metalloproteins, trafficking, storage, and regulation of these processes. Studies in the model eukaryote Saccharomyces cerevisiae and mammalian cells will be highlighted. The discussion of iron properties will center on the speciation and localization of intracellular iron as well as the cellular and molecular mechanisms for coping with both low iron bioavailability and iron toxicity. The section on iron metalloproteins will emphasize heme, iron-sulfur cluster, and non-heme iron centers, particularly their cellular roles and mechanisms of assembly. The section on iron uptake, trafficking, and storage will compare methods used by yeast and mammalian cells to import iron, how this iron is brought into various organelles, and types of iron storage proteins. Regulation of these processes will be compared between yeast and mammalian cells at the transcriptional, post-transcriptional, and post-translational levels. PMID:23595675

  14. In-Situ Regeneration of Saturated Granular Activated Carbon by an Iron Oxide Nanocatalyst

    EPA Science Inventory

    Granular activated carbon (GAC) can remove trace organic pollutants and natural organic matter (NOM) from industrial and municipal waters. This paper evaluates an iron nanocatalyst approach, based on Fenton-like oxidation reactions, to regenerate spent GAC within a packed bed con...

  15. Synthesis of carbon-encapsulated iron nanoparticles via solid state reduction of iron oxide nanoparticles

    SciTech Connect

    Bystrzejewski, M.

    2011-06-15

    The encapsulation of iron nanoparticles in protective carbon cages leads to unique hybrid core-shell nanomaterials. Recent literature reports suggest that such nanocomposites can be obtained in a relatively simple process involving the solid state carbothermal reduction of iron oxide nanoparticles. This approach is very attractive because it does not require advanced equipment and consumes less energy in comparison to widely used plasma methods. The presented more-in-depth study shows that the carbothermal approach is sensitive to temperature and the process yield strongly depends on the morphology and crystallinity of the carbon material used as a reductant. - Graphical abstract: Reduction of iron oxide nanoparticles by carbon black at 1200 deg. C yields well crystallized carbon-encapsulated iron nanoparticles. Highlights: > Carbon-encapsulated iron nanoparticles were synthesized by carbothermal reduction of iron oxide nanoparticles. > The process has the highest selectivity at 1200 C. > Lower temperatures result in iron oxide nanoparticles wrapped in carbon matrix. > The encapsulation rate of Fe at 1200 deg. C was found to be 15%.

  16. Dynamic behavior of iron forms in rapid reduction of carbon-coated iron ore

    SciTech Connect

    Sugawara, Katsuyasu; Morimoto, Koji; Sugawara, T.; Dranoff, J.S.

    1999-03-01

    As a part of a fundamental study of the kinetics of rapid smelting reduction of iron oxide with solid carbon, particles of carbon-coated iron ore were prepared by heating a mixture of iron ore and phenolphthalein (a model compound of coal tar) at 773 K in a nitrogen stream. The reduction behavior of the carbon-coated iron ore particles during rapid heating was studied using a drop-tube reactor at temperatures from 1,073 to 1,773 K. The reduction extent increased rapidly with the beginning of melting at temperatures over 1,650 K, reaching 60% at 1,773 within 0.7 s. The observed changes in the distribution of iron states in the particles were successfully simulated.

  17. Iron-carbonate interaction at Earth's core-mantle boundary

    NASA Astrophysics Data System (ADS)

    Dorfman, S. M.; Badro, J.; Nabiei, F.; Prakapenka, V.; Gillet, P.

    2015-12-01

    Carbon storage and flux in the deep Earth are moderated by oxygen fugacity and interactions with iron-bearing phases. The amount of carbon stored in Earth's mantle versus the core depends on carbon-iron chemistry at the core-mantle boundary. Oxidized carbonates subducted from Earth's surface to the lowermost mantle may encounter reduced Fe0 metal from disproportionation of Fe2+ in lower mantle silicates or mixing with the core. To understand the fate of carbonates in the lowermost mantle, we have performed experiments on sandwiches of single-crystal (Ca0.6Mg0.4)CO3 dolomite and Fe foil in the laser-heated diamond anvil cell at lower mantle conditions of 49-110 GPa and 1800-2500 K. Syntheses were conducted with in situ synchrotron X-ray diffraction to identify phase assemblages. After quench to ambient conditions, samples were sectioned with a focused Ga+ ion beam for composition analysis with transmission electron microscopy. At the centers of the heated spots, iron melted and reacted completely with the carbonate to form magnesiowüstite, iron carbide, diamond, magnesium-rich carbonate and calcium carbonate. In samples heated at 49 and 64 GPa, the two carbonates exhibit a eutectoid texture. In the sample heated at 110 GPa, the carbonates form rounded ~150-nm-diameter grains with a higher modal proportion of interspersed diamonds. The presence of reduced iron in the deep lower mantle and core-mantle boundary region will promote the formation of diamonds in carbonate-bearing subducted slabs. The complete reaction of metallic iron to oxides and carbides in the presence of mantle carbonate supports the formation of these phases at the Earth's core-mantle boundary and in ultra-low velocity zones.

  18. Iron Hydroxy Carbonate Formation in Zerovalent Iron Permeable Reactive Barriers: Characterization and Evaluation of Phase Stability

    EPA Science Inventory

    Predicting the long-term potential of permeable reactive barriers for treating contaminated groundwater relies on understanding the endpoints of biogeochemical reactions between influent groundwater and the reactive medium. Iron hydroxy carbonate (chukanovite) is frequently obs...

  19. Iron-carbon compacts and process for making them

    DOEpatents

    Sheinberg, Haskell

    2000-01-01

    The present invention includes iron-carbon compacts and a process for making them. The process includes preparing a slurry comprising iron powder, furfuryl alcohol, and a polymerization catalyst for initiating the polymerization of the furfuryl alcohol into a resin, and heating the slurry to convert the alcohol into the resin. The resulting mixture is pressed into a green body and heated to form the iron-carbon compact. The compact can be used as, or machined into, a magnetic flux concentrator for an induction heating apparatus.

  20. Iron-mediated stabilization of soil carbon amplifies the benefits of ecological restoration in degraded lands.

    PubMed

    Silva, Lucas C R; Doane, Timothy A; Corrêa, Rodrigo S; Valverde, Vinicius; Pereira, Engil I P; Horwath, William R

    2015-07-01

    Recent observations across a 14-year restoration chronosequence have shown an unexpected accumulation of soil organic carbon in strip-mined areas of central Brazil. This was attributed to the rapid plant colonization that followed the incorporation of biosolids into exposed regoliths, but the specific mechanisms involved in the stabilization of carbon inputs from the vegetation remained unclear. Using isotopic and elemental analyses, we tested the hypothesis that plant-derived carbon accumulation was triggered by the formation of iron-coordinated complexes, stabilized into physically protected (occluded) soil fractions. Confirming this hypothesis, we identified a fast formation of microaggregates shortly after the application of iron-rich biosolids, which was characterized by a strong association between pyrophosphate-extractable iron and plant-derived organic matter. The formation of microaggregates preceded the development of macroaggregates, which drastically increased soil carbon content (-140 Mg C/ha) a few years after restoration. Consistent with previous theoretical work, iron-coordinated organic complexes served as nuclei for aggregate formation, reflecting the synergistic effect of biological, chemical, and physical mechanisms of carbon stabilization in developing soils. Nevertheless, iron was not the only factor affecting soil carbon content. The highest carbon accumulation was observed during the period of highest plant diversity (> 30 species; years 3-6), declining significantly with the exclusion of native species by invasive grasses (years 9-14). Furthermore, the increasing dominance of invasive grasses was associated with a steady decline in the concentration of soil nitrogen and phosphorus per unit of accumulated carbon. These results demonstrate the importance of interdependent ecological and biogeochemical processes, and the role of soil-plant interactions in determining the success of restoration efforts. In contrast with previous but

  1. Iron-mediated stabilization of soil carbon amplifies the benefits of ecological restoration in degraded lands.

    PubMed

    Silva, Lucas C R; Doane, Timothy A; Corrêa, Rodrigo S; Valverde, Vinicius; Pereira, Engil I P; Horwath, William R

    2015-07-01

    Recent observations across a 14-year restoration chronosequence have shown an unexpected accumulation of soil organic carbon in strip-mined areas of central Brazil. This was attributed to the rapid plant colonization that followed the incorporation of biosolids into exposed regoliths, but the specific mechanisms involved in the stabilization of carbon inputs from the vegetation remained unclear. Using isotopic and elemental analyses, we tested the hypothesis that plant-derived carbon accumulation was triggered by the formation of iron-coordinated complexes, stabilized into physically protected (occluded) soil fractions. Confirming this hypothesis, we identified a fast formation of microaggregates shortly after the application of iron-rich biosolids, which was characterized by a strong association between pyrophosphate-extractable iron and plant-derived organic matter. The formation of microaggregates preceded the development of macroaggregates, which drastically increased soil carbon content (-140 Mg C/ha) a few years after restoration. Consistent with previous theoretical work, iron-coordinated organic complexes served as nuclei for aggregate formation, reflecting the synergistic effect of biological, chemical, and physical mechanisms of carbon stabilization in developing soils. Nevertheless, iron was not the only factor affecting soil carbon content. The highest carbon accumulation was observed during the period of highest plant diversity (> 30 species; years 3-6), declining significantly with the exclusion of native species by invasive grasses (years 9-14). Furthermore, the increasing dominance of invasive grasses was associated with a steady decline in the concentration of soil nitrogen and phosphorus per unit of accumulated carbon. These results demonstrate the importance of interdependent ecological and biogeochemical processes, and the role of soil-plant interactions in determining the success of restoration efforts. In contrast with previous but

  2. Control of Magnetic Properties of Carbon Nanotubes Filled with Iron

    NASA Astrophysics Data System (ADS)

    Sato, Hideki; Nagata, Atsushi; Kubonaka, Nobuo; Fujiwara, Yuji

    2013-11-01

    Carbon nanotubes (CNTs) filled with iron nanowires show high coercivity owing to their shape anisotropy originating from the high-aspect-ratio shapes of the iron nanowires. In this study, CNTs filled with iron were prepared by the thermal chemical vapor deposition (T-CVD) method using ferrocene as a precursor, and the magnetic properties of the synthesized CNTs were examined in detail. It was found that the CVD temperature and the amount of the ferrocene introduced into the CVD reactor influence the amount of CNT growth and the magnetic properties. The high coercivity of approximately 1.6 kOe or higher was obtained under certain CVD conditions. The selected-area electron diffraction analysis showed that the magnetic properties of the CNTs filled with iron are determined by the crystal structure (α-Fe or Fe3C) of the iron nanowires, which can be controlled by the amount of the ferrocene supplied during CVD.

  3. Carbon content of austenite in austempered ductile iron

    SciTech Connect

    Chang, L.C.

    1998-06-05

    The development of austempered ductile iron (ADI) is a major achievement in cast iron technology. The austempering heat treatment enables the ductile cast iron containing mainly strong bainitic ferrite and ductile carbon-enriched austenite, with some martensite transforms from austenite during cooling down to room temperature. A key factor controlling the stability of the retained austenite can be evaluated soundly using the thermodynamics principles. It is the purpose here to demonstrate that the data of ADI from numerous sources have a similar trend.

  4. Iron-carbon composites for the remediation of chlorinated hydrocarbons

    NASA Astrophysics Data System (ADS)

    Sunkara, Bhanu Kiran

    This research is focused on engineering submicron spherical carbon particles as effective carriers/supports for nanoscale zerovalent iron (NZVI) particles to address the in situ remediation of soil and groundwater chlorinated contaminants. Chlorinated hydrocarbons such as trichloroethylene (TCE) and tetrachloroethylene (PCE) form a class of dense non-aqueous phase liquid (DNAPL) toxic contaminants in soil and groundwater. The in situ injection of NZVI particles to reduce DNAPLs is a potentially simple, cost-effective, and environmentally benign technology that has become a preferred method in the remediation of these compounds. However, unsupported NZVI particles exhibit ferromagnetism leading to particle aggregation and loss in mobility through the subsurface. This work demonstrates two approaches to prepare carbon supported NZVI (iron-carbon composites) particles. The objective is to establish these iron-carbon composites as extremely useful materials for the environmental remediation of chlorinated hydrocarbons and suitable materials for the in situ injection technology. This research also demonstrates that it is possible to vary the placement of iron nanoparticles either on the external surface or within the interior of carbon microspheres using a one-step aerosol-based process. The simple process of modifying iron placement has significant potential applications in heterogeneous catalysis as both the iron and carbon are widely used catalysts and catalyst supports. Furthermore, the aerosol-based process is applied to prepare new class of supported catalytic materials such as carbon-supported palladium nanoparticles for ex situ remediation of contaminated water. The iron-carbon composites developed in this research have multiple functionalities (a) they are reactive and function effectively in reductive dehalogenation (b) they are highly adsorptive thereby bringing the chlorinated compound to the proximity of the reactive sites and also serving as adsorption

  5. Enriched Iron(III)-Reducing Bacterial Communities are Shaped by Carbon Substrate and Iron Oxide Mineralogy.

    PubMed

    Lentini, Christopher J; Wankel, Scott D; Hansel, Colleen M

    2012-01-01

    Iron (Fe) oxides exist in a spectrum of structures in the environment, with ferrihydrite widely considered the most bioavailable phase. Yet, ferrihydrite is unstable and rapidly transforms to more crystalline Fe(III) oxides (e.g., goethite, hematite), which are poorly reduced by model dissimilatory Fe(III)-reducing microorganisms. This begs the question, what processes and microbial groups are responsible for reduction of crystalline Fe(III) oxides within sedimentary environments? Further, how do changes in Fe mineralogy shape oxide-hosted microbial populations? To address these questions, we conducted a large-scale cultivation effort using various Fe(III) oxides (ferrihydrite, goethite, hematite) and carbon substrates (glucose, lactate, acetate) along a dilution gradient to enrich for microbial populations capable of reducing Fe oxides spanning a wide range of crystallinities and reduction potentials. While carbon source was the most important variable shaping community composition within Fe(III)-reducing enrichments, both Fe oxide type and sediment dilution also had a substantial influence. For instance, with acetate as the carbon source, only ferrihydrite enrichments displayed a significant amount of Fe(III) reduction and the well-known dissimilatory metal reducer Geobacter sp. was the dominant organism enriched. In contrast, when glucose and lactate were provided, all three Fe oxides were reduced and reduction coincided with the presence of fermentative (e.g., Enterobacter spp.) and sulfate-reducing bacteria (e.g., Desulfovibrio spp.). Thus, changes in Fe oxide structure and resource availability may shift Fe(III)-reducing communities between dominantly metal-respiring to fermenting and/or sulfate-reducing organisms which are capable of reducing more recalcitrant Fe phases. These findings highlight the need for further targeted investigations into the composition and activity of speciation-directed metal-reducing populations within natural environments.

  6. Iron metal-organic frameworks MIL-88B and NH2-MIL-88B for the loading and delivery of the gasotransmitter carbon monoxide.

    PubMed

    Ma, Mingyan; Noei, Heshmat; Mienert, Bernd; Niesel, Johanna; Bill, Eckhard; Muhler, Martin; Fischer, Roland A; Wang, Yuemin; Schatzschneider, Ulrich; Metzler-Nolte, Nils

    2013-05-17

    Crystals of MIL-88B-Fe and NH2-MIL-88B-Fe were prepared by a new rapid microwave-assisted solvothermal method. High-purity, spindle-shaped crystals of MIL-88B-Fe with a length of about 2 μm and a diameter of 1 μm and needle-shaped crystals of NH2-MIL-88B-Fe with a length of about 1.5 μm and a diameter of 300 nm were produced with uniform size and excellent crystallinity. The possibility to reduce the as-prepared frameworks and the chemical capture of carbon monoxide in these materials was studied by in situ ultrahigh vacuum Fourier-transform infrared (UHV-FTIR) spectroscopy and Mössbauer spectroscopy. CO binding occurs to unsaturated coordination sites (CUS). The release of CO from the as-prepared materials was studied by a myoglobin assay in physiological buffer. The release of CO from crystals of MIL-88B-Fe with t(1/2) = 38 min and from crystals of NH2-MIL-88B-Fe with t(1/2) = 76 min were found to be controlled by the degradation of the MIL materials under physiological conditions. These MIL-88B-Fe and NH2-MIL-88B-Fe materials show good biocompatibility and have the potential to be used in pharmacological and therapeutic applications as carriers and delivery vehicles for the gasotransmitter carbon monoxide. PMID:23536364

  7. Synthesis of carbon-coated iron nanoparticles by detonation technique

    SciTech Connect

    Sun, Guilei; Li, Xiaojie; Wang, Qiquan; Yan, Honghao

    2010-05-15

    Carbon-coated iron nanoparticles were synthesized by detonating a mixture of ferrocene, naphthalene and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in an explosion vessel under low vacuum conditions (8.1 kPa). The RDX functioned as an energy source for the decomposition of ferrocene and naphthalene. The carbon-coated iron nanoparticles were formed as soot-like deposits on the inner surface of the reactor, which were characterized by XRD, TEM, HRTEM, Raman spectroscopy and vibrating sample magnetometer. And a portion of the detonation soot was treated with hydrochloric acid. The product was carbon-coated nanoparticles in perfect core-shell structures with graphitic shells and bcc-Fe cores. The detonation technique offers an energy-saving route to the synthesis of carbon-coated nanomaterials.

  8. Cold catalytic recovery of loaded activated carbon using iron oxide-based nanoparticles.

    PubMed

    Bach, Altai; Zelmanov, Grigory; Semiat, Raphael

    2008-01-01

    A novel approach for the recovery of spent activated carbon by an advanced oxidation process using iron oxide-based nanocatalysts was proposed and investigated. Model organic contaminants, such as ethylene glycol and phenol, were chosen for this study as water pollutants. It was shown that there are several advantages in using catalytic oxidation recovery of activated carbon with iron oxide-based nanocatalysts: low temperature reactivity of catalytic recovery without heating; and a relatively large number of adsorption-recovery cycles, without a reduction in the adsorptive properties of the virgin activated carbon or without a performance decrease from the first adsorption-recovery cycle of the new modified adsorptive properties of the activated carbon. The catalytic recovery takes place without ultraviolet light or any visible radiation sources. Results show a high efficiency of catalytic recovery of spent activated carbon using iron oxide-based nanocatalysts. A 97-99% efficiency of spent activated carbon catalytic regeneration was achieved under chosen conditions after 15-20 min of reaction. The process may be also considered as cold in situ recovery of active carbon.

  9. Influence of high dietary iron as ferrous carbonate and ferrous sulfate on iron metabolism in young calves.

    PubMed

    McGuire, S O; Miller, W J; Gentry, R P; Neathery, M W; Ho, S Y; Blackmon, D M

    1985-10-01

    Twelve intact male Holstein calves averaging 90 kg and 12 wk of age were fed one of three dietary treatments for 28 d. The diets were A) control, B) control plus 1000 ppm iron as ferrous carbonate, and C) control plus 1000 ppm iron as ferrous sulfate monohydrate. Calves were dosed orally on d 15 of the treatment period with 1 mCi of iron-59. Neither source of added iron had a significant effect on weight gains, feed consumption, hemoglobin, packed cell volume, serum total iron, serum total iron-binding capacity, unbound iron-binding capacity, serum copper, tissue copper, fecal dry matter, or a consistent effect on fecal pH. The ferrous carbonate had no significant effect on stable zinc or stable iron in any tissue studied. Calves fed ferrous sulfate had higher average stable iron in most tissues and significantly more in the small intestine. Tissue zinc was lower in spleen and pancreas of ferrous sulfate-fed calves. Both sources of added iron sharply reduced iron-59 in serum, whole blood, and body tissues. The reduction was substantially greater in calves fed the ferrous sulfate iron. Iron in ferrous sulfate had a higher biological availability than that in the ferrous carbonate; however, bioavailability of the ferrous carbonate iron appeared to be substantial and considerably more than that noted in previous studies in which a different source of ferrous carbonate was used. The maximum safe level of dietary iron is materially influenced by the source of iron with a higher tolerance indicated for ferrous carbonated than ferrous sulfate monohydrate.

  10. Carbonates of the Gunflint Banded Iron Formation as Analogs of Martian Carbonates

    NASA Technical Reports Server (NTRS)

    Pun, A.; Papike, J. J.; Shearer, C. K.

    2001-01-01

    Terrestrial iron formations preserve remnants of life on Earth and may serve as analogs for identifying evidence of biologic activity in martian rocks. We report on the petrography, mineralogy and trace-element abundances of carbonates of the Gunflint banded iron formation. Additional information is contained in the original extended abstract.

  11. Carbon monoxide and iron modulate plasmatic coagulation in Alzheimer's disease.

    PubMed

    Nielsen, Vance G; Pretorius, Etheresia; Bester, Janette; Jacobsen, Wayne K; Boyle, Patrick K; Reinhard, Joao P

    2015-01-01

    Alzheimer's disease (AD) is a significant source of morbidity and mortality for millions of people worldwide, and multiple potential etiologies have been postulated to contribute to AD. Among these, spontaneous cerebral emboli and increased cerebral and circulating heme oxygenase (Hmox) activity in AD patients are of particular interest, as two of the products of Hmox activity, carbon monoxide (CO) and iron enhance plasmatic coagulation and modify the ultrastructure of thrombi. We hypothesized that patients afflicted with AD would have coagulation kinetics modulated by CO and iron. Using viscoelastic assessments of coagulation, it was determined with a small cohort (n=11) of AD patients that all had enhancement of coagulation by CO, iron, or both. In a complementary fashion, it was determined that a separate cohort (n=12) of AD patients had thrombi with ultrastructural features consistent with iron and CO exposure as assessed with scanning electron microscopy. Further, when stratified by normal or abnormally increased serum ferritin concentrations (which can be increased by Hmox), the AD patients with abnormal ferritin concentrations had significantly thinner fibrin fiber diameters, not unlike that noted when normal plasma is mixed with iron or CO. In sum, AD patients were noted to have plasmatic coagulation kinetic and thrombus ultrastructural changes consistent with exposure to CO and iron. Future investigation of CO and iron in the pathogenesis of Alzheimer's disease is warranted.

  12. Synthetic effect between iron oxide and sulfate mineral on the anaerobic transformation of organic substance.

    PubMed

    Chen, Tian-Hu; Wang, Jin; Zhou, Yue-Fei; Yue, Zheng-Bo; Xie, Qiao-Qin; Pan, Min

    2014-01-01

    Synthetic effect between sulfate minerals (gypsum) and iron oxide (hematite) on the anaerobic transformation of organic substance was investigated in the current study. The results showed that gypsum was completely decomposed while hematite was partially reduced. The mineral phase analysis results showed that FeS and CaCO3 was the major mineralization product. Methane generation process was inhibited and inorganic carbon contents in the precipitates were enhanced compared to the control without hematite and gypsum. The inorganic carbon content increased with the increasing of hematite dosages. Co-addition of sulfate minerals and iron oxide would have a potential application prospect in the carbon sequestration area and reduction of the greenhouse gas release. The results would also reveal the role of inorganic mineral in the global carbon cycle. PMID:24189378

  13. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa.

    PubMed

    Beukes, N J; Klein, C; Kaufman, A J; Hayes, J M

    1990-01-01

    The transition zone comprises Campbellrand microbialaminated (replacing "cryptalgalaminate") limestone and shale, with minor dolomite, conformably overlain by the Kuruman Iron Formation of which the basal part is characterized by siderite-rich microbanded iron-formation with minor magnetite and some hematite-containing units. The iron-formation contains subordinate intraclastic and microbialaminated siderite mesobands and was deposited in deeper water than the limestones. The sequence is virtually unaltered with diagenetic mineral assemblages reflecting a temperature interval of about 110 degrees to 170 degrees C and pressures of 2 kbars. Carbonate minerals in the different rock types are represented by primary micritic precipitates (now recrystallized to microsparite), early precompactional sparry cements and concretions, deep burial limpid euhedral sparites, and spar cements precipitated from metamorphic fluids in close contact with diabase sills. Paragenetic pathways of the carbonate minerals are broadly similar in all lithofacies with kerogen intimately associated with them. Kerogen occurs as pigmentation in carbonate crystals, as reworked organic detritus in clastic-textured carbonate units, and as segregations of kerogen pigment around late diagenetic carbonate crystals. Locally kerogen may also be replaced by carbonate spar. Carbon isotope compositions of the carbonate minerals and kerogen are dependent on their mode of occurrence and on the composition of the dominant carbonate species in a specific lithofacies. Integration of sedimentary, petrographic, geochemical, and isotopic results makes it possible to distinguish between depositional, early diagenetic, deep burial, and metamorphic effects on the isotopic compositions of the carbonate minerals and the kerogen in the sequence. Major conclusions are that deep burial thermal decarboxylation led to 13C depletion in euhedral ferroan sparites and 13C enrichment in kerogen (organic carbon). Metamorphic

  14. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa

    NASA Technical Reports Server (NTRS)

    Beukes, N. J.; Klein, C.; Kaufman, A. J.; Hayes, J. M.

    1990-01-01

    The transition zone comprises Campbellrand microbialaminated (replacing "cryptalgalaminate") limestone and shale, with minor dolomite, conformably overlain by the Kuruman Iron Formation of which the basal part is characterized by siderite-rich microbanded iron-formation with minor magnetite and some hematite-containing units. The iron-formation contains subordinate intraclastic and microbialaminated siderite mesobands and was deposited in deeper water than the limestones. The sequence is virtually unaltered with diagenetic mineral assemblages reflecting a temperature interval of about 110 degrees to 170 degrees C and pressures of 2 kbars. Carbonate minerals in the different rock types are represented by primary micritic precipitates (now recrystallized to microsparite), early precompactional sparry cements and concretions, deep burial limpid euhedral sparites, and spar cements precipitated from metamorphic fluids in close contact with diabase sills. Paragenetic pathways of the carbonate minerals are broadly similar in all lithofacies with kerogen intimately associated with them. Kerogen occurs as pigmentation in carbonate crystals, as reworked organic detritus in clastic-textured carbonate units, and as segregations of kerogen pigment around late diagenetic carbonate crystals. Locally kerogen may also be replaced by carbonate spar. Carbon isotope compositions of the carbonate minerals and kerogen are dependent on their mode of occurrence and on the composition of the dominant carbonate species in a specific lithofacies. Integration of sedimentary, petrographic, geochemical, and isotopic results makes it possible to distinguish between depositional, early diagenetic, deep burial, and metamorphic effects on the isotopic compositions of the carbonate minerals and the kerogen in the sequence. Major conclusions are that deep burial thermal decarboxylation led to 13C depletion in euhedral ferroan sparites and 13C enrichment in kerogen (organic carbon). Metamorphic

  15. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa.

    PubMed

    Beukes, N J; Klein, C; Kaufman, A J; Hayes, J M

    1990-01-01

    The transition zone comprises Campbellrand microbialaminated (replacing "cryptalgalaminate") limestone and shale, with minor dolomite, conformably overlain by the Kuruman Iron Formation of which the basal part is characterized by siderite-rich microbanded iron-formation with minor magnetite and some hematite-containing units. The iron-formation contains subordinate intraclastic and microbialaminated siderite mesobands and was deposited in deeper water than the limestones. The sequence is virtually unaltered with diagenetic mineral assemblages reflecting a temperature interval of about 110 degrees to 170 degrees C and pressures of 2 kbars. Carbonate minerals in the different rock types are represented by primary micritic precipitates (now recrystallized to microsparite), early precompactional sparry cements and concretions, deep burial limpid euhedral sparites, and spar cements precipitated from metamorphic fluids in close contact with diabase sills. Paragenetic pathways of the carbonate minerals are broadly similar in all lithofacies with kerogen intimately associated with them. Kerogen occurs as pigmentation in carbonate crystals, as reworked organic detritus in clastic-textured carbonate units, and as segregations of kerogen pigment around late diagenetic carbonate crystals. Locally kerogen may also be replaced by carbonate spar. Carbon isotope compositions of the carbonate minerals and kerogen are dependent on their mode of occurrence and on the composition of the dominant carbonate species in a specific lithofacies. Integration of sedimentary, petrographic, geochemical, and isotopic results makes it possible to distinguish between depositional, early diagenetic, deep burial, and metamorphic effects on the isotopic compositions of the carbonate minerals and the kerogen in the sequence. Major conclusions are that deep burial thermal decarboxylation led to 13C depletion in euhedral ferroan sparites and 13C enrichment in kerogen (organic carbon). Metamorphic

  16. Formation of magnetite and iron-rich carbonates by thermophilic iron-reducing bacteria

    SciTech Connect

    Zhang, C.; Liu, S.; Roh, Y.; Cole, D.; Phelps, T.; Vali, H.; Kirschvink, J.L.; Onsttot, T.; McKay, D.

    1997-06-01

    Laboratory experiments were performed to study the formation of iron minerals by a thermophilic (45 to 75 C) fermentative iron-reducing bacterial culture (TOR39) obtained from the deep subsurface. Using amorphous Fe(III) oxyhydroxide as an electron acceptor and glucose as an electron donor, TOR39 produced magnetite and iron-rich carbonates at conditions consistent, on a thermodynamic basis, with Eh ({minus}200 mV to {minus}415 mV) and pH (6.2 to 7.7) values determined for these experiments. Analyses of the precipitating solid phases by X-ray diffraction showed that the starting amorphous Fe(III) oxyhydroxide was nearly completely converted to magnetite and Fe-rich carbonate after 20 days of incubation. Increasing bicarbonate concentration in the chemical milieu resulted in increased proportions of siderite relative to magnetite and the addition of MgCl{sub 2} caused the formation of magnesium-rich carbonate in addition to siderite. The results suggest that the TOR39 bacterial culture may have the capacity to form magnetite and iron-rich carbonates in a variety of geochemical conditions. These results may have significant implications for studying the past biogenic activities in the Martian meteorite ALH84001.

  17. Stabilization of Organic Matter by Interactions with Iron Oxides: Relative Importance of Sorption vs. Aggregation

    NASA Astrophysics Data System (ADS)

    Jin, L.; Berhe, A. A.

    2015-12-01

    Persistence of organic matter in soil is largely determined by the environmental conditions that organic compounds encounter in the environment. The most important stabilization mechanisms for carbon in soil include chemical and physical association of organic compounds with soil minerals. However, to date, we don't have a complete understanding of the relative contribution of each process to carbon stabilization, especially under different soil conditions. To develop better process-level understanding of these stabilization mechanisms, the relative importance of chemical vs. physical mechanisms of carbon stabilization facilitated by iron oxides at different soil solution conditions using a variety of advanced approaches including electron microscopy and infrared spectroscopy is determined. Our preliminary results suggest that aggregation may be the dominant process in mineral-organic associations. These results improve our understanding of factors that regulate persistence of organic matter in soil system.

  18. Deactivation by carbon of iron catalysts for indirect liquefaction

    SciTech Connect

    Bartholomew, C.H.

    1991-01-10

    Although promoted cobalt and iron catalysts for Fischer-Tropsch (FT) synthesis of gasoline feedstock were first developed more than three decades ago, a major technical problem still limiting the commercial use of these catalysts today is carbon deactivation. This report describes recent progress in a fundamental, three-year investigation of carbon formation and its effects on the activity and selectivity of promoted iron catalysts for FT synthesis, the objectives of which are to: determine rates and mechanisms of carbon deactivation of unsupported Fe and Fe/K catalysts during CO hydrogenation over a range of CO concentrations, CO:H{sub 2} ratios, and temperatures; and model the rates of deactivation of the same catalysts in fixed-bed reactors. To accomplish the above objectives, the project is divided into the following tasks: (1) determine the kinetics of reaction and of carbon deactivation during CO hydrogenation on Fe and Fe/K catalysts coated on monolith bodies. (2) Determine the reactivities and types of carbon deposited during reaction on the same catalysts from temperature-programmed-surface-reaction spectroscopy (TPSR) and transmission electron microscopy (TEM). Determine the types of iron carbides formed at various temperatures and H{sub 2}/CO ratios using x-ray diffraction and Moessbauer spectroscopy. (3) Develop mathematical deactivation models which include heat and mass transport contributions for FT synthesis is packed-bed reactors. Progress to date is described. 48 refs., 3 figs., 1 tab.

  19. Synthesis of amorphous carbon nanofibers using iron nanoparticles as catalysts

    NASA Astrophysics Data System (ADS)

    Ali, Mokhtar; Ramana, G. Venkata; Padya, Balaji; Srikanth, V. V. S. S.; Jain, P. K.

    2013-06-01

    Amongst various carbon nanomaterials, carbon nanofibers (CNFs) have lately attracted considerable interest as a promising reinforcement in polymer matrix composites. CNFs are often synthesized using copper nanoparticles as catalysts and by using chemical vapor deposition (CVD). In this work iron (Fe) nanoparticles are used as catalysts to synthesize amorphous carbon nanofibers. This owes significance since Fe nanoparticles often lead to tubes rather than fibers. Fe nanoparticles (size ˜30-60nm) are prepared by first mixing an appropriate quantity of potassium sodium tartrate tetrahydrate salt with iron (II) chloride dehydrate to obtain iron tartrate and then dried and heated in vacuum oven at about 250°C to remove tartrate. In a subsequent step, CNFs are obtained by using CVD. Acetylene was used as the carbon source in the CVD process. Scanning and transmission electron microscopy show the formation of nanofibers whose diameter is dependent on the size of Fe catalysts. Raman scattering from the fibers show that they are made up of carbon and are amorphous.

  20. The elements just beyond iron - Formation during explosive carbon burning

    NASA Technical Reports Server (NTRS)

    Wefel, J. P.; Schramm, D. N.; Blake, J. B.; Pridmore-Brown, D.

    1981-01-01

    It is pointed out that the details of the synthesis of the elements just beyond iron are unclear. Thus, a reexamination of the role played by neutron-capture reactions during explosive carbon burning is indicated. A description is given of calculations of explosive carbon-burning nucleosynthesis using a complete neutron capture (n-process) computer code with a network extending from Cr through Zr and including not only (n,gamma), (gamma,n) reactions and beta-decay but also (p,n), (n,p), (p,gamma), and (p,alpha) reactions. Initial conditions indicative of the composition of a massive star following core helium burning were selected, and a comparison is made with conditions similar to those used by Howard et al. (1972). It is found that neutron reactions during explosive carbon burning are an important source for the elements just beyond iron.

  1. Deactivation by carbon of iron catalysts for indirect liquefaction

    SciTech Connect

    Bartholomew, C H

    1991-02-14

    Progress is reported for a four-year fundamental investigation of carbon formation and its effects on the activity and selectivity of promoted iron catalysts for FT synthesis, the objectives of which were to (1) determine rates and mechanisms of carbon deactivation of unsupported Fe and Fe/K catalysts during CO hydrogenation and (2) model the global rates of deactivation at the surface of the catalyst for the same catalysts. A computer-automated reactor system to be used in the kinetic and deactivation studies was designed, constructed and tested. Kinetic data for CO hydrogenation on unsupported, unpromoted iron, 99% Fe/1% Al{sub 2}O{sub 3}, and K-promoted 99% Fe/1% Al{sub 2}O{sub 3} catalysts were obtained as functions of temperature, reactant particle pressures and time. The activity/selectivity and kinetic data are consistent with those previously reported for supported, unpromoted and promoted iron. Two kinds of deactivation were observed during FT synthesis on these samples: (1) loss of surface area after reduction of unsupported, unpromoted iron at 400{degree}C and (2) loss of activity with time due to carbon deposition, especially in the case of K-promoted 99% Fe/1% A1{sub 2}O{sub 3}. Deactivation rate data were obtained for CO hydrogenation on promoted Fe as a function of time, temperature, and H{sub 2}/CO ratio. 50 refs., 24 figs., 5 tabs.

  2. Iron carbonates in the Earth's lower mantle: reality or imagination?

    NASA Astrophysics Data System (ADS)

    Cerantola, V.; McCammon, C. A.; Merlini, M.; Bykova, E.; Kupenko, I.; Ismailova, L.; Chumakov, A. I.; Kantor, I.; Dubrovinsky, L. S.; Prescher, C.

    2015-12-01

    Carbonates play a fundamental role in the recycling of carbon inside our planet due to their presence in oceanic slabs that sink through the Earth's interior. Through this process, iron carbonates are potential stable carbon-bearing minerals in the deep mantle in part due to spin crossover of ferrous iron. Our goal is to identify which minerals may be the dominant carriers of carbon into the deep mantle at the relevant conditions of fO2, P and T. All experiments were performed using synthetic FeCO3 and MgFeCO3 single crystals in laser heated diamond anvil cells up to 100 GPa and 3000 K in order to simulate the conditions prevailing in the Earth's lower mantle. Transformation and decomposition products of the original carbonates were characterized at different synchrotron facilities by means of single-crystal XRD, synchrotron Mössbauer source spectroscopy and XANES techniques. At deep lower mantle conditions, we observed the transformation of FeCO3 to two new HP-carbonate structures, monoclinic Fe22+Fe23+C4O13 and trigonal Fe43+(CO4)3, both characterized by the presence of CO4 tetrahedra with different degrees of polymerization. At shallower depths in the lower mantle where temperatures are lower following the geotherm, Fe-carbonates decompose to different Fe-oxides instead of new HP-carbonates. However, at slab temperatures several hundred degrees lower than the surrounding mantle, carbonates could be stabilized until reaching conditions that trigger their transformation to HP-structures. We postulate that Fe-rich carbonates could exist in regions down to the core-mantle boundary in the proximity of subducting slabs, i.e., a "cold" environment with relatively high fO2.

  3. Uniform yolk-shell iron sulfide–carbon nanospheres for superior sodium–iron sulfide batteries

    PubMed Central

    Wang, Yun-Xiao; Yang, Jianping; Chou, Shu-Lei; Liu, Hua Kun; Zhang, Wei-xian; Zhao, Dongyuan; Dou, Shi Xue

    2015-01-01

    Sodium–metal sulfide battery holds great promise for sustainable and cost-effective applications. Nevertheless, achieving high capacity and cycling stability remains a great challenge. Here, uniform yolk-shell iron sulfide–carbon nanospheres have been synthesized as cathode materials for the emerging sodium sulfide battery to achieve remarkable capacity of ∼545 mA h g−1 over 100 cycles at 0.2 C (100 mA g−1), delivering ultrahigh energy density of ∼438 Wh kg−1. The proven conversion reaction between sodium and iron sulfide results in high capacity but severe volume changes. Nanostructural design, including of nanosized iron sulfide yolks (∼170 nm) with porous carbon shells (∼30 nm) and extra void space (∼20 nm) in between, has been used to achieve excellent cycling performance without sacrificing capacity. This sustainable sodium–iron sulfide battery is a promising candidate for stationary energy storage. Furthermore, this spatially confined sulfuration strategy offers a general method for other yolk-shell metal sulfide–carbon composites. PMID:26507613

  4. Iron-Containing Carbon Materials Fabricated

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Development of high-strength, lightweight materials for electromagnetic interference (EMI) shielding at low frequencies may be possible if the carbon fibers used in these composites can be made to have ferromagnetic properties. One way to obtain such fibers is by inserting small ferromagnetic particles into the fiber structure.

  5. Effect of carbon content on friction and wear of cast irons

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1977-01-01

    Friction and wear experiments were conducted with cast irons and wrought steels containing various amounts of carbon in the alloy structure in contact with 52100 steel. Gray cast irons were found to exhibit lower friction and wear characteristics than white cast irons. Further, gray cast iron wear was more sensitive to carbon content than was white. Wear with gray cast iron was linearly related to load, and friction was found to be sensitive to relative humidity and carbon content. The form, in which the carbon is present in the alloy, is more important, as the carbon content and no strong relationship seems to exist between hardness of these ferrous alloys and wear.

  6. Natural organic matter and iron export from the Tanner Moor, Austria.

    PubMed

    Jirsa, Franz; Neubauer, Elisabeth; Kittinger, Richard; Hofmann, Thilo; Krachler, Regina; von der Kammer, Frank; Keppler, Bernhard K

    2013-06-01

    Samples from a pristine raised peat bog runoff in Austria, the Tannermoor creek, were analysed for their iron linked to natural organic matter (NOM) content. Dissolved organic carbon < 0.45 μm (DOC) was 41-64 mg L(-1), iron 4.4-5.5 mg L(-1). Samples were analysed applying asymmetric field flow fractionation (AsFlFFF) coupled to UV-vis absorption, fluorescence and inductively coupled plasma mass spectrometry (ICP-MS). The samples showed an iron peak associated with the NOM peak, one sample exhibiting a second peak of iron independent from the NOM peak. As highland peat bogs with similar climatic conditions and vegetation to the Tanner Moor are found throughout the world, including areas adjacent to the sea, we examined the behaviour of NOM and iron in samples brought to euhaline (35‰) conditions with artificial sea salt. The enhanced ionic strength reduced NOM by 53% and iron by 82%. Size exclusion chromatography (SEC) of the samples at sea-like salinity revealed two major fractions of NOM associated with different iron concentrations. The larger one, eluting sharply after the upper exclusion limits of 4000-5000 g mol(-1), seems to be most important for iron chelating. The results outline the global importance of sub-mountainous and mountainous raised peat bogs as a source of iron chelators to the marine environment at sites where such peat bogs release their run-offs into the sea.

  7. Atomistic modeling of carbon Cottrell atmospheres in bcc iron.

    PubMed

    Veiga, R G A; Perez, M; Becquart, C S; Domain, C

    2013-01-16

    Atomistic simulations with an EAM interatomic potential were used to evaluate carbon-dislocation binding energies in bcc iron. These binding energies were then used to calculate the occupation probability of interstitial sites in the vicinity of an edge and a screw dislocation. The saturation concentration due to carbon-carbon interactions was also estimated by atomistic simulations in the dislocation core and taken as an upper limit for carbon concentration in a Cottrell atmosphere. We obtained a maximum concentration of 10 ± 1 at.% C at T = 0 K within a radius of 1 nm from the dislocation lines. The spatial carbon distributions around the line defects revealed that the Cottrell atmosphere associated with an edge dislocation is denser than that around a screw dislocation, in contrast with the predictions of the classical model of Cochardt and colleagues. Moreover, the present Cottrell atmosphere model is in reasonable quantitative accord with the three-dimensional atom probe data available in the literature.

  8. Atomistic modeling of carbon Cottrell atmospheres in bcc iron

    NASA Astrophysics Data System (ADS)

    Veiga, R. G. A.; Perez, M.; Becquart, C. S.; Domain, C.

    2013-01-01

    Atomistic simulations with an EAM interatomic potential were used to evaluate carbon-dislocation binding energies in bcc iron. These binding energies were then used to calculate the occupation probability of interstitial sites in the vicinity of an edge and a screw dislocation. The saturation concentration due to carbon-carbon interactions was also estimated by atomistic simulations in the dislocation core and taken as an upper limit for carbon concentration in a Cottrell atmosphere. We obtained a maximum concentration of 10 ± 1 at.% C at T = 0 K within a radius of 1 nm from the dislocation lines. The spatial carbon distributions around the line defects revealed that the Cottrell atmosphere associated with an edge dislocation is denser than that around a screw dislocation, in contrast with the predictions of the classical model of Cochardt and colleagues. Moreover, the present Cottrell atmosphere model is in reasonable quantitative accord with the three-dimensional atom probe data available in the literature.

  9. Advanced oxidation of natural organic matter using hydrogen peroxide and iron-coated pumice particles.

    PubMed

    Kitis, M; Kaplan, S S

    2007-08-01

    The oxidative removal of natural organic matter (NOM) from waters using hydrogen peroxide and iron-coated pumice particles as heterogeneous catalysts was investigated. Two NOM sources were tested: humic acid solution and a natural source water. Iron coated pumice removed about half of the dissolved organic carbon (DOC) concentration at a dose of 3000 mg l(-1) in 24 h by adsorption only. Original pumice and peroxide dosed together provided UV absorbance reductions as high as 49%, mainly due to the presence of metal oxides including Al(2)O(3), Fe(2)O(3) and TiO(2) in the natural pumice, which are known to catalyze the decomposition of peroxide forming strong oxidants. Coating the original pumice particles with iron oxides significantly enhanced the removal of NOM with peroxide. A strong linear correlation was found between iron contents of coated pumices and UV absorbance reductions. Peroxide consumption also correlated with UV absorbance reduction. Control experiments proved the effective coating and the stability of iron oxide species bound on pumice surfaces. Results overall indicated that in addition to adsorptive removal of NOM by metal oxides on pumice surfaces, surface reactions between iron oxides and peroxide result in the formation of strong oxidants, probably like hydroxyl radicals, which further oxidize both adsorbed NOM and remaining NOM in solution, similar to those in Fenton-like reactions.

  10. Reduction of iron(III) minerals by natural organic matter in groundwater

    NASA Astrophysics Data System (ADS)

    Banwart, Steven A.

    1999-10-01

    Construction of the entrance tunnel to the Äspö Hard Rock Laboratory, a prototype repository in Sweden for research into the geological disposal of spent nuclear fuel, has resulted in increased transport of organic carbon from the surface into the groundwater. This increased input of organic matter has induced accelerated oxidation of organic carbon associated with reduction of iron(III) minerals as the terminal electron acceptor in microbial respiration. Hydrochemical modeling of major solute ions at the site indicates an apparent first-order decay constant for organic carbon of 3.7 ± 2.6/yr. This rapid turnover is not accompanied by an equivalent mobilization of ferrous iron. Thermodynamic calculation of iron mineral solubility suggests that ferrous clay minerals may form in hydraulically transmissive fractures. The conditional potentials for the oxidation-reduction of such phases coincide with measured redox potentials at the site. The calculated potential is sufficiently low so that such phases would provide reducing capacity against future intrusion of O2 into the groundwater, thus buffering a repository against oxic corrosion of the engineered barriers.

  11. Tracing iron-fueled microbial carbon production within the hydrothermal plume at the Loihi seamount

    NASA Astrophysics Data System (ADS)

    Bennett, Sarah A.; Hansman, Roberta L.; Sessions, Alex L.; Nakamura, Ko-ichi.; Edwards, Katrina J.

    2011-10-01

    The Loihi hydrothermal plume provides an opportunity to investigate iron (Fe) oxidation and microbial processes in a system that is truly Fe dominated and distinct from mid-ocean ridge spreading centers. The lack of hydrogen sulfide within the Loihi hydrothermal fluids and the presence of an oxygen minimum zone at this submarine volcano's summit, results in a prolonged presence of reduced Fe within the dispersing non-buoyant plume. In this study, we have investigated the potential for microbial carbon fixation within the Loihi plume. We sampled for both particulate and dissolved organic carbon in hydrothermal fluids, microbial mats growing around vents, and the dispersing plume, and carried out stable carbon isotope analysis on the particulate fraction. The δ13C values of the microbial mats ranged from -23‰ to -28‰, and are distinct from those of deep-ocean particulate organic carbon (POC). The mats and hydrothermal fluids were also elevated in dissolved organic carbon (DOC) compared to background seawater. Within the hydrothermal plume, DOC and POC concentrations were elevated and the isotopic composition of POC within the plume suggests mixing between background seawater POC and a 13C-depleted hydrothermal component. The combination of both DOC and POC increasing in the dispersing plume that cannot solely be the result of entrainment and DOC adsorption, provides strong evidence for in-situ microbial productivity by chemolithoautotrophs, including a likelihood for iron-oxidizing microorganisms.

  12. Adsorbent 2D and 3D carbon matrices with protected magnetic iron nanoparticles.

    PubMed

    Carreño, N L V; Escote, M T; Valentini, A; McCafferty, L; Stolojan, V; Beliatis, M; Mills, C A; Rhodes, R; Smith, C T G; Silva, S R P

    2015-11-01

    We report on the synthesis of two and three dimensional carbonaceous sponges produced directly from graphene oxide (GO) into which functionalized iron nanoparticles can be introduced to render it magnetic. This simple, low cost procedure, wherein an iron polymeric resin precursor is introduced into the carbon framework, results in carbon-based materials with specific surface areas of the order of 93 and 66 m(2) g(-1), compared to approx. 4 m(2) g(-1) for graphite, decorated with ferromagnetic iron nanoparticles giving coercivity fields postulated to be 216 and 98 Oe, values typical for ferrite magnets, for 3.2 and 13.5 wt% Fe respectively. The strongly magnetic iron nanoparticles are robustly anchored to the GO sheets by a layer of residual graphite, on the order of 5 nm, formed during the pyrolysis of the precursor material. The applicability of the carbon sponges is demonstrated in their ability to absorb, store and subsequently elute an organic dye, Rhodamine B, from water as required. It is possible to regenerate the carbon-iron hybrid material after adsorption by eluting the dye with a solvent to which it has a high affinity, such as ethanol. The use of a carbon framework opens the hybrid materials to further chemical functionalization, for enhanced chemical uptake of contaminants, or co-decoration with, for example, silver nanoparticles for bactericidal properties. Such analytical properties, combined with the material's magnetic character, offer solutions for environmental decontamination at land and sea, wastewater purification, solvent extraction, and for the concentration of dilute species. PMID:26441224

  13. Adsorbent 2D and 3D carbon matrices with protected magnetic iron nanoparticles.

    PubMed

    Carreño, N L V; Escote, M T; Valentini, A; McCafferty, L; Stolojan, V; Beliatis, M; Mills, C A; Rhodes, R; Smith, C T G; Silva, S R P

    2015-11-01

    We report on the synthesis of two and three dimensional carbonaceous sponges produced directly from graphene oxide (GO) into which functionalized iron nanoparticles can be introduced to render it magnetic. This simple, low cost procedure, wherein an iron polymeric resin precursor is introduced into the carbon framework, results in carbon-based materials with specific surface areas of the order of 93 and 66 m(2) g(-1), compared to approx. 4 m(2) g(-1) for graphite, decorated with ferromagnetic iron nanoparticles giving coercivity fields postulated to be 216 and 98 Oe, values typical for ferrite magnets, for 3.2 and 13.5 wt% Fe respectively. The strongly magnetic iron nanoparticles are robustly anchored to the GO sheets by a layer of residual graphite, on the order of 5 nm, formed during the pyrolysis of the precursor material. The applicability of the carbon sponges is demonstrated in their ability to absorb, store and subsequently elute an organic dye, Rhodamine B, from water as required. It is possible to regenerate the carbon-iron hybrid material after adsorption by eluting the dye with a solvent to which it has a high affinity, such as ethanol. The use of a carbon framework opens the hybrid materials to further chemical functionalization, for enhanced chemical uptake of contaminants, or co-decoration with, for example, silver nanoparticles for bactericidal properties. Such analytical properties, combined with the material's magnetic character, offer solutions for environmental decontamination at land and sea, wastewater purification, solvent extraction, and for the concentration of dilute species.

  14. Adsorbent 2D and 3D carbon matrices with protected magnetic iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Carreño, N. L. V.; Escote, M. T.; Valentini, A.; McCafferty, L.; Stolojan, V.; Beliatis, M.; Mills, C. A.; Rhodes, R.; Smith, C. T. G.; Silva, S. R. P.

    2015-10-01

    We report on the synthesis of two and three dimensional carbonaceous sponges produced directly from graphene oxide (GO) into which functionalized iron nanoparticles can be introduced to render it magnetic. This simple, low cost procedure, wherein an iron polymeric resin precursor is introduced into the carbon framework, results in carbon-based materials with specific surface areas of the order of 93 and 66 m2 g-1, compared to approx. 4 m2 g-1 for graphite, decorated with ferromagnetic iron nanoparticles giving coercivity fields postulated to be 216 and 98 Oe, values typical for ferrite magnets, for 3.2 and 13.5 wt% Fe respectively. The strongly magnetic iron nanoparticles are robustly anchored to the GO sheets by a layer of residual graphite, on the order of 5 nm, formed during the pyrolysis of the precursor material. The applicability of the carbon sponges is demonstrated in their ability to absorb, store and subsequently elute an organic dye, Rhodamine B, from water as required. It is possible to regenerate the carbon-iron hybrid material after adsorption by eluting the dye with a solvent to which it has a high affinity, such as ethanol. The use of a carbon framework opens the hybrid materials to further chemical functionalization, for enhanced chemical uptake of contaminants, or co-decoration with, for example, silver nanoparticles for bactericidal properties. Such analytical properties, combined with the material's magnetic character, offer solutions for environmental decontamination at land and sea, wastewater purification, solvent extraction, and for the concentration of dilute species.

  15. Fouling of carbon steel heat exchanger caused by iron bacteria

    SciTech Connect

    Starosvetsky, J.; Armon, R.; Starosvetsky, D. ); Groysman, A.

    1999-01-01

    A carbon steel heat exchanger installed in a reverse osmosis unit failed after 1 1/2 years from start-up as a result of tubes, lids, tube sheets, and connection pipes clogging from rust deposits. Chemical analysis of cooling water and scraped precipitates, as well laboratory screening of the deposits for bacteria, revealed that activity of iron-oxidizing bacteria present in cooling water could lead to heat exchanger blockage.

  16. Sulfur reactions and cryptic cross-linkages to oxygen, iron, and carbon cyclin

    NASA Astrophysics Data System (ADS)

    Druschel, G.; Kafantaris, F. C. A.; Fike, D. A.; Schmitt-Kopplin, P.; Dvorski, S.; Oduro, H.

    2014-12-01

    Sulfur speciation in any setting is controlled by a complex series of redox reactions, polymerization, and complexation reactions that are affected by both biotic and abiotic processes. Additionally there are several crossroads of reactions with oxygen, carbon, and iron in which polysulfide molecules serve as a key reaction component that affects not only sulfur speciation, but the speciation, solubility, and bioavailability of these elements as well. Utilizing a combination of analytical approaches including electrochemistry, spectroscopy, mass spectrometry, and chromatography, we have started to unravel the interconnections between sulfur and other key elements, and how microorganisms may be either direct or indirect contributors to these chemical and mineralogical signatures. In microbial mats, we have observed microbial production of significant hydrogen peroxide under UV-stressed conditions. This peroxide interaction with hydrogen sulfide changes the kinetics and the pathways of abiotic sulfur reactions, potentially affecting the overall bioavailability and isotopic fractionations for specific reactions via a change in the linkage between oxygen and sulfur cycling. In systems containing significant iron, we have observed the production of an electroactive form of ferrous iron and sulfide (FeS(aq)) that is of a size that can be described between a dissolved molecular cluster and a small nanoparticle. This FeS(aq) can be a significant fraction of the dissolved iron or sulfide in a system, and is a key part of both the solubility of iron and sulfur and the pathways potentially important for pyritization reactions. In systems where we investigate the links between sulfur and carbon, laboratory and field experiments indicate a wide range of large and more reduced organic compounds are highly reactive towards polysulfide. Utilizing Fourier-transform ion cyclotron resonance mass spectrometry in conjunction with electrochemistry and chromatography, we are seeing a

  17. Role of Iron Oxyhydrates in Accumulation and Stabilization of Soil Organic Matter in Rice Paddy: Case Studies from China

    NASA Astrophysics Data System (ADS)

    Pan, G.; Lu, H.; Sun, J.; Li, L.; Liu, X.; Zheng, J.; Zhang, X.; Cheng, K.

    2014-12-01

    Iron is an important element in soils, often in forms either of crystalline mineral or amorphous colloids upon redox cycling in hydromorphic soils. However, role of iron particularly via oxyhydrates in organic matter dynamics n rice soils has been not yet well assessed. Rice paddy soils of China have been recognized as a unique type of Anthrosols mostly with iron accumulation and dynamic movement in soil profile through long term hydroagric management. Soil organic matter contents of rice soils are shown significantly correlated with the contents of free or amorphous iron oxyhydrates. And organic matter accumulation in young rice soils followed iron oxyhydrate content changes as rice cultivation proceed, which could be often traced by the changes in iron oxyhydrate-bound OC fractions. The importance of association of OC with iron oxyhydrates is known by the fact that organic carbon was not related to total free iron oxyhydrates in wetland but in rice soil shifted from the wetlands, with OC contents much higher in rice soils than in the precedent wetland soil. This could be attributed to the chemical binding of OC to oxyhydrate surface, contributing to the stabilization of newly sequestered OC. This has been again confirmed by lab incubation studies, where total mineralization of OC has been found significantly lower in iron-oxyhrate rich soil than in iron-oxyhrate poor soils. This effect has been further explored in an incubation study with experimental warming that the temperature dependence of OC mineralization of rice soils from a long term fertilizer treated trial was linked to the abundance of iron oxyhydrate content, varying with the long term management practice. Initial carbon sequestration in rice soil subject to new carbon input was promoted by the iron oxyhydrates in the soil, showing a fast increase in iron hydrate-bound OC in the initial stage. The bound OC exerted further stabilization through enhanced humification to form residual OC fraction in long

  18. Comparison of methods for the removal of organic carbon and extraction of chromium, iron and manganese from an estuarine sediment standard and sediment from the Calcasieu River estuary, Louisiana, U.S.A.

    USGS Publications Warehouse

    Simon, N.S.; Hatcher, S.A.; Demas, C.

    1992-01-01

    U.S. National Bureau of Standards (NBS) estuarine sediment 1646 from the Chesapeake Bay, Maryland, and surface sediment collected at two sites in the Calcasieu River estuary, Louisiana, were used to evaluate the dilute hydrochloric acid extraction of Cr, Fe and Mn from air-dried and freeze-dried samples that had been treated by one of three methods to remove organic carbon. The three methods for the oxidation and removal of organic carbon were: (1) 30% hydrogen peroxide; (2) 30% hydrogen peroxide plus 0.25 mM pyrophosphate; and (3) plasma oxidation (low-temperature ashing). There was no statistically significant difference at the 95% confidence level between air- and freeze-dried samples with respect to the percent of organic carbon removed by the three methods. Generally, there was no statistically significant difference at the 95% confidence level between air- and freeze-dried samples with respect to the concentration of Cr, Fe and Mn that was extracted, regardless of the extraction technique that was used. Hydrogen peroxide plus pyrophosphate removed the most organic carbon from sediment collected at the site in the Calcasieu River that was upstream from industrial outfalls. Plasma oxidation removed the most organic carbon from the sediment collected at a site in the Calcasieu River close to industrial outfalls and from the NBS estuarine sediment sample. Plasma oxidation merits further study as a treatment for removal of organic carbon. Operational parameters can be chosen to limit the plasma oxidation of pyrite which, unlike other Fe species, will not be dissolved by dilute hydrochloric acid. Preservation of pyrite allows the positive identification of Fe present as pyrite in sediments. ?? 1992.

  19. Linkage of iron elution and dissolved oxygen consumption with removal of organic pollutants by nanoscale zero-valent iron: Effects of pH on iron dissolution and formation of iron oxide/hydroxide layer.

    PubMed

    Fujioka, Nanae; Suzuki, Moe; Kurosu, Shunji; Kawase, Yoshinori

    2016-02-01

    The iron elution and dissolved oxygen (DO) consumption in organic pollutant removal by nanoscale zero-valent iron (nZVI) was examined in the range of solution pH from 3.0 to 9.0. Their behaviors were linked with the removal of organic pollutant through the dissolution of iron and the formation of iron oxide/hydroxide layer affected strongly by solution pH and DO. As an example of organic pollutants, azo-dye Orange II was chosen in this study. The chemical composition analyses before and after reaction confirmed the corrosion of nZVI into ions, the formation of iron oxide/hydroxide layer on nZVI surface and the adsorption of the pollutant and its intermediates. The complete decolorization of Orange II with nZVI was accomplished very quickly. On the other hand, the total organic carbon (TOC) removal was considerably slow and the maximum TOC removal was around 40% obtained at pH 9.0. The reductive cleavage of azo-bond by emitted electrons more readily took place as compared with the cleavage of aromatic rings of Orange II leading to the degradation to smaller molecules and subsequently the mineralization. A reaction kinetic model based on the Langmuir-Hinshelwood/Eley-Rideal approach was developed to elucidate mechanisms for organic pollutant removal controlled by the formation of iron oxide/hydroxide layer, the progress of which could be characterized by considering the dynamic concentration changes in Fe(2+) and DO. The dynamic profiles of Orange II removal linked with Fe(2+) and DO could be reasonably simulated in the range of pH from 3.0 to 9.0.

  20. Iron-Doped Carbon Aerogels: Novel Porous Substrates for Direct Growth of Carbon Nanotubes

    SciTech Connect

    Steiner, S A; Baumann, T F; Kong, J; Satcher, J H; Dresselhaus, M S

    2007-02-15

    We present the synthesis and characterization of Fe-doped carbon aerogels (CAs) and demonstrate the ability to grow carbon nanotubes directly on monoliths of these materials to afford novel carbon aerogel-carbon nanotube composites. Preparation of the Fe-doped CAs begins with the sol-gel polymerization of the potassium salt of 2,4-dihydroxybenzoic acid with formaldehyde, affording K{sup +}-doped gels that can then be converted to Fe{sup 2+}- or Fe{sup 3+}-doped gels through an ion exchange process, dried with supercritical CO{sub 2} and subsequently carbonized under an inert atmosphere. Analysis of the Fe-doped CAs by TEM, XRD and XPS revealed that the doped iron species are reduced during carbonization to form metallic iron and iron carbide nanoparticles. The sizes and chemical composition of the reduced Fe species were related to pyrolysis temperature as well as the type of iron salt used in the ion exchange process. Raman spectroscopy and XRD analysis further reveal that, despite the presence of the Fe species, the CA framework is not significantly graphitized during pyrolysis. The Fe-doped CAs were subsequently placed in a thermal CVD reactor and exposed to a mixture of CH{sub 4} (1000 sccm), H{sub 2} (500 sccm), and C{sub 2}H{sub 4} (20 sccm) at temperatures ranging from 600 to 800 C for 10 minutes, resulting in direct growth of carbon nanotubes on the aerogel monoliths. Carbon nanotubes grown by this method appear to be multiwalled ({approx}25 nm in diameter and up to 4 mm long) and grow through a tip-growth mechanism that pushes catalytic iron particles out of the aerogel framework. The highest yield of CNTs were grown on Fe-doped CAs pyrolyzed at 800 C treated at CVD temperatures of 700 C.

  1. Iron-Doped Carbon Aerogels: Novel Porous Substrates for Direct Growth of Carbon Nanotubes

    DOE R&D Accomplishments Database

    Steiner, S. A.; Baumann, T. F.; Kong, J.; Satcher, J. H.; Dresselhaus, M. S.

    2007-02-20

    We present the synthesis and characterization of Fe-doped carbon aerogels (CAs) and demonstrate the ability to grow carbon nanotubes directly on monoliths of these materials to afford novel carbon aerogel-carbon nanotube composites. Preparation of the Fe-doped CAs begins with the sol-gel polymerization of the potassium salt of 2,4-dihydroxybenzoic acid with formaldehyde, affording K{sup +}-doped gels that can then be converted to Fe{sup 2+}- or Fe{sup 3+}-doped gels through an ion exchange process, dried with supercritical CO{sub 2} and subsequently carbonized under an inert atmosphere. Analysis of the Fe-doped CAs by TEM, XRD and XPS revealed that the doped iron species are reduced during carbonization to form metallic iron and iron carbide nanoparticles. The sizes and chemical composition of the reduced Fe species were related to pyrolysis temperature as well as the type of iron salt used in the ion exchange process. Raman spectroscopy and XRD analysis further reveal that, despite the presence of the Fe species, the CA framework is not significantly graphitized during pyrolysis. The Fe-doped CAs were subsequently placed in a thermal CVD reactor and exposed to a mixture of CH{sub 4} (1000 sccm), H{sub 2} (500 sccm), and C{sub 2}H{sub 4} (20 sccm) at temperatures ranging from 600 to 800 C for 10 minutes, resulting in direct growth of carbon nanotubes on the aerogel monoliths. Carbon nanotubes grown by this method appear to be multiwalled ({approx}25 nm in diameter and up to 4 mm long) and grow through a tip-growth mechanism that pushes catalytic iron particles out of the aerogel framework. The highest yield of CNTs were grown on Fe-doped CAs pyrolyzed at 800 C treated at CVD temperatures of 700 C.

  2. Synthesis of superparamagnetic iron(III) oxide nanowires in double-walled carbon nanotubes.

    PubMed

    Tîlmaciu, Carmen-Mihaela; Soula, Brigitte; Galibert, Anne-Marie; Lukanov, Petar; Datas, Lucien; González, Jesús; Barquín, Luis Fernández; Rodríguez Fernández, Jesús; González-Jiménez, Fernando; Jorge, Jose; Flahaut, Emmanuel

    2009-11-21

    The synthesis and characterization of superparamagnetic iron(iii) oxide nanowires confined within double-walled carbon nanotubes by capillary filling with a melted precursor (iron iodide) followed by thermal treatment is reported for the first time.

