Delivery of complex organic compounds from evolved stars to the solar system.
Kwok, Sun
2011-12-01
Stars in the late stages of evolution are able to synthesize complex organic compounds with aromatic and aliphatic structures over very short time scales. These compounds are ejected into the interstellar medium and distributed throughout the Galaxy. The structures of these compounds are similar to the insoluble organic matter found in meteorites. In this paper, we discuss to what extent stellar organics has enriched the primordial Solar System and possibly the early Earth.
MOD: An In-Situ Organic Detector for the MSR 2003 Mission
NASA Technical Reports Server (NTRS)
Kminek, G.; Bada, J. L.; Botta, O.; Glavin, D. P.; Grunthaner, F. J.; LaBaw, C. C.; Serviss, O. E.
2000-01-01
Looking for organic compounds that are essential for biochemistry or indicative of extraterrestrial organic influx is the primary goal of MOD (Mars Organic Detector). MOD can also quantify adsorbed and chemisorbed water and evolved carbon dioxide.
NASA Technical Reports Server (NTRS)
Eigenbrode, J. L.; Bower, H.; Archer, P. Jr.
2014-01-01
Martian carbon was detected in the Sheepbed mudtsone at Yellowknife Bay, Gale Crater, Mars by the Sample Analysis at Mars (SAM) instrument onboard Curiosity, the rover of the Mars Science Laboratory missio]. The carbon was detected as CO2 thermally evolved from drilled and sieved rock powder that was delivered to SAM as a <150-micron-particle- size fraction. Most of the CO2 observed in the Cumberland (CB) drill hole evolved between 150deg and 350deg C. In the John Klein (JK) drill hole, the CO2 evolved up to 500deg C. Hypotheses for the source of the the CO2 include the breakdown of carbonate minerals reacting with HCl released from oxychlorine compounds, combustion of organic matter by O2 thermally evolved from the same oxychlorine minerals, and the decarboxylation of organic molecules indigenous to the martian rock sample. Here we explore the potential for the decarboxylation hypothesis.
Volatile, isotope, and organic analysis of martian fines with the Mars Curiosity rover.
Leshin, L A; Mahaffy, P R; Webster, C R; Cabane, M; Coll, P; Conrad, P G; Archer, P D; Atreya, S K; Brunner, A E; Buch, A; Eigenbrode, J L; Flesch, G J; Franz, H B; Freissinet, C; Glavin, D P; McAdam, A C; Miller, K E; Ming, D W; Morris, R V; Navarro-González, R; Niles, P B; Owen, T; Pepin, R O; Squyres, S; Steele, A; Stern, J C; Summons, R E; Sumner, D Y; Sutter, B; Szopa, C; Teinturier, S; Trainer, M G; Wray, J J; Grotzinger, J P
2013-09-27
Samples from the Rocknest aeolian deposit were heated to ~835°C under helium flow and evolved gases analyzed by Curiosity's Sample Analysis at Mars instrument suite. H2O, SO2, CO2, and O2 were the major gases released. Water abundance (1.5 to 3 weight percent) and release temperature suggest that H2O is bound within an amorphous component of the sample. Decomposition of fine-grained Fe or Mg carbonate is the likely source of much of the evolved CO2. Evolved O2 is coincident with the release of Cl, suggesting that oxygen is produced from thermal decomposition of an oxychloride compound. Elevated δD values are consistent with recent atmospheric exchange. Carbon isotopes indicate multiple carbon sources in the fines. Several simple organic compounds were detected, but they are not definitively martian in origin.
Biemann, K; Oro, J; Toulmin, P; Orgel, L E; Nier, A O; Anderson, D M; Simmonds, P G; Flory, D; Diaz, A V; Rushneck, D R; Biller, J A
1976-10-01
Two surface samples collected from the Chryse Planitia region of Mars were heated to temperatures up to 500 degrees C, and the volatiles that they evolved were analyzed with a gas chromatograph-mass spectrometer. Only water and carbon dioxide were detected. This implies that organic compounds have not accumulated to the extent that individual components could be detected at levels of a few parts in 10(9) by weight in our samples. Proposed mechanisms for the accumulation and destruction of organic compounds are discussed in the light of this limit.
NASA Technical Reports Server (NTRS)
Biemann, K.; Oro, J.; Toulmin, P., III; Orgel, L. E.; Nier, A. O.; Anderson, D. M.; Flory, D.; Diaz, A. V.; Rushneck, D. R.; Simmonds, P. G.
1976-01-01
Two surface samples collected from the Chryse Planitia region of Mars were heated to temperatures up to 500 C, and the volatiles that they evolved were analyzed with a gas chromatograph-mass spectrometer. Only water and carbon dioxide were detected. This implies that organic compounds have not accumulated to the extent that individual components could be detected at levels of a few parts per billion by weight in the samples. Proposed mechanisms for the accumulation and destruction of organic compounds are discussed in the light of this limit.
Biemann, K.; Oro, John; Toulmin, P.; Orgel, Leslie E.; Nier, A.O.; Anderson, D.M.; Simmonds, P.G.; Flory, D.; Diaz, A.V.; Rushneck, D.R.; Biller, J.A.
1976-01-01
Two surface samples collected from the Chryse Planitia region of Mars were heated to temperatures up to 500??C, and the volatiles that they evolved were analyzed with a gas chromatograph-mass spectrometer. Only water and carbon dioxide were detected. This implies that organic compounds have not accumulated to the extent that individual components could be detected at levels of a few parts in 109 by weight in our samples. Proposed mechanisms for the accumulation and destruction of organic compounds are discussed in the light of this limit.
Compound-specific carbon isotope analysis of a contaminant plume in Kingsford, Michigan, USA
Michel, R.L.; Silva, S.R.; Bemis, B.; Godsy, E.M.; Warren, E.
2001-01-01
Compound-specific isotope analysis was used to study a contaminated site near Kingsford, Michigan, USA. Organic compounds at three of the sites studied had similar ??13C values indicating that the contaminant source is the same for all sites. At a fourth site, chemical and ??13C values had evolved due to microbial degradation of organics, with the ??13C being much heavier than the starting materials. A microcosm experiment was run to observe isotopic changes with time in the methane evolved and in compounds remaining in the water during degradation. The ??13C values of the methane became heavier during the initial period of the run when volatile fatty acids were being consumed. There was an abrupt decrease in the ??13C values when fatty acids had been consumed and phenols began to be utilized. The ??13C value of the propionate remaining in solution also increased, similar to the results found in the field.
Metallo-organic decomposition films
NASA Technical Reports Server (NTRS)
Gallagher, B. D.
1985-01-01
A summary of metallo-organic deposition (MOD) films for solar cells was presented. The MOD materials are metal ions compounded with organic radicals. The technology is evolving quickly for solar cell metallization. Silver compounds, especially silver neodecanoate, were developed which can be applied by thick-film screening, ink-jet printing, spin-on, spray, or dip methods. Some of the advantages of MOD are: high uniform metal content, lower firing temperatures, decomposition without leaving a carbon deposit or toxic materials, and a film that is stable under ambient conditions. Molecular design criteria were explained along with compounds formulated to date, and the accompanying reactions for these compounds. Phase stability and the other experimental and analytic results of MOD films were presented.
A study of volatile organic compounds evolved from the decaying human body.
Statheropoulos, M; Spiliopoulou, C; Agapiou, A
2005-10-29
Two men were found dead near the island of Samos, Greece, in the Mediterranean sea. The estimated time of death for both victims was 3-4 weeks. Autopsy revealed no remarkable external injuries or acute poisoning. The exact cause of death remained unclear because the bodies had advanced decomposition. Volatile organic compounds (VOCs) evolved from these two corpses were determined by thermal desorption/gas chromatography/mass spectrometry analysis (TD/GC/MS). Over 80 substances have been identified and quantified. The most prominent among them were dimethyl disulfide (13.39 nmol/L), toluene (10.11 nmol/L), hexane (5.58 nmol/L), benzene 1,2,4-trimethyl (4.04 nmol/L), 2-propanone (3.84 nmol/L), 3-pentanone (3.59 nmol/L). Qualitative and quantitative differences among the evolved VOCs and CO2 mean concentration values might indicate different rates of decomposition between the two bodies. The study of the evolved VOCs appears to be a promising adjunct to the forensic pathologist as they may offer important information which can be used in his final evaluation.
Previously unknown class of metalorganic compounds revealed in meteorites
Ruf, Alexander; Kanawati, Basem; Hertkorn, Norbert; Yin, Qing-Zhu; Moritz, Franco; Harir, Mourad; Lucio, Marianna; Michalke, Bernhard; Wimpenny, Joshua; Shilobreeva, Svetlana; Bronsky, Basil; Saraykin, Vladimir; Gabelica, Zelimir; Gougeon, Régis D.; Quirico, Eric; Ralew, Stefan; Jakubowski, Tomasz; Haack, Henning; Gonsior, Michael; Jenniskens, Peter; Hinman, Nancy W.; Schmitt-Kopplin, Philippe
2017-01-01
The rich diversity and complexity of organic matter found in meteorites is rapidly expanding our knowledge and understanding of extreme environments from which the early solar system emerged and evolved. Here, we report the discovery of a hitherto unknown chemical class, dihydroxymagnesium carboxylates [(OH)2MgO2CR]−, in meteoritic soluble organic matter. High collision energies, which are required for fragmentation, suggest substantial thermal stability of these Mg-metalorganics (CHOMg compounds). This was corroborated by their higher abundance in thermally processed meteorites. CHOMg compounds were found to be present in a set of 61 meteorites of diverse petrological classes. The appearance of this CHOMg chemical class extends the previously investigated, diverse set of CHNOS molecules. A connection between the evolution of organic compounds and minerals is made, as Mg released from minerals gets trapped into organic compounds. These CHOMg metalorganic compounds and their relation to thermal processing in meteorites might shed new light on our understanding of carbon speciation at a molecular level in meteorite parent bodies. PMID:28242686
Mycosporine and mycosporine-like amino acids: A paramount tool against ultra violet irradiation
Bhatia, Saurabh; Garg, Arun; Sharma, K.; Kumar, S.; Sharma, A.; Purohit, A. P.
2011-01-01
Various facts demonstrated that UVB is harmful to organisms. Sunscreen compounds are usually used to prevent the excessive damage caused by UVB. However, certain photosynthetic organisms have evolved mechanisms to counteract the toxicity of ultraviolet radiation by synthesizing UV screening compounds such as mycosporine-like amino acids (MAAs). MAAs provide UV protection to primary and secondary consumers through food chain and to non-biological materials by photostabilizing action. Information related to the ecological consequence of MAAs and their spatial distribution from a wide range of organisms is accumulating. Hence, our studies seek a potent class of natural sun protective compounds to understand their relationship with environment and to develop a protocol for large-scale industrial production of these compounds so that they can find application as UV-protecting cosmetics. PMID:22279371
On the laws for the emergence of life from the abiotic matter
NASA Astrophysics Data System (ADS)
Kolb, Vera M.
2012-10-01
In this work we pose a question if the laws for the emergence of life from the abiotic matter can exist even before carbon and the organic compounds were available. Carbon as an element became available via nucleosynthesis in the stars, and various carbon compounds were later made in the interstellar space and on the various objects in space. Is the emergence of life blue-printed as some general law which would then guarantee that life would evolve in the universe, or is it a law which co-evolved with the organic compounds and the environment in which they existed and which may be a subject to chance? This question is of a fundamental importance for astrobiology, which seeks extraterrestrial life without really knowing if it exists. Numerous articles and books have been written on the subject of the inevitability of life in the universe, on the evolution of matter which leads to life, and on the role of chance in the emergence of life. We select from these resources, critically examine them, and provide an inclusive summary, which we believe will be useful to astrobiologists.
PHOTOACTIVATED TOXICITY IN AQUATIC ENVIRONMENTS
Most aquatic organisms have evolved mechanisms to minimize damage by ultraviolet (UV) radiation. Many terrestrial species have additionally had to adapt to plant compounds (e.g. furanocoumarins) that are extremely toxic when activated by UV radiation. Over evolutionary time, it i...
Evolution of interstellar organic compounds under asteroidal hydrothermal conditions
NASA Astrophysics Data System (ADS)
Vinogradoff, V.; Bernard, S.; Le Guillou, C.; Remusat, L.
2018-05-01
Carbonaceous chondrites (CC) contain a diversity of organic compounds. No definitive evidence for a genetic relationship between these complex organic molecules and the simple organic molecules detected in the interstellar medium (ISM) has yet been reported. One of the many difficulties arises from the transformations of organic compounds during accretion and hydrothermal alteration on asteroids. Here, we report results of hydrothermal alteration experiments conducted on a common constituent of interstellar ice analogs, Hexamethylenetetramine (HMT - C6H12N4). We submitted HMT to asteroidal hydrothermal conditions at 150 °C, for various durations (up to 31 days) and under alkaline pH. Organic products were characterized by gas chromatography mass spectrometry, infrared spectroscopy and synchrotron-based X-ray absorption near edge structure spectroscopy. Results show that, within a few days, HMT has evolved into (1) a very diverse suite of soluble compounds dominated by N-bearing aromatic compounds (> 150 species after 31 days), including for instance formamide, pyridine, pyrrole and their polymers (2) an aromatic and N-rich insoluble material that forms after only 7 days of experiment and then remains stable through time. The reaction pathways leading to the soluble compounds likely include HMT dissociation, formose and Maillard-type reactions, e.g. reactions of sugar derivatives with amines. The present study demonstrates that, if interstellar organic compounds such as HMT had been accreted by chondrite parent bodies, they would have undergone chemical transformations during hydrothermal alteration, potentially leading to the formation of high molecular weight insoluble organic molecules. Some of the diversity of soluble and insoluble organic compounds found in CC may thus result from asteroidal hydrothermal alteration.
NASA Technical Reports Server (NTRS)
Millan, M.; Szopa, C.; Buch, A.; Belmahdi, I.; Glavin, D. P.; Freissinet, C.; Eigenbrode, J. L.; Archer, P. D., Jr,; Sutter, B.; Mahaffy, P.
2017-01-01
One among the main objectives of the Sample Analysis at Mars (SAM) experiment is the in situ molecular analysis of gases evolving from solid samples heated up to approximately 850 degrees Centigrade, and collected by Curiosity on Mars surface/sub-surface in Gale crater. With this aim, SAM uses a gas-chromatograph coupled to a quadrupole mass spectrometer (GC-QMS) devoted to separate, detect and identify both volatile inorganic and organic compounds. SAM detected chlorinated organic molecules produced in evolved gas analysis (EGA) experiments. Several of these were also detected by the Viking experiments in 1976. SAM also detected oxychlorine compounds that were present at the Phoenix landing site. The oxychlorines may be prevelant over much of the martian surface. The C1 to C3 aliphatic chlorohydrocarbons (chloromethane and di- and trichloromethane) detected by SAM were attributed to reaction products occurring between the oxychlorines phases and the organic compounds coming from SAM instrument background. But SAM also showed the presence of a large excess of chlorobenzene and C2 to C4 dichloroalkanes among the volatile species released by the Cumberland sample of the Sheepbed mudstone. For the first time in the history of the Mars exploration, this proved the presence of Mars indigenous organic material at the Mars' surface. However, the identification of the precursor organic compounds of these chlorohydrocarbons is difficult due to the complexity of the reactions occurring during the sample pyrolysis. Laboratory pyrolysis experiments have demonstrated that oxychlorines phases such as perchlorates and chlorates, decomposed into dioxygen and volatile chlorine bearing molecules (HCl and/or Cl2) during the pyrolysis. These chemical species can then react with the organic molecules present in the martian solid samples through oxidation, chlorination and oxychlorination processes.
ULTRAVIOLET PROTECTIVE COMPOUNDS AS A RESPONSE TO ULTRAVIOLET RADIATION EXPOSURE
Life on Earth has evolved adaptations to many environmental stresses over the epochs. One consistent stress has been exposure to ultraviolet radiation. In response to UVR organisms have adapted myriad responses; behavioral, morphological and physiological. Behaviorally, some orga...
Thermal destruction of organic waste hydrophobicity for agricultural soils application.
Comino, Francisco; Aranda, Víctor; Domínguez-Vidal, Ana; Ayora-Cañada, María José
2017-11-01
Use of organic amendments is a good strategy for combating the growing problem of soil degradation due to deterioration of organic matter content, particularly severe in semi-arid European Mediterranean regions, while at the same time providing an opportunity for recycling organic wastes. Olive mill pomace (OMP), the main by-product of the olive oil industry, is being used increasingly in olive grove soils for this purpose. Although the positive effects of OMP amendments have been widely studied, they also have some negative effects on soil. One of the most critical is that they increase water repellency (WR) due to the presence of poorly evolved, strongly aliphatic compounds. This detrimental effect has received very little attention, although it may impair plant water availability and infiltration rates, increase erosion and lower long-term soil quality. This study proposed, for the first time, thermal treatment as an effective way of reducing WR in organic amendments (i.e. mixtures of OMP, olive tree pruning, chicken manure and spent coffee grounds) prior to their application to soil. Thermal treatment at 275 °C proved effective in removing WR, while lower temperatures (175 or 225 °C) can even increase it. Changes by thermal treatment in the characteristics of the organic amendments studied with FTIR and UV-Vis spectroscopy and thermogravimetric analysis showed that it strongly reduced the aliphatic compounds mainly responsible for their hydrophobicity, concentrated aromatic compounds and increased thermostability. Heating also reduced phytotoxicity, making all of the organic amendments usable in the field (germination index over 100%). Therefore, heating at 275 °C could be an acceptable option for removing WR from organic amendments, enhancing their quality with more stable evolved characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Mahaffy, Paul; Brunner, Anna; McAdam, Amy; Franz, Heather; Conrad, Pamela; Webster, Chris; Cabane, Michel
2009-01-01
The lower mound strata of Gale Crater provide a diverse set of chemical environments for exploration by the varied tools of the Curiosity Rover of the Mars Science Laboratory (MSL) Mission. Orbital imaging and spectroscopy clearly reveal distinct layers of hydrated minerals, sulfates, and clays with abundant evidence of a variety of fluvial processes. The three instruments of the MSL Sample Analysis at aMars (SAM) investigation, the Quadrupole Mass Spectrometer (QMS), the Tunable Laser Spectrometer (TLS), and the Gas Chromatograph (GC) are designed to analyze either atmospheric gases or volatiles thermally evolved or chemically extracted from powdered rock or soil. The presence or absence of organic compounds in these layers is of great interest since such an in situ search for this type of record has not been successfully implemented since the mid-60s Viking GCMS experiments. However, regardless of the outcome of the analysis for organics, the abundance and isotopic composition of thermally evolved inorganic compounds should also provide a rich data set to complement the mineralogical and elemental information provided by other MSL instruments. In addition, these evolved gas analysis (EGA) experiments will help test sedimentary models proposed by Malin and Edgett (2000) and then further developed by Milliken et al (2010) for Gale Crater. In the SAM EGA experiments the evolution temperatures of H2O, CO2, SO2, O2, or other simple compounds as the samples are heated in a helium stream to 1000 C provides information on mineral types and their associations. The isotopic composition of O, H, C, and S can be precisely determined in several evolved compounds and compared with the present day atmosphere. Such SAM results might be able to test mineralogical evidence of changing sedimentary and alteration processes over an extended period of time. For example, Bibring et al (2006) have suggested such a major shift from early nonacidic to later acidic alteration. We will illustrate through a variety of evolved gas experiments implemented under SAM-like gas flow and temperature ramp conditions on terrestrial analog minerals on high fidelity Sam breadboards the type of chemical information we expect SAM to provide.
Evolution of 'smoke' induced seed germination in pyroendemic plants
Keeley, J. E.; Pausas, J.G.
2016-01-01
Pyroendemics are plants in which seedling germination and successful seedling recruitment are restricted to immediate postfire environments. In many fire-prone ecosystems species cue their germination to immediate postfire conditions. Here we address how species have evolved one very specific mechanism, which is using the signal of combustion products from biomass. This is often termed ‘smoke’ stimulated germination although it was first discovered in studies of charred wood effects on germination of species strictly tied to postfire conditions (pyroendemics). Smoke stimulated germination has been reported from a huge diversity of plant species. The fact that the organic compound karrikin (a product of the degradation of cellulose) is a powerful germination cue in many species has led to the assumption that this compound is the only chemical responsible for smoke-stimulated germination. Here we show that smoke-stimulated germination is a complex trait with different compounds involved. We propose that convergent evolution is a more parsimonious model for smoke stimulated germination, suggesting that this trait evolved multiple times in response to a variety of organic and inorganic chemical triggers in smoke. The convergent model is congruent with the evolution of many other fire-related traits.
Searching for Reduced Carbon on the Surface of Mars: The SAM Combustion Experiment
NASA Technical Reports Server (NTRS)
Stern, J. C.; Malespin, C. A.; Mahaffy, P. R.; Webster, C. R.; Eigenbrode, J. L.; Archer, P. D., Jr.; Brunner, A. E.; Freissinet, C.; Franz, H. B.; Glavin, D. P.;
2014-01-01
The search for reduced carbon has been a major focus of past and present missions to Mars. Thermal evolved gas analysis was used by the Viking and Phoenix landers and is currently in use by the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) to characterize volatiles evolved from solid samples, including those associated with reduced organic species. SAM has the additional capability to perform a combustion experiment, in which a sample of Mars regolith is heated in the presence of oxygen and the composition of the evolved gases is measured using quadrupole mass spectrometry (QMS) and tunable laser spectrometry (TLS) [1]. Organics detection on the Martian surface has been complicated by oxidation and destruction during heating by soil oxidants [2], including oxychlorine compounds, and terrestrial organics in the SAM background contributed by one of the SAM wet chemistry reagents MTBSTFA (N-Methyl-N-tertbutyldimethylsilyl- trifluoroacetamide) [3,4]. Thermal Evolved Gas Analysis (TEGA) results from Phoenix show a mid temperature CO2 release between 400 C - 680 C speculated to be carbonate, CO2 adsorbed to grains, or combustion of organics by soil oxidants [5]. Low temperature CO2 evolutions (approx. 200 C - 400 C) were also present at all three sites in Gale Crater where SAM Evolved Gas Analysis (EGA) was performed, and potential sources include combustion of terrestrial organics from SAM, as well as combustion and/or decarboxylation either indigenous martian or exogenous organic carbon [4,6]. By performing an experiment to intentionally combust all reduced materials in the sample, we hope to compare the bulk abundance of CO2 and other oxidized species evolved by combustion to that evolved during an EGA experiment to estimate how much CO2 could be contributed by reduced carbon sources. In addition, C, O, and H isotopic compositions of CO2 and H2O measured by TLS can contribute information regarding the potential sources of these volatiles.
The Apollo program and amino acids. [precursors significance in molecular evolution
NASA Technical Reports Server (NTRS)
Fox, S. W.
1973-01-01
Apollo lunar sample analyses designed to detect the presence of organic compounds are reviewed, and the results are discussed from the viewpoint of relevance to laboratory experiments on the synthesis of amino acids and to theoretical models of cosmochemical processes resulting in the formation of organic compounds. Glycine, alanine, glutamic acid, aspartic acid, serine, and threonine have been found repeatedly in the hydrolyzates of hot aqueous extracts of lunar dust. These compounds represent an early step in the sequence of events leading to the rise of living material and were probably deposited by the solar wind. The results of the Apollo program so far suggest that the pathway from cosmic organic matter to life as it evolved on earth could have been pursued on the moon to the stage of amino acid precursors and then may have been terminated for lack of sufficient water.
Molecular and physiological mechanisms of plant tolerance to toxic metals
USDA-ARS?s Scientific Manuscript database
Plants have evolved a myriad of adaptive mechanisms based on a number of genes to deal with the different toxic metals they encounter in the soils worldwide. These genes encode a range of different metal and organic compound transporters and enzyme pathways for the synthesis of metal detoxifying lig...
Rivers and streams: Physical setting and adapted biota
Wilzbach, Margaret A.; Cummins, K.W.
2008-01-01
Streams and rivers are enormously important, with their ecological, and economic value, greatly outweighing their significance on the landscape. Lotic ecology began in Europe with a focus on the distribution, abundance, and taxonomic composition of aquatic organisms and in North American with a focus on fishery biology. Since 1980, stream/river research has been highly interdisciplinary, involving fishery biologists, aquatic entomologists, algologists, hydrologists, geomorphologists, microbiologists, and terrestrial plant ecologists. Stream and river biota evolved in response to, and in concert with, the physical and chemical setting. Streams/rivers transport water and move sediments to the sea as part of the hydrologic cycle that involves evaporation, plant evapotranspiration, and precipitation. Ephemeral streams flow only in the wettest year, intermittent streams flow predictably every year during capture of surface runoff, and perennial streams flow continuously during wet and dry periods, receiving both stormflow and groundwater baseflow. The lotic biota, for example, algae, macrophytes, benthic invertebrates, and fishes, have evolved adaptations to their running-water setting. Dominant physical features of this setting are current, substrate, and temperature. Key chemical constituents are dissolved gases, dissolved inorganic ions and compounds, particulate inorganic material, particulate organic material, and dissolved organic ions (nitrogen and phosphorus) and compounds.
NASA Astrophysics Data System (ADS)
François, Pascaline; Coll, Patrice; Szopa, Cyril; Buch, Arnaud; Cabane, Michel; McAdam, Amy; Freissinet, Caroline; Eigenbrode, Jennifer L.; Glavin, Daniel P.; Navarro-Gonzalez, Rafael; Mahaffy, Paul R.
2014-05-01
The Sample Analysis at Mars (SAM) instrument suite aboard the Curiosity rover is designed to characterize organic and inorganic volatiles thermally evolved from solid samples. It can analyze evolved volatiles directly with its quadrupole mass spectrometer (MS) to perform evolved gas analysis (EGA) or it can analyze volatiles after they have been sent through a gas chromatography column to perform pyrolysis-gas chromatograph-mass spectrometry (pyr-GC-MS) [1]. Three solid samples have been analyzed by SAM, a scoop of basaltic sand at Rocknest (RN) and two rocks drilled at Yellowknife Bay designated as John Klein (JK) and Cumberland (CB). All these samples contain an oxychlorine phase (e.g., a perchlorate salt) [2, 3] that evolves HCl, Cl2 and O2 on heating leading to the possible chlorination and/or combustion of organic molecules [4]. Chlorohydrocarbons detected at RN, JK and CB are derived from reactions between martian oxychlorine compounds and terrestrial carbon that is part of the SAM background (e.g., MTBSTFA [2]) as well as potentially reactions with martian carbon and/or thermal desorption directly from the samples for the production of chlorobenzene evolved during pyrolysis of CB. RN, JK and CB samples also contain iron oxides (e.g., hematite, magnetite) [5] which could oxidize organic compounds and catalyze their decomposition [6] leading to differences in the amount and/or nature of pyrolysis products. In order to help interpretation of in situ data obtained by SAM, we study the influence of an iron oxide, hematite, and an oxychlorine phase, Ca-perchlorate, individually, as well as mixed, on alanine, a common amino acid, under conditions simulating the SAM pyrolysis. This work aims to help to determine the influences of key sample minerals on the production of organic compounds detected with SAM in both GC-MS and EGA mode, and to identify potential parent molecules. References: [1] Mahaffy, P. et al. (2012), Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), JGR. [3] Ming, D. et al. (2013), Science, DOI: 10.1126/science.1245267 [4] Navarro-Gonzalez, R. et al. (2010), JGR. [5] Vaniman, D. T. et al (2013), Science, DOI: 10.1126/science.1243480. 71, 9-17. [6] Iniguez, E. et al. (2009), Geophysical Research Letters, 36. Acknowledgments: SAM-GC team acknowledges support from the French Space Agency (CNES), French National Programme of Planetology (PNP), National French Council (CNRS), Pierre Simon Laplace Institute, Institut Universitaire de France (IUF) and ESEP Labex. J. Eigenbrode and D. Glavin were supported by the NASA MSL participating scientist program.
Five Years of Analyses of Volatiles, Isotopes and Organics in Gale Crater Materials
NASA Astrophysics Data System (ADS)
McAdam, A.; Mahaffy, P. R.; Andrejkovicova, S. C.; Archer, P. D., Jr.; Atreya, S. K.; Buch, A.; Coll, P. J.; Conrad, P. G.; Eigenbrode, J. L.; Farley, K. A.; Flesch, G.; Franz, H. B.; Freissinet, C.; Glavin, D. P.; Hogancamp, J. V.; House, C. H.; Knudson, C. A.; Lewis, J. M.; Malespin, C.; Martin, P. M.; Millan, M.; Ming, D. W.; Morris, R. V.; Navarro-Gonzalez, R.; Steele, A.; Stern, J. C.; Summons, R. E.; Sutter, B.; Szopa, C.; Teinturier, S.; Trainer, M. G.; Webster, C. R.; Wong, G. M.
2017-12-01
Over the last five years, the Curiosity rover has explored a variety of fluvial, lacustrine and aeolian sedimentary rocks, and soils. The Sample Analysis at Mars (SAM) instrument has analysed 3 soil and 12 rock samples, which exhibit significant chemical and mineralogical diversity in over 200 meters of vertical section. Here we will highlight several key insights enabled by recent measurements of the chemical and isotopic composition of inorganic volatiles and organic compounds detected in Gale Crater materials. Until recently samples have evolved O2 during SAM evolved gas analyses (EGA), attributed to the thermal decomposition of oxychlorine phases. A lack of O2 evolution from recent mudstone samples may indicate a difference in the composition of depositional or diagenetic fluids, and can also have implications for the detection of organic compounds since O2 can combust organics to CO2 in the SAM ovens. Recent mudstone samples have also shown little or no evolution of NO attributable to nitrate salts, possibly also as a result of changes in the chemical composition of fluids [1]. Measurements of the isotopic composition of sulfur, hydrogen, nitrogen, chlorine, and carbon in methane evolved during SAM pyrolysis are providing constraints on the conditions of possible paleoenvironments [e.g., 2, 3]. There is evidence of organic C from both EGA and GCMS measurements of Gale samples [e.g., 4, 5]. Organic sulfur volatiles have been detected in several samples, and the first opportunistic derivatization experiment produced a rich dataset indicating the presence of several organic compounds [6, 7]. A K-Ar age has been obtained from the Mojave mudstone, and the age of secondary materials formed by aqueous alteration is likely <3 Ga [8]. This relatively young formation age suggests fluid interactions after the end of most fluvial activity on the surface of Mars. As these highlights show, SAM measurements of solid samples have made diverse and important contributions to the exploration of Gale's rock records of martian environmental history and habitability. [1] Sutter et al. (2017) LPSC 3009. [2] Franz et al., this mtg. [3] Stern et al., this mtg. [4] Ming et al. (2014) Science 343. [5] Freissinet et al. (2015) JGR 120. [6] Eigenbrode et al. (2016) AGU P21D-08. [7] Freissinet et al. (2017) LPSC 2687. [8] Martin et al. (2017) LPSC 1531.
Organics, Isotopes, and Volatiles in Gale Crater Sedimentary Rocks
NASA Astrophysics Data System (ADS)
Mahaffy, P. R.
2016-12-01
Solid samples analyzed by the Curiosity rover on the long traverse from the Gale crater floor to the flanks of Mt. Sharp spread a range of environments from fluvial to lacustrine to eolian, and span 100 m of stratigraphic thickness. The diverse chemical and isotopic composition of organic compounds and inorganic volatiles revealed in these samples analyzed over a period of more than 2 Mars years is described with an emphasis on the search for organics, the chemical environments and physical-chemical processes that respectively preserve or destroy organics, and unexpectedly large variations in H, S, and Cl isotopes. In addition to a set of aromatic and aliphatic chorine containing organic compounds thermally released from the Cumberland mudstone drilled early in the mission compounds [Freissinet et al., 2015], additional S-containing organics have been identified in the Mojave drill sample in the Pahrump Hills section that was characterized in detail over a 5 month period. This set of S and Cl containing compounds is definitively identified by gas chromatograph mass spectrometer (GCMS) analyses. In addition, fragments of other organic compounds are evident in the evolved gas analysis (EGA) experiments implemented by the Sample Analysis at Mars (SAM) instrument and utilization of SAM's derivatization agent has revealed the presence of high molecular weight compounds. Two factors complicate the search for organic compounds preserved from ancient Mars. First the nearly ubiquitous oxychlorine compounds such as perchlorates decompose on heating in the SAM ovens in the EGA experiments and there is evidence that the hot O2 released combusts organic compounds to produce CO2. Secondly, the cosmic radiation that penetrates through the thin Mars atmosphere meters into the surface transforms near surface organic compounds over time. Fortunately, the SAM mass spectrometer can measure spallogenic (3He and 21Ne) and neutron-capture (36Ar) noble gases to secure an estimate of the duration of radiation exposure. Measurement protocols developed to work around both of these limitations will be discussed. C. Freissinet et al, JGR (2015) 120(3), 495-514.
Størmer, Fredrik C; Mysterud, Ivar; Slagsvold, Tore
2011-06-01
The initial evolutionary electromagnetic steps in the history of brain development are still unknown, although such knowledge might be of high relevance in understanding human degenerative diseases. All prokaryote organisms, one-celled or multicellular, must have an inherited system to process and store information activating instincts and reflexes, in order to give a quick response to external stimuli. We argue that magnetite is an obvious compound to be evaluated as an initial precursor from prebiotic Earth history in the evolution of such a system. Magnetite is a stable ferrimagnetic compound, present in organisms ranging from bacteria to humans. It occurred naturally in the early Earth environment and was later synthesized de novo in biotic organisms. We suggest that the use of magnetite has evolved to represent the main storage system for learned memory in all organisms living today. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lee, Jechan; Choi, Dongho; Tsang, Yiu Fai; Oh, Jeong-Ik; Kwon, Eilhann E
2017-05-01
This study proposes a strategic principle to enhance the thermal efficiency of pyrolysis of municipal solid waste (MSW). An environmentally sound energy recovery platform was established by suppressing the formation of harmful organic compounds evolved from pyrolysis of MSW. Using CO 2 as reaction medium/feedstock, CO generation was enhanced through the following: 1) expediting the thermal cracking of volatile organic carbons (VOCs) evolved from the thermal degradation of the MSWs and 2) directly reacting VOCs with CO 2 . This particular influence of CO 2 on pyrolysis of the MSWs also led to the in-situ mitigation of harmful organic compounds (e.g., benzene derivatives and polycyclic aromatic hydrocarbons (PAHs)) considering that CO 2 acted as a carbon scavenger to block reaction pathways toward benzenes and PAHs in pyrolysis. To understand the fundamental influence of CO 2 , simulated MSWs (i.e., various ratios of biomass to polymer) were used to avoid any complexities arising from the heterogeneous matrix of MSW. All experimental findings in this study suggested the foreseeable environmental application of CO 2 to energy recovery from MSW together with disposal of MSW. Copyright © 2017 Elsevier Ltd. All rights reserved.
Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.
2016-01-19
A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Kohler theory to predict themore » effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. Furthermore, the model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.« less
NASA Astrophysics Data System (ADS)
Mahaffy, P. R.; Franz, H.; McAdam, A.; Conrad, P. G.; Brunner, A.; Cabane, M.; Webster, C. R.
2011-12-01
The lower mound strata of Gale Crater provide a diverse set of chemical environments for exploration by the varied tools of the Curiosity Rover of the Mars Science Laboratory (MSL) Mission. Orbital imaging and spectroscopy clearly reveal distinct layers of hydrated minerals, sulfates, and clays with abundant evidence of a variety of fluvial processes. The three instruments of the MSL Sample Analysis at Mars (SAM) investigation, the Quadrupole Mass Spectrometer (QMS), the Tunable Laser Spectrometer (TLS), and the Gas Chromatograph (GC) are designed to analyze either atmospheric gases or volatiles thermally evolved or chemically extracted from powdered rock or soil. The presence or absence of organic compounds in these layers is of great interest since such an in situ search for this type of record has not been successfully implemented since the mid-70s Viking GCMS experiments. However, regardless of the outcome of the analysis for organics, the abundance and isotopic composition of thermally evolved inorganic compounds should also provide a rich data set to complement the mineralogical and elemental information provided by other MSL instruments. In addition, these evolved gas analysis (EGA) experiments will help test sedimentary models proposed by Malin and Edgett (2000) and then further developed by Milliken et al (2010) for Gale Crater. In the SAM EGA experiments the evolution temperatures of H2O, CO2, SO2, O2, or other simple compounds as the samples are heated in a helium stream to 1000C provides information on mineral types and their associations. The isotopic composition of O, H, C, and S can be precisely determined in several evolved compounds and compared with the present day atmosphere. Such SAM results might be able to test mineralogical evidence of changing sedimentary and alteration processes over an extended period of time. For example, Bibring et al (2006) have suggested such a major shift from early nonacidic to later acidic alteration. We will illustrate through a variety of evolved gas experiments implemented under SAM-like gas flow and temperature ramp conditions on terrestrial analog minerals on high fidelity SAM breadboards the type of chemical information we expect SAM to provide. Bibring, J.-P., et al. (2006), Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data, Science, 312, 400-404, doi:10.1126/science.1122659. Malin, M. C., and K. S. Edgett (2000), Sedimentary rocks of early Mars, Science, 290, 1927-1937, doi:10.1126/science.290.5498.1927. Milliken, R. E., J. P. Grotzinger, and B. J. Thomson (2010), Paleoclimate of Mars as captured by the strati- graphic record in Gale Crater, Geophys. Res. Lett., 37, L04201, doi:10.1029/2009GL041870.
Natural Compounds as Next-Generation Herbicides
Dayan, Franck E.; Duke, Stephen O.
2014-01-01
Herbicides with new modes of action (MOAs) are badly needed due to the rapidly evolving resistance to commercial herbicides, but a new MOA has not been introduced in over 20 years. The greatest pest management challenge for organic agriculture is the lack of effective natural product herbicides. The structural diversity and evolved biological activity of natural phytotoxins offer opportunities for the development of both directly used natural compounds and synthetic herbicides with new target sites based on the structures of natural phytotoxins. Natural phytotoxins are also a source for the discovery of new herbicide target sites that can serve as the focus of traditional herbicide discovery efforts. There are many examples of strong natural phytotoxins with MOAs other than those used by commercial herbicides, which indicates that there are molecular targets of herbicides that can be added to the current repertoire of commercial herbicide MOAs. PMID:24784133
Natural compounds as next-generation herbicides.
Dayan, Franck E; Duke, Stephen O
2014-11-01
Herbicides with new modes of action (MOAs) are badly needed due to the rapidly evolving resistance to commercial herbicides, but a new MOA has not been introduced in over 20 years. The greatest pest management challenge for organic agriculture is the lack of effective natural product herbicides. The structural diversity and evolved biological activity of natural phytotoxins offer opportunities for the development of both directly used natural compounds and synthetic herbicides with new target sites based on the structures of natural phytotoxins. Natural phytotoxins are also a source for the discovery of new herbicide target sites that can serve as the focus of traditional herbicide discovery efforts. There are many examples of strong natural phytotoxins with MOAs other than those used by commercial herbicides, which indicates that there are molecular targets of herbicides that can be added to the current repertoire of commercial herbicide MOAs. © 2014 American Society of Plant Biologists. All Rights Reserved.
Schreiber, Ulrich; Mayer, Christian; Schmitz, Oliver J; Rosendahl, Pia; Bronja, Amela; Greule, Markus; Keppler, Frank; Mulder, Ines; Sattler, Tobias; Schöler, Heinz F
2017-01-01
The origin of life is still an unsolved mystery in science. Hypothetically, prebiotic chemistry and the formation of protocells may have evolved in the hydrothermal environment of tectonic fault zones in the upper continental crust, an environment where sensitive molecules are protected against degradation induced e.g. by UV radiation. The composition of fluid inclusions in minerals such as quartz crystals which have grown in this environment during the Archean period might provide important information about the first organic molecules formed by hydrothermal synthesis. Here we present evidence for organic compounds which were preserved in fluid inclusions of Archean quartz minerals from Western Australia. We found a variety of organic compounds such as alkanes, halocarbons, alcohols and aldehydes which unambiguously show that simple and even more complex prebiotic organic molecules have been formed by hydrothermal processes. Stable-isotope analysis confirms that the methane found in the inclusions has most likely been formed from abiotic sources by hydrothermal chemistry. Obviously, the liquid phase in the continental Archean crust provided an interesting choice of functional organic molecules. We conclude that organic substances such as these could have made an important contribution to prebiotic chemistry which might eventually have led to the formation of living cells.
NASA Technical Reports Server (NTRS)
Biemann, K.; Lavoie, J. M., Jr.
1979-01-01
The Viking molecular analysis experiment has demonstrated the absence (within the detection limits which range from levels of parts per million to below parts per billion) of organic substances in the Martian surface soil at the two Viking landing sites. Laboratory experiments with sterile and nonsterile antarctic samples further demonstrate the capability and reliability of the instrument. The circumstances under which organic components could have escaped detection, such as inaccessibility or extreme thermal stability of organic polymers, are discussed but are found to be unlikely. The inability of the instrument to detect free oxygen evolved from soil samples is pointed out.
Perl, Craig D; Rossoni, Sergio; Niven, Jeremy E
2017-03-01
Static allometries determine how organ size scales in relation to body mass. The extent to which these allometric relationships are free to evolve, and how they differ among closely related species, has been debated extensively and remains unclear; changes in intercept appear common, but changes in slope are far rarer. Here, we compare the scaling relationships that govern the structure of compound eyes of four closely related ant species from the genus Formica . Comparison among these species revealed changes in intercept but not slope in the allometric scaling relationships governing eye area, facet number, and mean facet diameter. Moreover, the scaling between facet diameter and number was conserved across all four species. In contrast, facet diameters from distinct regions of the compound eye differed in both intercept and slope within a single species and when comparing homologous regions among species. Thus, even when species are conservative in the scaling of whole organs, they can differ substantially in regional scaling within organs. This, at least partly, explains how species can produce organs that adhere to genus wide scaling relationships while still being able to invest differentially in particular regions of organs to produce specific features that match their ecology.
Hertz-Schünemann, Romy; Streibel, Thorsten; Ehlert, Sven; Zimmermann, Ralf
2013-09-01
A micro-probe (μ-probe) gas sampling device for on-line analysis of gases evolving in confined, small objects by single-photon ionisation time-of-flight mass spectrometry (SPI-TOFMS) was developed. The technique is applied for the first time in a feasibility study to record the formation of volatile and flavour compounds during the roasting process within (inside) or in the direct vicinity (outside) of individual coffee beans. A real-time on-line analysis of evolving volatile and semi-volatile organic compounds (VOC and SVOC) as they are formed under the mild pyrolytic conditions of the roasting process was performed. The soft-ionisation mass spectra depict a molecular ion signature, which is well corresponding with the existing knowledge of coffee roasting and evolving compounds. Additionally, thereby it is possible to discriminate between Coffea arabica (Arabica) and Coffea canephora (Robusta). The recognized differences in the roasting gas profiles reflect the differences in the precursor composition of the coffee cultivars very well. Furthermore, a well-known set of marker compounds for Arabica and Robusta, namely the lipids kahweol and cafestol (detected in their dehydrated form at m/z 296 and m/z 298, respectively) were observed. If the variation in time of different compounds is observed, distinctly different evolution behaviours were detected. Here, phenol (m/z 94) and caffeine (m/z 194) are exemplary chosen, whereas phenol shows very sharp emission peaks, caffeine do not have this highly transient behaviour. Finally, the changes of the chemical signature as a function of the roasting time, the influence of sampling position (inside, outside) and cultivar (Arabica, Robusta) is investigated by multivariate statistics (PCA). In summary, this pilot study demonstrates the high potential of the measurement technique to enhance the fundamental knowledge of the formation processes of volatile and semi-volatile flavour compounds inside the individual coffee bean.
Gillespie, W.H.; Pfefferkorn, H.W.
1986-01-01
New specimens of Phasmatocycas and Taeniopteris from the original Lower Permian locality in Kansas demonstrate organic attachment of the two and corroborate Mamay's hypothesis that Phasmatocycas and Taeniopteris were parts of the same plant. These forms also suggest that cycads evolved from taxa with entire leaves; i.e. Taeniopteris, rather than from pteridosperms with compound leaves. ?? 1986.
Solid-State NMR Spectroscopy of Metal–Organic Framework Compounds (MOFs)
Hoffmann, Herbert C.; Debowski, Marta; Müller, Philipp; Paasch, Silvia; Senkovska, Irena; Kaskel, Stefan; Brunner, Eike
2012-01-01
Nuclear Magnetic Resonance (NMR) spectroscopy is a well-established method for the investigation of various types of porous materials. During the past decade, metal–organic frameworks have attracted increasing research interest. Solid-state NMR spectroscopy has rapidly evolved into an important tool for the study of the structure, dynamics and flexibility of these materials, as well as for the characterization of host–guest interactions with adsorbed species such as xenon, carbon dioxide, water, and many others. The present review introduces and highlights recent developments in this rapidly growing field.
Preservation of organic matter on Mars by sulfur
NASA Astrophysics Data System (ADS)
Eigenbrode, J. L.; Steele, A.; Summons, R. E.; McAdam, A.; Sutter, B.; Franz, H. B.; Freissinet, C.; Millan, M.; Glavin, D. P.; Szopa, C.; Conrad, P. G.; Mahaffy, P. R.
2016-12-01
Deltaic-lacustrine mudstones at Pahrump Hills, Gale Crater, Mars yielded a variety of sulfur-containing volatiles upon heating to 500-860°C, as detected by the Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover. The detection of organosulfur compounds comprising thiophenes, dimethylsulfide and thiols by gas chromatography-mass spectrometry and evolved gas analyses, together with aromatic and other hydrocarbon molecules with distributions specific to the sample (i.e., not from the SAM background) indicate that some or all of these organic fragments released at high temperatures are indigenous to the mudstones. The organosulfur compounds are most likely derived from sulfur organics in the sediments. However, there is a possibility that sulfurization of some organic fragments occurred in the oven. On Earth, sulfurization of organic matter is a key process that aids preservation over geological time-scales. This is because it reduces reactive functional groups and adds cross links between small unstable molecules thereby converting them into recalcitrant macromolecules. Sulfurization of organic materials prior to deposition and during early diagenesis may have been a key mechanism responsible for organic matter preservation in the Murray formation mudstones. Sulfur-bearing organics have also been observed in carbonaceous meteorites and there is indication of their presence in the Tissint martian meteorite. A quantitative assessment of organosulfur compounds relative to their non-organic counterparts will be presented for the Murray formation mudstones analyzed by SAM and meteorites analyzed in the laboratory under similar analytical conditions.
Zare, Richard N.; Kuramoto, Douglas S.; Haase, Christa; Tan, Sze M.; Crosson, Eric R.; Saad, Nabil M. R.
2009-01-01
A continuous-flow cavity ring-down spectroscopy (CRDS) system integrating a chromatographic separation technique, a catalytic combustor, and an isotopic 13C/12C optical analyzer is described for the isotopic analysis of a mixture of organic compounds. A demonstration of its potential is made for the geochemically important class of short-chain hydrocarbons. The system proved to be linear over a 3-fold injection volume dynamic range with an average precision of 0.95‰ and 0.67‰ for ethane and propane, respectively. The calibrated accuracy for methane, ethane, and propane is within 3‰ of the values determined using isotope ratio mass spectrometry (IRMS), which is the current method of choice for compound-specific isotope analysis. With anticipated improvements, the low-cost, portable, and easy-to-use CRDS-based instrumental setup is poised to evolve into a credible challenge to the high-cost and complex IRMS-based technique. PMID:19564619
The 'wired' universe of organic chemistry.
Grzybowski, Bartosz A; Bishop, Kyle J M; Kowalczyk, Bartlomiej; Wilmer, Christopher E
2009-04-01
The millions of reactions performed and compounds synthesized by organic chemists over the past two centuries connect to form a network larger than the metabolic networks of higher organisms and rivalling the complexity of the World Wide Web. Despite its apparent randomness, the network of chemistry has a well-defined, modular architecture. The network evolves in time according to trends that have not changed since the inception of the discipline, and thus project into chemistry's future. Analysis of organic chemistry using the tools of network theory enables the identification of most 'central' organic molecules, and for the prediction of which and how many molecules will be made in the future. Statistical analyses based on network connectivity are useful in optimizing parallel syntheses, in estimating chemical reactivity, and more.
The Role of (Delta)C-13 in the Search for Reduced Organics on the Surface of Mars
NASA Technical Reports Server (NTRS)
Stern, J. C.; McAdam, A. C.
2012-01-01
The capabilities of the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) to detect trace amounts of organic carbon compounds are unprecedented, and MSL may be the first mission to reveal the presence of organic carbon on Mars. The search for reduced organic carbon on Mars is inextricably tied to: a) the preservation potential of the environment from which we take a solid sample, and b) the evolved gas analysis (EGA) techniques used by SAM to release volatiles from this solid sample. Several prospective targets have been identified for sample analysis at Gale Crater. Stratigraphic sequences of phyllosilicates and sulfates at Gale are thought to represent a period of global climate transition from a moderate pH lacustrine environment to an evaporitic environment, both of which could sequester organic carbon (Thomson et al. 2011). The sediment mound in Gale Crater contains a range of lithologies suggesting changes in redox conditions, and evidence of both lacustrine and fluvial depositional processes, which may have transported organic carbon from the layer in which it formed and resulted in its preservation elsewhere within the crater (Anderson and Bell, 2010). Inverted channel fills suggest erosion resistant material that could serve to preserve organics originally deposited in a low energy aqueous environment. The lithology sampled will affect not only the preservation of organics, but also our ability to detect organics during our evolved gas analysis, based on the sample matrix. For example, reduced organics may be trapped in the mineral structure, and thermal evolution of these organics will occur during thermal decomposition of the host mineral. If organics are occluded in minerals that have very high thermal decomposition temperatures, they may be, in effect, "too well preserved," and difficult to detect during EGA. Alternatively, the possible presence of perchlorate, or other strong oxidants in surface regolith, may result in destruction of structural information identifying organic molecules before reaching the QMS on SAM via oxidation to C02 during heating. If this is the case, the stable carbon isotopic composition (delta 13C) of the C02 evolved and measured by the Tunable Laser Spectrometer (TLS) on SAM may help identify the presence of organics. On Earth, biological activity can cause large fractionations of 13C/12C, which can preserved in sedimentary deposits and distinguish the organic products of biotic processes from inorganic atmospheric and geological reservoirs. It is plausible that similar fractionations could occur on Mars and be preserved in reduced organic matter in sediments. Bulk delta 13C measurements alone may not reveal a signature of trace organic carbon that may be present along with inorganic carbon. If both organic and inorganic carbon compounds are present, it may be possible to detect the organic carbon by comparing the 013C of pyrolysis and combustion experiments. The TLS on SAM is capable of obtaining high precision measurements of delta13C from C02 evolved during pyrolysis and combustion of solid regolith samples. Because carbonates are expected to be present at abundances of 0.1-1 % in Martian soil, and organics in the ppb range (Webster and Mahaffy, 2011), analog samples must represent this mix of reduced organic carbon and carbonate. The work presented here will examine the use of delta13C of C02 produced during combustion of bulk Mars analog samples as a proxy for detection of reduced organic carbon.
Mycosporine-Like Amino Acids: Relevant Secondary Metabolites. Chemical and Ecological Aspects
Carreto, Jose I.; Carignan, Mario O.
2011-01-01
Taxonomically diverse marine, freshwater and terrestrial organisms have evolved the capacity to synthesize, accumulate and metabolize a variety of UV-absorbing substances called mycosporine-like amino acids (MAAs) as part of an overall strategy to diminish the direct and indirect damaging effects of environmental ultraviolet radiation (UVR). Whereas the enzymatic machinery to synthesize MAAs was probably inherited from cyanobacteria ancestors via the endosymbionts hypothesis, metazoans lack this biochemical pathway, but can acquire and metabolize these compounds by trophic transference, symbiotic or bacterial association. In this review we describe the structure and physicochemical properties of MAAs, including the recently discovered compounds and the modern methods used for their isolation and identification, updating previous reviews. On this basis, we review the metabolism and distribution of this unique class of metabolites among marine organism. PMID:21556168
Zhang, Lanjun; Li, Zenghua; Li, Jinhu; Zhou, Yinbo; Yang, Yongliang; Tang, Yibo
2015-12-11
This paper selects two typical compounds containing organic sulfur as model compounds. Then, by analyzing the chromatograms of gaseous low-temp oxidation products and GC/MS of the extractable matter of the oxidation residue, we summarizing the mechanism of low-temp sulfur model compound oxidation. The results show that between 30°C to 80°C, the interaction between diphenyl sulfide and oxygen is mainly one of physical adsorption. After 80°C, chemical adsorption and chemical reactions begin. The main reaction mechanism in the low-temp oxidation of the model compound diphenyl sulfide is diphenyl sulfide generates diphenyl sulfoxide, and then this sulfoxide is further oxidized to diphenyl sulphone. A small amount of free radicals is generated in the process. The model compound cysteine behaves differently from diphenyl sulfide. The main reaction low-temp oxidation mechanism involves the thiol being oxidized into a disulphide and finally evolving to sulfonic acid, along with SO₂ being released at 130°C and also a small amount of free radicals. We also conducted an experiment on coal from Xingcheng using X-ray photoelectron spectroscopy (XPS). The results show that the major forms of organic sulfur in the original coal sample are thiophene and sulfone. Therefore, it can be inferred that there is none or little mercaptan and thiophenol in the original coal. After low-temp oxidation, the form of organic sulfur changes. The sulfide sulfur is oxidized to the sulfoxide, and then the sulfoxide is further oxidized to a sulfone, and these steps can be easily carried out under experimental conditions. What's more, the results illustrate that oxidation promotes sulfur element enrichment on the surface of coal.
Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei; Laskin, Alexander
2014-02-18
Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water-soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy, atomic force microscopy, and X-ray elemental microanalysis. Hygroscopic properties of internally mixed NaCl and organic acid particles were distinctly different from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of sodium malonate and sodium glutarate salts resulted by HCl evaporation from dehydrating particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei V.
Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy and X-ray elemental microanalysis.Hygroscopic properties of inte rnally mixed NaCl and organic acid particles were distinctly differentmore » from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of Na-malonate and Na-glutarate salts resulted by HCl evaporation from dehydrating particles.« less
Dutta, Suryendu; Mehrotra, Rakesh C; Paul, Swagata; Tiwari, R P; Bhattacharya, Sharmila; Srivastava, Gaurav; Ralte, V Z; Zoramthara, C
2017-09-08
Plants produce and release a large array of volatile organic compounds that play many ecological functions. These volatile plant metabolites serve as pollinator attractants, herbivore and pathogen repellents and protect plants from abiotic stresses. To date, the geological evolution of these organic compounds remains unknown. The preservation potential of these metabolites in the fossil record is very poor due to their low boiling points. Here we report a series of volatile sesquiterpenoids, including δ-elemene, α-copaene, β-elemene, β-caryophyllene, α-humulene, germacrene D, δ-cadiene and spathunenol, from early Miocene (~17 million year) amber from eastern India. The survival of these unaltered bioterpenoids can be attributed to the existence of extraordinary taphonomic conditions conducive to the preservation of volatile biomolecules through deep time. Furthermore, the occurrence of these volatiles in the early Miocene amber suggests that the plants from this period had evolved metabolic pathways to synthesize these organic molecules to play an active role in forest ecology, especially in plant-animal interactions.
Radiation processing of organics and biological materials exposed to ocean world surface conditions.
NASA Astrophysics Data System (ADS)
Hand, K. P.; Carlson, R. W.
2017-12-01
Assessing the habitability of ocean worlds, such as Europa and Enceladus, motivates a search for endogenous carbon compounds that could be indicative of a habitable, or even inhabited, subsurface liquid water environment. We have examined the role of destruction and synthesis of organic compounds via 10 keV electron bombardment of ices generated under temperature and pressure conditions comparable to Europa and Enceladus. Short-chain organics and ammonia, in combination with water, were exposed to Mrad to Grad doses and observed to evolve to a `lost' carbon fraction (CO and CO2) and a `retained' carbon fraction (consisting of a highly refractory `ocean world tholin' populated by highly radiation resistant carbonyl, aldehyde, and nitrile components). The retained fraction is of key importance as this likely represents the observable fraction for future spacecraft investigations. We also irradiated microbial spores (B. pumilis) to approximately 2 Grad and have found persistence of biomolecule fractions derived from proteins and nucleic acids.
Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars
NASA Astrophysics Data System (ADS)
Eigenbrode, Jennifer L.; Summons, Roger E.; Steele, Andrew; Freissinet, Caroline; Millan, Maëva; Navarro-González, Rafael; Sutter, Brad; McAdam, Amy C.; Franz, Heather B.; Glavin, Daniel P.; Archer, Paul D.; Mahaffy, Paul R.; Conrad, Pamela G.; Hurowitz, Joel A.; Grotzinger, John P.; Gupta, Sanjeev; Ming, Doug W.; Sumner, Dawn Y.; Szopa, Cyril; Malespin, Charles; Buch, Arnaud; Coll, Patrice
2018-06-01
Establishing the presence and state of organic matter, including its possible biosignatures, in martian materials has been an elusive quest, despite limited reports of the existence of organic matter on Mars. We report the in situ detection of organic matter preserved in lacustrine mudstones at the base of the ~3.5-billion-year-old Murray formation at Pahrump Hills, Gale crater, by the Sample Analysis at Mars instrument suite onboard the Curiosity rover. Diverse pyrolysis products, including thiophenic, aromatic, and aliphatic compounds released at high temperatures (500° to 820°C), were directly detected by evolved gas analysis. Thiophenes were also observed by gas chromatography–mass spectrometry. Their presence suggests that sulfurization aided organic matter preservation. At least 50 nanomoles of organic carbon persists, probably as macromolecules containing 5% carbon as organic sulfur molecules.
