Science.gov

Sample records for organic compound contamination

  1. Bibliography on contaminants and solubility of organic compounds in oxygen

    NASA Technical Reports Server (NTRS)

    Ordin, P. M. (Compiler)

    1975-01-01

    A compilation of a number of document citations is presented which contains information on contaminants in oxygen. Topics covered include contaminants and solubility of organic compounds in oxygen, reaction characteristics of organic compounds with oxygen, and sampling and detection limits of impurities. Each citation in the data bank contains many items of information about the document. Some of the items are title, author, abstract, corporate source, description of figures pertinent to hazards or safety, key references, and descriptors (keywords) by which the document can be retrieved. Each citation includes an evaluation of the technical contents as to being good/excellent, acceptable, or poor. The descriptors used to define the contents of the documents and subsequently used in the computerized search operations were developed for the cryogenic fluid safety by experts in the cryogenics field.

  2. Organic waste compounds as contaminants in Milwaukee-area streams

    USGS Publications Warehouse

    Baldwin, Austin K.; Corsi, Steven R.; Magruder, Christopher; Magruder, Matthew; Bruce, Jennifer L.

    2015-09-22

    Organic waste compounds (OWCs) are ingredients and by-products of common agricultural, industrial, and household substances that can contaminate our streams through sources like urban runoff, sewage overflows, and leaking septic systems. To better understand how OWCs are affecting Milwaukee-area streams, the U.S. Geological Survey, in cooperation with the Milwaukee Metropolitan Sewerage District, conducted a three-year study to investigate the presence and potential toxicity of 69 OWCs in base flow, stormflow, pore water, and sediment at 14 stream sites and 3 Milwaukee harbor locations. This fact sheet summarizes the major findings of this study, including detection frequencies and concentrations, potential toxicity, the prevalence of polycyclic aromatic hydrocarbons (PAHs), and the influence of urbanization.

  3. Environmental assessment of a site contaminated by organic compounds.

    PubMed

    Riccardi, C; Berardi, S; Di Basilio, M; Gariazzo, C; Giardi, P; Villarini, M

    2001-01-01

    This paper presents a study on environmental assessment of an abandoned industrial area located in central Italy. Main production was refractory materials and compounds for treatment of industrial wastewater. The present work deals with a methodology for development of a sound sampling design, chemical characterization of soil samples, definition of the degree of site contamination according to law limits and evaluation of the fate and transport of contaminants by EPA simulation model (VLEACH 2.2a). Results indicate that toxic compounds (polycyclic aromatic hydrocarbons and plasticizers) are uniformly distributed in the contaminated site and only in one sampling point their concentrations exceed law limits. Modeling results confirm that contaminants migration to groundwater can be excluded, addressing for a site remediation limited to the surface layer.

  4. Analysis of industrial contaminants in indoor air: part 1. Volatile organic compounds, carbonyl compounds, polycyclic aromatic hydrocarbons and polychlorinated biphenyls.

    PubMed

    Barro, Ruth; Regueiro, Jorge; Llompart, María; Garcia-Jares, Carmen

    2009-01-16

    This article reviews recent literature on the analysis of industrial contaminants in indoor air in the framework of the REACH project, which is mainly intended to improve protection of human health and the environment from the risks of more than 34 millions of chemical substances. Industrial pollutants that can be found in indoor air may be of very different types and origin, belonging to the volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) categories. Several compounds have been classified into the priority organic pollutants (POPs) class such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins and furans (PCDD/PCDFs) and related polychlorinated compounds, and polycyclic aromatic hydrocarbons (PAHs). Many of these compounds are partially associated to the air gas phase, but also to the suspended particulate matter. Furthermore, settled dust can act as a concentrator for the less volatile pollutants and has become a matrix of great concern for indoors contamination. Main literature considered in this review are papers from the last 10 years reporting analytical developments and applications regarding VOCs, aldehydes and other carbonyls, PCBs, PCDDs, PCDFs, and PAHs in the indoor environment. Sample collection and pretreatment, analyte extraction, clean-up procedures, determination techniques, performance results, as well as compound concentrations in indoor samples, are summarized and discussed. Emergent contaminants and pesticides related to the industrial development that can be found in indoor air are reviewed in a second part in this volume.

  5. [Characteristics of gaseous pollutants distribution during remedial excavation at a volatile organic compound contaminated site].

    PubMed

    Gan, Ping; Yang, Yue-Wei; Fang, Zeng-Qiang; Guo, Shu-Qian; Yu, Yan; Jia, Jian-Li

    2013-12-01

    Volatile and semi-volatile organic compounds (VOCs/SVOCs) are commonly identified contaminants in industrial contaminated sites in China. VOCs migrate easily in the environment due to their relatively high volatilities. When disturbed during excavation, for example, VOCs in the soil release to the air in high concentrations within relatively short period of time, joepodizing the health of the sorrounding population, if not appropriately protected. In this study, distribution of gas phase VOCs was monitored during excavation of a site remediation project, using a combined method of field testing instrument and gas phase sampling tubes. Monitoring results indicated that gas phase concentration decreased with distance, exhibiting an alternating peak-and-valley pattern in the down-wind direction. The monitoring results could be stimulated using Gaussian Puff Model. Remediation site health and safety zoning method was developed combining appropriate workplace health and safety air limits and site monitoring results. Personal protection measures deemed appropriated for each safety zone were proposed.

  6. A general mathematical model for chemical-enhanced flushing of soil contaminated by organic compounds

    NASA Astrophysics Data System (ADS)

    Ji, Wei; Brusseau, Mark L.

    The use of chemical agents to enhance the in situ removal of hydrophobic organic compounds (HOCs) from porous media is an emerging remediation technology. Whereas surfactants and cosolvents are the primary agents examined to date, others, such as natural organic matter and complexing agents, have also been examined for their ability to enhance the solubilization of HOCs. While the mode of action of each type of enhanced-solubilization agent may be different, they all induce similar responses. In this paper, a general mathematical model is developed to simulate the enhanced-solubilization process for various chemical agents, including cosolvents, surfactants, natural organic matter, and complexing agents. This model is developed using a master-equation approach that incorporates the solubilization mechanisms associated with each type of agent. A limited evaluation of the model is conducted by comparing simulations to the results of two laboratory experiments. A sensitivity analysis is performed to illustrate the influence of various factors on contaminant removal.

  7. Contamination of estuarine water, biota, and sediment by halogenated organic compounds: A field study

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Chiou, C.T.; Brinton, T.I.; Barber, L.B.; Demcheck, D.K.; Demas, C.R.

    1988-01-01

    Studies conducted in the vicinity of an industrial outfall in the Calcasieu River estuary, Louisiana, have shown that water, bottom and suspended sediment, and four different species of biota are contaminated with halogenated organic compounds (HOC) including haloarenes. A "salting-out" effect in the estuary moderately enhanced the partitioning tendency of the contaminants into biota and sediments. Contaminant concentrations in water, suspended sediments, and biota were found to be far below the values predicted on the basis of the assumption of phase equilibria with respect to concentrations in bottom sediment. Relative concentration factors of HOC between biota (catfish) and bottom sediment increased with increasing octanol/estuarine water partition coefficients (Kow*), maximizing at log Kow* of about 5, although these ratios were considerably less than equilibrium values. In contrast, contaminant concentrations in water, biota, and suspended sediments were much closer to equilibrium values. Bioconcentration factors of HOC determined on the basis of lipid content for four different biotic species correlated reasonably well with equilibrium triolein/water partition coefficients (Ktw).

  8. Fate and risk evaluation of persistent organic contaminants and related compounds in Victoria Harbour, Hong Kong.

    PubMed

    Connell, D W; Wu, R S; Richardson, B J; Leung, K; Lam, P S; Connell, P A

    1998-04-01

    The Environment Protection Department of Hong Kong has a monitoring program for persistent organic contaminants in sediments of Victoria Harbour, the main harbour of Hong Kong. A fugacity model has been used, based on this sedimentary data, to estimate inputs to the system (probably from sewage, stormwater and industrial discharges) as well as the fate of the contaminants, particularly in terms of the aqueous and biotic concentrations. The risk of deleterious effects on the natural marine system, as well as on the consumers of seafood from the system, was carried out using the estimated aqueous and biotic concentrations together with accepted environmental quality guidelines. The result of our analysis indicated that the chlorohydrocarbons, PCBs (as Aroclor 1254) total DDT and total HCH pose a significant risk, and probably have caused damage to the marine ecosystem as well as posing a hazard to seafood consumers. Much higher concentrations of the less toxic total alkanes, nonaromatic hydrocarbons, linear alkyl benzenes and the compounds giving a unresolved complex mixture (UCM) cannot be evaluated due to a lack of environmental guidelines and the complexity of these substances. However, it is probable that these substances add adverse effects to those due to the other contaminants.

  9. Could organic phosphorus compounds contaminate the analysis of phosphate oxygen isotopes in freshwater matrices?

    NASA Astrophysics Data System (ADS)

    Davies, Ceri; Surridge, Ben; Gooddy, Daren

    2014-05-01

    Variation in the stable isotope composition of oxygen within dissolved phosphate (δ18Op) represents a novel and potentially powerful environmental tracer, providing insights into the sources of phosphorus and the extent to which phosphorus from different sources is metabolised. The analysis of δ18Opwithin freshwater matrices requires isolation of the phosphate ion from possible sources of contaminant oxygen within the bulk matrix, prior to pyrolysis (usually of a silver phosphate precipitate) and analysis of the oxygen isotope composition. The majority of published research uses co-precipitation of phosphate with brucite (Mg(OH)2) as an initial step in the isolation of the phosphate ion. However, freshwater matrices also contain a wide range of organic phosphorus compounds, including adenosine 5'-triphosphate (ATP) and phosphonates such as 2-aminoethylphosphonic acid. In this paper, we initially examine the potential for co-precipitation of organic phosphorus compounds with brucite. Our data indicate that ATP, sodium pyrophosphate and inositol hexakisphosphate are almost entirely removed from solution through co-precipitation with brucite, whilst glucose-6-phosphate and 2-aminoethylphosphonic acid are less readily co-precipitated. Subsequently, we assessed the potential for acid-hydrolysis of organic phosphorus compounds during re-dissolution of the brucite precipitate, using a range of acid systems. Our data indicate that up to 17% of ATP and up to 5% of sodium pyrophosphate can be hydrolysed by concentrated acetic acid, yielding fresh phosphate ions in solution. Our findings have potentially significant implications for analysis of δ18Opbecause the fresh phosphate ions produced following acid hydrolysis will be subjected to inheritance and kinetic isotope fractionations, likely altering the bulk δ18Op within a freshwater sample.

  10. Medical costs and lost productivity from health conditions at volatile organic compound-contaminated Superfund sites

    SciTech Connect

    Lybarger, J.A.; Spengler, R.F.; Brown, D.R.; Lee, R.; Vogt, D.P. |; Perhac, R.M. Jr. |

    1998-10-01

    This paper estimates the health costs at Superfund sites for conditions associated with volatile organic compounds (VOCs) in drinking water. Health conditions were identified from published literature and registry information as occurring at excess rates in VOC-exposed populations. These health conditions were: (1) some categories of birth defects, (2) urinary tract disorders, (3) diabetes, (4) eczema and skin conditions, (5) anemia, (6) speech and hearing impairments in children under 10 years of age, and (7) stroke. Excess rates were used to estimate the excess number of cases occurring among the total population living within one-half mile of 258 Superfund sites. These sites had evidence of completed human exposure pathways for VOCs in drinking water. For each type of medical condition, an individual`s expected medical costs, long-term care costs, and lost work time due to illness or premature mortality were estimated. Costs were calculated to be approximately $330 million per year, in the absence of any remediation or public health intervention programs. The results indicate the general magnitude of the economic burden associated with a limited number of contaminants at a portion of all Superfund sites, thus suggesting that the burden would be greater than that estimated in this study if all contaminants at all Superfund sites could be taken into account.

  11. Application of accelerated solvent extraction in the analysis of organic contaminants, bioactive and nutritional compounds in food and feed.

    PubMed

    Sun, Hanwen; Ge, Xusheng; Lv, Yunkai; Wang, Anbang

    2012-05-11

    Accelerated solvent extraction (ASE) has become a popular green extraction technology for different classes of organic contaminants present in numerous kinds of food and feed for food safety. The parameters affecting ASE efficiency and application advancement of ASE in the analysis of organic contaminants, natural toxins compounds as well as bioactive and nutritional compounds in animal origin food, plant origin food and animal feed are reviewed in detail. ASE is a fully automated and reliable extraction technique with many advantages over traditional extraction techniques, so it could be especially useful for routine analyses of pollutants in food and feed.

  12. Factors that influence the level of contamination of human milk with poly-chlorinated organic compounds.

    PubMed

    Albers, J M; Kreis, I A; Liem, A K; van Zoonen, P

    1996-02-01

    Polychlorinated organic compounds (POCs) accumulate in tissues with a high fat content. Nursed babies are exposed to POCs through the fat in human milk. Exposure levels are estimated to exceed those considered acceptable as a lifelong daily dose. Nevertheless, mothers are still positively advised as to breast-feeding. In 1988, a survey on contamination of human milk with POCs was carried out in The Netherlands. Levels of ten different organochlorine pesticides (OCPs), eight polychlorinated biphenyl (PCB) congeners, and seventeen polychlorinated dibenzodioxin (PCDD) and -dibenzofuran (PCDF) congeners were determined by use of gaschromatographic techniques with either electron-capture or mass-spectrometric detection. Information on some factors potentially influencing the level of contamination of human milk was obtained by questionnaires. The estimated response amounted to 71 percent. Regression analysis was used to investigate associations between determining factors and specific contaminants. It appeared that maternal age was positively associated with POC concentrations. Traditional omnivorous diet was associated with lower concentrations of POCs when compared to all other types of diet. The post-pregnancy Quetelet Index [by definition calculated as weight/(length)2] and the cumulated period of previous breast-feeding were negatively associated with POC concentrations. In conclusion, chemical behavior and environmental distribution patterns of the POCs measured in this study, if translated to factors of human exposure, are in accordance with the study results. Exposure levels will decrease if emissions can be further reduced. Still, in the near future, maternal age will probably rise (Vermunt 1992; Netherlands Central Bureau of Statistics 1992), whereas the duration of lactation in expected to decline. Consequently, there might be an increase in average POC-concentrations in human milk in the forthcoming years.

  13. Factors Affecting Indoor Air Concentrations of Volatile Organic Compounds at a Site of Subsurface Gasoline Contamination

    SciTech Connect

    Fischer, M.L.; Bentley, A.J.; Dunkin, K.A.; Hodgson, A.T.; Nazaroff, W.W.; Sextro, R.G.; Daisey, J.M.

    1995-11-01

    We report a field study of soil gas transport of volatile organic compounds (VOCs) into a slab-on-grade building found at a site contaminated with gasoline. Although the high VOC concentrations (30-60 g m{sup -3}) measured in the soil gas at depths of 0.7 m below the building suggest a potential for high levels of indoor VOC, the measured indoor air concentrations were lower than those in the soil gas by approximately six orders of magnitude ({approx} 0.03 mg m{sup -3}). This large ratio is explained by (1) the expected dilution of soil gas entering the building via ambient building ventilation (a factor of {approx}1000), and (2) an unexpectedly sharp gradient in soil gas VOC concentration between the depths of 0.1 and 0.7 m (a factor of {approx}1000). Measurements of the soil physical and biological characteristics indicate that a partial physical barrier to vertical transport in combination with microbial degradation provides a likely explanation for this gradient. These factors are likely to be important to varying degrees at other sites.

  14. Associations of free-living bacteria and dissolved organic compounds in a plume of contaminated groundwater

    USGS Publications Warehouse

    Harvey, R.W.; Barber, L.B.; ,

    1992-01-01

    Associations of free-living bacteria (FLB) and dissolved organic contaminants in a 4-km-long plume of sewage-contaminated groundwater were investigated. Abundance of FLB in the core of the plume (as delineated by maximum specific conductance) steadily decreased in the direction of flow from a point 0.25 km downgradient from the source to the toe of the plume. At 0.25 km downgradient, FLB comprised up to 31% of the total bacterial population, but constituted < 7% of the population at 2 km downgradient. Abundance of FLB correlated strongly (r = 0.80 n = 23) with total dissolved organic carbon (DOC) in contaminated groundwater between 0.64 and 2.1 km downgradient, although distributions of individual contaminants such as di-, tri- and tetrachloroethene were highly variable, and their association with FLB less clear. Numbers of FLB in the downgradient portion of the plume which is contaminated with branched-chain alkylbenzenesulfonate (ABS) surfactants were low (< 5??108/L) in spite of relatively high levels of DOC (up to 4 mg/L). However, abundance of FLB correlated strongly with non-surfactant DOC along vertical transects through the plume. The ratio of FLB to DOC and the ratio of FLB to attached bacteria generally decreased in the direction of flow and, consequently, with the age of the organic contaminants.

  15. Sorption of organic compounds to microbial extracellular polymers: Potential vector for bioaccumulation of sediment-associated contaminants

    SciTech Connect

    Schlekat, C.E.; Decho, A.W.; Chandler, G.T.

    1995-12-31

    Microbial extracellular polymeric substances (EPS) in the form of organic carbon coatings are ubiquitous features of marine surficial sediments and suspended particulate matter. Consisting primarily of polysaccharides, EPS are produced by bacteria for adhesion to substrata, to bind essential nutrients, and to protect bacterial cells from exogenous stressors, including toxic trace metals. EPS particulate coatings are easily digested by marine particle-ingesting invertebrates. Additionally, these organisms directly assimilate dissolved organic material and trace metals adsorbed to EPS-coated particulate. The capacity of EPS-coated particulate matter to serve as a vector for bioaccumulation of sediment-associated contaminants has not been addressed. As a step, the authors measured adsorption of selected organic contaminants by EPS-coated hydrated silica particles (mean diameter = 30 {micro}m). Radio-labeled organic contaminants, including benzo(a)pyrene, hexachlorobiphenyl, and the pesticides azinphosmethyl and chlorpyrifos were associated with coated particles in seawater under constant pH, salinity, temperature, and Eh. Mixtures were incubated until equilibrium was approximated, at which point partitioning between seawater and particulate was determined for each particulate/contaminant combination. The organic compounds exhibited a range of log K{sub ow} from 2.6 (azinphosmethyl) to 6.7 (hexachlorobiphenyl), which allowed for quantification of the relationship between partitioning and contaminant hydrophobicity. Effects of differential EPS composition were evaluated by measuring binding affinity of hexachlorobiphenyl particles coated with EPS obtained from three bacterial species which produce EPS with unique compositional attributes: Azotobacter vinelandii, Leuconostoc mesenteroides, and Pseudomonas atlantica.

  16. Effect of Water Content on the Behavior of Surfactants and Hydrophobic Organic Compounds in the Immobilization Zone for Contaminants Retardation

    SciTech Connect

    Park, In-Sun; Park, Jae-Woo; Cho, Jong Soo; Hwang, Inseong

    2003-03-26

    An immobilization zone can be constructed by modifying soils in the vadose zone with surfactants and, thus, can be used to promote retardation of organic contaminants in the subsurface. Column experiments were conducted to investigate the behavior of surfactants and organic contaminants in unsaturated and saturated conditions with different water contents (25%, 50%, 75%, 100%). The transport and sorption behavior of two surfactants tested (monoalkylated disulfonated diphenyl oxide, dialkylated disulfonated diphenyl oxide) in the columns containing an aluminum oxide were similar under the conditions with different water contents. However, transport of a model organic compound (naphthalene) was retarded as the water content decreased by enhanced partitioning of the compound into the surfactants that were sorbed on the aluminum oxide. This suggests that the immobilization method could well be applied to vadose zone. A transport model, CXTFIT 2.1, was also used to evaluate the behavior of the surfactants and naphthalene.

  17. Systematic study of the contamination of wastewater treatment plant effluents by organic priority compounds in Almeria province (SE Spain).

    PubMed

    Barco-Bonilla, Nieves; Romero-González, Roberto; Plaza-Bolaños, Patricia; Martínez Vidal, José L; Garrido Frenich, Antonia

    2013-03-01

    The occurrence of priority organic pollutants in wastewater (WW) effluents was evaluated in a semi-arid area, characterized by a high agricultural and tourism activity, as Almeria province (Southeastern Spain). Twelve wastewater treatment plants (WWTPs) were sampled in three campaigns during 2011, obtaining a total of 33 WW samples, monitoring 226 compounds, including pesticides, polycyclic aromatic hydrocarbons (PAHs), phenolic compounds and volatile organic compounds (VOCs). Certain banned organochlorine pesticides such as aldrin, pentachlorobenzene, o,p'-DDD and endosulfan lactone were found, and the most frequently detected pesticides were herbicides (diuron, triazines). PAHs and VOCs were also detected, noting that some of these pollutants were ubiquitous. Regarding phenolic compounds, 4-tertoctylphenol was found in all the WW samples at high concentration levels (up to 89.7 μg/L). Furthermore, it was observed that WW effluent samples were less contaminated in the second and third sampling periods, which corresponded to dry season. This evaluation revealed that despite the WW was treated in the WWTP, organic contaminants are still being detected in WW effluents and therefore they are released into the environment. Finally the risk of environmental threat due to the presence of some compounds in WWTP effluents, especially concerning 4-tertoctylphenol must be indicated.

  18. Mobile organic compounds in biochar - a potential source of contamination - phytotoxic effects on cress seed (Lepidium sativum) germination.

    PubMed

    Buss, Wolfram; Mašek, Ondřej

    2014-05-01

    Biochar can be contaminated during pyrolysis by re-condensation of pyrolysis vapours. In this study two biochar samples contaminated by pyrolysis liquids and gases to a high degree, resulting in high volatile organic compound (high-VOC) content, were investigated and compared to a biochar with low volatile organic compound (low-VOC) content. All biochar samples were produced from the same feedstock (softwood pellets) under the same conditions (550 °C, 20 min mean residence time). In experiments where only gaseous compounds could access germinating cress seeds (Lepidium sativum), application amounts ranging from 1 to 30 g of high-VOC biochar led to total inhibition of cress seed germination, while exposure to less than 1 g resulted in only partial reduction. Furthermore, leachates from biochar/sand mixtures (1, 2, 5 wt.% of biochar) induced heavy toxicity to germination and showed that percolating water could dissolve toxic compounds easily. Low-VOC biochar didn't exhibit any toxic effects in either germination test. Toxicity mitigation via blending of a high-VOC biochar with a low-VOC biochar increased germination rate significantly. These results indicate re-condensation of VOCs during pyrolysis can result in biochar containing highly mobile, phytotoxic compounds. However, it remains unclear, which specific compounds are responsible for this toxicity and how significant re-condensation in different pyrolysis units might be.

  19. Fingerprinting of petroleum hydrocarbons (PHC) and other biogenic organic compounds (BOC) in oil-contaminated and background soil samples.

    PubMed

    Wang, Zhendi; Yang, C; Yang, Z; Hollebone, B; Brown, C E; Landriault, M; Sun, J; Mudge, S M; Kelly-Hooper, F; Dixon, D G

    2012-09-01

    Total petroleum hydrocarbons (TPH) or petroleum hydrocarbons (PHC) are one of the most widespread soil contaminants in Canada, the United States and many other countries worldwide. Clean-up of PHC-contaminated soils costs the Canadian economy hundreds of millions of dollars annually. In Canada, most PHC-contaminated site evaluations are based on the methods developed by the Canadian Council of the Ministers of the Environment (CCME). However, the CCME method does not differentiate PHC from BOC (the naturally occurring biogenic organic compounds), which are co-extracted with petroleum hydrocarbons in soil samples. Consequently, this could lead to overestimation of PHC levels in soil samples. In some cases, biogenic interferences can even exceed regulatory levels (300 μg g(-1) for coarse soils and 1300 μg g(-1) for fine soils for Fraction 3, C(16)-C(34) range, in the CCME Soil Quality Level). Resulting false exceedances can trigger unnecessary and costly cleanup or remediation measures. Therefore, it is critically important to develop new protocols to characterize and quantitatively differentiate PHC and BOC in contaminated soils. The ultimate objective of this PERD (Program of Energy Research and Development) project is to correct the misconception that all detectable hydrocarbons should be regulated as toxic petroleum hydrocarbons. During 2009-2010, soil and plant samples were collected from over forty oil-contaminated and paired background sites in various provinces. The silica gel column cleanup procedure was applied to effectively remove all target BOC from the oil-contaminated sample extracts. Furthermore, a reliable GC-MS method in combination with the derivatization technique, developed in this laboratory, was used for identification and characterization of various biogenic sterols and other major biogenic compounds in these oil-contaminated samples. Both PHC and BOC in these samples were quantitatively determined. This paper reports the characterization

  20. Mind the Gap: Persistent and Mobile Organic Compounds-Water Contaminants That Slip Through.

    PubMed

    Reemtsma, Thorsten; Berger, Urs; Arp, Hans Peter H; Gallard, Hervé; Knepper, Thomas P; Neumann, Michael; Quintana, José Benito; Voogt, Pim de

    2016-10-04

    The discharge of persistent and mobile organic chemicals (PMOCs) into the aquatic environment is a threat to the quality of our water resources. PMOCs are highly polar (mobile in water) and can pass through wastewater treatment plants, subsurface environments and potentially also drinking water treatment processes. While a few such compounds are known, we infer that their number is actually much larger. This Feature highlights the issue of PMOCs from an environmental perspective and assesses the gaps that appear to exist in terms of analysis, monitoring, water treatment and regulation. On this basis we elaborate strategies on how to narrow these gaps with the intention to better protect our water resources.

  1. Measurement of 16 volatile organic compounds in restaurant air contaminated with environmental tobacco smoke.

    PubMed

    Vainiotalo, S; Väänänen, V; Vaaranrinta, R

    2008-11-01

    Tobacco smoke-related air pollutant levels were studied in ten Finnish restaurants. Markers of tobacco smoke were measured together with other compounds typical of tobacco smoke and indoor air. The measurements were carried out at stationary sampling points in smoking and non-smoking areas of the restaurants in 2005-2006, when at least half of the service area had to be non-smoking according to the Finnish Tobacco Act. The average concentrations (geometric mean, microg/m3) of the 16 airborne contaminants measured in the smoking area were: nicotine 18.1; toluene 10.6; isoprene 10.2; m,p-xylene 5.0; limonene 4.8; benzene 3.3; furfuryl aldehyde 3.2; 1,3-butadiene 2.7; 3-ethenylpyridine (3-EP) 2.5; phenol 2.1; ethyl benzene 1.7; pyridine 1.6; o-xylene 1.5; 3-picoline 1.4; styrene 1.2; and naphthalene 0.45. A good correlation (r=0.90-0.99, p<0.001) was obtained between tobacco-specific markers (3-EP and nicotine) and 1,3-butadiene, isoprene, pyridine, furfuryl aldehyde, 3-picoline, phenol, and styrene. A poor or no correlation (r=0.19-0.60) was obtained between 3-EP or nicotine and the rest of the compounds. The average concentrations of all compounds were significantly lower in the non-smoking area than in the smoking area (p<0.05). In the non-smoking area, the average concentration of 3-EP was 0.35 microg/m3 and that of nicotine 1.6 microg/m3. In three restaurants, the area design and ventilation were effective: the average level of 3-EP in the non-smoking section was <3% from that in the smoking section. In the other restaurants, tobacco smoke was spreading more freely and the corresponding value was 14-76%. A sensitive method was applied for the measurement of airborne 1,3-butadiene. The air samples were collected into Carbopack X adsorption tubes and analysed by thermal desorption/gas chromatography/mass selective detection. The precision of the method was 4.2% (at 100 ng/sample) and the limit of quantification 0.02 microg/m3.

  2. Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant

    USGS Publications Warehouse

    Stackelberg, P.E.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Henderson, A.K.; Reissman, D.B.

    2004-01-01

    In a study conducted by the US Geological Survey and the Centers for Disease Control and Prevention, 24 water samples were collected at selected locations within a drinking-water-treatment (DWT) facility and from the two streams that serve the facility to evaluate the potential for wastewater-related organic contaminants to survive a conventional treatment process and persist in potable-water supplies. Stream-water samples as well as samples of raw, settled, filtered, and finished water were collected during low-flow conditions, when the discharge of effluent from upstream municipal sewage-treatment plants accounted for 37-67% of flow in stream 1 and 10-20% of flow in stream 2. Each sample was analyzed for 106 organic wastewater-related contaminants (OWCs) that represent a diverse group of extensively used chemicals. Forty OWCs were detected in one or more samples of stream water or raw-water supplies in the treatment plant; 34 were detected in more than 10% of these samples. Several of these compounds also were frequently detected in samples of finished water; these compounds include selected prescription and non-prescription drugs and their metabolites, fragrance compounds, flame retardants and plasticizers, cosmetic compounds, and a solvent. The detection of these compounds suggests that they resist removal through conventional water-treatment processes. Other compounds that also were frequently detected in samples of stream water and raw-water supplies were not detected in samples of finished water; these include selected prescription and non-prescription drugs and their metabolites, disinfectants, detergent metabolites, and plant and animal steroids. The non-detection of these compounds indicates that their concentrations are reduced to levels less than analytical detection limits or that they are transformed to degradates through conventional DWT processes. Concentrations of OWCs detected in finished water generally were low and did not exceed Federal

  3. Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant.

    PubMed

    Stackelberg, Paul E; Furlong, Edward T; Meyer, Michael T; Zaugg, Steven D; Henderson, Alden K; Reissman, Dori B

    2004-08-15

    In a study conducted by the US Geological Survey and the Centers for Disease Control and Prevention, 24 water samples were collected at selected locations within a drinking-water-treatment (DWT) facility and from the two streams that serve the facility to evaluate the potential for wastewater-related organic contaminants to survive a conventional treatment process and persist in potable-water supplies. Stream-water samples as well as samples of raw, settled, filtered, and finished water were collected during low-flow conditions, when the discharge of effluent from upstream municipal sewage-treatment plants accounted for 37-67% of flow in stream 1 and 10-20% of flow in stream 2. Each sample was analyzed for 106 organic wastewater-related contaminants (OWCs) that represent a diverse group of extensively used chemicals. Forty OWCs were detected in one or more samples of stream water or raw-water supplies in the treatment plant; 34 were detected in more than 10% of these samples. Several of these compounds also were frequently detected in samples of finished water; these compounds include selected prescription and non-prescription drugs and their metabolites, fragrance compounds, flame retardants and plasticizers, cosmetic compounds, and a solvent. The detection of these compounds suggests that they resist removal through conventional water-treatment processes. Other compounds that also were frequently detected in samples of stream water and raw-water supplies were not detected in samples of finished water; these include selected prescription and non-prescription drugs and their metabolites, disinfectants, detergent metabolites, and plant and animal steroids. The non-detection of these compounds indicates that their concentrations are reduced to levels less than analytical detection limits or that they are transformed to degradates through conventional DWT processes. Concentrations of OWCs detected in finished water generally were low and did not exceed Federal

  4. Preliminary assessment of a model to predict mold contamination based on microbial volatile organic compound profiles.

    PubMed

    LeBouf, Ryan F; Schuckers, Stephanie A; Rossner, Alan

    2010-08-01

    Identification of mold growth based on microbial volatile organic compounds (MVOCs) may be a viable alternative to current bioaerosol assessment methodologies. A feed-forward back propagation (FFBP) artificial neural network (ANN) was developed to correlate MVOCs with bioaerosol levels in built environments. A cross-validation MATLAB script was developed to train the ANN and produce model results. Entech Bottle-Vacs were used to collect chemical grab samples at 10 locations in northern NY during 17 sampling periods from July 2006 to August 2007. Bioaerosol samples were collected concurrently with chemical samples. An Anderson N6 impactor was used in conjunction with malt extract agar and dichloran glycerol 18 to collect viable mold samples. Non-viable samples were collected with Air-O-Cell cassettes. Chemical samples and bioaerosol samples were used as model inputs and model targets, respectively. Previous researchers have suggested the use of MVOCs as indicators of mold growth without the use of a pattern recognition program limiting their success. The current proposed strategy implements a pattern recognition program making it instrumental for field applications. This paper demonstrates that FFBP ANN may be used in conjunction with chemical sampling in built environments to predict the presence of mold growth.

  5. DESORPTION KINETICS OF NEUTRAL HYDROPHOBIC ORGANIC COMPOUNDS FROM FIELD CONTAMINATED SEDIMENT. (R825513C024)

    EPA Science Inventory

    The chemical release rates from a field-contaminated sediment (Lake Charles, LA) using Tenax desorption were studied. Two dichlorobenzenes (m-, p-), hexachlorobutadiene, and hexachlorobenzene were investigated. Contrary to reports that sorption rates are inversel...

  6. Evaluation of an Innovative Technology for Treatment of Water Contaminated with Perchlorate and Organic Compounds

    DTIC Science & Technology

    2009-03-26

    2004). Exposure to perchlorate can result in negative health effects including hypothyroidism and various other thyroid disorders (NRC, 2005). Ion...that is being evaluated to determine if it can more cost effectively remove perchlorate than conventional technologies. A question that has been...technology (e.g., ease of implementation) it appears the T-GAC/GAC technology has the potential to cost effectively treat water contaminated by

  7. Organic contaminant separator

    DOEpatents

    Del Mar, Peter; Hemberger, Barbara J.

    1991-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a polyolefin tube having an internal diameter of from about 0.01 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the tube, (b) passing a solvent through the tube, said solvent capable of separating the adhered organic contaminant from the tube. Further, a chromatographic apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a polyolefin tube having an internal diameter of from about 0.01 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the tube is disclosed.

  8. Characterization of a Wide Array of Fluorinated Organic Compounds in Contaminated Soils

    EPA Science Inventory

    Herein we report the results of analyses on the concentrations of perfluorinated compounds (PFCs) and fluorotelomer alcohols (FTOHs) in soils from a site that has been impacted by human activities. Soil samples were collected from several locations that had been impacted and one...

  9. Release of oxide-bound toxic metals by naturally-occurring and contaminant-derived organic compounds: The role of complexant, reductant, and adsorptive characteristics. Final report, July 1, 1994--June 31, 1997

    SciTech Connect

    Stone, A.T.

    1997-12-31

    Natural organic compounds and contaminant-derived organic compounds can substantially alter the speciation and geochemical behavior of contaminant metals in subsurface environments. The goal, as part of the Co-Contaminant Subprogram, was to: (1) develop analytical methods for identifying and quantifying organic compounds affecting toxic metal speciation; (2) evaluate their reductant, complexant, and adsorptive characteristics of organic compounds with regards to important contaminant metals; (3) determine reaction kinetics, mechanisms, and energetics for metal-organic interactions; and (4) provide the basis for predicting toxic metal oxidation state, speciation, and mobility.

  10. Surfactant-like compounds enhance the bioavailability of organic contaminants: Treatability results for a field demonstration

    SciTech Connect

    Gillespie, M.T.; Strong-Gunderson, J.M.; Palumbo, A.V.

    1995-12-31

    Methods to enhance rates of trichloroethylene (TCE) biodegradation were investigated during laboratory treatability studies in support of a field demonstration. Several commercially available nutrients with surfactant-like properties were assayed for their effect on enhancing TCE bioavailability and rates of degradation in soils with high clay content. The bacteria assayed were Methylosinus trichosporium OB3b (a methanotroph) and a heterotrophic consortium isolated from TCE saturated water. Several surfactants were added to 1 gram of site soil with the bacteria. Laboratory results showed that samples containing even low concentrations of surfactant compounds exhibited increased TCE partitionining into the liquid phase from the headspace, which correlated with an enhanced degradation rate.

  11. Organic contaminants in mountains.

    PubMed

    Daly, Gillian L; Wania, Frank

    2005-01-15

    The study of organic contaminants at high altitudes is motivated by the potential risk that they pose to humans living in, or depending on resources derived from, mountains and to terrestrial and aquatic ecosystems in alpine areas. Mountains are also ideal settings to study contaminant transport and behavior along gradients of climate and surface cover. Information on organic contaminants in mountains is compiled from the literature and synthesized, with a focus on atmospheric transport and deposition, contaminant dynamics in alpine lakes and aquatic organisms, and concentration differences with altitude. Diurnal mountain winds, in connection with enhanced deposition at higher elevations caused by low temperatures and high precipitation rates, conspire to make mid-latitude mountains become convergence zones for selected persistent organic chemicals. In particular, the more volatile constituents of contaminant mixtures seem to become enriched, relative to the less volatile constituents at higher altitudes. For selected contaminants, concentration inversions (i.e., concentrations that increase with elevation) have been observed. A notable difference between cold trapping in high latitudes and high altitudes is the likely importance of precipitation. High rates of snow deposition in mid- and high-latitude mountains may lead to a large contaminant release during snowmelt. Regions above the tree line often have little capacity to retain the released contaminants, suggesting the potential for a highly dynamic contaminant fate situation during the snow-free season with significant revolatilization and runoff. The chemical and environmental factors that control the orographic cold trapping of organic contaminants should be examined further by measuring and comparatively interpreting concentration gradients along several mountain slopes with widely different characteristics. Future efforts should further focus on the bioaccumulation and potential effects of contaminants in

  12. Design and evaluation of a field study on the contamination of selected volatile organic compounds and wastewater-indicator compounds in blanks and groundwater samples

    USGS Publications Warehouse

    Thiros, Susan A.; Bender, David A.; Mueller, David K.; Rose, Donna L.; Olsen, Lisa D.; Martin, Jeffrey D.; Bernard, Bruce; Zogorski, John S.

    2011-01-01

    The Field Contamination Study (FCS) was designed to determine the field processes that tend to result in clean field blanks and to identify potential sources of contamination to blanks collected in the field from selected volatile organic compounds (VOCs) and wastewater-indicator compounds (WICs). The VOCs and WICs analyzed in the FCS were detected in blanks collected by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program during 1996-2008 and 2002-08, respectively. To minimize the number of variables, the study required ordering of supplies just before sampling, storage of supplies and equipment in clean areas, and use of adequate amounts of purge-and-trap volatile-grade methanol and volatile pesticide-grade blank water (VPBW) to clean sampling equipment and to collect field blanks. Blanks and groundwater samples were collected during 2008-09 at 16 sites, which were a mix of water-supply and monitoring wells, located in 9 States. Five different sample types were collected for the FCS at each site: (1) a source-solution blank collected at the USGS National Water Quality Laboratory (NWQL) using laboratory-purged VPBW, (2) source-solution blanks collected in the field using laboratory-purged VPBW, (3) source-solution blanks collected in the field using field-purged VPBW, (4) a field blank collected using field-purged VPBW, and (5) a groundwater sample collected from a well. The source-solution blank and field-blank analyses were used to identify, quantify, and document extrinsic contamination and to help determine the sources and causes of data-quality problems that can affect groundwater samples. Concentrations of compounds detected in FCS analyses were quantified and results were stored in the USGS National Water Information System database after meeting rigorous identification and quantification criteria. The study also utilized information provided by laboratory analysts about evidence indicating the presence of selected compounds

  13. Organic contaminant separator

    DOEpatents

    Del Mar, P.

    1993-12-28

    A process is presented of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube. The solvent is capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus is presented for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium. The apparatus includes a composite tube comprised of a blend of a polyolefin and a polyester. The composite tube has an internal diameter of from about 0.1 to about 2.0 millimeters and has sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube. 2 figures.

  14. Organic contaminant separator

    DOEpatents

    Del Mar, Peter

    1995-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.

  15. Organic contaminant separator

    DOEpatents

    Del Mar, Peter

    1993-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.

  16. Organic contaminant separator

    DOEpatents

    Mar, Peter D.

    1994-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.

  17. A Guide for Assessing Biodegradation and Source Identification of Organic Groundwater Contaminants Using Compound Specific Isotope Analysis (CSIA)

    EPA Science Inventory

    When organic contaminants are degraded in the environment, the ratio of stable isotopes will often change, and the extent of degradation can be recognized and predicted from the change in the ratio of stable isotopes. Recent advances in analytical chemistry make it possible to p...

  18. Real-Time and Delayed Analysis of Tree and Shrub Cores as Indicators of Subsurface Volatile Organic Compound Contamination, Durham Meadows Superfund Site, Durham, Connecticut, August 29, 2006

    USGS Publications Warehouse

    Vroblesky, Don A.; Willey, Richard E.; Clifford, Scott; Murphy, James J.

    2008-01-01

    This study examined volatile organic compound concentrations in cores from trees and shrubs for use as indicators of vadose-zone contamination or potential vapor intrusion by volatile organic compounds into buildings at the Durham Meadows Superfund Site, Durham, Connecticut. The study used both (1) real-time tree- and shrub-core analysis, which involved field heating the core samples for 5 to 10 minutes prior to field analysis, and (2) delayed analysis, which involved allowing the gases in the cores to equilibrate with the headspace gas in the sample vials unheated for 1 to 2 days prior to analysis. General correspondence was found between the two approaches, indicating that preheating and field analysis of vegetation cores is a viable approach to real-time monitoring of subsurface volatile organic compounds. In most cases, volatile organic compounds in cores from trees and shrubs at the Merriam Manufacturing Company property showed a general correspondence to the distribution of volatile organic compounds detected in a soil-gas survey, despite the fact that most of the soil-gas survey data in close proximity to the relevant trees were collected about 3 years prior to the tree-core collection. Most of the trees cored at the Durham Meadows Superfund Site, outside of the Merriam Manufacturing Company property, contained no volatile organic compounds and were in areas where indoor air sampling and soil-gas sampling showed little or no volatile organic compound concentrations. An exception was tree DM11, which contained barely detectable concentrations of trichloroethene near a house where previous investigations found low concentrations of trichloroethene (0.13 to 1.2 parts per billion by volume) in indoor air and 7.7 micrograms per liter of trichloroethene in the ground water. The barely detectable concentration of trichloroethene in tree DM11 and the lack of volatile organic compound detection in nearby tree DM10 (adjacent to the well having 7.7 micrograms of

  19. A literature survey of information on well installation and sample collection procedures used in investigations of ground-water contamination by organic compounds

    USGS Publications Warehouse

    Dumouchelle, D.H.; Lynch, E.A.; Cummings, T.R.

    1990-01-01

    A survey of literature on well installation and water-quality sampling, particularly as they relate to investigations of ground-water contamination by organic compounds, has been conducted. Library card files and computerized data bases were searched to identify journal articles, conference proceedings, technical reports, books, and other publications. Pertinent information has been extracted from 105 references; each reference is listed in a bibliography. Material contained in the report is organized by topical categories that include drilling methods and equipment, well construction, well development, sampling materials and equipment, decontamination of equipment, and sampling techniques and procedures. Unpublished data of the U.S. Geological Survey on sample collection are briefly cited also.

  20. Ecotoxicology of organic contaminants to amphibians

    USGS Publications Warehouse

    Sparling, D.W.; Sparling, Donald W.; Linder, Greg L.; Bishop, Christine A.

    2000-01-01

    The effects of organic contaminants on amphibians are poorly known but of considerable interest. These contaminants include the highly toxic dioxins and furans as well as PCBs, PAHs and organochlorine pesticides. Although these compounds may have lower acute toxicity than dioxins and furans, they have been implicated in several problems associated with genotoxicity, endocrine disruption, malformations and reduced growth. There is evidence that amphibian tadpoles bioaccumulate these organic compounds and may have biological concentrating factors ranging in the hundreds. This chapter reviews what is known about the effects and concentrations of organic contaminants in amphibians and provides recommendations for further research

  1. Volatile Organic Compounds (VOCs)

    MedlinePlus

    ... United States Environmental Protection Agency Search Search Indoor Air Quality (IAQ) Share Facebook Twitter Google+ Pinterest Contact Us Volatile Organic Compounds' Impact on Indoor Air Quality On this page: Introduction Sources Health Effects Levels ...

  2. Phytoremediation of soils co-contaminated by organic compounds and heavy metals: bioassays with Lupinus luteus L. and associated endophytic bacteria.

    PubMed

    Gutiérrez-Ginés, M J; Hernández, A J; Pérez-Leblic, M I; Pastor, J; Vangronsveld, J

    2014-10-01

    In the central part of the Iberian Peninsula there are old sealed landfills containing soils co-contaminated by several heavy metals (Cu, Zn, Pb, Cd, Ni, As, Cr, Fe, Al, Mn) and organic pollutants of different families (hydrocarbons, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, pesticides and other organochlorinated compounds, phenols and volatile compounds), which this work will address. We have focused on phytoremedial plants that are able to deal with this type of complex pollution, not only species that tolerate the joint effect of heavy metals in the soil, but also those that can take advantage of associated bacteria to efficiently break down organic compounds. This study was carried out with Lupinus luteus and its endophytes in two greenhouse experiments: A) growing in a substrate artificially contaminated with benzo(a)pyrene (BaP), and B) using real co-contaminated landfill soils. Endophytes of roots and shoots were isolated in both bioassays. Plant growth-promotion tests and organic pollutant tolerance and degradation tests were conducted on all strains isolated in bioassay A), and on those proving to be pure cultures from bioassay B). The selected landfill is described as are isolation and test procedures. Results indicate that plants did not show toxicity symptoms when exposed to BaP but did when grown in landfill soil. Some endophytes demonstrated plant growth-promotion capacity and tolerance to BaP and other organic compounds (diesel and PCB commercial mixtures). A few strains may even have the capacity to metabolize those organic pollutants. The overall decline in plant growth-promotion capacity in those strains isolated from the landfill soil experiment, compared with those from the bioassay with BaP, may indicate that lupin endophytes are not adapted to metal concentration in roots and shoots and fail to grow. As a result, most isolated root endophytes must have colonized root tissues from the soil. While preliminary degradation tests

  3. Heavy metals and organic compounds contamination in soil from an e-waste region in South China.

    PubMed

    Liu, Ming; Huang, Bo; Bi, Xinhui; Ren, Zhaofang; Sheng, Guoying; Fu, Jiamo

    2013-05-01

    Heavy metals and persistent organic pollutants polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) were analyzed in 34 surface soil samples collected from farmland and 7 soil or dust samples collected from the workshops in South China, where e-waste was dismantled using primitive techniques. The results show that Cd, Cu and Hg were the most abundant metals, in particular Cd pollution was serious in farmland soils, and the median concentrations in farmland soils were beyond the environmental quality standard for soils (China Grade II). A correlation between Cd, Cu, Zn, Pb and PCBs or PBDEs was significant indicating similar sources. Among the PCB congeners, high relative similarity was observed between the e-waste dump site soil (EW1) and Aroclor 1254, implying that the technical product Aroclor 1254 was one of the major sources of PCB contamination. High concentrations of PCBs in workshop dusts (D2 and D3) (1958 and 1675 μg kg(-1)) demonstrated that the workshops dismantling electrical wires and cables, electrical motors, compressors and aluminum apparatus containing PCBs in lubricants represent strong PCB emission sources to this area. Principal component analysis (PCA) and PBDE homologue patterns verify that farmland soils surrounding the e-waste recycling sites were enriched with lower brominated congeners, and the major source of PBDEs in dust samples might potentially be associated with the extensive use of deca-mix technical products as a flame retardant. The difference between e-waste soils, dusts and farmland soils can be observed in the PCA score plot of PCBs and PBDEs, and E-waste soils and dusts exhibited more diversity than farmland soils. Furthermore, a prediction of the particular kinds of pollution from different recycling activities through the analysis of each contamination and the connections between them was investigated.

  4. Fluoroalkylation of organic compounds

    NASA Astrophysics Data System (ADS)

    Mikhaylov, D. Yu; Budnikova, Yu H.

    2013-09-01

    Data on fluoroalkylation and perfluoroalkylation methods in organic synthesis are analyzed, summarized and described systematically. The most practically important properties of compounds with fluoroalkyl substituents are illustrated. The key trends and the potential of this field of organic chemistry are considered. Electrochemical syntheses of perfluoroalkyl derivatives that are inaccessible or experimentally difficult to prepare by regular chemical techniques are presented. Particular attention is paid to processes involving organometallic compounds as well as to prospects for the development of this field of research. The bibliography includes 226 references.

  5. Catalytic Destruction Of Toxic Organic Compounds

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.

    1990-01-01

    Proposed process disposes of toxic organic compounds in contaminated soil or carbon beds safely and efficiently. Oxidizes toxic materials without producing such other contaminants as nitrogen oxides. Using air, fuel, catalysts, and steam, system consumes less fuel and energy than decontamination processes currently in use. Similar process regenerates carbon beds used in water-treatment plants.

  6. Organic compounds in meteorites

    NASA Technical Reports Server (NTRS)

    Anders, E.; Hayatsu, R.; Studier, M. H.

    1973-01-01

    The problem of whether organic compounds originated in meteorites as a primary condensate from a solar gas or whether they were introduced as a secondary product into the meteorite during its residence in a parent body is examined by initially attempting to reconstruct the physical conditions during condensation (temperature, pressure, time) from clues in the inorganic matrix of the meteorite. The condensation behavior of carbon under these conditions is then analyzed on the basis of thermodynamic calculations, and compounds synthesized in model experiments on the condensation of carbon are compared with those actually found in meteorites. Organic compounds in meteorites seem to have formed by catalytic reactions of carbon monoxide, hydrogen, and ammonia in the solar nebula at 360 to 400 K temperature and about 3 to 7.6 microtorr pressure. The onset of these reactions was triggered by the formation of suitable catalysts (magnetite, hydrated silicates) at these temperatures.

  7. Comparison of vapor concentrations of volatile organic compounds with ground-water concentrations of selected contaminants in sediments beneath the Sudbury River, Ashland, Massachusetts, 2000

    USGS Publications Warehouse

    Campbell, J.P.; Lyford, F.P.; Willey, Richard E.

    2002-01-01

    A mixed plume of contaminants in ground water, including volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and metals, near the former Nyanza property in Ashland, Massachusetts, discharges to the Sudbury River upstream and downstream of Mill Pond and a former mill raceway. Polyethylene-membrane vapor-diffusion (PVD) samplers were installed in river-bottom sediments to determine if PVD samplers provide an alternative to ground-water sampling from well points for identifying areas of detectable concentrations of contaminants in sediment pore water near the ground-water and surface-water interface. In August and September 2000, the PVD samplers were installed near well points at depths of 8 to 12 inches in both fine and coarse sediments, whereas the well points were installed at depths of 1 to 5 feet in coarse sediments only. Comparison between vapor and water samples at 29 locations upstream from Mill Pond show that VOC vapor concentrations from PVD samplers in coarse river-bottom sediments are more likely to correspond to ground-water concentrations from well points than PVD samplers installed in fine sediments. Significant correlations based on Kendall's Tau were shown between vapor and ground-water concentrations for trichloroethylene and chlorobenzene for PVD samplers installed in coarse sediments where the fine organic layer that separated the two sampling depths was 1 foot or less in thickness. VOC concentrations from vapor samples also were compared to VOC, SVOC, and metals concentrations from ground-water samples at 10 well points installed upstream and downstream from Mill Pond, and in the former mill raceway. Chlorobenzene vapor concentrations correlated significantly with ground-water concentrations for 5 VOCs, 2 SVOCs, and 10 metals. Trichloroethylene vapor concentrations did not correlate with any of the other ground-water constituents analyzed at the 10 well points. Chlorobenzene detected by use of PVD samplers appears to be a

  8. Method for treatment of soils contaminated with organic pollutants

    DOEpatents

    Wickramanayake, Godage B.

    1993-01-01

    A method for treating soil contaminated by organic compounds wherein an ozone containing gas is treated with acid to increase the stability of the ozone in the soil environment and the treated ozone applied to the contaminated soil to decompose the organic compounds. The soil may be treated in situ or may be removed for treatment and refilled.

  9. Organic compounds in meteorites

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.

    1980-01-01

    Recent studies of carbonaceous chondrites provide evidence that certain organic compounds are indigenous and the result of an abiotic, chemical synthesis. The results of several investigators have established the presence of amino acids and precursors, mono- and dicarboxylic acids, N-heterocycles, and hydrocarbons as well as other compounds. For example, studies of the Murchison and Murray meteorites have revealed the presence of at least 40 amino acids with nearly equal abundances of D and L isomers. The population consists of both protein and nonprotein amino acids including a wide variety of linear, cyclic, and polyfunctional types. Results show a trend of decreasing concentration with increasing carbon number, with the most abundant being glycine (41 n Moles/g). These and other results to be reviewed provide persuasive support for the theory of chemical evolution and provide the only natural evidence for the protobiological subset of molecules from which life on earth may have arisen.

  10. A comparison of risk modeling tools and a case study for human health risk assessment of volatile organic compounds in contaminated groundwater.

    PubMed

    Han, Lu; Qian, Linbo; Yan, Jingchun; Liu, Rongqin; Du, Yihua; Chen, Mengfang

    2016-01-01

    In order to promote the risk-based strategy in the investigation, assessment, and remediation of Chinese brownfield sites, the Health and Environmental Risk Assessment (HERA) software was developed. It is vital to validate the HERA model and compare the inter-model differences of HERA model against other available risk assessment tools. This paper discusses the similarities and differences between the Risk-Based Corrective Action (RBCA) Tool Kit and the HERA model by evaluating the health risk of organic contaminated groundwater sources for a chemical works in China for the first time. Consequently, the HERA and RBCA models yielded the identical results for Site-Specific Assessment Criteria (SSAC) under the commercial redevelopment. However, the HERA estimated more conservative and stringent SSACs under the residential scenario based on the different exposure calculations. The inhalation of indoor vapors was the most predominated exposure pathway for all the volatile organic compounds (VOCs) determined using the RBCA and HERA models. According to the HERA model, inhalation of chloroform may cause the highest unacceptable carcinogenic risk at 2.31 × 10(-3) under the residential scenario. Therefore, it is recommended that a risk-based remedial strategy be developed to ensure the safe and sustainable redevelopment of the site.

  11. Organic contaminant amplification during snowmelt.

    PubMed

    Meyer, Torsten; Wania, Frank

    2008-04-01

    The release of organic contaminants from melting snow poses risks to aquatic and terrestrial organisms and to humans who rely on drinking water and food production from regions that are seasonally snow-covered. Measured and model-predicted spring peak concentrations in waters receiving snowmelt motivate a thorough investigation of organic contaminant behaviour during melting. On the basis of the current understanding of snow metamorphosis, snowmelt hydrology and chemical partitioning in snow, this critical review aims to provide a qualitative picture of the processes involved in the release of organic contaminants from a melting snowpack. The elution sequence of organic substances during snowmelt is strongly dependent on their environmental partitioning properties and the physical properties of the snowpack. Water-soluble organic contaminants can be discharged in greatly elevated concentrations at an early stage of melting, while the bulk of the hydrophobic chemicals attached to particles is often released at the end of the melt period. Melting of a highly metamorphosed and deep snowpack promotes such shock load releases, whereas a shallow snow cover over a relatively warm ground experiencing irregular melting over the winter season is unlikely to generate notable peak releases of organic substances. Meltwater runoff over frozen ground directly transfers contaminant shock loads into receiving water bodies, while permeable soils buffer and dilute the contaminants. A more quantitative understanding of the behaviour of organic contaminants in varying snowmelt scenarios will depend on controlled laboratory studies combined with field investigations. Reliable numerical process descriptions will need to be developed to integrate water quality and contaminant fate models.

  12. Method for testing earth samples for contamination by organic contaminants

    DOEpatents

    Schabron, J.F.

    1996-10-01

    Provided is a method for testing earth samples for contamination by organic contaminants, and particularly for aromatic compounds such as those found in diesel fuel and other heavy fuel oils, kerosene, creosote, coal oil, tars and asphalts. A drying step is provided in which a drying agent is contacted with either the earth sample or a liquid extract phase to reduce to possibility of false indications of contamination that could occur when humic material is present in the earth sample. This is particularly a problem when using relatively safe, non-toxic and inexpensive polar solvents such as isopropyl alcohol since the humic material tends to be very soluble in those solvents when water is present. Also provided is an ultraviolet spectroscopic measuring technique for obtaining an indication as to whether a liquid extract phase contains aromatic organic contaminants. In one embodiment, the liquid extract phase is subjected to a narrow and discrete band of radiation including a desired wave length and the ability of the liquid extract phase to absorb that wavelength of ultraviolet radiation is measured to provide an indication of the presence of aromatic organic contaminants. 2 figs.

  13. Method for testing earth samples for contamination by organic contaminants

    DOEpatents

    Schabron, John F.

    1996-01-01

    Provided is a method for testing earth samples for contamination by organic contaminants, and particularly for aromatic compounds such as those found in diesel fuel and other heavy fuel oils, kerosene, creosote, coal oil, tars and asphalts. A drying step is provided in which a drying agent is contacted with either the earth sample or a liquid extract phase to reduce to possibility of false indications of contamination that could occur when humic material is present in the earth sample. This is particularly a problem when using relatively safe, non-toxic and inexpensive polar solvents such as isopropyl alcohol since the humic material tends to be very soluble in those solvents when water is present. Also provided is an ultraviolet spectroscopic measuring technique for obtaining an indication as to whether a liquid extract phase contains aromatic organic contaminants. In one embodiment, the liquid extract phase is subjected to a narrow and discrete band of radiation including a desired wave length and the ability of the liquid extract phase to absorb that wavelength of ultraviolet radiation is measured to provide an indication of the presence of aromatic organic contaminants.