  3. Absorption of inorganic halides produced from Freon 12 by calcium carbonate containing iron(III) oxide

    SciTech Connect

    Imamura, Seiichiro; Matsuba, Yoichi; Yamada, Etsu; Takai, Kenji; Utani, Kazunori

    1997-09-01

    Inorganic halides produced by the catalytic decomposition of Freon 12 were fixed by calcium carbonate, which is the main component of limestone. Iron(III) oxide, which is present as a contaminant in limestone, promoted the absorption of the halides by calcium carbonate at low temperatures. The supposed action of iron(III) oxide was to first react with inorganic halides, forming iron halides, and, then, transfer them to calcium carbonate to replace carbonate ion in a catalytic way. Thus, calcium carbonate containing iron oxides (limestone) can be used as an effective absorbent for the inorganic halogens produced during the decomposition of Freons.

  4. Soil organic carbon across scales.

    PubMed

    O'Rourke, Sharon M; Angers, Denis A; Holden, Nicholas M; McBratney, Alex B

    2015-10-01

    Mechanistic understanding of scale effects is important for interpreting the processes that control the global carbon cycle. Greater attention should be given to scale in soil organic carbon (SOC) science so that we can devise better policy to protect/enhance existing SOC stocks and ensure sustainable use of soils. Global issues such as climate change require consideration of SOC stock changes at the global and biosphere scale, but human interaction occurs at the landscape scale, with consequences at the pedon, aggregate and particle scales. This review evaluates our understanding of SOC across all these scales in the context of the processes involved in SOC cycling at each scale and with emphasis on stabilizing SOC. Current synergy between science and policy is explored at each scale to determine how well each is represented in the management of SOC. An outline of how SOC might be integrated into a framework of soil security is examined. We conclude that SOC processes at the biosphere to biome scales are not well understood. Instead, SOC has come to be viewed as a large-scale pool subjects to carbon flux. Better understanding exists for SOC processes operating at the scales of the pedon, aggregate and particle. At the landscape scale, the influence of large- and small-scale processes has the greatest interaction and is exposed to the greatest modification through agricultural management. Policy implemented at regional or national scale tends to focus at the landscape scale without due consideration of the larger scale factors controlling SOC or the impacts of policy for SOC at the smaller SOC scales. What is required is a framework that can be integrated across a continuum of scales to optimize SOC management.

  5. Soil organic carbon across scales.

    PubMed

    O'Rourke, Sharon M; Angers, Denis A; Holden, Nicholas M; McBratney, Alex B

    2015-10-01

    Mechanistic understanding of scale effects is important for interpreting the processes that control the global carbon cycle. Greater attention should be given to scale in soil organic carbon (SOC) science so that we can devise better policy to protect/enhance existing SOC stocks and ensure sustainable use of soils. Global issues such as climate change require consideration of SOC stock changes at the global and biosphere scale, but human interaction occurs at the landscape scale, with consequences at the pedon, aggregate and particle scales. This review evaluates our understanding of SOC across all these scales in the context of the processes involved in SOC cycling at each scale and with emphasis on stabilizing SOC. Current synergy between science and policy is explored at each scale to determine how well each is represented in the management of SOC. An outline of how SOC might be integrated into a framework of soil security is examined. We conclude that SOC processes at the biosphere to biome scales are not well understood. Instead, SOC has come to be viewed as a large-scale pool subjects to carbon flux. Better understanding exists for SOC processes operating at the scales of the pedon, aggregate and particle. At the landscape scale, the influence of large- and small-scale processes has the greatest interaction and is exposed to the greatest modification through agricultural management. Policy implemented at regional or national scale tends to focus at the landscape scale without due consideration of the larger scale factors controlling SOC or the impacts of policy for SOC at the smaller SOC scales. What is required is a framework that can be integrated across a continuum of scales to optimize SOC management. PMID:25918852

  6. Pulsed Plasma Synthesis of Iron and Nickel Nanoparticles Coated by Carbon for Medical Applications

    NASA Astrophysics Data System (ADS)

    Abdullaeva, Zhypargul; Omurzak, Emil; Iwamoto, Chihiro; Ihara, Hirotaka; Subban Ganapathy, Hullathy; Sulaimankulova, Saadat; Koinuma, Michio; Mashimo, Tsutomu

    2013-01-01

    Fe and Ni magnetic nanoparticles coated by carbon were synthesized between the Fe-Fe and Ni-Ni metal electrodes, submerged in ethanol using pulsed plasma in a liquid method. Iron coated carbon (Fe@C) nanoparticles have an average size of 32 nm, and Ni@C nanoparticles are 40 nm. Obtained samples exhibit a well-defined crystalline structure of the inner Fe and Ni cores, encapsulated in the graphitic carbon coatings. Cytotoxicity studies performed on the MCF-7 (breast cancer) cell line showed small toxicity about 88-74% at 50 µg/mL of Fe@C and Ni@C nanoparticles, which can be significant criteria for use them in medical cancer treatment. In addition, appropriate sizes, good magnetic properties and well-organized graphitic carbon coatings are highlight merits of Fe@C and Ni@C nanoparticles synthesized by pulsed plasma.

  7. Photochemical Flocculation of Terrestrial Dissolved Organic Matter (tDOM) and Iron: Mechanisms and Geochemical Implications

    NASA Astrophysics Data System (ADS)

    Mopper, K.; Helms, J. R.; Mao, J.; Abdulla, H. A.; Schmidt-Rohr, K.

    2013-12-01

    Photoflocculation of DOM has received relatively little attention. No previous studies have examined the chemical composition of the flocs nor investigated the coagulation mechanisms. We observed that, after 30 days of simulated solar UV irradiation of 0.1-um filtered Great Dismal Swamp (Virginia) water, 7.1% of the DOC was converted to POC while 75% was remineralized. Approximately 87% of the iron was removed from the dissolved phase after 30 days, but iron did not flocculate until a major fraction of DOM was removed by photochemical degradation and flocculation (>10 days); thus, during the initial 10 days, there were sufficient organic ligands present and/or the pH was low enough to keep iron in solution. Although photoflocculation of iron did eventually occur, it is not clear if iron is required for the initial flocculation of DOM. Using NMR and FT-IR techniques, we found that photochemically flocculated POM was enriched in aliphatics and amide functionality relative to the residual non-flocculated DOM, while carbohydrate-like material was neither photochemical degraded nor flocculated. Based on this spectroscopic evidence, we propose several mechanisms for the formation of the flocs during irradiation. We also speculate that abiotic photochemical flocculation may remove a significant fraction of tDOM and iron from the upper water column between headwaters and the ocean, including estuaries. Fig. 1. Concentrations of dissolved (gray), particulate (black), and adsorbed (white) material as a function of irradiation time: (a) organic carbon, (b) absorption at 300 nm, (c) total iron by atomic absorption, and (d) total nitrogen. Error bars represent the combined standard deviations of the 'total,' 'dissolved,' and 'adsorbed' terms from which the 'particulate' term was calculated. Total nitrogen was not determined for the 'adsorbed' material

  8. Voronoi analysis of the short–range atomic structure in iron and iron–carbon melts

    SciTech Connect

    Sobolev, Andrey; Mirzoev, Alexander

    2015-08-17

    In this work, we simulated the atomic structure of liquid iron and iron–carbon alloys by means of ab initio molecular dynamics. Voronoi analysis was used to highlight changes in the close environments of Fe atoms as carbon concentration in the melt increases. We have found, that even high concentrations of carbon do not affect short–range atomic order of iron atoms — it remains effectively the same as in pure iron melts.

  9. Iron Catalyst Chemistry in High Pressure Carbon Monoxide Nanotube Reactor

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Povitsky, Alexander; Dateo, Christopher; Gokcen, Tahir; Smalley, Richard E.

    2001-01-01

    The high-pressure carbon monoxide (HiPco) technique for producing single wall carbon nanotubes (SWNT) is analyzed using a chemical reaction model coupled with properties calculated along streamlines. Streamline properties for mixing jets are calculated by the FLUENT code using the k-e turbulent model for pure carbon monixide. The HiPco process introduces cold iron pentacarbonyl diluted in CO, or alternatively nitrogen, at high pressure, ca. 30 atmospheres into a conical mixing zone. Hot CO is also introduced via three jets at angles with respect to the axis of the reactor. Hot CO decomposes the Fe(CO)5 to release atomic Fe. Cluster reaction rates are from Krestinin, et aI., based on shock tube measurements. Another model is from classical cluster theory given by Girshick's team. The calculations are performed on streamlines that assume that a cold mixture of Fe(CO)5 in CO is introduced along the reactor axis. Then iron forms clusters that catalyze the formation of SWNTs from the Boudouard reaction on Fe-containing clusters by reaction with CO. To simulate the chemical process along streamlines that were calculated by the fluid dynamics code FLUENT, a time history of temperature and dilution are determined along streamlines. Alternative catalyst injection schemes are also evaluated.

  10. Electrochemistry of Simple Organometallic Models of Iron-Iron Hydrogenases in Organic Solvent and Water.

    PubMed

    Gloaguen, Frederic

    2016-01-19

    Synthetic models of the active site of iron-iron hydrogenases are currently the subjects of numerous studies aimed at developing H2-production catalysts based on cheap and abundant materials. In this context, the present report offers an electrochemist's view of the catalysis of proton reduction by simple binuclear iron(I) thiolate complexes. Although these complexes probably do not follow a biocatalytic pathway, we analyze and discuss the interplay between the reduction potential and basicity and how these antagonist properties impact the mechanisms of proton-coupled electron transfer to the metal centers. This question is central to any consideration of the activity at the molecular level of hydrogenases and related enzymes. In a second part, special attention is paid to iron thiolate complexes holding rigid and unsaturated bridging ligands. The complexes that enjoy mild reduction potentials and stabilized reduced forms are promising iron-based catalysts for the photodriven evolution of H2 in organic solvents and, more importantly, in water.

  11. Soil Organic Carbon Input from Urban Turfgrasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Turfgrass is a major vegetation type in the urban and suburban environment. Management practices such as species selection, irrigation, and mowing may affect carbon input and storage in these systems. Research was conducted to determine the rate of soil organic carbon (SOC) changes, soil carbon sequ...

  12. Soil Organic Carbon Input from Urban Turfgrasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Turfgrass is a major vegetation type in the urban and suburban environment. Management practices such as species selection, irrigation, and mowing may affect carbon (C) input and storage in these systems. Research was conducted to determine the rate of soil organic carbon (SOC) changes, soil carbon ...

  13. Microstructure and properties of pure iron/copper composite cladding layers on carbon steel

    NASA Astrophysics Data System (ADS)

    Wan, Long; Huang, Yong-xian; Lü, Shi-xiong; Huang, Ti-fang; Lü, Zong-liang

    2016-08-01

    In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid-solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation (LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.

  14. Development of carbon composite iron ore micropellets by using the microfines of iron ore and carbon-bearing materials in iron making

    NASA Astrophysics Data System (ADS)

    Pal, Jagannath; Ghorai, Satadal; Das, Avimanyu

    2015-02-01

    Iron ore microfines and concentrate have very limited uses in sintering processes. They are used in pelletization; however, this process is cost intensive. Furthermore, the microfines of non-coking coal and other carbon-bearing materials, e.g., blast-furnace flue dust (BFD) and coke fines, are not used extensively in the metallurgical industry because of operational difficulties and handling problems. In the present work, to utilize these microfines, coal composite iron oxide micropellets (2-6 mm in size) were produced through an innovative technique in which lime and molasses were used as binding materials in the micropellets. The micropellets were subsequently treated with CO2 or the industrial waste gas to induce the chemical bond formation. The results show that, at a very high carbon level of 22wt% (38wt% coal), the cold crushing strength and abrasion index of the micropellets are 2.5-3 kg/cm2 and 5wt%-9wt%, respectively; these values indicate that the pellets are suitable for cold handling. The developed micropellets have strong potential as a heat source in smelting reduction in iron making and sintering to reduce coke breeze. The micropellets produced with BFD and coke fines (8wt%-12wt%) were used in iron ore sintering and were observed to reduce the coke breeze consumption by 3%-4%. The quality of the produced sinter was at par with that of the conventional blast-furnace sinter.

  15. Nitrogen controlled iron catalyst phase during carbon nanotube growth

    SciTech Connect

    Bayer, Bernhard C.; Baehtz, Carsten; Kidambi, Piran R.; Weatherup, Robert S.; Caneva, Sabina; Cabrero-Vilatela, Andrea; Hofmann, Stephan; Mangler, Clemens; Kotakoski, Jani; Meyer, Jannik C.; Goddard, Caroline J. L.

    2014-10-06

    Close control over the active catalyst phase and hence carbon nanotube structure remains challenging in catalytic chemical vapor deposition since multiple competing active catalyst phases typically co-exist under realistic synthesis conditions. Here, using in-situ X-ray diffractometry, we show that the phase of supported iron catalyst particles can be reliably controlled via the addition of NH{sub 3} during nanotube synthesis. Unlike polydisperse catalyst phase mixtures during H{sub 2} diluted nanotube growth, nitrogen addition controllably leads to phase-pure γ-Fe during pre-treatment and to phase-pure Fe{sub 3}C during growth. We rationalize these findings in the context of ternary Fe-C-N phase diagram calculations and, thus, highlight the use of pre-treatment- and add-gases as a key parameter towards controlled carbon nanotube growth.

  16. Equilibrium carbon and hydrogen isotope fractionation in iron

    NASA Astrophysics Data System (ADS)

    Schauble, E. A.

    2009-12-01

    Recent theoretical and experimental studies (e.g., [1-3]) have suggested that Si- and Fe-isotopic signatures can be used to characterize the compositions and conditions of segregation of metallic cores in planetary interiors. This study expands the theoretical framework to include carbon and hydrogen, which may also be alloying elements. Hydrogen (D/H) and carbon (13C/12C) fractionations in iron-rich metallic melts are estimated by modeling analogous iron-rich crystals, i.e., dhcp-FeH and η-Fe2C. C- and H-atoms in these crystals are completely coordinated by iron. The driving energy for equilibrium fractionation is assumed to come from the reduction of vibrational frequencies when heavy isotopes are substituted for light ones; vibrations are assumed to be harmonic. This treatment is crude at high temperature, and for the relatively anharmonic vibrations typical of hydrogen-bearing substances, but may provide a reasonably accurate, semi-quantitative approximation of real fractionation behavior. Vibrational frequencies of all crystals are modeled with density functional theory, using gradient-corrected functionals and ultrasoft pseudopotentials. For both carbon and hydrogen, the models suggest that the metal phase will be strongly depleted in heavy isotopes. At 2000 K, 1 atm, η-Fe2C will have 3‰ lower 13C/12C than coexisting diamond. Combining this result with previous high-temperature theoretical and experimental studies (e.g., [4]), metal-graphite fractionation is expected to be very similar, while metal-CO2 fractionation will be almost twice as large, ca. -5‰. Deuterium/hydrogen fractionations are expected to be an order of magnitude larger, with 50-70‰ lower D/H in dhcp-FeH than in coexisting H2 gas at 2000 K, and approximately 100‰ lower D/H than water vapor. These fractionations are much larger than those inferred for silicon and iron, as expected given the differences in atomic mass. References: 1. Georg et al. (2007) Nature 447:1102; 2. Rustad & Yin

  17. CARBON MONOXIDE REVERSIBLY DISRUPTS IRON HOMEOSTATIS AND RESPIRATORY EPITHELIAL CELLS FUNCTION

    EPA Science Inventory

    Iron dissociation from heme is a major factor in iron metabolism and cellular concentrations of the metal correlate inversely with the expression of heme oxygenase (HO). We tested the hypothesis that 1) exposure to a product of HO, carbon monoxide (CO), disturbs iron homeostas...

  18. Mossbauer effect in the ion-implanted iron-carbon alloys

    NASA Technical Reports Server (NTRS)

    Han, K. S.

    1976-01-01

    The concentration dependence of Mossbauer effect in four carbon ion-implanted iron absorbers, which contain carbon as the solute atoms, has been investigated over the range of concentration 0.05 through 1 atomic percent. The specimens were prepared by implanting carbon atoms on each reference iron foil with four different bombarding energies of 250 keV, 160 keV, 140 keV and 80 keV, respectively. Thus, the specimen contains a uniform dosage of carbon atoms which penetrated up to 3,000 A depth of the reference iron. In the measurement of Mossbauer spectra, the backscattering conversion electron counting geometry was used. Typical results of Mossbauer parameters of iron-carbon alloys show that the isomer shift, quadrupole shift, the effective hyperfine splitting of Fe-57, and the intensity ratio exhibit a large variation with the increase of carbon concentration in the environment of iron atoms.

  19. The effects of iron fertilization on carbon sequestration in the Southern Ocean.

    PubMed

    Buesseler, Ken O; Andrews, John E; Pike, Steven M; Charette, Matthew A

    2004-04-16

    An unresolved issue in ocean and climate sciences is whether changes to the surface ocean input of the micronutrient iron can alter the flux of carbon to the deep ocean. During the Southern Ocean Iron Experiment, we measured an increase in the flux of particulate carbon from the surface mixed layer, as well as changes in particle cycling below the iron-fertilized patch. The flux of carbon was similar in magnitude to that of natural blooms in the Southern Ocean and thus small relative to global carbon budgets and proposed geoengineering plans to sequester atmospheric carbon dioxide in the deep sea.

  20. Mobility of organic carbon from incineration residues

    SciTech Connect

    Ecke, Holger Svensson, Malin

    2008-07-01

    Dissolved organic carbon (DOC) may affect the transport of pollutants from incineration residues when landfilled or used in geotechnical construction. The leaching of dissolved organic carbon (DOC) from municipal solid waste incineration (MSWI) bottom ash and air pollution control residue (APC) from the incineration of waste wood was investigated. Factors affecting the mobility of DOC were studied in a reduced 2{sup 6-1} experimental design. Controlled factors were treatment with ultrasonic radiation, full carbonation (addition of CO{sub 2} until the pH was stable for 2.5 h), liquid-to-solid (L/S) ratio, pH, leaching temperature and time. Full carbonation, pH and the L/S ratio were the main factors controlling the mobility of DOC in the bottom ash. Approximately 60 weight-% of the total organic carbon (TOC) in the bottom ash was available for leaching in aqueous solutions. The L/S ratio and pH mainly controlled the mobilization of DOC from the APC residue. About 93 weight-% of TOC in the APC residue was, however, not mobilized at all, which might be due to a high content of elemental carbon. Using the European standard EN 13 137 for determination of total organic carbon (TOC) in MSWI residues is inappropriate. The results might be biased due to elemental carbon. It is recommended to develop a TOC method distinguishing between organic and elemental carbon.

  1. Closed system Fischer-Tropsch synthesis over meteoritic iron, iron ore and nickel-iron alloy. [deuterium-carbon monoxide reaction catalysis

    NASA Technical Reports Server (NTRS)

    Nooner, D. W.; Gibert, J. M.; Gelpi, E.; Oro, J.

    1976-01-01

    Experiments were performed in which meteoritic iron, iron ore and nickel-iron alloy were used to catalyze (in Fischer-Tropsch synthesis) the reaction of deuterium and carbon monoxide in a closed vessel. Normal alkanes and alkenes and their monomethyl substituted isomers and aromatic hydrocarbons were synthesized. Iron oxide and oxidized-reduced Canyon Diablo used as Fischer-Tropsch catalysts were found to produce aromatic hydrocarbons in distributions having many of the features of those observed in carbonaceous chondrites, but only at temperatures and reaction times well above 300 C and 6-8 h.

  2. Transport of carbon colloid supported nanoscale zero-valent iron in porous media

    NASA Astrophysics Data System (ADS)

    Busch, Jan; Oswald, Sascha

    2013-04-01

    The use of nano zero-valent iron (nZVI) for environmental remediation is an emerging technology for in situ remediation of contaminated groundwater. Due to its high surface area and high reactivity nZVI is able to dechlorinate organic contaminants and render them to less harmful substances. Carbo-Iron is a newly developed material consisting of activated carbon particles (d50 = 0.6 - 2.4 µm) that are doted with nZVI particles. These particles combine the sorption capacity of activated carbon and the reactivity of nZVI. Additionally the main limitation for nZVI delivery, a limited mobility due to fast aggregation and sedimentation of nZVI in dispersions and soils, might be solved. According to transport theory, particles with a diameter of approximately 1 µm are more mobile than unsupported nZVI particles in sandy aquifer systems. Results from column tests and a two dimensional laboratory aquifer test system are presented: Column tests using columns of 40 cm length were filled with sand. A particle suspension was pumped against gravity through the system. Results show, addition of a polyanionic stabilizer such as Carboxymethylcellulouse (CMC) is required to enhancing mobility. Ionic strength and pH concentrations in an environmental relevant range do not interfere significantly with transport, but particle size was found to be crucial. Another experiment was performed in a two dimensional aquifer test system. The test system contains a sand filled container with a inner size of 40 x 5 x 110 cm and seven ports on each side. A constant flow of water was applied from the left to the right side through all ports and the middle port was fed with a Carbo-Iron suspension. Results show a transport through the laboratory aquifer within few exchanged pore volumes, and breakthrough of Carbo-Iron at the outlet. Deposits of immobile Carbo-Iron were found to be decreasing with distance from the injection port. No gravity effects were observed. Results suggest high mobility of

  3. Degradation of carbon tetrachloride in the presence of zero-valent iron.

    PubMed

    Alvarado, Jorge S; Rose, Candace; Lafreniere, Lorraine

    2010-08-01

    Efforts to achieve the decomposition of carbon tetrachloride through anaerobic and aerobic bioremediation and chemical transformation have met with limited success because of the conditions required and the formation of hazardous intermediates. Recently, particles of zero-valent iron (ZVI) have been used with limited success for in situ remediation of carbon tetrachloride. We studied a modified microparticulate product that combines controlled-release carbon with ZVI for stimulation of in situ chemical reduction of persistent organic compounds in groundwater. With this product, a number of physical, chemical, and microbiological processes were combined to create very strongly reducing conditions that stimulate rapid, complete dechlorination of organic solvents. In principle, the organic component of ZVI microparticles is nutrient rich and hydrophilic and has high surface area capable of supporting the growth of bacteria in the groundwater environment. In our experiments, we found that as the bacteria grew, oxygen was consumed, and the redox potential decreased to values reaching -600 mV. The small modified ZVI particles provide substantial reactive surface area that, in these conditions, directly stimulates chemical dechlorination and cleanup of the contaminated area without accumulation of undesirable breakdown products. The objective of this work was to evaluate the effectiveness of ZVI microparticles in reducing carbon tetrachloride under laboratory and field conditions. Changes in concentrations and in chemical and physical parameters were monitored to determine the role of the organic products in the reductive dechlorination reaction. Laboratory and field studies are presented.

  4. Missing Iron-Oxidizing Acidophiles Highly Sensitive to Organic Compounds

    PubMed Central

    Ueoka, Nagayoshi; Kouzuma, Atsushi; Watanabe, Kazuya

    2016-01-01

    The genus Acidithiobacillus includes iron-oxidizing lithoautotrophs that thrive in acidic mine environments. Acidithiobacillus ferrooxidans is a representative species and has been extensively studied for its application to the bioleaching of precious metals. In our attempts to cultivate the type strain of A. ferrooxidans (ATCC 23270T), repeated transfers to fresh inorganic media resulted in the emergence of cultures with improved growth traits. Strains were isolated from the resultant culture by forming colonies on inorganic silica-gel plates. A representative isolate (strain NU-1) was unable to form colonies on agarose plates and was more sensitive to organics, such as glucose, than the type strain of A. ferrooxidans. Strain NU-1 exhibited superior growth traits in inorganic iron media to those of other iron-oxidizing acidithiobacilli, suggesting its potential for industrial applications. A draft genome of NU-1 uncovered unique features in catabolic enzymes, indicating that this strain is not a mutant of the A. ferrooxidans type strain. Our results indicate that the use of inorganic silica-gel plates facilitates the isolation of as-yet-unexamined iron-oxidizing acidithiobacilli from environmental samples and enrichment cultures. PMID:27356527

  5. Organic carbon in soil and the global carbon cycle

    SciTech Connect

    Post, W.M. III

    1991-12-31

    Soil organic matter is, simultaneously, the most inert carbon cycle component of terrestrial ecosystems, and the most dynamic component of terrestrail geologic systems placing it in a pivotal position in the biogeochemistry of carbon. The large size and potentially long residence time of the soil organic matter pool make it an important component of the global carbon cycle. Net terrestrial primary production of about 60 Pg C{center_dot}yr{sup {minus}1} is, over a several-year period of time, balanced by an equivalent flux of litter production and subsequent decomposition of detritus and soil organic matter. However, the input rates and decomposition rates for different terrestrial ecosystems vary over several orders of magnitude resulting in widely different amounts and turnover rates of soil organic matter. The amounts of carbon stored in soils and the rates of exchange of soil carbon with the atmosphere depend on many factors related to the chemistry, biology, and physics of soil and soil organic matter. This report discusses work on organic carbon in soil and aspects of the carbon cycle.

  6. A carbon budget for a naturally iron fertilized bloom in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Morris, Paul J.; Sanders, Richard

    2011-09-01

    Subantarctic islands in the high-nutrient, low-chlorophyll (HNLC) Southern Ocean are natural sources of iron and stimulate blooms in their proximity, such as the one observed close to the Crozet Islands (52°E, 46°S). During 2004/2005, particulate organic carbon (POC) export was measured using the 234Th technique in the Crozet bloom and compared with an HNLC control region. Initial results showed that iron release had no effect on daily POC export rates, thus any iron-driven enhancement in POC export was due to a longer export phase in the bloom region when compared to the control region. The duration of the export event was empirically estimated by closing the silicon budget, thus allowing seasonal POC export to be calculated by applying the export duration to the daily rates of POC export. This yields a seasonal estimate of POC export that is 3.6 times larger (range 1.9-7.1) in the iron-fertilized region than in the HNLC control region. These estimates of POC export were then compared to independent estimates of organic matter storage in the upper ocean, which are significant in both the HNLC and control regions. Overall, integrated POC export was significantly (approximately 50%) lower than estimated seasonal new production, the fraction of production that is supported by inputs of new nutrients. Finally, the sequestration efficiency, the numerical relationship between the supply of the limiting nutrient, iron, and the key ecosystem function of POC export at 100 m, is estimated to be 16,790 mol:mol.

  7. Iron-catalysed cross-coupling of organolithium compounds with organic halides

    PubMed Central

    Jia, Zhenhua; Liu, Qiang; Peng, Xiao-Shui; Wong, Henry N. C.

    2016-01-01

    In past decades, catalytic cross-coupling reactions between organic halides and organometallic reagents to construct carbon–carbon bond have achieved a tremendous progress. However, organolithium reagents have rarely been used in cross-coupling reactions, due mainly to their high reactivity. Another limitation of this transformation using organolithium reagents is how to control reactivity with excellent selectivity. Although palladium catalysis has been applied in this field recently, the development of an approach to replace catalytic systems of noble metals with nonprecious metals is currently in high demand. Herein, we report an efficient synthetic protocol involving iron-catalysed cross-coupling reactions employing organolithium compounds as key coupling partners to unite aryl, alkyl and benzyl fragments and also disclose an efficient iron-catalysed release-capture ethylene coupling with isopropyllithium. PMID:26847602

  8. CQESTR Simulations of soil organic carbon dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A processed-based carbon (C) model, CQESTR (sequester), was used to predict soil organic carbon (SOC) dynamics and examine the effect of agricultural management practices on SOC accretion in three diverse regions of the USA. The three regions chosen had long-term experiments (LTEs) ranging from 23 t...

  9. Tuning Organic Carbon Dioxide Absorbents for Carbonation and Decarbonation

    PubMed Central

    Rajamanickam, Ramachandran; Kim, Hyungsoo; Park, Ji-Woong

    2015-01-01

    The reaction of carbon dioxide with a mixture of a superbase and alcohol affords a superbase alkylcarbonate salt via a process that can be reversed at elevated temperatures. To utilize the unique chemistry of superbases for carbon capture technology, it is essential to facilitate carbonation and decarbonation at desired temperatures in an easily controllable manner. Here, we demonstrate that the thermal stabilities of the alkylcarbonate salts of superbases in organic solutions can be tuned by adjusting the compositions of hydroxylic solvent and polar aprotic solvent mixtures, thereby enabling the best possible performances to be obtained from the various carbon dioxide capture agents based on these materials. The findings provides valuable insights into the design and optimization of organic carbon dioxide absorbents. PMID:26033537

  10. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean.

    PubMed

    Blain, Stéphane; Quéguiner, Bernard; Armand, Leanne; Belviso, Sauveur; Bombled, Bruno; Bopp, Laurent; Bowie, Andrew; Brunet, Christian; Brussaard, Corina; Carlotti, François; Christaki, Urania; Corbière, Antoine; Durand, Isabelle; Ebersbach, Frederike; Fuda, Jean-Luc; Garcia, Nicole; Gerringa, Loes; Griffiths, Brian; Guigue, Catherine; Guillerm, Christophe; Jacquet, Stéphanie; Jeandel, Catherine; Laan, Patrick; Lefèvre, Dominique; Lo Monaco, Claire; Malits, Andrea; Mosseri, Julie; Obernosterer, Ingrid; Park, Young-Hyang; Picheral, Marc; Pondaven, Philippe; Remenyi, Thomas; Sandroni, Valérie; Sarthou, Géraldine; Savoye, Nicolas; Scouarnec, Lionel; Souhaut, Marc; Thuiller, Doris; Timmermans, Klaas; Trull, Thomas; Uitz, Julia; van Beek, Pieter; Veldhuis, Marcel; Vincent, Dorothée; Viollier, Eric; Vong, Lilita; Wagener, Thibaut

    2007-04-26

    The availability of iron limits primary productivity and the associated uptake of carbon over large areas of the ocean. Iron thus plays an important role in the carbon cycle, and changes in its supply to the surface ocean may have had a significant effect on atmospheric carbon dioxide concentrations over glacial-interglacial cycles. To date, the role of iron in carbon cycling has largely been assessed using short-term iron-addition experiments. It is difficult, however, to reliably assess the magnitude of carbon export to the ocean interior using such methods, and the short observational periods preclude extrapolation of the results to longer timescales. Here we report observations of a phytoplankton bloom induced by natural iron fertilization--an approach that offers the opportunity to overcome some of the limitations of short-term experiments. We found that a large phytoplankton bloom over the Kerguelen plateau in the Southern Ocean was sustained by the supply of iron and major nutrients to surface waters from iron-rich deep water below. The efficiency of fertilization, defined as the ratio of the carbon export to the amount of iron supplied, was at least ten times higher than previous estimates from short-term blooms induced by iron-addition experiments. This result sheds new light on the effect of long-term fertilization by iron and macronutrients on carbon sequestration, suggesting that changes in iron supply from below--as invoked in some palaeoclimatic and future climate change scenarios--may have a more significant effect on atmospheric carbon dioxide concentrations than previously thought.

  11. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Blain, Stéphane; Quéguiner, Bernard; Armand, Leanne; Belviso, Sauveur; Bombled, Bruno; Bopp, Laurent; Bowie, Andrew; Brunet, Christian; Brussaard, Corina; Carlotti, François; Christaki, Urania; Corbière, Antoine; Durand, Isabelle; Ebersbach, Frederike; Fuda, Jean-Luc; Garcia, Nicole; Gerringa, Loes; Griffiths, Brian; Guigue, Catherine; Guillerm, Christophe; Jacquet, Stéphanie; Jeandel, Catherine; Laan, Patrick; Lefèvre, Dominique; Lo Monaco, Claire; Malits, Andrea; Mosseri, Julie; Obernosterer, Ingrid; Park, Young-Hyang; Picheral, Marc; Pondaven, Philippe; Remenyi, Thomas; Sandroni, Valérie; Sarthou, Géraldine; Savoye, Nicolas; Scouarnec, Lionel; Souhaut, Marc; Thuiller, Doris; Timmermans, Klaas; Trull, Thomas; Uitz, Julia; van Beek, Pieter; Veldhuis, Marcel; Vincent, Dorothée; Viollier, Eric; Vong, Lilita; Wagener, Thibaut

    2007-04-01

    The availability of iron limits primary productivity and the associated uptake of carbon over large areas of the ocean. Iron thus plays an important role in the carbon cycle, and changes in its supply to the surface ocean may have had a significant effect on atmospheric carbon dioxide concentrations over glacial-interglacial cycles. To date, the role of iron in carbon cycling has largely been assessed using short-term iron-addition experiments. It is difficult, however, to reliably assess the magnitude of carbon export to the ocean interior using such methods, and the short observational periods preclude extrapolation of the results to longer timescales. Here we report observations of a phytoplankton bloom induced by natural iron fertilization-an approach that offers the opportunity to overcome some of the limitations of short-term experiments. We found that a large phytoplankton bloom over the Kerguelen plateau in the Southern Ocean was sustained by the supply of iron and major nutrients to surface waters from iron-rich deep water below. The efficiency of fertilization, defined as the ratio of the carbon export to the amount of iron supplied, was at least ten times higher than previous estimates from short-term blooms induced by iron-addition experiments. This result sheds new light on the effect of long-term fertilization by iron and macronutrients on carbon sequestration, suggesting that changes in iron supply from below-as invoked in some palaeoclimatic and future climate change scenarios-may have a more significant effect on atmospheric carbon dioxide concentrations than previously thought.

  12. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean.

    PubMed

    Blain, Stéphane; Quéguiner, Bernard; Armand, Leanne; Belviso, Sauveur; Bombled, Bruno; Bopp, Laurent; Bowie, Andrew; Brunet, Christian; Brussaard, Corina; Carlotti, François; Christaki, Urania; Corbière, Antoine; Durand, Isabelle; Ebersbach, Frederike; Fuda, Jean-Luc; Garcia, Nicole; Gerringa, Loes; Griffiths, Brian; Guigue, Catherine; Guillerm, Christophe; Jacquet, Stéphanie; Jeandel, Catherine; Laan, Patrick; Lefèvre, Dominique; Lo Monaco, Claire; Malits, Andrea; Mosseri, Julie; Obernosterer, Ingrid; Park, Young-Hyang; Picheral, Marc; Pondaven, Philippe; Remenyi, Thomas; Sandroni, Valérie; Sarthou, Géraldine; Savoye, Nicolas; Scouarnec, Lionel; Souhaut, Marc; Thuiller, Doris; Timmermans, Klaas; Trull, Thomas; Uitz, Julia; van Beek, Pieter; Veldhuis, Marcel; Vincent, Dorothée; Viollier, Eric; Vong, Lilita; Wagener, Thibaut

    2007-04-26

    The availability of iron limits primary productivity and the associated uptake of carbon over large areas of the ocean. Iron thus plays an important role in the carbon cycle, and changes in its supply to the surface ocean may have had a significant effect on atmospheric carbon dioxide concentrations over glacial-interglacial cycles. To date, the role of iron in carbon cycling has largely been assessed using short-term iron-addition experiments. It is difficult, however, to reliably assess the magnitude of carbon export to the ocean interior using such methods, and the short observational periods preclude extrapolation of the results to longer timescales. Here we report observations of a phytoplankton bloom induced by natural iron fertilization--an approach that offers the opportunity to overcome some of the limitations of short-term experiments. We found that a large phytoplankton bloom over the Kerguelen plateau in the Southern Ocean was sustained by the supply of iron and major nutrients to surface waters from iron-rich deep water below. The efficiency of fertilization, defined as the ratio of the carbon export to the amount of iron supplied, was at least ten times higher than previous estimates from short-term blooms induced by iron-addition experiments. This result sheds new light on the effect of long-term fertilization by iron and macronutrients on carbon sequestration, suggesting that changes in iron supply from below--as invoked in some palaeoclimatic and future climate change scenarios--may have a more significant effect on atmospheric carbon dioxide concentrations than previously thought. PMID:17460670

  13. Method for the production of hydrocarbons using iron-carbon-based catalysts

    SciTech Connect

    Rice, G.W.; Fiato, R.A.; Soled, S.L.

    1988-11-29

    This patent describes a process for producing C/sub 2/+ aliphatic hydrocarbons from a CO and H/sub 2/ mixture comprising the step of contacting the mixture with a catalyst comprising finely divided nonpyrophoric iron-carbon catalyst particles comprising iron and carbon, in the substantial absence of silicon, a substantial portion of which is dementite, which was produced in a reaction zone in the presence of laser radiation under such conditions of laser flux density, power adsorption, concentration of iron compound reactants selected from the group consisting of iron carbonyls, iron acetylacetonate, and ferrocene, and pressure sufficient to produce non-pyrophoric iron-carbon particles having average diameters between 1 and 100 nm.

  14. Worldwide organic soil carbon and nitrogen data

    SciTech Connect

    Zinke, P.J.; Stangenberger, A.G.; Post, W.M.; Emanual, W.R.; Olson, J.S.

    1986-09-01

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  15. The role of iron and reactive oxygen in the degradation of dissolved organic matter draining permafrost soils (Invited)

    NASA Astrophysics Data System (ADS)

    Cory, R. M.; Page, S. E.; Kling, G. W.; Sander, M.; Harrold, K. H.; McNeill, K.

    2013-12-01

    As the permafrost boundary deepens from climate warming it will create conditions for redox reactions between soil-derived dissolved organic matter (DOM) and iron where those conditions did not previously exist. These new conditions will facilitate the transformation of DOM, and the overarching question is whether the pathway to CO2 released to the atmosphere or the export of DOM to coastal oceans will be favored. Our findings suggest that in either dark soils or sunlit surface waters, the presence of iron promotes the degradation of DOM to CO2. Evidence in support of iron-mediated oxidation of DOM to CO2 includes (1) strong positive correlations between iron and formation of hydroxyl radical (●OH), a highly reactive oxygen species implicated in DOM mineralization, (2) complete oxidation of DOM in the presence of high iron concentrations, and (3) loss of permafrost-derived DOM and iron from a thermokarst-impacted lake over time. For example, iron and DOM-rich soils or surface waters had the highest dark or photochemical ●OH formation respectively, both consistent with a dark or light Fenton source of ●OH and subsequent oxidation of DOM by ●OH. Photo-oxidation of DOM to CO2 was favored over partial photo-oxidation in surface waters characterized by high DOM and dissolved iron concentrations, consistent with photochemical reactions mediated by iron. Changes in DOM quality and quantity over time in a lake receiving permafrost carbon via a landslide (thermokarst slump) were also consistent with iron-mediated photodegradation of DOM. Given differences in DOM degradation across tundra ecosystems varying in iron, along with the abundance of water-logged soils supplying reduced iron to soil water or shallow streams, preliminary calculations at the landscape scale indicate that iron-mediated mineralization of DOM in soils and surface waters may be at least as important to carbon cycling as is bacterial respiration of DOM in the water column of streams and lakes

  16. Organic solvent regeneration of granular activated carbon

    NASA Astrophysics Data System (ADS)

    Cross, W. H.; Suidan, M. T.; Roller, M. A.; Kim, B. R.; Gould, J. P.

    1982-09-01

    The use of activated carbon for the treatment of industrial waste-streams was shown to be an effective treatment. The high costs associated with the replacement or thermal regeneration of the carbon have prohibited the economic feasibility of this process. The in situ solvent regeneration of activated carbon by means of organic solvent extraction was suggested as an economically alternative to thermal regeneration. The important aspects of the solvent regeneration process include: the physical and chemical characteristics of the adsorbent, the pore size distribution and energy of adsorption associated with the activated carbon; the degree of solubility of the adsorbate in the organic solvent; the miscibility of the organic solvent in water; and the temperature at which the generation is performed.

  17. Iron encapsulated in boron and nitrogen codoped carbon nanotubes as synergistic catalysts for Fenton-like reaction.

    PubMed

    Yao, Yunjin; Chen, Hao; Qin, Jiacheng; Wu, Guodong; Lian, Chao; Zhang, Jie; Wang, Shaobin

    2016-09-15

    Iron nanoparticles (NPs) encapsulated in B, N-codoped carbon nanotubes (Fe@C-BN) as heterogeneous Fenton-like catalysts were obtained by a simple and scalable pyrolysis method, and their performances were examined in the oxidative degradation of various organics in the presence of the different oxidants. The results showed that organic dyes can be effectively degraded by Fe@C-BN in the presence of peroxymonosulfate. Calcination temperature and mass of iron salt significantly affected the structures and performances of the catalysts. The effects of several reaction conditions, such as initial dye concentration, oxidant type (peroxymonosulfate, peroxydisulfate, and H2O2) and dosage, initial pH, inorganic anions, reaction temperature and dye types on oxidation as well as the stability of the composite were extensively evaluated in view of the practical applications. Through the investigation of reaction processes, HO(·) and SO4(·-) radicals were identified using quenching experiments. Owing to the synergistic effects between the iron NPs and B, N-doped carbon, Fe@C-BN catalysts intrinsically display an excellent catalytic activity for Fenton-like reaction. This study gives new insights into the design and preparation of iron NPs encapsulated in B, N-codoped carbon nanotubes as an effective strategy to enhance the overall catalytic activity.

  18. Iron encapsulated in boron and nitrogen codoped carbon nanotubes as synergistic catalysts for Fenton-like reaction.

    PubMed

    Yao, Yunjin; Chen, Hao; Qin, Jiacheng; Wu, Guodong; Lian, Chao; Zhang, Jie; Wang, Shaobin

    2016-09-15

    Iron nanoparticles (NPs) encapsulated in B, N-codoped carbon nanotubes (Fe@C-BN) as heterogeneous Fenton-like catalysts were obtained by a simple and scalable pyrolysis method, and their performances were examined in the oxidative degradation of various organics in the presence of the different oxidants. The results showed that organic dyes can be effectively degraded by Fe@C-BN in the presence of peroxymonosulfate. Calcination temperature and mass of iron salt significantly affected the structures and performances of the catalysts. The effects of several reaction conditions, such as initial dye concentration, oxidant type (peroxymonosulfate, peroxydisulfate, and H2O2) and dosage, initial pH, inorganic anions, reaction temperature and dye types on oxidation as well as the stability of the composite were extensively evaluated in view of the practical applications. Through the investigation of reaction processes, HO(·) and SO4(·-) radicals were identified using quenching experiments. Owing to the synergistic effects between the iron NPs and B, N-doped carbon, Fe@C-BN catalysts intrinsically display an excellent catalytic activity for Fenton-like reaction. This study gives new insights into the design and preparation of iron NPs encapsulated in B, N-codoped carbon nanotubes as an effective strategy to enhance the overall catalytic activity. PMID:27267476

  19. Graphitized Wavy Traces of Iron Particles Observed in Amorphous Carbon Nano-pillars

    NASA Astrophysics Data System (ADS)

    Fujita, Jun-ichi; Ishida, Masahiko; Ichihashi, Toshinari; Ochiai, Yukinori; Kaito, Takashi; Matsui, Shinji

    2004-06-01

    We show evidence of solid-phase nanotube growth where traces of iron nano-particles were graphitized in an amorphous carbon nano-pillar fabricated by electron beam induced chemical vapor deposition (EB-CVD). The random walk of iron particles in the carbon nano-pillar caused continuous growth of wavy graphite tubes behind the iron particles as they moved during vacuum annealing at 800°C for 30 min. The graphite sheet in this solid-phase graphitization seemed to be produced at the tail of the iron nanoparticles, and some of the graphite tubes were multi-wall ones containing bamboo-joint-like cap sheets.

  20. [Organic carbon and carbon mineralization characteristics in nature forestry soil].

    PubMed

    Yang, Tian; Dai, Wei; An, Xiao-Juan; Pang, Huan; Zou, Jian-Mei; Zhang, Rui

    2014-03-01

    Through field investigation and indoor analysis, the organic carbon content and organic carbon mineralization characteristics of six kinds of natural forest soil were studied, including the pine forests, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed needle leaf and Korean pine and Chinese pine forest. The results showed that the organic carbon content in the forest soil showed trends of gradual decrease with the increase of soil depth; Double exponential equation fitted well with the organic carbon mineralization process in natural forest soil, accurately reflecting the mineralization reaction characteristics of the natural forest soil. Natural forest soil in each layer had the same mineralization reaction trend, but different intensity. Among them, the reaction intensity in the 0-10 cm soil of the Korean pine forest was the highest, and the intensities of mineralization reaction in its lower layers were also significantly higher than those in the same layers of other natural forest soil; comparison of soil mineralization characteristics of the deciduous broad-leaved forest and coniferous and broad-leaved mixed forest found that the differences of litter species had a relatively strong impact on the active organic carbon content in soil, leading to different characteristics of mineralization reaction.

  1. Carbon adsorption onto Fe oxyhydroxide stalks produced by a lithotrophic iron-oxidizing bacteria.

    PubMed

    Bennett, S A; Toner, B M; Barco, R; Edwards, K J

    2014-03-01

    Iron (Fe)-oxidizing bacteria have the potential to produce morphologically unique structures that may be used as biosignatures in geological deposits. One particular example is Mariprofundus ferrooxydans, which produces extracellular twisted ribbon-like stalks consisting of ferrihydrite, co-located with organic and inorganic elements. It is currently thought that M. ferrooxydans excrete and co-precipitate polysaccharides and Fe simultaneously; however, the cellular production of these polysaccharides has yet to be confirmed. Here, we report on a time-series study that used scanning transmission X-ray microscopy and C 1s and Ca 2p near-edge X-ray adsorption fine structure spectroscopy to investigate production of polysaccharides over the growth cycle of M. ferrooxydans. The production and morphology of twisted iron stalks were consistent with previous observations, but unexpectedly, in the log phase, the carbon content of the stalks was extremely low. It was not until stationary growth phase that a significant component of carbon was detected on the stalks. During the log phase, low levels of carbon, only detectable when the stalks were thin, suggested that M. ferrooxydans produce an extracellular polysaccharide template onto which the Fe precipitates. By stationary phase, the increased carbon association with the stalks was a result of adsorption of organic compounds that were released during osmotic shock post-stalk production. In the environment, elevated concentrations of DOC could adsorb onto the Fe stalks as well as a number of other elements, for example, Si, P, Ca, which, by preventing chemical interactions between the Fe nanoparticles, will prevent structural deformation during recrystallization and preserve the structure of these filaments in the rock record. PMID:24428517

  2. Carbon adsorption onto Fe oxyhydroxide stalks produced by a lithotrophic iron-oxidizing bacteria.

    PubMed

    Bennett, S A; Toner, B M; Barco, R; Edwards, K J

    2014-03-01

    Iron (Fe)-oxidizing bacteria have the potential to produce morphologically unique structures that may be used as biosignatures in geological deposits. One particular example is Mariprofundus ferrooxydans, which produces extracellular twisted ribbon-like stalks consisting of ferrihydrite, co-located with organic and inorganic elements. It is currently thought that M. ferrooxydans excrete and co-precipitate polysaccharides and Fe simultaneously; however, the cellular production of these polysaccharides has yet to be confirmed. Here, we report on a time-series study that used scanning transmission X-ray microscopy and C 1s and Ca 2p near-edge X-ray adsorption fine structure spectroscopy to investigate production of polysaccharides over the growth cycle of M. ferrooxydans. The production and morphology of twisted iron stalks were consistent with previous observations, but unexpectedly, in the log phase, the carbon content of the stalks was extremely low. It was not until stationary growth phase that a significant component of carbon was detected on the stalks. During the log phase, low levels of carbon, only detectable when the stalks were thin, suggested that M. ferrooxydans produce an extracellular polysaccharide template onto which the Fe precipitates. By stationary phase, the increased carbon association with the stalks was a result of adsorption of organic compounds that were released during osmotic shock post-stalk production. In the environment, elevated concentrations of DOC could adsorb onto the Fe stalks as well as a number of other elements, for example, Si, P, Ca, which, by preventing chemical interactions between the Fe nanoparticles, will prevent structural deformation during recrystallization and preserve the structure of these filaments in the rock record.

  3. Codeposition of organic carbon and arsenic in Bengal Delta aquifers.

    PubMed

    Meharg, Andrew A; Scrimgeour, Charlie; Hossain, Shahid A; Fuller, Kenneth; Cruickshank, Kenneth; Williams, Paul N; Kinniburgh, David G

    2006-08-15

    We present data showing that arsenic (As) was codeposited with organic carbon (OC) in Bengal Delta sediments as As and OC concentrations are highly (p < 0.001) positively correlated in core profiles collected from widely dispersed geographical sites with different sedimentary depositional histories. Analysis of modern day depositional environments revealed that the As-OC correlations observed in cores are due to As retention and high OC inputs in vegetated zones of the deltaic environment. We hypothesize that elevated concentrations of As occur in vegetated wetland sediments due to concentration and retention of arsenate in aerated root zones and animal burrows where copious iron(III) oxides are deposited. On burial of the sediment, degradation of organic carbon from plant and animal biomass detritus provides the reducing conditions to dissolve iron(III) oxides and release arsenite into the porewater. As tubewell abstracted aquifer water is an invaluable resource on which much of Southeast Asia is now dependent, this increased understanding of the processes responsible for As buildup and release will identify, through knowledge of the palaeosedimentary environment, which sediments are at most risk of having high arsenic concentrations in porewater. Our data allow the development of a new unifying hypothesis of how As is mobilized into groundwaters in river flood plains and deltas of Southeast Asia, namely that in these highly biologically productive environments, As and OC are codeposited, and the codeposited OC drives As release from the sediments.

  4. A carbonyl iron/carbon fiber material for electromagnetic wave absorption.

    PubMed

    Youh, Meng-Jey; Wu, Hung-Chih; Lin, Wang-Hua; Chiu, Sheng-Cheng; Huang, Chien-Fa; Yu, Hsin-Chih; Hsu, Jen-Sung; Li, Yuan-Yao

    2011-03-01

    A carbonyl iron/carbon fiber material consisting of carbon fibers grown on micrometer-sized carbonyl iron sphere, was synthesized by chemical vapor deposition using a mixture of C2H2 and H2. The hollow-core carbon fibers (outer diameter: 140 nm and inner diameter: 40 nm) were composed of well-ordered graphene layers which were almost parallel to the long axis of the fibers. A composite (2 mm thick) consisting of the carbonyl iron/carbon fibers and epoxy resin demonstrated excellent electromagnetic (EM) wave absorption. Minimum reflection losses of -36 dB (99.95% of EM wave absorption) at 7.6 GHz and -32 dB (99.92% of EM wave absorption) at 34.1 GHz were achieved. The well-dispersed and network-like carbon fibers in the resin matrix affected the dielectric loss of the EM wave while the carbonyl iron affected the magnetic loss.

  5. Influence of Carbon Sources and Electron Shuttles on Ferric Iron Reduction by Cellulomonas sp. Strain ES6

    SciTech Connect

    Dr Robin Gerlach; Erin K. Field; Sridhar Viamajala; Brent M. Peyton; William A. Apel; Al B. Cunningham

    2011-09-01

    Microbially reduced iron minerals can reductively transform a variety of contaminants including heavy metals, radionuclides, chlorinated aliphatics, and nitroaromatics. A number of Cellulomonas spp. strains, including strain ES6, isolated from aquifer samples obtained at the U.S. Department of Energy's Hanford site in Washington, have been shown to be capable of reducing Cr(VI), TNT, natural organic matter, and soluble ferric iron [Fe(III)]. This research investigated the ability of Cellulomonas sp. strain ES6 to reduce solid phase and dissolved Fe(III) utilizing different carbon sources and various electron shuttling compounds. Results suggest that Fe(III) reduction by and growth of strain ES6 was dependent upon the type of electron donor, the form of iron present, and the presence of synthetic or natural organic matter, such as anthraquinone-2,6-disulfonate (AQDS) or humic substances. This research suggests that Cellulomonas sp. strain ES6 could play a significant role in metal reduction in the Hanford subsurface and that the choice of carbon source and organic matter addition can allow for independent control of growth and iron reduction activity.

  6. Influence of carbon sources and electron shuttles on ferric iron reduction by Cellulomonas sp. strain ES6.

    PubMed

    Gerlach, Robin; Field, Erin K; Viamajala, Sridhar; Peyton, Brent M; Apel, William A; Cunningham, Al B

    2011-09-01

    Microbially reduced iron minerals can reductively transform a variety of contaminants including heavy metals, radionuclides, chlorinated aliphatics, and nitroaromatics. A number of Cellulomonas spp. strains, including strain ES6, isolated from aquifer samples obtained at the U.S. Department of Energy's Hanford site in Washington, have been shown to be capable of reducing Cr(VI), TNT, natural organic matter, and soluble ferric iron [Fe(III)]. This research investigated the ability of Cellulomonas sp. strain ES6 to reduce solid phase and dissolved Fe(III) utilizing different carbon sources and various electron shuttling compounds. Results suggest that Fe(III) reduction by and growth of strain ES6 was dependent upon the type of electron donor, the form of iron present, and the presence of synthetic or natural organic matter, such as anthraquinone-2,6-disulfonate (AQDS) or humic substances. This research suggests that Cellulomonas sp. strain ES6 could play a significant role in metal reduction in the Hanford subsurface and that the choice of carbon source and organic matter addition can allow for independent control of growth and iron reduction activity.

  7. Iron isotopes in natural carbonate minerals determined by MC-ICP-MS with a 58Fe- 54Fe double spike

    NASA Astrophysics Data System (ADS)

    Dideriksen, K.; Baker, J. A.; Stipp, S. L. S.

    2006-01-01

    carbonate minerals may reflect the iron isotope composition of the hydrothermal fluids from which the carbonate precipitated, or the presence of Fe(III) and/or organic material in the hydrothermal fluids during calcite precipitation.

  8. Chemical equilibrium modeling of organic acids, pH, aluminum, and iron in Swedish surface waters.

    PubMed

    Sjöstedt, Carin S; Gustafsson, Jon Petter; Köhler, Stephan J

    2010-11-15

    A consistent chemical equilibrium model that calculates pH from charge balance constraints and aluminum and iron speciation in the presence of natural organic matter is presented. The model requires input data for total aluminum, iron, organic carbon, fluoride, sulfate, and charge balance ANC. The model is calibrated to pH measurements (n = 322) by adjusting the fraction of active organic matter only, which results in an error of pH prediction on average below 0.2 pH units. The small systematic discrepancy between the analytical results for the monomeric aluminum fractionation and the model results is corrected for separately for two different fractionation techniques (n = 499) and validated on a large number (n = 3419) of geographically widely spread samples all over Sweden. The resulting average error for inorganic monomeric aluminum is around 1 µM. In its present form the model is the first internally consistent modeling approach for Sweden and may now be used as a tool for environmental quality management. Soil gibbsite with a log *Ks of 8.29 at 25°C together with a pH dependent loading function that uses molar Al/C ratios describes the amount of aluminum in solution in the presence of organic matter if the pH is roughly above 6.0.

  9. Geochemical modeling of iron, sulfur, oxygen and carbon in a coastal plain aquifer

    USGS Publications Warehouse

    Brown, C.J.; Schoonen, M.A.A.; Candela, J.L.

    2000-01-01

    Fe(III) reduction in the Magothy aquifer of Long Island, NY, results in high dissolved-iron concentrations that degrade water quality. Geochemical modeling was used to constrain iron-related geochemical processes and redox zonation along a flow path. The observed increase in dissolved inorganic carbon is consistent with the oxidation of sedimentary organic matter coupled to the reduction of O2 and SO4/2- in the aerobic zone, and to the reduction of SO4/2- in the anaerobic zone; estimated rates of CO2 production through reduction of Fe(III) were relatively minor by comparison. The rates of CO2 production calculated from dissolved inorganic carbon mass transfer (2.55 x 10-4 to 48.6 x 10-4 mmol 1-1 yr-1) generally were comparable to the calculated rates of CO2 production by the combined reduction of O2, Fe(III) and SO4/2- (1.31 x 10-4 to 15 x 10-4 mmol 1-1 yr-1). The overall increase in SO4/2- concentrations along the flow path, together with the results of mass-balance calculations, and variations in ??34S values along the flow path indicate that SO4/2- loss through microbial reduction is exceeded by SO4/2- gain through diffusion from sediments and through the oxidation of FeS2. Geochemichal and microbial data on cores indicate that Fe(III) oxyhydroxide coatings on sediment grains in local, organic carbon- and SO4/2- -rich zones have localized SO4/2- -reducing zones in which the formation of iron disulfides been depleted by microbial reduction and resulted in decreases dissolved iron concentrations. These localized zones of SO4/2- reduction, which are important for assessing zones of low dissolved iron for water-supply development, could be overlooked by aquifer studies that rely only on groundwater data from well-water samples for geochemical modeling. (C) 2000 Elsevier Science B.V.Fe(III) reduction in the Magothy aquifer of Long Island, NY, results in high dissolved-iron concentrations that degrade water quality. Geochemical modeling was used to constrain iron

  10. The Organization of Controller Motifs Leading to Robust Plant Iron Homeostasis

    PubMed Central

    Agafonov, Oleg; Selstø, Christina Helen; Thorsen, Kristian; Xu, Xiang Ming; Drengstig, Tormod; Ruoff, Peter

    2016-01-01

    Iron is an essential element needed by all organisms for growth and development. Because iron becomes toxic at higher concentrations iron is under homeostatic control. Plants face also the problem that iron in the soil is tightly bound to oxygen and difficult to access. Plants have therefore developed special mechanisms for iron uptake and regulation. During the last years key components of plant iron regulation have been identified. How these components integrate and maintain robust iron homeostasis is presently not well understood. Here we use a computational approach to identify mechanisms for robust iron homeostasis in non-graminaceous plants. In comparison with experimental results certain control arrangements can be eliminated, among them that iron homeostasis is solely based on an iron-dependent degradation of the transporter IRT1. Recent IRT1 overexpression experiments suggested that IRT1-degradation is iron-independent. This suggestion appears to be misleading. We show that iron signaling pathways under IRT1 overexpression conditions become saturated, leading to a breakdown in iron regulation and to the observed iron-independent degradation of IRT1. A model, which complies with experimental data places the regulation of cytosolic iron at the transcript level of the transcription factor FIT. Including the experimental observation that FIT induces inhibition of IRT1 turnover we found a significant improvement in the system’s response time, suggesting a functional role for the FIT-mediated inhibition of IRT1 degradation. By combining iron uptake with storage and remobilization mechanisms a model is obtained which in a concerted manner integrates iron uptake, storage and remobilization. In agreement with experiments the model does not store iron during its high-affinity uptake. As an iron biofortification approach we discuss the possibility how iron can be accumulated even during high-affinity uptake. PMID:26800438

  11. Synthesis of lithium iron phosphate/carbon microspheres by using polyacrylic acid coated iron phosphate nanoparticles derived from iron(III) acrylate.

    PubMed

    Xu, Dongwei; He, Yan-Bing; Chu, Xiaodong; Ding, Zhaojun; Li, Baohua; He, Jianfu; Du, Hongda; Qin, Xianying; Kang, Feiyu

    2015-03-01

    Lithium iron phosphate/carbon (LiFePO4 /C) microspheres with high rate and cycling performance are synthesized from iron phosphate/polyacrylic acid (FePO4 /PAA) nanoparticles. Iron(III) acrylate is used as a precursor for both the iron and carbon sources. FePO4 nanoparticles are first produced by a coprecipitation reaction. The byproduct, acrylic acid ions, is polymerized in situ to form a uniform PAA layer on the surface of the FePO4 nanoparticles. The as-prepared LiFePO4 /C microspheres are composed of primary nanoparticles with sizes of 40-50 nm. The nanoparticles are fully coated with a thin, uniform carbon layer derived from the decomposition of the PAA layer. The uniform carbon-coating layer cooperates with interstitial and boundary carbon derived from sucrose successfully to construct an excellent interconnecting conductive network in the microspheres. As a result of the unique structure, the as-prepared LiFePO4 /C microspheres display both high electronic and ionic conductivities, which contribute to their high rate performance (162.9 mAh g(-1) at 0.1C and 126.1 mAh g(-1) at 5C) and excellent cycling stability (97.1% of capacity retention after 500 cycles at 5C/5C). PMID:25469674

  12. Synthesis of lithium iron phosphate/carbon microspheres by using polyacrylic acid coated iron phosphate nanoparticles derived from iron(III) acrylate.

    PubMed

    Xu, Dongwei; He, Yan-Bing; Chu, Xiaodong; Ding, Zhaojun; Li, Baohua; He, Jianfu; Du, Hongda; Qin, Xianying; Kang, Feiyu

    2015-03-01

    Lithium iron phosphate/carbon (LiFePO4 /C) microspheres with high rate and cycling performance are synthesized from iron phosphate/polyacrylic acid (FePO4 /PAA) nanoparticles. Iron(III) acrylate is used as a precursor for both the iron and carbon sources. FePO4 nanoparticles are first produced by a coprecipitation reaction. The byproduct, acrylic acid ions, is polymerized in situ to form a uniform PAA layer on the surface of the FePO4 nanoparticles. The as-prepared LiFePO4 /C microspheres are composed of primary nanoparticles with sizes of 40-50 nm. The nanoparticles are fully coated with a thin, uniform carbon layer derived from the decomposition of the PAA layer. The uniform carbon-coating layer cooperates with interstitial and boundary carbon derived from sucrose successfully to construct an excellent interconnecting conductive network in the microspheres. As a result of the unique structure, the as-prepared LiFePO4 /C microspheres display both high electronic and ionic conductivities, which contribute to their high rate performance (162.9 mAh g(-1) at 0.1C and 126.1 mAh g(-1) at 5C) and excellent cycling stability (97.1% of capacity retention after 500 cycles at 5C/5C).

  13. Organic carbon biostimulates rapid rhizodegradation of perchlorate.

    PubMed

    Yifru, Dawit D; Nzengung, Valentine A

    2008-12-01

    Previous hydroponics and field studies identified phytodegradation and rhizodegradation as the two main mechanisms by which plants metabolize perchlorate. Plant uptake and phytodegradation of perchlorate is a slower and undesired process that poses ecological risks resulting from phytoaccumulation of some fraction of the perchlorate. Meanwhile, rhizodegradation is a more rapid and favored process involving perchlorate-degrading bacteria utilizing dissolved organic carbon (DOC) as a carbon and energy (electron) source to rapidly degrade perchlorate to innocuous chloride. In the present study, rhizodegradation of perchlorate by willow trees (Salix nigra) was biostimulated using electron sources obtained from natural and artificial carbon sources. In bioreactors provided with carbon sources as 500 mg/L DOC, 25 to 40 mg/L of initial perchlorate concentrations were removed to below the ion chromatography method detection limit of 2 microg/L in approximately 9 d. For planted controls provided with no electron donors, the time required for the complete removal of the same doses of perchlorate was up to 70 d. Enhancement of rhizodegradation by organic carbon reduced the phytoaccumulated fraction of perchlorate by an order of magnitude from approximately 430 to 20 mg/kg. The implication of the present study is that the high fraction uptake and phytoaccumulation of perchlorate in agricultural products and the recycling of perchlorate into the ecosystem can be significantly curtailed by supplying electron donors derived from organic carbon sources to the root zone of plants.

  14. Susceptibility of Permafrost Soil Organic Carbon under Warming Climate

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Wullschleger, S. D.; Liang, L.; Graham, D. E.; Gu, B.

    2015-12-01

    Degradation of soil organic carbon (SOC) that has been stored in permafrost is a key concern under warming climate because it could provide a positive feedback. Studies and conceptual models suggest that SOC degradation is largely controlled by the decomposability of SOC, but it is unclear exactly what portions of SOC are susceptible to rapid breakdown and what mechanisms may be involved in SOC degradation. Using a suite of analytical techniques, we examined the dynamic consumption and production of labile SOC compounds, including sugars, alcohols, and small molecular weight organic acids in incubation experiments (up to 240 days at either -2 or 8 °C) with a tundra soil under anoxic conditions, where SOC respiration and iron(III) reduction were monitored. We observe that sugars and alcohols are main components in SOC accounting for initial rapid release of CO2 and CH4 through anaerobic fermentation, whereas the fermentation products such as acetate and formate are subsequently utilized as primary substrates for methanogenesis. Iron(III) reduction is correlated to acetate production and methanogenesis, suggesting its important roles as an electron acceptor in tundra SOC respiration. These observations corroborate strongly with the glucose addition during incubation, in which rapid CO2 and CH4 production is observed concurrently with rapid production and consumption of organics such as acetate. Thus, the biogeochemical processes we document here are pertinent to understanding the accelerated SOC decomposition with temperature and could provide basis for model predicting feedbacks to climate warming in the Arctic.