The Thermal Decomposition of Some Organic Lead Compounds
1957-11-01
either of salicylic anhydride or of its pyrolysis fragments which are reported to be a mixture of carbon dioxide , phenol and phenyl salicylate. Other...7) have studied the decomposition of the mono-salicylate in vacuo at 400°C. and have found that one molecule of carbon dioxide is evolved per...of lead nitrate and nitrosalicylic acid, though seme of the latter is decarboxylated with evolution of carbon dioxide . These points are considered
NASA Technical Reports Server (NTRS)
Glavin, Daniel; Freissinet, Caroline; Mahaffy, Paul; Miller, Kristen; Eigenbrode, Jennifer; Summons, Roger; Archer, Douglas, Jr.; Brunner, Anna; Martin, Mildred; Buch, Arrnaud;
2014-01-01
One of the key objectives of the Mars Science Laboratory rover and the Sample Analysis at Mars (SAM) instrument suite is to determine the inventory of organic and inorganic volatiles in the atmosphere and surface regolith and rocks to help assess the habitability potential of Gale Crater. The SAM instrument on the Curiosity rover can detect volatile organic compounds thermally evolved from solid samples using a combination of evolved gas analysis (EGA) and gas chromatography mass spectrometry (GCMS) (Mahaffy et al. 2012). The first solid samples analyzed by SAM, a scoop of windblown dust and sand at Rocknest, revealed several chloromethanes and a C4-chlorinated hydrocarbon derived primarily from reactions between a martian oxychlorine phase (e.g. perchlorate) and terrestrial carbon from N-methyl-N-(tertbutyldimethylsilyl)- trifluoroacetamide (MTBSTFA) vapor present in the SAM instrument background (Glavin et al. 2013). After the analyses at Rocknest, Curiosity traveled to Yellowknife Bay and drilled two separate holes in a fluvio-lacustrine sediment (the Sheepbed unit) designated John Klein and Cumberland. Analyses of the drilled materials by both SAM and the CheMin X-Ray Diffraction instrument revealed a mudstone consisting of 20 wt% smectite clays (Ming et al. 2013; Vaniman et al. 2013), which on Earth are known to aid the concentration and preservation of organic matter. Oxychlorine compounds were also detected in the Sheepbed mudstone during pyrolysis; however, in contrast to Rocknest, much higher levels of chloromethanes were released from the Sheepbed materials, suggesting an additional, possibly martian source of organic carbon (Ming et al. 2013). In addition, elevated abundances of chlorobenzene and a more diverse suite of chlorinated alkanes including dichloropropane and dichlorobutane detected in Cumberland compared to Rocknest suggest that martian or meteoritic organic carbon sources may be preserved in the mudstone (Freissinet et al. 2013). Chloromethane and dichloromethane were also identified after thermal volatilization of the surface soils by the GCMS instruments at the Viking landing sites, although no other chlorinated hydrocarbons were reported (Biemann et al. 1977). Here we focus on the origin of the chlorinated hydrocarbons detected in the Sheepbed mudstone by SAM and the implications for the preservation of organic matter in near-surface materials on Mars.
Biotechnology of Anoxygenic Phototrophic Bacteria.
Frigaard, Niels-Ulrik
Anoxygenic phototrophic bacteria are a diverse collection of organisms that are defined by their ability to grow using energy from light without evolving oxygen. The dominant groups are purple sulfur bacteria, purple nonsulfur bacteria, green sulfur bacteria, and green and red filamentous anoxygenic phototrophic bacteria. They represent several bacterial phyla but they all have bacteriochlorophylls and carotenoids and photochemical reaction centers which generate ATP and cellular reductants used for CO 2 fixation. They typically have an anaerobic lifestyle in the light, although some grow aerobically in the dark. Some of them oxidize inorganic sulfur compounds for light-dependent CO 2 fixation; this ability can be exploited for photobiological removal of hydrogen sulfide from wastewater and biogas. The anoxygenic phototrophic bacteria also perform bioremediation of recalcitrant dyes, pesticides, and heavy metals under anaerobic conditions. Finally, these organisms may be useful for overexpression of membrane proteins and photobiological production of H 2 and other valuable compounds.
NASA Astrophysics Data System (ADS)
Williams, E. K.; Rosenheim, B. E.
2011-12-01
Ramped pyrolysis methodology, such as that used in the programmed-temperature pyrolysis/combustion system (PTP/CS), improves radiocarbon analysis of geologic materials devoid of authigenic carbonate compounds and with low concentrations of extractable authochthonous organic molecules. The approach has improved sediment chronology in organic-rich sediments proximal to Antarctic ice shelves (Rosenheim et al., 2008) and constrained the carbon sequestration potential of suspended sediments in the lower Mississippi River (Roe et al., in review). Although ramped pyrolysis allows for separation of sedimentary organic material based upon relative reactivity, chemical information (i.e. chemical composition of pyrolysis products) is lost during the in-line combustion of pyrolysis products. A first order approximation of ramped pyrolysis/combustion system CO2 evolution, employing a simple Gaussian decomposition routine, has been useful (Rosenheim et al., 2008), but improvements may be possible. First, without prior compound-specific extractions, the molecular composition of sedimentary organic matter is unknown and/or unidentifiable. Second, even if determined as constituents of sedimentary organic material, many organic compounds have unknown or variable decomposition temperatures. Third, mixtures of organic compounds may result in significant chemistry within the pyrolysis reactor, prior to introduction of oxygen along the flow path. Gaussian decomposition of the reaction rate may be too simple to fully explain the combination of these factors. To relate both the radiocarbon age over different temperature intervals and the pyrolysis reaction thermograph (temperature (°C) vs. CO2 evolved (μmol)) obtained from PTP/CS to chemical composition of sedimentary organic material, we present a modeling framework developed based upon the ramped pyrolysis decomposition of simple mixtures of organic compounds (i.e. cellulose, lignin, plant fatty acids, etc.) often found in sedimentary organic material to account for changes in thermograph shape. The decompositions will be compositionally verified by 13C NMR analysis of pyrolysis residues from interrupted reactions. This will allow for constraint of decomposition temperatures of individual compounds as well as chemical reactions between volatilized moieties in mixtures of these compounds. We will apply this framework with 13C NMR analysis of interrupted pyrolysis residues and radiocarbon data from PTP/CS analysis of sedimentary organic material from a freshwater marsh wetland in Barataria Bay, Louisiana. We expect to characterize the bulk chemical composition during pyrolysis and as well as diagenetic changes with depth. Most importantly, we expect to constrain the potential and the limitations of this modeling framework for application to other depositional environments.
Escaping compound eye ancestry: the evolution of single-chamber eyes in holometabolous larvae.
Buschbeck, Elke K
2014-08-15
Stemmata, the eyes of holometabolous insect larvae, have gained little attention, even though they exhibit remarkably different optical solutions, ranging from compound eyes with upright images, to sophisticated single-chamber eyes with inverted images. Such optical differences raise the question of how major transitions may have occurred. Stemmata evolved from compound eye ancestry, and optical differences are apparent even in some of the simplest systems that share strong cellular homology with adult ommatidia. The transition to sophisticated single-chamber eyes occurred many times independently, and in at least two different ways: through the fusion of many ommatidia [as in the sawfly (Hymenoptera)], and through the expansion of single ommatidia [as in tiger beetles (Coleoptera), antlions (Neuroptera) and dobsonflies (Megaloptera)]. Although ommatidia-like units frequently have multiple photoreceptor layers (tiers), sophisticated image-forming stemmata tend to only have one photoreceptor tier, presumably a consequence of the lens only being able to efficiently focus light on to one photoreceptor layer. An interesting exception is found in some diving beetles [Dytiscidae (Coleoptera)], in which two retinas receive sharp images from a bifocal lens. Taken together, stemmata represent a great model system to study an impressive set of optical solutions that evolved from a relatively simple ancestral organization. © 2014. Published by The Company of Biologists Ltd.
Shannon, Emer; Abu-Ghannam, Nissreen
2016-01-01
The marine environment is home to a taxonomically diverse ecosystem. Organisms such as algae, molluscs, sponges, corals, and tunicates have evolved to survive the high concentrations of infectious and surface-fouling bacteria that are indigenous to ocean waters. Both macroalgae (seaweeds) and microalgae (diatoms) contain pharmacologically active compounds such as phlorotannins, fatty acids, polysaccharides, peptides, and terpenes which combat bacterial invasion. The resistance of pathogenic bacteria to existing antibiotics has become a global epidemic. Marine algae derivatives have shown promise as candidates in novel, antibacterial drug discovery. The efficacy of these compounds, their mechanism of action, applications as antibiotics, disinfectants, and inhibitors of foodborne pathogenic and spoilage bacteria are reviewed in this article. PMID:27110798
Thermal Desorption/GCMS Analysis of Astrobiologically Relevant Organic Materials
NASA Technical Reports Server (NTRS)
McDonald, Gene D.
2001-01-01
Several macromolecular organic materials, both biologically-derived (type II kerogen and humic acid) and abiotic in origin (Murchison insoluble organic material, cyanide polymer, and Titan tholin) were subjected to thermal desorption using a Chromatoprobe attachment on a Varian Saturn 2000 GCMS system. Each sample was heated sequentially at 100, 200, and 300 C to release volatile components. The evolved compounds were then separated on a Supelco EC-1 dimethylsilica GC column and detected by the Saturn 2000 ion trap mass spectrometer. The various types of macromolecular organic material subjected to thermal desorption produced distinctly different GCMS chromatograms at each temperature, containing fractions of both low and high chromatographic mobility. The relative amounts of detectable volatiles released at each temperature also differed, with type II kerogen and cyanide polymer containing the highest percentage of low-temperature components. In all the samples, the highest yield of released compounds occurred at 300 C. Only cyanide polymer evolved a homologous hydrocarbon series, suggesting that it is the only material among those examined that contains a truly polymeric structure. Pyrolysis/gas chromatography/mass spectrometry has been used extensively for analysis of terrestrial organic macromolecular materials, and was also part of the instrument package on the Viking landers. Thorough analysis by pyrolysis usually employs temperatures of 500 C or higher, which for in situ analyses can be problematic given spacecraft power and materials constraints. This study demonstrates that heating of organic materials of astrobiological relevance to temperatures as low as 200-300 C for short periods releases volatile components that can be analyzed by gas chromatography and mass spectrometry. Even in the absence of full pyrolysis, useful chemical information on samples can be obtained, and materials from different biological and abiological sources can be distinguished. The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Effects of organic solutes on chemical reactions of aluminum
Lind, Carol J.; Hem, John David
1975-01-01
Concentrations of organic matter in the general range of 1-10 milligrams per litre organic carbon are common in natural water, and many naturally occurrin7 organic compounds form aluminum complexes. The aluminum concentrations in near-neutral pH solutions may be 10-100 times higher than the values predicted from solubility data if formation of such organic complexes is ignored. The processes of polymerization of aluminum hydroxide and precipitation of gibbsite are inhibited by the presence of the organic flavone compound quercetin in concentrations as low as 10 x -5.3 mole per litre. Quercetin forms a complex, with a probable molar ratio of 1:2 aluminum to quercetin, that has a formation constant (f12) of about 10 12. A complex with a higher aluminum-quercetin ratio also was observed, but this material tends to evolve into a compound of low solubility that removes aluminum from solution. In the presence of both dissolved aluminum and aqueous silica, low concentrations of quercetin improved the yield of crystallized kaolinite and halloysite. Small amounts of well-shaped kaolinite and halloysite crystals were identified by electron microscopy in solutions with pH's in the range 6.5-8.5 after 155 days aging in one experimer t and 481 days aging in a repeated experiment. The bulk of the precipitated material was amorphous to X-rays, and crystalline material was too small a proportion of the total to give identifiable X-ray diffraction peaks. The precipitates had aluminum-silicon ratios near 1, and their solubility corresponded to that found by Hem, Roberson, Lind, and Polzer (1973) for similar aluminosilicate precipitated in the absence of organic solutes. The improved yield of crystalline material obtained in the presence of quercetin probably is the result of the influence of the organic compound on the aluminum hydroxide polymerization process. Natural water containing color imparted by organic material tends to be higher in aluminum than would be predicted by pH, silica concentrations, and solubility data for inorganic aluminum species.
Olivera, Baldomero M; Raghuraman, Shrinivasan; Schmidt, Eric W; Safavi-Hemami, Helena
2017-09-01
From a biological perspective, a natural product can be defined as a compound evolved by an organism for chemical interactions with another organism including prey, predator, competitor, pathogen, symbiont or host. Natural products hold tremendous potential as drug leads and have been extensively studied by chemists and biochemists in the pharmaceutical industry. However, the biological purpose for which a natural product evolved is rarely addressed. By focusing on a well-studied group of natural products-venom components from predatory marine cone snails-this review provides a rationale for why a better understanding of the evolution, biology and biochemistry of natural products will facilitate both neuroscience and the potential for drug leads. The larger goal is to establish a new sub-discipline in the broader field of neuroethology that we refer to as "Chemical Neuroethology", linking the substantial work carried out by chemists on natural products with accelerating advances in neuroethology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romonosky, Dian E.; Li, Ying; Shiraiwa, Manabu
Formation of secondary organic aerosols (SOA) from biogenic volatile organic compounds 13 (BVOC) occurs via O 3 - and OH-initiated reactions during the day and reactions with NO 3 during the 14 night. We explored the effect of these three oxidation conditions on the molecular composition and 15 aqueous photochemistry of model SOA prepared from two common BVOC. A common monoterpene, α- 16 pinene, and sesquiterpene, α-humulene, were used to form SOA in a smog chamber via BVOC + O3, 17 BVOC + NO3, and BVOC + OH + NOx oxidation. Samples of SOA were collected, extracted in water,more » 18 and photolyzed in an aqueous solution in order to simulate the photochemical cloud processing of SOA. 19 The extent of change in the molecular level composition of SOA over 4 hours of photolysis (roughly 20 equivalent to 64 hours of photolysis under ambient conditions) was assessed with high-resolution 21 electrospray ionization mass spectrometry. The analysis revealed significant differences in the molecular 22 composition between monoterpene and sesquiterpene SOA formed by the different oxidation pathways. 23 The composition further evolved during photolysis with the most notable change corresponding to the 24 nearly-complete removal of nitrogen-containing organic compounds. Hydrolysis of SOA compounds also 25 occurred in parallel with photolysis. The preferential loss of larger SOA compounds during photolysis 26 and hydrolysis made the SOA compounds more volatile on average. This study suggests that cloud- and 27 fog-processing may under certain conditions lead to a reduction in the SOA loading as opposed to an 28 increase in SOA loading commonly assumed in the literature.« less
Populations of Atlantic killifish (Fundulus heteroclitus) resident to some US urban estuaries have independently evolved extreme and inherited tolerance to toxic dioxin-like compounds (DLCs). To further understand the genetic basis for this trait, we densely genotyped families o...
An experimental study to support the search for organics at Mars
NASA Astrophysics Data System (ADS)
Poch, Olivier; Stalport, Fabien; Noblet, Audrey; Szopa, Cyril; Coll, Patrice
2012-07-01
Several evidences suggest that early Mars offered favorable conditions for long-term sustaining water. As a consequence, we can assume that processes related to prebiotic chemistry, and even the emergence of life, may have occurred on early Mars. In those days, organic matter may have been widespread on Mars, due to exogenous delivery from small bodies, or endogenous chemical processes. The search for these organic relics is one of the main objectives of Mars exploration missions to come. But for about 3 Gy, due to the harsh environmental conditions of the Mars surface (UV radiation, oxidants etc.), the inventory of organic compounds at the current surface or subsurface of Mars may have been narrowed. Two major questions raised by this putative evolution are: What is the evolution pattern of organics in the Martian environment? What types of molecules would have been preserved, and if so, in which conditions? We address these questions using an experimental device dedicated to simulate the processes susceptible to have an effect on organic matter in the current environmental conditions of the Mars surface and subsurface. This experimental setup is part of a project called MOMIE, for Mars Organic Molecules Irradiation and Evolution. We study the evolution of some of the most likely molecular compounds potentially synthesized or brought to Mars (amino acids, hydrocarbons, nucleobases etc.). Nanometers thin deposits of a molecular compound or of a mineral in which the molecular compound has been embedded are allowed to evolve at mean Martian pressure and temperature, under a UV radiation environment similar to the Martian one. Qualitative and quantitative changes of the sample are monitored during the simulation, especially using infrared spectroscopy. We will present and compare the evolution of several organics submitted to these conditions. These experiments will provide essential insights to guide and discuss in situ analyses at Mars, particularly during the upcoming exploration of Gale Crater by Curiosity, the rover of the NASA Mars Science Laboratory mission.
NASA Astrophysics Data System (ADS)
Millan, M.; Lewis, J. M. T.; Eigenbrode, J. L.; Freissinet, C.; Szopa, C.; Buch, A.; McAdam, A.; Glavin, D. P.; Navarro-Gonzalez, R.; Johnson, S. S.; Mahaffy, P. R.
2017-12-01
The Curiosity rover is currently analyzing the base of Mt Sharp in Mars' Gale crater to find clues of habitability in the stratigraphic layers of rocks. One of its goal is the search of organic compounds thanks to the Sample Analysis at Mars (SAM) experiment. With this aim, SAM performs in situ molecular analysis of gases evolved from the heat of the solid samples collected by Curiosity. SAM uses a gas-chromatograph mass-spectrometer (GCMS), to detect/identify inorganics and organics present in the samples. During the pyrolysis, chemical reactions can occur between the gases thermally released from minerals and organic molecules SAM is looking for. Beyond the minerals involved, oxychlorines, likely spread at Mars' surface, liberate dioxygen and chlorine species, and sulfates release sulfur-bearing species. The detection of Cl- and S-bearing organics were attributed to reactions between oxychlorines, sulfates and organics. These last were proved to come from SAM instrument background and Mars indigenous organics, proving the presence of organics on Mars. However, the identification of their precursors is complex due to the chemical reactivity in the SAM ovens. Recent studies suggest compounds from various chemical families, as potential precursors of the chlorohydrocarbons detected on Mars, but considered limited parameters and mineralogy. Laboratory experiments have been performed to understand the influence of oxychlorines on organic matter incorporated in sulfates, during pyrolysis. To do so, organics from chemical families potentially present on Mars and synthetized in laboratory within jarosite, a ferric sulfate, were pyrolyzed in presence of oxychlorines. GCMS was used to identify the pyrolysis products and try to correlate them with the organo-chlorinated compounds detected by SAM. This helps discriminate their likely parent organics or chemical families. The work includes the investigation of sulfurized compounds generated from reactions between the organics, including the wet chemistry reagent (MTBSTFA) known to be present in SAM background, and the S-bearing inorganic species released from the Jarosite. The results and conclusions about the SAM measurements will support the analysis and interpretation of the future analyses to be done by the MOMA-GCMS experiment of the Exomars 2020 mission.
Quantification of surface emissions: An historical perspective from GEIA
NASA Astrophysics Data System (ADS)
Granier, C.; Denier Van Der Gon, H.; Doumbia, E. H. T.; Frost, G. J.; Guenther, A. B.; Hassler, B.; Janssens-Maenhout, G. G. A.; Lasslop, G.; Melamed, M. L.; Middleton, P.; Sindelarova, K.; Tarrason, L.; van Marle, M.; W Kaiser, J.; van der Werf, G.
2015-12-01
Assessments of the composition of the atmosphere and its evolution require accurate knowledge of the surface emissions of atmospheric compounds. The first community development of global surface emissions started in 1990, when GEIA was established as a component of the International Global Atmospheric Chemistry (IGAC) project. At that time, GEIA meant "Global Emissions Inventory Activity". Since its inception, GEIA has brought together people to understand emissions from anthropogenic, biomass burning and natural sources. The first goal of GEIA was to establish a "best" inventory for the base year 1985 at 1x1 degree resolution. Since then many inventories have been developed by various groups at the global and regional scale at different temporal and spatial resolutions. GEIA, which now means the "Global Emissions Initiative", has evolved into assessing, harmonizing and distributing emissions datasets. We will review the main achievements of GEIA, and show how the development and evaluation of surface emissions has evolved during the last 25 years. We will discuss the use of surface, in-situ and remote sensing observations to evaluate and improve the quantification of emissions. We will highlight the main uncertainties currently limiting emissions datasets, such as the spatial and temporal evolution of emissions at different resolutions, the quantification of emerging emission sources (such as oil/gas extraction and distribution, biofuels, etc.), the speciation of the emissions of volatile organic compounds and of particulate matter, the capacity building necessary for organizing the development of regional emissions across the world, emissions from shipping, etc. We will present the ECCAD (Emissions of Atmospheric Compounds and Compilation of Ancillary Data) database, developed as part of GEIA to facilitate the access and evaluation of emission inventories.
Some Like It Hot, But Not the First Biomolecules
NASA Technical Reports Server (NTRS)
Bada, Jeffrey L.; Lazcano, Antonio
2002-01-01
Ever since the pioneering work of Aleksandr Oparin and John Haldane nearly a century ago, the prebiotic soup theory has dominated thinking about how life emerged on Earth. According to the modern version of this theory, organic compounds accumulated in the primordial oceans and underwent polymerization, producing increasingly complex macromolecules that eventually evolved the ability to catalyze their own replication (see the figure). But is this really how life originated? And what were the conditions that favored its emergence?
Pradhan, Snigdhendubala; Boernick, Hilmar; Kumar, Pradeep; Mehrotra, Indu
2016-07-15
The correlation between octanol-water partition coefficient (KOW) and the transport of aqueous samples containing single organic compound is well documented. The concept of the KOW of river water containing the mixture of organics was evolved by Pradhan et al. (2015). The present study aims at determining the KOW and sorption parameters of synthetic aqueous samples and river water to finding out the correlation, if any. The laboratory scale columns packed with aquifer materials were fed with synthetic and river water samples. Under the operating conditions, the compounds in the samples did not separate, and all the samples that contain more than one organic compound yielded a single breakthrough curve. Breakthrough curves simulated from sorption isotherms were compared with those from the column runs. The sorption parameters such as retardation factor (Rf), height of mass transfer zone (HMTZ), rate of mass transfer zone (RMTZ), breakpoint column capacity (qb) and maximum column capacity (qx) estimated from column runs, sorption isotherms and models developed by Yoon-Nelson, Bohart-Adam and Thomas were in agreement. The empirical correlations were found between the KOW and sorption parameters. The transport of the organics measured as dissolved organic carbon (DOC) through the aquifer can be predicted from the KOW of the river water and other water samples. The novelty of the study is to measure KOW and to envisage the fate of the DOC of the river water, particularly during riverbank filtration. Statistical analysis of the results revealed a fair agreement between the observed and computed values. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Millan, M.; Szopa, C.; Buch, A.; Belmahdi, I.; Coll, P.; Glavin, D. P.; Freissinet, C.; Archer, P. D., Jr.; Sutter, B.; Summons, R. E.;
2016-01-01
The Mars Science Laboratory (MSL) Curiosity Rover carries a suite of instruments, one of which is the Sample Analysis at Mars (SAM) experiment. SAM is devoted to the in situ molecular analysis of gases evolving from solid samples collected by Curiosity on Mars surface/sub-surface. Among its three analytical devices, SAM has a gaschromatograph coupled to a quadrupole mass spectrometer (GC-QMS). The GC-QMS is devoted to the separation and identification of organic and inorganic material. Before proceeding to the GC-QMS analysis, the solid sample collected by Curiosity is subjected to a thermal treatment thanks to the pyrolysis oven to release the volatiles into the gas processing system. Depending on the sample, a derivatization method by wet chemistry: MTBSTFA of TMAH can also be applied to analyze the most refractory compounds. The GC is able to separate the organic molecules which are then detected and identified by the QMS (Figure 1). For the second time after the Viking landers in 1976, SAM detected chlorinated organic compounds with the pyrolysis GC-QMS experiment. The detection of perchlorates salts (ClO4-) in soil at the Phoenix Landing site suggests that the chlorohydrocarbons detected could come from the reaction of organics with oxychlorines. Indeed, laboratory pyrolysis experiments have demonstrated that oxychlorines decomposed into molecular oxygen and volatile chlorine (HCl and/or Cl2) when heated which then react with the organic matter in the solid samples by oxidation and/or chlorination processes.
Rudall, Paula J.; Bateman, Richard M.
2010-01-01
Recent phylogenetic reconstructions suggest that axially condensed flower-like structures evolved iteratively in seed plants from either simple or compound strobili. The simple-strobilus model of flower evolution, widely applied to the angiosperm flower, interprets the inflorescence as a compound strobilus. The conifer cone and the gnetalean ‘flower’ are commonly interpreted as having evolved from a compound strobilus by extreme condensation and (at least in the case of male conifer cones) elimination of some structures present in the presumed ancestral compound strobilus. These two hypotheses have profoundly different implications for reconstructing the evolution of developmental genetic mechanisms in seed plants. If different flower-like structures evolved independently, there should intuitively be little commonality of patterning genes. However, reproductive units of some early-divergent angiosperms, including the extant genus Trithuria (Hydatellaceae) and the extinct genus Archaefructus (Archaefructaceae), apparently combine features considered typical of flowers and inflorescences. We re-evaluate several disparate strands of comparative data to explore whether flower-like structures could have arisen by co-option of flower-expressed patterning genes into independently evolved condensed inflorescences, or vice versa. We discuss the evolution of the inflorescence in both gymnosperms and angiosperms, emphasising the roles of heterotopy in dictating gender expression and heterochrony in permitting internodal compression. PMID:20047867
Rudall, Paula J; Bateman, Richard M
2010-02-12
Recent phylogenetic reconstructions suggest that axially condensed flower-like structures evolved iteratively in seed plants from either simple or compound strobili. The simple-strobilus model of flower evolution, widely applied to the angiosperm flower, interprets the inflorescence as a compound strobilus. The conifer cone and the gnetalean 'flower' are commonly interpreted as having evolved from a compound strobilus by extreme condensation and (at least in the case of male conifer cones) elimination of some structures present in the presumed ancestral compound strobilus. These two hypotheses have profoundly different implications for reconstructing the evolution of developmental genetic mechanisms in seed plants. If different flower-like structures evolved independently, there should intuitively be little commonality of patterning genes. However, reproductive units of some early-divergent angiosperms, including the extant genus Trithuria (Hydatellaceae) and the extinct genus Archaefructus (Archaefructaceae), apparently combine features considered typical of flowers and inflorescences. We re-evaluate several disparate strands of comparative data to explore whether flower-like structures could have arisen by co-option of flower-expressed patterning genes into independently evolved condensed inflorescences, or vice versa. We discuss the evolution of the inflorescence in both gymnosperms and angiosperms, emphasising the roles of heterotopy in dictating gender expression and heterochrony in permitting internodal compression.
NASA Astrophysics Data System (ADS)
Rovira, Pere; Grasset, Laurent
2015-04-01
Plant- versus microbial signature in densimetric fractions of mediterranean forest soils: a study by thermochemolysis gas chromatography mass spectrometry The ageing of a given organic substrate decomposing in soil is strongly dependant of its microbial utilization and transformation (reworking) by the soil microflora. How far a given substrate or soil fraction has gone in this evolution is usually measured by means of molecular signatures, ratios between organic compounds which enlighten us about the origin and/or the degree of microbial reworking of a specific group of compounds: lipids, proteins, lignin, carbohydrates, etc. Owing to the biochemical heterogeneity of decomposing substrates it is unlikely that the degree of microbial reworking can be approached with a single signature. Applying a couple of them is much better, but obtaining a wide collection of molecular signatures can be time consuming. Here, instead of applying specific methods to obtain a collection of specific signatures, we apply TMAH-thermochemolysis to obtain a panoramic view of the biochemical composition of a series of densimetric fractions of soils. From the compounds identified after TMAH-thermochemolysis, a collection of indicators was obtained: (a) ratio between short and long-chained linear alkanoic acids; (b) ratio between branched and long-chained linear alkanoic acids; (c) ratio between C16 and total alpha-omega-alkanedioic acids; (d) ratio microbial to plant-derived 1-methoxyalkanes; (e) ratio syringyl to total lignin-derived phenolic compounds; (f) vanillic acid to vanillin ratio; (g) fucose/glucose ratio; and (h) xylose/glucose ratio. From these indicators a single numerical value is distilled, allowing to order a couple of densimetric fractions of soil organic matter according to its degree of microbial reworking. This approach was applied to the comparison of a couple of densimetric fractions of soil organic matter of three organic H horizons from mediterranean forest soils. Fractions were obtained by a sequential extraction with sodium polytungstate (NaPT) at density 1.6, 1.8 and 2.0, after ultrasonic disintegration of the sample. Before ultrasonic treatment, a previous extraction was done with NaPT d = 1.6, to isolate the free light fraction. Results were overall consistent in the sense that occluded fractions of density <1.8, and particularly those of density < 1.6, appear as the most microbially evolved. The free light fraction was overall the most fresh-, least evolved fraction. The dense fraction (d > 2.0), made of organomineral complexes with fine silt plus clay, was overall fresh and poorly microbially reworked. Our future work will be the application of this approach to the study of complete soil profiles and soil fractions, thus allowing to obtain a panoramic view of the stabilization of soil organic matter at different depths.
2011-01-01
Background Softwoods are the dominant source of lignocellulosic biomass in the northern hemisphere, and have been investigated worldwide as a renewable substrate for cellulosic ethanol production. One challenge to using softwoods, which is particularly acute with pine, is that the pretreatment process produces inhibitory compounds detrimental to the growth and metabolic activity of fermenting organisms. To overcome the challenge of bioconversion in the presence of inhibitory compounds, especially at high solids loading, a strain of Saccharomyces cerevisiae was subjected to evolutionary engineering and adaptation for fermentation of pretreated pine wood (Pinus taeda). Results An industrial strain of Saccharomyces, XR122N, was evolved using pretreated pine; the resulting daughter strain, AJP50, produced ethanol much more rapidly than its parent in fermentations of pretreated pine. Adaptation, by preculturing of the industrial yeast XR122N and the evolved strains in 7% dry weight per volume (w/v) pretreated pine solids prior to inoculation into higher solids concentrations, improved fermentation performance of all strains compared with direct inoculation into high solids. Growth comparisons between XR122N and AJP50 in model hydrolysate media containing inhibitory compounds found in pretreated biomass showed that AJP50 exited lag phase faster under all conditions tested. This was due, in part, to the ability of AJP50 to rapidly convert furfural and hydroxymethylfurfural to their less toxic alcohol derivatives, and to recover from reactive oxygen species damage more quickly than XR122N. Under industrially relevant conditions of 17.5% w/v pretreated pine solids loading, additional evolutionary engineering was required to decrease the pronounced lag phase. Using a combination of adaptation by inoculation first into a solids loading of 7% w/v for 24 hours, followed by a 10% v/v inoculum (approximately equivalent to 1 g/L dry cell weight) into 17.5% w/v solids, the final strain (AJP50) produced ethanol at more than 80% of the maximum theoretical yield after 72 hours of fermentation, and reached more than 90% of the maximum theoretical yield after 120 hours of fermentation. Conclusions Our results show that fermentation of pretreated pine containing liquid and solids, including any inhibitory compounds generated during pretreatment, is possible at higher solids loadings than those previously reported in the literature. Using our evolved strain, efficient fermentation with reduced inoculum sizes and shortened process times was possible, thereby improving the overall economic viability of a woody biomass-to-ethanol conversion process. PMID:22074982
Discrete taxa of saprotrophic fungi respire different ages of carbon from Antarctic soils.
Newsham, Kevin K; Garnett, Mark H; Robinson, Clare H; Cox, Filipa
2018-05-18
Different organic compounds have distinct residence times in soil and are degraded by specific taxa of saprotrophic fungi. It hence follows that specific fungal taxa should respire carbon of different ages from these compounds to the atmosphere. Here, we test whether this is the case by radiocarbon ( 14 C) dating CO 2 evolved from two gamma radiation-sterilised maritime Antarctic soils inoculated with pure single cultures of four fungi. We show that a member of the Helotiales, which accounted for 41-56% of all fungal sequences in the two soils, respired soil carbon that was aged up to 1,200 years BP and which was 350-400 years older than that respired by the other three taxa. Analyses of the enzyme profile of the Helotialean fungus and the fluxes and δ 13 C values of CO 2 that it evolved suggested that its release of old carbon from soil was associated with efficient cellulose decomposition. Our findings support suggestions that increases in the ages of carbon respired from warmed soils may be caused by changes to the abundances or activities of discrete taxa of microbes, and indicate that the loss of old carbon from soils is driven by specific fungal taxa.
Ecological Relationships Between Components in Closed Aquatic Ecosystems
NASA Astrophysics Data System (ADS)
Pisman, Tamara; Somova, Lydia
The work considers the problems of relationships between algae and other microorganisms in aquatic ecosystems. Using small-scale laboratory "autotroph-heterotroph" ecosystems with different types of closure, we showed the results of the investigation into the ecological relation-ships of algae in biocenoses. The autotrophic component was represented by green microalgae, and the heterotrophic component -by yeast and bacteria. An important role in functioning of algobacterial communities is played by 2 -2 (oxygen -carbon dioxide) exchange. The gas exchange between algae and yeast was studied in the "autotroph-heterotroph" gas-closed ecosystem with space-divided components. It was shown that the gas exchange closure of the components into a system prolongs its existence. Hav-ing increased the degree of the system closure by introducing two yeast species with positive metabolic interaction to the heterotrophic component, we observed a significant increase in the gas exchange between the components and thus in the biomass of algae and yeast. The most ancient and ecologically relevant symbioses known in nature are symbiotic associa-tions of algae and heterotrophic organisms. The main symbionts of algae in aquatic ecosystems are bacteria. The cenosis-forming role of algae is based on two characteristics: firstly, their mucous covers and membranes are able to absorb and retain large amounts of water; secondly, many algae evolve various organic substances during their lifetime. An example of algobacterial associations are microalgae Chlorella vulgaris and accompanying microbial flora. Experiments with non-sterile batch culture of algae showed that the increase in the algae biomass was accompanied by the increase in the bacterial biomass. As a result of theoretical and experi-mental investigation into their relationships, it was shown that the largest biomass of bacteria is achieved when using organic substances evolved by algae and having bacteria grow on dead algae; i.e. bacteria can also act as decomposers. It was demonstrated that the cenosis-forming role of algae and bacteria in an algobacterial cenosis is determined by accumulation of both organic matter and nitrogen which is included into the cycle of matter. Thus, the process of C-compound evolution by algae in an algobacterial cenosis is strongly connected with the process of consumption of these compounds by corresponding bacteria, which, in their turn, ensure photosynthesis and algae development by evolving 2 and nitrogen.
Vaddypally, Shivaiah; Kondaveeti, Sandeep K; Karki, Santosh; Van Vliet, Megan M; Levis, Robert J; Zdilla, Michael J
2017-04-05
The molecular mechanism of the Oxygen Evolving Center of photosystem II has been under debate for decades. One frequently cited proposal is the nucleophilic attack by water hydroxide on a pendant Mn═O moiety, though no chemical example of this reactivity at a manganese cubane cluster has been reported. We describe here the preparation, characterization, and a reactivity study of a synthetic manganese cubane cluster with a pendant manganese-oxo moiety. Reaction of this cluster with alkenes results in oxygen and hydrogen atom transfer reactions to form alcohol- and ketone-based oxygen-containing products. Nitrene transfer from core imides is negligible. The inorganic product is a cluster identical to the precursor, but with the pendant Mn═O moiety replaced by a hydrogen abstracted from the organic substrate, and is isolated in quantitative yield. 18 O and 2 H isotopic labeling studies confirm the transfer of atoms between the cluster and the organic substrate. The results suggest that the core cubane structure of this model compound remains intact, and that the pendant Mn═O moiety is preferentially reactive.
Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars.
Eigenbrode, Jennifer L; Summons, Roger E; Steele, Andrew; Freissinet, Caroline; Millan, Maëva; Navarro-González, Rafael; Sutter, Brad; McAdam, Amy C; Franz, Heather B; Glavin, Daniel P; Archer, Paul D; Mahaffy, Paul R; Conrad, Pamela G; Hurowitz, Joel A; Grotzinger, John P; Gupta, Sanjeev; Ming, Doug W; Sumner, Dawn Y; Szopa, Cyril; Malespin, Charles; Buch, Arnaud; Coll, Patrice
2018-06-08
Establishing the presence and state of organic matter, including its possible biosignatures, in martian materials has been an elusive quest, despite limited reports of the existence of organic matter on Mars. We report the in situ detection of organic matter preserved in lacustrine mudstones at the base of the ~3.5-billion-year-old Murray formation at Pahrump Hills, Gale crater, by the Sample Analysis at Mars instrument suite onboard the Curiosity rover. Diverse pyrolysis products, including thiophenic, aromatic, and aliphatic compounds released at high temperatures (500° to 820°C), were directly detected by evolved gas analysis. Thiophenes were also observed by gas chromatography-mass spectrometry. Their presence suggests that sulfurization aided organic matter preservation. At least 50 nanomoles of organic carbon persists, probably as macromolecules containing 5% carbon as organic sulfur molecules. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Gentner, Drew R; Jathar, Shantanu H; Gordon, Timothy D; Bahreini, Roya; Day, Douglas A; El Haddad, Imad; Hayes, Patrick L; Pieber, Simone M; Platt, Stephen M; de Gouw, Joost; Goldstein, Allen H; Harley, Robert A; Jimenez, Jose L; Prévôt, André S H; Robinson, Allen L
2017-02-07
Secondary organic aerosol (SOA) is formed from the atmospheric oxidation of gas-phase organic compounds leading to the formation of particle mass. Gasoline- and diesel-powered motor vehicles, both on/off-road, are important sources of SOA precursors. They emit complex mixtures of gas-phase organic compounds that vary in volatility and molecular structure-factors that influence their contributions to urban SOA. However, the relative importance of each vehicle type with respect to SOA formation remains unclear due to conflicting evidence from recent laboratory, field, and modeling studies. Both are likely important, with evolving contributions that vary with location and over short time scales. This review summarizes evidence, research needs, and discrepancies between top-down and bottom-up approaches used to estimate SOA from motor vehicles, focusing on inconsistencies between molecular-level understanding and regional observations. The effect of emission controls (e.g., exhaust aftertreatment technologies, fuel formulation) on SOA precursor emissions needs comprehensive evaluation, especially with international perspective given heterogeneity in regulations and technology penetration. Novel studies are needed to identify and quantify "missing" emissions that appear to contribute substantially to SOA production, especially in gasoline vehicles with the most advanced aftertreatment. Initial evidence suggests catalyzed diesel particulate filters greatly reduce emissions of SOA precursors along with primary aerosol.
Supercritical Fluid Extraction of Biogenic SOA in Northern Michigan
NASA Astrophysics Data System (ADS)
Flores, R. M.; Doskey, P. V.; Perlinger, J. A.
2010-12-01
Secondary organic aerosols (SOA) are formed by photooxidation of volatile organic compounds (VOCs) and nucleation and condensation of the oxygenated products. On a global scale, monoaromatic hydrocarbons of anthropogenic origin are estimated to be the source of 12% of the SOA while biogenic emissions of isoprene (C5H8), monoterpenes (C10H16), and sesquiterpenes (C15H24) are estimated to be the source of 46, 29 and 7% of SOA, respectively. The functional groups of organic substances comprising SOA (i.e., hydroxyl, carbonyl, carboxylic acid, sulfate, and nitrate) complicate sample processing, analysis, and identification of the characteristic aerosol products of VOC oxidation pathways. Only a very small fraction of the organic molecular species in SOA have been identified due to the complexity of precursor oxidation reactions and the need for (1) methodologies that are less labor intensive and suitable for thermally labile compounds and (2) analytic instrumentation that provides more complete resolution of complex mixtures for sensitive detection of molecular species. Extraction techniques commonly used include solvent extraction, which requires large amounts of solvent and is labor intensive and thermal desorption, which evolves organic substances from aerosol at temperatures not suitable for thermally labile compounds. A promising technique that does not involve sample processing with solvents or high temperatures is supercritical fluid extraction (SFE). In this work, the composition of biogenic SOA was studied in Northern Michigan. Aerosol samples were collected on quartz fiber filters with a high-volume air sampler and extracted with supercritical CO2. Carboxylic and hydroxyl compounds were derivatized during static extraction conditions and identified by comprehensive two dimensional gas chromatography with time-of-flight mass spectrometric detection (GC×GC-TOFMS). The overall goal of the research is to couple the post-collection analytic scheme developed here with a rapid sampling technique to evaluate SOA produced from a variety of biogenic and anthropogenic sources of precursors in the Midwestern United States.
Construction and screening of marine metagenomic libraries.
Weiland, Nancy; Löscher, Carolin; Metzger, Rebekka; Schmitz, Ruth
2010-01-01
Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. They harbor an enormous diversity of microbes with still unknown and probably new physiological characteristics. Besides, the surfaces of marine multicellular organisms are typically covered by a consortium of epibiotic bacteria and act as barriers, where diverse interactions between microorganisms and hosts take place. Thus, microbial diversity in the water column of the oceans and the microbial consortia on marine tissues of multicellular organisms are rich sources for isolating novel bioactive compounds and genes. Here we describe the sampling, construction of large-insert metagenomic libraries from marine habitats and exemplarily one function based screen of metagenomic clones.
Xiao, Qing; Zhang, Yan; Wang, Jianbo
2013-02-19
Transition-metal-catalyzed carbene transformations and cross-couplings represent two major reaction types in organometallic chemistry and organic synthesis. However, for a long period of time, these two important areas have evolved separately, with essentially no overlap or integration. Thus, an intriguing question has emerged: can cross-coupling and metal carbene transformations be merged into a single reaction cycle? Such a combination could facilitate the development of novel carbon-carbon bond-forming methodologies. Although this concept was first explored about 10 years ago, rapid developments inthis area have been achieved recently. Palladium catalysts can be used to couple diazo compounds with a wide variety of organic halides. Under oxidative coupling conditions, diazo compounds can also react with arylboronic acids and terminal alkynes. Both of these coupling reactions form carbon-carbon double bonds. As the key step in these catalytic processes, Pd carbene migratory insertion plays a vital role in merging the elementary steps of Pd intermediates, leading to novel carbon-carbon bond formations. Because the diazo substrates can be generated in situ from N-tosylhydrazones in the presence of base, the N-tosylhydrazones can be used as reaction partners, making this type of cross-coupling reaction practical in organic synthesis. N-Tosylhydrazones are easily derived from the corresponding aldehydes or ketones. The Pd-catalyzed cross-coupling of N-tosylhydrazones is considered a complementary reaction to the classic Shapiro reaction for converting carbonyl functionalities into carbon-carbon double bonds. It can also serve as an alternative approach for the Pd-catalyzed cross-coupling of carbonyl compounds, which is usually achieved via triflates. The combination of carbene formation and cross-coupling in a single catalytic cycle is not limited to Pd-catalyzed reactions. Recent studies of Cu-, Rh-, Ni-, and Co-catalyzed cross-coupling reactions with diazo compounds or N-tosylhydrazones show that these transformations also work with other transition metals, demonstrating the generality of the diazo compounds as new cross-coupling partners in transition-metal-catalyzed coupling reactions.
Sackett, Tara E.; Thomas, Sean C.
2016-01-01
Recent meta-analyses of plant responses to biochar boast positive average effects of between 10 and 40%. Plant responses, however, vary greatly across systems, and null or negative biochar effects are increasingly reported. The mechanisms responsible for such responses remain unclear. In a glasshouse experiment we tested the effects of three forestry residue wood biochars, applied at five dosages (0, 5, 10, 20, and 50 t/ha) to a temperate forest drystic cambisol as direct surface applications and as complete soil mixes on the herbaceous pioneers Lolium multiflorum and Trifolium repens. Null and negative effects of biochar on growth were found in most cases. One potential cause for null and negative plant responses to biochar is plant exposure to mobile compounds produced during pyrolysis that leach or evolve following additions of biochars to soil. In a second glasshouse experiment we examined the effects of simple leaching and heating techniques to ameliorate potentially phytotoxic effects of volatile and leachable compounds released from biochar. We used Solid Phase Microextraction (SPME)–gas chromatography–mass spectrometry (GC-MS) to qualitatively describe organic compounds in both biochar (through headspace extraction), and in the water leachates (through direct injection). Convection heating and water leaching of biochar prior to application alleviated growth inhibition. Additionally, growth was inhibited when filtrate from water-leached biochar was applied following germination. SPME-GC-MS detected primarily short-chained carboxylic acids and phenolics in both the leachates and solid chars, with relatively high concentrations of several known phytotoxic compounds including acetic acid, butyric acid, 2,4-di-tert-butylphenol and benzoic acid. We speculate that variable plant responses to phytotoxic organic compounds leached from biochars may largely explain negative plant growth responses and also account for strongly species-specific patterns of plant responses to biochar amendments in short-term experiments. PMID:27635349
Method and System for Hydrogen Evolution and Storage
Thorn, David L.; Tumas, William; Hay, P. Jeffrey; Schwarz, Daniel E.; Cameron, Thomas M.
2008-10-21
A method and system for storing and evolving hydrogen employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to evolve hydrogen. A catalyst lowers the energy required for storing and evolving hydrogen. The method and system can provide hydrogen for devices that consume hydrogen as fuel.
NASA Astrophysics Data System (ADS)
Morisson, Marietta; Buch, Arnaud; Szopa, Cyril; Raulin, François; Stambouli, Moncef
2017-04-01
Martian surface is exposed to harsh radiative and oxidative conditions which are destructive for organic molecules. That is why the future ExoMars rover will examine the molecular composition of samples acquired from depths down to two meters below the Martian surface, where organics may have been protected from radiative and oxidative degradation. The samples will then be analyzed by the Pyrolysis-Gas Chromatography-Mass Spectrometry (Pyr-GC-MS) operational mode of the Mars Organic Molecule Analyzer (MOMA) instrument. To prevent thermal alteration of organic molecules during pyrolysis, thermochemolysis with tetramethylammonium hydroxide (TMAH) will extract the organics from the mineral matrix and methylate the polar functional groups, allowing the volatilization of molecules at lower temperatures and protecting the most labile chemical groups from thermal degradation. This study has been carried out on a Martian regolith analogue (JSC-Mars-1) with a high organic content with the aim of optimizing the thermochemolysis temperature within operating conditions similar to the MOMA experiment ones. We also performed Pyrolysis-GC-MS analysis as a comparison. The results show that, unlike pyrolysis alone - which mainly produces aromatics, namely thermally altered molecules - thermochemolysis allows the extraction and identification of numerous organic molecules of astrobiological interest. They also show that the main compounds start to be detectable at low thermochemolysis temperatures ranging from 400°C to 600°C. However, we noticed that the more the temperature increases, the more the chromatograms are saturated with thermally evolved molecules leading to many coelutions and making identification difficult.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Richard E.; Laskina, Olga; Trueblood, Jonathan V.
The impact of sea spray aerosol (SSA) on climate depends on the size and chemical composition of individual particles that make-up the total SSA ensemble. While the organic fraction of SSA has been characterized from a bulk perspective, there remains a lack of understanding as to the composition of individual particles within the SSA ensemble. To better understand the molecular components within SSA particles and how SSA composition changes with ocean biology, simultaneous measurements of seawater and SSA were made during a month-long mesocosm experiment performed in an ocean-atmosphere facility. Herein, we deconvolute the composition of freshly emitted SSA devoidmore » of anthropogenic and terrestrial influences by characterizing classes of organic compounds as well as specific molecules within individual SSA particles. Analysis of SSA particles show that the diversity of molecules within the organic fraction varies between two size fractions (submicron and supermicron) with contributions from fatty acids, monosaccharides, polysaccharides and siliceous material. Significant changes in the distribution of these compounds within individual particles are observed to coincide with the rise and fall of phytoplankton and bacterial populations within the seawater. Furthermore, water uptake is impacted as shown by hygroscopicity measurements of model systems composed of representative organic compounds. Thus, the how changes in the hygroscopic growth of SSA evolves with composition can be elucidated. Overall, this study provides an important connection between biological processes that control the composition of seawater and changes in single particle composition which will enhances our ability to predict the impact of SSA on climate.« less
Richter, Ingrid; Fidler, Andrew E.
2014-01-01
Developing high-throughput assays to screen marine extracts for bioactive compounds presents both conceptual and technical challenges. One major challenge is to develop assays that have well-grounded ecological and evolutionary rationales. In this review we propose that a specific group of ligand-activated transcription factors are particularly well-suited to act as sensors in such bioassays. More specifically, xenobiotic-activated nuclear receptors (XANRs) regulate transcription of genes involved in xenobiotic detoxification. XANR ligand-binding domains (LBDs) may adaptively evolve to bind those bioactive, and potentially toxic, compounds to which organisms are normally exposed to through their specific diets. A brief overview of the function and taxonomic distribution of both vertebrate and invertebrate XANRs is first provided. Proof-of-concept experiments are then described which confirm that a filter-feeding marine invertebrate XANR LBD is activated by marine bioactive compounds. We speculate that increasing access to marine invertebrate genome sequence data, in combination with the expression of functional recombinant marine invertebrate XANR LBDs, will facilitate the generation of high-throughput bioassays/biosensors of widely differing specificities, but all based on activation of XANR LBDs. Such assays may find application in screening marine extracts for bioactive compounds that could act as drug lead compounds. PMID:25421319
Ziurys, Lucy M
2006-08-15
Mass loss from evolved stars results in the formation of unusual chemical laboratories: circumstellar envelopes. Such envelopes are found around carbon- and oxygen-rich asymptotic giant branch stars and red supergiants. As the gaseous material of the envelope flows from the star, the resulting temperature and density gradients create a complex chemical environment involving hot, thermodynamically controlled synthesis, molecule "freeze-out," shock-initiated reactions, and photochemistry governed by radical mechanisms. In the circumstellar envelope of the carbon-rich star IRC+10216, >50 different chemical compounds have been identified, including such exotic species as C(8)H, C(3)S, SiC(3), and AlNC. The chemistry here is dominated by molecules containing long carbon chains, silicon, and metals such as magnesium, sodium, and aluminum, which makes it quite distinct from that found in molecular clouds. The molecular composition of the oxygen-rich counterparts is not nearly as well explored, although recent studies of VY Canis Majoris have resulted in the identification of HCO(+), SO(2), and even NaCl in this object, suggesting chemical complexity here as well. As these envelopes evolve into planetary nebulae with a hot, exposed central star, synthesis of molecular ions becomes important, as indicated by studies of NGC 7027. Numerous species such as HCO(+), HCN, and CCH are found in old planetary nebulae such as the Helix. This "survivor" molecular material may be linked to the variety of compounds found recently in diffuse clouds. Organic molecules in dense interstellar clouds may ultimately be traced back to carbon-rich fragments originally formed in circumstellar shells.
Selecting, Acquiring, and Using Small Molecule Libraries for High-Throughput Screening
Dandapani, Sivaraman; Rosse, Gerard; Southall, Noel; Salvino, Joseph M.; Thomas, Craig J.
2015-01-01
The selection, acquisition and use of high quality small molecule libraries for screening is an essential aspect of drug discovery and chemical biology programs. Screening libraries continue to evolve as researchers gain a greater appreciation of the suitability of small molecules for specific biological targets, processes and environments. The decisions surrounding the make-up of any given small molecule library is informed by a multitude of variables and opinions vary on best-practices. The fitness of any collection relies upon upfront filtering to avoiding problematic compounds, assess appropriate physicochemical properties, install the ideal level of structural uniqueness and determine the desired extent of molecular complexity. These criteria are under constant evaluation and revision as academic and industrial organizations seek out collections that yield ever improving results from their screening portfolios. Practical questions including cost, compound management, screening sophistication and assay objective also play a significant role in the choice of library composition. This overview attempts to offer advice to all organizations engaged in small molecule screening based upon current best practices and theoretical considerations in library selection and acquisition. PMID:26705509
Selecting, Acquiring, and Using Small Molecule Libraries for High-Throughput Screening.
Dandapani, Sivaraman; Rosse, Gerard; Southall, Noel; Salvino, Joseph M; Thomas, Craig J
The selection, acquisition and use of high quality small molecule libraries for screening is an essential aspect of drug discovery and chemical biology programs. Screening libraries continue to evolve as researchers gain a greater appreciation of the suitability of small molecules for specific biological targets, processes and environments. The decisions surrounding the make-up of any given small molecule library is informed by a multitude of variables and opinions vary on best-practices. The fitness of any collection relies upon upfront filtering to avoiding problematic compounds, assess appropriate physicochemical properties, install the ideal level of structural uniqueness and determine the desired extent of molecular complexity. These criteria are under constant evaluation and revision as academic and industrial organizations seek out collections that yield ever improving results from their screening portfolios. Practical questions including cost, compound management, screening sophistication and assay objective also play a significant role in the choice of library composition. This overview attempts to offer advice to all organizations engaged in small molecule screening based upon current best practices and theoretical considerations in library selection and acquisition.
Method and system for hydrogen evolution and storage
Thorn, David L.; Tumas, William; Hay, P. Jeffrey; Schwarz, Daniel E.; Cameron, Thomas M.
2012-12-11
A method and system for storing and evolving hydrogen (H.sub.2) employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to evolve hydrogen. A catalyst lowers the energy required for storing and evolving hydrogen. The method and system can provide hydrogen for devices that consume hydrogen as fuel.
NASA Astrophysics Data System (ADS)
Valdivia-Silva, Julio E.; Navarro-Gonzalez, Rafael; McKay, Chris
Thermal evolved gas analysis (TEGA), one of several instruments on board of the Phoenix Lander, is a combination of a high temperature furnace and a mass spectrometer that was used to analyze Mars soil samples heated at a programmed ramp rate up to 1000 ° C. The evolved gases generated during the process were analyzed with the evolved gas analyzer (a mass spectrometer) in order to determine the composition of gases released as a function of temperature. In other hand, labeled release experiment (LR), one of the Viking biology anal-ysis used on Mars, monitored the radioactive gas evolution after the addition of a 14C-labeled aqueous organic substrate into a sealed test cell that contained a Martian surface sample. This experiment was designed to test Martian surface samples for the presence of life by measuring metabolic activity and distinguishing it from physical or chemical activity. The interpretation of the Viking LR experiment was that the tested soils were chemically reactive and not biolog-ically active, and that at least two oxidative processes with different kinetics were required to explain the observed decomposition of organics, while TEGA experiment of the Phoenix mis-sion apparently didn't detect organic matter on the surface of Mars. Both of these experiments showed little possibility of the presence of organics, and therefore the presence of life. Here we examine the evolved gas properties of hyperarid soils from the Pampas de La Joya, which is considered as a new analogue to Mars, in order to investigate the effect of the soil matrix on the TEGA response, and additionally, we conducted experiments under Viking LR protocol to test the decomposition kinetics of organic compounds in aqueous solution added to these soils. Our TEGA results indicate that native or added organics present in these samples were oxidized to CO2 during thermal process, suggesting the existence in these soils of a thermolabile oxidant which is highly oxidative and other thermostable oxidant which has a minor oxidative activity and that survives the heat-treatment. Interestingly, LR experiment shows that the 13C-labeled formate and DL-alanine were oxidized to 13CO2 when added in aqueous solution to soils collected from the Pampas de La Joya region. The observation of similar 13CO2 initial releasing by soils treated with L-alanine, compared to soils treated D-alanine, indicates the presence of one or more nonbiological chemical decomposition mechanisms similar to Yungay soils and the Viking LR experiment. Thus, the soils from Pampas of La Joya, are potentially excellent analogues of the oxidative processes that occur on Mars, and can be used to study mechanisms of destruction of organics on this planet. The nature of oxidant(s) present in the soils from Pampas de La Joya is still unknown.
Oxidation of lignin and cellulose, humification and coalification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volborth, A.
1976-06-09
Oxygen plays an important role in the first stages of the decomposition of organic substances derived from plant material. The decomposition and reformation of such organic matter as cellulose and lignin leads, through-humification and a sequence of metamorphic processes, to the formation of coal. Initially, oxidation reactions cause the formation of dark-colored humic acids, later under more anaerobic conditions, pressure and higher temperatures, polymerization occurs as the sediment becomes buried. Under these conditions phenolic compounds are more stable, also during the processes of decomposition phenolic substances are more resistant to microorganisms, and thus seem to accumulate. The humification process maymore » be considered as the first step in coalification. It starts by rapid decomposition of the cellulose and by enzymatic degradation of the lignin of the rotting plant substance to form C/sub 6/-C/sub 3/ or C/sub 6/-C/sub 1/ compounds. These lose methoxyl groups and carboxyl groups and can form hydroquinones which may polymerize and combine, forming humic acids. Degradation may proceed also to aliphatic compounds. Most of the reactions seem to lead to benzoquinones which dimerize and polymerize further, causing an increase in aromatization with age, and under more anaerobic conditions later during coalification. When conditions become anaerobic, melanoidin and glucosamin compounds form and nitrogen fixation occurs. This explains the presence of about 1 to 3.5 percent nitrogen in humic acid concentrates, lignin, lignite, subbituminous and bituminous coal. The fixation of nitrogen also results in further reduction of carbon in humic substance during the later stages of humification. Further coalification of buried humified strata of decomposed organic material causes reduction as the methoxyl and oxygen group content decreases, and CO and CO/sub 2/ gases and H/sub 2/O evolve and gradual dehydration occurs.« less
Potential for reduction of odorous compounds in swine manure through diet modification.
Sutton, A L; Kephart, K B; Verstegen, M W; Canh, T T; Hobbs, P J
1999-02-01
Recent public concern about air pollution from pork production units has prompted more research to develop methods to reduce and control odors. Masking agents, enzymes and bacterial preparations, feed additives, chemicals, oxidation processes, air scrubbers, biofilters, and new ventilation systems have been studied. Research relating the effects of the swine diet on manure odors has been scarce. Introducing feed additives to bind ammonia, change digesta pH, affect specific enzyme activity, and mask odors has been either costly or not consistently successful. Recent research emphasis has focused on manipulating the diet 1) to increase the nutrient utilization of the diet to reduce excretion products, 2) to enhance microbial metabolism in the lower digestive tract to reduce excretion of odor-causing compounds, and 3) to change the physical characteristics of urine and feces to reduce odor emissions. Primary odor-causing compounds evolve from excess degradable proteins and lack of specific fermentable carbohydrates during microbial fermentation. Reductions in ammonia emissions by 28 to 79% through diet modifications have been reported. Limited research on reduction of other odorous volatile organic compounds through diet modifications is promising. Use of synthetic amino acids with reduced intact protein levels in diets significantly reduces nitrogen excretions and odor production. Addition of nonstarch polysaccharides and specific oligosaccharides further alters the pathway of nitrogen excretion and reduces odor emission. Continued nutritional and microbial research to incorporate protein degradation products, especially sulfur-containing organics, with fermentable carbohydrates in the lower gastrointestinal tract of pigs will further control odors from manure.