  14. Simulation of groundwater flow in a volatile organic compound-contaminated area near Bethpage, Nassau County, New York-A discussion of modeling considerations

    USGS Publications Warehouse

    Misut, Paul E.

    2011-01-01

    The 2010 Bethpage groundwater-flow model (ARCADIS, 2010) was based on a steady state assumption. Although it is widely acknowledged that significant water-level changes have occurred in the past, the reviewed model does not represent changing water levels. The steady state approach limits the effectiveness of the following: 1. identification of sources of contamination, 2. analysis of model accuracy, 3. model calibration, and 4. simulations of future scenarios. Future plume movement was simulated in an incomplete manner through an unchanging groundwater-flow field. Available time-series information on temporal variation of factors affecting groundwater-flow dynamics includes: 1. public-supply pumping, 2. groundwater discharges from systems remediating volatile organic compound (VOC) plumes, 3. recharge and precipitation rates, and 4. water levels and streamflows. Transient phenomena that might be useful in future hypothetical simulations include pumping variations, redirection of containment-system waters for industrial use, and climate-change scenarios. Public-domain computer programs, U.S. Geological Survey guidance reports on transient-state calibration and uncertainty methods (Doherty and Hunt, 2010), and additional local and regional datasets are available to provide additional confidence in model evaluations and allow better evaluation of their limitations.

  15. Chlorinated organic compounds in urban river sediments

    SciTech Connect

    Soma, Y.; Shiraishi, H.; Inaba, K.

    1995-12-31

    Among anthropogenic chemicals, many chlorinated organic compounds have been used as insecticides and detected frequently as contaminants in urban river sediments so far. However, the number and total amount of chemicals produced commercially and used are increasing year by year, though each amount of chemicals is not so high. New types of contaminants in the environment may be detected by the use of newly developed chemicals. Chlorinated organic compounds in the urban river sediments around Tokyo and Kyoto, large cities in Japan, were surveyed and recent trends of contaminants were studied. Contaminants of the river sediments in industrial areas had a variety, but PCB (polychlorinated biphenyls) was detected in common in industrial areas. Concentration of PCB related well to the number of factories on both sides of rivers, although the use of PCB was stopped 20 years ago. In domestic areas, Triclosan (5-chloro-2-(2,4-dichlorophenoxy)-phenol) and Triclocarban (3,4,4{prime}-trichlorocarbanilide)(both are contained in soap or shampoo for fungicides), p-dichlorobenzene (insecticides for wears) and TCEP(tris-chloroethyl phosphate) were detected. EOX(extracted organic halogen) in the sediments was 5 to 10 times of chlorinated organic compounds detected by GC/MS. Major part of organic halogen was suggested to be included in chlorinated organics formed by bleaching or sterilization.

  16. Response to comment on “Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant”

    USGS Publications Warehouse

    Stackelberg, Paul E.; Furlong, Edward T.; Meyer, Michael T.; Zaugg, Steven D.; Henderson, Alden K.; Reissman, Dori B.

    2006-01-01

    The U.S. Geological Survey (USGS) and the Centers for Disease Control thank Dr. Till for her comments concerning our research (Till, 2005) and welcome the opportunity to respond. The primary objective of our study was to evaluate the potential for organic wastewater-related contaminants (OWCs), including pharmaceuticals, to survive a conventional drinking-water-treatment process and persist in potable-water supplies (Stackelberg et al., 2004). Our study was supported by two USGS laboratories: the National Water Quality Laboratory (NWQL), which provided the HPLC/ESI-MS and CLLE GC/MS data and the Ocala Water Quality and Research Laboratory (OWQRL), which provided the LC/MS data (Stackelberg et al., 2004). Although discussed as distinct techniques by Dr. Till and indicated by differing acronyms to distinguish the laboratories producing the data, as described in our paper, the two LC/MS methods are very similar; they consist of a solid-phase extraction method with analysis of the extract produced using high-performance liquid chromatography coupled to an electrospray ionization mass spectrometer operated in the positive mode. The NWQL and OWQRL report ‘trace’ and ‘ultratrace’ determinations of analytes that provide significant benefit for describing the presence and fate of low-level contaminants. For mass spectral methods, an analyte is qualitatively identified by its retention time on the chromatographic column as well as the presence of two or more confirming ions with area ratios that match that of the reference standard compounds. Because of a recognized increased risk of false positives, these qualitative identification criteria are used in conjunction with abundant quality-control samples (detailed below) to confirm detection prior to making an estimate of the concentration. These qualitative identification criteria must be met before a compound is considered present (or detected) in a sample (Oblinger Childress et al., 1999). When a compound has been

  17. Organic contaminants in onsite wastewater treatment systems

    USGS Publications Warehouse

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.

    2007-01-01

    Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.

  18. Organic contamination of LDEF

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.

    1991-01-01

    A brown stain of varying thickness was present on most of the exterior surface of the retrieved Long Duration Exposure Facility (LDEF). Tape lifts of Earth-end LDEF surfaces taken showed that the surface particle cleanliness immediately after retrieval was very good, but faint footprints of the tape strips on the tested surfaces indicated a very faint film was removed by the tape. Solvent wipes of these surfaces showed that the stain was not amenable to standard organic solvent removal. Infrared spectra of optical windows from tray E5 show that the organic film is hydrocarbon in composition, but is not similar to the oil that seeped from tray C12. Very dark and heavy deposits of the stain is present at openings and vents to the interior of LDEF. Heavy brown and blue-green deposits are present in the interior of LDEF where sunlight penetrated through cracks and vent openings. The exterior of LDEF had significant areas painted with a white polyurethane paint for thermal control, and almost all of the interior was painted with a black polyurethane paint. Brown staining is consistent with outgassing of hydrocarbons from these paints by rapid solar UV induced polymerization of the outgassed hydrocarbons when they hit sunlight exposed areas.

  19. Organic contamination of LDEF

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.

    1992-01-01

    A brown stain of varying thickness was present on most of the exterior surface of the retrieved Long Duration Exposure Facility (LDEF). Tape lifts of Earth-end LDEF surfaces taken in Feb. 1990 showed that the surface particle cleanliness immediately after retrieval was very good, but faint footprints of the tape strips on the tested surfaces indicated a very faint film was removed by the tape. Solvent wipes of these surfaces showed that the stain was not amenable to standard organic solvent removal. Infrared spectra of optical windows from tray E5 and scrapings indicate that the film is primarily of organic composition, but is not similar to the oil that seeped from tray C12. Very dark and heavy deposits of the stain are present at openings and vents to the interior of the LDEF. Heavy brown and blue-green deposits are present in the interior of LDEF where sunlight penetrated through cracks and vent openings. Photographs of the deintegrated LDEF graphically show the stain distribution. The exterior of the LDEF had significant areas painted with a white polyurethane paint for thermal control, and almost all of the interior was painted with a black polyurethane paint for thermal control. The brown staining of the LDEF is consistent with long-term outgassing of hydrocarbons from these paints followed by rapid solar-ultraviolet-induced polymerization of the outgassed hydrocarbons when the outgassed molecules stuck to surfaces exposed to sunlight.

  20. Water-quality and hydrologic conditions at a site of ground-water contamination by volatile organic compounds, South Grafton, Massachusetts, September and October 1994

    USGS Publications Warehouse

    DiSimone, L.A.; Barlow, P.M.

    1995-01-01

    Ground-water quality and hydrologic data were collected at a site contaminated by volatile organic compounds (VOCs) in South Grafton, Massachusetts, during September and October 1994. The VOCs have formed a plume of contaminated ground water at an abandoned textile mill adjacent to the Blackstone River. Concentrations of total VOCs in the plume ranged from less than 1 to more than 40,000 micrograms per liter. Trichloroethylene (TCE) was the primary chlorinated contaminant, comprising as much as 98 percent of the total VOCs. The highest concentration, 43,000 micrograms per liter, was higher than any previously measured concentration at the site; however, the maximum extent and distribution of concentrations in the VOC plume in September 1994 was similar to that found in July 1993 and in earlier rounds of sampling. In addition to TCE, 1,2-dichloroethene (1,2-DCE) and vinyl chloride were detected at most sites. Spatial and temporal changes in concentrations of TCE, 1,2-DCE, and vinyl chloride are consistent with the hypothesis that TCE biodegradation was the source of 1,2-DCE and vinyl chloride. Ground water at the site contained low to moderately high concentrations of dissolved solids (44 to 406 milligrams per liter), had a moderately high specific conductance (155 to 670 microsiemens per centimeter at 25 degrees Celsius), and was slightly acidic (pH=5.9 to 7.0). Concentrations of the major ions-calcium, sodium, chloride, and sulfate-were not related to VOC concentrations. Dissolved-oxygen concentrations were low (0 to 2 milligrams per liter) throughout most of the aquifer. Distribution of nitrogen species, iron, and manganese indicates that zones of varying oxidation-reduction potential were present in the aquifer. Concentrations of trace metals other than iron or manganese, including arsenic, cadmium, chromium, and copper, generally were less than analytical detection limits. Stream stage in the Blackstone River at the site during September and October 1994

  1. Partition coefficients of organic contaminants with carbohydrates.

    PubMed

    Hung, Hsu-Wen; Lin, Tsair-Fuh; Chiou, Cary T

    2010-07-15

    In view of the current lack of reliable partition coefficients for organic compounds with carbohydrates (K(ch)), carefully measured values with cellulose and starch, the two major forms of carbohydrates, are provided for a wide range of compounds: short-chain chlorinated hydrocarbons, halogenated benzenes, alkyl benzenes, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, and organochlorine pesticides. To ensure the accuracy of the K(ch) data, solute concentrations in both water and carbohydrate phases are measured by direct solvent extraction of the samples. For a given compound, the observed partition coefficient with cellulose (K(cl)) is virtually the same as that with starch (K(st)). This finding expedites the evaluation of organic contamination with different forms of carbohydrates. The presently determined K(ch) values of 13 PAHs are substantially lower (by 3-66 times) than the literature data; the latter are suspect as they were obtained with (i) presumably impure carbohydrate samples or (ii) indirectly measured equilibrium solute concentrations in carbohydrate and water phases. Although the K(ch) values are generally considerably lower than the respective K(ow) (octanol-water) or K(lipid) (lipid-water), accurate K(ch) data are duly required to accurately estimate the contamination of carbohydrates by organic compounds because of the abundance of carbohydrates over lipids in crops and plants. To overcome the current lack of reliable K(ch) data for organic compounds, a close correlation of log K(ch) with log K(ow) has been established for predicting the unavailable K(ch) data for low-polarity compounds.

  2. Solubility Enhanced Oxidation of Hydrophobic Organic Contaminants

    NASA Astrophysics Data System (ADS)

    Boving, T. B.; Eberle, D. E.; Ball, R.

    2012-12-01

    In-situ chemical oxidation (ISCO) is a remediation technique considered to be effective at overcoming some of the limitations of conventional subsurface treatment processes for volatile and semi-volatile organic contaminants (VOC, SVOC). ISCO reactions occur predominately in the aqueous phase and as a result, contaminant availability is a major limiting factor, i.e. contaminants with higher aqueous solubility's are typically more accessible for oxidation than more hydrophobic, sorbed compounds. The purpose of this study was to determine the feasibility of a new integrated desorption-oxidation process for the remediation of contaminated waters and sediments. Specifically, this study examined the potential of using hydroxypropyl-β-cyclodextrin (HPCD), a modified cyclic sugar, and a blend of oxidants commercially known as OxyZone® (U.S. patent No. 7,667,087) for the remediation of polycyclic aromatic hydrocarbons (PAH). Laboratory scale batch experiments confirmed prior studies that HPCD increases the aqueous concentration of these contaminants, making a greater mass of contaminant available for subsequent oxidation. When exposed to the same amount of oxidant, the mass of PAH destroyed increased linearly with increasing HPCD concentration. Relative to PAH saturated solutions without HPCD, 11 times more PAH mass was destroyed when a PAH saturated 15 g/L HPCD solution was treated with the same mass of oxidant. Destruction of the aqueous phase contaminants followed first order exponential decay kinetics in both deionized water and HPCD solutions. However, the destruction of complexed PAH was slower than for uncomplexed PAH. The cause of this is likely due to the preferential destruction of the HPCD molecule by the oxidant, followed by the subsequent oxidation of the PAH. The destruction of the cyclodextrin was minimized by modifying the oxidant formulation. Overall, these findings establish the potential of utilizing HPCD and OxyZone® as an integrated desorption

  3. Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, Grorge

    2001-01-01

    Carbonaceous meteorites are relatively enriched in soluble organic compounds. To date, these compounds provide the only record available to study a range of organic chemical processes in the early Solar System chemistry. The Murchison meteorite is the best-characterized carbonaceous meteorite with respect to organic chemistry. The study of its organic compounds has related principally to aqueous meteorite parent body chemistry and compounds of potential importance for the origin of life. Among the classes of organic compounds found in Murchison are amino acids, amides, carboxylic acids, hydroxy acids, sulfonic acids, phosphonic acids, purines and pyrimidines (Table 1). Compounds such as these were quite likely delivered to the early Earth in asteroids and comets. Until now, polyhydroxylated compounds (polyols), including sugars (polyhydroxy aldehydes or ketones), sugar alcohols, sugar acids, etc., had not been identified in Murchison. Ribose and deoxyribose, five-carbon sugars, are central to the role of contemporary nucleic acids, DNA and RNA. Glycerol, a three-carbon sugar alcohol, is a constituent of all known biological membranes. Due to the relative lability of sugars, some researchers have questioned the lifetime of sugars under the presumed conditions on the early Earth and postulated other (more stable) compounds as constituents of the first replicating molecules. The identification of potential sources and/or formation mechanisms of pre-biotic polyols would add to the understanding of what organic compounds were available, and for what length of time, on the ancient Earth.

  4. Impact of Organic Contamination on Some Aquatic Organisms

    PubMed Central

    Yasser, El-Nahhal; Shawkat, El-Najjar; Samir, Afifi

    2015-01-01

    Background: Contamination of water systems with organic compounds of agricultural uses pose threats to aquatic organisms. Carbaryl, chlorpyrifos, and diuron were considered as model aquatic pollutants in this study. The main objective of this study was to characterize the toxicity of organic contamination to two different aquatic organisms. Materials and Methods: Low concentrations (0.0–60 µmol/L) of carbaryl, diuron and very low concentration (0.0–0.14 µmol/L) of chlorpyrifos and their mixtures were tested against fish and Daphnia magna. Percentage of death and immobilization were taken as indicators of toxicity. Results: Toxicity results to fish and D. magna showed that chlorpyrifos was the most toxic compound (LC50 to fish and D. magna are 0.08, and 0.001 µmol/L respectively), followed by carbaryl (LC50 to fish and D. magna are 43.19 and 0.031 µmol/L), while diuron was the least toxic one (LC50 values for fish and D. magna are 43.48 and 32.11 µmol/L respectively). Mixture toxicity (binary and tertiary mixtures) showed antagonistic effects. Statistical analysis showed a significant difference among mixture toxicities to fish and D. magma. Conclusion: Fish and D. magam were sensitive to low concentrations. These data suggest potent threats to aquatic organisms from organic contamination. PMID:26862260

  5. PERSISTENT PERFLUORINATED ORGANIC COMPOUNDS

    EPA Science Inventory

    Perfluorinated compounds (PFCs) have gained notoriety in the recent past. Global distribution of PFCs in wildlife, environmental samples and humans has sparked a recent increase in new investigations concerning PFCs. Historically PFCs have been used in a wide variety of consume...

  6. Organic Compounds in Stardust

    NASA Technical Reports Server (NTRS)

    McKay, David S.; Clemett. Simon J.; Sandford, Scott A.; Nakamura-Messenger, Keiko; Hoerz, Fredrich

    2011-01-01

    The successful return of the STARDUST spacecraft provides a unique opportunity to investigate the nature and distribution of organic matter in cometary dust particles collected from Comet 81P/Wild-2. Analysis of individual cometary impact tracks in silica aerogel using the technique of two-step laser mass spectrometry (L2MS) demonstrates the presence of complex aromatic organic matter. While concerns remain as to the organic purity of the aerogel collection medium and the thermal effects associated with hypervelocity capture, the majority of the observed organic species appear indigenous to the impacting particles and are hence of cometary origin. While the aromatic fraction of the total organic matter present is believed to be small, it is notable in that it appears to be N-rich. Spectral analysis in combination with instrumental detection sensitivities suggest that N is incorporated predominantly in the form of aromatic nitriles (R-C N). While organic species in the STARDUST samples do share some similarities with those present in the matrices of carbonaceous chondrites, the closest match is found with stratospherically collected interplanetary dust particles. These findings are consistent with the notion that a fraction of interplanetary dust is of cometary origin. The presence of complex organic N-containing species in comets has astrobiological implications since comets are likely to have contributed to the prebiotic chemical inventory of both the Earth and Mars.

  7. Organics in water contamination analyzer, phase 1

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The requirements which would result in identifying the components of an automatic analytical system for the analysis of specific organic compounds in the space station potable water supply are defined. The gas chromatographic system for such an analysis is limited to commercially available off-the-shelf hardware and includes the sample inlet, an ionization detector, capillary columns as well as computerized compound identification. The sampling system will be a special variation of the purge and trap Tenax mode using six-port valves and a 500 microliter water sample. Capillary columns used for the separating of contaminants will be bonded phase fused silica with a silicone stationary phase. Two detectors can be used: photoionization and far ultraviolet, since they are sensitive and compatible with capillary columns. A computer system evaluation and program with the principle of compound identification based on the retention index is presented.

  8. Photochemical dimerization of organic compounds

    DOEpatents

    Crabtree, Robert H.; Brown, Stephen H.; Muedas, Cesar A.; Ferguson, Richard R.

    1992-01-01

    At least one of selectivity and reaction rate of photosensitized vapor phase dimerizations, including dehydrodimerizations, hydrodimerizations and cross-dimerizations of saturated and unsaturated organic compounds is improved by conducting the dimerization in the presence of hydrogen or nitrous oxide.

  9. Apparatus Removes Organic Contaminants From Water

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Thompson, John

    1994-01-01

    Catalytic-oxidation apparatus removes low-molecular-weight, polar, nonionizable organic contaminants from wastewater. Wastewater stream, previously treated by multifiltration process, pumped through apparatus for removal of trace organic contaminants. After injection of oxygen, flow preheated and enters catalytic reactor, where organic contaminants broken down into carbon dioxide and water. Carbon dioxide and unused oxygen removed in degasser.

  10. Extraterrestrial Organic Compounds in Meteorites

    NASA Technical Reports Server (NTRS)

    Botta, Oliver; Bada, Jeffrey L.; Meyer, Michael (Technical Monitor)

    2003-01-01

    Many organic compounds or their precursors found in meteorites originated in the interstellar or circumstellar medium and were later incorporated into planetesimals during the formation of the solar system. There they either survived intact or underwent further processing to synthesize secondary products on the meteorite parent body. The most distinct feature of CI and CM carbonaceous chondrites, two types of stony meteorites, is their high carbon content (up to 3% of weight), either in the form of carbonates or of organic compounds. The bulk of the organic carbon consists of an insoluble macromolecular material with a complex structure. Also present is a soluble organic fraction, which has been analyzed by several separation and analytical procedures. Low detection limits can be achieved by derivatization of the organic molecules with reagents that allow for analysis by gas chromatography/mass spectroscopy and high performance liquid chromatography. The CM meteorite Murchison has been found to contain more than 70 extraterrestrial amino acids and several other classes of compounds including carboxylic acids, hydroxy carboxylic acids, sulphonic and phosphonic acids, aliphatic, aromatic and polar hydrocarbons, fullerenes, heterocycles as well as carbonyl compounds, alcohols, amines and amides. The organic matter was found to be enriched in deuterium, and distinct organic compounds show isotopic enrichments of carbon and nitrogen relative to terrestrial matter.

  11. Biomedical Compounds from Marine organisms

    PubMed Central

    Jha, Rajeev Kumar; Zi-rong, Xu

    2004-01-01

    The Ocean, which is called the ‘mother of origin of life’, is also the source of structurally unique natural products that are mainly accumulated in living organisms. Several of these compounds show pharmacological activities and are helpful for the invention and discovery of bioactive compounds, primarily for deadly diseases like cancer, acquired immuno-deficiency syndrome (AIDS), arthritis, etc., while other compounds have been developed as analgesics or to treat inflammation, etc. The life-saving drugs are mainly found abundantly in microorganisms, algae and invertebrates, while they are scarce in vertebrates. Modern technologies have opened vast areas of research for the extraction of biomedical compounds from oceans and seas.

  12. Photoprotective compounds from marine organisms.

    PubMed

    Rastogi, Rajesh P; Richa; Sinha, Rajeshwar P; Singh, Shailendra P; Häder, Donat-P

    2010-06-01

    The substantial loss in the stratospheric ozone layer and consequent increase in solar ultraviolet radiation on the earth's surface have augmented the interest in searching for natural photoprotective compounds in organisms of marine as well as freshwater ecosystems. A number of photoprotective compounds such as mycosporine-like amino acids (MAAs), scytonemin, carotenoids and several other UV-absorbing substances of unknown chemical structure have been identified from different organisms. MAAs form the most common class of UV-absorbing compounds known to occur widely in various marine organisms; however, several compounds having UV-screening properties still need to be identified. The synthesis of scytonemin, a predominant UV-A-photoprotective pigment, is exclusively reported in cyanobacteria. Carotenoids are important components of the photosynthetic apparatus that serve both light-harvesting and photoprotective functions, either by direct quenching of the singlet oxygen or other toxic reactive oxygen species or by dissipating the excess energy in the photosynthetic apparatus. The production of photoprotective compounds is affected by several environmental factors such as different wavelengths of UVR, desiccation, nutrients, salt concentration, light as well as dark period, and still there is controversy about the biosynthesis of various photoprotective compounds. Recent studies have focused on marine organisms as a source of natural bioactive molecules having a photoprotective role, their biosynthesis and commercial application. However, there is a need for extensive work to explore the photoprotective role of various UV-absorbing compounds from marine habitats so that a range of biotechnological and pharmaceutical applications can be found.

  13. Students' Categorizations of Organic Compounds

    ERIC Educational Resources Information Center

    Domin, Daniel S.; Al-Masum, Mohammad; Mensah, John

    2008-01-01

    Categorization is a fundamental psychological ability necessary for problem solving and many other higher-level cognitive tasks. In organic chemistry, students must establish groupings of different chemical compounds in order not only to solve problems, but also to understand course content. Classic models of categorization emphasize similarity as…

  14. Biodegradation of halogenated organic compounds.

    PubMed Central

    Chaudhry, G R; Chapalamadugu, S

    1991-01-01

    In this review we discuss the degradation of chlorinated hydrocarbons by microorganisms, emphasizing the physiological, biochemical, and genetic basis of the biodegradation of aliphatic, aromatic, and polycyclic compounds. Many environmentally important xenobiotics are halogenated, especially chlorinated. These compounds are manufactured and used as pesticides, plasticizers, paint and printing-ink components, adhesives, flame retardants, hydraulic and heat transfer fluids, refrigerants, solvents, additives for cutting oils, and textile auxiliaries. The hazardous chemicals enter the environment through production, commercial application, and waste. As a result of bioaccumulation in the food chain and groundwater contamination, they pose public health problems because many of them are toxic, mutagenic, or carcinogenic. Although synthetic chemicals are usually recalcitrant to biodegradation, microorganisms have evolved an extensive range of enzymes, pathways, and control mechanisms that are responsible for catabolism of a wide variety of such compounds. Thus, such biological degradation can be exploited to alleviate environmental pollution problems. The pathways by which a given compound is degraded are determined by the physical, chemical, and microbiological aspects of a particular environment. By understanding the genetic basis of catabolism of xenobiotics, it is possible to improve the efficacy of naturally occurring microorganisms or construct new microorganisms capable of degrading pollutants in soil and aquatic environments more efficiently. Recently a number of genes whose enzyme products have a broader substrate specificity for the degradation of aromatic compounds have been cloned and attempts have been made to construct gene cassettes or synthetic operons comprising these degradative genes. Such gene cassettes or operons can be transferred into suitable microbial hosts for extending and custom designing the pathways for rapid degradation of recalcitrant

  15. Global climate change and contaminants--an overview of opportunities and priorities for modelling the potential implications for long-term human exposure to organic compounds in the Arctic.

    PubMed

    Armitage, James M; Quinn, Cristina L; Wania, Frank

    2011-06-01

    This overview seeks to provide context and insight into the relative importance of different aspects related to global climate change for the exposure of Northern residents to organic contaminants. A key objective is to identify, from the perspective of researchers engaged in contaminant fate, transport and bioaccumulation modelling, the most useful research questions with respect to projecting the long-term trends in human exposure. Monitoring studies, modelling results, the magnitude of projected changes and simplified quantitative approaches are used to inform the discussion. Besides the influence of temperature on contaminant amplification and distribution, accumulation of organic contaminants in the Arctic is expected to be particularly sensitive to the reduction/elimination of sea-ice cover and also changes to the frequency and intensity of precipitation events (most notably for substances that are highly susceptible to precipitation scavenging). Changes to key food-web interactions, in particular the introduction of additional trophic levels, have the potential to exert a relatively high influence on contaminant exposure but the likelihood of such changes is difficult to assess. Similarly, changes in primary productivity and dynamics of organic matter in aquatic systems could be influential for very hydrophobic contaminants, but the magnitude of change that may occur is uncertain. Shifts in the amount and location of chemical use and emissions are key considerations, in particular if substances with relatively low long range transport potential are used in closer proximity to, or even within, the Arctic in the future. Temperature-dependent increases in emissions via (re)volatilization from primary and secondary sources outside the Arctic are also important in this regard. An increased frequency of boreal forest fires has relevance for compounds emitted via biomass burning and revolatilization from soil during/after burns but compound-specific analyses are

  16. DEVELOPMENT OF A PASSIVE, IN SITU, INTEGRATIVE SAMPLER FOR HYDROPHILLIC ORGANIC CONTAMINANTS IN AQUATIC ENVIRONMENTS

    EPA Science Inventory

    Until recently, hydrophobic, bioconcentratable compounds have been the primary focus of most environmental organic contaminant investigations, There is an increasing realization that a holistic hazard assessment of complex environmental contaminant mixtures requires data on the c...

  17. Detection of an organic-non volatile compound in variable-contaminated volcanic soil samples via Time Domain Reflectometry (TDR) technique: Preliminary results

    NASA Astrophysics Data System (ADS)

    comegna, alessandro; coppola, antonio; dragonetti, giovanna; chaali, nesrine; sommella, angelo

    2014-05-01

    Hydrocarbons may be present in soils as non-aqueous phase liquids (NAPLs), which means that these organic compounds, exist as a separate and immiscible phase with respect to water and air commonly present in the soil. NAPLs, which can be accidentally introduced in the environment (for example by waste disposal sites, industrial spills, gasoline stations, etc), constitutes a serious geo-environmental problem, given the toxicity level and the high mobility. Time domain reflectometry (TDR) has became, over several decades, an important technique for water estimation in soils. In order to expand the potentiality of the TDR technique, the main objective of this study is to explore the capacity of dielectric response to detect the presence of NAPLs in volcanic soils. In laboratory, soil samples were oven dried at 105° C and passed through a 2 mm sieve. Known quantities of soil, water and NAPL (corn oil, a non-volatile and non-toxic organic compound) were mixed and repacked into plastic cylinders (16 cm high and 9.5 cm in diameter); in order to obtain forty different volumetric combinations of water and oil (i.e. θfg = θwater + θNAPL), with θNAPL varying from 0.05 to 0.40 by 0.05 cm3/cm3 increments. Data collected were employed to implement a multiphase mixing model which permitted conversion from a dielectric permittivity domain into a θf domain and vice versa. The results of this study show that, the TDR device is NAPL-sensitive, especially for θf values greater than 0.20. Further works will be built on this initial study, concentrating on improving the dielectric response-database, in order to: i) enhancing the model efficiency in terms of NAPL capability detention, and ii) validating the developed TDR interpretation tool with field results.

  18. Apparatus for treatment of soils contaminated with organic pollutants

    DOEpatents

    Wickramanayake, Godage B.

    1993-01-01

    An apparatus for treating soil contaminated by organic compounds wherein an ozone containing gas is treated with acid to increase the stability of the ozone in the soil environment and the treated ozone applied to the contaminated soil in a manner adapted to decompose the organic compounds; one embodiment of the apparatus comprises a means to supply ozone as a gas-ozone mixture, a stability means to treat ozone obtained from the supply and distribution means to apply the stabilized gas-ozone to soil. The soil may be treated in situ or may be removed for treatment and refilled.

  19. Sequestration of hydrophobic organic contaminants by geosorbents

    USGS Publications Warehouse

    Luthy, Richard G.; Aiken, George R.; Brusseau, Mark L.; Cunningham, Scott D.; Gschwend, Philip M.; Pignatello, Joseph J.; Reinhard, Martin; Traina, Samuel J.; Weber, Walter J.; Westall, John C.

    1997-01-01

    The chemical interactions of hydrophobic organic contaminants (HOCs) with soils and sediments (geosorbents) may result in strong binding and slow subsequent release rates that significantly affect remediation rates and endpoints. The underlying physical and chemical phenomena potentially responsible for this apparent sequestration of HOCs by geosorbents are not well understood. This challenges our concepts for assessing exposure and toxicity and for setting environmental quality criteria. Currently there are no direct observational data revealing the molecular-scale locations in which nonpolar organic compounds accumulate when associated with natural soils or sediments. Hence macroscopic observations are used to make inferences about sorption mechanisms and the chemical factors affecting the sequestration of HOCs by geosorbents. Recent observations suggest that HOC interactions with geosorbents comprise different inorganic and organic surfaces and matrices, and distinctions may be drawn along these lines, particularly with regard to the roles of inorganic micropores, natural sorbent organic matter components, combustion residue particulate carbon, and spilled organic liquids. Certain manipulations of sorbates or sorbent media may help reveal sorption mechanisms, but mixed sorption phenomena complicate the interpretation of macroscopic data regarding diffusion of HOCs into and out of different matrices and the hysteretic sorption and aging effects commonly observed for geosorbents. Analytical characterizations at the microscale, and mechanistic models derived therefrom, are needed to advance scientific knowledge of HOC sequestration, release, and environmental risk.

  20. Organic compounds in concrete from demolition works.

    PubMed

    Van Praagh, M; Modin, H; Trygg, J

    2015-11-01

    This study aims to verify the effect of physically removing the outer surface of contaminated concrete on total contents and on potential mobility of pollutants by means of leaching tests. Reclaimed concrete from 3 industrial sites in Sweden were included: A tar impregnated military storage, a military tar track-depot, as well as concrete constructions used for disposing of pesticide production surplus and residues. Solid materials and leachates from batch and column leaching tests were analysed for metals, Cl, F, SO4, DOC and contents of suspected organic compounds (polycyclic aromatic hydrocarbons, PAH, and pesticides/substances for pesticide production such as phenoxy acids, chlorophenols and chlorocresols, respectively). In case of PAH contaminated concrete, results indicate that removing 1 or 5 mm of the surface lead to total concentrations below the Swedish guidelines for recycling of aggregates and soil in groundwork constructions. 3 out of 4 concrete samples contaminated with pesticides fulfilled Swedish guidelines for contaminated soil. Results from batch and column leaching tests indicated, however, that concentrations above environmental quality standards for certain PAH and phenoxy acids, respectively, might occur at site when the crushed concrete is recycled in groundwork constructions. As leaching tests engaged in the study deviated from leaching test standards with a limited number of samples, the potential impact of the leaching tests' equipment on measured PAH and pesticide leachate concentrations has to be evaluated in future work.

  1. INTERACTIONS BETWEEN ORGANIC COMPOUNDS AND CYCLODEXTRIN-CLAY SYSTEMS

    EPA Science Inventory

    Computational and experimental techniques are combined in order to better understand interactions involving organic compounds and cyclodextrin (CD)-clay systems. CD-clay systems may have great potential in the containment of organic contaminants in the environment. This study w...

  2. 40 CFR 141.61 - Maximum contaminant levels for organic contaminants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Maximum contaminant levels for organic... levels for organic contaminants. (a) The following maximum contaminant levels for organic contaminants... with the maximum contaminant level for organic contaminants identified in paragraphs (a) and (c)...

  3. 40 CFR 141.61 - Maximum contaminant levels for organic contaminants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Maximum contaminant levels for organic... levels for organic contaminants. (a) The following maximum contaminant levels for organic contaminants... with the maximum contaminant level for organic contaminants identified in paragraphs (a) and (c)...

  4. 40 CFR 141.61 - Maximum contaminant levels for organic contaminants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Maximum contaminant levels for organic... levels for organic contaminants. (a) The following maximum contaminant levels for organic contaminants... with the maximum contaminant level for organic contaminants identified in paragraphs (a) and (c)...

  5. 40 CFR 141.61 - Maximum contaminant levels for organic contaminants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Maximum contaminant levels for organic... levels for organic contaminants. (a) The following maximum contaminant levels for organic contaminants... with the maximum contaminant level for organic contaminants identified in paragraphs (a) and (c)...

  6. 40 CFR 141.61 - Maximum contaminant levels for organic contaminants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Maximum contaminant levels for organic... levels for organic contaminants. (a) The following maximum contaminant levels for organic contaminants... with the maximum contaminant level for organic contaminants identified in paragraphs (a) and (c)...

  7. Molybdenum compounds in organic synthesis

    NASA Astrophysics Data System (ADS)

    Khusnutdinov, R. I.; Oshnyakova, T. M.; Dzhemilev, U. M.

    2017-02-01

    The review presents the first analysis and systematic discussion of data published in the last 35–40 years on the use of molybdenum compounds and complexes in organic synthesis and catalysis of various ion coordination and radical reactions. Detailed account is given of the key trends in the use of molybdenum complexes as catalysts of alkene epoxidation and oxyketonation, oxidation of sulfur, nitrogen and phosphorus compounds, hydrosilylation of 1,3-dienes, ketones and aldehydes, hydrostannylation of acetylenes and hydrogermylation of norbornadienes. Considerable attention is paid to the description of new reactions and in situ generation of highly reactive hypohalites, ROX and HOX, induced by molybdenum complexes and the use of hypohalites in oxidative transformations. Data on the application of molybdenum complexes in well-known reactions are discussed, including Kharasch and Pauson–Khand reactions, allylic alkylation of C-nucleophiles, aminocarbonylation of halo derivatives and oligomerization of cyclic dienes, trienes, alkynes and 1,3-dienes. The last Section of the review considers 'unusual' organic reactions involving molybdenum compounds and complexes. The bibliography includes 257 references.

  8. STABLE CHLORINE ISOTOPE ANALYSIS OF CHLORINATED ORGANIC CONTAMINANTS

    EPA Science Inventory

    The biogeochemical cycling of chlorinated organic contaminants in the environment is often difficult to understand because of the complex distributions of these compounds and variability of sources. To address these issues from an isotopic perspective, we have measured the, 37Cl...

  9. Volatile organic compound sensor system

    DOEpatents

    Schabron, John F.; Rovani, Jr., Joseph F.; Bomstad, Theresa M.; Sorini-Wong, Susan S.; Wong, Gregory K.

    2011-03-01

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  10. Volatile organic compound sensor system

    DOEpatents

    Schabron, John F.; Rovani, Jr., Joseph F.; Bomstad, Theresa M.; Sorini-Wong, Susan S.

    2009-02-10

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  11. Infrared characterized spacecraft contaminants and related compounds

    NASA Technical Reports Server (NTRS)

    Gross, F. C.

    1977-01-01

    The limits of the infrared region of the electromagnetic spectrum are discussed, together with an explanation of some of the shortcomings of obtaining data in this range. Similarities and differences in the interest taken by the chemist/spectroscopist and the space/spectroscopist in the IR spectrum are discussed. The chemist uses IR spectra to identify materials and contaminants associated with spacecraft fabrication and testing. The space scientist, using IR spectrometry, can determine atmospheric conditions around planets, stars, and galaxies. He could also determine the temperature profile of the Earth's atmosphere at different altitudes, or even the temperature profile of the Sun. The importance of detecting contamination of spacecraft and the possible results of not taking corrective action are explored. All space experiments contain some contaminants, to a lesser or greater degree; the responsible personnel involved must determine the level of toleration. A collection of IR spectra of known spacecraft contaminants is presented as a guide for cognizant scientists and engineers.

  12. Natural biodegradation of organic contaminants in groundwater

    SciTech Connect

    McNab, W W; Rice, D W

    1998-09-23

    There has recently been a growing awareness that natural processes are degrading contaminants of concern, and that the contribution these natural processes make to achieving cleanup goals needs to be formally considered during site-specific cleanup. Historical case data from a large number of releases has been used to evaluate the expectation for natural attenuation to contribute to the cleanup of petroleum hydrocarbons and chlorinated solvents. The use of historical case data has several advantages, among them: 1) sites can reduce characterization costs by sharing information on key hydrogeologic parameters controlling contaminant fate and transport, and 2) standard reference frameworks can be developed that individual sites can use as a basis of comparison regarding plume behavior. Definition of cleanup times must take into account basic constraints imposed by natural laws governing the transport and natural degradation process of petroleum hydrocarbons. The actual time to reach groundwater cleanup goals is determined by these laws and the limitations on residual subsurface contamination attenuation rates, through either active or natural biological processes. These limitations will practically constrain the time to achieve low concentration cleanup goals. Recognition is needed that sites will need to be transitioned to remediation by natural processes at some point following implementation of active remediation options. The results of an analysis of approximately 1800 California and 600 Texas fuel hydrocarbon (FHC) releases and 2.50 chlorinated volatile organic compound (CVOC) plumes will be summarized. Plume lengths and natural biodegradation potential were evaluated. For FHC releases, 90% of benzene groundwater plumes were less than 280 feet in length and evidence of natural biodegradation was found to be present at all sites studied in detail. For CVOC releases, source strength and groundwater flow velocity are dominant factors controlling groundwater plume

  13. Competitive sorption of organic contaminants in chalk

    NASA Astrophysics Data System (ADS)

    Graber, E. R.; Borisover, M.

    2003-12-01

    In the Negev desert, Israel, a chemical industrial complex is located over fractured Eocene chalk formations where transfer of water and solutes between fracture voids and matrix pores affects migration of contaminants in the fractures due to diffusion into the chalk matrix. This study tests sorption and sorption competition between contaminants in the chalk matrix to make it possible to evaluate the potential for contaminant attenuation during transport in fractures. Single solute sorption isotherms on chalk matrix material for five common contaminants ( m-xylene, ametryn, 1,2-dichloroethane, phenanthrene, and 2,4,6-tribromophenol) were found to be nonlinear, as confirmed in plots of Kd versus initial solution concentration. Over the studied concentration ranges, m-xylene Kd varied by more than a factor of 100, ametryn Kd by a factor of 4, 1,2-dichloroethane Kd by more than a factor of 3, phenanthrene Kd by about a factor of 2, and 2,4,6-tribromophenol Kd by a factor of 10. It was earlier found that sorption is to the organic matter component of the chalk matrix and not to the mineral phases (Chemosphere 44 (2001) 1121). Nonlinear sorption isotherms indicate that there is at least some finite sorption domain. Bi-solute competition experiments with 2,4,6-tribromophenol as the competitor were designed to explore the nature of the finite sorption domain. All of the isotherms in the bi-solute experiments are more linear than in the single solute experiments, as confirmed by smaller variations in Kd as a function of initial solution concentration. For both m-xylene and ametryn, there is a small nonlinear component or domain that was apparently not susceptible to competition by 2,4,6-tribromophenol. The nonlinear sorption domain(s) is best expressed at low solution concentrations. Inert-solvent-normalized single and bi-solute sorption isotherms demonstrate that ametryn undergoes specific force interactions with the chalk sorbent. The volume percent of phenanthrene

  14. Treatment System for Removing Halogenated Compounds from Contaminated Sources

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Yestrebsky, Cherie L. (Inventor)

    2015-01-01

    A treatment system and a method for removal of at least one halogenated compound, such as PCBs, found in contaminated systems are provided. The treatment system includes a polymer blanket for receiving at least one non-polar solvent. The halogenated compound permeates into or through a wall of the polymer blanket where it is solubilized with at least one non-polar solvent received by said polymer blanket forming a halogenated solvent mixture. This treatment system and method provides for the in situ removal of halogenated compounds from the contaminated system. In one embodiment, the halogenated solvent mixture is subjected to subsequent processes which destroy and/or degrade the halogenated compound.

  15. Photocatalytic destruction of volatile organic compounds in water. Master's thesis

    SciTech Connect

    Oluic, S.

    1991-12-10

    Ground water at the Anniston Army Depot in Anniston, Alabama has been found to be contaminated with volatile organic compounds. Recent research has indicated that advanced oxidation processes, namely hydrogen peroxide catalyzed by ultraviolet light radiation, can be successful in destroying these contaminants. In this process hydrogen peroxide is decomposed by ultraviolet radiation producing hydroxyl free radicals which in turn oxidize the organic compounds present. A series of batch tests and flow through experiments using this oxidation process was performed on a synthetic wastewater that closely duplicated contaminant concentration levels found at Anniston. These contaminants, 1,2 dichloroethene, trichloroethene, dichloromethane and benzene, were found readily destructed by the UV/H2O2 process both individually and in mixtures during batch testing and in flow-through experiments. All experimentation was performed utilizing a thin film reactor.

  16. Photocatalytic Degradation of Organic Contaminants in Water

    EPA Science Inventory

    Photocatalytic treatment of organics, including regulated and contaminants of emerging concern, has been an important area of this field. Details are provided on the mechanism of degradation, reaction intermediates, kinetics, and nanointerfacial adsorption phenomena. The degradat...

  17. Volatile organic compound sensing devices

    DOEpatents

    Lancaster, Gregory D.; Moore, Glenn A.; Stone, Mark L.; Reagen, William K.

    1995-01-01

    Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs.

  18. Volatile organic compound sensing devices

    DOEpatents

    Lancaster, G.D.; Moore, G.A.; Stone, M.L.; Reagen, W.K.

    1995-08-29

    Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs. 15 figs.

  19. Volatile organic compound remedial action project

    SciTech Connect

    1991-12-01

    This Environmental Assessment (EA) reviews a proposed project that is planned to reduce the levels of volatile organic compound (VOC) contaminants present in the Mound domestic water supply. The potable and industrial process water supply for Mound is presently obtained from a shallow aquifer via on-site production wells. The present levels of VOCs in the water supply drawn from the on-site wells are below the maximum contaminant levels (MCLs) permissible for drinking water under Safe Drinking Water Act (SDWA; 40 CFR 141); however, Mound has determined that remedial measures should be taken to further reduce the VOC levels. The proposed project action is the reduction of the VOC levels in the water supply using packed tower aeration (PTA). This document is intended to satisfy the requirements of the National Environmental Policy Act (NEPA) of 1969 and associated Council on Environmental Quality regulations (40 CFR parts 1500 through 1508) as implemented through U.S. Department of Energy (DOE) Order 5440.1D and supporting DOE NEPA Guidelines (52 FR 47662), as amended (54 FR 12474; 55 FR 37174), and as modified by the Secretary of Energy Notice (SEN) 15-90 and associated guidance. As required, this EA provides sufficient information on the probable environmental impacts of the proposed action and alternatives to support a DOE decision either to prepare an Environmental Impact Statement (EIS) or issue a Finding of No Significant Impact (FONSI).

  20. Probabilistic approach to estimating indoor air concentrations of chlorinated volatile organic compounds from contaminated groundwater: a case study in San Antonio, Texas.

    PubMed

    Johnston, Jill E; Gibson, Jacqueline MacDonald

    2011-02-01

    This paper describes a probabilistic model, based on the Johnson-Ettinger algorithm, developed to characterize the current and historic exposure to tricholorethylene (TCE) and tetrachlorethylene (PCE) in indoor air from plumes of groundwater contamination emanating from the former Kelly Air Force Base in San Antonio, Texas. We estimate indoor air concentration, house by house, in 30 101 homes and compare the estimated concentrations with measured values in a small subset of homes. We also compare two versions of the Johnson-Ettinger model: one used by the Environmental Protection Agency (EPA) and another based on an alternative parametrization. The modeled mean predicted PCE concentration historically exceeded PCE screening levels (0.41 ug/m(3)) in 5.5% of houses, and the 95th percentile of the predicted concentration exceeded screening levels in 85.3% of houses. For TCE, the mean concentration exceeded the screening level (0.25 ug/m(3)) in 49% of homes, and the 95th percentile of the predicted concentration exceeded the screening level in 99% of homes. The EPA model predicts slightly lower indoor concentrations than the alternative parametrization. Comparison with measured samples suggests both models, with the inputs selected, underestimate indoor concentrations and that the 95th percentiles of the predicted concentrations are closer to measured concentrations than predicted mean values.

  1. Contaminants in Liquid Organic Fertilizers Used for Agriculture in Japan.

    PubMed

    Hai, Dao M; Qiu, Xuchun; Xu, Hai; Honda, Masato; Yabe, Mitsuyasu; Kadokami, Kiwao; Shimasaki, Yohei; Oshima, Yuji

    2017-04-11

    To provide an overview of anthropogenic contaminants in liquid organic fertilizers (LOFs), products from four biogas plants in Kyushu, Japan, were analyzed for a wide range of contaminants, including copper, cadmium, tributyltin (TBT), dibutyltin (DBT), perfluorooctane sulfonate, 952 semi-volatile organic compounds, and 89 antibiotics. The highest concentrations of copper (31.1 mg/L) and cadmium (0.08 mg/L) were found in LOFs from the Hita biogas plant. Only ofloxacin and sulfapyridine were detected in total 89 antibiotics screened. TBT, DBT, and perfluorooctane sulfonate were present at low concentrations in the LOFs from all four locations. Among the 952 semi-volatile organic compounds, 78 compounds were detected in at least one sample and were present at concentrations between 1.2 and 139.6 mg/L. On the basis of comparisons with previous studies and quality standards for the use of organic fertilizers, the concentrations of contaminants in the studied LOFs indicate that they might be safe for agricultural purposes.

  2. The organic contamination level based on the total soil mass is not a proper index of the soil contamination intensity

    USGS Publications Warehouse

    Hung, H.-W.; Daniel, Sheng G.; Lin, T.-F.; Su, Y.; Chiou, C.T.

    2009-01-01

    Concentrations of organic contaminants in common productive soils based on the total soil mass give a misleading account of actual contamination effects. This is attributed to the fact that productive soils are essentially water-saturated, with the result that the soil uptake of organic compounds occurs principally by partition into the soil organic matter (SOM). This report illustrates that the soil contamination intensity of a compound is governed by the concentration in the SOM (Com) rather than by the concentration in whole soil (Cs). Supporting data consist of the measured levels and toxicities of many pesticides in soils of widely differing SOM contents and the related levels in in-situ crops that defy explanation by the Cs values. This SOM-based index is timely needed for evaluating the contamination effects of food crops grown in different soils and for establishing a dependable priority ranking for intended remediation of numerous contamination sites.

  3. Volume reduction of nonaqueous media contaminated with a highly halogenated model compound using superoxide.

    PubMed

    Furman, Olha S; Teel, Amy L; Watts, Richard J

    2010-02-10

    Highly halogenated organic compounds, which include polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins (PCDDs) formed during the synthesis of pentachlorophenol and chlorophenoxy herbicides, are often found as contaminants in less toxic nonaqueous media, such as waste oil, oily sludges, or biosolids. Superoxide is highly reactive with halogenated compounds when both are dissolved in nonaqueous media; however, superoxide is most economically generated in water, where it is unreactive with most organic compounds. Superoxide reactivity was investigated in organic solvent-water systems as a basis for treating halogenated contaminants in less toxic nonaqueous media. Such a process could potentially render a contaminated oil or sludge nonhazardous, providing a mechanism for waste volume reduction. Increasing amounts of water added to acetone and dimethyl sulfoxide systems decreased the activity of superoxide in the solvent, but enough activity remained for effective treatment. Superoxide was then generated in the aqueous phase of two-phase water-organic solvent systems, and significant superoxide activity was achieved in the organic media with the addition of phase transfer catalysts (PTCs) to transfer superoxide into the nonaqueous phase. The results of this research demonstrate that superoxide, which can be generated in water electrochemically or through the catalytic decomposition of peroxygens, has the potential to be transferred to oils, sludges, and other less toxic nonaqueous media to destroy highly refractory contaminants such as PCBs, PCDDs, and other halogenated contaminants.

  4. Surfactant-enhanced remediation of organic contaminated soil and water.

    PubMed

    Paria, Santanu

    2008-04-21

    solubility organic contaminants. Influences of different parameters such as single and mixed surfactant system, hydrophilic and hydrophobic chain length, HLB value, temperature, electrolyte, surfactant type that are very important in micellar solubilization are reviewed here. Microemulsion systems show higher capacity of organic hydrocarbons solubilization than the normal micellar system. In the case of biodegradation of organic hydrocarbons, the rate is very slow due to low water solubility and dissolution rate but the presence of surfactants may increase the bioavailability of hydrophobic compounds by solubilization and hence increases the degradation rate. In some cases the presence of it also reduces the rate. In addition to fundamental studies, some laboratory and field studies on removal of organics from contaminated soil are also reviewed to show the applicability of this technology.

  5. Bioconcentration of organic contaminants in Daphnia resting eggs.

    PubMed

    Chiaia-Hernandez, Aurea C; Ashauer, Roman; Moest, Markus; Hollingshaus, Tobias; Jeon, Junho; Spaak, Piet; Hollender, Juliane

    2013-09-17

    Organic contaminants detected in sediments from Lake Greifensee and other compounds falling in the log Dow range from 1 to 7 were selected to study the bioconcentration of organic contaminants in sediments in Daphnia resting eggs (ephippia). Our results show that octocrylene, tonalide, triclocarban, and other personal care products, along with pesticides and biocides can accumulate in ephippia with log BCF values up to 3. Data on the uptake and depuration kinetics show a better fit toward a two compartment organism model over a single compartment model due to the differences in ephippial egg content in the environment. The obtained BCFs correlate with hydrophobicity for neutral compounds. Independence between BCF and hydrophobicity was observed for partially ionized compounds with log Dow values around 1. Internal concentrations in ephippia in the environment were predicted based on sediment concentrations using the equilibrium partitioning model and calculated BCFs. Estimated internal concentration values ranged between 1 and 68,000 μg/kglip with triclocarban having the highest internal concentrations followed by tonalide and triclosan. The outcomes indicate that contaminants can be taken up by ephippia from the water column or the pore water in the sediment and might influence fitness and sexual reproduction in the aquatic key species of the genus Daphnia.

  6. Organic Contamination Standards for Mars Sample Return

    NASA Astrophysics Data System (ADS)

    Pugel, D. E.; Conley, Catharine

    Collecting samples from Mars and bringing them to Earth for study has long been an objective of planetary exploration, among other reasons because this allows for the application of the most sensitive instruments to detect biosignatures and other indications of possible Mars life. Understanding terrestrial contamination that could be introduced into Mars samples and confound life detection measurements is an essential aspect of the investigative process. Defining quantitative limits on terrestrial organic contamination is necessary for planetary protection purposes, to ensure high confidence in a putative detection of `Mars life' or possible biohazards in samples after return to Earth. As reported here, NASA's Office of Planetary Protection is initiating a process to establish appropriate limits and controls on organic contamination introduced into Mars samples that will be collected and cached by the Mars 2020 mission for possible future return to Earth.

  7. Special applications of fluorinated organic compounds.

    PubMed

    Lewandowski, Grzegorz; Meissner, Egbert; Milchert, Eugeniusz

    2006-08-25

    The applications of fluorinated organic compounds (FOCs) as finishing agent for fabrics, components of extinguishing agents, electroplating bathes, lubricating oils, oxygen carriers in blood substitutes have been discussed. Recent achievements in methods of the fluorination and general principles of the synthesis of useful perfluorinated organic compounds are given as well.

  8. DEMONSTRATION BULLETIN: SOLIDIFICATION/STABILIZATION OF ORGANIC/INORGANIC CONTAMINANTS - SILICATE TECHNOLOGY CORPORATION

    EPA Science Inventory

    Silicate Technology Corporation's (STC's) technology for treating hazardous waste utilizes silicate compounds to stabilize organic and inorganic constituents in contaminated soils and sludges. STC has developed two groups of reagents: SOILSORB HM for treating wastes with inorgan...

  9. Characteristics of the volatile organic compounds -- Arid Integrated Demonstration Site

    SciTech Connect

    Last, G.V.; Lenhard, R.J.; Bjornstad, B.N.; Evans, J.C.; Roberson, K.R.; Spane, F.A.; Amonette, J.E.; Rockhold, M.L.

    1991-10-01

    The Volatile Organic Compounds -- Arid Integrated Demonstration Program (VOC-Arid ID) is targeted at demonstration and testing of technologies for the evaluation and cleanup of volatile organic compounds and associated contaminants at arid DOE sites. The initial demonstration site is an area of carbon tetrachloride (CCl{sub 4}) contamination located near the center of the Hanford Site. The movement of CCl{sub 4} and other volatile organic contaminants in the subsurface is very complex. The problem at the Hanford Site is further complicated by the concurrent discharge of other waste constituents including acids, lard oil, organic phosphates, and transuranic radionuclides. In addition, the subsurface environment is very complex, with large spatial variabilities in hydraulic properties. A thorough understanding of the problem is essential to the selection of appropriate containment, retrieval, and/or in situ remedial technologies. The effectiveness of remedial technologies depends on knowing where the contaminants are, how they are held up in a given physical and chemical subsurface environment; and knowing the physical, chemical, and microbiological changes that are induced by the various remedial technologies.

  10. Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle.

    PubMed

    Pal, Amrita; He, Yiliang; Jekel, Martin; Reinhard, Martin; Gin, Karina Yew-Hoong

    2014-10-01

    The contamination of the urban water cycle (UWC) with a wide array of emerging organic compounds (EOCs) increases with urbanization and population density. To produce drinking water from the UWC requires close examination of their sources, occurrence, pathways, and health effects and the efficacy of wastewater treatment and natural attenuation processes that may occur in surface water bodies and groundwater. This paper researches in details the structure of the UWC and investigates the routes by which the water cycle is increasingly contaminated with compounds generated from various anthropogenic activities. Along with a thorough survey of chemicals representing compound classes such as hormones, antibiotics, surfactants, endocrine disruptors, human and veterinary pharmaceuticals, X-ray contrast media, pesticides and metabolites, disinfection-by-products, algal toxins and taste-and-odor compounds, this paper provides a comprehensive and holistic review of the occurrence, fate, transport and potential health impact of the emerging organic contaminants of the UWC. This study also illustrates the widespread distribution of the emerging organic contaminants in the different aortas of the ecosystem and focuses on future research needs.

  11. Methods of making organic compounds by metathesis

    DOEpatents

    Abraham, Timothy W.; Kaido, Hiroki; Lee, Choon Woo; Pederson, Richard L.; Schrodi, Yann; Tupy, Michael John

    2015-09-01

    Described are methods of making organic compounds by metathesis chemistry. The methods of the invention are particularly useful for making industrially-important organic compounds beginning with starting compositions derived from renewable feedstocks, such as natural oils. The methods make use of a cross-metathesis step with an olefin compound to produce functionalized alkene intermediates having a pre-determined double bond position. Once isolated, the functionalized alkene intermediate can be self-metathesized or cross-metathesized (e.g., with a second functionalized alkene) to produce the desired organic compound or a precursor thereto. The method may be used to make bifunctional organic compounds, such as diacids, diesters, dicarboxylate salts, acid/esters, acid/amines, acid/alcohols, acid/aldehydes, acid/ketones, acid/halides, acid/nitriles, ester/amines, ester/alcohols, ester/aldehydes, ester/ketones, ester/halides, ester/nitriles, and the like.

  12. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.

    1989-07-18

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  13. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1994-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  14. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1993-09-07

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 figures.

  15. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.

    1989-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  16. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1993-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  17. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1994-06-14

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  18. Predictive relationships for uptake of organic contaminants by hybrid poplar trees

    SciTech Connect

    Burken, J.G.; Schnoor, J.L.

    1998-11-01

    Twelve organic compounds commonly found at hazardous waste sites were studied for uptake by hybrid poplar trees. The vegetative uptake of many of these compounds has not previously been demonstrated for plant species being utilized for phytoremediation, such as hybrid poplar trees. Experiments were conducted hydroponically utilizing {sup 14}C-labeled compounds to ascertain translocation and fate. Predictive relationships for the translocation and partitioning to plant tissues were developed from the experimental data. Translocation and partitioning relationships based on compounds` octanol-water partitioning coefficients produced the best results, but the relationships did not allow for fully accurate prediction of each contaminant`s fate. Translocation and subsequent transpiration of volatile organic compounds (VOCs) from the leaves to the atmosphere was shown to be a significant pathway. As full-scale phytoremediation systems are deliberated, the pathways investigated here should be considered in terms of a contaminant removal mechanism and potential contamination of the vegetation.