  15. Magnetic graphene-carbon nanotube iron nanocomposites as adsorbents and antibacterial agents for water purification.

    PubMed

    Sharma, Virender K; McDonald, Thomas J; Kim, Hyunook; Garg, Vijayendra K

    2015-11-01

    One of the biggest challenges of the 21st century is to provide clean and affordable water through protecting source and purifying polluted waters. This review presents advances made in the synthesis of carbon- and iron-based nanomaterials, graphene-carbon nanotubes-iron oxides, which can remove pollutants and inactivate virus and bacteria efficiently in water. The three-dimensional graphene and graphene oxide based nanostructures exhibit large surface area and sorption sites that provide higher adsorption capacity to remove pollutants than two-dimensional graphene-based adsorbents and other conventional adsorbents. Examples are presented to demonstrate removal of metals (e.g., Cu, Pb, Cr(VI), and As) and organics (e.g., dyes and oil) by grapheme-based nanostructures. Inactivation of Gram-positive and Gram-negative bacterial species (e.g., Escherichia coli and Staphylococcus aureus) is also shown. A mechanism involving the interaction of adsorbents and pollutants is briefly discussed. Magnetic graphene-based nanomaterials can easily be separated from the treated water using an external magnet; however, there are challenges in implementing the graphene-based nanotechnology in treating real water. PMID:26498500

  16. Magnetic graphene-carbon nanotube iron nanocomposites as adsorbents and antibacterial agents for water purification.

    PubMed

    Sharma, Virender K; McDonald, Thomas J; Kim, Hyunook; Garg, Vijayendra K

    2015-11-01

    One of the biggest challenges of the 21st century is to provide clean and affordable water through protecting source and purifying polluted waters. This review presents advances made in the synthesis of carbon- and iron-based nanomaterials, graphene-carbon nanotubes-iron oxides, which can remove pollutants and inactivate virus and bacteria efficiently in water. The three-dimensional graphene and graphene oxide based nanostructures exhibit large surface area and sorption sites that provide higher adsorption capacity to remove pollutants than two-dimensional graphene-based adsorbents and other conventional adsorbents. Examples are presented to demonstrate removal of metals (e.g., Cu, Pb, Cr(VI), and As) and organics (e.g., dyes and oil) by grapheme-based nanostructures. Inactivation of Gram-positive and Gram-negative bacterial species (e.g., Escherichia coli and Staphylococcus aureus) is also shown. A mechanism involving the interaction of adsorbents and pollutants is briefly discussed. Magnetic graphene-based nanomaterials can easily be separated from the treated water using an external magnet; however, there are challenges in implementing the graphene-based nanotechnology in treating real water.

  17. Iron

    MedlinePlus

    ... cereals and breads. White beans, lentils, spinach, kidney beans, and peas. Nuts and some dried fruits, such as raisins. Iron in food comes in two forms: heme iron and nonheme iron. Nonheme iron is found in plant foods and iron-fortified food products. Meat, seafood, ...

  18. Comparison of Carbon XANES Spectra from an Iron Sulfide from Comet Wild 2 with an Iron Sulfide Interplanetary Dust Particle

    NASA Technical Reports Server (NTRS)

    Wirick, S.; Flynn, G. J.; Keller, L. P.; Sanford, S. A.; Zolensky, M. E.; Messenger, Nakamura K.; Jacobsen, C.

    2008-01-01

    Among one of the first particles removed from the aerogel collector from the Stardust sample return mission was an approx. 5 micron sized iron sulfide. The majority of the spectra from 5 different sections of this particle suggests the presence of aliphatic compounds. Due to the heat of capture in the aerogel we initially assumed these aliphatic compounds were not cometary but after comparing these results to a heated iron sulfide interplanetary dust particle (IDP) we believe our initial interpretation of these spectra was not correct. It has been suggested that ice coating on iron sulfides leads to aqueous alteration in IDP clusters which can then lead to the formation of complex organic compounds from unprocessed organics in the IDPs similar to unprocessed organics found in comets [1]. Iron sulfides have been demonstrated to not only transform halogenated aliphatic hydrocarbons but also enhance the bonding of rubber to steel [2,3]. Bromfield and Coville (1997) demonstrated using Xray photoelectron spectroscopy that "the surface enhancement of segregated sulfur to the surface of sulfided precipitated iron catalysts facilitates the formation of a low-dimensional structure of extraordinary properties" [4]. It may be that the iron sulfide acts in some way to protect aliphatic compounds from alteration due to heat.

  19. Fertilization increases paddy soil organic carbon density*

    PubMed Central

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-01-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC. PMID:22467369

  20. Fertilization increases paddy soil organic carbon density.

    PubMed

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-04-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC.

  1. Magnetorheology of iron associated magnetic metal-organic framework nanoparticle

    NASA Astrophysics Data System (ADS)

    Quan, Xue Mei; Liu, Ying Dan; Choi, Hyoung Jin

    2015-05-01

    Metal-organic frameworks (MOFs) with zeolite-like structured materials have interesting characteristics because of their high surface areas and pore volumes. Among the various MOFs reported thus far, Fe-BTC was chosen as an additive to improve the dispersion stability of soft-magnetic carbonyl iron particle-based magnetorheological (MR) fluids. The morphology of the Fe-BTC additive was examined by TEM, and the behavior of the MR particles dispersed in silicone oil was examined using a rotational rheometer. With a typical magnetic property, the Fe-BTC additive added MR fluid showed similar MR behavior with that of the CI based MR fluid while its improved dispersion stability was observed.

  2. Iron

    MedlinePlus

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  3. The placenta: the forgotten essential organ of iron transport.

    PubMed

    Cao, Chang; Fleming, Mark D

    2016-07-01

    Optimal iron nutrition in utero is essential for development of the fetus and helps establish birth iron stores adequate to sustain growth in early infancy. In species with hemochorial placentas, such as humans and rodents, iron in the maternal circulation is transferred to the fetus by directly contacting placental syncytiotrophoblasts. Early kinetic studies provided valuable data on the initial uptake of maternal transferrin, an iron-binding protein, by the placenta. However, the remaining steps of iron trafficking across syncytiotrophoblasts and through the fetal endothelium into the fetal blood remain poorly characterized. Over the last 20 years, identification of transmembrane iron transporters and the iron regulatory hormone hepcidin has greatly expanded the knowledge of cellular iron transport and its regulation by systemic iron status. In addition, emerging human and animal data demonstrating comprised fetal iron stores in severe maternal iron deficiency challenge the classic dogma of exclusive fetal control over the transfer process and indicate that maternal and local signals may play a role in regulating this process. This review compiles current data on the kinetic, molecular, and regulatory aspects of placental iron transport and considers new questions and knowledge gaps raised by these advances. PMID:27261274

  4. Microwave-assisted combustion synthesis of nano iron oxide/iron-coated activated carbon, anthracite, cellulose fiber, and silica, with arsenic adsorption studies

    EPA Science Inventory

    Combustion synthesis of iron oxide/iron coated carbons such as activated carbon, anthracite, cellulose fiber and silica is described. The reactions were carried out in alumina crucibles using a Panasonic kitchen microwave with inverter technology, and the reaction process was com...

  5. Carbonate-Iron Interaction: Kinetic Approach for Carbonate Subduction Down to the Mantle Transition Zone

    NASA Astrophysics Data System (ADS)

    Martirosyan, N.; Yoshino, T.; Shatskiy, A.; Litasov, K. D.; Chanyshev, A.

    2015-12-01

    One of the principal redox exchange reactions at the slab-mantle interface during subduction is CaCO3-Fe0 interaction. Using uniaxial press multianvil apparatus, we investigate this reaction at temperatures from 650 to 1400 °C, and pressures from 4 to 16 GPa. These conditions are representative for the PT path of the slab from the surface to the mantle transition zone. Based on our results, redox reaction can be written as: 3 CaCO3 (aragonite) + 13 Fe0 (metal) = Fe7C3 (carbide) + 3 CaFe2O3 (Ca-wüstite). It is a diffusion-controlled process with the reaction rate constant (k) being log-linear in 1/T. The experimental results allow to calculate the length scale over which the reaction kinetics between aragonite and metallic iron is likely effective. Using relatively simple relationship between the characteristic distance of diffusion as a function of k and duration of the process, we estimate the length scale of the reaction for time scales 4-16 Myr, which corresponds to subduction rates of 2-8 cm/year from 250 km (metal-saturation boundary) to 470 km, for different slab PT-profiles. Assuming that carbonates are in a direct contact with iron, the maximum degree of carbonate reduction can be evaluated using the results of our study and the data on CO2 distribution in altered oceanic basalts. The estimates suggest that up to 0.5, 12, and 20 vol. % of carbonates can be reduced in such case during subduction down to the mantle transition zone at the conditions of cold, medium and hot geotherms, respectively. The sluggish kinetics of established CaCO3-Fe0 interaction suggests that even over the entire history of the Earth, carbonates could survive during subduction from metal saturation boundary near 250 km depth, down to the transition zone, and presumably to the lower mantle.

  6. Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current

    PubMed Central

    Assmy, Philipp; Smetacek, Victor; Montresor, Marina; Klaas, Christine; Henjes, Joachim; Strass, Volker H.; Arrieta, Jesús M.; Bathmann, Ulrich; Berg, Gry M.; Breitbarth, Eike; Cisewski, Boris; Friedrichs, Lars; Fuchs, Nike; Herndl, Gerhard J.; Jansen, Sandra; Krägefsky, Sören; Latasa, Mikel; Peeken, Ilka; Röttgers, Rüdiger; Scharek, Renate; Schüller, Susanne E.; Steigenberger, Sebastian; Webb, Adrian; Wolf-Gladrow, Dieter

    2013-01-01

    Diatoms of the iron-replete continental margins and North Atlantic are key exporters of organic carbon. In contrast, diatoms of the iron-limited Antarctic Circumpolar Current sequester silicon, but comparatively little carbon, in the underlying deep ocean and sediments. Because the Southern Ocean is the major hub of oceanic nutrient distribution, selective silicon sequestration there limits diatom blooms elsewhere and consequently the biotic carbon sequestration potential of the entire ocean. We investigated this paradox in an in situ iron fertilization experiment by comparing accumulation and sinking of diatom populations inside and outside the iron-fertilized patch over 5 wk. A bloom comprising various thin- and thick-shelled diatom species developed inside the patch despite the presence of large grazer populations. After the third week, most of the thinner-shelled diatom species underwent mass mortality, formed large, mucous aggregates, and sank out en masse (carbon sinkers). In contrast, thicker-shelled species, in particular Fragilariopsis kerguelensis, persisted in the surface layers, sank mainly empty shells continuously, and reduced silicate concentrations to similar levels both inside and outside the patch (silica sinkers). These patterns imply that thick-shelled, hence grazer-protected, diatom species evolved in response to heavy copepod grazing pressure in the presence of an abundant silicate supply. The ecology of these silica-sinking species decouples silicon and carbon cycles in the iron-limited Southern Ocean, whereas carbon-sinking species, when stimulated by iron fertilization, export more carbon per silicon. Our results suggest that large-scale iron fertilization of the silicate-rich Southern Ocean will not change silicon sequestration but will add carbon to the sinking silica flux. PMID:24248337

  7. Catalytic effect of different forms of iron in purification of single-walled carbon nanotubes.

    PubMed

    Suzuki, Tomoko; Inoue, Sakae; Ando, Yoshinori

    2010-06-01

    In the arc plasma jet (APJ) method, a large amount of soot including single wall carbon nanotubes (SWNTs) can be produced in a short time. However, as-grown soot contains a lot of impurities, such as metallic particles used as catalyst and amorphous carbon. Hence it is necessary to purify the soot to obtain pure SWNTs. The biggest problem in purifying APJ-SWNTs is how to remove the thick amorphous carbon covering the catalyst metal particles. By refluxing APJ-SWNTs in hydrogen peroxide using iron particle as catalyst, it can be purified. The added fine particle of pure iron is found to be effective. Then, we examine whether SWNTs can be purified more effectively by adding solution containing the Fe ion instead of the iron particle. We used iron (III) nitrate nonahydrate, hydrogen peroxide decomposing agent which contains catalase and ammonium iron (II) sulfate hexahydrate. In the case of iron (III) nitrate and catalase, purification effect is not obvious. Under these conditions hydrogen peroxide was decomposed into H2O and O2, and the hydroxyl radical was not generated. On the other hand, ammonium iron (II) sulfate is effective. Because of existence of Fe2+ in solution Fenton's reaction takes place. Reaction rate is increased at high temperature. Therefore, APJ-SWNT is purified more effectively if refluxed in hydrogen peroxide using ammonium iron (II) sulfate as catalyst.

  8. The Quest for Organic Carbon on Mars

    NASA Technical Reports Server (NTRS)

    Eigenbrode, Jennifer

    2011-01-01

    We are entering an era of Mars exploration in which organic carbon detection, characterization, and structural identification will be key to addressing some of the outstanding science objectives of the Mars Exploration Program. Success of these missions will depend on technical, scientific, and strategic elements--all of which are strongly determined based on terrestrial experience and knowledge of organic matter formation, concentration, and preservation. Analog studies including Precambrian sediments, modern endolithic communities, and experiments help us fine-tune these approaches, but we also need to expect the unexpected. This presentation will provide perspective on the challenges of detecting organic carbon on Mars, how we may achieve such detections with the in situ instruments, such as the SAM (Science Analysis at Mars) instrument suite onboard Curiosity, the rover for the 2011 Mars Science Laboratory mission.

  9. Pore- and micro-structural characterization of a novel structural binder based on iron carbonation

    SciTech Connect

    Das, Sumanta; Stone, David; Convey, Diana; Neithalath, Narayanan

    2014-12-15

    The pore- and micro-structural features of a novel binding material based on the carbonation of waste metallic iron powder are reported in this paper. The binder contains metallic iron powder as the major ingredient, followed by additives containing silica and alumina to facilitate favorable reaction product formation. Compressive strengths sufficient for a majority of concrete applications are attained. The material pore structure is investigated primarily through mercury intrusion porosimetry whereas electron microscopy is used for microstructural characterization. Reduction in the overall porosity and the average pore size with an increase in carbonation duration from 1 day to 4 days is noticed. The pore structure features are used in predictive models for gas and moisture transport (water vapor diffusivity and moisture permeability) through the porous medium which dictates its long-term durability when used in structural applications. Comparisons of the pore structure with those of a Portland cement paste are also provided. The morphology of the reaction products in the iron-based binder, and the distribution of constituent elements in the microstructure are also reported. - Highlights: • Carbonation of iron produces a dense microstructure. • Pore volume in iron carbonate lower, critical size higher than those in OPC pastes • Reaction product contains iron, carbon, silicon, aluminum and calcium. • Power-law for porosity-moisture permeability relationship was established.

  10. Properties and effects of remaining carbon from waste plastics gasifying on iron scale reduction.

    PubMed

    Zhang, Chongmin; Chen, Shuwen; Miao, Xincheng; Yuan, Hao

    2011-06-01

    The carbonous activities of three kinds of carbon-bearing materials gasified from plastics were tested with coal coke as reference. The results showed that the carbonous activities of these remaining carbon-bearing materials were higher than that of coal-coke. Besides, the fractal analyses showed that the porosities of remaining carbon-bearing materials were higher than that of coal-coke. It revealed that these kinds of remaining carbon-bearing materials are conducive to improve the kinetics conditions of gas-solid phase reaction in iron scale reduction.

  11. Organically complexed iron enhances bioavailability of antimony to maize (Zea mays) seedlings in organic soils.

    PubMed

    Ptak, Corey; McBride, Murray

    2015-12-01

    Antimony (Sb) is a metalloid belonging to group 15 of the periodic table. Chemical similarities between arsenic (As) and Sb produce concerns about potential health effects of Sb and enrichment in the environment. Antimony is found in oxic environments predominately as an oxyanionic species, antimonite (Sb[OH](6-)). As a result of its net negative charge, Sb[OH](6-) was not initially predicted to have strong interactions with natural organic matter. Oxyanionic species could bind the negatively charged organic matter via a ternary complexation mechanism, in which cationic metals mediate the strong association between organic matter functional groups and oxyanions. However, these interactions are poorly understood in how they influence the bioavailability of oxyanionic contaminants to plants. Iron (Fe) additions to organic soils have been found to increase the number of organically complexed Fe sites suitable for Sb exchange, resulting in a reduced bioavailable fraction of Sb. The bioavailability of Sb to maize seedlings as a function of organically complexed Fe was examined using a greenhouse study. A significant increase in plant tissue Sb was observed as organically complexed Fe increased, which was not predicted by methods commonly used to assess bioavailable Sb. Extraction of soils with organic acids common to the maize rhizosphere suggested that organic acid exudation can readily mobilize Sb bound by organic Fe complexes. PMID:26076768

  12. Organically complexed iron enhances bioavailability of antimony to maize (Zea mays) seedlings in organic soils.

    PubMed

    Ptak, Corey; McBride, Murray

    2015-12-01

    Antimony (Sb) is a metalloid belonging to group 15 of the periodic table. Chemical similarities between arsenic (As) and Sb produce concerns about potential health effects of Sb and enrichment in the environment. Antimony is found in oxic environments predominately as an oxyanionic species, antimonite (Sb[OH](6-)). As a result of its net negative charge, Sb[OH](6-) was not initially predicted to have strong interactions with natural organic matter. Oxyanionic species could bind the negatively charged organic matter via a ternary complexation mechanism, in which cationic metals mediate the strong association between organic matter functional groups and oxyanions. However, these interactions are poorly understood in how they influence the bioavailability of oxyanionic contaminants to plants. Iron (Fe) additions to organic soils have been found to increase the number of organically complexed Fe sites suitable for Sb exchange, resulting in a reduced bioavailable fraction of Sb. The bioavailability of Sb to maize seedlings as a function of organically complexed Fe was examined using a greenhouse study. A significant increase in plant tissue Sb was observed as organically complexed Fe increased, which was not predicted by methods commonly used to assess bioavailable Sb. Extraction of soils with organic acids common to the maize rhizosphere suggested that organic acid exudation can readily mobilize Sb bound by organic Fe complexes.

  13. Methylation of secondary amines with dialkyl carbonates and hydrosilanes catalysed by iron complexes.

    PubMed

    Zheng, Jianxia; Darcel, Christophe; Sortais, Jean-Baptiste

    2014-11-25

    Methylation of secondary amines was achieved using dimethyl carbonate or diethyl carbonate as the C1 source under the catalysis of well-defined half-sandwich iron complexes bearing an N-heterocyclic carbene ligand. The reaction proceeded under mild conditions in the presence of hydrosilanes as the reductants, and the amines were obtained with good to excellent isolated yields. PMID:25285339

  14. Iron defecation by sperm whales stimulates carbon export in the Southern Ocean.

    PubMed

    Lavery, Trish J; Roudnew, Ben; Gill, Peter; Seymour, Justin; Seuront, Laurent; Johnson, Genevieve; Mitchell, James G; Smetacek, Victor

    2010-11-22

    The iron-limited Southern Ocean plays an important role in regulating atmospheric CO(2) levels. Marine mammal respiration has been proposed to decrease the efficiency of the Southern Ocean biological pump by returning photosynthetically fixed carbon to the atmosphere. Here, we show that by consuming prey at depth and defecating iron-rich liquid faeces into the photic zone, sperm whales (Physeter macrocephalus) instead stimulate new primary production and carbon export to the deep ocean. We estimate that Southern Ocean sperm whales defecate 50 tonnes of iron into the photic zone each year. Molar ratios of C(export):Fe(added) determined during natural ocean fertilization events are used to estimate the amount of carbon exported to the deep ocean in response to the iron defecated by sperm whales. We find that Southern Ocean sperm whales stimulate the export of 4 × 10(5) tonnes of carbon per year to the deep ocean and respire only 2 × 10(5) tonnes of carbon per year. By enhancing new primary production, the populations of 12 000 sperm whales in the Southern Ocean act as a carbon sink, removing 2 × 10(5) tonnes more carbon from the atmosphere than they add during respiration. The ability of the Southern Ocean to act as a carbon sink may have been diminished by large-scale removal of sperm whales during industrial whaling.

  15. Iron and carbon monoxide enhance coagulation and attenuate fibrinolysis by different mechanisms.

    PubMed

    Nielsen, Vance G; Pretorius, Etheresia

    2014-10-01

    Two parallel lines of investigation elucidating novel mechanisms by which iron (scanning electron microscopy-based) and carbon monoxide (viscoelastic-based) enhance coagulation and diminish fibrinolysis have emerged over the past few years. However, a multimodal approach to ascertain the effects of iron and carbon monoxide remained to be performed. Such investigation could be important, as iron and carbon monoxide are two of the products of heme catabolism via heme oxygenase-1, an enzyme upregulated in a variety of disease states associated with thrombophilia. Human plasma was exposed to ferric chloride, carbon monoxide derived from carbon monoxide-releasing molecule-2, or their combination. Viscoelastic studies demonstrated ferric chloride and carbon monoxide mediated enhancement of velocity of growth, and final clot strength, with the combination of the two molecules noted to have all the prothrombotic kinetic effects of either separately. Parallel ultrastructural studies demonstrated separate types of fibrin polymer cross-linking and matting in plasma exposed to ferric chloride and carbon monoxide, with the combination sharing features of each molecule. In conclusion, we present the first evidence that iron and carbon monoxide interact with key coagulation and fibrinolytic processes, resulting in thrombi that begin to form more quickly, grow faster, become stronger, and are more resistant to lysis.

  16. Iron organic speciation determination in rainwater using cathodic stripping voltammetry.

    PubMed

    Cheize, Marie; Sarthou, Géraldine; Croot, Peter L; Bucciarelli, Eva; Baudoux, Anne-Claire; Baker, Alex R

    2012-07-29

    A sensitive method using Competitive Ligand Exchange-Adsorptive Cathodic Stripping Voltammetry (CLE-ACSV) has been developed to determine for the first time iron (Fe) organic speciation in rainwater over the typical natural range of pH. We have adapted techniques previously developed in other natural waters to rainwater samples, using the competing ligand 1-nitroso-2-naphthol (NN). The blank was equal to 0.17±0.05 nM (n=14) and the detection limit (DL) for labile Fe was 0.15 nM which is 10-70 times lower than that of previously published methods. The conditional stability constant for NN under rainwater conditions was calibrated over the pH range 5.52-6.20 through competition with ethylenediaminetetraacetic acid (EDTA). The calculated value of the logarithm of β'(Fe(3+)(NN)(3)) increased linearly with increasing pH according to log β'(Fe(3+)(NN)(3)) (salinity=2.9, T=20 °C). The validation of the method was carried out using desferrioxamine mesylate B (DFOB) as a natural model ligand for Fe. Adequate detection windows were defined to detect this class of ligands in rainwater with 40 μM of NN from pH 5.52 to 6.20. The concentration of Fe-complexing natural ligands was determined for the first time in three unfiltered and one filtered rainwater samples. Organic Fe-complexing ligand concentrations varied from 104.2±4.1 nM equivalent of Fe(III) to 336.2±19.0 nM equivalent of Fe(III) and the logarithm of the conditional stability constants, with respect to Fe(3+), varied from 21.1±0.2 to 22.8±0.3. This method will provide important data for improving our understanding of the role of wet deposition in the biogeochemical cycling of iron.

  17. Impacts of dyebath auxiliaries on the reductive discoloration of Acid Orange 7 dye by high-carbon iron filings.

    PubMed

    Kumar, Raja; Sinha, Alok

    2016-01-01

    This study proposed that the physicochemical effects of common dyebath auxiliaries on the bulk dye solution as well as on the iron surface can influence the reductive discoloration of effluent containing Acid Orange 7 (AO7) dye using high-carbon iron filings. Sodium chloride increased the discoloration rate because of the pitting corrosion on the iron surface, triggered by chloride anion. 'Salting out' effect of ammonium sulfate improved the reaction rate up to a certain concentration, beyond which it could compete with dye molecules for the reactive sites, as revealed by formed sulfite and sulfide. Urea drastically reduced the discoloration rates by its chaotropic effect on the bulk solution and by wrapping around the iron surface. Organic acids, namely acetic acid and citric acid, stimulated iron corrosion to improve the discoloration rates. The discoloration reaction was biphasic with an initial fast reaction phase, where in every case more than 70% discoloration was observed within 5 min of reaction, preceding a slow reaction phase. The experimental data could be well described using biphasic kinetics equation (R(2)> 0.997 in all cases) and a biphasic equation was developed considering the individual impact of co-existing auxiliaries on AO7 discoloration.

  18. Impacts of dyebath auxiliaries on the reductive discoloration of Acid Orange 7 dye by high-carbon iron filings.

    PubMed

    Kumar, Raja; Sinha, Alok

    2016-01-01

    This study proposed that the physicochemical effects of common dyebath auxiliaries on the bulk dye solution as well as on the iron surface can influence the reductive discoloration of effluent containing Acid Orange 7 (AO7) dye using high-carbon iron filings. Sodium chloride increased the discoloration rate because of the pitting corrosion on the iron surface, triggered by chloride anion. 'Salting out' effect of ammonium sulfate improved the reaction rate up to a certain concentration, beyond which it could compete with dye molecules for the reactive sites, as revealed by formed sulfite and sulfide. Urea drastically reduced the discoloration rates by its chaotropic effect on the bulk solution and by wrapping around the iron surface. Organic acids, namely acetic acid and citric acid, stimulated iron corrosion to improve the discoloration rates. The discoloration reaction was biphasic with an initial fast reaction phase, where in every case more than 70% discoloration was observed within 5 min of reaction, preceding a slow reaction phase. The experimental data could be well described using biphasic kinetics equation (R(2)> 0.997 in all cases) and a biphasic equation was developed considering the individual impact of co-existing auxiliaries on AO7 discoloration. PMID:27642841

  19. Iron silicide root formation in carbon nanotubes grown by microwave PECVD.

    PubMed

    AuBuchon, Joseph F; Daraio, Chiara; Chen, Li-Han; Gapin, Andrew I; Jin, Sungho

    2005-12-29

    Aligned carbon nanotubes have been grown using microwave plasma enhanced chemical vapor deposition (PECVD). The carbon nanotubes are nucleated from iron catalyst particles which, during growth, remain adherent to the silicon substrates. By analysis with high-resolution electron microscopy, we observe iron silicide roots penetrating into the silicon substrate at the interface of the catalyst particles and the substrate, thus providing strong adhesion of the carbon nanotubes onto the substrate. The iron silicide roots assist in the attachment of the catalyst particles to the substrate and play a role in the evolution of the catalyst particle morphology and resulting base growth mode. Carbon nanotubes grown by microwave PECVD could exhibit superior electrical and thermal transport properties over other PECVD processes, so an understanding of the growth mechanism is important for utilization in device applications. PMID:16375415

  20. [Organic and elemental carbon in atmospheric particles].

    PubMed

    Lepore, Luca; Brocco, Domenico; Avino, Pasquale

    2003-01-01

    The carbonaceous material, present especially in the respirable atmospheric particulate, is emitted directly from the combustion processes and it is composed of an organic fraction, organic carbon (OC) and of a fraction which is resistant to oxidation at temperatures below approximately 400 degrees C, elemental carbon (EC). In this paper OC and EC concentrations are reported measured in downtown Rome and in a park, Villa Ada, by means of an analyzer which utilizes the thermal properties of the particles. The temporal trends of EC and OC in Rome are in good agreement during the entire period investigated (correlation coefficient between 0.86-0.90). On the other hand the comparison with Villa Ada shows a different contribution from secondary origin pollutants. The carbonaceous fraction in the total particulate mass, measured by means of a TEOM analyzer, varies between 30-40% in downtown and 20-25% in the park, respectively.

  1. [Effects of different fertilizer application on soil active organic carbon].

    PubMed

    Zhang, Rui; Zhang, Gui-Long; Ji, Yan-Yan; Li, Gang; Chang, Hong; Yang, Dian-Lin

    2013-01-01

    The variation characteristics of the content and components of soil active organic carbon under different fertilizer application were investigated in samples of calcareous fluvo-aquic soil from a field experiment growing winter wheat and summer maize in rotation in the North China Plain. The results showed that RF (recommended fertilization), CF (conventional fertilization) and NPK (mineral fertilizer alone) significantly increased the content of soil dissolved organic carbon and easily oxidized organic carbon by 24.92-38.63 mg x kg(-1) and 0.94-0.58 mg x kg(-1) respectively compared to CK (unfertilized control). The soil dissolved organic carbon content under OM (organic manure) increased greater than those under NPK and single fertilization, soil easily oxidized organic carbon content under OM and NPK increased greater than that under single chemical fertilization. OM and NPK showed no significant role in promoting the soil microbial biomass carbon, but combined application of OM and NPK significantly increased the soil microbial biomass carbon content by 36.06% and 20.69%, respectively. Soil easily oxidized organic carbon, dissolved organic carbon and microbial biomass carbon accounted for 8.41% - 14.83%, 0.47% - 0.70% and 0.89% - 1.20% of the total organic carbon (TOC), respectively. According to the results, the fertilizer application significantly increased the proportion of soil dissolved organic carbon and easily oxidized organic carbon, but there was no significant difference in the increasing extent of dissolved organic carbon. The RF and CF increased the proportion of soil easily oxidized organic carbon greater than OM or NPK, and significantly increased the proportion of microbial biomass carbon. OM or RF had no significant effect on the proportion of microbial biomass carbon. Therefore, in the field experiment, appropriate application of organic manure and chemical fertilizers played an important role for the increase of soil active organic carbon

  2. [Effects of different fertilizer application on soil active organic carbon].

    PubMed

    Zhang, Rui; Zhang, Gui-Long; Ji, Yan-Yan; Li, Gang; Chang, Hong; Yang, Dian-Lin

    2013-01-01

    The variation characteristics of the content and components of soil active organic carbon under different fertilizer application were investigated in samples of calcareous fluvo-aquic soil from a field experiment growing winter wheat and summer maize in rotation in the North China Plain. The results showed that RF (recommended fertilization), CF (conventional fertilization) and NPK (mineral fertilizer alone) significantly increased the content of soil dissolved organic carbon and easily oxidized organic carbon by 24.92-38.63 mg x kg(-1) and 0.94-0.58 mg x kg(-1) respectively compared to CK (unfertilized control). The soil dissolved organic carbon content under OM (organic manure) increased greater than those under NPK and single fertilization, soil easily oxidized organic carbon content under OM and NPK increased greater than that under single chemical fertilization. OM and NPK showed no significant role in promoting the soil microbial biomass carbon, but combined application of OM and NPK significantly increased the soil microbial biomass carbon content by 36.06% and 20.69%, respectively. Soil easily oxidized organic carbon, dissolved organic carbon and microbial biomass carbon accounted for 8.41% - 14.83%, 0.47% - 0.70% and 0.89% - 1.20% of the total organic carbon (TOC), respectively. According to the results, the fertilizer application significantly increased the proportion of soil dissolved organic carbon and easily oxidized organic carbon, but there was no significant difference in the increasing extent of dissolved organic carbon. The RF and CF increased the proportion of soil easily oxidized organic carbon greater than OM or NPK, and significantly increased the proportion of microbial biomass carbon. OM or RF had no significant effect on the proportion of microbial biomass carbon. Therefore, in the field experiment, appropriate application of organic manure and chemical fertilizers played an important role for the increase of soil active organic carbon

  3. Self-organized permeability in carbonate aquifers.

    PubMed

    Worthington, S R H; Ford, D C

    2009-01-01

    Advances over the past 40 years have resulted in a clear understanding of how dissolution processes in carbonate rocks enhance aquifer permeability. Laboratory experiments on dissolution rates of calcite and dolomite have established that there is a precipitous drop in dissolution rates as chemical equilibrium is approached. These results have been incorporated into numerical models, simulating the effects of dissolution over time and showing that it occurs along the entire length of pathways through carbonate aquifers. The pathways become enlarged and integrated over time, forming self-organized networks of channels that typically have apertures in the millimeter to centimeter range. The networks discharge at point-located springs. Recharge type is an important factor in determining channel size and distribution, resulting in a range of aquifer types, and this is well demonstrated by examples from England. Most carbonate aquifers have a large number of small channels, but in some cases large channels (i.e., enterable caves) can also develop. Rapid velocities found in ground water tracer tests, the high incidence of large-magnitude springs, and frequent microbial contamination of wells all support the model of self-organized channel development. A large majority of carbonate aquifers have such channel networks, where ground water velocities often exceed 100 m/d.

  4. Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments

    NASA Astrophysics Data System (ADS)

    Shields, Michael R.; Bianchi, Thomas S.; Gélinas, Yves; Allison, Mead A.; Twilley, Robert R.

    2016-02-01

    We examined the role of reactive iron (FeR) in preserving organic carbon (OC) across a subaerial chronosequence of the Wax Lake Delta, a prograding delta within the Mississippi River Delta complex. We found that ~15.0% of the OC was bound to FeR, and the dominant binding mechanisms varied from adsorption in the youngest subaerial region to coprecipitation at the older, vegetated sites. The δ13C of the iron-associated OC was more negative than the total OC (mean = -2.6‰), indicating greater preference for terrestrial material and/or compounds with more negative δ13C values. However, only the adsorbed OC displayed preferential binding of lignin phenols. We estimate that ~8% of the OC initially deposited in deltaic systems is bound to FeR (equivalent to 6 × 1012 gC yr-1), and this percentage increases postdepositionally, as coprecipitation of FeR and OC allows for an even greater amount of OC to be bound to FeR.

  5. Versatile and Biomass Synthesis of Iron-based Nanoparticles Supported on Carbon Matrix with High Iron Content and Tunable Reactivity

    SciTech Connect

    Zhang, Dongmao; Shi, Sheldon Q; Jiang, Dongping; Che, Wen; Gai, Zheng; Howe, Jane Y; More, Karren Leslie; Arockiasamy, Antonyraj

    2012-01-01

    Iron-based nanoparticles supported on carbon (FeNPs{at}C) have enormous potential for environmental applications. Reported is a biomass-based method for FeNP{at}C synthesis that involves pyrolysis of bleached wood fiber pre-mixed with Fe{sub 3}O{sub 4} nanoparticles. This method allows synthesis of iron-based nanoparticles with tunable chemical reactivity by changing the pyrolysis temperature. The FeNP{at}C synthesized at a pyrolysis temperature of 500 C (FeNP{at}C-500) reacts violently (pyrophoric) when exposed to air, while FeNP{at}C prepared at 800 C (FeNP{at}C-800) remains stable in ambient condition for at least 3 months. The FeNPs in FeNP{at}C-800 are mostly below 50 nm in diameter and are surrounded by carbon. The immediate carbon layer (within 5-15 nm radius) on the FeNPs is graphitized. Proof-of-concept environmental applications of FeNPs{at}C-800 were demonstrated by Rhodamine 6G and arsenate (V) removal from water. This biomass-based method provides an effective way for iron-based nanoparticle fabrication and biomass utilization.

  6. Temporal fluctuations in grain size, organic materials and iron concentrations in intertidal surface sediment of San Francisco Bay

    USGS Publications Warehouse

    Thomson-Becker, E. A.; Luoma, S.N.

    1985-01-01

    The physical and chemical characteristics of the oxidized surface sediment in an estuary fluctuate temporally in response to physical forces and apparently-fluctuating inputs. These characteristics, which include grain size and concentrations of organic materials and iron, will influence both trace-metal geochemistry and bioavailability. Temporal trends in the abundance of fine particles, total organic carbon content (TOC), absorbance of extractable organic material (EOM), and concentration of extractable iron in the sediment of San Francisco Bay were assessed using data sets containing approximately monthly samples for periods of two to seven years. Changes in wind velocity and runoff result in monthly changes in the abundance of fine particles in the intertidal zone. Fine-grained particles are most abundant in the late fall/early winter when runoff is elevated and wind velocities are low; particles are coarser in the summer when runoff is low and wind velocities are consistently high. Throughout the bay, TOC is linearly related to fine particle abundance (r = 0.61). Temporal variability occurs in this relationship, as particles are poor in TOC relative to percent of fine particles in the early rainy season. Iron-poor particles also appear to enter the estuary during high runoff periods; while iron is enriched on particle surfaces in the summer. Concentrations of extractable iron and absorbance of EOM vary strongly from year to year. Highest absorbances of EOM occurred in the first year following the drought in 1976-77, and in 1982 and 1983 when river discharge was unusually high. Extractable-iron concentrations were also highest in 1976-77, but were very low in 1982 and 1983. ?? 1985 Dr W. Junk Publishers.

  7. Transport of zero-valent iron nanoparticles in carbonate-rich porous aquifers

    NASA Astrophysics Data System (ADS)

    Laumann, S.; Micic, V.; Hofmann, T.

    2012-04-01

    Use of nanoscale zero-valent iron (nZVI) for in situ dechlorination of chlorinated solvents in groundwater is a promising remediation technology, due to a high dechlorination efficiency of nZVI and possible applications in e.g., great depth or under above-ground infrastructure. The success of the in situ nZVI dechlorination strongly depends on the particle delivery to the contaminants. Previous studies reported a limited transport of nZVI through porous media (cm- to dm-range) and this has been recognized as one of the major obstacles in a widespread utilization of this technology (TRATNYEK & JOHNSON, 2006). Factors that limit the transport are particle aggregation and deposition onto the aquifer solids. Both depend on particle properties (e.g., size, shape, iron content, surface coating, surface charge), on concentrations of suspensions, and on site-specific parameters, such as the groundwater chemistry and the properties and inhomogeneity of the aquifer material. Adsorbed anionic polyelectrolyte coatings provide electrostatic double layer repulsions between negatively charged nZVI particles (SALEH ET AL., 2007), hindering their aggregation and also deposition on the negatively charged quartz surfaces (usually prevailing in aquifers). However, it is shown that the presence of surface charge heterogeneities in the aquifer effects the particle transport (JOHNSON ET AL., 1996). Carbonates, iron oxides, and the edges of clay minerals, for instance, carry a positive surface charge at neutral pH (often encountered in groundwater). This leads to a favorable deposition of negatively charged nZVI particles onto carbonates, metal oxide impurities or clay edges, and finally to a decreased particle transport. Considering the high proportion of carbonates commonly encountered in Alpine porous aquifers, in this study we aimed to evaluate the transport of commercially available polyelectrolyte coated nZVI (polyacrylic acid coated-nZVI, NANOIRON s.r.o., CZ) in both quartz and

  8. Environmental Controls of Soil Organic Carbon in Soils Across Amazonia

    NASA Astrophysics Data System (ADS)

    Quesada, Carlos Alberto; Paz, Claudia; Phillips, Oliver; Nonato Araujo Filho, Raimundo; Lloyd, Jon

    2015-04-01

    (kaolinitic) and thus the clay plus silt fraction was the best correlate for SOC but with crystalline iron oxides (dithionite-citrate minus ammonium oxalate - oxalic acid extractable iron) being also correlated to SOC in these soils (R2 = 0.74). Most of SOC in these soils was found on the clay+silt fraction and in stable, clay rich aggregates. However, SOC of high activity clays and other less weathered soils such as Alisols, Cambisols and Plinthosols showed no correlation with particle size or iron oxides, being mostly stabilized by aluminium complexes. We found SOC of these soils to be better explained by a three way interaction among soil pH, carbon quality and dithionite-citrate extractable Al (R2 = 0.85). Consistent with this observation, SOC in the less weathered soils was mostly found in the colloidal fraction (75%). SOC of Podzols and Arenosols on the other hand had only a small but significant influence from their clay plus silt fraction (R2 = 0.31), with particulate organic matter accounting for most of its SOC.

  9. Natural organic matter enhanced mobility of nano zerovalent iron.

    PubMed

    Johnson, Richard L; Johnson, Graham O'Brien; Nurmi, James T; Tratnyek, Paul G

    2009-07-15

    Column studies showed that the mobility of nanometer-sized zerovalent iron (nZVI) through granular media is greatly increased in the presence of natural organic matter (NOM). At NOM concentrations of 20 mg/L or greater, the nZVI was highly mobile during transport experiments in 0.15-m long columns packed with medium sand. Below 20 mg/L NOM, mobility of the nZVI was less; however, even at 2 mg/L the nZVI showed significantly increased mobility compared to the no-NOM case. Spectrophotometric and aggregation studies of nZVI suspensions in the presence of NOM suggest that sorption of the NOM onto the nZVI, resulting in a reduced sticking coefficient, may be the primary mechanism of enhanced mobility. Modeling the mobility of nZVI in porous media with filtration theory is challenging, but calibration of a simple model with experimental results from the column experiments reported here allows simulation of transport distances during injection. The simulation results show that the increased mobility due to NOM combined with the decrease in mobility due to decreased velocity with distance from an injection well could produce an injection zone that is wide enough to be useful for remediation but small enough to avoid reaching unwanted receptors. PMID:19708381

  10. Linking carbon and iron cycles by investigating transport, fate and mineralogy of iron-bearing colloids from peat-draining rivers - Scotland as model for high-latitude rivers

    NASA Astrophysics Data System (ADS)

    Wood, Deborah; Crocket, Kirsty; Brand, Tim; Stutter, Marc; Wilson, Clare; Schröder, Christian

    2016-04-01

    Linking carbon and iron cycles by investigating transport, fate and mineralogy of iron-bearing colloids from peat-draining rivers - Scotland as model for high-latitude rivers Wood, D.A¹, Crocket, K², Brand, T², Stutter, M³, Wilson, C¹ & Schröder, C¹ ¹Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA ²Scottish Association for Marine Science, University of the Highlands and Islands, Dunbeg, Oban, PA37 1QA ³James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH The biogeochemical iron cycle exerts significant control on the carbon cycle¹. Iron is a limiting nutrient in large areas of the world's oceans and its bioavailability controls CO2 uptake by marine photosynthesizing microorganisms. While atmospheric iron inputs to the open ocean have been extensively measured, global river inputs have likely been underestimated because most major world rivers exhibit extensive iron removal by flocculation and sedimentation during seawater mixing. Iron minerals and organic matter mutually stabilise each other², which results in a 'rusty carbon sink' in sediments³ on the one hand but may also enhance transport beyond the salinity gradient on the other. Humic-rich, high latitude rivers have a higher iron-carrying capacity⁴‑⁶ but are underrepresented in iron flux calculations. The West Coast sea lochs in Scotland are fed by predominantly peatland drainage catchments, and the rivers entering the sea lochs carry a high load of organic matter. The short distance between many of these catchments and the coastal ocean facilitates source-to-sea research investigating transport, fate and mineralogy of iron-bearing colloids providing a good analogue for similar high latitude fjordic systems. We use SeaFAST+ICP-MS and Mössbauer spectroscopy to survey trace metal concentrations, with emphasis on iron concentrations, speciation and mineralogy, across salinity gradients. In combination with ultra-filtration techniques, this allows

  11. Linking carbon and iron cycles by investigating transport, fate and mineralogy of iron-bearing colloids from peat-draining rivers - Scotland as model for high-latitude rivers

    NASA Astrophysics Data System (ADS)

    Wood, Deborah; Crocket, Kirsty; Brand, Tim; Stutter, Marc; Wilson, Clare; Schröder, Christian

    2016-04-01

    Linking carbon and iron cycles by investigating transport, fate and mineralogy of iron-bearing colloids from peat-draining rivers - Scotland as model for high-latitude rivers Wood, D.A¹, Crocket, K², Brand, T², Stutter, M³, Wilson, C¹ & Schröder, C¹ ¹Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA ²Scottish Association for Marine Science, University of the Highlands and Islands, Dunbeg, Oban, PA37 1QA ³James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH The biogeochemical iron cycle exerts significant control on the carbon cycle¹. Iron is a limiting nutrient in large areas of the world's oceans and its bioavailability controls CO2 uptake by marine photosynthesizing microorganisms. While atmospheric iron inputs to the open ocean have been extensively measured, global river inputs have likely been underestimated because most major world rivers exhibit extensive iron removal by flocculation and sedimentation during seawater mixing. Iron minerals and organic matter mutually stabilise each other², which results in a 'rusty carbon sink' in sediments³ on the one hand but may also enhance transport beyond the salinity gradient on the other. Humic-rich, high latitude rivers have a higher iron-carrying capacity⁴-⁶ but are underrepresented in iron flux calculations. The West Coast sea lochs in Scotland are fed by predominantly peatland drainage catchments, and the rivers entering the sea lochs carry a high load of organic matter. The short distance between many of these catchments and the coastal ocean facilitates source-to-sea research investigating transport, fate and mineralogy of iron-bearing colloids providing a good analogue for similar high latitude fjordic systems. We use SeaFAST+ICP-MS and Mössbauer spectroscopy to survey trace metal concentrations, with emphasis on iron concentrations, speciation and mineralogy, across salinity gradients. In combination with ultra-filtration techniques, this allows

  12. Initial Characterization of Carbon Metabolism in Iron Oxidizing Microbial Communities of Acidic Hot Springs in Norris Geyser Basin, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Kreuzer, H. W.; Jennings, R. D.; Whitmore, L.; Inskeep, W. P.; Moran, J.

    2012-12-01

    Norris Geyser Basin in Yellowstone National Park is home to several acidic, sulfidic hot springs. Visual inspection of the springs reveals distinct geochemical regions starting with a sulfur deposition zone followed by a transition to iron oxide deposition downstream. The microbial communities in the iron oxidation zones are dominated by Archaea, including several members that appear to define previously unrecognized taxa. Abiotic iron oxidation rates are very slow at these temperatures (typically ~ 65-70 oC) and pH's (typically ~3). Therefore, the relatively rapid iron oxide deposition rate strongly suggests the process is microbially mediated, and an organism previously isolated from these springs, Metallosphaera yellowstonensis, has been shown to oxide iron in culture. M. yellowstonensis has been observed in the all microbial communities analyzed in the iron oxidizing zones of these springs, though metagenomic profiling suggests it constitutes only ~20% of the community membership. When we began our studies of C flow in the iron-oxidizing community, no C source had been demonstrated. Observed potential carbon sources in the springs include dissolved inorganic carbon, dissolved organic carbon, and methane, as well as random inputs of heterotrophic carbon in the forms of insect carcasses, pine needles, and animal scat. The temperatures in the iron oxidation zones are above the photosynthetic upper temperature limit, thus precluding photosynthetic-based autotrophy within the community itself. We are employing geochemical and stable isotope techniques to assess carbon inventories in the system. We have demonstrated that M. yellowstonensis as well as excised samples of iron oxide mat communities can fix CO2, and our estimated isotopic fractionation factor is consistent with the 3-hydroxypropionate 4-hydroxybutyrate pathway. Genes of this pathway have been identified in the M. yellowstonensis genome. We have tentatively identified small amounts of organic compounds

  13. Dispersion and separation of nanostructured carbon in organic solvents

    NASA Technical Reports Server (NTRS)

    Landi, Brian J. (Inventor); Raffaelle, Ryne P. (Inventor); Ruf, Herbert J. (Inventor); Evans, Christopher M. (Inventor)

    2011-01-01

    The present invention relates to dispersions of nanostructured carbon in organic solvents containing alkyl amide compounds and/or diamide compounds. The invention also relates to methods of dispersing nanostructured carbon in organic solvents and methods of mobilizing nanostructured carbon. Also disclosed are methods of determining the purity of nanostructured carbon.

  14. Black Carbon Contribution to Organic Carbon Stocks in Urban Soil.

    PubMed

    Edmondson, Jill L; Stott, Iain; Potter, Jonathan; Lopez-Capel, Elisa; Manning, David A C; Gaston, Kevin J; Leake, Jonathan R

    2015-07-21

    Soil holds 75% of the total organic carbon (TOC) stock in terrestrial ecosystems. This comprises ecosystem-derived organic carbon (OC) and black carbon (BC), a recalcitrant product of the incomplete combustion of fossil fuels and biomass. Urban topsoils are often enriched in BC from historical emissions of soot and have high TOC concentrations, but the contribution of BC to TOC throughout the urban soil profile, at a regional scale is unknown. We sampled 55 urban soil profiles across the North East of England, a region with a history of coal burning and heavy industry. Through combined elemental and thermogravimetic analyses, we found very large total soil OC stocks (31-65 kg m(-2) to 1 m), exceeding typical values reported for UK woodland soils. BC contributed 28-39% of the TOC stocks, up to 23 kg C m(-2) to 1 m, and was affected by soil texture. The proportional contribution of the BC-rich fraction to TOC increased with soil depth, and was enriched in topsoil under trees when compared to grassland. Our findings establish the importance of urban ecosystems in storing large amounts of OC in soils and that these soils also capture a large proportion of BC particulates emitted within urban areas.

  15. Origin and fate of particulate and dissolved organic matter in a naturally iron-fertilized region of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Tremblay, L.; Caparros, J.; Leblanc, K.; Obernosterer, I.

    2014-10-01

    Natural iron fertilization of high-nutrient low-chlorophyll (HNLC) waters induces annually occurring spring phytoplankton blooms off Kerguelen Islands (Southern Ocean). To examine the origin and fate of particulate and dissolved organic matter (POM and DOM), D- and L-amino acids (AA) were quantified at bloom and HNLC stations. Total hydrolysable AA accounted for 21-25% of surface particulate organic carbon (%POCAA) at the bloom sites, but for 10% at the HNLC site. A marked decrease in %POCAA with depth was observed at the most productive stations leading to values between 3 and 5% below 300 m depth. AA contributed to only 0.9-4.4% of dissolved organic carbon (%DOCAA) at all stations. The only consistent vertical trend was observed at the most productive station (A3-2) where %DOCAA decreased from ∼2% in the surface waters to 0.9% near 300 m. These AA yields and other markers revealed that POM and DOM were more rapidly altered or mineralized at the bloom sites compared to the HNLC site. Different molecular markers indicated that POM mostly originated from diatoms and bacteria. The estimated average proportion of POM from intact phytoplankton cells in surface waters was 45% at the bloom station A3-2, but 14% at the HNLC site. Estimates based on D-AA yields indicated that ∼15% of POM and ∼30% of DOM was of bacterial origin (cells and cell fragments) at all stations. Surprisingly, the DOM in HNLC waters appeared less altered than the DOM from the bloom, had slightly higher dissolved AA concentrations, and showed no sign of alteration within the water column. Unfavorable conditions for bacterial degradation in HNLC regions can explain these findings. In contrast, large inputs of labile organic molecules and iron, likely stimulate the degradation of organic matter (priming effect) and the production of more recalcitrant DOM (microbial carbon pump) during iron-fertilized blooms.

  16. Structural and Morphological Features of Concentric Iron Oxide/Carbon Nanotubes Obtained from Phospholipids

    SciTech Connect

    Yu, Min; Howe, Jane Y; Jeong, Kyunghoon; Shim, Inbo; Kim, Woochul; Kim, Chulsung; Ahn, Jaepyoung; Lee, Jaegab; Urban, Mark W.

    2010-01-01

    Biologically active 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC{sub 8,9}PC) nanotube-forming phospholipids (PLs) have been utilized as templates to prepare ferromagnetic nanotubes (FMNTs). Combining X-ray diffraction (XRD), selected area electron diffraction (SAD), high-resolution transmission electron microscopy (HRTEM), Raman, and Moessbauer spectroscopy measurements, FMNTs morphological features and chemical composition were determined. These studies showed that FMNTs consist of iron oxide/carbon/iron oxide concentric nanotubes with the amorphous carbon phase sandwiched between two iron oxide layers. The iron oxide phase consists of nanocrystalline magnetite (Fe{sub 3}O{sub 4}) which coexist as tetrahedral Fe{sup 3+} and octahedral Fe{sup 2.5+} sites containing minute quantities of hematite ({alpha}-Fe{sub 2}O{sub 3}) phase. The carbon phase consists of amorphous carbon forming an amorphous carbon nanotube (ACNT). Magnetic measurements showed that saturation magnetization (M{sub s}) of FMNTs is 79 emu/g, but upon removal of the iron oxide outer and inner layers, ACNTs become paramagnetic. The electrical resistivity ({rho}) of single FMNT is 3.3 x 10{sup -2} {Omega} {center_dot} m, which decreases to 5.06 x 10{sup -4} {Omega} {center_dot} m for ACNT. These magneto-electric properties can be easily tailored, depending upon desired applications and needs.

  17. Upgrading and dephosphorization of Western Australian iron ore using reduction roasting by adding sodium carbonate

    NASA Astrophysics Data System (ADS)

    Zhu, De-qing; Chun, Tie-jun; Pan, Jian; Lu, Li-ming; He, Zhen

    2013-06-01

    The technology of direct reduction by adding sodium carbonate (Na2CO3) and magnetic separation was developed to treat Western Australian high phosphorus iron ore. The iron ore and reduced product were investigated by optical microscopy and scanning electron microscopy. It is found that phosphorus exists within limonite in the form of solid solution, which cannot be removed through traditional ways. During reduction roasting, Na2CO3 reacts with gangue minerals (SiO2 and Al2O3), forming aluminum silicate-containing phosphorus and damaging the ore structure, which promotes the separation between iron and phosphorus during magnetic separation. Meanwhile, Na2CO3 also improves the growth of iron grains, increasing the iron grade and iron recovery. The iron concentrate, assaying 94.12wt% Fe and 0.07wt% P at the iron recovery of 96.83% and the dephosphorization rate of 74.08%, is obtained under the optimum conditions. The final product (metal iron powder) after briquetting can be used as the burden for steelmaking by an electric arc furnace to replace scrap steel.

  18. The reduction of iron oxides by volatiles in a rotary hearth furnace process: Part II. The reduction of iron oxide/carbon composites

    NASA Astrophysics Data System (ADS)

    Sohn, I.; Fruehan, R. J.

    2006-04-01

    The reduction of iron oxide/carbon composite pellets with hydrogen at 900 °C to 1000 °C was studied. Compared to hydrogen, the reduction by carbon was negligible at 900 °C and below. However, significant carbon oxidation of the iron oxide/graphite pellets by H2O generated from the reduction of Fe2O3 by H2 was observed. At higher temperatures, reduction by carbon complicates the overall reduction mechanism, with the iron oxide/graphite composite pellet found to be more reactive than the iron oxide/char composite pellet. From the scanning electron micrographs, partially reduced composite pellets showed a typical topochemical interface with an intermediate region between an oxygen-rich unreacted core and an iron-rich outer shell. To determine the possibility of reduction by volatiles, a layer of iron oxide powders was spread on top of a high volatile containing bituminous coal and heated inside a reactor using infra-red radiation. By separating the individual reactions involved for an iron oxide/coal mixture where a complex set of reactions occur simultaneously, it was possible to determine the sole effect of volatile reduction. It was found that the light reducing gases evolve initially and react with the iron oxide, with complex hydrocarbons evolving at the later stages. The volatiles caused about 20 to 50 pct reduction of the iron oxide.

  19. The reduction of iron oxides by volatiles in a rotary hearth furnace process: Part II. The reduction of iron oxide/carbon composites

    SciTech Connect

    Sohn, I.; Fruehan, R.J.

    2006-04-15

    The reduction of iron oxide/carbon composite pellets with hydrogen at 900{sup o}C to 1000{sup o}C was studied. Compared to hydrogen, the reduction by carbon was negligible at 900 degrees C and below. However, significant carbon oxidation of the iron oxide/graphite pellets by H{sub 2O generated from the reduction of Fe{sub 2}O{sub 3} by H-2 was observed. At higher temperatures, reduction by carbon complicates the overall reduction mechanism, with the iron oxide/graphite composite pellet found to be more reactive than the iron oxide/char composite pellet. From the scanning electron micrographs, partially reduced composite pellets showed a typical topochemical interface with an intermediate region between an oxygen-rich unreacted core and an iron-rich outer shell. To determine the possibility of reduction by volatiles, a layer of iron oxide powders was spread on top of a high volatile containing bituminous coal and heated inside a reactor using infra-red radiation. By separating the individual reactions involved for an iron oxide/coal mixture where a complex set of reactions occur simultaneously, it was possible to determine the sole effect of volatile reduction. It was found that the light reducing gases evolve initially and react with the iron oxide, with complex hydrocarbons evolving at the later stages. The volatiles caused about 20 to 50% reduction of the iron oxide.

  20. Carbon-14 dating of an iron bloom associated with the voyages of Sir Martin Frobisher

    SciTech Connect

    Sayre, E.V.; Harbottle, G.; Stoenner, R.W. Washburn, W.; Olin, J.S.; Fitzhugh, W.

    1982-01-01

    This paper recounts the history of the iron bloom associated with the English Elizabethan explorer Sir Martin Frobisher who made 3 voyages to the North American mainland in the 1570's. Specifically the paper deals with the use of proportional counters in carbon-14 dating of the Frobisher iron bloom which is located at the Smithsonian Institution. The procedures for preparing the samples for counting are described. (KRM)

  1. Kinetics of iron import into developing mouse organs determined by a pup-swapping method.

    PubMed

    Chakrabarti, Mrinmoy; Barlas, Mirza Nofil; McCormick, Sean P; Lindahl, Lora S; Lindahl, Paul A

    2015-01-01

    The kinetics of dietary iron import into various organs of mice were evaluated using a novel pup-swapping approach. Newborn pups whose bodies primarily contained (56)Fe or (57)Fe were swapped at birth such that each nursed on milk containing the opposite isotope. A pup from each litter was euthanized weekly over a 7-week period. Blood plasma was obtained, and organs were isolated typically after flushing with Ringer's buffer. (56)Fe and (57)Fe concentrations were determined for organs and plasma; organ volumes were also determined. Mössbauer spectra of equivalent (57)Fe-enriched samples were used to quantify residual blood in organs; this fraction was excluded from later analysis. Rates of import into brain, spleen, heart, and kidneys were highest during the first 2 weeks of life. In contrast, half of iron in the newborn liver exited during that time, and influx peaked later. Two mathematical models were developed to analyze the import kinetics. The only model that simulated the data adequately assumed that an iron-containing species enters the plasma and converts into a second species and that both are independently imported into organs. Consistent with this, liquid chromatography with an on-line ICP-MS detector revealed numerous iron species in plasma besides transferrin. Model fitting required that the first species, assigned to non-transferrin-bound iron, imports faster into organs than the second, assigned to transferrin-bound-iron. Non-transferrin-bound iron rather than transferrin-bound-iron appears to play the dominant role in importing iron into organs during early development of healthy mice.

  2. PHOTOCHEICAL PRODUCTION OF HYDROXYL RADICAL IN NATURAL WATER - THE ROLE OF IRON AND DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    Photochemical hydroxyl radical (OH) production was measured in several natural waters to investigate the importance of colored dissolved organic matter (CDOM) and iron-CDOM complexes as sources of OH. High rates of OH photoproduction in highly colored, iron-rich, acidic waters a...

  3. Site-Specific Carbon Isotopes in Organics

    NASA Astrophysics Data System (ADS)

    Piasecki, A.; Eiler, J. M.

    2012-12-01

    Natural organic molecules exhibit a wide range of internal site-specific isotope variation (i.e., molecules with same isotopic substitution type but different site). Such variations are generally unconstrained by bulk isotopic measurements. If known, site-specific variations might constrain temperatures of equilibrium, mechanisms of formation or consumption reactions, and possibly other details. For example, lipids can exhibit carbon isotope differences of up to 30‰ between adjacent carbon sites as a result of fractionations arising during decarboxylation of pyruvate and other steps in lipid biosynthesis(1). We present a method for site-specific carbon isotope analysis of propane, based on high-resolution, multi-collector gas source mass spectrometry, using a novel prototype instrument - the Thermo MAT 253 Ultra. This machine has an inlet system and electron bombardment ion source resembling those in conventional stable isotope gas source mass spectrometers, and the energy filter, magnet, and detector array resembling those in multi-collector ICPMS and TIMS. The detector array has 7 detector positions, 6 of which are movable, and each of which can collect ions with either a faraday cup (read through amplifiers ranging from 107-1012 ohms) or an SEM. High mass resolving power (up to 27,000, MRP = M/dM definition) is achieved through a narrow entrance slit, adjustable from 250 to 5 μm. Such resolution can cleanly separate isobaric interferences between isotopologues of organic molecules having the same cardinal mass (e.g., 13CH3 and 12CH2D). We use this technology to analyze the isotopologues and fragments of propane, and use such data to solve for the site-specific carbon isotope fractionation. By measuring isotopologues of both the one-carbon (13CH3) and the two-carbon (13C12CH4) fragment ion, we can solve for both bulk δ13C and the difference in δ13C between the terminal and central carbon position. We tested this method by analyzing mixtures between natural

  4. Green Carbon, Black Carbon, White Carbon: Simultaneous Differentiation Between Soil Organic Matter, Pyrogenic Carbon and Carbonates Using Thermal Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Plante, A. F.; Peltre, C.; Chan, J.; Baumgartl, T.; Erskine, P.; Apesteguía, M.; Virto, I.

    2014-12-01

    Quantification of soil carbon stocks and fluxes continues to be an important endeavor in assessments of soil quality, and more broadly in assessments of ecosystem functioning. The quantification of soil carbon in alkaline, carbonate-containing soils, such as those found in Mediterranean areas, is complicated by the need to differentiate between organic carbon (OC) and inorganic carbon (IC), which continues to present methodological challenges. Acidification is frequently used to eliminate carbonates prior to soil OC quantification, but when performed in the liquid phase, can promote the dissolution and loss of a portion of the OC. Acid fumigation (AF) is increasingly preferred for carbonate removal, but its effectiveness is difficult to assess using conventional elemental and isotopic analyses. The two-step approach is time, labor and cost intensive, and generates additional uncertainties from the calculations. Quantification of the actively cycling pool of soil organic C (SOC) in many soils is further complicated by the potential presence of more recalcitrant/stable forms such as pyrogenic or black carbon (BC) derived from incomplete combustion of vegetation, or even geogenic carbon such as coal. The wide spectrum of materials currently considered BC makes its quantification challenging. The chemical method using benzene polycarboxylic acids (BPCAs) as markers of condensed aromatic structures indicative of pyrogenic C is highly time, labor and cost intensive, and can generate artifacts. Several research groups are now developing method for the simultaneous identification and quantification of these various forms of soil carbon using thermal analysis techniques such as thermogravimetry, differential scanning calorimetry and evolved gas analysis. The objective of this presentation is to provide a general overview and specific examples of the current progress and technical challenges in this evolving methodology.

  5. Urban Tree Effects on Soil Organic Carbon

    PubMed Central

    Edmondson, Jill L.; O'Sullivan, Odhran S.; Inger, Richard; Potter, Jonathan; McHugh, Nicola; Gaston, Kevin J.; Leake, Jonathan R.

    2014-01-01

    Urban trees sequester carbon into biomass and provide many ecosystem service benefits aboveground leading to worldwide tree planting schemes. Since soils hold ∼75% of ecosystem organic carbon, understanding the effect of urban trees on soil organic carbon (SOC) and soil properties that underpin belowground ecosystem services is vital. We use an observational study to investigate effects of three important tree genera and mixed-species woodlands on soil properties (to 1 m depth) compared to adjacent urban grasslands. Aboveground biomass and belowground ecosystem service provision by urban trees are found not to be directly coupled. Indeed, SOC enhancement relative to urban grasslands is genus-specific being highest under Fraxinus excelsior and Acer spp., but similar to grasslands under Quercus robur and mixed woodland. Tree cover type does not influence soil bulk density or C∶N ratio, properties which indicate the ability of soils to provide regulating ecosystem services such as nutrient cycling and flood mitigation. The trends observed in this study suggest that genus selection is important to maximise long-term SOC storage under urban trees, but emerging threats from genus-specific pathogens must also be considered. PMID:25003872

  6. Urban tree effects on soil organic carbon.

    PubMed

    Edmondson, Jill L; O'Sullivan, Odhran S; Inger, Richard; Potter, Jonathan; McHugh, Nicola; Gaston, Kevin J; Leake, Jonathan R

    2014-01-01

    Urban trees sequester carbon into biomass and provide many ecosystem service benefits aboveground leading to worldwide tree planting schemes. Since soils hold ∼75% of ecosystem organic carbon, understanding the effect of urban trees on soil organic carbon (SOC) and soil properties that underpin belowground ecosystem services is vital. We use an observational study to investigate effects of three important tree genera and mixed-species woodlands on soil properties (to 1 m depth) compared to adjacent urban grasslands. Aboveground biomass and belowground ecosystem service provision by urban trees are found not to be directly coupled. Indeed, SOC enhancement relative to urban grasslands is genus-specific being highest under Fraxinus excelsior and Acer spp., but similar to grasslands under Quercus robur and mixed woodland. Tree cover type does not influence soil bulk density or C∶N ratio, properties which indicate the ability of soils to provide regulating ecosystem services such as nutrient cycling and flood mitigation. The trends observed in this study suggest that genus selection is important to maximise long-term SOC storage under urban trees, but emerging threats from genus-specific pathogens must also be considered.