Facet-Dependent Oxidative Goethite Growth As a Function of Aqueous Solution Conditions.
Strehlau, Jennifer H; Stemig, Melissa S; Penn, R Lee; Arnold, William A
2016-10-04
Nitroaromatic compounds are groundwater pollutants that can be degraded through reactions with Fe(II) adsorbed on iron oxide nanoparticles, although little is known about the evolving reactivity of the minerals with continuous pollutant exposure. In this work, Fe(II)/goethite reactivity toward 4-chloronitrobenzene (4-ClNB) as a function of pH, organic matter presence, and reactant concentrations was explored using sequential-spike batch reactors. Reaction rate constants were smaller with lower pH, introduction of organic matter, and diluted reactant concentrations as compared to a reference condition. Reaction rate constants did not change with the number of 4-ClNB spikes for all reaction conditions. Under all conditions, oxidative goethite growth was demonstrated through X-ray diffraction, magnetic characterization, and transmission electron microscopy. Nonparametric statistics were applied to compare histograms of lengths and widths of goethite nanoparticles as a function of varied solution conditions. The conditions that slowed the reaction also resulted in statistically shorter and wider particles than for the faster reactions. Additionally, added organic matter interfered with particle growth on the favorable {021} faces to a greater extent, with statistically reduced rate of growth on the tip facets and increased rate of growth on the side facets. These data demonstrate that oxidative growth of goethite in aqueous systems is dependent on major groundwater variables, such as pH and the presence of organic matter, which could lead to the evolving reactivity of goethite particles in natural environments.
Evolving Digital Ecological Networks
Wagner, Aaron P.; Ofria, Charles
2013-01-01
“It is hard to realize that the living world as we know it is just one among many possibilities” [1]. Evolving digital ecological networks are webs of interacting, self-replicating, and evolving computer programs (i.e., digital organisms) that experience the same major ecological interactions as biological organisms (e.g., competition, predation, parasitism, and mutualism). Despite being computational, these programs evolve quickly in an open-ended way, and starting from only one or two ancestral organisms, the formation of ecological networks can be observed in real-time by tracking interactions between the constantly evolving organism phenotypes. These phenotypes may be defined by combinations of logical computations (hereafter tasks) that digital organisms perform and by expressed behaviors that have evolved. The types and outcomes of interactions between phenotypes are determined by task overlap for logic-defined phenotypes and by responses to encounters in the case of behavioral phenotypes. Biologists use these evolving networks to study active and fundamental topics within evolutionary ecology (e.g., the extent to which the architecture of multispecies networks shape coevolutionary outcomes, and the processes involved). PMID:23533370
NASA Technical Reports Server (NTRS)
Glavin, D.; Freissinet, C.; Mahaffy, P.; Miller, K.; Eigenbrode, J.; Summons, R.; Martin, M.; Franz, H.; Steele, A.; Archer, D.;
2015-01-01
The Sample Analysis at Mars (SAM) instrument on the Curiosity rover is designed to determine the inventory of organic and inorganic volatiles thermally evolved from solid samples using a combination of evolved gas analysis (EGA), gas chromatography mass spectrometry (GCMS), and tunable laser spectroscopy. The first sample analyzed by SAM at the Rocknest (RN) aeolian deposit revealed chlorohydrocarbons derived primarily from reactions between a martian oxychlorine phase (e.g. perchlorate) and terrestrial carbon from N-methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) vapor present in the SAM instrument background. No conclusive evidence for martian chlorohydrocarbons in the RN sand was found. After RN, Curiosity traveled to Yellowknife Bay and drilled two holes separated by 2.75 m designated John Klein (JK) and Cumberland (CB). Analyses of JK and CB by both SAM and the CheMin x-ray diffraction instrument revealed a mudstone (called Sheepbed) consisting of approx.20 wt% smectite clays, which on Earth are known to aid the concentration and preservation of organic matter. Last year at LPSC we reported elevated abundances of chlorobenzene (CBZ) and a more diverse suite of chlorinated hydrocarbons including dichloroalkanes in CB compared to RN, suggesting that martian or meteoritic organic compounds may be preserved in the mudstone. Here we present SAM data from additional analyses of the CB sample and of Confidence Hills (CH), another drill sample collected at the base of Mt. Sharp. This new SAM data along with supporting laboratory analog experiments indicate that most of the chlorobenzene detected in CB is derived from martian organic matter preserved in the mudstone.
Multi-Level Light Capture Control in Plants and Green Algae.
Wobbe, Lutz; Bassi, Roberto; Kruse, Olaf
2016-01-01
Life on Earth relies on photosynthesis, and the ongoing depletion of fossil carbon fuels has renewed interest in phototrophic light-energy conversion processes as a blueprint for the conversion of atmospheric CO2 into various organic compounds. Light-harvesting systems have evolved in plants and green algae, which are adapted to the light intensity and spectral composition encountered in their habitats. These organisms are constantly challenged by a fluctuating light supply and other environmental cues affecting photosynthetic performance. Excess light can be especially harmful, but plants and microalgae are equipped with different acclimation mechanisms to control the processing of sunlight absorbed at both photosystems. We summarize the current knowledge and discuss the potential for optimization of phototrophic light-energy conversion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Marine Polysaccharides in Pharmaceutical Applications: An Overview
Laurienzo, Paola
2010-01-01
The enormous variety of polysaccharides that can be extracted from marine plants and animal organisms or produced by marine bacteria means that the field of marine polysaccharides is constantly evolving. Recent advances in biological techniques allow high levels of polysaccharides of interest to be produced in vitro. Biotechnology is a powerful tool to obtain polysaccharides from a variety of micro-organisms, by controlling the growth conditions in a bioreactor while tailoring the production of biologically active compounds. Following an overview of the current knowledge on marine polysaccharides, with special attention to potential pharmaceutical applications and to more recent progress on the discovering of new polysaccharides with biological appealing characteristics, this review will focus on possible strategies for chemical or physical modification aimed to tailor the final properties of interest. PMID:20948899
An advanced technique for speciation of organic nitrogen in atmospheric aerosols
NASA Astrophysics Data System (ADS)
Samy, S.; Robinson, J.; Hays, M. D.
2011-12-01
The chemical composition of organic nitrogen (ON) in the environment is a research topic of broad significance. The topic intersects the branches of atmospheric, aquatic, and ecological science; thus, a variety of instrumentation, analytical methods, and data interpretation tools have evolved for determination of ON. Recent studies that focus on atmospheric particulate nitrogen (N) suggest a significant fraction (20-80%) of total N is bound in organic compounds. The sources, bioavailability and transport mechanisms of these N-containing compounds can differ, producing a variety of environmental consequences. Amino acids (AA) are a key class of atmospheric ON compounds that can contribute to secondary organic aerosol (SOA) formation and potentially influence water cycles, air pollutant scavenging, and the radiation balance. AA are water-soluble organic compounds (WSOC) that can significantly alter the acid-base chemistry of aerosols, and may explain the buffering capacity that impacts heterogeneous atmospheric chemistry. The chemical transformations that N-containing organic compounds (including AA) undergo can increase the light-absorbing capacity of atmospheric carbon via formation of 'brown carbon'. Suggested sources of atmospheric AA include: marine surface layer transport from bursting sea bubbles, the suspension of bacteria, fungi, algae, pollen, spores, or biomass burning. Methodology for detection of native (underivatized) amino acids (AA) in atmospheric aerosols has been developed and validated (Samy et al., 2011). This presentation describes the use of LC-MS (Q-TOF) and microwave-assisted gas phase hydrolysis for detection of free and combined amino acids in aerosols collected in a Southeastern U.S. forest environment. Accurate mass detection and the addition of isotopically labeled surrogates prior to sample preparation allows for sensitive quantitation of target AA in a complex aerosol matrix. A total of 16 native AA were detected above the reporting threshold as water-soluble free AA, with an average concentration of 22 ± 9 ng m-3 (N=13). Following microwave-assisted gas phase hydrolysis, the total AA concentration in the forest environment increased significantly (70 ± 35 ng m-3) and additional compounds (methionine, isoleucine) were detected above the reporting threshold. The ability to quantify AA in aerosol samples without derivatization reduces time consuming preparation procedures while providing the advancement of selective mass determination that eliminates potential interferences associated with traditional fluorescence detection. This step forward in precise mass determination with the use of internal standardization, improves the confidence of compound identification. With the increasing focus on WSOC (including ON) characterization in the atmospheric science community, native detection by LC-MS (Q-TOF) will play a central role in determining the most direct approach to quantify an increasing fraction of the co-extracted polar organic compounds. Method application for further characterization of atmospheric ON will be discussed. Reference: Samy, S., Robinson, J., and M.D. Hays. "An Advanced LC-MS (Q-TOF) Technique for the Detection of Amino Acids in Atmospheric Aerosols", Analytical Bioanalytical Chemistry, 2011, DOI: 10.1007/s00216-011-5238-2
NASA Astrophysics Data System (ADS)
Kenig, F. P. H.; Chou, L.; McKay, C.; Jackson, W. A.; Doran, P. T.; Murray, A. E.; Fritsen, C. H.
2015-12-01
A cold (-13.4 °C), saline (188 psu) evaporative brine is encapsulated in the thick (> 27 m) ice of Lake Vida (McMurdo Dry Valleys, Antarctica). The Lake Vida brine (LVBr), which contains abundant dissolved organic carbon (48.2 mmol/L), support an active but slow microbial community. LVBr contains oxychlorines with 50 μg/L of perchlorate and 11 μg/L of chlorate. The McMurdo Dry Valleys have often been considered as a good Mars analog. The oxychlorine-rich brine of Lake Vida constitutes a potential equivalent to perchlorate-rich preserved saline liquid water on Mars. We report here on the artifacts created by oxychlorines upon analysis of volatiles and volatile organic compounds (VOCs) of LVBr by direct immersion (DI) and head space (HS) solid phase micro extraction (SPME) gas chromatography-mass spectrometry (GCMS). We compare analytical blanks to a standard containing 40 μg/L of perchlorate and to actual LVBr sample runs. All blanks, perchlorate blanks and samples were analyzed using two types of SPME fibers, CarboxenTM/polydimethylsiloxane (PDMS) and divinylbenzene (DVB)/ PDMS. The similarities and differences between our results and those obtained by the Sample Analysis at Mars instruments of the rover Curiosity are discussed. The volatiles evolved from LVBr upon analysis with DI- and HS-SPME GCMS are dominated by CO2, dichloromethane, HCl, and volatile organic sulfur compounds (VOSCs, such as DMS, DMDS). The volatiles also include oxygenated compounds such as acids and ketones, aromatic compounds, hydrocarbons, chlorinated compounds (dominated by dichloromethane). Apart from the VOSCs, short chain hydrocarbons and some functionalized compounds derived from the brine itself, all compounds observed are artifacts formed upon oxychlorine breakdown in the injector of the GCMS. The distribution of aromatic compounds seems to be directly dependant on the type of SPME fiber used. The perchlorate blanks show a clear pattern of carbon limitation, likely affecting the type and abundance of compounds produced. This suggests that carbon limited perchlorates blanks are not satisfactory for comparison to the analysis of oxychlorine containing samples. Acknowledgment: NASA ASTEP NAG5-12889 (PTD), NSF awards ANT-0739681 (AEM, CHF) and ANT-0739698 (PTD, FK) supported this work.
Tremblay, Pier-Luc; Höglund, Daniel; Koza, Anna; Bonde, Ida; Zhang, Tian
2015-11-04
Acetogens are efficient microbial catalysts for bioprocesses converting C1 compounds into organic products. Here, an adaptive laboratory evolution approach was implemented to adapt Sporomusa ovata for faster autotrophic metabolism and CO2 conversion to organic chemicals. S. ovata was first adapted to grow quicker autotrophically with methanol, a toxic C1 compound, as the sole substrate. Better growth on different concentrations of methanol and with H2-CO2 indicated the adapted strain had a more efficient autotrophic metabolism and a higher tolerance to solvent. The growth rate on methanol was increased 5-fold. Furthermore, acetate production rate from CO2 with an electrode serving as the electron donor was increased 6.5-fold confirming that the acceleration of the autotrophic metabolism of the adapted strain is independent of the electron donor provided. Whole-genome sequencing, transcriptomic, and biochemical studies revealed that the molecular mechanisms responsible for the novel characteristics of the adapted strain were associated with the methanol oxidation pathway and the Wood-Ljungdahl pathway of acetogens along with biosynthetic pathways, cell wall components, and protein chaperones. The results demonstrate that an efficient strategy to increase rates of CO2 conversion in bioprocesses like microbial electrosynthesis is to evolve the microbial catalyst by adaptive laboratory evolution to optimize its autotrophic metabolism.
The genotype-phenotype map of an evolving digital organism.
Fortuna, Miguel A; Zaman, Luis; Ofria, Charles; Wagner, Andreas
2017-02-01
To understand how evolving systems bring forth novel and useful phenotypes, it is essential to understand the relationship between genotypic and phenotypic change. Artificial evolving systems can help us understand whether the genotype-phenotype maps of natural evolving systems are highly unusual, and it may help create evolvable artificial systems. Here we characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital evolution. We consider digital organisms from a vast space of 10141 genotypes (instruction sequences), which can form 512 different phenotypes. These phenotypes are distinguished by different Boolean logic functions they can compute, as well as by the complexity of these functions. We observe several properties with parallels in natural systems, such as connected genotype networks and asymmetric phenotypic transitions. The likely common cause is robustness to genotypic change. We describe an intriguing tension between phenotypic complexity and evolvability that may have implications for biological evolution. On the one hand, genotypic change is more likely to yield novel phenotypes in more complex organisms. On the other hand, the total number of novel phenotypes reachable through genotypic change is highest for organisms with simple phenotypes. Artificial evolving systems can help us study aspects of biological evolvability that are not accessible in vastly more complex natural systems. They can also help identify properties, such as robustness, that are required for both human-designed artificial systems and synthetic biological systems to be evolvable.
The genotype-phenotype map of an evolving digital organism
Zaman, Luis; Wagner, Andreas
2017-01-01
To understand how evolving systems bring forth novel and useful phenotypes, it is essential to understand the relationship between genotypic and phenotypic change. Artificial evolving systems can help us understand whether the genotype-phenotype maps of natural evolving systems are highly unusual, and it may help create evolvable artificial systems. Here we characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital evolution. We consider digital organisms from a vast space of 10141 genotypes (instruction sequences), which can form 512 different phenotypes. These phenotypes are distinguished by different Boolean logic functions they can compute, as well as by the complexity of these functions. We observe several properties with parallels in natural systems, such as connected genotype networks and asymmetric phenotypic transitions. The likely common cause is robustness to genotypic change. We describe an intriguing tension between phenotypic complexity and evolvability that may have implications for biological evolution. On the one hand, genotypic change is more likely to yield novel phenotypes in more complex organisms. On the other hand, the total number of novel phenotypes reachable through genotypic change is highest for organisms with simple phenotypes. Artificial evolving systems can help us study aspects of biological evolvability that are not accessible in vastly more complex natural systems. They can also help identify properties, such as robustness, that are required for both human-designed artificial systems and synthetic biological systems to be evolvable. PMID:28241039
NASA Technical Reports Server (NTRS)
Glavin, D.; Archer, D.; Brunner, A.; Buch, A.; Cabane, M.; Coll, P.; Conrad, P.; Coscia, D.; Dworkin J.; Eigenbrode, J.;
2013-01-01
The search for organic compounds on Mars, including molecules of either abiotic or biological origin is one of the key goals of the Mars Science Laboratory (MSL) mission. Previously the Viking and Phoenix Lander missions searched for organic compounds, but did not find any definitive evidence of martian organic material in the soils. The Viking pyrolysis gas chromatography mass spectrometry (GCMS) instruments did not detect any organic compounds of martian or exogenous origin above a level of a few parts-per-billion (ppb) in the near surface regolith at either landing site [1]. Viking did detect chloromethane and dichloromethane at pmol levels (up to 40 ppb) after heating the soil samples up to 500 C (Table 1), although it was originally argued that the chlorohydrocarbons were derived from cleaning solvents used on the instrument hardware, and not from the soil samples themselves [1]. More recently, it was suggested that the chlorohydrocarbons detected by Viking may have been formed by oxidation of indigenous organic matter during pyrolysis of the soil in the presence of perchlorates [2]. Although it is unknown if the Viking soils contained perchlorates, Phoenix did reveal relatively high concentrations (0.6 wt%) of perchlorate salt in the icy regolith [3], therefore, it is possible that the chlorohydrocarbons detected by Viking were produced, at least partially, during the experiments [2,4]. The Sample Analysis at Mars (SAM) instrument suite on MSL analyzed the organic composition of the soil at Rocknest in Gale Crater using a combination of pyrolysis evolved gas analysis (EGA) and GCMS. One empty cup procedural blank followed by multiple EGA-GCMS analyses of the Rocknest soil were carried out. Here we will discuss the results from these SAM measurements at Rocknest and the steps taken to determine the source of the chlorohydrocarbons.
Samide, Michael J; Smith, Gregory D
2015-12-24
Construction materials used in museums for the display, storage, and transportation of artwork must be assessed for their tendency to emit harmful pollution that could potentially damage cultural treasures. Traditionally, a subjective metals corrosion test known as the Oddy test has been widely utilized in museums for this purpose. To augment the Oddy test, an instrumental sampling approach based on evolved gas analysis (EGA) coupled to gas chromatography (GC) with mass spectral (MS) detection has been implemented for the first time to qualitatively identify off-gassed pollutants under specific conditions. This approach is compared to other instrumental methods reported in the literature. This novel application of the EGA sampling technique yields several benefits over traditional testing, including rapidity, high sensitivity, and broad detectability of volatile organic compounds (VOCs). Furthermore, unlike other reported instrumental approaches, the EGA method was used to determine quantitatively the amount of VOCs emitted by acetate resins and polyurethane foams under specific conditions using both an external calibration method as well as surrogate response factors. EGA was successfully employed to rapidly characterize emissions from 12 types of common plastics. This analysis is advocated as a rapid pre-screening method to rule out poorly performing materials prior to investing time and energy in Oddy testing. The approach is also useful for rapid, routine testing of construction materials previously vetted by traditional testing, but which may experience detrimental formulation changes over time. As an example, a case study on batch re-orders of rigid expanded poly(vinyl chloride) board stock is presented. Copyright © 2015 Elsevier B.V. All rights reserved.
Lichen palatability depends on investments in herbivore defence.
Gauslaa, Yngvar
2005-03-01
Lichens are well-suited organisms for experimental herbivory studies because their secondary compounds, assumed to deter grazing, can be non-destructively extracted. Thalli of 17 lichen species from various habitats were cut in two equal parts; compounds were extracted from one part by acetone, the other served as a control. These two pieces were offered as a paired choice to the generalist herbivore snail Cepaea hortensis. Control thalli of all lichens were consumed at a low rate regardless of their investments in acetone-extractable lichen compounds; naturally compound-deficient lichen species were not preferred compared to those with high contents. However, for extracted thalli, there was a highly significant positive correlation between rate of consumption and the extracted compound contents. These data imply that herbivore defence has evolved in different directions in different lichens. Studied members of Parmeliaceae, common in oligotrophic habitats, have high contents of carbon-rich acetone-soluble compounds; these lichens became highly palatable to snails subsequent to acetone rinsing. Extracted lichen compounds were applied to pieces of filter paper and fed to snails. Extracts from members of the Parmeliaceae significantly deterred feeding on paper. Such data suggest that generalist herbivores may have shaped evolution in the widespread and highly diverse Parmeliaceae towards high investments in lichen compounds. On the other hand, lichens belonging to the Physciaceae and Teloschistales, common in nutrient-enriched habitats, are deficient in, or have low concentrations of, lichen compounds. Such lichens did not become more palatable after acetone rinsing. The orange anthraquinone compound parietin, restricted to the Teloschistales, and which has previously been found to protect against excess light, did not deter grazing.
Construction and Screening of Marine Metagenomic Large Insert Libraries.
Weiland-Bräuer, Nancy; Langfeldt, Daniela; Schmitz, Ruth A
2017-01-01
The marine environment covers more than 70 % of the world's surface. Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. They harbor an enormous diversity of microbes with still unknown and probably new physiological characteristics. In the past, marine microbes, mostly bacteria of microbial consortia attached to marine tissues of multicellular organisms, have proven to be a rich source of highly potent bioactive compounds, which represent a considerable number of drug candidates. However, to date, the biodiversity of marine microbes and the versatility of their bioactive compounds and metabolites have not been fully explored. This chapter describes sampling in the marine environment, construction of metagenomic large insert libraries from marine habitats, and exemplarily one function based screen of metagenomic clones for identification of quorum quenching activities.
Ziurys, Lucy M.
2006-01-01
Mass loss from evolved stars results in the formation of unusual chemical laboratories: circumstellar envelopes. Such envelopes are found around carbon- and oxygen-rich asymptotic giant branch stars and red supergiants. As the gaseous material of the envelope flows from the star, the resulting temperature and density gradients create a complex chemical environment involving hot, thermodynamically controlled synthesis, molecule “freeze-out,” shock-initiated reactions, and photochemistry governed by radical mechanisms. In the circumstellar envelope of the carbon-rich star IRC+10216, >50 different chemical compounds have been identified, including such exotic species as C8H, C3S, SiC3, and AlNC. The chemistry here is dominated by molecules containing long carbon chains, silicon, and metals such as magnesium, sodium, and aluminum, which makes it quite distinct from that found in molecular clouds. The molecular composition of the oxygen-rich counterparts is not nearly as well explored, although recent studies of VY Canis Majoris have resulted in the identification of HCO+, SO2, and even NaCl in this object, suggesting chemical complexity here as well. As these envelopes evolve into planetary nebulae with a hot, exposed central star, synthesis of molecular ions becomes important, as indicated by studies of NGC 7027. Numerous species such as HCO+, HCN, and CCH are found in old planetary nebulae such as the Helix. This “survivor” molecular material may be linked to the variety of compounds found recently in diffuse clouds. Organic molecules in dense interstellar clouds may ultimately be traced back to carbon-rich fragments originally formed in circumstellar shells. PMID:16894164
NASA Astrophysics Data System (ADS)
Ziurys, Lucy M.
2006-08-01
Mass loss from evolved stars results in the formation of unusual chemical laboratories: circumstellar envelopes. Such envelopes are found around carbon- and oxygen-rich asymptotic giant branch stars and red supergiants. As the gaseous material of the envelope flows from the star, the resulting temperature and density gradients create a complex chemical environment involving hot, thermodynamically controlled synthesis, molecule "freeze-out," shock-initiated reactions, and photochemistry governed by radical mechanisms. In the circumstellar envelope of the carbon-rich star IRC+10216, >50 different chemical compounds have been identified, including such exotic species as C8H, C3S, SiC3, and AlNC. The chemistry here is dominated by molecules containing long carbon chains, silicon, and metals such as magnesium, sodium, and aluminum, which makes it quite distinct from that found in molecular clouds. The molecular composition of the oxygen-rich counterparts is not nearly as well explored, although recent studies of VY Canis Majoris have resulted in the identification of HCO+, SO2, and even NaCl in this object, suggesting chemical complexity here as well. As these envelopes evolve into planetary nebulae with a hot, exposed central star, synthesis of molecular ions becomes important, as indicated by studies of NGC 7027. Numerous species such as HCO+, HCN, and CCH are found in old planetary nebulae such as the Helix. This "survivor" molecular material may be linked to the variety of compounds found recently in diffuse clouds. Organic molecules in dense interstellar clouds may ultimately be traced back to carbon-rich fragments originally formed in circumstellar shells.
NASA Technical Reports Server (NTRS)
Lauer, H. V. Jr.; Ming, D. W.; Sutter, B.; Mahaffy, P. R.
2010-01-01
The Mars Science Laboratory (MSL) is scheduled for launch in 2011. The science objectives for MSL are to assess the past or present biological potential, to characterize the geology, and to investigate other planetary processes that influence habitability at the landing site. The Sample Analysis at Mars (SAM) is a key instrument on the MSL payload that will explore the potential habitability at the landing site [1]. In addition to searching for organic compounds, SAM will have the capability to characterized evolved gases as a function of increasing temperature and provide information on the mineralogy of volatile-bearing phases such as carbonates, sulfates, phyllosilicates, and Fe-oxyhydroxides. The operating conditions in SAM ovens will be maintained at 30 mb pressure with a He carrier gas flowing at 1 sccm. We have previously characterized the thermal and evolved gas behaviors of volatile-bearing species under reduced pressure conditions that simulated operating conditions of the Thermal and Evolved Gas Analyzer (TEGA) that was onboard the 2007 Mars Phoenix Scout Mission [e.g., 2-8]. TEGA ovens operated at 12 mb pressure with a N2 carrier gas flowing at 0.04 sccm. Another key difference between SAM and TEGA is that TEGA was able to perform differential scanning calorimetry whereas SAM only has a pyrolysis oven. The operating conditions for TEGA and SAM have several key parameter differences including operating pressure (12 vs 30 mb), carrier gas (N2 vs. He), and carrier gas flow rate (0.04 vs 1 sccm). The objectives of this study are to characterize the thermal and evolved gas analysis of calcite under SAM operating conditions and then compare it to calcite thermal and evolved gas analysis under TEGA operating conditions.
Mochalski, Paweł; Wiesenhofer, Helmut; Allers, Maria; Zimmermann, Stefan; Güntner, Andreas T; Pineau, Nicolay J; Lederer, Wolfgang; Agapiou, Agapios; Mayhew, Christopher A; Ruzsanyi, Veronika
2018-02-15
Human smuggling and associated cross-border crimes have evolved as a major challenge for the European Union in recent years. Of particular concern is the increasing trend of smuggling migrants hidden inside shipping containers or trucks. Therefore, there is a growing demand for portable security devices for the non-intrusive and rapid monitoring of containers to detect people hiding inside. In this context, chemical analysis of volatiles organic compounds (VOCs) emitted from the human body is proposed as a locating tool. In the present study, an in-house made ion mobility spectrometer coupled with gas chromatography (GC-IMS) was used to monitor the volatile moieties released from the human body under conditions that mimic entrapment. A total of 17 omnipresent volatile compounds were identified and quantified from 35 ion mobility peaks corresponding to human presence. These are 7 aldehydes (acrolein, 2-methylpropanal, 3-methylbutanal, 2-ethacrolein, n-hexanal, n-heptanal, benzaldehyde), 3 ketones (acetone, 2-pentanone, 4-methyl-2-pentanone), 5 esters (ethyl formate, ethyl propionate, vinyl butyrate, butyl acetate, ethyl isovalerate), one alcohol (2-methyl-1-propanol) and one organic acid (acetic acid). The limits of detection (0.05-7.2 ppb) and relative standard deviations (0.6-11%) should be sufficient for detecting these markers of human presence in field conditions. This study shows that GC-IMS can be used as a portable field detector of hidden or entrapped people. Copyright © 2018 Elsevier B.V. All rights reserved.
Neuman-Lee, Lorin A; Brodie, Edmund D; Hansen, Tyler; Brodie, Edmund D; French, Susannah S
2016-04-01
Synthetic chemicals, such as pesticides, are used in a variety of ways in the agricultural industry. Anthropogenic chemicals pose a unique challenge to organisms because of the lack of evolutionary history between the chemical and the organism. However, research has shown that some organisms have a resistance to these synthetic chemicals due to their evolved resistance to a natural compound with a similar structure or mode of action. Indoxacarb (INDOX) is a relatively new pesticide with a similar mode of action to that of tetrodotoxin (TTX). Tetrodotoxin is a naturally occurring toxin that is used as an antipredator defense in the rough-skinned newt (Taricha granulosa). Some populations of the common garter snake (Thamnophis sirtalis) have developed a resistance to tetrodotoxin. Here, we investigated the correlation between TTX and INDOX resistance in snakes. We hypothesized that INDOX would induce a much higher stress response than the naturally occurring TTX. We injected each snake with tetrodotoxin (1 mass-adjusted mouse unit). We did the same with mass-adjusted units of INDOX. We measured corticosterone, testosterone, and bactericidal ability. Our results show an acute stress response to INDOX, but not TTX through an elevate corticosterone and innate immune response, although there was no difference in testosterone concentration. These results suggest that, although INDOX may have a similar mechanism of action, garter snakes do not react in a similar manner as to TTX. This research gives a physiological perspective on the differences between naturally occurring compounds and synthetic compounds. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
D'Ambro, Emma L.; Lee, Ben H.; Liu, Jiumeng; Shilling, John E.; Gaston, Cassandra J.; Lopez-Hilfiker, Felipe D.; Schobesberger, Siegfried; Zaveri, Rahul A.; Mohr, Claudia; Lutz, Anna; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.; Rivera-Rios, Jean C.; Keutsch, Frank N.; Thornton, Joel A.
2017-01-01
We present measurements of secondary organic aerosol (SOA) formation from isoprene photochemical oxidation in an environmental simulation chamber at a variety of oxidant conditions and using dry neutral seed particles to suppress acid-catalyzed multiphase chemistry. A high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) utilizing iodide-adduct ionization coupled to the Filter Inlet for Gases and Aerosols (FIGAERO) allowed for simultaneous online sampling of the gas and particle composition. Under high-HO2 and low-NO conditions, highly oxygenated (O : C ≥ 1) C5 compounds were major components (˜ 50 %) of SOA. The SOA composition and effective volatility evolved both as a function of time and as a function of input NO concentrations. Organic nitrates increased in both the gas and particle phases as input NO increased, but the dominant non-nitrate particle-phase components monotonically decreased. We use comparisons of measured and predicted gas-particle partitioning of individual components to assess the validity of literature-based group-contribution methods for estimating saturation vapor concentrations. While there is evidence for equilibrium partitioning being achieved on the chamber residence timescale (5.2 h) for some individual components, significant errors in group-contribution methods are revealed. In addition, > 30 % of the SOA mass, detected as low-molecular-weight semivolatile compounds, cannot be reconciled with equilibrium partitioning. These compounds desorb from the FIGAERO at unexpectedly high temperatures given their molecular composition, which is indicative of thermal decomposition of effectively lower-volatility components such as larger molecular weight oligomers.
Antifungal activity in thrips soldiers suggests a dual role for this caste.
Turnbull, Christine; Caravan, Holly; Chapman, Thomas; Nipperess, David; Dennison, Siobhan; Schwarz, Michael; Beattie, Andrew
2012-08-23
The social insect soldier is perhaps the most widely known caste, because it often exhibits spectacular weapons, such as highly enlarged jaws or reinforced appendages, which are used to defend the colony against enemies ranging in size from wasps to anteaters. We examined the function of the enlarged forelimbs of soldiers (both male and female) of the eusocial, gall-inhabiting insect Kladothrips intermedius, and discovered that they have little impact on their ability to repel the specialized invading thrips Koptothrips species. While the efficacy of the enlarged forelimb appears equivocal, we show that soldiers secrete strong antifungal compounds capable of controlling the specialized insect fungal pathogen, Cordyceps bassiana. Our data suggest that these thrips soldiers have evolved in response to selection by both macro- and micro-organisms. While it is unknown whether specialized fungal pathogens have been major selective agents in the evolution of the soldier caste in general, they were probably present when sociality first evolved and may have been the primordial enemies of social insects.
NASA Technical Reports Server (NTRS)
Sutter, Brad; Eigenbrode, Jennifer L.; Steele, Andrew; Ming, Douglas W.
2016-01-01
Sedimentary rock samples heated to 860 degrees Centigrade in the SAM (Sample at Mars) instrument evolved CO2 and CO indicating the presence of organic-carbon(C) in Gale Crater materials. Martian or exogenous (meteoritic, interplanetary dust) CO2 and CO could be derived from combustion of simple organics (less than 300 degrees Centigrade), complex refractory organics/amorphous carbon (300-600 degrees Centigrade), and/or magmatic carbon (greater than 600 degrees Centigrade) as result of thermal decomposition of Gale Crater perchlorates, and sulfates present that produce O2. Oxidized organic compounds could also evolve CO2 and CO over broad temperature range (150 to 800 degrees Centigrade) and such organics are expected on Mars via exogenous sources. Alternatively, organic-C could also have been oxidized to carboxylic acids [e.g, mellitic acid (RCOOH), acetate (CH3CO2-), and oxalates (C2O42-)] by oxidative radiolytic weathering, or other oxidation processes. The presence of oxidized organics is consistent with the limited detection of reduced organic-C phases by the SAM-gas chromatography. Organic-C content as determined by CO2 and CO contents could range between 800 and 2400 parts per million C indicating that substantial organic-C component is present in Gale Crater. There are contributions from SAM background however, even in worst-case scenarios, this would only account for as much as half of the detected CO2 and CO. Nevertheless, if organic-C levels were assumed to have existed in a reduced form on ancient Mars and this was bioavailable C, then less than 1 percent of C in Gale Crater sediments could have supported an exclusively heterotrophic microbial population of 1 by 10 (sup 5) cells per gram sediment (assumes 9 by 10 (sup -7) microgram per cell and 0.5 micrograms C per microgram cell). While other essential nutrients (e.g., S and P) could be limiting, organic-C contents, may have been sufficient to support limited heterotrophic microbial populations on ancient Mars.
NASA Technical Reports Server (NTRS)
Sutter, Brad
2016-01-01
Sedimentary rock samples heated to 860 C in the SAM instrument evolved CO2 and CO indicating the presence of organic-carbon(C) in Gale Crater materials. Martian or exogenous (meteoritic, interplanetary dust) CO2 and CO could be derived from combustion of simple organics (less than 300 C), complex refractory organics/amorphous carbon (300-600 C), and/or magmatic carbon (greater than 600 C) as result of thermal decomposition of Gale Crater perchlorates, and sulfates present that produce O2. Oxidized organic compounds could also evolve CO2 and CO over broad temperature range (150 to 800 C) and such organics are expected on Mars via exogenous sources. Alternatively, organic-C could also have been oxidized to carboxylic acids [e.g, mellitic acid (RCOOH), acetate (CH3CO2(-)), and oxalates ((2)C2O4(-))] by oxidative radiolytic weathering, or other oxidation processes. The presence of oxidized organics is consistent with the limited detection of reduced organic-C phases by the SAM-gas chromatography. Organic-C content as determined by CO2 and CO contents could range between 800 and 2400 ppm C indicating that substantial organic-C component is present in Gale Crater. There are contributions from SAM background however, even in worse case scenarios, this would only account for as much as half of the detected CO2 and CO. Nevertheless, if organic-C levels were assumed to have existed in a reduced form on ancient Mars and this was bioavailable C, then less than 1% of C in Gale Crater sediments could have supported an exclusively heterotrophic microbial population of 1 x 10(exp 5) cells/g sediment (assumes 9 x 10(exp -7) microgram/cell and 0.5 micrograms C/microgram cell). While other essential nutrients (e.g., S and P) could be limiting, organic-C contents, may have been sufficient to support limited heterotrophic microbial populations on ancient Mars.
Atlantic killifish (Fundulus heteroclitus) resident to some US urban and industrialized estuaries demonstrate recently evolved and extreme tolerance to toxic dioxin-like compounds (DLCs). Here we provide an unusually comprehensive accounting (69%) through Quantitative Trait Locu...
UV–Vis Light-induced Aging of Titan’s Haze and Ice
NASA Astrophysics Data System (ADS)
Couturier-Tamburelli, Isabelle; Piétri, Nathalie; Le Letty, Vincent; Chiavassa, Thierry; Gudipati, Murthy
2018-01-01
The study of the photochemical aging of aerosols is an important tool for understanding Titan’s stratosphere/troposphere composition and evolution, particularly the haze. Laboratory simulations of the photoreactivity of the haze aerosol analogs provide insight into the photochemical evolution of Titan’s atmosphere at and below the haze layers. Here we use experimental simulations to investigate the evolution of the laboratory analogs of these organic aerosols under ultraviolet (UV)–visible (Vis) photons, which make it through the haze layers during their sedimentation process. We present experimental results for the aging of Titan’s aerosol analogs obtained from two dominant nitrogen-containing organics, HC3N and HCN, under simulated Titan atmospheric conditions (photons and temperature). We report that volatile nitriles condensed on haze particles could be incorporated through photochemistry and provide one such sink mechanism for nitrile compounds. We provide laboratory evidence that the organic aerosols could photochemically evolve during their sedimentation through Titan’s atmosphere.
Microbial antagonism as a potential solution for controlling selected root pathogens of crops
NASA Astrophysics Data System (ADS)
Cooper, Sarah; Agnew, Linda; Pereg, Lily
2016-04-01
Root pathogens of crops can cause large reduction in yield, however, there is a limited range of effective methods to control such pathogens. Soilborne pathogens that infect roots often need to survive in the rhizosphere, where there is high competition from other organisms. In such hot spots of microbial activity and growth, supported by root exudates, microbes have evolved antagonistic mechanisms that give them competitive advantages in winning the limited resources. Among these mechanisms is antibiosis, with production of some significant antifungal compounds including, antibiotics, volatile organic compounds, hydrogen cyanide and lytic enzymes. Some of these mechanisms may suppress disease through controlling the growth of root pathogens. In this project we isolated various fungi and bacteria that suppress the growth of cotton pathogens in vitro. The pathogen-suppressive microbes were isolated from cotton production soils that are under different management strategies, with and without the use of organic amendments. The potential of pathogen-suppressing microbes for controlling the black root rot disease, caused by the soilborne pathogen Thielaviopsis basicola, was confirmed using soil assays. We identified isolates with potential use as inoculant for cotton production in Australia. Having isolated a diverse group of antagonistic microbes enhances the probability that some would survive well in the soil and provide an alternative approach to address the problem of root disease affecting agricultural crops.
Tremblay, Pier-Luc; Höglund, Daniel; Koza, Anna; Bonde, Ida; Zhang, Tian
2015-01-01
Acetogens are efficient microbial catalysts for bioprocesses converting C1 compounds into organic products. Here, an adaptive laboratory evolution approach was implemented to adapt Sporomusa ovata for faster autotrophic metabolism and CO2 conversion to organic chemicals. S. ovata was first adapted to grow quicker autotrophically with methanol, a toxic C1 compound, as the sole substrate. Better growth on different concentrations of methanol and with H2-CO2 indicated the adapted strain had a more efficient autotrophic metabolism and a higher tolerance to solvent. The growth rate on methanol was increased 5-fold. Furthermore, acetate production rate from CO2 with an electrode serving as the electron donor was increased 6.5-fold confirming that the acceleration of the autotrophic metabolism of the adapted strain is independent of the electron donor provided. Whole-genome sequencing, transcriptomic, and biochemical studies revealed that the molecular mechanisms responsible for the novel characteristics of the adapted strain were associated with the methanol oxidation pathway and the Wood-Ljungdahl pathway of acetogens along with biosynthetic pathways, cell wall components, and protein chaperones. The results demonstrate that an efficient strategy to increase rates of CO2 conversion in bioprocesses like microbial electrosynthesis is to evolve the microbial catalyst by adaptive laboratory evolution to optimize its autotrophic metabolism. PMID:26530351
The evolution of floral scent and insect chemical communication.
Schiestl, Florian P
2010-05-01
Plants have evolved a range of strategies to manipulate the behaviour of their insect partners. One powerful strategy is to produce signals that already have a role in the animals' own communication systems. To investigate to what extent the evolution of floral scents is correlated with chemical communication in insects, I analyse the occurrence, commonness, and evolutionary patterns of the 71 most common 'floral' volatile organic compounds (VOCs) in 96 plant families and 87 insect families. I found an overlap of 87% in VOCs produced by plants and insects. 'Floral' monoterpenes showed strong positive correlation in commonness between plants (both gymnosperms and angiosperms) and herbivores, whereas the commonness of 'floral' aromatics was positively correlated between angiosperms and both pollinators and herbivores. According to a multivariate regression analysis the commonness of 'floral' aromatics was best explained by their commonness in pollinators, whereas monoterpenes were best explained by herbivores. Among pollinator orders, aromatics were significantly more common in Lepidoptera than in Hymenoptera, whereas monoterpenes showed no difference among the two orders. Collectively, these patterns suggest that plants and insects converge in overall patterns of volatile production, both for attraction and defence. Monoterpenes seem to have evolved primarily for defence under selection by herbivores, whereas aromatics evolved signalling functions in angiosperms, primarily for pollinator attraction.
USDA-ARS?s Scientific Manuscript database
Atlantic killifish (Fundulus heteroclitus) resident to some US urban and industrialized estuaries demonstrate recently evolved and extreme tolerance to toxic dioxin-like compounds (DLCs). Here we provide an unusually comprehensive accounting (69%) through Quantitative Trait Locus (QTL) analysis of ...
Atlantic killifish (Fundulus heteroclitus) residing in some urban and industrialized estuaries of the US eastern seaboard demonstrate recently evolved and extreme tolerance to toxic aryl hydrocarbon pollutants, characterized as dioxin-like compounds (DLCs). Here we provide an unu...
USDA-ARS?s Scientific Manuscript database
Atlantic killifish (Fundulus heteroclitus) resident to some US urban and industrialized estuaries demonstrate recently evolved and extreme tolerance to toxic dioxin-like compounds (DLCs). Here we provide an unusually comprehensive accounting (69%) through Quantitative Trait Locus (QTL) analysis of ...
Treatment of trace organic compounds in common onsite wastewater systems
Robert Siegrist,; Conn, Kathleen E.
2015-01-01
Onsite wastewater systems (OWS) have historically been relied on to treat conventional pollutants and pathogens in a fashion similar to that expected from centralized wastewater systems. However, based on the occurrence of, and potential effects from, contaminants of emerging concern in wastewaters, OWS as well as centralized systems need to account for these compounds in system design and use. One group of contaminants involves organic compounds such as those associated with consumer product chemicals and pharmaceuticals, which are collectively referred to as trace organic compounds (TOrCs) due to their very low levels (e.g., ng/L to ug/L) relative to other pollutants. The question being confronted today is how best to account for TOrCs in onsite system design and use while also achieving other goals such as system simplicity, limited operation and maintenance requirements, low cost, and sustainability. In contrast to conventional pollutants such as nutrients and pathogens which have specific and achievable treatment goals, there are currently no enforceable treatment standards for TOrCs, which often have non-traditional toxicological endpoints (i.e. endocrine disruption). As highlighted in this paper, there are a large number of TOrCs that can be present in OWS and they have different properties, can be present at different frequencies of occurrence and concentrations, and have different susceptibilities to treatment in OWS. In general, based on the studies summarized in this paper, TOrCs normally should not require additional considerations beyond those for conventional pollutants and pathogens (e.g., nitrogen or bacteria and virus) during design and use of OWS. That said, there are situations where TOrCs could be a serious concern warranting special consideration in system design and use. In this paper, the frequency of occurrence of TOrCs and the range of concentrations encountered are highlighted. An evolving approach is outlined that could help assess the likelihood of occurrence and levels of TOrCs along with the treatment anticipated in different OWS and assimilation conditions.
D'Ambro, Emma L.; Lee, Ben H.; Liu, Jiumeng; ...
2017-01-04
Here, we present measurements of secondary organic aerosol (SOA) formation from isoprene photochemical oxidation in an environmental simulation chamber at a variety of oxidant conditions and using dry neutral seed particles to suppress acid-catalyzed multiphase chemistry. A high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) utilizing iodide-adduct ionization coupled to the Filter Inlet for Gases and Aerosols (FIGAERO) allowed for simultaneous online sampling of the gas and particle composition. Under high-HO 2 and low-NO conditions, highly oxygenated (O : C ≥ 1) C 5 compounds were major components (~50%) of SOA. The SOA composition and effective volatility evolved both as amore » function of time and as a function of input NO concentrations. Organic nitrates increased in both the gas and particle phases as input NO increased, but the dominant non-nitrate particle-phase components monotonically decreased. We use comparisons of measured and predicted gas-particle partitioning of individual components to assess the validity of literature-based group-contribution methods for estimating saturation vapor concentrations. While there is evidence for equilibrium partitioning being achieved on the chamber residence timescale (5.2 h) for some individual components, significant errors in group-contribution methods are revealed. In addition, >30% of the SOA mass, detected as low-molecular-weight semivolatile compounds, cannot be reconciled with equilibrium partitioning. These compounds desorb from the FIGAERO at unexpectedly high temperatures given their molecular composition, which is indicative of thermal decomposition of effectively lower-volatility components such as larger molecular weight oligomers.« less
Prebiological evolution and the physics of the origin of life
NASA Astrophysics Data System (ADS)
Delaye, Luis; Lazcano, Antonio
2005-03-01
The basic tenet of the heterotrophic theory of the origin of life is that the maintenance and reproduction of the first living systems depended primarily on prebiotically synthesized organic molecules. It is unlikely that any single mechanism can account for the wide range of organic compounds that may have accumulated on the primitive Earth, suggesting that the prebiotic soup was formed by contributions from endogenous syntheses in reducing environments, metal sulphide-mediated synthesis in deep-sea vents, and exogenous sources such as comets, meteorites and interplanetary dust. The wide range of experimental conditions under which amino acids and nucleobases can be synthesized suggests that the abiotic syntheses of these monomers did not take place under a narrow range defined by highly selective reaction conditions, but rather under a wide variety of settings. The robustness of this type of chemistry is supported by the occurrence of most of these biochemical compounds in the Murchison meteorite. These results lend strong credence to the hypothesis that the emergence of life was the outcome of a long, but not necessarily slow, evolutionary processes. The origin of life may be best understood in terms of the dynamics and evolution of sets of chemical replicating entities. Whether such entities were enclosed within membranes is not yet clear, but given the prebiotic availability of amphiphilic compounds this may have well been the case. This scheme is not at odds with the theoretical models of self-organized emerging systems, but what is known of biology suggest that the essential traits of living systems could have not emerged in the absence of genetic material able to store, express and, upon replication, transmit to its progeny information capable of undergoing evolutionary change. How such genetic polymer first evolved is a central issue in origin-of-life studies.
Prebiological evolution and the physics of the origin of life.
Delaye, Luis; Lazcano, Antonio
2005-03-01
The basic tenet of the heterotrophic theory of the origin of life is that the maintenance and reproduction of the first living systems depended primarily on prebiotically synthesized organic molecules. It is unlikely that any single mechanism can account for the wide range of organic compounds that may have accumulated on the primitive Earth, suggesting that the prebiotic soup was formed by contributions from endogenous syntheses in reducing environments, metal sulphide-mediated synthesis in deep-sea vents, and exogenous sources such as comets, meteorites and interplanetary dust. The wide range of experimental conditions under which amino acids and nucleobases can be synthesized suggests that the abiotic syntheses of these monomers did not take place under a narrow range defined by highly selective reaction conditions, but rather under a wide variety of settings. The robustness of this type of chemistry is supported by the occurrence of most of these biochemical compounds in the Murchison meteorite. These results lend strong credence to the hypothesis that the emergence of life was the outcome of a long, but not necessarily slow, evolutionary processes. The origin of life may be best understood in terms of the dynamics and evolution of sets of chemical replicating entities. Whether such entities were enclosed within membranes is not yet clear, but given the prebiotic availability of amphiphilic compounds this may have well been the case. This scheme is not at odds with the theoretical models of self-organized emerging systems, but what is known of biology suggest that the essential traits of living systems could have not emerged in the absence of genetic material able to store, express and, upon replication, transmit to its progeny information capable of undergoing evolutionary change. How such genetic polymer first evolved is a central issue in origin-of-life studies.
A synthetic pathway for the fixation of carbon dioxide in vitro.
Schwander, Thomas; Schada von Borzyskowski, Lennart; Burgener, Simon; Cortina, Niña Socorro; Erb, Tobias J
2016-11-18
Carbon dioxide (CO 2 ) is an important carbon feedstock for a future green economy. This requires the development of efficient strategies for its conversion into multicarbon compounds. We describe a synthetic cycle for the continuous fixation of CO 2 in vitro. The crotonyl-coenzyme A (CoA)/ethylmalonyl-CoA/hydroxybutyryl-CoA (CETCH) cycle is a reaction network of 17 enzymes that converts CO 2 into organic molecules at a rate of 5 nanomoles of CO 2 per minute per milligram of protein. The CETCH cycle was drafted by metabolic retrosynthesis, established with enzymes originating from nine different organisms of all three domains of life, and optimized in several rounds by enzyme engineering and metabolic proofreading. The CETCH cycle adds a seventh, synthetic alternative to the six naturally evolved CO 2 fixation pathways, thereby opening the way for in vitro and in vivo applications. Copyright © 2016, American Association for the Advancement of Science.
Isotope effect in quasi-two-dimensional metal-organic antiferromagnets
NASA Astrophysics Data System (ADS)
Goddard, P. A.; Singleton, J.; Maitland, C.; Blundell, S. J.; Lancaster, T.; Baker, P. J.; McDonald, R. D.; Cox, S.; Sengupta, P.; Manson, J. L.; Funk, K. A.; Schlueter, J. A.
2008-08-01
Although the isotope effect in superconducting materials is well documented, changes in the magnetic properties of antiferromagnets due to isotopic substitution are seldom discussed and remain poorly understood. This is perhaps surprising given the possible link between the quasi-two-dimensional (Q2D) antiferromagnetic and superconducting phases of the layered cuprates. Here we report the experimental observation of shifts in the Néel temperature and critical magnetic fields (ΔTN/TN≈4%;ΔBc/Bc≈4%) in a Q2D organic molecular antiferromagnet on substitution of hydrogen for deuterium. These compounds are characterized by strong hydrogen bonds through which the dominant superexchange is mediated. We evaluate how the in-plane and interplane exchange energies evolve as the atoms of hydrogen on different ligands are substituted, and suggest a possible mechanism for this effect in terms of the relative exchange efficiency of hydrogen and deuterium bonds.
Nitroaromatic Compounds, from Synthesis to Biodegradation
Ju, Kou-San; Parales, Rebecca E.
2010-01-01
Summary: Nitroaromatic compounds are relatively rare in nature and have been introduced into the environment mainly by human activities. This important class of industrial chemicals is widely used in the synthesis of many diverse products, including dyes, polymers, pesticides, and explosives. Unfortunately, their extensive use has led to environmental contamination of soil and groundwater. The nitro group, which provides chemical and functional diversity in these molecules, also contributes to the recalcitrance of these compounds to biodegradation. The electron-withdrawing nature of the nitro group, in concert with the stability of the benzene ring, makes nitroaromatic compounds resistant to oxidative degradation. Recalcitrance is further compounded by their acute toxicity, mutagenicity, and easy reduction into carcinogenic aromatic amines. Nitroaromatic compounds are hazardous to human health and are registered on the U.S. Environmental Protection Agency's list of priority pollutants for environmental remediation. Although the majority of these compounds are synthetic in nature, microorganisms in contaminated environments have rapidly adapted to their presence by evolving new biodegradation pathways that take advantage of them as sources of carbon, nitrogen, and energy. This review provides an overview of the synthesis of both man-made and biogenic nitroaromatic compounds, the bacteria that have been identified to grow on and completely mineralize nitroaromatic compounds, and the pathways that are present in these strains. The possible evolutionary origins of the newly evolved pathways are also discussed. PMID:20508249
Plants that attack plants: molecular elucidation of plant parasitism.
Yoshida, Satoko; Shirasu, Ken
2012-12-01
Obligate parasitic plants in the family Orobanchaceae, such as Striga and Orobanche (including Phelipanche) spp., parasitize important crops and cause severe agricultural damage. Recent molecular studies have begun to reveal how these parasites have adapted to hosts in a parasitic lifecycle. The parasites detect nearby host roots and germinate by a mechanism that seems to have evolved from a conserved germination system found in non-parasites. The development of a specialized infecting organ called a haustorium is a unique feature of plant parasites and is triggered by host compounds and redox signals. Newly developed genomic and genetic resources will facilitate more rapid progress toward a molecular understanding of plant parasitism. Copyright © 2012 Elsevier Ltd. All rights reserved.
[Detection of organic compounds on Mars].
Kobayashi, K
1997-03-01
McKay et al. detected polycyclic aromatic hydrocarbons (PAHs) in Martian meteorite ALH 84001 by two-step laser mass spectrometry. From the presence of PAHs, together with other results, they concluded that there were past life of Mars. On the other hands, no organisms nor organic compounds were detected in Martian regolith in Viking experiments in 1976. In order to obtain solid evidence for organisms or bioorganic compounds compounds on Mars, further analyses of Martian samples are required. There may be four classes of organic compounds on Mars, which are (i) organic compounds abiotically formed from primitive Mars atmosphere, (ii) Organic compounds delivered out of Mars, (iii) Organic compounds biotically formed by Mars organisms, and (iv) Organic compounds abiotically formed from the present Mars atmosphere. Possible organic compounds on Mars and analytical methods for them are discussed.
Rewriting the Metabolic Blueprint: Advances in Pathway Diversification in Microorganisms
Hossain, Gazi Sakir; Nadarajan, Saravanan Prabhu; Zhang, Lei; Ng, Tee-Kheang; Foo, Jee Loon; Ling, Hua; Choi, Won Jae; Chang, Matthew Wook
2018-01-01
Living organisms have evolved over millions of years to fine tune their metabolism to create efficient pathways for producing metabolites necessary for their survival. Advancement in the field of synthetic biology has enabled the exploitation of these metabolic pathways for the production of desired compounds by creating microbial cell factories through metabolic engineering, thus providing sustainable routes to obtain value-added chemicals. Following the past success in metabolic engineering, there is increasing interest in diversifying natural metabolic pathways to construct non-natural biosynthesis routes, thereby creating possibilities for producing novel valuable compounds that are non-natural or without elucidated biosynthesis pathways. Thus, the range of chemicals that can be produced by biological systems can be expanded to meet the demands of industries for compounds such as plastic precursors and new antibiotics, most of which can only be obtained through chemical synthesis currently. Herein, we review and discuss novel strategies that have been developed to rewrite natural metabolic blueprints in a bid to broaden the chemical repertoire achievable in microorganisms. This review aims to provide insights on recent approaches taken to open new avenues for achieving biochemical production that are beyond currently available inventions. PMID:29483901
The life sulfuric: microbial ecology of sulfur cycling in marine sediments
Wasmund, Kenneth; Mußmann, Marc
2017-01-01
Summary Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular‐ and ecosystem‐level processes. Sulfur‐transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate‐rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep‐subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle. PMID:28419734
Rewriting the Metabolic Blueprint: Advances in Pathway Diversification in Microorganisms.
Hossain, Gazi Sakir; Nadarajan, Saravanan Prabhu; Zhang, Lei; Ng, Tee-Kheang; Foo, Jee Loon; Ling, Hua; Choi, Won Jae; Chang, Matthew Wook
2018-01-01
Living organisms have evolved over millions of years to fine tune their metabolism to create efficient pathways for producing metabolites necessary for their survival. Advancement in the field of synthetic biology has enabled the exploitation of these metabolic pathways for the production of desired compounds by creating microbial cell factories through metabolic engineering, thus providing sustainable routes to obtain value-added chemicals. Following the past success in metabolic engineering, there is increasing interest in diversifying natural metabolic pathways to construct non-natural biosynthesis routes, thereby creating possibilities for producing novel valuable compounds that are non-natural or without elucidated biosynthesis pathways. Thus, the range of chemicals that can be produced by biological systems can be expanded to meet the demands of industries for compounds such as plastic precursors and new antibiotics, most of which can only be obtained through chemical synthesis currently. Herein, we review and discuss novel strategies that have been developed to rewrite natural metabolic blueprints in a bid to broaden the chemical repertoire achievable in microorganisms. This review aims to provide insights on recent approaches taken to open new avenues for achieving biochemical production that are beyond currently available inventions.
Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution.
Janusz, Grzegorz; Pawlik, Anna; Sulej, Justyna; Swiderska-Burek, Urszula; Jarosz-Wilkolazka, Anna; Paszczynski, Andrzej
2017-11-01
Extensive research efforts have been dedicated to describing degradation of wood, which is a complex process; hence, microorganisms have evolved different enzymatic and non-enzymatic strategies to utilize this plentiful plant material. This review describes a number of fungal and bacterial organisms which have developed both competitive and mutualistic strategies for the decomposition of wood and to thrive in different ecological niches. Through the analysis of the enzymatic machinery engaged in wood degradation, it was possible to elucidate different strategies of wood decomposition which often depend on ecological niches inhabited by given organism. Moreover, a detailed description of low molecular weight compounds is presented, which gives these organisms not only an advantage in wood degradation processes, but seems rather to be a new evolutionatory alternative to enzymatic combustion. Through analysis of genomics and secretomic data, it was possible to underline the probable importance of certain wood-degrading enzymes produced by different fungal organisms, potentially giving them advantage in their ecological niches. The paper highlights different fungal strategies of wood degradation, which possibly correlates to the number of genes coding for secretory enzymes. Furthermore, investigation of the evolution of wood-degrading organisms has been described. © FEMS 2017.
Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution
Pawlik, Anna; Sulej, Justyna; Świderska-Burek, Urszula; Jarosz-Wilkołazka, Anna; Paszczyński, Andrzej
2017-01-01
Abstract Extensive research efforts have been dedicated to describing degradation of wood, which is a complex process; hence, microorganisms have evolved different enzymatic and non-enzymatic strategies to utilize this plentiful plant material. This review describes a number of fungal and bacterial organisms which have developed both competitive and mutualistic strategies for the decomposition of wood and to thrive in different ecological niches. Through the analysis of the enzymatic machinery engaged in wood degradation, it was possible to elucidate different strategies of wood decomposition which often depend on ecological niches inhabited by given organism. Moreover, a detailed description of low molecular weight compounds is presented, which gives these organisms not only an advantage in wood degradation processes, but seems rather to be a new evolutionatory alternative to enzymatic combustion. Through analysis of genomics and secretomic data, it was possible to underline the probable importance of certain wood-degrading enzymes produced by different fungal organisms, potentially giving them advantage in their ecological niches. The paper highlights different fungal strategies of wood degradation, which possibly correlates to the number of genes coding for secretory enzymes. Furthermore, investigation of the evolution of wood-degrading organisms has been described. PMID:29088355
Haze aerosols in the atmosphere of early Earth: manna from heaven.