  19. Compound-specific carbon isotope analysis of a contaminant plume in Kingsford, Michigan, USA

    USGS Publications Warehouse

    Michel, R.L.; Silva, S.R.; Bemis, B.; Godsy, E.M.; Warren, E.

    2001-01-01

    Compound-specific isotope analysis was used to study a contaminated site near Kingsford, Michigan, USA. Organic compounds at three of the sites studied had similar ??13C values indicating that the contaminant source is the same for all sites. At a fourth site, chemical and ??13C values had evolved due to microbial degradation of organics, with the ??13C being much heavier than the starting materials. A microcosm experiment was run to observe isotopic changes with time in the methane evolved and in compounds remaining in the water during degradation. The ??13C values of the methane became heavier during the initial period of the run when volatile fatty acids were being consumed. There was an abrupt decrease in the ??13C values when fatty acids had been consumed and phenols began to be utilized. The ??13C value of the propionate remaining in solution also increased, similar to the results found in the field.

  20. Analysis of organic compounds in returned comet nucleus samples

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.

    1989-01-01

    Techniques for analysis of organic compounds in returned comet nucleus samples are described. Interstellar, chondritic and transitional organic components are discussed. Appropriate sampling procedures will be essential to the success of these analyses. It will be necessary to return samples that represent all the various regimes found in the nucleus, e.g., a complete core, volatile components (deep interior), and crustal components (surface minerals, rocks, processed organics such as macromolecular carbon and polymers). Furthermore, sampling, storage, return, and distribution of samples must be done under conditions that preclude contamination of the samples by terrestrial matter.

  1. Thermodynamic properties of organic iodine compounds

    NASA Astrophysics Data System (ADS)

    Richard, Laurent; Gaona, Xavier

    2011-11-01

    A critical evaluation has been made of the thermodynamic properties reported in the literature for 43 organic iodine compounds in the solid, liquid, or ideal gas state. These compounds include aliphatic, cyclic and aromatic iodides, iodophenols, iodocarboxylic acids, and acetyl and benzoyl iodides. The evaluation has been made on the basis of carbon number systematics and group additivity relations, which also allowed to provide estimates of the thermodynamic properties of those compounds for which no experimental data were available. Standard molal thermodynamic properties at 25 °C and 1 bar and heat capacity coefficients are reported for 13 crystalline, 29 liquid, and 39 ideal gas organic iodine compounds, which can be used to calculate the corresponding properties as a function of temperature and pressure. Values derived for the standard molal Gibbs energy of formation at 25 °C and 1 bar of these crystalline, liquid, and ideal gas organic iodine compounds have subsequently been combined with either solubility measurements or gas/water partition coefficients to obtain values for the standard partial molal Gibbs energies of formation at 25 °C and 1 bar of 32 aqueous organic iodine compounds. The thermodynamic properties of organic iodine compounds calculated in the present study can be used together with those for aqueous inorganic iodine species to predict the organic/inorganic speciation of iodine in marine sediments and petroleum systems, or in the near- and far-field of nuclear waste repositories.

  2. Breath measurements as volatile organic compound biomarkers.

    PubMed Central

    Wallace, L; Buckley, T; Pellizzari, E; Gordon, S

    1996-01-01

    A brief review of the uses of breath analysis in studies of environmental exposure to volatile organic compounds (VOCs) is provided. The U.S. Environmental Protection Agency's large-scale Total Exposure Assessment Methodology Studies have measured concentrations of 32 target VOCs in the exhaled breath of about 800 residents of various U.S. cities. Since the previous 12-hr integrated personal air exposures to the same chemicals were also measured, the relation between exposure and body burden is illuminated. Another major use of the breath measurements has been to detect unmeasured pathways of exposure; the major impact of active smoking on exposure to benzene and styrene was detected in this way. Following the earlier field studies, a series of chamber studies have provided estimates of several important physiological parameters. Among these are the fraction, f, of the inhaled chemical that is exhaled under steady-state conditions and the residence times. tau i in several body compartments, which may be associated with the blood (or liver), organs, muscle, and fat. Most of the targeted VOCs appear to have similar residence times of a few minutes, 30 min, several hours, and several days in the respective tissue groups. Knowledge of these parameters can be helpful in estimating body burden from exposure or vice versa and in planning environmental studies, particularly in setting times to monitor breath in studies of the variation with time of body burden. Improvements in breath methods have made it possible to study short-term peak exposure situations such as filling a gas tank or taking a shower in contaminated water. PMID:8933027

  3. Breath measurements as volatile organic compound biomarkers.

    PubMed

    Wallace, L; Buckley, T; Pellizzari, E; Gordon, S

    1996-10-01

    A brief review of the uses of breath analysis in studies of environmental exposure to volatile organic compounds (VOCs) is provided. The U.S. Environmental Protection Agency's large-scale Total Exposure Assessment Methodology Studies have measured concentrations of 32 target VOCs in the exhaled breath of about 800 residents of various U.S. cities. Since the previous 12-hr integrated personal air exposures to the same chemicals were also measured, the relation between exposure and body burden is illuminated. Another major use of the breath measurements has been to detect unmeasured pathways of exposure; the major impact of active smoking on exposure to benzene and styrene was detected in this way. Following the earlier field studies, a series of chamber studies have provided estimates of several important physiological parameters. Among these are the fraction, f, of the inhaled chemical that is exhaled under steady-state conditions and the residence times. tau i in several body compartments, which may be associated with the blood (or liver), organs, muscle, and fat. Most of the targeted VOCs appear to have similar residence times of a few minutes, 30 min, several hours, and several days in the respective tissue groups. Knowledge of these parameters can be helpful in estimating body burden from exposure or vice versa and in planning environmental studies, particularly in setting times to monitor breath in studies of the variation with time of body burden. Improvements in breath methods have made it possible to study short-term peak exposure situations such as filling a gas tank or taking a shower in contaminated water.

  4. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2012-10-23

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  5. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2013-03-19

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  6. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2010-09-07

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  7. Removal of organic contaminants from lithographic materials

    NASA Astrophysics Data System (ADS)

    Lytle, Wayne M.

    One of the critical issues still facing the implementation of extreme ultraviolet lithography (EUVL) into mainstream manufacturing for integrated circuit (IC) production is cleanliness. EUV photons at 13.5 nm are easily absorbed by many species, including dust, thin-film layers, and other debris present in the path of the photons. Carrying out EUVL inside a vacuum helps reduce the amount of photon loss for illumination, however contamination in the sys- tem is unavoidable, especially due to carbon growth on the multilayer mirror collectors and to soft defects in the form of organic contamination on the mask. Traditional cleaning methods employ the use of wet chemicals to etch contamination off of a surface, however this is limited in the sub-micron range of contaminant particles due to lack of transport of sufficient liquid chemical to the surface in order to achieve satisfactory particle removal. According to the International Technology Roadmap for Semiconductors (ITRS), the photomask must be particle free at inspection below 30 nm. However, when analyzing the ability of traditional methods to meet the cleaning needs set forth by the ITRS, these methods fall short and often add more contamination to the surface targeted for cleaning. With that in mind, a new cleaning method is being developed to supplant these traditional methods. Preliminary research into a plasma-based method to clean organic contaminants from lithographic materials constructed an experimental device that demonstrated the removal of both polystyrene latex nanoparticles (representing hydrocarbon contamination) in the range of 30 nm to 500 nm, as well as the removal of 30 nm carbon film layers on silicon wafers. This research, called the Plasma-Assisted Cleaning by Metastable Atomic Neutralization (PACMAN) process is being developed with semiconductor manufacturing cleaning in mind. A model of the helium metastable density within the processing chamber has been developed in addition to

  8. Microwave spectra of some volatile organic compounds

    NASA Technical Reports Server (NTRS)

    White, W. F.

    1975-01-01

    A computer-controlled microwave (MRR) spectrometer was used to catalog reference spectra for chemical analysis. Tables of absorption frequency, peak absorption intensity, and integrated intensity are included for 26 volatile organic compounds, all but one of which contain oxygen.

  9. VOLATILE ORGANIC COMPOUNDS AS EXPOSURE BIOMARKERS

    EPA Science Inventory

    Alveolar breath sampling and analysis can be extremely useful in exposure assessment studies involving volatile organic compounds (VOCs). Over recent years scientists from the US Environmental Protection Agency's National Exposure Research Laboratory have developed and refined...

  10. PERFLUORINATED ORGANIC COMPOUND EXPOSURE ASSESSMENT RESEARCH

    EPA Science Inventory

    A wide range of perfluorinated organic compounds (PFCs) has been used in a variety of industrial processes and consumer products. The most commonly studied PFCs include perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), but there are many more compounds in this c...

  11. (CHINA) PERFLUORINATED ORGANIC COMPOUND EXPOSURE ASSESSMENT RESEARCH

    EPA Science Inventory

    A wide range of perfluorinated organic compounds (PFCs) has been used in a variety of industrial processes and consumer products. The most commonly studied PFCs include perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), but there are many more compounds in this c...

  12. Volatile organic compound emissions from silage systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols with other impor...

  13. VOLATILE ORGANIC COMPOUNDS (VOCS) CHAPTER 31.

    EPA Science Inventory

    The term "volatile organic compounds' (VOCs) was originally coined to refer, as a class, to carbon-containing chemicals that participate in photochemical reactions in the ambient (outdoor) are. The regulatory definition of VOCs used by the U.S. EPA is: Any compound of carbon, ex...

  14. Transport of soluble and unsoluble contaminants in compound vortex

    NASA Astrophysics Data System (ADS)

    Stepanova, Eugenia

    2010-05-01

    Transport of solvable substances by separate vortices and vortex flows is studied regularly in environmental and laboratory conditions. The compound vortex is generated in the cylindrical container by the rotating disk. It is possible to observe strongly pronounced area - a vortex core by means of dye injection into the centre of surface trough. Inside the fluid the dye gathers in the central cylindrical area. On a free surface contaminants are located in separate compact areas - in bounded areas near the vertical axis of compound vortex and spiral arms. The separate tinted and clear water areas are observed for a long time in scales of activator rotation period. Parameters of flow patterns geometry are measured in wide range of basic flow conditions. Strong effect of unsoluble contaminant on general flow dynamics in the container is found. Registered flow patterns are compared with environmental observations.

  15. EVALUATION USING AN ORGANOPHILIC CLAY TO CHEMICALLY STABILIZE WASTE CONTAINING ORGANIC COMPOUNDS

    EPA Science Inventory

    A modified clay (organophilic) was utilized to evaluate the potential for chemically stabilizing a waste containing organic compounds. hemical bonding between the binder and the contaminants was indicated. eachate testing also indicated strong binding. Copy available at NTIS as ...

  16. Plant-Associated Bacterial Degradation of Toxic Organic Compounds in Soil

    PubMed Central

    McGuinness, Martina; Dowling, David

    2009-01-01

    A number of toxic synthetic organic compounds can contaminate environmental soil through either local (e.g., industrial) or diffuse (e.g., agricultural) contamination. Increased levels of these toxic organic compounds in the environment have been associated with human health risks including cancer. Plant-associated bacteria, such as endophytic bacteria (non-pathogenic bacteria that occur naturally in plants) and rhizospheric bacteria (bacteria that live on and near the roots of plants), have been shown to contribute to biodegradation of toxic organic compounds in contaminated soil and could have potential for improving phytoremediation. Endophytic and rhizospheric bacterial degradation of toxic organic compounds (either naturally occurring or genetically enhanced) in contaminated soil in the environment could have positive implications for human health worldwide and is the subject of this review. PMID:19742157

  17. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1993-01-05

    Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70 C and 500 C and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

  18. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1993-01-01

    Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70.degree. C. and 500.degree. C. and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

  19. Well-purging criteria for sampling purgeable organic compounds

    USGS Publications Warehouse

    Gibs, J.; Imbrigiotta, T.E.

    1990-01-01

    The results indicate that 1) purgeable organic compound concentrations stabilized when three casing volume were purged in only 55% of the cases evaluated in this study, 2) purgeable organic compounds concentrations did not consistently follow the temporal variation of, nor stabilize at the same time as, the measure field characteristics, and 3) purging to achieve hydraulic equilibrium between casing and aquifer water consistently underestimated the time and casing volumes needed to achieve stable values of water-quality measurements in highly transmissive aquifers. The conclusion from these data is that none of the previously recommended criteria for purging a well can be applied reliably to collecting a "representative' sample of purgeable organic compounds. These results indicate that the criteria for purging a well prior to sampling for purgeable organic compounds must take into account other factors, such as the unique hydrogeologic characteristics of a site, the nature and extent of purgeable organic compounds present, and areal extent of the contamination, the well construction, and the sampling objectives of the investigation. -from Authors

  20. Atmospheric Chemistry of Micrometeoritic Organic Compounds

    NASA Technical Reports Server (NTRS)

    Kress, M. E.; Belle, C. L.; Pevyhouse, A. R.; Iraci, L. T.

    2011-01-01

    Micrometeorites approx.100 m in diameter deliver most of the Earth s annual accumulation of extraterrestrial material. These small particles are so strongly heated upon atmospheric entry that most of their volatile content is vaporized. Here we present preliminary results from two sets of experiments to investigate the fate of the organic fraction of micrometeorites. In the first set of experiments, 300 m particles of a CM carbonaceous chondrite were subject to flash pyrolysis, simulating atmospheric entry. In addition to CO and CO2, many organic compounds were released, including functionalized benzenes, hydrocarbons, and small polycyclic aromatic hydrocarbons. In the second set of experiments, we subjected two of these compounds to conditions that simulate the heterogeneous chemistry of Earth s upper atmosphere. We find evidence that meteor-derived compounds can follow reaction pathways leading to the formation of more complex organic compounds.

  1. A review of surface-water sediment fractions and their interactions with persistent manmade organic compounds

    USGS Publications Warehouse

    Witkowski, P.J.; Smith, J.A.; Fusillo, T.V.; Chiou, C.T.

    1987-01-01

    This paper reviews the suspended and surficial sediment fractions and their interactions with manmade organic compounds. The objective of this review is to isolate and describe those contaminant and sediment properties that contribute to the persistence of organic compounds in surface-water systems. Most persistent, nonionic organic contaminants, such as the chlorinated insecticides and polychlorinated biphenyls (PCBs), are characterized by low water solubilities and high octanol-water partition coefficients. Consequently, sorptive interactions are the primary transformation processes that control their environmental behavior. For nonionic organic compounds, sorption is primarily attributed to the partitioning of an organic contaminant between a water phase and an organic phase. Partitioning processes play a central role in the uptake and release of contaminants by sediment organic matter and in the bioconcentration of contaminants by aquatic organisms. Chemically isolated sediment fractions show that organic matter is the primary determinant of the sorptive capacity exhibited by sediment. Humic substances, as dissolved organic matter, contribute a number of functions to the processes cycling organic contaminants. They alter the rate of transformation of contaminants, enhance apparent water solubility, and increase the carrying capacity of the water column beyond the solubility limits of the contaminant. As a component of sediment particles, humic substances, through sorptive interactions, serve as vectors for the hydrodynamic transport of organic contaminants. The capabilities of the humic substances stem in part from their polyfunctional chemical composition and also from their ability to exist in solution as dissolved species, flocculated aggregates, surface coatings, and colloidal organomineral and organometal complexes. The transport properties of manmade organic compounds have been investigated by field studies and laboratory experiments that examine the

  2. Geochemistry of organic contaminants in Narragansett Bay sediments

    NASA Astrophysics Data System (ADS)

    Pruell, Richard J.; Quinn, James G.

    1985-09-01

    Organic contaminants from several different chemical classes were analyzed in surface sediments along a transect from the head to the mouth of Narragansett Bay. The chemical classes included total hydrocarbons, polycyclic aromatic hydrocarbons, substituted benzotriazoles and phthalic acid esters. Sediment concentrations of all compounds were highest in the Providence River and decreased with distance downbay. The observed decreases were approximately exponential for all compounds; however, the distances at which the concentrations decreased to one-half of their initial concentrations (half-distances) were different. The depth distributions of these compounds in sediment cores from three locations were also investigated. A sediment core collected near the head of the bay (Conimicut Point) showed a well defined historical record of contaminant input to the bay. At a mid-bay location (North Jamestown), however, the record was smeared because of extensive bioturbation. A sediment core collected near the mouth of the bay (Rhode Island Sound) showed a subsurface increase for all of the measured compounds. The results of detailed analyses suggest that this horizon may have been influenced by dredge spoil material originally from the head of the bay.

  3. Possible complex organic compounds on Mars.

    PubMed

    Kobayashi, K; Sato, T; Kajishima, S; Kaneko, T; Ishikawa, Y; Saito, T

    1997-01-01

    It is suggested that primitive Mars had somehow similar environments as primitive Earth. If life was born on the primitive earth using organic compounds which were produced from the early Earth environment, the same types of organic compounds were also formed on primitive Mars. Such organic compounds might have been preserved on Mars still now. We are studying possible organic formation on primitive and present Mars. A gaseous mixture of CO2, CO, N2 and H2O with various mixing ratios were irradiated with high energy protons (major components of cosmic rays). Hydrogen cyanide and formaldehyde were detected among volatile products, and yellow-brown-colored water-soluble non-volatile substances were produced, which gave amino acids after acid-hydrolysis. Major part of "amino acid precursors" were not simple molecules like aminonitriles, but complex compounds which eluted earlier than free amino acids in cation-exchange HPLC. These organic compounds should be major targets in the future Mars mission. Strategy for the detection of the complex organics on Mars will be discussed.

  4. In situ bioremediation of petroleum hydrocarbon and other organic compounds

    SciTech Connect

    Alleman, B.C.; Leeson, A.

    1999-10-01

    From supertanker oil spills to the leaking underground storage tank at the corner gas station, contamination from petroleum hydrocarbon fuels and other organic compounds is an environmental concern that affects nearly every small hamlet and major metropolis throughout the world. Moreover, the world`s rivers, estuaries, and oceans are threatened by contamination from petroleum leaks and spills. Fortunately, most petroleum hydrocarbons are amenable to biodegradation, and a considerable body of experience has been built up over the past two decades in applying in situ bioremediation to a variety of contaminants in all media. Good progress is being made in terms of developing innovative, cost-effective in situ approaches to bioremediation. This volume provides a comprehensive guide to the latest technological breakthroughs in both the laboratory and the field, covering such topics as air sparging, cometabolic biodegradation, treatment of MTBE, real-time control systems, nutrient addition, rapid biosensor analysis, multiphase extraction, and accelerated bioremediation.

  5. Photocatalytic oxidation of organic compounds on Mars

    NASA Technical Reports Server (NTRS)

    Chun, S. F. S.; Pang, K. D.; Cutts, J. A.; Ajello, J. M.

    1978-01-01

    Ultraviolet-stimulated catalytic oxidation is proposed as a mechanism for the destruction of organic compounds on Mars. The process involves the presence of gaseous oxygen, UV radiation, and a catalyst (titanium dioxide), and all three of these have been found to be present in the Martian environment. Therefore it seems plausible that UV-stimulated oxidation of organics is responsible for degrading organic molecules into inorganic end products.

  6. Bioremediation of metals, organic and mixed contaminants with microbial mats

    SciTech Connect

    Bender, J.

    1995-12-31

    Microbial mats are natural heterotrophic and autotrophic communities dominated by cyanobacteria (blue-green algae). They are self-organized laminated structures annealed tightly together by slimy secretions from various microbial components. The surface slime of the mats effectively immobilizes the ecosystem to a variety of substrates, thereby stabilizing the most efficient internal microbial structure. Cyanobacteria mats are generated for bioremediation applications by enriching a water surface with ensiled grass clippings. These constructed mats have been used to reduce selenate to elemental selenium, remove Pb, Cd, Cu, Zn, Co, Cr, Fe and Mn from water and to remove Pb from sediments of shallow laboratory ponds. Uranium, U{sup 238}, was removed from groundwater samples at the rate of 3.19 Mg/m{sup 2}/h. Degradation of recalcitrant organic contaminants by mats is relatively rapid under both dark and light conditions. The following contaminants have been degraded in water and/or soil media by constructed mats: TNT, chrysene, naphthalene, hexadecane, phenanthrene, PCB, TCE, pulp and paper mill wastes, and three pesticides: chlordane, carbofuran and paraquat. Radio-labeled experiments with mat-treated carbofuran, petroleum distillates, TNT, chlordane, PCB and TCE show that these compounds are mineralized by the constructed mats. Mats applied to mixed contaminant solutions (TCE + Zn and TNT + pb) sequestered the metal while mineralizing the TCE. Remediation rates of the organic and inorganic components were the same in mixed solution as they were in single application.

  7. Reflectance spectroscopy of organic compounds: 1. Alkanes

    USGS Publications Warehouse

    Clark, R.N.; Curchin, J.M.; Hoefen, T.M.; Swayze, G.A.

    2009-01-01

    Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 /??m. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the. universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even ' when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.

  8. Origin of organic compounds in carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Cronin, J. R.

    Carbonaceous chondrites, a class of primitive meteorite, have long been known to contain their complement of carbon largely in the form of organic, i.e., hydrocarbon-related, matter. Both discrete organic compounds and an insoluble, macromolecular material are present. Several characteristics of these materials provide evidence for their abiotic origin. The principal formation hypothesis have invoked chemistry occurring either in the solar nebula or on the parent body. However, recent stable isotope analyses of the meteorite carboxylic acids and amino acids indicate that they may be related to interstellar cloud compounds. These results suggest a formation scheme in which interstellar compounds were incorporated into the parent body and subsequently converted to the present suite of meteorite organics by the hydrothermal process believed to have formed the clay minerals of the meteorite matrix.

  9. Analyzing method on biogenic volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Bai, J. H.; Wang, M. X.; Hu, F.; Greenberg, J. P.; Guenther, A. B.

    2002-02-01

    In order to analyze biogenic volatile organic compounds in the atmosphere, an automated gas chromatography is developed and employed at the laboratory of National Center for Atmospheric Research (NCAR) during January to July, 2000. A small refrigerator was used so as to remove water in the air sample from gas line, and get accurate concentrations of volatile organic compounds. At 5degreesC, good water removing efficiency can be obtained at controlled flow rate. Air samples were collected around the building of Mesa Lab. of NCAR and analyzed by this gas chromatography system. This paper reports this gas chromatography system and results of air samples. The experimental results show that this gas chromatography system has a good reproducibility and stability, and main interesting volatile organic compounds such as isoprene, monoterpenes have an evident diurnal variation.

  10. Catalyst for Oxidation of Volatile Organic Compounds

    NASA Technical Reports Server (NTRS)

    Wood, George M. (Inventor); Upchurch, Billy T. (Inventor); Schryer, David R. (Inventor); Davis, Patricia P. (Inventor); Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); Schyryer, Jacqueline L. (Inventor); DAmbrosia, Christine M. (Inventor)

    2000-01-01

    Disclosed is a process for oxidizing volatile organic compounds to carbon dioxide and water with the minimal addition of energy. A mixture of the volatile organic compound and an oxidizing agent (e.g. ambient air containing the volatile organic compound) is exposed to a catalyst which includes a noble metal dispersed on a metal oxide which possesses more than one oxidation state. Especially good results are obtained when the noble metal is platinum, and the metal oxide which possesses more than one oxidation state is tin oxide. A promoter (i.e., a small amount of an oxide of a transition series metal) may be used in association with the tin oxide to provide very beneficial results.

  11. Treating contaminated organics using the DETOX process

    SciTech Connect

    Elsberry, K.D.; Dhooge, P.M.

    1993-05-01

    Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. This paper describes the results of bench-scale studies of DETOX applied to the components of liquid mixed wastes, with the goal of establishing parameters for designing a prototype waste treatment unit. Apparent organic reaction rate orders and the dependence of apparent reaction rate on solution composition and the contact area were measured for vacuum pump oil scintillation fluids, and trichloroethylene. Reaction rate was superior in chloride-based solutions and was proportional to the contact area above about 2% w/w loading of organic. Oxidations in a 4-liter volume, mixed bench-top reactor have given destruction efficiencies of 99.9999 + % for common organics. Reaction rates achieved in the mixed bench-top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10 to 100 + grams of organic per liter-hour. Results are also presented on the solvation efficiency of DETOX for mercury, cerium, and neodymium, and for removal/destruction of organics sorbed on vermiculite. The next stage of development will be converting the bench-top unit to continuous processing.

  12. Contrasting time trends of organic contaminants in Antarctic pelagic and benthic food webs.

    PubMed

    van den Brink, Nico W; Riddle, Martin J; van den Heuvel-Greve, Martine; van Franeker, Jan Andries

    2011-01-01

    We demonstrate that pelagic Antarctic seabirds show significant decreases in concentrations of some persistent organic pollutants. Trends in Adélie penguins and Southern fulmars fit in a general pattern revealed by a broad literature review. Downward trends are also visible in pelagic fish, contrasting sharply with steady or increasing concentrations in Antarctic benthic organisms. Transfer of contaminants between Antarctic pelagic and benthic food webs is associated with seasonal sea-ice dynamics which may influence the balance between the final receptors of contaminants under different climatic conditions. This complicates the predictability of future trends of emerging compounds in the Antarctic ecosystem, such as of the brominated compounds that we detected in Antarctic petrels. The discrepancy in trends between pelagic and benthic organisms shows that Antarctic biota are still final receptors of globally released organic contaminants and it remains questionable whether the total environmental burden of contaminants in the Antarctic ecosystem is declining.

  13. Electrokinetic remediation of six emerging organic contaminants from soil.

    PubMed

    Guedes, Paula; Mateus, Eduardo P; Couto, Nazaré; Rodríguez, Yadira; Ribeiro, Alexandra B

    2014-12-01

    Some organic contaminants can accumulate in organisms and cause irreversible damages in biological systems through direct or indirect toxic effects. In this study the feasibility of the electrokinetic (EK) process for the remediation of 17β-oestradiol (E2), 17α-ethinyloestradiol (EE2), bisphenol A (BPA), nonylphenol (NP), octylphenol (OP) and triclosan (TCS) in soils was studied in a stationary laboratory cell. The experiments were conducted using a silty loam soil (S2) at 0, 10 and 20mA and a sandy soil (S3) at 0 and 10 mA. A pH control in the anolyte reservoir (pH>13) at 10 mA was carried out using S2, too. Photo and electrodegradation experiments were also fulfilled. Results showed that EK is a viable method for the remediation of these contaminants, both through mobilization by electroosmotic flow (EOF) and electrodegradation. As EOF is very sensible to soil pH, the control in the anolyte increased EOF rate, consequently enhancing contaminants mobilization towards the cathode end. The extent of the mobilization towards the electrode end was mainly dependent on compounds solubility and octanol-water partition coefficient. In the last 24h of experiments, BPA presented the highest mobilization rate (ca. 4 μg min(-1)) with NP not being detected in the catholyte. At the end of all experiments the percentage of contaminants that remained in the soil ranged between 17 and 50 for S2, and between 27 and 48 for S3, with no statistical differences between treatments. The mass balance performed showed that the amount of contaminant not detected in the cell is similar to the quantity that potentially may suffer photo and electrodegradation.

  14. FINAL REPORT: MEMBRANE-MEDIATED EXTRACTION AND BIODEGRADATION OF VOLATILE ORGANIC COMPOUNDS FROM AIR

    EPA Science Inventory

    The report describes feasibility tests of a two-step strategy for air pollution control applicable to exhaust air contaminated with volatile organic compounds (VOCs) from painting aircraft. In the first step, the VOC-contaminated air passes over coated, polypropylene, hollow-fibe...

  15. COMPARISON OF TWO FIELD SAMPLING PROCEDURES (EN CORE AND FIELD METHANOL EXTRACTION) FOR VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    In-situ Lasagna technology was recently evaluated at a contaminated site at Offutt Air Force Base. The site was contaminated with low levels (< 30 mg/kg) of volatile organic compounds (VOCs). Originally, researchers planned to use field methanol extraction for both pre- and pos...

  16. Volatile and semivolatile organic compounds in laboratory ...

    EPA Pesticide Factsheets

    Speciated volatile organic compounds (VOCs) and organic fine particulate matter (PM2.5) mass emission factors were determined from laboratory peat fire experiments. Peat samples originated from two wildlife reserves located near the coast of North Carolina, U.S. Gas and particulate organics were quantified by gas chromatography/mass spectrometry and by high pressure liquid chromatography. Hazardous air pollutants (HAPs) accounted for a large fraction (~60 %) of the speciated VOC emissions from peat burning, including large contributions of acetaldehyde, formaldehyde, benzene, toluene, and chloromethane. Speciated organic PM2.5 mass was dominated by the following compound classes: organic acids, levoglucosan, n-alkanes, and n-alkenes. Emission factors for PM2.5 organic acids including n-alkanoic acids, n-alkenoic acids, n-alkanedioic acids, and aromatic acids were reported for the first time for peat burning, representing the largest fraction of organic carbon (OC) mass (11-12 %) of all speciated compound classes measured in this work. Levoglucosan contributed 2-3 % of the OC mass, while methoxyphenols represented 0.2-0.3 % of the OC mass on a carbon mass basis. Retene was the most abundant particulate phase polycyclic aromatic hydrocarbon. Total HAP VOC and particulate polycyclic aromatic hydrocarbon emissions from a 2008 peat wildfire in North Carolina were estimated, suggesting that peat fires can contribute a large fraction of state-wide HAP emissions. This p

  17. Characterization of organic contaminants in porous media using nuclear magnetic resonance and spectral induced polarization measurements.

    NASA Astrophysics Data System (ADS)

    Rupert, Y. K.

    2015-12-01

    The remediation and monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts. This laboratory research focuses on combining two innovative geophysical methods: nuclear magnetic resonance (NMR) and spectral induced polarization (SIP) to assess their suitability to characterize and quantify organic contaminants in porous media. Toluene, a light non-aqueous phase liquid (LNAPL), and ethoxy-nonafluorobutane, an engineered dense non-aqueous phase liquid (DNAPL), have been selected as representative organic contaminants. Low-field NMR relaxation time (T2) measurements and diffusion-relaxation (D-T2) correlation measurements, as well as low frequency SIP measurements (<10 kHz) are performed to quantify the amount of these two organic compounds in the presence of water in three types of porous media (sands, clay, and various sand-clay mixtures). The T2, D-T2, and SIP measurements are made on water, toluene, and the synthetic DNAPL in each porous media to understand the effect of different porous media on the NMR and SIP responses in each fluid. We then plan to make measurements on water-organic mixtures with varied concentrations of organic compounds in each porous medium to resolve the NMR and SIP response of the organic contaminants from that of water and to quantify the amount of organic contaminants. Building a relationship between SIP and NMR signatures from organic contaminants not only provides a fundamental yet important petrophysical relationship, but also builds a framework for continued investigation into how these two methods synergize. This will also provide spatially dense information about organic contaminated natural sediments at scales that will improve the quantitative characterization and remediation of contaminated sites.The remediation and monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts

  18. Removal of organic pollutants by surfactant modified zeolite: comparison between ionizable phenolic compounds and non-ionizable organic compounds.

    PubMed

    Xie, Jie; Meng, Wenna; Wu, Deyi; Zhang, Zhenjia; Kong, Hainan

    2012-09-15

    The aim of this study was to examine the adsorption capability and mechanism of hexadecyltrimethylammonium modified zeolite, which was synthesized from coal fly ash, for the removal of ionizable phenolic compounds (phenol, p-chlorophenol and bisphenol A, with different pK(a)) and non-ionizable organic compounds (aniline, nitrobenzene, and naphthalene, with different hydrophobicity). The obtained zeolite was identified as type Na-P1 (Na(6)Al(6)Si(10)O(32)·12H(2)O, JCPDS code 39-0219), which is classified into the gismondine group with a pore size of 3.1 Å × 4.5 Å [100] and 2.8 Å × 4.8 Å [101]. The adsorption of the two kinds of organic compounds was due to loaded surfactant bilayer because modified zeolite showed great ability for the removal of organic chemicals while little adsorption by zeolite was observed. The isotherm data of ionizable compounds fitted well to the Langmuir model but those of non-ionizable chemicals followed a linear equation. Uptake of ionizable compounds depended greatly on pH, increasing at alkaline pH conditions. In contrary, adsorption of non-ionizable chemicals was essentially the same at all pH levels studied. The adsorption of both kinds of organic compounds correlated well to k(ow) value, suggesting that more hydrophobic organic contaminants are more easily retained by modified zeolite. Based on the different adsorption behavior, the uptake of non-ionizable pollutants was thought to be a single partitioning process into the surfactant bilayer. For ionizable compounds, however, interaction of the phenol group(s) with the positively charged "head" of surfactant additionally functions.

  19. Vapor distribution of trichloroethene and related compounds in soil gas above contaminated ground water at Picatinny Arsenal, New Jersey

    SciTech Connect

    Smith, J.A. )

    1988-09-01

    From 1960 to 1981, wastewater from metal-plating operations was discharged into two unlined filtration pits adjacent to Building 24 at Picatinny Arsenal in Morris County, New Jersey. As a result, the unconfined, sand and gravel aquifer that underlies the site has been contaminated with several chlorinated organic compounds. The major component of the organic contamination is trichloroethene (TCE), although cis-1,2-dichloroethene (DCE) and tetrachloroethene (PCE) also have been identified in some water samples. Details of the ground-water contamination have been reported elsewhere. The goals of this study are to quantify the concentration of purgeable organic compounds in the soil gas above the main axis of the contaminant plume, and to investigate the effect of soil moisture content on the sorption of TCE vapor to soil.

  20. Occurrence and fate of organic contaminants during onsite wastewater treatment

    USGS Publications Warehouse

    Conn, K.E.; Barber, L.B.; Brown, G.K.; Siegrist, R.L.

    2006-01-01

    Onsite wastewater treatment systems serve approximately 25% of the U.S. population. However, little is known regarding the occurrence and fate of organic wastewater contaminants (OWCs), including endocrine disrupting compounds, during onsite treatment. A range of OWCs including surfactant metabolites, steroids, stimulants, metal-chelating agents, disinfectants, antimicrobial agents, and pharmaceutical compounds was quantified in wastewater from 30 onsite treatment systems in Summit and Jefferson Counties, CO. The onsite systems represent a range of residential and nonresidential sources. Eighty eight percent of the 24 target compounds were detected in one or more samples, and several compounds were detected in every wastewater sampled. The wastewater matrices were complex and showed unique differences between source types due to differences in water and consumer product use. Nonresidential sources generally had more OWCs at higher concentrations than residential sources. Additional aerobic biofilter-based treatment beyond the traditional anaerobic tank-based treatment enhanced removal for many OWCs. Removal mechanisms included volatilization, biotransformation, and sorption with efficiencies from 99% depending on treatment type and physicochemical properties of the compound. Even with high removal rates during confined unit onsite treatment, OWCs are discharged to soil dispersal units at loadings up to 20 mg/m2/d, emphasizing the importance of understanding removal mechanisms and efficiencies in onsite treatment systems that discharge to the soil and water environments. ?? 2006 American Chemical Society.

  1. Occurrence and fate of organic contaminants during onsite wastewater treatment.

    PubMed

    Conn, Kathleen E; Barber, Larry B; Brown, Gregory K; Siegrist, Robert L

    2006-12-01

    Onsite wastewater treatment systems serve approximately 25% of the U.S. population. However, little is known regarding the occurrence and fate of organic wastewater contaminants (OWCs), including endocrine disrupting compounds, during onsite treatment. A range of OWCs including surfactant metabolites, steroids, stimulants, metal-chelating agents, disinfectants, antimicrobial agents, and pharmaceutical compounds was quantified in wastewater from 30 onsite treatment systems in Summit and Jefferson Counties, CO. The onsite systems represent a range of residential and nonresidential sources. Eighty eight percent of the 24 target compounds were detected in one or more samples, and several compounds were detected in every wastewater sampled. The wastewater matrices were complex and showed unique differences between source types due to differences in water and consumer product use. Nonresidential sources generally had more OWCs at higher concentrations than residential sources. Additional aerobic biofilter-based treatment beyond the traditional anaerobic tank-based treatment enhanced removal for many OWCs. Removal mechanisms included volatilization, biotransformation, and sorption with efficiencies from <1% to >99% depending on treatment type and physicochemical properties of the compound. Even with high removal rates during confined unit onsite treatment, OWCs are discharged to soil dispersal units at loadings up to 20 mg/m2/d, emphasizing the importance of understanding removal mechanisms and efficiencies in onsite treatment systems that discharge to the soil and water environments.

  2. Decontaminating materials used in ground water sampling devices: Organic contaminants

    SciTech Connect

    Parker, L.V.; Ranney, T.A.

    2000-12-31

    In these studies, the efficiency of various decontamination protocols was tested on small pieces of materials commonly used in ground water sampling devices. Three materials, which ranged in ability to sorb organic solutes, were tested: stainless steel (SS), rigid polyvinyl chloride (PVC), and polytetrafluoroethylene (PTFE). The test pieces were exposed to two aqueous test solutions: One contained three volatile organic compounds (VOCs) and one nitroaromatic compound, and the other contained four pesticides. Also, three types of polymetic tubing were exposed to pesticide solutions. Generally, the contact times were 10 minutes and 24 hours for sorption and desorption. The contaminants were removed from the nonpermeable SS and the less-sorptive rigid PVC test pieces simply by washing with a hot detergent solution and rinsing with hot water. Additional treatment was required for the PTFE test pieces exposed to the VOCs and for the low-density polyethylene (LDPE) tubing exposed to the pesticide test solution. Solvent rinsing did not improve removal of the three VOCs form the PTFE and only marginally improved removal of the residual pesticides from the LDPE. However, a hot water and detergent wash and rinse followed by oven drying at approximately 105 C was effective for removing the VOCs from the PTFE and substantially reduced pesticide contamination from the LDPE.

  3. Dynamics of hydrophobic organic contaminants in the Baltic proper pelagial

    SciTech Connect

    Axelman, J.; Broman, D.; Naef, C.; Pettersen, H.

    1995-12-31

    Hydrophobic organic contaminants occur in different forms in natural water. Apart from being truly dissolved in water they partition into dissolved organic carbon (DOC) and particles of different sizes including pelagic bacteria, phytoplankton and zooplankton. The distribution between the different forms is dependent on carbon turnover rates in and transport between the different compartments and on the physical and chemical properties of the compound in focus. The water phase, the DOC-phase and two particle size fractions, 0.2--2pm and 2--20 pm representing the base of the pelagic food web, were analyzed for their content of PCBs and PAHs during summer and winter conditions in the open sea in the Baltic proper. New methods for separating truly dissolved from DOC-bound compounds have been developed using a high capacity perfusion adsorbent and large scale gas sparging. The small particle size fraction was sampled using high volume tangential flow filtration. The possibility to separate between these four different compartments has given a more detailed picture of the short term dynamics of hydrophobic organic compounds in the important base of the pelagial food web.

  4. Modelling the fate of oxidisable organic contaminants in groundwater

    NASA Astrophysics Data System (ADS)

    Barry, D. A.; Prommer, H.; Miller, C. T.; Engesgaard, P.; Brun, A.; Zheng, C.

    Subsurface contamination by organic chemicals is a pervasive environmental problem, susceptible to remediation by natural or enhanced attenuation approaches or more highly engineered methods such as pump-and-treat, amongst others. Such remediation approaches, along with risk assessment or the pressing need to address complex scientific questions, have driven the development of integrated modelling tools that incorporate physical, biological and geochemical processes. We provide a comprehensive modelling framework, including geochemical reactions and interphase mass transfer processes such as sorption/desorption, non-aqueous phase liquid dissolution and mineral precipitatation/dissolution, all of which can be in equilibrium or kinetically controlled. This framework is used to simulate microbially mediated transformation/degradation processes and the attendant microbial population growth and decay. Solution algorithms, particularly the split-operator (SO) approach, are described, along with a brief résumé of numerical solution methods. Some of the available numerical models are described, mainly those constructed using available flow, transport and geochemical reaction packages. The general modelling framework is illustrated by pertinent examples, showing the degradation of dissolved organics by microbial activity limited by the availability of nutrients or electron acceptors (i.e., changing redox states), as well as concomitant secondary reactions. Two field-scale modelling examples are discussed, the Vejen landfill (Denmark) and an example where metal contamination is remediated by redox changes wrought by injection of a dissolved organic compound. A summary is provided of current and likely future challenges to modelling of oxidisable organics in the subsurface.

  5. Contamination of butyltin compounds in Malaysian marine environments.

    PubMed

    Sudaryanto, Agus; Takahashi, Shin; Iwata, Hisato; Tanabe, Shinsuke; Ismail, Ahmad

    2004-08-01

    Concentration of butyltin compounds (BTs), including tributyltin (TBT), dibutyltin (DBT) and monobutyltin (MBT) and total tin (SigmaSn) were determined in green mussel (Perna viridis), 10 species of muscle fish and sediment from coastal waters of Malaysia. BTs were detected in all these samples ranging from 3.6 to 900 ng/g wet wt., 3.6 to 210 ng/g wet wt., and 18 to 1400 ng/g dry wt. for mussels, fish and sediments, respectively. The concentrations of BTs in several locations of this study were comparable with the reported values from some developed countries and highest among Asian developing nations. Considerable concentration of BTs in several locations might have ecotoxicological consequences and may cause concern to human health. The parent compound TBT was found to be highest than those of its degradation compounds, DBT and MBT, suggesting recent input of TBT to the Malaysian marine environment. Significant positive correlation (Spearman rank correlation: r2=0.82, P<0.0001) was found between BTs and SigmaSn, implying considerable anthropogenic input of butyltin compounds to total tin contamination levels. Enormous boating activities may be a major source of BTs in this country, although aquaculture activities may not be ignored.

  6. Volatile organic compounds from leaves litter.

    PubMed

    Isidorov, Valery; Jdanova, Maria

    2002-09-01

    Qualitative composition of volatile emissions of litter of five species of deciduous trees was investigated by GC-MS. The list of identified substances contains more than 70 organic compounds of various classes. It was established that the composition of components emitted by the litter into the gas phase greatly differs from that of essential oils extracted by hydrodistillation from turned leaves collected from trees during fall. It is suggested that most compounds found in litter emissions are products of vital activity of microorganisms decomposing it. The reported data indicate that after the vegetative period is over the decomposition processes of litter are important seasonal sources of reactive organic compounds under the forest canopy.

  7. Azodicarboxylates: synthesis and functionalization of organic compounds

    NASA Astrophysics Data System (ADS)

    Zhirov, A. M.; Aksenov, A. V.

    2014-06-01

    The data on transformations of dialkyl azodicarboxylates and their analogues involving various substrates are generalized. Nucleophilic addition and oxidation, pericyclic reactions and reactions occurring under the Mitsunobu reaction conditions are considered. Ample opportunities for application of these compounds in fine organic synthesis are shown. The bibliography includes 245 references. Dedicated to Academician B A Trofimov on the occasion of his 75th birthday.

  8. Volatile Organic Compound Investigation Results, 300 Area, Hanford Site, Washington

    SciTech Connect

    Peterson, Robert E.; Williams, Bruce A.; Smith, Ronald M.

    2008-07-07

    Unexpectedly high concentrations of volatile organic compounds (VOC) were discovered while drilling in the unconfined aquifer beneath the Hanford Site’s 300 Area during 2006. The discovery involved an interval of relatively finer-grained sediment within the unconfined aquifer, an interval that is not sampled by routine groundwater monitoring. Although VOC contamination in the unconfined aquifer has been identified and monitored, the concentrations of newly discovered contamination are much higher than encountered previously, with some new results significantly higher than the drinking water standards. The primary contaminant is trichloroethene, with lesser amounts of tetrachloroethene. Both chemicals were used extensively as degreasing agents during the fuels fabrication process. A biological degradation product of these chemicals, 1,2-dichloroethene, was also detected. To further define the nature and extent of this contamination, additional characterization drilling was undertaken during 2007. Four locations were drilled to supplement the information obtained at four locations drilled during the earlier investigation in 2006. The results of the combined drilling indicate that the newly discovered contamination is limited to a relatively finer-grained interval of Ringold Formation sediment within the unconfined aquifer. The extent of this contamination appears to be the area immediately east and south of the former South Process Pond. Samples collected from the finer-grained sediment at locations along the shoreline confirm the presence of the contamination near the groundwater/river interface. Contamination was not detected in river water that flows over the area where the river channel potentially incises the finer-grained interval of aquifer sediment. The source for this contamination is not readily apparent. A search of historical documents and the Hanford Waste Information Data System did not provide definitive clues as to waste disposal operations and

  9. Nonvolatile organic compounds in treated waters.

    PubMed Central

    Watts, C D; Crathorne, B; Fielding, M; Killops, S D

    1982-01-01

    Over the past decade much information has been published on the analysis of organics extracted from treated water. Certain of these organics have been shown to be by-products of the chlorination disinfection process and to possess harmful effects at high concentrations. This has resulted in increased interest in alternative disinfection processes, particularly ozonation. The data on organics had been largely obtained by using gas chromatography-mass spectrometry, which is only capable of analyzing, at best, 20% of the organics present in treated water. Research in key areas such as mutagenicity testing of water and characterization of chlorination and ozonation by-products has emphasized the need for techniques suitable for analysis of the remaining nonvolatile organics. Several methods for the isolation of nonvolatile organics have been evaluated and, of these, freeze-drying followed by methanol extraction appears the most suitable. Reverse-phase HPLC was used for separation of the methanol extract, but increased resolution for separation of the complex mixtures present is desirable. In this context, high resolution size exclusion chromatography shows promise. Characterization of separated nonvolatiles is possible by the application of state-of-the-art mass spectrometric techniques. Results obtained by these techniques have shown that the nonvolatile organic fraction of chlorinated drinking water consists of many discrete compounds. Among these, some of the chlorinated compounds are almost certainly by-products of disinfection. Studies of the by-products of ozonation of fulvic and humic acids isolated from river waters have indicated a similar proportion of nonvolatile organics. Further, ozonation can result in the release of compounds that are trapped in the macromolecules. PMID:6759110

  10. Process for removing an organic compound from water

    DOEpatents

    Baker, Richard W.; Kaschemekat, Jurgen; Wijmans, Johannes G.; Kamaruddin, Henky D.

    1993-12-28

    A process for removing organic compounds from water is disclosed. The process involves gas stripping followed by membrane separation treatment of the stripping gas. The stripping step can be carried out using one or multiple gas strippers and using air or any other gas as stripping gas. The membrane separation step can be carried out using a single-stage membrane unit or a multistage unit. Apparatus for carrying out the process is also disclosed. The process is particularly suited for treatment of contaminated groundwater or industrial wastewater.

  11. Anthropogenic organic contaminants in water, sediments and benthic organisms of the mangrove-fringed Segara Anakan Lagoon, Java, Indonesia.

    PubMed

    Dsikowitzky, Larissa; Nordhaus, Inga; Jennerjahn, Tim C; Khrycheva, Polina; Sivatharshan, Yoganathan; Yuwono, Edy; Schwarzbauer, Jan

    2011-04-01

    Segara Anakan, a mangrove-fringed coastal lagoon in Indonesia, has a high diversity of macrobenthic invertebrates and is increasingly affected by human activities. We found > 50 organic contaminants in water, sediment and macrobenthic invertebrates from the lagoon most of which were polycyclic aromatic compounds (PACs). Composition of PACs pointed to petrogenic contamination in the eastern lagoon. PACs mainly consisted of alkylated PAHs, which are more abundant in crude oil than parent PAHs. Highest total PAC concentration in sediment was above reported toxicity thresholds for aquatic invertebrates. Other identified compounds derived from municipal sewage and also included novel contaminants like triphenylphosphine oxide. Numbers of stored contaminants varied between species which is probably related to differences in microhabitat and feeding mode. Most contaminants were detected in Telescopium telescopium and Polymesoda erosa. Our findings suggest that more attention should be paid to the risk potential of alkylated PAHs, which has hardly been addressed previously.

  12. Development and testing of biosensors that quantitatively and specifically detect organic contaminants

    SciTech Connect

    Jackson, P.; Keim, P.; Kuske, C.; Willardson, B.

    1996-07-01

    This is the final report of a two-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project sought to develop a more sensitive and less expensive method of detecting organic contaminants. Assaying complex environmental samples for organic contaminant content is costly and labor intensive. This often limits extensive testing. Sensitive microbial biosensors that detect specific organic contaminants in complex waste mixtures without prior separation from other waste components have been developed. Some soil microbes degrade organic compounds that contaminate the environment. These bacteria sense minute quantities of particular organic compounds then respond by activating genes encoding enzymes that degrade these molecules. Genetic manipulation of these gene regulatory processes has been employed to develop unique biosensors that detect specific organic compounds using standard biochemical assays. Such biosensors allow rapid, sensitive testing of environmental samples for selected organic contaminants. The cost of biosensor assays is at least 100-fold less than present methods, allowing more rapid and extensive testing and site characterization.

  13. Organic photosensitive devices using subphthalocyanine compounds

    SciTech Connect

    Rand, Barry; Forrest, Stephen R.; Mutolo, Kristin L.; Mayo, Elizabeth; Thompson, Mark E.

    2011-07-05

    An organic photosensitive optoelectronic device, having a donor-acceptor heterojunction of a donor-like material and an acceptor-like material and methods of making such devices is provided. At least one of the donor-like material and the acceptor-like material includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound; and/or the device optionally has at least one of a blocking layer or a charge transport layer, where the blocking layer and/or the charge transport layer includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound.

  14. Organic contamination of ground water at Gas Works Park, Seattle, Washington

    USGS Publications Warehouse

    Turney, G.L.; Goerlitz, D.F.

    1990-01-01

    Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on-site. The park soil is currently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the ground water. Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in ground water samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where ground water was in contact with a non-aqueous phase liquid in the soil. Where no non-aqueous phase liquid was present, concentrations were much smaller, even if the ground water was in contact with contaminated soils. This condition is attributed to weathering processes in which soluble, low-molecular-weight organic compounds are preferentially dissolved from the non-aqueous phase liquid into the ground water. Where no non-aqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain. Concentrations of organic contaminants in the soils may still remain large.

  15. Microbial interactions with organic contaminants in soil: definitions, processes and measurement.

    PubMed

    Semple, Kirk T; Doick, Kieron J; Wick, Lukas Y; Harms, Hauke

    2007-11-01

    There has been and continues to be considerable scientific interest in predicting bioremediation rates and endpoints. This requires the development of chemical techniques capable of reliably predicting the bioavailability of organic compounds to catabolically active soil microbes. A major issue in understanding the link between chemical extraction and bioavailability is the problem of definition; there are numerous definitions, of varying degrees of complexity and relevance, to the interaction between organic contaminants and microorganisms in soil. The aim of this review is to consider the bioavailability as a descriptor for the rate and extent of biodegradation and, in an applied sense, bioremediation of organic contaminants in soil. To address this, the review will (i) consider and clarify the numerous definitions of bioavailability and discuss the usefulness of the term 'bioaccessibility'; (ii) relate definition to the microbiological and chemical measurement of organic contaminants' bioavailability in soil, and (iii) explore the mechanisms employed by soil microorganisms to attack organic contaminants in soil.

  16. Climate impacts of biogenic organic compounds

    NASA Astrophysics Data System (ADS)

    Sengupta, Kamalika; Gordon, Hamish; Almeida, Joao; Rap, Alex; Scott, Catherine; Pringle, Kirsty; Carslaw, Ken

    2016-04-01

    Currently the most uncertain driver of climate change, impact of anthropogenic aerosols on earth's radiative balance depends significantly on estimates of cloud condensation nuclei (CCN), representation of the pre-industrial atmosphere among others. Nearly 90% of aerosols in the tropics are organic in nature of which a major part comes from biogenic sources. About 45% of the CCN in the atmosphere are formed in-situ via nucleation. Understanding the role of biogenic organic compounds in particle formation and their subsequent growth is hence imperative in order to quantify the climate impact of aerosols. The CLOUD experiment at CERN, which measures particle formation and growth rates in a uniquely clean chamber under atmospherically relevant conditions, found evidence of a nucleation mechanism involving only biogenic organic compounds. This mechanism significantly changes our pre-industrial estimates. The experimental results have been parameterized and included in a global aerosol microphysics model, GLOMAP, to quantify the impact of pure biogenic nucleation on CCN formation and their climatic impact. Further the treatment of secondary organic compounds in GLOMAP has been improved and the sensitivity of our estimates of radiative forcing to the same has been evaluated.

  17. In situ bioremediation of petroleum hydrocarbon and other organic compounds

    SciTech Connect

    Alleman, B.C.; Leeson, A.

    1999-11-01

    From supertanker oil spills to the leaking underground storage tank at the corner gas station, contamination from petroleum hydrocarbon fuels and other organic compounds is an environmental concern that affects nearly every small hamlet and major metropolis throughout the world. Most petroleum hydrocarbons are amenable to biodegradation, and a considerable body of experience has been built up over the past two decades in applying in situ bioremediation to a variety of contaminants in all media. This volume provides a comprehensive guide to the latest technological breakthroughs in both the laboratory and the field, covering such topics as air sparging, co-metabolic biodegradation, treatment of MTBE, real-time control systems, nutrient addition, rapid biosensor analysis, multiphase extraction, and accelerated bioremediation.

  18. In situ bioremediation of petroleum hydrocarbon and other organic compounds

    SciTech Connect

    Alleman, B.C.; Leeson, A.

    1999-01-01

    From supertanker oil spills to the leaking underground storage tank at the corner gas station, contamination from petroleum hydrocarbon fuels and other organic compounds is an environmental concern that affects nearly every small hamlet and major metropolis throughout the world. Most petroleum hydrocarbons are amenable to biodegradation, and a considerable body of experience has been built up over the past two decades in applying in situ bioremediation to a variety of contaminants in all media. This volume provides a comprehensive guide to the latest technological breakthroughs in both the laboratory and the field, covering such topics as air sparging, co-metabolic biodegradation, treatment of MTBE, real-time control systems, nutrient addition, rapid biosensor analysis, multiphase extraction, and accelerated bioremediation.

  19. Effects of a remedial system and its operation on volatile organic compound-contaminated ground water, Operable Unit 1, Savage Municipal Well Superfund Site, Milford, New Hampshire, 1998-2004

    USGS Publications Warehouse

    Harte, Philip T.

    2006-01-01

    The Savage Municipal Well Superfund site in the Town of Milford, N.H., is underlain by a 0.5-square mile plume of volatile organic compounds (VOCs), mostly tetrachloroethylene (PCE). The plume occurs mostly within a highly transmissive sand and gravel layer, but also extends into underlying till and bedrock. The plume has been divided into two areas called Operable Unit 1 (OU1), which contains the primary source area, and Operable Unit 2 (OU2), which is defined as the extended plume area. PCE concentrations in excess of 100,000 parts per billion (ppb) had been detected in the OU1 area in 1995, indicating a likely Dense Non-Aqueous Phase Liquid (DNAPL) source. In the fall of 1998, the New Hampshire Department of Environmental Services (NHDES) and the U.S. Environmental Protection Agency (USEPA) installed a remedial system in OU1 to contain and capture the dissolved VOC plume. The OU1 remedial system includes a low-permeability barrier wall that encircles the highest detected concentrations of PCE, and a series of injection and extraction wells to contain and remove contaminants. The barrier wall likely penetrates the full thickness of the sand and gravel; in most places, it also penetrates the full thickness of the underlying basal till and sits atop bedrock. Remedial injection and extraction wells have been operating since the spring of 1999 and include a series of interior (inside the barrier wall) injection and extractions wells and exterior (outside the barrier wall) injection and extraction wells. A recharge gallery outside the barrier wall receives the bulk of the treated water and reinjects it into the shallow aquifer. From 1998 to 2004, PCE concentrations decreased by an average of 80 percent at most wells outside the barrier wall. This decrease indicates (1) the barrier wall and interior extraction effectively contained high PCE concentrations inside the wall, (2) other sources of PCE did not appear to be outside of the wall, and (3) ambient ground

  20. Pilot-scale UV/H2O2 study for emerging organic contaminants decomposition.

    PubMed

    Chu, Xiaona; Xiao, Yan; Hu, Jiangyong; Quek, Elaine; Xie, Rongjin; Pang, Thomas; Xing, Yongjie

    2016-03-01

    Human behaviors including consumption of drugs and use of personal care products, climate change, increased international travel, and the advent of water reclamation for direct potable use have led to the introduction of significant amounts of emerging organic contaminants into the aqueous environment. In addition, the lower detection limits associated with improved scientific methods of chemical analysis have resulted in a recent increase in documented incidences of these contaminants which previously were not routinely monitored in water. Such contaminants may cause known or suspected adverse ecological and/or human health effects at very low concentrations. Conventional drinking water treatment processes may not effectively remove these organic contaminants. Advanced oxidation process (AOP) is a promising treatment process for the removal of most of these emerging organic contaminants, and has been accepted worldwide as a suitable treatment process. In this study, different groups of emerging contaminants were studied for decomposition efficiency using pilot-scale UV/H2O2 oxidation setup, including EDCs, PPCPs, taste and odor (T&O), and perfluorinated compounds. Results found that MP UV/H2O2 AOP was efficient in removing all the selected contaminants except perfluorinated compounds. Study of the kinetics of the process showed that both light absorption and quantum yield of each compound affected the decomposition performance. Analysis of water quality parameters of the treated water indicated that the outcome of both UV photolysis and UV/H2O2 processes can be affected by changes in the feed water quality.