  7. Urban tree effects on soil organic carbon.

    PubMed

    Edmondson, Jill L; O'Sullivan, Odhran S; Inger, Richard; Potter, Jonathan; McHugh, Nicola; Gaston, Kevin J; Leake, Jonathan R

    2014-01-01

    Urban trees sequester carbon into biomass and provide many ecosystem service benefits aboveground leading to worldwide tree planting schemes. Since soils hold ∼75% of ecosystem organic carbon, understanding the effect of urban trees on soil organic carbon (SOC) and soil properties that underpin belowground ecosystem services is vital. We use an observational study to investigate effects of three important tree genera and mixed-species woodlands on soil properties (to 1 m depth) compared to adjacent urban grasslands. Aboveground biomass and belowground ecosystem service provision by urban trees are found not to be directly coupled. Indeed, SOC enhancement relative to urban grasslands is genus-specific being highest under Fraxinus excelsior and Acer spp., but similar to grasslands under Quercus robur and mixed woodland. Tree cover type does not influence soil bulk density or C∶N ratio, properties which indicate the ability of soils to provide regulating ecosystem services such as nutrient cycling and flood mitigation. The trends observed in this study suggest that genus selection is important to maximise long-term SOC storage under urban trees, but emerging threats from genus-specific pathogens must also be considered. PMID:25003872

  8. Computational studies of small carbon and iron-carbon systems relevant to carbon nanotube growth.

    PubMed

    Duan, Haiming; Rosén, Arne; Harutyunyan, Avetik; Curtarolo, Stefano; Bolton, Kim

    2008-11-01

    Density functional theory (DFT) calculations show that dimers and longer carbon strings are more stable than individual atoms on Fe(111) surfaces. It is therefore necessary to consider the formation of these species on the metal surfaces and their effect on the mechanism of single-walled nanotube (SWNT) growth. The good agreement between the trends (energies and structures) obtained using DFT and those based on the Brenner and AIREBO models indicate that these analytic models provide adequate descriptions of the supported carbon systems needed for valid molecular dynamics simulations of SWNT growth. In contrast, the AIREBO model provides a better description of the relative energies for isolated carbon species, and this model is preferred over the Brenner potential when simulating SWNT growth in the absence of metal particles. However, the PM3 semiempirical model appears to provide an even better description for these systems and, given sufficient computer resources, direct dynamics methods based on this model may be preferred.

  9. Computational studies of small carbon and iron-carbon systems relevant to carbon nanotube growth.

    PubMed

    Duan, Haiming; Rosén, Arne; Harutyunyan, Avetik; Curtarolo, Stefano; Bolton, Kim

    2008-11-01

    Density functional theory (DFT) calculations show that dimers and longer carbon strings are more stable than individual atoms on Fe(111) surfaces. It is therefore necessary to consider the formation of these species on the metal surfaces and their effect on the mechanism of single-walled nanotube (SWNT) growth. The good agreement between the trends (energies and structures) obtained using DFT and those based on the Brenner and AIREBO models indicate that these analytic models provide adequate descriptions of the supported carbon systems needed for valid molecular dynamics simulations of SWNT growth. In contrast, the AIREBO model provides a better description of the relative energies for isolated carbon species, and this model is preferred over the Brenner potential when simulating SWNT growth in the absence of metal particles. However, the PM3 semiempirical model appears to provide an even better description for these systems and, given sufficient computer resources, direct dynamics methods based on this model may be preferred. PMID:19198360

  10. Recovery of iron from zinc leaching residue by selective reduction roasting with carbon.

    PubMed

    Li, Mi; Peng, Bing; Chai, Liyuan; Peng, Ning; Yan, Huan; Hou, Dongke

    2012-10-30

    The recovery of iron from zinc leaching residue by selective reduction roasting with carbon was studied. The effects of roasting temperature, duration time and mass ratio of carbon to residue on decomposition of ZnFe(2)O(4), iron recovery and iron grade were investigated based on thermodynamic calculation and phase composition analysis of zinc leaching residue. 58.6% of iron grade in magnetic concentrate and 68.4% of iron recovery were achieved after the residue roasted at 750°C for 1h under carbon to residue mass ratio of 4%. The phase composition of roasted residue indicated that the ZnFe(2)O(4) decomposed in four stages: reduction of ZnFe(2)O(4) to ZnO and Fe(3)O(4), reduction of Fe(3)O(4) to FeO, formation of Fe(0.85-x)Zn(x)O and reduction of FeO to Fe. A technological process for simultaneously recovering iron and zinc from zinc leaching residue is proposed.

  11. Ordered Mesoporous Carbon/Iron Oxide Nanoparticle Composites for Supercapacitor Applications

    NASA Astrophysics Data System (ADS)

    Lin, Ying; Wang, Xinyu; Watkins, James

    2013-03-01

    Novel mesoporous carbon/iron oxide composites were prepared through a simple carbonization procedure of blends of block copolymer precursors containing the source of carbon, i.e., polyacrylonitrile-block-poly(t-butyl acrylate) (PtBA-b-PAN) with iron oxide nanoparticles. The addition of functionalized nanoparticles that selectively hydrogen bond with PAN segments was shown to induce order in otherwise disordered system. The ordered mesostructure of the composites was confirmed by both small x-ray scattering and transmission electron microscopy. The preparation of nanocomposites with pore structure was enabled by the high ?delity preservation of the phase-separated nanostructure between two polymer blocks driven by nanoparticle additive upon carbonization at 700oC. The electrochemical performance of the composite films was compared to that of the neat carbon and the mesoporous carbon without iron oxide nanoparticles. The mesoporous structure together with the high iron contents in such materials make them particularly promising for use in supercapacitor applications. This work was supported by the NSF Center for Hierarchical Manufacturing at the University of Massachusetts (CMMI-0531171).

  12. Development of iron-containing multiwalled carbon nanotubes for MR-guided laser-induced thermotherapy

    PubMed Central

    Ding, Xuanfeng; Singh, Ravi; Burke, Andrew; Hatcher, Heather; Olson, John; Kraft, Robert A; Schmid, Michael; Carroll, David; Bourland, J Daniel; Akman, Steven; Torti, Frank M; Torti, Suzy V

    2011-01-01

    Aims To test iron-containing multiwalled carbon nanotubes (MWCNTs) as bifunctional nanomaterials for imaging and thermal ablation of tumors. Materials & Methods MWCNTs entrapping iron were synthesized by chemical vapor deposition. The T2-weighted contrast enhancement properties of MWCNTs containing increasing amounts of iron were determined in vitro. Suspensions of these particles were injected into tumor-bearing mice and tracked longitudinally over 7 days by MRI. Heat-generating abilities of these nanomaterials following exposure to near infrared (NIR) laser irradiation was determined in vitro and in vivo. Results The magnetic resonance contrast properties of carbon nanotubes were directly related to their iron content. Iron-containing nanotubes were functional T2-weighted contrast agents in vitro and could be imaged in vivo long-term following injection. Iron content of nanotubes did not affect their ability to generate thermoablative temperatures following exposure to NIR and significant tumor regression was observed in mice treated with MWCNTs and NIR laser irradiation. Conclusion These data demonstrate that iron-containing MWCNTs are functional T2-weighted contrast agents and efficient mediators of tumor-specific thermal ablation in vivo. PMID:21506687

  13. Preparation, characterization, and performance of magnetic iron-carbon composite microparticles for chemotherapy.

    PubMed

    Rudge, S R; Kurtz, T L; Vessely, C R; Catterall, L G; Williamson, D L

    2000-07-01

    Magnetic microcarrier particles useful for delivering chemotherapeutic drug molecules are described. The particles are formed by joint deformation of iron and carbon in a ball mill. Physical, chemical, and functional characterization has been carried out on the particles. Physical characteristics include microscopy, particle size analysis (0.5-5 microm), surface area (250 m2/g), water vapor adsorption isotherm (hydrophobic surface), and analysis of the iron-carbon interface by Mössbauer spectroscopy, X-ray diffraction, and differential thermal analysis. Chemical analysis was used to identify elements in the particles other than carbon and iron. Functional characteristics measured included the particles' ability to adsorb and desorb doxorubicin, cytotoxicity, and their magnetic susceptibility. PMID:10872770

  14. Nitrogen-doped carbon-supported cobalt-iron oxygen reduction catalyst

    DOEpatents

    Zelenay, Piotr; Wu, Gang

    2014-04-29

    A Fe--Co hybrid catalyst for oxygen reaction reduction was prepared by a two part process. The first part involves reacting an ethyleneamine with a cobalt-containing precursor to form a cobalt-containing complex, combining the cobalt-containing complex with an electroconductive carbon supporting material, heating the cobalt-containing complex and carbon supporting material under conditions suitable to convert the cobalt-containing complex and carbon supporting material into a cobalt-containing catalyst support. The second part of the process involves polymerizing an aniline in the presence of said cobalt-containing catalyst support and an iron-containing compound under conditions suitable to form a supported, cobalt-containing, iron-bound polyaniline species, and subjecting said supported, cobalt-containing, iron bound polyaniline species to conditions suitable for producing a Fe--Co hybrid catalyst.

  15. Energy of interaction between carbon impurities in paramagnetic γ-iron

    SciTech Connect

    Ponomareva, A. V.; Gornostyrev, Yu. N.; Abrikosov, I. A.

    2015-04-15

    The energies of interaction between carbon impurity atoms in paramagnetic fcc iron (austenite) are calculated using electron density functional theory. Point defects in the paramagnetic matrix are described using a statistical approach that takes into account local magnetic fluctuations and atomic relaxation in the environment of impurity atoms. It is shown that, in addition to local deformations, magnetism significantly contributes to the energies of dissolution and interaction of carbon atoms. The values of the carbon-carbon interaction energy are indicative of a significant repulsion between these atoms in the first and second coordination spheres. The results of calculations are consistent with estimates obtained from experimental data on the activity of carbon impurity atoms in iron.

  16. Transport and cycling of iron and hydrogen peroxide in a freshwater stream: Influence of organic acids

    USGS Publications Warehouse

    Scott, D.T.; Runkel, R.L.; McKnight, Diane M.; Voelker, B.M.; Kimball, B.A.; Carraway, E.R.

    2003-01-01

    An in-stream injection of two dissolved organic acids (phthalic and aspartic acids) was performed in an acidic mountain stream to assess the effects of organic acids on Fe photoreduction and H2O2 cycling. Results indicate that the fate of Fe is dependent on a net balance of oxidative and reductive processes, which can vary over a distance of several meters due to changes in incident light and other factors. Solution phase photoreduction rates were high in sunlit reaches and were enhanced by the organic acid addition but were also limited by the amount of ferric iron present in the water column. Fe oxide photoreduction from the streambed and colloids within the water column resulted in an increase in the diurnal load of total filterable Fe within the experimental reach, which also responded to increases in light and organic acids. Our results also suggest that Fe(II) oxidation increased in response to the organic acids, with the result of offsetting the increase in Fe(II) from photoreductive processes. Fe(II) was rapidly oxidized to Fe(III) after sunset and during the day within a well-shaded reach, presumably through microbial oxidation. H2O 2, a product of dissolved organic matter photolysis, increased downstream to maximum concentrations of 0.25 ??M midday. Kinetic calculations show that the buildup of H2O2 is controlled by reaction with Fe(III), but this has only a small effect on Fe(II) because of the small formation rates of H2O2 compared to those of Fe(II). The results demonstrate the importance of incorporating the effects of light and dissolved organic carbon into Fe reactive transport models to further our understanding of the fate of Fe in streams and lakes.

  17. The influence of pH on iron speciation in podzol extracts: iron complexes with natural organic matter, and iron mineral nanoparticles.

    PubMed

    Neubauer, Elisabeth; Schenkeveld, Walter D C; Plathe, Kelly L; Rentenberger, Christian; von der Kammer, Frank; Kraemer, Stephan M; Hofmann, Thilo

    2013-09-01

    The quantities of natural organic matter (NOM) and associated iron (Fe) in soil extracts are known to increase with increasing extractant pH. However, it was unclear how the extraction pH affects Fe speciation for particles below 30 nm. We used flow field-flow fractionation (FlowFFF) and transmission electron microscopy (TEM) to investigate the association of Fe and trace elements with NOM and nanoparticulate iron (oxy)hydroxides in podzol extracts. For extracts prepared at the native soil pH (~4), and within a 1-30 nm size range, Fe was associated with NOM. In extracts with a pH≥7 from the E and B soil horizons, Fe was associated with NOM as well as with iron (oxy)hydroxide nanoparticles with a size of approximately 10 nm. The iron (oxy)hydroxide nanoparticles may have either formed within the soil extracts in response to the increase in pH, or they were mobilized from the soil. Additionally, pH shift experiments showed that iron (oxy)hydroxides formed when the native soil pH (~4) was increased to 9 following the extraction. The iron (oxy)hydroxide nanoparticles aggregated if the pH was decreased from 9 to 4. The speciation of Fe also influenced trace element speciation: lead was partly associated with the iron (oxy)hydroxides (when present), while copper binding to NOM remained unaffected by the presence of iron (oxy)hydroxide nanoparticles. The results of this study are important for interpreting the representativeness of soil extracts prepared at a pH other than the native soil pH, and for understanding the changes in Fe speciation that occur along a pH gradient.

  18. Removal of arsenic from water by supported nano zero-valent iron on activated carbon.

    PubMed

    Zhu, Huijie; Jia, Yongfeng; Wu, Xing; Wang, He

    2009-12-30

    Nano-sized zero-valent iron is an effective adsorbent for arsenic removal from drinking water. However, its application may be limited in public water system and small scale water treatment system due to its tiny particle size. In the present work, nanoscale zero-valent iron was supported onto activated carbon (NZVI/AC) by impregnating carbon with ferrous sulfate followed by chemical reduction with NaBH(4). Approximate 8.2 wt% of iron was loaded onto carbon and SEM analysis showed that the iron particles in the pores of carbon were needle-shaped with the size of 30-500 x 1000-2000 nm. Kinetics study revealed that adsorption of arsenite and arsenate by NZVI/AC was fast in the first 12h and the equilibrium was achieved in approximately 72 h. The adsorption capacity of the synthesized sorbent for arsenite and arsenate at pH 6.5 calculated from Langmuir adsorption isotherms in batch experiments was 18.2 and 12.0mg/g, respectively. Phosphate and silicate markedly decreased the removal of both arsenite and arsenate, while the effect of other anions and humic acid was insignificant. Common metal cations (Ca(2+), Mg(2+)) enhanced arsenate adsorption but ferrous iron (Fe(2+)) was found to suppress arsenite adsorption. NZVI/AC can be effectively regenerated by elution with 0.1M NaOH.

  19. Methods development for total organic carbon accountability

    NASA Technical Reports Server (NTRS)

    Benson, Brian L.; Kilgore, Melvin V., Jr.

    1991-01-01

    This report describes the efforts completed during the contract period beginning November 1, 1990 and ending April 30, 1991. Samples of product hygiene and potable water from WRT 3A were supplied by NASA/MSFC prior to contract award on July 24, 1990. Humidity condensate samples were supplied on August 3, 1990. During the course of this contract chemical analyses were performed on these samples to qualitatively determine specific components comprising, the measured organic carbon concentration. In addition, these samples and known standard solutions were used to identify and develop methodology useful to future comprehensive characterization of similar samples. Standard analyses including pH, conductivity, and total organic carbon (TOC) were conducted. Colorimetric and enzyme linked assays for total protein, bile acid, B-hydroxybutyric acid, methylene blue active substances (MBAS), urea nitrogen, ammonia, and glucose were also performed. Gas chromatographic procedures for non-volatile fatty acids and EPA priority pollutants were also performed. Liquid chromatography was used to screen for non-volatile, water soluble compounds not amenable to GC techniques. Methods development efforts were initiated to separate and quantitate certain chemical classes not classically analyzed in water and wastewater samples. These included carbohydrates, organic acids, and amino acids. Finally, efforts were initiated to identify useful concentration techniques to enhance detection limits and recovery of non-volatile, water soluble compounds.

  20. Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media.

    PubMed

    Busch, Jan; Meißner, Tobias; Potthoff, Annegret; Oswald, Sascha E

    2014-08-01

    Injection of nanoscale zero-valent iron (nZVI) has recently gained great interest as emerging technology for in-situ remediation of chlorinated organic compounds from groundwater systems. Zero-valent iron (ZVI) is able to reduce organic compounds and to render it to less harmful substances. The use of nanoscale particles instead of granular or microscale particles can increase dechlorination rates by orders of magnitude due to its high surface area. However, classical nZVI appears to be hampered in its environmental application by its limited mobility. One approach is colloid supported transport of nZVI, where the nZVI gets transported by a mobile colloid. In this study transport properties of activated carbon colloid supported nZVI (c-nZVI; d50=2.4μm) are investigated in column tests using columns of 40cm length, which were filled with porous media. A suspension was pumped through the column under different physicochemical conditions (addition of a polyanionic stabilizer and changes in pH and ionic strength). Highest observed breakthrough was 62% of the injected concentration in glass beads with addition of stabilizer. Addition of mono- and bivalent salt, e.g. more than 0.5mM/L CaCl2, can decrease mobility and changes in pH to values below six can inhibit mobility at all. Measurements of colloid sizes and zeta potentials show changes in the mean particle size by a factor of ten and an increase of zeta potential from -62mV to -80mV during the transport experiment. However, results suggest potential applicability of c-nZVI under field conditions.

  1. The Speciation of Particulate Iron and Carbon in the East Pacific Rise 15oS Near-field Hydrothermal Plume and Underlying Sediments

    NASA Astrophysics Data System (ADS)

    Toner, B. M.; Lam, P. J.; Nicholas, S. L.; Ohnemus, D.; Hoffman, C. L.; Fitzsimmons, J. N.; Sherrell, R. M.; German, C. R.

    2014-12-01

    Particulate iron and carbon speciation were measured for water column and sediment samples collected at the East Pacific Rise ridge axis (15oS; Station 18) and approximately 80 km down-current (Station 20) during the US GEOTRACES Eastern Pacific Zonal Transect cruise. Water column particles were collected by in situ filtration (0.2 micron, polycarbonate) from above, within, and below the hydrothermal plume. Water column samples were handled in an anaerobic chamber and stored frozen under inert gas shipboard, and protected from ambient oxygen during analysis. The flocculant, top-layer of the sediments was sampled shipboard under ambient conditions and stored frozen until analysis. Iron and carbon speciation were measured using X-ray microprobe (10.3.2) and scanning transmission X-ray microscopy (STXM) instruments at the Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. Iron (1s and 2p) and carbon (1s) X-ray absorption near edge structure (XANES) spectroscopy and imaging for particles revealed that: (1) in comparison to the above plume sample, organic carbon is abundant in particles within and below the plume, as well as in surface sediments; (2) iron sulfides are not detectable in any water column sample investigated so far; (3) the fraction of non-sulfide reduced iron is highest in the below plume samples; and (4) the below plume sample is rich in free-living microbial cells.

  2. Removal of copper from carbon-saturated steel with an aluminum sulfide/iron sulfide slag

    SciTech Connect

    Cohen, A.; Blander, M.

    1995-12-01

    Scrap iron and steel has long been considered a resource in the steel-making industry, and its value is largely determined by its impurity content. As the mini-mills, the major consumers of scrap iron and steel, expand into producing flat-rolled sheet, the demand for high-quality scrap will increase. Of the impurities present in scrap, copper is particularly troublesome because of its role in causing hot shortness. Therefore, the copper content of scrap should be kept below {approx} 0.1 wt%. A method for removing copper from steel could be used to improve the quality of scrap and make it more available for use by mini-mills. To determine the effectiveness of a binary slag consisting of aluminum sulfide and iron sulfide on the removal of copper from steel and iron, the distribution coefficient of copper between the slag and a carbon-saturated iron melt was investigated at 1,365 C. The composition of the slag was varied from nearly pure aluminum sulfide to pure iron sulfide. A maximum distribution coefficient of 30 was found, and the copper level in the iron melt was reduced to as low as 0.07 wt.% with a 4:1 ratio of iron to slag.

  3. Organic carbon and carbonate fluxes: Links to climate change

    NASA Astrophysics Data System (ADS)

    Loubere, Paul; Siedlecki, Samantha A.; Bradtmiller, Louisa I.

    2007-03-01

    This volume is a compendium of articles derived from a Chapman conference entitled "The Role of Marine Organic Carbon and Carbonate Fluxes in Driving Global Climate Change, Past and Future", which was held at Woods Hole Oceanographic Institution in July, 2005. The conference divided the topic into units as follows: concepts and models, production of particulate matter, fluxes through the water column, and sediment record of past fluxes. The volume follows this 'vertically stratified' approach, and we use the same units to organize the articles. The Chapman conference on which this volume is based was made possible by support from The American Geophysical Union (Chapman Conference Program), the National Science Foundation, The Ocean and Climate Change Institute at Woods Hole Oceanographic Institution, and the Analytical Center for Climate and Environmental Change at Northern Illinois University. We extend special thanks to Terry Joyce at the Ocean and Climate Change Institute for his administrative help. Also, we particularly appreciated the hard work of Andrew Daly at WHOI and Melissa Ficek at AGU who managed the conference details, making it a pleasant event. The articles in this volume benefited from evaluations given by a dedicated, and most helpful, group of reviewers. It was gratifying to reach out to the community and receive such a valuable contribution of thought and expertise. We gratefully acknowledge our reviewers. Finally, we acknowledge the help and advice of John Milliman, editor for Deep-Sea Research II, who helped us attain the high standards of publication with the journal.

  4. Temporal evolution of hyporheic dissolved organic carbon

    NASA Astrophysics Data System (ADS)

    Gabrielsen, P. J.

    2010-12-01

    Dissolved organic carbon (DOC) is a complex suite of organic compounds present in natural ecosystems, and is particularly studied in river systems. The hyporheic zone (HZ), a region of surface water-shallow groundwater exchange, has been identified as a hotspot of DOC processing and is generally regarded as a net sink of organic matter. More recent studies into riverine DOC have shifted to examining DOC quality rather than bulk quantity. DOC quality variability has been linked to hydrologic and climatic variability, both focuses of current climate change research. This presentation examines the effect of organic and inorganic HZ DOC processes, i.e. microbial uptake and sorption, respectively, on DOC quality as measured through molecular weight distributions (MWDs). Sediment and water samples from East Fork Jemez River in northern New Mexico are used to experimentally simulate DOC processes and observe the subsequent effect on MWD evolution. Parallel factor analysis (PARAFAC) of excitation-emission matrices (EEMs) is also used to examine fluorescent properties throughout DOC process experimentation, providing a second characterizing metric. Results from this study will be applied to a field sampling campaign in the summer of 2011 along the East Fork Jemez River to study temporal and spatial variability in organic and inorganic DOC processes.

  5. Mass/age distribution of organic carbon for the Phanerozoic

    SciTech Connect

    Hay, W.W.; Wold, C.N. Geomar, Kiel )

    1991-03-01

    The mass/age distribution of organic carbon in Phanerozoic sedimentary rocks is dominated by disseminated organic carbon in pelitic rocks. Even during the major times of coal formation, the mass of organic carbon in coal is small compared with that included in fine-grained marine sediments. The mass/age distribution shows maxima in the Middle and Late Ordovician, Late Devonian, Late Jurassic and Early Cretaceous, and Neogene. Minima in accumulation of organic carbon mark the Early Ordovician, Early Devonian, Permian and Triassic, Late Cretaceous and Paleogene. Reconstruction of the ancient fluxes of organic carbon into the sediments shows that the distribution is almost symmetrical about the Paleozoic-Mesozoic boundary. Major hydrocarbon source rock accumulations coincide with peaks of organic carbon deposition, but modes of formation of the source rocks at each peak may have been different. The peaks of organic carbon accumulation correspond to times of flooding of the continents. The Ordovician, Late Jurassic-Early Cretaceous peaks also correspond to an increase in the ratio of carbon being deposited as organic carbon relative to that deposited as carbonate; they also correspond to times of deposition of large amounts of siliceous sediment. The Lake Devonian peak also formed at a time of flooding of the continents, but shows a low ratio of organic carbon to carbonate, and few siliceous rocks accumulated contemporaneously. The Neogene peak may represent a fundamentally different accumulation mechanism, resulting mostly from coastal upwelling during a time of emergence of the continents.

  6. High rates of organic carbon burial in fjord sediments globally

    NASA Astrophysics Data System (ADS)

    Smith, Richard W.; Bianchi, Thomas S.; Allison, Mead; Savage, Candida; Galy, Valier

    2015-06-01

    The deposition and long-term burial of organic carbon in marine sediments has played a key role in controlling atmospheric O2 and CO2 concentrations over the past 500 million years. Marine carbon burial represents the dominant natural mechanism of long-term organic carbon sequestration. Fjords--deep, glacially carved estuaries at high latitudes--have been hypothesized to be hotspots of organic carbon burial, because they receive high rates of organic material fluxes from the watershed. Here we compile organic carbon concentrations from 573 fjord surface sediment samples and 124 sediment cores from nearly all fjord systems globally. We use sediment organic carbon content and sediment delivery rates to calculate rates of organic carbon burial in fjord systems across the globe. We estimate that about 18 Mt of organic carbon are buried in fjord sediments each year, equivalent to 11% of annual marine carbon burial globally. Per unit area, fjord organic carbon burial rates are one hundred times as large as the global ocean average, and fjord sediments contain twice as much organic carbon as biogenous sediments underlying the upwelling regions of the ocean. We conclude that fjords may play an important role in climate regulation on glacial-interglacial timescales.

  7. Cu Binding to Iron Oxide-Organic Matter Coprecipitates in Solid and Dissolved Phases

    NASA Astrophysics Data System (ADS)

    Vadas, T. M.; Koenigsmark, F.

    2015-12-01

    Recent studies indicate that Cu is released from wetlands following storm events. Assymetrical field flow field fractionation (AF4) analyses as well as total and dissolved metal concentration measurements suggest iron oxide-organic matter complexes control Cu retention and release. Coprecipitation products of Fe oxide and organic matter were prepared under conditions similar to the wetland to assess Cu partitioning to and availability from solid phases that settle from solution as well as phases remaining suspended. Cu coprecipitation and sorption to organomineral precipitation solids formed at different Fe:organic carbon (OC) ratios were compared for net Cu removal and extractability. As more humic acid was present during precipitation of Fe, TEM images indicated smaller Fe oxide particles formed within an organic matrix as expected. In coprecipitation reactions, as the ratio of Fe:OC decreased, more Cu was removed from solution at pH 5.5 and below. However, in sorption reactions, there was an inhibition of Cu removal at low OC concentrations. As the pH increased from 5.5 to 7 and as solution phase OC concentration increased, more Cu remained dissolved in both coprecipitation and sorption reactions. The addition of Ca2+, glycine, histidine and citric acid or lowering the pH resulted in more extractable Cu from the coprecipitation compared with the sorption reactions. The variations in Cu extraction were likely due to a combination of a more amorphous structure in CPT products, and the relative abundance of available Fe oxide or OC binding sites. Suspended Fe oxide-organic matter coprecipitates were assessed using AF4 coupled to online TOC analysis and ICP-MS. In laboratory prepared samples, Cu was observed in a mixture of small 1-5 nm colloids of Fe oxide-organic matter precipitates, but the majority was observed in larger organic matter colloids and were not UV absorbing, suggesting more aliphatic carbon materials. In field samples, up to 60% of the dissolved Cu

  8. Relative contribution of iron reduction to sediments organic matter mineralization in contrasting habitats of a shallow eutrophic freshwater lake.

    PubMed

    Chen, Mo; Jiang, He-Long

    2016-06-01

    Iron reduction is one of the important organic matter (OM) mineralization pathway in sediments. Here we investigated the rates and the relative contribution of iron reduction to OM mineralization in Zhushan bay (ZSB, cyanobacterial bloom biomass (CBB)-dominated habitats) and East Taihu Lake (ETL, submerged macrophypes (SM)-dominated habitats) of Lake Taihu, China. Anaerobic microcosm incubation revealed that the rate of iron reduction at ZSB (4.42 μmol cm(-3) d(-1)) in summer was almost 1.5 times higher than at ETL (3.13 μmol cm(-3) d(-1)). Iron reduction accounted for 66.5% (ZSB) and 31.8% (ETL) of total anaerobic carbon mineralization, respectively. No detectable methanogenesis was found at ZSB, while methanogenesis was responsible for 16.7% of total anaerobic respiration in sediments of ETL. Geochemical analysis of solid phase constituents indicated that ZSB surface sediments experienced highly oxidizing conditions with much higher amorphous Fe(III) (71 mmol m(-2)) than ETL (11 mmol m(-2)). Conversely, AVS inventories at ETL (38 mmol m(-2)) were up to 30 times higher than at ZSB (1.27 mmol m(-2)), indicating significant sulfate reduction in sediments of ETL. Overall results suggested that varying carbon sources and distinct geochemical characterizations of the sediments in contrasting habitats significantly influenced the rate of iron reduction and the pathway of C mineralization in a large freshwater lake. PMID:27038578

  9. Understanding drivers of the export of dissolved organic carbon from a German headwater catchment using Generalised Additive Models

    NASA Astrophysics Data System (ADS)

    Selle, Benny; Musolff, Andreas; Tittel, Jörg

    2016-04-01

    In the literature, several causes of recently increasing concentrations of dissolved organic carbon (DOC) in headwaters across eastern North America and northern and central Europe have been debated. One likely driver of the widespread increase of DOC concentrations since the early 1990s are decreasing depositions of acid rain resulting in an increased solubility of organic carbon compounds including humic acids. Here, we tested the hypothesis if the reduced availability of nitrate stimulated the microbial reduction of ferric iron soil minerals and the mobilisation of DOC. Forested catchments are relatively unaffected by agricultural and urban nitrate inputs. In these catchments, decreasing depositions often resulted in a reduced availability of nitrate, which are preferred electron acceptors in microbial decomposition processes. As ferric iron minerals act as efficient sorbents of organic compounds in soils its reduction may cause a release of humic substances and hence an export of DOC. To test this hypothesis, time series of DOC, dissolved iron and nitrate from a forested headwater catchment in Germany were examined using Generalised Additive Models. We found that rising DOC concentrations most likely resulted from a reductive dissolution of iron(III) minerals in soils and the associated mobilisation of adsorbed organic carbon. Phosphate, which can trigger undesired algal growth and is also known to be adsorbed by particulate iron(III), was released as well.

  10. Understanding and assessing the feasibility of ocean iron fertilization to reduce atmospheric carbon dioxide

    NASA Astrophysics Data System (ADS)

    Buesseler, K.; Lampitt, R. S.; de Baar, H. J.; Blain, S.; Chai, F.; Coale, K. H.; Dai, M.; Karl, D. M.; Leinen, M.; Lohan, M. C.; Rothstein, L.; Trull, T. W.; Whaley, D.; Wuebbles, D. J.; Zhou, M.

    2011-12-01

    Regardless of the strategy for fossil fuel use, atmospheric CO2 is predicted to increase and then decrease such that after 10,000 years, levels will still be much higher than pre-industrial. The objectives of geoengineering CO2 reduction techniques are to reduce the rate of CO2 increase and the height of the CO2 peak. Because the oceans represent such a large reservoir of carbon, small perturbations of the system could cause large changes to carbon flows. The objective of ocean carbon sequestration would be to encourage the oceans to take up carbon at a faster rate than they currently do but with predictable and acceptable consequences. From iron addition experiments in the laboratory and in the open ocean and from studies where there are natural additions of iron to the ocean several conclusions can be drawn. Relief of iron stress increases the biomass of marine phytoplankton and as a consequence reduces surface water CO2. This leads to increased export of carbon from the upper ocean and probably enhanced sequestration in the deep ocean. However, the experiments were not planned from the perspective of geoengineering and conclusions about the potential of this approach as a means of reducing atmospheric CO2 have large uncertainties. In addition, few experiments have addressed the unintended consequences of deliberate additions. This has been a major focus of recent discussion of a risk assessment framework for experimentation by the London Convention and London Protocol. Given the uncertainties, there is an urgent requirement to carry out more studies on ocean iron fertilization with three clear objectives 1: To develop coupled global scale computation models so that predictions can become more reliable and so that in situ experiments are effective. 2: To carry out experiments on a sufficiently large scale and duration to determine the extent, efficiencies and time scales of carbon sequestration. 3: To explore the consequences of ocean iron fertilization, and not

  11. Tracing the source of Beijing soil organic carbon: a carbon isotope approach.

    PubMed

    Guo, Qingjun; Strauss, Harald; Chen, Tong-Bin; Zhu, Guangxu; Yang, Jun; Yang, Junxing; Lei, Mei; Zhou, Xiaoyong; Peters, Marc; Xie, Yunfeng; Zhang, Hanzhi; Wei, Rongfei; Wang, Chunyu

    2013-05-01

    Bulk soil organic carbon concentration and isotopic composition characterize its sources and fate, identify the anthropogenic input of organic carbon into the soil, and trace soil carbon turnover. Coal and/or coal combustion products represent the prime anthropogenic input of organic carbon into three soil profiles located in the vicinity of a steel company. Three profiles positioned away from any direct industrial contribution display vertical pattern in soil organic carbon concentration and isotopic composition that resemble more commonly observed downward gradients in soil carbon chemistry and indicate microbial soil carbon turnover. Two additional profiles located outside of the immediate industrial area display vertical carbon isotope profiles between typical of those from industrial and non-industrial areas. Eight soil profiles and their vertical distribution of bulk organic carbon isotopic composition and concentration collected in the Beijing area reveal and distinguish both anthropogenic and natural contributions of carbon to these soils.

  12. Organic Carbon Dynamics in Glacier Systems

    NASA Astrophysics Data System (ADS)

    Barker, J.; Sharp, M.; Klassen, J.; Foght, J.; Turner, R.

    2004-12-01

    The biogeochemical cycling of organic carbon (OC) has important implications for aquatic system ecology because the abundance and molecular characteristics of OC influence contaminant transport and bioavailability, and determine its suitability as a substrate for microbial metabolism. There have been few studies of OC cycling in glacier systems, and questions remain regarding the abundance, provenance, and biogeochemical transformations of OC in these environments. To address these questions, the abundance and molecular characteristics of OC is investigated in three glacier systems. These systems are characterized by different thermal and hydrological regimes and have different potential OC sources. John Evans Glacier is a polythermal glacier in arctic Canada. Outre Glacier is a temperate glacier in the Coast Mountains of British Columbia, Canada. Victoria Upper Glacier is a cold-based glacier in the McMurdo Dry Valleys of Antarctica. To provide an indication of the extent to which glacier system OC dynamics are microbially mediated, microbial culturing and identification is performed and organic acid abundance and speciation is determined. Where possible, samples of supraglacial runoff, glacier ice and basal ice and subglacial meltwater were collected. The dissolved organic carbon (DOC) concentration in each sample was measured by combustion/non-dispersive infrared gas analysis. Emission and synchronous fluorescence spectroscopy were used to characterize the molecular properties of the DOC from each environment. When possible, microbial culturing and identification was performed and organic acid identification and quantification was measured by ion chromatography. DOC exists in detectable quantities (0.06-46.6 ppm) in all of the glacier systems that were investigated. The molecular characteristics of DOC vary between glaciers, between environments at the same glacier, and over time within a single environment. Viable microbes are recoverable in significant (ca

  13. Fate of Organic Micropollutants during Hydrothermal Carbonization

    NASA Astrophysics Data System (ADS)

    Weiner, B.; Baskyr, I.; Pörschmann, J.; Kopinke, F.-D.

    2012-04-01

    The hydrothermal carbonization (HTC) is an exothermic process, in which biomass in an aqueous suspension is transformed into a bituminous coal-like material (hydrochar) at temperatures between 180-250°C and under moderate pressure. With these process conditions, little gas is generated (1-5%), and a fraction of the organic carbon is dissolved in the aqueous phase (10-30%) but the largest part is obtained as solid char. The respective yields and the molecular composition depend on the choice of educts and the process conditions, such as temperature, pH-value, and reaction time. Various biomass-educts have recently been studied, such as waste materials from agriculture, brewer's spent grains, sewage sludge, as well as wood and paper materials. Besides their use for energy generation, the hydrochars have also been investigated as soil amendments. Prior to addition of the chars to soil, these should be free of toxic components that could be released into the environment as harmful organic pollutants. Herein, the potential for the degradation of trace organic pollutants, such as pesticides and pharmaceuticals, under typical HTC conditions will be presented. The degradation of selected organic pollutants with different polarity and hydrophobicity was investigated. Scope and limitations of the degradation potential of the HTC are discussed on examples of micro pollutants such as hormones, residues of pharmaceuticals and personal care products including their metabolites, and pesticides. We will show that the target analytes are partially and in some cases completely degraded. The degree of degradation depends on the HTC process conditions such as reaction temperature and time, the solution pH value, the presence of catalysts or additional reagents. The biotic and abiotic degradation of chlorinated organic compounds, in particular chlorinated aromatics, has been a well-known environmental problem and remains a challenging issue for the development of a HTC process for

  14. The catalytic activity of the iron-coated pumice particles used as heterogeneous catalysts in the oxidation of natural organic matter by H2O2.

    PubMed

    Alver, Alper; Karaarslan, Mihrican; Kılıç, Ahmet

    2016-08-01

    The oxidative removal of natural organic matter (NOM) from waters was investigated by hydrogen peroxide (H2O2) and iron-coated pumice particles in heterogeneous catalytic oxidation process (HCOP). Removal of trihalomethane (THM) precursors, which is formed THM by the reacts with chloride, was performed with the hydroxyl radicals. Coating the original pumice particles with iron oxides significantly enhanced the removal of NOM with peroxide. The studies were carried out in two sections: (1) decomposition of hydrogen peroxide in pure water with iron-coated pumice and (2) oxidation of THM Precursor (NOM) by hydrogen peroxide with iron-coated pumice. The monitored parameters in this study include dissolved organic carbon and trihalomethanes formation potential. The results show that iron-coated pumice catalyst significantly increased the removal efficiency of NOM in the HCOP. The results show that iron-coated pumice catalyst significantly increased the removal efficiency of NOM in the HCOP. Results show that the oxidation of NOM and remaining NOM with H2O2 is improved by the addition of iron-coated pumice particles which activate the H2O2 molecule, leading to the formation of hydroxyl radicals in a Fenton-like process.

  15. The catalytic activity of the iron-coated pumice particles used as heterogeneous catalysts in the oxidation of natural organic matter by H2O2.

    PubMed

    Alver, Alper; Karaarslan, Mihrican; Kılıç, Ahmet

    2016-08-01

    The oxidative removal of natural organic matter (NOM) from waters was investigated by hydrogen peroxide (H2O2) and iron-coated pumice particles in heterogeneous catalytic oxidation process (HCOP). Removal of trihalomethane (THM) precursors, which is formed THM by the reacts with chloride, was performed with the hydroxyl radicals. Coating the original pumice particles with iron oxides significantly enhanced the removal of NOM with peroxide. The studies were carried out in two sections: (1) decomposition of hydrogen peroxide in pure water with iron-coated pumice and (2) oxidation of THM Precursor (NOM) by hydrogen peroxide with iron-coated pumice. The monitored parameters in this study include dissolved organic carbon and trihalomethanes formation potential. The results show that iron-coated pumice catalyst significantly increased the removal efficiency of NOM in the HCOP. The results show that iron-coated pumice catalyst significantly increased the removal efficiency of NOM in the HCOP. Results show that the oxidation of NOM and remaining NOM with H2O2 is improved by the addition of iron-coated pumice particles which activate the H2O2 molecule, leading to the formation of hydroxyl radicals in a Fenton-like process. PMID:26881482

  16. Reaction of matrix-isolated iron atoms with carbon disulfide

    SciTech Connect

    Doeff, M.M.

    1986-07-02

    This study was undertaken to determine the type of bonding, as well as the extent of reactivity between CS/sub 2/ and iron atoms. The results of several matrix isolation experiments in which either pure CS/sub 2/ or SC/sub 2//Ar and CS/sub 2//Kr mixtures were condensed with iron atoms and studied by infrared and Moessbauer spectroscopy are presented. All the spectra indicate the presence of only one product of the reaction between Fe and CS/sub 2/ no matter what the composition of the matrix. Conditions were also such that only monomeric Fe complexes were expected; therefore, it is concluded that the complex formed in these matrices has a composition of Fe(CS/sub 2/). Results of annealing experiments carried out to determine the stability of the complex were interpreted to mean that the Fe(CS/sub 2/) formed in a 100% CS/sub 2/ matrix is stable to at least 60 K, begins to decompose between 60 and 80 K to form a new iron-containing species, and forms a very stable, nonvolatile residue at room temperature. 22 references, 1 figure.

  17. Magnetic studies of polystyrene/iron-filled multi-wall carbon nanotube composite films

    NASA Astrophysics Data System (ADS)

    Makarova, T. L.; Zakharchuk, I.; Geydt, P.; Lahderanta, E.; Komlev, A. A.; Zyrianova, A. A.; Kanygin, M. A.; Sedelnikova, O. V.; Suslyaev, V. I.; Bulusheva, L. G.; Okotrub, A. V.

    2016-10-01

    Polystyrene/iron-filled multi-wall carbon nanotube composite films were prepared by solution processing, forge-rolling and stretching methods. Elongated iron carbide nanoparticles formed because of catalytic growth are situated inside the hollow cavity of the nanotubes. Magnetic susceptibility measurements as well as records of isothermal hysteresis loops performed in three perpendicular directions of magnetic field confirmed that the nanotubes have a preferential alignment in the matrix. Strong diamagnetic anisotropy in the composites emerges not only from the MWCNTs but also from the polystyrene matrix. The polymer sticks to the honeycomb lattice through the interaction of the π-orbitals of the phenyl ring and those of the carbon nanotube, contributing to anisotropic diamagnetic response. The contribution of iron nanoparticles to overall magnetic response strongly depends on nanotube concentration in the composite as well as on matrix-filler non-covalent stacking, which influences magnetic interparticle interactions.

  18. Adsorption of natural organic matter from waters by iron coated pumice.

    PubMed

    Kitis, M; Kaplan, S S; Karakaya, E; Yigit, N O; Civelekoglu, G

    2007-01-01

    Natural pumice particles were used as granular support media and coated with iron oxides to investigate their adsorptive natural organic matter (NOM) removal from waters. The impacts of natural pumice source, particle size fraction, pumice dose, pumice surface chemistry and specific surface area, and NOM source on the ultimate extent and rate of NOM removal were studied. All adsorption isotherm experiments were conducted employing the variable-dose completely mixed batch reactor bottle-point method. Iron oxide coating overwhelmed the surface electrical properties of the underlying pumice particles. Surface areas as high as 20.6m(2)g(-1) were achieved after iron coating of pumice samples, which are above than those of iron coated sand samples reported in the literature. For all particle size fractions, iron coating of natural pumices significantly increased their NOM uptakes both on an adsorbent mass- and surface area-basis. The smallest size fractions (<63 microm) of coated pumices generally exhibited the highest NOM uptakes. A strong linear correlation between the iron contents of coated pumices and their Freundlich affinity parameters (K(F)) indicated that the enhanced NOM uptake is due to iron oxides bound on pumice surfaces. Iron oxide coated pumice surfaces preferentially removed high UV-absorbing fractions of NOM, with UV absorbance reductions up to 90%. Control experiments indicated that iron oxide species bound on pumice surfaces are stable, and potential iron release to the solution is not a concern at pH values of typical natural waters. Based on high NOM adsorption capacities, iron oxide coated pumice may be a promising novel adsorbent in removing NOM from waters. Furthermore, due to preferential removal of high UV-absorbing NOM fractions, iron oxide coated pumice may also be effective in controlling the formation of disinfection by-products in drinking water treatment.

  19. Effect of carbon on stress corrosion cracking and anodic oxidation of iron in NaOH solutions

    SciTech Connect

    Flis, J.; Ziomek-Moroz, Margaret

    2008-06-01

    Anodic behaviour of decarburised iron and of quenched Fe–C materials with up to 0.875 wt% C was examined in 8.5 M NaOH at 100 °C to explain the role of carbon in caustic stress corrosion cracking (SCC) of plain steels. Removal of carbon from Armco iron strongly reduced its intergranular SCC. Slip steps on grains did not initiate cracks. It has been shown that carbon at low contents deteriorates the passivation of iron, whereas at high contents it promotes the formation of magnetite. High resistance to SCC of high carbon steels can be explained by an intense formation of magnetite on these steels.

  20. Carbon supported Nano-Iron for environmental remediation: Transport observations using column tests, magnet resonance imaging and synchrotron tomography.

    NASA Astrophysics Data System (ADS)

    Busch, J.; Oswald, S. E.; Mackenzie, K.

    2012-04-01

    The use of nano-zerovalent iron (nZVI) for environmental remediation is a promising new technique for in situ remediation of contaminated groundwater. Due to its high surface area and high reactivity, nZVI is able to dechlorinate organic contaminants and render them harmless. Limited mobility, however, due to fast aggregation and sedimentation of nZVI, restricts the practical applicability for source and plume remediation. Carbo-Iron is a newly developed composite material consisting of activated carbon particles (d50 about 500 nm) that act as carrier for nZVI particles. Together with a polyanionic stabilizer (CMC) Carbo-Iron is able to form a stable injectable suspension. These particles are designed to combine the mobility of activated carbon and the reactivity of nZVI. Various methods were used to observe and describe transport properties, with a focus on column tests and tomographic methods: Column tests were performed in chromatography columns of 40 and 60 cm length, filled with sand grains or glass beads. Results indicate high mobility and breakthrough after addition of CMC, but changing transport properties at different pH and ionic strength. Magnet Resonance Imaging (MRI) and Synchrotron Imaging are technologies of growing interest in observing flow and transport in porous media. Even though both methods are based on different physical principles, both are sensible to iron loads in colloids and allow two- and three-dimensional reconstruction and visualization. Therefore both methods may principally be suitable for observing Carbo-Iron in porous media and might give information complementary to other experimental investigations. A suitable MRI method was developed using a medical MRI. The method based on T1 weighted measurement with short repetition time (TR = 7.0 ms) and echo time (TE = 2.95 ms) can detect different particle concentrations in a porous medium. The synchrotron tomography method used an energy rich (13 keV) parallel X-ray beam to collect

  1. [Removal of arsenite from drinking water by activated carbon supported nano zero-valent iron].

    PubMed

    Zhu, Hui-Jie; Jia, Yong-Feng; Wu, Xing; Wang, He

    2009-06-15

    Nano zero-valent iron was loaded onto activated carbon by deoxidizing Fe2+ in aqueous solution and approximately 8.2% (wt) of iron was loaded it. The size of the needle-shaped iron particles in the pores of carbon was (30-500) x (1 000-3 000) nm. The adsorption capacity for arsenic was approximately 1.997 mg/g activated carbon supported nano zero-valent iron (NZVI/AC) in the 2 mg/L As(III) solution at pH 6.5 and (25 +/- 2) degrees C. The uptake of arsenic by NZVI/AC was rapid in the first 12 h (94.3%) and equilibrium was achieved at 72 h (99.86%). As(III) was partly oxidized by the absorbent in the process of absorption. The presence of phosphate and silicate ions significantly decreased arsenic removal rate while the effect of other common ions such as sulfate, carbonate and oxalate was insignificant. NZVI/AC was effectively regenerated after adsorption of arsenic when elution was applied with 0.1 mol/L NaOH solution. The results suggest that NZVI/AC is an ideal candidate for the treatment of arsenic contaminated drinking water.

  2. THE EFFECT OF PH AND DISSOLVED INORGANIC CARBON ON THE PROPERTIES OF IRON COLLOIDAL SUSPENSIONS

    EPA Science Inventory

    Discolored water resulting from suspended iron particles is a relatively common drinking water consumer complaint. These particles result from the oxygenation of Fe(II), and this study shows that pH and dissolved inorganic carbon (DIC) have important effects on their properties....

  3. IRON OPTIMIZATION FOR FENTON-DRIVEN OXIDATION OF MTBE-SPENT GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    Fenton-driven chemical regeneration of granular activated carbon (GAC) is accomplished through the addition of H2O2 and iron (Fe) to spent GAC. The overall objective of this treatment process is to transform target contaminants into less toxic byproducts, re-establish the sorpti...

  4. Reduction of iron-oxide-carbon composites: part I. Estimation of the rate constants

    SciTech Connect

    Halder, S.; Fruehan, R.J.

    2008-12-15

    A new ironmaking concept using iron-oxide-carbon composite pellets has been proposed, which involves the combination of a rotary hearth furnace (RHF) and an iron bath smelter. This part of the research focuses on studying the two primary chemical kinetic steps. Efforts have been made to experimentally measure the kinetics of the carbon gasification by CO{sub 2} and wustite reduction by CO by isolating them from the influence of heat- and mass-transport steps. A combined reaction model was used to interpret the experimental data and determine the rate constants. Results showed that the reduction is likely to be influenced by the chemical kinetics of both carbon oxidation and wustite reduction at the temperatures of interest. Devolatilized wood-charcoal was observed to be a far more reactive form of carbon in comparison to coal-char. Sintering of the iron-oxide at the high temperatures of interest was found to exert a considerable influence on the reactivity of wustite by virtue of altering the internal pore surface area available for the reaction. Sintering was found to be predominant for highly porous oxides and less of an influence on the denser ores. It was found using an indirect measurement technique that the rate constants for wustite reduction were higher for the porous iron-oxide than dense hematite ore at higher temperatures (> 1423 K). Such an indirect mode of measurement was used to minimize the influence of sintering of the porous oxide at these temperatures.

  5. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction.

    PubMed

    Deng, Dehui; Yu, Liang; Chen, Xiaoqi; Wang, Guoxiong; Jin, Li; Pan, Xiulian; Deng, Jiao; Sun, Gongquan; Bao, Xinhe

    2013-01-01

    Chainmail for catalysts: a catalyst with iron nanoparticles confined inside pea-pod-like carbon nanotubes exhibits a high activity and remarkable stability as a cathode catalyst in polymer electrolyte membrane fuel cells (PEMFC), even in presence of SO(2). The approach offers a new route to electro- and heterogeneous catalysts for harsh conditions.

  6. Iron Amendment and Fenton Oxidation of MTBE-Spent Granular Activated Carbon

    EPA Science Inventory

    Fenton-driven regeneration of Methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) involves Fe amendment to the GAC to catalyze H2O2 reactions and to enhance the rate of MTBE oxidation and GAC regeneration. Four forms of iron (ferric sulfate, ferric chloride, fer...

  7. Effects of calcium carbonate and hydroxyapatite on zinc and iron retention in postmenopausal women

    SciTech Connect

    Dawson-Hughes, B.; Seligson, F.H.; Hughes, V.A.

    1986-07-01

    We measured the effect of calcium carbonate and hydroxyapatite on whole-body retention of zinc-65 in 11 and iron-59 in 13 healthy, postmenopausal women. In a single-blind, controlled, crossover study, each subject, on three occasions, ingested a standard test meal supplemented with iron-59 or zinc-65 and capsules containing placebo or 500 mg elemental calcium as calcium carbonate or hydroxyapatite. Whole-body countings were performed prior to, 30 min after, and 2 wk after each meal. Mean (SEM) zinc retention was 18.1 +/- 1.0% with placebo (control) and did not vary significantly with calcium carbonate (110.0 +/- 8.6% of control) or hydroxyapatite (106.0 +/- 7.9% of control). Iron retention, 6.3 +/- 2.0% with placebo, was significantly reduced with both calcium carbonate (43.3 +/- 8.8% of control, p = 0.002) and hydroxyapatite (45.9 +/- 10.0% of control, p = 0.003). Iron absorption may be significantly reduced when calcium supplements are taken with meals.

  8. Reburial of fossil organic carbon in marine sediments.

    PubMed

    Dickens, Angela F; Gélinas, Yves; Masiello, Caroline A; Wakeham, Stuart; Hedges, John I

    2004-01-22

    Marine sediments act as the ultimate sink for organic carbon, sequestering otherwise rapidly cycling carbon for geologic timescales. Sedimentary organic carbon burial appears to be controlled by oxygen exposure time in situ, and much research has focused on understanding the mechanisms of preservation of organic carbon. In this context, combustion-derived black carbon has received attention as a form of refractory organic carbon that may be preferentially preserved in soils and sediments. However, little is understood about the environmental roles, transport and distribution of black carbon. Here we apply isotopic analyses to graphitic black carbon samples isolated from pre-industrial marine and terrestrial sediments. We find that this material is terrestrially derived and almost entirely depleted of radiocarbon, suggesting that it is graphite weathered from rocks, rather than a combustion product. The widespread presence of fossil graphitic black carbon in sediments has therefore probably led to significant overestimates of burial of combustion-derived black carbon in marine sediments. It could be responsible for biasing radiocarbon dating of sedimentary organic carbon, and also reveals a closed loop in the carbon cycle. Depending on its susceptibility to oxidation, this recycled carbon may be locked away from the biologically mediated carbon cycle for many geologic cycles.

  9. A method for quantifying bioavailable organic carbon in aquifer sediments

    USGS Publications Warehouse

    Rectanus, H.V.; Widdowson, M.; Novak, J.; Chapelle, F.

    2005-01-01

    The fact that naturally occurring microorganisms can biodegrade PCE and TCE allows the use of monitored natural attenuation (MNA) as a remediation strategy at chlorinated solvent-contaminated sites. Research at numerous chlorinated solvent sites indicates an active dechlorinating microbial population coupled with an ample supply of organic carbon are conditions needed to sustain reductive dechlorination. A series of extraction experiments was used to compare the ability of the different extractants to remove organic carbon from aquifer sediments. The different extractants included pyrophosphate, sodium hydroxide, and polished water. Pyrophosphate served as a mild extractant that minimally alters the organic structure of the extracted material. Three concentrations (0.1, 0.5, and 1%) of pyrophosphate extracted 18.8, 24.9, and 30.8% of sediment organic carbon, respectively. Under alkali conditions (0.5 N NaOH), which provided the harshest extractant, 30.7% of the sediment organic carbon was recovered. Amorphous organic carbon, measured by potassium persulfate oxidization, consisted of 44.6% of the sediment organic carbon and served as a baseline control for maximum carbon removal. Conversely, highly purified water provided a minimal extraction control and extracted 5.7% of the sediment organic carbon. The removal of organic carbon was quantified by aqueous TOC in the extract and residual sediment organic carbon content. Characterization of the organic carbon extracts by compositional analysis prior and after exposure to the mixed culture might indicate the type organic carbon and functional groups used and/or generated by the organisms. This is an abstract of a paper presented at the 8th International In Situ and On-Site Bioremediation Symposium (Baltimore, MD 6/6-9/2005).

  10. Removal of 2-ClBP from soil-water system using activated carbon supported nanoscale zerovalent iron.

    PubMed

    Zhang, Wei; Yu, Tian; Han, Xiaolin; Ying, Weichi

    2016-09-01

    We explored the feasibility and removal mechanism of removing 2-chlorobiphenyl (2-ClBP) from soil-water system using granular activated carbon (GAC) impregnated with nanoscale zerovalent iron (reactive activated carbon or RAC). The RAC samples were successfully synthesized by the liquid precipitation method. The mesoporous GAC based RAC with low iron content (1.32%) exhibited higher 2-ClBP removal efficiency (54.6%) in the water phase. The result of Langmuir-Hinshelwood kinetic model implied that the different molecular structures between 2-ClBP and trichloroethylene (TCE) resulted in more difference in dechlorination reaction rates on RAC than adsorption capacities. Compared to removing 2-ClBP in the water phase, RAC removed the 2-ClBP more slowly in the soil phase due to the significant external mass transfer resistance. However, in the soil phase, a better removal capacity of RAC was observed than its base GAC because the chemical dechlorination played a more important role in total removal process for 2-ClBP. This important result verified the effectiveness of RAC for removing 2-ClBP in the soil phase. Although reducing the total RAC removal rate of 2-ClBP, soil organic matter (SOM), especially the soft carbon, also served as an electron transfer medium to promote the dechlorination of 2-ClBP in the long term. PMID:27593281

  11. Carbon and iron ion radiation-induced cytotoxicity and transformation in vitro

    PubMed Central

    Zhou, Zhaozong; Ware, Jeffrey H.; Kennedy, Ann R.

    2011-01-01

    The present study was undertaken to characterize carbon and iron ion radiation-induced adverse biological effects in terms of toxicity and transformation in vitro. HTori-3 human thyroid epithelial cells were irradiated with 0.3-GeV/n (13.6 KeV/µm) carbon ions and 1-GeV/n (150 KeV/µm) iron ions, both of which represent high-mass, high atomic number (Z) and high-energy particles known as HZE particles, as well as γ-rays. The survival of the irradiated cells was determined by a clonogenic survival assay. The yield of colonies growing in soft agar was used as a surrogate endpoint biomarker for transformation in vitro. The results showed that HZE particles and γ-ray radiations are effective in increasing the yield of anchorage-independent colonies. Based on the relative biological effectiveness (RBE) values in the clonogenic survival assays, 0.3-GeV/n carbon ions and 1-GeV/n iron ions were 2.9 and 2.4 times, respectively, as effective as γ-rays at killing the irradiated HTori-3 cells. At a dose of 200 cGy, 0.3-GeV/n carbon ions and 1-GeV/n iron ions were found to be 3.5 and 7.3 times, respectively, as effective as γ-rays at inducing anchorage-independent growth. These results suggest that the carcinogenic potential of 0.3-GeV/n carbon ions, as represented by the ability to induce anchorage-independent growth, may be lower than that of 1-GeV/n iron ions. PMID:22866150

  12. Organic carbon hidden in urban ecosystems.

    PubMed

    Edmondson, Jill L; Davies, Zoe G; McHugh, Nicola; Gaston, Kevin J; Leake, Jonathan R

    2012-01-01

    Urbanization is widely presumed to degrade ecosystem services, but empirical evidence is now challenging these assumptions. We report the first city-wide organic carbon (OC) budget for vegetation and soils, including under impervious surfaces. Urban soil OC storage was significantly greater than in regional agricultural land at equivalent soil depths, however there was no significant difference in storage between soils sampled beneath urban greenspaces and impervious surfaces, at equivalent depths. For a typical U.K. city, total OC storage was 17.6 kg m(-2) across the entire urban area (assuming 0 kg m(-2) under 15% of land covered by buildings). The majority of OC (82%) was held in soils, with 13% found under impervious surfaces, and 18% stored in vegetation. We reveal that assumptions underpinning current national estimates of ecosystem OC stocks, as required by Kyoto Protocol signatories, are not robust and are likely to have seriously underestimated the contributions of urban areas.

  13. Multifunctional iron-carbon nanocomposites through an aerosol-based process for the in situ remediation of chlorinated hydrocarbons.

    PubMed

    Zhan, Jingjing; Kolesnichenko, Igor; Sunkara, Bhanukiran; He, Jibao; McPherson, Gary L; Piringer, Gerhard; John, Vijay T

    2011-03-01

    Spherical iron-carbon nanocomposites were developed through a facile aerosol-based process with sucrose and iron chloride as starting materials. These composites exhibit multiple functionalities relevant to the in situ remediation of chlorinated hydrocarbons such as trichloroethylene (TCE). The distribution and immobilization of iron nanoparticles on the surface of carbon spheres prevents zerovalent nanoiron aggregation with maintenance of reactivity. The aerosol-based carbon microspheres allow adsorption of TCE, thus removing dissolved TCE rapidly and facilitating reaction by increasing the local concentration of TCE in the vicinity of iron nanoparticles. The strongly adsorptive property of the composites may also prevent release of any toxic chlorinated intermediate products. The composite particles are in the optimal range for transport through groundwater saturated sediments. Furthermore, those iron-carbon composites can be designed at low cost, the process is amenable to scale-up for in situ application, and the materials are intrinsically benign to the environment.

  14. Ironing out the details of soil organic matter cycling: The unique role of Fe-bearing minerals in regulating organic matter transformation in soils

    NASA Astrophysics Data System (ADS)

    Heckman, K. A.; Lawrence, C. R.; Harden, J. W.; Crate, J.; Swanston, C.

    2015-12-01

    Interest in the influence of mineral chemistry on soil organic matter cycling has been steadily growing, with the role of iron specifically garnering a great deal of attention. Empirical evidence from both lab and field based studies suggest that the interactions of Fe-bearing minerals and colloidal Fe species are unique from the interactions of the soil mineral matrix as a whole and may have a disproportionate influence on soil organic matter. We present results from a suite of studies examining Fe-organic matter interactions which utilize a broad range of technical approaches and highlight the use of radiocarbon analysis in terrestrial carbon cycle studies. Data suggests that interaction of organics with Fe-bearing moieties induces consistent partitioning of organics between dissolved and surface bound organic matter pools, including significant consequences for N and P availability and biodegradability of soil organic matter. Selective dissolution techniques have revealed that Fe-humus complexes comprise a significant pool of soil organic matter which cycles on a shorter-term basis across a variety of ecosystems types, while sequential density separation combined with x-ray diffraction imply concentration and long-term preservation of N-rich organics on Fe-bearing crystalline mineral surfaces. Our results explore the unique and multifaceted roles of Fe in regulating organic matter transformation and preservation in a range of soil types.

  15. Soil Organic Carbon Degradation, Barrow, 2013-2014

    DOE Data Explorer

    Gu, Baohua; Yang, Ziming

    2015-03-30

    This dataset provides information about soil organic carbon decomposition in Barrow soil incubation studies. The soil cores were collected from low-center polygon (Area A) and were incubated in the laboratory at different temperatures for up to 60 days. Transformations of soil organic carbon were characterized by UV and FT-IR, and small organic acids in water-soluble carbons were quantified by ion chromatography during the incubation

  16. The structural-phase state of iron-carbon coatings formed by the ultradispersed particles

    SciTech Connect

    Manakova, Irina A. Ozernoy, Alexey N. Tuleushev, Yuriy Zh. Vereshchak, Mikhail F. Volodin, Valeriy N. Zhakanbayev, Yeldar A.

    2014-10-27

    The methods of nuclear gamma-resonance spectroscopy, elemental microanalysis, and X-ray diffraction were used to study nanoscale coatings. The samples were prepared by magnetron sputtering of carbon and iron particles. They alternately were deposited on monocrystalline silicon or polycrystalline corundum substrate moving relative to the plasma flows in the form of sublayers with a thickness of less than 0.6 nm up to the total thickness of 150-500 nm. Solid solutions with the carbon concentrations of up to 7.5, 12.0, 17.6, and 23.9 at% were produced by co-precipitation of ultradispersed particles of iron and carbon. Using method of conversion electron Mössbauer spectroscopy, we detected the anisotropy of orientation of magnetic moments of iron atoms due to texturing of the formed coatings. The deviation of the crystallite orientation from the average value depends on the degree of carbonization. At 550°C, the pearlite eutectic α‐Fe(C)+Fe{sub 3}C is formed from the amorphous structure without formation of intermediate carbides. The relative content of cementite correlates with the amount of carbon in the coating. The formation of the solid solutions-alloys directly during the deposition process confirms the theory of thermal-fluctuation melting of small particles.

  17. Study of Organic and Inorganic Binders on Strength of Iron Oxide Pellets

    NASA Astrophysics Data System (ADS)

    Srivastava, Urvashi; Kawatra, S. Komar; Eisele, Timothy C.

    2013-08-01

    Bentonite is a predominant binder used in iron ore pelletization. However, the presence of a high content of silica and alumina in bentonite is considered undesirable for ironmaking operations. The objective of this study was to identify the alternatives of bentonite for iron ore pelletization. To achieve this goal, different types of organic and inorganic binders were utilized to produce iron oxide pellets. The quality of these iron oxide pellets was compared with pellets made using bentonite. All pellets were tested for physical strength at different stages of pelletization to determine their ability to survive during shipping and handling. The results show that organic binders such as lactose monohydrate, hemicellulose, and sodium lignosulfonate can provide sufficient strength to indurated pellets.

  18. Carbon-coated iron oxide nanoparticles as contrast agents in magnetic resonance imaging.

    PubMed

    Bae, Hongsub; Ahmad, Tanveer; Rhee, Ilsu; Chang, Yongmin; Jin, Seong-Uk; Hong, Sungwook

    2012-01-01

    Coprecipitated ferrite nanoparticles were coated with carbon using a hydrothermal method. From transmission electron microscope pictures, we could see that the coated iron oxide nanoparticles were spherical in shape with an average diameter of 90 nm. The strong bonding of carbon on the nanoparticle surfaces was checked by noting the C = O and C = C vibrations in Fourier transform infrared spectra. The spin-lattice relaxation process [T1] and spin-spin relaxation process [T2] relaxivities of hydrogen protons in the aqueous solution of coated nanoparticles were determined to be 1.139 (mM·s)-1 and 1.115 (mM·s)-1, respectively. These results showed that the carbon-coated iron oxide nanoparticles are applicable as both T1 and T2 contrast agents in magnetic resonance imaging.PACS: 81.05.y; 76.60.Es; 61.46; 75.50.k; 87.61.