Trainer, Melissa G; Pavlov, Alexander A; Curtis, Daniel B; McKay, Christopher P; Worsnop, Douglas R; Delia, Alice E; Toohey, Darin W; Toon, Owen B; Tolbert, Margaret A
2004-01-01
An organic haze layer in the upper atmosphere of Titan plays a crucial role in the atmospheric composition and climate of that moon. Such a haze layer may also have existed on the early Earth, providing an ultraviolet shield for greenhouse gases needed to warm the planet enough for life to arise and evolve. Despite the implications of such a haze layer, little is known about the organic material produced under early Earth conditions when both CO(2) and CH(4) may have been abundant in the atmosphere. For the first time, we experimentally demonstrate that organic haze can be generated in different CH(4)/CO(2) ratios. Here, we show that haze aerosols are able to form at CH(4) mixing ratios of 1,000 ppmv, a level likely to be present on early Earth. In addition, we find that organic hazes will form at C/O ratios as low as 0.6, which is lower than the predicted value of unity. We also show that as the C/O ratio decreases, the organic particles produced are more oxidized and contain biologically labile compounds. After life arose, the haze may thus have provided food for biota.
NASA Astrophysics Data System (ADS)
Bradley, A. S.; Muller, E.; Bringel, F.; Vuilleumier, S.; Pearson, A.; Marx, C. J.
2010-12-01
Hopanoids are geologically stable triterpenoids with a rock record extending to the Archean (1), but little information exists regarding their physiological role in modern organisms. Determining the physiological role of hopanoids is a key step in deciphering their geological and evolutionary history. To this end, we are investigating the function of hopanoids in the facultative methylotrophic bacterium Methylobacterium through a series of experiments in which we compare the behavior of wild type strains to mutants deficient in key genes associated with hopanoid biosynthesis. Mutant strains of bacteria deficient in the gene shc for squalene-hopene cyclase (SHC) lack hopanoids, but show only a subtle growth defect under pH and temperature stress in Rhodopseudomonas (2), and no growth defect in Streptomyces (3). In contrast, mutant strains of Methylobacterium deficient in SHC show a severe growth defect under usual growth conditions, with slower growth rates, alterations in cell morphology, increased sensitivity to toxic compounds, and severe flocculation during growth in liquid media. This severe phenotype offered an opportunity to investigate the function of hopanoids through an experimental evolution protocol. By serial passage through batch culture, sixteen replicate populations of the mutant strain were evolved in liquid media for approximately 120 generations. Populations evolved on each substrate show improved growth rates, approaching that of wild type strains. Current work is aimed at characterizing the physiology, and resequencing genomes of evolved isolates to determine the adaptations corresponding improved fitness. We predict that these adaptations will lead to hypotheses regarding hopanoid function. Mutations of other hopanoid-associated genes in Methylobacterium produce an altered suite of hopanoid compounds. Through mutation of hopanoid-associated genes, we have identified the first steps of hopanoid side chain biosynthesis (4). These mutant strains offer the opportunity for further evolutionary experiments, which may elucidate the function of specific hopanoid structures. 1. J. J. Brocks, R. E. Summons, in Biogeochemistry W. H. Schlesinger, Ed. (Elsevier, Oxford, 2004), vol. 8, pp. 63-116. 2. P. V. Welander et al., Journal of Bacteriology 191, 6145 (2009). 3. R. F. Seipke, R. Loria, Journal of Bacteriology 191, 5216 (2009). 4. A. S. Bradley, A. Pearson, J. P. Sáenz, C. J. Marx, Organic Geochemistry, in press (2010).
NASA Technical Reports Server (NTRS)
McAdam, A. C.; Franz, H. B.; Archer, P. D., Jr.; Sutter, B.; Eigenbrode, J. L.; Freissinet, C.; Atreya, S. K.; Bish, D. L.; Blake, D. F.; Brunner, A.;
2014-01-01
Sulfate minerals have been directly detected or strongly inferred from several Mars datasets and indicate that aqueous alteration of martian surface materials has occurred. Indications of reduced sulfur phases (e.g., sulfides) from orbital and in situ investigations of martian materials have been fewer in number, but these phases are observed in martian meteorites and are likely because they are common minor phases in basaltic rocks. Here we discuss potential sources for the S-bearing compounds detected by the Mars Science Laboratory (MSL) Sample Analysis at Mars (SAM) instrument’s evolved gas analysis (EGA) experiments.
NASA Astrophysics Data System (ADS)
Gallimore, Peter J.; Giorio, Chiara; Mahon, Brendan M.; Kalberer, Markus
2017-12-01
The oxidation of biogenic volatile organic compounds (VOCs) represents a substantial source of secondary organic aerosol (SOA) in the atmosphere. In this study, we present online measurements of the molecular constituents formed in the gas and aerosol phases during α-pinene oxidation in the Cambridge Atmospheric Simulation Chamber (CASC). We focus on characterising the performance of extractive electrospray ionisation (EESI) mass spectrometry (MS) for particle analysis. A number of new aspects of EESI-MS performance are considered here. We show that relative quantification of organic analytes can be achieved in mixed organic-inorganic particles. A comprehensive assignment of mass spectra for α-pinene derived SOA in both positive and negative ion modes is obtained using an ultra-high-resolution mass spectrometer. We compare these online spectra to conventional offline ESI-MS spectra and find good agreement in terms of the compounds identified, without the need for complex sample work-up procedures. Under our experimental conditions, EESI-MS signals arise only from particle-phase analytes. High-time-resolution (7 min) EESI-MS spectra are compared with simulations from the near-explicit Master Chemical Mechanism (MCM) for a range of reaction conditions. We show that MS peak abundances scale with modelled concentrations for condensable products (pinonic acid, pinic acid, OH-pinonic acid). Relative quantification is achieved throughout SOA formation as the composition, size and mass (5-2400 µg m-3) of particles is evolving. This work provides a robust demonstration of the advantages of EESI-MS for chamber studies over offline ESI-MS (time resolution, relative quantification) and over hard
online techniques (molecular information).
An unusual strategy for the anoxic biodegradation of phthalate.
Ebenau-Jehle, Christa; Mergelsberg, Mario; Fischer, Stefanie; Brüls, Thomas; Jehmlich, Nico; von Bergen, Martin; Boll, Matthias
2017-01-01
In the past two decades, the study of oxygen-independent degradation of widely abundant aromatic compounds in anaerobic bacteria has revealed numerous unprecedented enzymatic principles. Surprisingly, the organisms, metabolites and enzymes involved in the degradation of o-phthalate (1,2-dicarboxybenzene), mainly derived from phthalate esters that are annually produced at the million ton scale, are sparsely known. Here, we demonstrate a previously unknown capacity of complete phthalate degradation in established aromatic compound-degrading, denitrifying model organisms of the genera Thauera, Azoarcus and 'Aromatoleum'. Differential proteome analyses revealed phthalate-induced gene clusters involved in uptake and conversion of phthalate to the central intermediate benzoyl-CoA. Enzyme assays provided in vitro evidence for the formation of phthaloyl-CoA by a succinyl-CoA- and phthalate-specific CoA transferase, which is essential for the subsequent oxygen-sensitive decarboxylation to benzoyl-CoA. The extreme instability of the phthaloyl-CoA intermediate requires highly balanced CoA transferase and decarboxylase activities to avoid its cellular accumulation. Phylogenetic analysis revealed phthaloyl-CoA decarboxylase as a novel member of the UbiD-like, (de)carboxylase enzyme family. Homologs of the encoding gene form a phylogenetic cluster and are found in soil, freshwater and marine bacteria; an ongoing global distribution of a possibly only recently evolved degradation pathway is suggested.
An unusual strategy for the anoxic biodegradation of phthalate
Ebenau-Jehle, Christa; Mergelsberg, Mario; Fischer, Stefanie; Brüls, Thomas; Jehmlich, Nico; von Bergen, Martin; Boll, Matthias
2017-01-01
In the past two decades, the study of oxygen-independent degradation of widely abundant aromatic compounds in anaerobic bacteria has revealed numerous unprecedented enzymatic principles. Surprisingly, the organisms, metabolites and enzymes involved in the degradation of o-phthalate (1,2-dicarboxybenzene), mainly derived from phthalate esters that are annually produced at the million ton scale, are sparsely known. Here, we demonstrate a previously unknown capacity of complete phthalate degradation in established aromatic compound-degrading, denitrifying model organisms of the genera Thauera, Azoarcus and ‘Aromatoleum'. Differential proteome analyses revealed phthalate-induced gene clusters involved in uptake and conversion of phthalate to the central intermediate benzoyl-CoA. Enzyme assays provided in vitro evidence for the formation of phthaloyl-CoA by a succinyl-CoA- and phthalate-specific CoA transferase, which is essential for the subsequent oxygen-sensitive decarboxylation to benzoyl-CoA. The extreme instability of the phthaloyl-CoA intermediate requires highly balanced CoA transferase and decarboxylase activities to avoid its cellular accumulation. Phylogenetic analysis revealed phthaloyl-CoA decarboxylase as a novel member of the UbiD-like, (de)carboxylase enzyme family. Homologs of the encoding gene form a phylogenetic cluster and are found in soil, freshwater and marine bacteria; an ongoing global distribution of a possibly only recently evolved degradation pathway is suggested. PMID:27392087
Dehydrogenation of liquid fuel in microchannel catalytic reactor
Toseland, Bernard Allen; Pez, Guido Peter; Puri, Pushpinder Singh
2010-08-03
The present invention is an improved process for the storage and delivery of hydrogen by the reversible hydrogenation/dehydrogenation of an organic compound wherein the organic compound is initially in its hydrogenated state. The improvement in the route to generating hydrogen is in the dehydrogenation step and recovery of the dehydrogenated organic compound resides in the following steps: introducing a hydrogenated organic compound to a microchannel reactor incorporating a dehydrogenation catalyst; effecting dehydrogenation of said hydrogenated organic compound under conditions whereby said hydrogenated organic compound is present as a liquid phase; generating a reaction product comprised of a liquid phase dehydrogenated organic compound and gaseous hydrogen; separating the liquid phase dehydrogenated organic compound from gaseous hydrogen; and, recovering the hydrogen and liquid phase dehydrogenated organic compound.
Dehydrogenation of liquid fuel in microchannel catalytic reactor
Toseland, Bernard Allen [Allentown, PA; Pez, Guido Peter [Allentown, PA; Puri, Pushpinder Singh [Emmaus, PA
2009-02-03
The present invention is an improved process for the storage and delivery of hydrogen by the reversible hydrogenation/dehydrogenation of an organic compound wherein the organic compound is initially in its hydrogenated state. The improvement in the route to generating hydrogen is in the dehydrogenation step and recovery of the dehydrogenated organic compound resides in the following steps: introducing a hydrogenated organic compound to a microchannel reactor incorporating a dehydrogenation catalyst; effecting dehydrogenation of said hydrogenated organic compound under conditions whereby said hydrogenated organic compound is present as a liquid phase; generating a reaction product comprised of a liquid phase dehydrogenated organic compound and gaseous hydrogen; separating the liquid phase dehydrogenated organic compound from gaseous hydrogen; and, recovering the hydrogen and liquid phase dehydrogenated organic compound.
NASA Technical Reports Server (NTRS)
Cannon, K. M.; Sutter, B.; Ming, D. W.; Boynton, W. V.; Quinn, R. C.
2012-01-01
The Mars Phoenix Lander's TEGA instrument detected a calcium carbonate phase decomposing at high temperatures (approx.700 C) from the Wicked Witch soil sample [1]. TEGA also detected a lower temperature CO2 release between 400 C and 680 C [1]. Possible explanations given for this lower temperature CO2 release include thermal decomposition of Mg or Fe carbonates, a zeolitictype desorption reaction, or combustion of organic compounds in the soil [2]. The detection of 0.6 wt % soluble perchlorate by the Wet Chemistry Laboratory (WCL) on Phoenix [3] has implications for the possibility of organic molecules in the soil. Ming et al. [4] demonstrated that perchlorates could have oxidized organic compounds to CO2 in TEGA, preventing detection of their characteristic mass fragments. Here, we propose that a perchlorate salt and calcium carbonate present in martian soil reacted to produce the 400 C - 680 C TEGA CO2 release. The parent salts of the perchlorate on Mars are unknown, but geochemical models using WCL data support the possible dominance of Mg-perchlorate salts [5]. Mg(ClO4)2 6H2O is the stable phase at ambient martian conditions [6], and breaks down at lower temperatures than carbonates giving off Cl2 and HCl gas [7,8]. Devlin and Herley [7] report two exotherms at 410-478 C and 473-533 C which correspond to the decomposition of Mg(ClO4)2.
The visual system of male scale insects
NASA Astrophysics Data System (ADS)
Buschbeck, Elke K.; Hauser, Martin
2009-03-01
Animal eyes generally fall into two categories: (1) their photoreceptive array is convex, as is typical for camera eyes, including the human eye, or (2) their photoreceptive array is concave, as is typical for the compound eye of insects. There are a few rare examples of the latter eye type having secondarily evolved into the former one. When viewed in a phylogenetic framework, the head morphology of a variety of male scale insects suggests that this group could be one such example. In the Margarodidae (Hemiptera, Coccoidea), males have been described as having compound eyes, while males of some more derived groups only have two single-chamber eyes on each side of the head. Those eyes are situated in the place occupied by the compound eye of other insects. Since male scale insects tend to be rare, little is known about how their visual systems are organized, and what anatomical traits are associated with this evolutionary transition. In adult male Margarodidae, one single-chamber eye (stemmateran ocellus) is present in addition to a compound eye-like region. Our histological investigation reveals that the stemmateran ocellus has an extended retina which is formed by concrete clusters of receptor cells that connect to its own first-order neuropil. In addition, we find that the ommatidia of the compound eyes also share several anatomical characteristics with simple camera eyes. These include shallow units with extended retinas, each of which is connected by its own small nerve to the lamina. These anatomical changes suggest that the margarodid compound eye represents a transitional form to the giant unicornal eyes that have been described in more derived species.
49 CFR 173.221 - Polymeric beads, expandable and Plastic molding compound.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Polymeric beads, expandable and Plastic molding... Than Class 1 and Class 7 § 173.221 Polymeric beads, expandable and Plastic molding compound. (a) Non-bulk shipments of Polymeric beads (or granules), expandable, evolving flammable vapor and Plastic...
49 CFR 173.221 - Polymeric beads, expandable and Plastic molding compound.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Polymeric beads, expandable and Plastic molding... Than Class 1 and Class 7 § 173.221 Polymeric beads, expandable and Plastic molding compound. (a) Non-bulk shipments of Polymeric beads (or granules), expandable, evolving flammable vapor and Plastic...
49 CFR 173.221 - Polymeric beads, expandable and Plastic molding compound.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Polymeric beads, expandable and Plastic molding... Than Class 1 and Class 7 § 173.221 Polymeric beads, expandable and Plastic molding compound. (a) Non-bulk shipments of Polymeric beads (or granules), expandable, evolving flammable vapor and Plastic...
49 CFR 173.221 - Polymeric beads, expandable and Plastic molding compound.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Polymeric beads, expandable and Plastic molding... Than Class 1 and Class 7 § 173.221 Polymeric beads, expandable and Plastic molding compound. (a) Non-bulk shipments of Polymeric beads (or granules), expandable evolving flammable vapor and Plastic...
49 CFR 173.221 - Polymeric beads, expandable and Plastic molding compound.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Polymeric beads, expandable and Plastic molding... Than Class 1 and Class 7 § 173.221 Polymeric beads, expandable and Plastic molding compound. (a) Non-bulk shipments of Polymeric beads (or granules), expandable evolving flammable vapor and Plastic...
In the early 1980s the ground water community became aware of widespread contamination of groundwater by benzene, toluene, ethylbenzene and xylenes (BTEX compounds) from gasoline spills from underground storage tanks. This new awareness was made possible by the introduction of t...
Independent valine and leucine isotope labeling in Escherichia coli protein overexpression systems.
Lichtenecker, Roman J; Weinhäupl, Katharina; Reuther, Lukas; Schörghuber, Julia; Schmid, Walther; Konrat, Robert
2013-11-01
The addition of labeled α-ketoisovalerate to the growth medium of a protein-expressing host organism has evolved into a versatile tool to achieve concomitant incorporation of specific isotopes into valine- and leucine- residues. The resulting target proteins represent excellent probes for protein NMR analysis. However, as the sidechain resonances of these residues emerge in a narrow spectral range, signal overlap represents a severe limitation in the case of high-molecular-weight NMR probes. We present a protocol to eliminate leucine labeling by supplying the medium with unlabeled α-ketoisocaproate. The resulting spectra of a model protein exclusively feature valine signals of increased intensity, confirming the method to be a first example of independent valine and leucine labeling employing α-ketoacid precursor compounds.
Bringing a Chemical Laboratory Named Sam to Mars on the 2011 Curiosity Rover
NASA Technical Reports Server (NTRS)
Mahaffy, P. R.; Bleacher, L.; Jones, A.; Conrad, P. G.; Cabane, M.; Webster, C. R.; Atreya, S. A.; Manning, H.
2010-01-01
An important goal of upcoming missions to Mars is to understand if life could have developed there. The task of the Sample Analysis at Mars (SAM) suite of instruments [1] and the other Curiosity investigations [2] is to move us steadily toward that goal with an assessment of the habitability of our neighboring planet through a series of chemical and geological measurements. SAM is designed to search for organic compounds and inorganic volatiles and measure isotope ratios. Other instruments on Curiosity will provide elemental analysis and identify minerals. SAM will analyze both atmospheric samples and gases evolved from powdered rocks that may have formed billions of years ago with Curiosity providing access to interesting sites scouted by orbiting cameras and spectrometers.
Orem, W.H.; Tatu, C.A.; Lerch, H.E.; Rice, C.A.; Bartos, T.T.; Bates, A.L.; Tewalt, S.; Corum, M.D.
2007-01-01
The organic composition of produced water samples from coalbed natural gas (CBNG) wells in the Powder River Basin, WY, sampled in 2001 and 2002 are reported as part of a larger study of the potential health and environmental effects of organic compounds derived from coal. The quality of CBNG produced waters is a potential environmental concern and disposal problem for CBNG producers, and no previous studies of organic compounds in CBNG produced water have been published. Organic compounds identified in the produced water samples included: phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, various non-aromatic compounds, and phthalates. Many of the identified organic compounds (phenols, heterocyclic compounds, PAHs) are probably coal-derived. PAHs represented the group of organic compounds most commonly observed. Concentrations of total PAHs ranged up to 23 ??g/L. Concentrations of individual compounds ranged from about 18 to <0.01 ??g/L. Temporal variability of organic compound concentrations was documented, as two wells with relatively high organic compound contents in produced water in 2001 had much lower concentrations in 2002. In many areas, including the PRB, coal strata provide aquifers for drinking water wells. Organic compounds observed in produced water are also likely present in drinking water supplied from wells in the coal. Some of the organic compounds identified in the produced water samples are potentially toxic, but at the levels measured in these samples are unlikely to have acute health effects. The human health effects of low-level, chronic exposure to coal-derived organic compounds in drinking water are currently unknown. Continuing studies will evaluate possible toxic effects from low level, chronic exposure to coal-derived organic compounds in drinking water supplies.
Feng, Yan; Wu, Chen-Chou; Bao, Lian-Jun; Shi, Lei; Song, Lin; Zeng, Eddy Y
2016-12-01
The fate of hydrophobic organic compounds in aquatic environment are largely determined by their exchange at sediment-water interface, which is highly dynamic and subject to rapidly evolving environmental conditions. In turn, environmental conditions may be governed by both physicochemical parameters and anthropogenic events. To examine the importance of various impact factors, passive sampling devices were deployed at the seafloor of Hailing Bay, an urbanized estuarine bay in Guangdong Province of South China to measure the sediment-water diffusion fluxes of several metabolites of dichlorodiphenyltrichloroethane (DDT), p,p'-DDE, p,p'-DDD and o,p'-DDD. The physicochemical properties of water (temperature, pH, salinity and dissolved oxygen) and surface sediment (sediment organic matter, physical composition, pH, water content, colony forming unit and catalase activity) were also measured. The results showed that the diffusion fluxes of o,p'-DDD, p,p'-DDD and p,p'-DDE at sites A1 and A2 near a fishing boat maintenance facility ranged from 0.42 to 4.73 ng m -2 d -1 (from sediment to overlying water), whereas those at offshore sites varied between -0.03 and -3.02 ng m -2 d -1 (from overlying water to sediment), implicating A1 and A2 as the sources of the target compounds. The distribution patterns of the diffusion fluxes of the target compounds were different from those of water and sediment parameters (water temperature, salinity, sediment texture, pH, colony forming unit and catalase activity) at six sampling sites. This finding suggested that none of these parameters were critical in dictating the sediment-water diffusion fluxes. Besides, decreases in the contents of kerogen and black carbon by 6.7% and 11% would enhance the diffusion fluxes of the target compounds by 11-14% and 12-23%, respectively, at site A1, indicating that kerogen and black carbon were the key factors in mediating the sediment-water diffusion fluxes of DDT-related compounds in field environments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Adam, T W; Chirico, R; Clairotte, M; Elsasser, M; Manfredi, U; Martini, G; Sklorz, M; Streibel, T; Heringa, M F; Decarlo, P F; Baltensperger, U; De Santi, G; Krasenbrink, A; Zimmermann, R; Prevot, A S H; Astorga, C
2011-01-01
The European Commission recently established a novel test facility for heavy-duty vehicles to enhance more sustainable transport. The facility enables the study of energy efficiency of various fuels/scenarios as well as the chemical composition of evolved exhaust emissions. Sophisticated instrumentation for real-time analysis of the gas and particulate phases of exhaust has been implemented. Thereby, gas-phase characterization was carried out by a Fourier transform infrared spectrometer (FT-IR; carbonyls, nitrogen-containing species, small hydrocarbons) and a resonance-enhanced multiphoton ionization time-of-flight mass spectrometer (REMPI-TOFMS; monocyclic and polycyclic aromatic hydrocarbons). For analysis of the particulate phase, a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS; organic matter, chloride, nitrate), a condensation particle counter (CPC; particle number), and a multiangle absorption photometer (MAAP; black carbon) were applied. In this paper, the first application of the new facility in combination with the described instruments is presented, whereby a medium-size truck was investigated by applying different driving cycles. The goal was simultaneous chemical characterization of a great variety of gaseous compounds and particulate matter in exhaust on a real-time basis. The time-resolved data allowed new approaches to view the results; for example, emission factors were normalized to time-resolved consumption of fuel and were related to emission factors evolved during high speeds. Compounds could be identified that followed the fuel consumption, others showed very different behavior. In particular, engine cold start, engine ignition (unburned fuel), and high-speed events resulted in unique emission patterns.
Engel, Frank; Rhoads, Bruce L.
2016-01-01
Compound meander bends with multiple lobes of maximum curvature are common in actively evolving lowland rivers. Interaction among spatial patterns of mean flow, turbulence, bed morphology, bank failures and channel migration in compound bends is poorly understood. In this paper, acoustic Doppler current profiler (ADCP) measurements of the three-dimensional (3D) flow velocities in a compound bend are examined to evaluate the influence of channel curvature and hydrologic variability on the structure of flow within the bend. Flow structure at various flow stages is related to changes in bed morphology over the study timeframe. Increases in local curvature within the upstream lobe of the bend reduce outer bank velocities at morphologically significant flows, creating a region that protects the bank from high momentum flow and high bed shear stresses. The dimensionless radius of curvature in the upstream lobe is one-third less than that of the downstream lobe, with average bank erosion rates less than half of the erosion rates for the downstream lobe. Higher bank erosion rates within the downstream lobe correspond to the shift in a core of high velocity and bed shear stresses toward the outer bank as flow moves through the two lobes. These erosion patterns provide a mechanism for continued migration of the downstream lobe in the near future. Bed material size distributions within the bend correspond to spatial patterns of bed shear stress magnitudes, indicating that bed material sorting within the bend is governed by bed shear stress. Results suggest that patterns of flow, sediment entrainment, and planform evolution in compound meander bends are more complex than in simple meander bends. Moreover, interactions among local influences on the flow, such as woody debris, local topographic steering, and locally high curvature, tend to cause compound bends to evolve toward increasing planform complexity over time rather than stable configurations.
The Evolutionary Origins of Hierarchy.
Mengistu, Henok; Huizinga, Joost; Mouret, Jean-Baptiste; Clune, Jeff
2016-06-01
Hierarchical organization-the recursive composition of sub-modules-is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments). Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force-the cost of connections-promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics.
Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals.
Nybo, S Eric; Khan, Nymul E; Woolston, Benjamin M; Curtis, Wayne R
2015-07-01
The ability of autotrophic organisms to fix CO2 presents an opportunity to utilize this 'greenhouse gas' as an inexpensive substrate for biochemical production. Unlike conventional heterotrophic microorganisms that consume carbohydrates and amino acids, prokaryotic chemolithoautotrophs have evolved the capacity to utilize reduced chemical compounds to fix CO2 and drive metabolic processes. The use of chemolithoautotrophic hosts as production platforms has been renewed by the prospect of metabolically engineered commodity chemicals and fuels. Efforts such as the ARPA-E electrofuels program highlight both the potential and obstacles that chemolithoautotrophic biosynthetic platforms provide. This review surveys the numerous advances that have been made in chemolithoautotrophic metabolic engineering with a focus on hydrogen oxidizing bacteria such as the model chemolithoautotrophic organism (Ralstonia), the purple photosynthetic bacteria (Rhodobacter), and anaerobic acetogens. Two alternative strategies of microbial chassis development are considered: (1) introducing or enhancing autotrophic capabilities (carbon fixation, hydrogen utilization) in model heterotrophic organisms, or (2) improving tools for pathway engineering (transformation methods, promoters, vectors etc.) in native autotrophic organisms. Unique characteristics of autotrophic growth as they relate to bioreactor design and process development are also discussed in the context of challenges and opportunities for genetic manipulation of organisms as production platforms. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Thoughts on the diversity of convergent evolution of bioluminescence on earth
NASA Astrophysics Data System (ADS)
Waldenmaier, Hans E.; Oliveira, Anderson G.; Stevani, Cassius V.
2012-10-01
The widespread independent evolution of analogous bioluminescent systems is one of the most impressive and diverse examples of convergent evolution on earth. There are roughly 30 extant bioluminescent systems that have evolved independently on Earth, with each system likely having unique enzymes responsible for catalysing the bioluminescent reaction. Bioluminescence is a chemical reaction involving a luciferin molecule and a luciferase or photoprotein that results in the emission of light. Some independent systems utilize the same luciferin, such as the use of tetrapyrrolic compounds by krill and dinoflagellates, and the wide use of coelenterazine by marine organisms, while the enzymes involved are unique. One common thread among all the different bioluminescent systems is the requirement of molecular oxygen. Bioluminescence is found in most forms of life, especially marine organisms. Bioluminescence in known to benefit the organism by: attraction, repulsion, communication, camouflage, and illumination. The marine ecosystem is significantly affected by bioluminescence, the only light found in the pelagic zone and below is from bioluminescent organisms. Transgenic bioluminescent organisms have revolutionized molecular research, medicine and the biotechnology industry. The use of bioluminescence in studying molecular pathways and disease allows for non-invasive and real-time analysis. Bioluminescence-based assays have been developed for several analytes by coupling luminescence to many enzyme-catalysed reactions.
The life sulfuric: microbial ecology of sulfur cycling in marine sediments.
Wasmund, Kenneth; Mußmann, Marc; Loy, Alexander
2017-08-01
Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular- and ecosystem-level processes. Sulfur-transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate-rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep-subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Primordial evolvability: Impasses and challenges.
Vasas, Vera; Fernando, Chrisantha; Szilágyi, András; Zachár, István; Santos, Mauro; Szathmáry, Eörs
2015-09-21
While it is generally agreed that some kind of replicating non-living compounds were the precursors of life, there is much debate over their possible chemical nature. Metabolism-first approaches propose that mutually catalytic sets of simple organic molecules could be capable of self-replication and rudimentary chemical evolution. In particular, the graded autocatalysis replication domain (GARD) model, depicting assemblies of amphiphilic molecules, has received considerable interest. The system propagates compositional information across generations and is suggested to be a target of natural selection. However, evolutionary simulations indicate that the system lacks selectability (i.e. selection has negligible effect on the equilibrium concentrations). We elaborate on the lessons learnt from the example of the GARD model and, more widely, on the issue of evolvability, and discuss the implications for similar metabolism-first scenarios. We found that simple incorporation-type chemistry based on non-covalent bonds, as assumed in GARD, is unlikely to result in alternative autocatalytic cycles when catalytic interactions are randomly distributed. An even more serious problem stems from the lognormal distribution of catalytic factors, causing inherent kinetic instability of such loops, due to the dominance of efficiently catalyzed components that fail to return catalytic aid. Accordingly, the dynamics of the GARD model is dominated by strongly catalytic, but not auto-catalytic, molecules. Without effective autocatalysis, stable hereditary propagation is not possible. Many repetitions and different scaling of the model come to no rescue. Despite all attempts to show the contrary, the GARD model is not evolvable, in contrast to reflexively autocatalytic networks, complemented by rare uncatalyzed reactions and compartmentation. The latter networks, resting on the creation and breakage of chemical bonds, can generate novel ('mutant') autocatalytic loops from a given set of environmentally available compounds. Real chemical reactions that make or break covalent bonds, rather than mere incorporation of components, are necessary for open-ended evolvability. The issue of whether or not several concrete chemical systems (rather than singular curiosities) could realize reflexively autocatalytic macromolecular networks will ultimately determine the relevance of metabolism-first approaches to the origin of life, as stepping stones towards true open-endedness that requires the combination of rich combinatorial chemistry controlled by information stored in template replicators. Copyright © 2015 Elsevier Ltd. All rights reserved.
Molecular plant volatile communication.
Holopainen, Jarmo K; Blande, James D
2012-01-01
Plants produce a wide array of volatile organic compounds (VOCs) which have multiple functions as internal plant hormones (e.g., ethylene, methyl jasmonate and methyl salicylate), in communication with conspecific and heterospecific plants and in communication with organisms of second (herbivores and pollinators) and third (enemies of herbivores) trophic levels. Species specific VOCs normally repel polyphagous herbivores and those specialised on other plant species, but may attract specialist herbivores and their natural enemies, which use VOCs as host location cues. Attraction of predators and parasitoids by VOCs is considered an evolved indirect defence, whereby plants are able to indirectly reduce biotic stress caused by damaging herbivores. In this chapter we review these interactions where VOCs are known to play a crucial role. We then discuss the importance of volatile communication in self and nonself detection. VOCs are suggested to appear in soil ecosystems where distinction of own roots from neighbours roots is essential to optimise root growth, but limited evidence of above-ground plant self-recognition is available.
Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse.
Agarwal, Vinayak; Miles, Zachary D; Winter, Jaclyn M; Eustáquio, Alessandra S; El Gamal, Abrahim A; Moore, Bradley S
2017-04-26
Naturally produced halogenated compounds are ubiquitous across all domains of life where they perform a multitude of biological functions and adopt a diversity of chemical structures. Accordingly, a diverse collection of enzyme catalysts to install and remove halogens from organic scaffolds has evolved in nature. Accounting for the different chemical properties of the four halogen atoms (fluorine, chlorine, bromine, and iodine) and the diversity and chemical reactivity of their organic substrates, enzymes performing biosynthetic and degradative halogenation chemistry utilize numerous mechanistic strategies involving oxidation, reduction, and substitution. Biosynthetic halogenation reactions range from simple aromatic substitutions to stereoselective C-H functionalizations on remote carbon centers and can initiate the formation of simple to complex ring structures. Dehalogenating enzymes, on the other hand, are best known for removing halogen atoms from man-made organohalogens, yet also function naturally, albeit rarely, in metabolic pathways. This review details the scope and mechanism of nature's halogenation and dehalogenation enzymatic strategies, highlights gaps in our understanding, and posits where new advances in the field might arise in the near future.
Ultrabright fluorescent OLEDS using triplet sinks
Zhang, Yifan; Forrest, Stephen R; Thompson, Mark
2013-06-04
A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer further comprises an organic host compound, an organic emitting compound capable of fluorescent emission at room temperature, and an organic dopant compound. The triplet energy of the dopant compound is lower than the triplet energy of the host compound. The dopant compound does not strongly absorb the fluorescent emission of the emitting compound.
Breath volatile organic compounds for the gut-fatty liver axis: Promise, peril, and path forward
Solga, Steven Francis
2014-01-01
The worldwide interest in the gut microbiome and its impact on the upstream liver highlight a critical upside to breath research: it can uniquely measure otherwise unmeasurable biology. Bacteria make gases [volatile organic compounds (VOCs)] that are directly relevant to pathophysiology of the fatty liver and associated conditions, including obesity. Measurement of these VOCs and their metabolites in the exhaled breath, therefore, present an opportunity to safely and easily evaluate, on both a personal and a population level, some of our most pressing public health threats. This is an opportunity that must be pursued. To date, however, breath analysis remains a slowly evolving field which only occasionally impacts clinical research or patient care. One major obstacle to progress is that breath analysis is inherently and emphatically mutli-disciplinary: it connects engineering, chemistry, breath mechanics, biology and medicine. Unbalanced or incomplete teams may produce inconsistent and often unsatisfactory results. A second impediment is the lack of a well-known stepwise structure for the development of non-invasive diagnostics. As a result, the breath research landscape is replete with orphaned single-center pilot studies. Often, important hypotheses and key observations have not been pursued to maturation. This paper reviews the rationale and requirements for breath VOC research applied to the gut-fatty liver axis and offers some suggestions for future development. PMID:25083075
NASA Astrophysics Data System (ADS)
Szopa, Cyril; Millan, Maeva; Buch, Arnaud; Belmahdi, Imene; Coll, Patrice; Glavin, Daniel P.; Freissinet, Caroline; Eigenbrode, Jennifer; archer, doug; sutter, brad; Summons, Roger; Navarro-Gonzalez, Rafael; Mahaffy, Paul; cabane, Michel
2016-10-01
One of the main objectives of the Sample Analysis at Mars (SAM) experiment is the in situ molecular analysis of gases evolving from solid samples collected by Curiosity when they are heated up to ~850°C. With this aim SAM uses a gas-chromatograph coupled to a mass spectrometer (GC-MS) able to detect and identify both inorganic and organic molecules released by the samples.During the pyrolysis, chemical reactions occur between oxychlorines, probably homogeneously distributed at Mars's surface, and organic compounds SAM seeks for. This was confirmed by the first chlorohydrocarbons (chloromethane and di- and trichloromethane) detected by SAM that were entirely attributed to reaction products occurring between these oxychlorines and organics from instrument background. But SAM also detected in the Sheepbed mudstone of Gale crater, chloroalkanes produced by reaction between oxychlorines and Mars indigenous organics, proving for the first time the presence of organics in the soil of Mars. However, the identification of the molecules at the origin of these chloroalkanes is much more difficult due to the complexity of the reactivity occurring during the sample pyrolysis. If a first study has already been done recently with this aim, it was relatively limited in terms of parameters investigated.This is the reason why, we performed a systematic study in the laboratory to help understanding the influence of oxychlorines on organic matter during pyrolysis. With this aim, different organic compounds from various chemical families (e.g. amino and carboxylic acids) mixed with different perchlorates and chlorates, in concentrations compatible with the Mars soil from estimations done with SAM measurements, were pyrolyzed under SAM like conditions. The products of reaction were analyzed and identified by GC-MS in order to show a possible correlation between them and the parent molecule. Different parameters were tested for the pyrolysis to evaluate their potential influence on the products of reaction obtained. This work present the results of this series of experiments and the conclusions that can be done about the SAM measurements, but also about future analyses to be done by the MOMA experiment of the Exomars 2020 mission.
Antiviral immunity and virus vaccines
USDA-ARS?s Scientific Manuscript database
As obligate intracellular organisms, viruses have co-evolved with their respective host species, which in turn have evolved diverse and sophisticated capabilities to protect themselves against viral infections and their associated diseases. Viruses have also evolved a remarkable variety of strategie...
Using MicroFTIR to Map Mineral Distributions in Serpentinizing Systems
NASA Astrophysics Data System (ADS)
Johnson, A.; Kubo, M. D.; Cardace, D.
2016-12-01
Serpentinization, the water-rock reaction forming serpentine mineral assemblages from ultramafic precursors, can co-occur with the production of hydrogen, methane, and diverse organic compounds (McCollom and Seewald, 2013), evolving water appropriate for carbonate precipitation, including in ophiolite groundwater flow systems and travertine-producing seeps/springs. Serpentinization is regarded as a geologic process important to the sustainability of the deep biosphere (Schrenk et al., 2013) and the origin of life (Schulte et al., 2006). In this study, we manually polished wafers of ultramafic rocks/associated minerals (serpentinite, peridotite, pyroxenite, dunite; olivine, diopside, serpentine, magnetite), and travertine/constituent minerals (carbonate crusts; calcite, dolomite), and observed mineral boundaries and interfaces using µFTIR analysis in reflection mode. We used a Thermo Nicolet iS50 FTIR spectrometer coupled with a Continuum IR microscope to map minerals/boundaries. We identify, confirm, and document FTIR wavenumber regions linked to serpentinite- and travertine-associated minerals by referencing IR spectra (RRUFF) and aligning with x-ray diffraction. The ultramafic and carbonate samples are from the following field localities: McLaughlin Natural Reserve - a UC research reserve, Lower Lake, CA; Zambales, PH; Ontario, CA; Yellow Dog, MI; Taskesti, TK; Twin Sisters Range, WA; Sharon, MA; Klamath Mountains, CA; Dun Mountain, NZ; and Sussex County, NJ. Our goals are to provide comprehensive µFTIR characterization of mineral profiles important in serpentinites and related rocks, and evaluate the resolving power of µFTIR for the detection of mineral-encapsulated, residual organic compounds from biological activity. We report on µFTIR data for naturally occurring ultramafics and travertines and also estimate the limit of detection for cell membrane components in mineral matrices, impregnating increasing mass proportions of xanthan gum in a peridotite sand derived from drilling at the Coast Range Ophiolite Microbial Observatory (CROMO, Cardace et al., 2013). Preservation and well resolved description of organic compounds in secondary minerals in ultramafic rocks may allow assessment of changing habitability of past microenvironments fueled by serpentinization.
NASA Astrophysics Data System (ADS)
Mahaffy, Paul; Farley, Ken; Malespin, Charles; Gellert, Ralph; Grotzinger, John
2014-05-01
The quadrupole mass spectrometer (QMS) in the Sample Analysis at Mars (SAM) suite of the Mars Science Laboratory (MSL) has been utilized to secure abundances of 3He, 21Ne, 36Ar, and 40Ar thermally evolved from the mudstone in the stratified Yellowknife Bay formation in Gale Crater. As reported by Farley et al. [1] these measurements of cosmogenic and radiogenic noble gases together with Cl and K abundances measured by MSL's alpha particle X-ray spectrometer enable a K-Ar rock formation age of 4.21+0.35 Ga to be established as well as a surface exposure age to cosmic radiation of 78+30 Ma. Understanding surface exposures to cosmic radiation is relevant to the MSL search for organic compounds since even the limited set of studies carried out, to date, indicate that even 10's to 100's of millions of years of near surface (1-3 meter) exposure may transform a significant fraction of the organic compounds exposed to this radiation [2,3,4]. Transformation of potential biosignatures and even loss of molecular structural information in compounds that could point to exogenous or endogenous sources suggests a new paradigm in the search for near surface organics that incorporates a search for the most recently exposed outcrops through erosional processes. The K-Ar rock formation age determination shows promise for more precise in situ measurements that may help calibrate the martian cratering record that currently relies on extrapolation from the lunar record with its ground truth chronology with returned samples. We will discuss the protocol for the in situ noble gas measurements secured with SAM and ongoing studies to optimize these measurements using the SAM testbed. References: [1] Farley, K.A.M Science Magazine, 342, (2013). [2] G. Kminek et al., Earth Planet Sc Lett 245, 1 (2006). [3] Dartnell, L.R., Biogeosciences 4, 545 (2007). [4] Pavlov, A. A., et al. Geophys Res Lett 39, 13202 (2012).
Molecular studies of Planetary Nebulae
NASA Astrophysics Data System (ADS)
Zhang, Yong
2017-10-01
Circumstellar envelopes (CEs) around evolved stars are an active site for the production of molecules. After evolving through the Asymptotic Giant Branch (AGB), proto-planetary nebula (PPN), to planetary nebula (PN) phases, CEs ultimately merge with the interstellar medium (ISM). The study of molecules in PNe, therefore, is essential to understanding the transition from stellar to interstellar materials. So far, over 20 molecular species have been discovered in PNe. The molecular composition of PNe is rather different from those of AGB and PPNe, suggesting that the molecules synthesized in PN progenitors have been heavily processed by strong ultraviolet radiation from the central star. Intriguingly, fullerenes and complex organic compounds having aromatic and aliphatic structures can be rapidly formed and largely survive during the PPN/PN evolution. The similar molecular compositions in PNe and diffuse clouds as well as the detection of C60 + in the ISM reinforce the view that the mass-loss from PNe can significantly enrich the ISM with molecular species, some of which may be responsible for the diffuse interstellar bands. In this contribution, I briefly summarize some recent observations of molecules in PNe, with emphasis on their implications on circumstellar chemistry.
A Comparative Analysis of Financial Reporting Models for Private and Public Sector Organizations.
1995-12-01
The objective of this thesis was to describe and compare different existing and evolving financial reporting models used in both the public and...private sector. To accomplish the objective, this thesis identified the existing financial reporting models for private sector business organizations...private sector nonprofit organizations, and state and local governments, as well as the evolving financial reporting model for the federal government
Natural products and combinatorial chemistry: back to the future.
Ortholand, Jean-Yves; Ganesan, A
2004-06-01
The introduction of high-throughput synthesis and combinatorial chemistry has precipitated a global decline in the screening of natural products by the pharmaceutical industry. Some companies terminated their natural products program, despite the unproven success of the new technologies. This was a premature decision, as natural products have a long history of providing important medicinal agents. Furthermore, they occupy a complementary region of chemical space compared with the typical synthetic compound library. For these reasons, the interest in natural products has been rekindled. Various approaches have evolved that combine the power of natural products and organic chemistry, ranging from the combinatorial total synthesis of analogues to the exploration of natural product scaffolds and the design of completely unnatural molecules that resemble natural products in their molecular characteristics.
Park, Seon Joo; Kwon, Oh Seok; Lee, Ji Eun; Jang, Jyongsik; Yoon, Hyeonseok
2014-01-01
The development of novel sensing materials provides good opportunities to realize previously unachievable sensor performance. In this review, conducting polymer-based nanohybrids are highlighted as innovative transducers for high-performance chemical and biological sensing devices. Synthetic strategies of the nanohybrids are categorized into four groups: (1) impregnation, followed by reduction; (2) concurrent redox reactions; (3) electrochemical deposition; (4) seeding approach. Nanocale hybridization of conducting polymers with inorganic components can lead to improved sorption, catalytic reaction and/or transport behavior of the material systems. The nanohybrids have thus been used to detect nerve agents, toxic gases, volatile organic compounds, glucose, dopamine, and DNA. Given further advances in nanohybrids synthesis, it is expected that sensor technology will also evolve, especially in terms of sensitivity and selectivity. PMID:24561406
Multiple molecular mechanisms for multidrug resistance transporters.
Higgins, Christopher F
2007-04-12
The acquisition of multidrug resistance is a serious impediment to improved healthcare. Multidrug resistance is most frequently due to active transporters that pump a broad spectrum of chemically distinct, cytotoxic molecules out of cells, including antibiotics, antimalarials, herbicides and cancer chemotherapeutics in humans. The paradigm multidrug transporter, mammalian P-glycoprotein, was identified 30 years ago. Nonetheless, success in overcoming or circumventing multidrug resistance in a clinical setting has been modest. Recent structural and biochemical data for several multidrug transporters now provide mechanistic insights into how they work. Organisms have evolved several elegant solutions to ridding the cell of such cytotoxic compounds. Answers are emerging to questions such as how multispecificity for different drugs is achieved, why multidrug resistance arises so readily, and what chance there is of devising a clinical solution.
Baccot, Camille; Pallier, Virginie; Feuillade-Cathalifaud, Geneviève
2017-05-01
Many data on anaerobic digestion (AD) and co-digestion of municipal solid waste leachate (MSWL) are already available in literature. They mainly deal with its performances to decrease the chemical oxygen demand (COD) of MSWL and no information is given on the impact of the specific characteristics of the dissolved organic matter (DOM) in leachate on these performances. DOM in leachate evolves towards more aromatic and hydrophobic compounds during landfilling with increasing specific ultra-violet absorbance index (SUVA) and hydrophobic character. However, according to the humification stages, this DOM would not present the same aptitude for AD. This research thus focused on (i) optimizing a biochemical methane potential (BMP) test applied to MSWL by using the Taguchi method and (ii) evaluating the impact of the hydrophobic character of the DOM in leachate on the BMP of MSWL to finally define the humification degree more suitable for AD. Hydrophobic-like (HPO ∗ ) and transphilic-like (TPH ∗ ) compounds extracted from leachate by a fractionation protocol were tested because of their high content in MSWL during acetogenesis and methanogenesis steps. After 275days of AD, the content in hydrophobic compounds and the SUVA indexes increased in the digestates. Moreover, even if the biogas and methane productions were not significantly different during the whole tests (4072±350mLgDOC -1 and 2370±95mLgDOC -1 respectively), the volume of biogas produced directly correlated with the TPH ∗ fraction content in the initial digestates. On the contrary, the methane percentage in biogas was anti-correlated with the hydrophilic-like compounds content. The hydrophobic-like molecules seem thus not to be directly involved in the methanogenic step, however they promote the increase of the methane percent in the biogas. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vroblesky, Don A.
2008-01-01
Analysis of the volatile organic compound content of tree cores is an inexpensive, rapid, simple approach to examining the distribution of subsurface volatile organic compound contaminants. The method has been shown to detect several volatile petroleum hydrocarbons and chlorinated aliphatic compounds associated with vapor intrusion and ground-water contamination. Tree cores, which are approximately 3 inches long, are obtained by using an increment borer. The cores are placed in vials and sealed. After a period of equilibration, the cores can be analyzed by headspace analysis gas chromatography. Because the roots are exposed to volatile organic compound contamination in the unsaturated zone or shallow ground water, the volatile organic compound concentrations in the tree cores are an indication of the presence of subsurface volatile organic compound contamination. Thus, tree coring can be used to detect and map subsurface volatile organic compound contamination. For comparison of tree-core data at a particular site, it is important to maintain consistent methods for all aspects of tree-core collection, handling, and analysis. Factors affecting the volatile organic compound concentrations in tree cores include the type of volatile organic compound, the tree species, the rooting depth, ground-water chemistry, the depth to the contaminated horizon, concentration differences around the trunk related to variations in the distribution of subsurface volatile organic compounds, concentration differences with depth of coring related to volatilization loss through the bark and possibly other unknown factors, dilution by rain, seasonal influences, sorption, vapor-exchange rates, and within-tree volatile organic compound degradation.
40 CFR 442.2 - General definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., organic chemicals including: alcohols, aldehydes, formaldehydes, phenols, peroxides, organic salts, amines, amides, other nitrogen compounds, other aromatic compounds, aliphatic organic chemicals, glycols, glycerines, and organic polymers; refractory organic compounds including: ketones, nitriles, organo-metallic...
NASA Technical Reports Server (NTRS)
Ming, D.W.; Morris, R.V.; Niles, B.; Lauer, H.V.; Archer, P.D.; Sutter, B.; Boynton, W.V.; Golden, D.C.
2009-01-01
The Mars 2007 Phoenix Scout Mission successfully landed on May 25, 2008 and operated on the northern plains of Mars for 150 sols. The primary mission objective was to study the history of water and evaluate the potential for past and present habitability in Martian arctic ice-rich soil [1]. Phoenix landed near 68 N latitude on polygonal terrain created by ice layers that are a few centimeters under loose soil materials. The Phoenix Mission is assessing the potential for habitability by searching for organic molecules in the ice or icy soils at the landing site. Organic molecules are necessary building blocks for life, although their presence in the ice or soil does not indicate life itself. Phoenix searched for organic molecules by heating soil/ice samples in the Thermal and Evolved-Gas Analyzer (TEGA, [2]). TEGA consists of 8 differential scanning calorimeter (DSC) ovens integrated with a magnetic-sector mass spectrometer with a mass range of 2-140 daltons [2]. Endothermic and exothermic reactions are recorded by the TEGA DSC as samples are heated from ambient to 1000 C. Evolved gases, including any organic molecules and their fragments, are simultaneously measured by the mass spectrometer during heating. Phoenix TEGA data are still under analysis; however, no organic fragments have been identified to date in the evolved gas analysis (EGA). The MECA Wet Chemistry Lab (WCL) discovered a perchlorate salt in the Phoenix soils and a mass 32 peak evolved between 325 and 625 C for one surface sample dubbed Baby Bear [3]. The mass 32 peak is attributed to evolved O2 generated during the thermal decomposition of the perchlorate salt. Perchlorates are very strong oxidizers when heated, so it is possible that organic fragments evolved in the temperature range of 300-600 C were combusted by the O2 released during the thermal decomposition of the perchlorate salt. The byproduct of the combustion of organic molecules is CO2. There is a prominent release of CO2 between 200-600 C for several of the Phoenix soils analyzed by TEGA. This low temperature release of CO2 might be any combination of 1) desorption of adsorbed CO2, 2) thermal decomposition of Fe- and Mg-carbonates, and 3) combustion of organic molecules [2].
NASA Astrophysics Data System (ADS)
Aumont, B.; Camredon, M.; Isaacman-VanWertz, G. A.; Karam, C.; Valorso, R.; Madronich, S.; Kroll, J. H.
2016-12-01
Gas phase oxidation of VOC is a gradual process leading to the formation of multifunctional organic compounds, i.e., typically species with higher oxidation state, high water solubility and low volatility. These species contribute to the formation of secondary organic aerosols (SOA) viamultiphase processes involving a myriad of organic species that evolve through thousands of reactions and gas/particle mass exchanges. Explicit chemical mechanisms reflect the understanding of these multigenerational oxidation steps. These mechanisms rely directly on elementary reactions to describe the chemical evolution and track the identity of organic carbon through various phases down to ultimate oxidation products. The development, assessment and improvement of such explicit schemes is a key issue, as major uncertainties remain on the chemical pathways involved during atmospheric oxidation of organic matter. An array of mass spectrometric techniques (CIMS, PTRMS, AMS) was recently used to track the composition of organic species during α-pinene oxidation in the MIT environmental chamber, providing an experimental database to evaluate and improve explicit mechanisms. In this study, the GECKO-A tool (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) is used to generate fully explicit oxidation schemes for α-pinene multiphase oxidation simulating the MIT experiment. The ability of the GECKO-A chemical scheme to explain the organic molecular composition in the gas and the condensed phases is explored. First results of this model/observation comparison at the molecular level will be presented.
Method for halogenating or radiohalogenating a chemical compound
Kabalka, George W.
2006-05-09
A method for obtaining a halogenated organic compound, whereby an organotrifluoroborate compound is reacted with a halide ion in the presence of an oxidizing agent to produce the corresponding halogenated organic compound. The method may be used for producing radiohalogenated organic compounds.
Microorganisms and methods for producing pyruvate, ethanol, and other compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, Jennifer L.; Zhang, Xiaolin
Microorganisms comprising modifications for producing pyruvate, ethanol, and other compounds. The microorganisms comprise modifications that reduce or ablate activity of one or more of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase, phosphate acetyltransferase, acetate kinase, pyruvate oxidase, lactate dehydrogenase, cytochrome terminal oxidase, succinate dehydrogenase, 6-phosphogluconate dehydrogenase, glutamate dehydrogenase, pyruvate formate lyase, pyruvate formate lyase activating enzyme, and isocitrate lyase. The microorganisms optionally comprise modifications that enhance expression or activity of pyruvate decarboxylase and alcohol dehydrogenase. The microorganisms are optionally evolved in defined media to enhance specific production of one or more compounds. Methods of producing compounds with the microorganisms are provided.
Combustion of organic matter in Mars analogs using SAM-like techniques
NASA Astrophysics Data System (ADS)
Stern, J. C.; McAdam, A.; Mahaffy, P. R.; Steele, A.
2012-12-01
The combustion experiment on the Sample Analysis at Mars (SAM) suite on Curiosity will heat a sample of Mars regolith in the presence of oxygen and measure the carbon isotopic composition (δ13C) of the evolved CO2 using the Tunable Laser Spectrometer (TLS). The degree to which the δ13C of the sample is representative of any organic carbon present depends on a) whether complete combustion has been achieved, and b) the simultaneous presence of inorganic, or mineralogical carbon in the sample, and our ability to quantify its contribution to the bulk δ13C. To optimize and characterize combustion of a variety of organic molecules in a range of rock matrices, combustion experiments simulating those to be performed on SAM were conducted at NASA Goddard. CO2 gas generated by heating Mars analogs in a SAM-like oven in the presence of oxygen on a laboratory breadboard was captured and analyzed via IRMS for δ13C. These values were compared to bulk and total organic carbon (TOC) abundance and δ13C values using commercial flash combustion EA- IRMS techniques to determine whether quantitative conversion of reduced carbon to CO2 was achieved. Factors contributing to incomplete combustion and isotopic fractionation include structural complexity of reduced organics, their thermal decomposition temperatures, and mineral-organic associations. An additional consideration must be made for unintentional combustion by oxidizing salts (perchlorates), which may partially or totally oxidize reduced organic compounds to CO2, depending on soil perchlorate concentration, sample matrix, and how refractory the organics are. Thus, to investigate the oxidizing potential of a salt known to exist on the Martian surface, laboratory breadboard experiments heating simple and complex organics in the presence of Mg perchlorate were performed using a SAM-like oven coupled to a Hiden Mass Spectrometer and gas collection manifold. Samples were heated in the absence and presence of Mg perchlorate to ~900 °C and mass spectral data were monitored for O2, CO2, CO, and chlorinated hydrocarbons. If CO2 was produced by perchlorate-induced oxidation of organics, a second experiment was conducted and CO2 was captured for δ13C analysis. These results could help determine whether δ13C of CO2 evolved during decomposition of organics could provide useful information in lieu of the organics themselves, in the case of the coexistence of organics with highly oxidizing materials in the regolith.
NASA Technical Reports Server (NTRS)
Arevalo, Ricardo, Jr.; Brinckerhoff, William B.; Pinnick, Veronica T.; van Amerom, Friso H. W.; Danell, Ryan M.; Li, Xiang; Getty, Stephanie; Hovmand, Lars; Atanassova, Martina; Mahaffy, Paul R.;
2014-01-01
The 2018 ExoMars rover mission includes the Mars Organic Molecule Analyzer (MOMA) investigation. MOMA will examine the chemical composition of samples acquired from depths of up to two meters below the martian surface, where organics may be protected from degradation derived from cosmic radiation and/or oxidative chemical reactions. When combined with the complement of instruments in the rover's Pasteur Payload, MOMA has the potential to reveal the presence of a wide range of organics preserved in a variety of mineralogical environments, and to begin to understand the structural character and potential origin of those compounds. The MOMA investigation is led by the Max Planck Institute for Solar System Research (MPS) with the mass spectrometer subsystem provided by NASA GSFC. MOMA's linear ion trap mass spectrometer (ITMS) is designed to analyze molecular composition of: (i) gas evolved from pyrolyzed powder samples and separated in a gas chromatograph; and, (ii) ions directly desorbed from crushed solid samples at Mars ambient pressure, as enabled by a pulsed UV laser system, fast-actuating aperture valve and capillary ion inlet. Breadboard ITMS and associated electronics have been advanced to high end-to-end fidelity in preparation for flight hardware delivery to Germany in 2015.
Jing, Xu; He, Cheng; Yang, Yang; Duan, Chunying
2015-03-25
The design of artificial systems that mimic highly evolved and finely tuned natural photosynthetic systems is a subject of intensive research. We report herein a new approach to constructing supramolecular systems for the photocatalytic generation of hydrogen from water by encapsulating an organic dye molecule into the pocket of a redox-active metal-organic polyhedron. The assembled neutral Co4L4 tetrahedron consists of four ligands and four cobalt ions that connect together in alternating fashion. The cobalt ions are coordinated by three thiosemicarbazone NS chelators and exhibit a redox potential suitable for electrochemical proton reduction. The close proximity between the redox site and the photosensitizer encapsulated in the pocket enables photoinduced electron transfer from the excited state of the photosensitizer to the cobalt-based catalytic sites via a powerful pseudo-intramolecular pathway. The modified supramolecular system exhibits TON values comparable to the highest values reported for related cobalt/fluorescein systems. Control experiments based on a smaller tetrahedral analogue of the vehicle with a filled pocket and a mononuclear compound resembling the cobalt corner of the tetrahedron suggest an enzymatic dynamics behavior. The new, well-elucidated reaction pathways and the increased molarity of the reaction within the confined space render these supramolecular systems superior to other relevant systems.
Arsenic methylation by micro-organisms isolated from sheepskin bedding materials.