  1. 40 CFR 141.50 - Maximum contaminant level goals for organic contaminants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Maximum contaminant level goals for organic contaminants. 141.50 Section 141.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Goals and Maximum Residual Disinfectant Level Goals § 141.50 Maximum contaminant level goals for...

  2. 40 CFR 141.50 - Maximum contaminant level goals for organic contaminants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Maximum contaminant level goals for organic contaminants. 141.50 Section 141.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Goals and Maximum Residual Disinfectant Level Goals § 141.50 Maximum contaminant level goals for...

  3. 40 CFR 141.50 - Maximum contaminant level goals for organic contaminants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Maximum contaminant level goals for organic contaminants. 141.50 Section 141.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Goals and Maximum Residual Disinfectant Level Goals § 141.50 Maximum contaminant level goals for...

  4. 40 CFR 141.50 - Maximum contaminant level goals for organic contaminants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Maximum contaminant level goals for organic contaminants. 141.50 Section 141.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Goals and Maximum Residual Disinfectant Level Goals § 141.50 Maximum contaminant level goals for...

  5. 40 CFR 141.50 - Maximum contaminant level goals for organic contaminants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Maximum contaminant level goals for organic contaminants. 141.50 Section 141.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Goals and Maximum Residual Disinfectant Level Goals § 141.50 Maximum contaminant level goals for...

  6. Predicting the octanol solubility of organic compounds.

    PubMed

    Admire, Brittany; Yalkowsky, Samuel H

    2013-07-01

    The molar octanol solubility of an organic nonelectrolytes can be reasonably predicted solely from its melting point provided that its liquid (or a hypothetical super-cooled liquid) form is miscible with octanol. The aim of this work is to develop criteria to determine if the real or hypothetical liquid form of a given compound will be miscible with octanol based on its molar volume and solubility parameter. Fortunately, most organic compounds (including most drugs) conform to the criteria for complete liquid miscibility, and therefore have solubilities that are proportional to their melting points. The results show that more than 95% of the octanol solubilities studied are predicted with an error of less than 1 logarithmic unit.

  7. Organic Compounds in Star Forming Regions

    NASA Astrophysics Data System (ADS)

    Kochina, O.; Wiebe, D.

    2014-09-01

    The influence of complex dust composition on the general chemical evolution of a prestellar core and the content of complex organic compounds is studied. It is shown that various component groups respond differently to the presence of a small dust population. At early stages the difference is determined primarily by changes in the balance of photo processes due to effective absorption of ultraviolet photons by small dust grains of the second population and collisional reactions with dust particles. At later stages differences are also caused by the growing dominance of additional reaction channels related to surface organic synthesis.

  8. Organic compounds in star forming regions.

    PubMed

    Kochina, O; Wiebe, D

    2014-09-01

    The influence of complex dust composition on the general chemical evolution of a prestellar core and the content of complex organic compounds is studied. It is shown that various component groups respond differently to the presence of a small dust population. At early stages the difference is determined primarily by changes in the balance of photo processes due to effective absorption of ultraviolet photons by small dust grains of the second population and collisional reactions with dust particles. At later stages differences are also caused by the growing dominance of additional reaction channels related to surface organic synthesis.

  9. Metabolic Reactions among Organic Sulfur Compounds

    NASA Technical Reports Server (NTRS)

    Schulte, M.; Rogers, K.

    2005-01-01

    Sulfur is central to the metabolisms of many organisms that inhabit extreme environments. Numerous authors have addressed the energy available from a variety of inorganic sulfur redox pairs. Less attention has been paid, however, to the energy required or gained from metabolic reactions among organic sulfur compounds. Work in this area has focused on the oxidation of alkyl sulfide or disulfide to thiol and formaldehyde, e.g. (CH3)2S + H2O yields CH3SH + HCHO + H2, eventually resulting in the formation of CO2 and SO4(-2). It is also found that reactions among thiols and disulfides may help control redox disequilibria between the cytoplasm and the periplasm. Building on our earlier efforts for thiols, we have compiled and estimated thermodynamic properties for alkyl sulfides. We are investigating metabolic reactions among various sulfur compounds in a variety of extreme environments, ranging from sea floor hydrothermal systems to organic-rich sludge. Using thermodynamic data and the revised HKF equation of state, along with constraints imposed by the geochemical environments sulfur-metabolizing organisms inhabit, we are able to calculate the amount of energy available to these organisms.

  10. Compositional space boundaries for organic compounds.

    PubMed

    Lobodin, Vladislav V; Marshall, Alan G; Hsu, Chang Samuel

    2012-04-03

    An upper elemental compositional boundary for fossil hydrocarbons has previously been established as double-bond equivalents (i.e., DBE = rings plus double bonds) not exceeding 90% of the number of carbons. For heteroatom-containing fossil compounds, the 90% rule still applies if each N atom is counted as a C atom. The 90% rule eliminates more than 10% of the possible elemental compositions at a given mass for fossil database molecules. However, some synthetic compounds can fall outside the upper boundary defined for naturally occurring compounds. Their inclusion defines an "absolute" upper boundary as DBE (rings plus double bonds to carbon) equal to carbon number plus one, and applies to all organic compounds including fullerenes and other molecules containing no hydrogen. Finally, the DBE definition can fail for molecules with particular atomic valences. Therefore, we also present a generalized DBE definition that includes atomic valence to enable calculation of the correct total number of rings, double bonds, and triple bonds for heteroatom-containing compounds.

  11. Identifying Bioaccumulative Halogenated Organic Compounds Using a Nontargeted Analytical Approach: Seabirds as Sentinels

    PubMed Central

    Millow, Christopher J.; Mackintosh, Susan A.; Lewison, Rebecca L.; Dodder, Nathan G.; Hoh, Eunha

    2015-01-01

    Persistent organic pollutants (POPs) are typically monitored via targeted mass spectrometry, which potentially identifies only a fraction of the contaminants actually present in environmental samples. With new anthropogenic compounds continuously introduced to the environment, novel and proactive approaches that provide a comprehensive alternative to targeted methods are needed in order to more completely characterize the diversity of known and unknown compounds likely to cause adverse effects. Nontargeted mass spectrometry attempts to extensively screen for compounds, providing a feasible approach for identifying contaminants that warrant future monitoring. We employed a nontargeted analytical method using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/TOF-MS) to characterize halogenated organic compounds (HOCs) in California Black skimmer (Rynchops niger) eggs. Our study identified 111 HOCs; 84 of these compounds were regularly detected via targeted approaches, while 27 were classified as typically unmonitored or unknown. Typically unmonitored compounds of note in bird eggs included tris(4-chlorophenyl)methane (TCPM), tris(4-chlorophenyl)methanol (TCPMOH), triclosan, permethrin, heptachloro-1'-methyl-1,2'-bipyrrole (MBP), as well as four halogenated unknown compounds that could not be identified through database searching or the literature. The presence of these compounds in Black skimmer eggs suggests they are persistent, bioaccumulative, potentially biomagnifying, and maternally transferring. Our results highlight the utility and importance of employing nontargeted analytical tools to assess true contaminant burdens in organisms, as well as to demonstrate the value in using environmental sentinels to proactively identify novel contaminants. PMID:26020245

  12. Emission of volatile organic compounds (VOCs) from PVC floor coverings.

    PubMed

    Wiglusz, R; Igielska, B; Sitko, E; Nikel, G; Jarnuszkiewicz, I

    1998-01-01

    In this study 29 PVC floor coverings were tested for emission of vinyl chloride (VC) and other volatile organic compounds (VOCs). A study on the effect of higher temperature on emission of VOCs from newly manufactured PVC flooring was also carried out. The study was conducted in climatic chamber, according to Polish Standard PN-89/Z-04021. GC method was used for analyzing of the compounds emitted. VC was not emitted from any of the floorings tested. Other VOCs were emitted in different concentrations. The influence of temperature on emission was conducted at temperatures of 23 degrees C and 35 degrees C from 2 hrs up to 180 days after introduction of materials in the chamber. The increase of temperature caused increase of total volatile organic compounds (TVOC) emission during 24 hrs of experiment. Then the emission was comparable for both temperatures. After 9 days emission of identified and unidentified compounds (TVOC) showed a rapid decay and stayed on very low level during a few months. The study conducted showed that PVC floorings after 10 days of installation in the room should not be source of indoor air contamination.

  13. Erace--an integrated system for treating organic-contaminated sites

    SciTech Connect

    Caley, S.M.; Heath, W.O.; Bergsman, T.M.; Gauglitz, P.A.; Pillay, C.; Moss, R.W.; Shah, R.R.; Goheen, S.C.; Camiaoni, D.M.

    1994-11-01

    The U.S. Department of Energy`s (DOE) Pacific Northwest Laboratory (PNL) is developing a suite of electrical technologies for treating sites contaminated with hazardous organic compounds. These include: (1) Six-Phase Soil Heating (SPSH) to remove volatile and semi-volatile organic compounds from soils; (2) In Situ Corona (ISC) to decompose nonvolatile and bound organic contaminants in soils; (3) High-Energy Corona (HEC) to treat contaminated off-gases; and (4) Liquid Corona (LC) to treat contaminated liquids. These four technologies comprise ERACE (Electrical Remediation at Contaminated Environments), an integrated system for accomplishing site remediation with little or no secondary wastes produced that would require off-site treatment or disposal. Each ERACE technology can be employed individually as a stand-alone treatment process, or combined as a system for total site remediation. For example, an ERACE system for treating sites contaminated with volatile organics would integrate SPSH to remove the contaminants from the soil, LC to continuously treat an aqueous stream condensed out of the soil off-gas, and HEC to treat non-condensibles remaining in the off-gas, before atmospheric release.

  14. Method and apparatus for destroying organic contaminants in aqueous liquids

    DOEpatents

    Donaldson, Terrence L.; Wilson, James H.

    1993-01-01

    A method and apparatus for destroying organic contaminants, such as trichloroethylene, in aqueous liquids, such as groundwater, utilizing steam stripping integrated with biodegradation. The contaminated aqueous liquid is fed into a steam stripper causing the volatilization of essentially all of the organic contaminants and a portion of the aqueous liquid. The majority of the aqueous liquid is discharged from the steam stripper. The volatilized vapors are then condensed to the liquid phase and introduced into a bioreactor. The bioreactor contains methanotrophic microorganisms which convert the organic contaminants into mainly carbon dioxide. The effluent from the bioreactor is then recycled back to the steam stripper for further processing.

  15. Method and apparatus for destroying organic contaminants in aqueous liquids

    DOEpatents

    Donaldson, T.L.; Wilson, J.H.

    1993-09-21

    A method and apparatus for destroying organic contaminants, such as trichloroethylene, in aqueous liquids, such as groundwater, utilizing steam stripping integrated with biodegradation. The contaminated aqueous liquid is fed into a steam stripper causing the volatilization of essentially all of the organic contaminants and a portion of the aqueous liquid. The majority of the aqueous liquid is discharged from the steam stripper. The volatilized vapors are then condensed to the liquid phase and introduced into a bioreactor. The bioreactor contains methanotrophic microorganisms which convert the organic contaminants into mainly carbon dioxide. The effluent from the bioreactor is then recycled back to the steam stripper for further processing. 2 figures.

  16. Removal of volatile organic compounds (VOCs) using biofilters

    SciTech Connect

    Carriere, P.E.; Mohaghegh, S.D.; Madabhushi, B.S.

    1995-12-31

    One of the most significant air pollution control challenges being faced by the Federal and State agencies and the chemical process industries is the control of emissions of volatile organic compounds (VOCs). VOCs are discharged from process industries as major components of mixed organic wastes which contaminate the environment. Among these wastes, benzene, toluene, ethyl benzene and xylene are classified as major pollutants with high frequencies of occurrence on the EPA list of priority pollutants. Biofiltration, a recent air pollution control technology, is the removal and decomposition of contaminants present in emissions of non hazardous substances using a biologically activated medium. Biofiltration involves contacting the contaminated emission gas stream with microorganisms in a filter media. Biofiltration utilizes microorganisms immobilized in the form of a biofilm layer on an adsorptive filter media. Compared to other technologies, biofiltration is inexpensive, reliable and requires no post treatment. The main objective of this study was to compare the performance of both Granular Activated Carbon (GAC) and Biologically Activated Carbon (BAC) for the removal of benzene and toluene.

  17. Contamination of anaesthetic machines with pathogenic organisms.

    PubMed

    Baillie, J K; Sultan, P; Graveling, E; Forrest, C; Lafong, C

    2007-12-01

    Hospital-acquired infections are commonly resistant to antibiotics and cause substantial morbidity and mortality in susceptible populations. Although there is no direct contact between the anaesthetic machine's controls and the patient, there is considerable potential for colonising organisms to be carried between the anaesthetic machine and the patient on the anaesthetist's hands. We performed two cross-sectional studies of bacterial contamination on anaesthetic machines before and after a simple intervention. Without warning, during theatre sessions, bacterial cultures were obtained from anaesthetic equipment. A new departmental policy of cleaning anaesthetic equipment with detergent wipes between cases was then introduced. Six weeks later, again without warning, a further set of cultures was taken. There was significant reduction in the proportion of cultures containing pathogenic bacteria (from 14/78 cultures (18%; 95% CI 9.4-26.5%) before the intervention to 5/77 cultures (6%; 95% CI 1.0-12%) after the intervention (p = 0.03)). The intervention was quick, easy and enthusiastically taken up by the majority of staff. We conclude that cleaning of anaesthetic equipment between cases should become routine practice.

  18. Determination of micro-organic contaminants in groundwater (Maribor, Slovenia).

    PubMed

    Koroša, A; Auersperger, P; Mali, N

    2016-11-15

    Micro-organic (MO) contaminants in groundwater can have adverse effects on both the environment and on human health. They enter the natural environment as a result of various processes, their presence in groundwater is the result of current anthropogenic activity and pollution loads from the past. A study on the occurrence and concentrations levels of selected contaminants in water was performed in the city of Maribor, Slovenia. A total of 56 groundwater and 4 surface water samples were collected in together four rounds in different hydrogeological periods (dry and wet seasons), and a total of 13 selected contaminants were analysed in this study. Carbamazepine, propyphenazone, caffeine, 2-methyl-2H-benzotriazole (2-MBT) and 2.4-dimethyl-2H-benzotriazole (2.4-DMBT) were determined as indicators of urban pollution, while pesticides and their metabolites (atrazine, desethylatrazine, deisopropylatrazine, terbuthylazine, desethylterbuthylazine, metolachlor, simazine, propazine) were mainly defined as indicators of crop production. All of the selected MO contaminants were detected both in the aquifer and Drava River. The most frequently detected MO compounds in groundwater were desethylatrazine (frequency of detection 98.2%; max. concentration 103.0ngL(-1)), atrazine (94.6%; 229ngL(-1)), 2.4-DMBT (92.9%; 273ngL(-1)), carbamazepine (80.4%; 88.00ngL(-1)), desethylterbuthylazine (76.8%; 7.0ngL(-1)) and simazine (76.8%; 29.6ngL(-1)), whereas propyphenazone (14.3%; 10.7ngL(-1)) was the least frequently detected. Detected MO concentrations in the study were compared with results published elsewhere around the world. Concentrations in groundwater indicate specific land use in their recharge areas. On the basis of correlations and the spatial distribution of selected MOs, groundwater origin for every sampling point was determined. Sampling sites were divided into three different groups for which indicative groundwater quality properties were defined.

  19. Formation of highly oxidized multifunctional organic compounds from anthropogenic volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Molteni, Ugo; Baltensperger, Urs; Bianchi, Federico; Dommen, Josef; El Haddad, Imad; Frege, Carla; Klein, Felix; Rossi, Michel

    2016-04-01

    Recent studies have shown that highly oxidized multifunctional organic compounds (HOMs) from biogenic volatile organic compounds are important for new particle formation and early particle growth (e.g., Ehn et al., 2014). The formation mechanism has extensively been studied for biogenic precursors like alpha-pinene and was shown to proceed through an initial reaction with either OH radicals or ozone followed by radical propagation in a mechanism that involves O2 attack and hydrogen abstraction (Crounse et al., 2013). While the same processes can be expected for anthropogenic volatile organic compounds (AVOC), few studies have investigated these so far. Here we present the formation of HOMs from a variety of aromatic compounds after reaction with OH. All the compounds analyzed show HOM formation. AVOC could therefore play an important role in new particle formation events that have been detected in urban areas. References Crounse, J.D. et al., Autoxidation of organic compounds in the atmosphere. J. Phys.Chem. Lett. 4, 3513-3520 (2013). Ehn, M., et al. A large source of low-volatility secondary organic aerosol, Nature 506, 476-479 (2014).

  20. Passive sampling methods for contaminated sediments: State of the science for organic contaminants

    PubMed Central

    Lydy, Michael J; Landrum, Peter F; Oen, Amy MP; Allinson, Mayumi; Smedes, Foppe; Harwood, Amanda D; Li, Huizhen; Maruya, Keith A; Liu, Jingfu

    2014-01-01

    This manuscript surveys the literature on passive sampler methods (PSMs) used in contaminated sediments to assess the chemical activity of organic contaminants. The chemical activity in turn dictates the reactivity and bioavailability of contaminants in sediment. Approaches to measure specific binding of compounds to sediment components, for example, amorphous carbon or specific types of reduced carbon, and the associated partition coefficients are difficult to determine, particularly for native sediment. Thus, the development of PSMs that represent the chemical activity of complex compound–sediment interactions, expressed as the freely dissolved contaminant concentration in porewater (Cfree), offer a better proxy for endpoints of concern, such as reactivity, bioaccumulation, and toxicity. Passive sampling methods have estimated Cfree using both kinetic and equilibrium operating modes and used various polymers as the sorbing phase, for example, polydimethylsiloxane, polyethylene, and polyoxymethylene in various configurations, such as sheets, coated fibers, or vials containing thin films. These PSMs have been applied in laboratory exposures and field deployments covering a variety of spatial and temporal scales. A wide range of calibration conditions exist in the literature to estimate Cfree, but consensus values have not been established. The most critical criteria are the partition coefficient between water and the polymer phase and the equilibrium status of the sampler. In addition, the PSM must not appreciably deplete Cfree in the porewater. Some of the future challenges include establishing a standard approach for PSM measurements, correcting for nonequilibrium conditions, establishing guidance for selection and implementation of PSMs, and translating and applying data collected by PSMs. Integr Environ Assess Manag 2014;10:167–178. © 2014 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of

  1. The Atmospheric Fate of Organic Nitrogen Compounds

    NASA Astrophysics Data System (ADS)

    Borduas, Nadine

    Organic nitrogen compounds are present in our atmosphere from biogenic and anthropogenic sources and have impacts on air quality and climate. Due to recent advances in instrumentation, these compounds are being detected in the gas and particle phases, raising questions as to their source, processing and sinks in the environment. With their recently identified role as contributors to aerosol formation and growth, their novel large scale use as solvents in carbon capture and storage (CCS) technology and their emissions from cigarette smoke, it is now important to address the gaps in our understanding of the fate of organic nitrogen. Experimentally and theoretically, I studied the chemical atmospheric fate of specific organic nitrogen compounds in the amine, amide and isocyanate families, yielding information that can be used in chemical transport models to assess the fate of this emerging class of atmospheric molecules. I performed kinetic laboratory studies in a smog chamber to measure the room temperature rate coefficient for reaction with the hydroxyl radical of monoethanolamine, nicotine, and five different amides. I employed online-mass spectrometry techniques to quantify the oxidation products. I found that amines react quickly with OH radicals with lifetimes of a few hours under sunlit conditions, producing amides as oxidation products. My studies on amides revealed that they have much longer lifetimes in the atmosphere, ranging from a few hours to a week. Photo-oxidation of amides produces isocyanates and I investigated these mechanisms in detail using ab initio calculations. Furthermore, I experimentally measured isocyanic acid's Henry's Law constant as well as its hydrolysis rate constants to better understand its sinks in the atmosphere. Finally, I re-examined the structure-activity relationship (SAR) of organic nitrogen molecules for improved model parameterizations.

  2. Self assembly properties of primitive organic compounds

    NASA Technical Reports Server (NTRS)

    Deamer, D. W.

    1991-01-01

    A central event in the origin of life was the self-assembly of amphiphilic, lipid-like compounds into closed microenvironments. If a primitive macromolecular replicating system could be encapsulated within a vesicular membrane, the components of the system would share the same microenvironment, and the result would be a step toward true cellular function. The goal of our research has been to determine what amphiphilic molecules might plausibly have been available on the early Earth to participate in the formation of such boundary structures. To this end, we have investigated primitive organic mixtures present in carbonaceous meteorites such as the Murchison meteorite, which contains 1-2 percent of its mass in the form of organic carbon compounds. It is likely that such compounds contributed to the inventory of organic carbon on the prebiotic earth, and were available to participate in chemical evolution leading to the emergence of the first cellular life forms. We found that Murchison components extracted into non-polar solvent systems are surface active, a clear indication of amphiphilic character. One acidic fraction self-assembles into vesicular membranes that provide permeability barriers to polar solutes. Other evidence indicates that the membranes are bimolecular layers similar to those formed by contemporary membrane lipids. We conclude that bilayer membrane formation by primitive amphiphiles on the early Earth is feasible. However, only a minor fraction of acidic amphiphiles assembles into bilayers, and the resulting membranes require narrowly defined conditions of pH and ionic composition to be stable. It seems unlikely, therefore, that meteoritic infall was a direct source of membrane amphiphiles. Instead, the hydrocarbon components and their derivatives more probably would provide an organic stock available for chemical evolution. Our current research is directed at possible reactions which would generate substantial quantities of membranogenic

  3. Radiocarbon dating of diatom-bound organic compounds

    NASA Astrophysics Data System (ADS)

    Hatte, C.; Hodgins, G.; Jull, T.; Cruz, R.; Lange, T.; Biddulph, D.

    2006-12-01

    We present a new method for obtaining radiocarbon dates for the proteins intrinsic to diatom frustules (sillafin). By asserting age models for sediment cores that lack calcium carbonate, this method will improve interpretations of diatom-based paleoproxies either marine or lacustrine. In preparation for radiocarbon dating by Accelerator Mass Spectrometry, diatoms were first concentrated out of the sediment. Through chemical and physical treatments that will be discussed and compared here, diatoms frustules are then freed of any surface-bound organic matter. Compounds intrinsic to diatoms frustules are then released from their opal matrix by HF dissolution. Since we have eliminated any of potentially contaminating organic matter, this method differs from approaches based on specific compounds extraction from a complex organic mixture by preparative chromatography such as proposed by Ingalls et al. (2004, Mar. Chem). The advantage of our method is that it does not require heavy cost investment. The method was applied to samples from a marine core collected in the Southern Ocean, that spans the last climatic cycle. Diatoms rich sediments from a Holocene lacustrine/palustrine record from Texas were also investigated. We report on the radiocarbon dating results obtained on organic matter at each step of the chemical treatment, from bulk to sillafin and their interpretation.

  4. Transport of organic contaminants in subsoil horizons and effects of dissolved organic matter related to organic waste recycling practices.

    PubMed

    Chabauty, Florian; Pot, Valérie; Bourdat-Deschamps, Marjolaine; Bernet, Nathalie; Labat, Christophe; Benoit, Pierre

    2016-04-01

    Compost amendment on agricultural soil is a current practice to compensate the loss of organic matter. As a consequence, dissolved organic carbon concentration in soil leachates can be increased and potentially modify the transport of other solutes. This study aims to characterize the processes controlling the mobility of dissolved organic matter (DOM) in deep soil layers and their potential impacts on the leaching of organic contaminants (pesticides and pharmaceutical compounds) potentially present in cultivated soils receiving organic waste composts. We sampled undisturbed soil cores in the illuviated horizon (60-90 cm depth) of an Albeluvisol. Percolation experiments were made in presence and absence of DOM with two different pesticides, isoproturon and epoxiconazole, and two pharmaceutical compounds, ibuprofen and sulfamethoxazole. Two types of DOM were extracted from two different soil surface horizons: one sampled in a plot receiving a co-compost of green wastes and sewage sludge applied once every 2 years since 1998 and one sampled in an unamended plot. Results show that DOM behaved as a highly reactive solute, which was continuously generated within the soil columns during flow and increased after flow interruption. DOM significantly increased the mobility of bromide and all pollutants, but the effects differed according the hydrophobic and the ionic character of the molecules. However, no clear effects of the origin of DOM on the mobility of the different contaminants were observed.

  5. Vertical fluxes of organic contaminants in the Ligurian Sea.

    NASA Astrophysics Data System (ADS)

    Deyme, Remi; Bouloubassi, Ioanna; Taphanel-Valt, Marie-Helene; Miquel, Juan-Carlos; Lorre, Anne; Marty, Jean-Claude; Mejanelle, Laurence

    2010-05-01

    High resolution temporal series of hydrological and biogeochemical parameters have been monitored throughout the SO-DYFAMED program, aiming at better understanding the response of the ocean to anthropic and climatic disturbance. The present contribution addresses fluxes of organic semi-volatile contaminants and of biogenic lipids associated with marine sinking particles. Sediment trap samples were collected at the DYFAMED station (Ligurian Sea, NW Mediterranean Sea) from December 2000 to July 2002, at a depth of 200m and 1000m, and with a time step of 2 to 3 weeks. Polycyclic Aromatic Hydrocarbons (PAHs) and Non-Aromatic Hydrocarbons (NAHs) were investigated to characterize the levels of contamination and the fluxes of contaminants transferred from the upper marine waters to intermediate waters. Specific lipids of phytoplankton, terrigeneous matter and faecal pellets were also determined, aiming at better understanding biogeochemical processes that may impact on pollutant transfer toward deeper marine horizons. Up to 36 PAHs were identified. The 13 parent compound levels (Σ PAH13) varied from 564 to 4156 ng.g-1, with highest concentrations corresponding to winter months. The molecular profile was dominated by low molecular weight PAHs and higher abundance of alkylated homologues over parent compounds. This characteristic, together with diagnostic molecular ratios attribute the main part of PAHs to a petrogenic origin. Aliphatic hydrocarbons were largely dominated by an UCM (Unresolved Complex Mixture), accounting for ca. 91 % of NAHs, which further confirms the dominant petrogenic origin of hydrocarbons. Fluxes of PAHs13 and NAHs varied from 0.29 to 0.422 and from 0.4 to 19.0 ?g.m2.d-1, respectively. Alike concentrations, PAH fluxes were higher than those reported in other open Mediterranean locations, revealing that the study site is under a stronger anthropogenic influence. Various inputs of contaminants at the study site may be pointed out: riverine inputs

  6. Organic Contaminants Library for the Sample Analysis at Mars

    NASA Astrophysics Data System (ADS)

    Misra, P.; Garcia-Sanchez, R.; Canham, J.; Mahaffy, P. R.

    2012-12-01

    A library containing mass spectra for Sample Analysis at Mars (SAM) materials has been developed with the purpose of contamination identification and control. Based on analysis of the Gas Chromatography-Mass Spectrometric (GCMS) data through thermal desorption, organic compounds were successfully identified from material samples, such as polymers, paints and adhesives. The library contains the spectra for all the compounds found in each of these analyzed files and is supplemented by a file information spreadsheet, a spreadsheet-formatted library for easy searching, and a Perfluorotributylamine (PFTBA) based normalization protocol to make corrections to SAM data in order to meet the standard set by commercial libraries. An example of the library in use can be seen in Figure 1, where the abundances match closely, the spectral shape is retained, and the library picks up on it with an 88% identification probability. Of course, there are also compounds that have not been identified and are retained as unknowns. The library we have developed, along with its supplemental materials, is useful from both organizational and practical viewpoints. Through them we are able to organize large volumes of GCMS data, while at the same time breaking down the components that each material sample is made of. This approach in turn allows us straightforward and fast access to information that will be critical while performing analysis on the data recorded by the SAM instrumentation. In addition, the normalization protocol dramatically increased the identification probability. In SAM GCMS, PFTBA signals were obfuscated, resulting in library matches far away from PFTBA; by using the normalization protocol we were able to transform it into a 92% probable spectral match for PFTBA. The project has demonstrated conclusively that the library is successful in identifying unknown compounds utilizing both the Automated Mass Spectral Deconvolution & Identification System (AMDIS) and the Ion

  7. Process for the solvent extraction for the radiolysis and dehalogenation of halogenated organic compounds in soils, sludges, sediments and slurries

    DOEpatents

    Mincher, Bruce J.; Curry, Randy Dale; Clevenger, Thomas E.; Golden, Jeffry

    2003-05-27

    A process of extracting halogenated organic compounds, and particularly PCBs, from soil, sediment, slurry, sludge and dehalogenating the compounds contacts a contaminated soil sample with an extraction medium of a mixture of an alkane and a water miscible alcohol. The organic compounds dissolve in the extraction medium which is separated from the soil by passing water upwardly through the soil. The extraction medium floats to the surface of the water and is separated. Thereafter, the extraction medium containing the halogenated organic contaminants is subjected to ionizing radiation to radiolytically dehalogenate the compounds.

  8. Process for the solvent extraction for the radiolysis and dehalogenation of halogenated organic compounds in soils, sludges, sediments and slurries

    DOEpatents

    Mincher, Bruce J.; Curry, Randy Dale; Clevenger, Thomas E.; Golden, Jeffry

    2000-01-01

    A process of extracting halogenated organic compounds, and particularly PCBs, from soil, sediment, slurry, sludge and dehalogenating the compounds contacting a contaminated soil sample with an extraction medium of a mixture of an alkane and a water miscible alcohol. The organic compounds dissolve in the extraction medium which is separated from the soil by passing water upwardly through the soil. The extraction medium floats to the surface of the water and is separated. Thereafter, the extraction medium containing the halogenated organic contaminants is subjected to ionizing radiation to radiolytically dehalogenate the compounds.

  9. Process for the solvent extraction for the radiolysis and dehalogenation of halogenated organic compounds in soils, sludges, sediments and slurries

    DOEpatents

    Golden, Jeffry

    2007-02-13

    A process of extracting halogenated organic compounds, and particularly PCBs, from soil, sediment, slurry, sludge and dehalogenating the compounds contacts a contaminated soil sample with an extraction medium of a mixture of an alkane and a water miscible alcohol. The organic compounds dissolve in the extraction medium which is separated from the soil by passing water upwardly through the soil. The extraction medium floats to the surface of the water and is separated. Thereafter, the extraction medium containing the halogenated organic contaminants is subjected to ionizing radiation to radiolytically dehalogenate the compounds.

  10. Biogenic volatile organic compounds - small is beautiful

    NASA Astrophysics Data System (ADS)

    Owen, S. M.; Asensio, D.; Li, Q.; Penuelas, J.

    2012-12-01

    While canopy and regional scale flux measurements of biogenic volatile organic compounds (bVOCs) are essential to obtain an integrated picture of total compound reaching the atmosphere, many fascinating and important emission details are waiting to be discovered at smaller scales, in different ecological and functional compartments. We concentrate on bVOCs below ground to <2m above ground level. Emissions at leaf scale are well documented and widely presented, and are not discussed here. Instead we describe some details of recent research on rhizosphere bVOCs, and bVOCs associated with pollination of flowers. Although bVOC emissions from soil surfaces are small, bVOCs are exuded by roots of some plant species, and can be extracted from decaying litter. Naturally occurring monoterpenes in the rhizosphere provide a specialised carbon source for micro-organisms, helping to define the micro-organism community structure, and impacting on nutrient cycles which are partly controlled by microorganisms. Naturally occurring monoterpenes in the soil system could also affect the aboveground structure of ecosystems because of their role in plant defence strategies and as mediating chemicals in allelopathy. A gradient of monoterpene concentration was found in soil around Pinus sylvestris and Pinus halepensis, decreasing with distance from the tree. Some compounds (α-pinene, sabinene, humulene and caryophyllene) in mineral soil were linearly correlated with the total amount of each compound in the overlying litter, indicating that litter might be the dominant source of these compounds. However, α-pinene did not fall within the correlation, indicating a source other than litter, probably root exudates. We also show that rhizosphere bVOCs can be a carbon source for soil microbes. In a horizontal gradient from Populus tremula trees, microbes closest to the tree trunk were better enzymatically equipped to metabolise labeled monoterpene substrate. Monoterpenes can also increase the

  11. Characterization of organic contaminants in environmental samples associated with mount St. Helens 1980 volcanic eruption

    USGS Publications Warehouse

    Pereira, W.E.

    1982-01-01

    Volcanic ash, surface-water, and bottom-material samples obtained in the vicinity of Mount St. Helens after the May 18, 1980, eruption were analyzed for organic contaminants by using capillary gas chromatography-mass spectrometry-computer techniques. Classes of compounds identified include n-alkanes, fatty acids, dicarboxylic acids, aromatic acids and aldehydes, phenols, resin acids, terpenes, and insect juvenile hormones. The most probable source of these compounds is from pyrolysis of plant and soil organic matter during and after the eruption. The toxicity of selected compounds and their environmental significance are discussed.

  12. Organic contaminants in bats: trends and new issues.

    PubMed

    Bayat, Sara; Geiser, Fritz; Kristiansen, Paul; Wilson, Susan C

    2014-02-01

    Exposure to contaminants, often pesticides, has been implicated as a major factor contributing to decreases in bat populations. Bats provide essential ecosystem services and a sustained, thriving population is vital for ecosystem health. Understanding issues threatening their survival is crucial for their protection and conservation. This paper provides the first review for 12years on organic pollutants in bats and aims to investigate trends and any new issues impacting bat resilience. Organochlorine (OC) pesticides have been reported most often, especially in the older literature, with the dichlorodiphenyltrichloroethane (DDT) metabolite, dichlorodiphenyldichloroethylene (DDE), present at highest concentrations in tissues analyzed. The OC pesticide concentrations reported in bat tissues have declined significantly since the late 1970s, presumably as a result of restrictions in use. For example, DDE study mean concentrations over time periods 1970-1980, 1981-1999 and 2000-2013 ranged from 2.6-62, 0.05-2.31, 0.08-0.19ppm wet weight, respectively. Exposure, however, still occurs from remaining residues, many years after the compounds have been actively used. In recent years (2000-2013), a range of other organic chemicals have been reported in bat tissues including brominated flame retardants (polybrominated diphenyl ether at a mean concentration of 2.9ppm lipid weight) and perfluorinated compounds (perfluorooctanyl sulfonate at a mean concentration 0.09ppm wet weight). The persistent organic compounds concentrate in tissues with higher fat content notably back-depot fat. Numerous factors influence exposure, residues detected and concentrations in different individuals, species and tissues which must be understood to provide meaningful assessment of the impacts of exposure. Exposure can lead to not only acute and lethal impacts, but also physiological sub-lethal and chronic effects, often linked to the annual cycle of fat deposition and withdrawal. Current challenges

  13. Biogeochemical processes governing exposure and uptake of organic pollutant compounds in aquatic organisms.

    PubMed Central

    Farrington, J W

    1991-01-01

    This paper reviews current knowledge of biogeochemical cycles of pollutant organic chemicals in aquatic ecosystems with a focus on coastal ecosystems. There is a bias toward discussing chemical and geochemical aspects of biogeochemical cycles and an emphasis on hydrophobic organic compounds such as polynuclear aromatic hydrocarbons, polychlorinated biphenyls, and chlorinated organic compounds used as pesticides. The complexity of mixtures of pollutant organic compounds, their various modes of entering ecosystems, and their physical chemical forms are discussed. Important factors that influence bioavailability and disposition (e.g., organism-water partitioning, uptake via food, food web transfer) are reviewed. These factors include solubilities of chemicals; partitioning of chemicals between solid surfaces, colloids, and soluble phases; variables rates of sorption, desorption; and physiological status of organism. It appears that more emphasis on considering food as a source of uptake and bioaccumulation is important in benthic and epibenthic ecosystems when sediment-associated pollutants are a significant source of input to an aquatic ecosystem. Progress with mathematical models for exposure and uptake of contaminant chemicals is discussed briefly. PMID:1904812

  14. Halogenated compounds in a dated sediment core of the Teltow Canal, Berlin: time related sediment contamination.

    PubMed

    Heim, S; Ricking, M; Schwarzbauer, J; Littke, R

    2005-12-01

    To study the recent contamination history of DDT (1,1,1-trichloro-2,2-bis(chlorophenyl)ethane) and its metabolites, as well as methoxychlor (1,1,1-trichloro-2,2-bis(p-methoxyphenyl)ethane), chlorfenson (4-chlorophenyl-p-chlorobenzenesulfonate), and further halogenated aromatics, a sediment core was collected from the Teltow Canal in Berlin (Germany). The sampling site is located nearby a former industrial point source, where recently analyses on pre-samples have indicated high concentrations of halogenated organic compounds. The deposition time of the investigated sediments was determined by gamma-spectrometrical dating. Pollution trends of selected contaminants were attributed to a time period between 5 and 10 years. Concentration profiles reflect not only the recent pollution history of these compounds, but also the time-depending effects of the ban, restriction and termination of DDT-production in the German Democratic Republic (GDR). DDT and other chlorinated aromatic compounds were produced onsite until the late 1980s. Maximum values of 133 mg kg(-1) (dry weight) for p,p'-DDD (1,1-dichloro-2,2-bis(chlorophenyl)ethane) and approximately 100 mg kg(-1) (dry weight) for p,p'-DDMS (1-chloro-2,2-bis(chlorophenyl)ethane), main metabolites of the anaerobic degradation of DDT, were determined. The occurrence of all selected contaminants, most of which have been banned more than 10 years ago, demonstrate recent contamination pathways, and the necessity of a continuous long-term monitoring of the affected environment.

  15. User’s guide to the collection and analysis of tree cores to assess the distribution of subsurface volatile organic compounds

    USGS Publications Warehouse

    Vroblesky, Don A.

    2008-01-01

    Analysis of the volatile organic compound content of tree cores is an inexpensive, rapid, simple approach to examining the distribution of subsurface volatile organic compound contaminants. The method has been shown to detect several volatile petroleum hydrocarbons and chlorinated aliphatic compounds associated with vapor intrusion and ground-water contamination. Tree cores, which are approximately 3 inches long, are obtained by using an increment borer. The cores are placed in vials and sealed. After a period of equilibration, the cores can be analyzed by headspace analysis gas chromatography. Because the roots are exposed to volatile organic compound contamination in the unsaturated zone or shallow ground water, the volatile organic compound concentrations in the tree cores are an indication of the presence of subsurface volatile organic compound contamination. Thus, tree coring can be used to detect and map subsurface volatile organic compound contamination. For comparison of tree-core data at a particular site, it is important to maintain consistent methods for all aspects of tree-core collection, handling, and analysis. Factors affecting the volatile organic compound concentrations in tree cores include the type of volatile organic compound, the tree species, the rooting depth, ground-water chemistry, the depth to the contaminated horizon, concentration differences around the trunk related to variations in the distribution of subsurface volatile organic compounds, concentration differences with depth of coring related to volatilization loss through the bark and possibly other unknown factors, dilution by rain, seasonal influences, sorption, vapor-exchange rates, and within-tree volatile organic compound degradation.

  16. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOEpatents

    Elliott, Douglas C [Kennewick, WA; Hu, Jianli [Richland, WA; Hart,; Todd, R [Kennewick, WA; Neuenschwander, Gary G [Burbank, WA

    2011-06-07

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  17. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOEpatents

    Elliott, Douglas C.; Hu, Jianli; Hart, Todd R.; Neuenschwander, Gary G.

    2008-09-16

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  18. A method of isolating organic compounds present in water

    NASA Technical Reports Server (NTRS)

    Calder, G. V.; Fritz, J.; Junk, G. A.

    1972-01-01

    Water sample is passed through a column containing macroreticular resin, which absorbs only nonionic organic compounds. These compounds are selectively separated using aqueous eluents of varying pH, or completely exuded with small amount of an organic eluent.

  19. Volatile Organic Compound Emissions from Humans Indoors.

    PubMed

    Tang, Xiaochen; Misztal, Pawel K; Nazaroff, William W; Goldstein, Allen H

    2016-12-06

    Research on the sources of indoor airborne chemicals has traditionally focused on outdoor air, building materials, furnishings, and activities such as smoking, cooking, and cleaning. Relatively little research has examined the direct role of occupant emissions, even though this source clearly contributes to indoor volatile organic compounds (VOCs) and influences indoor chemistry. In this work, we quantify occupant-related gaseous VOC emissions in a university classroom using a proton-transfer-reaction time-of-flight mass spectrometer. Time-resolved concentrations of VOCs in room air and supply air were measured continuously during occupied and unoccupied periods. The emission factor for each human-emitted VOC was determined by dividing the occupant-associated source rate by the corresponding occupancy. Among the most abundant species detected were compounds associated with personal care products. Also prominent were human metabolic emissions, such as isoprene, methanol, acetone, and acetic acid. Additional sources included human skin oil oxidation by ozone, producing compounds such as 4-oxopentanal (4-OPA) and 6-methyl-5-hepten-2-one (6-MHO). By mass, human-emitted VOCs were the dominant source (57%) during occupied periods in a well-ventilated classroom, with ventilation supply air the second most important (35%), and indoor nonoccupant emissions the least (8%). The total occupant-associated VOC emission factor was 6.3 mg h(-1) per person.

  20. US EPA Base Study Standard Operating Procedure for Sampling Volatile Organic Compounds in Indoor Air using Multisorbent Samplers

    EPA Pesticide Factsheets

    The objective of this procedure is to collect representative samples of volatile organic compound (VOC) contaminants present in indoor and outdoor environments using multisorbent samplers, and to subsequently analyze the concentration of VOCs, as selected by EPA.

  1. Volatile Organic Compound Analysis in Istanbul

    NASA Astrophysics Data System (ADS)

    Ćapraz, Ö.; Deniz, A.; Öztürk, A.; Incecik, S.; Toros, H.; Coşkun, M.

    2012-04-01

    Volatile Organic Compound Analysis in Istanbul Ö. Çapraz1, A. Deniz1,3, A. Ozturk2, S. Incecik1, H. Toros1 and, M. Coskun1 (1) Istanbul Technical University, Faculty of Aeronautics and Astronautics, Department of Meteorology, 34469, Maslak, Istanbul, Turkey. (2) Istanbul Technical University, Faculty of Chemical and Metallurgical, Chemical Engineering, 34469, Maslak, Istanbul, Turkey. (3) Marmara Clean Air Center, Ministry of Environment and Urbanization, Nişantaşı, 34365, İstanbul, Turkey. One of the major problems of megacities is air pollution. Therefore, investigations of air quality are increasing and supported by many institutions in recent years. Air pollution in Istanbul contains many components that originate from a wide range of industrial, heating, motor vehicle, and natural emissions sources. VOC, originating mainly from automobile exhaust, secondhand smoke and building materials, are one of these compounds containing some thousands of chemicals. In spite of the risks to human health, relatively little is known about the levels of VOC in Istanbul. In this study, ambient air quality measurements of 32 VOCs including hydrocarbons, halogenated hydrocarbons and carbonyls were conducted in Kağıthane (Golden Horn) region in Istanbul during the winter season of 2011 in order to develop the necessary scientific framework for the subsequent developments. Kağıthane creek valley is the source part of the Golden Horn and one of the most polluted locations in Istanbul due to its topographical form and pollutant sources in the region. In this valley, horizontal and vertical atmospheric motions are very weak. The target compounds most commonly found were benzene, toluene, xylene and ethyl benzene. Concentrations of total hydrocarbons ranged between 1.0 and 10.0 parts per billion, by volume (ppbv). Ambient air levels of halogenated hydrocarbons appeared to exhibit unique spatial variations and no single factor seemed to explain trends for this group of

  2. Semivolatile organic compounds in indoor environments

    NASA Astrophysics Data System (ADS)

    Weschler, Charles J.; Nazaroff, William W.

    Semivolatile organic compounds (SVOCs) are ubiquitous in indoor environments, redistributing from their original sources to all indoor surfaces. Exposures resulting from their indoor presence contribute to detectable body burdens of diverse SVOCs, including pesticides, plasticizers, and flame retardants. This paper critically examines equilibrium partitioning of SVOCs among indoor compartments. It proceeds to evaluate kinetic constraints on sorptive partitioning to organic matter on fixed surfaces and airborne particles. Analyses indicate that equilibrium partitioning is achieved faster for particles than for typical indoor surfaces; indeed, for a strongly sorbing SVOC and a thick sorptive reservoir, equilibrium partitioning is never achieved. Mass-balance considerations are used to develop physical-science-based models that connect source- and sink-rates to airborne concentrations for commonly encountered situations, such as the application of a pesticide or the emission of a plasticizer or flame retardant from its host material. Calculations suggest that many SVOCs have long indoor persistence, even after the primary source is removed. If the only removal mechanism is ventilation, moderately sorbing compounds ( Koa > 10 10) may persist indoors for hundreds to thousands of hours, while strongly sorbing compounds ( Koa > 10 12) may persist for years. The paper concludes by applying the newly developed framework to explore exposure pathways of building occupants to indoor SVOCs. Accumulation of SVOCs as a consequence of direct air-to-human transport is shown to be potentially large, with a maximum indoor-air processing rate of 10-20 m 3/h for SVOC uptake by human skin, hair and clothing. Levels on human skin calculated with a simple model of direct air-to-skin transfer agree remarkably well with levels measured in dermal hand wipes for SVOCs possessing a wide range of octanol-air partition coefficients.

  3. Aqueous adsorption and removal of organic contaminants by carbon nanotubes.

    PubMed

    Yu, Jin-Gang; Zhao, Xiu-Hui; Yang, Hua; Chen, Xiao-Hong; Yang, Qiaoqin; Yu, Lin-Yan; Jiang, Jian-Hui; Chen, Xiao-Qing

    2014-06-01

    Organic contaminants have become one of the most serious environmental problems, and the removal of organic contaminants (e.g., dyes, pesticides, and pharmaceuticals/drugs) and common industrial organic wastes (e.g., phenols and aromatic amines) from aqueous solutions is of special concern because they are recalcitrant and persistent in the environment. In recent years, carbon nanotubes (CNTs) have been gradually applied to the removal of organic contaminants from wastewater through adsorption processes. This paper reviews recent progress (145 studies published from 2010 to 2013) in the application of CNTs and their composites for the removal of toxic organic pollutants from contaminated water. The paper discusses removal efficiencies and adsorption mechanisms as well as thermodynamics and reaction kinetics. CNTs are predicted to have considerable prospects for wider application to wastewater treatment in the future.

  4. Organic Contamination Baseline Study on NASA JSC Astromaterial Curation Gloveboxes

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Allton, J. H.; Allen, C. C.; Burkett, P. J.

    2013-01-01

    Future planned sample return missions to carbon-rich asteroids and Mars in the next two decades will require strict handling and curation protocols as well as new procedures for reducing organic contamination. After the Apollo program, astromaterial collections have mainly been concerned with inorganic contamination [1-4]. However, future isolation containment systems for astromaterials, possibly nitrogen enriched gloveboxes, must be able to reduce organic and inorganic cross-contamination. In 2012, a baseline study was orchestrated to establish the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs that could be used as a benchmark for future mission designs.

  5. Inorganic and organic contaminants in Alaskan shorebird eggs.

    PubMed

    Saalfeld, David T; Matz, Angela C; McCaffery, Brian J; Johnson, Oscar W; Bruner, Phil; Lanctot, Richard B

    2016-05-01

    Many shorebird populations throughout North America are thought to be declining, with potential causes attributed to habitat loss and fragmentation, reduced prey availability, increased predation, human disturbance, and increased exposure to environmental pollutants. Shorebirds may be particularly vulnerable to contaminant exposure throughout their life cycle, as they forage primarily on invertebrates in wetlands, where many contaminants accumulate disproportionately in the sediments. Therefore, it is important to document and monitor shorebird populations thought to be at risk and assess the role that environmental contaminants may have on population declines. To investigate potential threats and provide baseline data on shorebird contaminant levels in Alaskan shorebirds, contaminant concentrations were evaluated in shorebird eggs from 16 species residing in seven geographic distinct regions of Alaska. Similar to previous studies, low levels of most inorganic and organic contaminants were found, although concentrations of several inorganic and organic contaminants were higher than those of previous studies. For example, elevated strontium levels were observed in several species, especially black oystercatcher (Haematopus bachmani) sampled in Prince William Sound, Alaska. Additionally, contaminant concentrations varied among species, with significantly higher concentrations of inorganic contaminants found in eggs of pectoral sandpiper (Calidris melanotos), semipalmated sandpiper (Calidris pusilla), black oystercatcher, and bar-tailed godwit (Limosa lapponica). Similarly, significantly higher concentrations of some organic contaminants were found in the eggs of American golden plover (Pluvialis dominica), black-bellied plover (Pluvialis squatarola), pacific golden plover (Pluvialis fulva), bar-tailed godwit, and semipalmated sandpiper. Despite these elevated levels, current concentrations of contaminants in shorebird eggs suggest that breeding environments are

  6. Multiple microbial activities for volatile organic compounds reduction by biofiltration.

    PubMed

    Civilini, Marcello

    2006-07-01

    In the northeast of Italy, high volatile organic carbon (VOC) emissions originate from small-medium companies producing furniture. In these conditions it is difficult to propose a single, efficient, and economic system to reduce pollution. Among the various choices, the biofiltration method could be a good solution, because microbial populations possess multiple VOC degradation potentials used to oxidize these compounds to CO2. Starting from the air emissions of a typical industrial wood-painting plant, a series of experiments studied in vitro microbial degradation of each individual VOC. Isolated strains were then added to a laboratory-scale biofiltration apparatus filled with an organic matrix, and the different VOC behavior demonstrated the potential of single and/or synergic microbial removal actions. When a single substrate was fed, the removal efficiency of a Pseudomonas aeruginosa inoculated reactor was 1.1, 1.17, and 0.33 g m(-3) hr(-1), respectively, for xylene, toluene, and ethoxy propyl acetate. A VOC mixture composed of butyl acetate, ethyl acetate, diacetin alcohol, ethoxy propanol acetate, methyl ethyl ketone, methyl isobutyl ketone, toluene, and xylene was then fed into a 2-m(3) reactor treating 100 m3 hr(-1) of contaminated air. The reactor was filled with the same mixture of organic matrix, enriched with all of the isolated strains together. During reactor study, different VOC loading rates were used, and the behavior was evaluated continuously. After a short acclimation period, the removal efficiency was > 65% at VOC load of 150-200 g m(-3) hr(-1). Quantification of removal efficiencies and VOC speciation confirmed the relationship among removal efficiencies, compound biodegradability, and the dynamic transport of each mixture component within the organic matrix. Samples of the fixed bed were withdrawn at different intervals and the heterogeneous microbial community evaluated for both total and differential compound counts.

  7. Emerging site characterization technologies for volatile organic compounds

    SciTech Connect

    Rohay, V.J.; Last, G.V.

    1992-05-01

    A Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) expedited response action (ERA) has been initiated at Hanford Site`s 200 West Area for the removal of carbon tetrachloride from the unsaturated soils. In coordination with the ERA, innovative technology demonstrations are being conducted as part of DOE`s Volatile Organic Compounds -- Arid Integrated Demonstration in an effort to improve upon baseline technologies. Improved methods for accessing, sampling, and analyzing soil and soil-vapor contaminants is a high priority. Sonic drilling is being evaluated as an alternative to cable-tool drilling, while still providing the advantages of reliability, containment, and waste minimization. Applied Research Associates, Inc. used their cone penetrometer in the 200 West Area to install a permanent soil-gas monitoring probe and to collect soil-gas profile data. However, successful application of this technology will require the development of an improved ability to penetrate coarse gravel units. A Science and Engineering Associates Membrane Instrumentation and Sampling Technique (SEAMIST) system designed for collecting in situ soil samples and air permeability data in between drilling runs at variable depths is being tested in 200 West Area boreholes. Analytical technologies scheduled for testing include supercritical fluid extraction and analysis for non- and semi-volatile organic co-contaminants and an unsaturated flow apparatus developed by Washington State University for the measurement of transport parameters.

  8. Emerging site characterization technologies for volatile organic compounds

    SciTech Connect

    Rohay, V.J.; Last, G.V.

    1992-05-01

    A Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) expedited response action (ERA) has been initiated at Hanford Site's 200 West Area for the removal of carbon tetrachloride from the unsaturated soils. In coordination with the ERA, innovative technology demonstrations are being conducted as part of DOE's Volatile Organic Compounds -- Arid Integrated Demonstration in an effort to improve upon baseline technologies. Improved methods for accessing, sampling, and analyzing soil and soil-vapor contaminants is a high priority. Sonic drilling is being evaluated as an alternative to cable-tool drilling, while still providing the advantages of reliability, containment, and waste minimization. Applied Research Associates, Inc. used their cone penetrometer in the 200 West Area to install a permanent soil-gas monitoring probe and to collect soil-gas profile data. However, successful application of this technology will require the development of an improved ability to penetrate coarse gravel units. A Science and Engineering Associates Membrane Instrumentation and Sampling Technique (SEAMIST) system designed for collecting in situ soil samples and air permeability data in between drilling runs at variable depths is being tested in 200 West Area boreholes. Analytical technologies scheduled for testing include supercritical fluid extraction and analysis for non- and semi-volatile organic co-contaminants and an unsaturated flow apparatus developed by Washington State University for the measurement of transport parameters.

  9. REDUCTIVE DEHALOGENATION OF ORGANIC CONTAMINANTS IN SOILS AND GROUND WATER

    EPA Science Inventory

    Introduction and large scale production of synthetic halogenated organic chemicals over the last 50 years has resulted in a group of contaminants which tend to persist in the environment and resist both biotic and abiotic degradation. The low solubility of these types of contamin...

  10. Metabolic responses of Eisenia fetida after sub-lethal exposure to organic contaminants with different toxic modes of action.

    PubMed

    McKelvie, Jennifer R; Wolfe, David M; Celejewski, Magda A; Alaee, Mehran; Simpson, André J; Simpson, Myrna J

    2011-12-01

    Nuclear magnetic resonance (NMR)--based metabolomics has the potential to identify toxic responses of contaminants within a mixture in contaminated soil. This study evaluated the metabolic response of Eisenia fetida after exposure to an array of organic compounds to determine whether contaminant-specific responses could be identified. The compounds investigated in contact tests included: two pesticides (carbaryl and chlorpyrifos), three pharmaceuticals (carbamazephine, estrone and caffeine), two persistent organohalogens (Aroclor 1254 and PBDE 209) and two industrial compounds (nonylphenol and dimethyl phthalate). Control and contaminant-exposed metabolic profiles were distinguished using principal component analysis and potential contaminant-specific biomarkers of exposure were found for several contaminants. These results suggest that NMR-based metabolomics offers considerable promise for differentiating between the different toxic modes of action (MOA) associated with sub-lethal toxicity to earthworms.

  11. Validation of thermodesorption method for analysis of semi-volatile organic compounds adsorbed on wafer surface.

    PubMed

    Hayeck, Nathalie; Gligorovski, Sasho; Poulet, Irène; Wortham, Henri

    2014-05-01

    To prevent the degradation of the device characteristics it is important to detect the organic contaminants adsorbed on the wafers. In this respect, a reliable qualitative and quantitative analytical method for analysis of semi-volatile organic compounds which can adsorb on wafer surfaces is of paramount importance. Here, we present a new analytical method based on Wafer Outgassing System (WOS) coupled to Automated Thermal Desorber-Gas chromatography-Mass spectrometry (ATD-GC-MS) to identify and quantify volatile and semi-volatile organic compounds from 6", 8" and 12" wafers. WOS technique allows the desorption of organic compounds from one side of the wafers. This method was tested on three important airborne contaminants in cleanroom i.e. tris-(2-chloroethyl) phosphate (TCEP), tris-(2-chloroisopropyl) phosphate (TCPP) and diethyl phthalate (DEP). In addition, we validated this method for the analysis and quantification of DEP, TCEP and TCPP and we estimated the backside organic contamination which may contribute to the front side of the contaminated wafers. We are demonstrating that WOS/ATD-GC-MS is a suitable and highly efficient technique for desorption and quantitative analysis of organophosphorous compounds and phthalate ester which could be found on the wafer surface.

  12. Fate of organic contaminants in the redox zones of a landfill leachate pollution plume (Vejen, Denmark)

    NASA Astrophysics Data System (ADS)

    Lyngkilde, John; Christensen, Thomas H.

    1992-09-01

    Samples from 75 sample locations in a landfill leachate pollution plume reveal a significant disappearance of specific organic compounds (SOC's) within the first 100 m of the plume. Only the herbicide Mecoprop® (MCPP) migrates further. Since sorption and dilution cannot account for the decreasing concentrations, degradation is considered to be the governing process. Non-volatile organic carbon shows a corresponding fate probably acting as a substrate for the microbial processes. The first 20 m of the plume are methanogenic/sulfidogenic, judged on the chemistry of the groundwater, followed by a significant ferrogenic zone exhibiting a substantial capacity to degrade the SOC's. The presence of intermediary products (here an oxidized camphor compound) supports the concept of degradation within the ferrogenic zone. This investigation draws the attention to the significant natural attenuation of organic contaminants and to the so far neglected ferrogenic zone in controlling the fate of organic contaminants in leachate plumes.