  19. A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater.

    PubMed

    Busch, J; Meißner, T; Potthoff, A; Bleyl, S; Georgi, A; Mackenzie, K; Trabitzsch, R; Werban, U; Oswald, S E

    2015-10-01

    The application of nanoscale zero-valent iron (nZVI) for subsurface remediation of groundwater contaminants is a promising new technology, which can be understood as alternative to the permeable reactive barrier technique using granular iron. Dechlorination of organic contaminants by zero-valent iron seems promising. Currently, one limitation to widespread deployment is the fast agglomeration and sedimentation of nZVI in colloidal suspensions, even more so when in soils and sediments, which limits the applicability for the treatment of sources and plumes of contamination. Colloid-supported nZVI shows promising characteristics to overcome these limitations. Mobility of Carbo-Iron Colloids (CIC) - a newly developed composite material based on finely ground activated carbon as a carrier for nZVI - was tested in a field application: In this study, a horizontal dipole flow field was established between two wells separated by 5.3m in a confined, natural aquifer. The injection/extraction rate was 500L/h. Approximately 1.2kg of CIC was suspended with the polyanionic stabilizer carboxymethyl cellulose. The suspension was introduced into the aquifer at the injection well. Breakthrough of CIC was observed visually and based on total particle and iron concentrations detected in samples from the extraction well. Filtration of water samples revealed a particle breakthrough of about 12% of the amount introduced. This demonstrates high mobility of CIC particles and we suggest that nZVI carried on CIC can be used for contaminant plume remediation by in-situ formation of reactive barriers. PMID:25864966

  20. A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater.

    PubMed

    Busch, J; Meißner, T; Potthoff, A; Bleyl, S; Georgi, A; Mackenzie, K; Trabitzsch, R; Werban, U; Oswald, S E

    2015-10-01

    The application of nanoscale zero-valent iron (nZVI) for subsurface remediation of groundwater contaminants is a promising new technology, which can be understood as alternative to the permeable reactive barrier technique using granular iron. Dechlorination of organic contaminants by zero-valent iron seems promising. Currently, one limitation to widespread deployment is the fast agglomeration and sedimentation of nZVI in colloidal suspensions, even more so when in soils and sediments, which limits the applicability for the treatment of sources and plumes of contamination. Colloid-supported nZVI shows promising characteristics to overcome these limitations. Mobility of Carbo-Iron Colloids (CIC) - a newly developed composite material based on finely ground activated carbon as a carrier for nZVI - was tested in a field application: In this study, a horizontal dipole flow field was established between two wells separated by 5.3m in a confined, natural aquifer. The injection/extraction rate was 500L/h. Approximately 1.2kg of CIC was suspended with the polyanionic stabilizer carboxymethyl cellulose. The suspension was introduced into the aquifer at the injection well. Breakthrough of CIC was observed visually and based on total particle and iron concentrations detected in samples from the extraction well. Filtration of water samples revealed a particle breakthrough of about 12% of the amount introduced. This demonstrates high mobility of CIC particles and we suggest that nZVI carried on CIC can be used for contaminant plume remediation by in-situ formation of reactive barriers.

  1. [Organic Carbon and Elemental Carbon in Forest Biomass Burning Smoke].

    PubMed

    Huang, Ke; Liu, Gang; Zhou, Li-min; Li, Jiu-hai; Xu, Hui; Wu, Dan; Hong, Lei; Chen, Hui-yu; Yang, Wei-zong

    2015-06-01

    Ten kinds of trees were selected for preparing dry and wet stick samples. Concentrations of organic carbon (OC), elemental carbon (EC) in particular matter produced by sticks samples in the flaming and smoldering were analyzed through the Thermal Optical Carbon Analyzer (Model 2001A). The results showed that mean values of OC (EF(OC)), EC (EF(EC)), PM (EF(PM)) emission factors were 6.8, 2.1, 16.5 g x kg(-1) in the dry stick flaming smoke, 57.5, 11.1, 130.9 g x kg(-1) in the dry stick smoldering smoke, 13.6, 3.3, 30.5 g x kg(-1) in the wet stick flaming smoke, 57.6, 9.6, 125.6 g x kg(-1) in the wet stick smoldering smoke. Compared to the flaming condition, EF(OC), EF(EC), EF(PM), were much higher in the smoldering condition. In the flaming condition, EF(OC), EF(EC), EF(PM) had positive correlations with the moisture content. The mean values of OC/PM, EC/PM, TC/PM (TC = OC + EC) were 45%, 10%, 55%, and the mass fractions of OC was much higher in smoldering condition than those in flaming condition, but the mass fractions of EC was lower in the smoldering condition. Compared to dry sticks, the smoke of wet sticks combustion had higher mass fractions of OC and lower mass fractions of EC. The mean value of OC/EC was 3.3 (2.5-5.2) in the dry stick flaming smoke, and was 5.2 (4.3-6.3) in the dry stick smoldering smoke, in the wet stick flaming smoke was 4.1 (3.1-5.3), and was 6.2 (4.2-8.4) in the wet stick smoldering smoke. Compared to the flaming condition, the mean value of OC/EC was higher in the smoldering condition, and the mean value of OC/EC was much higher in high moisture content stick combustion smoke. The correlation coefficient between OC and EC was 0.985 in dry stick combustions, and was 0.915 in wet stick combustions. So, based on the flaming and smoldering condition, the correlation between OC and EC was significant in different moisture contents of sticks.

  2. Mercury remediation in wetland sediment using zero-valent iron and granular activated carbon

    USGS Publications Warehouse

    Lewis, Ariel S.; Huntington, Thomas G.; Marvin-DiPasquale, Mark C.; Amirbahman, Aria

    2016-01-01

    Wetlands are hotspots for production of toxic methylmercury (MeHg) that can bioaccumulate in the food web. The objective of this study was to determine whether the application of zero-valent iron (ZVI) or granular activated carbon (GAC) to wetland sediment could reduce MeHg production and bioavailability to benthic organisms. Field mesocosms were installed in a wetland fringing Hodgdon Pond (Maine, USA), and ZVI and GAC were applied. Pore-water MeHg concentrations were lower in treated compared with untreated mesocosms; however, sediment MeHg, as well as total Hg (THg), concentrations were not significantly different between treated and untreated mesocosms, suggesting that smaller pore-water MeHg concentrations in treated sediment were likely due to adsorption to ZVI and GAC, rather than inhibition of MeHg production. In laboratory experiments with intact vegetated sediment clumps, amendments did not significantly change sediment THg and MeHg concentrations; however, the mean pore-water MeHg and MeHg:THg ratios were lower in the amended sediment than the control. In the laboratory microcosms, snails (Lymnaea stagnalis) accumulated less MeHg in sediment treated with ZVI or GAC. The study results suggest that both GAC and ZVI have potential for reducing MeHg bioaccumulation in wetland sediment.

  3. Mercury remediation in wetland sediment using zero-valent iron and granular activated carbon.

    PubMed

    Lewis, Ariel S; Huntington, Thomas G; Marvin-DiPasquale, Mark C; Amirbahman, Aria

    2016-05-01

    Wetlands are hotspots for production of toxic methylmercury (MeHg) that can bioaccumulate in the food web. The objective of this study was to determine whether the application of zero-valent iron (ZVI) or granular activated carbon (GAC) to wetland sediment could reduce MeHg production and bioavailability to benthic organisms. Field mesocosms were installed in a wetland fringing Hodgdon Pond (Maine, USA), and ZVI and GAC were applied. Pore-water MeHg concentrations were lower in treated compared with untreated mesocosms; however, sediment MeHg, as well as total Hg (THg), concentrations were not significantly different between treated and untreated mesocosms, suggesting that smaller pore-water MeHg concentrations in treated sediment were likely due to adsorption to ZVI and GAC, rather than inhibition of MeHg production. In laboratory experiments with intact vegetated sediment clumps, amendments did not significantly change sediment THg and MeHg concentrations; however, the mean pore-water MeHg and MeHg:THg ratios were lower in the amended sediment than the control. In the laboratory microcosms, snails (Lymnaea stagnalis) accumulated less MeHg in sediment treated with ZVI or GAC. The study results suggest that both GAC and ZVI have potential for reducing MeHg bioaccumulation in wetland sediment.

  4. Magnetically anisotropic additive for scalable manufacturing of polymer nanocomposite: iron-coated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yamamoto, Namiko; Manohara, Harish; Platzman, Ellen

    2016-02-01

    Novel nanoparticles additives for polymer nanocomposites were prepared by coating carbon nanotubes (CNTs) with ferromagnetic iron (Fe) layers, so that their micro-structures can be bulk-controlled by external magnetic field application. Application of magnetic fields is a promising, scalable method to deliver bulk amount of nanocomposites while maintaining organized nanoparticle assembly throughout the uncured polymer matrix. In this work, Fe layers (˜18 nm thick) were deposited on CNTs (˜38 nm diameter and ˜50 μm length) to form thin films with high aspect ratio, resulting in a dominance of shape anisotropy and thus high coercivity of ˜50-100 Oe. The Fe-coated CNTs were suspended in water and applied with a weak magnetic field of ˜75 G, and yet preliminary magnetic assembly was confirmed. Our results demonstrate that the fabricated Fe-coated CNTs are magnetically anisotropic and effectively respond to magnetic fields that are ˜103 times smaller than other existing work (˜105 G). We anticipate this work will pave the way for effective property enhancement and bulk application of CNT-polymer nanocomposites, through controlled micro-structure and scalable manufacturing.

  5. Biological carbon precursor to diagenetic siderite with spherical structures in iron formations.

    PubMed

    Köhler, Inga; Konhauser, Kurt O; Papineau, Dominic; Bekker, Andrey; Kappler, Andreas

    2013-01-01

    During deposition of Precambrian iron formation, the combined sedimentation of ferrihydrite and phytoplankton biomass should have facilitated Fe(III) reduction during diagenesis. However, the only evidence for this reaction in iron formations is the iron and carbon isotope values preserved in the authigenic ferrous iron-containing minerals. Here we show experimentally that spheroidal siderite, which is preserved in many iron formation and could have been precursor to rhombohedral or massive siderite, forms by reacting ferrihydrite with glucose (a proxy for microbial biomass) at pressure and temperature conditions typical of diagenesis (170 °C and 1.2 kbar). Depending on the abundance of siderite, we found that it is also possible to draw conclusions about the Fe(III):C ratio of the initial ferrihydrite-biomass sediment. Our results suggest that spherical to rhombohedral siderite structures in deep-water, Fe-oxide iron formation can be used as a biosignature for photoferrotrophy, whereas massive siderite reflects high cyanobacterial biomass loading in highly productive shallow-waters.

  6. Biological carbon precursor to diagenetic siderite with spherical structures in iron formations.

    PubMed

    Köhler, Inga; Konhauser, Kurt O; Papineau, Dominic; Bekker, Andrey; Kappler, Andreas

    2013-01-01

    During deposition of Precambrian iron formation, the combined sedimentation of ferrihydrite and phytoplankton biomass should have facilitated Fe(III) reduction during diagenesis. However, the only evidence for this reaction in iron formations is the iron and carbon isotope values preserved in the authigenic ferrous iron-containing minerals. Here we show experimentally that spheroidal siderite, which is preserved in many iron formation and could have been precursor to rhombohedral or massive siderite, forms by reacting ferrihydrite with glucose (a proxy for microbial biomass) at pressure and temperature conditions typical of diagenesis (170 °C and 1.2 kbar). Depending on the abundance of siderite, we found that it is also possible to draw conclusions about the Fe(III):C ratio of the initial ferrihydrite-biomass sediment. Our results suggest that spherical to rhombohedral siderite structures in deep-water, Fe-oxide iron formation can be used as a biosignature for photoferrotrophy, whereas massive siderite reflects high cyanobacterial biomass loading in highly productive shallow-waters. PMID:23612282

  7. Does Iron Fertilization Lead to Enhanced Carbon Sequestration? A Synthesis of Polar Star Results.

    SciTech Connect

    Buesseler, K.O.

    2002-12-01

    This research synthesized activities related to work conducted as part of the Southern Ocean Iron Experiment (SOFeX) which investigated the effects of iron fertilization on enhanced carbon sequestration. The primary interest was in the fate of sinking particles which carry carbon to the deep ocean, where it can be sequestered from the atmosphere for >100-1000 year time scales. This was accomplished through direct measurements of thorium-234, a naturally occurring particle reactive radionuclide that traces shallow particle export; SF6 measurements to track the position of the Fe fertilized region; and the collection of ancillary data and samples to augment the study of major C, nutrient and elemental budgets as well as appropriate samples for biological study. Results of this work show a small, but progressively increasing flux of particulate organic C to depth as a consequence of Fe fertilization. This is the first data set to show any effect of Fe fertilization on C sequestration in the Southern Ocean. The changes in particle export during SOFeX are significant, but only possible to detect given what is arguably the largest 234Th data set ever collected as part of an oceanographic experiment. Most prior 234Th studies, simply use a steady-state approximation and ignore advective and diffusive fluxes in the calculation of 234Th fluxes. High resolution time-series of average 0-50m 234Th activities in and out of the Southern patch find a clear steady decrease in 234Th flux that is slightly larger in vs. out of the Fe fertilized patch. This decrease must be included in the full 234Th flux calculation and the deliberate tagging of this water mass with SF6 combined with time-series sampling allowed for a careful evaluation of this non-steady state (NSS) term. Likewise, the addition of SF6 allows for the evaluation of vertical exchange (via the gradient of SF6 below the patch) and dilution effects (after correction for atmospheric losses). In most set tings these physical

  8. Low-carbon transition of iron and steel industry in China: carbon intensity, economic growth and policy intervention.

    PubMed

    Yu, Bing; Li, Xiao; Qiao, Yuanbo; Shi, Lei

    2015-02-01

    As the biggest iron and steel producer in the world and one of the highest CO2 emission sectors, China's iron and steel industry is undergoing a low-carbon transition accompanied by remarkable technological progress and investment adjustment, in response to the macroeconomic climate and policy intervention. Many drivers of the CO2 emissions of the iron and steel industry have been explored, but the relationships between CO2 abatement, investment and technological expenditure, and their connections with the economic growth and governmental policies in China, have not been conjointly and empirically examined. We proposed a concise conceptual model and an econometric model to investigate this crucial question. The results of regression, Granger causality test and impulse response analysis indicated that technological expenditure can significantly reduce CO2 emissions, and that investment expansion showed a negative impact on CO2 emission reduction. It was also argued with empirical evidence that a good economic situation favored CO2 abatement in China's iron and steel industry, while achieving CO2 emission reduction in this industrial sector did not necessarily threaten economic growth. This shed light on the dispute over balancing emission cutting and economic growth. Regarding the policy aspects, the year 2000 was found to be an important turning point for policy evolution and the development of the iron and steel industry in China. The subsequent command and control policies had a significant, positive effect on CO2 abatement.

  9. Transient Dissolved Organic Carbon Through Soils

    NASA Astrophysics Data System (ADS)

    Mei, Y.; Hornberger, G. M.; Kaplan, L. A.; Newbold, J. D.; Aufdenkampe, A. K.; Tsang, Y.

    2009-12-01

    Dissolved organic carbon (DOC) is an important constituent of soil solution that plays a role in many chemical and biological processes in soils; it is also an important energy source for bacteria in the soil ecosystem. Hydrology has a significant control on the transport and fate of dissolved organic carbon in the soil but mechanisms that affect said transport are not well understood. In particular, dynamic information on DOC transport through forest soils on short time scales (one or two precipitation event) is lacking at present. DOC is a very complex mix of organic compounds. A key to quantifying DOC dynamics is to establish useful approximations for behavior of this complex mixture. Biodegradable dissolved organic carbon (BDOC) is an important part of DOC. It is reported that between 12 and 44% of DOC released from the forest floor can be decomposed in solutions by indigenous microbes. In our study, we considered how DOC, BDOC, and flow interact in soil columns. In-situ soil cores with two different lengths were installed under a mixed deciduous canopy. The effects of artificial rain on DOC and BDOC transport were examined by dripping nano pure water amended with bromide on the top of soil cores and sampling the water collected at the bottom of the cores for DOC and BDOC. We used plug-flow biofilm reactors to measure the BDOC concentration. It is likely that reduced rates of decomposition in dry soils will cause microbial products of DOC to accumulate; hence DOC concentration should be high at the first flush of rain and decline as the event proceeds. The experimental results show the expected pattern, that is, the first samples we collected always had the highest DOC and BDOC concentrations. The concentrations tend to decline through the simulated precipitation event. Application of a second “storm” forty minutes after the cessation of the first application of water resulted in effluent DOC concentration increasing a small amount initially and then

  10. Formation and transformation of a short range ordered iron carbonate precursor

    NASA Astrophysics Data System (ADS)

    Dideriksen, Knud; Frandsen, Cathrine; Bovet, Nicolas; Wallace, Adam F.; Sel, Ozlem; Arbour, Tyler; Navrotsky, Alexandra; De Yoreo, James J.; Banfield, Jillian F.

    2015-09-01

    Fe(II)-carbonates, such as siderite, form in environments where O2 is scarce, e.g., during marine sediment diagenesis, corrosion and possibly CO2 sequestration, but little is known about their formation pathways. We show that early precipitates from carbonate solutions containing 0.1 M Fe(II) with varying pH produced broad peaks in X-ray diffraction and contained dominantly Fe and CO3 when probed with X-ray photoelectron spectroscopy. Reduced pair distribution function (PDF) analysis shows only peaks corresponding to interatomic distances below 15 Å, reflecting a material with no long range structural order. Moreover, PDF peak positions differ from those for known iron carbonates and hydroxides. Mössbauer spectra also deviate from those expected for known iron carbonates and suggest a less crystalline structure. These data show that a previously unidentified iron carbonate precursor phase formed. Its coherent scattering domains determined from PDF analysis are slightly larger than for amorphous calcium carbonate, suggesting that the precursor could be nanocrystalline. Replica exchange molecular dynamics simulations of Fe-carbonate polynuclear complexes yield PDF peak positions that agree well with those from experiments, offering the possibility that the material is a condensate of such complexes, assembled in a relatively unorganised fashion. If this is the case, the material could be nearly amorphous, rather than being composed of well defined nanocrystals. PDF measurements of samples ageing in solution coupled with refinement with the software PDFgui show that the material transforms to siderite or siderite/chukanovite mixtures within hours and that the transformation rate depends on pH. The identified Fe-carbonate precursor may potentially form during anaerobic corrosion or bacterial Fe reduction.

  11. Synthesis, structure, and magnetic properties of iron and nickel nanoparticles encapsulated into carbon

    NASA Astrophysics Data System (ADS)

    Tsurin, V. A.; Yermakov, A. Ye.; Uimin, M. A.; Mysik, A. A.; Shchegoleva, N. N.; Gaviko, V. S.; Maikov, V. V.

    2014-02-01

    Nanocomposites based on iron and nickel particles encapsulated into carbon (Fe@C and Ni@C), with an average size of the metal core in the range from 5 to 20 nm and a carbon shell thickness of approximately 2 nm, have been prepared by the gas-phase synthesis method in a mixture of argon and butane. It has been found using X-ray diffraction, transmission electron microscopy, and Mössbauer spectroscopy that iron nanocomposites prepared in butane, apart from the carbon shell, contain the following phases: iron carbide (cementite), α-Fe, and γ-Fe. The phase composition of the Fe@C nanocomposite correlates with the magnetization of approximately 100 emu/g at room temperature. The replacement of butane by methane as a carbon source leads to another state of nanoparticles: no carbon coating is formed, and upon subsequent contact with air, the Fe3O4 oxide shell is formed on the surface of nanoparticles. Nickel-based nanocomposites prepared in butane, apart from pure nickel in the metal core, contain the supersaturated metastable solid solution Ni(C) and carbon coating. The Ni(C) solid solution can decompose both during the synthesis and upon the subsequent annealing. The completeness and degree of decomposition depend on the synthesis regime and the size of nickel nanoparticles: the smaller is the size of nanoparticles, the higher is the degree of decomposition into pure nickel and carbon. The magnetization of the Ni@C nanocomposites is determined by several contributions, for example, the contribution of the magnetic solid solution Ni(C) and the contribution of the nonmagnetic carbon coating; moreover, some contribution to the magnetization can be caused by the superparamagnetic behavior of nanoparticles.

  12. Temperature Dependence of Photodegradation of Dissolved Organic Matter to Dissolved Inorganic Carbon and Particulate Organic Carbon

    PubMed Central

    Porcal, Petr; Dillon, Peter J.; Molot, Lewis A.

    2015-01-01

    Photochemical transformation of dissolved organic matter (DOM) has been studied for more than two decades. Usually, laboratory or “in-situ” experiments are used to determine photodegradation variables. A common problem with these experiments is that the photodegradation experiments are done at higher than ambient temperature. Five laboratory experiments were done to determine the effect of temperature on photochemical degradation of DOM. Experimental results showed strong dependence of photodegradation on temperature. Mathematical modeling of processes revealed that two different pathways engaged in photochemical transformation of DOM to dissolved inorganic carbon (DIC) strongly depend on temperature. Direct oxidation of DOM to DIC dominated at low temperatures while conversion of DOM to intermediate particulate organic carbon (POC) prior to oxidation to DIC dominated at high temperatures. It is necessary to consider this strong dependence when the results of laboratory experiments are interpreted in regard to natural processes. Photodegradation experiments done at higher than ambient temperature will necessitate correction of rate constants. PMID:26106898

  13. Carbon diffusion in solid iron as function of pressure and temperature

    NASA Astrophysics Data System (ADS)

    Stagno, V.; Crispin, K. L.; Fei, Y.

    2012-12-01

    The knowledge of carbon diffusion in metallic iron is of importance for both industrial and geological applications. In industry the diffusion properties of carbon apply to the massive production of steel through carburizing and galvanization processes at high temperature with the aim to improve the hardness and rust resistance of such materials. In geoscience the diffusion of carbon in metallic phases at high pressure and temperature is important for determining the rate of reactions and crystal growth of carbide phases likely coexisting with mantle silicates. Due to a small atomic radius, carbon is expected to dissolve by interstitial diffusion in solid metals. However, to date there are no experimental data available to understand the role that pressure plays on the mobilization of carbon through solid iron. Further, for light elements such as carbon or sulfur the activation energy is assumed to be lower than in case of lattice diffusion. However, with increasing pressure the activation volume must be taken into account to better understand diffusion processes at the atomic scale. We performed experiments using multianvil and piston cylinder devices at pressures between 1.5 and 6 GPa and temperature of 700-1200°C. Experiments were carried out using cylindrical glassy carbon sandwiched between layers of pure iron rods of known thickness enclosed in MgO capsule. Analytical techniques included FE-SEM for textural observation and accurate analyses of the interface between layers, while concentration profiles were measured using the electron microprobe with an optimized standardization procedure. Concentration profiles of carbon in iron were computed to determine the diffusion coefficients based on Fick's second law formulation assuming isotropic one dimension diffusion. Preliminary results confirm the positive temperature dependence of the diffusion coefficient for carbon widely discussed in literature. However, our results also show that a significant increase in

  14. Effects of natural organic matter, anthropogenic surfactants, and model quinones on the reduction of contaminants by zero-valent iron.

    PubMed

    Tratnyek, P G; Scherer, M M; Deng, B; Hu, S

    2001-12-01

    Recent studies of contaminant reduction by zero-valent iron metal (Fe0) have highlighted the role of iron oxides at the metal-water interface and the effect that sorption has at the oxide-water interface on contaminant reduction kinetics. The results suggest that a variety of organic surface-active substances might enhance or inhibit contaminant degradation, depending on the degree to which they promote solubilization, sorption. and/or reaction. Of particular interest is the effect of natural organic matter (NOM), because of its ubiquitous presence in natural waters and amphiphilic properties; anthropogenic surfactants, because of their use in groundwater remediation; and certain quinones, which represent the redox-active functional groups associated with NOM. In this study, no well-defined effects of these substances were found on the reduction of nitro benzene by Fe0, but the reduction of carbon tetrachloride and trichloroethylene (TCE) was inhibited by NOM. Results with carbon tetrachloride showed that the inhibitory effect of humic acids was greater than fulvic acids, but that several quinonoid NOM model compounds (juglone, lawsone. and anthraquinone disulfonate) increased the rate of reduction by Fe0. Isotherms for adsorption of TCE and NOM onto Fe0 showed evidence of competition for surface sites.

  15. Electrochemical emission and impedance spectroscopies of passive iron and carbon steel

    NASA Astrophysics Data System (ADS)

    Liu, Jun

    A high fidelity in situ technique for measuring electrochemical noise data on carbon steel in alkaline solutions, referred to as Electrochemical Emission Spectroscopy (EES), or Electrochemical Noise Measurement (ENM), has been developed in this thesis as a means of monitoring general corrosion and pitting corrosion on carbon steel in simulated DOE nuclear waste storage systems and to develop a better understanding of the corrosion processes of carbon steel in these environments. The data acquisition system is essential to the accuracy of voltage and current measurements and the validity of experimental data for further analysis. Time and frequency domain analyses display different characteristics for general corrosion and pitting corrosion. DOE raw noise data analysis shows that the penetration corrosion rate in liquid/sludge phases is in the order of 10-2--10-3 mm/year for the carbon steel-lined tanks in the DOE waste environments. In addition, good correlation has been observed between EES and traditional Linear Polarization Resistance (LPR) method in detecting the corrosion rates of carbon steel. The passive state on iron in EDTA (ethylene diammine tetra acetic acid, disodium salt, C10H14N2Na2O 8)-containing borate buffer solutions of pH ranging from 8.15 to 12.87 at ambient temperature has been explored using Electrochemical Impedance Spectroscopy (EIS), another powerful in situ electrochemical method for investigating steady-state electrochemical and corrosion systems. It has been found that frequency sweep range, perturbation voltage amplitude, solution pH, and film formation voltage are important factors to influence the impedance of passive iron. The steady-state passive films formed on iron have been shown to satisfy the conditions of linearity, causality, stability and finiteness, on the basis of the good agreement observed between the experimental impedance data and the Kramers-Kronig transforms calculated data over most of the frequency range employed

  16. Carbon accumulation in arid croplands of northwest China: pedogenic carbonate exceeding organic carbon.

    PubMed

    Wang, Xiujun; Wang, Jiaping; Xu, Minggang; Zhang, Wenju; Fan, Tinglu; Zhang, Juan

    2015-06-19

    Soil carbonate (SIC) exceeds organic carbon (SOC) greatly in arid lands, thus may be important for carbon sequestration. However, field data for quantifying carbonate accumulation have been lacking. This study aims to improve our understanding of SIC dynamics and its role in carbon sequestration. We analyzed two datasets of SOC and SIC and their (13)C compositions , one with over 100 soil samples collected recently from various land uses in the Yanqi Basin, Xinjiang, and the other with 18 archived soil samples from a long-term experiment (LTE) in Pingliang, Gansu. The data from the Yanqi Basin showed that SOC had a significant relationship with SIC and pedogenic carbonate (PIC); converting shrub land to cropland increased PIC stock by 5.2 kg C m(-2), which was 3.6 times of that in SOC stock. The data from the LTE showed greater accumulation of PIC (21-49 g C m(-2) year(-1)) than SOC (10-39 g C m(-2) year(-1)) over 0-20 cm. Our study points out that intensive cropping in the arid and semi-arid regions leads to an increase in both SOC and PIC. Increasing SOC through straw organic amendments enhances PIC accumulation in the arid cropland of northwestern China.

  17. Carbon accumulation in arid croplands of northwest China: pedogenic carbonate exceeding organic carbon

    NASA Astrophysics Data System (ADS)

    Wang, Xiujun; Wang, Jiaping; Xu, Minggang; Zhang, Wenju; Fan, Tinglu; Zhang, Juan

    2015-06-01

    Soil carbonate (SIC) exceeds organic carbon (SOC) greatly in arid lands, thus may be important for carbon sequestration. However, field data for quantifying carbonate accumulation have been lacking. This study aims to improve our understanding of SIC dynamics and its role in carbon sequestration. We analyzed two datasets of SOC and SIC and their 13C compositions , one with over 100 soil samples collected recently from various land uses in the Yanqi Basin, Xinjiang, and the other with 18 archived soil samples from a long-term experiment (LTE) in Pingliang, Gansu. The data from the Yanqi Basin showed that SOC had a significant relationship with SIC and pedogenic carbonate (PIC); converting shrub land to cropland increased PIC stock by 5.2 kg C m-2, which was 3.6 times of that in SOC stock. The data from the LTE showed greater accumulation of PIC (21-49 g C m-2 year-1) than SOC (10-39 g C m-2 year-1) over 0-20 cm. Our study points out that intensive cropping in the arid and semi-arid regions leads to an increase in both SOC and PIC. Increasing SOC through straw organic amendments enhances PIC accumulation in the arid cropland of northwestern China.

  18. Carbon accumulation in arid croplands of northwest China: pedogenic carbonate exceeding organic carbon

    PubMed Central

    Wang, Xiujun; Wang, Jiaping; Xu, Minggang; Zhang, Wenju; Fan, Tinglu; Zhang, Juan

    2015-01-01

    Soil carbonate (SIC) exceeds organic carbon (SOC) greatly in arid lands, thus may be important for carbon sequestration. However, field data for quantifying carbonate accumulation have been lacking. This study aims to improve our understanding of SIC dynamics and its role in carbon sequestration. We analyzed two datasets of SOC and SIC and their 13C compositions , one with over 100 soil samples collected recently from various land uses in the Yanqi Basin, Xinjiang, and the other with 18 archived soil samples from a long-term experiment (LTE) in Pingliang, Gansu. The data from the Yanqi Basin showed that SOC had a significant relationship with SIC and pedogenic carbonate (PIC); converting shrub land to cropland increased PIC stock by 5.2 kg C m−2, which was 3.6 times of that in SOC stock. The data from the LTE showed greater accumulation of PIC (21–49 g C m−2 year−1) than SOC (10–39 g C m−2 year−1) over 0–20 cm. Our study points out that intensive cropping in the arid and semi-arid regions leads to an increase in both SOC and PIC. Increasing SOC through straw organic amendments enhances PIC accumulation in the arid cropland of northwestern China. PMID:26091554

  19. Erosion of soil organic carbon: implications for carbon sequestration

    USGS Publications Warehouse

    Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.; McPherson, B.J.; Sundquist, E.T.

    2009-01-01

    Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.

  20. Extraction of iron and calcium from low rank coal by supercritical carbon dioxide with entrainers

    SciTech Connect

    Iwai, Y.; Okamoto, N.; Ohta, S.; Arai, Y.; Sakanishi, K.

    2007-03-15

    Iron and calcium were extracted from low rank coal with supercritical carbon dioxide and methanol, ethanol, acetic acid, acetyl acetone, ethanol and acetic acid, or acetyl acetone and water entrainers at 313.2 K and 15.0 MPa. The low rank coal used in this study was Berau coal from Indonesia. The addition of methanol, ethanol, or acetic acid entrainers in supercritical carbon dioxide showed very limited effect on enhancement of the recovery rates of Fe. The recovery rates of Fe from dried coal by supercritical carbon dioxide with acetyl acetone were low however, the addition of acetyl acetone with water in supercritical carbon dioxide remarkably enhanced the recovery rates of Fe. Water seems to play an important role in extracting Fe from coal with supercritical carbon dioxide and acetyl acetone. On the other hand, the extraction rates of Ca with supercritical carbon dioxide and water, methanol, ethanol, and acetyl acetone entrainers were very low. The addition of acetic acid with or without water in supercritical carbon dioxide slightly enhanced the recovery rates of Ca. The addition of acetic acid with ethanol in supercritical carbon dioxide remarkably enhanced the recovery rates of Ca. The effect of carbon dioxide flow rate and coal particle size on the recovery rates of Fe were examined. The recovery rate of Fe increased with increasing carbon dioxide flow rate and with decreasing particle size of the low rank coal.

  1. Effect of iron supplementation on the erosive potential of carbonated or decarbonated beverage.

    PubMed

    Kato, Melissa Thiemi; Maria, Andrea Gutierrez; Vaz, Luís Guilherme Matiazi; Italiani, Flávia de Moraes; Sales-Peres, Sílvia Helena de Carvalho; Buzalaf, Marília Afonso Rabelo

    2007-02-01

    This study evaluated, in vitro, the effect of iron (previously exposed with enamel powder or added directly to the beverage) on the erosive potential of carbonated or decarbonated beverage. Four sets of experiments were done. For groups E1 and E3, a solution containing 30 mmol/L FeSO4 was added to bovine enamel powder (particles between 75-106 mm) before exposure to the carbonated or decarbonated beverage (Sprite Zero(R)), respectively. For groups E2 and E4, 15 mmol/L FeSO4 was added directly to the carbonated or decarbonated beverage, respectively. Control groups were included for comparison. In controls C1 and C3, the experiments E1 and E3 were repeated, but the iron solution was replaced by deionized water. For controls C2 and C4, the carbonated and decarbonated beverage, respectively, was used, without addition of iron. After addition of the beverage to the powdered enamel (40 mg enamel powder/400 mL of final volume), the sample was vortexed for 30 s and immediately centrifuged for 30 s (11,000 rpm). The supernatant was removed after 1 min 40 s. This procedure was repeated in quintuplicate and the phosphate released was analyzed spectrophotometrically. The results were analyzed by Student's t-test (p<0.05). E2 presented the best results with a significant inhibition (around 36%) of phosphate released. For E3 and E4 a non-significant inhibition (around 4 and 12%, respectively), was observed. For E1 an increase in phosphate loss was detected. Thus, the protective effect of iron seems to be better when this ion is directly added to the carbonated beverage. PMID:19089102

  2. Evaluation of residual iron in carbon nanotubes purified by acid treatments

    NASA Astrophysics Data System (ADS)

    Edwards, E. R.; Antunes, E. F.; Botelho, E. C.; Baldan, M. R.; Corat, E. J.

    2011-11-01

    A detailed analysis by X-ray photoelectron spectroscopy was carried out on multi-walled carbon nanotube (MWCNT) surfaces after non-oxidative and oxidative purification treatments in liquid-phase. The MWCNT were produced by pyrolysis of camphor and ferrocene, that provides a high yield but with high iron contamination (∼15% wt). The elimination and/or oxidation of iron nanoparticles were monitored by Fe2p and O1s core level. Oxygen-based functional groups attachment was also investigated by C1s fitting. The effectiveness of each treatment in iron removal was evaluated by thermogravimetric analysis (TGA) and atomic absorption spectroscopy (AAS). The integrity of the MWCNT structure was verified by Raman spectroscopy (RS) and transmission electron microscopy (TEM). A purity degree higher than 98% was achieved only with non-oxidative treatments using sonification process.

  3. A general approach towards carbon nanotube and iron oxide coaxial architecture and its lithium storage capability

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Ni, Jiangfeng; Wang, Wencong; Li, Liang

    2015-12-01

    Coaxial architectures consisting of metal oxide and carbon nanotube are promising for many energy applications due to their synergetic interaction. The engineering and development of coaxial structures through a simple approach are highly desirable but remain a challenge. Herein, we present a general and facile ethylene glycol bath approach to fabricate coaxial architectures in which the metal oxide component is sandwiched by carbon nanotube and amorphous carbon. These unique architectures can serve as efficient electrode for lithium storage. The internal carbon nanotube allows rapid electron transport, while the external amorphous carbon acts as flexible buffer to accommodate volume variation upon lithium uptake. When evaluated in lithium cells, the carbon nanotube and iron oxide coaxial material exhibits a remarkable electrochemical lithium storage. It affords a capacity of 1083 mAh g-1 over 60 cycles, and retains 529 mAh g-1 at a high rate of 5 A g-1, drastically outperforming the pure iron oxide counterpart. This facile approach is in principle applicable to constructing other coaxial electrodes, and thus holds great potential in the manipulation of battery materials for lithium storage application.

  4. Air stable iron/iron carbide magnetic nanoparticles embedded in amorphous carbon globules

    NASA Astrophysics Data System (ADS)

    Sadhanala, Hari Krishna; Nanda, Karuna Kar

    2015-06-01

    We have synthesized Fe/Fe3C magnetic nanoparticles embedded in an amorphous carbon globule by pyrolysing of benzene, ferrocene and hydroboric acid. The diameter of the globules is ˜ 1 µm and that of Fe/Fe3C magnetic nanoparticles is ˜ 40 nm. The globules exhibit ferromagnetic like behavior and the magnetization as well as the coercivity is found to increases with decreasing temperature.

  5. Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions.

    PubMed

    Liu, Yunde; Zhou, Aiguo; Gan, Yiqun; Li, Xiaoqian

    2016-04-01

    Stable carbon isotope analysis has the potential to be used for assessing the performance of in situ remediation of organic contaminants. Successful application of this isotope technique requires understanding the magnitude and variability in carbon isotope fractionation associated with the reactions under consideration. This study investigated the influence of inorganic anions (sulfate, bicarbonate, and chloride) on carbon isotope fractionation of trichloroethene (TCE) during its degradation by persulfate activated with zero-valent iron. The results demonstrated that the significant carbon isotope fractionation (enrichment factors ε ranging from -3.4±0.3 to -4.3±0.3‰) was independent on the zero-iron dosage, sulfate concentration, and bicarbonate concentration. However, the ε values (ranging from -7.0±0.4 to -13.6±1.2‰) were dependent on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during TCE degradation by persulfate activated with zero-valent iron. The dependence of ε values on chloride concentration, indicated that TCE degradation mechanisms may be different from the degradation mechanism caused by sulfate radical (SO4(-)). Ignoring the effect of chloride on ε value may cause numerous uncertainties in quantitative assessment of the performance of the in situ chemical oxidation (ISCO).

  6. Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions.

    PubMed

    Liu, Yunde; Zhou, Aiguo; Gan, Yiqun; Li, Xiaoqian

    2016-04-01

    Stable carbon isotope analysis has the potential to be used for assessing the performance of in situ remediation of organic contaminants. Successful application of this isotope technique requires understanding the magnitude and variability in carbon isotope fractionation associated with the reactions under consideration. This study investigated the influence of inorganic anions (sulfate, bicarbonate, and chloride) on carbon isotope fractionation of trichloroethene (TCE) during its degradation by persulfate activated with zero-valent iron. The results demonstrated that the significant carbon isotope fractionation (enrichment factors ε ranging from -3.4±0.3 to -4.3±0.3‰) was independent on the zero-iron dosage, sulfate concentration, and bicarbonate concentration. However, the ε values (ranging from -7.0±0.4 to -13.6±1.2‰) were dependent on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during TCE degradation by persulfate activated with zero-valent iron. The dependence of ε values on chloride concentration, indicated that TCE degradation mechanisms may be different from the degradation mechanism caused by sulfate radical (SO4(-)). Ignoring the effect of chloride on ε value may cause numerous uncertainties in quantitative assessment of the performance of the in situ chemical oxidation (ISCO). PMID:26784392

  7. Origin and fate of particulate and dissolved organic matter in a naturally iron-fertilized region of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Tremblay, L.; Caparros, J.; Leblanc, K.; Obernosterer, I.

    2015-01-01

    Natural iron fertilization of high-nutrient low-chlorophyll (HNLC) waters induces annually occurring spring phytoplankton blooms off the Kerguelen Islands (Southern Ocean). To examine the origin and fate of particulate and dissolved organic matter (POM and DOM), D- and L-amino acids (AA) were quantified at bloom and HNLC stations. Total hydrolyzable AA accounted for 21-25% of surface particulate organic carbon (%POCAA) at the bloom sites, but for 10% at the HNLC site. A marked decrease in %POCAA with depth was observed at the most productive stations leading to values between 3 and 5% below 300 m depth. AA contributed to only 0.9-4.4% of dissolved organic carbon (%DOCAA) at all stations. The only consistent vertical trend was observed at the most productive station (A3-2) where %DOCAA decreased from ~ 2% in the surface waters to 0.9% near 300 m. These AA yields revealed that POM and DOM were more rapidly altered or mineralized at the bloom sites compared to the HNLC site. Alteration state was also assessed by trends in C / N ratio, %D-AA and degradation index. Different molecular markers indicated that POM mostly originated from diatoms and bacteria. The estimated average proportion of POM from intact phytoplankton cells in surface waters was 45% at the bloom station A3-2, but 14% at the HNLC site. Estimates based on D-AA yields indicated that ~ 15% of POM and ~ 30% of DOM was of bacterial origin (cells and cell fragments) at all stations. Surprisingly, the DOM in HNLC waters appeared less altered than the DOM from the bloom, had slightly higher dissolved AA concentrations, and showed no sign of alteration within the water column. Unfavorable conditions for bacterial degradation in HNLC regions can explain these findings. In contrast, large inputs of labile organic molecules and iron likely stimulate the degradation of organic matter (priming effect) and the production of more recalcitrant DOM (microbial carbon pump) during iron-fertilized blooms.

  8. Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Analysis of high-molecular-weight dissolved organic matter (DOM) from two estuaries in the northwest Atlantic Ocean reveals that black carbon (BC) is a significant component of previously uncharacterized DOM, suggesting that river-estuary systems are important exporters of recalcitrant dissolved organic carbon to the ocean.

  9. Evolution of iron overload in patients with low-risk myelodysplastic syndrome: iron chelation therapy and organ complications.

    PubMed

    Remacha, Ángel F; Arrizabalaga, Beatriz; Villegas, Ana; Durán, María Soledad; Hermosín, Lourdes; de Paz, Raquel; Garcia, Marta; Diez Campelo, Maria; Sanz, Guillermo

    2015-05-01

    This study aimed to evaluate the evolution of iron overload, assessed by serum ferritin (SF), in transfusion-dependent lower risk patients with myelodysplastic syndrome (MDS), as well as to describe the occurrence of organ complications, and to analyze its relationship with iron chelation therapy. This observational retrospective study was conducted from March 2010 to March 2011 in 47 Spanish hospitals. A total of 263 patients with lower risk MDS (International Prognostic Scoring System [IPSS] low/intermediate-1 risk or Spanish Prognostic Index [SPI] 0-1 risk), transfusion-dependent, and who had received ≥10 packed red blood cells (PRBC) were included. At MDS diagnosis, patients received a mean of 2.8 ± 3.9 PRBC/month, and 8.7% of patients showed SF ≥1000 μg/L. Over the course of the disease, patients received a mean of 83.4 ± 83.3 PRBC, and 36.1% of patients presented SF ≥2500 μg/L. Cardiac, hepatic, endocrine, or arthropathy complications appeared/worsened in 20.2, 11.4, 9.9, and 3.8% of patients, respectively. According to investigator, iron overload was a main cause of hepatic (70.0%) and endocrine (26.9%) complications. A total of 96 (36.5%) patients received iron chelation therapy for ≥6 months, being deferasirox the most frequent first chelation treatment (71.9%). Chelation-treated patients showed longer overall survival (p < 0.001), leukemia-free survival (p = 0.007), and cardiac event-free survival (p = 0.017) than non-chelated patients. In multivariable analyses, age (p = 0.011), IPSS (p < 0.001), and chelation treatment (p = 0.015) were predictors for overall survival; IPSS (p = 0.014) and transfusion frequency (p = 0.001) for leukemia-free survival; and chelation treatment (p = 0.040) and Sorror comorbidity index (p = 0.039) for cardiac event-free survival. In conclusion, these results confirm the potential survival benefit of iron chelation therapy and provide additional evidence on the

  10. Organic carbon accumulation in Brazilian mangal sediments

    NASA Astrophysics Data System (ADS)

    Sanders, Christian J.; Smoak, Joseph M.; Sanders, Luciana M.; Sathy Naidu, A.; Patchineelam, Sambasiva R.

    2010-12-01

    This study reviews the organic carbon (OC) accumulation rates in mangrove forests, margins and intertidal mudflats in geographically distinct areas along the Brazilian coastline (Northeastern to Southern). Our initial results indicate that the mangrove forests in the Northeastern region of Brazil are accumulating more OC (353 g/m 2/y) than in the Southeastern areas (192 g/m 2/y) being that the sediment accumulation rates, 2.8 and 2.5 mm/y, and OC content ˜7.1% and ˜5.8% (dry sediment weight) were contributing factors to the discrepancies between the forests. The intertidal mudflats on the other hand showed substantially greater OC accumulation rates, sedimentation rates and content 1129 g/m 2/y and 234 g/m 2/y; 7.3 and 3.4 mm/y; 10.3% and ˜2.7% (OC of dry sediment weight content), respectively, in the Northeastern compared to the Southeastern region. Mangrove forests in the South-Southeastern regions of Brazil may be more susceptible to the rising sea level, as they are geographically constricted by the vast mountain ranges along the coastline.

  11. Organic carbon hidden in urban ecosystems

    PubMed Central

    Edmondson, Jill L.; Davies, Zoe G.; McHugh, Nicola; Gaston, Kevin J.; Leake, Jonathan R.

    2012-01-01

    Urbanization is widely presumed to degrade ecosystem services, but empirical evidence is now challenging these assumptions. We report the first city-wide organic carbon (OC) budget for vegetation and soils, including under impervious surfaces. Urban soil OC storage was significantly greater than in regional agricultural land at equivalent soil depths, however there was no significant difference in storage between soils sampled beneath urban greenspaces and impervious surfaces, at equivalent depths. For a typical U.K. city, total OC storage was 17.6 kg m−2 across the entire urban area (assuming 0 kg m−2 under 15% of land covered by buildings). The majority of OC (82%) was held in soils, with 13% found under impervious surfaces, and 18% stored in vegetation. We reveal that assumptions underpinning current national estimates of ecosystem OC stocks, as required by Kyoto Protocol signatories, are not robust and are likely to have seriously underestimated the contributions of urban areas. PMID:23236585

  12. Preparation and Electrochemical Properties of Tin-Iron-Carbon Nanocomposite as the Anode of Lithium-Ion Batteries.

    PubMed

    Yang, Xu; Zhang, Rongyu; Bie, Xiaofei; Wang, Chunzhong; Li, Malin; Chen, Nan; Wei, Yingjin; Chen, Gang; Du, Fei

    2015-11-01

    Tin-iron-carbon nanocomposite is successfully prepared by a sol-gel method followed by a chemical vapor deposition (CVD) process with acetylene gas as the carbon source. The structural properties, morphology, and electrochemical performances of the nanocomposite are comprehensively studied in comparison with those properties of tin-carbon and iron-carbon nanocomposites. Sheet-like carbon architecture and different carbon contents are induced thanks to the catalytic effect of iron during CVD. Among three nanocomposites, tin-iron-carbon demonstrates the highest reversible capacity of 800 mA h g(-1) with 96.9% capacity retention after 50 cycles. It also exhibits the best rate capability with a discharge capacity of 420 mA h g(-1) at a current density of 1000 mA g(-1). This enhanced performance is strongly related to the carbon morphology and content, which can not only accommodate the large volume change, but also improve the electronic conductivity of the nanocomposite. Hence, the tin-iron-carbon nanocomposite is expected to be a promising anode for lithium-ion batteries.

  13. Apparent Disequilibrium of Inorganic and Organic Carbon Compounds in Serpentinizing Fluids

    NASA Astrophysics Data System (ADS)

    Robinson, K.; Shock, E.

    2014-12-01

    During serpentinization of ultramafic rocks, ferrous iron in silicates is oxidized to ferric minerals and H2O is reduced to H2. This process is accompanied by the reduction of inorganic carbon, as observed in experiments and natural systems. To test the extent to which stable and metastable equilibria are reached among aqueous organic compounds during serpentinization, we sampled water and dissolved gases from circumneutral surface pools and hyperalkaline seeps in the Samail ophiolite in the Sultanate of Oman and analyzed for various carbon constituents, including dissolved inorganic carbon, dissolved organic carbon, methane, carbon monoxide, formate, acetate, and other small organic acid anions. Measurements of temperature, pH, dissolved H2, O2, major cations, major anions, and major and trace elements were also made. The aqueous composition of the analyzed samples was speciated based on ionic equilibrium interactions in order to obtain activities for inorganic carbon species, reduced carbon species, H2, and O2. The redox disequilibria among carbon species was then assessed using data and parameters for the revised HKF equations of state. This analysis demonstrates that the carbon species in this system are out of equilibrium with respect to one another in ways that cannot be compensated by altering the abundance of the other constituents within analytical uncertainties. Specifically, there is too much formate and too little methane relative to stable and metastable equilibria. This result implies the following: 1) Methane and formate equilibrated in separate parts of the system, given that no reasonable temperature, pressure, or composition changes satisfy equilibrium with their measured abundances. 2) Methane production is kinetically inhibited, as seen in experiments. 3) Microbial methane oxidation altered the abundance of methane and formate; methane oxidation to formate or carbonate is calculated to be extremely thermodynamically favorable in these fluids.

  14. Remediation of Nitrate-contaminated Groundwater by a Mixture of Iron and Activated Carbon

    NASA Astrophysics Data System (ADS)

    Huang, Guoxin; Liu, Fei; Jin, Aifang; Qin, Xiaopeng

    2010-11-01

    Nitrate contamination in groundwater has become a major environmental and health problem worldwide. The aim of the present study is to remediate groundwater contaminated by nitrate and develop potential reactive materials to be used in PRBs (Permeable Reactive Barriers). A new approach was proposed for abiotic groundwater remediation by reactive materials of iron chips and granular activated carbon particles. Batch tests were conducted and remediation mechanisms were discussed. The results show that nitrate decreases from 86.31 to 33.79 mgṡL-1 under the conditions of near neutral pH and reaction time of 1h. The combination of iron chips and activated carbon particles is cost-effective and suitable for further use as denitrification media in PRBs. Nitrogen species don't change significantly with the further increase in reaction time (>1 h). The iron-activated carbon-water-nitrate system tends to be steady-state. Small amounts of ammonium and nitrite (0.033-0.039 and 0.14-3.54 mgṡL-1, respectively) appear at reaction time from 0 h to 5 h. There is no substantial accumulation of nitrogen products in the system. The removal rate of nitrate only reaches 16.11% by sole iron chips at reaction time of 5 h, while 63.57% by the mixture of iron chips and activated carbon particles. There is significantly synergistic and promotive effect of mixing the two different types of materials on nitrate treatment. Fe/C ratio (1/1.5-1/2.5) doesn't cause dramatically different residual nitrate concentrations (24.09-26.70 mgṡL-1). Nitrate can't be limitlessly decreased with decreasing Fe/C ratio. The concomitant occurrences of chemical reduction, galvanic cell reaction, electrophoretic accumulation, chemical coagulation, and physical adsorption are all responsible for the overall nitrate removal by iron allied with activated carbon. To accurately quantify various nitrogen species, further studies on adsorption mechanisms of nitrite and nitrate are needed.

  15. Organic carbon inventories in natural and restored Ecuadorian mangrove forests.

    PubMed

    DelVecchia, Amanda G; Bruno, John F; Benninger, Larry; Alperin, Marc; Banerjee, Ovik; de Dios Morales, Juan

    2014-01-01

    Mangroves can capture and store organic carbon and their protection and therefore their restoration is a component of climate change mitigation. However, there are few empirical measurements of long-term carbon storage in mangroves or of how storage varies across environmental gradients. The context dependency of this process combined with geographically limited field sampling has made it difficult to generalize regional and global rates of mangrove carbon sequestration. This has in turn hampered the inclusion of sequestration by mangroves in carbon cycle models and in carbon offset markets. The purpose of this study was to estimate the relative carbon capture and storage potential in natural and restored mangrove forests. We measured depth profiles of soil organic carbon content in 72 cores collected from six sites (three natural, two restored, and one afforested) surrounding Muisne, Ecuador. Samples up to 1 m deep were analyzed for organic matter content using loss-on-ignition and values were converted to organic carbon content using an accepted ratio of 1.72 (g/g). Results suggest that average soil carbon storage is 0.055 ± 0.002 g cm(-3) (11.3 ± 0.8% carbon content by dry mass, mean ± 1 SE) up to 1 m deep in natural sites, and 0.058 ± 0.002 g cm(-3) (8.0 ± 0.3%) in restored sites. These estimates are concordant with published global averages. Evidence of equivalent carbon stocks in restored and afforested mangrove patches emphasizes the carbon sink potential for reestablished mangrove systems. We found no relationship between sediment carbon storage and aboveground biomass, forest structure, or within-patch location. Our results demonstrate the long-term carbon storage potential of natural mangroves, high effectiveness of mangrove restoration and afforestation, a lack of predictability in carbon storage strictly based on aboveground parameters, and the need to establish standardized protocol for quantifying mangrove sediment carbon stocks. PMID:24883249

  16. Organic carbon inventories in natural and restored Ecuadorian mangrove forests

    PubMed Central

    Bruno, John F.; Benninger, Larry; Alperin, Marc; de Dios Morales, Juan

    2014-01-01

    Mangroves can capture and store organic carbon and their protection and therefore their restoration is a component of climate change mitigation. However, there are few empirical measurements of long-term carbon storage in mangroves or of how storage varies across environmental gradients. The context dependency of this process combined with geographically limited field sampling has made it difficult to generalize regional and global rates of mangrove carbon sequestration. This has in turn hampered the inclusion of sequestration by mangroves in carbon cycle models and in carbon offset markets. The purpose of this study was to estimate the relative carbon capture and storage potential in natural and restored mangrove forests. We measured depth profiles of soil organic carbon content in 72 cores collected from six sites (three natural, two restored, and one afforested) surrounding Muisne, Ecuador. Samples up to 1 m deep were analyzed for organic matter content using loss-on-ignition and values were converted to organic carbon content using an accepted ratio of 1.72 (g/g). Results suggest that average soil carbon storage is 0.055 ± 0.002 g cm−3 (11.3 ± 0.8% carbon content by dry mass, mean ± 1 SE) up to 1 m deep in natural sites, and 0.058 ± 0.002 g cm−3 (8.0 ± 0.3%) in restored sites. These estimates are concordant with published global averages. Evidence of equivalent carbon stocks in restored and afforested mangrove patches emphasizes the carbon sink potential for reestablished mangrove systems. We found no relationship between sediment carbon storage and aboveground biomass, forest structure, or within-patch location. Our results demonstrate the long-term carbon storage potential of natural mangroves, high effectiveness of mangrove restoration and afforestation, a lack of predictability in carbon storage strictly based on aboveground parameters, and the need to establish standardized protocol for quantifying mangrove sediment carbon stocks. PMID:24883249

  17. Inferring Absorbing Organic Carbon Content from AERONET Data

    NASA Technical Reports Server (NTRS)

    Arola, A.; Schuster, G.; Myhre, G.; Kazadzis, S.; Dey, S.; Tripathi, S. N.

    2011-01-01

    Black carbon, light-absorbing organic carbon (often called brown carbon) and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated globally the amount of light absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon) levels in biomass burning regions of South-America and Africa are relatively high (about 15-20 magnesium per square meters during biomass burning season), while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30-35 magnesium per square meters during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while opposite is true in urban areas in India and China.

  18. “Conjugate Channeling” Effect in Dislocation Core Diffusion: Carbon Transport in Dislocated BCC Iron

    PubMed Central

    Ishii, Akio; Li, Ju; Ogata, Shigenobu

    2013-01-01

    Dislocation pipe diffusion seems to be a well-established phenomenon. Here we demonstrate an unexpected effect, that the migration of interstitials such as carbon in iron may be accelerated not in the dislocation line direction , but in a conjugate diffusion direction. This accelerated random walk arises from a simple crystallographic channeling effect. is a function of the Burgers vector b, but not , thus a dislocation loop possesses the same everywhere. Using molecular dynamics and accelerated dynamics simulations, we further show that such dislocation-core-coupled carbon diffusion in iron has temperature-dependent activation enthalpy like a fragile glass. The 71° mixed dislocation is the only case in which we see straightforward pipe diffusion that does not depend on dislocation mobility. PMID:23593255

  19. Acetone Sensing Properties of a Gas Sensor Composed of Carbon Nanotubes Doped With Iron Oxide Nanopowder

    PubMed Central

    Tan, Qiulin; Fang, Jiahua; Liu, Wenyi; Xiong, Jijun; Zhang, Wendong

    2015-01-01

    Iron oxide (Fe2O3) nanopowder was prepared by a precipitation method and then mixed with different proportions of carbon nanotubes. The composite materials were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. A fabricated heater-type gas sensor was compared with a pure Fe2O3 gas sensor under the influence of acetone. The effects of the amount of doping, the sintering temperature, and the operating temperature on the response of the sensor and the response recovery time were analyzed. Experiments show that doping of carbon nanotubes with iron oxide effectively improves the response of the resulting gas sensors to acetone gas. It also reduces the operating temperature and shortens the response recovery time of the sensor. The response of the sensor in an acetone gas concentration of 80 ppm was enhanced, with good repeatability. PMID:26569253

  20. Failure analysis of blistered organic coatings on gray iron castings

    NASA Astrophysics Data System (ADS)

    Tianen, Matthew N.

    This study investigates the blistering failure of a two part coating consisting of talc-filled polyester resin and polyurethane primer on large gray iron castings. Surface metallography was performed and failed coating was characterized by scanning electron microscopy. Corrosion products were found inside of coating blisters. The proposed blistering mechanism is osmosis as a result of soluble species produced by the corrosion. It was believed that excessively thin primer layers resulted in a poor barrier to permeation of water, leading to blisters, and that a basecoat containing a corrosion inhibitor like zinc phosphate would reduce blistering. These hypotheses were tested with designed experiments using environmental testing in humidity and submersion environments. Thicker primer layers resulted in significant reductions in blistering and prolonged the time required before blister formation. A basecoat containing zinc phosphate was not found to be effective at reducing blistering in this coating system.

  1. Reactive adsorption of SO2 on activated carbons with deposited iron nanoparticles.

    PubMed

    Arcibar-Orozco, Javier A; Rangel-Mendez, J Rene; Bandosz, Teresa J

    2013-02-15

    The effect of iron particle size anchored on the surface of commercial activated carbon on the removal of SO(2) from a gas phase was studied. Nanosize iron particles were deposited using forced hydrolysis of FeCl(3) with or without H(3)PO(4) as a capping agent. Dynamic adsorption experiments were carried out on either dry or pre-humidified materials and the adsorption capacities were calculated. The surface of the initial and exhausted materials was extensively characterized by microscopic, porosity, thermogravimetric and surface chemistry. The results indicate that the SO(2) adsorption capacity increased two and half times after the prehumidification process owing to the formation of H(2)SO(4) in the porous system. Iron species enhance the SO(2) adsorption capacity only when very small nanoparticles are deposited on the pore walls as a thin layer. Large iron nanoparticles block the ultramicropores decreasing the accessibility of the active sites and consuming oxygen that rest adsorption centers for SO(2) molecules. Iron nanoparticles of about 3-4 nm provide highly dispersed adsorption sites for SO(2) molecules and thus increase the adsorption capacity of about 80%. Fe(2)(SO(4))(3) was detected on the surface of exhausted samples. PMID:23333487

  2. A new nanoscale metastable iron phase in carbon steels

    PubMed Central

    Liu, Tianwei; Zhang, Danxia; Liu, Qing; Zheng, Yanjun; Su, Yanjing; Zhao, Xinqing; Yin, Jiang; Song, Minghui; Ping, Dehai

    2015-01-01

    Metastable ω phase is common in body-centred cubic (bcc) metals and alloys, including high-alloying steels. Recent theoretical calculations also suggest that the ω structure may act as an intermediate phase for face-centred cubic (fcc)-to-bcc transformation. Thus far, the role of the ω phase played in fcc-bcc martensitic transformation in carbon steels has not been reported. In previous investigations on martensitic carbon steels, extra electron diffraction spots were frequently observed by transmission electron microscopy (TEM), and these spots were historically ascribed to the diffraction arising from either internal twins or carbides. In this paper, an intensive TEM investigation revealed that the extra spots are in fact attributed to the metastable ω phase in particle-like morphology with an overall size of several or dozens of nanometres. The strict orientation relationships between the ω phase and the ferrite matrix are in good agreement with those of the hexagonal (P6/mmm) ω phase in other bcc metals and alloys. The identification of the ω phase as well as the extra diffraction spots might provide a clue to help understand the physical mechanism of martensitic transformation in steels. PMID:26503890

  3. Effects Of Aging And Oxidation Of Palladized Iron Embedded In Activated Carbon On The Dechlorination Of 2-Chlorobiphenyl

    EPA Science Inventory

    Reactive activated carbon (RAC) impregnated with palladized iron has been developed to effectively treat polychlorinated biphenyls (PCBs) in the environment by coupling adsorption and dechlorination of PCBs. In this study, we addressed the dechlorination reactivity and capacity ...

  4. Effect Of Reaction Environments On The Reactivity Of PCB (2-Chlorobiphenyl) Over Activated Carbon Impregnated With Palladized Iron

    EPA Science Inventory

    Reactive activated carbon (RAC) impregnated with palladized iron nanoparticles has been developed to treat polychlorinated biphenyls (PCBs). In this study, we evaluated the effects of various reaction environments on the adsorption-mediated dechlorination of 2-chlorobiphenyl (2-...

  5. Stability of organic carbon in deep soil layers controlled by fresh carbon supply.

    PubMed

    Fontaine, Sébastien; Barot, Sébastien; Barré, Pierre; Bdioui, Nadia; Mary, Bruno; Rumpel, Cornelia

    2007-11-01

    The world's soils store more carbon than is present in biomass and in the atmosphere. Little is known, however, about the factors controlling the stability of soil organic carbon stocks and the response of the soil carbon pool to climate change remains uncertain. We investigated the stability of carbon in deep soil layers in one soil profile by combining physical and chemical characterization of organic carbon, soil incubations and radiocarbon dating. Here we show that the supply of fresh plant-derived carbon to the subsoil (0.6-0.8 m depth) stimulated the microbial mineralization of 2,567 +/- 226-year-old carbon. Our results support the previously suggested idea that in the absence of fresh organic carbon, an essential source of energy for soil microbes, the stability of organic carbon in deep soil layers is maintained. We propose that a lack of supply of fresh carbon may prevent the decomposition of the organic carbon pool in deep soil layers in response to future changes in temperature. Any change in land use and agricultural practice that increases the distribution of fresh carbon along the soil profile could however stimulate the loss of ancient buried carbon.

  6. Reduction of Iron-Oxide-Carbon Composites: Part I. Estimation of the Rate Constants

    NASA Astrophysics Data System (ADS)

    Halder, S.; Fruehan, R. J.

    2008-12-01

    A new ironmaking concept using iron-oxide-carbon composite pellets has been proposed, which involves the combination of a rotary hearth furnace (RHF) and an iron bath smelter. This part of the research focuses on studying the two primary chemical kinetic steps. Efforts have been made to experimentally measure the kinetics of the carbon gasification by CO2 and wüstite reduction by CO by isolating them from the influence of heat- and mass-transport steps. A combined reaction model was used to interpret the experimental data and determine the rate constants. Results showed that the reduction is likely to be influenced by the chemical kinetics of both carbon oxidation and wüstite reduction at the temperatures of interest. Devolatilized wood-charcoal was observed to be a far more reactive form of carbon in comparison to coal-char. Sintering of the iron-oxide at the high temperatures of interest was found to exert a considerable influence on the reactivity of wüstite by virtue of altering the internal pore surface area available for the reaction. Sintering was found to be predominant for highly porous oxides and less of an influence on the denser ores. It was found using an indirect measurement technique that the rate constants for wüstite reduction were higher for the porous iron-oxide than dense hematite ore at higher temperatures (>1423 K). Such an indirect mode of measurement was used to minimize the influence of sintering of the porous oxide at these temperatures.

  7. Enhanced silica ballasting from iron stress sustains carbon export in a frontal zone within the California Current

    NASA Astrophysics Data System (ADS)

    Brzezinski, Mark A.; Krause, Jeffrey W.; Bundy, Randelle M.; Barbeau, Katherine A.; Franks, Peter; Goericke, Ralf; Landry, Michael R.; Stukel, Michael R.

    2015-07-01

    Nutrient dynamics, phytoplankton rate processes, and export were examined in a frontal region between an anticyclone and a pair of cyclones 120 km off the coast in the southern California Current System (sCCS). Low silicic acid: nitrate ratios (Si:N) and high nitrate to iron ratios (N:Fe) characteristic of Fe-limiting conditions in the sCCS were associated with the northern cyclone and with the transition zone between the cyclones and the anticyclone. Phytoplankton growth in low-Si:N, high-N:Fe waters responded strongly to added Fe, confirming growth limitation by Fe of the diatom-dominated phytoplankton community. Low Si:N waters had low biogenic silica content, intermediate productivity, but high export compared to intermediate Si:N waters indicating increased export efficiency under Fe stress. Biogenic silica and particulate organic carbon (POC) export were both high beneath low Si:N waters with biogenic silica export being especially enhanced. This suggests that relatively high POC export from low Si:N waters was supported by silica ballasting from Fe-limited diatoms. Higher POC export efficiency in low Si:N waters may have been further enhanced by lower rates of organic carbon remineralization due to reduced grazing of more heavily armored diatoms growing under Fe stress. The results imply that Fe stress can enhance carbon export, despite lowering productivity, by driving higher export efficiency.