Lehr, Corinne R; Polishchuk, Elena; Delisle, Marie-Chantal; Franz, Catherine; Cullen, William R
2003-06-01
Sudden infant death syndrome (SIDS) has been associated with the volatilization of arsenic, antimony or phosphorus compounds from infants' bedding material by micro-organisms, the so-called 'toxic gas hypothesis'. The volatilization of arsenic by aerobic micro-organisms isolated from new sheepskin bedding material, as well as on material used by a healthy infant and by an infant who perished of SIDS, was examined. Three fungi were isolated from a piece of sheepskin bedding material on which an infant perished of SIDS, which methylated arsenic to form trimethylarsenic(V) species, precursors to volatile trimethylarsine. These three fungi were identified as Scopulariopsis koningii, Fomitopsis pinicola and Penicillium gladioli by their 26S-ribosomal RNA polymerase chain reaction products. These fungi were not previously known to methylate arsenic. The volatilization of arsenic by these three fungi was then examined. Only P. gladioli volatilized arsenic and only under conditions such that the production of sufficient trimethylarsine to be acutely toxic to an infant is unlikely. S. brevicaulis grew on the sheepskin bedding material and evolved a trace amount of trimethylarsine. Known human pathogens such as Mycobacterium neoaurum and Acinetobacter junii were isolated from used bedding.
Screening of ground water samples for volatile organic compounds using a portable gas chromatograph
Buchmiller, R.C.
1989-01-01
A portable gas chromatograph was used to screen 32 ground water samples for volatile organic compounds. Seven screened samples were positive; four of the seven samples had volatile organic substances identified by second-column confirmation. Four of the seven positive, screened samples also tested positive in laboratory analyses of duplicate samples. No volatile organic compounds were detected in laboratory analyses of samples that headspace screening indicated to be negative. Samples that contained volatile organic compounds, as identified by laboratory analysis, and that contained a volatile organic compound present in a standard of selected compounds were correctly identified by using the portable gas chromatography. Comparisons of screened-sample data with laboratory data indicate the ability to detect selected volatile organic compounds at concentrations of about 1 microgram per liter in the headspace of water samples by use of a portable gas chromatography. -Author
Integrating microbial physiology and enzyme traits in the quality model
NASA Astrophysics Data System (ADS)
Sainte-Marie, Julien; Barrandon, Matthieu; Martin, Francis; Saint-André, Laurent; Derrien, Delphine
2017-04-01
Microbe activity plays an undisputable role in soil carbon storage and there have been many calls to integrate microbial ecology in soil carbon (C) models. With regard to this challenge, a few trait-based microbial models of C dynamics have emerged during the past decade. They parameterize specific traits related to decomposer physiology (substrate use efficiency, growth and mortality rates...) and enzyme properties (enzyme production rate, catalytic properties of enzymes…). But these models are built on the premise that organic matter (OM) can be represented as one single entity or are divided into a few pools, while organic matter exists as a continuum of many different compounds spanning from intact plant molecules to highly oxidised microbial metabolites. In addition, a given molecule may also exist in different forms, depending on its stage of polymerization or on its interactions with other organic compounds or mineral phases of the soil. Here we develop a general theoretical model relating the evolution of soil organic matter, as a continuum of progressively decomposing compounds, with decomposer activity and enzyme traits. The model is based on the notion of quality developed by Agren and Bosatta (1998), which is a measure of molecule accessibility to degradation. The model integrates three major processes: OM depolymerisation by enzyme action, OM assimilation and OM biotransformation. For any enzyme, the model reports the quality range where this enzyme selectively operates and how the initial quality distribution of the OM subset evolves into another distribution of qualities under the enzyme action. The model also defines the quality range where the OM can be uptaken and assimilated by microbes. It finally describes how the quality of the assimilated molecules is transformed into another quality distribution, corresponding to the decomposer metabolites signature. Upon decomposer death, these metabolites return to the substrate. We explore here the how microbial physiology and enzyme traits can be incorporated in a model based on a continuous representation of the organic matter and evaluate how it can improve our ability to predict soil C cycling. To do so, we analyse the properties of the model by implementing different scenarii and test the sensitivity of its parameters. Agren, G. I., & Bosatta, E. (1998). Theoretical ecosystem ecology: understanding element cycles. Cambridge University Press.
Levers and linkages: mechanical trade-offs in a power-amplified system.
Anderson, Philip S L; Claverie, Thomas; Patek, S N
2014-07-01
Mechanical redundancy within a biomechanical system (e.g., many-to-one mapping) allows morphologically divergent organisms to maintain equivalent mechanical outputs. However, most organisms depend on the integration of more than one biomechanical system. Here, we test whether coupled mechanical systems follow a pattern of amplification (mechanical changes are congruent and evolve toward the same functional extreme) or independence (mechanisms evolve independently). We examined the correlated evolution and evolutionary pathways of the coupled four-bar linkage and lever systems in mantis shrimp (Stomatopoda) ultrafast raptorial appendages. We examined models of character evolution in the framework of two divergent groups of stomatopods-"smashers" (hammer-shaped appendages) and "spearers" (bladed appendages). Smashers tended to evolve toward force amplification, whereas spearers evolved toward displacement amplification. These findings show that coupled biomechanical systems can evolve synergistically, thereby resulting in functional amplification rather than mechanical redundancy. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Method and reaction pathway for selectively oxidizing organic compounds
Camaioni, Donald M.; Lilga, Michael A.
1998-01-01
A method of selectively oxidizing an organic compound in a single vessel comprises: a) combining an organic compound, an acid solution in which the organic compound is soluble, a compound containing two oxygen atoms bonded to one another, and a metal ion reducing agent capable of reducing one of such oxygen atoms, and thereby forming a mixture; b) reducing the compound containing the two oxygen atoms by reducing one of such oxygen atoms with the metal ion reducing agent to, 1) oxidize the metal ion reducing agent to a higher valence state, and 2) produce an oxygen containing intermediate capable of oxidizing the organic compound; c) reacting the oxygen containing intermediate with the organic compound to oxidize the organic compound into an oxidized organic intermediate, the oxidized organic intermediate having an oxidized carbon atom; d) reacting the oxidized organic intermediate with the acid counter ion and higher valence state metal ion to bond the acid counter ion to the oxidized carbon atom and thereby produce a quantity of an ester incorporating the organic intermediate and acid counter ion; and e) reacting the oxidized organic intermediate with the higher valence state metal ion and water to produce a quantity of alcohol which is less than the quantity of ester, the acid counter ion incorporated in the ester rendering the carbon atom bonded to the counter ion less reactive with the oxygen containing intermediate in the mixture than is the alcohol with the oxygen containing intermediate.
Geogenic organic contaminants in the low-rank coal-bearing Carrizo-Wilcox aquifer of East Texas, USA
NASA Astrophysics Data System (ADS)
Chakraborty, Jayeeta; Varonka, Matthew; Orem, William; Finkelman, Robert B.; Manton, William
2017-06-01
The organic composition of groundwater along the Carrizo-Wilcox aquifer in East Texas (USA), sampled from rural wells in May and September 2015, was examined as part of a larger study of the potential health and environmental effects of organic compounds derived from low-rank coals. The quality of water from the low-rank coal-bearing Carrizo-Wilcox aquifer is a potential environmental concern and no detailed studies of the organic compounds in this aquifer have been published. Organic compounds identified in the water samples included: aliphatics and their fatty acid derivatives, phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, and phthalates. Many of the identified organic compounds (aliphatics, phenols, heterocyclic compounds, PAHs) are geogenic and originated from groundwater leaching of young and unmetamorphosed low-rank coals. Estimated concentrations of individual compounds ranged from about 3.9 to 0.01 μg/L. In many rural areas in East Texas, coal strata provide aquifers for drinking water wells. Organic compounds observed in groundwater are likely to be present in drinking water supplied from wells that penetrate the coal. Some of the organic compounds identified in the water samples are potentially toxic to humans, but at the estimated levels in these samples, the compounds are unlikely to cause acute health problems. The human health effects of low-level chronic exposure to coal-derived organic compounds in drinking water in East Texas are currently unknown, and continuing studies will evaluate possible toxicity.
Ribeiro, Thales P; Fernandes, Christiane; Melo, Karen V; Ferreira, Sarah S; Lessa, Josane A; Franco, Roberto W A; Schenk, Gerhard; Pereira, Marcos D; Horn, Adolfo
2015-03-01
Due to their aerobic lifestyle, eukaryotic organisms have evolved different strategies to overcome oxidative stress. The recruitment of some specific metalloenzymes such as superoxide dismutases (SODs) and catalases (CATs) is of great importance for eliminating harmful reactive oxygen species (hydrogen peroxide and superoxide anion). Using the ligand HPClNOL {1-[bis(pyridin-2-ylmethyl)amino]-3-chloropropan-2-ol}, we have synthesized three coordination compounds containing iron(III), copper(II), and manganese(II) ions, which are also present in the active site of the above-noted metalloenzymes. These compounds were evaluated as SOD and CAT mimetics. The manganese and iron compounds showed both SOD and CAT activities, while copper showed only SOD activity. The copper and manganese in vitro SOD activities are very similar (IC50~0.4 μmol dm(-3)) and about 70-fold higher than those of iron. The manganese compound showed CAT activity higher than that of the iron species. Analyzing their capacity to protect Saccharomyces cerevisiae cells against oxidative stress (H2O2 and the O2(•-) radical), we observed that all compounds act as antioxidants, increasing the resistance of yeast cells mainly due to a reduction of lipid oxidation. Especially for the iron compound, the data indicate complete protection when wild-type cells were exposed to H2O2 or O2(•-) species. Interestingly, these compounds also compensate for both superoxide dismutase and catalase deficiencies; their antioxidant activity is metal ion dependent, in the order iron(III)>copper(II)>manganese(II). The protection mechanism employed by the complexes proved to be independent of the activation of transcription factors (such as Yap1, Hsf1, Msn2/Msn4) and protein synthesis. There is no direct relation between the in vitro and the in vivo antioxidant activities. Copyright © 2014 Elsevier Inc. All rights reserved.
Environmental Influence on the Evolution of Morphological Complexity in Machines
Auerbach, Joshua E.; Bongard, Josh C.
2014-01-01
Whether, when, how, and why increased complexity evolves in biological populations is a longstanding open question. In this work we combine a recently developed method for evolving virtual organisms with an information-theoretic metric of morphological complexity in order to investigate how the complexity of morphologies, which are evolved for locomotion, varies across different environments. We first demonstrate that selection for locomotion results in the evolution of organisms with morphologies that increase in complexity over evolutionary time beyond what would be expected due to random chance. This provides evidence that the increase in complexity observed is a result of a driven rather than a passive trend. In subsequent experiments we demonstrate that morphologies having greater complexity evolve in complex environments, when compared to a simple environment when a cost of complexity is imposed. This suggests that in some niches, evolution may act to complexify the body plans of organisms while in other niches selection favors simpler body plans. PMID:24391483
Removal of organic compounds from shale gas flowback water.
Butkovskyi, Andrii; Faber, Ann-Hélène; Wang, Yue; Grolle, Katja; Hofman-Caris, Roberta; Bruning, Harry; Van Wezel, Annemarie P; Rijnaarts, Huub H M
2018-07-01
Ozonation, sorption to granular activated carbon and aerobic degradation were compared as potential treatment methods for removal of dissolved organic carbon (DOC) fractions and selected organic compounds from shale gas flowback water after pre-treatment in dissolved air flotation unit. Flowback water was characterised by high chemical oxygen demand and DOC. Low molecular weight (LMW) acids and neutral compounds were the most abundant organic fractions, corresponding to 47% and 35% of DOC respectively. Ozonation did not change distribution of organic carbon fractions and concentrations of detected individual organic compounds significantly. Sorption to activated carbon targeted removal of individual organic compounds with molecular weight >115 Da, whereas LMW compounds remained largely unaffected. Aerobic degradation was responsible for removal of LMW compounds and partial ammonium removal, whereas formation of intermediates with molecular weight of 200-350 Da was observed. Combination of aerobic degradation for LMW organics removal with adsorption to activated carbon for removal of non-biodegradable organics is proposed to be implemented between pre-treatment (dissolved air floatation) and desalination (thermal or membrane desalination) steps. Copyright © 2018 Elsevier Ltd. All rights reserved.
Absorption, Distribution and Excretion of 14C-Probimane in Mice Bearing Lewis Lung Carcinoma
Lu, Da-Yong; Chen, Rui-Ting; Lu, Ting-Ren; Wu, Hong-Ying; Qu, Rong-Xin; Che, Jin-Yu; Xu, Bin
2010-01-01
Spontaneous neoplasm metastasis, a fatalist pathological feature of cancer, is a long-evolving, multi-steps process that can now only be treated or controlled by drugs or immuno-modulators. Probimane (Pro), as a representative of the well-known class of antimetastatic agents ‘Bisdioxopiperazine compounds (Biz)’, is systematically studied for its absorption, distribution and excretion in mice bearing Lewis lung carcinoma by a radioactivity-detective method in this investigation. It is found that the 14C-Pro concentrations in different normal organs of mice at 2 hrs are very high and dramatically declined at 24 and 48 hrs. However, Pro concentrations in metastatic foci are slightly changed at the same time. Almost no change of Pro concentrations is observed in pulmonary metastatic nodules within 48 hrs. This evidence can be used to explain the characteristics of good metastatic inhibition by Biz compounds. The radioactivity in brain is relatively low because Pro can hardly penetrate into the blood-brain-barrier to eliminate brain tumors. The excretion of 14C-Pro is observed at the same ratios from both urine and feces and also at constant rates. These data are much useful for better understanding of the general pharmacological characters and possible antimetastatic mechanisms of actions of probimane and other Biz compounds from a new perspective and research angles. PMID:21179357
The Evolutionary Origins of Hierarchy
Huizinga, Joost; Clune, Jeff
2016-01-01
Hierarchical organization—the recursive composition of sub-modules—is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments). Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force–the cost of connections–promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics. PMID:27280881
Geogenic organic contaminants in the low-rank coal-bearing Carrizo-Wilcox aquifer of East Texas, USA
Chakraborty, Jayeeta; Varonka, Matthew S.; Orem, William H.; Finkelman, Robert B.; Manton, William
2017-01-01
The organic composition of groundwater along the Carrizo-Wilcox aquifer in East Texas (USA), sampled from rural wells in May and September 2015, was examined as part of a larger study of the potential health and environmental effects of organic compounds derived from low-rank coals. The quality of water from the low-rank coal-bearing Carrizo-Wilcox aquifer is a potential environmental concern and no detailed studies of the organic compounds in this aquifer have been published. Organic compounds identified in the water samples included: aliphatics and their fatty acid derivatives, phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, and phthalates. Many of the identified organic compounds (aliphatics, phenols, heterocyclic compounds, PAHs) are geogenic and originated from groundwater leaching of young and unmetamorphosed low-rank coals. Estimated concentrations of individual compounds ranged from about 3.9 to 0.01 μg/L. In many rural areas in East Texas, coal strata provide aquifers for drinking water wells. Organic compounds observed in groundwater are likely to be present in drinking water supplied from wells that penetrate the coal. Some of the organic compounds identified in the water samples are potentially toxic to humans, but at the estimated levels in these samples, the compounds are unlikely to cause acute health problems. The human health effects of low-level chronic exposure to coal-derived organic compounds in drinking water in East Texas are currently unknown, and continuing studies will evaluate possible toxicity.
Ging, P.B.; Judd, L.J.; Wynn, K.H.
1997-01-01
The study area of the South-Central Texas study unit of the National Water-Quality Assessment Program comprises the Edwards aquifer in the San Antonio region and its catchment area. The first phase of the assessment includes evaluation of existing water-quality data for surface water and ground water, including volatile organic compounds, to determine the scope of planned monitoring. Most analyses of volatile organic compounds in surface water are from the National Pollutant Discharge Elimination System sites in San Antonio, Texas. Nine volatile organic compounds were detected at the six sites. The three compounds with the most detections at National Pollutant Discharge Elimination System sites are 1,2,4-trimethylbenzene, toluene, and xylene. Analysis of volatile organic compounds in ground water was limited to Edwards aquifer wells. Twenty-eight volatile organic compounds were detected in samples from 89 wells. The five most commonly detected compounds in samples from wells, in descending order, are tetrachloroethene, trichloroethene, bromoform, chloroform, and dibromochloromethane. Detections of volatile organic compounds in surface water and ground water within the South-Central Texas study area are limited to site-specific sources associated with development; therefore, planned monitoring for possible detections of volatile organic compounds as part of the National Water-Quality Assessment Program will emphasize areas of expanding population and development. Monitoring of volatile organic compounds is planned at National Pollutant Discharge Elimination System sites, at basic fixed surface-water sites, and in the ground-water study-unit surveys.
Self-organization of intertidal snails facilitates evolution of aggregation behavior.
Stafford, Richard; Davies, Mark S; Williams, Gray A
2008-01-01
Many intertidal snails form aggregations during emersion to minimize desiccation stress. Here we investigate possible mechanisms for the evolution of such behavior. Two behavioral traits (following of mucus trails, and crevice occupation), which both provide selective advantages to individuals that possess the traits over individuals that do not, result in self-organization of aggregations in crevices in the rock surface. We suggest that the existence of self-organizing aggregations provides a mechanism by which aggregation behavior can evolve. The inclusion of an explicitly coded third behavior, aggregation, in a simulated population produces patterns statistically similar to those found on real rocky shores. Allowing these three behaviors to evolve using an evolutionary algorithm, however, results in aggregation behavior being selected against on shores with high crevice density. The inclusion of broadcast spawning dispersal mechanisms in the simulation, however, results in aggregation behavior evolving as predicted on shores with both high crevice density and low crevice density (evolving in crevices first, and then both in crevices and on flat rock), indicating the importance of environmental interactions in understanding evolutionary processes. We propose that self-organization can be an important factor in the evolution of group behaviors.
Genomic basis for the convergent evolution of electric organs
Gallant, Jason R.; Traeger, Lindsay L.; Volkening, Jeremy D.; Moffett, Howell; Chen, Po-Hao; Novina, Carl D.; Phillips, George N.; Anand, Rene; Wells, Gregg B.; Pinch, Matthew; Güth, Robert; Unguez, Graciela A.; Albert, James S.; Zakon, Harold H.; Samanta, Manoj P.; Sussman, Michael R.
2017-01-01
Little is known about the genetic basis of convergent traits that originate repeatedly over broad taxonomic scales. The myogenic electric organ has evolved six times in fishes to produce electric fields used in communication, navigation, predation, or defense. We have examined the genomic basis of the convergent anatomical and physiological origins of these organs by assembling the genome of the electric eel (Electrophorus electricus) and sequencing electric organ and skeletal muscle transcriptomes from three lineages that have independently evolved electric organs. Our results indicate that, despite millions of years of evolution and large differences in the morphology of electric organ cells, independent lineages have leveraged similar transcription factors and developmental and cellular pathways in the evolution of electric organs. PMID:24970089
The physics of pollinator attraction.
Moyroud, Edwige; Glover, Beverley J
2017-10-01
Contents 350 I. 350 II. 350 III. 352 IV. 353 V. 353 353 References 354 SUMMARY: This Tansley Insight focuses on recent advances in our understanding of how flowers manipulate physical forces to attract animal pollinators and ensure reproductive success. Research has traditionally explored the role of chemical pigments and volatile organic compounds as cues for pollinators, but recent reports have demonstrated the importance of physical and structural means of pollinator attraction. Here we explore the role of petal microstructure in influencing floral light capture and optics, analysing colour, gloss and polarization effects. We discuss the interaction between flower, pollinator and gravity, and how petal surface structure can influence that interaction. Finally, we consider the role of electrostatic forces in pollen transfer and pollinator attraction. We conclude that this new interdisciplinary field is evolving rapidly. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Formation of buckminsterfullerene (C60) in interstellar space
Berné, Olivier; Tielens, A. G. G. M.
2012-01-01
Buckminsterfullerene (C60) was recently confirmed as the largest molecule identified in space. However, it remains unclear how and where this molecule is formed. It is generally believed that C60 is formed from the buildup of small carbonaceous compounds in the hot and dense envelopes of evolved stars. Analyzing infrared observations, obtained by Spitzer and Herschel, we found that C60 is efficiently formed in the tenuous and cold environment of an interstellar cloud illuminated by strong ultraviolet (UV) radiation fields. This implies that another formation pathway, efficient at low densities, must exist. Based on recent laboratory and theoretical studies, we argue that polycyclic aromatic hydrocarbons are converted into graphene, and subsequently C60, under UV irradiation from massive stars. This shows that alternative—top-down—routes are key to understanding the organic inventory in space. PMID:22198841
Formation of buckminsterfullerene (C60) in interstellar space.
Berné, Olivier; Tielens, A G G M
2012-01-10
Buckminsterfullerene (C(60)) was recently confirmed as the largest molecule identified in space. However, it remains unclear how and where this molecule is formed. It is generally believed that C(60) is formed from the buildup of small carbonaceous compounds in the hot and dense envelopes of evolved stars. Analyzing infrared observations, obtained by Spitzer and Herschel, we found that C(60) is efficiently formed in the tenuous and cold environment of an interstellar cloud illuminated by strong ultraviolet (UV) radiation fields. This implies that another formation pathway, efficient at low densities, must exist. Based on recent laboratory and theoretical studies, we argue that polycyclic aromatic hydrocarbons are converted into graphene, and subsequently C(60), under UV irradiation from massive stars. This shows that alternative--top-down--routes are key to understanding the organic inventory in space.
Formation of buckminsterfullerene (C60) in interstellar space
NASA Astrophysics Data System (ADS)
Berné, Olivier; Tielens, Alexander G. G. M.
2012-01-01
Buckminsterfullerene (C60) was recently confirmed to be the largest molecule identified in space. However, it remains unclear how, and where this molecule is formed. It is generally believed that C60 is formed from the build up of small carbonaceous compounds, in the hot and dense envelopes of evolved stars. Analyzing infrared observations, obtained by Spitzer and Herschel, we found that C60 is efficiently formed in the tenuous and cold environment of an interstellar cloud illuminated by strong ultraviolet (UV) radiation fields. This implies that another formation pathway, efficient at low densities, must exist. Based on recent laboratory and theoretical studies, we argue that Polycyclic Aromatic Hydrocarbons are converted into graphene, and subsequently C60, under UV irradiation from massive stars. This shows that alternative - top-down - routes are key to understanding the organic inventory in space.
Selected ground-water data, Chester County, Pennsylvania
Sloto, Ronald A.
1989-01-01
Hydrologic data for Chester County, Pennsylvania are given for 3,010 wells and 32 springs. Water levels are given for 48 observation wells measured monthly during 1936-86. Chemical analyses of ground water are given for major ions, physical properties, nutrients, metals and other trace constituents, volatile organic compounds, acid organic compounds, base-neutral organic compounds, organochlorine insecticides, polychlorinated biphenyls, polychlorinated napthalenes, organophosphorous insecticides, organic acid herbicides, triazine herbicides, other organic compounds, and radionuclides.
Dey, Swati; North, Justin A.; Sriram, Jaya; Evans, Bradley S.; Tabita, F. Robert
2015-01-01
All organisms possess fundamental metabolic pathways to ensure that needed carbon and sulfur compounds are provided to the cell in the proper chemical form and oxidation state. For most organisms capable of using CO2 as sole source of carbon, ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) catalyzes primary carbon dioxide assimilation. In addition, sulfur salvage pathways are necessary to ensure that key sulfur-containing compounds are both available and, where necessary, detoxified in the cell. Using knock-out mutations and metabolomics in the bacterium Rhodospirillum rubrum, we show here that Rubisco concurrently catalyzes key and essential reactions for seemingly unrelated but physiologically essential central carbon and sulfur salvage metabolic pathways of the cell. In this study, complementation and mutagenesis studies indicated that representatives of all known extant functional Rubisco forms found in nature are capable of simultaneously catalyzing reactions required for both CO2-dependent growth as well as growth using 5-methylthioadenosine as sole sulfur source under anaerobic photosynthetic conditions. Moreover, specific inactivation of the CO2 fixation reaction did not affect the ability of Rubisco to support anaerobic 5-methylthioadenosine metabolism, suggesting that the active site of Rubisco has evolved to ensure that this enzyme maintains both key functions. Thus, despite the coevolution of both functions, the active site of this protein may be differentially modified to affect only one of its key functions. PMID:26511314
Graham, Linda E; Kim, Eunsoo; Arancibia-Avila, Patricia; Graham, James M; Wilcox, Lee W
2010-09-01
The goal of this study was to illuminate the evolutionary history and ecological importance of plant mixotrophy-the uptake and utilization of exogenous organic compounds. • We quantitatively assessed the effect of sugar amendments on laboratory growth of Sphagnum compactum as a representative emergent peat moss and two species of ecologically associated zygnematalean algae, Cylindrocystis brebissonii and Mougeotia sp. • Together with observations published elsewhere, our results suggest that under carbon or light limitation, the uptake of exogenous sugars by cells of charophycean algae and peat mosses may help these organisms maintain positive carbon balance. Utilization of 1% glucose by aquatic-grown algae helped to relieve dissolved inorganic carbon limitation, enhancing photoautotrophic growth by factors of 9.0 and 1.7, respectively. After an 8-wk growth period, amendments of 1% and 2% glucose enhanced air-grown moss biomass by 28 and 39 times, respectively, that of controls lacking sugar amendments. After 9 wk, 1% fructose enhanced biomass by 21 times, and 2% sucrose enhanced biomass by 31 times. • Our results indicate that plant mixotrophy is an early-evolved trait. The results also indicate that quantitative differences in sugar utilization by bryophytes and charophycean algae correlate with relative investments in protective cell-wall polyphenolics measured in previous studies, suggesting that sugar utilization may subsidize the cost of producing phenolic wall compounds in bryophytes.
Preservation of organic molecules at Mars' near-surface
NASA Astrophysics Data System (ADS)
Freissinet, Caroline
2016-07-01
One of the biggest concerns for the in situ detection of organics on extraterrestrial environment is the preservation potential of the molecules at the surface and subsurface given the harsh radiation conditions and oxidants they are exposed to. The Mars Science Laboratory (MSL) search for hydrocarbons is designed to understand taphonomic windows of organic preservation in the Mars' near-surface. The Sample Analysis at Mars (SAM) instrument on the MSL Curiosity rover discovered chlorohydrocarbon indigenous to a mudstone drilled sample, Cumberland (CB). The discovery of chlorohydrocarbons in the martian surface means that reduced material with covalent bonds has survived despite the severe degrading conditions. However, the precursors of the chlorohydrocarbons detected by pyrolysis at CB remain unknown. Organic compounds in this ancient sedimentary rock on Mars could include polycyclic aromatic hydrocarbons and refractory organic material, either formed on Mars from igneous, hydrothermal, atmospheric, or biological processes or, alternatively, delivered directly to Mars via meteorites, comets, or interplanetary dust particles. It has been postulated that organic compounds in near-surface rocks may undergo successive oxidation reactions that eventually form metastable benzenecarboxylates, including phthalic and mellitic acids. These benzenecarboxylates are good candidates as the precursors of the chlorohydrocarbons detected in SAM pyrolysis at CB. Indeed, recently, SAM performed a derivatization experiments on a CB sample, using the residual vapor of N-methyl-N-tertbutylsilyltrifluoroacetamide (MTBSTFA) leaking into the system. The preliminary interpretations are compatible with the presence of benzocarboxylates, coincidently with long chain carboxylic acids and alcohols. The analysis of this interesting data set to identify these derivatization products, as well as future SAM measurements on Mt Sharp, should shed additional light on the chemical nature and the origin of the organic matter in near-surface materials in Gale Crater. The future Mars Organic Molecule Organizer (MOMA) instrument onboard ExoMars 2018 should improve the detection of organic molecules in Mars subsurface in two ways. Firstly, by drilling a sample down to 2 meters, it will access more preserved area against deleterious radiations. Secondly, MOMA derivatization using dimethylformamide dimethylacetal (DMF-DMA) as a reagent is designed to assess the potential enantiomeric excess of complex chiral molecules of interest, such as amino acids, sugars or carboxylic acids, to aid at the determination of their biotic or abiotic origin. Gale crater had recently been defined as an ancient habitable environment, due to the simultaneous presence of liquid water, energy source and a mild range of temperature, pH, pressure and salinity. The presence of organic molecules opens up habitability to another level, where the building blocks of life were available for more complex system to evolve. This view into ancient Mars begins to provide a context for habitable environments and is a first step toward understanding the presence and diversity of possible prebiotic or biotic molecular signatures. Moreover, it helps mapping out potential windows of preservation for chemically reduced organic compounds, which will help on sample and site selection on all bodies of the solar system.
PHILIS (PORTABLE HIGH-THROUGHPUT INTEGRATED LABORATORY IDENTIFICATION SYSTEM)
These mobile laboratory assets, for the on-site analysis of chemical warfare agent (CWA) and toxic industrial compound (TIC) contaminated environmental samples, are part of the evolving Environmental Response Laboratory Network (ERLN).
Vroblesky, Don A.
2001-01-01
Diffusion samplers installed in observation wells were found to be capable of yielding representative water samples for chlorinated volatile organic compounds. The samplers consisted of polyethylene bags containing deionized water and relied on diffusion of chlorinated volatile organic compounds through the polyethylene membrane. The known ability of polyethylene to transmit other volatile compounds, such as benzene and toluene, indicates that the samplers can be used for a variety of volatile organic compounds. In wells at the study area, the volatile organic compound concentrations in water samples obtained using the samplers without prior purging were similar to concentrations in water samples obtained from the respective wells using traditional purging and sampling approaches. The low cost associated with this approach makes it a viable option for monitoring large observation-well networks for volatile organic compounds.
Vroblesky, Don A.
2001-01-01
Diffusion samplers installed in observation wells were found to be capable of yielding representative water samples for chlorinated volatile organic compounds. The samplers consisted of polyethylene bags containing deionized water and relied on diffusion of chlorinated volatile organic compounds through the polyethylene membrane. The known ability of polyethylene to transmit other volatile compounds, such as benzene and toluene, indicates that the samplers can be used for a variety of volatile organic compounds. In wells at the study area, the volatile organic compound concentrations in water samples obtained using the samplers without prior purging were similar to concentrations in water samples obtained from the respective wells using traditional purging and sampling approaches. The low cost associated with this approach makes it a viable option for monitoring large observation-well networks for volatile organic compounds.
Lafuente, Maria; Atcher, Joan; Solà, Jordi; Alfonso, Ignacio
2015-11-16
The hierarchical self-assembling of complex molecular systems is dictated by the chemical and structural information stored in their components. This information can be expressed through an adaptive process that determines the structurally fittest assembly under given environmental conditions. We have set up complex disulfide-based dynamic covalent libraries of chemically and topologically diverse pseudopeptidic compounds. We show how the reaction evolves from very complex mixtures at short reaction times to the almost exclusive formation of a major compound, through the establishment of intramolecular noncovalent interactions. Our experiments demonstrate that the systems evolve through error-check and error-correction processes. The nature of these interactions, the importance of the folding and the effects of the environment are also discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Butkovskyi, Andrii; Bruning, Harry; Kools, Stefan A E; Rijnaarts, Huub H M; Van Wezel, Annemarie P
2017-05-02
Organic contaminants in shale gas flowback and produced water (FPW) are traditionally expressed as total organic carbon (TOC) or chemical oxygen demand (COD), though these parameters do not provide information on the toxicity and environmental fate of individual components. This review addresses identification of individual organic contaminants in FPW, and stresses the gaps in the knowledge on FPW composition that exist so far. Furthermore, the risk quotient approach was applied to predict the toxicity of the quantified organic compounds for fresh water organisms in recipient surface waters. This resulted in an identification of a number of FPW related organic compounds that are potentially harmful namely those compounds originating from shale formations (e.g., polycyclic aromatic hydrocarbons, phthalates), fracturing fluids (e.g., quaternary ammonium biocides, 2-butoxyethanol) and downhole transformations of organic compounds (e.g., carbon disulfide, halogenated organic compounds). Removal of these compounds by FPW treatment processes is reviewed and potential and efficient abatement strategies are defined.
2017-01-01
Organic contaminants in shale gas flowback and produced water (FPW) are traditionally expressed as total organic carbon (TOC) or chemical oxygen demand (COD), though these parameters do not provide information on the toxicity and environmental fate of individual components. This review addresses identification of individual organic contaminants in FPW, and stresses the gaps in the knowledge on FPW composition that exist so far. Furthermore, the risk quotient approach was applied to predict the toxicity of the quantified organic compounds for fresh water organisms in recipient surface waters. This resulted in an identification of a number of FPW related organic compounds that are potentially harmful namely those compounds originating from shale formations (e.g., polycyclic aromatic hydrocarbons, phthalates), fracturing fluids (e.g., quaternary ammonium biocides, 2-butoxyethanol) and downhole transformations of organic compounds (e.g., carbon disulfide, halogenated organic compounds). Removal of these compounds by FPW treatment processes is reviewed and potential and efficient abatement strategies are defined. PMID:28376616
NASA Technical Reports Server (NTRS)
Yazzie, Cyriah A.; Locke, Darren R.; Johnson, Natasha M.
2014-01-01
Fischer-Tropsch Type (FTT) synthesis of organic compounds has been hypothesized to occur in the early solar nebula that formed our Solar System. FTT is a collection of abiotic chemical reactions that convert a mixture of carbon monoxide and hydrogen over nano-catalysts into hydrocarbons and other more complex aromatic compounds. We hypothesized that FTT can generate similar organic compounds as those seen in chondritic meteorites; fragments of asteroids that are characteristic of the early solar system. Specific goals for this project included: 1) determining the effects of different FTT catalyst, reaction temperature, and cycles on organic compounds produced, 2) imaging of organic coatings found on the catalyst, and 3) comparison of organic compounds produced experimentally by FTT synthesis and those found in the ordinary chondrite LL5 Chelyabinsk meteorite. We used Pyrolysis Gas Chromatography Mass Spectrometry (PY-GCMS) to release organic compounds present in experimental FTT and meteorite samples, and Scanning Electron Microscopy (SEM) to take images of organic films on catalyst grains.
Synthetic cannabinoids 2015: An update for pediatricians in clinical practice
Castellanos, Daniel; Gralnik, Leonard M
2016-01-01
Synthetic cannabinoids are a group of substances in the world of designer drugs that have become increasingly popular over the past few years. Synthetic cannabinoids are a chemically diverse group of compounds functionally similar to THC. Since first appearing on the world market a few years ago these compounds have evolved rapidly. Newer more potent analogues have been developed. Identifying youth who abuse these substances can be difficult. Newer forms of consumption have also evolved. These products are now manufactured in products that look like natural cannabis resin and in liquid cartridges used in electronic cigarettes. Synthetic cannabinoids appear to be associated with potentially dangerous health effects that are more severe than that of marijuana. Some synthetic cannabinoid compounds have been associated with serious physical consequences, such as, seizures, myocardial infarction and renal damage. In addition, psychoactive effects, such as aggression, confusion, anxiety and psychosis have also been reported. The diagnosis remains primarily clinical with toxicological confirmation difficult due to manufacturers constantly developing new analogues to avoid detection. Pediatricians are urged to familiarize themselves with these drugs and the typical presentations of patients who use them. PMID:26862498
Rinella, Joseph F.; McKenzie, Stuart W.; Crawford, J. Kent; Foreman, William T.; Fuhrer, Gregory J.; Morace, Jennifer L.; Aiken, George R.
1999-01-01
During 1987-91, chemical data were collected for pesticides and other organic compounds in surface water, streambed sediment, suspended sediment, agricultural soil, and aquatic biota to determine the occurrence, distribution, transport, and fate of organic compounds in the Yakima River basin in Washington. The report describes the chemical and physical properties of the compounds most frequently detected in the water column; organochlorine compounds including DDT, organophosphorus compounds, thiocarbamate and sulfite compounds, acetamide and triazine compounds, and chlorophenoxy-acetic acid and benzoic compounds. Concentrations are evaluated relative to chronic-toxicity water quality criteria and guidelines for the protection of human health and freshwater aquatic life.
NASA Technical Reports Server (NTRS)
Lauer, H. V., Jr.; Ming, Douglas W.; Sutter, B.; Golden, D. C.; Morris, Richard V.; Boynton, W. V.
2008-01-01
The Thermal Evolved-Gas Analyzer (TEGA) instrument onboard the 2007 Phoenix Lander will perform differential scanning calorimetry (DSC) and evolved-gas analysis of soil samples collected from the surface. Data from the instrument will be compared with Mars analog mineral standards, collected under TEGA Mars-like conditions to identify the volatile-bearing mineral phases [1] (e.g., Fe-oxyhydroxides, phyllosilicates, carbonates, and sulfates) found in the Martian soil. Concurrently, the instrument will be looking for indications of organics that might also be present in the soil. Organic molecules are necessary building blocks for life, although their presence in the ice or soil does not indicate life itself. The spacecraft will certainly bring organic contaminants to Mars even though numerous steps were taken to minimize contamination during the spacecraft assembly and testing. It will be essential to distinguish possible Mars organics from terrestrial contamination when TEGA instrument begins analyzing icy soils. To address the above, an Organic Free Blank (OFB) was designed, built, tested, and mounted on the Phoenix spacecraft providing a baseline for distinguishing Mars organics from terrestrial organic contamination. Our objective in this report is to describe some of the considerations used in selecting the OFB material and then report on the processing and analysis of the final candidate material
Smith, James A.; Witkowski, Patrick J.; Fusillo, Thomas V.
1987-01-01
This report reviews the occurrence and distribution of manmade organic compounds in the surface waters of the United States. On the basis of their aqueous solubilities, nonionic organic compounds partition themselves between water, dissolved organic matter, particulate organic matter, and the lipid reservoirs of aquatic organisms. Ionized organic compounds can be absorbed to sediments, thereby reducing their aqueous concentrations. Transformation processes of photolysis, hydrolysis, biodegradation, and volatilization can attenuate organic compounds, and attenuation rate commonly follow a first-order kinetic process. Eight groups of manmade organic compounds are discussed: 1. Polychlorinated biphenyls and organochlorine insecticides, 2. Carbamate and organophosphorus insecticides, 3. Herbicides, 4. Phenols, 5. Halogenated aliphatic and monocyclic aromatic hydrocarbons, 6. Phthalate esters, 7. Polychlorinated dibenzo-p-dioxins, and 8. Polycyclic aromatic hydrocarbons. For each compound group, data pertaining to use, production, and properties are presented and discussed. Processes that influence that the environmental fate of each group, as determined primarily through laboratory studies, are reviewed, and important fate processes are identified. Environmental concentrations of compounds from each group in water, biota, and sediment are given to demonstrate representative values for comparison to concentrations determined during ongoing research. Finally, where sufficient data exist, regional and temporal contamination trends in the United States are discussed.
Smith, James A.; Witkowski, P.J.; Fusillo, Thomas V.
1988-01-01
This report reviews the occurrence and distribution of manmade organic compounds in the surface waters of the United States. On the basis of their aqueous solubilities, nonionic organic compounds partition themselves among water, dissolved organic matter, particulate organic matter, and the lipid reservoirs of aquatic organisms. Ionized organic compounds can be adsorbed to sediments, thereby reducing their aqueous concentrations. Transformation processes of photolysis, hydrolysis, biodegradation, and volatilization can attenuate organic compounds, and attenuation rates commonly follow a first-order kinetic process. Eight groups of manmade organic compounds are discussed: 1. Polychlorinated biphenyls and organochlorine insecticides, 2. Carbamate and organophosphorus insecticides, 3. Herbicides, 4. Phenols, 5. Halogenated aliphatic and monocyclic aromatic hydrocarbons, 6. Phthalate esters, 7. Polychlorinated dibenzo-p-dioxins, and 8. Polycyclic aromatic hydrocarbons. For each compound group, data pertaining to use, production, and properties are presented and discussed. Processes that influence the environmental fate of each group, as determined primarily through laboratory studies, are reviewed, and important fate processes are identified. Environmental concentrations of compounds from each group in water, biota, and sediment are given to demonstrate representative values for comparison with concentrations determined during ongoing research. Finally, where data are sufficient, regional and temporal contamination trends in the United States are discussed.
Chao, Huan-Ping; Hsieh, Lin-Han Chiang; Tran, Hai Nguyen
2018-02-15
This study developed a novel method to promote the remediation efficiency of air sparging. According to the enhanced-volatilization theory presented in this study, selected alcohols added to groundwater can highly enhance the volatilization amounts of organic compounds with high Henry's law constants. In this study, the target organic compounds consisted of n-hexane, n-heptane, benzene, toluene, 1,1,2-trichloroethane, and tetrachloroethene. n-pentanol, n-hexanol, and n-heptanol were used to examine the changes in the volatilization amounts of organic compounds in the given period. Two types of soils with high and low organic matter were applied to evaluate the transport of organic compounds in the soil-water system. The volatilization amounts of the organic compounds increased with increasing alcohol concentrations. The volatilization amounts of the test organic compounds exhibited a decreasing order: n-heptanol>n-hexanol>n-pentanol. When 10mg/L n-heptanol was added to the system, the maximum volatilization enhancement rate was 18-fold higher than that in distilled water. Samples of soil with high organic matter might reduce the volatilization amounts by a factor of 5-10. In the present study, the optimal removal efficiency for aromatic compounds was approximately 98%. Copyright © 2017 Elsevier B.V. All rights reserved.
Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries
Doherty, Joseph P.; Marek, James C.
1989-01-01
A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper (II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the orginal organic compounds, is subsequently blended with high level radioactive sludge and transferred to a virtrification facility for processing into borosilicate glass for long-term storage.
Quantification and characterization of volatiles evolved during extrusion of rice and soy flours.
Vodovotz, Y; Zasypkin, D; Lertsiriyothin, W; Lee, T C; Bourland, C T
2000-01-01
NASA-Johnson Space Center is designing and building a habitat (Bioregenerative Planetary Life Support Systems Test Complex, BIO-Plex) intended for evaluating advanced life support systems developed for long-duration missions to the Moon or Mars where all consumables will be recycled and reused. A food system based on raw products obtained from higher plants (such as soybeans, rice, and wheat) may be a central feature of a biologically based Advanced Life Support System. To convert raw crops to edible ingredients or food items, multipurpose processing equipment such as an extruder is ideal. Volatile compounds evolved during the manufacturing of these food products may accumulate and reach toxic levels. Additionally, off-odors often dissipated in open-air environments without consequence may cause significant discomfort in the BIO-Plex. Rice and defatted soy flours were adjusted to 16% moisture, and triplicate samples were extruded using a tabletop single-screw extruder. The extrudate was collected in specially designed Tedlar bags from which air samples could be extracted. The samples were analyzed by GC-MS with special emphasis on compounds with Spacecraft Maximum Allowable Concentrations (SMACs). Results showed a combination of alcohols, aldehydes, ketones, and carbonyl compounds in the different flours. Each compound and its SMAC value, as well as its impact on the air revitalization system, was discussed.
Quantification and characterization of volatiles evolved during extrusion of rice and soy flours
NASA Technical Reports Server (NTRS)
Vodovotz, Y.; Zasypkin, D.; Lertsiriyothin, W.; Lee, T. C.; Bourland, C. T.
2000-01-01
NASA-Johnson Space Center is designing and building a habitat (Bioregenerative Planetary Life Support Systems Test Complex, BIO-Plex) intended for evaluating advanced life support systems developed for long-duration missions to the Moon or Mars where all consumables will be recycled and reused. A food system based on raw products obtained from higher plants (such as soybeans, rice, and wheat) may be a central feature of a biologically based Advanced Life Support System. To convert raw crops to edible ingredients or food items, multipurpose processing equipment such as an extruder is ideal. Volatile compounds evolved during the manufacturing of these food products may accumulate and reach toxic levels. Additionally, off-odors often dissipated in open-air environments without consequence may cause significant discomfort in the BIO-Plex. Rice and defatted soy flours were adjusted to 16% moisture, and triplicate samples were extruded using a tabletop single-screw extruder. The extrudate was collected in specially designed Tedlar bags from which air samples could be extracted. The samples were analyzed by GC-MS with special emphasis on compounds with Spacecraft Maximum Allowable Concentrations (SMACs). Results showed a combination of alcohols, aldehydes, ketones, and carbonyl compounds in the different flours. Each compound and its SMAC value, as well as its impact on the air revitalization system, was discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Daniel P.; Nicora, Carrie D.; Carini, Paul
The alphaproteobacterium “CandidatusPelagibacter ubique” strain HTCC1062 and most other members of the SAR11 clade lack genes for assimilatory sulfate reduction, making them dependent on organosulfur compounds that occur naturally in seawater. To investigate how these cells adapt to sulfur limitation, batch cultures were grown in defined medium containing either limiting or nonlimiting amounts of dimethylsulfoniopropionate (DMSP) as the sole sulfur source. Protein and mRNA expression were measured before, during, and after the transition from exponential growth to stationary phase. Two distinct responses were observed, one as DMSP became exhausted and another as the cells acclimated to a sulfur-limited environment. Themore » first response was characterized by increased transcription and translation of all “Ca. Pelagibacter ubique” genes downstream from the previously confirmedS-adenosyl methionine (SAM) riboswitchesbhmT,mmuM, andmetY. The proteins encoded by these genes were up to 33 times more abundant as DMSP became limiting. Their predicted function is to shunt all available sulfur to methionine. The secondary response, observed during sulfur-limited stationary phase, was a 6- to 10-fold increase in the transcription of the hemecshuttle-encoding geneccmCand two small genes of unknown function (SAR11_1163andSAR11_1164). This bacterium’s strategy for coping with sulfur stress appears to be intracellular redistribution to support methionine biosynthesis rather than increasing organosulfur import. Many of the genes and SAM riboswitches involved in this response are located in a hypervariable genome region (HVR). One of these HVR genes,ordL, is located downstream from a conserved motif that evidence suggests is a novel riboswitch. IMPORTANCE“Ca. Pelagibacter ubique” is a key driver of marine biogeochemistry cycles and a model for understanding how minimal genomes evolved in free-living anucleate organisms. This study explores the unusual sulfur acquisition strategy that has evolved in these cells, which lack assimilatory sulfate reduction and instead rely on reduced sulfur compounds found in oxic marine environments to meet their cellular quotas. Our findings demonstrate that the sulfur acquisition systems are constitutively expressed but the enzymatic steps leading to the essential sulfur-containing amino acid methionine are regulated by a unique array of riboswitches and genes, many of which are encoded in a rapidly evolving genome region. These findings support mounting evidence that streamlined cells have evolved regulatory mechanisms that minimize transcriptional switching and, unexpectedly, localize essential sulfur acquisition genes in a genome region normally associated with adaption to environmental variation.« less
NASA Astrophysics Data System (ADS)
Bouquet, A.; Teolis, B. D.; Waite, J. H., Jr.
2017-12-01
Introduction: The plumes of Enceladus offer an opportunity to access a sample of water from its internal ocean. However, to gain valuable insights into the ocean's composition, it is necessary to take into account any possible process that would alter the mixture between the water table and the geysers. The adsorption of refractory compounds on the ice walls in the vents could partition them depending on their properties. Evaluating the effect of this fractionation is critical in anticipating which organics could be detected by a future mission. Models: We used a model using the temkin isotherm and published experimental desorption energies for our compounds of interest. The model calculates how the coverage of an ice surface exposed to the flow can evolve with time and what is the final composition of the adsorbed mixture is. The model considers the ice walls and the ice grains, as the latter have the potential to gather the most sticky compounds and put them within reach of sampling by a spacecraft. Our list of species included formaldehyde, methanol, acetic acid, formic acid, ethanol, butanol, benzene and hexanal.Results: We found that simple hydrocarbons have a very short residence time on ice, and are expected to stay in gas phase. Oxygen-bearing organic compounds, though, stick to the ice and will be concentrated on the walls and ice grains, with the exception of formaldehyde. With the species listed above originally in equal abundance in gas phase, we found the ice surface to hold mostly formic acid, acetic acid and butanol, with a small amount of ethanol and hexanal. The high number of collisions in the closed space of a 1 meter wide vent allows for a gas/adsorbed equilibration within a second. Way forward: The possible impact of ammonia, detected in the plumes, is unknown. Ammonia can accumulate on the ice surface and influence adsorption of other species, and potentially create a liquid layer by depressing the freezing point of water. The impact of these scenarios need to be explored (e.g., liquid layer shifting equilibrium towards one described by Henry's law) so that an observational test be devised to determine which of these factors is the most influential.
Electrolytic pretreatment unit gaseous effluent conditioning
NASA Technical Reports Server (NTRS)
Colombo, G. V.; Putnam, D. F.
1976-01-01
The electrolytic pretreatment of urine is an advanced process that eliminates the need for handling and storing the highly corrosive chemicals that are normally used in water reclamation systems. The electrolytic pretreatment process also converts the organic materials in urine to gases (N2 and O2) that can be used to replenish those lost to space by leakage, venting, and air lock operations. The electrolytic process is more than a pretreatment, since it decreases the urine solids content by approximately one third, thus reducing the load and eventual solids storage requirements of the urine processing system. The evolved gases from the pretreatment step cannot, however, be returned directly to the atmosphere of a spacecraft without first removing several impurities including hydrogen, chlorine, and certain organic compounds. A treatment concept was developed that would decrease the impurities in the gas stream that emanates from an electrolysis unit to levels sufficiently low to allow the conditioned gas stream to be safely discharged to a spacecraft atmosphere. Two methods were experimentally demonstrated that can accomplish the desired cleanup. The bases of the two methods are, repectively: (1) raw urine scrubbing and (2) silica gel sorption.
Ghedotti, Michael J; Barton, Ryan W; Simons, Andrew M; Davis, Matthew P
2015-03-01
Bioluminescent organs that provide ventral camouflage are common among fishes in the meso-bathypelagic zones of the deep sea. However, the anatomical structures that have been modified to produce light vary substantially among different groups of fishes. Although the anatomical structure and evolutionary derivation of some of these organs have been well studied, the light organs of the naked barracudinas have received little scientific attention. This study describes the anatomy and evolution of bioluminescent organs in the Lestidiidae (naked barracudinas) in the context of a new phylogeny of barracudinas and closely related alepisauroid fishes. Gross and histological examination of bioluminescent organs or homologous structures from preserved museum specimens indicate that the ventral light organ is derived from hepatopancreatic tissue and that the antorbital spot in Lestrolepis is, in fact, a second dermal light organ. In the context of the phylogeny generated from DNA-sequence data from eight gene fragments (7 nuclear and 1 mitochondrial), a complex liver with a narrow ventral strand running along the ventral midline evolves first in the Lestidiidae. The ventral hepatopancreatic tissue later evolves into a ventral bioluminescent organ in the ancestor of Lestidium and Lestrolepis with the lineage leading to the genus Lestrolepis evolving a dermal antorbital bioluminescent organ, likely for light-intensity matching. This is the first described hepatopancreatic bioluminescent organ in fishes. © 2014 Wiley Periodicals, Inc.
Characteristics of organic compounds in PM2.5 at urban and remote areas in Korea
NASA Astrophysics Data System (ADS)
Choi, A.; Lee, J.; Shin, H. J.; Lee, M.; Jin seok, H.; Lim, J.
2016-12-01
Organic aerosols contain thousands of organic compounds and contribute to 20%-90% of the total fine aerosol mass (Kanakidou et al., 2005). These organic aerosols originate from anthropogenic and natural (biogenic and geologic) sources and alter physical and chemical properties in the atmosphere depending on the atmospheric and meteorological conditions. About one hundred individual organic compounds in PM2.5 at Seoul (urban area) and Baengnyeong Island (remote area) were identified and quantified using gas chromatography/mass spectrometry (GC/MS) in order to understand the characteristics of organic compounds in PM2.5 at these areas. Further, major factors to determine their concentrations in the atmosphere were investigated. Organic compounds analyzed in this study were classified into six groups, n-alkanes, polycyclic aromatic hydrocarbons (PAHs), hopanes, fatty acids (FA), dicarboxylic acids (DCAs), and sugars. Daily variation of organic compounds concentrations at Seoul were not high, while, the concentrations of organic compounds at Baengnyeong Island showed high daily variation. This is might due to frequent change of source strength and/or SOA formation in this region. Through correlations of organic compounds with other air pollutants and factor analysis at both sites, it found that major factors (or source) for the determination of organic compounds concentrations at Seoul and Baengnyeong Island were different. The major sources at Seoul were anthropogenic sources such as vehicular emission and coal combustions, while, SOA formation and biomass burning were more attributed more to the organic compounds concentrations at Baengnyeong Island.References Kanakidou, M., Seinfeld, J.H., Pandis, S.N., Barnes, I., Dentener, F.J., Facchini, M.C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C.J., Swietlicki, E., Putaud, J.P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G.K., Winterhalter, R., Myhre, C.E.L., Tsigaridis, K., Vignati, E., Stephanou, E.G., Wilson, J., 2005. Organic aerosol and global climate modelling: a review. Atmos. Chem. Phys. 5, 1053e1123.
Mechanochemical synthesis of organic compounds and composites with their participation
NASA Astrophysics Data System (ADS)
Lyakhov, Nikolai Z.; Grigorieva, Tatiana F.; Barinova, Antonina P.; Vorsina, I. A.
2010-05-01
The results of experimental studies in the mechanochemical synthesis of organic compounds and composites with their participation published over the last 15 years are described systematically. The key reactions of organic compounds are considered: synthesis of the salts of organic acids, acylation, substitution, dehalogenation, esterification, hydrometallation and other reactions. Primary attention is devoted to systems and compounds that cannot be obtained by traditional chemistry methods.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-19
... Promulgation of Implementation Plans Tennessee: Revisions to Volatile Organic Compound Definition AGENCY..., SIP revision adds 17 compounds to the list of compounds excluded from the definition of ``Volatile Organic Compound''. EPA is approving this SIP revision because the State has demonstrated that it is...
The role of natural environments in the evolution of resistance traits in pathogenic bacteria.
Martinez, Jose L
2009-07-22
Antibiotics are among the most valuable compounds used for fighting human diseases. Unfortunately, pathogenic bacteria have evolved towards resistance. One important and frequently forgotten aspect of antibiotics and their resistance genes is that they evolved in non-clinical (natural) environments before the use of antibiotics by humans. Given that the biosphere is mainly formed by micro-organisms, learning the functional role of antibiotics and their resistance elements in nature has relevant implications both for human health and from an ecological perspective. Recent works have suggested that some antibiotics may serve for signalling purposes at the low concentrations probably found in natural ecosystems, whereas some antibiotic resistance genes were originally selected in their hosts for metabolic purposes or for signal trafficking. However, the high concentrations of antibiotics released in specific habitats (for instance, clinical settings) as a consequence of human activity can shift those functional roles. The pollution of natural ecosystems by antibiotics and resistance genes might have consequences for the evolution of the microbiosphere. Whereas antibiotics produce transient and usually local challenges in microbial communities, antibiotic resistance genes present in gene-transfer units can spread in nature with consequences for human health and the evolution of environmental microbiota that are largely ignored.
Contribution of increased mutagenesis to the evolution of pollutants-degrading indigenous bacteria
Ilmjärv, Tanel; Naanuri, Eve; Kivisaar, Maia
2017-01-01
Bacteria can rapidly evolve mechanisms allowing them to use toxic environmental pollutants as a carbon source. In the current study we examined whether the survival and evolution of indigenous bacteria with the capacity to degrade organic pollutants could be connected with increased mutation frequency. The presence of constitutive and transient mutators was monitored among 53 pollutants-degrading indigenous bacterial strains. Only two strains expressed a moderate mutator phenotype and six were hypomutators, which implies that constitutively increased mutability has not been prevalent in the evolution of pollutants degrading bacteria. At the same time, a large proportion of the studied indigenous strains exhibited UV-irradiation-induced mutagenesis, indicating that these strains possess error-prone DNA polymerases which could elevate mutation frequency transiently under the conditions of DNA damage. A closer inspection of two Pseudomonas fluorescens strains PC20 and PC24 revealed that they harbour genes for ImuC (DnaE2) and more than one copy of genes for Pol V. Our results also revealed that availability of other nutrients in addition to aromatic pollutants in the growth environment of bacteria affects mutagenic effects of aromatic compounds. These results also implied that mutagenicity might be affected by a factor of how long bacteria have evolved to use a particular pollutant as a carbon source. PMID:28777807
Contribution of Organically Grown Crops to Human Health
Johansson, Eva; Hussain, Abrar; Kuktaite, Ramune; Andersson, Staffan C.; Olsson, Marie E.
2014-01-01
An increasing interest in organic agriculture for food production is seen throughout the world and one key reason for this interest is the assumption that organic food consumption is beneficial to public health. The present paper focuses on the background of organic agriculture, important public health related compounds from crop food and variations in the amount of health related compounds in crops. In addition, influence of organic farming on health related compounds, on pesticide residues and heavy metals in crops, and relations between organic food and health biomarkers as well as in vitro studies are also the focus of the present paper. Nutritionally beneficial compounds of highest relevance for public health were micronutrients, especially Fe and Zn, and bioactive compounds such as carotenoids (including pro-vitamin A compounds), tocopherols (including vitamin E) and phenolic compounds. Extremely large variations in the contents of these compounds were seen, depending on genotype, climate, environment, farming conditions, harvest time, and part of the crop. Highest amounts seen were related to the choice of genotype and were also increased by genetic modification of the crop. Organic cultivation did not influence the content of most of the nutritional beneficial compounds, except the phenolic compounds that were increased with the amounts of pathogens. However, higher amounts of pesticide residues and in many cases also of heavy metals were seen in the conventionally produced crops compared to the organic ones. Animal studies as well as in vitro studies showed a clear indication of a beneficial effect of organic food/extracts as compared to conventional ones. Thus, consumption of organic food seems to be positive from a public health point of view, although the reasons are unclear, and synergistic effects between various constituents within the food are likely. PMID:24717360
BIOREMEDIATION OF PETROLEUM HYDROCARBONS: A FLEXIBLE VARIABLE SPEED TECHNOLOGY
The bioremediation of petroleum hydrocarbons has evolved into a number of different processes. These processes include in-situ aquifer bioremediation, bioventing, biosparging, passive bioremediation with oxygen release compounds, and intrinsic bioremediation. Although often viewe...
40 CFR 59.505 - How do I demonstrate compliance with the reactivity limits?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND... Volatile Organic Compounds (VOC) in Consumer Products and Reactive Organic Compounds in Aerosol Coating...