  13. Broad spectrum screening of 463 organic contaminants in rivers in Macedonia.

    PubMed

    Stipaničev, Draženka; Dragun, Zrinka; Repec, Siniša; Rebok, Katerina; Jordanova, Maja

    2017-01-01

    Target screening of 463 organic contaminants in surface water using ultra high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) with direct injection was performed in spring of 2015 in northern Macedonia, at six sampling sites in four rivers belonging to Vardar basin: Kriva, Zletovska, Bregalnica and Vardar. The aim of the study was to differentiate between various types of organic contamination characteristic for different types of anthropogenic activities, such as mining, agriculture, and urbanization. Depending on the studied river, 9-16% of analyzed compounds were detected. The highest total levels of organic contaminants were recorded in agriculturally impacted Bregalnica River (1839-1962ngL(-1)) and Vardar River downstream from the city of Skopje (1945ngL(-1)), whereas the lowest level was found in the mining impacted Zletovska River (989ngL(-1)). The principal organic contaminants of the Bregalnica River were herbicides (45-55% of all detected compounds; 838-1094ngL(-1)), with the highest concentrations of bentazone (407-530ngL(-1)) and molinate (84-549ngL(-1)), common herbicides in rice cultivation. The main organic contaminants in the other rivers were drugs (70-80% of all detected compounds), with antibiotics as a predominant drug class. The highest drug concentrations were measured in the Vardar River, downstream from Skopje (1544ngL(-1)). Screening of surface water by UHPLC-QTOF-MS was proven as a practical tool for fast collection of comprehensive preliminary information on organic contamination of natural waters, which can present a significant contribution in the monitoring and preservation of good ecological status of freshwater ecosystems.

  14. Characterisation of organic contaminants in the CLOUD chamber at CERN

    NASA Astrophysics Data System (ADS)

    Schnitzhofer, R.; Metzger, A.; Breitenlechner, M.; Jud, W.; Heinritzi, M.; de Menezes, L.-P.; Duplissy, J.; Guida, R.; Haider, S.; Kirkby, J.; Mathot, S.; Minginette, P.; Onnela, A.; Walther, H.; Wasem, A.; Hansel, A.; The Cloud Team

    2014-07-01

    The CLOUD experiment (Cosmics Leaving OUtdoor Droplets) investigates the nucleation of new particles and how this process is influenced by galactic cosmic rays in an electropolished, stainless-steel environmental chamber at CERN (European Organization for Nuclear Research). Since volatile organic compounds (VOCs) can act as precursor gases for nucleation and growth of particles, great efforts have been made to keep their unwanted background levels as low as possible and to quantify them. In order to be able to measure a great set of VOCs simultaneously in the low parts per trillion (pptv) range, proton-transfer-reaction mass spectrometry (PTR-MS) was used. Initially the total VOC background concentration strongly correlated with ozone in the chamber and ranged from 0.1 to 7 parts per billion (ppbv). Plastic used as sealing material in the ozone generator was found to be a major VOC source. Especially oxygen-containing VOCs were generated together with ozone. These parts were replaced by stainless steel after CLOUD3, which strongly reduced the total VOC background. An additional ozone-induced VOC source is surface-assisted reactions at the electropolished stainless steel walls. The change in relative humidity (RH) from very dry to humid conditions increases background VOCs released from the chamber walls. This effect is especially pronounced when the RH is increased for the first time in a campaign. Also the dead volume of inlet tubes for trace gases that were not continuously flushed was found to be a short but strong VOC contamination source. For lower ozone levels (below 100 ppbv) the total VOC contamination was usually below 1 ppbv and therewith considerably cleaner than a comparable Teflon chamber. On average about 75% of the total VOCs come from only five exact masses (tentatively assigned as formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid), which have a rather high vapour pressure and are therefore not important for nucleation and growth of

  15. IRRADIATION METHOD OF CONVERTING ORGANIC COMPOUNDS

    DOEpatents

    Allen, A.O.; Caffrey, J.M. Jr.

    1960-10-11

    A method is given for changing the distribution of organic compounds from that produced by the irradiation of bulk alkane hydrocarbons. This method consists of depositing an alkane hydrocarbon on the surface of a substrate material and irradiating with gamma radiation at a dose rate of more than 100,000 rads. The substrate material may be a metal, metal salts, metal oxides, or carbons having a surface area in excess of 1 m/sup 2//g. The hydrocarbons are deposited in layers of from 0.1 to 10 monolayers on the surfaces of these substrates and irradiated. The product yields are found to vary from those which result from the irradiation of bulk hydrocarbons in that there is an increase in the quantity of branched hydrocarbons.

  16. Volatilization of organic compounds from streams

    USGS Publications Warehouse

    Rathburn, R.E.; Tai, D.Y.

    1982-01-01

    Mass-transfer coefficients for the volatilization of ethylene and propane were correlated with the hydraulic and geometric properties of seven streams, and predictive equations were developed. The equations were evaluated using a normalized root-mean-square error as the criterion of comparison. The two best equations were a two-variable equation containing the energy dissipated per unit mass per unit time and the average depth of flow and a three-variable equation containing the average velocity, the average depth of flow, and the slope of the stream. Procedures for adjusting the ethylene and propane coefficients for other organic compounds were evaluated. These procedures are based on molecular diffusivity, molecular diameter, or molecular weight. Because of limited data, none of these procedures have been extensively verified. Therefore, until additional data become available, it is suggested that the mass-transfer coefficient be assumed to be inversely proportional to the square root of the molecular weight.

  17. USING ZERO-VALENT METAL NANOPARTICLES TO REMEDIATE ORGANIC CONTAMINANTS

    EPA Science Inventory

    The transport of organic contaminants down the soil profile constitutes a serious threat to the quality of ground water. Zero-valent metals are considered innocuous abiotic agents capable of mediating decontamination processes in terrestrial systems. In this investigation, ze...

  18. ELECTROCHEMICAL DEGRADATION OF ORGANIC CONTAMINANTS IN WATER AND SEDIMENTS

    EPA Science Inventory

    Electrochemical degradation (ECD) utilizes high redox potential at the anode and low redox potential at the cathode to oxidize and/or reduce organic and inorganic contaminants. EDC of Trichloroethylene (TCE), although theoretically possible, has not been experimentally proven. Th...

  19. SEQUESTRATION OF HYDROPHOBIC ORGANIC CONTAMINANTS BY GEOSORBENTS. (R822626)

    EPA Science Inventory

    The chemical interactions of hydrophobic organic contaminants (HOCs) with soils and sediments (geosorbents) may result in strong binding and slow subsequent release rates that significantly affect remediation rates and endpoints. The underlying physical and chemical phenomena ...

  20. Recent Discoveries and the Ultimate Fate of Organic Contaminants

    EPA Science Inventory

    With very few exceptions, the common organic contaminants in soils, sediments, and ground water can be transformed or entirely degraded by oxidation or reduction reactions that are either carried through direct involvement with microorganisms, or indirectly through abiotic reacti...

  1. Extraction of organic compounds from solid samples

    SciTech Connect

    Junk, G.A.; Richard, J.J.

    1986-04-01

    Pyridine, benzene, cyclohexane, methylene chloride, dimethyl sulfoxide, dimethylformamide, and n-methylpyrrolidone have been compared for the extraction of polycyclic organic materials (POMs) from urban air, diesel, and stack particulate samples. Both sonic and Soxhlet techniques have been examined for both natural environmental particulates and particulates spiked with selected POMs. The extraction results vary for different polycyclic compounds adsorbed on different solid matrices, so no single solvent or extraction technique could be unambiguously recommended. However, comparative average results for 14 compounds spiked onto fly ash at 0.1, 0.25, and 1.0 ..mu..g/g showed pyridine to have 1.5 times more extraction efficiency than benzene. These and other reported results suggest that pyridine deserves more attention as an extractant for particulate samples. In separate tests, recoveries of POMs from fly ash were not improved by deactivation with aqueous solutions of ammonium hydroxide, thiocyanate and carbonate, and sodium nitrite prior to the extraction. 39 references, 5 tables.

  2. Dynamic behavior of semivolatile organic compounds in indoor air

    SciTech Connect

    Loy, Michael David Van

    1998-12-09

    Exposures to a wide range of air pollutants are often dominated by those occurring in buildings because of three factors: 1) most people spend a large fraction of their time indoors, 2) many pollutants have strong indoor sources, and 3) the dilution volume in buildings is generally several orders of magnitude smaller than that of an urban airshed. Semivolatile organic compounds (SVOCS) are emitted by numerous indoor sources, including tobacco combustion, cooking, carpets, paints, resins, and glues, so indoor gasphase concentrations of these compounds are likely to be elevated relative to ambient levels. The rates of uptake and release of reversibly sorbing SVOCS by indoor materials directly affect both peak concentrations and persistence of the pollutants indoors after source elimination. Thus, accurate predictions of SVOC dynamics in indoor air require an understanding of contaminant sorption on surface materials such as carpet and wallboard. The dynamic behaviors of gas-phase nicotine and phenanthrene were investigated in a 20 ms stainless steel chamber containing carpet and painted wallboard. Each compound was studied independently, first in the empty chamber, then with each sorbent individually, and finally with both sorbents in the chamber.

  3. A partition-limited model for the plant uptake of organic contaminants from soil and water

    USGS Publications Warehouse

    Chiou, C.T.; Sheng, G.; Manes, M.

    2001-01-01

    In dealing with the passive transport of organic contaminants from soils to plants (including crops), a partition-limited model is proposed in which (i) the maximum (equilibrium) concentration of a contaminant in any location in the plant is determined by partition equilibrium with its concentration in the soil interstitial water, which in turn is determined essentially by the concentration in the soil organic matter (SOM) and (ii) the extent of approach to partition equilibrium, as measured by the ratio of the contaminant concentrations in plant water and soil interstitial water, ??pt (??? 1), depends on the transport rate of the contaminant in soil water into the plant and the volume of soil water solution that is required for the plant contaminant level to reach equilibrium with the external soil-water phase. Through reasonable estimates of plant organic-water compositions and of contaminant partition coefficients with various plant components, the model accounts for calculated values of ??pt in several published crop-contamination studies, including near-equilibrium values (i.e., ??pt ??? 1) for relatively water-soluble contaminants and lower values for much less soluble contaminants; the differences are attributed to the much higher partition coefficients of the less soluble compounds between plant lipids and plant water, which necessitates much larger volumes of the plant water transport for achieving the equilibrium capacities. The model analysis indicates that for plants with high water contents the plant-water phase acts as the major reservoir for highly water-soluble contaminants. By contrast, the lipid in a plant, even at small amounts, is usually the major reservoir for highly water-insoluble contaminants.

  4. Electrochemical Transformation of Trace Organic Contaminants in Latrine Wastewater.

    PubMed

    Jasper, Justin T; Shafaat, Oliver S; Hoffmann, Michael R

    2016-09-20

    Solar-powered electrochemical systems have shown promise for onsite wastewater treatment in regions where basic infrastructure for conventional wastewater treatment is not available. To assess the applicability of these systems for trace organic contaminant treatment, test compound electrolysis rate constants were measured in authentic latrine wastewater using mixed-metal oxide anodes coupled with stainless steel cathodes. Complete removal of ranitidine and cimetidine was achieved within 30 min of electrolysis at an applied potential of 3.5 V (0.7 A L(-1)). Removal of acetaminophen, ciprofloxacin, trimethoprim, propranolol, and carbamazepine (>80%) was achieved within 3 h of electrolysis. Oxidation of ranitidine, cimetidine, and ciprofloxacin was primarily attributed to reaction with NH2Cl. Transformation of trimethoprim, propranolol, and carbamazepine was attributed to direct electron transfer and to reactions with surface-bound reactive chlorine species. Relative contributions of aqueous phase ·OH, ·Cl, ·Cl2(-), HOCl/OCl(-), and Cl2 were determined to be negligible based on measured second-order reaction rate constants, probe compound reaction rates, and experiments in buffered Cl(-) solutions. Electrical energy per order of removal (EEO) increased with increasing applied potentials and current densities. Test compound removal was most efficient at elevated Cl(-) concentrations present when treated wastewater is recycled for use as flushing water (i.e., ∼ 75 mM Cl(-); EEO = 0.2-6.9 kWh log(-1) m(-3)). Identified halogenated and oxygenated electrolysis products typically underwent further transformations to unidentifiable products within the 3 h treatment cycle. Identifiable halogenated byproduct formation and accumulation was minimized during electrolysis of wastewater containing 75 mM Cl(-).

  5. Chemical behavior of organic compounds in the interface of water/dual-cation organobentonite.

    PubMed

    Chen, Bao-liang; Zhu, Li-zhong

    2002-01-01

    The sorption behavior of polar or ionizable organic compounds, such as p-nitrophenol, phenol and aniline, in the water/organobentonite systems is investigated. Both adsorption and partition occur to the sorption of organic compounds to dual-cation organobentonites. The separate contributions of adsorption and partition to the total sorption of organic compounds to dual-cation organobentonites are analyzed mathematically in the first time. The factors to the contributions are also discussed. The results indicated that the contribution of adsorption and partition is related to the composition and ratio of dual-cation surfactants exchanging onto the bentonite. The sorption of organic compounds to dual-cation organobentonite is dominated by adsorption at low concentrations and by partition at high concentrations, making the organobentonites powerful sorbents for organic contaminants over wide range of concentrations.

  6. Temporal variability measurement of specific volatile organic compounds

    SciTech Connect

    Pleil, J.D.; McClenny, W.A.; Oliver, K.D.

    1989-01-01

    Methodology was developed to determine unambiguously trace levels of volatile organic compounds as they vary in concentration over a variety of time scales. This capability is important because volatile organic compounds (VOCs) are usually measured by time-integrative techniques that average peak exposures to insignificance. The specific method involves a preprogrammed sequential syringe sampler that can fill 150-cu cm syringes with air at rates of 2 to 90 min per syringe. The 12 collected samples are then transported to the laboratory for fully automated gas-chromatographic separation with mass spectrometric detection. The instrumentation and method are described, and representative results are given to document the variability in VOC concentrations in situations such as use of household products and water outgassing in residential air, automobiles during driving, and office indoor air that is subject to ventilation system cycling. The method is shown to perform automatically in both sampling and analytical modes. Contamination and sample integrity tests show typical precision to be about 10% relative standard deviation. Field tests show that VOC concentrations can vary by greater than an order of magnitude on different time scales.

  7. Analysis of diffusion-adsorption equivalency of landfill liner systems for organic contaminants.

    PubMed

    Xie, Haijian; Chen, Yunmin; Ke, Han; Tang, Xiaowu; Chen, Renpeng

    2009-01-01

    The equivalence between multilayered barriers regarding diffusion and adsorption was studied. The bottom boundary of the liner system is defined by assuming concentration continuous and flux continuous conditions of the contaminant between the bottom liner layer and the underlying soil. Five different liner systems were compared in terms of solute breakthrough time. The results of the analysis showed that breakthrough time of the hydrophobic organic compounds for a 2-meter-thick compacted clay liner (CCL) could be 3-4 orders of magnitude is greater than the breakthrough time for a geosynthetic clay liner (GCL) composite liner. The GM/GCL and GM/CCL composite liner systems provide a better diffusion barrier for the hydrophilic organic compounds than that for the hydrophobic compounds due to their different Henry's coefficient. The calculated breakthrough times of the organic contaminants for the Chinese standard liner systems were found to be generally greater than those for the GCL alternatives, for the specific conditions examined. If the distribution coefficient increases to 2.8 for the hydrophobic compounds or 1.0 for the hydrophilic compounds, the thickness of the attenuation layer needed to achieve the same breakthrough time as the standard liner systems can be reduced by a factor of about 1.9-2.4. As far as diffusive and adsorption contaminant transport are concerned, GM or GCL is less effective than CCL.

  8. Sorption characteristics of organic compounds on hexadecyltrimethylammonium-smectite

    USGS Publications Warehouse

    Boyd, Stephen A.; Mortland, Max M.; Chiou, Cary T.

    1988-01-01

    When hexadedyltrimethylammonium (HDTMA) ion is exchanged for metal cations like calcium in smectite, the sorptive properties of the clay are greatly modified. The resultant HDTMA-smectite complex behaves as a dual sorbent, in the sorption of organic compounds, in which the mineral fraction functions as a solid adsorbent and the organic (HDTMA) phase as a partition medium. Capacities of mineral adsorption and partition uptake by HDTMA in the HDTMA-smectites are illustrated by sorption of benzene, trichloroethene (TCE), and water as vapors on the dry sample and by sorption of benzene and TCE from water. The exchanged HDTMA in clay is found to be a much more powerful partition medium than ordinary soil organic matter in the uptake of benzene and TCE. Based on this finding, HDTMA-smectite appears to be an effective sorbent for removing organic contaminants from water. It is suggested that such sorptive organo-clay complexes could be used to enhance the containment capabilities of clay landfill liners and bentonite slurry walls.

  9. Tropospheric volatile organic compounds in China.

    PubMed

    Guo, H; Ling, Z H; Cheng, H R; Simpson, I J; Lyu, X P; Wang, X M; Shao, M; Lu, H X; Ayoko, G; Zhang, Y L; Saunders, S M; Lam, S H M; Wang, J L; Blake, D R

    2017-01-01

    Photochemical smog, characterized by high concentrations of ozone (O3) and fine particles (PM2.5) in the atmosphere, has become one of the top environmental concerns in China. Volatile organic compounds (VOCs), one of the key precursors of O3 and secondary organic aerosol (SOA) (an important component of PM2.5), have a critical influence on atmospheric chemistry and subsequently affect regional and global climate. Thus, VOCs have been extensively studied in many cities and regions in China, especially in the North China Plain, the Yangtze River Delta and the Pearl River Delta regions where photochemical smog pollution has become increasingly worse over recent decades. This paper reviews the main studies conducted in China on the characteristics and sources of VOCs, their relationship with O3 and SOA, and their removal technology. This paper also provides an integrated literature review on the formulation and implementation of effective control strategies of VOCs and photochemical smog, as well as suggestions for future directions of VOCs study in China.

  10. Organic compounds in meteorites and their origins

    NASA Technical Reports Server (NTRS)

    Hayatsu, R.; Anders, E.

    1981-01-01

    The current investigation represents an extensively updated version of a review conducted by Anders et al. (1973). The investigation takes into account the literature through mid-1980. It is pointed out that Type 1 carbonaceous chondrites (C1) contain 6% of their cosmic complement of carbon, mainly in the form of organic matter. Most authors now agree that this material represents primitive prebiotic matter. The principal questions remaining are what abiotic processes formed the organic matter, and to what extent these processes took place in locales other than the solar nebula, such as interstellar clouds or meteorite parent bodes. The problem is approached in three stages. It is attempted to reconstruct the physical conditions during condensation from the clues contained in the inorganic matrix of the meteorite. The condensation behavior of carbon under these conditions is determined on the basis of thermodynamic calculations. Model experiments on the condensation of carbon are performed, and the synthesized compounds are compared with those actually found in meteorites.

  11. Interactions of organic contaminants with mineral-adsorbed surfactants.

    PubMed

    Zhu, Lizhong; Chen, Baoliang; Tao, Shu; Chiou, Cary T

    2003-09-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insightto interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  12. Interactions of organic contaminants with mineral-adsorbed surfactants

    USGS Publications Warehouse

    Zhu, L.; Chen, B.; Tao, S.; Chiou, C.T.

    2003-01-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insight to interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  13. Compound-Specific Isotope Analysis of Nitroaromatic Contaminant Transformations by Nitroarene Dioxygenases

    NASA Astrophysics Data System (ADS)

    Pati, Sarah G.; Kohler, Hans-Peter E.; Hofstetter, Thomas B.

    2014-05-01

    Dioxygenation is an important biochemical reaction that often initiates the mineralization of recalcitrant organic contaminants such as nitroaromatic explosives, chlorinated benzenes, and polycyclic aromatic hydrocarbons. However, to assess the extent of dioxygenation in contaminated environments is difficult because of competing transformation processes and further reactions of the dioxygenation products. Compound-specific isotope analysis (CSIA) offers a new approach to reliably quantify biodegradation initiated by dioxygenation based on changes in stable isotope ratios of the pollutant. For CSIA it is essential to know the kinetic isotope effects (KIEs) pertinent to the dioxygenation mechanism of organic contaminants. Unfortunately, the range of KIEs of such reactions is poorly constrained although many dioxygenase enzymes with a broad substrate specificity have been reported. Dioxygenase enzymes usually exhibit complex reaction kinetics involving multiple substrates and substrate-specific binding modes which makes the determination of KIEs challenging. The goal of this study was to explore the magnitude and variability of 13C-, 2H-, and 15N-KIEs for the dioxygenation of one contaminant class, that is nitroaromatic contaminants (NACs). To this end, we investigated the C, H, and N isotope fractionation during the dioxygenation of nitrobenzene (NB), 2-nitrotoluene (2-NT), and 3-nitrotoluene (3-NT) by pure cultures, E. coli clones, cell extracts, and purified enzymes. From isotope fractionations measured in the substrates and reaction products, we determined dioxygenation KIEs for different combinations of the three substrates with nitrobenzene dioxygenase (NBDO) and 2-nitrotoluene dioxygenase (2NTDO). The 13C-, 2H-, and 15N-KIEs for the dioxygenation of NB by NBDO were consistent for all experimental systems considered (i.e., Comamonas sp. Strain JS765, E. coli clones, cell extracts of E. coli clones, and purified NBDO). This observation suggests that the isotope

  14. TREATMENT OF CHLORINATED VOLATILE ORGANIC COMPOUNDS IN UPFLOW WETLAND MESOCOSMS. (R828773C003)

    EPA Science Inventory

    Sorption, biodegradation and hydraulic parameters were determined in the laboratory for two candidate soil substrate mixtures for construction of an upflow treatment wetland for volatile organic compounds (VOCs) at a Superfund site. The major parent contaminants in the groundw...

  15. Simultaneous complexation of organic compounds and heavy metals by a modified cyclodextrin

    SciTech Connect

    Wang, X.; Brusseau, M.L.

    1995-10-01

    The cleanup of contaminated soil and groundwater at hazardous waste sites has become a major focus of research and policy debate. A major factor complicating the cleanup of many sites is the cooccurrence of organic compounds and heavy metals, the so-called mixed wastes. We investigated the ability of a modified cyclodextrin to simultaneously complex low-polarity organic compounds and heavy metals. The results of the experiments showed that carboxymethyl-{beta}-cyclodextrin could simultaneously increase the apparent aqueous solubilities of the selected organic compounds (anthracene, trichlorobenzene; biphenyl, and ODT) and complex with Cd{sup 2+}. This complexation was not significantly affected by changes in pH or by the presence of relatively high concentrations of Ca{sup 2+}. It is possible that this reagent can be used successfully to remediate hazardous waste sites contaminated by mixed wastes. 11 refs., 7 figs.

  16. Dissolved Organic Matter and Emerging Contaminants in Urban Stream Ecosystems

    NASA Astrophysics Data System (ADS)

    Kaushal, S. S.; Findlay, S.; Groffman, P.; Belt, K.; Delaney, K.; Sides, A.; Walbridge, M.; Mayer, P.

    2009-05-01

    We investigated the effects of urbanization on the sources, bioavailability and forms of natural and anthropogenic organic matter found in streams located in Maryland, U.S.A. We found that the abundance, biaoavailability, and enzymatic breakdown of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and dissolved organic phosphorus (DOP) increased in streams with increasing watershed urbanization suggesting that organic nutrients may represent a growing form of nutrient loading to coastal waters associated with land use change. Organic carbon, nitrogen, and phosphorus in urban streams were elevated several-fold compared to forest and agricultural streams. Enzymatic activities of stream microbes in organic matter decomposition were also significantly altered across watershed land use. Chemical characterization suggested that organic matter in urban streams originated from a variety of sources including terrestrial, sewage, and in-stream transformation. In addition, a characterization of emerging organic contaminants (polyaromatic cyclic hydrocarbons, organochlorine pesticides, and polybrominated diphenyl ether flame retardents), showed that organic contaminants and dissolved organic matter increase with watershed urbanization and fluctuate substantially with changing climatic conditions. Elucidating the emerging influence of urbanization on sources, transport, and in-stream transformation of organic nutrients and contaminants will be critical in unraveling the changing role of organic matter in urban degraded and restored stream ecosystems.

  17. Tritium labeling of organic compounds deposited on porous structures

    DOEpatents

    Ehrenkaufer, Richard L. E.; Wolf, Alfred P.; Hembree, Wylie C.

    1979-01-01

    An improved process for labeling organic compounds with tritium is carried out by depositing the selected compound on the extensive surface of a porous structure such as a membrane filter and exposing the membrane containing the compound to tritium gas activated by the microwave discharge technique. The labeled compound is then recovered from the porous structure.

  18. Organic adlayer on inorganic materials: XPS analysis selectivity to cope with adventitious contamination

    NASA Astrophysics Data System (ADS)

    Landoulsi, Jessem; Genet, Michel J.; Fleith, Sandrine; Touré, Yetioman; Liascukiene, Irma; Méthivier, Christophe; Rouxhet, Paul G.

    2016-10-01

    This work addresses the ubiquitous presence of organic contaminants at inorganic solid surfaces and the improvement of XPS analysis selectivity to cope with it. Water contact angle measurements showed that the adsorption of organic contaminants occurs readily in ambient air, and faster and more extensively under high vacuum. It is stronger on stainless steel (SS) compared to silica and is significantly reduced when SS is sterilized by autoclaving. The reliability of XPS data was evaluated (selectivity, precision, accuracy) by correlations between spectral data incorporating a large amount of results obtained with different XPS spectrometers on SS and glass samples cleaned in different ways and conditioned with several biomacromolecules. The methodology used allows a discrimination to be made between contaminants and deliberately adsorbed biomacromolecules, and offers perspectives for tracking the source of contamination. Furthermore, a discrimination can be made between oxygen from the organic adlayer and oxygen from the substrate, and the O 1s component above 532.0 eV observed for SS is shown to be due to organic contaminants rather than adsorbed water. This approach offers new perspectives to examine the interactions (displacement or not) between contaminants and compounds of interest, e.g. proteins, at the stage of the adsorption process.

  19. Manmade organic compounds in the surface waters of the United States; a review of current understanding

    USGS Publications Warehouse

    Smith, James A.; Witkowski, P.J.; Fusillo, Thomas V.

    1988-01-01

    This report reviews the occurrence and distribution of manmade organic compounds in the surface waters of the United States. On the basis of their aqueous solubilities, nonionic organic compounds partition themselves among water, dissolved organic matter, particulate organic matter, and the lipid reservoirs of aquatic organisms. Ionized organic compounds can be adsorbed to sediments, thereby reducing their aqueous concentrations. Transformation processes of photolysis, hydrolysis, biodegradation, and volatilization can attenuate organic compounds, and attenuation rates commonly follow a first-order kinetic process. Eight groups of manmade organic compounds are discussed: 1. Polychlorinated biphenyls and organochlorine insecticides, 2. Carbamate and organophosphorus insecticides, 3. Herbicides, 4. Phenols, 5. Halogenated aliphatic and monocyclic aromatic hydrocarbons, 6. Phthalate esters, 7. Polychlorinated dibenzo-p-dioxins, and 8. Polycyclic aromatic hydrocarbons. For each compound group, data pertaining to use, production, and properties are presented and discussed. Processes that influence the environmental fate of each group, as determined primarily through laboratory studies, are reviewed, and important fate processes are identified. Environmental concentrations of compounds from each group in water, biota, and sediment are given to demonstrate representative values for comparison with concentrations determined during ongoing research. Finally, where data are sufficient, regional and temporal contamination trends in the United States are discussed.

  20. Manmade organic compounds in the surface waters of the United States: a review of current understanding

    USGS Publications Warehouse

    Smith, James A.; Witkowski, Patrick J.; Fusillo, Thomas V.

    1987-01-01

    This report reviews the occurrence and distribution of manmade organic compounds in the surface waters of the United States. On the basis of their aqueous solubilities, nonionic organic compounds partition themselves between water, dissolved organic matter, particulate organic matter, and the lipid reservoirs of aquatic organisms. Ionized organic compounds can be absorbed to sediments, thereby reducing their aqueous concentrations. Transformation processes of photolysis, hydrolysis, biodegradation, and volatilization can attenuate organic compounds, and attenuation rate commonly follow a first-order kinetic process. Eight groups of manmade organic compounds are discussed: 1. Polychlorinated biphenyls and organochlorine insecticides, 2. Carbamate and organophosphorus insecticides, 3. Herbicides, 4. Phenols, 5. Halogenated aliphatic and monocyclic aromatic hydrocarbons, 6. Phthalate esters, 7. Polychlorinated dibenzo-p-dioxins, and 8. Polycyclic aromatic hydrocarbons. For each compound group, data pertaining to use, production, and properties are presented and discussed. Processes that influence that the environmental fate of each group, as determined primarily through laboratory studies, are reviewed, and important fate processes are identified. Environmental concentrations of compounds from each group in water, biota, and sediment are given to demonstrate representative values for comparison to concentrations determined during ongoing research. Finally, where sufficient data exist, regional and temporal contamination trends in the United States are discussed.

  1. Bonded-phase extraction column isolation of organic compounds in groundwater at a hazardous waste site

    SciTech Connect

    Rostad, C.E.; Pereira, W.E.; Ratcliff, S.M.

    1984-12-01

    A procedure for isolation of hazardous organic compounds from water for gas chromatography/mass spectrometry analysis is presented and applied to creosote- and pentachlorophenol-contaminated groundwater resulting from wood-treatment processes. This simple procedure involved passing a 50-100 mL sample through a bonded-phase extraction column, eluting the trapped organic compounds from the column with 2-4 mL of solvent, and evaporating the sample to 100 micro-L with a stream of dry nitrogen, after which the sample was ready for gas chromatography/mass spectrometry analysis. Representative compounds indicative of creosote contamination were used for recovery and precision studies from the cyclohexyl-bonded phase. Recovery of these compounds from n-octyl-, n-octadecyl-, cyclohexyl-, and phenyl-bonded phases was compared. The bonded phase that exhibited the best recovery and least bias toward acidic or basic compounds was the n-octadecyl phase. Detailed compound identification is given for compounds isolated from creosote- and pentrachlorophenol-contaminated groundwater using the cyclohexyl-bonded phase. 12 references, 1 figure, 4 tables.

  2. Application of humic compounds for remediation of soils contaminated with heavy metals: the benefits and risks

    NASA Astrophysics Data System (ADS)

    Motuzova, Galina; Barsova, Natalia; Stepanov, Andrey; Kiseleva, Violetta; Kolchanova, Ksenia; Starkova, Irina; Karpukhin, Mikhail

    2015-04-01

    Applicability of humic compound (HC) "Extra" (potassium humate produced from coal) was studied to remediate soils contaminated with copper in model experiments. Field experiments were carried out in 10-litter plastic containers. The upper layer was prepared as a mixture of loam (pH=5.3), sand (pH=7.4) and peat(pH=5.5). It was underlain consequently by loam and gravel. To study water migration we installed lysimeters. The experiment was conducted in 3 variants: 1) control, 2) control+Cu, 3) control+Cu+HC. Copper was applied in the form of dry powder (CuSO4*5H2O) over the upper layer of the soil column in a concentration of copper equaling to 1000 mg/kg. Total concentration of copper was determined by ICP AAS, its free ions was measured with the help of ion-selective electrode. Humic compound was sprayed on the surface in liquid form. The vessels stayed outdoors from July to October 2014 with additional watering in dry periods. Analysis of lysimetric waters obtained from this model field experiment revealed significant impact of pH. Application of the humic compound produces almost 5 times higher content of soluble organic substances than in the variant without it, and in the first portions of lysimetric waters the difference is 20-fold. Generation of extra organic content in soluble form was accompanied by the 2-6 times increase of the water soluble copper yield. However the content of the free copper ions in lysimetric waters in case of addition of the potassium humate was negligible, because almost all copper was bounded with water-soluble organic substances. The copper content in water extract from the top layer of soil in the variant with HC was about 1 mg/l, that was 2 times higher than without HC. The content of water-soluble organic carbon in HC variant was 100 mg/L, and without HC was 10 times lower (10 mg/l). The water extract from soils enriched in HC was passed through a column filled with weakly basic anion exchange resin DEAE (Cl-form), the eluate was

  3. BASIC CHEMICAL RESEARCH PROGRAM. ELECTRICAL PROPERTIES OF ORGANIC COMPOUNDS

    DTIC Science & Technology

    BENZENE, *CYANIDES, *HYDROXIDES, *ORGANIC COMPOUNDS, ACETYLENES, ALKYL RADICALS, AMIDES, ANILINES , BENZALDEHYDES, CHEMICAL REACTIONS , CONDENSATION... REACTIONS , ELECTRICAL CONDUCTIVITY, MATERIALS, MEASUREMENT, MONOCYCLIC COMPOUNDS, PHENOLS, PHENYL RADICALS, QUINONES, SOLID STATE PHYSICS, SYNTHESIS.

  4. Influence of plant root exudates on the mobility of fuel volatile compounds in contaminated soils.

    PubMed

    Balseiro-Romero, María; Kidd, Petra S; Monterroso, Carmela

    2014-01-01

    Vegetation and its associated microorganisms play an important role in the behaviour of soil contaminants. One of the most important elements is root exudation, since it can affect the mobility, and therefore, the bioavailability of soil contaminants. In this study, we evaluated the influence of root exudates on the mobility of fuel derived compounds in contaminated soils. Samples of humic acid, montmorillonite, and an A horizon from an alumi-umbric Cambisol were contaminated with volatile contaminants present in fuel: oxygenates (MTBE and ETBE) and monoaromatic compounds (benzene, toluene, ethylbenzene and xylene). Natural root exudates obtained from Holcus lanatus and Cytisus striatus and ten artificial exudates (components frequently found in natural exudates) were added to the samples, individually and as a mixture, to evaluate their effects on contaminant mobility. Fuel compounds were analyzed by headspace-gas chromatography-mass spectrometry. In general, the addition of natural and artificial exudates increased the mobility of all contaminants in humic acid. In A horizon and montmorillonite, natural or artificial exudates (as a mixture) decreased the contaminant mobility. However, artificial exudates individually had different effects: carboxylic components increased and phenolic components decreased the contaminant mobility. These results established a base for developing and improving phytoremediation processes of fuel-contaminated soils.

  5. Volatile Organic Compound Emissions by Agricultural Crops

    NASA Astrophysics Data System (ADS)

    Ormeno, E.; Farres, S.; Gentner, D.; Park, J.; McKay, M.; Karlik, J.; Goldstein, A.

    2008-12-01

    Biogenic Volatile Organic Compounds (BVOCs) participate in ozone and aerosol formation, and comprise a substantial fraction of reactive VOC emission inventories. In the agriculturally intensive Central Valley of California, emissions from crops may substantially influence regional air quality, but emission potentials have not been extensively studied with advanced instrumentation for many important crops. Because crop emissions may vary according to the species, and California emission inventories are constructed via a bottom-up approach, a better knowledge of the emission rate at the species-specific level is critical for reducing uncertainties in emission inventories and evaluating emission model performance. In the present study we identified and quantified the BVOCs released by dominant agricultural crops in California. A screening study to investigate both volatile and semivolatile BVOC fractions (oxygenated VOCs, isoprene, monoterepenes, sesquiterpenes, etc.) was performed for 25 crop species (at least 3 replicates plants each), including branch enclosures of woody species (e.g. peach, mandarin, grape, pistachio) and whole plant enclosures for herbaceous species (e.g. onion, alfalfa, carrot), through a dynamic cuvette system with detection by PTRMS, in-situ GCMS/FID, and collection on carbon-based adsorbents followed by extraction and GCMS analysis. Emission data obtained in this study will allow inclusion of these crops in BVOC emission inventories and air quality simulations.

  6. Soil amino compound and carbohydrate contents influenced by organic amendments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amino compounds (i. e. amino acids and sugars), and carbohydrates are labile organic components and contribute to the improvement of soil fertility and quality. Animal manure and other organic soil amendments are rich in both amino compounds and carbohydrates, hence organic soil amendments might af...

  7. Passive remediation of chlorinated volatile organic compounds using barometric pumping

    SciTech Connect

    Rossabi, J.; Looney, B.B.; Dilek, C.A.E.; Riha, B.; Rohay, V.J.

    1993-12-31

    The purpose of the Savannah River Integrated Demonstration Program, sponsored by the Department of Energy, is to demonstrate new subsurface characterization, monitoring, and remediation technologies. The interbedded clay and sand layers at the Integrated Demonstration Site (IDS) are contaminated with chlorinated volatile organic compounds (CVOCs). Characterization studies show that the bulk of the contamination is located in the approximately 40 m thick vadose zone. The most successful strategy for removing contaminants of this type from this environment is vapor extraction alone or in combination with other methods such as air sparging or enhanced bioremediation. Preliminary work at the IDS has indicated that natural pressure differences between surface and subsurface air caused by surface barometric fluctuations can produce enough gas flow to make barometric pumping a viable method for subsurface remediation. Air flow and pressure were measured in wells that are across three stratigraphic intervals in the vadose zone` The subsurface pressures were correlated to surface pressure fluctuations but were damped and lagging in phase corresponding to depth and stratum permeability. Piezometer wells screened at lower elevations exhibited a greater phase lag and damping than wells screened at higher elevations where the pressure wave from barometric fluctuations passes through a smaller number of low permeable layers. The phase lag between surface and subsurface pressures results in significant fluxes through these wells. The resultant air flows through the subsurface impacts CVOC fate and transport. With the appropriate controls (e.g. solenoid valves) a naturally driven vapor extraction system can be implemented requiring negligible operating costs yet capable of a large CVOC removal rate (as much as 1--2 kg/day in each well at the IDS).

  8. Method for detecting organic contaminants in water supplies

    DOEpatents

    Dooley, K.J.; Barrie, S.L.; Buttner, W.J.

    1999-08-24

    A system is described for detecting organic contaminants in water supplies. A sampling unit is employed which includes a housing having at least one opening therein and a tubular member positioned within the housing having a central passageway surrounded by a side wall. The side wall is made of a composition designed to absorb the contaminants. In use, the sampling unit is immersed in a water supply. The water supply contacts the tubular member through the opening in the housing, with any contaminants being absorbed into the side wall of the tubular member. A carrier gas is then passed through the central passageway of the tubular member. The contaminants will diffuse out of the side wall and into the central passageway where they will subsequently combine with the carrier gas, thereby yielding a gaseous product. The gaseous product is then analyzed to determine the amount and type of contaminants therein. 5 figs.

  9. Volatile organic compounds in foods: a five year study.

    PubMed

    Fleming-Jones, Mary Ellen; Smith, Robert E

    2003-12-31

    A purge and trap procedure was used with gas chromatography-mass spectrometry determination to analyze 70 foods for volatile organic compounds (VOCs). The results from analyses over a 5 year period (1996-2000) are reported. VOCs were found in at least one sample of all foods tested, although no single compound was found in each of the foods. The total amount of VOCs found in a single food item over the 5 year period ranged from 24 to 5328 ppb, with creamed corn (canned) the lowest and cheddar cheese the highest. Benzene was found in all foods except American cheese and vanilla ice cream. Benzene levels ranged from 1 to 190 ppb, with the highest level found in fully cooked ground beef. Benzene was found in 12 samples of cooked ground beef, with an average of 40 ppb. Benzene levels above 100 ppb were also seen in at least one sample each of a cola (138 ppb), raw bananas (132 ppb), and cole slaw (102 ppb). This compares to a maximum contaminant level of 5 ppb set by the U.S. EPA for drinking water.

  10. Method and reaction pathway for selectively oxidizing organic compounds

    DOEpatents

    Camaioni, Donald M.; Lilga, Michael A.

    1998-01-01

    A method of selectively oxidizing an organic compound in a single vessel comprises: a) combining an organic compound, an acid solution in which the organic compound is soluble, a compound containing two oxygen atoms bonded to one another, and a metal ion reducing agent capable of reducing one of such oxygen atoms, and thereby forming a mixture; b) reducing the compound containing the two oxygen atoms by reducing one of such oxygen atoms with the metal ion reducing agent to, 1) oxidize the metal ion reducing agent to a higher valence state, and 2) produce an oxygen containing intermediate capable of oxidizing the organic compound; c) reacting the oxygen containing intermediate with the organic compound to oxidize the organic compound into an oxidized organic intermediate, the oxidized organic intermediate having an oxidized carbon atom; d) reacting the oxidized organic intermediate with the acid counter ion and higher valence state metal ion to bond the acid counter ion to the oxidized carbon atom and thereby produce a quantity of an ester incorporating the organic intermediate and acid counter ion; and e) reacting the oxidized organic intermediate with the higher valence state metal ion and water to produce a quantity of alcohol which is less than the quantity of ester, the acid counter ion incorporated in the ester rendering the carbon atom bonded to the counter ion less reactive with the oxygen containing intermediate in the mixture than is the alcohol with the oxygen containing intermediate.

  11. Bioavailability of sediment-bound contaminants to marine organisms

    SciTech Connect

    Brown, B. |

    1993-09-01

    The bioavailability of sediment-bound contaminants to marine organisms indicates that there exists a potential for transfer of these contaminants through marine food webs to commercial fisheries products consumed by humans. However, there has been relatively little effort to combine and synthesize data on chemical/biological interactions between benthic animals and seagrasses and the sediments in which they reside on the one hand, and on the chemistry of bioaccumulation on the other. This report provides a conceptual basis for an approach to bioavailability and biomagnification of sediment-bound contaminants that reviews biological and chemical approaches.

  12. USE OF QSPRS IN IMPROVING CARBON ADSORPTION MODELING OF EPA CONTAMINANT CANDIDATE COMPOUNDS

    EPA Science Inventory

    Activated carbon adsorption of EPA contaminant candidate list (CCL) compounds is under investigation as a treatment technology for contaminated drinking water. Historically, EPA, in support of drinking water regulations, has used a number of techniques to calculate field-scale c...

  13. Deposition and accumulation of airborne organic contaminants in Yosemite National Park, Calfornia

    USGS Publications Warehouse

    Mast, Alisa M.; Alvarez, David A.; Zaugg, Steven D.

    2012-01-01

    Deposition and accumulation of airborne organic contaminants in Yosemite National Park were examined by sampling atmospheric deposition, lichen, zooplankton, and lake sediment at different elevations. Passive samplers were deployed in high-elevation lakes to estimate surface-water concentrations. Detected compounds included current-use pesticides chlorpyrifos, dacthal, and endosulfans and legacy compounds chlordane, dichlorodiphenyltrichloroethane-related compounds, dieldrin, hexachlorobenzene, and polychlorinated biphenyls. Concentrations in snow were similar among sites and showed little variation with elevation. Endosulfan concentrations in summer rain appeared to coincide with application rates in the San Joaquin Valley. More than 70% of annual pesticide inputs from atmospheric deposition occurred during the winter, largely because most precipitation falls as snow. Endosulfan and chlordane concentrations in lichen increased with elevation, indicating that mountain cold-trapping might be an important control on accumulation of these compounds. By contrast, chlorpyrifos concentrations were inversely correlated with elevation, indicating that distance from source areas was the dominant control. Sediment concentrations were inversely correlated with elevation, possibly because of the organic carbon content of sediments but also perhaps the greater mobility of organic contaminants at lower elevations. Surface-water concentrations inferred from passive samplers were at sub-parts-per-trillion concentrations, indicating minimal exposure to aquatic organisms from the water column. Concentrations in sediment generally were low, except for dichlorodiphenyldichloroethane in Tenaya Lake, which exceeded sediment guidelines for protection of benthic organisms.

  14. Oceanic protection of prebiotic organic compounds from UV radiation

    NASA Technical Reports Server (NTRS)

    Cleaves, H. J.; Miller, S. L.; Bada, J. L. (Principal Investigator)

    1998-01-01

    It is frequently stated that UV light would cause massive destruction of prebiotic organic compounds because of the absence of an ozone layer. The elevated UV flux of the early sun compounds this problem. This applies to organic compounds of both terrestrial and extraterrestrial origin. Attempts to deal with this problem generally involve atmospheric absorbers. We show here that prebiotic organic polymers as well as several inorganic compounds are sufficient to protect oceanic organic molecules from UV degradation. This aqueous protection is in addition to any atmospheric UV absorbers and should be a ubiquitous planetary phenomenon serving to increase the size of planetary habitable zones.

  15. Expanded target-chemical analysis reveals extensive mixed-organic-contaminant exposure in USA streams

    USGS Publications Warehouse

    Bradley, Paul M.; Journey, Celeste; Romanok, Kristin; Barber, Larry B.; Buxton, Herbert T.; Foreman, William; Furlong, Edward T.; Glassmeyer, Susan T.; Hladik, Michelle; Iwanowicz, Luke R.; Jones, Daniel K.; Kolpin, Dana W.; Kuivila, Kathryn M.; Loftin, Keith A.; Mills, Marc A.; Meyer, Michael T.; Orlando, James L.; Reilly, Timothy J.; Smalling, Kelly L.; Villeneuve, Daniel L.

    2017-01-01

    Surface water from 38 streams nationwide was assessed using 14 target-organic methods (719 compounds). Designed-bioactive anthropogenic contaminants (biocides, pharmaceuticals) comprised 57% of 406 organics detected at least once. The 10 most-frequently detected anthropogenic-organics included eight pesticides (desulfinylfipronil, AMPA, chlorpyrifos, dieldrin, metolachlor, atrazine, CIAT, glyphosate) and two pharmaceuticals (caffeine, metformin) with detection frequencies ranging 66–84% of all sites. Detected contaminant concentrations varied from less than 1 ng L–1 to greater than 10 μg L–1, with 77 and 278 having median detected concentrations greater than 100 ng L–1 and 10 ng L–1, respectively. Cumulative detections and concentrations ranged 4–161 compounds (median 70) and 8.5–102 847 ng L–1, respectively, and correlated significantly with wastewater discharge, watershed development, and toxic release inventory metrics. Log10 concentrations of widely monitored HHCB, triclosan, and carbamazepine explained 71–82% of the variability in the total number of compounds detected (linear regression; p-values: < 0.001–0.012), providing a statistical inference tool for unmonitored contaminants. Due to multiple modes of action, high bioactivity, biorecalcitrance, and direct environment application (pesticides), designed-bioactive organics (median 41 per site at μg L–1 cumulative concentrations) in developed watersheds present aquatic health concerns, given their acknowledged potential for sublethal effects to sensitive species and lifecycle stages at low ng L–1.

  16. RT-MATRIX: Measuring Total Organic Carbon by Photocatalytic Oxidation of Volatile Organic Compounds

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Volatile organic compounds (VOCs) inevitably accumulate in enclosed habitats such as the International Space Station and the Crew Exploration Vehicle (CEV) as a result of human metabolism, material off-gassing, and leaking equipment. Some VOCs can negatively affect the quality of the crew's life, health, and performance; and consequently, the success of the mission. Air quality must be closely monitored to ensure a safe living and working environment. Currently, there is no reliable air quality monitoring system that meets NASA's stringent requirements for power, mass, volume, or performance. The ultimate objective of the project -- the development of a Real-Time, Miniaturized, Autonomous Total Risk Indicator System (RT.MATRIX).is to provide a portable, dual-function sensing system that simultaneously determines total organic carbon (TOC) and individual contaminants in air streams.

  17. Bonded-phase extraction column isolation of organic compounds in groundwater at a hazardous waste site

    USGS Publications Warehouse

    Rostad, C.E.; Pereira, W.E.; Ratcliff, S.M.

    1984-01-01

    A procedure for isolation of hazardous organic compounds from water for gas chromatography/mass spectrometry analysis Is presented and applied to creosote- and pentachlorophenol-contaminated groundwater resulting from wood-treatment processes. This simple procedure involved passing a 50-100-mL sample through a bonded-phase extraction column, eluting the trapped organic compounds from the column with 2-4 mL of solvent, and evaporating the sample to 100 ??L with a stream of dry nitrogen, after which the sample was ready for gas chromatography/mass spectrometry analysis. Representative compounds indicative of creosote contamination were used for recovery and precision studies from the cyclohexyl-bonded phase. Recovery of these compounds from n-octyl-, n-octadecyl-, cyclohexyl-, and phenyl-bonded phases was compared. The bonded phase that exhibited the best recovery and least bias toward acidic or basic cmpounds was the n-octadecyl phase. Detailed compound Identification Is given for compounds Isolated from creosote- and pentachlorophenol-contaminated groundwater using the cyclohexyl-bonded phase.

  18. Mobilization and Transport of Organic Compounds from Reservoir Rock and Caprock in Geological Carbon Sequestration Sites

    SciTech Connect

    Zhong, Lirong; Cantrell, Kirk J.; Mitroshkov, Alexandre V.; Shewell, Jesse L.

    2014-05-06

    Supercritical CO2 (scCO2) is an excellent solvent for organic compounds, including benzene, toluene, ethyl-benzene, and xylene (BTEX), phenols, and polycyclic aromatic hydrocarbons (PAHs). Monitoring results from geological carbon sequestration (GCS) field tests has shown that organic compounds are mobilized following CO2 injection. Such results have raised concerns regarding the potential for groundwater contamination by toxic organic compounds mobilized during GCS. Knowledge of the mobilization mechanism of organic compounds and their transport and fate in the subsurface is essential for assessing risks associated with GCS. Extraction tests using scCO2 and methylene chloride (CH2Cl2) were conducted to study the mobilization of volatile organic compounds (VOCs, including BTEX), the PAH naphthalene, and n-alkanes (n-C20 – n-C30) by scCO2 from representative reservoir rock and caprock obtained from depleted oil reservoirs and coal from an enhanced coal-bed methane recovery site. More VOCs and naphthalene were extractable by scCO2 compared to the CH2Cl2 extractions, while scCO2 extractable alkane concentrations were much lower than concentrations extractable by CH2Cl2. In addition, dry scCO2 was found to extract more VOCs than water saturated scCO2, but water saturated scCO2 mobilized more naphthalene than dry scCO2. In sand column experiments, moisture content was found to have an important influence on the transport of the organic compounds. In dry sand columns the majority of the compounds were retained in the column except benzene and toluene. In wet sand columns the mobility of the BTEX was much higher than that of naphthalene. Based upon results determined for the reservoir rock, caprock, and coal samples studied here, the risk to aquifers from contamination by organic compounds appears to be relatively low; however, further work is necessary to fully evaluate risks from depleted oil reservoirs.

  19. Uptake, bioavailability and elimination of hydrophobic compounds in earthworms (Eisenia andrei) in field-contaminated soil

    SciTech Connect

    Belfroid, A.; Berg, M. van den; Seinen, W.; Hermens, J.; Gestel, K. van

    1995-04-01

    Uptake, accumulation, and elimination of hydrophobic organic chemicals in earthworms (Eisenia andrei) exposed to field-contaminated Volgermeerpolder soil was studied. Earthworms were able to take up chlorobenzenes and polychlorobiphenyls (PCBs), but body burdens did not exceed concentrations measured in the soil. For the chlorobenzenes, steady-state concentrations in the worms and biota-to-soil accumulation factor (BSAF) values were much smaller than expected based on earlier experiments, suggesting a decreased bioavailability in the Volgermeerpolder soil. Comparison of the PCB accumulation pattern in worms to the pattern in soil showed that biotransformation of the studied PCBs is of minor importance in this species. Elimination of all chemicals studied was monophasic, with the exception of hexachlorobenzene, which showed a biphasic elimination. The elimination half-life for the initial fast phase of this compound is comparable to the elimination measured in previous studies. Elimination rate constants decreased with increasing log K{sub ow}.

  20. Electrochemical Transformation of Trace Organic Contaminants in the Presence of Halide and Carbonate Ions

    PubMed Central

    2016-01-01

    Electrochemical treatment on anodes shows promise for the oxidation of organic contaminants in industrial wastewater and reverse osmosis concentrate from municipal wastewater recycling due to the high conductivity of the matrix and the concomitant low energy demand. The effect of background electrolyte composition (Cl–, HCO3–, and NH4+) on the formation and fate of electrochemically produced heterogeneous (HO•ads and Cl•ads) and homogeneous (HOCl and HOBr) oxidants was evaluated on Ti–IrO2 and boron-doped diamond (BDD) electrodes using a suite of trace organic contaminants that exhibited varying reactivity with HO•, CO3•–, HOCl, and HOBr. The contributions of adsorbed and bulk oxidants to contaminant degradation were investigated. Results show that transformation rates for most contaminants increased in the presence of chloride and trace amounts of bromide; however, elevated concentrations of HCO3– often altered transformation rates due to formation of selective oxidants, with decreases in reactivity observed for electron-poor contaminants and increases in reactivity observed for compounds with amine and phenolic moieties. Using this information, rates of reactions on anode surfaces and measured production and loss rates for reactive homogeneous species were used to predict contaminant removal in municipal wastewater effluent. Despite some uncertainty in the reaction mechanisms, the model accurately predicted rates of removal of electron-rich contaminants but underestimated the transformation rates of compounds that exhibited low reactivity with HOCl and HOBr, possibly due to the formation of halogen radicals. The approach employed in this study provides a means of identifying key reactions for different classes of contaminants and for predicting the conditions under which anodic treatment of wastewater will be practical. PMID:27599127

  1. Nitrated Secondary Organic Tracer Compounds in Biomass Burning Smoke

    NASA Astrophysics Data System (ADS)

    Iinuma, Y.; Böge, O.; Gräfe, R.; Herrmann, H.

    2010-12-01

    Natural and human-initiated biomass burning releases large amounts of gases and particles into the atmosphere, impacting climate, environment and affecting public health. Several hundreds of compounds are emitted from biomass burning and these compounds largely originate from the pyrolysis of biopolymers such as lignin, cellulose and hemicellulose. Some of compounds are known to be specific to biomass burning and widely recognized as tracer compounds that can be used to identify the presence of biomass burning PM. Detailed chemical analysis of biomass burning influenced PM samples often reveals the presence compounds that correlated well with levoglucosan, a known biomass burning tracer compound. In particular, nitrated aromatic compounds correlated very well with levoglucosan, indicating that biomass burning as a source for this class of compounds. In the present study, we present evidence for the presence of biomass burning originating secondary organic aerosol (BSOA) compounds in biomass burning influenced ambient PM. These BSOA compounds are typically nitrated aromatic compounds that are produced in the oxidation of precursor compounds in the presence of NOx. The precursor identification was performed from a series of aerosol chamber experiments. m-Cresol, which is emitted from biomass burning at significant levels, is found to be a major precursor compounds for nitrated BSOA compounds found in the ambient PM. We estimate that the total concentrations of these compounds in the ambient PM are comparable to biogenic SOA compounds in winter months, indicating the BSOA contributes important amounts to the regional organic aerosol loading.

  2. Remediation of Groundwater Contaminated with Organics and Radionuclides - An Innovative Approach Eases Traditional Hurdles

    SciTech Connect

    Scott, J.; Case, N.; Coltman, K.

    2003-02-25

    Traditional approaches to the remediation of contaminated groundwater, such as pump-and-treat, have been used for many years for the treatment of groundwater contaminated with various organics. However the treatment of groundwater contaminated with organics and radionuclides has been considerably more challenging. Safety and Ecology Corporation (SEC) was recently faced with these challenges while designing a remediation system for the remediation of TCE-contaminated groundwater and soil at the RMI Extrusion Plant in Ashtabula, OH. Under contract with RMI Environmental Services (RMIES), SEC teamed with Regenesis, Inc. to design, implement, and execute a bioremediation system to remove TCE and associated organics from groundwater and soil that was also contaminated with uranium and technetium. The SEC-Regenesis system involved the injection of Hydrogen Release Compound (HRC), a natural attenuation accelerant that has been patented, designed, and produced by Regenesis, to stimulate the reductive dechlorination and remediation of chlorinated organics in subsurface environments. The compound was injected using direct-push Geoprobe rods over a specially designed grid system through the zone of contaminated groundwater. The innovative approach eliminated the need to extract contaminated groundwater and bypassed the restrictive limitations listed above. The system has been in operation for roughly six months and has begun to show considerable success at dechlorinating and remediating the TCE plume and in reducing the radionuclides into insoluble precipitants. The paper will provide an overview of the design, installation, and initial operation phase of the project, focusing on how traditional design challenges of remediating radiologically contaminated groundwater were overcome. The following topics will be specifically covered: a description of the mechanics of the HRC technology; an assessment of the applicability of the HRC technology to contaminated groundwater plumes

  3. Characterisation of organic contaminants in the CLOUD chamber at CERN

    NASA Astrophysics Data System (ADS)

    Schnitzhofer, R.; Metzger, A.; Breitenlechner, M.; Jud, W.; Heinritzi, M.; de Menezes, L.-P.; Duplissy, J.; Guida, R.; Haider, S.; Kirkby, J.; Mathot, S.; Minginette, P.; Onnela, A.; Walther, H.; Wasem, A.; Hansel, A.; Cloud Team

    2013-08-01

    The CLOUD experiment (Cosmics Leaving OUtdoor Droplets) investigates the nucleation of new particles and how this process is influenced by galactic cosmic rays in an electro-polished, stainless-steel environmental chamber at CERN (European Organization for Nuclear Research). Since volatile organic compounds (VOCs) can act as precursor gases for nucleation and growth of particles, great efforts have been made to keep their unwanted background levels as low as possible and to quantify them. In order to be able to measure a great set of VOCs simultaneously in the low parts per trillion (pptv) range, proton-transfer-reaction mass spectrometry (PTR-MS) was used. Initially the total VOC background concentration strongly correlated with ozone in the chamber and ranged from 0.1 to 7 parts per billion (ppbv). Plastic used as sealing material in the ozone generator was found to be a major VOC source. Especially oxygen-containing VOCs were generated together with ozone. These parts were replaced by stainless steel from CLOUD4 (June 2011) on, which strongly reduced the total VOC background. An additional ozone induced VOC source is surface assisted reactions at the electropolished stainless steel walls. The change in relative humidity (RH) from very dry to humid conditions increases background VOCs released from the chamber walls. This effect is especially pronounced when the RH is increased for the first time in a campaign. Also the dead volume of inlet tubes for trace gases that were not continuously flushed were found to be a short but strong VOC contamination source. For the later CLOUD campaigns lower ozone levels (below 100 ppbv) were used. During these conditions the total VOC contamination was usually below 1 ppbv and therewith considerably cleaner than a comparable Teflon chamber. On average more than 80% of the total VOCs are coming from only 5 exact masses (tentatively assigned as formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid), which have a

  4. [Organisms producing hypolipidemic compounds with antioxidant activity].