  8. [Organic and element carbon in foliar smoke].

    PubMed

    Chen, Hui-yu; Liu Gang; Xu, Hui; Li, Jiu-hai; Wu, Dan

    2015-03-01

    A home-made combustion and sampling apparatus was used to burn green leaves under flaming and smoldering conditions and to collect the smoke generated. The smoke was measured with Organic/Elemental Carbon (OC/EC) Analyzer using IMPROVE thermal-optical reflectance (TOR) method, to investigate the mass fractions and the distribution of OC, EC and eight carbon fractions in foliar smoke. The results showed that in smoldering condition, the mean OC, EC mass fractions of ten foliar smokes were 48.9% and 4.5%, respectively. The mean mass fraction of char-EC (EC1 - POC) was 4.4%. The average emission factors (EF) of particulate matters, OC and EC in smoldering foliar smoke were 102.4 g x kg(-1), 50.0 g x kg(-1) and 4.7 g x kg(-1), respectively. The mean ratios of OC/EC, OC1/OC2 and char-EC/soot-EC (EC1 - POC/EC2 + EC3) in this condition were 11.5, 1.9 and 48.1, respectively. For the foliar smoke emitted in flaming condition, the mean mass fractions of OC, EC and char-EC were 44.9%, 10.9% and 10.7%, respectively. The average EF of PM, OC and EC in flaming smoke were 59.2 g x kg(-1), 26.6 g x kg(-1) and 6.0 g x kg(-1). And the three ratios mentioned above in this condition were 4.8, 1.1 and 133.0, respectively. In conclusion, foliar smoke had higher OC1 mass fractions and OC1/OC2 values in smoldering condition. While flaming foliar smoke had higher char-EC mass fractions and char-EC/soot-EC values. The compositions of OC, EC in foliar smoke varied between different tree species and different combustion conditions. The composition was also obviously different from those of other biomass smoke.

  9. Organic carbon flow in a swamp-stream ecosystem

    SciTech Connect

    Mulholland, P.J.

    1981-01-01

    An annual organic carbon budget is presented for an 8-km segment of Creeping Swamp, an undisturbed, third-order swamp-stream in the Coastal Plain of North Carolina, USA. Annual input of organic carbon (588 gC/m/sup 2/) was 96% allochthonous and was dominated by leaf litter inputs (36%) and fluvial, dissolved organic carbon (DOC) inputs (31%). Although the swamp-stream was primarily heterotrophic, autochthonous organic carbon input, primarily from filamentous algae, was important during February and March when primary production/ecosystem respiration (P/R) ratios of the flooded portions were near one. Annual output of organic carbon via fluvial processes (214 gC/m/sup 2/), 95% as DOC, was 36% of total annual inputs, indicating that the swamp-stream segment ecosystem was 64% efficient at retaining organic carbon. Organic carbon dynamics in the Creeping Swamp segment were compared to those reported for upland stream segments using indices of organic matter processing suggested by Fisher (1977) and a loading potential index suggested here. Creeping Swamp, while loading at a high rate, retains a much larger portion of its organic carbon inputs than two upland streams. Despite the high degree of retention and oxidation of organic inputs to Creeping Swamp, there is a net annual fluvial export of 21 gC/m/sup 2/, mostly in the dissolved form. Watersheds drained by swamp-streams in the southeastern United States are thought to have large organic carbon exports compared to upland forested drainages, because the stream network covers a much greater proportion of the total watershed area.

  10. Direct simulation of resistivity recovery experiments in carbon-doped α-iron

    NASA Astrophysics Data System (ADS)

    Jourdan, T.; Fu, Chu Chun; Joly, L.; Bocquet, J. L.; Caturla, M. J.; Willaime, F.

    2011-12-01

    We present the simulation of resistivity recovery experiments in carbon-doped α-iron over the whole range of temperatures investigated experimentally (from 77 to 600 K). The binding of carbon atoms with both vacancies and self-interstitial atoms has been investigated by density functional theory calculations. The results have then been used in two complementary kinetic models, event-based kinetic Monte Carlo and cluster dynamics, in order to achieve both accuracy and computational efficiency. We show that good agreement is obtained with experiments and that it is possible to identify the elemental mechanisms responsible for the recovery stages.

  11. Investigation of reductive dechlorination supported by natural organic carbon

    USGS Publications Warehouse

    Rectanus, H.V.; Widdowson, M.A.; Chapelle, F.H.; Kelly, C.A.; Novak, J.T.

    2007-01-01

    Because remediation timeframes using monitored natural attenuation may span decades or even centuries at chlorinated solvent sites, new approaches are needed to assess the long-term sustainability of reductive dechlorination in ground water systems. In this study, extraction procedures were used to investigate the mass of indigenous organic carbon in aquifer sediment, and experiments were conducted to determine if the extracted carbon could support reductive dechlorination of chloroethenes. Aquifer sediment cores were collected from a site without an anthropogenic source of organic carbon where organic carbon varied from 0.02% to 0.12%. Single extraction results showed that 1% to 28% of sediment-associated organic carbon and 2% to 36% of the soft carbon were removed depending on nature and concentration of the extracting solution (Nanopure water; 0.1%, 0.5%, and 1.0% sodium pyrophosphate; and 0.5 N sodium hydroxide). Soft carbon is defined as organic carbon oxidized with potassium persulfate and is assumed to serve as a source of biodegradable carbon within the aquifer. Biodegradability studies demonstrated that 20% to 40% of extracted organic carbon was biodegraded aerobically and anaerobically by soil microorganisms in relatively brief tests (45 d). A five-step extraction procedure consisting of 0.1% pyrophosphate and base solutions was investigated to quantify bioavailable organic carbon. Using the extracted carbon as the sole electron donor source, tetrachloroethene was transformed to cis-1,2- dichloroethene and vinyl chloride in anaerobic enrichment culture experiments. Hydrogen gas was produced at levels necessary to sustain reductive dechlorination (>1 nM). ?? 2007 National Ground Water Association.

  12. Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes.

    PubMed

    Laumann, Susanne; Micić, Vesna; Hofmann, Thilo

    2014-03-01

    The mobility of nanoscale zero-valent iron (nZVI), which is used for in situ groundwater remediation, is affected by chemical and physical heterogeneities within aquifers. Carbonate minerals in porous aquifers and the presence of divalent cations reduce nZVI mobility. This study assesses the potential for enhancing the mobility of polyacrylic acid coated nZVI (PAA-nZVI) in such aquifers through the co-injection of polyelectrolytes (natural organic matter, humic acid, carboxymethyl cellulose, and lignin sulfonate). When applied at the same concentration, all of the polyelectrolytes produced similar enhancement of PAA-nZVI mobility in carbonate porous media. This increase in mobility was a result of increased repulsion between PAA-nZVI and the carbonate matrix. Lignin sulfonate, an environmentally friendly and inexpensive agent, was identified as the most suitable polyelectrolyte for field applications. The greatest increase in PAA-nZVI mobility was achieved with co-injection of lignin sulfonate at concentrations ≥50 mg L(-1); at these concentrations the maximum PAA-nZVI travel distance in carbonate porous media was twice of that in the absence of lignin sulfonate.

  13. [Removal of arsenate from drinking water by activated carbon supported nano zero-valent iron].

    PubMed

    Zhu, Hui-jie; Jia, Yong-feng; Yao, Shu-hu; Wu, Xing; Wang, Shu-ying

    2009-12-01

    A new adsorbent, activated carbon impregnated with nano zero-valent iron was prepared, which size of the needle-shaped iron particles in the pores of carbon was (30-500) nm x (1000-3000) nm and approximately 8.2% of iron was loaded onto it. The arsenate removal percentage was 99.5% by 1.5 g/L NZVI/AC in the 2 mg/L arsenic solution at pH 6.5 and (25 +/- 2) degrees C. The adsorption capacity was about 15.4 mg/g when equilibrium concentration was 1.0 mg/L. Kinetics revealed that uptake of arsenate ion by NZVI/AC was 91.4% in the first 12 h and equilibrium time was about 72 h. The intraparticle diffusion model was applied to study the mechanics of arsenate in the activated carbon. The presence of phosphate and silicate could significantly decrease arsenate removal while the effects of the other anions and cations on the arsenic removal were neglectable. NZVI/AC can be effectively regenerated when elution is done with 0.1 mol/L NaOH solution. Our results suggest that NZVI/AC is a suitable candidate for drinking water treatment due to its high reactivity.

  14. Microscopic insight into the bilateral formation of carbon spirals from a symmetric iron core

    PubMed Central

    Shiozawa, Hidetsugu; Bachmatiuk, Alicja; Stangl, Andreas; Cox, David C.; Silva, S. Ravi P.; Rümmeli, Mark H.; Pichler, Thomas

    2013-01-01

    Mirrored carbon-spirals have been produced from pressured ferrocene via the bilateral extrusion of the spiral pairs from an iron core. A parametric plot of the surface geometry displays the fractal growth of the conical helix made with the logarithmic spiral. Electron microscopy studies show the core is a crystalline cementite which grows and transforms its shape from spherical to biconical as it extrudes two spiralling carbon arms. In a cross section along the arms we observe graphitic flakes arranged in a herringbone structure, normal to which defects propagate. Local-wave-pattern analysis reveals nanoscale defect patterns of two-fold symmetry around the core. The data suggest that the bilateral growth originates from a globular cementite crystal with molten surfaces and the nano-defects shape emerging hexagonal carbon into a fractal structure. Understanding and knowledge obtained provide a basis for the controlled production of advanced carbon materials with designed geometries. PMID:23670649

  15. Selective microwave absorption of iron-rich carbon nanotube composites.

    PubMed

    Gui, Xuchun; Wang, Kunlin; Cao, Anyuan; Wei, Jinquan; Lv, Ruitao; Kang, Feiyu; Shu, Qinke; Jia, Yi; Wu, Dehai

    2010-03-01

    We report on high selectivity of microwave absorption by controlling the concentration of carbon nanotubes in polymer composites and matching the dielectric loss and magnetic loss through encapsulation of crystalline Fe nanorods inside nanotubes. The reflection loss reached more than 10 dB (> 90% absorption) by loading nanotubes at concentrations of 1 wt% to 10 wt% into the composites, and the frequencies corresponding to the maximum loss can be tailored throughout the range of 2 to 18 GHz by changing the concentration. A maximum absorption capability (75 dB x GHz) was observed at a CNT loading of about 4.5 wt%. The crystalline structure of encapsulated Fe nanorods can be modified to enhance the reflection loss. Control of absorption selectivity by modifying the structure and concentration of nanoscale fillers could facilitate potential higher-frequency applications (e.g., radar absorbing) of nanocomposites. PMID:20355578

  16. Structure and Strength of Iron-Copper-Carbon Nanotube Nanocomposites.

    PubMed

    Boshko, Oleh; Dashevskyi, Mykola; Mykhaliuk, Olga; Ivanenko, Kateryna; Hamamda, Smail; Revo, Sergiy

    2016-12-01

    Nanocomposite materials of the Fe-Cu system with/without small addition of carbon nanotubes have been synthesized by mechanochemical activation of elemental Fe and Cu powders in a high-energy planetary ball mill and have been examined by the X-ray diffraction method, SEM and the thermopower methods; the tensile strength of the materials obtained has been estimated. The metastable (Fe, Cu) supersaturated solid solution is formed in the Fe-Cu nanocomposites during milling process. The coherent scattering block size of the materials obtained is decreased with increase of milling time. The duration of mechanochemical activation affects the physical properties of nanocomposites studied. Addition of a small amount of nanotubes into Fe-Cu charge results in a significant increase of strength of the Fe-Cu (4:1) + CNT nanocomposite materials (NCMs) obtained. PMID:26858160

  17. Structure and Strength of Iron-Copper-Carbon Nanotube Nanocomposites

    NASA Astrophysics Data System (ADS)

    Boshko, Oleh; Dashevskyi, Mykola; Mykhaliuk, Olga; Ivanenko, Kateryna; Hamamda, Smail; Revo, Sergiy

    2016-02-01

    Nanocomposite materials of the Fe-Cu system with/without small addition of carbon nanotubes have been synthesized by mechanochemical activation of elemental Fe and Cu powders in a high-energy planetary ball mill and have been examined by the X-ray diffraction method, SEM and the thermopower methods; the tensile strength of the materials obtained has been estimated. The metastable (Fe, Cu) supersaturated solid solution is formed in the Fe-Cu nanocomposites during milling process. The coherent scattering block size of the materials obtained is decreased with increase of milling time. The duration of mechanochemical activation affects the physical properties of nanocomposites studied. Addition of a small amount of nanotubes into Fe-Cu charge results in a significant increase of strength of the Fe-Cu (4:1) + CNT nanocomposite materials (NCMs) obtained.

  18. Selective microwave absorption of iron-rich carbon nanotube composites.

    PubMed

    Gui, Xuchun; Wang, Kunlin; Cao, Anyuan; Wei, Jinquan; Lv, Ruitao; Kang, Feiyu; Shu, Qinke; Jia, Yi; Wu, Dehai

    2010-03-01

    We report on high selectivity of microwave absorption by controlling the concentration of carbon nanotubes in polymer composites and matching the dielectric loss and magnetic loss through encapsulation of crystalline Fe nanorods inside nanotubes. The reflection loss reached more than 10 dB (> 90% absorption) by loading nanotubes at concentrations of 1 wt% to 10 wt% into the composites, and the frequencies corresponding to the maximum loss can be tailored throughout the range of 2 to 18 GHz by changing the concentration. A maximum absorption capability (75 dB x GHz) was observed at a CNT loading of about 4.5 wt%. The crystalline structure of encapsulated Fe nanorods can be modified to enhance the reflection loss. Control of absorption selectivity by modifying the structure and concentration of nanoscale fillers could facilitate potential higher-frequency applications (e.g., radar absorbing) of nanocomposites.

  19. In-situ identification of iron electrocoagulation speciation and application for natural organic matter (NOM) removal.

    PubMed

    Dubrawski, Kristian L; Mohseni, Madjid

    2013-09-15

    In this work, iron speciation in electrocoagulation (EC) was studied to determine the impact of operating parameters on natural organic matter (NOM) removal from natural water. Two electrochemical EC parameters, current density (i) and charge loading rate (CLR), were investigated. Variation of these parameters led to a near unity current efficiency (φ = 0.957 ± 0.03), at any combination of i in a range of 1-25 mA/cm(2) and CLR in a range of 12-300 C/L/min. Higher i and CLR led to a higher bulk pH and limited the amount of dissolved oxygen (DO) reduced at the cathode surface due to mass transfer limitations. A low i (1 mA/cm(2)) and intermediate CLR (60 C/L/min) resulted in low bulk DO (<2.5 mg/L), where green rust (GR) was identified by in-situ Raman spectroscopy as the primary crystalline electrochemical product. Longer electrolysis times at higher i led to magnetite (Fe3O4) formation. Both higher (300 C/L/min) and lower (12 C/L/min) CLR values led to increased DO and/or increased pH, with lepidocrocite (γ-FeOOH) as the only crystalline species observed. The NOM removal of the three identified species was compared, with conditions leading to GR formation showing the greatest dissolved organic carbon removal, and highest removal of the low apparent molecular weight (<550 Da) chromophoric NOM fraction, determined by high performance size exclusion chromatography.

  20. In-situ identification of iron electrocoagulation speciation and application for natural organic matter (NOM) removal.

    PubMed

    Dubrawski, Kristian L; Mohseni, Madjid

    2013-09-15

    In this work, iron speciation in electrocoagulation (EC) was studied to determine the impact of operating parameters on natural organic matter (NOM) removal from natural water. Two electrochemical EC parameters, current density (i) and charge loading rate (CLR), were investigated. Variation of these parameters led to a near unity current efficiency (φ = 0.957 ± 0.03), at any combination of i in a range of 1-25 mA/cm(2) and CLR in a range of 12-300 C/L/min. Higher i and CLR led to a higher bulk pH and limited the amount of dissolved oxygen (DO) reduced at the cathode surface due to mass transfer limitations. A low i (1 mA/cm(2)) and intermediate CLR (60 C/L/min) resulted in low bulk DO (<2.5 mg/L), where green rust (GR) was identified by in-situ Raman spectroscopy as the primary crystalline electrochemical product. Longer electrolysis times at higher i led to magnetite (Fe3O4) formation. Both higher (300 C/L/min) and lower (12 C/L/min) CLR values led to increased DO and/or increased pH, with lepidocrocite (γ-FeOOH) as the only crystalline species observed. The NOM removal of the three identified species was compared, with conditions leading to GR formation showing the greatest dissolved organic carbon removal, and highest removal of the low apparent molecular weight (<550 Da) chromophoric NOM fraction, determined by high performance size exclusion chromatography. PMID:23871255

  1. Dispersion of carbon nanotubes using organic solvents.

    PubMed

    Dumonteil, S; Demortier, A; Detriche, S; Raes, C; Fonseca, A; Rühle, M; Nagy, J B

    2006-05-01

    Phenyl ethyl alcohol was used for fast and stable dispersion of carbon nanotubes. This solvent, more effective than ethanol and toluene, allows easy dispersion of carbon nanotubes for TEM characterization. For TEM grids prepared at high dilution, it is possible to observe each tube separately. Applying that solvent, it was possible to measure the length, the diameter and the solubility of different carbon nanotubes samples.

  2. Temporal evolution of organic carbon concentrations in Swiss lakes: trends of allochthonous and autochthonous organic carbon.

    PubMed

    Rodríguez-Murillo, J C; Filella, M

    2015-07-01

    Evaluation of time series of organic carbon (OC) concentrations in lakes is useful for monitoring some of the effects of global change on lakes and their catchments. Isolating the evolution of autochthonous and allochthonous lake OC might be a useful way to differentiate between drivers of soil and photosynthetic OC related changes. However, there are no temporal series for autochthonous and allochthonous lake OC. In this study, a new approach has been developed to construct time series of these two categories of OC from existing dissolved organic carbon (DOC) data. First, temporal series (longer than ten years) of OC have been compiled for seven big Swiss lakes and another 27 smaller ones and evaluated by using appropriate non-parametric statistical methods. Subsequently, the new approach has been applied to construct time series of autochthonous and allochthonous lake OC in the seven big lakes. Doing this was possible because long term series of DOC concentrations at different depths are available for these lakes. Organic carbon concentrations generally increase in big lakes and decrease in smaller ones, although only in some cases are these trends statistically significant. The magnitude of the observed changes is generally small in big lakes (<1% annual change) and larger in smaller lakes. Autochthonous DOC concentrations in big lakes increase or decrease depending on the lake and the station but allochthonous DOC concentrations generally increase. This pattern is consistent with an increase in the OC input from the lakes' catchments and/or an increase in the refractoriness of the OC in question, and with a temporal evolution of autochthonous DOC depending on the degree of recovery from past eutrophication of each particular lake. In small lakes, OC dynamics are mainly driven by decreasing biological productivity, which in many, but not all cases, outweighs the probable increase of allochthonous OC.

  3. Carbon dioxide hydrogenation to aromatic hydrocarbons by using an iron/iron oxide nanocatalyst.

    PubMed

    Wang, Hongwang; Hodgson, Jim; Shrestha, Tej B; Thapa, Prem S; Moore, David; Wu, Xiaorong; Ikenberry, Myles; Troyer, Deryl L; Wang, Donghai; Hohn, Keith L; Bossmann, Stefan H

    2014-01-01

    The quest for renewable and cleaner energy sources to meet the rapid population and economic growth is more urgent than ever before. Being the most abundant carbon source in the atmosphere of Earth, CO2 can be used as an inexpensive C1 building block in the synthesis of aromatic fuels for internal combustion engines. We designed a process capable of synthesizing benzene, toluene, xylenes and mesitylene from CO2 and H2 at modest temperatures (T = 380 to 540 °C) employing Fe/Fe3O4 nanoparticles as catalyst. The synthesis of the catalyst and the mechanism of CO2-hydrogenation will be discussed, as well as further applications of Fe/Fe3O4 nanoparticles in catalysis. PMID:24991513

  4. [Distribution of soil organic carbon storage and carbon density in Gahai Wetland ecosystem].

    PubMed

    Ma, Wei-Wei; Wang, Hui; Huang, Rong; Li, Jun-Zhen; Li, De-Yu

    2014-03-01

    The profile distribution and accumulation characteristics of organic carbon of four typical marshes (herbaceous peat, marsh wetland, mountain wetland, subalpine meadow) were studied in Gahai Wetlands of Gannan in July 2011. The results showed that the soil bulk densities of the four typical marshes ranged from 0.22 to 1.29 g x cm(-3). The content of soil organic carbon in the herbaceous peat was higher than in other types, with its average content of organic carbon (286. 80 g x kg(-1)) being about 2.91, 4.99, 7.31 times as much as that of the marsh wetland, mountain wetland and subalpine meadow, respectively. The average organic carbon densities were in order of herbaceous peat > subalpine meadow > marsh wetland > mountain wetland, with the highest in the 0-10 cm layer. The change of organic carbon density along the soil profile was basically in accordance with the organic carbon content in the four typical marshes, but fluctuated with soil depth. There were obviously two carbon storage layers (0-10 and 20-40 cm, respectively) in the four typical marshes. The amounts of organic carbon stored in the 0-60 cm layer of the four typical marshes were 369.46, 278.83, 276.16, 292.23 t x hm(-2), respectively. The total amount of organic carbon stored in the 0-60 cm of the four typical marshes was about 9.50 x 10(6) t.

  5. Chlorine and carbon isotope measurements can help assessing the effectivenes of a zero valent iron barrier

    NASA Astrophysics Data System (ADS)

    Cretnik, S.; Audi, C.; Bernstein, A.; Palau, J.; Soler, A.; Elsner, M.

    2012-04-01

    Chlorinated aliphatic hydrocarbons (CAH's) such as trichloroethene (TCE), cis-dichloroethene (cis-DCE) and vinylchloride (VC) are extensively used in industrial applications. One of the most promising remediation techniques for CAH's in groundwater is their removal via abiotic reductive dechlorination using Zero Valent Iron (ZVI). This is applied for the treatment of contaminated sites by installing permeable reactive barriers (PRB). In this study, isotope fractionation of chlorinated ethylenes in transformation by cast iron has been investigated, because such types of iron are commonly used in PRBs. Batch experiments have been carried out in closed flasks, containing cast iron with aqueous solutions of TCE, cDCE and VC. These substrates and their respective products have been monitored by headspace samplings for their concentration (by GC-FID) and isotope fractionation of carbon and chlorine (by GC-IRMS). A decreasing reactivity trend was observed when compounds contain less chlorine atoms, with differences in rate constants of about one order of magnitude between each of the substances TCE > cDCE > VC. This resulted in the accumulation of products with fewer chlorine atoms. Therefore a similar observation can be expected if degradation in the field is incomplete, for example in the case of aged or improperly designed PRB. Pronounced carbon and chlorine isotope fractionation was measured for each of the compounds, and characteristic dual isotope plots (C, Cl) were obtained for TCE and cDCE. These results may serve as an important reference for the interpretation of isotope data from field sites, since stable isotope fractionation is widely recognized as robust indicator for such pollutant transformations. However, carbon isotope fractionation in a given parent compound may be caused by either abiotic or biotic degradation. In the field, it can therefore be difficult to delineate the contribution of abiotic transformation by PRB in the presence of ongoing

  6. DNA-Based Synthesis and Assembly of Organized Iron Oxide Nanostructures

    NASA Astrophysics Data System (ADS)

    Khomutov, Gennady B.

    Organized bio-inorganic and hybrid bio-organic-inorganic nanostructures consisting of iron oxide nanoparticles and DNA complexes have been formed using methods based on biomineralization, interfacial and bulk phase assembly, ligand exchange and substitution, Langmuir-Blodgett technique, DNA templating and scaffolding. Interfacially formed planar DNA complexes with water-insoluble amphiphilic polycation or intercalator Langmuir monolayers were prepared and deposited on solid substrates to form immobilized DNA complexes. Those complexes were then used for the synthesis of organized DNA-based iron oxide nanostructures. Planar net-like and circular nanostructures of magnetic Fe3O4 nanoparticles were obtained via interaction of cationic colloid magnetite nanoparticles with preformed immobilized DNA/amphiphilic polycation complexes of net-like and toroidal morphologies. The processes of the generation of iron oxide nanoparticles in immobilized DNA complexes via redox synthesis with various iron sources of biological (ferritin) and artificial (FeCl3) nature have been studied. Bulk-phase complexes of magnetite nanoparticles with biomolecular ligands (DNA, spermine) were formed and studied. Novel nano-scale organized bio-inorganic nanostructures - free-floating sheet-like spermine/magnetite nanoparticle complexes and DNA/spermine/magnetite nanoparticle complexes were synthesized in bulk aqueous phase and the effect of DNA molecules on the structure of complexes was discovered.

  7. VAPOR PHASE MERCURY SORPTION BY ORGANIC SULFIDE MODIFIED BIMETALLIC IRON-COPPER NANOPARTICLE AGGREGATES

    EPA Science Inventory

    Novel organic sulfide modified bimetallic iron-copper nanoparticle aggregate sorbent materials have been synthesized for removing elemental mercury from vapor streams at elevated temperatures (120-140 °C). Silane based (disulfide silane and tetrasulfide silane) and alkyl sulfide ...

  8. Graphitization of Organic Material in a Progressively Metamorphosed Precambrian Iron Formation.

    PubMed

    French, B M

    1964-11-13

    Organic matter in the sedimentary Biwabik iron formation in northern Minnesota shows a progressive increase in crystallinity where the formation is metamorphosed by the intrusive Duluth gabbro complex. X-ray diffraction of acid-insoluble residues shows that there is a complete range in crystallinity, from amorphous material in the unmetamorphosed sediments to completely crystalline graphite adjacent to the gabbro.

  9. Graphitization of Organic Material in a Progressively Metamorphosed Precambrian Iron Formation.

    PubMed

    French, B M

    1964-11-13

    Organic matter in the sedimentary Biwabik iron formation in northern Minnesota shows a progressive increase in crystallinity where the formation is metamorphosed by the intrusive Duluth gabbro complex. X-ray diffraction of acid-insoluble residues shows that there is a complete range in crystallinity, from amorphous material in the unmetamorphosed sediments to completely crystalline graphite adjacent to the gabbro. PMID:17777057

  10. Reductive transformation of 2,4-dinitrotoluene: roles of iron and natural organic matter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the effects of redox-active and iron-coordinating functional groups within natural organic matter (NOM) on the electron transfer interactions between Fe(II) and 2,4-dinitrotoluene (2,4-DNT), an energetic residue often encountered in aqueous environments as a propellant compon...

  11. Iron-based inorganic-organic hybrid and superlattice thin films by ALD/MLD.

    PubMed

    Tanskanen, A; Karppinen, M

    2015-11-28

    Here we present novel layer-by-layer deposition processes for the fabrication of inorganic-organic hybrid thin films of the (-Fe-O-C6H4-O-)n type and also superlattices where thicker iron oxide layers alternate with monomolecular-thin organic layers. The processes are based on a combination of atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques where the cyclopentadienyl iron dicarbonyl dimer (Cp2Fe2(CO)4) is used as the iron source and hydroquinone (HQ) as the organic precursor. For the (-Fe-O-C6H4-O-)n hybrid films a growth rate value as high as 3.7 Å per cycle was achieved at 180 °C. Superlattices where thin crystalline iron oxide layers of the magnetite structure alternate with single organic layers consisting of benzene rings were moreover successfully fabricated from the same precursors at 160 °C using water as the source of oxygen in the ALD cycles for the magnetite layers. We foresee that our new ALD/MLD processes offer a valuable novel tool to modify the properties of magnetite thin films and even more widely possess the potential to boost the ALD/MLD research frontier on functional transition metal oxide based thin films.

  12. Direct Biohydrometallurgical Extraction of Iron from Ore

    SciTech Connect

    T.C. Eisele

    2005-10-01

    A completely novel approach to iron extraction was investigated, based on reductive leaching of iron by anaerobic bacteria. Microorganisms were collected from an anaerobic bog where natural seepage of dissolved iron was observed. This mixed culture was used to reduce insoluble iron in a magnetite ore to the soluble ferrous (Fe{sup +2}) state. While dissolution rates were slow, concentrations of dissolved iron as high as 3487 mg/l could be reached if sufficient time was allowed. A factorial study of the effects of trace nutrients and different forms of organic matter indicated that the best dissolution rates and highest dissolved iron concentrations were achieved using soluble carbohydrate (sucrose) as the bacterial food source, and that nutrients other than nitrogen, phosphorus, potassium, sodium, and acetate were not necessary. A key factor in reaching high levels of dissolved iron was maintaining a high level of carbon dioxide in solution, since the solubility of iron carbonates increases markedly as the quantity of dissolved carbon dioxide increases. Once the iron is dissolved, it has been demonstrated that the ferrous iron can then be electroplated from solution, provided that the concentration of iron is sufficiently high and the hydrogen ion concentration is sufficiently low. However, if the leaching solution is electrolyzed directly, organic matter precipitates at the cathode along with the metallic iron. To prevent this problem, the ferrous iron should be separated from the bulk solution in a more concentrated, purified form. One route to accomplishing this is to take advantage of the change in solubility of ferrous iron as a function of carbon dioxide concentration. By cycling the concentration of carbon dioxide in solution, it is possible to produce an iron-rich concentrate that should be suitable for electrolysis. This represents the first viable hydrometallurgical method for leaching iron directly from ore and producing metallic iron.

  13. Iron Redox Dynamics in Humid Tropical Forest Soils: Carbon Stabilization vs. Degradation?

    NASA Astrophysics Data System (ADS)

    Hall, S. J.; Silver, W. L.; Hammel, K.

    2015-12-01

    Most terrestrial soils exhibit a patchwork of oxygen (O2) availability that varies over spatial scales of microsites to catenas to landscapes, and over temporal scales of minutes to seasons. Oxygen fluctuations often drive microbial iron (Fe) reduction and abiotic/biotic Fe oxidation at the microsite scale, contributing to anaerobic carbon (C) mineralization and changes in soil physical and chemical characteristics, especially the dissolution and precipitation of short-range ordered Fe phases thought to stabilize C. Thus, O2 fluctuations and Fe redox cycling may have multiple nuanced and opposing impacts on different soil C pools, illustrated by recent findings from Fe-rich Oxisols and Ultisols in the Luquillo Experimental Forest, Puerto Rico. Spatial patterns in surface soil C stocks at the landscape scale correlated strongly (R2 = 0.98) with concentrations of reduced Fe (Fe(II)), reflecting constitutive differences in reducing conditions within and among sites that promote C accumulation in mineral soil horizons. Similarly, turnover times of a decadal-cycling pool of mineral-associated organic matter increased with Fe(II) across a catena, possibly reflecting the role of anaerobic microsites in long-term C stabilization. However, two different indices of short-range order Fe showed highly significant opposing relationships (positive and negative) with spatial variation in soil C concentrations, possibly reflecting a dual role of Fe in driving C stabilization via co-precipitation, and C solubilization and loss following dissimilatory Fe reduction. Consistent with the field data, laboratory incubations demonstrated that redox fluctuations can increase the contribution of biochemically recalcitrant C (lignin) to soil respiration, whereas addition of short-range order Fe dramatically suppressed lignin mineralization but had no impact on bulk soil respiration. Thus, understanding spatial and temporal patterns of Fe redox cycling may provide insight into explaining the

  14. Organic chemistry of Murchison meteorite: Carbon isotopic fractionation

    NASA Technical Reports Server (NTRS)

    Yuen, G. U.; Blair, N. E.; Desmarais, D. J.; Cronin, J. R.; Chang, S.

    1986-01-01

    The carbon isotopic composition of individual organic compounds of meteoritic origin remains unknown, as most reported carbon isotopic ratios are for bulk carbon or solvent extractable fractions. The researchers managed to determine the carbon isotopic ratios for individual hydrocarbons and monocarboxylic acids isolated from a Murchison sample by a freeze-thaw-ultrasonication technique. The abundances of monocarboxylic acids and saturated hydrocarbons decreased with increasing carbon number and the acids are more abundant than the hydrocarbon with the same carbon number. For both classes of compounds, the C-13 to C-12 ratios decreased with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic number than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with a kinetically controlled synthesis of higher homologues for lower ones.

  15. Iron catalyst chemistry in modeling a high-pressure carbon monoxide nanotube reactor

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Povitsky, Alexander; Dateo, Christopher; Gokcen, Tahir; Willis, Peter A.; Smalley, Richard E.

    2003-01-01

    The high-pressure carbon monoxide (HiPco) technique for producing single-wall carbon nanotubes (SWNTs) is analyzed with the use of a chemical reaction model coupled with flow properties calculated along streamlines, calculated by the FLUENT code for pure carbon monoxide. Cold iron pentacarbonyl, diluted in CO at about 30 atmospheres, is injected into a conical mixing zone, where hot CO is also introduced via three jets at 30 degrees with respect to the axis. Hot CO decomposes the Fe(CO)5 to release atomic Fe. Then iron nucleates and forms clusters that catalyze the formation of SWNTs by a disproportionation reaction (Boudouard) of CO on Fe-containing clusters. Alternative nucleation rates are estimated from the theory of hard sphere collision dynamics with an activation energy barrier. The rate coefficient for carbon nanotube growth is estimated from activation energies in the literature. The calculated growth was found be about an order of magnitude greater than measured, regardless of the nucleation rate. A study of cluster formation in an incubation zone prior to injection into the reactor shows that direct dimer formation from Fe atoms is not as important as formation via an exchange reaction of Fe with CO in FeCO.

  16. How deep is deep enough? Ocean iron fertilization and carbon sequestration in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Robinson, J.; Popova, E. E.; Yool, A.; Srokosz, M.; Lampitt, R. S.; Blundell, J. R.

    2014-04-01

    Artificial ocean iron fertilization (OIF) enhances phytoplankton productivity and is being explored as a means of sequestering anthropogenic carbon within the deep ocean. To be considered successful, carbon should be exported from the surface ocean and isolated from the atmosphere for an extended period (e.g., the Intergovernmental Panel on Climate Change's standard 100 year time horizon). This study assesses the impact of deep circulation on carbon sequestered by OIF in the Southern Ocean, a high-nutrient low-chlorophyll region known to be iron stressed. A Lagrangian particle-tracking approach is employed to analyze water mass trajectories over a 100 year simulation. By the end of the experiment, for a sequestration depth of 1000 m, 66% of the carbon had been reexposed to the atmosphere, taking an average of 37.8 years. Upwelling occurs predominately within the Antarctic Circumpolar Current due to Ekman suction and topography. These results emphasize that successful OIF is dependent on the physical circulation, as well as the biogeochemistry.

  17. Iron catalyst chemistry in modeling a high-pressure carbon monoxide nanotube reactor.

    PubMed

    Scott, Carl D; Povitsky, Alexander; Dateo, Christopher; Gökçen, Tahir; Willis, Peter A; Smalley, Richard E

    2003-01-01

    The high-pressure carbon monoxide (HiPco) technique for producing single-wall carbon nanotubes (SWNTs) is analyzed with the use of a chemical reaction model coupled with flow properties calculated along streamlines, calculated by the FLUENT code for pure carbon monoxide. Cold iron pentacarbonyl, diluted in CO at about 30 atmospheres, is injected into a conical mixing zone, where hot CO is also introduced via three jets at 30 degrees with respect to the axis. Hot CO decomposes the Fe(CO)5 to release atomic Fe. Then iron nucleates and forms clusters that catalyze the formation of SWNTs by a disproportionation reaction (Boudouard) of CO on Fe-containing clusters. Alternative nucleation rates are estimated from the theory of hard sphere collision dynamics with an activation energy barrier. The rate coefficient for carbon nanotube growth is estimated from activation energies in the literature. The calculated growth was found be about an order of magnitude greater than measured, regardless of the nucleation rate. A study of cluster formation in an incubation zone prior to injection into the reactor shows that direct dimer formation from Fe atoms is not as important as formation via an exchange reaction of Fe with CO in FeCO. PMID:12908231

  18. Soil organic carbon enrichment of dust emissions: Magnitude, mechanisms and its implications for the carbon cycle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion is an important component of the global carbon cycle. However, little attention has been given to the role of aeolian processes in influencing soil organic carbon (SOC) flux and the release of greenhouse gasses, such as carbon-dioxide (CO2), to the atmosphere. Understanding the magnitu...

  19. Limits to soil carbon stability; Deep, ancient soil carbon decomposition stimulated by new labile organic inputs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil carbon (C) pools store about one-third of the total terrestrial organic carbon. Deep soil C pools (below 1 m) are thought to be stable due to their low biodegradability, but little is known about soil microbial processes and carbon dynamics below the soil surface, or how global change might aff...

  20. Determination of elemental and organic carbon on damaged stone monuments

    NASA Astrophysics Data System (ADS)

    Ghedini, N.; Gobbi, G.; Sabbioni, C.; Zappia, G.

    An analytical methodology was developed for the discrimination and evaluation of the different types of carbon matter, particularly carbonate, elemental and organic carbon, present on monuments and historical buildings, due to interaction between materials and atmospheric pollution. With this aim samples of black patinas were analysed by a procedure consisting of three different steps. Total, noncarbonate and elemental carbon were measured by combustion-chromatographic CO 2 determination: Ct was obtained by burning the bulk samples (step 1), while Cnc and Ce were quantified after elimination of Cc with acid treatment (step 2) and elimination of Co by means of alternate attacks, followed by centrifugation, with concentrate acid and base solutions at high temperature and pressure (step 3); the carbonate carbon and the organic carbon were then calculated. Furthermore, for a complete sample characterization, oxalate, acetate, formate and the main anion contents were detected by ion chromatography. The methodology was also tested on standard samples containing the same carbon species as the black crusts. The results obtained indicate that this approach satisfactorily distinguishes between elemental and organic carbon and allows reliable elemental carbon determination at the ppm level in black damage crust samples from historic monuments and buildings.

  1. Organic carbon isotope constraints on the dissolved organic carbon (DOC) reservoir at the Cryogenian-Ediacaran transition

    NASA Astrophysics Data System (ADS)

    Jiang, Ganqing; Wang, Xinqiang; Shi, Xiaoying; Zhang, Shihong; Xiao, Shuhai; Dong, Jin

    2010-10-01

    Prominent negative carbonate carbon isotope (δ 13C carb) anomalies from some Ediacaran successions are accompanied by invariant or decoupled organic carbon isotope (δ 13C org) values and have been interpreted as resulting from the remineralization of a large dissolved organic carbon (DOC) reservoir capable of buffering carbon isotopes of organic matter. This inferred oceanic DOC reservoir was thought to have initiated with the onset of Cryogenian glaciations (ca. 720 Ma) and lasted for millions of years until the late Ediacaran Period (< 560 Ma). Carbon isotope analyses of the basal Doushantuo Formation (ca. 635 Ma) in south China reveal that (1) the cap carbonate has δ 13C org around -26‰ (VPDB) and relatively low Δδ 13C (22 ± 2‰) and (2) the overlying organic-rich black shale and shaly dolostone have more negative δ 13C org (-28‰ to -35‰) and higher Δδ 13C (28‰-30‰). Both δ 13C carb and δ 13C org show a + 6‰ shift within a 4-m-thick interval overlying the Doushantuo cap carbonate. The δ 13C org values of the cap carbonate are associated with low TOC (mostly < 0.1%); their paleoceanographic significance requires further tests in other Ediacaran basins. The co-varying positive shift in δ 13C carb and δ 13C org following cap carbonate deposition is best interpreted as resulting from a rapid increase in organic carbon burial, which may have resulted in the rise of oxygen and heralded the first appearance of animals a few meters above the Doushantuo cap carbonate. The data suggest that a large oceanic DOC reservoir did not exist in the early Ediacaran ocean. Excess oceanic DOC required to explain the Ediacaran Shuram and upper Doushantuo δ 13C excursions, if it existed, had to be developed during the Ediacaran Period after cap carbonate deposition.

  2. [Effects of Chinese fir litter on soil organic carbon decomposition and microbial biomass carbon].

    PubMed

    Wang, Xiao-Feng; Wang, Si-Long; Zhang, Wei-Dong

    2013-09-01

    By using 13C stable isotope tracer technique, this paper studied the effects of Chinese fir litter addition on the soil organic carbon (SOC) decomposition, microbial biomass carbon, and dissolved organic carbon in 0-5 cm and 40-45 cm layers. The decomposition rate of SOC in 40-45 cm layer was significantly lower than that in 0-5 cm layer, but the priming effect induced by the Chinese fir litter addition showed an opposite trend. The Chinese fir litter addition increased the soil total microbial biomass carbon and the microbial biomass carbon derived from native soil significantly, but had less effects on the soil dissolved organic carbon. Turning over the subsoil to the surface of the woodland could accelerate the soil carbon loss in Chinese fir plantation due to the priming effect induced by the litters. PMID:24417093

  3. [Effects of Chinese fir litter on soil organic carbon decomposition and microbial biomass carbon].

    PubMed

    Wang, Xiao-Feng; Wang, Si-Long; Zhang, Wei-Dong

    2013-09-01

    By using 13C stable isotope tracer technique, this paper studied the effects of Chinese fir litter addition on the soil organic carbon (SOC) decomposition, microbial biomass carbon, and dissolved organic carbon in 0-5 cm and 40-45 cm layers. The decomposition rate of SOC in 40-45 cm layer was significantly lower than that in 0-5 cm layer, but the priming effect induced by the Chinese fir litter addition showed an opposite trend. The Chinese fir litter addition increased the soil total microbial biomass carbon and the microbial biomass carbon derived from native soil significantly, but had less effects on the soil dissolved organic carbon. Turning over the subsoil to the surface of the woodland could accelerate the soil carbon loss in Chinese fir plantation due to the priming effect induced by the litters.

  4. India's iron and steel industry: Productivity, energy efficiency and carbon emissions

    SciTech Connect

    Schumacher, Katja; Sathaye, Jayant

    1998-10-01

    Historical estimates of productivity growth in India's iron and steel sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both growth accounting and econometric estimates of productivity growth for this sector. Their results show that over the observed period from 1973--74 to 1993--94 productivity declined by 1.71{percent} as indicated by the Translog index. Calculations of the Kendrick and Solow indices support this finding. Using a translog specification the econometric analysis reveals that technical progress in India's iron and steel sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protective policy regarding price and distribution of iron and steel as well as by large inefficiencies in public sector integrated steel plants. Will these trends continue into the future, particularly where energy use is concerned? Most likely they will not. The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with the liberalization of the iron and steel sector, the industry is rapidly moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use in existing and future plants.

  5. Carbon dioxide capture and use: organic synthesis using carbon dioxide from exhaust gas.

    PubMed

    Kim, Seung Hyo; Kim, Kwang Hee; Hong, Soon Hyeok

    2014-01-13

    A carbon capture and use (CCU) strategy was applied to organic synthesis. Carbon dioxide (CO2) captured directly from exhaust gas was used for organic transformations as efficiently as hyper-pure CO2 gas from a commercial source, even for highly air- and moisture-sensitive reactions. The CO2 capturing aqueous ethanolamine solution could be recycled continuously without any diminished reaction efficiency.

  6. Influences of iron and calcium carbonate on wastewater treatment performances of algae based reactors.

    PubMed

    Zhao, Zhimiao; Song, Xinshan; Wang, Wei; Xiao, Yanping; Gong, Zhijie; Wang, Yuhui; Zhao, Yufeng; Chen, Yu; Mei, Mengyuan

    2016-09-01

    The influences of iron and calcium carbonate (CaCO3) addition in wastewater treatments reactors performance were investigated. Adding different concentrations of Fe(3+) (5, 10, 30 and 50mmol/m(3)), iron and CaCO3 powder led to changes in algal characteristics and physico-chemical and microbiological properties. According to the investigation results, nutrient removal efficiency in algae based reactors was obviously increased by the addition of 10mmol/m(3) Fe(3+), iron (5mmol/m(3)) and CaCO3 powder (0.2gm(-3)) and the removal efficiencies of BOD5, TN, and TP in Stage 2 were respectively increased by 28%, 8.9%, and 22%. The improvements in physico-chemical performances were verified by microbial community tests (bacteria quantity, activity and community measured in most probable number, extracellular enzymes activity, and Biolog Eco Plates). Microbial variations indicated the coexistence of Fe ions and carbonate-bicarbonate, which triggered the synergistic effect of physico-chemical action and microbial factors in algae based reactors.

  7. Removal of crystal violet from water by magnetically modified activated carbon and nanomagnetic iron oxide.

    PubMed

    Hamidzadeh, Soheila; Torabbeigi, Marzieh; Shahtaheri, Seyed Jamaleddin

    2015-01-01

    Magnetically modified activated carbon, which synthesized by nanomagnetic iron oxide, was used for fast and effective removal of Crystal Violet from aqueous solutions. The scanning electron microscopy (SEM) images of nano-adsorbent showed that the average sizes of adsorbent are less than 100 nm. The various parameters, affecting on adsorption process, were examined including pH and temperature of dye solution, dose of adsorbent, and contact time. Then, thermodynamic parameters of sorption were calculated. Langmuir and Freundlich isotherms were used to fit the resulting data. Adsorption kinetics was consistent with a pseudo second order equation. Thermodynamic parameters of adsorption, ∆H(0), and ∆S(0) were calculated. Also, for further investigations, nano magnetic iron oxides was synthesized and used as adsorbent. Sorption capacities were depending on the temperature varied from 44.7 to 67.1 mg/g and from 12.7 to 16.5 mg/g for magnetically modified activated carbon and nanomagnetic iron oxide, respectively. PMID:25699186

  8. A reduced organic carbon component in martian basalts.

    PubMed

    Steele, A; McCubbin, F M; Fries, M; Kater, L; Boctor, N Z; Fogel, M L; Conrad, P G; Glamoclija, M; Spencer, M; Morrow, A L; Hammond, M R; Zare, R N; Vicenzi, E P; Siljeström, S; Bowden, R; Herd, C D K; Mysen, B O; Shirey, S B; Amundsen, H E F; Treiman, A H; Bullock, E S; Jull, A J T

    2012-07-13

    The source and nature of carbon on Mars have been a subject of intense speculation. We report the results of confocal Raman imaging spectroscopy on 11 martian meteorites, spanning about 4.2 billion years of martian history. Ten of the meteorites contain abiotic macromolecular carbon (MMC) phases detected in association with small oxide grains included within high-temperature minerals. Polycyclic aromatic hydrocarbons were detected along with MMC phases in Dar al Gani 476. The association of organic carbon within magmatic minerals indicates that martian magmas favored precipitation of reduced carbon species during crystallization. The ubiquitous distribution of abiotic organic carbon in martian igneous rocks is important for understanding the martian carbon cycle and has implications for future missions to detect possible past martian life. PMID:22628557

  9. A reduced organic carbon component in martian basalts.

    PubMed

    Steele, A; McCubbin, F M; Fries, M; Kater, L; Boctor, N Z; Fogel, M L; Conrad, P G; Glamoclija, M; Spencer, M; Morrow, A L; Hammond, M R; Zare, R N; Vicenzi, E P; Siljeström, S; Bowden, R; Herd, C D K; Mysen, B O; Shirey, S B; Amundsen, H E F; Treiman, A H; Bullock, E S; Jull, A J T

    2012-07-13

    The source and nature of carbon on Mars have been a subject of intense speculation. We report the results of confocal Raman imaging spectroscopy on 11 martian meteorites, spanning about 4.2 billion years of martian history. Ten of the meteorites contain abiotic macromolecular carbon (MMC) phases detected in association with small oxide grains included within high-temperature minerals. Polycyclic aromatic hydrocarbons were detected along with MMC phases in Dar al Gani 476. The association of organic carbon within magmatic minerals indicates that martian magmas favored precipitation of reduced carbon species during crystallization. The ubiquitous distribution of abiotic organic carbon in martian igneous rocks is important for understanding the martian carbon cycle and has implications for future missions to detect possible past martian life.

  10. Coupled iron, sulfur and carbon isotope evidences for arsenic enrichment in groundwater

    NASA Astrophysics Data System (ADS)

    Wang, Yanxin; Xie, Xianjun; Johnson, Thomas M.; Lundstrom, Craig C.; Ellis, Andre; Wang, Xiangli; Duan, Mengyu; Li, Junxia

    2014-11-01

    It is generally accepted that microbial processes play a key role in the mobilization and enrichment of arsenic (As) in groundwater. However, the detailed mechanism of the metabolic processes remain poorly understand. We apply isotopic measurements of iron (δ56Fe vs. IRMM-14), sulfur (δ34SSO4 vs. V-CDT) and carbon (δ13CDIC vs. V-PDB) to an experimental field plot in the Datong Basin, northern China. An array of monitoring wells was installed in a ≈1700-m2 plot in which high concentrations of As, ranging from 4.76 to 469.5 μg/L, were detected in the groundwater. The measured range of δ34SSO4 values from 10.0‰ to 24.7‰ indicates the prevalence of microbial sulfate reduction within aquifers. The range of δ56Fe values measured in the groundwater suggests microbial Fe(III) reduction and the occurrence of isotopic exchange between Fe(II)aq and FeS precipitation. The low δ13CDIC values (up to -33.6‰) measured in groundwater are evidences for the microbial oxidation of organic matter, which is interpreted as the light carbon pool within the aquifer sediments. The high As (As > 50 μg/L) groundwater, which has higher δ34SSO4 and δ56Fe values and lower δ13C values, indicates the following: (1) microbial reduction of sulfate causes the mobilization of As through HS- abiotic reduction of Fe(III) minerals and/or formation of As-sulfur components; and (2) direct microbial reduction of Fe(III) oxides, hydroxides and oxyhydroxides cannot increase As concentrations to greater than 50 μg/L. Re-oxidation of Fe-sufide explains how sample C1-2 can have a high As concentration and low δ34SSO4 and high δ56Fe values. The results provide new insight into the mechanism of As enrichment in groundwater.

  11. Synthesis of heterostructured helical carbon nanotubes by iron-catalyzed ethanol decomposition.

    PubMed

    Yong, Zhang; Fang, Liu; Zhi-hua, Zhang

    2011-08-01

    Shaping of carbon nanotubes (CNTs) into desired morphologies have attracted much attention recently. High quality heterostructured helical carbon nanotubes (HCNTs) were synthesized from transitional metal oxide and ethanol by chemical vapor deposition (CVD) in this paper. High resolution transmission electron microscopy (HRTEM) results showed that, heterostructured "U" shape, "G" shape and "S" shape HCNTs were achieved. Iron oxide was reduced to α-Fe by ethanol, and catalyzed the growth of heterostructured HCNTs. Helical coiling of HCNTs was induced by the anisotropic facet catalytic activity of α-Fe catalyst for carbon deposition. Then, symmetrical growth of two HCNTs from one catalyst nanoparticle resulted in symmetrical "U" shape HCNTs, while successive connecting of several "arc" and "tail" HCNTs led to asymmetrical "G" and "S" morphologies HCNTs.

  12. Evaluation of organic carbon analyzers for space application. [for water reclamation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The state-of-the-art technology for organic carbon analysis in space applications is evaluated. An investigation into total organic carbon (TOC) analysis has identified a variety of schemes which include different methods for: (1) separation of inorganic carbon from organic carbon and/or differentiation of inorganic carbon from organic carbon; (2) reaction of organic carbon to form a quantifiable species; and (3) detection and measurement of that species. Each method option is discussed.

  13. Floodplain Organic Carbon Storage in the Central Yukon River Basin

    NASA Astrophysics Data System (ADS)

    Lininger, K.; Wohl, E.

    2014-12-01

    Floodplain storage of organic carbon is an important aspect of the global carbon cycle that is not well understood or quantified. Although it is understood that rivers transport organic carbon to the ocean, little is known about the quantity of stored carbon in boreal floodplains and the influence of fluvial processes on this storage. We present results on total organic carbon (TOC) content within the floodplains of two rivers, the Dall River and Preacher Creek, in the central Yukon River Basin in the Yukon Flats National Wildlife Refuge of Alaska. The results indicate that organic carbon storage is influenced by fluvial disturbance and grain size. The Dall River, which contains a large amount of floodplain carbon, is meandering and incised, with well-developed floodplain soils, a greater percentage of relatively old floodplain surfaces and a slower floodplain turnover time, and finer grain sizes. Preacher Creek stores less TOC, transports coarser grain sizes, and has higher rates of avulsion and floodplain turnover time. Within the floodplain of a particular river, large spatial heterogeneity in TOC content also exists as a function of depositional environment and age and vegetation community of the site. In addition, saturated regions of the floodplains, such as abandoned channels and oxbow lakes, contain more TOC compared to drier floodplain environments. Frozen alluvial soils likely contain carbon that could be released into the environment with melting permafrost, and thus quantifying the organic carbon content in the active layer of floodplain soils could provide insight into the characteristics of the permafrost beneath. The hydrology in these regions is changing due to permafrost melt, and floodplain areas usually saturated could be dried out, causing breakdown and outgassing of carbon stored in previously saturated soils. Ongoing work will result in a first-order estimate of active-layer floodplain carbon storage for the central Yukon River Basin.

  14. Unimodal response of fish yield to dissolved organic carbon.

    PubMed

    Finstad, Anders G; Helland, Ingeborg P; Ugedal, Ola; Hesthagen, Trygve; Hessen, Dag O

    2014-01-01

    Here, we demonstrate a contrasting effect of terrestrial coloured dissolved organic material on the secondary production of boreal nutrient poor lakes. Using fish yield from standardised brown trout gill-net catches as a proxy, we show a unimodal response of lake secondary productivity to dissolved organic carbon (DOC). This suggests a trade-off between positive and negative effects, where the initial increase may hinge upon several factors such as energy subsidising, screening of UV-radiation or P and N load being associated with organic carbon. The subsequent decline in production with further increase in DOC is likely associated with light limitations of primary production. We also show that shallow lakes switch from positive to negative effects at higher carbon loads than deeper lakes. These results underpin the major role of organic carbon for structuring productivity of boreal lake ecosystems. PMID:24165396

  15. Anomalous 13C enrichment in modern marine organic carbon

    USGS Publications Warehouse

    Arthur, M.A.; Dean, W.E.; Claypool, G.E.

    1985-01-01

    Marine organic carbon is heavier isotopically (13C enriched) than most land-plant or terrestrial organic C1. Accordingly, ??13C values of organic C in modern marine sediments are routinely interpreted in terms of the relative proportions of marine and terrestrial sources of the preserved organic matter2,3. When independent geochemical techniques are used to evaluate the source of organic matter in Cretaceous or older rocks, those rocks containing mostly marine organic C are found typically to have lighter (more-negative) ??13C values than rocks containing mostly terrestrial organic C. Here we conclude that marine photosynthesis in mid-Cretaceous and earlier oceans generally resulted in a greater fractionation of C isotopes and produced organic C having lighter ??13C values. Modern marine photosynthesis may be occurring under unusual geological conditions (higher oceanic primary production rates, lower PCO2) that limit dissolved CO2 availability and minimize carbon isotope fractionation4. ?? 1985 Nature Publishing Group.

  16. Real World of Industrial Chemistry: Organic Chemicals from Carbon Monoxide.

    ERIC Educational Resources Information Center

    Kolb, Kenneth E.; Kolb, Doris

    1983-01-01

    Carbon Monoxide obtained from coal may serve as the source for a wide variety of organic compounds. Several of these compounds are discussed, including phosgene, benzaldehyde, methanol, formic acid and its derivatives, oxo aldehydes, acrylic acids, and others. Commercial reactions of carbon monoxide are highlighted in a table. (JN)

  17. Isotopic compositions of carbonates and organic carbon from upper Proterozoic successions in Namibia: stratigraphic variation and the effects of diagenesis and metamorphism

    NASA Technical Reports Server (NTRS)

    Kaufman, A. J.; Hayes, J. M.; Knoll, A. H.; Germs, G. J.

    1991-01-01

    Proterozoic seawater. Within the Damara basin, carbon-isotopic compositions of carbonates provide a potentially useful tool for the correlation of units between the Kalahari and Congo cratons. Carbonates depleted in 13C were deposited during and immediately following three separate glacial episodes in Namibia. The correspondence between ice ages and negative delta 13C excursions may reflect the effects of lowered sea levels; enhanced circulation of deep, cold, O2-rich seawater; and/or the upwelling of 13C-depleted deep water. Iron-formation is additionally associated with one of the glacial horizons, the Chuos tillite. Carbon-13 enriched isotopic abundances in immediately pre-glacial carbonates suggest that oceanographic conditions favored high rates of organic burial. It is likely that marine waters were stratified, with deep waters anoxic. A prolonged period of ocean stratification would permit the build-up of ferrous iron, probably from hydrothermal sources. At the onset of glaciation, upwelling would have brought 13C-depleted and iron-rich deep water onto shallow shelves where contact with cold, oxygenated surface waters led to the precipitation of ferric iron.

  18. Isotopic compositions of carbonates and organic carbon from upper Proterozoic successions in Namibia: stratigraphic variation and the effects of diagenesis and metamorphism.

    PubMed

    Kaufman, A J; Hayes, J M; Knoll, A H; Germs, G J

    1991-01-01

    Proterozoic seawater. Within the Damara basin, carbon-isotopic compositions of carbonates provide a potentially useful tool for the correlation of units between the Kalahari and Congo cratons. Carbonates depleted in 13C were deposited during and immediately following three separate glacial episodes in Namibia. The correspondence between ice ages and negative delta 13C excursions may reflect the effects of lowered sea levels; enhanced circulation of deep, cold, O2-rich seawater; and/or the upwelling of 13C-depleted deep water. Iron-formation is additionally associated with one of the glacial horizons, the Chuos tillite. Carbon-13 enriched isotopic abundances in immediately pre-glacial carbonates suggest that oceanographic conditions favored high rates of organic burial. It is likely that marine waters were stratified, with deep waters anoxic. A prolonged period of ocean stratification would permit the build-up of ferrous iron, probably from hydrothermal sources. At the onset of glaciation, upwelling would have brought 13C-depleted and iron-rich deep water onto shallow shelves where contact with cold, oxygenated surface waters led to the precipitation of ferric iron.

  19. Hierarchically-Porous Carbon Derived from a Large-Scale Iron-based Organometallic Complex for Versatile Energy Storage.

    PubMed

    Fan, Chao-Ying; Li, Huan-Huan; Wang, Hai-Feng; Sun, Hai-Zhu; Wu, Xing-Long; Zhang, Jing-Ping

    2016-06-22

    Inspired by the preparation of the hierarchically-porous carbon (HPC) derived from metal organic frameworks (MOFs) for energy storage, in this work, a simple iron-based metal- organic complex (MOC), which was simpler and cheaper compared with the MOF, was selected to achieve versatile energy storage. The intertwined 1 D nanospindles and enriched-oxygen doping of the HPC was obtained after one-step carbonization of the MOC. When employed in lithium-ion batteries, the HPC exhibited reversible capacity of 778 mA h g(-1) after 60 cycles at 50 mA g(-1) . Moreover, the HPC maintained a capacity of 188 mA h g(-1) after 400 cycles at 100 mA g(-1) as the anode material in a sodium-ion battery. In addition, the HPC served as the cathode matrix for evaluation of a lithium-sulfur battery. The general preparation process of the HPC is commercial, which is responsible for the large-scale production for its practical application. PMID:27219476

  20. Hierarchically-Porous Carbon Derived from a Large-Scale Iron-based Organometallic Complex for Versatile Energy Storage.

    PubMed

    Fan, Chao-Ying; Li, Huan-Huan; Wang, Hai-Feng; Sun, Hai-Zhu; Wu, Xing-Long; Zhang, Jing-Ping

    2016-06-22

    Inspired by the preparation of the hierarchically-porous carbon (HPC) derived from metal organic frameworks (MOFs) for energy storage, in this work, a simple iron-based metal- organic complex (MOC), which was simpler and cheaper compared with the MOF, was selected to achieve versatile energy storage. The intertwined 1 D nanospindles and enriched-oxygen doping of the HPC was obtained after one-step carbonization of the MOC. When employed in lithium-ion batteries, the HPC exhibited reversible capacity of 778 mA h g(-1) after 60 cycles at 50 mA g(-1) . Moreover, the HPC maintained a capacity of 188 mA h g(-1) after 400 cycles at 100 mA g(-1) as the anode material in a sodium-ion battery. In addition, the HPC served as the cathode matrix for evaluation of a lithium-sulfur battery. The general preparation process of the HPC is commercial, which is responsible for the large-scale production for its practical application.

  1. Effect of accelerated carbonation and zero valent iron on metal leaching from bottom ash.

    PubMed

    Nilsson, M; Andreas, L; Lagerkvist, A

    2016-05-01

    About 85% of the ashes produced in Sweden originated from the incineration of municipal solid waste and biofuel. The rest comes from the thermal treatment of recycled wood, peat, charcoal and others. About 68% of all ashes annually produced in Sweden are used for constructions on landfills, mainly slopes, roads and embankments, and only 3% for construction of roads and working surfaces outside the landfills (SCB, 2013). Since waste bottom ash (BA) often has similar properties to crushed bedrock or gravel, it could be used for road constructions to a larger extent. However, the leaching of e.g. Cr, Cu, Mo, Pb and Zn can cause a threat to the surrounding environment if the material is used as it is. Carbonation is a commonly used pre-treatment method, yet it is not always sufficient. As leaching from aged ash is often controlled by adsorption to iron oxides, increasing the number of Fe oxide sorption sites can be a way to control the leaching of several critical elements. The importance of iron oxides as sorption sites for metals is known from both mineralogical studies of bottom ash and from the remediation of contaminated soil, where iron is used as an amendment. In this study, zero valent iron (Fe(0)) was added prior to accelerated carbonation in order to increase the number of adsorption sites for metals and thereby reduce leaching. Batch, column and pHstat leaching tests were performed and the leaching behaviour was evaluated with multivariate data analysis. It showed that leaching changed distinctly after the tested treatments, in particular after the combined treatment. Especially, the leaching of Cr and Cu clearly decreased as a result of accelerated carbonation. The combination of accelerated carbonation with Fe(0) addition reduced the leaching of Cr and Cu even further and reduced also the leaching of Mo, Zn, Pb and Cd compared to untreated BA. Compared with only accelerated carbonation, the Fe(0) addition significantly reduced the leaching of Cr, Cu and Mo

  2. Effect of accelerated carbonation and zero valent iron on metal leaching from bottom ash.

    PubMed

    Nilsson, M; Andreas, L; Lagerkvist, A

    2016-05-01

    About 85% of the ashes produced in Sweden originated from the incineration of municipal solid waste and biofuel. The rest comes from the thermal treatment of recycled wood, peat, charcoal and others. About 68% of all ashes annually produced in Sweden are used for constructions on landfills, mainly slopes, roads and embankments, and only 3% for construction of roads and working surfaces outside the landfills (SCB, 2013). Since waste bottom ash (BA) often has similar properties to crushed bedrock or gravel, it could be used for road constructions to a larger extent. However, the leaching of e.g. Cr, Cu, Mo, Pb and Zn can cause a threat to the surrounding environment if the material is used as it is. Carbonation is a commonly used pre-treatment method, yet it is not always sufficient. As leaching from aged ash is often controlled by adsorption to iron oxides, increasing the number of Fe oxide sorption sites can be a way to control the leaching of several critical elements. The importance of iron oxides as sorption sites for metals is known from both mineralogical studies of bottom ash and from the remediation of contaminated soil, where iron is used as an amendment. In this study, zero valent iron (Fe(0)) was added prior to accelerated carbonation in order to increase the number of adsorption sites for metals and thereby reduce leaching. Batch, column and pHstat leaching tests were performed and the leaching behaviour was evaluated with multivariate data analysis. It showed that leaching changed distinctly after the tested treatments, in particular after the combined treatment. Especially, the leaching of Cr and Cu clearly decreased as a result of accelerated carbonation. The combination of accelerated carbonation with Fe(0) addition reduced the leaching of Cr and Cu even further and reduced also the leaching of Mo, Zn, Pb and Cd compared to untreated BA. Compared with only accelerated carbonation, the Fe(0) addition significantly reduced the leaching of Cr, Cu and Mo

  3. Investigation of organic carbon transformation in soils of dominant dissolved organic carbon source zones

    NASA Astrophysics Data System (ADS)

    Pissarello, Anna; Miltner, Anja; Oosterwoud, Marieke; Fleckenstein, Jan; Kästner, Matthias

    2014-05-01

    Over the past 20 years both a decrease in soil organic matter (SOM) and an increase in the dissolved organic carbon (DOC) concentrations in surface water bodies, including drinking water reservoirs, have been recorded in the northern hemisphere. This development has severe consequences for soil fertility and for drinking water purification. As both processes occur simultaneously, we assume that microbial SOM degradation, which transforms SOM into CO2 and DOC, is a possible source of the additional DOC in the surface water. In addition we speculate that both processes are initially triggered by physical mechanisms, resulting in a modification of the organic matter solubility equilibria and thus in higher SOM availability and DOC mobilization. The general hypothesis of the study is therefore that SOM loss and DOC increase are combined consequences of enhanced microbial degradation of SOM and that this is a result of climate variations and global change, e.g. the increase of the temperature, the alteration of the water regime (i.e. increase of the frequency of drying and rewetting cycles and a higher number of heavy rain events), but also the decrease of the atmospheric acid deposition resulting in an increase of soil pH values. The general goal of the study is the identification of the dominant processes and controlling factors involved in soil microbial carbon turnover and mobilization of DOC in soils from catchment areas that contribute DOC to the receiving waters and the downstream Rappbode reservoir, which showed a pronounced increase in DOC concentration in recent years. This reservoir is the source of drinking water for about one million people in northern Germany. Preliminary screening experiments, consisting of 65-day soil batch incubation experiments, have been conducted in order to select the parameters (and the parameter ranges) of relevance for further in-depth experiments. During the experiments, different soil systems were exposed to different

  4. Low temperature charge transport and microwave absorption of carbon coated iron nanoparticles–polymer composite films

    SciTech Connect

    Prasad, V.