Huang, Zhi; Zhou, Wen; Yu, Ya-juan; Zhang, Ai-qian; Han, Shuo-kui; Wang, Lian-sheng
2004-01-01
Enrichment of volatile organic compounds(VOC) and semi-volatility organic compounds(SVOC) in surface microlayer(SM) of three drinking water sources were studied. The enrichment factor(EFs) were 0.67 to 13.37 and 0.16 to 136, respectively. The results showed some VOC and most SVOC could enrich in SM. Some EFs of SVOC was quite high. Suspension and temperature could affect EFs of SVOC, slim wind and water movement do not destroy enrichment of organic in SM.
Al-Sahaf, Harith; Zhang, Mengjie; Johnston, Mark
2016-01-01
In the computer vision and pattern recognition fields, image classification represents an important yet difficult task. It is a challenge to build effective computer models to replicate the remarkable ability of the human visual system, which relies on only one or a few instances to learn a completely new class or an object of a class. Recently we proposed two genetic programming (GP) methods, one-shot GP and compound-GP, that aim to evolve a program for the task of binary classification in images. The two methods are designed to use only one or a few instances per class to evolve the model. In this study, we investigate these two methods in terms of performance, robustness, and complexity of the evolved programs. We use ten data sets that vary in difficulty to evaluate these two methods. We also compare them with two other GP and six non-GP methods. The results show that one-shot GP and compound-GP outperform or achieve results comparable to competitor methods. Moreover, the features extracted by these two methods improve the performance of other classifiers with handcrafted features and those extracted by a recently developed GP-based method in most cases.
Organic Compounds in Carbonaceous Meteorites
NASA Technical Reports Server (NTRS)
Cooper, Grorge
2001-01-01
Carbonaceous meteorites are relatively enriched in soluble organic compounds. To date, these compounds provide the only record available to study a range of organic chemical processes in the early Solar System chemistry. The Murchison meteorite is the best-characterized carbonaceous meteorite with respect to organic chemistry. The study of its organic compounds has related principally to aqueous meteorite parent body chemistry and compounds of potential importance for the origin of life. Among the classes of organic compounds found in Murchison are amino acids, amides, carboxylic acids, hydroxy acids, sulfonic acids, phosphonic acids, purines and pyrimidines (Table 1). Compounds such as these were quite likely delivered to the early Earth in asteroids and comets. Until now, polyhydroxylated compounds (polyols), including sugars (polyhydroxy aldehydes or ketones), sugar alcohols, sugar acids, etc., had not been identified in Murchison. Ribose and deoxyribose, five-carbon sugars, are central to the role of contemporary nucleic acids, DNA and RNA. Glycerol, a three-carbon sugar alcohol, is a constituent of all known biological membranes. Due to the relative lability of sugars, some researchers have questioned the lifetime of sugars under the presumed conditions on the early Earth and postulated other (more stable) compounds as constituents of the first replicating molecules. The identification of potential sources and/or formation mechanisms of pre-biotic polyols would add to the understanding of what organic compounds were available, and for what length of time, on the ancient Earth.
Origins of multicellular evolvability in snowflake yeast
Ratcliff, William C.; Fankhauser, Johnathon D.; Rogers, David W.; Greig, Duncan; Travisano, Michael
2015-01-01
Complex life has arisen through a series of ‘major transitions’ in which collectives of formerly autonomous individuals evolve into a single, integrated organism. A key step in this process is the origin of higher-level evolvability, but little is known about how higher-level entities originate and gain the capacity to evolve as an individual. Here we report a single mutation that not only creates a new level of biological organization, but also potentiates higher-level evolvability. Disrupting the transcription factor ACE2 in Saccharomyces cerevisiae prevents mother–daughter cell separation, generating multicellular ‘snowflake’ yeast. Snowflake yeast develop through deterministic rules that produce geometrically defined clusters that preclude genetic conflict and display a high broad-sense heritability for multicellular traits; as a result they are preadapted to multicellular adaptation. This work demonstrates that simple microevolutionary changes can have profound macroevolutionary consequences, and suggests that the formation of clonally developing clusters may often be the first step to multicellularity. PMID:25600558
ERIC Educational Resources Information Center
Anderson, G.
1979-01-01
A brief review is presented of some of the organic compounds and reactions that occur in soil. Included are nitrogenous compounds, compounds of phosphorus and sulfur, carbohydrates, phenolic compounds, and aliphatic acids. (BB)
40 CFR 60.441 - Definitions and symbols.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Fugitive volatile organic compounds means any volatile organic compounds which are emitted from the coating... capture fugitive volatile organic compounds. Oven means a chamber which uses heat or irradiation to bake... or label product. Solvent applied in the coating means all organic solvent contained in the adhesive...
40 CFR 60.441 - Definitions and symbols.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Fugitive volatile organic compounds means any volatile organic compounds which are emitted from the coating... capture fugitive volatile organic compounds. Oven means a chamber which uses heat or irradiation to bake... or label product. Solvent applied in the coating means all organic solvent contained in the adhesive...
40 CFR 60.441 - Definitions and symbols.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Fugitive volatile organic compounds means any volatile organic compounds which are emitted from the coating... capture fugitive volatile organic compounds. Oven means a chamber which uses heat or irradiation to bake... or label product. Solvent applied in the coating means all organic solvent contained in the adhesive...
40 CFR 60.441 - Definitions and symbols.
Code of Federal Regulations, 2014 CFR
2014-07-01
... = the weight fraction of organics applied of each coating (i) applied during a calendar month as.... Fugitive volatile organic compounds means any volatile organic compounds which are emitted from the coating... capture fugitive volatile organic compounds. Oven means a chamber which uses heat or irradiation to bake...
GROUNDWATER TRANSPORT OF HYDROPHOBIC ORGANIC COMPOUNDS IN THE PRESENCE OF DISSOLVED ORGANIC MATTER
The effects of dissolved organic matter (DOM) on the transport of hydrophobic organic compounds in soil columns were investigated. Three compounds (naphthalene, phenanthrene and DDT) that spanned three orders of magnitude in water solubility were used. Instead of humic matter, mo...
Soil amino compound and carbohydrate contents influenced by organic amendments
USDA-ARS?s Scientific Manuscript database
Amino compounds (i. e. amino acids and sugars), and carbohydrates are labile organic components and contribute to the improvement of soil fertility and quality. Animal manure and other organic soil amendments are rich in both amino compounds and carbohydrates, hence organic soil amendments might af...
Nonhuman genetics. Genomic basis for the convergent evolution of electric organs.
Gallant, Jason R; Traeger, Lindsay L; Volkening, Jeremy D; Moffett, Howell; Chen, Po-Hao; Novina, Carl D; Phillips, George N; Anand, Rene; Wells, Gregg B; Pinch, Matthew; Güth, Robert; Unguez, Graciela A; Albert, James S; Zakon, Harold H; Samanta, Manoj P; Sussman, Michael R
2014-06-27
Little is known about the genetic basis of convergent traits that originate repeatedly over broad taxonomic scales. The myogenic electric organ has evolved six times in fishes to produce electric fields used in communication, navigation, predation, or defense. We have examined the genomic basis of the convergent anatomical and physiological origins of these organs by assembling the genome of the electric eel (Electrophorus electricus) and sequencing electric organ and skeletal muscle transcriptomes from three lineages that have independently evolved electric organs. Our results indicate that, despite millions of years of evolution and large differences in the morphology of electric organ cells, independent lineages have leveraged similar transcription factors and developmental and cellular pathways in the evolution of electric organs. Copyright © 2014, American Association for the Advancement of Science.
Mowry, C.D.; Blair, D.S.; Rodacy, P.J.; Reber, S.D.
1999-07-13
An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute. 7 figs.
Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries
Doherty, J.P.; Marek, J.C.
1987-02-25
A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.
Oceanic protection of prebiotic organic compounds from UV radiation
NASA Technical Reports Server (NTRS)
Cleaves, H. J.; Miller, S. L.; Bada, J. L. (Principal Investigator)
1998-01-01
It is frequently stated that UV light would cause massive destruction of prebiotic organic compounds because of the absence of an ozone layer. The elevated UV flux of the early sun compounds this problem. This applies to organic compounds of both terrestrial and extraterrestrial origin. Attempts to deal with this problem generally involve atmospheric absorbers. We show here that prebiotic organic polymers as well as several inorganic compounds are sufficient to protect oceanic organic molecules from UV degradation. This aqueous protection is in addition to any atmospheric UV absorbers and should be a ubiquitous planetary phenomenon serving to increase the size of planetary habitable zones.
Mowry, Curtis D.; Blair, Dianna S.; Rodacy, Philip J.; Reber, Stephen D.
1999-01-01
An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute.
Palladium catalyzed hydrogenation of bio-oils and organic compounds
Elliott, Douglas C [Kennewick, WA; Hu, Jianli [Richland, WA; Hart,; Todd, R [Kennewick, WA; Neuenschwander, Gary G [Burbank, WA
2011-06-07
The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.
Palladium catalyzed hydrogenation of bio-oils and organic compounds
Elliott, Douglas C [Richland, WA; Hu, Jianli [Kennewick, WA; Hart, Todd R [Kennewick, WA; Neuenschwander, Gary G [Burbank, WA
2008-09-16
The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.
Organic compounds in radiation fogs in Davis (California)
NASA Astrophysics Data System (ADS)
Herckes, Pierre; Hannigan, Michael P.; Trenary, Laurie; Lee, Taehyoung; Collett, Jeffrey L.
New stainless steel active fogwater collectors were designed and used in Davis (CA, USA) to collect fogwater for the speciation of organic matter. Organic compounds in fog samples were extracted by liquid-liquid extraction and analyzed by gas chromatography coupled to mass spectrometry. Numerous organic compounds, including various alkanes, polycyclic aromatic hydrocarbons (PAH) and alkanoic acids, have been identified in the fogwater samples. Higher molecular weight (MW) compounds are preferentially associated with an insoluble phase inside the fog drops, whereas lower molecular weight and more polar compounds are found predominantly in the dissolved phase. Concentrations in the dissolved phase were sometimes much higher than estimated by the compounds' aqueous solubilities.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-30
... Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compounds; Architectural and... sets limits on the amount of volatile organic compounds (VOC) in architectural and industrial... Indiana SIP a new rule within Title 326, Article 8 ``Volatile Organic Compound Rules'' that limits the VOC...
Maury, Carl Peter J
2015-10-07
The question of the origin of life on Earth can largely be reduced to the question of what was the first molecular replicator system that was able to replicate and evolve under the presumably very harsh conditions on the early Earth. It is unlikely that a functional RNA could have existed under such conditions and it is generally assumed that some other kind of information system preceded the RNA world. Here, I present an informational molecular system that is stable, self-replicative, environmentally responsive, and evolvable under conditions characterized by high temperatures, ultraviolet and cosmic radiation. This postulated pregenetic system is based on the amyloid fold, a functionally unique polypeptide fold characterized by a cross beta-sheet structure in which the beta strands are arranged perpendicular to the fiber axis. Beside an extraordinary structural robustness, the amyloid fold possesses a unique ability to transmit information by a three-dimensional templating mechanism. In amyloidogenesis short peptide monomers are added one by one to the growing end of the fiber. From the same monomeric subunits several structural variants of amyloid may be formed. Then, in a self-replicative mode, a specific amyloid conformer can act as a template and confer its spatially encoded information to daughter molecular entities in a repetitive way. In this process, the specific conformational information, the spatially changed organization, is transmitted; the coding element is the steric zipper structure, and recognition occurs by amino acid side chain complementarity. The amyloid information system fulfills several basic requirements of a primordial evolvable replicator system: (i) it is stable under the presumed primitive Earth conditions, (ii) the monomeric building blocks of the informational polymer can be formed from available prebiotic compounds, (iii) the system is self-assembling and self-replicative and (iv) it is adaptive to changes in the environment and evolvable. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.
Yun, Lifen; Peng, Yue'e; Chang, Qing; Zhu, Qingxin; Guo, Wei; Wang, Yanxin
2017-07-05
The consumption of edible iodized salt is a key strategy to control and eliminate iodine deficiency disorders worldwide. We herein report the identification of the organic iodine compounds present in different edible iodized salt products using liquid chromatography combined with high resolution mass spectrometry. A total of 38 organic iodine compounds and their transformation products (TPs) were identified in seaweed iodine salt from China. Our experiments confirmed that the TPs were generated by the replacement of I atoms from organic iodine compounds with Cl atoms. Furthermore, the organic iodine compound contents in 4 seaweed iodine salt samples obtained from different manufacturers were measured, with significant differences in content being observed. We expect that the identification of organic iodine compounds in salt will be important for estimating the validity and safety of edible iodized salt products.
ERIC Educational Resources Information Center
Labov, Jay B.
2012-01-01
This paper describes a summit on Community Colleges in the Evolving STEM Education Landscape organized by a committee of the National Research Council (NRC) and the National Academy of Engineering (NAE) and held at the Carnegie Institution for Science on December 15, 2011. This summit followed a similar event organized by Dr. Jill Biden, spouse of…
Methods of making organic compounds by metathesis
Abraham, Timothy W.; Kaido, Hiroki; Lee, Choon Woo; Pederson, Richard L.; Schrodi, Yann; Tupy, Michael John
2015-09-01
Described are methods of making organic compounds by metathesis chemistry. The methods of the invention are particularly useful for making industrially-important organic compounds beginning with starting compositions derived from renewable feedstocks, such as natural oils. The methods make use of a cross-metathesis step with an olefin compound to produce functionalized alkene intermediates having a pre-determined double bond position. Once isolated, the functionalized alkene intermediate can be self-metathesized or cross-metathesized (e.g., with a second functionalized alkene) to produce the desired organic compound or a precursor thereto. The method may be used to make bifunctional organic compounds, such as diacids, diesters, dicarboxylate salts, acid/esters, acid/amines, acid/alcohols, acid/aldehydes, acid/ketones, acid/halides, acid/nitriles, ester/amines, ester/alcohols, ester/aldehydes, ester/ketones, ester/halides, ester/nitriles, and the like.
Organic compounds in re-circulated leachates of aerobic biological treated municipal solid waste.
Franke, Matthias; Jandl, Gerald; Leinweber, Peter
2006-10-01
Biodegradation of organic matter is required to reduce the potential of municipal solid waste for producing gaseous emissions and leaching contaminants. Therefore, we studied leachates of an aerobic-treated waste from municipal solids and a sewage sludge mixture that were re-circulated to decrease the concentration of biodegradable organic matter in laboratory-scale reactors. After 12 months, the total organic C and biological and chemical oxygen demands were reduced, indicating the biodegradation of organic compounds in the leachates. Curie-point pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and pyrolysis-field ionization mass spectrometry (Py-FIMS) revealed that phenols, alkylaromatic compounds, N-containing compounds and carbohydrates were the predominate compounds in the leachates and solid waste. Leachate re-circulation led to a higher thermal stability of the residual organic matter as indicated by temperature-resolved Py-FIMS. Admixture of sewage sludge to solid waste was less effective in removing organic compounds from the leachates. It resulted in drastic higher and more bio-resistant loads of organic matter in the leachates and revealed increased proportions of alkylaromatic compounds. The biodegradation of organic matter in leachates, re-circulated through municipal solid waste, offers the potential for improved aerobic waste treatments and should be investigated on a larger scale.
MMP Inhibitors: Past, present and future.
Cathcart, Jillian M; Cao, Jian
2015-06-01
Development of inhibitors of matrix metalloproteinases (MMPs) has been fraught with challenges. Early compounds largely failed due to poor selectivity and bioavailability. Dose-limiting side effects, off-target interactions, and improperly designed clinical trials significantly impeded clinical success. As information becomes available and technology evolves, tools to combat these obstacles have been developed. Improved methods for high throughput screening and drug design have led to identification of compounds exhibiting high potency, binding affinity, and favorable pharmacokinetic profiles. Current research into MMP inhibitors employs innovative approaches for drug delivery methods and allosteric inhibitors. Such innovation is key for development of clinically successful compounds.
Xenohormesis: health benefits from an eon of plant stress response evolution
Hooper, Paul L.; Tytell, Michael; Vígh, Lászlo
2010-01-01
Xenohormesis is a biological principle that explains how environmentally stressed plants produce bioactive compounds that can confer stress resistance and survival benefits to animals that consume them. Animals can piggyback off products of plants' sophisticated stress response which has evolved as a result of their stationary lifestyle. Factors eliciting the plant stress response can judiciously be employed to maximize yield of health-promoting plant compounds. The xenohormetic plant compounds can, when ingested, improve longevity and fitness by activating the animal's cellular stress response and can be applied in drug discovery, drug production, and nutritional enhancement of diet. PMID:20524162
Possible complex organic compounds on Mars.
Kobayashi, K; Sato, T; Kajishima, S; Kaneko, T; Ishikawa, Y; Saito, T
1997-01-01
It is suggested that primitive Mars had somehow similar environments as primitive Earth. If life was born on the primitive earth using organic compounds which were produced from the early Earth environment, the same types of organic compounds were also formed on primitive Mars. Such organic compounds might have been preserved on Mars still now. We are studying possible organic formation on primitive and present Mars. A gaseous mixture of CO2, CO, N2 and H2O with various mixing ratios were irradiated with high energy protons (major components of cosmic rays). Hydrogen cyanide and formaldehyde were detected among volatile products, and yellow-brown-colored water-soluble non-volatile substances were produced, which gave amino acids after acid-hydrolysis. Major part of "amino acid precursors" were not simple molecules like aminonitriles, but complex compounds which eluted earlier than free amino acids in cation-exchange HPLC. These organic compounds should be major targets in the future Mars mission. Strategy for the detection of the complex organics on Mars will be discussed.
Fritzsch, Bernd; Jahan, Israt; Pan, Ning; Elliott, Karen L.
2014-01-01
Understanding the evolution of the neurosensory system of man, able to reflect on its own origin, is one of the major goals of comparative neurobiology. Details of the origin of neurosensory cells, their aggregation into central nervous systems and associated sensory organs, their localized patterning into remarkably different cell types aggregated into variably sized parts of the central nervous system begin to emerge. Insights at the cellular and molecular level begin to shed some light on the evolution of neurosensory cells, partially covered in this review. Molecular evidence suggests that high mobility group (HMG) proteins of pre-metazoans evolved into the definitive Sox [SRY (sex determining region Y)-box] genes used for neurosensory precursor specification in metazoans. Likewise, pre-metazoan basic helix-loop-helix (bHLH) genes evolved in metazoans into the group A bHLH genes dedicated to neurosensory differentiation in bilaterians. Available evidence suggests that the Sox and bHLH genes evolved a cross-regulatory network able to synchronize expansion of precursor populations and their subsequent differentiation into novel parts of the brain or sensory organs. Molecular evidence suggests metazoans evolved patterning gene networks early and not dedicated to neuronal development. Only later in evolution were these patterning gene networks tied into the increasing complexity of diffusible factors, many of which were already present in pre-metazoans, to drive local patterning events. It appears that the evolving molecular basis of neurosensory cell development may have led, in interaction with differentially expressed patterning genes, to local network modifications guiding unique specializations of neurosensory cells into sensory organs and various areas of the central nervous system. PMID:25416504
Fritzsch, Bernd; Jahan, Israt; Pan, Ning; Elliott, Karen L
2015-01-01
Understanding the evolution of the neurosensory system of man, able to reflect on its own origin, is one of the major goals of comparative neurobiology. Details of the origin of neurosensory cells, their aggregation into central nervous systems and associated sensory organs and their localized patterning leading to remarkably different cell types aggregated into variably sized parts of the central nervous system have begun to emerge. Insights at the cellular and molecular level have begun to shed some light on the evolution of neurosensory cells, partially covered in this review. Molecular evidence suggests that high mobility group (HMG) proteins of pre-metazoans evolved into the definitive Sox [SRY (sex determining region Y)-box] genes used for neurosensory precursor specification in metazoans. Likewise, pre-metazoan basic helix-loop-helix (bHLH) genes evolved in metazoans into the group A bHLH genes dedicated to neurosensory differentiation in bilaterians. Available evidence suggests that the Sox and bHLH genes evolved a cross-regulatory network able to synchronize expansion of precursor populations and their subsequent differentiation into novel parts of the brain or sensory organs. Molecular evidence suggests metazoans evolved patterning gene networks early, which were not dedicated to neuronal development. Only later in evolution were these patterning gene networks tied into the increasing complexity of diffusible factors, many of which were already present in pre-metazoans, to drive local patterning events. It appears that the evolving molecular basis of neurosensory cell development may have led, in interaction with differentially expressed patterning genes, to local network modifications guiding unique specializations of neurosensory cells into sensory organs and various areas of the central nervous system.
Individual organic compounds in water extracts from podzolic soils of the Komi Republic
NASA Astrophysics Data System (ADS)
Shamrikova, E. V.; Punegov, V. V.; Gruzdev, I. V.; Vanchikova, E. V.; Vetoshkina, A. A.
2012-10-01
The contents of organic compounds in water extracts from organic horizons of loamy soils with different water contents from the medium taiga zone of the Komi Republic were determined by gas-liquid chromatography and chromatography-mass spectrometry. The mass concentration of organic carbon in the extracts was in the range of 290-330 mg/dm3; the mass fraction of the carbon from the identified compounds was 0.5-1.9%. Hydrocarbons made up about 60% of the total identified compounds; acids and their derivatives composed less than 40%. Most of the acids (40-70%) were aliphatic hydroxy acids. The tendencies in the formation of different classes of organic compounds were revealed depending on the degree of the soil hydromorphism. The acid properties of the water-soluble compounds were studied by pK spectroscopy. Five groups of compounds containing acid groups with similar pKa values were revealed. The compounds containing groups with pKa < 4.0 were predominant. The increase in the surface wetting favored the formation of compounds with pKa 3.2-4.0 and 7.4-8.4.
A method of isolating organic compounds present in water
NASA Technical Reports Server (NTRS)
Calder, G. V.; Fritz, J.; Junk, G. A.
1972-01-01
Water sample is passed through a column containing macroreticular resin, which absorbs only nonionic organic compounds. These compounds are selectively separated using aqueous eluents of varying pH, or completely exuded with small amount of an organic eluent.
Use of beer bran as an adsorbent for the removal of organic compounds from wastewater.
Adachi, Atsuko; Ozaki, Hiroaki; Kasuga, Ikuno; Okano, Toshio
2006-08-23
Beer bran was found to effectively adsorb several organic compounds, such as dichloromethane, chloroform, trichloroethylene, benzene, pretilachlor, and esprocarb. Equilibrium adsorption isotherms conformed to the Freundlich isotherm (log-log linear). Adsorption of these organic compounds by beer bran was observed in the pH range of 1-11. At equilibrium, the adsorption efficiency of beer bran for benzene, chloroform, and dichiloromethane was higher than that of activated carbon. The removal of these organic compounds by beer bran was attributed to the uptake by intracellular particles called spherosomes. The object of this work was to investigate several adsorbents for the effective removal of organic compounds from wastewater.
Schifter, I; Díaz, L; Rodríguez, R; González-Macías, C
2014-06-01
The strategy for decreasing volatile organic compound emissions in Mexico has been focused much more on tailpipe emissions than on evaporative emissions, so there is very little information on the contribution of evaporative emissions to the total volatile organic compound inventory. We examined the magnitudes of exhaust and evaporative volatile organic compound emissions, and the species emitted, in a representative fleet of light-duty gasoline vehicles in the Metropolitan Area of Mexico City. The US "FTP-75" test protocol was used to estimate volatile organic compound emissions associated with diurnal evaporative losses, and when the engine is started and a journey begins. The amount and nature of the volatile organic compounds emitted under these conditions have not previously been accounted in the official inventory of the area. Evaporative emissions from light-duty vehicles in the Metropolitan Area of Mexico City were estimated to be 39 % of the total annual amount of hydrocarbons emitted. Vehicles built before 1992 (16 % of the fleet) were found to be responsible for 43 % of the total hydrocarbon emissions from exhausts and 31 % of the evaporative emissions of organic compounds. The relatively high amounts of volatile organic compounds emitted from older vehicles found in this study show that strong emission controls need to be implemented in order to decrease the contribution of evaporative emissions of this fraction of the fleet.
Wong, Darren C J; Pichersky, Eran; Peakall, Rod
2017-01-01
Flowers have evolved diverse strategies to attract animal pollinators, with visual and olfactory floral cues often crucial for pollinator attraction. While most plants provide reward (e.g., nectar, pollen) in return for the service of pollination, 1000s of plant species, particularly in the orchid family, offer no apparent reward. Instead, they exploit their often specific pollinators (one or few) by mimicking signals of female insects, food source, and oviposition sites, among others. A full understanding of how these deceptive pollination strategies evolve and persist remains an open question. Nonetheless, there is growing evidence that unique blends that often contain unusual compounds in floral volatile constituents are often employed to secure pollination by deception. Thus, the ability of plants to rapidly evolve new pathways for synthesizing floral volatiles may hold the key to the widespread evolution of deceptive pollination. Yet, until now the biosynthesis of these volatile compounds has been largely neglected. While elucidating the biosynthesis in non-model systems is challenging, nonetheless, these cases may also offer untapped potential for biosynthetic breakthroughs given that some of the compounds can be exclusive or dominant components of the floral scent and production is often tissue-specific. In this perspective article, we first highlight the chemical diversity underpinning some of the more widespread deceptive orchid pollination strategies. Next, we explore the potential metabolic pathways and biosynthetic steps that might be involved. Finally, we offer recommendations to accelerate the discovery of the biochemical pathways in these challenging but intriguing systems.
Wong, Darren C. J.; Pichersky, Eran; Peakall, Rod
2017-01-01
Flowers have evolved diverse strategies to attract animal pollinators, with visual and olfactory floral cues often crucial for pollinator attraction. While most plants provide reward (e.g., nectar, pollen) in return for the service of pollination, 1000s of plant species, particularly in the orchid family, offer no apparent reward. Instead, they exploit their often specific pollinators (one or few) by mimicking signals of female insects, food source, and oviposition sites, among others. A full understanding of how these deceptive pollination strategies evolve and persist remains an open question. Nonetheless, there is growing evidence that unique blends that often contain unusual compounds in floral volatile constituents are often employed to secure pollination by deception. Thus, the ability of plants to rapidly evolve new pathways for synthesizing floral volatiles may hold the key to the widespread evolution of deceptive pollination. Yet, until now the biosynthesis of these volatile compounds has been largely neglected. While elucidating the biosynthesis in non-model systems is challenging, nonetheless, these cases may also offer untapped potential for biosynthetic breakthroughs given that some of the compounds can be exclusive or dominant components of the floral scent and production is often tissue-specific. In this perspective article, we first highlight the chemical diversity underpinning some of the more widespread deceptive orchid pollination strategies. Next, we explore the potential metabolic pathways and biosynthetic steps that might be involved. Finally, we offer recommendations to accelerate the discovery of the biochemical pathways in these challenging but intriguing systems. PMID:29181016
SULFUR COMPOUNDS IN MORPHOGENESIS.
CHICKENS, GROWTH(PHYSIOLOGY), MITOSIS, BACTERIA, ALGAE, LIPOIC ACID , THIOLS, BELGIUM...ORGANIC SULFUR COMPOUNDS, METABOLISM), (*MORPHOLOGY(BIOLOGY), ORGANIC SULFUR COMPOUNDS), (*NUCLEIC ACIDS , BIOSYNTHESIS), EGGS, EMBRYOS, AMPHIBIANS
TEMPORAL VARIABILITY MEASUREMENT OF SPECIFIC VOLATILE ORGANIC COMPOUNDS
Methodology was developed to determine unambiguously trace levels of volatile organic compounds as they vary in concentration over a variety of time scales. his capability is important because volatile organic compounds (VOCs) are usually measure by time-integrative techniques th...
Ingram, L. O.; Calder, J. A.; Van Baalen, C.; Plucker, F. E.; Parker, P. L.
1973-01-01
Nostoc sp. (strain Mac) was shown to be capable of using glucose, fructose, or sucrose as a sole source of carbon and energy in the dark. In the light in the absence of exogenously supplied CO2, this strain exhibited a more versatile metabolism. In addition to the three sugars above, glycerol and acetate served as sole sources of carbon. This photoheterotrophic growth in the absence of exogenously supplied CO2 appears to involve O2-evolving photosynthesis. The action spectrum for photoheterotrophic growth on acetate closely resembles the action spectrum for photosynthesis. The physiology of photoheterotrophic growth was further investigated through determinations of stable carbon isotope ratios and measurements of gas exchanges. These investigations suggest that respired CO2 from substrate oxidation is assimilated by the photosynthetic machinery. PMID:4196252
NASA Technical Reports Server (NTRS)
Pang, Kevin D.; Tsay, Fun-Dow
1988-01-01
Although the Viking Landers failed to find any evidence of life on the surface of Mars, much remains unknown. Study of returned samples can answer some of these questions. The search for organic compounds, the building blocks of life forms based on carbon chemistry, should continue. The question of life on Mars is still an open one, and deserves to be addressed by the study of returned samples. Whether life developed and evolved on Mars or not depends critically on the history of the Martian atmosphere and hydrosphere. The exobiology of Mars is thus inextrically intertwined with the nature of its paleoatmosphere and the ancient state of the planet's regolith, which may still be preserved in the polar caps and underground. Core samples from such sites could answer some of the questions.
Titan under a red giant sun: a new kind of "habitable" moon.
Lorenz, R D; Lunine, J I; McKay, C P
1997-11-15
We explore the response of Titan's surface and massive atmosphere to the change in solar spectrum and intensity as the sun evolves into a red giant. Titan's surface temperature is insensitive to insolation increases as the haze-laden atmosphere "puffs up" and blocks more sunlight. However, we find a window of several hundred Myr exists, roughly 6 Gyr from now, when liquid water-ammonia can form oceans on the surface and react with the abundant organic compounds there. The window opens due to a drop in haze production as the ultraviolet flux from the reddening sun plummets. The duration of such a window exceeds the time necessary for life to have begun on Earth. Similar environments, with approximately 200K water-ammonia oceans warmed by methane greenhouses under red stars, are an alternative to the approximately 30OK water-CO2 environments considered the classic "habitable" planet.
Model systems for life processes on Mars
NASA Technical Reports Server (NTRS)
Mitz, M. A.
1974-01-01
In the evolution of life forms nonphotosynthetic mechanisms are developed. The question remains whether a total life system could evolve which is not dependent upon photosynthesis. In trying to visualize life on other planets, the photosynthetic process has problems. On Mars, the high intensity of light at the surface is a concern and alternative mechanisms need to be defined and analyzed. In the UV search for alternate mechanisms, several different areas may be identified. These involve activated inorganic compounds in the atmosphere, such as the products of photodissociation of carbon dioxide and the organic material which may be created by natural phenomena. In addition, a life system based on the pressure of the atmospheric constituents, such as carbon dioxide, is a possibility. These considerations may be important for the understanding of evolutionary processes of life on another planet. Model systems which depend on these alternative mechanisms are defined and related to presently planned and future planetary missions.
Experiments of the Essential Amino Acids at high temperature and high pressure using DAC
NASA Astrophysics Data System (ADS)
Kubo, K.; Okamoto, K.
2017-12-01
Amino acids are organic compounds that form the fundamental part of life. Proteins are formed by peptide binding and polymerization of amino acids. Amino acids are polymerized in the ridge hydrothermal field, formed proteins, and might be evolved into life. Experimental studies on the polymerization of amino acids in hydrothermal environments have been conducted. However, they were hydrothermal experiments and after the experiments. All run products (amid-acids) were observed at ambient condition. Few in-situ observations of amino acids were done in experiments in hydrothermal condition. In order to perform in-situ observation of the polymerization of amino acids, we have conducted the DAC experiments. Amino acids were filled in the DAC, pressures were applied, then heated to high temperature with Raman analysis. In preliminary experiment using glycine, polymerization forming diglycine, were completed. Investigation amino acids polymerization under hydrothermal condition would shed light for new view of early life science.
Fluorination utilizing thermodynamically unstable fluorides and fluoride salts thereof
Bartlett, Neil; Whalen, J. Marc; Chacon, Lisa
2000-12-12
A method for fluorinating a carbon compound or cationic carbon compound utilizes a fluorination agent selected from thermodynamically unstable nickel fluorides and salts thereof in liquid anhydrous hydrogen fluoride. The desired carbon compound or cationic organic compound to undergo fluorination is selected and reacted with the fluorination agent by contacting the selected organic or cationic organic compound and the chosen fluorination agent in a reaction vessel for a desired reaction time period at room temperature or less.
NASA Astrophysics Data System (ADS)
Yuan, B.; Krechmer, J. E.; Warneke, C.; Coggon, M.; Koss, A.; Lim, C. Y.; Selimovic, V.; Gilman, J.; Lerner, B. M.; Stark, H.; Kang, H.; Jimenez, J. L.; Yokelson, R. J.; Liggio, J.; Roberts, J. M.; Kroll, J. H.; De Gouw, J. A.
2017-12-01
Biomass burning can emit large amounts of many different organic compounds to the atmosphere. The emission strengths of these emitted organic compounds and their subsequent atmospheric chemistry are not well known. In this study, we deployed a time-of-flight chemical ionization mass spectrometer using iodide as reagent ions (Iodide ToF-CIMS) to measure direct emissions of organic compounds during the FIREX laboratory 2016 intensive in the USDA Fire Sciences Lab in Missoula, MT. An interpretation of the I- TOF-CIMS mass spectra from biomass burning emissions will be presented. The dependence of the emissions of selected organic compounds with fuel types, combustion efficiency and fuel chemical compositions will be discussed. The I- TOF-CIMS also measured aged biomass burning smoke from a small smog chamber and an oxidative flow reactor (OFR). The I- TOF-CIMS consistently observed much higher signals of highly oxygenated organic compounds in the aged biomass burning smoke than in fresh emissions, indicative of strong secondary formation of these organic compounds in biomass burning plumes.
NASA Technical Reports Server (NTRS)
Bada, J. L.; Miller, S. L.
1985-01-01
The generally accepted theory for the origin of life on the Earth requires that a large variety of organic compounds be present to form the first living organisms and to provide the energy sources for primitive life either directly or through various fermentation reactions. This can provide a strong constraint on discussions of the formation of the Earth and on the composition of the primitive atmosphere. In order for substantial amounts of organic compounds to have been present on the prebiological Earth, certain conditions must have existed. There is a large body of literature on the prebiotic synthesis of organic compounds in various postulated atmospheres. In this mixture of abiotically synthesized organic compounds, the amino acids are of special interest since they are utilized by modern organisms to synthesize structural materials and a large array of catalytic peptides.
Selection criteria for oxidation method in total organic carbon measurement.
Yoon, GeunSeok; Park, Sang-Min; Yang, Heuiwon; Tsang, Daniel C W; Alessi, Daniel S; Baek, Kitae
2018-05-01
During the measurement of total organic carbon (TOC), dissolved organic carbon is converted into CO 2 by using high temperature combustion (HTC) or wet chemical oxidation (WCO). However, the criteria for selecting the oxidation methods are not clear. In this study, the chemical structures of organic material were considered as a key factor to select the oxidation method used. Most non-degradable organic compounds showed a similar oxidation efficiency in both methods, including natural organic compounds, dyes, and pharmaceuticals, and thus both methods are appropriate to measure TOC in waters containing these compounds. However, only a fraction of the carbon in the halogenated compounds (perfluorooctanoic acid and trifluoroacetic acid) were oxidized using WCO, resulting in measured TOC values that are considerably lower than those determined by HTC. This result is likely due to the electronegativity of halogen elements which inhibits the approach of electron-rich sulfate radicals in the WCO, and the higher bond strength of carbon-halogen pairs as compared to carbon-hydrogen bonds, which results in a lower degree of oxidation of the compounds. Our results indicate that WCO could be used to oxidize most organic compounds, but may not be appropriate to quantify TOC in organic carbon pools that contain certain halogenated compounds. Copyright © 2018 Elsevier Ltd. All rights reserved.
An Evolving Joint Acquisition Force
2004-03-19
COVERED - 4. TITLE AND SUBTITLE An Evolving Joint Acquisition Force 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ...Theodore Jennings 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) U.S. Army War...College,Carlisle Barracks,Carlisle,PA,17013-5050 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10
Secure steganographic communication algorithm based on self-organizing patterns.
Saunoriene, Loreta; Ragulskis, Minvydas
2011-11-01
A secure steganographic communication algorithm based on patterns evolving in a Beddington-de Angelis-type predator-prey model with self- and cross-diffusion is proposed in this paper. Small perturbations of initial states of the system around the state of equilibrium result in the evolution of self-organizing patterns. Small differences between initial perturbations result in slight differences also in the evolving patterns. It is shown that the generation of interpretable target patterns cannot be considered as a secure mean of communication because contours of the secret image can be retrieved from the cover image using statistical techniques if only it represents small perturbations of the initial states of the system. An alternative approach when the cover image represents the self-organizing pattern that has evolved from initial states perturbed using the dot-skeleton representation of the secret image can be considered as a safe visual communication technique protecting both the secret image and communicating parties.
Organizing the HIV vaccine development effort.
Voronin, Yegor; Snow, William
2013-09-01
To describe and compare the diverse organizational structures and funding mechanisms applied to advance HIV preventive vaccine research and development and to help explain and inform evolving infrastructures and collaborative funding models. On the basis of models that have been tried, improved or abandoned over three decades, the field seems to have settled into a relatively stable set of diverse initiatives, each with its own organizational signature. At the same time, this set of organizations is forging cross-organizational collaborations, which promise to acquire newly emergent beneficial properties. Strong motivation to expedite HIV vaccine R&D has driven a diversity of customized and inventive organizational approaches, largely government and foundation funded. Although no one approach has proven a panacea, the field has evolved into a constellation of often overlapping organizations that complement or reinforce one another. The Global HIV Vaccine Enterprise, a responsive, rapidly evolving loose infrastructure, is an innovative collaboration to catalyze that evolution.
Organizing the HIV Vaccine Development Effort
Voronin, Yegor; Snow, William
2014-01-01
Purpose of Review Describe and compare the diverse organizational structures and funding mechanisms applied to advance HIV preventive vaccine research and development, to help explain and inform evolving infrastructures and collaborative funding models. Recent Findings Based on models that have been tried, improved or abandoned over three decades, the field seems to have settled into a relatively stable set of diverse initiatives, each with its own organizational signature. At the same time, this set of organizations is forging cross-organizational collaborations, which promise to acquire newly emergent beneficial properties. Summary Strong motivation to expedite HIV vaccine R&D has driven a diversity of customized and inventive organizational approaches, largely government and foundation funded. While no one approach has proven a panacea, the field has evolved into a constellation of often overlapping organizations that complement or reinforce one another. The Global HIV Vaccine Enterprise, a responsive, rapidly evolving loose infrastructure, is an innovative collaboration to catalyze that evolution. PMID:23924997
Trace organic compounds in wet atmospheric deposition: an overview
Steinheimer, T.R.; Johnson, S.M.
1987-01-01
An overview of the occurrence of organic compounds in wet atmospheric deposition is given. Multiplicity of sources and problems associated with source identification are discussed. Available literature is reviewed by using citations from Chemical Abstracts and Water Resources Abstracts through June 1985 and includes reports published through December 1984 that summarize current knowledge. Approaches to the chemical determination of organic compounds in precipitation are examined in addition to aspects of sampling protocols. Best methods for sample collection and preparation for instrumental analysis continue to be discussed among various investigators. Automatic wet-deposition-only devices for collection and extraction are preferred. Classes of organic compounds that have been identified in precipitation include a spectrum of compounds with differing properties of acidity or basicity, polarity, and water solubility. Those compounds that have been reported in rainfall, snowfall, and ice include hydrocarbons (both aromatic and nonaromatic), chlorinated derivatives of these hydrocarbons, carbonyl compounds (both acidic and nonacidic), and carboxylic acids and esters. Formic and acetic are the most abundant organic acids present. Cloudwater, fogwater, and mist also have been collected and analyzed for organic composition.
Partitioning Behavior of Organic Contaminants in Carbon Storage Environments: A Critical Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burant, Aniela; Lowry, Gregory V; Karamalidis, Athanasios K
2012-12-04
Carbon capture and storage is a promising strategy for mitigating the CO{sub 2} contribution to global climate change. The large scale implementation of the technology mandates better understanding of the risks associated with CO{sub 2} injection into geologic formations and the subsequent interactions with groundwater resources. The injected supercritical CO{sub 2} (sc-CO{sub 2}) is a nonpolar solvent that can potentially mobilize organic compounds that exist at residual saturation in the formation. Here, we review the partitioning behavior of selected organic compounds typically found in depleted oil reservoirs in the residual oil–brine–sc-CO{sub 2} system under carbon storage conditions. The solubility ofmore » pure phase organic compounds in sc-CO{sub 2} and partitioning of organic compounds between water and sc-CO{sub 2} follow trends predicted based on thermodynamics. Compounds with high volatility and low aqueous solubility have the highest potential to partition to sc-CO{sub 2}. The partitioning of low volatility compounds to sc-CO{sub 2} can be enhanced by co-solvency due to the presence of higher volatility compounds in the sc-CO{sub 2}. The effect of temperature, pressure, salinity, pH, and dissolution of water molecules into sc-CO{sub 2} on the partitioning behavior of organic compounds in the residual oil-brine-sc-CO{sub 2} system is discussed. Data gaps and research needs for models to predict the partitioning of organic compounds in brines and from complex mixtures of oils are presented. Models need to be able to better incorporate the effect of salinity and co-solvency, which will require more experimental data from key classes of organic compounds.« less
Concentrations of over 25 polar semi-volatile and non-volatile organic compounds were measured in Lower Manhattan, New York using a high capacity Integrated Organic Gas and Particle sampler, after the initial destruction of the World Trade Center. The polar organic compounds in...
Nishiguchi, M K; Lopez, J E; Boletzky, S v
2004-01-01
Bioluminescence is widespread among many different types of marine organisms. Metazoans contain two types of luminescence production, bacteriogenic (symbiotic with bacteria) or autogenic, via the production of a luminous secretion or the intrinsic properties of luminous cells. Several species in two families of squids, the Loliginidae and the Sepiolidae (Mollusca: Cephalopoda) harbor bacteriogenic light organs that are found central in the mantle cavity. These light organs are exceptional in function, that is, the morphology and the complexity suggests that the organ has evolved to enhance and direct light emission from bacteria that are harbored inside. Although light organs are widespread among taxa within the Sepiolidae, the origin and development of this important feature is not well studied. We compared light organ morphology from several closely related taxa within the Sepiolidae and combined molecular phylogenetic data using four loci (nuclear ribosomal 28S rRNA and the mitochondrial cytochrome c oxidase subunit I and 12S and 16S rRNA) to determine whether this character was an ancestral trait repeatedly lost among both families or whether it evolved independently as an adaptation to the pelagic and benthic lifestyles. By comparing other closely related extant taxa that do not contain symbiotic light organs, we hypothesized that the ancestral state of sepiolid light organs most likely evolved from part of a separate accessory gland open to the environment that allowed colonization of bacteria to occur and further specialize in the eventual development of the modern light organ.
Metal Ion Reactions with Ozone and Atomic Oxygen.
1979-04-05
EEEI 3 6 ....... Ii. MICROCOP Y RESOLUTION TEST CHART] / I. ~< 4 . A ’~ N ~ ~’ ~ ~. ~ ~ 4 ~ ~ ~. A ............................. ~ i, .1.’~~ AU 5 <j~1...aluminum-containing compound is ap- plied directly to a surface with high work function. Upon heating the sur- face, Al+ ions are evolved. In the...present experiments the compound was aluminum chloride, prepared by dissolving aluminum metal in hydrochloric *1 acid. The solution was then applied to the
Quantification and Characterization of Volatiles Evolved During Extrusion of Rice and Soy Flours
NASA Technical Reports Server (NTRS)
Zasypkin, D.; Lertsiriyothin, W.; Lee, T. C.; Bourland, C. T.; Bond, Robert L. (Technical Monitor)
1999-01-01
NASA Johnson Space Center is designing and building a habitat (Bioregenerative Planetary Life Support Systems Test Complex, BIO-Plex) intended for evaluating advanced life support systems developed for long duration missions to the Moon or Mars where all consumables will be recycled and reused. A food system based on raw products obtained from higher plants (such as soybeans, rice and wheat) may be a central feature of a biological ly-based Advanced Life Support System (ALSS). In order to convert raw crops to edible ingredients or food items, multipurpose processing equipment such as an extruder is ideal. Volatile compounds evolved during the manufacturing of these food products may accumulate reaching toxic levels. Additionally, off-odors often dissipated in open-air environments without consequence, may cause significant discomfort in the BIO-Plex. Rice and defatted soy flours were adjusted to 16% moisture and triplicate samples were extruded using a table top single-screw extruder. The extrudate was collected in specially designed Tedlar bags from which air samples could be extracted. The samples were analyzed by GC-MS with special emphasis on compounds with Spacecraft Maximum Allowable Concentrations (SMAC). Results showed a combination of alcohols, aldehydes, ketones and carbonyl compounds in the different flours. Each compound and its SMAC value as well as its impact on the air revitalization system was discussed.
NASA Astrophysics Data System (ADS)
Cook, Ryan D.; Lin, Ying-Hsuan; Peng, Zhuoyu; Boone, Eric; Chu, Rosalie K.; Dukett, James E.; Gunsch, Matthew J.; Zhang, Wuliang; Tolic, Nikola; Laskin, Alexander; Pratt, Kerri A.
2017-12-01
Organic aerosol formation and transformation occurs within aqueous aerosol and cloud droplets, yet little is known about the composition of high molecular weight organic compounds in cloud water. Cloud water samples collected at Whiteface Mountain, New York, during August-September 2014 were analyzed by ultra-high-resolution mass spectrometry to investigate the molecular composition of dissolved organic carbon, with a focus on sulfur- and nitrogen-containing compounds. Organic molecular composition was evaluated in the context of cloud water inorganic ion concentrations, pH, and total organic carbon concentrations to gain insights into the sources and aqueous-phase processes of the observed high molecular weight organic compounds. Cloud water acidity was positively correlated with the average oxygen : carbon ratio of the organic constituents, suggesting the possibility for aqueous acid-catalyzed (prior to cloud droplet activation or during/after cloud droplet evaporation) and/or radical (within cloud droplets) oxidation processes. Many tracer compounds recently identified in laboratory studies of bulk aqueous-phase reactions were identified in the cloud water. Organosulfate compounds, with both biogenic and anthropogenic volatile organic compound precursors, were detected for cloud water samples influenced by air masses that had traveled over forested and populated areas. Oxidation products of long-chain (C10-12) alkane precursors were detected during urban influence. Influence of Canadian wildfires resulted in increased numbers of identified sulfur-containing compounds and oligomeric species, including those formed through aqueous-phase reactions involving methylglyoxal. Light-absorbing aqueous-phase products of syringol and guaiacol oxidation were observed in the wildfire-influenced samples, and dinitroaromatic compounds were observed in all cloud water samples (wildfire, biogenic, and urban-influenced). Overall, the cloud water molecular composition depended on air mass source influence and reflected aqueous-phase reactions involving biogenic, urban, and biomass burning precursors.
Nakasaki, Kiyohiko; Marui, Taketoshi
2011-06-01
To monitor the progress of organic matter degradation in a large-scale composting facility, the percentage of organic matter degradation was determined by measuring CO(2) evolution during recomposting of compost samples withdrawn from the facility. The percentage of organic matter degradation was calculated as the ratio of the amount of CO(2) evolved from compost raw material to that evolved from each sample during recomposting in the laboratory composting apparatus. It was assumed that the difference in the cumulative emission of CO(2) between the compost raw material and a sample corresponds to the amount of CO( 2) evolved from the sample in the composting facility. Using this method, the changes in organic matter degradation during composting in practical large-scale composting facilities were estimated and it was found that the percentage of organic matter degradation increased more vigorously in the earlier stages than in the later stages of composting. The percentage of organic matter degradation finally reached 78 and 55% for the compost produced from garbage-animal manure mixture and distillery waste (shochu residue), respectively. It was thus ascertained that organic matter degradation progressed well in both composting facilities. Furthermore, by performing a plant growth assay, it was observed that the compost products of both the facilities did not inhibit seed germination and thus were useful in promoting plant growth.
A Systematic Presentation of Organic Phosphorus and Sulfur Compounds.
ERIC Educational Resources Information Center
Hendrickson, James B.
1985-01-01
Because the names, interrelations, and oxidation levels of the organic compounds of phosphorus and sulfur tend to confuse students, a simple way to organize these compounds has been developed. The system consists of grouping them by oxidation state and extent of carbon substitution. (JN)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-14
... Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compound Automobile Refinishing... automobile refinishing rule for approval into its State Implementation Plan (SIP). These rule revisions extend the applicability of Indiana's approved volatile organic compound (VOC) automobile refinishing...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-29
... Promulgation of Air Quality Implementation Plans; Maryland; Control of Volatile Organic Compounds Emissions... Maryland's Volatile Organic Compounds from Specific Processes Regulation. Maryland has adopted standards... (RACT) requirements for sources of volatile organic compounds (VOCs) covered by control techniques...
Composition and major sources of organic compounds in urban aerosols
NASA Astrophysics Data System (ADS)
Bi, Xinhui; Simoneit, Bernd R. T.; Sheng, Guoying; Ma, Shexia; Fu, Jiamo
Total suspended particles (TSP), collected during June 2002 to July 2003 in Guangzhou, a typical economically developed city in South China, were analyzed for the organic compound compositions using gas chromatography-mass spectrometry (GC/MS). Over 140 organic compounds were detected in the aerosols and grouped into different classes including n-alkanes, hopanoids, polycyclic aromatic hydrocarbons, alkanols, fatty acids, dicarboxylic acids excluding oxalic acid, polyols/polyacids, lignin products, phytosterols, phthalates and water-soluble sugars. The total amounts of the identified organic compounds including unresolved complex mixture (UCM) ranged from 3112 ng/m 3 in spring to 5116 ng/m 3 in winter, comprising on seasonal average 2.8% of TSP. Primary organic compounds peaked in winter although there are no heating systems burning fuels in Guangzhou. The highest saccharide levels occurred in fall due to agricultural activities. This study demonstrated that utilization of fossil fuels, biomass burning, soil resuspension and plastic/refuse burning are the major contributors to the identified organic compounds in the urban atmosphere of South China.
NASA Astrophysics Data System (ADS)
McCollom, Thomas M.; Seewald, Jeffrey S.; German, Christopher R.
2015-05-01
The possibility that deep-sea hydrothermal vents may contain organic compounds produced by abiotic synthesis or by microbial communities living deep beneath the surface has led to numerous studies of the organic composition of vent fluids. Most of these studies have focused on methane and other light hydrocarbons, while the possible occurrence of more complex organic compounds in the fluids has remained largely unstudied. To address this issue, the presence of higher molecular weight organic compounds in deep-sea hydrothermal fluids was assessed at three sites along the Mid-Atlantic Ridge that span a range of temperatures (51 to >360 °C), fluid compositions, and host-rock lithologies (mafic to ultramafic). Samples were obtained at several sites within the Lucky Strike, Rainbow, and Lost City hydrothermal fields. Three methods were employed to extract organic compounds for analysis, including liquid:liquid extraction, cold trapping on the walls of a coil of titanium tubing, and pumping fluids through cartridges filled with solid phase extraction (SPE) sorbents. The only samples to consistently yield high amounts of extractable organic compounds were the warm (51-91 °C), highly alkaline fluids from Lost City, which contained elevated concentrations of C8, C10, and C12n-alkanoic acids and, in some cases, trithiolane, hexadecanol, squalene, and cholesterol. Collectively, the C8-C12 acids can account for about 15% of the total dissolved organic carbon in the Lost City fluids. The even-carbon-number predominance of the alkanoic acids indicates a biological origin, but it is unclear whether these compounds are derived from microbial activity occurring within the hydrothermal chimney proximal to the site of fluid discharge or are transported from deeper within the system. Hydrothermal fluids from the Lucky Strike and Rainbow fields were characterized by an overall scarcity of extractable dissolved organic compounds. Trace amounts of aromatic hydrocarbons including phenanthrenes and benzothiophene were the only compounds that could be identified as indigenous components of these fluids. Although hydrocarbons and fatty acids were observed in some samples, those compounds were likely derived from particulate matter or biomass entrained during fluid collection. In addition, extracts of some fluid samples from the Rainbow field were found to contain an unresolved complex mixture (UCM) of organic compounds. This UCM shared some characteristics with organic matter extracted from bottom seawater, suggesting that the organic matter observed in these samples might represent seawater-derived compounds that had persisted, albeit with partial alteration, during circulation through the hydrothermal system. While there is considerable evidence that Rainbow and Lost City vent fluids contain methane and other light hydrocarbons produced through abiotic reduction of inorganic carbon, we found no evidence for more complex organic compounds with an abiotic origin in the same fluids.
Cyberspace Operations: Influence Upon Evolving War Theory
2011-03-18
St ra te gy R es ea rc h Pr oj ec t CYBERSPACE OPERATIONS: INFLUENCE UPON EVOLVING WAR THEORY BY COLONEL KRISTIN BAKER United States...DATES COVERED (From - To) 4. TITLE AND SUBTITLE Cyberspace Operations: Influence Upon Evolving War Theory 5a. CONTRACT NUMBER... Leadership 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S
The evolving role of health care organizations in research.
Tuttle, W C; Piland, N F; Smith, H L
1988-01-01
Many hospitals and health care organizations are contending with fierce financial and competitive pressures. Consequently, programs that do not make an immediate contribution to master strategy are often overlooked in the strategic management process. Research programs are a case in point. Basic science, clinical, and health services research programs may help to create a comprehensive and fundamentally sound master strategy. This article discusses the evolving role of health care organizations in research relative to strategy formulation. The primary costs and benefits from participating in research programs are examined. An agenda of questions is presented to help health care organizations determine whether they should incorporate health-related research as a key element in their strategy.
Golden, Jeffry
2007-02-13
A process of extracting halogenated organic compounds, and particularly PCBs, from soil, sediment, slurry, sludge and dehalogenating the compounds contacts a contaminated soil sample with an extraction medium of a mixture of an alkane and a water miscible alcohol. The organic compounds dissolve in the extraction medium which is separated from the soil by passing water upwardly through the soil. The extraction medium floats to the surface of the water and is separated. Thereafter, the extraction medium containing the halogenated organic contaminants is subjected to ionizing radiation to radiolytically dehalogenate the compounds.
Mincher, Bruce J.; Curry, Randy Dale; Clevenger, Thomas E.; Golden, Jeffry
2003-05-27
A process of extracting halogenated organic compounds, and particularly PCBs, from soil, sediment, slurry, sludge and dehalogenating the compounds contacts a contaminated soil sample with an extraction medium of a mixture of an alkane and a water miscible alcohol. The organic compounds dissolve in the extraction medium which is separated from the soil by passing water upwardly through the soil. The extraction medium floats to the surface of the water and is separated. Thereafter, the extraction medium containing the halogenated organic contaminants is subjected to ionizing radiation to radiolytically dehalogenate the compounds.
Mincher, Bruce J.; Curry, Randy Dale; Clevenger, Thomas E.; Golden, Jeffry
2000-01-01
A process of extracting halogenated organic compounds, and particularly PCBs, from soil, sediment, slurry, sludge and dehalogenating the compounds contacting a contaminated soil sample with an extraction medium of a mixture of an alkane and a water miscible alcohol. The organic compounds dissolve in the extraction medium which is separated from the soil by passing water upwardly through the soil. The extraction medium floats to the surface of the water and is separated. Thereafter, the extraction medium containing the halogenated organic contaminants is subjected to ionizing radiation to radiolytically dehalogenate the compounds.
Dey, Swati; North, Justin A; Sriram, Jaya; Evans, Bradley S; Tabita, F Robert
2015-12-25
All organisms possess fundamental metabolic pathways to ensure that needed carbon and sulfur compounds are provided to the cell in the proper chemical form and oxidation state. For most organisms capable of using CO2 as sole source of carbon, ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) catalyzes primary carbon dioxide assimilation. In addition, sulfur salvage pathways are necessary to ensure that key sulfur-containing compounds are both available and, where necessary, detoxified in the cell. Using knock-out mutations and metabolomics in the bacterium Rhodospirillum rubrum, we show here that Rubisco concurrently catalyzes key and essential reactions for seemingly unrelated but physiologically essential central carbon and sulfur salvage metabolic pathways of the cell. In this study, complementation and mutagenesis studies indicated that representatives of all known extant functional Rubisco forms found in nature are capable of simultaneously catalyzing reactions required for both CO2-dependent growth as well as growth using 5-methylthioadenosine as sole sulfur source under anaerobic photosynthetic conditions. Moreover, specific inactivation of the CO2 fixation reaction did not affect the ability of Rubisco to support anaerobic 5-methylthioadenosine metabolism, suggesting that the active site of Rubisco has evolved to ensure that this enzyme maintains both key functions. Thus, despite the coevolution of both functions, the active site of this protein may be differentially modified to affect only one of its key functions. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Emergence of Life on Earth: A Physicochemical Jigsaw Puzzle.
Spitzer, Jan
2017-01-01
We review physicochemical factors and processes that describe how cellular life can emerge from prebiotic chemical matter; they are: (1) prebiotic Earth is a multicomponent and multiphase reservoir of chemical compounds, to which (2) Earth-Moon rotations deliver two kinds of regular cycling energies: diurnal electromagnetic radiation and seawater tides. (3) Emerging colloidal phases cyclically nucleate and agglomerate in seawater and consolidate as geochemical sediments in tidal zones, creating a matrix of microspaces. (4) Some microspaces persist and retain memory from past cycles, and others re-dissolve and re-disperse back into the Earth's chemical reservoir. (5) Proto-metabolites and proto-biopolymers coevolve with and within persisting microspaces, where (6) Macromolecular crowding and other non-covalent molecular forces govern the evolution of hydrophilic, hydrophobic, and charged molecular surfaces. (7) The matrices of microspaces evolve into proto-biofilms of progenotes with rudimentary but evolving replication, transcription, and translation, enclosed in unstable cell envelopes. (8) Stabilization of cell envelopes 'crystallizes' bacteria-like genetics and metabolism with low horizontal gene transfer-life 'as we know it.' These factors and processes constitute the 'working pieces' of the jigsaw puzzle of life's emergence. They extend the concept of progenotes as the first proto-cellular life, connected backward in time to the cycling chemistries of the Earth-Moon planetary system, and forward to the ancient cell cycle of first bacteria-like organisms. Supra-macromolecular models of 'compartments first' are preferred: they facilitate macromolecular crowding-a key abiotic/biotic transition toward living states. Evolutionary models of metabolism or genetics 'first' could not have evolved in unconfined and uncrowded environments because of the diffusional drift to disorder mandated by the second law of thermodynamics.