    PubMed

    Puzhevskaia, T O; Grammatikova, N E; Bibikova, M V; Katlinskiĭ, A V

    2009-01-01

    Complex compounds produced by fungal cultures of Lecanicilium and Beauveria with both high hypolipidemic and antioxydant activities were screened. Two fractions of the hypolipipidemic compounds with antioxidant activity of 95 and 75% in a dose of 25 mcg/ml were isolated.

  5. Determination of biological removal of recalcitrant organic contaminants in coal gasification waste water.

    PubMed

    Ji, Qinhong; Tabassum, Salma; Yu, Guangxin; Chu, Chunfeng; Zhang, Zhenjia

    2015-01-01

    Coal gasification waste water treatment needed a sustainable and affordable plan to eliminate the organic contaminants in order to lower the potential environmental and human health risk. In this paper, a laboratory-scale anaerobic-aerobic intermittent system carried out 66 operational cycles together for the treatment of coal gasification waste water and the removal capacity of each organic pollutant. Contaminants included phenols, carboxylic acids, long-chain hydrocarbons, and heterocyclic compounds, wherein the relative content of phenol is up to 57.86%. The long-term removal of 77 organic contaminants was evaluated at different hydraulic retention time (anaerobic24 h + aerobic48 h and anaerobic48 h +aerobic48 h). Contaminant removal ranged from no measurable removal to near-complete removal with effluent concentrations below the detection limit. Contaminant removals followed one of four trends: steady-state removal throughout, increasing removal to steady state (acclimation), decreasing removal, and no removal. Organic degradation and transformation in the reaction were analysed by gas chromatography/mass spectrometry technology.

  6. Role of benthic communities in organic contaminant transport and fate. 2: Bioaccumulation and biotransformation

    SciTech Connect

    Dickhut, R.M.; Schaffner, L.C.; Lay, P.W.; Mitra, S. |

    1994-12-31

    Numerous macrobenthic organisms from lower Chesapeake Bay have been observed to rapidly accumulate and transform a series of organic contaminants (OCs). Bioaccumulation and biotransformation vary both within and among major taxa, and with the OC physical-chemical properties. Bioaccumulation of OCs is rapid for various organisms regardless of feeding behavior indicating that uptake of contaminants from the dissolved phase may be important. Comparison of OC and metabolite body burdens to those in the corresponding sediment indicate three types of behavior for OC fluxes through the organisms over 56 days of exposure to contaminated sediments: steady state between contaminant uptake and elimination, faster uptake than elimination corresponding to bioaccumulation, and rapid loss relative to uptake, with decreasing bioaccumulation factors with time. OC loss mechanisms from operationally defined detectable pools in benthic biota may include: elimination of parent compound or metabolites, and binding of reactive metabolites to cellular structures. OC metabolite production and loss rates in benthic macrofauna from Chesapeake Bay are currently under investigation. Bioaccumulation and transformation of OCs by benthic organisms are of importance in determining their effects, including trophic transfer of organic pollutants, on aquatic ecosystems.

  7. Relative Stabilities of Organic Compounds Using Benson's Additivity Rules.

    ERIC Educational Resources Information Center

    Vitale, Dale E.

    1986-01-01

    Shows how the structure-energy principle can be presented in organic chemistry (without having to resort to quantum mechanics) by use of Benson's Additive Rules. Examples of the application to several major classes of organic compounds are given.

  8. Field-usable portable analyzer for chlorinated organic compounds

    SciTech Connect

    Buttner, W.J.; Penrose, W.R.; Stetter, J.R.

    1995-10-01

    Transducer Research, Inc. (TRI) has been working with the DOE Morgantown Energy Technology Center to develop a new chemical monitor based on a unique sensor which responds selectively to vapors of chlorinated solvents. We are also developing field applications for the monitor in actual DOE cleanup operations. During the initial phase, prototype instruments were built and field tested. Because of the high degree of selectivity that is obtained, no response was observed with common hydrocarbon organic compounds such as BTX (benzene, toluene, xylene) or POLs (petroleum, oil, lubricants), and in fact, no non-halogen-containing chemical has been identified which induces a measurable response. By the end of the Phase I effort, a finished instrument system was developed and test marketed. This instrument, called the RCL MONITOR, was designed to analyze individual samples or monitor an area with automated repetitive analyses. Vapor levels between 0 and 500 ppm can be determined in 90 s with a lower detection limit of 0.2 ppm using the handportable instrument. In addition to the development of the RCL MONITOR, advanced sampler systems are being developed to: (1) extend the dynamic range of the instrument through autodilution of the vapor and (2) allow chemical analyses to be performed on aqueous samples. When interfaced to the samplers, the RCL MONITOR is capable of measuring chlorinated solvent contamination in the vapor phase up to 5000 ppm and in water and other condensed media from 10 to over 10,000 ppb(wt)--without hydrocarbon and other organic interferences.

  9. Chemical oxidation of volatile and semi-volatile organic compounds in soil

    SciTech Connect

    Gates, D.D.; Siegrist, R.L.; Cline, S.R.

    1995-06-01

    Subsurface contamination with fuel hydrocarbons or chlorinated hydrocarbons is prevalent throughout the Department of Energy (DOE) complex and in many sites managed by the Environmental Protection Agency (EPA) Superfund program. The most commonly reported chlorinated hydrocarbons (occurring > 50% of DOE contaminated sites) were trichloroethylene (TCE), 1, 1, 1,-trichloroethane (TCA), and tetrachloroethylene (PCE) with concentrations in the range of 0.2 {mu}g/kg to 12,000 mg/kg. The fuel hydrocarbons most frequently reported as being present at DOE sites include aromatic compounds and polyaromatic compounds such as phenanthrene, pyrene, and naphthalene. The primary sources of these semi-volatile organic compounds (SVOCs) are coal waste from coal fired electric power plants used at many of these facilities in the past and gasoline spills and leaks. Dense non-aqueous phase liquids (DNAPLs) can migrate within the subsurface for long periods of time along a variety of pathways including fractures, macropores, and micropores. Diffusion of contaminants in the non-aqueous, aqueous, and vapor phase can occur from the fractures and macropores into the matrix of fine-textured media. As a result of these contamination processes, removal of contaminants from the subsurface and the delivery of treatment agents into and throughout contaminated regions are often hindered, making rapid and extensive remediation difficult.

  10. Partitioning of Organic Compounds between Crude Oil and Water under Supercritical CO2 Condition

    NASA Astrophysics Data System (ADS)

    Rod, K. A.; Wang, G.

    2015-12-01

    In recent years depleted oil reservoirs have received special interest as carbon storage reservoirs because of their potential to offset costs through collaboration with enhanced oil recovery projects. Leakage of the injected CO2 may occur either as supercritical CO2 or CO2-saturated (brine) water. The injected supercritical CO2 is a nonpolar solvent that can potentially mobilize the residual oil compounds into supercritical CO2 and brine water through phase partitioning. For detailed risk assessment of CO2 leakage, various models can be used to quantify the mass of organic contaminants transported from carbon storage sites to potential receptors such as potable aquifers, in which the partition coefficients of crude oil hydrocarbons between CO2/crude oil/brines for subsurface CO2 sequestration scenarios are the key parameters controlling the fate and transport of organic contaminants along the CO2 leakage pathways. However, the solubilities of many of the oil organic compounds in brines under supercritical CO2 condition have not been yet fully determined. In this study, we developed a novel method to accurately measure the partitioning of crude oil organic compounds (BTEX, PAHs, etc.) between supercritical CO2 and brines and to study the effects of temperature, pressure, salinity, and compound's cosolvency (solubility enhancement) on the partitioning behavior of oil organic compounds along the various CO2 leakage paths in the subsurface.

  11. SUPERFUND TREATABILITY CLEARINGHOUSE: COMPOSITING EXPLOSIVES/ORGANICS CONTAMINATED SOILS

    EPA Science Inventory

    Laboratory scale and pilot scale studies were conducted to evaluate composting to treat sediments and soils containing explosive and organic compounds. Sediment and soil from lagoons at Army ammunition plants, located in Louisiana, Wisconsin and Pennsylvania contained high...

  12. BIOGEOCHEMISTRY OF CHLORINATED ORGANIC CONTAMINANTS IN AQUATIC ECOSYSTEMS

    EPA Science Inventory

    Over the last several years we have conducted both laboratory and field studies to develop a better understanding of the movement of chlorinated organic compounds through aquatic ecosystems, with special emphasis on the differential movement of these compounds due to physical/che...

  13. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    SciTech Connect

    John F. Schabron; Joseph F. Rovani, Jr.; Theresa M. Bomstad

    2003-07-01

    Western Research Institute (WRI) is continuing work toward the development of new screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of halogens. In prior work, the devices were tested for response to carbon tetrachloride, heptane, toluene, and water vapors. In the current work, sensor response was evaluated with sixteen halogenated VOCs relative to carbon tetrachloride. The results show that the response of the various chlorinated VOCs is within an order of magnitude of the response to carbon tetrachloride for each of the sensors. Thus, for field screening a single response factor can be used. Both types of leak detectors are being further modified to provide an on-board LCD signal readout, which is related to VOC concentration. The units will be fully portable and will operate with 115-V line or battery power. Signal background, noise level, and response data on the Bacharach heated diode detector and the TIF corona discharge detector show that when the response curves are plotted against the log of concentration, the plot is linear to the upper limit for the particular unit, with some curvature at lower levels. When response is plotted directly against concentration, the response is linear at the low end and is curved at the high end. The dynamic ranges for carbon tetrachloride of the two devices from the lower detection limit (S/N=2) to signal saturation are 4-850 vapor parts per million (vppm) for the corona discharge unit and 0.01-70 vppm for the heated diode unit. Additional circuit modifications are being made to lower the detection limit and increase the dynamic response range of the corona discharge unit. The results indicate that both devices show potential utility for future analytical method development work toward

  14. Removal of organic contaminants by RO and NF membranes

    NASA Technical Reports Server (NTRS)

    Yoon, Yeomin; Lueptow, Richard M.

    2005-01-01

    Rejection characteristics of organic and inorganic compounds were examined for six reverse osmosis (RO) membranes and two nanofiltration (NF) membranes that are commercially available. A batch stirred-cell was employed to determine the membrane flux and the solute rejection for solutions at various concentrations and different pH conditions. The results show that for ionic solutes the degree of separation is influenced mainly by electrostatic exclusion, while for organic solutes the removal depends mainly upon the solute radius and molecular structure. In order to provide a better understanding of rejection mechanisms for the RO and NF membranes, the ratio of solute radius (r(i,s)) to effective membrane pore radius (r(p)) was employed to compare rejections. An empirical relation for the dependence of the rejection of organic compounds on the ratio r(i,s)/r(p) is presented. The rejection for organic compounds is over 75% when r(i,s)/r(p) is greater than 0.8. In addition, the rejection of organic compounds is examined using the extended Nernst-Planck equation coupled with a steric hindrance model. The transport of organic solutes is controlled mainly by diffusion for the compounds that have a high r(i,s)/r(p) ratio, while convection is dominant for compounds that have a small r(i,s)/r(p) ratio. c2005 Elsevier B.V. All rights reserved.

  15. Preparation of spiked soils by vapor fortification for volatile organic compounds analysis

    SciTech Connect

    Hewitt, A.D.

    1994-05-01

    This paper describes a vapor fortification method for preparing quality assurance/quality control soils for volatile organic compound analysis. Treatment of soils with volatile organic compounds occurs in a closed container in a manner somewhat analogous to the way the vadose zone often becomes contaminated. One advantage of this method for preparing soils for quality assurance/quality control purposes is that the efficiency of various extraction methods can be reliably compared. Furthermore, by substantially reducing the error due to sample inhomogeneity, the error associated with the determinative step can also be properly evaluated. 15 refs., 3 tabs.

  16. Iron-mediated microbial oxidation and abiotic reduction of organic contaminants under anoxic conditions.

    PubMed

    Tobler, Nicole B; Hofstetter, Thomas B; Straub, Kristina L; Fontana, Daniela; Schwarzenbach, René P

    2007-11-15

    In anoxic environments, the oxidation of organic compounds, such as BTEX fuel components, by dissimilatory Fe(III) reduction can generate reactive mineral-bound Fe(II) species, which in turn are able to reduce other classes of organic and inorganic groundwater contaminants. In this study, we designed and evaluated an anaerobic batch reactor that mimicks iron-reducing conditions to investigate the factors that favor the coupling of microbial toluene oxidation and abiotic reduction of nitroaromatic contaminants. We investigated the influence of different Fe(III)-bearing minerals and combinations thereof on the coupling of these two processes. Results from laboratory model systems show that complete oxidation of toluene to CO2 by Geobacter metallireducens in the presence of Fe(III)-bearing minerals leads to the formation of mineral-bound Fe(II) species capable of the reduction of 4-nitroacetophenone. Whereas significant microbial toluene oxidation was only observed in the presence of amorphous Fe(III) phases, reduction of nitroaromatic compounds only proceeded with Fe(II) species bound to crystalline Fe(III) oxides. Our results suggest that in anoxic soils and sediments containing amorphous and crystalline iron phases simultaneously, coupling of microbial oxidation and abiotic reduction of organic compounds may allow for concurrent natural attenuation of different contaminant classes.

  17. The Use of Modified Bentonite for Removal of Aromatic Organics from Contaminated Soil.

    PubMed

    Gitipour; Bowers; Bodocsi

    1997-12-15

    This study investigates the clay-aromatic interactions with a view to the use of bentonite clay for binding benzene, toluene, ethylbenzene, and o-xylene (BTEX compounds) in contaminated soils. BTEX compounds are the most toxic aromatic constituents of gasoline present in many underground storage tanks. Modified (organophilic) and ordinary bentonites are used to remove these organics. The organophilic bentonites are prepared by replacing the exchangeable inorganic cations present in bentonite particles with a quaternary ammonium salt. Various clay-to-soil ratios were applied to determine the efficiency of the modified bentonite in enhancing the cement-based solidification/stabilization (S/S) of BTEX contaminated soils. Toxicity characteristics leaching procedure (TCLP) tests were performed on soil samples to evaluate the leaching of the organics. In addition, X-ray diffraction analyses were conducted to assess the changes in the basal spacing of the clays as a result of their interaction with BTEX compounds. The findings of this study reveal that organophilic bentonite can act as a successful adsorbent for removing the aromatic organics from contaminated soil. Thus, this material is viable for enhancing the performance of cement-based S/S processes, as an adsorbent for petroleum spills, and for landfill liners and slurry walls. Copyright 1997 Academic Press.

  18. 40 CFR 60.462 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date...

  19. 40 CFR 60.492 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.492 Section 60.492 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after...

  20. 40 CFR 60.582 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a)...

  1. 40 CFR 60.462 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date...

  2. 40 CFR 60.462 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date...

  3. 40 CFR 60.602 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

  4. 40 CFR 60.462 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date...

  5. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or...

  6. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected...

  7. 40 CFR 60.452 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or...

  8. 40 CFR 60.582 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a)...

  9. 40 CFR 60.492 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.492 Section 60.492 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after...

  10. 40 CFR 60.602 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

  11. 40 CFR 60.742 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds....

  12. 40 CFR 60.452 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or...

  13. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected...

  14. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected...

  15. 40 CFR 60.452 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or...

  16. 40 CFR 60.452 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or...

  17. 40 CFR 60.582 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a)...

  18. 40 CFR 60.582 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a)...

  19. 40 CFR 60.462 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date...

  20. 40 CFR 60.492 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.492 Section 60.492 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after...

  1. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected...

  2. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or...

  3. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected...

  4. 40 CFR 60.722 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to...

  5. 40 CFR 60.602 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

  6. 40 CFR 60.742 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds....

  7. 40 CFR 60.602 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

  8. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or...

  9. 40 CFR 60.602 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

  10. 40 CFR 60.582 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a)...

  11. 40 CFR 60.742 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds....

  12. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or...

  13. 40 CFR 60.492 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.492 Section 60.492 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after...

  14. 40 CFR 60.742 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds....

  15. 40 CFR 60.492 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.492 Section 60.492 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after...

  16. 40 CFR 60.722 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to...

  17. 40 CFR 60.722 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to...

  18. 40 CFR 60.722 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to...

  19. 40 CFR 60.722 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to...

  20. 40 CFR 60.452 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or...

  1. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or...

  2. 40 CFR 60.742 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds....

  3. A Systematic Presentation of Organic Phosphorus and Sulfur Compounds.

    ERIC Educational Resources Information Center

    Hendrickson, James B.

    1985-01-01

    Because the names, interrelations, and oxidation levels of the organic compounds of phosphorus and sulfur tend to confuse students, a simple way to organize these compounds has been developed. The system consists of grouping them by oxidation state and extent of carbon substitution. (JN)

  4. Effects of polar and nonpolar groups on the solubility of organic compounds in soil organic matter

    USGS Publications Warehouse

    Chiou, C.T.; Kile, D.E.

    1994-01-01

    Vapor sorption capacities on a high-organic-content peat, a model for soil organic matter (SOM), were determined at room temperature for the following liquids: n-hexane, 1,4-dioxane, nitroethane, acetone, acetonitrile, 1-propanol, ethanol, and methanol. The linear organic vapor sorption is in keeping with the dominance of vapor partition in peat SOM. These data and similar results of carbon tetrachloride (CT), trichloroethylene (TCE), benzene, ethylene glycol monoethyl ether (EGME), and water on the same peat from earlier studies are used to evaluate the effect of polarity on the vapor partition in SOM. The extrapolated liquid solubility from the vapor isotherm increases sharply from 3-6 wt % for low-polarity liquids (hexane, CT, and benzene) to 62 wt % for polar methanol and correlates positively with the liquid's component solubility parameters for polar interaction (??P) and hydrogen bonding (??h). The same polarity effect may be expected to influence the relative solubilities of a variety of contaminants in SOM and, therefore, the relative deviations between the SOM-water partition coefficients (Kom) and corresponding octanol-water partition coefficients (Kow) for different classes of compounds. The large solubility disparity in SOM between polar and nonpolar solutes suggests that the accurate prediction of Kom from Kow or Sw (solute water solubility) would be limited to compounds of similar polarity.

  5. Using polyacrylate-coated SPME fibers to quantify sorption of polar and ionic organic contaminants to dissolved organic carbon.

    PubMed

    Haftka, Joris J-H; Scherpenisse, Peter; Jonker, Michiel T O; Hermens, Joop L M

    2013-05-07

    A passive sampling method using polyacrylate-coated solid-phase microextraction (SPME) fibers was applied to determine sorption of polar and ionic organic contaminants to dissolved organic carbon (DOC). The tested contaminants included pharmaceuticals, industrial chemicals, hormones, and pesticides and represented neutral, anionic, and cationic structures. Prior to the passive sampler application, sorption of the chemicals to the fibers was characterized. This was needed in order to accurately translate concentrations measured in fibers to freely dissolved aqueous concentrations during the sorption tests with DOC. Sorption isotherms of neutral compounds to the fiber were linear, whereas isotherms of basic chemicals covered a nonlinear and a linear range. Sorption of acidic and basic compounds to the fiber was pH-dependent and was dominated by sorption of the neutral sorbate species. Fiber- and DOC-water partition coefficients of neutral compounds were both linearly related to octanol-water partition coefficients (log Kow). The results of this study show that polyacrylate fibers can be used to quantify sorption to DOC of neutral and ionic contaminants, having multiple functional groups and spanning a wide hydrophobicity range (log Kow = 2.5-7.5).

  6. Environmentally friendly organic synthesis using bismuth(III) compounds.

    PubMed

    Krabbe, Scott W; Mohan, Ram S

    2012-01-01

    With increasing environmental concerns, the need for environmentally friendly organic synthesis has gained increased importance. In this regard, bismuth(III) compounds are especially attractive as "green" reagents and catalysts for organic synthesis. Bismuth(III) compounds are remarkably nontoxic, relatively air and moisture stable, and easy to handle. The contributions from our laboratory in the last 5 years in the field of applications of bismuth(III) compounds as catalysts are presented.

  7. [Evaluation of compounding EDTA and citric acid on remediation of heavy metals contaminated soil].

    PubMed

    Yin, Xue; Chen, Jia-Jun; Cai, Wen-Min

    2014-08-01

    As commonly used eluents, Na2EDTA (EDTA) and citric acid (CA) have been widely applied in remediation of soil contaminated by heavy metals. In order to evaluate the removal of arsenic, cadmium, copper, and lead in the contaminated soil collected in a chemical plant by compounding EDTA and CA, a series of stirring experiments were conducted. Furthermore, the changes in speciation distribution of heavy metals before and after washing were studied. The results showed that, adopting the optimal molar ratio of EDTA/CA (1:1), when the pH of the solution was 3, the stirring time was 30 min, the stirring rate was 150 r x min(-1) and the L/S was 5:1, the removal rates of arsenic, cadmium, copper and lead could reach 11.72%, 43.39%, 24.36% and 27.17%, respectively. And it was found that after washing, for arsenic and copper, the content of acid dissolved fraction rose which increased the percentage of available contents. Fe-Mn oxide fraction mainly contributed to the removal of copper. As for cadmium, the percentages of acid dissolved fraction, Fe-Mn oxide fraction and organic fraction also decreased. In practical projects, speciation changes would pose certain environmental risk after soil washing, which should be taken into consideration.

  8. A simplified approach for monitoring hydrophobic organic contaminants associated with suspended sediment: Methodology and applications

    USGS Publications Warehouse

    Mahler, B.J.; Van Metre, P.C.

    2003-01-01

    Hydrophobic organic contaminants, although frequently detected in bed sediment and in aquatic biota, are rarely detected in whole-water samples, complicating determination of their occurrence, load, and source. A better approach for the investigation of hydrophobic organic contaminants is the direct analysis of sediment in suspension, but procedures for doing so are expensive and cumbersome. We describe a simple, inexpensive methodology for the dewatering of sediment and present the results of two case studies. Isolation of a sufficient mass of sediment for analyses of organochlorine compounds and PAHs is obtained by in-line filtration of large volumes of water. The sediment is removed from the filters and analyzed directly by standard laboratory methods. In the first case study, suspended-sediment sampling was used to determine occurrence, loads, and yields of contaminants in urban runoff affecting biota in Town Lake, Austin, TX. The second case study used suspended-sediment sampling to locate a point source of PCBs in the Donna Canal in south Texas, where fish are contaminated with PCBs. The case studies demonstrate that suspended-sediment sampling can be an effective tool for determining the occurrence, load, and source of hydrophobic organic contaminants in transport.

  9. A simplified approach for monitoring hydrophobic organic contaminants associated with suspended sediment: methodology and applications.

    PubMed

    Mahler, B J; Van Metre, P C

    2003-04-01

    Hydrophobic organic contaminants, although frequently detected in bed sediment and in aquatic biota, are rarely detected in whole-water samples, complicating determination of their occurrence, load, and source. A better approach for the investigation of hydrophobic organic contaminants is the direct analysis of sediment in suspension, but procedures for doing so are expensive and cumbersome. We describe a simple, inexpensive methodology for the dewatering of sediment and present the results of two case studies. Isolation of a sufficient mass of sediment for analyses of organochlorine compounds and PAHs is obtained by in-line filtration of large volumes of water. The sediment is removed from the filters and analyzed directly by standard laboratory methods. In the first case study, suspended-sediment sampling was used to determine occurrence, loads, and yields of contaminants in urban runoff affecting biota in Town Lake, Austin, TX. The second case study used suspended-sediment sampling to locate a point source of PCBs in the Donna Canal in south Texas, where fish are contaminated with PCBs. The case studies demonstrate that suspended-sediment sampling can be an effective tool for determining the occurrence, load, and source of hydrophobic organic contaminants in transport.

  10. REDUCTIVE DEHALOGENATION OF ORGANIC CONTAMINANTS IN SOILS AND GROUND WATER

    EPA Science Inventory

    Introduction and large-scale production of synthetic halogenated organic chemicals over the last fifty years has resulted in a group of contaminants that tend to persist in the environment and resist both biotic and abiotic degradation. The low solubility of these types of contam...

  11. In Situ Stabilization of Persistent Organic Contaminants in Marine Sediments

    DTIC Science & Technology

    2004-04-01

    Francisco Bay Regional Water Quality Control Board, Biological Technical Assistance Group, May 21, 2003, Oakland, CA. 19. Organic Contaminants in...Environ. Sci. Technol. 2001, 35, 3468-3475. FIGURE 10. Microextraction and analysis of major organic particles classes in the 250-1000-µm size fraction...weight basis) in precleaned screw-capped glass centrifuge tubes. Mixtures were vortexed for 30 s before placement in a culture-tube rotator for 3 h

  12. Soil-Gas and Geophysical Techniques for Detection of Subsurface Organic Contamination

    DTIC Science & Technology

    1989-01-01

    methods were successful for detecting hydrogeological features, buried metal objects, and conductive plumes, but were unsuccessful for detecting organic contaminants. Keywords: Soil Contamination, Groundwater pollution .

  13. Comparative assessment of LECA and Spartina maritima to remove emerging organic contaminants from wastewater.

    PubMed

    Ferreira, Ana Rita; Guedes, Paula; Mateus, Eduardo P; Ribeiro, Alexandra B; Couto, Nazaré

    2017-01-18

    The present work aimed to evaluate the capacity of constructed wetlands (CWs) to remove three emerging organic contaminants with different physicochemical properties: caffeine (CAF), oxybenzone (MBPh), and triclosan (TCS). The simulated CWs were set up with a matrix of light expanded clay aggregates (LECA) and planted with Spartina maritima, a salt marsh plant. Controlled experiments were carried out in microcosms using deionized water and wastewater collected at a wastewater treatment plant (WWTP), with different contaminant mass ranges, for 3, 7, and 14 days. The effects of variables were tested isolatedly and together (LECA and/or S. maritima). The presence of LECA and/or S. maritima has shown higher removal (around 61-97%) of lipophilic compounds (MBPh and TCS) than the hydrophilic compound (CAF; around 19-85%). This was attributed to the fact that hydrophilic compounds are dissolved in the water column, whereas the lipophilic ones suffer sorption processes promoting their removal by plant roots and/or LECA. In the control (only wastewater), a decrease in the three contaminant levels was observed. Adsorption and bio/rhizoremediation are the strongest hypothesis to explain the decrease in contaminants in the tested conditions.

  14. Indoor air condensate as a novel matrix for monitoring inhalable organic contaminants.

    PubMed

    Roll, Isaac B; Halden, Rolf U; Pycke, Benny F G

    2015-05-15

    With the population of developed nations spending nearly 90% of their time indoors, indoor air quality (IAQ) is a critical indicator of human health risks from inhalation of airborne contaminants. We present a novel approach for qualitative monitoring of IAQ through the collection and analysis of indoor air condensate discharged from heat exchangers of heating, ventilation, and air conditioning (HVAC) systems. Condensate samples were collected from six suburban homes and one business in Maricopa County, Arizona, concentrated via solid-phase extraction, analyzed for 10 endocrine disrupting chemicals (EDCs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and screened for additional organic compounds by gas chromatography-mass spectrometry (GC-MS). All 10 EDCs were detected in at least one of the sampled buildings. More than 100 additional compounds were detected by GC-MS, of which 40 were tentatively identified using spectral database searches. Twelve compounds listed as designated chemicals for biomonitoring by the California Environmental Contaminant Biomonitoring Program were detected. Microfiltration of condensate samples prior to extraction had no discernable effect on contaminant concentration, suggesting that contaminants were freely dissolved or associated with inhalable, submicron particles. This study is the first to document the utility of HVAC condensate for the qualitative assessment of indoor air for pollutants.

  15. Anaerobic biodegradation of (emerging) organic contaminants in the aquatic environment.

    PubMed

    Ghattas, Ann-Kathrin; Fischer, Ferdinand; Wick, Arne; Ternes, Thomas A

    2017-02-03

    Although strictly anaerobic conditions prevail in several environmental compartments, up to now, biodegradation studies with emerging organic contaminants (EOCs), such as pharmaceuticals and personal care products, have mainly focused on aerobic conditions. One of the reasons probably is the assumption that the aerobic degradation is more energetically favorable than degradation under strictly anaerobic conditions. Certain aerobically recalcitrant contaminants, however, are biodegraded under strictly anaerobic conditions and little is known about the organisms and enzymatic processes involved in their degradation. This review provides a comprehensive survey of characteristic anaerobic biotransformation reactions for a variety of well-studied, structurally rather simple contaminants (SMOCs) bearing one or a few different functional groups/structural moieties. Furthermore it summarizes anaerobic degradation studies of more complex contaminants with several functional groups (CMCs), in soil, sediment and wastewater treatment. While strictly anaerobic conditions are able to promote the transformation of several aerobically persistent contaminants, the variety of observed reactions is limited, with reductive dehalogenations and the cleavage of ether bonds being the most prevalent. Thus, it becomes clear that the transferability of degradation mechanisms deduced from culture studies of SMOCs to predict the degradation of CMCs, such as EOCs, in environmental matrices is hampered due the more complex chemical structure bearing different functional groups, different environmental conditions (e.g. matrix, redox, pH), the microbial community (e.g. adaptation, competition) and the low concentrations typical for EOCs.

  16. Leaching of chloride, sulphate, heavy metals, dissolved organic carbon and phenolic organic pesticides from contaminated concrete.

    PubMed

    Van Praagh, M; Modin, H

    2016-10-01

    Concrete samples from demolition waste of a former pesticide plant in Sweden were analysed for total contents and leachate concentrations of potentially hazardous inorganic substances, TOC, phenols, as well as for pesticide compounds such as phenoxy acids, chlorophenols and chlorocresols. Leachates were produced by means of modified standard column leaching tests and pH-stat batch tests. Due to elevated contents of chromium and lead, as well as due to high chloride concentrations in the first leachate from column tests at L/S 0.1, recycling of the concrete as a construction material in groundworks is likely to be restricted according to Swedish guidelines. The studied pesticide compounds appear to be relatively mobile at the materials own pH>12, 12, 9 and 7. Potential leaching of pesticide residues from recycled concrete to ground water and surface water might exceed water quality guidelines for the remediation site and the EU Water Framework Directive. Results of this study stress the necessity to systematically study the mechanism behind mobility of organic contaminants from alkaline construction and demolition wastes rather than rely on total content limit values.

  17. Temporal trends in organic contaminant bioaccumulation in Boston Harbor

    SciTech Connect

    Hall, M.P.; Connor, M.S.; Downey, P.C.

    1995-12-31

    Since 1987 the MWRA has used in situ caged mussels (Mytilus edulis) to assess organic contaminant (PAHs, PCBs, organochlorine pesticides) bioaccumulation resulting from the primary treatment discharge of its Deer Island POTW. Results indicate a substantial reduction in many contaminants, most notably the Low Molecular Weight (petrogenic) PAHs which are clearly associated with the Deer Island discharge. NOAA `Mussel Watch` and other fish tissue contaminant data are used to support the observation of these decreases. Effluent water quality data and concurrent mussel body burden data from dirty and clean control sites are used to interpret the trends and elucidate the contamination sources. During the same time frame histopathological analyses of winter flounder collected in proximity to the Deer Island discharge have shown a marked reduction in liver lesions and other contaminant related diseases. More recently (since 1992) slight elevations in chlordane, dieldrin, and total DDTs have been noted in mussel, flounder, and lobster tissue collected from Boston Harbor and Massachusetts Bay. The authors discuss the possibility that remobilization of contaminants from the sediments may be a source of this apparent increase.

  18. EMERGING TECHNOLOGY BULLETIN: VOLATILE ORGANIC COMPOUND REMOVAL FROM AIR STREAMS BY MEMBRANES SEPARATION MEMBRANE TECHNOLOGY AND RESEARCH, INC.

    EPA Science Inventory

    This membrane separation technology developed by Membrane Technology and Research (MTR), Incorporated, is designed to remove volatile organic compounds (VOCs) from contaminated air streams. In the process, organic vapor-laden air contacts one side of a membrane that is permeable ...

  19. Preliminary classification of characteristic organic gunshot residue compounds.

    PubMed

    Goudsmits, Ellen; Sharples, George P; Birkett, Jason W

    2016-12-01

    For the first time, a classification system for organic gunshot residue (OGSR) compounds with respect to the confirmation of OGSR materials is presented. There are 136 compounds considered to be associated with OGSR that have been highlighted in the literature. Many of these compounds could be classified as being ubiquitous in the environment and thus their detection as characteristic components of OGSR could cause issues with the interpretation of chemical ballistic evidence. The proposed system aims to address this problem by classifying OGSR compounds based on their forensic relevance with respect to the confirmation of GSR materials. To increase the forensic relevance of such a system, the large number of OGSR compounds reported in the literature has been decreased to 20 OGSR compounds based on the organic chemical composition of over 200 propellant powders. Occupational and environmental materials also associated with OGSR compounds have been considered.

  20. Organic Compounds in Circumstellar and Interstellar Environments

    NASA Astrophysics Data System (ADS)

    Kwok, Sun

    2015-06-01

    Recent research has discovered that complex organic matter is prevalent throughout the Universe. In the Solar System, it is found in meteorites, comets, interplanetary dust particles, and planetary satellites. Spectroscopic signatures of organics with aromatic/aliphatic structures are also found in stellar ejecta, diffuse interstellar medium, and external galaxies. From space infrared spectroscopic observations, we have found that complex organics can be synthesized in the late stages of stellar evolution. Shortly after the nuclear synthesis of the element carbon, organic gas-phase molecules are formed in the stellar winds, which later condense into solid organic particles. This organic synthesis occurs over very short time scales of about a thousand years. In order to determine the chemical structures of these stellar organics, comparisons are made with particles produced in the laboratory. Using the technique of chemical vapor deposition, artificial organic particles have been created by injecting energy into gas-phase hydrocarbon molecules. These comparisons led us to believe that the stellar organics are best described as amorphous carbonaceous nanoparticles with mixed aromatic and aliphatic components. The chemical structures of the stellar organics show strong similarity to the insoluble organic matter found in meteorites. Isotopic analysis of meteorites and interplanetary dust collected in the upper atmospheres have revealed the presence of pre-solar grains similar to those formed in old stars. This provides a direct link between star dust and the Solar System and raises the possibility that the early Solar System was chemically enriched by stellar ejecta with the potential of influencing the origin of life on Earth.

  1. Organic compounds in circumstellar and interstellar environments.

    PubMed

    Kwok, Sun

    2015-06-01

    Recent research has discovered that complex organic matter is prevalent throughout the Universe. In the Solar System, it is found in meteorites, comets, interplanetary dust particles, and planetary satellites. Spectroscopic signatures of organics with aromatic/aliphatic structures are also found in stellar ejecta, diffuse interstellar medium, and external galaxies. From space infrared spectroscopic observations, we have found that complex organics can be synthesized in the late stages of stellar evolution. Shortly after the nuclear synthesis of the element carbon, organic gas-phase molecules are formed in the stellar winds, which later condense into solid organic particles. This organic synthesis occurs over very short time scales of about a thousand years. In order to determine the chemical structures of these stellar organics, comparisons are made with particles produced in the laboratory. Using the technique of chemical vapor deposition, artificial organic particles have been created by injecting energy into gas-phase hydrocarbon molecules. These comparisons led us to believe that the stellar organics are best described as amorphous carbonaceous nanoparticles with mixed aromatic and aliphatic components. The chemical structures of the stellar organics show strong similarity to the insoluble organic matter found in meteorites. Isotopic analysis of meteorites and interplanetary dust collected in the upper atmospheres have revealed the presence of pre-solar grains similar to those formed in old stars. This provides a direct link between star dust and the Solar System and raises the possibility that the early Solar System was chemically enriched by stellar ejecta with the potential of influencing the origin of life on Earth.

  2. Biochar: a green sorbent to sequester acidic organic contaminants

    NASA Astrophysics Data System (ADS)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2015-04-01

    Biochar is a carbon rich product of biomass pyrolysis that exhibits a high sorption potential towards a wide variety of inorganic and organic contaminants. Because it is a valuable soil additive and a potential carbon sink that can be produced from renewable resources, biochar has gained growing attention for the development of more sustainable remediation strategies. A lot of research efforts have been dedicated to the sorption of hydrophobic contaminants and metals to biochar. Conversely, the understanding of the sorption of acidic organic contaminants remains limited, and questions remain on the influence of biochar characteristics (e.g. ash content) on the sorption behaviour of acidic organic contaminants. To address this knowledge gap, sorption batch experiments were conducted with a series of structurally similar acidic organic contaminants covering a range of dissociation constant (2,4-D, MCPA, 2,4-DB and triclosan). The sorbents selected for experimentation included a series of 10 biochars covering a range of characteristics, multiwalled carbon nanotubes as model for pure carbonaceous phases, and an activated carbon as benchmark. Overall, sorption coefficient [L/kg] covered six orders of magnitude and generally followed the order 2,4-D < MCPA < 2,4-DB < triclosan. Combining comprehensive characterization of the sorbents with the sorption dataset allowed the discussion of sorption mechanisms and driving factors of sorption. Statistical analysis suggests that (i) partitioning was the main driver for sorption to sorbents with small specific surface area (< 25 m²/g), whereas (ii) specific mechanisms dominated sorption to sorbents with larger specific surface area. Results showed that factors usually not considered for the sorption of neutral contaminants play an important role for the sorption of organic acids. The pH dependent lipophilicity ratio (i.e. D instead of Kow), ash content and ionic strength are key factors influencing the sorption of acidic organic

  3. Biological Treatment of Groundwater Contaminated with Mixtures of Aromatic Compounds

    DTIC Science & Technology

    1993-03-01

    bioreactor to biodegrade chlorinated aromatic compounds. The site at Kelly AFB, TX is an abandoned waste storage area where the soil and groundwater is...scale submerged fixed- film bioreactors were tested with groundwater containing benzene, naphthalene, phenol, toluene, ortho and para- cresol , 2,4...strain JS150 could aerobically biodegrade complex mixtures of solvents if appropriate dissolved oxygen levels were maintained. After the initial 5 days

  4. Phosphatase hydrolysis of organic phosphorus compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphatases are diverse groups of enzymes that deserve special attention because of the significant roles they play in mineralizing organic phosphorus (P) into inorganic available form. For getting more insight on the enzymatically hydrolysis of organic P, in this work, we compared the catalytic pa...

  5. Extended structures and physicochemical properties of uranyl-organic compounds.

    PubMed

    Wang, Kai-Xue; Chen, Jie-Sheng

    2011-07-19

    The ability of uranium to undergo nuclear fission has been exploited primarily to manufacture nuclear weapons and to generate nuclear power. Outside of its nuclear physics, uranium also exhibits rich chemistry, and it forms various compounds with other elements. Among the uranium-bearing compounds, those with a uranium oxidation state of +6 are most common and a particular structural unit, uranyl UO(2)(2+) is usually involved in these hexavalent uranium compounds. Apart from forming solids with inorganic ions, the uranyl unit also bonds to organic molecules to generate uranyl-organic coordination materials. If appropriate reaction conditions are employed, uranyl-organic extended structures (1-D chains, 2-D layers, and 3-D frameworks) can be obtained. Research on uranyl-organic compounds with extended structures allows for the exploration of their rich structural chemistry, and such studies also point to potential applications such as in materials that could facilitate nuclear waste disposal. In this Account, we describe the structural features of uranyl-organic compounds and efforts to synthesize uranyl-organic compounds with desired structures. We address strategies to construct 3-D uranyl-organic frameworks through rational selection of organic ligands and the incorporation of heteroatoms. The UO(2)(2+) species with inactive U═O double bonds usually form bipyramidal polyhedral structures with ligands coordinated at the equatorial positions, and these polyhedra act as primary building units (PBUs) for the construction of uranyl-organic compounds. The geometry of the uranyl ions and the steric arrangements and functionalities of organic ligands can be exploited in the the design of uranyl--organic extended structures, We also focus on the investigation of the promising physicochemical properties of uranyl-organic compounds. Uranyl-organic materials with an extended structure may exhibit attractive properties, such as photoluminescence, photocatalysis

  6. Laser-induced removal of organic contaminants from metal substrates

    NASA Astrophysics Data System (ADS)

    Song, Wen D.; Lu, Yongfeng; Chen, Q.; Low, Tohsiew

    1998-08-01

    Laser-induced removal of organic contaminants, such as grease and wax, on Cr substrate surfaces was studied. The laser cleaning efficiency was analyzed by an optical microscope and an Auger Electron Spectroscopy (AES). It was found that the contaminants in the irradiated area can be effectively removed by pulsed laser irradiation and cleaning efficiency can be reached to 80% above under a certain cleaning condition without damage. The damage threshold of Cr substrates was obtained by numerical simulation, which is in good consistency with the experimental threshold.

  7. Determining and modelling hydrophobic organic contaminant speciation in mesocosms

    SciTech Connect

    Ashley, J.T.F.; Baker, J.E.

    1995-12-31

    The bioavailability of hydrophobic organic contaminants (HOCS) in aqueous environments is largely controlled by their interaction with dissolved and particulate organic matter. The binding capacity provides a quantitative means of describing the extent of sequestration of a contaminant. This study was undertaken to evaluate HOC binding capacities within variously sized benthic-planktonic mesocosms during the development of planktonic communities. The ability of each mesocosm to sequester these organic contaminants was followed over time using a gas sparging reactor. Unfiltered water samples, collected from five mesocosms of varying surface area to volume ratios, were spiked with an aliquot of a cocktail containing 16 polychlorinated biphenyls (log K{sub ow}s ranging from 4.55 to 7.65) and chlorpyrifos. After 2 hours, samples were sparged with air. Particulate, dissolved (2 {micro}m nonfilter retained) and vapor phase HOC concentrations were evaluated before and after sparging. Dissolved phase HOC concentrations were separated into colloidally-bound and truly dissolved fractions knowing the vapor phase concentrations and Henry`s Law constants (previously determined using the sparging reactor). Polychlorinated biphenyl congener 97 was found largely in the colloidal and truly dissolved phases (40% and 31%) whereas PCB congener 180 existed largely in the particulate phase (55%). The authors incorporate the results of the HOC binding capacity study into a time-variable, scale-independent model of contaminant speciation in mesocosms.

  8. Microbial transformations of natural organic compounds and radionuclides in subsurface environments

    SciTech Connect

    Francis, A.J.

    1985-10-01

    A major national concern in the subsurface disposal of energy wastes is the contamination of ground and surface waters by waste leachates containing radionuclides, toxic metals, and organic compounds. Microorganisms play an important role in the transformation of organic compounds, radionuclides, and toxic metals present in the waste and affect their mobility in subsurface environments. Microbial processes involved in dissolution, mobilization, and immobilization of toxic metals under aerobic and anaerobic conditions are briefly reviewed. Metal complexing agents and several organic acids produced by microbial action affect mobilization of radionuclides and toxic metals in subsurface environments. Information on the persistence of and biodegradation rates of synthetic as well as microbiologically produced complexing agents is scarce but important in determining the mobility of metal organic complexes in subsoils. Several gaps in knowledge in the area of microbial transformation of naturally occurring organics, radionuclides, and toxic metals have been identified, and further basic research has been suggested. 31 refs., 1 fig., 3 tabs.

  9. Source apportionment modeling of volatile organic compounds in streams

    USGS Publications Warehouse

    Pankow, J.F.; Asher, W.E.; Zogorski, J.S.

    2006-01-01

    It often is of interest to understand the relative importance of the different sources contributing to the concentration cw of a contaminant in a stream; the portions related to sources 1, 2, 3, etc. are denoted cw,1, cw,2, cw,3, etc. Like c w, 'he fractions ??1, = cw,1/c w, ??2 = cw,2/cw, ??3 = cw,3/cw, etc. depend on location and time. Volatile organic compounds (VOCs) can undergo absorption from the atmosphere into stream water or loss from stream water to the atmosphere, causing complexities affecting the source apportionment (SA) of VOCs in streams. Two SA rules are elaborated. Rule 1: VOC entering a stream across the air/water interface exclusively is assigned to the atmospheric portion of cw. Rule 2: VOC loss by volatilization, flow loss to groundwater, in-stream degradation, etc. is distributed over cw,1 cw,2, c w,3, etc. in proportion to their corresponding ?? values. How the two SA rules are applied, as well as the nature of the SA output for a given case, will depend on whether transport across the air/water interface is handled using the net flux F convention or using the individual fluxes J convention. Four hypothetical stream cases involving acetone, methyl-tert-butyl ether (MTBE), benzene, chloroform, and perchloroethylene (PCE) are considered. Acetone and MTBE are sufficiently water soluble from air for a domestic atmospheric source to be capable of yielding cw values approaching the common water quality guideline range of 1 to 10 ??g/L. For most other VOCs, such levels cause net outgassing (F > 0). When F > 0 in a given section of stream, in the net flux convention, all of the ??j, for the compound remain unchanged over that section while cw decreases. A characteristic time ??d can be calculated to predict when there will be differences between SA results obtained by the net flux convention versus the individual fluxes convention. Source apportionment modeling provides the framework necessary for comparing different strategies for mitigating

  10. Ultrasonic process for remediation of organics-contaminated groundwater/wastewater

    SciTech Connect

    Wu, J.M.; Peters, R.W.

    1995-07-01

    A technology is being developed that employs ultrasonic-wave energy for remediation of groundwater/wastewater contaminated with volatile organic compounds such as carbon tetrachloride (CCl{sub 4}) and trichloroethylene (TCE). This paper presents the updated results of a laboratory investigation of ultrasonic groundwater remediation using synthetic groundwaters prepared with laboratory deionized water. Key process parameters investigated included steady-state temperature, contaminant concentration, solution pH, sonication time, and intensity of the applied ultrasonics-wave energy. High destruction efficiencies of the target contaminants were achieved, and the sonication time required for a given degree of destruction decreased with increasing intensity of the applied ultrasonic energy. The sonication time can be further reduced by adding a chemical oxidant such as hydrogen peroxide.

  11. Volatile organic compounds and some very volatile organic compounds in new and recently renovated buildings in Switzerland

    NASA Astrophysics Data System (ADS)

    Rothweiler, Heinz; Wäger, Patrick A.; Schlatter, Christian

    Indoor air in new of recently renovated buildings was analysed by using different sorbents and analytical methods. Increased values of total volatile organic compounds (TVOC) were found on Tenax TA (1.6-31.7 mg m -3). Compared to older buildings, the amount of oxygen-containing compounds (aldehydes, ketones, alcohols) especially was elevated. High hexanal concentrations were measured in a significant amount of the houses. Differences of compound patterns were found from building to building. Complaints about discomfort and negative health effects are expected due to volatile organic compounds (VOC) and very volatile organic compounds (VVOC), as well as from low natural ventilation rates in some newly occupied buildings. Odorous compounds (naphthalene, higher aldehydes and alcohols, capronic acid, etc.) were found mainly, but some irritants and suspected sensitizing agents were also found. At the present state of our investigation chemicals causing other known toxic effects do not seem to increase the toxic risk substantially.

  12. 40 CFR 60.542 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic... Rubber Tire Manufacturing Industry § 60.542 Standards for volatile organic compounds. (a) On and after...) For each green tire spraying operation where both water-based and organic solvent-based sprays...

  13. 40 CFR 60.542 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic... Rubber Tire Manufacturing Industry § 60.542 Standards for volatile organic compounds. (a) On and after...) For each green tire spraying operation where both water-based and organic solvent-based sprays...

  14. 40 CFR 60.542 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic... Rubber Tire Manufacturing Industry § 60.542 Standards for volatile organic compounds. (a) On and after...) For each green tire spraying operation where both water-based and organic solvent-based sprays...

  15. 40 CFR 60.542 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic... Rubber Tire Manufacturing Industry § 60.542 Standards for volatile organic compounds. (a) On and after...) For each green tire spraying operation where both water-based and organic solvent-based sprays...

  16. 40 CFR 60.542 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic... Rubber Tire Manufacturing Industry § 60.542 Standards for volatile organic compounds. (a) On and after...) For each green tire spraying operation where both water-based and organic solvent-based sprays...

  17. Long-term effects of dredging operations program. Effects of sediment organic-matter composition on bioaccumulation of sediment organic contaminants: Interim results. Final report

    SciTech Connect

    Brannon, J.M.; Price, C.B.; Reilly, F.J.; Pennington, J.C.; McFarland, V.A.

    1991-06-01

    The relationship of sediment-bound polychlorinated biphenyl (PCB) 153 and fluoranthene to bioaccumulation by worms and clams and the relationship of sediment-bound PCB 153 and fluoranthene to concentrations in the interstitial water were examined. Bioaccumulation by both worms and clams was observed in all sediments. Apparent preference factor (APF) values showed that steady state was reached between sediment-bound contaminants and organism lipid pools. The APF values of organisms were close to the theoretical value for both contaminants in all sediments. These results showed that sediment total organic carbon (TOC) in conjunction with octanol water partition coefficients of nonpolar organic contaminants is a viable approach for predicting bioaccumulation of such compounds by infaunal organisms. Actual concentrations of contaminants in interstitial water were either overestimated or underestimated by the relationship between TOC and humic + fulvic acid organic matter fractions and sediment contaminant concentrations. Prediction of interstitial water concentrations was not as successful as use of APFs. The lack of agreement between predicted and actual interstitial water results was due to factors such as the presence of interstitial water contaminants bounds to microparticulates and dissolved organic material and the kind of organic material in the sediment.

  18. Can Shells be Biomonitor of Contaminants in the Environment: an Investigation Study of Perfluorinated Compounds in Bivalve Shells of China

    NASA Astrophysics Data System (ADS)

    Wang, Lei

    2010-05-01

    To assess the feasibility of using biominerals to biomonitor the extent of persistent contaminants in the environment, concentrations of perfluorinated compounds (PFCs), including perfluorinated carboxylic acids (PFCAs) and perfluorinated alkylsulfonates (PFASs), in the bivalve shells of clams, razor clams, oysters and mussels sampled from 8 sampling sites along China coast were analyzed. Concentrations of these contaminants in the waters and sediments of the sampling sites, as well as in the soft tissues of clams were also determined. Results show that though the concentrations of most PFCs in shells were lower than in soft tissues, the amount of contaminants in shells and soft tissues of bivalves are comparable, due to the larger dry-weight of shells than soft tissues of these animals. Concentrations of some PFCs in shells primarily correlate to concentrations in sediments, while concentrations in the soft tissues seems to be more related to those in water samples. We suggested that shells uptake PFCs by adsorption or passive deposition of the target chemicals to the shell organic matrix followed by a biomineralisation process. Therefore, contaminants bound to the organic matrix in the shell microstructure are sequestrated and hard to release. Like soft tissues, biominerals, e.g. shells, might also be considered as biomonitoring matrix for some contaminants in environments, because (i) the individual differences of contaminants concentrations among shell samples were smaller than soft tissue samples; (ii) secondary pollution is less likely to affect shell samples during sampling and transportation; and (iii) the shells was hypothesized to "record" past exposure to contaminants according to their annual growth ring. (This study was supported by National Science Foundation for Natural Science, China (No. 20807024) & Research Fund for the Doctoral Program of Higher Education of China (No. 200800551051))

  19. Fingerprinting groundwater pollution in catchments with contrasting contaminant sources using microorganic compounds.

    PubMed

    Stuart, Marianne E; Lapworth, Dan J; Thomas, Jenny; Edwards, Laura

    2014-01-15

    Evaluating the occurrence of microorganics helps to understand sources and processes which may be controlling the transport and fate of emerging contaminants (ECs). A study was carried out at the contrasting instrumented environmental observatory sites at Oxford, on the peri-urban floodplain gravel aquifer of the River Thames and Boxford, in the rural valley of the River Lambourn on the chalk aquifer, in Southern England to explore the use of ECs to fingerprint contaminant sources and flow pathways in groundwater. At Oxford compounds were typical of a local waste tip plume (not only plasticisers and solvents but also barbiturates and N,N-diethyl-m-toluamide (DEET)) and of the urban area (plasticisers and mood-enhancing drugs such as carbamazepine). At Boxford the results were different with widespread occurrence of agricultural pesticides, their metabolites and the solvent trichloroethene, as well as plasticisers, caffeine, butylated food additives, DEET, parabens and trace polyaromatic hydrocarbons (PAHs). Groups of compounds used in pharmaceuticals and personal care products of different provenance in the environment could be distinguished, i) historical household and medical waste, ii) long-term household usage persistent in groundwater and iii) current usage and contamination from surface water. Co-contaminant and degradation products can also indicate the likely source of contaminants. A cocktail of contaminants can be used as tracers to provide information on catchment pathways and groundwater/surface water interactions. A prominent feature in this study is the attenuation of many EC compounds in the hyporheic zone.

  20. Reducing Organic Contamination in NASA JSC Astromaterial Curation Facility

    NASA Technical Reports Server (NTRS)

    Calaway, M. J.; Allen, C. C.; Allton, J. H.

    2013-01-01

    Future robotic and human spaceflight missions to the Moon, Mars, asteroids and comets will require handling and storing astromaterial samples with minimal inorganic and organic contamination to preserve the scientific integrity of each sample. Much was learned from the rigorous attempts to minimize and monitor organic contamination during Apollo, but it was not adequate for current analytical requirements; thus [1]. OSIRIS-REx, Hayabusa-2, and future Mars sample return will require better protocols for reducing organic contamination. Future isolation con-tainment systems for astromaterials, possibly nitrogen enriched gloveboxes, must be able to reduce organic and inorganic cross-contamination. In 2012, a baseline study established the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs that could be used as a benchmark for future mission designs [2, 3]. After standard ultra-pure water (UPW) cleaning, the majority of organic contaminates found were hydrocarbons, plasticizers, silicones, and solvents. Hydro-carbons loads (> C7) ranged from 1.9 to 11.8 ng/cm2 for TD-GC-MS wafer exposure analyses and 5.0 to 19.5 ng/L for TD-GC-MS adsorbent tube exposure. Plasticizers included < 0.6 ng/cm2 of DBP, DEP, TXIB, and DIBP. Silicones included < 0.5 ng/cm2 of cyclo(Me2SiO)x (x = 6, 8, 9, 10) and siloxane. Solvents included < 1.0 ng/cm2 of 2-cyclohexen-1-one, 3,5,5-trimethyl- (Isopho-rone), N-formylpiperidine, and 2-(2-butoxyethoxy) ethanol. In addition, DBF, rubber/polymer additive was found at < 0.2 ng/cm2 and caprolactam, nylon-6 at < 0.6 ng/cm2. Reducing Organics: The Apollo program was the last sam-ple return mission to place high-level organic requirements and biological containment protocols on a curation facility. The high vacuum complex F-201 glovebox in the Lunar Receiving Labora-tory used ethyl alcohol (190 proof), 3:1 benzene/methanol (nano grade solution), and heat sterilization at 130degC for 48 hours to reduce organic

  1. Molecular Isotopic Characterization of the ALH 85013.50 Meteorite: Defining the Extraterrestrial Organic Compounds

    NASA Technical Reports Server (NTRS)

    Fuller, M.; Huang, Y.

    2003-01-01

    The Antarctic Meteorite Program has returned over 16,000 meteorites from the ice sheets of the Antarctic. This more than doubles the number of preexisting meteorite collection and adds important and rare specimens to the assemblage. The CM carbonaceous chondrites are of particular interest because of their high organic component. The Antarctic carbonaceous chondrites provide a large, previously uninvestigated suite of meteorites. Of the 161 CM chondrites listed in the Catalogue of Meteorites 138 of them have been recovered from the Antarctic ice sheets,. However, these meteorites have typically been exposed to Earth s conditions for long periods of time. The extent of terrestrial organic contamination and weathering that has taken place on these carbonaceous chondrites is unknown. In the past, stable isotope analysis was used to identify bulk organics that were extraterrestrial in origin. Although useful, this method could not exclude the possibility of terrestrial contamination contributing to the isotopic measurement. Compound specific isotope analysis of organic meteorite material has provided the opportunity to discern the terrestrial contamination from extraterrestrial organic compounds on the molecular level.