    2012-06-15

    Highlights: ► Carbon coated Fe nanoparticle–PVC composite films were prepared by solution casting method. ► A low electrical percolation threshold of 2.2 was achieved. ► The low temperature electrical conductivity follows variable range hopping type conduction. ► An EMI shielding of 18 dB was achieved in 200 micron thick film. -- Abstract: In this paper, the low temperature electrical conductivity and microwave absorption properties of carbon coated iron nanoparticles–polyvinyl chloride composite films are investigated for different filler fractions. The filler particles are prepared by the pyrolysis of ferrocene at 980 °C and embedded in polyvinyl chloride matrix. The high resolution transmission electron micrographs of the filler material have shown a 5 nm thin layer graphitic carbon covering over iron particles. The room temperature electrical conductivity of the composite film changes by 10 orders of magnitude with the increase of filler concentration. A percolation threshold of 2.2 and an electromagnetic interference shielding efficiency (EMI SE) of ∼18.6 dB in 26.5–40 GHz range are observed for 50 wt% loading. The charge transport follows three dimensional variable range hopping conduction.

  5. Reduction of Iron-Oxide-Carbon Composites: Part III. Shrinkage of Composite Pellets during Reduction

    NASA Astrophysics Data System (ADS)

    Halder, S.; Fruehan, R. J.

    2008-12-01

    This article involves the evaluation of the volume change of iron-oxide-carbon composite pellets and its implications on reduction kinetics under conditions prevalent in a rotary hearth furnace (RHF) that were simulated in the laboratory. The pellets, in general, were found to shrink considerably during the reduction due to the loss of carbon and oxygen from the system, sintering of the iron-oxide, and formation of a molten slag phase at localized regions inside the pellets due to the presence of binder and coal/wood-charcoal ash at the reduction temperatures. One of the shortcomings of the RHF ironmaking process has been the inability to use multiple layers of composite pellets because of the impediment in heat transport to the lower layers of a multilayer bed. However, pellet shrinkage was found to have a strong effect on the reduction kinetics by virtue of enhancing the external heat transport to the lower layers. The volume change of the different kinds of composite pellets was studied as a function of reduction temperature and time. The estimation of the change in the amount of external heat transport with varying pellet sizes for a particular layer of a multilayer bed was obtained by conducting heat-transfer tests using inert low-carbon steel spheres. It was found that if the pellets of the top layer of the bed shrink by 30 pct, the external heat transfer to the second layer increases by nearly 6 times.

  6. Reduction of iron-oxide-carbon composites: part III. Shrinkage of composite pellets during reduction

    SciTech Connect

    Halder, S.; Fruehan, R.J.

    2008-12-15

    This article involves the evaluation of the volume change of iron-oxide-carbon composite pellets and its implications on reduction kinetics under conditions prevalent in a rotary hearth furnace (RHF) that were simulated in the laboratory. The pellets, in general, were found to shrink considerably during the reduction due to the loss of carbon and oxygen from the system, sintering of the iron-oxide, and formation of a molten slag phase at localized regions inside the pellets due to the presence of binder and coal/wood-charcoal ash at the reduction temperatures. One of the shortcomings of the RHF ironmaking process has been the inability to use multiple layers of composite pellets because of the impediment in heat transport to the lower layers of a multilayer bed. However, pellet shrinkage was found to have a strong effect on the reduction kinetics by virtue of enhancing the external heat transport to the lower layers. The volume change of the different kinds of composite pellets was studied as a function of reduction temperature and time. The estimation of the change in the amount of external heat transport with varying pellet sizes for a particular layer of a multilayer bed was obtained by conducting heat-transfer tests using inert low-carbon steel spheres. It was found that if the pellets of the top layer of the bed shrink by 30 pct, the external heat transfer to the second layer increases by nearly 6 times.

  7. Preparation of carbon-coated iron nanofluid and its application in radiofrequency ablation.

    PubMed

    Wu, Qiguang; Zhang, Haiyan; Chen, Minshan; Zhang, Yaojun; Huang, Junting; Xu, Zuowen; Wang, Wenguang

    2015-05-01

    Carbon-coated iron nanoparticles (Fe@C CCINs) were synthesized by carbon arc discharge method and were studied via X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that CCINs have good core-shell structure and are in size of 40-50 nm. Also, carbon-coated iron nanofluid (CCINs-nanofluid) was prepared via two-step method by dispersing as-prepared CCINs and polyvinylpyrrolidone (PVP) into physiological saline. Its dispersion stability and thermal conductivity were detected by gravity sedimentation method and Hotdisk thermal constant analyzer respectively. The results indicated that CCINs-nanofluid possesses good dispersity and stability. Moreover, CCINs-nanofluid showed enhanced thermal conductivity compared with its base fluid physiological saline. The enhancement of thermal conductivity even reaches 41%. Additionally, CCINs-nanofluid injection aided radiofrequency ablation (RFA) was carried out. The relation between tissue temperature and ablation time revealed that by injecting CCINs-nanofluid into pork livers during RFA, target tissue temperatures were less than 100°C. Dissected pork livers showed that there was little or no tissue charring around the ablation probe. Results of ablation area calculation showed that the ablation area of CCINs-nanofluid injection aided RFA was 67% larger than that of saline injection aided RFA, indicating that a larger-volume tumor tissue necrosis at a single session can be achieved by CCINs-nanofluid injection aided RFA. PMID:25171467

  8. Carbon Solubility in Silicon-Iron-Bearing Metals during Core Formation on Mercury

    NASA Technical Reports Server (NTRS)

    Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Ross, D. Kent; Rapp, Jennifer F.; Danielson, Lisa R.; Keller, Lindsay P.; Righter, Kevin

    2016-01-01

    Recent results obtained from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft showed the surface of Mercury has high S abundances (approximately 4 wt%) and low Iron(II) Oxide abundances (less than 2 wt%). Based on these extreme values, the oxygen fugacity of Mercury's surface materials was estimated to be approximately 3 to 7 log(sub 10) units below the IW buffer (Delta IW-3 to Delta IW-7). This highly reducing nature of the planet has resulted in a large core and relatively thin mantle, extending to only approximately 420 km depth (corresponding to a core-mantle boundary pressure of approximately 4-7 GPa) within the planet. Furthermore, MESSENGER results have suggested the presence of carbon on the surface of the planet. Previous experimental results from have also suggested the possibility of a primary floatation crust on Mercury composed of graphite, produced after a global magma ocean event. With these exotic conditions of this compositional end-member planet, it begs the question, what is the core composition of Mercury? Although no definitive conclusion has been reached, previous studies have made advances towards answering this question. Riner et al. and Chen et al. looked at iron sulfide systems and implemented various crystallization and layered core scenarios to try and determine the composition and structure of Mercury's core. Malavergne et al. examined core crystallization scenarios in the presence of sulfur and silicon. Hauck et al. used the most recent geophysical constraints from the MESSENGER spacecraft to model the internal structure of Mercury, including the core, in a iron-sulfur-silicon system. More recently, Chabot et al. conducted a series of metal-silicate partitioning experiments in a iron-sulfur-silicon system. These results showed the core of Mercury has the potential to contain more than 15 wt% silicon. However, with the newest results from MESSENGER's low altitude campaign, carbon is another

  9. Copper, iron and the organic ligands that bind them - updates from San Francisco Bay and beyond

    NASA Astrophysics Data System (ADS)

    Buck, K. N.; Bundy, R.; Biller, D.; Bruland, K. W.; Barbeau, K.

    2015-12-01

    Building on more than 30 years of measurements in San Francisco Bay by Russ Flegal and others, the concentrations of dissolved manganese, iron, cobalt, nickel, copper, zinc, cadmium and lead were determined from a suite of water quality monitoring program stations in North, Central and South Bay using inductively coupled plasma- mass spectrometry following preconcentration on a Nobias-chelate PA1 resin. Given the importance of organic ligands in governing iron solubility and copper bioavailability in natural waters, the organic complexation of dissolved iron and copper in these samples was determined from multiple analytical windows applied to competitive ligand exchange- adsorptive cathodic stripping voltammetry. This study constitutes the first dataset of iron speciation in San Francisco Bay and expands upon prior work evaluating the potential for copper toxicity in this urbanized estuary. Recent advances in voltammetric techniques emerging from a Scientific Committee on Oceanic Research (SCOR) working group on metal-binding ligands in the marine environment, and insights gained from high-resolution ligand measurements from the U.S. GEOTRACES program, highlight how metal-binding ligands in San Francisco Bay compare with those of the coastal and open ocean.

  10. Expeditious organic-free assembly: morphologically controlled synthesis of iron oxides using microwaves

    NASA Astrophysics Data System (ADS)

    Kou, Jiahui; Varma, Rajender S.

    2013-08-01

    A microwave hydrothermal method is developed for the synthesis of iron oxides, α-Fe2O3, β-FeOOH, and the junction of α-Fe2O3-β-FeOOH. This method is absolutely organic-free, and various structures could be obtained simply by changing the use of the iron source and NaOH. The as-prepared sea urchin-like β-FeOOH exhibits excellent catalytic performance for the degradation of methylene blue (MB) in the presence of H2O2.A microwave hydrothermal method is developed for the synthesis of iron oxides, α-Fe2O3, β-FeOOH, and the junction of α-Fe2O3-β-FeOOH. This method is absolutely organic-free, and various structures could be obtained simply by changing the use of the iron source and NaOH. The as-prepared sea urchin-like β-FeOOH exhibits excellent catalytic performance for the degradation of methylene blue (MB) in the presence of H2O2. Electronic supplementary information (ESI) available: XRD patterns and the reaction profile of the microwave system. See DOI: 10.1039/c3nr02663a

  11. Carbon isotopic studies of organic matter in Precambrian rocks.

    NASA Technical Reports Server (NTRS)

    Oehler, D. Z.; Schopf, J. W.; Kvenvolden, K. A.

    1972-01-01

    A survey has been undertaken of the carbon composition of the total organic fraction of a suite of Precambrian sediments to detect isotopic trends possibly correlative with early evolutionary events. Early Precambrian cherts of the Fig Tree and upper and middle Onverwacht groups of South Africa were examined for this purpose. Reduced carbon in these cherts was found to be isotopically similar to photosynthetically produced organic matter of younger geological age. Reduced carbon in lower Onverwacht cherts was found to be anomalously heavy; it is suggested that this discontinuity may reflect a major event in biological evolution.

  12. Effects on nano zero-valent iron reactivity of interactions between hardness, alkalinity, and natural organic matter in reverse osmosis concentrate.

    PubMed

    Hwang, Yuhoon; Shin, Hang-Sik

    2013-11-01

    Nanoscale zero-valent iron (NZVI) is considered to have potential to reduce nitrate in the concentrate generated by high pressure membrane processes aimed at water reuse. However, it is necessary to verify the effect of the matrix components in the concentrates on NZVI reactivity. In this study, the influence of hardness, alkalinity, and organic matter on NZVI reactivity was evaluated by the response surface method (RSM). Hardness (Ca2+) had a positive effect on NZVI reactivity by accelerating iron corrosion. In contrast, alkalinity (bicarbonate; HCO-3) and organic matter (humic acid; HA) had negative effects on NZVI reactivity due to morphological change to carbonate green rust, and to competitive adsorption of HA, respectively. The validity of the statistical prediction model derived from RSM was confirmed by an additional confirmation experiment, and the experimental result was within the 95% confidential interval. Therefore, it can be indicated that the RSM model produced results that were statistically significant. PMID:24552045

  13. Effects on nano zero-valent iron reactivity of interactions between hardness, alkalinity, and natural organic matter in reverse osmosis concentrate.

    PubMed

    Hwang, Yuhoon; Shin, Hang-Sik

    2013-11-01

    Nanoscale zero-valent iron (NZVI) is considered to have potential to reduce nitrate in the concentrate generated by high pressure membrane processes aimed at water reuse. However, it is necessary to verify the effect of the matrix components in the concentrates on NZVI reactivity. In this study, the influence of hardness, alkalinity, and organic matter on NZVI reactivity was evaluated by the response surface method (RSM). Hardness (Ca2+) had a positive effect on NZVI reactivity by accelerating iron corrosion. In contrast, alkalinity (bicarbonate; HCO-3) and organic matter (humic acid; HA) had negative effects on NZVI reactivity due to morphological change to carbonate green rust, and to competitive adsorption of HA, respectively. The validity of the statistical prediction model derived from RSM was confirmed by an additional confirmation experiment, and the experimental result was within the 95% confidential interval. Therefore, it can be indicated that the RSM model produced results that were statistically significant.

  14. [Relationships between soil organic carbon and environmental factors in gully watershed of the Loess Plateau].

    PubMed

    Wei, Xiao-Rong; Shao, Ming-An; Gao, Jian-Lun

    2008-10-01

    Understanding the distribution of organic carbon fractions in soils and their relationships with environmental factors are very important for appraising soil organic carbon status and assessing carbon cycling in the Loess Plateau. In this research, through field investigation and laboratory analysis, we studied the relationships between soil organic carbon and environmental factors in a gully watershed of the Loess Plateau. The environmental factors are landforms, land use conditions and soil types. The results showed that total soil organic carbon presented less variance, while high labile organic carbon presented greater variance. The variation coefficients of them are 34% and 43%, respectively, indicating that the variability of organic carbon in soils increased with the increasing of their activities. Total soil organic carbon, labile organic carbon, middle and high labile organic carbon were highly interrelated and presented similar distribution trend with environmental factors. Among different landforms, land uses, and soil types, the highest contents of organic carbon in different fractions were observed in plateau land, forest and farm lands, and black loessial soils, while the lowest contents of them were observed in gully bottom, grass land, and rubified soils, respectively. The relationships between organic carbon and environmental factors indicate that environmental factors not only directly influence the distribution of soil organic carbon, but also indirectly influence them through affecting the relationships among organic carbon fractions. The relationship between total organic carbon and labile organic carbon responses rapidly to environmental factors, while that between middle labile organic carbon and high labile organic carbon responses slowly to environmental factors. PMID:19143389

  15. Competitive adsorption, displacement, and transport of organic matter on iron oxide: II. Displacement and transport

    SciTech Connect

    Gu, B; Mehlhorn, T.L.; Liang, Liyuan

    1996-08-01

    The competitive interactions between organic matter compounds and mineral surfaces are poorly understood, yet these interactions may play a significant role in the stability and co-transport of mineral colloids and/or environmental contaminants. In this study, the processes of competitive adsorption, displacement, and transport of Suwannee River natural organic matter (SR-NOM) are investigated with several model organic compounds in packed beds of iron oxide-coated quartz columns. Results demonstrated that strongly-binding organic compounds are competitively adsorbed and displace those weakly-bound organic compounds along the flow path. Among the four organic compounds studied, polyacrylic acid (PAA) appeared to be the most competitive, whereas SR-NOM was more competitive than phthalic and salicylic acids. A diffuse adsorption and sharp desorption front (giving an appearance of irreversible adsorption) of the SR-NOM breakthrough curves are explained as being a result of the competitive time-dependent adsorption and displacement processes between different organic components within the SR-NOM. The stability and transport of iron oxide colloids varied as one organic component competitively displaces another. Relatively large quantities of iron oxide colloids are transported when the more strongly-binding PAA competitively displaces the weakly-binding SR-NOM or when SR-NOM competitively displaces phthalic and salicylic acids. Results of this study suggest that the chemical composition and hence the functional behavior of NOM (e.g., in stabilizing mineral colloids and in complexing contaminants) can change along its flow path as a result of the dynamic competitive interactions between heterogeneous NOM subcomponents. Further studies are needed to better define and quantify these NOM components as well as their roles in contaminant partitioning and transport. 37 refs., 10 figs.

  16. Competitive adsorption, displacement, and transport of organic matter on iron oxide: II. Displacement and transport

    NASA Astrophysics Data System (ADS)

    Gu, Baohua; Mehlhorn, Tonia L.; Liang, Liyuan; McCarthy, John F.

    1996-08-01

    The competitive interactions between organic matter compounds and mineral surfaces are poorly understood, yet these interactions may play a significant role in the stability and co-transport of mineral colloids and/or environmental contaminants. In this study, the processes of competitive adsorption, displacement, and transport of Suwannee River natural organic matter (SR-NOM) are investigated with several model organic compounds in packed beds of iron oxide-coated quartz columns. Results demonstrated that strongly-binding organic compounds are competitively adsorbed and displace those weakly-bound organic compounds along the flow path. Among the four organic compounds studied, polyacrylic acid (PAA) appeared to be the most competitive, whereas SR-NOM was more competitive than phthalic and salycylic acids. The transport of SR-NOM is found to involve a complex competitive interaction and displacement of different NOM subcomponents. A diffuse adsorption and sharp desorption front (giving an appearance of irreversible adsorption) of the SR-NOM breakthrough curves are explained as being a result of the competitive time-dependent adsorption and displacement processes between different organic components within the SR-NOM. The stability and transport of iron oxide colloids varied as one organic component competitively displaces another. Relatively large quantities of iron oxide colloids are transported when the more strongly-binding PAA competitively displaces the weakly-binding SR-NOM or when SR-NOM competitively displaces phthalic and salicylic acids. Results of this study suggest that the chemical composition and hence the functional behavior of NOM (e.g., in stabilizing mineral colloids and in complexing contaminants) can change along its flow path as a result of the dynamic competitive interactions between heterogeneous NOM subcomponents. Further studies are needed to better define and quantify these NOM components as well as their roles in contaminant partitioning

  17. Hematite Core Nanoparticles with Carbon Shell: Potential for Environmentally Friendly Production from Iron Mining Sludge

    NASA Astrophysics Data System (ADS)

    Stević, Dragana; Mihajlović, Dijana; Kukobat, Radovan; Hattori, Yoshiyuki; Sagisaka, Kento; Kaneko, Katsumi; Atlagić, Suzana Gotovac

    2016-08-01

    Hematite nanoparticles with amorphous, yet relatively uniform carbon shell, were produced based exclusively on the waste sludge from the iron mine as the raw material. The procedure for acid digestion-based purification of the sludge with the full recovery of acid vapors and the remaining non-toxic rubble is described. Synthesis of the hematite nanoparticles was performed by the arrested precipitation method with cationic surfactant. The particles were thoroughly characterized and the potential of their economical production for the battery industry is indicated.

  18. Carbon-11 radiolabeling of iron-oxide nanoparticles for dual-modality PET/MR imaging

    NASA Astrophysics Data System (ADS)

    Sharma, Ramesh; Xu, Youwen; Kim, Sung Won; Schueller, Michael J.; Alexoff, David; Smith, S. David; Wang, Wei; Schlyer, David

    2013-07-01

    Dual-modality imaging, using Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) simultaneously, is a powerful tool to gain valuable information correlating structure with function in biomedicine. The advantage of this dual approach is that the strengths of one modality can balance the weaknesses of the other. However, success of this technique requires developing imaging probes suitable for both. Here, we report on the development of a nanoparticle labeling procedure via covalent bonding with carbon-11 PET isotope. Carbon-11 in the form of [11C]methyl iodide was used as a methylation agent to react with carboxylic acid (-COOH) and amine (-NH2) functional groups of ligands bound to the nanoparticles (NPs). The surface coating ligands present on superparamagnetic iron-oxide nanoparticles (SPIO NPs) were radiolabeled to achieve dual-modality PET/MR imaging capabilities. The proof-of-concept dual-modality PET/MR imaging using the radiolabeled SPIO NPs was demonstrated in an in vivo experiment.Dual-modality imaging, using Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) simultaneously, is a powerful tool to gain valuable information correlating structure with function in biomedicine. The advantage of this dual approach is that the strengths of one modality can balance the weaknesses of the other. However, success of this technique requires developing imaging probes suitable for both. Here, we report on the development of a nanoparticle labeling procedure via covalent bonding with carbon-11 PET isotope. Carbon-11 in the form of [11C]methyl iodide was used as a methylation agent to react with carboxylic acid (-COOH) and amine (-NH2) functional groups of ligands bound to the nanoparticles (NPs). The surface coating ligands present on superparamagnetic iron-oxide nanoparticles (SPIO NPs) were radiolabeled to achieve dual-modality PET/MR imaging capabilities. The proof-of-concept dual-modality PET/MR imaging using the radiolabeled

  19. Multiband microwave absorption films based on defective multiwalled carbon nanotubes added carbonyl iron/acrylic resin

    NASA Astrophysics Data System (ADS)

    Li, Yong; Chen, Changxin; Pan, Xiaoyan; Ni, Yuwei; Zhang, Song; Huang, Jie; Chen, Da; Zhang, Yafei

    2009-05-01

    Defective multiwalled carbon nanotubes (MWCNTs) were introduced to the carbonyl iron (CI) based composites to improve its microwave absorption by a simple ultrasonic mixing process. The electromagnetic parameters were measured in the 2-18 GHz range. Microwave absorption of CI based composites with 2 mm in thickness was evidently enhanced by adding as little as 1.0 wt% defective MWCNTs with two well separated absorption peaks exceeding -20 dB, as compared with that of pure CI based and defective MWCNTs composites. The enhancement mechanism is thought due to the interaction and better electromagnetic match between defective MWCNTs and ferromagnetic CI particles.

  20. Carbon aging mechanisms and effects on retention of organic iodides

    SciTech Connect

    Hyder, M.L.

    1985-01-01

    The activated carbon used to treat the off-gas from the Savannah River Plant prodution reactor building was studied to determine the chemical changes occurring in this carbon during its service life. The carbon is a coconut-shell charcoal impregnated with 1% triethylenediamine (TEDA) and 2% KI. It was known that during its 30-month service life the carbon becomes more acidic and less effective for retaining iodine in organic form. The study showed that the most important change occurring in the carbon is the reaction of KI to give other chemical forms of iodine. The reacted iodine is unavailable for exchange with alkyl iodides. The results suggest that the carbon reacts with KI to form organic compounds, but small amounts of oxidized iodine may also be presnt. There is also evidence that some iodide is lost from the carbon altogether. The TEDA impregnant is lost from the carbon very quickly, and has no importance after a few months. The specific reactions by which the impregnant is lost have not been identified. However, mathematical analysis shows that the carbon performance data are consistent with the reaction of iodide impregnant with impurities in the air flowing through the carbon bed. Additional mathematical analysis, based on electron microscopic observation of the carbon particles, indicates that the external surfaces of the carbon are mainly responsible for their effectiveness in retaining iodine. Consequently, the condition of the impregnants on a relatively small fraction of the carbon surface can have a large effect on its performance. 4 refs., 14 figs., 2 tabs.

  1. Carbon Mineralizability Determines Interactive Effects on Mineralization of Pyrogenic Organic Matter and Soil Organic Carbon

    SciTech Connect

    Whitman, Thea L.; Zhu, Zihua; Lehmann, Johannes C.

    2014-10-31

    Soil organic carbon (SOC) is a critical and active pool in the global C cycle, and the addition of pyrogenic organic matter (PyOM) has been shown to change SOC cycling, increasing or decreasing mineralization rates (often referred to as priming). We adjusted the amount of easily mineralizable C in the soil, through 1-day and 6-month pre-incubations, and in PyOM made from maple wood at 350°C, through extraction. We investigated the impact of these adjustments on C mineralization interactions, excluding pH and nutrient effects and minimizing physical effects. We found short-term increases (+20-30%) in SOC mineralization with PyOM additions in the soil pre-incubated for 6 months. Over the longer term, both the 6-month and 1-day pre-incubated soils experienced net ~10% decreases in SOC mineralization with PyOM additions. This was possibly due to stabilization of SOC on PyOM surfaces, suggested by nanoscale secondary ion mass spectrometry. Additionally, the duration of pre-incubation affected priming interactions, indicating that there may be no optimal pre-incubation time for SOC mineralization studies. We show conclusively that relative mineralizability of SOC in relation to PyOM-24 C is an important determinant of the effect of PyOM additions on SOC mineralization.

  2. Carbon mineralizability determines interactive effects on mineralization of pyrogenic organic matter and soil organic carbon.

    PubMed

    Whitman, Thea; Zhu, Zihua; Lehmann, Johannes

    2014-12-01

    Soil organic carbon (SOC) is a critical and active pool in the global C cycle, and the addition of pyrogenic organic matter (PyOM) has been shown to change SOC cycling, increasing or decreasing mineralization rates (often referred to as priming). We adjusted the amount of easily mineralizable C in the soil, through 1-day and 6-month preincubations, and in PyOM made from maple wood at 350 °C, through extraction. We investigated the impact of these adjustments on C mineralization interactions, excluding pH and nutrient effects and minimizing physical effects. We found short-term increases (+20-30%) in SOC mineralization with PyOM additions in the soil preincubated for 6 months. Over the longer term, both the 6-month and 1-day preincubated soils experienced net ∼10% decreases in SOC mineralization with PyOM additions. Additionally, the duration of preincubation affected interactions, indicating that there may be no optimal preincubation time for SOC mineralization studies. We show conclusively that mineralizability of SOC in relation to PyOM-C is an important determinant of the effect of PyOM additions on SOC mineralization. PMID:25361379

  3. Soil organic carbon mining versus priming - controls of soil organic carbon stocks along a management gradient

    NASA Astrophysics Data System (ADS)

    Blanes, M. Carmen; Reinsch, Sabine; Glanville, Helen C.; Jones, Davey L.; Carreira, José A.; Pastrana, David N.; Emmett, Bridget A.

    2015-04-01

    Soil carbon (C), nitrogen (N) and phosphorous (P) are assumed to be connected stoichiometrically and C:N(:P) ratios are frequently used to interpret the soils nutrient status. However, plants are capable of initiating the supply of nutrients by releasing rhizodeposits into the soil, thereby stimulating soil organic matter decomposition mediated by the rhizosphere microbial community. To test the relative importance of the two mechanisms across a fertility gradient in the UK we carried out a laboratory experiment. Intact soil cores from two depths (0-15 cm and 85-100 cm) were incubated and C, N and P were added in all possible combinations resulting in a total of 216 soil cores. Soil respiration was measured (1 h incubation, 10 oC) nine times over a 2 week period. Preliminary results indicate that all soils were C limited at the surface as measured as increased soil CO2 efflux. N additions increased soil respiration only marginally, whereas C+N stimulated microbial activity on the surface, and was even more pronounced in the deeper soil layer. Belowground responses to C+P were small and even smaller for N+P but similar for both soil depths. Our results indicate nutrient controls on soil organic matter turnover differ not only across a management/fertility gradient but also vertically down the soil profile.

  4. COSOLVENT EFFECTS ON ORGANIC CHEMICAL PARTITIONING TO SEDIMENT ORGANIC CARBON

    EPA Science Inventory

    Sorption-desorption hysteresis, slow desorption kinetics and resultant bioavailability, and other nonideal phenomena have been attributed to the differing sorptive characteristics of the natural organic polymers associated with soils and sediments. The objectives of this study we...

  5. Microbial Contribution to Organic Carbon Sequestration in Mineral Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil productivity and sustainability are dependent on soil organic matter (SOM). Our understanding on how organic inputs to soil from microbial processes become converted to SOM is still limited. This study aims to understand how microbes affect carbon (C) sequestration and the formation of recalcit...

  6. Organic farming enhances soil carbon and its benefits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing soil carbon through systematic agricultural practices provides an array of societal and farmer/producer benefits. Organic methods have been utilized for over 6000 years to conserve soil, water, energy, and biological resources. Many of the benefits of organic technologies identified in ...

  7. Effects of iron-reducing bacteria on carbon steel corrosion induced by thermophilic sulfate-reducing consortia.

    PubMed

    Valencia-Cantero, Eduardo; Peña-Cabriales, Juan José

    2014-02-28

    Four thermophilic bacterial species, including the iron-reducing bacterium Geobacillus sp. G2 and the sulfate-reducing bacterium Desulfotomaculum sp. SRB-M, were employed to integrate a bacterial consortium. A second consortium was integrated with the same bacteria, except for Geobacillus sp. G2. Carbon steel coupons were subjected to batch cultures of both consortia. The corrosion induced by the complete consortium was 10 times higher than that induced by the second consortium, and the ferrous ion concentration was consistently higher in iron-reducing consortia. Scanning electronic microscopy analysis of the carbon steel surface showed mineral films colonized by bacteria. The complete consortium caused profuse fracturing of the mineral film, whereas the non-iron-reducing consortium did not generate fractures. These data show that the iron-reducing activity of Geobacillus sp. G2 promotes fracturing of mineral films, thereby increasing steel corrosion.

  8. Growth of Multi-Walled Carbon Nanotubes by Injection CVD Using Cyclopentadienyliron Dicarbonyl Dimer and Cyclooctatetraene Iron Tricarbonyl

    NASA Technical Reports Server (NTRS)

    Harris, Jerry D.; Raffaelle, Ryne P.; Gennett, Thomas; Landi, Brian J.; Hepp, Aloysius F.

    2004-01-01

    Preferential oriented multiwalled carbon nanotubes were prepared by the injection chemical vapor deposition (CVD) method using either cyclopentadienyliron dicarbonyl dimer or cycloctatetraene iron tricarbonyl as the iron catalyst source. The catalyst precursors were dissolved in toluene as the carrier solvent for the injections. The concentration of the catalyst was found to influence both the growth of the nanotubes as well as the amount of iron in the deposited material. As deposited the multiwalled carbon nanotubes contained as little as 2.8% iron by weight. The material was deposited onto tantalum foil and fused silica substrates. The nanotubes were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and thermogravimetric analysis. This synthetic route provides a simple and scalable method to deposit MWNTs with a low defect density, low metal content and preferred orientation.

  9. Iron(3) oxide-based nanoparticles as catalysts in advanced organic aqueous oxidation.

    PubMed

    Zelmanov, Grigory; Semiat, Raphael

    2008-01-01

    Water contaminated with dissolved organic matter is an important issue to resolve for all-purpose uses. The catalytic behavior of iron-based nanocatalysts was investigated for the treatment of contaminated water in the advanced chemical oxidation process. In this study, typical organic contaminants, such as ethylene glycol and phenol, were chosen to simulate common contaminants. It was shown that the two substances are efficiently destroyed by the Fenton-like reaction using iron(3) oxide-based nanocatalysts in the presence of hydrogen peroxide without the need for UV or visible radiation sources at room temperature. A strong effect of nanocatalyst concentration on reaction rate was shown. The kinetic reaction was found and the reaction rate coefficient k was calculated.

  10. First discovery of the organic materials in deep-sea iron cosmic spherule

    NASA Technical Reports Server (NTRS)

    Hanchang, Peng; Peicang, XU

    1993-01-01

    The dust impact mass analyzer (PUMA) carried by the spacecraft Vega 1, Vega 2 and Giotto has provided the first direct measurements of the physical and chemical properties of cometary dust. The results indicate that most of the cometary dust particles are rich in light elements such as H, C, N, and O, suggesting the validity of models that describe the cometary dust as including organic material. Up to now, there were none found with the organic material from the deep-sea cosmic spherules. We have determined this from the deep-sea iron cosmic spherules collected from the North Pacific. An iron cosmic spherule (382 microns in diameter) was determined by the Laser Raman Microprobe.

  11. [The organic carbon--issues of hygienic regulation and harmonization].

    PubMed

    Kuz'mina, E A; Kuznetsov, E O; Smagina, N V; Slyshkina, T V; Akramov, R L; Brusnitsina, L A; Nitsak, G B; Nikonova, S V

    2013-01-01

    This study is devoted to the investigation of possibility to use the total organic carbon as regulated index in drinking water as well as to the issues of hygienic regulation and harmonizing this index with the standards of other countries. Basing on the results of 3 years lasting investigation carried out by Municipal Unitary Enterprise "Vodokanal" of Yekaterinburg city permits to propose as the most informative and reliable index of the presence of organic substances in drinking water the content of total organic carbon in comparison with currently regulated permanganate oxidability, chemical and biochemical oxygen consumption.

  12. Analyses of residual iron in carbon nanotubes produced by camphor/ferrocene pyrolysis and purified by high temperature annealing

    NASA Astrophysics Data System (ADS)

    Antunes, E. F.; de Resende, V. G.; Mengui, U. A.; Cunha, J. B. M.; Corat, E. J.; Massi, M.

    2011-07-01

    A detailed analysis of iron-containing phases in multiwall carbon nanotube (MWCNT) powder was carried out. The MWCNTs were produced by camphor/ferrocene and purified by high temperature annealing in an oxygen-free atmosphere (N2 or VC). Thermogravimetric analysis, Mössbauer spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy enabled the evaluation of the residual iron in MWCNTs after purification. The VC treatments provided MWCNTs with a purity degree higher than 99%. Moreover, Raman spectroscopy revealed a significant improvement in graphitic ordering after thermal annealing. A brief description of the mechanism of iron removal was included. We highlight the mobility of iron atoms through graphitic sheets and the large contact angle of iron clusters formed on MWCNT surfaces at high temperatures.

  13. Spontaneous electrochemical processing in conventional organic solutions for iron ion removal and metal deposition

    NASA Astrophysics Data System (ADS)

    Sun, Jinghua

    2002-01-01

    In one part of this research, spontaneous electrochemical redox reactions in conventional organic solutions commonly used in solvent extraction were demonstrated. In these reactions, the more noble metal is reduced while the less noble metal dissolves simultaneously. This technique was successfully applied in metal recovery or impurity separation in laboratory tests using synthetic and commercially produced solutions. The second use of the process was in depositing metal seed layers on metallized wafers for use in chip manufacture. The patented process in the first application, called galvanic stripping, has been demonstrated on batch and continuous levels to separate iron from a sulfate medium using DEHPA. The use of zinc and steel scrap as reductants was evaluated. The reductant was found to be one of the most important components in the galvanic stripping process. The effects of other processing variables such as solution chemistry, reductant surface area, ferric ion concentration in the organic phase, agitation, and aqueous pH on iron recovery and efficiency were also evaluated. An experimental design with statistical analysis was utilized to optimize overall iron removal and process efficiency. The continuous test allowed the cycling of the organic and strip aqueous solutions and produced a concentrated iron sulfate strip solution containing ferrous ions in the range of 90 to 130 g/L. Based on the galvanic stripping principle a novel metal deposition technique was successfully applied for depositing seed layers on TiSiN and other metal films on Si wafers for subsequent electroless copper deposition as well as the deposition of gold onto a sputtered copper film. XPS measurements confirmed that the deposited particles or films were a pure metallic metal phase. The effects of various factors including the organic bath composition, reaction time, temperature and agitation on the deposit surface morphologies and the distribution of nuclei were investigated.

  14. Empirical evidence for the fractionation of carbon isotopes between diamond and iron carbide from the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Mikhail, S.; Guillermier, C.; Franchi, I. A.; Beard, A. D.; Crispin, K.; Verchovsky, A. B.; Jones, A. P.; Milledge, H. J.

    2014-04-01

    have studied two samples of mantle diamond containing iron carbide inclusions from Jagersfontein kimberlite, South Africa. Syngenetic crystal growth is inferred using morphological characteristics. These samples provide an opportunity to investigate the isotopic partitioning of 13C in a terrestrial natural high-pressure and high-temperature (HPHT) system. The difference for the δ13C values between the diamond and coexisting iron carbide averaged 7.2 ± 1.3‰. These data are consistent with available data from the literature showing iron carbide to be 13C-depleted relative to elemental carbon (i.e., diamond). We infer that the minerals formed by crystallization of diamond and iron carbide at HPHT in the mantle beneath the Kaapvaal Craton. It is unclear whether crystallization occurred in subcratonic or sublithospheric mantle; in addition, the source of the iron is also enigmatic. Nonetheless, textural coherence between diamond and iron carbide resulted in isotopic partitioning of 13C between these two phases. These data suggest that significant isotopic fractionation of 13C/12C (Δ13C up to >7‰) can occur at HPHT in the terrestrial diamond stability field. We note that under reducing conditions at or below the iron-iron wustite redox buffer in a cratonic or deep mantle environment in Earth, the cogenesis of carbide and diamond may produce reservoirs of 13C-depleted carbon that have conventionally been interpreted as crustal in origin. Finally, the large Δ13C for diamond-iron carbide shown here demonstrates Δ13C for silicate-metallic melts is a parameter that needs to be constrained to better determine the abundance of carbon within the Earth's metallic core.

  15. One-step synthesis of nitrogen-iron coordinated carbon nanotube catalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Choi, Woongchul; Yang, Gang; Kim, Suk Lae; Liu, Peng; Sue, Hung-Jue; Yu, Choongho

    2016-05-01

    Prohibitively expensive precious metal catalysts for oxygen reduction reaction (ORR) have been one of the major hurdles in a wide use of electrochemical cells. Recent significant efforts to develop precious metal free catalysts have resulted in excellent catalytic activities. However, complicated and time-consuming synthesis processes have negated the cost benefit. Moreover, detailed analysis about catalytically active sites and the role of each element in these high-performance catalysts containing nanomaterials for large surface areas are often lacking. Here we report a facile one-step synthesis method of nitrogen-iron coordinated carbon nanotube (CNT) catalysts without precious metals. Our catalysts show excellent long-term stability and onset ORR potential comparable to those of other precious metal free catalysts, and the maximum limiting current density from our catalysts is larger than that of the Pt-based catalysts. We carry out a series of synthesis and characterization experiments with/without iron and nitrogen in CNT, and identify that the coordination of nitrogen and iron in CNT plays a key role in achieving the excellent catalytic performances. We anticipate our one-step process could be used for mass production of precious metal free electrocatalysts for a wide range of electrochemical cells including fuel cells and metal-air batteries.

  16. Heterogeneous Fenton-like degradation of 4-chlorophenol using iron/ordered mesoporous carbon catalyst.

    PubMed

    Duan, Feng; Yang, Yuezhu; Li, Yuping; Cao, Hongbin; Wang, Yi; Zhang, Yi

    2014-05-01

    Ordered mesoporous carbon supported iron catalysts (Fe/OMC) were prepared by the incipient wetness impregnation method and investigated in Fenton-like degradation of 4-chlorophenol (4CP) in this work. XRD and TEM characterization showed that the iron oxides were well dispersed on the OMC support and grew bigger with the increasing calcination temperature. The catalyst prepared with a lower calcination temperature showed higher decomposition efficiency towards 4CP and H2O2, but more metals were leached. The effect of different operational parameters such as initial pH, H2O2 dosage, and reaction temperature on the catalytic activity was evaluated. The results showed that 96.1% of 4CP and 47.4% of TOC was removed after 270 min at 30°C, initial pH of 3 and 6.6 mmol/L H2O2. 88% of 4CP removal efficiency was retained after three successive runs, indicating Fe/OMC a stable catalyst for Fenton reaction. 4CP was degraded predominately by the attack of hydroxyl radical formed on the catalyst surface and in the bulk solution due to iron leaching. Based on the degradation intermediates detected by high performance liquid chromatography, possible oxidation pathways were proposed during the 4CP degradation. PMID:25079648

  17. The influence of iron concentration on biohydrogen production from organic waste via anaerobic fermentation.

    PubMed

    Boni, M R; Sbaffoni, S; Tuccinardi, L

    2014-01-01

    Different micronutrients are essential for bacterial fermentative metabolism. In particular, some metallic ions, like iron, are able to affect the biological H₂production. In this study, batch tests were carried out in stirred reactors to investigate the effects of Fe²⁺ concentration on fermentative H₂production from two different organic fractions of waste: source-separated organic waste (OW) from a composting plant including organic fraction of municipal solid waste and food waste (FW) from a refectory. Iron supplementation at 1000 mg/L caused twofold increment in the cumulative H₂production from OW (922 mL) compared with the control (without iron doping). The highest H₂production (1736 mL) from FW occurred when Fe²⁺ concentration was equal to 50 mg/L. In addition, the process production from OW was modelled through the modified Gompertz equation. For FW, a translated Gompertz equation was used by the authors, because the initial lag-time for H₂production from FW was almost negligible.

  18. Organic carbon sources to SE Asian coastal sediments

    NASA Astrophysics Data System (ADS)

    Kennedy, H.; Gacia, E.; Kennedy, D. P.; Papadimitriou, S.; Duarte, C. M.

    2004-05-01

    The carbon, nitrogen and the stable carbon isotopic composition, δ13C, of organic matter has been used to elucidate the source(s) of this material to coastal sediments. Sediments were collected at 15 coastal locations in the Philippines and Vietnam, which broadly represented different depositional environments ranging from seagrass meadows, through seagrass meadows located near mangroves and to mangrove stands. In addition, short-term sediment traps were deployed at 12 of the sites where seagrass was present. Mean sediment organic carbon concentration and C/N increased and δ13C of organic matter decreased from seagrass to mangrove dominated settings. The organic carbon flux measured by the sediment trap deployments was very variable (32±3 to ˜700 mmol m -2 d -1) and represented only a small fraction of the total particle flux. The importance of seagrass as a source of organic matter to the sediments was assessed by using a simple mixing model and the average δ13C values for seagrass, their epiphytic community and surface water particulate matter (seston). A positive correlation between seagrass leaf biomass and sediment δ13C in seagrass dominated settings suggests that these macrophytes do significantly influence the composition of sedimentary organic matter. Seagrass was however rarely found to be the dominant source of organic matter to the underlying sediments. Both sediment trap and sediment data suggest that material of planktonic origin was the dominant source of sedimentary organic matter in these settings. At the sites dominated by mangroves the concentration of organic matter ( ˜1-13 ×10 3 mmol g-1) in the sediment is generally higher than at seagrass dominated sites due to the outwelling of organic matter from the mangrove stands. Mangrove organic matter often dominates the sedimentary input but other sources of organic matter must contribute to cause the observed range in sediment δ13C.

  19. Competitive adsorption, displacement, and transport of organic matter on iron oxide: I. Competitive adsorption

    NASA Astrophysics Data System (ADS)

    Gu, Baohua; Mehlhorn, Tonia L.; Liang, Liyuan; McCarthy, John F.

    1996-06-01

    Different organic compounds or fractions of natural organic matter (NOM) show different adsorption affinities ( K) and capacities ( qm) on mineral surfaces. We hypothesize that these different organic compounds or fractions compete for adsorption when surface adsorption sites are limited. In this study, competitive adsorption of binary mixtures of Suwannee River NOM (SR-NOM), polyacrylic acid (PAA), phthalic acid, and salicylic acid on iron oxide was investigated at a constant solid:solution ratio, temperature, and pressure, but at varying C weight fractions, pH, and solution concentrations of the mixture. Results revealed that, in general, PAA is the most competitive whereas SR-NOM is more competitive than phthalic and salicylic acids. The competitive adsorption of these organic compounds is pH-dependent. At pH < 4, PAA becomes less competitive than SR-NOM or phthalic and salicylic acids. The competition among these organic compounds may be related to their carboxyl functional groups and their molecular structure. The overall strong competitiveness of PAA at pH > 4 in comparison with other organics is attributed to its high carboxyl density and linear molecular structure, which promote strong surface complexation with iron oxide. Because of the heterogeneity or polydispersity of NOM, this research indicates that NOM partitioning and transport in the subsurface soil environment are influenced by the dynamic competitive interactions between NOM subcomponents (or fractions). This process ultimately influences the distribution, interaction, and cotransport of contaminants and mineral colloids that are associated with NOM.

  20. Final Report: The Impact of Carbonate on Surface Protonation, Electron Transfer and Crystallization Reactions in Iron Oxide Nanoparticles and Colloids

    SciTech Connect

    Dixon, David Adams

    2013-07-02

    This project addresses key issues of importance in the geochemical behavior of iron oxides and in the geochemical cycling of carbon and iron. For Fe, we are specifically studying the influence of carbonate on electron transfer reactions, solid phase transformations, and the binding of carbonate to reactive sites on the edges of particles. The emphasis on carbonate arises because it is widely present in the natural environment, is known to bind strongly to oxide surfaces, is reactive on the time scales of interest, and has a speciation driven by acid-base reactions. The geochemical behavior of carbonate strongly influences global climate change and CO{sub 2} sequestration technologies. Our goal is to answer key questions with regards to specific site binding, electron transfer reactions, and crystallization reactions of iron oxides that impact both the geochemical cycling of iron and CO{sub 2} species. Our work is focused on the molecular level description of carbonate chemistry in solution including the prediction of isotope fractionation factors. We have also done work on critical atmospheric species.

  1. Single-shell carbon-encapsulated iron nanoparticles: synthesis and high electrocatalytic activity for hydrogen evolution reaction.

    PubMed

    Tavakkoli, Mohammad; Kallio, Tanja; Reynaud, Olivier; Nasibulin, Albert G; Johans, Christoffer; Sainio, Jani; Jiang, Hua; Kauppinen, Esko I; Laasonen, Kari

    2015-04-01

    Efficient hydrogen evolution reaction (HER) through effective and inexpensive electrocatalysts is a valuable approach for clean and renewable energy systems. Here, single-shell carbon-encapsulated iron nanoparticles (SCEINs) decorated on single-walled carbon nanotubes (SWNTs) are introduced as a novel highly active and durable non-noble-metal catalyst for the HER. This catalyst exhibits catalytic properties superior to previously studied nonprecious materials and comparable to those of platinum. The SCEIN/SWNT is synthesized by a novel fast and low-cost aerosol chemical vapor deposition method in a one-step synthesis. In SCEINs the single carbon layer does not prevent desired access of the reactants to the vicinity of the iron nanoparticles but protects the active metallic core from oxidation. This finding opens new avenues for utilizing active transition metals such as iron in a wide range of applications. PMID:25683139

  2. Organics on Titan : Carbon Rings and Carbon Cycles (Invited)

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2010-12-01

    The photochemical conversion of methane into heavier organics which would cover Titan’s surface has been a principal motif of Titan science for the last 4 decades. Broadly, this picture has held up against Cassini observations, but organics on Titan turn out to have some surprising characteristics. First, the surface deposits of organics are segregated into at least two distinct major reservoirs - equatorial dune sands and polar seas. Second, the rich array of compounds detected as ions and molecules even 1000km above Titan’s surface has proven much more complex than expected, including two-ring anthracene and compounds with m/z>1000. Radar and near-IR mapping shows that Titan’s vast dunefields, covering >10% of Titan’s surface, contain ~0.3 million km^3 of material. This material is optically dark and has a low dielectric constant, consistent with organic particulates. Furthermore, the dunes are associated with a near-IR spectral signature attributed to aromatic compounds such as benzene, which has been sampled in surprising abundance in Titan’s upper atmosphere. The polar seas and lakes of ethane (and presumably at least some methane) may have a rather lower total volume than the dune sands, and indeed may contain little more, if any, methane than the atmosphere itself. The striking preponderance of liquid deposits in the north, notably the 500- and 1000-km Ligeia and Kraken, contrasts with the apparently shallow and shrinking Ontario Lacus in the south, and perhaps attests to volatile migration on astronomical (Croll-Milankovich) timescales as well as seasonal methane transport. Against this appealing picture, many questions remain. What is the detailed composition of the seas, and can chemistry in a nonpolar solvent yield compounds of astrobiological interest ? Are there ‘groundwater’ reservoirs of methane seething beneath the surface, perhaps venting to form otherwise improbable equatorial clouds? And what role, if any, do clathrates play today

  3. [Roles of soil dissolved organic carbon in carbon cycling of terrestrial ecosystems: a review].

    PubMed

    Li, Ling; Qiu, Shao-Jun; Liu, Jing-Tao; Liu, Qing; Lu, Zhao-Hua

    2012-05-01

    Soil dissolved organic carbon (DOC) is an active fraction of soil organic carbon pool, playing an important role in the carbon cycling of terrestrial ecosystems. In view of the importance of the carbon cycling, this paper summarized the roles of soil DOC in the soil carbon sequestration and greenhouse gases emission, and in considering of our present ecological and environmental problems such as soil acidification and climate warming, discussed the effects of soil properties, environmental factors, and human activities on the soil DOC as well as the response mechanisms of the DOC. This review could be helpful to the further understanding of the importance of soil DOC in the carbon cycling of terrestrial ecosystems and the reduction of greenhouse gases emission.

  4. Carbon sequestration in soil by in situ catalyzed photo-oxidative polymerization of soil organic matter.

    PubMed

    Piccolo, Alessandro; Spaccini, Riccardo; Nebbioso, Antonio; Mazzei, Pierluigi

    2011-08-01

    Here we describe an innovative mechanism for carbon sequestration in soil by in situ photopolymerization of soil organic matter under biomimetic catalysis. Three different Mediterranean soils were added with a synthetic water-soluble iron-porphyrin, irradiated by solar light, and subjected first to 5 days incubation and, then, 15, and 30 wetting and drying (w/d) cycles. The in situ catalyst-assisted photopolymerization of soil organic carbon (SOC) increased water stability of soil aggregates both after 5 days incubation and 15 w/d cycles, but not after 30 w/d cycles. Particle-size distribution of all treated soils confirmed the induced soil physical improvement, by showing a concomitant lower yield of the clay-sized fraction and larger yields of either coarse sand- or fine sand-size fractions, depending on soil texture, though only after 5 days incubation. The gain in soil physical quality was reflected by the shift of OC content from small to large soil aggregates, thereby suggesting that photopolymerization stabilized OC by both chemical and physical processes. A further evidence of the carbon sequestration capacity of the photocatalytic treatment was provided by the significant reduction of CO(2) respired by all soils after both incubation and w/d cycles. Our findings suggest that "green" catalytic technologies may potentially be the bases for future practices to increase soil carbon stabilization and mitigate CO(2) emissions from arable soils.

  5. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions.

    PubMed

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-05-01

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy.

  6. Production, energy, and carbon emissions: A data profile of the iron and steel industry

    SciTech Connect

    Battles, S.J.; Burns, E.M.; Adler, R.K.

    1999-07-01

    The complexities of the manufacturing sector unquestionably make energy-use analysis more difficult here than in other energy-using sectors. Therefore, this paper examines only one energy-intensive industry within the manufacturing sector--blast furnaces and steel mills (SIC 3312). SIC 3312, referred to as the iron and steel industry in this paper, is profiled with an examination of the products produced, how they are produced, and energy used. Energy trends from 1985 to 1994 are presented for three major areas of analysis. The first major area includes trends in energy consumption and expenditures. The next major area includes a discussion of energy intensity--first as to its definition, and then its measurement. Energy intensities presented include the use of different (1) measures of total energy, (2) energy sources, (3) end-use energy measures, (4) energy expenditures, and (5) demand indicators-economic and physical values are used. The final area of discussion is carbon emissions. Carbon emissions arise both from energy use and from certain industrial processes involved in the making of iron and steel. This paper focuses on energy use, which is the more important of the two. Trends are examined over time.

  7. Advanced landfill leachate treatment using iron-carbon microelectrolysis- Fenton process: Process optimization and column experiments.

    PubMed

    Wang, Liqun; Yang, Qi; Wang, Dongbo; Li, Xiaoming; Zeng, Guangming; Li, Zhijun; Deng, Yongchao; Liu, Jun; Yi, Kaixin

    2016-11-15

    A novel hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor was proposed for the pretreatment of mature landfill leachate. This reactor, combining microelectrolysis with Fenton process, revealed high treatment efficiency. The operating variables, including Fe-C dosage, H2O2 concentration and initial pH, were optimized by the response surface methodology (RSM), regarding the chemical oxygen demand (COD) removal efficiency and biochemical oxygen demand: chemical oxygen demand (BOD5/COD) as the responses. The highest COD removal (74.59%) and BOD5/COD (0.50) was obtained at optimal conditions of Fe-C dosage 55.72g/L, H2O2 concentration 12.32mL/L and initial pH 3.12. Three-dimensional excitation and emission matrix (3D-EEM) fluorescence spectroscopy and molecular weight (MW) distribution demonstrated that high molecular weight fractions such as refractory fulvic-like substances in leachate were effectively destroyed during the combined processes, which should be attributed to the combination oxidative effect of microelectrolysis and Fenton. The fixed-bed column experiments were performed and the breakthrough curves at different flow rates were evaluated to determine the practical applicability of the combined process. All these results show that the hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor is a promising and efficient technology for the treatment of mature landfill leachate. PMID:27450338

  8. Removal of Trace Arsenic to Meet Drinking Water Standards Using Iron Oxide Coated Multiwall Carbon Nanotubes

    PubMed Central

    Ntim, Susana Addo; Mitra, Somenath

    2011-01-01

    This study presents the removal of trace level arsenic to meet drinking water standards using an iron oxide-multi-walled carbon nanotube (Fe-MWCNT) hybrid as a sorbent. The synthesis was facilitated by the high degree of nanotube functionalization using a microwave assisted process, and a controlled assembly of iron oxide was possible where the MWCNT served as an effective support for the oxide. In the final product, 11 % of the carbon atoms were attached to Fe. The Fe-MWCNT was effective in arsenic removal to below the drinking water standard levels of 10 µg L−1. The absorption capacity of the composite was 1723 µg g−1 and 189 µg g−1 for As(III) and As(V) respectively. The adsorption of As(V) on Fe-MWCNT was faster than that of As(III). The pseudo-second order rate equation was found to effectively describe the kinetics of arsenic adsorption. The adsorption isotherms for As(III) and As(V) fitted both the Langmuir and Freundlich models. PMID:21625394

  9. Removal of Trace Arsenic to Meet Drinking Water Standards Using Iron Oxide Coated Multiwall Carbon Nanotubes.

    PubMed

    Ntim, Susana Addo; Mitra, Somenath

    2011-05-12

    This study presents the removal of trace level arsenic to meet drinking water standards using an iron oxide-multi-walled carbon nanotube (Fe-MWCNT) hybrid as a sorbent. The synthesis was facilitated by the high degree of nanotube functionalization using a microwave assisted process, and a controlled assembly of iron oxide was possible where the MWCNT served as an effective support for the oxide. In the final product, 11 % of the carbon atoms were attached to Fe. The Fe-MWCNT was effective in arsenic removal to below the drinking water standard levels of 10 µg L(-1). The absorption capacity of the composite was 1723 µg g(-1) and 189 µg g(-1) for As(III) and As(V) respectively. The adsorption of As(V) on Fe-MWCNT was faster than that of As(III). The pseudo-second order rate equation was found to effectively describe the kinetics of arsenic adsorption. The adsorption isotherms for As(III) and As(V) fitted both the Langmuir and Freundlich models.

  10. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions.

    PubMed

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-05-01

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy. PMID:20371908

  11. Potential Influence of Perchlorate on Organic Carbon in Martian Regolith

    NASA Astrophysics Data System (ADS)

    Oze, C.; Vithanage, M. S.; Kumarathilaka, P. R.; Indraratne, S.; Horton, T. W.

    2014-12-01

    Perchlorate is a strong oxidizer present at elevated concentrations in surface martian regolith. Chemical and isotopic modification of potential organic carbon with perchlorate in martian regolith during H2O(l) interactions is unknown. Here we assess the relationship between martian levels of perchlorate and organic carbon present in life harbouring geologic material from Earth. These materials represent chemical (i.e., processed serpentine soils from Sri Lanka) and temperature (i.e., hydrothermal jarosite/goethite deposit from White Island, New Zealand) extremes to where life exists on Earth. Preliminary evidence demonstrates that organic carbon decreases and δ13C values are modified for ultramafic sediment in both perchlorate kinetic and incubation experiments. In hydrothermal jarosite/goethite with microbial communities present, total and organic carbon is maintained and little modification in δ13C values is apparent. These preliminary results suggest that surface hydrothermal deposits with mineralogically 'protected' organic carbon are preferable sites to assess the potential of life on Mars.

  12. Effects of natural organic matter on the coprecipitation of arsenic with iron.

    PubMed

    Kim, Eun Jung; Hwang, Bo-Ram; Baek, Kitae

    2015-12-01

    Natural organic matter (NOM) can affect arsenic speciation and mobility in the environment. In this study, the effects of NOM on the coprecipitation of arsenic with iron were investigated in order to better understand the fate and transport of arsenic in natural environments. The coprecipitation of arsenic with iron was studied in the presence and absence of NOM under various arsenic-to-iron molar ratios (As/Fe) and pH conditions. The addition of humic acid (HA) hindered the As-Fe coprecipitation under high pH and high As/Fe conditions by forming a soluble As-Fe-HA complex. The X-ray diffraction and Fourier transform infrared studies showed that the As-Fe-coprecipitated solid phase was highly affected by pH and As/Fe. The arsenic was coprecipitated with iron as an amorphous ferric arsenate phase at a low pH level or high As/Fe conditions, while the formation of ferrihydrite phase and the arsenic incorporation to the ferrihydrite by adsorption was predominant at high pH levels or low As/Fe conditions. The HA affected the As-Fe-coprecipitated solid phase depending on the As/Fe molar ratio under neutral and alkaline conditions.

  13. Mass balance of organic carbon fractions in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Alves, CéLia; Carvalho, Abel; Pio, Casimiro

    2002-11-01

    Total suspended particulate matter was collected in two Portuguese urban areas (Lisbon and Aveiro) and in a Finnish forested site. Samples were sequentially extracted with dichloromethane and water. The solvent extract was separated by flash chromatography into aliphatics, aromatics, carbonyls, alcohols, and an acidic fraction, and analyzed by gas chromatography-mass spectrometry. An organic/black carbon analyzer was used to evaluate the carbonaceous matter in filters, the water-soluble fraction, solvent extractable material, and the content of different organic classes. Results showed that the common simple extraction with dichloromethane is able to dissolve less than 50% of the particulate organic material. The successive extraction with water removes an important quantity of the leftover organic polar compounds. The sum of both extractions recovers between 70% and 90% of the organic carbon present. The amount of oxygenated compounds is frequently more than 70% of the extracted material, with a large predominance of organic acids and alcohols, especially for particles with diameters less than 0.49 μm. The organic compounds identified in the extractable atmospheric particulate matter are represented by primary compounds with both anthropogenic and biogenic origin, which mainly derive from vegetation waxes and from petrogenic sources. Secondary products resulting from the oxidation of volatile organic compounds were also detected. The water-soluble fraction contains essentially oxocarboxylic and dicarboxylic acids, and cellulosic constituents. In accordance with the anthropogenic characteristics of the sampling sites, nonpolar fractions constitute up to 24% of the extracted organic carbon in Lisbon and present high levels of petroleum markers, while in the forested station these compounds represent 8%. The oxygenated organic compounds account for 76-92% of the extracted carbon in samples from Aveiro and Finland. Owing to favorable photochemical conditions during

  14. Size and Promoter Effects on Stability of Carbon-Nanofiber-Supported Iron-Based Fischer–Tropsch Catalysts

    PubMed Central

    2016-01-01

    The Fischer–Tropsch Synthesis converts synthesis gas from alternative carbon resources, including natural gas, coal, and biomass, to hydrocarbons used as fuels or chemicals. In particular, iron-based catalysts at elevated temperatures favor the selective production of C2–C4 olefins, which are important building blocks for the chemical industry. Bulk iron catalysts (with promoters) were conventionally used, but these deactivate due to either phase transformation or carbon deposition resulting in disintegration of the catalyst particles. For supported iron catalysts, iron particle growth may result in loss of catalytic activity over time. In this work, the effects of promoters and particle size on the stability of supported iron nanoparticles (initial sizes of 3–9 nm) were investigated at industrially relevant conditions (340 °C, 20 bar, H2/CO = 1). Upon addition of sodium and sulfur promoters to iron nanoparticles supported on carbon nanofibers, initial catalytic activities were high, but substantial deactivation was observed over a period of 100 h. In situ Mössbauer spectroscopy revealed that after 20 h time-on-stream, promoted catalysts attained 100% carbidization, whereas for unpromoted catalysts, this was around 25%. In situ carbon deposition studies were carried out using a tapered element oscillating microbalance (TEOM). No carbon laydown was detected for the unpromoted catalysts, whereas for promoted catalysts, carbon deposition occurred mainly over the first 4 h and thus did not play a pivotal role in deactivation over 100 h. Instead, the loss of catalytic activity coincided with the increase in Fe particle size to 20–50 nm, thereby supporting the proposal that the loss of active Fe surface area was the main cause of deactivation. PMID:27330847

  15. Influence of carbonization methods on the aromaticity of pyrogenic dissolved organic carbon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved organic carbon (DOC) components of soil amendments such as biochar will influence the fundamental soil chemistry including the metal speciation, nutrient availability, and microbial activity. Quantitative correlation is necessary between (i) pyrogenic DOC components of varying aromaticity...

  16. Iron-rich nanoparticle encapsulated, nitrogen doped porous carbon materials as efficient cathode electrocatalyst for microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Lu, Guolong; Zhu, Youlong; Lu, Lu; Xu, Kongliang; Wang, Heming; Jin, Yinghua; Jason Ren, Zhiyong; Liu, Zhenning; Zhang, Wei

    2016-05-01

    Developing efficient, readily available, and sustainable electrocatalysts for oxygen reduction reaction (ORR) in neutral medium is of great importance to practical applications of microbial fuel cells (MFCs). Herein, a porous nitrogen-doped carbon material with encapsulated Fe-based nanoparticles (Fe-Nx/C) has been developed and utilized as an efficient ORR catalyst in MFCs. The material was obtained through pyrolysis of a highly porous organic polymer containing iron(II) porphyrins. The characterizations of morphology, crystalline structure and elemental composition reveal that Fe-Nx/C consists of well-dispersed Fe-based nanoparticles coated by N-doped graphitic carbon layer. ORR catalytic performance of Fe-Nx/C has been evaluated through cyclic voltammetry and rotating ring-disk electrode measurements, and its application as a cathode electrocatalyst in an air-cathode single-chamber MFC has been investigated. Fe-Nx/C exhibits comparable or better performance in MFCs than 20% Pt/C, displaying higher cell voltage (601 mV vs. 591 mV), maximum power density (1227 mW m-2 vs. 1031 mW m-2) and Coulombic efficiency (50% vs. 31%). These findings indicate that Fe-Nx/C is more tolerant and durable than Pt/C in a system with bacteria metabolism and thus holds great potential for practical MFC applications.

  17. Anomalous carbon-isotope ratios in nonvolatile organic material.

    PubMed

    Kaplan, I R; Nissenbaum, A

    1966-08-12

    Organic mats are associated with sulfur deposits in Upper Pleistocene sand ridges of the coastal plain of southern Israel; black, brittle, and non-volatile, they show parallel layering but no other apparent cellular structure. Two independent carbon-14 determinations yielded ages of 27,750+/-500 and 31,370+/-1400 years. Four carbon-13:carbon-12 determinations fell within the range deltaC(13) =-82.5 to -89.3 per mille relative to the PDB standard; these appear to be the lowest values yet reported for naturally occurring high-molecular-weight organic material. The origin of the carbon is probably complex; it must have passed through at least one biologic cycle before final deposition.