The early atmosphere: a new picture.
Levine, J S
1986-01-01
Over the last several years, many of the fundamental ideas concerning the composition and chemical evolution of the Earth's early atmosphere have changed. While many aspects of this subject are clouded--either uncertain or unknown, a new picture is emerging. We are just beginning to understand how astronomical, geochemical, and atmospheric processes each contributed to the development of the gaseous envelope around the third planet from the sun some 4.6 billion years ago and how that envelope chemically evolved over the history of our planet. Simple compounds in that gaseous envelope, energized by atmospheric lightning and/or solar ultraviolet radiation, formed molecules of increasing complexity that eventually evolved into the first living systems on our planet. This process is called "chemical evolution" and immediately preceded biological evolution; once life developed and evolved, it began to alter the chemical composition of the atmosphere that provided the very essence of its creation. Photosynthetic organisms which have the ability to biochemically transform carbon dioxide and water to carbohydrates, which they use for food, produce large amounts of molecular oxygen (O2) as a by-product of the reaction. Atmospheric oxygen photochemically formed ozone, which absorbs ultraviolet radiation from the sun and shields the Earth's surface from this biologically lethal radiation. Once atmospheric ozone levels increased sufficiently, life could leave the safety of the oceans and go ashore for the first time. Throughout the history of our planet, there has been strong interaction between life and the atmosphere. Understanding our cosmic roots is particularly relevant as we embark on a search for life outside the Earth. At this very moment, several radio telescopes around the world are searching for extraterrestrial intelligence (SETI).
Lefranc, Florence; Carbone, Marianna; Mollo, Ernesto; Gavagnin, Margherita; Betancourt, Tania; Dasari, Ramesh
2016-01-01
Abstract The chemical investigation of marine mollusks has led to the isolation of a wide variety of bioactive metabolites, which evolved in marine organisms as favorable adaptations to survive in different environments. Most of them are derived from food sources, but they can be also biosynthesized de novo by the mollusks themselves, or produced by symbionts. Consequently, the isolated compounds cannot be strictly considered as “chemotaxonomic markers” for the different molluscan species. However, the chemical investigation of this phylum has provided many compounds of interest as potential anticancer drugs that assume particular importance in the light of the growing literature on cancer biology and chemotherapy. The current review highlights the diversity of chemical structures, mechanisms of action, and, most importantly, the potential of mollusk‐derived metabolites as anticancer agents, including those biosynthesized by mollusks and those of dietary origin. After the discussion of dolastatins and kahalalides, compounds previously studied in clinical trials, the review covers potentially promising anticancer agents, which are grouped based on their structural type and include terpenes, steroids, peptides, polyketides and nitrogen‐containing compounds. The “promise” of a mollusk‐derived natural product as an anticancer agent is evaluated on the basis of its ability to target biological characteristics of cancer cells responsible for poor treatment outcomes. These characteristics include high antiproliferative potency against cancer cells in vitro, preferential inhibition of the proliferation of cancer cells over normal ones, mechanism of action via nonapoptotic signaling pathways, circumvention of multidrug resistance phenotype, and high activity in vivo, among others. The review also includes sections on the targeted delivery of mollusk‐derived anticancer agents and solutions to their procurement in quantity. PMID:27925266
Burant, Aniela; Lowry, Gregory V; Karamalidis, Athanasios K
2017-06-20
Carbon capture, utilization, and storage (CCUS), a climate change mitigation strategy, along with unconventional oil and gas extraction, generates enormous volumes of produced water containing high salt concentrations and a litany of organic compounds. Understanding the aqueous solubility of organic compounds related to these operations is important for water treatment and reuse alternatives, as well as risk assessment purposes. The well-established Setschenow equation can be used to determine the effect of salts on aqueous solubility. However, there is a lack of reported Setschenow constants, especially for polar organic compounds. In this study, the Setschenow constants for selected hydrophilic organic compounds were experimentally determined, and linear free energy models for predicting the Setschenow constant of organic chemicals in concentrated brines were developed. Solid phase microextraction was employed to measure the salting-out behavior of six selected hydrophilic compounds up to 5 M NaCl and 2 M CaCl 2 and in Na-Ca-Cl brines. All compounds, which include phenol, p-cresol, hydroquinone, pyrrole, hexanoic acid, and 9-hydroxyfluorene, exhibited log-linear behavior up to these concentrations, meaning Setschenow constants previously measured at low salt concentrations can be extrapolated up to high salt concentrations for hydrophilic compounds. Setschenow constants measured in NaCl and CaCl 2 brines are additive for the compounds measured here; meaning Setschenow constants measured in single salt solutions can be used in multiple salt solutions. The hydrophilic compounds in this study were selected to elucidate differences in salting-out behavior based on their chemical structure. Using data from this study, as well as literature data, linear free energy relationships (LFERs) for prediction of NaCl, CaCl 2 , LiCl, and NaBr Setschenow constants were developed and validated. Two LFERs were improved. One LFER uses the Abraham solvation parameters, which include the index of refraction of the organic compound, organic compound's polarizability, hydrogen bonding acidity and basicity of the organic compound, and the molar volume of the compound. The other uses an octanol-water partitioning coefficient to predict NaCl Setschenow constants. Improved models from this study now include organic compounds that are structurally and chemically more diverse than the previous models. The CaCl 2 , LiCl, and NaBr single parameter LFERs use concepts from the Hofmeister series to predict new, respective Setschenow constants from NaCl Setschenow constants. The Setschenow constants determined here, as well as the LFERs developed, can be incorporated into CCUS reactive transport models to predict aqueous solubility and partitioning coefficients of organic compounds. This work also has implications for beneficial reuse of water from CCUS; this can aide in determining treatment technologies for produced waters.
Breit, G.N.; Wanty, R.B.
1991-01-01
Published data relevant to the geochemistry of vanadium were used to evaluate processes and conditions that control vanadium accumulation in carbonaceous rocks. Reduction, adsorption, and complexation of dissolved vanadium favor addition of vanadium to sediments rich in organic carbon. Dissolved vanadate (V(V)) species predominate in oxic seawater and are reduced to vanadyl ion (V(IV)) by organic compounds or H2S. Vanadyl ion readily adsorbs to particle surfaces and is added to the sediment as the particles settle. The large vanadium concentrations of rocks deposited in marine as compared to lacustrine environments are the result of the relatively large amount of vanadium provided by circulating ocean water compared to terrestrial runoff. Vanadium-rich carbonaceous rocks typically have high contents of organically bound sulfur and are stratigraphically associated with phosphate-rich units. A correspondence between vanadium content and organically bound sulfur is consistent with high activities of H2S during sediment deposition. Excess H2S exited the sediment into bottom waters and favored reduction of dissolved V(V) to V(IV) or possibly V(III). The stratigraphic association of vanadiferous and phosphatic rocks reflects temporal and spatial shifts in bottom water chemistry from suboxic (phosphate concentrated) to more reducing (euxinic?) conditions that favor vanadium accumulation. During diagenesis some vanadium-organic complexes migrate with petroleum out of carbonaceous rocks, but significant amounts of vanadium are retained in refractory organic matter or clay minerals. As carbon in the rock evolves toward graphite during metamorphism, vanadium is incorporated into silicate minerals. ?? 1991.
NASA Astrophysics Data System (ADS)
Nah, T.; Sanchez, J.; Boyd, C.; Ng, N. L.
2015-12-01
The nitrate radical (NO3), one of the most important oxidants in the nocturnal atmosphere, can react rapidly with a variety of biogenic volatile organic compounds (BVOCs) to form high mass concentrations of secondary organic aerosol (SOA) and organic nitrates (ON). Despite its critical importance in aerosol formation, the mechanisms and products from the NO3 oxidation of BVOCs have been largely unexplored, and the fates of their SOA and ON after formation are not well characterized. In this work, we studied the formation of SOA and ON from the NO3 oxidation of α-pinene and β-pinene and investigated for the first time how they evolve during dark and photochemical aging through a series of chamber experiments performed at the Georgia Tech Environmental Chamber (GTEC) facility. The α-pinene and β-pinene SOA are characterized using real-time gas- and particle-phase measurements, which are used to propose mechanisms for SOA and organic nitrate formation and aging. Highly oxygenated gas- and particle-phase ON (containing as many as 9 oxygen atoms) are detected during the NO3 reaction. In addition, the β-pinene SOA and α-pinene SOA exhibited drastically different behavior during photochemical aging. Our results indicate that nighttime ON formed by NO3+monoterpene chemistry can serve as either NOx reservoirs or sinks depending on the monoterpene precursor. Results from this study provide fundamental data for evaluating the contributions of NO3+monoterpene reactions to ambient OA measured in the Southeastern U.S.
40 CFR 63.4765 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2014 CFR
2014-07-01
... determination, substitute TVH for each occurrence of the term volatile organic compounds (VOC) in the methods... organic compound emitting operations inside the building enclosure, other than the coating operation for... the capture efficiency measurement, all organic compound emitting operations inside the building...
40 CFR 63.4765 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2012 CFR
2012-07-01
... determination, substitute TVH for each occurrence of the term volatile organic compounds (VOC) in the methods... organic compound emitting operations inside the building enclosure, other than the coating operation for... the capture efficiency measurement, all organic compound emitting operations inside the building...
[Characteristics of organic pollutants in the sediments from a typical electronics industrial zone].
Liu, Jin; Deng, Dai-Yong; Xu, Mei-Ying; Sun, Guo-Ping
2013-03-01
In order to investigate the contamination status of organic pollutants in a river of a typical electrical equipment industrial area, Ronggui, Foshan, the sediments were sampled for the composition, concentration and occurrence analysis of organic pollutants. The polar and non-polar fractionation methods were employed for the fingerprint establishment of organic pollutants. One hundred and seventy-one of organic chemicals including ten categories of alkanes, alkenes, polycyclic aromatic hydrocarbons, benzene, heterocyclic compounds, phthalate esters, aldehydes, ketones, polar compounds, silicon-containing material as well as alkyl esters were examined. The number of different categories of the detected organic pollutants in a descending order was: alkanes > polar compounds > polycyclic aromatic hydrocarbons > aldehydes and ketones > heterocyclic compounds > benzene homologues, phthalate ester > alkyl esters > silicon material > olefins. The abundance of detected organic pollutants in a descending order was: alkanes > polar compounds > alkyl esters > olefins > polycyclic aromatic hydrocarbons > phthalates > silicon material > aldehydes and ketones > heterocyclic compounds > benzene homologues. Among the 51 kinds of alkanes detected, nonadecane accounted for 14.83%, and the persistent organic pollutants accounted for 2.33% of the total organic matter. Compared to similar studies, there were 51 kinds of alkanes and they accounted for 55.5% of the total organic chemicals, showing high diversity and abundance. In addition, some electronics industry-related organic pollutants such as silicone materials were also detected in high frequency.
Najafpour, Mohammad Mahdi
2011-01-01
The oxygen evolving complex in photosystem II which induces the oxidation of water to dioxygen in plants, algae and certain bacteria contains a cluster of one calcium and four manganese ions. It serves as a model to split water by sunlight. Reports on the mechanism and structure of photosystem II provide a more detailed architecture of the oxygen evolving complex and the surrounding amino acids. One challenge in this field is the development of artificial model compounds to study oxygen evolution reaction outside the complicated environment of the enzyme. Calcium-manganese oxides as structural and functional models for the active site of photosystem II are explained and reviewed in this paper. Because of related structures of these calcium-manganese oxides and the catalytic centers of active site of the oxygen evolving complex of photosystem II, the study may help to understand more about mechanism of oxygen evolution by the oxygen evolving complex of photosystem II. Copyright © 2010 Elsevier B.V. All rights reserved.
Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.M .
2007-01-01
Selected organic wastewater compounds, such as household, industrial, and agricultural-use compounds, sterols, pharmaceuticals, and antibiotics, were measured at eight sites classified as drinking-water supplies in the Triangle Area of North Carolina. From October 2002 through July 2005, seven of the sites were sampled twice, and one site was sampled 28 times, for a total of 42 sets of environmental samples. Samples were analyzed for as many as 126 compounds using three laboratory analytical methods. These methods were developed by the U.S. Geological Survey to detect low levels (generally less than or equal to 1.0 microgram per liter) of the target compounds in filtered water. Because analyses were conducted on filtered samples, the results presented in this report may not reflect the total concentration of organic wastewater compounds in the waters that were sampled. Various quality-control samples were used to quality assure the results in terms of method performance and possible laboratory or field contamination. Of the 108 organic wastewater compounds that met method performance criteria, 24 were detected in at least one sample during the study. These 24 compounds included 3 pharmaceutical compounds, 6 fire retardants and plasticizers, 3 antibiotics, 3 pesticides, 6 fragrances and flavorants, 1 disinfectant, and 2 miscellaneous-use compounds, all of which likely originated from a variety of domestic, industrial, and agricultural sources. The 10 most frequently detected compounds included acetyl-hexamethyl tetrahydronaphthalene and hexahydro-hexamethyl cyclopentabenzopyran (synthetic musks that are widely used in personal-care products and are known endocrine disruptors); tri(2-chloroethyl) phosphate, tri(dichloroisopropyl) phosphate, and tributyl phosphate (fire retardants); metolachlor (herbicide); caffeine (nonprescription stimulant); cotinine (metabolite of nicotine); acetaminophen (nonprescription analgesic); and sulfamethoxazole (prescription antibiotic). The occurrence and distribution of organic wastewater compounds varied considerably among sampling sites, but at least one compound was detected at every location. The most organic wastewater compounds (19) were detected at the Neuse River above U.S. 70 at Smithfield, where two-thirds of the total number of samples were collected. The fewest organic wastewater compounds (1) were detected at the Eno River at Hillsborough. The detection of multiple organic wastewater compounds was common, with a median of 3.5 and as many as 12 compounds observed in individual samples. Some compounds, including acetaminophen, cotinine, tri(2-chloroethyl) phosphate, and metolachlor, were detected at numerous sites and in numerous samples, indicating that they are widely distributed in the environment. Other organic wastewater compounds, including acetyl-hexamethyl tetrahydronaphthalene and hexahydro-hexamethyl cyclopentabenzopyran, were detected in numerous samples but at only one location, indicating that sources of these compounds are more site specific. Results indicate that municipal wastewater may be a source of antibiotics and synthetic musks; however, the three sites in this study that are located downstream from wastewater discharges also receive runoff from agricultural, urban, and rural residential lands. Source identification was not an objective of this study. Concentrations of individual compounds generally were less than 0.5 microgram per liter. No concentrations exceeded Federal drinking-water standards or health advisories, nor water-quality criteria established by the State of North Carolina; however, such criteria are available for only a few of the compounds that were studied. Compared with other surface waters that have been sampled across the United States, the Triangle Area water-supply sites had fewer detections of organic wastewater compounds; however, differences in study design and analytical methods used among studies must be considered when mak
Cognitive Adaptations for n-person Exchange: The Evolutionary Roots of Organizational Behavior.
Tooby, John; Cosmides, Leda; Price, Michael E
2006-03-01
Organizations are composed of stable, predominantly cooperative interactions or n -person exchanges. Humans have been engaging in n -person exchanges for a great enough period of evolutionary time that we appear to have evolved a distinct constellation of species-typical mechanisms specialized to solve the adaptive problems posed by this form of social interaction. These mechanisms appear to have been evolutionarily elaborated out of the cognitive infrastructure that initially evolved for dyadic exchange. Key adaptive problems that these mechanisms are designed to solve include coordination among individuals, and defense against exploitation by free riders. Multi-individual cooperation could not have been maintained over evolutionary time if free riders reliably benefited more than contributors to collective enterprises, and so outcompeted them. As a result, humans evolved mechanisms that implement an aversion to exploitation by free riding, and a strategy of conditional cooperation, supplemented by punitive sentiment towards free riders. Because of the design of these mechanisms, how free riding is treated is a central determinant of the survival and health of cooperative organizations. The mapping of the evolved psychology of n -party exchange cooperation may contribute to the construction of a principled theoretical foundation for the understanding of human behavior in organizations.
Cognitive Adaptations for n-person Exchange: The Evolutionary Roots of Organizational Behavior
Tooby, John; Cosmides, Leda; Price, Michael E.
2013-01-01
Organizations are composed of stable, predominantly cooperative interactions or n-person exchanges. Humans have been engaging in n-person exchanges for a great enough period of evolutionary time that we appear to have evolved a distinct constellation of species-typical mechanisms specialized to solve the adaptive problems posed by this form of social interaction. These mechanisms appear to have been evolutionarily elaborated out of the cognitive infrastructure that initially evolved for dyadic exchange. Key adaptive problems that these mechanisms are designed to solve include coordination among individuals, and defense against exploitation by free riders. Multi-individual cooperation could not have been maintained over evolutionary time if free riders reliably benefited more than contributors to collective enterprises, and so outcompeted them. As a result, humans evolved mechanisms that implement an aversion to exploitation by free riding, and a strategy of conditional cooperation, supplemented by punitive sentiment towards free riders. Because of the design of these mechanisms, how free riding is treated is a central determinant of the survival and health of cooperative organizations. The mapping of the evolved psychology of n-party exchange cooperation may contribute to the construction of a principled theoretical foundation for the understanding of human behavior in organizations. PMID:23814325
Organic composition of fogwater in the Texas-Louisiana gulf coast corridor
NASA Astrophysics Data System (ADS)
Raja, Suresh; Raghunathan, Ravikrishna; Kommalapati, Raghava R.; Shen, Xinhua; Collett, Jeffrey L.; Valsaraj, Kalliat T.
Fogwater and air samples were collected in Baton Rouge between November 2004-February 2005 and during February 2006 at Houston. Organic compounds present in the fog samples were detected, quantified and then grouped into different compound classes based on molecular size, solubility and polarity using gas chromatography/mass spectrometry, high performance liquid chromatography with diode array detection and ion chromatography. Organic compounds were grouped as n-alkanes, aromatics and polycyclic aromatics, carbonyls, alcohols, amides and esters. Organic compounds in fog and air samples in Houston indicated clear urban/industrial anthropogenic origin, while compounds detected in Baton Rouge fog and air samples showed a mix of both agricultural and urban/industrial anthropogenic inputs. Among the various polycyclic aromatic compounds detected, the total concentration of naphthalene and its derivatives was 2.8 μg m -3 in Houston and 0.08 μg m -3 in Baton Rouge air. Analysis of concentrations of organic compounds pre- and post- fog revealed that compounds with low vapor pressure had higher scavenging efficiency in fog sampled at the two locations. Concentrations of organic compounds in fog samples were higher than those predicted by conventional air-water Henry's law equilibrium. Observed higher concentrations in the aqueous phase were modeled accounting for surface adsorption and accumulation of gas phase species and the presence of humic-like substances in fogwater.
NASA Technical Reports Server (NTRS)
Lauer, H. V., Jr.; Ming, Douglas W.; Golden, D. C.; Boynton, W. V.
2006-01-01
The Thermal and Evolved Gas Analyzer (TEGA) instrument scheduled to fly onboard the 2007 Mars Phoenix Scout Mission will perform differential scanning calorimetry (DSC) and evolved gas analysis (EGA) of soil samples and ice collected from the surface and subsurface at a northern landing site on Mars. We have been developing a sample characterization data library using a laboratory DSC integrated with a quadrupole mass spectrometer to support the interpretations of TEGA data returned during the mission. The laboratory TEGA test-bed instrument has been modified to operate under conditions similar to TEGA, i.e., reduced pressure (e.g., 100 torr) and reduced carrier gas flow rates. We have previously developed a TEGA data library for a variety of volatile-bearing mineral phases, including Fe-oxyhydroxides, phyllosilicates, carbonates, and sulfates. Here we examine the thermal and evolved gas properties of samples that contain organics. One of the primary objectives of the Phoenix Scout Mission is to search for habitable zones by assessing organic or biologically interesting materials in icy soil. Nitrogen is currently the carrier gas that will be used for TEGA. In this study, we examine two possible modes of detecting organics in geologic samples; i.e., pyrolysis using N2 as the carrier gas and combustion using O2 as the carrier gas.
NASA Astrophysics Data System (ADS)
Richman, B. A.; Hsiao, G. S.; Rella, C.
2010-12-01
Optical spectroscopy based CRDS technology for isotopic analysis of δD and δ18O directly from liquid water has greatly increased the number and type of liquid samples analyzed. This increase has also revealed a previously unrecognized sample contamination problem. Recently West[1] and Brand[2] identified samples containing ethanol, methanol, plant extracts and other organic compounds analyzed by CRDS and other spectroscopy based techniques as yielding erroneous results for δD and δ18O (especially δD) due to spectroscopic interference. Not all organic compounds generate interference. Thus, identifying which samples are contaminated by which organic compounds is of key importance for data credibility and correction. To address this problem a new approach in the form of a software suite, ChemCorrect™, has been developed. A chemometrics component uses a spectral library of water isotopologues and interfering organic compounds to best fit the measured spectra. The best fit values provide a quantitative assay of the actual concentrations of the various species and are then evaluated to generate a visual flag indicating samples affected by organic contamination. Laboratory testing of samples spiked with known quantities of interfering organic compounds such as methanol, ethanol, and terpenes was performed. The software correctly flagged and identified type of contamination for all the spiked samples without any false positives. Furthermore the reported values were a linear function of actual concentration with an R^2>0.99 even for samples which contained multiple organic compounds. Further testing was carried out against a range of industrial chemical compounds which can contaminate ground water as well as a variety of plant derived waters and juices which were also analyzed by IRMS. The excellent results obtained give good insight into which organic compounds cause interference and which classes of plants are likely to contain interfering compounds. Finally approaches to minimize the effect of interfering compounds will be discussed including methods to assess the confidence level of an isotopic value obtained from a contaminated sample. [1] Rapid Commun. Mass Spectrom. 2010; 24: 1-7 [2] Rapid Commun. Mass Spectrom. 2009; 23: 1879-1884 Results from laboratory samples, most of which were spiked with interfering organic compounds. Samples are color coded as follows: blue=standard, green=no contamination, yellow=slight contamination, red=heavily contaminated.
Molecular and Enantiomeric Analysis of Organic Compounds in Carbonaceous Meteorites
NASA Technical Reports Server (NTRS)
Cooper, George
2003-01-01
Carbonaceous meteorites are relatively enriched in carbon. Much of this carbon is in the form of soluble organic compounds. The Murchison and Murray meteorites are the best-characterized carbonaceous meteorites with respect to organic chemistry. Their content of organic compounds has led to an initial understanding of early solar system organic chemistry as well as what compounds may have played a role in the origin of life (Cronin and Chang, 1993). Reported compounds include: amino acids, amides, carboxylic acids, sulfonic acids, and polyols. This talk will focus on the molecular and enantiomeric analysis of individual meteoritic compounds: polyol acids; and a newly identified class of meteorite compounds, keto acids, i.e., acetoacetic acid, levulinic acid, etc. Keto acids (including pyruvic) are critically important in all contemporary organisms. They are key intermediates in metabolism and processes such as the citric acid cycle. Using gas chromatography-mass spectrometry we identified individual meteoritic keto acids after derivatization to one or more of the following forms: isopropyl ester (ISP), trimethyIsiIy1 (TMS), tert-butyldimethylsilyl (BDMS). Ongoing analyses will determine if, in addition to certain amino acids from Murchison (Cronin and Pizzarello, 1997), other potentially important prebiotic compounds also contain enantiomeric excesses, i.e., excesses that could have contributed to the current homochirality of life.
Organic electronic devices using phthalimide compounds
Hassan, Azad M.; Thompson, Mark E.
2010-09-07
Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.
Organic electronic devices using phthalimide compounds
Hassan, Azad M.; Thompson, Mark E.
2012-10-23
Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.
Organic electronic devices using phthalimide compounds
Hassan, Azad M.; Thompson, Mark E.
2013-03-19
Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.
40 CFR 63.4565 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2014 CFR
2014-07-01
... occurrence of the term volatile organic compounds (VOC) in the methods. (3) Use Equation 1 of this section to... the capture efficiency measurement, all organic compound emitting operations inside the building... organic compound emitting operations inside the building enclosure, other than the coating operation for...
40 CFR 63.4765 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2011 CFR
2011-07-01
..., substitute TVH for each occurrence of the term volatile organic compounds (VOC) in the methods. (3) Use... building enclosure. During the capture efficiency measurement, all organic compound emitting operations... enclosure is a building enclosure. During the capture efficiency measurement, all organic compound emitting...
40 CFR 63.4565 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2012 CFR
2012-07-01
... occurrence of the term volatile organic compounds (VOC) in the methods. (3) Use Equation 1 of this section to... the capture efficiency measurement, all organic compound emitting operations inside the building... organic compound emitting operations inside the building enclosure, other than the coating operation for...
40 CFR 63.4565 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2011 CFR
2011-07-01
... the term volatile organic compounds (VOC) in the methods. (3) Use Equation 1 of this section to... the capture efficiency measurement, all organic compound emitting operations inside the building... organic compound emitting operations inside the building enclosure, other than the coating operation for...
40 CFR 63.4565 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2013 CFR
2013-07-01
... the term volatile organic compounds (VOC) in the methods. (3) Use Equation 1 of this section to... the capture efficiency measurement, all organic compound emitting operations inside the building... organic compound emitting operations inside the building enclosure, other than the coating operation for...
40 CFR 63.4765 - How do I determine the emission capture system efficiency?
Code of Federal Regulations, 2013 CFR
2013-07-01
..., substitute TVH for each occurrence of the term volatile organic compounds (VOC) in the methods. (3) Use... building enclosure. During the capture efficiency measurement, all organic compound emitting operations... enclosure is a building enclosure. During the capture efficiency measurement, all organic compound emitting...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-15
... Promulgation of Implementation Plans for Tennessee: Revisions to Volatile Organic Compound Definition AGENCY... total of 17 compounds to the list of compounds excluded from the definition of ``Volatile Organic...: Sean Lakeman, Regulatory Development Section, Air Planning Branch, Air, Pesticides and Toxics...
Plant-Associated Bacterial Degradation of Toxic Organic Compounds in Soil
McGuinness, Martina; Dowling, David
2009-01-01
A number of toxic synthetic organic compounds can contaminate environmental soil through either local (e.g., industrial) or diffuse (e.g., agricultural) contamination. Increased levels of these toxic organic compounds in the environment have been associated with human health risks including cancer. Plant-associated bacteria, such as endophytic bacteria (non-pathogenic bacteria that occur naturally in plants) and rhizospheric bacteria (bacteria that live on and near the roots of plants), have been shown to contribute to biodegradation of toxic organic compounds in contaminated soil and could have potential for improving phytoremediation. Endophytic and rhizospheric bacterial degradation of toxic organic compounds (either naturally occurring or genetically enhanced) in contaminated soil in the environment could have positive implications for human health worldwide and is the subject of this review. PMID:19742157
[Preliminary determination of organic pollutants in agricultural fertilizers].
Mo, Ce-hui; Li, Yun-hui; Cai, Quan-ying; Zeng, Qiao-yun; Wang, Bo-guang; Li, Hai-qin
2005-05-01
Organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) in agricultural fertilizers are new problem deserved more study. Eight kinds of organic pollutants including 43 compounds classified as US EPA priority pollutants in twenty one agricultural fertilizers which were universally used in China were determined by Gas chromatography-mass spectrum (GC-MS). Three kinds of organic pollutants including more than 5 compounds were detected in most fertilizers, composing mainly of phthalic acid esters (PAEs), nitrobenzenes (NBs) and polycyclic aromatic hydrocarbons (PAHs). There were 26 compounds detected in at least one fertilizer, five of them especially PAEs detected in most fertilizer and even in all fertilizers. Benzo(a)pyrene, a strongly carcinogenic compound was detected in two fertilizers. Higher concentrations of compounds were determined in those fertilizers such as multifunction compound fertilizers and coated fertilizers.
Rapid NMR method for the quantification of organic compounds in thin stillage.
Ratanapariyanuch, Kornsulee; Shen, Jianheng; Jia, Yunhua; Tyler, Robert T; Shim, Youn Young; Reaney, Martin J T
2011-10-12
Thin stillage contains organic and inorganic compounds, some of which may be valuable fermentation coproducts. This study describes a thorough analysis of the major solutes present in thin stillage as revealed by NMR and HPLC. The concentration of charged and neutral organic compounds in thin stillage was determined by excitation sculpting NMR methods (double pulse field gradient spin echo). Compounds identified by NMR included isopropanol, ethanol, lactic acid, 1,3-propanediol, acetic acid, succinic acid, glycerophosphorylcholine, betaine, glycerol, and 2-phenylethanol. The concentrations of lactic and acetic acid determined with NMR were comparable to those determined using HPLC. HPLC and NMR were complementary, as more compounds were identified using both methods. NMR analysis revealed that stillage contained the nitrogenous organic compounds betaine and glycerophosphorylcholine, which contributed as much as 24% of the nitrogen present in the stillage. These compounds were not observed by HPLC analysis.
Shelton, Larry R.
1997-01-01
For many years, stream samples for analysis of volatile organic compounds have been collected without specific guidelines or a sampler designed to avoid analyte loss. In 1996, the U.S. Geological Survey's National Water-Quality Assessment Program began aggressively monitoring urban stream-water for volatile organic compounds. To assure representative samples and consistency in collection procedures, a specific sampler was designed to collect samples for analysis of volatile organic compounds in stream water. This sampler, and the collection procedures, were tested in the laboratory and in the field for compound loss, contamination, sample reproducibility, and functional capabilities. This report describes that sampler and its use, and outlines field procedures specifically designed to provide contaminant-free, reproducible volatile organic compound data from stream-water samples. These guidelines and the equipment described represent a significant change in U.S. Geological Survey instructions for collecting and processing stream-water samples for analysis of volatile organic compounds. They are intended to produce data that are both defensible and interpretable, particularly for concentrations below the microgram-per-liter level. The guidelines also contain detailed recommendations for quality-control samples.
Tritium labeling of organic compounds deposited on porous structures
Ehrenkaufer, Richard L. E.; Wolf, Alfred P.; Hembree, Wylie C.
1979-01-01
An improved process for labeling organic compounds with tritium is carried out by depositing the selected compound on the extensive surface of a porous structure such as a membrane filter and exposing the membrane containing the compound to tritium gas activated by the microwave discharge technique. The labeled compound is then recovered from the porous structure.
PLUTONIUM COMPOUNDS AND PROCESS FOR THEIR PREPARATION
Wolter, F.J.; Diehl, H.C. Jr.
1958-01-01
This patent relates to certain new compounds of plutonium, and to the utilization of these compounds to effect purification or separation of the plutonium. The compounds are organic chelate compounds consisting of tetravalent plutonium together with a di(salicylal) alkylenediimine. These chelates are soluble in various organic solvents, but not in water. Use is made of this property in extracting the plutonium by contacting an aqueous solution thereof with an organic solution of the diimine. The plutonium is chelated, extracted and effectively separated from any impurities accompaying it in the aqueous phase.
Steiner, Christopher F.
2012-01-01
The ability of organisms to adapt and persist in the face of environmental change is accepted as a fundamental feature of natural systems. More contentious is whether the capacity of organisms to adapt (or “evolvability”) can itself evolve and the mechanisms underlying such responses. Using model gene networks, I provide evidence that evolvability emerges more readily when populations experience positively autocorrelated environmental noise (red noise) compared to populations in stable or randomly varying (white noise) environments. Evolvability was correlated with increasing genetic robustness to effects on network viability and decreasing robustness to effects on phenotypic expression; populations whose networks displayed greater viability robustness and lower phenotypic robustness produced more additive genetic variation and adapted more rapidly in novel environments. Patterns of selection for robustness varied antagonistically with epistatic effects of mutations on viability and phenotypic expression, suggesting that trade-offs between these properties may constrain their evolutionary responses. Evolution of evolvability and robustness was stronger in sexual populations compared to asexual populations indicating that enhanced genetic variation under fluctuating selection combined with recombination load is a primary driver of the emergence of evolvability. These results provide insight into the mechanisms potentially underlying rapid adaptation as well as the environmental conditions that drive the evolution of genetic interactions. PMID:23284934
1987-03-01
compound promises to reduce weight of future permanent magnet motors by 20 to 30 percent; a similar reduction is expected in size (approximately 20...drive systems. The AC permanent magnet (brushless DC motor) is rapidly evolving and will replace most electrically excited machines. Permanent magnet motors using
Leaner, More Effective Schools
ERIC Educational Resources Information Center
Fielding, Randall
2012-01-01
School districts across North America are facing a crushing dilemma: invest millions of dollars to maintain outdated, educationally ineffective buildings or seek funding for expensive renovations, additions, and new construction to meet the evolving needs of today's learners. Compounding the issue is deferred facility maintenance. Educational…
Genetic architecture of evolved tolerance to PCBs in the estuarine fish Fundulus heteroclitus
Populations of Atlantic killifish (F. heteroclitus) resident to coastal estuarine habitats contaminated with halogenated aromatic hydrocarbons (HAHs) exhibit heritable resistance to the early life-stage toxicity associated with these compounds. Beyond our knowledge of the aryl hy...
Kang, Bo-Sik; Lee, Jang-Eun; Park, Hyun-Jin
2014-06-01
In Korean rice wine (makgeolli) model, we tried to develop a prediction model capable of eliciting a quantitative relationship between initial amino acids in makgeolli mash and major aromatic compounds, such as fusel alcohols, their acetate esters, and ethyl esters of fatty acids, in makgeolli brewed. Mass-spectrometry-based electronic nose (MS-EN) was used to qualitatively discriminate between makgeollis made from makgeolli mashes with different amino acid compositions. Following this measurement, headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry (GC-MS) combined with partial least-squares regression (PLSR) method was employed to quantitatively correlate amino acid composition of makgeolli mash with major aromatic compounds evolved during makgeolli fermentation. In qualitative prediction with MS-EN analysis, the makgeollis were well discriminated according to the volatile compounds derived from amino acids of makgeolli mash. Twenty-seven ion fragments with mass-to-charge ratio (m/z) of 55 to 98 amu were responsible for the discrimination. In GC-MS combined with PLSR method, a quantitative approach between the initial amino acids of makgeolli mash and the fusel compounds of makgeolli demonstrated that coefficient of determination (R(2)) of most of the fusel compounds ranged from 0.77 to 0.94 in good correlation, except for 2-phenylethanol (R(2) = 0.21), whereas R(2) for ethyl esters of MCFAs including ethyl caproate, ethyl caprylate, and ethyl caprate was 0.17 to 0.40 in poor correlation. The amino acids have been known to affect the aroma in alcoholic beverages. In this study, we demonstrated that an electronic nose qualitatively differentiated Korean rice wines (makgeollis) by their volatile compounds evolved from amino acids with rapidity and reproducibility and successively, a quantitative correlation with acceptable R2 between amino acids and fusel compounds could be established via HS-SPME GC-MS combined with partial least-squares regression. Our approach for predicting the quantities of volatile compounds in the finished product from initial condition of fermentation will give an insight to food researchers to modify and optimize the qualities of the corresponding products. © 2014 Institute of Food Technologists®
Organic compound composition in soil and sediments collected in Jackson, Mississippi.
Gołębiowski, Marek; Stepnowski, Piotr; Hemmingway, Tometrick; Leszczyńska, Danuta
2016-01-01
The aim of our study was to identify organic pollutants found in soil and sediment samples collected within the Jackson, MS metropolitan area. The chemical characterization of the organic compound fractions in soil and sediment samples was carried out by separating the organic fraction using column chromatography (CC) and quantitatively analyzing the polycyclic aromatic hydrocarbons (PAHs), n-alkanes and other organic compounds using gas chromatography-electron impact mass spectrometry (GC-MS). Fifty-six compounds were identified and quantified in the soil samples and 33 compounds were identified and quantified in the sediment samples. The PAHs, n-alkanes and other organic compound profiles in the soil and sediment samples were compared. The percentage contents of the organic compounds in the soil samples were very diverse (from traces to 12.44 ± 1.47%). The compounds present in the highest concentrations were n-alkanes: n-C31 (12.44 ± 1.47%), n-C29 (11.64 ± 1.21%), and n-C33 (8.95 ± 1.08%). The components occurring in smaller quantities (from 1% to 5%) were 2 PAHs (fluoranthene 1.28 ± 0.25%, pyrene 1.16 ± 0.20%), 10 n-alkanes from n-C21 (1.25 ± 0.29%) to n-C32 (2.67 ± 0.52%) and 11 other compounds (e.g., 2-pentanol, 4-methyl (3.33 ± 0.44%), benzyl butyl phthalate (4.25 ± 0.59%), benzenedicarboxylic acid (1.14 ± 0.08%), ethane, 1,1-diethoxy (3.15 ± 0.41) and hexadecanoic acid (2.52 ± 0.34). The soil samples also contained 30 compounds present in concentrations <1% (e.g., anthracene (0.13 ± 0.04%), n-C20 (0.84 ± 0.21%) and acetic acid (0.12 ± 0.04%). The compounds present in the highest concentrations in the sediment samples were PAHs: pyrene (7.73 ± 1.15%) and fluoranthene (6.23 ± 1.07%) and n-alkanes: n-C31 (6.74 ± 1.21%), n-C29 (6.65 ± 0.98%) and n-C27 (6.13 ± 1.09%). The remaining organic compounds were present in smaller quantities (< 5%).
Jarau, Stefan; Dambacher, Jochen; Twele, Robert; Aguilar, Ingrid; Francke, Wittko; Ayasse, Manfred
2010-09-01
Stingless bees, like honeybees, live in highly organized, perennial colonies. Their eusocial way of life, which includes division of labor, implies that only a fraction of the workers leave the nest to forage for food. To ensure a sufficient food supply for all colony members, stingless bees have evolved different mechanisms to recruit workers to foraging or even to communicate the location of particular food sites. In some species, foragers deposit pheromone marks between food sources and their nest, which are used by recruited workers to locate the food. To date, pheromone compounds have only been described for 3 species. We have identified the trail pheromone of a further species by means of chemical and electrophysiological analyses and with bioassays testing natural gland extracts and synthetic compounds. The pheromone is a blend of wax type and terpene esters. The relative proportions of the single components showed significant differences in the pheromones of foragers form 3 different colonies. This is the first report on a trail pheromone comprised of esters of 2 different biogenetic origins proving variability of the system. Pheromone specificity may serve to avoid confusions between the trails deposited by foragers of different nests and, thus, to decrease competition at food sources.
Schiestl, Florian P; Dötterl, Stefan
2012-07-01
Coevolution is thought to be a major factor in shaping plant-pollinator interactions. Alternatively, plants may have evolved traits that fitted pre-existing preferences or morphologies in the pollinators. Here, we test these two scenarios in the plant family of Araceae and scarab beetles (Coleoptera, Scarabaeidae) as pollinators. We focused on floral volatile organic compounds (VOCs) and production/detection of VOCs by scarab beetles. We found phylogenetic structure in the production/detection of methoxylated aromatics in scarabs, but not plants. Within the plants, most of the compounds showed a well-supported pattern of correlated evolution with scarab-beetle pollination. In contrast, the scarabs showed no correlation between VOC production/detection and visitation to Araceae flowers, with the exception of the VOC skatole. Moreover, many VOCs were found in nonpollinating beetle groups (e.g., Melolonthinae) that are ancestors of pollinating scarabs. Importantly, none of the tested VOCs were found to have originated in pollinating taxa. Our analysis indicates a Jurassic origin of VOC production/detection in scarabs, but a Cretaceous/Paleocene origin of floral VOCs in plants. Therefore, we argue against coevolution, instead supporting the scenario of sequential evolution of floral VOCs in Araceae driven by pre-existing bias of pollinators. © 2012 The Author(s).
Oxidation and cyclization of organics in Mars-like soils during evolved gas analysis
NASA Astrophysics Data System (ADS)
Navarro-Gonzalez, Rafael; Iñiguez, Enrique; de La Rosa, Jose; McKay, Chris
Thermal volatilization (TV) of soils has been used as the method of choice in space because of its simplicity and reproducibility. TV was first used by the Viking Landers, which failed to detect organics at ppb levels and subsequently by the Phoenix Lander that did not find organics but instead detected the release of carbon dioxide from 400 to 680° C which was attributed to magnesium or iron carbonate, adsorbed carbon dioxide, or organics present in the soil. Future missions such as the Mars Science Laboratory from NASA and ExoMars from ESA will also use this method to release soil organics to the analytical instruments. The presence of inorganic salts or minerals can strongly modify the release of soil organics leading to their degradation and/or oxidation resulting in loss of sensitivity by several orders of magnitude. The purpose of this work is to study the matrix effects of some minerals and Martian soil analogues in the analysis of organics by TV. Samples were analyzed by TV-MS and/or TV-GC-MS in neutral (He) and reducing (H2 ) atmospheres following the methods reported by Navarro-González eta al., 2006, 2009 and Iñiguez et al., 2009. Our results show that oxidation of organic matter is n promoted by several soil minerals (iron oxides) and inorganic salts (perchlorates, persulphates, sulfates, nitrates) in a neutral atmosphere; however, in a reducing atmosphere the oxidation of organics by the mineral matrix is reduced. Furthermore it was found that the stable organics that were thermally evolved were aromatic in nature (benzene and methyl benzene). Therefore, depending on the mineral matrix there is completion between formation of aromatic compounds versus oxidation. Iñiguez, E., Navarro-González, R., de la Rosa, J., Ureña-Núnez, F., Coll, P., Raulin, F., and McKay, C.P.: 2009, On the oxidation ability of the NASA Mars-1 soil simulant during the thermal volatilization step. Implications for the search of organics on Mars. Geophys Res Lett 36, L21205, doi:10.1029/2009GL040454. Navarro-González, R., Navarro, K.F., de la Rosa, J., Molina, P., Iñiguez, E., Miranda, L.D., a n Morales, P., Cienfuegos, E., Coll, P., Raulin, F., Amils, R. and McKay, C.P.: 2006. The limitations on organic detection in Mars-like soils by thermal volatilization-gas chromatography-MS and their implications for the Viking results. Proc Natl Acad Sci USA 103, 16089-16094. Navarro-González, R., Iñiguez, E., de la Rosa, J. and McKay, C.P.: 2009, Characterization of a n organics, microorganisms, desert soils and Mars-like soils by thermal volatilization coupled to mass spectrometry and their implications for the search of organics on Mars by Phoenix and future space missions. Astrobiology 9, 703-715, doi: 10.1089/ast.2008.0284.
A Practical Software Architecture for Virtual Universities
ERIC Educational Resources Information Center
Xiang, Peifeng; Shi, Yuanchun; Qin, Weijun
2006-01-01
This article introduces a practical software architecture called CUBES, which focuses on system integration and evolvement for online virtual universities. The key of CUBES is a supporting platform that helps to integrate and evolve heterogeneous educational applications developed by different organizations. Both standardized educational…
Nishiguchi, M. K.; Lopez, J. E.; Boletzky, S. v.
2012-01-01
Summary Bioluminescence is widespread among many different types of marine organisms. Metazoans contain two types of luminescence production, bacteriogenic (symbiotic with bacteria) or autogenic, via the production of a luminous secretion or the intrinsic properties of luminous cells. Several species in two families of squids, the Loliginidae and the Sepiolidae (Mollusca: Cephalopoda) harbor bacteriogenic light organs that are found central in the mantle cavity. These light organs are exceptional in function, that is, the morphology and the complexity suggests that the organ has evolved to enhance and direct light emission from bacteria that are harbored inside. Although light organs are widespread among taxa within the Sepiolidae, the origin and development of this important feature is not well studied. We compared light organ morphology from several closely related taxa within the Sepiolidae and combined molecular phylogenetic data using four loci (nuclear ribosomal 28S rRNA and the mitochondrial cytochrome c oxidase subunit I and 12S and 16S rRNA) to determine whether this character was an ancestral trait repeatedly lost among both families or whether it evolved independently as an adaptation to the pelagic and benthic lifestyles. By comparing other closely related extant taxa that do not contain symbiotic light organs, we hypothesized that the ancestral state of sepiolid light organs most likely evolved from part of a separate accessory gland open to the environment that allowed colonization of bacteria to occur and further specialize in the eventual development of the modern light organ. PMID:15108817
Kohri, Kumiko; Yoshida, Eiko; Yasuike, Shuji; Fujie, Tomoya; Yamamoto, Chika; Kaji, Toshiyuki
2015-06-01
Organic-inorganic hybrid molecules, which are composed of an organic structure and metal(s), are indispensable for synthetic chemical reactions; however, their toxicity has been incompletely understood. In the present study, we discovered two cytotoxic organobismuth compounds whose cytotoxicity diminished upon replacement of the intramolecular bismuth atom with an antimony atom. The intracellular accumulation of the organobismuth compounds was much higher than that of the organoantimony compounds with the corresponding organic structures. We also showed that both the organic structure and bismuth atom are required for certain organobismuth compounds to exert their cytotoxic effect, suggesting that the cytotoxicity of such a compound is a result of an interaction between the organic structure and the bismuth atom. The present data suggest that organobismuth compounds with certain molecular structures exhibit cytotoxicity via an interaction between the molecular structure and the bismuth atom, and this cytotoxicity can be diminished by replacing the bismuth atom with an antimony atom, resulting in lower intracellular accumulation.
Enhanced transport of low-polarity organic compounds through soil by cyclodextrin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brusseau, M.L.; Wang, X.; Hu, Q.
1994-05-01
The removal of low-polarity organic compounds from soils and aquifers by water flushing is often constrained by sorption interactions. There is great interest in developing systems that can enhance the transport of organic compounds through porous media, thus facilitating remediation. We investigated the potential of hydroxypropyl-[beta]-cyclodextrin (HPCD), a microbially produced compound, to reduce the sorption and to enhance the transport of several low-polarity organic compounds. The results show that cyclodextrin does not interact with the two porous media used in the study. As a result, there is no retardation of cyclodextrin during transport. The retardation of compounds such as anthracene,more » pyrene, and trichlorobiphenyl was significantly (orders of magnitude) reduced in the presence of cyclodextrin. The enhancement effect of the cyclodextrin was predictable with a simple equation based on three-phase partitioning. The nonreactive nature of cyclodextrin combined with its large affinity for low-polarity organic compounds makes cyclodextrin a possible candidate for use in in-situ remediation efforts. 22 refs., 6 figs., 3 tabs.« less
NASA Astrophysics Data System (ADS)
Nakajima, H.; Arakaki, T.; Anastasio, C.
2008-12-01
Large organic compounds such as hyaluronic acid and chondroitin sulfate are often used in pharmaceutical and cosmetics products, but their chemical degradation pathways are not well understood. To better elucidate their fate in the aquatic environment, we initiated a study to determine bimolecular rate constants between these organic compounds and hydroxyl radical (OH), which is a potent oxidant in the environment. The lifetimes of many organic compounds are determined by reactions with OH radicals, and the lifetime of OH is often controlled by reactions with organic compounds. To determine these bimolecular rate constants we used a competition kinetics technique with either hydrogen peroxide or nitrate as a source of OH and benzoate as the competing sink. Since the molecular weights of some of the large organic compounds we studied were not known, we used dissolved organic carbon (DOC) concentrations to determine mole-carbon based bimolecular rate constants, instead of the commonly used molar-based bimolecular rate constants. We will report the mole-carbon based bimolecular rate constants of OH, determined at room temperature, with hyaluronic acid, chondroitin sulfate and some other large organic compounds.
Phase 1 Methyl Iodide Deep-Bed Adsorption Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soelberg, Nick; Watson, Tony
2014-08-22
Nuclear fission results in the production of fission products (FPs) and activation products including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent [Jubin 2012b]. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing hasmore » progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the first phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during Fiscal Year (FY) 2013 and early FY-2014. Testing has been performed to address questions posed in the test plan, and followed the testing outline in the test plan. Tests established detection limits, developed procedures for sample analysis with minimal analytical interferences, and confirmed earlier results that show that the methyl iodide reacts when in contact with the AgZ sorbent, and not significantly in the gas flow upstream of the sorbent. The reaction(s) enable separation of the iodine from the organic moiety, so that the iodine can chemisorb onto the sorbent. The organic moiety can form other compounds, some of which are organic compounds that are detected and can be tentatively identified using GC-FID and GCMS. Test results also show that other gas constituents (NOx and/or H2O) can affect the methyl iodide reactions. With NOx and H2O present in the gas stream, the majority of uncaptured iodine exiting iodine-laden sorbent beds is in the form of I2 or HI, species that are soluble in NaOH scrubbing solution for iodine analysis. But when NOx and H2O are not present, then the majority of the uncaptured iodine exiting iodine-laden sorbent is in the form of methyl iodide. Methyl iodide adsorption efficiencies have been high enough so that initial DFs exceed 1,000 to 10,000. The methyl iodide mass transfer zone depths are estimated at 4-8 inches, possibly deeper than mass transfer zone depths estimated for I2 adsorption on AgZ. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.« less
A comparison was made of polar organic compounds found in the field with those produced in secondary organic aerosol from laboratory irradiations of natural hydrocarbons and oxides of nitrogen. The field samples comprised atmospheric particulate matter (PM2.5) collect...
Singh, Anshika; Thakur, Narsinh L
2016-01-05
Marine sessile organisms often inhabit rocky substrata, which are crowded by other sessile organisms. They acquire living space via growth interactions and/or by allelopathy. They are known to secrete toxic compounds having multiple roles. These compounds have been explored for their possible applications in cancer chemotherapy, because of their ability to kill rapidly dividing cells of competitor organisms. As compared to the therapeutic applications of these compounds, their possible ecological role in competition for space has received little attention. To select the potential candidate organisms for the isolation of lead cytotoxic molecules, it is important to understand their chemical ecology with special emphasis on their allelopathic interactions with their competitors. Knowledge of the ecological role of allelopathic compounds will contribute significantly to an understanding of their natural variability and help us to plan effective and sustainable wild harvests to obtain novel cytotoxic chemicals. This review highlights the significance of studying allelopathic interactions of marine invertebrates in the discovery of cytotoxic compounds, by selecting sponge as a model organism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Organic compounds in hydraulic fracturing fluids and wastewaters: A review.
Luek, Jenna L; Gonsior, Michael
2017-10-15
High volume hydraulic fracturing (HVHF) of shale to stimulate the release of natural gas produces a large quantity of wastewater in the form of flowback fluids and produced water. These wastewaters are highly variable in their composition and contain a mixture of fracturing fluid additives, geogenic inorganic and organic substances, and transformation products. The qualitative and quantitative analyses of organic compounds identified in HVHF fluids, flowback fluids, and produced waters are reviewed here to communicate knowledge gaps that exist in the composition of HVHF wastewaters. In general, analyses of organic compounds have focused on those amenable to gas chromatography, focusing on volatile and semi-volatile oil and gas compounds. Studies of more polar and non-volatile organic compounds have been limited by a lack of knowledge of what compounds may be present as well as quantitative methods and standards available for analyzing these complex mixtures. Liquid chromatography paired with high-resolution mass spectrometry has been used to investigate a number of additives and will be a key tool to further research on transformation products that are increasingly solubilized through physical, chemical, and biological processes in situ and during environmental contamination events. Diverse treatments have been tested and applied to HVHF wastewaters but limited information has been published on the quantitative removal of individual organic compounds. This review focuses on recently published information on organic compounds identified in flowback fluids and produced waters from HVHF. Copyright © 2017 Elsevier Ltd. All rights reserved.
Butler, Caitlyn S.; Lovley, Derek R.
2016-11-28
As interest and application of renewable energy grows, strategies are needed to align the asynchronous supply and demand. Microbial metabolisms are a potentially sustainable mechanism for transforming renewable electrical energy into biocommodities that are easily stored and transported. Acetogens and methanogens can reduce carbon dioxide to organic products including methane, acetic acid, and ethanol. The library of biocommodities is expanded when engineered metabolisms of acetogens are included. Typically, electrochemical systems are employed to integrate renewable energy sources with biological systems for production of carbon-based commodities. Within these systems, there are three prevailing mechanisms for delivering electrons to microorganisms for themore » conversion of carbon dioxide to reduce organic compounds: (1) electrons can be delivered to microorganisms via H 2 produced separately in a electrolyzer, (2) H 2 produced at a cathode can convey electrons to microorganisms supported on the cathode surface, and (3) a cathode can directly feed electrons to microorganisms. Each of these strategies has advantages and disadvantages that must be considered in designing full-scale processes. Furthermore, this review considers the evolving understanding of each of these approaches and the state of design for advancing these strategies toward viability.« less
Rachamim, Tamar; Sher, Daniel
2012-01-01
Hydra and its fellow cnidarians - sea anemones, corals and jellyfish - are simple, mostly sessile animals that depend on bioactive chemicals for survival. In this review, we briefly describe what is known about the chemical armament of Hydra, and detail future research directions where Hydra can help illuminate major questions in chemical ecology, pharmacology, developmental biology and evolution. Focusing on two groups of putative toxins from Hydra - phospholipase A2s and proteins containing ShK and zinc metalloprotease domains, we ask: how do different venom components act together during prey paralysis? How is a venom arsenal created and how does it evolve? How is the chemical arsenal delivered to its target? To what extent does a chemical and biotic coupling exist between an organism and its environment? We propose a model whereby in Hydra and other cnidarians, bioactive compounds are secreted both as localized point sources (nematocyte discharges) and across extensive body surfaces, likely combining to create complex "chemical landscapes". We speculate that these cnidarian-derived chemical landscapes may affect the surrounding community on scales from microns to, in the case of coral reefs, hundreds of kilometers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, Caitlyn S.; Lovley, Derek R.
As interest and application of renewable energy grows, strategies are needed to align the asynchronous supply and demand. Microbial metabolisms are a potentially sustainable mechanism for transforming renewable electrical energy into biocommodities that are easily stored and transported. Acetogens and methanogens can reduce carbon dioxide to organic products including methane, acetic acid, and ethanol. The library of biocommodities is expanded when engineered metabolisms of acetogens are included. Typically, electrochemical systems are employed to integrate renewable energy sources with biological systems for production of carbon-based commodities. Within these systems, there are three prevailing mechanisms for delivering electrons to microorganisms for themore » conversion of carbon dioxide to reduce organic compounds: (1) electrons can be delivered to microorganisms via H 2 produced separately in a electrolyzer, (2) H 2 produced at a cathode can convey electrons to microorganisms supported on the cathode surface, and (3) a cathode can directly feed electrons to microorganisms. Each of these strategies has advantages and disadvantages that must be considered in designing full-scale processes. Furthermore, this review considers the evolving understanding of each of these approaches and the state of design for advancing these strategies toward viability.« less
Butler, Caitlyn S; Lovley, Derek R
2016-01-01
As interest and application of renewable energy grows, strategies are needed to align the asynchronous supply and demand. Microbial metabolisms are a potentially sustainable mechanism for transforming renewable electrical energy into biocommodities that are easily stored and transported. Acetogens and methanogens can reduce carbon dioxide to organic products including methane, acetic acid, and ethanol. The library of biocommodities is expanded when engineered metabolisms of acetogens are included. Typically, electrochemical systems are employed to integrate renewable energy sources with biological systems for production of carbon-based commodities. Within these systems, there are three prevailing mechanisms for delivering electrons to microorganisms for the conversion of carbon dioxide to reduce organic compounds: (1) electrons can be delivered to microorganisms via H 2 produced separately in a electrolyzer, (2) H 2 produced at a cathode can convey electrons to microorganisms supported on the cathode surface, and (3) a cathode can directly feed electrons to microorganisms. Each of these strategies has advantages and disadvantages that must be considered in designing full-scale processes. This review considers the evolving understanding of each of these approaches and the state of design for advancing these strategies toward viability.
Organic Matter in Space (IAU S251)
NASA Astrophysics Data System (ADS)
Kwok, Sun; Sanford, Scott
2008-10-01
Preface; From the local organising committee; Organising committee; Conference participants; Opening address of Symposium 251 C. Cesarsky; Session I. Observations of organic compounds beyond the Solar System William Irvine, Ewine van Dishoeck, Yvonne Pendleton and Hans Olofsson; Session II. Organic compounds within the Solar System Scott Sandford, Ernst Zinner and Dale Cruikshank; Session III. Laboratory analogues of organic compounds in space Max Bernstein and Thomas Henning; Banquet speech; Author index; Object index.
Organic Matter in Space (IAU S251)
NASA Astrophysics Data System (ADS)
Kwok, Sun; Sanford, Scott
2009-01-01
Preface; From the local organising committee; Organising committee; Conference participants; Opening address of Symposium 251 C. Cesarsky; Session I. Observations of organic compounds beyond the Solar System William Irvine, Ewine van Dishoeck, Yvonne Pendleton and Hans Olofsson; Session II. Organic compounds within the Solar System Scott Sandford, Ernst Zinner and Dale Cruikshank; Session III. Laboratory analogues of organic compounds in space Max Bernstein and Thomas Henning; Banquet speech; Author index; Object index.
Cheney, Karen L.; White, Andrew; Mudianta, I. Wayan; Winters, Anne E.; Quezada, Michelle; Capon, Robert J.; Mollo, Ernesto; Garson, Mary J.