  2. Enantiomeric and Isotopic Analysis of Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, George

    2004-01-01

    Carbonaceous meteorites are relatively enriched in soluble organic compounds. The Murchison and Murray meteorites contain numerous compounds of interest in the study of early solar system organic chemistry and organic compounds of potential importance for the origin of life. These include: amino acids, amides, carboxylic acids, and polyols. This talk will focus on the enantiomeric and isotopic analysis of individual meteoritic compounds - primarily polyol acids. The analyses will determine if, in addition to certain amino acids from Murchison, another potentially important class of prebiotic compounds also contains enantiomeric excesses, i.e., excesses that could have contributed to the current homochirality of life. Preliminary enantiomeric and isotopic (C- 13) measurements of Murchison glyceric acid show that it is indeed extraterrestrial. C-13 and D isotope analysis of meteoritic sugar alcohols (glycerol, threitol, ribitol, etc.) has shown that they are also indigenous to the meteorite.

  3. Inclusion of emerging organic contaminants in groundwater monitoring plans.

    PubMed

    Lamastra, Lucrezia; Balderacchi, Matteo; Trevisan, Marco

    2016-01-01

    Groundwater is essential for human life and its protection is a goal for the European policies. All the anthropogenic activities could impact on water quality. •Conventional pollutants and more than 700 emerging pollutants, resulting from point and diffuse source contamination, threat the aquatic ecosystem.•Policy-makers and scientists will have to cooperate to create an initial groundwater emerging pollutant priority list, to answer at consumer demands for safety and to the lack of conceptual models for emerging pollutants in groundwater.•Among the emerging contaminants and pollutants this paper focuses on organic wastewater contaminants (OWCs) mainly released into the environment by domestic households, industry, hospitals and agriculture. This paper starts from the current regulatory framework and from the literature overview to explain how the missing conceptual model for OWCs could be developed.•A full understanding of the mechanisms leading to the contamination and the evidence of the contamination must be the foundation of the conceptual model. In this paper carbamazepine, galaxolide and sulfamethozale, between the OWCs, are proposed as "environmental tracers" to identify sources and pathways ofcontamination/pollution.

  4. Report of the Organic Contamination Science Steering Group

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Beaty, D. W.; Anderson, M. S.; Aveni, G.; Bada, J. L.; Clemett, S. J.; DesMaris, D. J.; Douglas, S.; Dworkin, J. P.; Kern, R. G.

    2004-01-01

    The exploration of the possible emergence and duration of life on Mars from landed platforms requires attention to the quality of measurements that address these objectives. In particular, the potential impact of terrestrial contamination on the measurement of reduced carbon with sensitive in situ instruments must be addressed in order to reach definitive conclusions regarding the source of organic molecules. Following the recommendation of the Mars Exploration Program Analysis Group (MEPAG) at its September 2003 meeting [MEPAG, 2003], the Mars Program Office at NASA Headquarters chartered the Organic Contamination Science Steering Group (OCSSG) to address this issue. The full report of the six week study of the OCSSG can be found on the MEPAG web site [1]. The study was intended to define the contamination problem and to begin to suggest solutions that could provide direction to the engineering teams that design and produce the Mars landed systems. Requirements set by the Planetary Protection Policy in effect for any specific mission do not directly address this question of the potential interference from terrestrial contaminants during in situ measurements.

  5. Long-Term Fate of Organic Micropollutants in Sewage-Contaminated Groundwater

    USGS Publications Warehouse

    Barber, L.B.; Schroeder, M.P.; LeBlanc, D.R.

    1988-01-01

    Disposal of secondary sewage effluent by rapid infiltration has produced a plume of contaminated groundwater over 3500 m long near Falmouth, MA. Approximately 50 volatile organic compounds were detected and identified in the plume, at concentrations ranging from 10 ng/L to 500 ??g/L, by closed-loop stripping and purge- and-trap in conjuction with gas chromatography-mass spectrometry. The dominant contaminants were di-, tri- and tetrachloroethene, o- and p-dichlorobenzene, C1 to C6 alkylbenzenes, 2,6-di-tert-butylbenzoquinone, and several isomers of p-nonylphenol. The chloroethenes and chlorobenzenes had the same general distribution as chloride and boron and appear to be transported with little retardation. Less soluble compounds, such as nonylphenol and di-tert-butylbenzoquinone, appear to be retarded during subsurface transport by sorption processes. Although biodegradation of labile organic compounds occurs near the infiltration beds, many trace compounds, including chlorinated benzenes, alkylbenzenes, and aliphatic hydrocarbons, have persisted for more than 30 years in the aquifer.

  6. SYNTHESIZING ORGANIC COMPOUNDS USING LIGHT-ACTIVATED TIO2

    EPA Science Inventory

    High-value organic compounds have been synthesized successfully from linear and cyclic hydrocarbons, by photocatalytic oxidation using a semiconductor material, titanium dioxide (TiO2). Various hydrocarbons were partially oxgenated in both liquid and gaseous phase reactors usi...

  7. ESTIMATION OF PHYSIOCHEMICAL PROPERTIES OF ORGANIC COMPOUNDS BY SPARC

    EPA Science Inventory

    The computer program SPARC (SPARC Performs Automated Reasoning in Chemistry) has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC uses computational algorithms...

  8. SEPARATION OF VOLATILE ORGANIC COMPOUNDS FROM SURFACTANT SOLUTIONS BY PERVAPORATION

    EPA Science Inventory

    Pervaporation is gradually becoming an accepted and practical method for the recovery of volatile organic compounds (VOCs) from aqueous process and waste streams. As the technolog has matured, new applications for pervaporation have emerged. One such application is the separati...

  9. Synthesis of fluorinated organic compounds using oxygen difluoride

    NASA Technical Reports Server (NTRS)

    Toy, M. S.

    1971-01-01

    Oxygen difluoride synthesis is a much simpler, higher-yield procedure than reactions originally followed to synthesize various fluorinated organic compounds. Extreme care is taken in working with oxygen difluoride as its reactions present severe explosion hazard.

  10. A synthesis of parameters related to the binding of neutral organic compounds to charcoal.

    PubMed

    Hale, Sarah E; Arp, Hans Peter H; Kupryianchyk, Darya; Cornelissen, Gerard

    2016-02-01

    The sorption strength of neutral organic compounds to charcoal, also called biochar was reviewed and related to charcoal and compound properties. From 29 studies, 507 individual Freundlich sorption coefficients were compiled that covered the sorption strength of 107 organic contaminants. These sorption coefficients were converted into charcoal-water distribution coefficients (K(D)) at aqueous concentrations of 1 ng/L, 1 µg/L and 1 mg/L. Reported log K(D) values at 1 µg/L varied from 0.38 to 8.25 across all data. Variation was also observed within the compound classes; pesticides, herbicides and insecticides, PAHs, phthalates, halogenated organics, small organics, alcohols and PCBs. Five commonly reported variables; charcoal production temperature T, surface area SA, H/C and O/C ratios and organic compound octanol-water partitioning coefficient, were correlated with KD values using single and multiple-parameter linear regressions. The sorption strength of organic compounds to charcoals increased with increasing charcoal production temperature T, charcoal SA and organic pollutant octanol-water partitioning coefficient and decreased with increasing charcoal O/C ratio and charcoal H/C ratio. T was found to be correlated with SA (r(2) = 0.66) and O/C (r(2) = 0.50), particularly for charcoals produced from wood feedstocks (r(2) = 0.73 and 0.80, respectively). The resulting regression: log K(D)=(0.18 ± 0.06) log K(ow) + (5.74 ± 1.40) log T + (0.85 ± 0.15) log SA + (1.60 ± 0.29) log OC + (-0.89 ± 0.20) log HC + (-13.20 ± 3.69), r(2) = 0.60, root mean squared error = 0.95, n = 151 was obtained for all variables. This information can be used as an initial screening to identify charcoals for contaminated soil and sediment remediation.

  11. Uptake of organic sulfur and nitrogen compounds by aerosols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efforts have been undertaken to monitor and model the uptake of medium-sized organic compounds found above agricultural waste. Field effects performed by our collaborators monitor both the gas phase compounds present in a chicken house in Kentucky; using PILS-IC sampling, the contents of PM2.5 parti...

  12. INDOOR AIR QUALITY DATA BASE FOR ORGANIC COMPOUNDS

    EPA Science Inventory

    The report gives results of the compilation of a data base for concentrations of organic compounds measured indoors. ased on a review of the literature from 1979 through 1990, the data base contains information on over 220 compounds ranging in molecular weight from 30 to 446. he ...

  13. VOLATILE ORGANIC COMPOUNDS MEASURED IN DEARS PASSIVE SAMPLERS

    EPA Science Inventory

    A suite of 27 volatile organic compounds (VOCs) were monitored in personal exposures, indoors and outdoors of participant's residences, and at a central community site during the DEARS summer 2004 monitoring season. The list of VOCs focused on compounds typically associated with ...

  14. Speciation of volatile organic compounds from poultry production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The air consent agreement between EPA and large animal feeding operations (AFO) is designed to determine at what level compounds are being emitted from these facilities. However, the methodology used for quantifying total non-methane hydrocarbons and speciation of volatile organic compounds (VOC) n...

  15. Predicting the emission of volatile organic compounds from silage systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major VOC emission source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols wit...

  16. Molecular and Enantiomeric Analysis of Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, George

    2003-01-01

    Carbonaceous meteorites are relatively enriched in carbon. Much of this carbon is in the form of soluble organic compounds. The Murchison and Murray meteorites are the best-characterized carbonaceous meteorites with respect to organic chemistry. Their content of organic compounds has led to an initial understanding of early solar system organic chemistry as well as what compounds may have played a role in the origin of life (Cronin and Chang, 1993). Reported compounds include: amino acids, amides, carboxylic acids, sulfonic acids, and polyols. This talk will focus on the molecular and enantiomeric analysis of individual meteoritic compounds: polyol acids; and a newly identified class of meteorite compounds, keto acids, i.e., acetoacetic acid, levulinic acid, etc. Keto acids (including pyruvic) are critically important in all contemporary organisms. They are key intermediates in metabolism and processes such as the citric acid cycle. Using gas chromatography-mass spectrometry we identified individual meteoritic keto acids after derivatization to one or more of the following forms: isopropyl ester (ISP), trimethyIsiIy1 (TMS), tert-butyldimethylsilyl (BDMS). Ongoing analyses will determine if, in addition to certain amino acids from Murchison (Cronin and Pizzarello, 1997), other potentially important prebiotic compounds also contain enantiomeric excesses, i.e., excesses that could have contributed to the current homochirality of life.

  17. Shock Modifications of Organic Compounds in Carbonaceous Chondrite Parent Bodies

    NASA Technical Reports Server (NTRS)

    Cooper, George W.

    1998-01-01

    Impacts among asteroidal objects would have altered or destroyed pre-existing organic matter in both targets and projectiles to a greater or lesser degree depending upon impact velocities. To begin filling a knowledge gap on the shock metamorphism of organic compounds, we are studying the effects of shock impacts on selected classes of organic compounds utilizing laboratory shock facilities. Our approach is to subject mixtures of organic compounds, embedded in the matrix of the Murchison meteorite, to simulated hypervelocity impacts by firing them into targets at various pressures. The mixtures are then analyzed to determine the amount of each compound that survives as well as to determine if new compounds are being synthesized. The initial compounds added to the matrix (with the exception of thiosulfate). The sulfonic acids were chosen in part because they are relatively abundant in Murchison, relatively stable, and because they and the phosphonic acids are the first well-characterized homologous series of organic sulfur and phosphorus compounds identified in an extraterrestrial material. Experimental procedures were more fully described in the original proposal. A 20 mm gun, with its barrel extending into a vacuum chamber (10(exp -2) torr), was used to launch the projectile containing the sample at approx. 1.6 km/sec (3,600 mi/hr) into the target material. Maximum pressure of impact depend on target/projectile materials. The target was sufficiently thin to assure minimum pressure decay over the total sample thickness.

  18. Process for reducing organic compounds with calcium, amine, and alcohol

    DOEpatents

    Benkeser, Robert A.; Laugal, James A.; Rappa, Angela

    1985-01-01

    Olefins are produced by contacting an organic compound having at least one benzene ring with calcium metal, ethylenediamine, a low molecular weight aliphatic alcohol, and optionally a low molecular weight aliphatic primary amine, and/or an inert, abrasive particulate substance. The reduction is conducted at temperatures ranging from about -10.degree. C. to about 30.degree. C. or somewhat higher. Substantially all of the organic compounds are converted to corresponding cyclic olefins, primarily diolefins.

  19. Process for reducing organic compounds with calcium, amine, and alcohol

    DOEpatents

    Benkeser, R.A.; Laugal, J.A.; Rappa, A.

    1985-08-06

    Olefins are produced by contacting an organic compound having at least one benzene ring with calcium metal, ethylenediamine, a low molecular weight aliphatic alcohol, and optionally a low molecular weight aliphatic primary amine, and/or an inert, abrasive particulate substance. The reduction is conducted at temperatures ranging from about [minus]10 C to about 30 C or somewhat higher. Substantially all of the organic compounds are converted to corresponding cyclic olefins, primarily diolefins.

  20. Removal of organic wastewater contaminants in septic systems using advanced treatment technologies

    USGS Publications Warehouse

    Wilcox, J.D.; Bahr, J.M.; Hedman, C.J.; Hemming, J.D.C.; Barman, M.A.E.; Bradbury, K.R.

    2009-01-01

    The detection of pharmaceuticals and other organic wastewater contaminants (OWCs) in ground water and surface-water bodies has raised concerns about the possible ecological impacts of these compounds on nontarget organisms. On-site wastewater treatment systems represent a potentially significant route of entry for organic contaminants to the environment. In this study, effluent samples were collected and analyzed from conventional septic systems and from systems using advanced treatment technologies. Six of 13 target compounds were detected in effluent from at least one septic system. Caffeine, paraxanthine, and acetaminophen were the most frequently detected compounds, and estrogenic activity was detected in 14 of 15 systems. The OWC concentrations were significantly lower in effluent after sand filtration (p < 0.01) or aerobic treatment (p < 0.05) as compared with effluent that had not undergone advanced treatment. In general, concentrations in conventional systems were comparable to those measured in previous studies of municipal wastewater treatment plant (WWTP) influent, and concentrations in systems after advanced treatment were comparable to previously measured concentrations in WWTP effluent. These data indicate that septic systems using advanced treatment can reduce OWCs in treated effluent to similar concentrations as municipal WWTPs. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  1. Mechanical alloying of a hydrogenation catalyst used for the remediation of contaminated compounds

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor); Aitken, Brian S. (Inventor)

    2010-01-01

    A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. Preferably, the hydrogenation catalyst is a bimetallic particle including zero-valent metal particles coated with a catalytic material. The mechanical milling technique is simpler and cheaper than previously used methods for producing hydrogenation catalysts.

  2. Mechanical alloying of a hydrogenation catalyst used for the remediation of contaminated compounds

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor); Aitken, Brian S. (Inventor)

    2012-01-01

    A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. Preferably, the hydrogenation catalyst is a bimetallic particle including zero-valent metal particles coated with a catalytic material. The mechanical milling technique is simpler and cheaper than previously used methods for producing hydrogenation catalysts.

  3. Effect of reactive core mat application on bioavailability of hydrophobic organic compounds.

    PubMed

    Meric, Dogus; Barbuto, Sara M; Alshawabkeh, Akram N; Shine, James P; Sheahan, Thomas C

    2012-04-15

    Sediment remediation techniques to limit the bioavailability of contaminants are of special interest due to related acute or chronic toxicities associated with sediment contaminants. Bioavailability in aquatic sediments can be particularly problematic due to their accessibility to food chain biota, and interactions with surface and ground water. The effect of a reactive core mat (RCM) containing organoclay on the bioavailability of hydrophobic organic compounds (HOCs) (i.e., PCBs and naphthalene) was studied using oligochaete worms (Lumbriculus variegatus). Sediment sampled from the Neponset River (Milton, MA) with 10 ppm background PCB contamination was used in the experimental study. The objective of this study is to investigate the difference in HOC concentration of worms exposed to: a) a grab sample of contaminated sediment (10.4% total organic carbon); and b) an initially clean mixture of sand and organic matter (the so-called biouptake layer), placed on top of the RCM-capped sediment during consolidation coupled solute transport experiments. In addition to the experimental data, the U.S. Army Corps of Engineers (USACE) biota-sediment accumulation factor (BSAF) database was validated and used to model biouptake of contaminants for certain cases. Results indicate that RCM capping reduced the average bioavailability of both PCBs and naphthalene by a factor of about 50. In fact, worms exposed to the RCM-protected biouptake layer show virtually the same HOC concentrations as those measured in the control worm samples.

  4. Effect of reactive core mat application on bioavailability of hydrophobic organic compounds

    PubMed Central

    Meric, Dogus; Barbuto, Sara M.; Alshawabkeh, Akram N.; Shine, James P.; Sheahan, Thomas C.

    2014-01-01

    Sediment remediation techniques to limit the bioavailability of contaminants are of special interest due to related acute or chronic toxicities associated with sediment contaminants. Bioavailability in aquatic sediments can be particularly problematic due to their accessibility to food chain biota, and interactions with surface and ground water. The effect of a reactive core mat (RCM) containing organoclay on the bioavailability of hydrophobic organic compounds (HOCs) (i.e., PCBs and naphthalene) was studied using oligochaete worms (Lumbriculus variegatus). Sediment sampled from the Neponset River (Milton, MA) with 10 ppm background PCB contamination was used in the experimental study. The objective of this study is to investigate the difference in HOC concentration of worms exposed to: a) a grab sample of contaminated sediment (10.4% total organic carbon); and b) an initially clean mixture of sand and organic matter (the so-called biouptake layer), placed on top of the RCM-capped sediment during consolidation coupled solute transport experiments. In addition to the experimental data, the U.S. Army Corps of Engineers (USACE) biota-sediment accumulation factor (BSAF) database was validated and used to model biouptake of contaminants for certain cases. Results indicate that RCM capping reduced the average bioavailability of both PCBs and naphthalene by a factor of about 50. In fact, worms exposed to the RCM-protected biouptake layer show virtually the same HOC concentrations as those measured in the control worm samples. PMID:22386995

  5. Advances in Dynamic Transport of Organic Contaminants in Karst Groundwater Systems

    NASA Astrophysics Data System (ADS)

    Padilla, I. Y.; Vesper, D.; Alshawabkeh, A.; Hellweger, F.

    2011-12-01

    Karst groundwater systems develop in soluble rocks such as limestone, and are characterized by high permeability and well-developed conduit porosity. These systems provide important freshwater resources for human consumption and ecological integrity of streams, wetlands, and coastal zones. The same characteristics that make karst aquifers highly productive make them highly vulnerable to contamination. As a result, karst aquifers serve as an important route for contaminants exposure to humans and wildlife. Transport of organic contaminants in karst ground-water occurs in complex pathways influenced by the flow mechanism predominating in the aquifer: conduit-flow dominated systems tend to convey solutes rapidly through the system to a discharge point without much attenuation; diffuse-flow systems, on the other hand, can cause significant solute retardation and slow movement. These two mechanisms represent end members of a wide spectrum of conditions found in karst areas, and often a combination of conduit- and diffuse-flow mechanisms is encountered, where both flow mechanisms can control the fate and transport of contaminants. This is the case in the carbonate aquifers of northern Puerto Rico. This work addresses advances made on the characterization of fate and transport processes in karst ground-water systems characterized by variable conduit and/or diffusion dominated flow under high- and low-flow conditions. It involves laboratory-scale physical modeling and field-scale sampling and historical analysis of contaminant distribution. Statistical analysis of solute transport in Geo-Hydrobed physical models shows the heterogeneous character of transport dynamics in karstic units, and its variability under different flow regimes. Field-work analysis of chlorinated volatile organic compounds and phthalates indicates a large capacity of the karst systems to store and transmit contaminants. This work is part of the program "Puerto Rico Testsite for Exploring Contamination

  6. Transport, behavior, and fate of volatile organic compounds in streams

    USGS Publications Warehouse

    Rathbun, R.E.

    1998-01-01

    Volatile organic compounds (VOCs) are compounds with chemical and physical properties that allow the compounds to move freely between the water and air phases of the environment. VOCs are widespread in the environment because of this mobility. Many VOCs have properties making them suspected or known hazards to the health of humans and aquatic organisms. Consequently, understanding the processes affecting the concentration and distribution VOCs in the environment is necessary. The U.S. Geological Survey selected 55 VOCs for study. This report reviews the characteristics of the various process that could affect the transport, behavior, and fate of these VOCs in streams.

  7. Determining Passive Sampler Partition Coefficients for Dissolved-phase Organic Contaminants

    EPA Science Inventory

    Passive samplers are used for environmental and analytical purposes to measure dissolved nonionic organic contaminants (NOCs) by absorption from a contaminated medium into a clean phase, usually in the form of a synthetic organic film. Recently developed passive sampler techniqu...

  8. EXTRACTION OF ORGANIC CONTAMINANTS FROM MARINE SEDIMENTS AND TISSUES USING MICROWAVE ENERGY

    EPA Science Inventory

    In this study, we compared microwave solvent extraction (MSE) to conventional methods for extracting organic contaminants from marine sediments and tissues with high and varying moisture content. The organic contaminants measured were polychlorinated biphenyl (PCB) congeners, chl...

  9. Analysis of volatile organic compounds from illicit cocaine samples

    SciTech Connect

    Robins, W.H.; Wright, B.W.

    1994-07-01

    Detection of illicit cocaine hydrochloride shipments can be improved if there is a greater understanding of the identity and quantity of volatile compounds present. This study provides preliminary data concerning the volatile organic compounds detected in a limited Set of cocaine hydrochloride samples. In all cases, cocaine was one of the major volatile compounds detected. Other tropeines were detected in almost all samples. Low concentrations of compounds that may be residues of processing solvents were observed in some samples. The equilibrium emissivity of. cocaine from cocaine hydrochloride was investigated and a value of 83 parts-per-trillion was determined.

  10. Rejection of trace organic compounds by high-pressure membranes.

    PubMed

    Kim, T U; Amy, G; Drewes, J E

    2005-01-01

    High-pressure membranes, encompassing reverse osmosis (RO), nanofiltration (NF), and low-pressure RO, may provide an effective treatment barrier for trace organic compounds including disinfection by-products (DBPs), pesticides, solvents, endocrine disrupting compounds (EDCs) and pharmaceutically active compounds (PhACs). The objective is to develop a mechanistic understanding of the rejection of trace organic compounds by high-pressure membranes, based on an integrated framework of compound properties, membrane properties, and operational conditions. Eight trace organic compounds, four DBPs and four chlorinated (halogenated) solvents, are being emphasized during an initial study, based on considerations of compound properties, occurrence, and health effects (regulations). Four polyamide FilmTec membranes; three reverse osmosis/RO (BW-400, LE-440, XLE-440) and one nanofiltration/NF (NF-90); are being characterized according to pure water permeability (PWP), molecular weight cutoff (MWCO), hydrophobicity (contact angle), and surface charge (zeta potential). It is noteworthy that rejections of compounds of intermediate hydrophobicity by the candidate membranes were observed to be less than salt rejections reported for these membranes, suggesting that transport of these solutes through these membranes is facilitated by solute-membrane interactions. We are continuing with diffusion cell measurements to describe solute-membrane interactions by estimation of diffusion coefficients through membranes pores, either hindered or facilitated.

  11. Transport of Organic Contaminants Mobilized from Coal through Sandstone Overlying a Geological Carbon Sequestration Reservoir

    SciTech Connect

    Zhong, Lirong; Cantrell, Kirk J.; Bacon, Diana H.; Shewell, Jesse L.

    2014-02-01

    Column experiments were conducted using a wetted sandstone rock installed in a tri-axial core holder to study the flow and transport of organic compounds mobilized by scCO2 under simulated geologic carbon storage (GCS) conditions. The sandstone rock was collected from a formation overlying a deep saline reservoir at a GCS demonstration site. Rock core effluent pressures were set at 0, 500, or 1000 psig and the core temperature was set at 20 or 50°C to simulate the transport to different subsurface depths. The concentrations of the organic compounds in the column effluent and their distribution within the sandstone core were monitored. Results indicate that the mobility though the core sample was much higher for BTEX compounds than for naphthalene. Retention of organic compounds from the vapor phase to the core appeared to be primarily controlled by partitioning from the vapor phase to the aqueous phase. Adsorption to the surfaces of the wetted sandstone was also significant for naphthalene. Reduced temperature and elevated pressure resulted in greater partitioning of the mobilized organic contaminants into the water phase.

  12. The Effect of Golden Pothos in Reducing the Level of Volatile Organic Compounds in a Simulated Spacecraft Cabin

    NASA Technical Reports Server (NTRS)

    Ursprung, Matthew; Amiri, Azita; Kayatin, Matthew; Perry, Jay

    2016-01-01

    The impact of Golden Pothos on indoor air quality was studied against a simulated spacecraft trace contaminant load model, consistent with the International Space Station (ISS), containing volatile organic compounds (VOCs) and formaldehyde. Previous research provides inconclusive results on the efficacy of plant VOC removal which this projects seeks to rectify through a better experimental design. This work develops a passive system for removing common VOC's from spacecraft and household indoor air and decreasing the necessity for active cabin trace contaminant removal systems.

  13. Recent advances in trifluoromethylation of organic compounds using Umemoto's reagents.

    PubMed

    Zhang, Cai

    2014-09-14

    The incorporation of fluorine-containing moieties into organic compounds is of great importance in pharmaceutical, agricultural, and materials science. Within these organofluorides, the trifluoromethyl group is one of the most important motifs. In recent years, the trifluoromethyl group has attracted more and more attention, and many trifluoromethylated compounds have been found to possess special activities. However, until now, only a few methods have been developed to achieve this efficiently using Umemoto's reagents. This review highlights recent developments in the direct introduction of a trifluoromethyl group into organic compounds with Umemoto's reagents. Seven approaches to the trifluoromethylation of organic compounds are summarized: (i) trifluoromethylation of arenes, (ii) trifluoromethylation of alkenes, (iii) trifluoromethylation of terminal alkynes, (iv) deoxygenative trifluoromethylation of benzylic xanthates, (v) trifluoromethylation of ketoesters, (vi) trifluoromethylation of aryl boronic acids and aromatic amines (synthesis of ArCF3) and (vii) trifluoromethylation of biphenyl isocyanide derivatives.

  14. Characterizations of organic compounds in diesel exhaust particulates.

    PubMed

    Lim, Jaehyun; Lim, Cheolsoo; Kim, Sangkyun; Hong, Jihyung

    2015-08-01

    To characterize how the speed and load of a medium-duty diesel engine affected the organic compounds in diesel particle matter (PM) below 1 μm, four driving conditions were examined. At all four driving conditions, concentration of identifiable organic compounds in PM ultrafine (34-94 nm) and accumulation (94-1000 nm) modes ranged from 2.9 to 5.7 μg/m(3) and 9.5 to 16.4 μg/m(3), respectively. As a function of driving conditions, the non-oxygen-containing organics exhibited a reversed concentration trend to the oxygen-containing organics. The identified organic compounds were classified into eleven classes: alkanes, alkenes, alkynes, aromatic hydrocarbons, carboxylic acids, esters, ketones, alcohols, ethers, nitrogen-containing compounds, and sulfur-containing compounds. At all driving conditions, alkane class consistently showed the highest concentration (8.3 to 18.0 μg/m(3)) followed by carboxylic acid, esters, ketones and alcohols. Twelve polycyclic aromatic hydrocarbons (PAHs) were identified with a total concentration ranging from 37.9 to 174.8 ng/m(3). In addition, nine nitrogen-containing polycyclic aromatic compounds (NPACs) were identified with a total concentration ranging from 7.0 to 10.3 ng/m(3). The most abundant PAH (phenanthrene) and NPACs (7,8-benzoquinoline and 3-nitrophenanthrene) comprise a similar molecular (3 aromatic-ring) structure under the highest engine speed and engine load.

  15. ENZYMATIC PROCESSES USED BY PLANTS TO DEGRADE ORGANIC COMPOUNDS

    EPA Science Inventory

    This is a review of recent plant enzyme systems that have been studied in uptake and transformation of organic contaminants. General procedures of plant preparation and enzyme isolation are covered. Six plant enzyme systems have been investigated for activity with selected pollut...

  16. The organic contamination survey and health risk assessment of 16 source water reservoirs in Haihe River basin.

    PubMed

    Gao, Jijun; Liu, Linghua; Liu, Xiaoru; Lu, Jin; Hao, Hong; Yuan, Hao; Zhou, Huaidong

    2012-01-01

    Although contamination by organic pollutants has previously been reported to occur in the Haihe River basin, few studies have been carried out on the levels of source water reservoir contamination and the health risk in the Haihe River basin. To understand the organic pollution status of the reservoirs in the Haihe River basin, samples were collected from 16 source water reservoirs. The samples were analyzed for the representative organic pollutants, which included benzene homologues, chlorobenzene compounds, organophosphorus pesticides, and nitrobenzene compounds, a total in all of 17 compounds. It was observed that the concentrations of the 17 compounds in the 16 reservoirs were all less than the limit laid down by Chinese surface water quality standards. In addition, benzene, toluene, nitrobenzene, p-nitrochlorobenzene, 2,4-dinitrotoluene and 2,4-dinitrochlorobenzene, dichlorvos, demeton, dimethoate methyl parathion, malathion and parathion were frequently detected in the 16 source water reservoirs, especially the organophosphorus pesticides; the detection rates of dichlorvos, dimethoate, methyl parathion, malathion and parathion were all 100% in the 16 source water reservoirs. The detection rate of target compounds suggested that organic pollution had been common in the source water of the Haihe River basin. The health risk assessment results suggested that the noncarcinogenic risk hazard quotient values of the target compounds were less than one, and the cancer risk values were all below 1 × 10(-6), which indicated that the heath risk produced by the target compounds in the 16 reservoirs was at an acceptable level.

  17. Development of urine standard reference materials for metabolites of organic chemicals including polycyclic aromatic hydrocarbons, phthalates, phenols, parabens, and volatile organic compounds

    PubMed Central

    Schantz, Michele M.; Benner, Bruce A.; Heckert, N. Alan; Sander, Lane C.; Sharpless, Katherine E.; Vander Pol, Stacy S.; Vasquez, Y.; Villegas, M.; Wise, Stephen A.; Alwis, K. Udeni; Blount, Benjamin C.; Calafat, Antonia M.; Li, Zheng; Silva, Manori J.; Ye, Xiaoyun; Gaudreau, Éric; Patterson, Donald G.; Sjödin, Andreas

    2016-01-01

    Two new Standard Reference Materials (SRMs), SRM 3672 Organic Contaminants in Smokers’ Urine (Frozen) and SRM 3673 Organic Contaminants in Non-Smokers’ Urine (Frozen), have been developed in support of studies for assessment of human exposure to select organic environmental contaminants. Collaborations among three organizations resulted in certified values for 11 hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and reference values for 11 phthalate metabolites, 8 environmental phenols and parabens, and 24 volatile organic compound (VOC) metabolites. Reference values are also available for creatinine and the free forms of caffeine, theobromine, ibuprofen, nicotine, cotinine, and 3-hydroxycotinine. These are the first urine Certified Reference Materials characterized for metabolites of organic environmental contaminants. Noteworthy, the mass fractions of the environmental organic contaminants in the two SRMs are within the ranges reported in population survey studies such as the National Health and Nutrition Examination Survey (NHANES) and the Canadian Health Measures Survey (CHMS). These SRMs will be useful as quality control samples for ensuring compatibility of results among population survey studies and will fill a void to assess the accuracy of analytical methods used in studies monitoring human exposure to these organic environmental contaminants. PMID:25651899

  18. Effects Of Evaporation Rate of Some Common Organic Contaminants on Hydraulic Conductivity of Aquifer Sand

    NASA Astrophysics Data System (ADS)

    Saud, Q. J.; Hasan, S. E.

    2014-12-01

    As part of a larger study to investigate potential effects of hydrocarbons on the geotechnical properties of aquifer solids, a series of laboratory experiments were carried out to ascertain the influence of evaporation rate of some common and widespread organic contaminants on the hydraulic conductivity of aquifer sand. Gasoline and its constituent chemicals-benzene, toluene, ethylbenzene, xylene (BTEX), isooctane- and trichloroethylene (TCE) were used to contaminate sand samples collected from the aquifer and vadose zone, at varying concentrations for extended periods of time. The goal was to study any change in the chemical makeup of the contaminants and its control on hydraulic conductivity of the sand. It was found that: (a) gasoline breaks down into constituent compounds when subjected to evaporation, e.g. during oil spills and leaks; and (b) lighter compounds volatilize faster and in the following order: TCE> benzene > isooctane > toluene > gasoline> ethylbenzene > xylene. In addition, these contaminants also caused a decrease in hydraulic conductivity of sand by up to 60% as compared to the uncontaminated sand. The inherent differences in the chemical structure of contaminating chemicals influenced hydraulic conductivity such that the observed decrease was greater for aliphatic than aromatic and chlorinated hydrocarbons. The presentation includes details of the experimental set up; evaporation rate, and geotechnical tests; X-ray diffraction and scanning electron microscope studies; and data analyses and interpretation. Rate of evaporation test indicates that residual LNAPLs will occupy a certain portion of the pores in the soil either as liquid or vapor phase in the vadose zone, and will create a coating on the adjacent solid mineral grains in the aquifer. Replacement of air by the LNAPLs along with grain coatings and the intramolecular forces would impede groundwater movement, thus affecting overall permeability of contaminated aquifers. Keywords: aquifer

  19. Predicting crystal structures of organic compounds.

    PubMed

    Price, Sarah L

    2014-04-07

    Currently, organic crystal structure prediction (CSP) methods are based on searching for the most thermodynamically stable crystal structure, making various approximations in evaluating the crystal energy. The most stable (global minimum) structure provides a prediction of an experimental crystal structure. However, depending on the specific molecule, there may be other structures which are very close in energy. In this case, the other structures on the crystal energy landscape may be polymorphs, components of static or dynamic disorder in observed structures, or there may be no route to nucleating and growing these structures. A major reason for performing CSP studies is as a complement to solid form screening to see which alternative packings to the known polymorphs are thermodynamically feasible.

  20. Scaffold of Asymmetric Organic Compounds - Magnetite Plaquettes

    NASA Technical Reports Server (NTRS)

    Chan, Q. H. S.; Zolensky, M. E.; Martinez, J.

    2015-01-01

    Life on Earth shows preference towards the set of organics with particular spatial configurations, this 'selectivity' is a crucial criterion for life. With only rare exceptions, life prefers the left- (L-) form over the right- (D-) form of amino acids, resulting in an L-enantiomeric excess (L-ee). Recent studies have shown Lee for alpha-methyl amino acids in some chondrites. Since these amino acids have limited terrestrial occurrence, the origin of their stereoselectivity is nonbiological, and it seems appropriate to conclude that chiral asymmetry, the molecular characteristic that is common to all terrestrial life form, has an abiotic origin. A possible abiotic mechanism that can produce chiral asymmetry in meteoritic amino acids is their formation with the presence of asymmetric catalysts, as mineral crystallization can produce spatially asymmetric structures. Magnetite is shown to be an effective catalyst for the formation of amino acids that are commonly found in chondrites. Magnetite 'plaquettes' (or 'platelets'), first described by Jedwab, show an interesting morphology of barrel-shaped stacks of magnetite disks with an apparent dislocation-induced spiral growth that seem to be connected at the center. A recent study by Singh et al. has shown that magnetites can self-assemble into helical superstructures. Such molecular asymmetry could be inherited by adsorbed organic molecules. In order to understand the distribution of 'spiral' magnetites in different meteorite classes, as well as to investigate their apparent spiral configurations and possible correlation to molecular asymmetry, we observed polished sections of carbonaceous chondrites (CC) using scanning electron microscope (SEM) imaging. The sections were also studied by electron backscattered diffraction (EBSD) in order to reconstruct the crystal orientation along the stack of magnetite disks.

  1. BIOCONCENTRATION FACTORS FOR VOLATILE ORGANIC COMPOUNDS IN VEGETATION

    EPA Science Inventory

    Samples of air and leaves were taken at the University of Nevada-Las Vegas campus and analyzed for volatile organic compounds using vacuum distillation coupled with gas chromatography/mass spectrometry. The data were used to estimate the bioconcentration of volatile organic compo...

  2. LOSS OF ORGANIC CHEMICALS IN SOIL: PURE COMPOUND TREATABILITY STUDIES

    EPA Science Inventory

    Comprehensive screening data on the treatability of 32 organic chemicals in soil were developed. Of the evaluated chemicals, 22 were phenolic compounds. Aerobic batch laboratory microcosm experiments were conducted using two soils: an acidic clay soil with <1% organic matter and ...

  3. Students' Understanding of Molecular Structure and Properties of Organic Compounds.

    ERIC Educational Resources Information Center

    Schmidt, Hans-Jurgen

    The purpose of this study was to investigate senior high school students' difficulties predicting the existence of hydrogen bridge bonds between organic molecules, investigate students' difficulties predicting the relative boiling points of simple organic compounds, and develop test questions that enable teachers to quickly get information about…

  4. 40 CFR 60.392 - Standards for volatile organic compounds

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic...

  5. 40 CFR 60.392 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic...

  6. 40 CFR 60.392 - Standards for volatile organic compounds

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic...

  7. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic...

  8. 40 CFR 60.392 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic...

  9. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic...

  10. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic...

  11. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic...

  12. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic...

  13. 40 CFR 60.392 - Standards for volatile organic compounds

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic...

  14. Leveraging the beneficial compounds of organic and pasture milk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Much discussion has arisen over the possible benefits of organic food, including milk. Organic milk comes from cows that are on pasture during the growing season, and would be expected to contain some compounds that are not found in animals receiving conventional feed, or at higher concentrations. ...

  15. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    EPA Science Inventory

    Speciated volatile organic compounds (VOCs) and organic fine particulate matter (PM2.5) mass emission factors were determined from laboratory peat fire experiments. Peat samples originated from two wildlife reserves located near the coast of North Carolina, U.S. Gas and particula...

  16. Can volatile organic compounds be markers of sea salt?

    PubMed

    Silva, Isabel; Coimbra, Manuel A; Barros, António S; Marriott, Philip J; Rocha, Sílvia M

    2015-02-15

    Sea salt is a handmade food product that is obtained by evaporation of seawater in saltpans. During the crystallisation process, organic compounds from surroundings can be incorporated into sea salt crystals. The aim of this study is to search for potential volatile markers of sea salt. Thus, sea salts from seven north-east Atlantic Ocean locations (France, Portugal, Continental Spain, Canary Islands, and Cape Verde) were analysed by headspace solid-phase microextraction combined with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. A total of 165 compounds were detected, ranging from 32 to 71 compounds per salt. The volatile composition revealed the variability and individuality of each salt, and a set of ten compounds were detected in all samples. From these, seven are carotenoid-derived compounds that can be associated with the typical natural surroundings of ocean hypersaline environment. These ten compounds are proposed as potential volatile markers of sea salt.

  17. Contribution of microorganisms to non-extractable residue formation from biodegradable organic contaminants in soil

    NASA Astrophysics Data System (ADS)

    Nowak, K. M.; Girardi, C.; Miltner, A.; Schäffer, A.; Kästner, M.

    2012-04-01

    Biodegradation of organic contaminants in soil is actually understood as their transformation into various primary metabolites, microbial biomass, mineralisation products and non-extractable residues (NER). NER are generally considered to be composed of parent compounds or primary metabolites with hazardous potential. Up to date, however, their chemical composition remains still unclear. Studies on NER formation are limited to quantitative analyses in soils or to simple humic acids-contaminant systems. However, in the case of biodegradable organic compounds, NER may also contain microbial biomass components, e.g. fatty acids (FA) and amino acids (AA). After cell death, these biomolecules are incorporated into soil organic matter (SOM) and stabilised, ultimately forming biogenic residues which are not any more extractable. We investigated the incorporation of the 13C-label into FA and AA and their fate during biodegradation experiments in soil with isotope-labelled 2,4-dichlorophenoxyacetic acid (13C6-2,4-D) and ibuprofen (13C6-ibu) as model organic contaminants. Our study proved for the first time that nearly all NER formed from 13C6-2,4-D and 13C6-ibu in soil derived from harmless microbial biomass components stabilised in SOM. 13C-FA and 13C-AA contents in the living microbial biomass fraction decreased over time and these components were continuously incorporated into the non-living SOM pool in biotic experiments with 13C6-2,4-D and 13C6-ibu. The 13C-AA in the non-living SOM were surprisingly stable from day 32 (13C6-2,4-D) and 58 (13C6-ibu) until the end of incubation. We also studied the transformation of 13C6-2,4-D and 13C6-ibu into NER in the abiotic soil experiments. In these experiments, the total NER contents were much lower than in the corresponding biotic experiments. The absence of labelled biomolecules in the NER fraction in abiotic soils demonstrated that they consist of the potentially hazardous parent compounds and / or their metabolites. Biogenic

  18. Development of HUMASORB{trademark}, a lignite derived humic acid for removal of metals and organic contaminants from groundwater

    SciTech Connect

    Sanjay, H.G.; Srivastave, K.C.; Walia, D.S.

    1995-10-01

    Heavy metal and organic contamination of surface and groundwater systems is a major environmental concern. The contamination is primarily due to improperly disposed industrial wastes. The presence of toxic heavy metal ions, volatile organic compounds (VOCs) and pesticides in water is of great concern and could affect the safety of drinking water. Decontamination of surface and groundwater can be achieved using a broad spectrum of treatment options such as precipitation, ion-exchange, microbial digestion, membrane separation, activated carbon adsorption, etc. The state of the art technologies for treatment of contaminated water however, can in one pass remediate only one class of contaminants, i.e., either VOCs (activated carbon) or heavy metals (ion exchange). This would require the use of at a minimum, two different stepwise processes to remediate a site. The groundwater contamination at different Department of Energy (DOE) sites (e.g., Hanford) is due to the presence of both VOCs and heavy metals. The two-step approach increases the cost of remediation. To overcome the sequential treatment of contaminated streams to remove both organics and metals, a novel material having properties to remove both classes of contaminants in one step is being developed as part of this project.The objective of this project is to develop a lignite-derived adsorbent, Humasorb{sup TM} to remove heavy metals and organics from ground water and surface water streams.

  19. Contamination status and spatial distribution of organochlorine compounds in fishes from Nansei Islands, Japan.

    PubMed

    Malarvannan, Govindan; Takahashi, Shin; Ikemoto, Tokutaka; Isobe, Tomohiko; Kunisue, Tatsuya; Sudaryanto, Agus; Miyagi, Toshihiko; Nakamura, Masaru; Yasumura, Shigeki; Tanabe, Shinsuke

    2011-01-01

    Two species of fishes (n=52; tilapia and mullet) from industrialized and urbanized areas of Okinawa Island (Manko-Noha river, Hija river and Shikaza river) and from a remote area of Ishigaki Island (Anparu mudflat), Japan were collected between August 2005 and July 2006, and analyzed for five organochlorine compounds (OCs), viz., DDTs, PCBs, CHLs, HCHs and HCB. Concentrations and the contamination patterns of OCs in fishes varied between locations. Considerable residue levels of OCs, especially CHLs and DDTs were found in both fishes from the main Okinawa Island. These levels were relatively higher than the reported values for seafood from Japanese coasts, indicating that even now pollution sources of these contaminants still exist in this region. On the other hand, lower concentrations of OCs were detected in fishes from Ishigaki Island waters than those of other Japanese coastal waters, suggesting that this region is less contaminated by OC contaminants.

  20. ACE: Detecting Volatile Organic Compounds from Orbit

    NASA Astrophysics Data System (ADS)

    Harrison, Jeremy J.; Allen, Nicholas D. C.; Bernath, Peter F.

    2010-12-01

    High-resolution infrared absorption cross sections for ethane, propane (both in the 3 μm region) and acetone (in the 3 μm and 5-8 μm regions) have been determined from spectra recorded using a high-resolution FTIR spectrometer (Bruker IFS 125/HR). Data are presented for mixtures with dry synthetic air at 0.015 cm-1 resolution (calculated as 0.9/MOPD using the Bruker definition of resolution), at a number of temperatures and pressures appropriate for atmospheric conditions. Intensities were calibrated using spectra taken from the Pacific Northwest National Laboratory (PNNL) IR database. Methane measurements are currently being performed in the 3 μm region in order to retrieve line mixing parameters, which will be used in an improved ACE forward model to minimize CH4 residuals in the retrievals of organic species. Preliminary retrievals of acetone from ACE spectra using a microwindow from 1364.7 to 1367.1 cm-1 have been performed.

  1. Determination of organic compounds in landfill leachates treated by Fenton-Adsorption.

    PubMed

    Ramírez-Sosa, Dorian R; Castillo-Borges, Elba R; Méndez-Novelo, Roger I; Sauri-Riancho, María R; Barceló-Quintal, Manuel; Marrufo-Gómez, José M

    2013-02-01

    The objective of this study was to identify the organic compounds removed from the leachate when treated with Fenton-Adsorption by gas chromatography coupled to mass spectrometry (GC-MS) in order to identify toxic compounds that could be harmful for the environment or human health. The physicochemical characterization of the raw leachate was carried out before and after the Fenton-Adsorption process. The effluent from each stage of this process was characterized: pH, Biological Oxygen Demand (BOD(5)), Chemical Oxygen Demand (COD), Total Organic Carbon (TOC), Total Carbon (TC), Inorganic Carbon (IC), Total Solids (TS), Total Suspended Solids (TSS) and Color. The organic compounds were determined by GC-MS. The removal of COD and color reached over 99% in compliance with the Mexican Standard NOM-001-SEMARNAT-1996, which establishes the maximum permissible limits for contaminants present in wastewater discharges to water and national goods. The chromatographic analysis from the Fenton-Adsorption effluent proved that this treatment removed more than 98% of the organic compounds present in the initial sample. The mono (2-ethylhexyl) ester 1,2-benzenedicarboxylic acid persisted, although it is not considered as toxic compound by the NOM-052-SEMARNAT-2005. Therefore, the treated effluent can be safely disposed of into the environment.

  2. Filtration of water-sediment samples for the determination of organic compounds

    USGS Publications Warehouse

    Sandstrom, Mark W.

    1995-01-01

    This report describes the equipment and procedures used for on-site filtration of surface-water and ground-water samples for determination of organic compounds. Glass-fiber filters and a positive displacement pumping system are suitable for processing most samples for organic analyses. An optional system that uses disposable in-line membrane filters is suitable for a specific gas chromatography/mass spectrometry, selected-ion monitoring analytical method for determination of organonitrogen herbicides. General procedures to minimize contamination of the samples include preparing a clean workspace at the site, selecting appropriate sample-collection materials, and cleaning of the equipment with detergent, tap water, and methanol.

  3. Use of Bromine and Bromo-Organic Compounds in Organic Synthesis.

    PubMed

    Saikia, Indranirekha; Borah, Arun Jyoti; Phukan, Prodeep

    2016-06-22

    Bromination is one of the most important transformations in organic synthesis and can be carried out using bromine and many other bromo compounds. Use of molecular bromine in organic synthesis is well-known. However, due to the hazardous nature of bromine, enormous growth has been witnessed in the past several decades for the development of solid bromine carriers. This review outlines the use of bromine and different bromo-organic compounds in organic synthesis. The applications of bromine, a total of 107 bromo-organic compounds, 11 other brominating agents, and a few natural bromine sources were incorporated. The scope of these reagents for various organic transformations such as bromination, cohalogenation, oxidation, cyclization, ring-opening reactions, substitution, rearrangement, hydrolysis, catalysis, etc. has been described briefly to highlight important aspects of the bromo-organic compounds in organic synthesis.

  4. Multi-element compound specific stable isotope analysis of volatile organic compounds at trace levels in groundwater samples

    NASA Astrophysics Data System (ADS)

    Herrero-Martín, Sara; Nijenhuis, Ivonne; Schmidt, Marie; Wolfram, Diana; Richnow, Hans. H.; Gehre, Matthias

    2013-04-01

    Groundwater pollution remains one of the major environmental and health concerns. A thorough understanding of sources, sinks and transformation processes of groundwater contaminants is needed to improve risk management evaluation, and to design efficient remediation and water treatment strategies. Isotopic tools provide unique information for an in-depth understanding of the fate of organic chemicals in the environment. During the last decades compound specific isotope analysis (CSIA) of complex mixtures, using gas chromatography-isotope ratio mass spectrometry (GC-IRMS), has gained popularity for the characterization and risk assessment of hazardous waste sites and for isotope forensics of organic contaminants. Multi-element isotope fingerprinting of organic substances provides a more robust framework for interpretation than the isotope analysis of only one element. One major challenge for application of CSIA is the analysis of trace levels of organic compounds in environmental matrices. It is necessary to inject 1 nmol carbon or 8 nmol hydrogen on column, to obtain an accurate and precise measurement of the isotope ratios, which is between two and three orders of magnitude larger than the amount of compound needed for conventional analysis of compound concentrations. Therefore, efficient extraction and pre-concentration techniques have to be integrated with GC-IRMS. Further research is urgently needed in this field, to evaluate the potential of novel and environmental-friendly sample pre-treatment techniques for CSIA to lower the detection limits and extending environmental applications. In this study, the novel coupling of a headspace autosampler (HS) with a programmed temperature vaporizer (PTV), allowing large volume injection of headspace samples, is proposed to improve the sensitivity of CSIA. This automatic, fast and solvent free strategy provides a significant increase on the sensitivity of GC-based methods maintaining the simple headspace instrumentation

  5. Occurrence of pharmaceuticals, hormones, and organic wastewater compounds in Pennsylvania waters, 2006-09

    USGS Publications Warehouse

    Reif, Andrew G.; Crawford, J. Kent; Loper, Connie A.; Proctor, Arianne; Manning, Rhonda; Titler, Robert

    2012-01-01

    Concern over the presence of contaminants of emerging concern, such as pharmaceutical compounds, hormones, and organic wastewater compounds (OWCs), in waters of the United States and elsewhere is growing. Laboratory techniques developed within the last decade or new techniques currently under development within the U.S. Geological Survey now allow these compounds to be measured at concentrations in nanograms per liter. These new laboratory techniques were used in a reconnaissance study conducted by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Protection, to determine the occurrence of contaminants of emerging concern in streams, streambed sediment, and groundwater of Pennsylvania. Compounds analyzed for in the study are pharmaceuticals (human and veterinary drugs), hormones (natural and synthetic), and OWCs (detergents, fragrances, pesticides, industrial compounds, disinfectants, polycyclic aromatic hydrocarbons, fire retardants and plasticizers). Reconnaissance sampling was conducted from 2006 to 2009 to identify contaminants of emerging concern in (1) groundwater from wells used to supply livestock, (2) streamwater upstream and downstream from animal feeding operations, (3) streamwater upstream from and streamwater and streambed sediment downstream from municipal wastewater effluent discharges, (4) streamwater from sites within 5 miles of drinking-water intakes, and (5) streamwater and streambed sediment where fish health assessments were conducted. Of the 44 pharmaceutical compounds analyzed in groundwater samples collected in 2006 from six wells used to supply livestock, only cotinine (a nicotine metabolite) and the antibiotics tylosin and sulfamethoxazole were detected. The maximum concentration of any contaminant of emerging concern was 24 nanograms per liter (ng/L) for cotinine, and was detected in a groundwater sample from a Lebanon County, Pa., well. Seven pharmaceutical compounds including acetaminophen

  6. Prevalence of organic and inorganic contaminants within a rapidly developing catchment

    NASA Astrophysics Data System (ADS)

    Njumbe, E. S.; Curtis, C. D.; Cooke, D. A.; Polya, D. A.; Wogelius, R. A.; Hughes, C.

    2003-04-01

    Industrialization rates in many developing countries typically outpace investment in water supply, sewage treatment and other waste water facilities. This is futher compounded by the absence of stringent land-use and waste disposal policies. The consequence of this has been contamination of land, surface water, and groundwater in such areas. Efforts to control and remediate these types of systems will rely on a thorough understanding of contaminant levels and mobility. Reliable data, however, is usually not available. Therefore this study was designed to acquire baseline data from a representative developing urban area in tropical west Africa. 43 water and 20 sediment/soil samples from streams, hand-dug wells, springs and deep boreholes within the city and surrounding areas of Douala in Cameroon were characterised. Analyses were aimed at obtaining information on the type and quantity of organic and inorganic contaminants present, and linking them to specific point and non-point sources. Results from gas chromatography (GC/FID) and gas chromatography/mass spectrometry analyses of total organic extracts (TOE) of water samples have revealed the presence of a wide range of organic compounds including phenols, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), phthalates, acids and aliphatic derivatives. Concentrations as high as 500 ng ml-1 were detected. These high levels of non-polar compounds measured in drinking water represent a clear health problem. Heavy metal concentrations in bulk alluvial sands and loamy soil have been determined by microwave assisted nitric acid digestion. Concentration ranges (in ppm of dry weight) for the important metals were: Cr, 3.2-84.2 ; Ni, 0.2-57.4 ; Zn, 2.1-92 ; Pb, 0.3-33 ; As, 0.081-9.4 ; Cu, 0.61-17.4 ; and Cd, 0-3.1. Point sources have been identified for several of the organic and inorganic compounds and this spatial information will be integrated with the chemical data to present an overview of

  7. Catalytic combustion of volatile organic compounds.

    PubMed

    Everaert, K; Baeyens, J

    2004-06-18

    Despite the success of adsorption and thermal incineration of (C)VOC emissions, there is still a need for research on techniques which are both economically more favorable and actually destroy the pollutants rather than merely remove them for recycling elsewhere in the biosphere. The catalytic destruction of (C)VOC to CO2, H2O and HCl/Cl2 appears very promising in this context and is the subject of the present paper. The experiments mainly investigate the catalytic combustion of eight target compounds, all of which are commonly encountered in (C)VOC emissions and/or act as precursors for the formation of PCDD/F. Available literature on the different catalysts active in the oxidation of (C)VOC is reviewed and the transition metal oxide complex V2O5-WO3/TiO2 appears most suitable for the current application. Different reactor geometries (e.g. fixed pellet beds, honeycombs, etc.) are also described. In this research a novel catalyst type is introduced, consisting of a V2O5-WO3/TiO2 coated metal fiber fleece. The conversion of (C)VOC by thermo-catalytic reactions is governed by both reaction kinetics and reaction equilibrium. Full conversion of all investigated VOC to CO2, Cl2, HCl and H2O is thermodynamically feasible within the range of experimental conditions used in this work (260-340 degrees C, feed concentrations 30-60 ppm). A first-order rate equation is proposed for the (C)VOC oxidation reactions. The apparent rate constant is a combination of reaction kinetics and mass transfer effects. The oxidation efficiencies were measured with various (C)VOC in the temperature range of 260-340 degrees C. Literature data for oxidation reactions in fixed beds and honeycomb reactors are included in the assessment. Mass transfer resistances are calculated and are generally negligible for fleece reactors and fixed pellet beds, but can be of importance for honeycomb monoliths. The experimental investigations demonstrate: (i) that the conversion of the hydrocarbons is

  8. Composition and major sources of organic compounds in urban aerosols

    NASA Astrophysics Data System (ADS)

    Bi, Xinhui; Simoneit, Bernd R. T.; Sheng, Guoying; Ma, Shexia; Fu, Jiamo

    Total suspended particles (TSP), collected during June 2002 to July 2003 in Guangzhou, a typical economically developed city in South China, were analyzed for the organic compound compositions using gas chromatography-mass spectrometry (GC/MS). Over 140 organic compounds were detected in the aerosols and grouped into different classes including n-alkanes, hopanoids, polycyclic aromatic hydrocarbons, alkanols, fatty acids, dicarboxylic acids excluding oxalic acid, polyols/polyacids, lignin products, phytosterols, phthalates and water-soluble sugars. The total amounts of the identified organic compounds including unresolved complex mixture (UCM) ranged from 3112 ng/m 3 in spring to 5116 ng/m 3 in winter, comprising on seasonal average 2.8% of TSP. Primary organic compounds peaked in winter although there are no heating systems burning fuels in Guangzhou. The highest saccharide levels occurred in fall due to agricultural activities. This study demonstrated that utilization of fossil fuels, biomass burning, soil resuspension and plastic/refuse burning are the major contributors to the identified organic compounds in the urban atmosphere of South China.