  18. Organic matter production response to CO2 increase in open subarctic plankton communities: Comparison of six microcosm experiments under iron-limited and -enriched bloom conditions

    NASA Astrophysics Data System (ADS)

    Yoshimura, Takeshi; Sugie, Koji; Endo, Hisashi; Suzuki, Koji; Nishioka, Jun; Ono, Tsuneo

    2014-12-01

    Increase in seawater pCO2 and the corresponding decrease in pH caused by the increasing atmospheric CO2 concentration (i.e., ocean acidification) may affect organic matter production by phytoplankton communities. Organic matter production forms the basis of marine food webs and plays a crucial role in oceanic CO2 uptake through the biological carbon pump, and hence will potentially affect future marine ecosystem dynamics. However, responses of organic matter production in open ocean plankton ecosystems to CO2 increase have not been fully examined. We conducted on-deck microcosm experiments using high nutrient, low chlorophyll (HNLC) waters in the western subarctic Pacific and oceanic Bering Sea basin in summer 2008 and 2009, respectively, to examine the impacts of elevated CO2 on particulate and dissolved organic matter (i.e., POM and DOM, respectively) production. Iron deficient natural plankton communities were incubated for 7-14 days under multiple CO2 levels with and without iron enrichments (hereafter +Fe and -Fe treatments, respectively). By combining with our previous experiments at two sites, we created a comprehensive dataset on responses of organic matter production to CO2 increase during macronutrient replete conditions in HNLC waters. Significant differences in net particulate organic carbon production among CO2 treatments were observed only in the -Fe treatments, whereas that in net dissolved organic carbon production were mainly observed in the +Fe treatments, suggesting that CO2 may affect different processes depending on the Fe nutritional status. However, impacts of CO2 were not consistent among experiments and were much smaller than the consistent positive effects of Fe enrichment. In contrast, no significant differences among the CO2 treatments were observed for organic carbon partitioning into POM and DOM, and carbon to nitrogen ratio of net produced POM. We conclude that CO2 does not play a primary role, but could have secondary effects on

  19. Chemistry of organic carbon in soil with relationship to the global carbon cycle

    SciTech Connect

    Post, W.M. III

    1988-01-01

    Various ecosystem disturbances alter the balances between production of organic matter and its decomposition and therefore change the amount of carbon in soil. The most severe perturbation is conversion of natural vegetation to cultivated crops. Conversion of natural vegetation to cultivated crops results in a lowered input of slowly decomposing material which causes a reduction in overall carbon levels. Disruption of soil matrix structure by cultivation leads to lowered physical protection of organic matter resulting in an increased net mineralization rate of soil carbon. Climate change is another perturbation that affects the amount and composition of plant production, litter inputs, and decomposition regimes but does not affect soil structure directly. Nevertheless, large changes in soil carbon storage are probable with anticipated CO2 induced climate change, particularly in northern latitudes where anticipated climate change will be greatest (MacCracken and Luther 1985) and large amounts of soil organic matter are found. It is impossible, given the current state of knowledge of soil organic matter processes and transformations to develop detailed process models of soil carbon dynamics. Largely phenomenological models appear to be developing into predictive tools for understanding the role of soil organic matter in the global carbon cycle. In particular, these models will be useful in quantifying soil carbon changes due to human land-use and to anticipated global climate and vegetation changes. 47 refs., 7 figs., 2 tabs.

  20. Enhanced cathode performance of nano-sized lithium iron phosphate composite using polytetrafluoroethylene as carbon precursor

    NASA Astrophysics Data System (ADS)

    Avci, Ercan

    2014-12-01

    Herein we report a facile and efficient solid state synthesis of carbon coated lithium iron phosphate (LiFePO4/C) cathode material achieved through the pyrolysis of polytetrafluoroethylene (PTFE). The current investigation is comparatively analyzed with the results of the composites of LiFePO4/C (LFP/C) synthesized using polystyrene-block-polybutadiene (PS-b-PBD), polyethyhylene (PE) and sucrose as carbon precursors. The optimized LFP/CPTFE composite is synthesized at 700 °C using 10 wt.% PTFE. The composite exhibits remarkable improvement in capacity, cyclability and rate capability compared to those of LFP/C synthesized using (PS-b-PBD), PE and sucrose. The specific discharge capacities as high as 166 mA h g-1 (theoretical capacity: 170 mA h g-1) at 0.2 C and 114 mA h g-1 at 10 C rates were achieved with LFP/CPTFE. In addition, the composite exhibits a long-term cycling stability with the capacity loss of only 11.4% after 1000 cycles. PTFE shifts the size distribution of the composite to nanometer scale (approximately 120 nm), however the addition of sucrose and other polymers do not have such an effect. According to TEM and XPS analysis, LFP/CPTFE particles are mostly coated with a few nanometers thick carbon layer forming a core-shell structure. Residual carbon does not contain fluorine.

  1. Carbon Isotopic Heterogeneity of Graphite in the San Juan Mass of the Campo Del Cielo IAB Iron Meteorite

    NASA Technical Reports Server (NTRS)

    Maruoka, T.; Kurat, G.; Zinner, E.; Varela, M. E.; Ametrano, S. J.

    2003-01-01

    The origin of IAB iron meteorites is still a matter of debate. It is generally believed that iron meteorites originated from molten cores in small planetesimals because the fractionation trend of trace elements (e.g., Ir, Ge, Ga, etc. vs. Ni) for most iron meteorites can be more or less explained by fractional crystallization from metal melts. However, this process cannot produce trace element characteristics of the IAB (and other) iron meteorites. To explain these trace element abundance patterns, several models have been proposed. Although most of these models require a high temperature, clear evidence has recently been obtained for a sub-solidus formation of IAB iron meteorites from noble gas analyses. Moreover, heterogeneous distributions of some trace elements in metal and other phases also suggest a low temperature origin of at least some IAB iron meteorites. Here we use the carbon isotopic compositions of graphite to constrain the origin of IAB iron meteorites. Our data confirm a possible low temperature origin of IAB iron meteorites.

  2. Monitoring dissolved organic carbon in surface and drinking waters.

    PubMed

    Volk, Christian; Wood, Larry; Johnson, Bruce; Robinson, Jeff; Zhu, Hai Wei; Kaplan, Louis

    2002-02-01

    The presence of natural organic matter (NOM) strongly impacts drinking water treatment, water quality, and water behavior during distribution. Dissolved organic carbon (DOC) concentrations were determined daily over a 22 month period in river water before and after conventional drinking water treatment using an on-line total organic carbon (TOC) analyzer. Quantitative and qualitative variations in organic matter were related to precipitation and runoff, seasons and operating conditions. Following a rainfall event, DOC levels could increase by 3.5 fold over baseflow concentrations, while color, UV absorbance values and turbidity increased by a factor of 8, 12 and 300, respectively. Treated water DOC levels were closely related to the source water quality, with an average organic matter removal of 42% after treatment.

  3. The Oxidant Budget of Dissolved Organic Carbon Driven Isotope Excursions

    NASA Astrophysics Data System (ADS)

    Bristow, T. F.; Kennedy, M. J.

    2008-12-01

    Negative carbon isotope values, falling below the mantle average of about -5 per mil, in carbonate phases of Ediacaran age sedimentary rocks are widely regarded as reflecting negative excursions in the carbon isotopic composition of seawater lasting millions of years. These isotopic signals form the basis of chemostratigraphic correlations between Ediacaran aged sections in different parts of the world, and have been used to track the oxidation of the biosphere. However, these isotopic values are difficult to accommodate within limits prescribed by the current understanding of the carbon cycle, and a hypothetical Precambrian ocean dissolved organic carbon (DOC) pool 100 to 1000 times the size of the modern provides a potential source of depleted carbon not considered in Phanerozoic carbon cycle budgets. We present box model results that show the remineralization of such a DOC pool to drive an isotope excursion of the magnitude observed in the geological record exhausts global budgets of free oxygen and sulfate in 800 k.y. These results are incompatible with the estimated duration of late Ediacaran isotope excursions of more than 10 m.y., as well as geochemical and biological indicators that oceanic sulfate and oxygen levels were maintained or even increased at the same time. Therefore the carbon isotope record is probably not a useful tool for monitoring oxygen levels in the atmosphere and ocean. Covariation between the carbon and oxygen isotope records is often observed during negative excursions and is indicative of local processes or diagenetic overprinting.

  4. Carbon isotopic studies of organic matter in precambrian rocks.

    PubMed

    Oehler, D Z; Schopf, J W; Kvenvolden, K A

    1972-03-17

    Reduced carbon in early Precambrian cherts of the Fig Tree and upper and middle Onverwacht groups of South Africa is isotopically similar (the average value of delta(13)C(PDB) is -28.7 per mil) to photosynthetically produced organic matter of younger geological age. Reduced carbon in lower Onverwacht cherts (Theespruit formation) is anomalously heavy (the average value of delta(13)C(PDB) is -16.5 per mil). This discontinuity may reflect a major event in biological evolution.

  5. Maximum organic carbon limits at different melter feed rates (U)

    SciTech Connect

    Choi, A.S.

    1995-12-31

    This report documents the results of a study to assess the impact of varying melter feed rates on the maximum total organic carbon (TOC) limits allowable in the DWPF melter feed. Topics discussed include: carbon content; feed rate; feed composition; melter vapor space temperature; combustion and dilution air; off-gas surges; earlier work on maximum TOC; overview of models; and the results of the work completed.

  6. Iron limitation in the Western Interior Seaway during the Late Cretaceous OAE 3 and its role in phosphorus recycling and enhanced organic matter preservation

    NASA Astrophysics Data System (ADS)

    Tessin, Allyson; Sheldon, Nathan D.; Hendy, Ingrid; Chappaz, Anthony

    2016-09-01

    The sedimentary record of the Coniacian-Santonian Oceanic Anoxic Event 3 (OAE 3) in the North American Western Interior Seaway is characterized by a prolonged period of enhanced organic carbon (OC) burial. This study investigates the role of Fe in enhancing organic matter preservation and maintaining elevated primary productivity to sustain black shale deposition within the Coniacian-Santonian-aged Niobrara Formation in the USGS #1 Portland core. Iron speciation results indicate the development of a reactive Fe limitation coeval with reduced bioturbation and increased organic matter preservation, suggesting that decreased sulfide buffering by reactive Fe may have promoted enhanced organic matter preservation at the onset of OAE 3. An Fe limitation would also provide a feedback mechanism to sustain elevated primary productivity through enhanced phosphorus recycling. Additionally our results demonstrate inconsistencies between Fe-based and trace metal redox reconstructions. Iron indices from the Portland core indicate a single stepwise change, whereas the trace metal redox proxies indicate fluctuating redox conditions during and after OAE 3. Using Fe speciation to reconstruct past redox conditions may be complicated by a number of factors, including Fe sequestration in diagenetic carbonate phases and efficient sedimentary pyrite formation in a system with limited Fe supply and high levels of export production.

  7. Remote Sensing to Support Monitoring of Soil Organic Carbon (Invited)

    NASA Astrophysics Data System (ADS)

    McNairn, H.; Pacheco, A.

    2009-12-01

    Soil organic carbon is fundamental to the sustainability of agricultural soils and soils play an important role in the global carbon balance. Estimating soil carbon levels and monitoring changes in these levels over time requires extensive data on climate, soil properties, land cover and land management. Remote sensing technologies are capable of providing some of the data needed in modeling soil organic carbon concentrations and in tracking changes in soil carbon. The characteristics of the vegetation cover influence the amount of organic matter in the soil and cultivation impacts the rate of organic matter decomposition. Consequently land management decisions, which include cropping and tillage practices, play a vital role in determining soil carbon levels. Agriculture and Agri-Food Canada (AAFC) has developed several methods to map land management practices from multispectral and Synthetic Aperture Radar (SAR) satellite sensors. These include identification of crops grown, estimation of crop residue cover left post-harvest and identification of tillage activities. Optical and SAR data are capable of identifying crop types to accuracies consistently above 85%. Knowledge of crop type also provides information needed to establish biomass levels and residue type, both of which influence the amounts and decomposition rates of organic matter. Scientists with AAFC have also extensively validated a method to estimate percent residue cover using spectral unmixing analysis applied to multispectral satellite data. Percentages for corn, soybean and small grain residues can be estimated to accuracies of 83%, 80% and 82%, respectively. Tillage activity influences residue decomposition and AAFC is investigating methods to identify tillage occurrence using advanced polarimetric SAR information. This presentation will provide an overview of methods and results from research ongoing at AAFC. The potential contribution of these remote sensing approaches to support wide area carbon

  8. Charcoal bed operation for optimal organic carbon removal

    SciTech Connect

    Merritt, C.M.; Scala, F.R.

    1995-05-01

    Historically, evaporation, reverse osmosis or charcoal-demineralizer systems have been used to remove impurities in liquid radwaste processing systems. At Nine Mile point, we recently replaced our evaporators with charcoal-demineralizer systems to purify floor drain water. A comparison of the evaporator to the charcoal-demineralizer system has shown that the charcoal-demineralizer system is more effective in organic carbon removal. We also show the performance data of the Granulated Activated Charcoal (GAC) vessel as a mechanical filter. Actual data showing that frequent backflushing and controlled flow rates through the GAC vessel dramatically increases Total Organic Carbon (TOC) removal efficiency. GAC vessel dramatically increases Total Organic Carbon (TOC) removal efficiency. Recommendations are provided for operating the GAC vessel to ensure optimal performance.

  9. [Organic carbon decomposition rate in different soil types].

    PubMed

    Yin, Yun-Feng; Cai, Zu-Cong

    2007-10-01

    With incubation experiment, this paper studied the decomposition rate of organic carbon in black soil, fluvo-aquic soil, and red soil. It was shown that these three soil types had significantly different decomposition rate constant of organic carbon (P < 0.05 ), with the corresponding value being 2.2 x 10(-4) x d(-1), 6.0 x 10(-4) x d(-1), and 3.4 x 10(-4) x d(-1), respectively. The decomposition rate constant had a significant correlation with soil pH, which was increased greatly when the soil pH was < 5.5 or > 8.0, and a significant negative correlation with the contents of soil clay and silt, indicating that soil clay and silt content was one of the dominant factors affecting the decomposition rate of organic carbon in these soil types.

  10. Raman spectroscopy: Caution when interpreting organic carbon from oxidising environments

    NASA Astrophysics Data System (ADS)

    Brolly, Connor; Parnell, John; Bowden, Stephen

    2016-02-01

    Oxidation on Mars is primarily caused by the high influx of cosmic and solar radiation which interacts with the Martian surface. The evidence of this can be seen in the ubiquitous red colouration of the Martian sediment. This radiation will destroy most signals of life in the top few metres of the Martian surface. If organic carbon (one of the building blocks of life) is present within the accessible Martian sediments, it is very likely that it will have experienced some oxidation. ESA's ExoMars mission set to fly in 2018, has on board a miniaturised Raman spectrometer. As Raman spectroscopy is sensitive to carbonaceous material and will be primarily used to characterise organics, it is essential that the effect oxidation has on the Raman carbon signal is assessed. Oxidised carbonaceous shales were analysed using Raman spectroscopy to assess this issue. Results show that haematite has a band which occurs in the same frequency as the carbon D band, which cannot be distinguished from each other. This can lead to a misidentification of the carbon D band and a misinterpretation of the carbon order. Consequently, caution must be taken when applying Raman spectroscopy for organic carbon analysis in oxidised terrestrial and extraterrestrial environments, including on Mars.

  11. Erosion of organic carbon in the Arctic as a geological carbon dioxide sink.

    PubMed

    Hilton, Robert G; Galy, Valier; Gaillardet, Jérôme; Dellinger, Mathieu; Bryant, Charlotte; O'Regan, Matt; Gröcke, Darren R; Coxall, Helen; Bouchez, Julien; Calmels, Damien

    2015-08-01

    Soils of the northern high latitudes store carbon over millennial timescales (thousands of years) and contain approximately double the carbon stock of the atmosphere. Warming and associated permafrost thaw can expose soil organic carbon and result in mineralization and carbon dioxide (CO2) release. However, some of this soil organic carbon may be eroded and transferred to rivers. If it escapes degradation during river transport and is buried in marine sediments, then it can contribute to a longer-term (more than ten thousand years), geological CO2 sink. Despite this recognition, the erosional flux and fate of particulate organic carbon (POC) in large rivers at high latitudes remains poorly constrained. Here, we quantify the source of POC in the Mackenzie River, the main sediment supplier to the Arctic Ocean, and assess its flux and fate. We combine measurements of radiocarbon, stable carbon isotopes and element ratios to correct for rock-derived POC. Our samples reveal that the eroded biospheric POC has resided in the basin for millennia, with a mean radiocarbon age of 5,800 ± 800 years, much older than the POC in large tropical rivers. From the measured biospheric POC content and variability in annual sediment yield, we calculate a biospheric POC flux of 2.2(+1.3)(-0.9) teragrams of carbon per year from the Mackenzie River, which is three times the CO2 drawdown by silicate weathering in this basin. Offshore, we find evidence for efficient terrestrial organic carbon burial over the Holocene period, suggesting that erosion of organic carbon-rich, high-latitude soils may result in an important geological CO2 sink. PMID:26245581

  12. Erosion of organic carbon in the Arctic as a geological carbon dioxide sink.

    PubMed

    Hilton, Robert G; Galy, Valier; Gaillardet, Jérôme; Dellinger, Mathieu; Bryant, Charlotte; O'Regan, Matt; Gröcke, Darren R; Coxall, Helen; Bouchez, Julien; Calmels, Damien

    2015-08-01

    Soils of the northern high latitudes store carbon over millennial timescales (thousands of years) and contain approximately double the carbon stock of the atmosphere. Warming and associated permafrost thaw can expose soil organic carbon and result in mineralization and carbon dioxide (CO2) release. However, some of this soil organic carbon may be eroded and transferred to rivers. If it escapes degradation during river transport and is buried in marine sediments, then it can contribute to a longer-term (more than ten thousand years), geological CO2 sink. Despite this recognition, the erosional flux and fate of particulate organic carbon (POC) in large rivers at high latitudes remains poorly constrained. Here, we quantify the source of POC in the Mackenzie River, the main sediment supplier to the Arctic Ocean, and assess its flux and fate. We combine measurements of radiocarbon, stable carbon isotopes and element ratios to correct for rock-derived POC. Our samples reveal that the eroded biospheric POC has resided in the basin for millennia, with a mean radiocarbon age of 5,800 ± 800 years, much older than the POC in large tropical rivers. From the measured biospheric POC content and variability in annual sediment yield, we calculate a biospheric POC flux of 2.2(+1.3)(-0.9) teragrams of carbon per year from the Mackenzie River, which is three times the CO2 drawdown by silicate weathering in this basin. Offshore, we find evidence for efficient terrestrial organic carbon burial over the Holocene period, suggesting that erosion of organic carbon-rich, high-latitude soils may result in an important geological CO2 sink.

  13. Factors influencing organic carbon preservation in marine sediments

    NASA Technical Reports Server (NTRS)

    Canfield, D. E.

    1994-01-01

    The organic matter that escapes decomposition is buried and preserved in marine sediments, with much debate as to whether the amount depends on bottom-water O2 concentration. One group argues that decomposition is more efficient with O2, and hence, organic carbon will be preferentially oxidized in its presence, and preserved in its absence. Another group argues that the kinetics of organic matter decomposition are similar in the presence and absence of O2, and there should be no influence of O2 on preservation. A compilation of carbon preservation shows that both groups are right, depending on the circumstances of deposition. At high rates of deposition, such as near continental margins, little difference in preservation is found with varying bottom-water O2. It is important that most carbon in these sediments decomposes by anaerobic pathways regardless of bottom-water O2. Hence, little influence of bottom-water O2 on preservation would, in fact, be expected. As sedimentation rate drops, sediments deposited under oxygenated bottom water become progressively more aerobic, while euxinic sediments remain anaerobic. Under these circumstances, the relative efficiencies of aerobic and anaerobic decomposition could affect preservation. Indeed, enhanced preservation is observed in low-O2 and euxinic environments. To explore in detail the factors contributing to this enhanced carbon preservation, aspects of the biochemistries of the aerobic and anaerobic process are reviewed. Other potential influences on preservation are also explored. Finally, a new model for organic carbon decomposition, the "pseudo-G" model, is developed. This model couples the degradation of refractory organic matter to the overall metabolic activity of the sediment, and has consequences for carbon preservation due to the mixing together of labile and refractory organic matter by bioturbation.

  14. Importance of Boreal Rivers in Providing Iron to Marine Waters

    PubMed Central

    Kritzberg, Emma S.; Bedmar Villanueva, Ana; Jung, Marco; Reader, Heather E.

    2014-01-01

    This study reports increasing iron concentrations in rivers draining into the Baltic Sea. Given the decisive role of iron to the structure and biogeochemical function of aquatic ecosystems, this trend is likely one with far reaching consequences to the receiving system. What those consequences may be depends on the fate of the iron in estuarine mixing. We here assess the stability of riverine iron by mixing water from seven boreal rivers with artificial sea salts. The results show a gradual loss of iron from suspension with increasing salinity. However, the capacity of the different river waters to maintain iron in suspension varied greatly, i.e. between 1 and 54% of iron was in suspension at a salinity of 30. The variability was best explained by iron:organic carbon ratios in the riverine waters – the lower the ratio the more iron remained in suspension. Water with an initially low iron:organic carbon ratio could keep even higher than ambient concentrations of Fe in suspension across the salinity gradient, as shown in experiments with iron amendments. Moreover, there was a positive relationship between the molecular size of the riverine organic matter and the amount of iron in suspension. In all, the results point towards a remarkably high transport capacity of iron from boreal rivers, suggesting that increasing concentrations of iron in river mouths may result in higher concentrations of potentially bioavailable iron in the marine system. PMID:25233197

  15. Black Carbon - Soil Organic Matter abiotic and biotic interactions

    NASA Astrophysics Data System (ADS)

    Cotrufo, Francesca; Boot, Claudia; Denef, Karolien; Foster, Erika; Haddix, Michelle; Jiang, Xinyu; Soong, Jennifer; Stewart, Catherine

    2014-05-01

    Wildfires, prescribed burns and the use of char as a soil amendment all add large quantities of black carbon to soils, with profound, yet poorly understood, effects on soil biology and chemical-physical structure. We will present results emerging from our black carbon program, which addresses questions concerning: 1) black carbon-soil organic matter interactions, 2) char decomposition and 3) impacts on microbial community structure and activities. Our understanding derives from a complementary set of post-fire black carbon field surveys and laboratory and field experiments with grass and wood char amendments, in which we used molecular (i.e., BPCA, PLFA) and isotopic (i.e., 13C and 15N labelled char) tracers. Overall, emerging results demonstrate that char additions to soil are prone to fast erosion, but a fraction remains that increases water retention and creates a better environment for the microbial community, particularly favoring gram negative bacteria. However, microbial decomposition of black carbon only slowly consumes a small fraction of it, thus char still significantly contributes to soil carbon sequestration. This is especially true in soils with little organic matter, where black carbon additions may even induce negative priming.

  16. Diagenetic ferroan carbonates in modern organic-rich deltaic muds

    SciTech Connect

    Elliott, S.S.; Ferrell, R.E.

    1987-05-01

    Carbonate modules and bands are forming in lower delta plain muds of Terrebonne Parish, Louisiana. X-radiographs show diagenetic carbonate accumulating within 50 cm of the sediment surface. The precipitation of the carbonate is a result of bacterial activity and signals the onset of the first stages of pore water evolution and diagenesis. The early diagenetic carbonates are calcic siderites. Some nodules are zoned, as XRD, petrography, and microprobe analyses reveal calcite, dolomite, and pyrite around their margins. delta/sup 13/C ranges from +7.40 to -10.00 per thousand PDB and generally decreases near the nodule margin. Incipient nodules have delta/sup 13/C from about -3 to -5 per thousand, reflecting early fractionation of organic carbon isotopes in methanogenic microenvironments. Volume-percent carbonate decreases from nodule centers to margins. These variations reflect marine water intrusion associated with compaction and subsidence of deltaic sediments. In anaerobic freshwater sediments, methanogenic bacteria produce CO/sub 2/ and CH/sub 4/. Very low dissolved sulfate concentrations limit sulfate reduction. Methanogens preferentially reduce /sup 12/CO/sub 2/, so pore-water carbonate becomes enriched in /sup 13/C relative to its detrital source. Early carbonates are ferroan with higher Mn:Fe ratios than later precipitates. Marine water introduces dissolved sulfate, and sulfate-reducing bacteria generate /sup 13/C-depleted CO/sub 2/ and H/sub 2/S to form calcite and pyrite later. This study provides a modern analog for many occurrences of carbonate concretions in organic-rich mudstones. Determining mineralogy, composition, delta/sup 13/C, and volume-percent carbonate reveals a record of pore-water chemical changes with burial and original depositional environments.

  17. Pathways of organic carbon oxidation in three continental margin sediments.

    PubMed

    Canfield, D E; Jorgensen, B B; Fossing, H; Glud, R; Gundersen, J; Ramsing, N B; Thamdrup, B; Hansen, J W; Nielsen, L P; Hall, P O

    1993-01-01

    We have combined several different methodologies to quantify rates of organic carbon mineralization by the various electron acceptors in sediments from the coast of Denmark and Norway. Rates of NH4+ and Sigma CO2 liberation sediment incubations were used with O2 penetration depths to conclude that O2 respiration accounted for only between 3.6-17.4% of the total organic carbon oxidation. Dentrification was limited to a narrow zone just below the depth of O2 penetration, and was not a major carbon oxidation pathway. The processes of Fe reduction, Mn reduction and sulfate reduction dominated organic carbon mineralization, but their relative significance varied depending on the sediment. Where high concentrations of Mn-oxide were found (3-4 wt% Mn), only Mn reduction occurred. With lower Mn oxide concentrations more typical of coastal sediments, Fe reduction and sulfate reduction were most important and of a similar magnitude. Overall, most of the measured O2 flux into the sediment was used to oxidized reduced inorganic species and not organic carbon. We suspect that the importance of O2 respiration in many coastal sediments has been overestimated, whereas metal oxide reduction (both Fe and Mn reduction) has probably been well underestimated.

  18. Pathways of organic carbon oxidation in three continental margin sediments

    NASA Technical Reports Server (NTRS)

    Canfield, D. E.; Jorgensen, B. B.; Fossing, H.; Glud, R.; Gundersen, J.; Ramsing, N. B.; Thamdrup, B.; Hansen, J. W.; Nielsen, L. P.; Hall, P. O.

    1993-01-01

    We have combined several different methodologies to quantify rates of organic carbon mineralization by the various electron acceptors in sediments from the coast of Denmark and Norway. Rates of NH4+ and Sigma CO2 liberation sediment incubations were used with O2 penetration depths to conclude that O2 respiration accounted for only between 3.6-17.4% of the total organic carbon oxidation. Dentrification was limited to a narrow zone just below the depth of O2 penetration, and was not a major carbon oxidation pathway. The processes of Fe reduction, Mn reduction and sulfate reduction dominated organic carbon mineralization, but their relative significance varied depending on the sediment. Where high concentrations of Mn-oxide were found (3-4 wt% Mn), only Mn reduction occurred. With lower Mn oxide concentrations more typical of coastal sediments, Fe reduction and sulfate reduction were most important and of a similar magnitude. Overall, most of the measured O2 flux into the sediment was used to oxidized reduced inorganic species and not organic carbon. We suspect that the importance of O2 respiration in many coastal sediments has been overestimated, whereas metal oxide reduction (both Fe and Mn reduction) has probably been well underestimated.

  19. Correlating organic carbon concentration and composition with mineralogy in deep-sea pelagic sediments

    NASA Astrophysics Data System (ADS)

    Johnson, D.; Estes, E. R.; Hansel, C. M.; Anderson, C. H.; Murray, R. W.; Dyar, M. D.; Nordlund, D.; Wankel, S. D.; Spivack, A. J.; Sauvage, J.; McKinley, C. C.; Homola, K.; Present, T. M.; D'Hondt, S.

    2015-12-01

    remineralization. The persistence of iron(III) phases and presence of clays such as illite could provide protection of organic carbon at depth. Differences among the sites and with depth point to mineralogical controls on the amount and type of carbon preserved, which may point to mineral-hosted carbon as a dominant control on the subsurface biosphere.

  20. A Versatile Iron-Tannin-Framework Ink Coating Strategy to Fabricate Biomass-Derived Iron Carbide/Fe-N-Carbon Catalysts for Efficient Oxygen Reduction.

    PubMed

    Wei, Jing; Liang, Yan; Hu, Yaoxin; Kong, Biao; Simon, George P; Zhang, Jin; Jiang, San Ping; Wang, Huanting

    2016-01-22

    The conversion of biomass into valuable carbon composites as efficient non-precious metal oxygen-reduction electrocatalysts is attractive for the development of commercially viable polymer electrolyte membrane fuel-cell technology. Herein, a versatile iron-tannin-framework ink coating strategy is developed to fabricate cellulose-derived Fe3 C/Fe-N-C catalysts using commercial filter paper, tissue, or cotton as a carbon source, an iron-tannin framework as an iron source, and dicyandiamide as a nitrogen source. The oxygen reduction performance of the resultant Fe3C/Fe-N-C catalysts shows a high onset potential (i.e. 0.98 V vs the reversible hydrogen electrode (RHE)), and large kinetic current density normalized to both geometric electrode area and mass of catalysts (6.4 mA cm(-2) and 32 mA mg(-1) at 0.80 V vs RHE) in alkaline condition. This method can even be used to prepare efficient catalysts using waste carbon sources, such as used polyurethane foam. PMID:26661901

  1. A Versatile Iron-Tannin-Framework Ink Coating Strategy to Fabricate Biomass-Derived Iron Carbide/Fe-N-Carbon Catalysts for Efficient Oxygen Reduction.

    PubMed

    Wei, Jing; Liang, Yan; Hu, Yaoxin; Kong, Biao; Simon, George P; Zhang, Jin; Jiang, San Ping; Wang, Huanting

    2016-01-22

    The conversion of biomass into valuable carbon composites as efficient non-precious metal oxygen-reduction electrocatalysts is attractive for the development of commercially viable polymer electrolyte membrane fuel-cell technology. Herein, a versatile iron-tannin-framework ink coating strategy is developed to fabricate cellulose-derived Fe3 C/Fe-N-C catalysts using commercial filter paper, tissue, or cotton as a carbon source, an iron-tannin framework as an iron source, and dicyandiamide as a nitrogen source. The oxygen reduction performance of the resultant Fe3C/Fe-N-C catalysts shows a high onset potential (i.e. 0.98 V vs the reversible hydrogen electrode (RHE)), and large kinetic current density normalized to both geometric electrode area and mass of catalysts (6.4 mA cm(-2) and 32 mA mg(-1) at 0.80 V vs RHE) in alkaline condition. This method can even be used to prepare efficient catalysts using waste carbon sources, such as used polyurethane foam.

  2. Removal of As(V) using iron oxide impregnated carbon prepared from Tamarind hull.

    PubMed

    Maiti, Abhijit; Agarwal, Vaibhav; De, Sirshendu; Basu, Jayanta K

    2010-08-01

    Iron oxide impregnated tamarind hull carbon (IOITHC) was developed for use as an adsorbent for the removal of As(V) from water. Tamarind hull was used as the source of carbonaceous material, which was first treated with ferric chloride and ammonium hydroxide solutions with successive calcination at 873-974 K in a muffle furnace for 1 h to prepare an arsenic adsorbent. The B.E.T surface area of IOITHC was found to be 304.6 m(2) g(-1) and the average iron content in the adsorbent was found to be 7 wt%. The point of zero charge (pH(zpc)) of IOITHC was found to be 6.9. As(V) and arsenic (as total) adsorption on IOITHC were investigated in batch mode using As(V) spiked distilled water and real contaminated groundwater (CGW). The effects of speed of agitation, adsorbent particle size, temperature, pH of the solution, and concentration of the adsorbate on the adsorption process were investigated. The maximum adsorption capacity of about 1.2 mg g(-1) As(V) was achieved. The removal of As(V) on IOITHC was compared with the untreated tamarind hull carbon as well as with the activated commercial carbon and IOITHC was found to be better adsorbent. Arsenic adsorption from arsenic contaminated groundwater (CGW) on IOITHC in batch mode indicates that 98% removal was achieved for adsorbent loading of 3.0 g L(-1) with initial arsenic concentration of 264 microg L(-1). Desorption study of arsenic from As(V)-loaded IOITHC was performed using aqueous solution in the pH range of 3 to 12. PMID:20563914

  3. Petroleum pollutants in surface and groundwater as indicated by the carbon-14 activity of dissolved organic carbon.

    PubMed

    Spiker, E C; Rubin, M

    1975-01-10

    The (14)C activity of dissolved organic carbon (DOC) can be used to distinguish between the fossil organic carbon due to petrochemical effluents and modern organic carbon due to domestic wastes and natural decaying organic matter. Rivers polluted by petrochemical effluents show varying amounts of depression of the DOC (14)C activity, reflecting concentrations of (14)C-deficient fossil carbon of as much as about 40 percent of the total DOC.

  4. Carbon-bearing iron phases and the carbon isotope composition of the deep Earth.

    PubMed

    Horita, Juske; Polyakov, Veniamin B

    2015-01-01

    The carbon budget and dynamics of the Earth's interior, including the core, are currently very poorly understood. Diamond-bearing, mantle-derived rocks show a very well defined peak at δ(13)C ≈ -5 ± 3‰ with a very broad distribution to lower values (∼-40‰). The processes that have produced the wide δ(13)C distributions to the observed low δ(13)C values in the deep Earth have been extensively debated, but few viable models have been proposed. Here, we present a model for understanding carbon isotope distributions within the deep Earth, involving Fe-C phases (Fe carbides and C dissolved in Fe-Ni metal). Our theoretical calculations show that Fe and Si carbides can be significantly depleted in (13)C relative to other C-bearing materials even at mantle temperatures. Thus, the redox freezing and melting cycles of lithosphere via subduction upwelling in the deep Earth that involve the Fe-C phases can readily produce diamond with the observed low δ(13)C values. The sharp contrast in the δ(13)C distributions of peridotitic and eclogitic diamonds may reflect differences in their carbon cycles, controlled by the evolution of geodynamical processes around 2.5-3 Ga. Our model also predicts that the core contains C with low δ(13)C values and that an average δ(13)C value of the bulk Earth could be much lower than ∼-5‰, consistent with those of chondrites and other planetary body. The heterogeneous and depleted δ(13)C values of the deep Earth have implications, not only for its accretion-differentiation history but also for carbon isotope biosignatures for early life on the Earth. PMID:25512520

  5. Carbon-bearing iron phases and the carbon isotope composition of the deep Earth.

    PubMed

    Horita, Juske; Polyakov, Veniamin B

    2015-01-01

    The carbon budget and dynamics of the Earth's interior, including the core, are currently very poorly understood. Diamond-bearing, mantle-derived rocks show a very well defined peak at δ(13)C ≈ -5 ± 3‰ with a very broad distribution to lower values (∼-40‰). The processes that have produced the wide δ(13)C distributions to the observed low δ(13)C values in the deep Earth have been extensively debated, but few viable models have been proposed. Here, we present a model for understanding carbon isotope distributions within the deep Earth, involving Fe-C phases (Fe carbides and C dissolved in Fe-Ni metal). Our theoretical calculations show that Fe and Si carbides can be significantly depleted in (13)C relative to other C-bearing materials even at mantle temperatures. Thus, the redox freezing and melting cycles of lithosphere via subduction upwelling in the deep Earth that involve the Fe-C phases can readily produce diamond with the observed low δ(13)C values. The sharp contrast in the δ(13)C distributions of peridotitic and eclogitic diamonds may reflect differences in their carbon cycles, controlled by the evolution of geodynamical processes around 2.5-3 Ga. Our model also predicts that the core contains C with low δ(13)C values and that an average δ(13)C value of the bulk Earth could be much lower than ∼-5‰, consistent with those of chondrites and other planetary body. The heterogeneous and depleted δ(13)C values of the deep Earth have implications, not only for its accretion-differentiation history but also for carbon isotope biosignatures for early life on the Earth.

  6. Carbon-bearing iron phases and the carbon isotope composition of the deep Earth

    PubMed Central

    Horita, Juske; Polyakov, Veniamin B.

    2015-01-01

    The carbon budget and dynamics of the Earth’s interior, including the core, are currently very poorly understood. Diamond-bearing, mantle-derived rocks show a very well defined peak at δ13C ≈ −5 ± 3‰ with a very broad distribution to lower values (∼−40‰). The processes that have produced the wide δ13C distributions to the observed low δ13C values in the deep Earth have been extensively debated, but few viable models have been proposed. Here, we present a model for understanding carbon isotope distributions within the deep Earth, involving Fe−C phases (Fe carbides and C dissolved in Fe−Ni metal). Our theoretical calculations show that Fe and Si carbides can be significantly depleted in 13C relative to other C-bearing materials even at mantle temperatures. Thus, the redox freezing and melting cycles of lithosphere via subduction upwelling in the deep Earth that involve the Fe−C phases can readily produce diamond with the observed low δ13C values. The sharp contrast in the δ13C distributions of peridotitic and eclogitic diamonds may reflect differences in their carbon cycles, controlled by the evolution of geodynamical processes around 2.5–3 Ga. Our model also predicts that the core contains C with low δ13C values and that an average δ13C value of the bulk Earth could be much lower than ∼−5‰, consistent with those of chondrites and other planetary body. The heterogeneous and depleted δ13C values of the deep Earth have implications, not only for its accretion−differentiation history but also for carbon isotope biosignatures for early life on the Earth. PMID:25512520

  7. Primary Iron- and Manganese-Carbonate Deposition in the Palaeoproterozoic Hotazel Formation, South Africa, and Implications for the Great Oxidation Event

    NASA Astrophysics Data System (ADS)

    Mhlanga, X. R.; Tsikos, H.; Boyce, A.; Lyons, T. W.

    2015-12-01

    The Palaeoproterozoic Hotazel Formation in the Transvaal Supergroup of South Africa represents an unusual sequence of banded iron formation interbedded with Mn-rich layers, in the form of three sedimentary cycles. The sequence has been interpreted as the product of cyclic Fe and Mn deposition in a marine environment that post-dated the first major event of atmosphere oxygenation at ~2.3Ga, known as Great Oxidation Event (GOE), despite the fact that geochronological constrains for the Hotazel rocks are still conjectural. The Hotazel deposits are thought to represent the products of anaerobic redox processes involving organic carbon and high-valence Fe/Mn-precursor species in the diagenetic environment; key evidence for such processes is provided by the low δ13C values of Fe- and Mn-rich carbonates contained in the Hotazel rocks (average δ13C: -9.6 per mil), which also typify other BIFs of the world. Here we show that the bulk carbonate fraction of the Hotazel Formation displays characteristically invariant carbon isotope signatures across large portions of the stratigraphy, irrespective of changes in bulk modal mineralogy, carbonate mineral chemistry, bulk Fe/Mn ratio or oxidation state of the rocks. This is inconsistent with traditional diagenetic models and points to a common and isotopically homogeneous source of dissolved carbon for carbonate formation in the Hotazel strata. The possibility emerges that the carbonate fraction in the Hotazel rocks initially precipitated as primary particles out of the ambient oceanic water-column, in response to processes of organic carbon cycling by Fe(III) and possibly Mn(IV) oxy-hydroxide species generated at the photic zone. Such a model precludes major atmosphere and shallow ocean oxygenation as a driver for primary oxide formation at post-GOE times, and suggests that the Hotazel deposits may in fact represent a highly evolved - chemically, isotopically and possibly biologically - marine environment that predated the GOE.

  8. Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulphur batteries.

    PubMed

    Xi, Kai; Cao, Shuai; Peng, Xiaoyu; Ducati, Caterina; Kumar, R Vasant; Cheetham, Anthony K

    2013-03-18

    This paper presents a novel method and rationale for utilizing carbonized MOFs for sulphur loading to fabricate cathode structures for lithium-sulphur batteries. Unique carbon materials with differing hierarchical pore structures were synthesized from four types of zinc-containing metal-organic frameworks (MOFs). It is found that cathode materials made from MOFs-derived carbons with higher mesopore (2-50 nm) volumes exhibit increased initial discharge capacities, whereas carbons with higher micropore (<2 nm) volumes lead to cathode materials with better cycle stability.

  9. [Soil organic carbon fractionation methods and their applications in farmland ecosystem research: a review].

    PubMed

    Zhang, Guo; Cao, Zhi-ping; Hu, Chan-juan

    2011-07-01

    Soil organic carbon is of heterogeneity in components. The active components are sensitive to agricultural management, while the inert components play an important role in carbon fixation. Soil organic carbon fractionation mainly includes physical, chemical, and biological fractionations. Physical fractionation is to separate the organic carbon into active and inert components based on the density, particle size, and its spatial distribution; chemical fractionation is to separate the organic carbon into various components based on the solubility, hydrolizability, and chemical reactivity of organic carbon in a variety of extracting agents. In chemical fractionation, the dissolved organic carbon is bio-available, including organic acids, phenols, and carbohydrates, and the acid-hydrolyzed organic carbon can be divided into active and inert organic carbons. Simulated enzymatic oxidation by using KMnO4 can separate organic carbon into active and non-active carbon. Biological fractionation can differentiate microbial biomass carbon and potential mineralizable carbon. Under different farmland management practices, the chemical composition and pool capacity of soil organic carbon fractions will have different variations, giving different effects on soil quality. To identify the qualitative or quantitative relationships between soil organic carbon components and carbon deposition, we should strengthen the standardization study of various fractionation methods, explore the integrated application of different fractionation methods, and sum up the most appropriate organic carbon fractionation method or the appropriate combined fractionation methods for different farmland management practices. PMID:22007474

  10. Effect of some organic solvent-water mixtures composition on precipitated calcium carbonate in carbonation process

    NASA Astrophysics Data System (ADS)

    Konopacka-Łyskawa, Donata; Kościelska, Barbara; Karczewski, Jakub

    2015-05-01

    Precipitated calcium carbonate particles were obtained during carbonation of calcium hydroxide slurry with carbon dioxide. Aqueous solutions of isopropyl alcohol, n-butanol and glycerol were used as solvents. Concentration of organic additives in the reactive mixture was from 0% to 20% (vol). Precipitation process were performed in a stirred tank reactor equipped with gas distributor. Multimodal courses of particles size distribution were determined for produced CaCO3 particles. Calcium carbonate as calcite was precipitated in all experiments. The mean Sauter diameter of CaCO3 particles decreased when the concentration of all used organic additives increased. The amount of small particle fraction in the product increased with the increasing concentration of organic solvents. Similar physical properties of used liquid phase resulted in the similar characteristics of obtained particles.

  11. Interpreting carbonate and organic carbon isotope covariance in the sedimentary record.

    PubMed

    Oehlert, Amanda M; Swart, Peter K

    2014-08-19

    Many negative δ(13)C excursions in marine carbonates from the geological record are interpreted to record significant biogeochemical events in early Earth history. The assumption that no post-depositional processes can simultaneously alter carbonate and organic δ(13)C values towards more negative values is the cornerstone of this approach. However, the effects of post-depositional alteration on the relationship between carbonate and organic δ(13)C values have not been directly evaluated. Here we present paired carbonate and organic δ(13)C records that exhibit a coupled negative excursion resulting from multiple periods of meteoric alteration of the carbonate δ(13)C record, and consequent contributions of isotopically negative terrestrial organic matter to the sedimentary record. The possibility that carbonate and organic δ(13)C records can be simultaneously shifted towards lower δ(13)C values during periods of subaerial exposure may necessitate the reappraisal of some of the δ(13)C anomalies associated with noteworthy biogeochemical events throughout Earth history.

  12. Constraints on Early Triassic carbon cycle dynamics from paired organic and inorganic carbon isotope records

    NASA Astrophysics Data System (ADS)

    Meyer, K. M.; Yu, M.; Payne, J.

    2010-12-01

    Marine anoxia and euxinia are widely cited as a leading cause of the end-Permian mass extinction and a factor limiting recovery during the Early Triassic. Middle Triassic diversification coincided with the waning of anoxia and stabilization of the global carbon cycle, suggesting that environment-ecosystem linkages were important to biological recovery. However, the mechanisms responsible for these phenomena remain poorly constrained. Here we employ a carbon isotope approach to examine the nature of the carbon cycle from Late Permian to Middle Triassic time. We measured the carbon isotopic composition of carbonates (δ13Ccarb) and organic matter (δ13Corg) from an exceptionally preserved carbonate platform in the Nanpanjiang Basin of south China. The δ13Ccarb of limestones from 5 stratigraphic sections spanning a paleoenvironmental gradient in south China records multiple large isotope excursions characteristic of the Lower Triassic. Previous modeling suggests that the carbon isotope record is best explained by multiple pulses carbon release to the ocean-atmosphere system. Addition of Δ13C values (δ13Ccarb - δ13Corg) for this interval allows us to evaluate whether the carbon cycle perturbations are indeed due to changes in atmospheric CO2 or from changing sources of organic matter input or fluctuating redox state of the oceans during this interval.

  13. Are we overestimating organic carbon concentrations in soils containing inorganic carbon?

    NASA Astrophysics Data System (ADS)

    Cunliffe, Andrew; Brazier, Richard; Vernon, Ian

    2014-05-01

    The concentration of carbon in soils is often measured via chromatographic analysis of elemental gases following dry combustion of a soil sample. This quantifies total carbon (TC), and, in soils which can be assumed to contain no inorganic carbon (IC), TC can be interpreted as organic carbon (OC). Soils containing IC are commonly subjected to an acid digestion to remove IC, prior to analysis for OC concentration; with IC being assigned as the difference between TC and OC. However, the removal of IC reduces the sample mass. Therefore, analysing acid-washed samples reveals the carbon concentration of the non-inorganic carbon sample mass, rather than the actual sample mass, as is generally assumed. This results in the overestimation of OC concentrations and consequent underestimation of IC concentrations, although TC concentrations are correct. The magnitude of the error is proportional to both IC concentration, and the ratio OC/IC, and consequently is greater in carbonate-rich samples. We present a revised protocol for accurately calculating OC and IC concentrations, using the carbon concentrations of the total sample and the acid-washed sample. The revised protocol is easily applicable to existing data, and corrects a known bias in apportioning carbon between organic and inorganic pools. Propagating the error through an example dataset from a semiarid environment, we find it can make a substantial (>10%) difference to estimated total OC pools. We recommend that this new protocol is used whenever elemental analysers are used to quantify OC concentrations in acid-washed sediments.

  14. Soil organic matter dynamics and the global carbon cycle

    SciTech Connect

    Post, W.M.; Emanuel, W.R.; King, A.W.

    1992-01-01

    The large size and potentially long residence time of the soil organic matter pool make it an important component of the global carbon cycle. Net terrestrial primary production of about 60 Pg C[center dot]yr[sup -1] is, over a several-year period of time, balanced by an equivalent flux of litter production and subsequent decomposition of detritus and soil organic matter. We will review many of the major factors that influence soil organic matter dynamics that need to be explicitly considered in development of global estimates of carbon turnover in the world's soils. We will also discuss current decomposition models that are general enough to be used to develop a representation of global soil organic matter dynamics.

  15. Soil organic matter dynamics and the global carbon cycle

    SciTech Connect

    Post, W.M.; Emanuel, W.R.; King, A.W.

    1992-12-01

    The large size and potentially long residence time of the soil organic matter pool make it an important component of the global carbon cycle. Net terrestrial primary production of about 60 Pg C{center_dot}yr{sup -1} is, over a several-year period of time, balanced by an equivalent flux of litter production and subsequent decomposition of detritus and soil organic matter. We will review many of the major factors that influence soil organic matter dynamics that need to be explicitly considered in development of global estimates of carbon turnover in the world`s soils. We will also discuss current decomposition models that are general enough to be used to develop a representation of global soil organic matter dynamics.

  16. Spatial distribution of soil organic carbon stocks in France

    NASA Astrophysics Data System (ADS)

    Martin, M. P.; Wattenbach, M.; Smith, P.; Meersmans, J.; Jolivet, C.; Boulonne, L.; Arrouays, D.

    2010-11-01

    Soil organic carbon plays a major role in the global carbon budget, and can act as a source or a sink of atmospheric carbon, whereby it can influence the course of climate change. Changes in soil organic soil stocks (SOCS) are now taken into account in international negotiations regarding climate change. Consequently, developing sampling schemes and models for estimating the spatial distribution of SOCS is a priority. The French soil monitoring network has been established on a 16 km × 16 km grid and the first sampling campaign has recently been completed, providing circa 2200 measurements of stocks of soil organic carbon, obtained through an in situ composite sampling, uniformly distributed over the French territory. We calibrated a boosted regression tree model on the observed stocks, modelling SOCS as a function of other variables such as climatic parameters, vegetation net primary productivity, soil properties and land use. The calibrated model was evaluated through cross-validation and eventually used for estimating SOCS for the whole of metropolitan France. Two other models were calibrated on forest and agricultural soils separately, in order to assess more precisely the influence of pedo-climatic variables on soil organic carbon for such soils. The boosted regression tree model showed good predictive ability, and enabled quantification of relationships between SOCS and pedo-climatic variables (plus their interactions) over the French territory. These relationship strongly depended on the land use, and more specifically differed between forest soils and cultivated soil. The total estimate of SOCS in France was 3.260 ± 0.872 PgC for the first 30 cm. It was compared to another estimate, based on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC. We demonstrate that the present estimate might better represent the actual SOCS distributions of France, and consequently that the previously published approach at the European

  17. Resonance Raman studies of carbon monoxide binding to iron "picket fence" porphyrin with unhindered and hindered axial bases. An inverse relationship between binding affinity and the strength of iron-carbon bond.

    PubMed

    Kerr, E A; Mackin, H C; Yu, N T

    1983-09-13

    The stretching frequency of the iron-carbon bond, v(Fe-CO), is a direct measure of the iron-carbon bond strength when there is no change in the Fe-C-O geometry. Here we report resonance Raman detection of v(Fe-CO) frequencies in the CO complexes of iron (II) alpha, alpha, alpha, alpha-mesotetrakis(o-pivalamidophenyl)porphyrin, FeII(TpivPP), with trans ligands of varying strength: N-methylimidazole (N-MeIm), 1,2-dimethylimidazole (1,2-Me2Im), pyridine (py), and tetrahydrofuran (THF). It was found that the weaker the iron-trans ligand bond, the stronger the iron-carbon bond. Comparisons of sterically hindered (1,2-Me2Im) and unhindered (N-MeIm) bases are of particular interest because of their implication in the phenomenon of hemoglobin cooperativity and the mechanisms of protein control of heme reactivity. While the CO binding affinity of FeII(TpivPP)(1,2-MeIm) is approximately 400 times lower than that of FeII(TpivPP)(N-MeIm), the v(Fe-CO) frequency for the former (at 496 cm-1) is higher than that for the latter (at 489 cm-1). This example shows that the CO binding affinity cannot be directly correlated with the strength of the iron-carbon bond. Comparison of the CO binding to FeII(TpivPP)(THF) and FeII(TpivPP)(N-MeIm) reveals a similar relationship; the v(Fe-CO) frequency (at 527 cm-1) in FeII(TpivPP)(THF)(CO) is 38 cm-1 higher than that in FeII(TpivPP)(N-MeIm)(CO), but the CO binding affinity is lower for the THF complex.

  18. Probing the Interfacial Interaction in Layered-Carbon-Stabilized Iron Oxide Nanostructures: A Soft X-ray Spectroscopic Study.

    PubMed

    Zhang, Hui; Liu, Jinyin; Zhao, Guanqi; Gao, Yongjun; Tyliszczak, Tolek; Glans, Per-Anders; Guo, Jinghua; Ma, Ding; Sun, Xu-Hui; Zhong, Jun

    2015-04-22

    We have stabilized the iron oxide nanoparticles (NPs) of various sizes on layered carbon materials (Fe-oxide/C) that show excellent catalytic performance. From the characterization of X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy (XES), scanning transmission X-ray microscopy (STXM) and X-ray magnetic circular dichroism spectroscopy (XMCD), a strong interfacial interaction in the Fe-oxide/C hybrids has been observed between the small iron oxide NPs and layered carbon in contrast to the weak interaction in the large iron oxide NPs. The interfacial interaction between the NPs and layered carbon is found to link with the improved catalytic performance. In addition, the Fe L-edge XMCD spectra show that the large iron oxide NPs are mainly γ-Fe2O3 with a strong ferromagnetic property, whereas the small iron oxide NPs with strong interfacial interaction are mainly α-Fe2O3 or amorphous Fe2O3 with a nonmagnetic property. The results strongly suggest that the interfacial interaction plays a key role for the catalytic performance, and the experimental findings may provide guidance toward rational design of high-performance catalysts. PMID:25839786

  19. Probing the Interfacial Interaction in Layered-Carbon-Stabilized Iron Oxide Nanostructures: A Soft X-ray Spectroscopic Study.

    PubMed

    Zhang, Hui; Liu, Jinyin; Zhao, Guanqi; Gao, Yongjun; Tyliszczak, Tolek; Glans, Per-Anders; Guo, Jinghua; Ma, Ding; Sun, Xu-Hui; Zhong, Jun

    2015-04-22

    We have stabilized the iron oxide nanoparticles (NPs) of various sizes on layered carbon materials (Fe-oxide/C) that show excellent catalytic performance. From the characterization of X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy (XES), scanning transmission X-ray microscopy (STXM) and X-ray magnetic circular dichroism spectroscopy (XMCD), a strong interfacial interaction in the Fe-oxide/C hybrids has been observed between the small iron oxide NPs and layered carbon in contrast to the weak interaction in the large iron oxide NPs. The interfacial interaction between the NPs and layered carbon is found to link with the improved catalytic performance. In addition, the Fe L-edge XMCD spectra show that the large iron oxide NPs are mainly γ-Fe2O3 with a strong ferromagnetic property, whereas the small iron oxide NPs with strong interfacial interaction are mainly α-Fe2O3 or amorphous Fe2O3 with a nonmagnetic property. The results strongly suggest that the interfacial interaction plays a key role for the catalytic performance, and the experimental findings may provide guidance toward rational design of high-performance catalysts.

  20. Gold catalysts supported on nanosized iron oxide for low-temperature oxidation of carbon monoxide and formaldehyde

    NASA Astrophysics Data System (ADS)

    Tang, Zheng; Zhang, Weidong; Li, Yi; Huang, Zuming; Guo, Huishan; Wu, Feng; Li, Jinjun

    2016-02-01

    This study aimed to optimize synthesis of gold catalyst supported on nanosized iron oxide and to evaluate the activity in oxidation of carbon monoxide and formaldehyde. Nanosized iron oxide was prepared from a colloidal dispersion of hydrous iron oxide through a dispersion-precipitation method. Gold was adsorbed onto nanosized iron oxide under self-generated basic conditions. Characterization results indicate that the iron oxide consisted of hematite/maghemite composite with primary particle sizes of 6-8 nm. Gold was highly dispersed on the surface of the support. The catalysts showed good activity in the oxidation of airborne carbon monoxide and formaldehyde. The optimal pH for their synthesis was ∼7. The catalytic performance could be enhanced by extending the adsorption time of gold species on the support within 21 h. The optimized catalyst was capable of achieving complete oxidation of 1% carbon monoxide at -20 °C and 33% conversion of 450 ppm formaldehyde at ambient temperature. The catalyst may be applicable to indoor air purification.

  1. Standardizing Organic Carbon Measurements for Modern and Geologic Timescales

    NASA Astrophysics Data System (ADS)

    Wang, R. Z.; Yager, J. A.; Rollins, N.; Berelson, W.; West, A. J.; Li, G.

    2015-12-01

    Accurate reconstruction of carbon isotope records (as well as accurate characterization of the modern carbon cycle, e.g., in soils) relies on reliably separating organic carbon (Corg) from carbonate-derived carbon (Ccarb). These fractions are characterized by very different isotope composition, so small carbonate contamination can strongly bias Corg results, and vice versa. Several criteria must be met for accurate %C and d13C analysis. In the case of analyzing Corg, these include: (1) Ccarb must be removed through a process called "decarbonation." (2) Ccarb can be removed by acid dissolution, but if the acid is too strong then the Corg itself may solubilize, causing inaccurate results. (3) The preparation process for decarbonation can also unintentionally add carbon to samples and create a methodological blank that also will bias results. This study tested decarbonation methods with the above criteria in mind. The focus was on (i) heated treatment with weak liquid acid, e.g., 1M HCl ("liquid phase decarbonation") and (ii) heated treatment with vapor from concentrated acid ("vapor phase decarbonation"). Our results confirm that heated treatment is critical to producing reliable records; recalcitrant carbonate phases are not removed during room temperature decarbonation and can bias carbon isotope values. Vapor phase decarbonation may prevent loss in solution that is known to occur using liquid phase methods. However, our results show that blanks must be very carefully monitored and can be a concern during vapor phase treatment. Moreover, we still observe some loss of organics during vapor phase treatment, as evidenced by changes in Corg and d13C with length of reaction time. The length of vapor phase treatment must be carefully considered depending on the type of sample being tested. Overall, our work emphasizes the importance of carefully considering sample-specific decarbonation methodology in order to produce reliable values for %Corg and d13C.

  2. Understanding drivers of the export of dissolved organic carbon from headwater catchments in Germany using Generalised Additive Models

    NASA Astrophysics Data System (ADS)

    Selle, Benny; Tittel, Jörg; Musolff, Andreas

    2015-04-01

    In the literature, several causes of recently increasing concentrations of dissolved organic carbon (DOC) in headwaters across eastern North America and northern and central Europe have been debated. One likely driver of the widespread increase of DOC concentrations since the early to mid 1990s are decreasing depositions of acid rain resulting in an increased solubility of organic carbon compounds including humic acids. Here, we tested the hypothesis if the reduced availability of both nitrate and sulfate stimulated the reduction of ferric iron soil minerals and the mobilisation of DOC. Decreasing depositions often resulted in a reduced availability of both nitrate and sulphate, which are preferred electron acceptors in microbial decomposition processes. As iron minerals act as efficient sorbents of organic compounds in soils its reduction may have caused a release of humic substances and hence an increasing export of DOC from headwater catchments. To test this hypothesis, time series of DOC, dissolved iron, sulfate and nitrate from several German headwater catchments were examined using Generalised Additive Models. Using this modelling technique, discharge corrected time series of concentrations were represented as a sum of a seasonal and a non-linear trend component. Both, the computed trends and seasonalities supported the redox hypothesis.

  3. Effect of Iron and Carbon Monoxide on Fibrinogenase-like Degradation of Plasmatic Coagulation by Venoms of Six Agkistrodon Species.

    PubMed

    Nielsen, Vance G; Redford, Daniel T; Boyle, Patrick K

    2016-05-01

    Annually, thousands suffer poisonous snakebite, often from defibrinogenating species. It has been demonstrated that iron and carbon monoxide change the ultrastructure of plasma thrombi and improve coagulation kinetics. Thus, this investigation sought to determine whether pre-treatment of plasma with iron and carbon monoxide could attenuate venom-mediated catalysis of fibrinogen obtained from Agkistrodon species with fibrinogenase activity. Human plasma was pre-treated with ferric chloride (0-10 μM) and carbon monoxide-releasing molecule-2 (CORM-2, 0-100 μM) prior to exposure to 0.5-11 μg/ml of six different Agkistrodon species' venom. The amount of venom used for experimentation needed to decrease coagulation function of one or more kinetic parameters by at least 50% of normal values for (e.g. half the normal speed of clot formation). Coagulation kinetics were determined with thrombelastography. All six snake venoms degraded plasmatic coagulation kinetics to a significant extent, especially prolonging the onset to clot formation and diminishing the speed of clot growth. Pre-treatment of plasma with iron and carbon monoxide attenuated these venom-mediated coagulation kinetic changes in a species-specific manner, with some venom effects markedly abrogated while others were only mildly decreased. Further in vitro investigation of other pit viper venoms that possess fibrinogenolytic activity is indicated to identify species amenable to or resistant to iron and carbon monoxide-mediated attenuation of venom-mediated catalysis of fibrinogen. Lastly, future pre-clinical investigation with animal models (e.g. rabbit ear-bleed model) is planned to determine whether iron and carbon monoxide can be used therapeutically after envenomation.

  4. Effect of Iron and Carbon Monoxide on Fibrinogenase-like Degradation of Plasmatic Coagulation by Venoms of Six Agkistrodon Species.

    PubMed

    Nielsen, Vance G; Redford, Daniel T; Boyle, Patrick K

    2016-05-01

    Annually, thousands suffer poisonous snakebite, often from defibrinogenating species. It has been demonstrated that iron and carbon monoxide change the ultrastructure of plasma thrombi and improve coagulation kinetics. Thus, this investigation sought to determine whether pre-treatment of plasma with iron and carbon monoxide could attenuate venom-mediated catalysis of fibrinogen obtained from Agkistrodon species with fibrinogenase activity. Human plasma was pre-treated with ferric chloride (0-10 μM) and carbon monoxide-releasing molecule-2 (CORM-2, 0-100 μM) prior to exposure to 0.5-11 μg/ml of six different Agkistrodon species' venom. The amount of venom used for experimentation needed to decrease coagulation function of one or more kinetic parameters by at least 50% of normal values for (e.g. half the normal speed of clot formation). Coagulation kinetics were determined with thrombelastography. All six snake venoms degraded plasmatic coagulation kinetics to a significant extent, especially prolonging the onset to clot formation and diminishing the speed of clot growth. Pre-treatment of plasma with iron and carbon monoxide attenuated these venom-mediated coagulation kinetic changes in a species-specific manner, with some venom effects markedly abrogated while others were only mildly decreased. Further in vitro investigation of other pit viper venoms that possess fibrinogenolytic activity is indicated to identify species amenable to or resistant to iron and carbon monoxide-mediated attenuation of venom-mediated catalysis of fibrinogen. Lastly, future pre-clinical investigation with animal models (e.g. rabbit ear-bleed model) is planned to determine whether iron and carbon monoxide can be used therapeutically after envenomation. PMID:26467642

  5. An isotopic study of biogeochemical relationships between carbonates and organic carbon in the Greenhorn Formation

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Popp, Brian N.; Takigiku, Ray; Johnson, Marcus W.

    1989-01-01

    Carbon-isotopic compositions of total carbonate, inoceramid carbonate, micritic carbonate, secondary cements, total organic carbon, and geoporphyrins have been measured in 76 different beds within a 17-m interval of a core through the Greenhorn Formation, an interbedded limestone and calcareous shale unit of Cretaceous age from the Western Interior Seaway of North America. Results are considered in terms of variations in the processes of primary production and in secondary processes. It is shown that the porphyrin isotopic record reflects primary isotopic variations more closely than the TOC isotopic record and that, in these sediments, TOC is enriched in C-13 relative to its primary precursor by 0.6 to 2.8 percent. This enrichment is attributed to isotope effects within the consumer foodweb and is associated with respiratory heterotrophy. Variation in this secondary enrichment are correlated with variations in the isotopic composition of marine carbonate.

  6. Carbon export in the naturally iron-fertilized Kerguelen area of the Southern Ocean based on the 234Th approach

    NASA Astrophysics Data System (ADS)

    Planchon, F.; Ballas, D.; Cavagna, A.-J.; Bowie, A. R.; Davies, D.; Trull, T.; Laurenceau-Cornec, E. C.; Van Der Merwe, P.; Dehairs, F.

    2015-06-01

    This study examined upper-ocean particulate organic carbon (POC) export using the 234Th approach as part of the second KErguelen Ocean and Plateau compared Study expedition (KEOPS2). Our aim was to characterize the spatial and the temporal variability of POC export during austral spring (October-November 2011) in the Fe-fertilized area of the Kerguelen Plateau region. POC export fluxes were estimated at high productivity sites over and downstream of the plateau and compared to a high-nutrient low-chlorophyll (HNLC) area upstream of the plateau in order to assess the impact of iron-induced productivity on the vertical export of carbon. Deficits in 234Th activities were observed at all stations in surface waters, indicating early scavenging by particles in austral spring. 234Th export was lowest at the reference station R-2 and highest in the recirculation region (E stations) where a pseudo-Lagrangian survey was conducted. In comparison 234Th export over the central plateau and north of the polar front (PF) was relatively limited throughout the survey. However, the 234Th results support that Fe fertilization increased particle export in all iron-fertilized waters. The impact was greatest in the recirculation feature (3-4 fold at 200 m depth, relative to the reference station), but more moderate over the central Kerguelen Plateau and in the northern plume of the Kerguelen bloom (~2-fold at 200 m depth). The C : Th ratio of large (>53 μm) potentially sinking particles collected via sequential filtration using in situ pumping (ISP) systems was used to convert the 234Th flux into a POC export flux. The C : Th ratios of sinking particles were highly variable (3.1 ± 0.1 to 10.5 ± 0.2 μmol dpm-1) with no clear site-related trend, despite the variety of ecosystem responses in the fertilized regions. C : Th ratios showed a decreasing trend between 100 and 200 m depth suggesting preferential carbon loss relative to 234Th possibly due to heterotrophic degradation and

  7. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    SciTech Connect

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-06-25

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated

  8. Carbonaceous aerosols