  9. Topological research on diamagnetic susceptibilities of organic compounds.

    PubMed

    Mu, Lailong; Feng, Changjun; He, Hongmei

    2008-02-01

    A novel molecular connectivity index, (m)chi('), based on the adjacency matrix of molecular graphs and novel atomic valence connectivities, delta(i)(') for predicting the molar diamagnetic susceptibilities of organic compounds is proposed. The delta(i)(') is defined as: delta(i)(') = delta(i)(nu) x Ei=12:625, where delta(i)(nu) and E(i) are the atomic valence connectivity and the valence orbital energy of atom i, respectively. A good QSPR model for molar diamagnetic susceptibilities can be constructed from (0)chi('), (1)chi('), (2)chi(') and (4)chi(p)(') using multivariate linear regression (MLR). The correlation coefficient r, standard error, and average absolute deviation of the MLR model are 0.9918, 5.56 cgs, and 4.26 cgs, respectively, for the 721 organic compounds tested (training set). Cross-validation using the leave-one-out method demonstrates that the MLR model is highly reliable statistically. Using the MLR model, the average absolute deviations of the predicted values of molar diamagnetic susceptibility of another 360 organic compounds (test set) is 4.34 cgs. The results show that the current method is more effective than literature methods for estimating the molar diamagnetic susceptibility of an organic compound. The MLR method thus provides an acceptable model for the prediction of molar diamagnetic susceptibilities of organic compounds.

  10. Improving rubber concrete by waste organic sulfur compounds.

    PubMed

    Chou, Liang-Hisng; Lin, Chun-Nan; Lu, Chun-Ku; Lee, Cheng-Haw; Lee, Maw-Tien

    2010-01-01

    In this study, the use of crumb tyres as additives to concrete was investigated. For some time, researchers have been studying the physical properties of concrete to determine why the inclusion of rubber particles causes the concrete to degrade. Several methods have been developed to improve the bonding between rubber particles and cement hydration products (C-S-H) with the hope of creating a product with an improvement in mechanical strength. In this study, the crumb tyres were treated with waste organic sulfur compounds from a petroleum refining factory in order to modify their surface properties. Organic sulfur compounds with amphiphilic properties can enhance the hydrophilic properties of the rubber and increase the intermolecular interaction forces between rubber and C-S-H. In the present study, a colloid probe of C-S-H was prepared to measure these intermolecular interaction forces by utilizing an atomic force microscope. Experimental results showed that rubber particles treated with waste organic sulfur compounds became more hydrophilic. In addition, the intermolecular interaction forces increased with the adsorption of waste organic sulfur compounds on the surface of the rubber particles. The compressive, tensile and flexural strengths of concrete samples that included rubber particles treated with organic sulfur compound also increased significantly.

  11. Estimating exposure to volatile organic compounds from municipal water-supply systems: use of a better computational model.

    PubMed

    Aral, M M; Maslia, M L; Ulirsch, G V; Reyes, J J

    1996-01-01

    The Southington, Connecticut, water-supply system is characterized by a distribution network that contains more than 1 700 pipeline segments of varying diameters and construction materials, more than 186 mi (299 km) of pipe, 9 groundwater extraction wells capable of pumping more than 4 700 gal/min (0.2965 m3/s), and 3 municipal reservoirs. Volatile organic compounds, which contaminated the underlying groundwater reservoir during the 1970s, contaminated the water-supply system and exposed the town's residents to volatile organic chemicals. We applied a computational model to the water-supply system to characterize and quantify the distribution of volatile organic compounds in the pipelines, from which we estimated the demographic distribution of potential exposure to the town's residents. Based on results from modeling analyses, we concluded the following: (a) exposure to volatile organic compound contamination may vary significantly from one census block to another, even when these census blocks are adjacent to each other within a specified radius; (b) maximum spatial spread of contamination in a water-distribution system may not occur under peak demand conditions, and, therefore, maximum spatial distribution of the exposed population also may not correspond to peak demand conditions, and (c) use of the proposed computational model allows for a more refined and rigorous methodology with which to estimate census-block-level contamination for exposure assessment and epidemiologic investigations.

  12. Volatile organic compounds in Gulf of Mexico sediments

    SciTech Connect

    McDonald, T.J.

    1988-01-01

    Volatile organic compounds (VOC), concentrations and compositions were documented for estuarine, coastal, shelf, slope, and deep water sediments from the Gulf of Mexico. VOC were measured (detection limit >0.01 ppb) using a closed-loop stripping apparatus with gas chromatography (GC) and flame ionization, flame photometric, and mass spectrometric detectors. The five primary sources of Gulf of Mexico sediment VOC are: (1) planktonic and benthic fauna and flora; (2) terrestrial material from riverine and atmospheric deposition; (3) anthropogenic inputs: (4) upward migration of hydrocarbons; and (5) transport by bottom currents or slumping. Detected organo-sulfur compounds include alkylated sulfides, thiophene, alkylated thiophenes, and benzothiophenes. Benzothiophenes are petroleum related. Low molecular weight organo-sulfur compounds result from the biological oxidation of organic matter. A lack of organosulfur compounds in the reducing environment of the Orca Basin may result from a lack of free sulfides which are necessary for their production.

  13. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    NASA Astrophysics Data System (ADS)

    George, Ingrid J.; Black, Robert R.; Geron, Chris D.; Aurell, Johanna; Hays, Michael D.; Preston, William T.; Gullett, Brian K.

    2016-05-01

    In this study, volatile and semi-volatile organic compound (VOCs and SVOCs) mass emission factors were determined from laboratory peat fire experiments. The peat samples originated from two National Wildlife Refuges on the coastal plain of North Carolina, U.S.A. Gas- and particle-phase organic compounds were quantified by gas chromatography-mass spectrometry and by high pressure liquid chromatography. Hazardous air pollutants (HAPs) accounted for a large fraction (∼60%) of the speciated VOC emissions from peat burning, including large contributions of acetaldehyde, formaldehyde, benzene, toluene, and chloromethane. In the fine particle mass (PM2.5), the following organic compound classes were dominant: organic acids, levoglucosan, n-alkanes, and n-alkenes. Emission factors for the organic acids in PM2.5 including n-alkanoic acids, n-alkenoic acids, n-alkanedioic acids, and aromatic acids were reported for the first time for peat burning, representing the largest fraction of organic carbon (OC) mass (11-12%) of all speciated compound classes measured in this work. Levoglucosan contributed to 2-3% of the OC mass, while methoxyphenols represented 0.2-0.3% of the OC mass on a carbon mass basis. Retene was the most abundant particulate phase polycyclic aromatic hydrocarbon (PAH). Total HAP VOC and particulate PAH emissions from a 2008 peat wildfire in North Carolina were estimated, suggesting that peat fires can contribute a large fraction of state-wide HAP emissions.

  14. Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications.

    PubMed

    Gill, R T; Harbottle, M J; Smith, J W N; Thornton, S F

    2014-07-01

    There is current interest in finding sustainable remediation technologies for the removal of contaminants from soil and groundwater. This review focuses on the combination of electrokinetics, the use of an electric potential to move organic and inorganic compounds, or charged particles/organisms in the subsurface independent of hydraulic conductivity; and bioremediation, the destruction of organic contaminants or attenuation of inorganic compounds by the activity of microorganisms in situ or ex situ. The objective of the review is to examine the state of knowledge on electrokinetic bioremediation and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. It discusses the mechanisms of electrokinetic bioremediation in the subsurface environment at different micro and macroscales, the influence of environmental processes on electrokinetic phenomena and the design options available for application to the field scale. The review also presents results from a modelling exercise to illustrate the effectiveness of electrokinetics on the supply electron acceptors to a plume scale scenario where these are limiting. Current research needs include analysis of electrokinetic bioremediation in more representative environmental settings, such as those in physically heterogeneous systems in order to gain a greater understanding of the controlling mechanisms on both electrokinetics and bioremediation in those scenarios.

  15. Risks posed by trace organic contaminants in coastal sediments in the Pearl River Delta, China.

    PubMed

    Fung, C N; Zheng, G J; Connell, D W; Zhang, X; Wong, H L; Giesy, J P; Fang, Z; Lam, P K S

    2005-10-01

    Local marine environments in China's Pearl River Delta (PRD), the most rapidly developing region in one of the world's fastest growing economies, have been experiencing significant environmental stress during the past decades. This investigation was conducted to determine the status and trends of persistence organic pollutants (POPs) such as polycyclic aromatic hydrocarbons (PAHs), petroleum hydrocarbons (PHCs), polychlorinated biphenyls (PCBs), organochlorine (OC) pesticides and dioxin-related compounds in marine sediments collected from sixteen coastal stations in the Pearl River Delta (PRD) in March 2003. Elevated concentrations of PAHs (94-4300 ng/g), PCBs (6.0-290 ng/g), PHCs (14-150 microg/g), and DDTs (1.4-600 ng/g) were detected in sediment samples. In addition, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-like activities in the sediment samples were estimated to range from 0.3 to 440 pg TCDD-EQ/g. Sediments collected from Xiashan contained the greatest concentrations of trace organic contaminations amongst all the sampling stations in the present study. The degree of trace organic contamination was, in general, more severe at stations situated along the west shores of the PRD than their counterparts in the east. A preliminary assessment was performed to examine the probable risks to the marine ecosystem due to POPs. The results showed that OC pesticide contamination in the PRD was particularly serious and might pose a threat to the health of the marine inhabitants.

  16. GROUNDWATER TRANSPORT OF HYDROPHOBIC ORGANIC COMPOUNDS IN THE PRESENCE OF DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    The effects of dissolved organic matter (DOM) on the transport of hydrophobic organic compounds in soil columns were investigated. Three compounds (naphthalene, phenanthrene and DDT) that spanned three orders of magnitude in water solubility were used. Instead of humic matter, mo...

  17. Development of HUMASORB{trademark}, a lignite derived humic acid for removal of metals and organic contaminants from groundwater

    SciTech Connect

    Sanjay, H.G.; Srivastava, K.C.; Walia, D.S.

    1995-12-31

    Heavy metal and organic contamination of surface and groundwater systems is a major environmental concern. The contamination is primarily due to improperly disposed industrial wastes. The presence of toxic heavy metal ions, volatile organic compounds (VOCs) and pesticides in water is of great concern and could affect the safety of drinking water. Decontamination of surface and groundwater can be achieved using a broad spectrum of treatment options such as precipitation, ion-exchange, microbial digestion, membrane separation, activated carbon adsorption, etc. The state of the art technologies for treatment of contaminated water however, can in one pass remediate only one class of contaminants, i.e., either VOCs (activated carbon) or heavy metals (ion exchange). This would require the use of at a minimum, two different stepwise processes to remediate a site. The groundwater contamination at different Department of Energy (DOE) sites (e.g., Hanford) is due to the presence of both VOCs and heavy metals. The two-step approach increases the cost of remediation. To overcome the sequential treatment of contaminated streams to remove both organics and metals, a novel material having properties to remove both classes of contaminants in one step is being developed as part of this project.

  18. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOEpatents

    Vo-Dinh, Tuan

    1987-01-01

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique.

  19. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOEpatents

    Vo-Dinh, T.

    1987-07-14

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique. 7 figs.

  20. Organization versus activation: the role of endocrine-disrupting contaminants (EDCs) during embryonic development in wildlife.

    PubMed Central

    Guillette, L J; Crain, D A; Rooney, A A; Pickford, D B

    1995-01-01

    Many environmental contaminants disrupt the vertebrate endocrine system. Although they may be no more sensitive to endocrine-disrupting contaminants (EDCs) than other vertebrates, reptiles are good sentinels of exposure to EDCs due to the lability in their sex determination. This is exemplified by a study of alligators at Lake Apopka, Florida, showing that EDCs have altered the balance of reproductive hormones resulting in reproductive dysfunction. Such alterations may be activationally or organizationally induced. Much research emphasizes the former, but a complete understanding of the influence of EDCs in nature can be generated only after consideration of both activational and organizational alterations. The organizational model suggests that a small quantity of an EDC, administered during a specific period of embryonic development, can permanently modify the organization of the reproductive, immune, and nervous systems. Additionally, this model helps explain evolutionary adaptations to naturally occurring estrogenic compounds, such as phytoestrogens. PMID:8593864

  1. The ability of biologically based wastewater treatment systems to remove emerging organic contaminants--a review.

    PubMed

    Garcia-Rodríguez, Aida; Matamoros, Víctor; Fontàs, Clàudia; Salvadó, Victòria

    2014-10-01

    Biologically based wastewater treatment systems are considered a sustainable, cost-effective alternative to conventional wastewater treatment systems. These systems have been used and studied for the treatment of urban sewage from small communities, and recently, it has been reported that they can also effectively remove emerging organic contaminants (EOCs). EOCs are a new group of unregulated contaminants which include pharmaceutical and personal care products, some pesticides, veterinary products, and industrial compounds among others that are thought to have long-term adverse effects on human health and ecosystems. This review is focused on reporting the ability of biologically based wastewater treatment systems to remove EOCs and the main elimination mechanisms and degradation processes (i.e., biodegradation, photodegradation, phytoremediation, and sorption) taking place in constructed wetlands, ponds, and Daphnia and fungal reactors.

  2. Studies examine contaminants: Pharmaceuticals, hormones and other organic wastewater contaminants in ground water resources

    USGS Publications Warehouse

    Barnes, Kymm K.; Kolpin, Dana W.; Furlong, Edward T.; Zaugg, Steven D.; Meyer, Michael T.; Barber, Larry B.; Focazio, Michael J.

    2005-01-01

    Ground water provides approximately 40 percent of the nation’s public water supply, and the total percentage of withdrawals for irrigation has increased from 23 percent in 1950 to 42 percent in 2000. Ground water also is a major contributor to flow in many streams and rivers in the United States and has a substantial influence on river and wetland habitats for plants and animals. Organic wastewater contaminants (OWCs) in the environment recently have been documented to be of global concern with a variety of sources and source pathways.

  3. Sorption mechanism and predictive models for removal of cationic organic contaminants by cation exchange resins.

    PubMed

    Jadbabaei, Nastaran; Zhang, Huichun

    2014-12-16

    Understanding the sorption mechanism of organic contaminants on cation exchange resins (CXRs) will enable application of these resins for the removal of cationic organic compounds from contaminated water. In this study, sorption of a diverse set of 12 organic cations and 8 neutral aromatic solutes on two polystyrene CXRs, MN500 and Amberlite 200, was examined. MN500 showed higher sorbed concentrations due to its microporous structure. The sorbed concentrations followed the same trend of aromatic cations > aliphatic cations > neutral solutes for both resins. Generally, solute-solvent interactions, nonpolar moiety of the solutes, and resin matrix can affect selectivity of the cations. Sorbed concentrations of the neutral compounds were significantly less than those of the cations, indicating a combined effect of electrostatic and nonelectrostatic interactions. By conducting multiple linear regression between Gibbs free energy of sorption and Abraham descriptors for all 20 compounds, polarity/polarizability (S), H-bond acidity (A), induced dipole (E), and electrostatic (J(+)) interactions were found to be involved in the sorption of the cations by the resins. After converting the aqueous sorption isotherms to sorption from the ideal gas-phase by water-wet resins, a more significant effect of J(+) was observed. Predictive models were then developed based on the linear regressions and validated by accurately estimating the sorption of different test set compounds with a root-mean-square error range of 0.91-1.1 and 0.76-0.85 for MN500 and Amberlite 200, respectively. The models also accurately predicted sorption behavior of aniline and imidazole between pH 3 and 10.

  4. Effects of surfactants on the desorption of organic contaminants from aquifer materials. Doctoral thesis

    SciTech Connect

    Brickell, J.L.

    1989-08-01

    The efficiency of removing organic contaminants from groundwater aquifers by the pump and treat process is adversely affected by the retardation of the contaminant's mobility due to adsorption onto aquifer material. The use of surfactants in conjunction with the pump and treat process has the potential for improving contaminant mobility by solubilizing the adsorbed contaminant.

  5. Importance of structural makeup of biopolymers for organic contaminant sorption.

    PubMed

    Wang, Xilong; Xing, Baoshan

    2007-05-15

    Sorption of pyrene, phenanthrene, naphthalene, and 1-naphthol by original (lignin, chitin, and cellulose) and coated biopolymers was examined. Organic carbon normalized distribution coefficients (Koc) of all compounds by the original biopolymers followed the order lignin > chitin > cellulose, in line with the order of their hydrophobicity. Hydrophobicity of structurally similar organic compounds is the main factor determining their ability to occupy sorption sites in biopolymers. Specific interactions (e.g., H-bonding) between 1-naphthol and chitin or cellulose increased its ability to occupy sorption sites. Lignin coating resulted in an increased Koc for phenanthrene (13.6 times for chitin and 6.9 times for cellulose) and 1-naphthol (6.0 times for chitin and 3.7 times for cellulose) relative to the acetone-treated chitin and cellulose. Also, these coated biopolymers had increased isotherm nonlinearity, due to the newly formed condensed domains. An increase in phenanthrene and 1-naphthol sorption by lignin-coated biopolymers as compared to chitin and cellulose was contributed by the newly created high-energy sites in condensed domains and coated lignin. Results of this study highlight the importance of the structural makeup of biopolymers in controlling the sorption of hydrophobic organic compounds.

  6. The contamination mechanism and behavior of amide bond containing organic contaminant on PEMFC

    SciTech Connect

    Cho, Hyun -Seok; Das, Mayukhee; Wang, Heli; Dinh, Huyen N.; Van Zee, J. W.

    2015-02-03

    In this paper, a study is presented of the effects of an organic contaminant containing an amide bond (-CONH-), ε-caprolactam, on polymer electrolyte membrane fuel cells (PEMFCs). The ε-caprolactam has been detected in leachates from polyphthalamide materials that are being considered for use as balance-of-plant structural materials for PEMFCs. Contamination effects from ε-caprolactam in Nafion membranes are shown to be controlled by temperature. A possible explanation of the temperature effect is the endothermic ring-opening reaction of the amide bond (-NHCO-) of the cyclic ε-caprolactam. UV-vis and ATR-IR spectroscopy studies confirmed the presence of open ring structure of ε-caprolactam in membranes. The ECSA and kinetic current for the ORR of the Pt/C catalyst were also investigated and were observed to decrease upon contamination by the ε-caprolactam. By comparison of the CVs of ammonia and acetic acid, we confirmed the adsorption of carboxylic acid (-COOH) or carboxylate anion (-COO-) onto the surface of the Pt. In conclusion, a comparison of in situ voltage losses at 80°C and 50°C also revealed temperature effects, especially in the membrane, as a result of the dramatic increase in the HFR.

  7. The contamination mechanism and behavior of amide bond containing organic contaminant on PEMFC

    DOE PAGES

    Cho, Hyun -Seok; Das, Mayukhee; Wang, Heli; ...

    2015-02-03

    In this paper, a study is presented of the effects of an organic contaminant containing an amide bond (-CONH-), ε-caprolactam, on polymer electrolyte membrane fuel cells (PEMFCs). The ε-caprolactam has been detected in leachates from polyphthalamide materials that are being considered for use as balance-of-plant structural materials for PEMFCs. Contamination effects from ε-caprolactam in Nafion membranes are shown to be controlled by temperature. A possible explanation of the temperature effect is the endothermic ring-opening reaction of the amide bond (-NHCO-) of the cyclic ε-caprolactam. UV-vis and ATR-IR spectroscopy studies confirmed the presence of open ring structure of ε-caprolactam in membranes.more » The ECSA and kinetic current for the ORR of the Pt/C catalyst were also investigated and were observed to decrease upon contamination by the ε-caprolactam. By comparison of the CVs of ammonia and acetic acid, we confirmed the adsorption of carboxylic acid (-COOH) or carboxylate anion (-COO-) onto the surface of the Pt. In conclusion, a comparison of in situ voltage losses at 80°C and 50°C also revealed temperature effects, especially in the membrane, as a result of the dramatic increase in the HFR.« less

  8. Simplified Production of Organic Compounds Containing High Enantiomer Excesses

    NASA Technical Reports Server (NTRS)

    Cooper, George W. (Inventor)

    2015-01-01

    The present invention is directed to a method for making an enantiomeric organic compound having a high amount of enantiomer excesses including the steps of a) providing an aqueous solution including an initial reactant and a catalyst; and b) subjecting said aqueous solution simultaneously to a magnetic field and photolysis radiation such that said photolysis radiation produces light rays that run substantially parallel or anti-parallel to the magnetic field passing through said aqueous solution, wherein said catalyst reacts with said initial reactant to form the enantiomeric organic compound having a high amount of enantiomer excesses.

  9. On the reversibility of environmental contamination with persistent organic pollutants.

    PubMed

    Choi, Sung-Deuk; Wania, Frank

    2011-10-15

    An understanding of the factors that control the time trends of persistent organic pollutants (POPs) in the environment is required to evaluate the effectiveness of emission reductions and to predict future exposure. Using a regional contaminant fate model, CoZMo-POP 2, and a generic bell-shaped emission profile, we simulated time trends of hypothetical chemicals with a range of POP-like partitioning and degradation properties in different compartments of a generic warm temperate environment, with the objective of identifying the processes that may prevent the reversibility of environmental contamination with POPs after the end of primary emissions. Evaporation from soil and water can prevent complete reversibility of POP contamination of the atmosphere after the end of emissions. However, under the selected conditions, only for organic chemicals within a narrow range of volatility, that is, a logarithm of the octanol air equilibrium partition coefficient between 7 and 8, and with atmospheric degradation half-lives in excess of a few month can evaporation from environmental reservoirs sustain atmospheric levels that are within an order of magnitude of those resulting from primary emissions. HCB and α-HCH fulfill these criteria, which may explain, why their atmospheric concentrations have remained relatively high decades after their main primary emissions have been largely eliminated. Soil-to-water transfer is found responsible for the lack of reversibility of POP contamination of the aqueous environment after the end of emissions, whereas reversal of water-sediment exchange, although possible, is unlikely to contribute significantly. Differences in the reversibility of contamination in air and water suggests the possibility of changes in the relative importance of various exposure pathways after the end of primary emissions, namely an increase in the importance of the aquatic food chain relative to the agricultural one, especially if the former has a benthic

  10. Monitoring of organic contaminants in sediments using low field proton nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Rupert, Yuri

    2016-04-01

    The effective monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts. Recent geophysical methods such as electrical resistivity, complex conductivity, and ground penetrating radar have been successfully applied to characterize organic contaminants in the subsurface and to monitor remediation process both in laboratory and in field. Low field proton nuclear magnetic resonance (NMR) is a geophysical tool sensitive to the molecular-scale physical and chemical environment of hydrogen-bearing fluids in geological materials and shows promise as a novel method for monitoring contaminant remediation. This laboratory research focuses on measurements on synthetic samples to determine the sensitivity of NMR to the presence of organic contaminants and improve understanding of relationships between NMR observables, hydrological properties of the sediments, and amount and state of contaminants in porous media. Toluene, a light non-aqueous phase liquid (LNAPL) has been selected as a representative organic contaminant. Three types of porous media (pure silica sands, montmorillonite clay, and various sand-clay mixtures with different sand/clay ratios) were prepared as synthetic sediments. NMR relaxation time (T2) and diffusion-relaxation (D - T2) correlation measurements were performed in each sediment saturated with water and toluene mixed fluid at assorted concentrations (0% toluene and 100% water, 1% toluene and 99% water, 5% toluene and 95% water, 25% toluene and 75% water, and 100% toluene and 0% water) to 1) understand the effect of different porous media on the NMR responses in each fluid mixture, 2) investigate the role of clay content on T2 relaxation of each fluid, 3) quantify the amount hydrocarbons in the presence of water in each sediment, and 4) resolve hydrocarbons from water in D - T2 map. Relationships between the compositions of porous media, hydrocarbon concentration, and hydraulic

  11. Measurements of bromine containing organic compounds at the tropical tropopause

    NASA Astrophysics Data System (ADS)

    Schauffler, S. M.; Atlas, E. L.; Flocke, F.; Lueb, R. A.; Stroud, V.; Travnicek, W.

    The amount of bromine entering the stratosphere from organic source gases is a primary factor involved in determining the magnitude of bromine catalyzed loss of ozone. Thirty two whole air samples were collected at the tropical tropopause during the NASA STRAT Campaign in Feb., Aug., and Dec., 1996 and were analyzed for brominated organic compounds. Total organic bromine was 17.4±0.9 ppt with 55% from methyl bromide, 38% from the Halons, 6% from dibromomethane, and 0.8% from bromochloromethane and dichlorobromomethane. One flight showed the presence of 0.42 ppt of additional organic bromine from bromoform and dibromochloromethane.

  12. Detection of Organic Compounds with Whole-Cell Bioluminescent Bioassays

    PubMed Central

    Xu, Tingting; Close, Dan; Smartt, Abby; Ripp, Steven

    2015-01-01

    Natural and manmade organic chemicals are widely deposited across a diverse range of ecosystems including air, surface water, groundwater, wastewater, soil, sediment, and marine environments. Some organic compounds, despite their industrial values, are toxic to living organisms and pose significant health risks to humans and wildlife. Detection and monitoring of these organic pollutants in environmental matrices therefore is of great interest and need for remediation and health risk assessment. Although these detections have traditionally been performed using analytical chemical approaches that offer highly sensitive and specific identification of target compounds, these methods require specialized equipment and trained operators, and fail to describe potential bioavailable effects on living organisms. Alternatively, the integration of bioluminescent systems into whole-cell bioreporters presents a new capacity for organic compound detection. These bioreporters are constructed by incorporating reporter genes into catabolic or signaling pathways that are present within living cells and emit a bioluminescent signal that can be detected upon exposure to target chemicals. Although relatively less specific compared to analytical methods, bioluminescent bioassays are more cost-effective, more rapid, can be scaled to higher throughput, and can be designed to report not only the presence but also the bioavailability of target substances. This chapter reviews available bacterial and eukaryotic whole-cell bioreporters for sensing organic pollutants and their applications in a variety of sample matrices. PMID:25084996

  13. Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies.

    PubMed

    Olaniran, Ademola O; Balgobind, Adhika; Pillay, Balakrishna

    2013-05-15

    Co-contamination of the environment with toxic chlorinated organic and heavy metal pollutants is one of the major problems facing industrialized nations today. Heavy metals may inhibit biodegradation of chlorinated organics by interacting with enzymes directly involved in biodegradation or those involved in general metabolism. Predictions of metal toxicity effects on organic pollutant biodegradation in co-contaminated soil and water environments is difficult since heavy metals may be present in a variety of chemical and physical forms. Recent advances in bioremediation of co-contaminated environments have focussed on the use of metal-resistant bacteria (cell and gene bioaugmentation), treatment amendments, clay minerals and chelating agents to reduce bioavailable heavy metal concentrations. Phytoremediation has also shown promise as an emerging alternative clean-up technology for co-contaminated environments. However, despite various investigations, in both aerobic and anaerobic systems, demonstrating that metal toxicity hampers the biodegradation of the organic component, a paucity of information exists in this area of research. Therefore, in this review, we discuss the problems associated with the degradation of chlorinated organics in co-contaminated environments, owing to metal toxicity and shed light on possible improvement strategies for effective bioremediation of sites co-contaminated with chlorinated organic compounds and heavy metals.

  14. Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies

    PubMed Central

    Olaniran, Ademola O.; Balgobind, Adhika; Pillay, Balakrishna

    2013-01-01

    Co-contamination of the environment with toxic chlorinated organic and heavy metal pollutants is one of the major problems facing industrialized nations today. Heavy metals may inhibit biodegradation of chlorinated organics by interacting with enzymes directly involved in biodegradation or those involved in general metabolism. Predictions of metal toxicity effects on organic pollutant biodegradation in co-contaminated soil and water environments is difficult since heavy metals may be present in a variety of chemical and physical forms. Recent advances in bioremediation of co-contaminated environments have focussed on the use of metal-resistant bacteria (cell and gene bioaugmentation), treatment amendments, clay minerals and chelating agents to reduce bioavailable heavy metal concentrations. Phytoremediation has also shown promise as an emerging alternative clean-up technology for co-contaminated environments. However, despite various investigations, in both aerobic and anaerobic systems, demonstrating that metal toxicity hampers the biodegradation of the organic component, a paucity of information exists in this area of research. Therefore, in this review, we discuss the problems associated with the degradation of chlorinated organics in co-contaminated environments, owing to metal toxicity and shed light on possible improvement strategies for effective bioremediation of sites co-contaminated with chlorinated organic compounds and heavy metals. PMID:23676353

  15. Sediments Contamination with Organic Micropollutants: Current State and Perspectives

    NASA Astrophysics Data System (ADS)

    Popenda, Agnieszka; Włodarczyk-Makuła, Maria

    2016-06-01

    This study focused on the sediment contamination with some organic micropollutants based on the monitoring data together with available literature in Poland. The following persistent organic pollutants (POPs): polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and chlorinated pesticides (CP) were characterized in sediments with respect to current legislations in force. Based on accessible data, higher PAHs, PCBs and CP concentrations were found in river sediments than in lake sediments. Especially, sediments of the Oder River and its tributary in the southern part of Poland, were highly polluted. In order to minimize the risk of the secondary pollution of surface waters, it is necessary to introduce consolidated management system with sediments proceeding. Furthermore, it is also of great importance to elaborate specific regulations concerning conditions of sediments management.

  16. Importance of organic amendment characteristics on bioremediation of PAH-contaminated soil.

    PubMed

    Lukić, B; Huguenot, D; Panico, A; Fabbricino, M; van Hullebusch, E D; Esposito, G

    2016-08-01

    This study investigates the importance of the organic matter characteristics of several organic amendments (i.e., buffalo manure, food and kitchen waste, fruit and vegetables waste, and activated sewage sludge) and their influence in the bioremediation of a polycyclic aromatic hydrocarbons (PAH)-contaminated soil. The removal of low molecular weights (LMW) and high molecular weights (HMW) PAHs was monitored in four bioremediation reactors and used as an indicator of the role of organic amendments in contaminant removal. The total initial concentration of LMW PAHs was 234 mg kg(-1) soil (dry weight), while the amount for HMW PAHs was 422 mg kg(-1) soil (dry weight). Monitoring of operational parameters and chemical analysis was performed during 20 weeks. The concentrations of LMW PAH residues in soil were significantly lower in reactors that displayed a mesophilic phase, i.e., 11 and 15 %, compared to reactors that displayed a thermophilic phase, i.e., 29 and 31 %. Residual HMW PAHs were up to five times higher compared to residual LMW PAHs, depending on the reactor. This demonstrated that the amount of added organic matter and macronutrients such as nitrogen and phosphorus, the biochemical organic compound classes (mostly soluble fraction and proteins), and the operational temperature are important factors affecting the overall efficiency of bioremediation. On that basis, this study shows that characterization of biochemical families could contribute to a better understanding of the effects of organic amendments and clarify their different efficiency during a bioremediation process of PAH-contaminated soil.

  17. Interaction mechanisms of organic contaminants with burned straw ash charcoal.

    PubMed

    Huang, Wenhai; Chen, Baoliang

    2010-01-01

    Black carbons (e.g., charcoal) have a great impact on the transport of organic contaminants in soil and water because of its strong affinity and ubiquity in the environment. To further elucidate their interaction mechanism, sorption of polar (p-nitrotoluene, m-dinitrobenzene and nitrobenzene) and nonpolar (naphthalene) aromatic contaminants to burned straw ash charcoal under different de-ashed treatments were investigated. The sorption isotherms fitted well with Freundlich equation, and the Freundlich N values were all around 0.31-0.38, being independent of the sorbate properties and sorbent types. After sequential removal of ashes by acid treatments (HCl and HCl-HF), both adsorption and partition were enhanced due to the enrichment of charcoal component. The separated contribution of adsorption and partition to total sorption were quantified. The effective carbon content in ash charcoal functioned as adsorption sites, partition phases, and hybrid regions with adsorption and partition were conceptualized and calculated. The hybrid regions increased obviously after de-ashed treatment. The linear relationships of Freundlich N values with the charring-temperature of charcoal or biochar (the charred byproduct in biomass pyrolysis) were observed based on the current study and the cited publications which included 15 different temperatures (100-850 degrees C), 10 kinds of precursors of charcoal/biochar, and 10 organic sorbates.

  18. Susceptibility of human populations to environmental exposure to organic contaminants.

    PubMed

    Undeman, Emma; Brown, Trevor N; Wania, Frank; McLachlan, Michael S

    2010-08-15

    Environmental exposure to organic contaminants is a complex function of environmental conditions, food chain characteristics, and chemical properties. In this study the susceptibility of various human populations to environmental exposure to neutral organic contaminants was compared. An environmental fate model and a linked bioaccumulation model were parametrized to describe ecosystems in different climatic regions (temperate, arctic, tropical, and steppe). The human body burden resulting from constant emissions of hypothetical chemicals was estimated for each region. An exposure susceptibility index was defined as the body burden in the region of interest normalized to the burden of the same chemical in a reference human from the temperate region eating an average diet. For most persistent chemicals emitted to air, the Arctic had the highest susceptibility index (max 520). Susceptibility to exposure was largely determined by the food web properties. The properties of the physical environment only had a marked effect when air or water, not food, was the dominant source of human exposure. Shifting the mode of emission markedly changed the relative susceptibility of the ecosystems in some cases. The exposure arising from chemical use clearly varies between ecosystems, which makes an understanding of ecosystem susceptibility to exposure important for chemicals management.

  19. Use of surrogate compounds to monitor DAPL removal from a contaminated soil during a cosolvent flood

    SciTech Connect

    Haskell, P.A.; Coates, J.T.; Lee, C.M.; Falta, R.W.

    1996-10-01

    Several constituents of a light nonaqueous liquid (NAPL) are selected as potential surrogates for NAPL removed from contaminated soil during a cosolvent flood. These surrogates are chosen on the basis of their representativeness of the free-phase NAPL in terms of hydrophobicity and volatility. The relative abundances of these compounds in separate samples of free-phase NAPL are compared to the ratios of those compounds in the contaminated soil to determine an appropriate set of surrogates for monitoring the cleanup of the soil. An extraction method is tested to determine the limits of accuracy for assessing cleanup of a soil. Cosolvent floods are performed and surrogate-based estimates of NAPL removal are compared to measurements of NAPL sturation prior to and subsequent to the cosolvent flood as determined by extraction and analysis.

  20. Uptake and depuration of nonionic organic contaminants from sediment by the oligochaete, Lumbriculus variegatus

    USGS Publications Warehouse

    Ingersoll, C.G.; Brunson, E.L.; Wang, F.N.; Dwyer, J.; Ankley, G.T.; Mount, D.R.; Huckins, J.; Petty, J.; Landrum, P.F.

    2003-01-01

    Uptake of sediment-associated contaminants by the oligochaete Lumbriculus variegatus was evaluated after 1, 3, 7, 14, 28, and 56 d of exposure to a field-collected sediment contaminated with DDT and its metabolites, dichlorodiphenyldichloroethane (DDD) and dichlorodiphenyldichloroethylene (DDE), or to a field-collected sediment contaminated with polycyclic aromatic hydrocarbons (PAHs). Depuration of contaminants by oligochaetes in a control sediment or in water was also evaluated over a 7-d period after 28 d of exposure to the field-collected sediments. Accumulation of PAHs with a log octanol-water partitioning coefficient (log Kow) 5.6 or DDD and DDE typically exhibited a steady increase from day 1 to about day 14 or 28, followed by a plateau. Therefore, exposures conducted for a minimum of 14 to 28 d better reflected steady-state concentrations for DDT and its metabolites and for PAHs. Depuration rates for DDT and its metabolites and high-Kow PAHs were much higher in organisms held in clean sediment relative to both water-only depuration and model predictions. This suggests that depuration in clean sediment may artificially accelerate depuration of hydrophobic compounds. Comparisons between laboratory-exposed L. variegatus and oligochaetes collected in the field from these sediments indicate that results of laboratory tests can be extrapolated to the field with a reasonable degree of certainty.

  1. Chemical reactions of organic compounds on clay surfaces.

    PubMed Central

    Soma, Y; Soma, M

    1989-01-01

    Chemical reactions of organic compounds including pesticides at the interlayer and exterior surfaces of clay minerals and with soil organic matter are reviewed. Representative reactions under moderate conditions possibly occurring in natural soils are described. Attempts have been made to clarify the importance of the chemical nature of molecules, their structures and their functional groups, and the Brönsted or Lewis acidity of clay minerals. PMID:2533556

  2. The photostabililty of prebiotic organic compounds on cometary dusts.

    NASA Astrophysics Data System (ADS)

    Saiagh, K.; Aleian, A.; Fray, N.; Cloix, M.; Cottin, H.

    2013-09-01

    A new methodology for measuring the photostability of organic compounds in extraterrestrial environments will be presented. It is based on Low Earth Orbit (LEO) and "classical" laboratory photolysis experiments, as well as on quantitative measurements of the VUV/UV ( < 300 nm) absorption cross section spectra. We will discuss the complementarily and limits of each approach, and discuss the astrobiological relevance of such studies in the frame of the importation of organic matter to Earth via micrometeorites.

  3. The impact of plants on the reduction of volatile organic compounds in a small space.

    PubMed

    Song, Jeong-Eun; Kim, Yong-Shik; Sohn, Jang-Yeul

    2007-11-01

    This study aims at examining the reduction of indoor air contaminants by plants placed in an indoor space. Field measurements were performed using Aglaonema brevispathum, Pachira aquatica, and Ficus benjamiana, which were verified as air-purifying plants by NASA. Three conditions for the amount of plants and positions were used in two separate rooms whose dimensions are identical. The concentration of Volatile Organic Compounds (VOCs) was monitored three hours after the plants were placed and three days after the plants were placed. The variations of concentration of Benzene, Toluene, Etylbenzene, and Xylene (BTEX), as well as Formaldehyde, which are all known as the major elements of Volatile Organic Compounds were monitored. The amount of reduction in concentration of Toluene and Formaldehyde was monitored 3 hours and 3 days after the plants were placed in the space. The reduction in the concentration of Benzene, Toluene, Etylbenzene, Xylene, and Formaldehyde was significantly greater when plants were present. When plants were placed near a window, the reduction of concentration was greater. The more plants were used, the more a reduction of indoor air contaminants occurred. The effect of reducing the concentration of air contaminants increased when the amount of plants increased, and when the plants were placed in sunny area. The concentration of Toluene was reduced by 45.6 microg/m(3) when 10% of the model space was occupied by Aglaonema brevispathum.

  4. Monitoring priority substances, other organic contaminants and heavy metals in a volcanic aquifer from different sources and hydrological processes.

    PubMed

    Estevez, Esmeralda; Cabrera, María del Carmen; Fernández-Vera, Juan Ramón; Molina-Díaz, Antonio; Robles-Molina, José; Palacios-Díaz, María del Pino

    2016-05-01

    Irrigation with reclaimed water (R) is necessary to guarantee the sustainability of semi-arid areas. Results obtained during a two years monitoring network (2009-2011) in Gran Canaria are presented, including the analysis of chemical parameters, N and S isotopes, priority substances (2008/105/EC, 2013/39/EU), other organic contaminants and heavy metals in groundwater and R used to irrigate a golf course. The aims of this work are to evaluate the contamination in a volcanic aquifer, relate the presence of organic contaminants and heavy metals with the hydrogeochemistry and identify pollution sources in the area. No priority substance exceeded the EU thresholds for surface water, although seventeen were detected in R. The most frequent compounds were hexachlorobenzene, chlorpyrifos ethyl, fluorene, phenanthrene and pyrene. These compounds were detected at low concentration, except chlorpyrifos. Chlorpyrifos ethyl, terbuthylazine, diuron, terbutryn, procymidone, atrazine and propazine exceeded the European threshold concentration for pesticides in groundwater (100ngL(-1)). Therefore, the priority substances chlorpyrifos ethyl and diuron must be included in monitoring studies. The priority pesticides chlorfenvinphos and diazinon were always detected in R but rarely in groundwater. Besides, the existence of contaminants not related to the current R irrigation has been identified. Absence of environmental problems related to heavy metals can be expected. The relationship among contaminant presence, hydrogeochemistry, including the stable isotopic prints of δ(18)O, δ(15)N and δ(34)S and preferential recharge paths has been described. The coastal well shows high values of EC, nitrate, a variable chemistry, and 50% of organic contaminants detected above 100ngL(-1). The well located in the recharge area presents a stable hydrochemistry, the lowest value of δ(15)N and the lowest contaminants occurrence. The area is an example of a complex volcanic media with several

  5. Non-targeted analyses of organic compounds in urban wastewater.

    PubMed

    Alves Filho, Elenilson G; Sartori, Luci; Silva, Lorena M A; Silva, Bianca F; Fadini, Pedro S; Soong, Ronald; Simpson, Andre; Ferreira, Antonio G

    2015-09-01

    A large number of organic pollutants that cause damage to the ecosystem and threaten human health are transported to wastewater treatment plants (WWTPs). The problems regarding water pollution in Latin America have been well documented, and there is no evidence of substantive efforts to change the situation. In the present work, two methods to study wastewater samples are employed: non-targeted 1D ((13)C and (1)H) and 2D NMR spectroscopic analysis to characterize the largest possible number of compounds from urban wastewater and analysis by HPLC-(UV/MS)-SPE-ASS-NMR to detect non-specific recalcitrant organic compounds in treated wastewater without the use of common standards. The set of data is composed of several compounds with the concentration ranging considerably with treatment and seasonality. An anomalous discharge, the influence of stormwater on the wastewater composition and the presence of recalcitrant compounds (linear alkylbenzene sulfonate surfactant homologs) in the effluent were further identified. The seasonal variations and abnormality in the composition of organic compounds in sewage indicated that the procedure that was employed can be useful in the identification of the pollution source and to enhance the effectiveness of WWTPs in designing preventive action to protect the equipment and preserve the environment.

  6. Key volatile organic compounds emitted from swine nursery house

    NASA Astrophysics Data System (ADS)

    Yao, H. Q.; Choi, H. L.; Zhu, K.; Lee, J. H.

    2011-05-01

    This study was carried out to quantify the concentration and emission levels of key volatile organic compounds (VOCs) - sulfides, indolics, phenolics and volatile fatty acids (VFA) - emitted from swine nursery house, and assess the effect of microclimate (including temperature, relative humidity and air speed) on the key odorous compounds. Samples were collected from the Experimental Farm of Seoul National University in Suwon, South Korea. And the collection took place for four seasons and the sampling time was fixed at 10:30 in the morning. The application of one-way ANOVA and Bonferroni t analyses revealed that, most of the odorous compound concentrations, such as dimethyl sulfide (DMS), dimethyl disulfide (DMDS), indole, p-cresol and all the volatile fatty acids were lowest during the summer ( P < 0.01). Meanwhile, negative correlations were observed between temperature and odorants, as well as air speed and odorants. A possible reason was that high ventilation transferred most of the odors out of the house during the summer. From the whole year data, non-linear multiple regressions were conducted and the equations were proposed depending upon the relationships between microclimate parameters and odorous compounds. The equations were applied in hope of easily calculating the concentrations of the odorous compounds in the commercial farms. The results obtained in this study should be used for reducing the volatile organic compounds by controlling microclimate parameters and also could be helpful in setting a guideline for good management practices in nursery house.

  7. Graphene nanosheets and graphite oxide as promising adsorbents for removal of organic contaminants from aqueous solution.

    PubMed

    Ji, Liangliang; Chen, Wei; Xu, Zhaoyi; Zheng, Shourong; Zhu, Dongqiang

    2013-01-01

    Graphenes are an emerging class of carbon nanomaterials whose adsorption properties toward organic compounds have not been well understood. In the present study, graphene nanosheets were prepared by reoxidation and abrupt heating of graphite oxide, which was prepared by sequential chemical oxidation of commercial nonporous graphite powder. Adsorption properties of three aromatic compounds (naphthalene, 2-naphthol, and 1-naphthylamine) and one pharmaceutical compound (tylosin) on graphene nanosheets and graphite oxide were examined to explore the potential of these two adsorbents for the removal of organic contaminants from aqueous solutions. Compared with the literature data of adsorption on carbon nanotubes, adsorption of bulky, flexible tylosin on graphene nanosheets exhibited markedly faster adsorption kinetics, which can be attributed to their opened-up layer structure. Graphene nanosheets and graphite oxide showed similar sequences of adsorption affinity: 1-naphthylamine > 2-naphthol > tylosin > naphthalene (with much larger differences observed on graphite oxide). It was proposed that the strong adsorption of the three aromatic compounds was mainly due to π-π electron donor-acceptor interactions with the graphitic surfaces of adsorbents. Additionally, Lewis acid-base interaction was likely an important factor contributing to the strong adsorption of 1-naphthylamine and tylosin, especially for the O-functionality-abundant graphite oxide. After being normalized on the basis of adsorbent surface area, adsorption affinities of all four tested adsorbates on graphene nanosheets were very close to those on nonporous graphite powder, reflecting complete accessibility of the adsorbent surface area in adsorption.

  8. Ultra high performance liquid chromatography tandem mass spectrometry for rapid analysis of trace organic contaminants in water

    PubMed Central

    2013-01-01

    Background The widespread utilization of organic compounds in modern society and their dispersion through wastewater have resulted in extensive contamination of source and drinking waters. The vast majority of these compounds are not regulated in wastewater outfalls or in drinking water while trace amounts of certain compounds can impact aquatic wildlife. Hence it is prudent to monitor these contaminants in water sources until sufficient toxicological data relevant to humans becomes available. A method was developed for the analysis of 36 trace organic contaminants (TOrCs) including pharmaceuticals, pesticides, steroid hormones (androgens, progestins, and glucocorticoids), personal care products and polyfluorinated compounds (PFCs) using a single solid phase extraction (SPE) technique with ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). The method was applied to a variety of water matrices to demonstrate method performance and reliability. Results UHPLC-MS/MS in both positive and negative electrospray ionization (ESI) modes was employed to achieve optimum sensitivity while reducing sample analysis time (<20 min) compared with previously published methods. The detection limits for most compounds was lower than 1.0 picogram on the column while reporting limits in water ranged from 0.1 to 15 ng/L based on the extraction of a 1 L sample and concentration to 1 mL. Recoveries in ultrapure water for most compounds were between 90-110%, while recoveries in surface water and wastewater were in the range of 39-121% and 38-141% respectively. The analytical method was successfully applied to analyze samples across several different water matrices including wastewater, groundwater, surface water and drinking water at different stages of the treatment. Among several compounds detected in wastewater, sucralose and TCPP showed the highest concentrations. Conclusion The proposed method is sensitive, rapid and robust; hence it can

  9. Analysis of Organic Compounds in Mars Analog Samples

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Brinckerhoff, W. B.; Buch, A.; Cabane, M.; Coll, P.; Demick, J.; Glavin, D. P.

    2004-01-01

    The detailed characterization of organic compounds that might be preserved in rocks, ices, or sedimentary layers on Mars would be a significant step toward resolving the question of the habitability and potential for life on that planet. The fact that the Viking gas chromatograph mass spectrometer (GCMS) did not detect organic compounds should not discourage further investigations since (a) an oxidizing environment in the near surface fines analyzed by Viking is likely to have destroyed many reduced carbon species; (b) there are classes of refractory or partially oxidized species such as carboxylic acids that would not have been detected by the Viking GCMS; and (c) the Viking landing sites are not representative of Mars overall. These factors motivate the development of advanced in situ analytical protocols to carry out a comprehensive survey of organic compounds in martian regolith, ices, and rocks. We combine pyrolysis GCMS for analysis of volatile species, chemical derivatization for transformation of less volatile organics, and laser desorption mass spectrometry (LDMS) for analysis of elements and more refractory, higher-mass organics. To evaluate this approach and enable a comparison with other measurement techniques we analyze organics in Mars simulant samples.

  10. A national reconnaissance of trace organic compounds (TOCs) in United States lotic ecosystems.

    PubMed

    Bernot, Melody J; Becker, Jesse C; Doll, Jason; Lauer, Thomas E

    2016-12-01

    We collaborated with 26 groups from universities across the United States to sample 42 sites for 33 trace organic compounds (TOCs) in water and sediments of lotic ecosystems. Our goals were 1) to further develop a national database of TOC abundance in United States lotic ecosystems that can be a foundation for future research and management, and 2) to identify factors related to compound abundance. Trace organic compounds were found in 93% of water samples and 56% of sediment samples. Dissolved concentrations were 10-1000× higher relative to sediment concentrations. The ten most common compounds in water samples with detection frequency and maximum concentration were sucralose (87.5%, 12,000ng/L), caffeine (77.5%, 420ng/L), sulfamethoxazole (70%, 340ng/L), cotinine (65%, 130ng/L), venlafaxine (65%, 1800ng/L), carbamazepine (62.5%, 320ng/L), triclosan (55%, 6800ng/L), azithromycin (15%, 970ng/L), diphenylhydramine (40%, 350ng/L), and desvenlafaxine (35%, 4600ng/L). In sediment, the most common compounds were venlafaxine (32.5%, 19ng/g), diphenhydramine (25%, 41ng/g), azithromycin (15%, 11ng/g), fluoxetine (12.5%, 29ng/g) and sucralose (12.5%, 16ng/g). Refractory compounds such as sucralose may be good indicators of TOC contamination in lotic ecosystems, as there was a correlation between dissolved sucralose concentrations and with the total number of compounds detected in water. Discharge and human demographic (population size) characteristics were not good predictors of compound abundance in water samples. This study further confirms the ubiquity of TOCs in lotic ecosystems. Although concentrations measured rarely approached acute aquatic-life criteria, the chronic effects, bioaccumulative potential, or potential mixture effects of multiple compounds are relatively unknown.

  11. Permeable sorptive walls for treatment of hydrophobic organic contaminant plumes in groundwater

    SciTech Connect

    Grathwohl, P.; Peschik, G.

    1997-12-31

    Highly hydrophobic contaminants are easily adsorbed from aqueous solutions. Since for many of these compounds sorption increases with increasing organic carbon content natural materials such as bituminous shales and coals may be used in permeable sorptive walls. This, however, only applies if sorption is at equilibrium, which may not always be the case in groundwater treatment using a funnel-and-gate system. In contrast to the natural solids, granular activated carbons (GACs) have very high sorption capacities and reasonably fast sorption kinetics. The laboratory results show that application of GACs (e.g. F100) is economically feasible for in situ removal of polycyclic aromatic hydrocarbons (PAH) from groundwater at a former manufactured gas plant site (MGP). For less sorbing compounds (such as benzene, toluene, xylenes) a combination of adsorption and biodegradation is necessary (i.e. sorptive + reactive treatment).

  12. Nontargeted Biomonitoring of Halogenated Organic Compounds in Two Ecotypes of Bottlenose Dolphins (Tursiops truncatus) from the Southern California Bight

    PubMed Central

    2015-01-01

    Targeted environmental monitoring reveals contamination by known chemicals, but may exclude potentially pervasive but unknown compounds. Marine mammals are sentinels of persistent and bioaccumulative contaminants due to their longevity and high trophic position. Using nontargeted analysis, we constructed a mass spectral library of 327 persistent and bioaccumulative compounds identified in blubber from two ecotypes of common bottlenose dolphins (Tursiops truncatus) sampled in the Southern California Bight. This library of halogenated organic compounds (HOCs) consisted of 180 anthropogenic contaminants, 41 natural products, 4 with mixed sources, 8 with unknown sources, and 94 with partial structural characterization and unknown sources. The abundance of compounds whose structures could not be fully elucidated highlights the prevalence of undiscovered HOCs accumulating in marine food webs. Eighty-six percent of the identified compounds are not currently monitored, including 133 known anthropogenic chemicals. Compounds related to dichlorodiphenyltrichloroethane (DDT) were the most abundant. Natural products were, in some cases, detected at abundances similar to anthropogenic compounds. The profile of naturally occurring HOCs differed between ecotypes, suggesting more abundant offshore sources of these compounds. This nontargeted analytical framework provided a comprehensive list of HOCs that may be characteristic of the region, and its application within monitoring surveys may suggest new chemicals for evaluation. PMID:25526519

  13. The role of clay in enhancing attenuation of trace organic contaminants during managed aquifer recharge

    NASA Astrophysics Data System (ADS)

    Regnery, J.; Strasser, A.; Hake, E.; Wing, A.; Drewes, J. E.

    2013-12-01

    For more hydrophobic trace organic contaminants present in surface water or reclaimed water applied for managed aquifer recharge (MAR), sorption onto organic matter can play a major role in attenuation in subsurface systems as the retardation allows more time for biotransformation. In case of low organic matter, other sorptive processes such as interactions with mineral surfaces gain importance. Especially for positively charged molecules, sorption onto clay materials by cation exchange will play a significant role. However, if the cation exchange capacity is limited or sorption of trace organic contaminants to clay materials is reversible due to changes in geochemical conditions (i.e., pH, ion strength), this might not provide a sustainable removal pathway. The objective of this study is to investigate how sorption to clay can enhance the removal of trace organic contaminants during MAR with the goal of evaluating the feasibility (i.e., infiltration capacity) and benefit (i.e., retardation of recalcitrant compounds) of introducing clay materials as reactive barriers in MAR systems. Laboratory-scale soil column experiments and batch sorption experiments using well characterized soil mixtures with different clay percentages under abiotic conditions and spiked at environmentally relevant concentration levels were conducted to derive soil water distribution coefficients for a suite of 15 trace organic chemicals (i.e., pharmaceutical residues, personal care products, household chemicals) and to quantify their sorption/desorption potential. All clay materials used in this study were characterized by X-ray diffraction to obtain information regarding their sorption processes. Furthermore, results were compared with geochemical field data from a full-scale MAR site in Colorado where significant amounts of clay in the subsurface were present. Preliminary results indicated that certain clay materials bear a great potential to retain moderately hydrophobic compounds such as

  14. Global inventory of volatile organic compound emissions from anthropogenic sources

    SciTech Connect

    Piccot, S.D.; Watson, J.J.; Jones, J.W.

    1992-01-01

    The paper discusses the development of a global inventory of anthropogenic volatile organic compound (VOC) emissions. It includes VOC estimates for seven classes of VOCs: paraffins, olefins, aromatics (benzene, toluene, xylene), formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds. These classes represent general classes of VOC compounds that possess different chemical reactivities in the atmosphere. The inventory shows total global anthropogenic VOC emissions of about 110,000 Gg/yr, about 10% lower than global VOC inventories developed by other researchers. The study identifies the U.S. as the largest emitter (21% of the total global VOC), followed by the USSR, China, India, and Japan. Globally, fuel wood combustion and savanna burning were among the largest VOC emission sources, accounting for over 35% of the total global VOC emissions. The production and use of gasoline, refuse disposal activities, and organic chemical and rubber manufacturing were also found to be significant sources of global VOC emissions.

  15. Biogenic volatile organic compounds in the Earth system.

    PubMed

    Laothawornkitkul, Jullada; Taylor, Jane E; Paul, Nigel D; Hewitt, C Nicholas

    2009-01-01

    Biogenic volatile organic compounds produced by plants are involved in plant growth, development, reproduction and defence. They also function as communication media within plant communities, between plants and between plants and insects. Because of the high chemical reactivity of many of these compounds, coupled with their large mass emission rates from vegetation into the atmosphere, they have significant effects on the chemical composition and physical characteristics of the atmosphere. Hence, biogenic volatile organic compounds mediate the relationship between the biosphere and the atmosphere. Alteration of this relationship by anthropogenically driven changes to the environment, including global climate change, may perturb these interactions and may lead to adverse and hard-to-predict consequences for the Earth system.

  16. Influence of volatile organic compounds on Fusarium graminearum mycotoxin production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile organic compounds (VOCs) are involved in a diverse range of ecological interactions. Due to their low molecular weight, lipophilic nature, and high vapor pressure at ambient temperatures, they can serve as airborne signaling molecules that are capable of mediating inter and intraspecies com...

  17. Volatile organic compound emissions from dairy facilities in central California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emissions of volatile organic compounds (VOCs) from dairy facilities are thought to be an important contributor to high ozone levels in central California, but emissions inventories from these sources contain significant uncertainties. In this work, VOC emissions were measured at two central Califor...

  18. Modeling emissions of volatile organic compounds from silage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Photochemical smog is a major air pollution problem and a significant cause of premature death in the U.S. Smog forms in the presence of volatile organic compounds (VOCs), which are emitted primarily from industry and motor vehicles in the U.S. However, dairy farms may be an important source in so...

  19. LEAVES AS INDICATORS OF EXPOSURE TO AIRBORNE VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    The concentration of volatile organic compounds (VOCs) in leaves is primarily a product of airborne exposures and dependent upon bioconcentration factors and release rates. The bioconcentration factors for VOCs in grass are found to be related to their partitioning between octan...

  20. Adsorption of Compounds that Mimic Urban Stormwater Dissolved Organic Nitrogen.

    PubMed

    Mohtadi, Mehrdad; James, Bruce R; Davis, Allen P

    2017-02-01

      Stormwater runoff carrying nitrogen can accelerate eutrophication. Bioretention facilities are among low impact development systems which are commonly used to manage urban stormwater quality and quantity. They are, however, not designed to remove dissolved organic nitrogen (DON) and may become a net DON exporter. Adsorption of seven organic nitrogenous compounds onto several adsorbents was examined. Batch adsorption study revealed that coal activated carbon (AC) exhibited the best performance in adsorption of the selected organic nitrogenous compounds. The highest adsorption capacity of coal AC was 0.4 mg N/g for pyrrole at an equilibrium concentration of 0.02 mg N/L, while adsorption was not detectable for urea at the same equilibrium concentration. The fastest compound to reach equilibrium adsorption capacity onto the coal AC was pyrrole (1 hour). The adsorption capacity of the coal AC for pyrrole and N-acetyl-d-glucosamine and 1-hour contact time is recommended for designing bioretention systems targeting organic nitrogenous compounds.