2016-01-01
Natural products play an invaluable role as a starting point in the drug discovery process, and plants and animals use many interesting biologically active natural products as a chemical defense mechanism against predators. Among marine organisms, many nudibranch gastropods are known to derive defensive metabolites from the sponges they eat. Here we investigated the putative sequestration of the toxic compound latrunculin A—a 16-membered macrolide that prevents actin polymerization within cellular processes—which has been identified from sponge sources, by five closely related nudibranch molluscs of the genus Chromodoris. Only latrunculin A was present in the rim of the mantle of these species, where storage reservoirs containing secondary metabolites are located, whilst a variety of secondary metabolites were found in their viscera. The species studied thus selectively accumulate latrunculin A in the part of the mantle that is more exposed to potential predators. This study also demonstrates that latrunculin-containing sponges are not their sole food source. Latrunculin A was found to be several times more potent than other compounds present in these species of nudibranchs when tested by in vitro and in vivo toxicity assays. Anti-feedant assays also indicated that latrunculin A was unpalatable to rock pool shrimps, in a dose-dependent manner. These findings led us to propose that this group of nudibranchs has evolved means both to protect themselves from the toxicity of latrunculin A, and to accumulate this compound in the mantle rim for defensive purposes. The precise mechanism by which the nudibranchs sequester such a potent compound from sponges without disrupting their own key physiological processes is unclear, but this work paves the way for future studies in this direction. Finally, the possible occurrence of both visual and chemosensory Müllerian mimicry in the studied species is discussed. PMID:26788920
Macey, Gregg P; Breech, Ruth; Chernaik, Mark; Cox, Caroline; Larson, Denny; Thomas, Deb; Carpenter, David O
2014-10-30
Horizontal drilling, hydraulic fracturing, and other drilling and well stimulation technologies are now used widely in the United States and increasingly in other countries. They enable increases in oil and gas production, but there has been inadequate attention to human health impacts. Air quality near oil and gas operations is an underexplored human health concern for five reasons: (1) prior focus on threats to water quality; (2) an evolving understanding of contributions of certain oil and gas production processes to air quality; (3) limited state air quality monitoring networks; (4) significant variability in air emissions and concentrations; and (5) air quality research that misses impacts important to residents. Preliminary research suggests that volatile compounds, including hazardous air pollutants, are of potential concern. This study differs from prior research in its use of a community-based process to identify sampling locations. Through this approach, we determine concentrations of volatile compounds in air near operations that reflect community concerns and point to the need for more fine-grained and frequent monitoring at points along the production life cycle. Grab and passive air samples were collected by trained volunteers at locations identified through systematic observation of industrial operations and air impacts over the course of resident daily routines. A total of 75 volatile organics were measured using EPA Method TO-15 or TO-3 by gas chromatography/mass spectrometry. Formaldehyde levels were determined using UMEx 100 Passive Samplers. Levels of eight volatile chemicals exceeded federal guidelines under several operational circumstances. Benzene, formaldehyde, and hydrogen sulfide were the most common compounds to exceed acute and other health-based risk levels. Air concentrations of potentially dangerous compounds and chemical mixtures are frequently present near oil and gas production sites. Community-based research can provide an important supplement to state air quality monitoring programs.
Extraterrestrial Organic Compounds in Meteorites
NASA Technical Reports Server (NTRS)
Botta, Oliver; Bada, Jeffrey L.; Meyer, Michael (Technical Monitor)
2003-01-01
Many organic compounds or their precursors found in meteorites originated in the interstellar or circumstellar medium and were later incorporated into planetesimals during the formation of the solar system. There they either survived intact or underwent further processing to synthesize secondary products on the meteorite parent body. The most distinct feature of CI and CM carbonaceous chondrites, two types of stony meteorites, is their high carbon content (up to 3% of weight), either in the form of carbonates or of organic compounds. The bulk of the organic carbon consists of an insoluble macromolecular material with a complex structure. Also present is a soluble organic fraction, which has been analyzed by several separation and analytical procedures. Low detection limits can be achieved by derivatization of the organic molecules with reagents that allow for analysis by gas chromatography/mass spectroscopy and high performance liquid chromatography. The CM meteorite Murchison has been found to contain more than 70 extraterrestrial amino acids and several other classes of compounds including carboxylic acids, hydroxy carboxylic acids, sulphonic and phosphonic acids, aliphatic, aromatic and polar hydrocarbons, fullerenes, heterocycles as well as carbonyl compounds, alcohols, amines and amides. The organic matter was found to be enriched in deuterium, and distinct organic compounds show isotopic enrichments of carbon and nitrogen relative to terrestrial matter.
NASA Astrophysics Data System (ADS)
Millan, Maeva; Szopa, Cyril; Buch, Arnaud; Belmahdi, Imène; Coll, Patrice; Glavin, Daniel P.; Freissinet, Caroline; Archer, Doug; Sutter, Brad; Summons, Roger E.; Navarro-Gonzalez, Rafael; Cabane, Michel; Mahaffy, Paul
2016-04-01
The Sample Analysis at Mars (SAM) experiment onboard the Curiosity rover of the Mars Science Laboratory mission is partly devoted to the in situ molecular analysis of gases evolving from solid samples collected on Mars surface/sub-surface. SAM has a gas-chromatograph coupled to a quadrupole mass spectrometer (GC-QMS) devoted to the separation and identification of organic and inorganic material [1]. Before proceeding to the GC-QMS analysis, the solid sample collected by Curiosity is subjected to a thermal treatment thanks to the pyrolysis oven to release the volatiles into the gas processing system. As the Viking landers in 1976 [2], SAM detected chlorohydrocarbons with the pyrolysis GC-QMS experiment [3,4]. The detection of perchlorates salts in soil at the Phoenix Landing site [6] suggests that these chlorohydrocarbons could come from the reaction of organics with oxychlorines. Oxychlorines indeed decomposed into molecular oxygen and volatile chlorine when heated and react with the organic matter in the samples by oxidation and/or chlorination processes. [3,5,7,8]. During SAM pyrolysis, samples are heated to 850°C. SAM detected C1 to C3 chloroalkanes, entirely attributed to reaction products occurring during the pyrolysis experiment between oxychlorines and organic carbon from instrument background [3] and chlorobenzene and C2 to C4 dichloroalkanes produced by reaction between Mars endogenous organics with oxychlorines [4]. To help understanding the influence of perchlorate and chlorate salts on organic matter during SAM pyrolysis, we systemically study the reaction products formed during pyrolysis of various organic compounds mixed with various perchlorates and chlorates. We selected organics from simple molecule forms as for instance PAHs and amino acids to complex material (>30 carbon atoms) such as kerogen. The perchlorate and chlorate salts are prepared at 1 wt % concentration in silica and mixed with the organics to study the potential qualitative and/or quantitative effects. The experiments are performed on a laboratory GC-QMS with a Restek Rxi-5 column (30m x 0.25mm x 0.25μm) and an Intersciences pyrolyser. The mixture is pyrolyzed at different temperatures up to 900°C to cover the SAM temperature range. Different experiments are done to discriminate the pyrolysis products directly coming from the organics, and those produced from the reaction with oxychlorine. These experiments are under progress and should bring key information on the potential to identify Martian organics when pyrolyzing solid samples. Depending on the organic families studied, we may find recurring molecules, which are potentially present in Mars' surface samples. This work could thus highlight some organic precursors of the chlorinated compounds found on Mars, and support the interpretation of SAM measurements. References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Biemann, K. et al (1977) JGR, 82, 4641-4658. [3] Glavin, D. et al. (2013), JGR 118, 1955-1973. [4] Freissinet, C. et al. (2015) JGR. [5] Leshin L. et al. (2013), Science. [6] Hecht, (2009), Science, 325 64-67. [7] Navarro-Gonzalez et al. (2010) JGR 115, EI12010. [8] Steninger, H. et al (2012) Planet. Space Sci. 71, 9-17. Acknowledgments: French Space Agency (CNES) support for SAM-GC development and exploitation.
Arthropod eyes: The early Cambrian fossil record and divergent evolution of visual systems.
Strausfeld, Nicholas J; Ma, Xiaoya; Edgecombe, Gregory D; Fortey, Richard A; Land, Michael F; Liu, Yu; Cong, Peiyun; Hou, Xianguang
2016-03-01
Four types of eyes serve the visual neuropils of extant arthropods: compound retinas composed of adjacent facets; a visual surface populated by spaced eyelets; a smooth transparent cuticle providing inwardly directed lens cylinders; and single-lens eyes. The first type is a characteristic of pancrustaceans, the eyes of which comprise lenses arranged as hexagonal or rectilinear arrays, each lens crowning 8-9 photoreceptor neurons. Except for Scutigeromorpha, the second type typifies Myriapoda whose relatively large eyelets surmount numerous photoreceptive rhabdoms stacked together as tiers. Scutigeromorph eyes are facetted, each lens crowning some dozen photoreceptor neurons of a modified apposition-type eye. Extant chelicerate eyes are single-lensed except in xiphosurans, whose lateral eyes comprise a cuticle with a smooth outer surface and an inner one providing regular arrays of lens cylinders. This account discusses whether these disparate eye types speak for or against divergence from one ancestral eye type. Previous considerations of eye evolution, focusing on the eyes of trilobites and on facet proliferation in xiphosurans and myriapods, have proposed that the mode of development of eyes in those taxa is distinct from that of pancrustaceans and is the plesiomorphic condition from which facetted eyes have evolved. But the recent discovery of enormous regularly facetted compound eyes belonging to early Cambrian radiodontans suggests that high-resolution facetted eyes with superior optics may be the ground pattern organization for arthropods, predating the evolution of arthrodization and jointed post-protocerebral appendages. Here we provide evidence that compound eye organization in stem-group euarthropods of the Cambrian can be understood in terms of eye morphologies diverging from this ancestral radiodontan-type ground pattern. We show that in certain Cambrian groups apposition eyes relate to fixed or mobile eyestalks, whereas other groups reveal concomitant evolution of sessile eyes equipped with optics typical of extant xiphosurans. Observations of fossil material, including that of trilobites and eurypterids, support the proposition that the ancestral compound eye was the apposition type. Cambrian arthropods include possible precursors of mandibulate eyes. The latter are the modified compound eyes, now sessile, and their underlying optic lobes exemplified by scutigeromorph chilopods, and the mobile stalked compound eyes and more elaborate optic lobes typifying Pancrustacea. Radical divergence from an ancestral apposition type is demonstrated by the evolution of chelicerate eyes, from doublet sessile-eyed stem-group taxa to special apposition eyes of xiphosurans, the compound eyes of eurypterids, and single-lens eyes of arachnids. Different eye types are discussed with respect to possible modes of life of the extinct species that possessed them, comparing these to extant counterparts and the types of visual centers the eyes might have served. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cook, Ryan D.; Lin, Ying-Hsuan; Peng, Zhuoyu; ...
2017-12-21
Organic aerosol formation and transformation occurs within aqueous aerosol and cloud droplets, yet little is known about the composition of high molecular weight organic compounds in cloud water. Cloud water samples collected at Whiteface Mountain, New York, during August-September 2014 were analyzed by ultra-high-resolution mass spectrometry to investigate the molecular composition of dissolved organic carbon, with a focus on sulfur- and nitrogen-containing compounds. Organic molecular composition was evaluated in the context of cloud water inorganic ion concentrations, pH, and total organic carbon concentrations to gain insights into the sources and aqueous-phase processes of the observed high molecular weight organic compounds.more » Cloud water acidity was positively correlated with the average oxygen : carbon ratio of the organic constituents, suggesting the possibility for aqueous acid-catalyzed (prior to cloud droplet activation or during/after cloud droplet evaporation) and/or radical (within cloud droplets) oxidation processes. Many tracer compounds recently identified in laboratory studies of bulk aqueous-phase reactions were identified in the cloud water. Organosulfate compounds, with both biogenic and anthropogenic volatile organic compound precursors, were detected for cloud water samples influenced by air masses that had traveled over forested and populated areas. Oxidation products of long-chain (C 10-12) alkane precursors were detected during urban influence. Influence of Canadian wildfires resulted in increased numbers of identified sulfur-containing compounds and oligomeric species, including those formed through aqueous-phase reactions involving methylglyoxal. Light-absorbing aqueous-phase products of syringol and guaiacol oxidation were observed in the wildfire-influenced samples, and dinitroaromatic compounds were observed in all cloud water samples (wildfire, biogenic, and urban-influenced). Overall, the cloud water molecular composition depended on air mass source influence and reflected aqueous-phase reactions involving biogenic, urban, and biomass burning precursors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Ryan D.; Lin, Ying-Hsuan; Peng, Zhuoyu
Organic aerosol formation and transformation occurs within aqueous aerosol and cloud droplets, yet little is known about the composition of high molecular weight organic compounds in cloud water. Cloud water samples collected at Whiteface Mountain, New York, during August-September 2014 were analyzed by ultra-high-resolution mass spectrometry to investigate the molecular composition of dissolved organic carbon, with a focus on sulfur- and nitrogen-containing compounds. Organic molecular composition was evaluated in the context of cloud water inorganic ion concentrations, pH, and total organic carbon concentrations to gain insights into the sources and aqueous-phase processes of the observed high molecular weight organic compounds.more » Cloud water acidity was positively correlated with the average oxygen : carbon ratio of the organic constituents, suggesting the possibility for aqueous acid-catalyzed (prior to cloud droplet activation or during/after cloud droplet evaporation) and/or radical (within cloud droplets) oxidation processes. Many tracer compounds recently identified in laboratory studies of bulk aqueous-phase reactions were identified in the cloud water. Organosulfate compounds, with both biogenic and anthropogenic volatile organic compound precursors, were detected for cloud water samples influenced by air masses that had traveled over forested and populated areas. Oxidation products of long-chain (C 10-12) alkane precursors were detected during urban influence. Influence of Canadian wildfires resulted in increased numbers of identified sulfur-containing compounds and oligomeric species, including those formed through aqueous-phase reactions involving methylglyoxal. Light-absorbing aqueous-phase products of syringol and guaiacol oxidation were observed in the wildfire-influenced samples, and dinitroaromatic compounds were observed in all cloud water samples (wildfire, biogenic, and urban-influenced). Overall, the cloud water molecular composition depended on air mass source influence and reflected aqueous-phase reactions involving biogenic, urban, and biomass burning precursors.« less
75 FR 57412 - Approval and Promulgation of Implementation Plans Alabama: Volatile Organic Compounds
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-21
...] Approval and Promulgation of Implementation Plans Alabama: Volatile Organic Compounds AGENCY: Environmental... compounds'' (VOCs) found at Alabama Administrative Code section 335-3-1-.02(gggg). Specifically, the revision would add two compounds (propylene carbonate and dimethyl carbonate) to the list of those excluded...
NASA Technical Reports Server (NTRS)
McAdam, A. C.; Franz, H. B.; Archer, P. D. Jr.; Sutter, B.; Eigenbrode, J. L.; Freissinet, C.; Atreya, S. K.; Bish, D. L.; Blake, D. F.; Brunner, A.;
2014-01-01
The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) analysed several subsamples of sample fines (<150 µm) from three sites in Yellowknife Bay, an aeolian bedform termed Rocknest (hereafter "RN") and two samples drilled from the Sheepbed mudstone at sites named John Klein ("JK") and Cumberland ("CB"). SAM's evolved gas analysis (EGA) mass spectrometry detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, OCS, CS2 and other trace gases. The identity of evolved gases and temperature (T) of evolution can support mineral detection by CheMin and place constraints on trace volatile-bearing phases present below the CheMin detection limit or difficult to characterize with XRD (e.g., X-ray amorphous phases). Here, we focus on potential constraints on phases that evolved SO2, H2S, OCS, and CS2 during thermal analysis.
Loyd, S J
2017-01-01
Concretions are preferentially cemented zones within sediments and sedimentary rocks. Cementation can result from relatively early diagenetic processes that include degradation of sedimentary organic compounds or methane as indicated by significantly 13 C-depleted or enriched carbon isotope compositions. As minerals fill pore space, reduced permeability may promote preservation of sediment components from degradation during subsequent diagenesis, burial heating and outcrop weathering. Discrete and macroscopic organic remains, macro and microfossils, magnetic grains, and sedimentary structures can be preferentially preserved within concretions. Here, Cretaceous carbonate concretions of the Holz Shale are shown to contain relatively high carbonate-free total organic carbon (TOC) contents (up to ~18.5 wt%) compared to the surrounding host rock (with <2.1 wt%). TOC increases with total inorganic carbon (TIC) content, a metric of the degree of cementation. Pyrite contents within concretions generally correlate with organic carbon contents. Concretion carbonate carbon isotope compositions (δ 13 C carb ) range from -22.5 to -3.4‰ (VPDB) and do not correlate strongly with TOC. Organic carbon isotope compositions (δ 13 C org ) of concretions and host rock are similar. Thermal maturity data indicate that both host and concretion organic matter are overmature and have evolved beyond the oil window maturity stage. Although the organic matter in general has experienced significant oxidative weathering, concretion interiors exhibit lower oxygen indices relative to the host. These results suggest that carbonate concretions can preferentially preserve overmature, ancient, sedimentary organic matter during outcrop weathering, despite evidence for organic matter degradation genetic mechanisms. As a result, concretions may provide an optimal proxy target for characterization of more primary organic carbon concentrations and chemical compositions. In addition, these findings indicate that concretions can promote delayed oxidative weathering of organic carbon in outcrop and therefore impact local chemical cycling. © 2016 John Wiley & Sons Ltd.
Fu, J; Wang, Z; Mai, B; Kang, Y
2001-01-01
Field monitoring of the toxic organic compounds (PCBs, PAHs, organochlorine pesticides) in the top sediments of Pearl River Estuary and its up-streams were made. It was found that the highest concentrations of these toxic organic compounds occurred in the sediment sampled at Macau inner harbor (ZB013), which is a sink of suspended fine particles transported from the upstream waterways. Because of the affinity of the hydrophobic organic compounds (PAHs, PCBs) for the solid phase, these fine particle depositions led to accumulation of these compounds in the sediment of Macau. The atmospheric dry deposition may be another source of the toxic organic pollution in the sediment.
A review of the organic geochemistry of shales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, P.C.; Meyer, R.E.
1987-06-01
Shale formations have been suggested as a potential site for a high level nuclear waste repository. As a first step in the study of the possible interaction of nuclides with the organic components of the shales, literature on the identification of organic compounds from various shales of the continent of the United States has been reviewed. The Green River shale of the Cenozoic era is the most studied shale followed by the Pierre shale of the Mesozoic era and the Devonian black shale of the Paleozoic era. Organic compounds that have been identified from these shales are hydrocarbons, fatty acids,more » fatty alcohols, steranes, terpanes, carotenes, carbohydrates, amino acids, and porphyrins. However, these organic compounds constitute only a small fraction of the organics in shales and the majority of the organic compounds in shales are still unidentified.« less
Huang, Zhongping; Zhang, Jie; Zhang, Peipei; Wang, Hong; Pan, Zaifa; Wang, Lili
2016-07-01
Headspace solid-phase microextraction coupled with cryotrap gas chromatography and mass spectrometry was applied to the analysis of volatile organic compounds in pleural effusions. The highly volatile organic compounds were separated successfully with high sensitivity by the employment of a cryotrap device, with the construction of a cold column head by freezing a segment of metal capillary with liquid nitrogen. A total of 76 volatile organic compounds were identified in 50 pleural effusion samples (20 malignant effusions and 30 benign effusions). Among them, 34 more volatile organic compounds were detected with the retention time less than 8 min, by comparing with the normal headspace solid-phase microextraction coupled with gas chromatography and mass spectrometry method. Furthermore, 24 volatile organic compounds with high occurrence frequency in pleural effusion samples, 18 of which with the retention time less than 8 min, were selected for the comparative analysis. The results of average peak area comparison and box-plot analysis showed that except for cyclohexanone, 2-ethyl-1-hexanol, and tetramethylbenzene, which have been reported as potential cancer biomarkers, cyclohexanol, dichloromethane, ethyl acetate, n-heptane, ethylbenzene, and xylene also had differential expression between malignant and benign effusions. Therefore, the proposed approach was valuable for the comprehensive characterization of volatile organic compounds in pleural effusions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jehlicka, J; Edwards, H G M; Culka, A
2010-07-13
Organic minerals, organic acids and NH-containing organic molecules represent important target molecules for astrobiology. Here, we present the results of the evaluation of a portable hand-held Raman spectrometer to detect these organic compounds outdoors under field conditions. These measurements were carried out during the February-March 2009 winter period in Austrian Alpine sites at temperatures ranging between -5 and -25 degrees C. The compounds investigated were detected under field conditions and their main Raman spectral features were observed unambiguously at their correct reference wavenumber positions. The results obtained demonstrate that a miniaturized Raman spectrometer equipped with 785 nm excitation could be applied with advantage as a key instrument for investigating the presence of organic minerals, organic acids and nitrogen-containing organic compounds outdoors under terrestrial low-temperature conditions. Within the payload designed by ESA and NASA for several missions focusing on Mars, Titan, Europa and other extraterrestrial bodies, Raman spectroscopy can be proposed as an important non-destructive analytical tool for the in situ identification of organic compounds relevant to life detection on planetary and moon surfaces or near subsurfaces.
X-ray absorption spectroscopy and EPR studies of oriented spinach thylakoid preparations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, J.C.
In this study, oriented Photosystem II (PS II) particles from spinach chloroplasts are studied with electron paramagnetic resonance (EPR) and x-ray absorption spectroscopy (XAS) to determine more details of the structure of the oxygen evolving complex (OEC). The nature of halide binding to Mn is also studied with Cl K-edge and Mn EXAFS (extended x-ray absorption fine structure) of Mn-Cl model compounds, and with Mn EXAFS of oriented PS II in which Br has replaced Cl. Attention is focused on the following: photosynthesis and the oxygen evolving complex; determination of mosaic spread in oriented photosystem II particles from signal IImore » EPR measurement; oriented EXAFS--studies of PS II in the S{sub 2} state; structural changes in PS II as a result of treatment with ammonia: EPR and XAS studies; studies of halide binding to Mn: Cl K-edge and Mn EXAFS of Mn-Cl model compounds and Mn EXAFS of oriented Br-treated photosystem II.« less
Extrafloral-nectar-based partner manipulation in plant–ant relationships
Grasso, D. A.; Pandolfi, C.; Bazihizina, N.; Nocentini, D.; Nepi, M.; Mancuso, S.
2015-01-01
Plant–ant interactions are generally considered as mutualisms, with both parties gaining benefits from the association. It has recently emerged that some of these mutualistic associations have, however, evolved towards other forms of relationships and, in particular, that plants may manipulate their partner ants to make reciprocation more beneficial, thereby stabilizing the mutualism. Focusing on plants bearing extrafloral nectaries, we review recent studies and address three key questions: (i) how can plants attract potential partners and maintain their services; (ii) are there compounds in extrafloral nectar that could mediate partner manipulation; and (iii) are ants susceptible to such compounds? After reviewing the current knowledge on plant–ant associations, we propose a possible scenario where plant-derived chemicals, such as secondary metabolites, known to have an impact on animal brain, could have evolved in plants to attract and manipulate ant behaviour. This new viewpoint would place plant–animal interaction in a different ecological context, opening new ecological and neurobiological perspectives of drug seeking and use. PMID:25589521
HS-SPME analysis of volatile organic compounds of coniferous needle litter
NASA Astrophysics Data System (ADS)
Isidorov, V. A.; Vinogorova, V. T.; Rafałowski, K.
The composition of volatile emission of Scots pine ( Pinus sylvestris) and spruce ( Picea exelsa) litter was studied by gas chromatography-mass spectrometry (GC-MS) and samples were collected by solid-phase microextraction (SPME) method. The list of identified compounds includes over 60 organic substances of different classes. It was established that volatile emission contain not only components of essential oils of pine and spruce needles but also a large number of organic compounds which are probably secondary metabolites of litter-decomposing fungi. They include lower carbonyl compounds and alcohols as well as products of terpene dehydration and oxidation. These data show that the processes of litter decomposition are an important source of reactive organic compounds under canopy of coniferous forests.
Tetratopic phenyl compounds, related metal-organic framework materials and post-assembly elaboration
Farha, Omar K.; Hupp, Joseph T.
2012-09-11
Disclosed are tetratopic carboxylic acid phenyl for use in metal-organic framework compounds. These compounds are useful in catalysis, gas storage, sensing, biological imaging, drug delivery and gas adsorption separation.
Tetratopic phenyl compounds, related metal-organic framework materials and post-assembly elaboration
Farha, Omar K; Hupp, Joseph T
2013-06-25
Disclosed are tetratopic carboxylic acid phenyl for use in metal-organic framework compounds. These compounds are useful in catalysis, gas storage, sensing, biological imaging, drug delivery and gas adsorption separation.
Presence and distribution of chlorinated organic compounds in streambed sediments, new jersey
Stackelberg, P.E.
1997-01-01
Concentrations of 18 hydrophobic chlorinated organic compounds in streambed sediments from 100 sites throughout New Jersey were examined to determine (1) which compounds were detected most frequently, (2) whether detection frequencies differed among selected drainage basins, and (3) whether concentrations differed significantly among selected drainage basins. Twelve drainage basins across New Jersey that contain a range of land-use patterns and population densities were selected to represent various types and degrees of development. To ensure an adequate number of samples for statistical comparison among drainage basins, the 12 selected basins were consolidated into seven drainage areas on the basis of similarities in land- use patterns and population densities. Additionally, data for three classes of chlorinated organic compounds in streambed sediments from 255 sites throughout New Jersey were examined to determine whether the presence of these compounds in streambed sediments is related to the type and degree of development within the drainage area of each sampling site. Chlorinated organic compounds detected most frequently within the seven representative drainage areas were DDT, DDE, DDD, chlordane, dieldrin, and PCBs. DDT, DDE, and DDD, which were the most widely distributed organic compounds, were detected in about 60 to 100 percent of the samples from all drainage areas hut one (where the detection rate for these compounds was about 20 to 40 percent). Chlordane and dieldrin were detected in about 80 to 100 percent of samples from highly urbanized and populated drainage areas; detection frequencies for these compounds tended to be smaller in less developed and populated areas. PCBs were detected in about 40 to 85 percent of samples from all drainage areas; detection frequencies were highest in the most heavily developed and populated areas. Analysis of variance on rank-transformed organic compound concentrations normalized to sediment organic carbon content was used to evaluate differences in concentrations among the seven representative drainage areas. Chlordane and PCBs were the chlorinated organic compounds with the most highly elevated concentrations in streambed sediments across the State. Median normalized COncentrations of all six of the most frequently detected chlorinated organic compounds were highest in the most heavily urbanized and populated drainage area and lowest in the less populated, predominantly agricultural or forested areas. Concentrations of DDT and DDE, however, did not differ significantly among most of the drainage areas. Concentrations of DDD, chlordane, dieldrin, and PCBs differed significantly among drainage areas. The highest median normalized concentrations were found in samples from the most heavily urbanized and populated areas, and the lowest were in samples from the least developed, most heavily forested area. Logistic regression was used to examine relations between the presence of hydrophobic chlorinated organic compounds in streambed sediments at specified concentrations and variables that characterize the type and degree of development within the drainage areas of 255 sites across New Jersey. The explanatory variables found most useful for predicting the presence of chlorinated organic compounds in streambed sediments include total population and amounts (in square kilometers) of various land-use categories. Logistic regression equations were developed to identify significant relations between population and amounts of specific land-use categories within drainage areas and the probability of detecting chlorinated organic contaminants in streambed sediments. These relations can be used to assist in the identification of geographic regions of primary concern for contamination of bed sediments by chlorinated organic compounds across the State.
Adaptive tuning of mutation rates allows fast response to lethal stress in Escherichia coli
Swings, Toon; Van den Bergh, Bram; Wuyts, Sander; Oeyen, Eline; Voordeckers, Karin; Verstrepen, Kevin J; Fauvart, Maarten; Verstraeten, Natalie; Michiels, Jan
2017-01-01
While specific mutations allow organisms to adapt to stressful environments, most changes in an organism's DNA negatively impact fitness. The mutation rate is therefore strictly regulated and often considered a slowly-evolving parameter. In contrast, we demonstrate an unexpected flexibility in cellular mutation rates as a response to changes in selective pressure. We show that hypermutation independently evolves when different Escherichia coli cultures adapt to high ethanol stress. Furthermore, hypermutator states are transitory and repeatedly alternate with decreases in mutation rate. Specifically, population mutation rates rise when cells experience higher stress and decline again once cells are adapted. Interestingly, we identified cellular mortality as the major force driving the quick evolution of mutation rates. Together, these findings show how organisms balance robustness and evolvability and help explain the prevalence of hypermutation in various settings, ranging from emergence of antibiotic resistance in microbes to cancer relapses upon chemotherapy. DOI: http://dx.doi.org/10.7554/eLife.22939.001 PMID:28460660
NASA Astrophysics Data System (ADS)
Sutter, B.; McAdam, A. C.; Mahaffy, P. R.; Ming, D. W.; Edgett, K. S.; Rampe, E. B.; Eigenbrode, J. L.; Franz, H. B.; Freissinet, C.; Grotzinger, J. P.; Steele, A.; House, C. H.; Archer, P. D.; Malespin, C. A.; Navarro-González, R.; Stern, J. C.; Bell, J. F.; Calef, F. J.; Gellert, R.; Glavin, D. P.; Thompson, L. M.; Yen, A. S.
2017-12-01
The sample analysis at Mars instrument evolved gas analyzer (SAM-EGA) has detected evolved water, H2, SO2, H2S, NO, CO2, CO, O2, and HCl from two eolian sediments and nine sedimentary rocks from Gale Crater, Mars. These evolved gas detections indicate nitrates, organics, oxychlorine phase, and sulfates are widespread with phyllosilicates and carbonates occurring in select Gale Crater materials. Coevolved CO2 (160 ± 248-2373 ± 820 μgC(CO2)/g) and CO (11 ± 3-320 ± 130 μgC(CO)/g) suggest that organic C is present in Gale Crater materials. Five samples evolved CO2 at temperatures consistent with carbonate (0.32 ± 0.05-0.70 ± 0.1 wt % CO3). Evolved NO amounts to 0.002 ± 0.007-0.06 ± 0.03 wt % NO3. Evolution of O2 suggests that oxychlorine phases (chlorate/perchlorate) (0.05 ± 0.025-1.05 ± 0.44 wt % ClO4) are present, while SO2 evolution indicates the presence of crystalline and/or poorly crystalline Fe and Mg sulfate and possibly sulfide. Evolved H2O (0.9 ± 0.3-2.5 ± 1.6 wt % H2O) is consistent with the presence of adsorbed water, hydrated salts, interlayer/structural water from phyllosilicates, and possible inclusion water in mineral/amorphous phases. Evolved H2 and H2S suggest that reduced phases occur despite the presence of oxidized phases (nitrate, oxychlorine, sulfate, and carbonate). SAM results coupled with CheMin mineralogical and Alpha-Particle X-ray Spectrometer elemental analyses indicate that Gale Crater sedimentary rocks have experienced a complex authigenetic/diagenetic history involving fluids with varying pH, redox, and salt composition. The inferred geochemical conditions were favorable for microbial habitability and if life ever existed, there was likely sufficient organic C to support a small microbial population.
Cost Effective, Ultra Sensitive Groundwater Monitoring for Site Remediation and Management
2015-05-01
feasibility studies. ................... 30 Table 5. Compounds screened in the laboratory for IS2 sampling...tank SVOC semivolatile organic compound TCE trichloroethene TPH total petroleum hydrocarbon USEPA U.S. Environmental Protection Agency UST...underground storage tank V volt VOA volatile organic analysis VOC volatile organic compound Technical material contained in this report has
End-group-directed self-assembly of organic compounds useful for photovoltaic applications
Beaujuge, Pierre M.; Lee, Olivia P.; Yiu, Alan T.; Frechet, Jean M.J.
2016-05-31
The present invention provides for an organic compound comprising electron deficient unit covalently linked to two or more electron rich units. The present invention also provides for a device comprising the organic compound, such as a light-emitting diode, thin-film transistor, chemical biosensor, non-emissive electrochromic, memory device, photovoltaic cells, or the like.
78 FR 53029 - Air Quality: Revision to Definition of Volatile Organic Compounds-Exclusion of trans
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-28
... Air Quality: Revision to Definition of Volatile Organic Compounds--Exclusion of trans 1-chloro-3,3,3.... SUMMARY: The EPA is taking final action to revise the regulatory definition of volatile organic compounds..., June 16, 2010), and as a solvent for metals, electronics, and precision cleaning and in adhesives...
URANIUM EXTRACTION PROCESS USING SYNERGISTIC REAGENTS
Schmitt, J.M.; Blake, C.A. Jr.; Brown, K.B.; Coleman, C.F.
1958-11-01
Improved methods are presented for recovering uranium values from aqueous solutions by organic solvent extraction. The improvement lies in the use, in combination, of two classes of organic compounds so that their extracting properties are enhanced synergistically. The two classes of organic compounds are dialkylphosphoric acid and certain neutral organophosphorus compounds such as trialkylphosphates, trialkylphosphonates, trlalkylphosphinates and trialkylphosphine oxides.
ERIC Educational Resources Information Center
Dintzner, Matthew R.; Kinzie, Charles R.; Pulkrabek, Kimberly A.; Arena, Anthony F.
2011-01-01
SIPCAn, an acronym for separation, isolation, purification, characterization, and analysis, is presented as a one-term, integrated project for the first-term undergraduate organic laboratory course. Students are assigned two mixtures of unknown organic compounds--a mixture of two liquid compounds and a mixture of two solid compounds--at the…
Orodispersible Films for Compounding Pharmacies.
Ferreira, Anderson O; Brandão, Marcos Antônio F; Raposo, Francisco José; Polonini, Hudson C; Raposo, Nádia Rezende Barbosa
2017-01-01
Orodispersible film can be defined as a solid pharmaceutical form intended for the delivery and rapid local or systemic release of active ingredients, consisting of a water-soluble polymer film that hydrates rapidly, adhering and dissolving immediately when placed on the tongue or in the oral cavity (oral, palatal, gingival, lingual, or sublingual), without the need for water administration or mastication. Due to its outstanding importance in cases of emergency, practicality of use by patients in transit, and high adherence, orodispersible film has evolved in popularity and success among consumers. It is a promising dosage form for compounding pharmacies, as simpler technologies are being developed to make the compound process easier and faster for the pharmacist. This article aims to explore some of the basics on orodispersible film and the main possible preparations to be developed in compounding pharmacies worldwide. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Organic contamination of ground water at Gas Works Park, Seattle, Washington
Turney, G.L.; Goerlitz, D.F.
1990-01-01
Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on-site. The park soil is currently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the ground water. Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in ground water samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where ground water was in contact with a non-aqueous phase liquid in the soil. Where no non-aqueous phase liquid was present, concentrations were much smaller, even if the ground water was in contact with contaminated soils. This condition is attributed to weathering processes in which soluble, low-molecular-weight organic compounds are preferentially dissolved from the non-aqueous phase liquid into the ground water. Where no non-aqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain. Concentrations of organic contaminants in the soils may still remain large.
Barber, Larry B.; Writer, Jeffrey H.; Keefe, Steffanie K.; Brown, Greg K.; Ferrey, Mark L.; Jahns, Nathan D.; Kiesling, Richard L.; Lundy, James R.; Poganski, Beth H.; Rosenberry, Donald O.; Taylor, Howard E.; Woodruff, Olivia P.; Schoenfuss, Heiko L.
2012-01-01
Understanding the sources, fate, and effects of endocrine disrupting chemicals in aquatic ecosystems is important for water-resource management. This study was conducted during 2008 and 2010 to establish a framework for assessing endocrine disrupting chemicals, and involved a statewide survey of their occurrence in 14 Minnesota lakes and a targeted study of different microhabitats on a single lake. The lakes ranged in size from about 0.1 to 100 square kilometers, varied in trophic status from oligotrophic to eutrophic, and spanned a range of land-uses from wetlands and forest to agricultural and urban use. Water and sediment samples were collected from the near-shore littoral environment and analyzed for endocrine disrupting chemicals, including trace elements, acidic organic compounds, neutral organic compounds, and steroidal hormones. In addition, polar organic compound integrative samplers were deployed for 21 days and analyzed for the same organic compounds. One lake was selected for a detailed microhabitat study of multiple near-shore environments. This report compiles the results from the field measurements and laboratory chemical analysis of water, sediment, and polar organic compound integrative sampler samples collected during 2008 and 2010. Most of the organic compounds measured were not detected in any of the water samples, although a few compounds were detected in several of the lakes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Ryan D.; Lin, Ying-Hsuan; Peng, Zhuoyu
Organic aerosol formation and transformation occurs within aqueous aerosol and cloud droplets, yet little is known about the composition of high molecular weight organic compounds in cloud water. Cloud water samples collected at Whiteface Mountain, New York, during August-September 2014 were analyzed by ultra-high-resolution mass spectrometry to investigate the molecular composition of dissolved organic carbon, with a focus on sulfur- and nitrogen-containing compounds. Organic molecular composition was evaluated in the context of cloud water inorganic ion concentrations, pH, and total organic carbon concentrations to gain insights into the sources and aqueous-phase processes of the observed high molecular weight organic compounds.more » Cloud water acidity was positively correlated with the average oxygen : carbon ratio of the organic constituents, suggesting the possibility for aqueous acid-catalyzed (prior to cloud droplet activation or during/after cloud droplet evaporation) and/or radical (within cloud droplets) oxidation processes. Many tracer compounds recently identified in laboratory studies of bulk aqueous-phase reactions were identified in the cloud water. Organosulfate compounds, with both biogenic and anthropogenic volatile organic compound precursors, were detected for cloud water samples influenced by air masses that had traveled over forested and populated areas. Oxidation products of long-chain (C 10-12) alkane precursors were detected during urban influence. Influence of Canadian wildfires resulted in increased numbers of identified sulfur-containing compounds and oligomeric species, including those formed through aqueous-phase reactions involving methylglyoxal. Light-absorbing aqueous-phase products of syringol and guaiacol oxidation were observed in the wildfire-influenced samples, and dinitroaromatic compounds were observed in all cloud water samples (wildfire, biogenic, and urban-influenced). Overall, the cloud water molecular composition depended on air mass source influence and reflected aqueous-phase reactions involving biogenic, urban, and biomass burning precursors.« less
Phosphorus sorption on marine carbonate sediment: phosphonate as model organic compounds.
Huang, Xiao-Lan; Zhang, Jia-Zhong
2011-11-01
Organophosphonate, characterized by the presence of a stable, covalent, carbon to phosphorus (C-P) bond, is a group of synthetic or biogenic organophosphorus compounds. The fate of these organic phosphorus compounds in the environment is not well studied. This study presents the first investigation on the sorption of phosphorus (P) in the presence of two model phosphonate compounds, 2-aminothylphosphonoic acid (2-AEP) and phosphonoformic acid (PFA), on marine carbonate sediments. In contrast to other organic P compounds, no significant inorganic phosphate exchange was observed in seawater. P was found to adsorb on the sediment only in the presence of PFA, not 2-AEP. This indicated that sorption of P from phosphonate on marine sediment was compound specific. Compared with inorganic phosphate sorption on the same sediments, P sorption from organic phosphorus is much less in the marine environment. Further study is needed to understand the potential role of the organophosphonate compounds in biogeochemical cycle of phosphorus in the environment. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bodek, Itamar; Ehntholt, Daniel J.; Stolki, Thomas J.; Trabanino, Rudy; Hinsdale, Lloyd; Webb, Johanna; Sauer, Richard L.
1992-01-01
The Volatile Organics Concentrator (VOC) system, designed to attach to a gas chromatograph/mass spectrometer (GC/MS) for the analyses of volatile organic compounds in water on Space Station Freedom, is described. Organic volatiles are collected and concentrated in the VOC by means of two primary solid sorbent tubes and desorbed into the GC/MS system. The paper describes the results of testing the VOC breadboard using a GC/MS system. Evaluations performed on 39 organic compounds recovered from water samples were compared with data for these compounds using direct injection/GC/MS and purge and trap/GC/MS procedures. The results demonstrate that the VOC/GC/MS system's detection limits for the 39 compounds analyzed are comparable to those of the EPA Method 524.2, and for many compounds reaching a factor of 5 lower.
Sullivan, D.J.; Terrio, P.J.
1994-01-01
This report describes the sampling design and methods and presents data collected to determine the distribution of agricultural organic compounds, nutrients, and sediment in selected areas of the upper Illinois River Basin as part of the National Water-Quality Assessment program. Four stations in small watersheds (two urban, two agricultural) were sampled in 1988 and 1989. Seventeen stations in an agricultural subbasin were sampled in 1990. Samples were collected before, during, and after runoff events from late spring to midsummer to determine concentrations of agricultural organic compounds in surface waters resulting from storm runoff, as well as background concentrations. Over 200 water samples were analyzed for agricultural organic compound, nutrient, and suspended-sediment concentrations. The agricultural organic compounds included triazine and chlorophenoxy-acid herbicides, and organo-phosphorus insecticides.
Lawrence, Stephen J.
2006-01-01
This report provides abridged information describing the most salient properties and biodegradation of 27 chlorinated volatile organic compounds detected during ground-water studies in the United States. This information is condensed from an extensive list of reports, papers, and literature published by the U.S. Government, various State governments, and peer-reviewed journals. The list includes literature reviews, compilations, and summaries describing volatile organic compounds in ground water. This report cross-references common names and synonyms associated with volatile organic compounds with the naming conventions supported by the International Union of Pure and Applied Chemistry. In addition, the report describes basic physical characteristics of those compounds such as Henry's Law constant, water solubility, density, octanol-water partition (log Kow), and organic carbon partition (log Koc) coefficients. Descriptions and illustrations are provided for natural and laboratory biodegradation rates, chemical by-products, and degradation pathways.
Organic compounds downstream from a treated-wastewater discharge near Dallas, Texas, March 1987
Buszka, P.M.; Barber, L.B.; Schroeder, M.P.; Becker, L.D.
1994-01-01
Comparison of instantaneous flux values of selected organic compounds in water from downstream sites indicates: (1) the formation of chloroform in the stream following the discharge of the treated effluent, and that (2) instream biodegradation may be decreasing concentrations of linear alkylbenzene compounds in water. The relative persistence of many of the selected organic compounds in Rowlett Creek downstream from the municipal wastewater-treatment plant indicates that they could be transported into Lake Ray Hubbard, a source of municipal water supply.
Investigation of Source of Irritant Gas Produced by PATRIOT Missile System Air Conditioners
1986-03-31
is the mass fragment CF3 . It is a common fragment of perfluorinated hydrocarbons, and is found to be present in most of the compounds detected by...used would allow detection of the target par3meters acrolein, aromatics, a broad range of organic compounds ,. formaldehyde, and hydrogen cyanide...organic compounds were observed. Thus, aromatic organic compounds were not produced by or from any of the four new units tested. 4 1CZ 3) With the
Organic compounds leached from fast pyrolysis mallee leaf and bark biochars.
Lievens, Caroline; Mourant, Daniel; Gunawan, Richard; Hu, Xun; Wang, Yi
2015-11-01
Characterization of organic compounds leached from biochars is essential in assessing the possible toxicity of the biochar to the soils' biota. In this study the nature of the leached organic compounds from Mallee biochars, produced from pyrolysis of Mallee leaf and bark in a fluidised-bed pyrolyser at 400 and 580°C was investigated. Light bio-oil compounds and aromatic organic compounds were investigated. The 'bio-oil like' light compounds from leaf and bark biochars 'surfaces were obtained after leaching the chars with a solvent, suitable to dissolve the respective bio-oils. GC/MS was implemented to investigate the leachates. Phenolics, which are potentially harmful toxins, were detected and their concentration shown to be dependent on the char's origin and the char production temperature. Further, to simulate biochars amendment to soils, the chars were leached with water. The water-leached aromatic compounds from leaf and bark biochars were characterized using UV-fluorescence spectroscopy. Those results suggested that biochars contain leachable compounds of which the nature and amount is dependent on the biomass feedstock, pyrolysis temperature and leaching time. Copyright © 2014 Elsevier Ltd. All rights reserved.
Runoff sources and flowpaths in a partially burned, upland boreal catchment underlain by permafrost
Koch, Joshua C.; Kikuchi, Colin P.; Wickland, Kimberly P.; Schuster, Paul
2014-01-01
Boreal soils in permafrost regions contain vast quantities of frozen organic material that is released to terrestrial and aquatic environments via subsurface flowpaths as permafrost thaws. Longer flowpaths may allow chemical reduction of solutes, nutrients, and contaminants, with implications for greenhouse gas emissions and aqueous export. Predicting boreal catchment runoff is complicated by soil heterogeneities related to variability in active layer thickness, soil type, fire history, and preferential flow potential. By coupling measurements of permeability, infiltration potential, and water chemistry with a stream chemistry end member mixing model, we tested the hypothesis that organic soils and burned slopes are the primary sources of runoff, and that runoff from burned soils is greater due to increased hydraulic connectivity. Organic soils were more permeable than mineral soils, and 25% of infiltration moved laterally upon reaching the organic-mineral soil boundary on unburned hillslopes. A large portion of the remaining water infiltrated into deeper, less permeable soils. In contrast, burned hillslopes displayed poorly defined soil horizons, allowing rapid, mineral-rich runoff through preferential pathways at various depths. On the catchment scale, mineral/organic runoff ratios averaged 1.6 and were as high as 5.2 for an individual storm. Our results suggest that burned soils are the dominant source of water and solutes reaching the stream in summer, whereas unburned soils may provide longer term storage and residence times necessary for production of anaerobic compounds. These results are relevant to predicting how boreal catchment drainage networks and stream export will evolve given continued warming and altered fire regimes.
ACUTE TOXICITY OF SELECTED ORGANIC COMPOUNDS TO FATHEAD MINNOWS
Static nonrenewal laboratory bioassays were conducted with 26 organic compounds commonly used by industry. The selected compounds represented the five following chemical classes: acids, alcohols, hydrocarbons, ketones and aldehydes, and phenols. Juvenile fathead minnows (Pimephal...
Enantiomeric and Isotopic Analysis of Organic Compounds in Carbonaceous Meteorites
NASA Technical Reports Server (NTRS)
Cooper, George
2004-01-01
Carbonaceous meteorites are relatively enriched in soluble organic compounds. The Murchison and Murray meteorites contain numerous compounds of interest in the study of early solar system organic chemistry and organic compounds of potential importance for the origin of life. These include: amino acids, amides, carboxylic acids, and polyols. This talk will focus on the enantiomeric and isotopic analysis of individual meteoritic compounds - primarily polyol acids. The analyses will determine if, in addition to certain amino acids from Murchison, another potentially important class of prebiotic compounds also contains enantiomeric excesses, i.e., excesses that could have contributed to the current homochirality of life. Preliminary enantiomeric and isotopic (C- 13) measurements of Murchison glyceric acid show that it is indeed extraterrestrial. C-13 and D isotope analysis of meteoritic sugar alcohols (glycerol, threitol, ribitol, etc.) has shown that they are also indigenous to the meteorite.
Maskrey, Joshua R; Insley, Allison L; Hynds, Erin S; Panko, Julie M
2016-07-01
A 3-month air monitoring study was conducted in Washington County, Pennsylvania, at the request of local community members regarding the potential risks resulting from air emissions of pollutants related to hydraulic fracturing operations. Continuous air monitoring for total volatile organic compounds was performed at two sampling sites, including a school and a residence, located within 900 m of a hydraulic fracturing well pad that had been drilled prior to the study. Intermittent 24-hour air samples for 62 individual volatile organic compounds were also collected. The ambient air at both sites was monitored during four distinct periods of unconventional natural gas extraction activity: an inactive period prior to fracturing operations, during fracturing operations, during flaring operations, and during another inactive period after operations. The results of the continuous monitoring during fracturing and flaring sampling periods for total volatile organic compounds were similar to the results obtained during inactive periods. Total volatile organic compound 24-hour average concentrations ranged between 0.16 and 80 ppb during all sampling periods. Several individual volatile compounds were detected in the 24-hour samples, but they were consistent with background atmospheric levels measured previously at nearby sampling sites and in other areas in Washington County. Furthermore, a basic yet conservative screening level evaluation demonstrated that the detected volatile organic compounds were well below health-protective levels. The primary finding of this study was that the operation of a hydraulic fracturing well pad in Washington County did not substantially affect local air concentrations of total and individual volatile organic compounds.
Abiotic synthesis of organic compounds from carbon disulfide under hydrothermal conditions.
Rushdi, Ahmed I; Simoneit, Bernd R T
2005-12-01
Abiotic formation of organic compounds under hydrothermal conditions is of interest to bio, geo-, and cosmochemists. Oceanic sulfur-rich hydrothermal systems have been proposed as settings for the abiotic synthesis of organic compounds. Carbon disulfide is a common component of magmatic and hot spring gases, and is present in marine and terrestrial hydrothermal systems. Thus, its reactivity should be considered as another carbon source in addition to carbon dioxide in reductive aqueous thermosynthesis. We have examined the formation of organic compounds in aqueous solutions of carbon disulfide and oxalic acid at 175 degrees C for 5 and 72 h. The synthesis products from carbon disulfide in acidic aqueous solutions yielded a series of organic sulfur compounds. The major compounds after 5 h of reaction included dimethyl polysulfides (54.5%), methyl perthioacetate (27.6%), dimethyl trithiocarbonate (6.8%), trithianes (2.7%), hexathiepane (1.4%), trithiolanes (0.8%), and trithiacycloheptanes (0.3%). The main compounds after 72 h of reaction consisted of trithiacycloheptanes (39.4%), pentathiepane (11.6%), tetrathiocyclooctanes (11.5%), trithiolanes (10.6%), tetrathianes (4.4%), trithianes (1.2%), dimethyl trisulfide (1.1%), and numerous minor compounds. It is concluded that the abiotic formation of aliphatic straight-chain and cyclic polysulfides is possible under hydrothermal conditions and warrants further studies.
Is the bitter rejection response always adaptive?
Glendinning, J I
1994-12-01
The bitter rejection response consists of a suite of withdrawal reflexes and negative affective responses. It is generally assumed to have evolved as a way to facilitate avoidance of foods that are poisonous because they usually taste bitter to humans. Using previously published studies, the present paper examines the relationship between bitterness and toxicity in mammals, and then assesses the ecological costs and benefits of the bitter rejection response in carnivorous, omnivorous, and herbivorous (grazing and browsing) mammals. If the bitter rejection response accurately predicts the potential toxicity of foods, then one would expect the threshold for the response to be lower for highly toxic compounds than for nontoxic compounds. The data revealed no such relationship. Bitter taste thresholds varied independently of toxicity thresholds, indicating that the bitter rejection response is just as likely to be elicited by a harmless bitter food as it is by a harmful one. Thus, it is not necessarily in an animal's best interest to have an extremely high or low bitter threshold. Based on this observation, it was hypothesized that the adaptiveness of the bitter rejection response depends upon the relative occurrence of bitter and potentially toxic compounds in an animal's diet. Animals with a relatively high occurrence of bitter and potentially toxic compounds in their diet (e.g., browsing herbivores) were predicted to have evolved a high bitter taste threshold and tolerance to dietary poisons. Such an adaptation would be necessary because a browser cannot "afford" to reject all foods that are bitter and potentially toxic without unduly restricting its dietary options. At the other extreme, animals that rarely encounter bitter and potentially toxic compounds in their diet (e.g., carnivores) were predicted to have evolved a low bitter threshold. Carnivores could "afford" to utilize such a stringent rejection mechanism because foods containing bitter and potentially toxic compounds constitute a small portion of their diet. Since the low bitter threshold would reduce substantially the risk of ingesting anything poisonous, carnivores were also expected to have a relatively low tolerance to dietary poisons. This hypothesis was supported by a comparison involving 30 mammal species, in which a suggestive relationship was found between quinine hydrochloride sensitivity and trophic group, with carnivores > omnivores > grazers > browsers. Further support for the hypothesis was provided by a comparison across browsers and grazers in terms of the production of tannin-binding salivary proteins, which probably represent an adaptation for reducing the bitterness and astringency of tannins.(ABSTRACT TRUNCATED AT 400 WORDS)
Washburn, Kenneth
2012-11-01
1. Comprehend the basis for liver allocation and distribution in the United States. 2. Understand potential solutions to organ inequalities in the United States. 3. Understand the metrics used to assess the performance of organ procurement organizations. Copyright © 2012 American Association for the Study of Liver Diseases.
Martel, Jan; Wu, Cheng-Yeu; Hung, Cheng-Yu; Wong, Tsui-Yin; Cheng, Ann-Joy; Cheng, Mei-Ling; Shiao, Ming-Shi; Young, John D
2016-03-14
Nanoparticles entering the human body instantly become coated with a "protein corona" that influences the effects and distribution of the particles in vivo. Yet, whether nanoparticles may bind to other organic compounds remains unclear. Here we use an untargeted metabolomic approach based on ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry to identify the organic compounds that bind to mineral nanoparticles formed in human body fluids (serum, plasma, saliva, and urine). A wide range of organic compounds is identified, including fatty acids, glycerophospholipids, amino acids, sugars, and amides. Our results reveal that, in addition to the proteins identified previously, nanoparticles harbor an "organic corona" containing several fatty acids which may affect particle-cell interactions in vivo. This study provides a platform to study the organic corona of biological and synthetic nanoparticles found in the human body.
NASA Astrophysics Data System (ADS)
Martel, Jan; Wu, Cheng-Yeu; Hung, Cheng-Yu; Wong, Tsui-Yin; Cheng, Ann-Joy; Cheng, Mei-Ling; Shiao, Ming-Shi; Young, John D.
2016-03-01
Nanoparticles entering the human body instantly become coated with a ``protein corona'' that influences the effects and distribution of the particles in vivo. Yet, whether nanoparticles may bind to other organic compounds remains unclear. Here we use an untargeted metabolomic approach based on ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry to identify the organic compounds that bind to mineral nanoparticles formed in human body fluids (serum, plasma, saliva, and urine). A wide range of organic compounds is identified, including fatty acids, glycerophospholipids, amino acids, sugars, and amides. Our results reveal that, in addition to the proteins identified previously, nanoparticles harbor an ``organic corona'' containing several fatty acids which may affect particle-cell interactions in vivo. This study provides a platform to study the organic corona of biological and synthetic nanoparticles found in the human body.Nanoparticles entering the human body instantly become coated with a ``protein corona'' that influences the effects and distribution of the particles in vivo. Yet, whether nanoparticles may bind to other organic compounds remains unclear. Here we use an untargeted metabolomic approach based on ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry to identify the organic compounds that bind to mineral nanoparticles formed in human body fluids (serum, plasma, saliva, and urine). A wide range of organic compounds is identified, including fatty acids, glycerophospholipids, amino acids, sugars, and amides. Our results reveal that, in addition to the proteins identified previously, nanoparticles harbor an ``organic corona'' containing several fatty acids which may affect particle-cell interactions in vivo. This study provides a platform to study the organic corona of biological and synthetic nanoparticles found in the human body. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08116e
NASA Technical Reports Server (NTRS)
Schulte, Mitchell; Rogers, Karyn L.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
Hydrothermal environments are locations of varied geochemistry due to the disequilibrium between vent fluids and seawater. The disequilibrium geochemistry has been hypothesized to include reactions to synthesize organic compounds. Observations of the organic geochemistry of hydrothermal vent sites has received little attention. Experimental simulations of these environments, however, indicate that organic compounds may have difficulty forming in a purely aqueous environment. On the other hand, thiols. thioesters and disulfides have been implicated as reaction intermediates between CO or CO2 in experiments of carbon reduction in hydrothermal environments as well as in a variety of biological processes and other abiotic reactions (Wachtershauser, 1990, OLEB 20, 173; Heinen and Lauwers, 1996, OLEB 26, 13 1, Huber and Wachtershauser, 1997, Science 276, 245; Russell et al., 1998, in Thermophiles: The keys to molecular evolution and the origin of life?). The reduction of CO2 to thiols, for example, is observed using the FeS-H2S/FeS2 couple to provide the reducing power (see Schoonen et al., 1999, OLEB 29, 5). In addition, the enzyme involved in final stage of methanogenesis, coenzyme-M, is itself a thiol. Thus, organic sulfur compounds may hold the key to the organic chemistry leading to the origin of life at high temperatures. Understanding the biochemical processes of microorganisms that can live to temperatures at least as high as 113 C (Blochl et al., 1996, Extremophiles 1, 14) requires knowledge of the properties of the chemical reactions involved. In order to assess the role of aqueous organic sulfur compounds in hydrothermal organic geochemistry, we have been attempting to determine their thermodynamic properties. We have culled the literature to obtain the properties of organic sulfur compounds. We are able to calculate a number of essential properties, such as free energies of formation, from solubility data available in the literature together with standard properties of organic sulfur gases. However, a number of the properties for aqueous organic sulfur compounds have not been experimentally determined. Furthermore, most of thermodynamic data that are available are for 25 C and 1 bar. In order to determine reaction properties to temperatures and pressures appropriate to the hydrothermal conditions in which thermophilic organisms actually live, we use equations of state developed by Helgeson and co-workers (Helgeson et al., 1981, AJS 281, 1249). A key piece of information needed to go up in temperature is the partial molal heat capacity, which is one of the properties for which experimental data are unavailable for nearly all organic sulfur compounds. We have used correlation methods to determine the partial molal heat capacities and volumes of many organic solutes. These estimates allow us to asses the role of organic sulfur compounds during the reduction of carbon in hydrothermal settings. We will present these data, along with examples of the thermodynamic properties of reactions involving aqueous organic sulfur compounds.
DEMONSTRATION BULLETIN: EX-SITU ANAEROBIC BIOREMEDIATION TECHNOLOGY - TNT - J.R. SIMPLOT COMPANY
The J. R. Simplot Ex-Situ Anaerobic Bioremediation System, also known as the J.R. Simplot Anaerobic Biological Remediaton Process (the SABRE™ Process), is a technology designed to destroy nitroaromatic and energetic compounds. The process does not evolve any known toxic intermedi...
Worldwide attention has recently been focused on Per- and Polyfluorinated Alkyl Substances (PFAS) due to the growing body of evidence indicating that many of these compounds are toxic, bioaccumulative, and persistent in the environment. Advances in analytical chemistry have play...
Transformations of Model Organic Compounds on Snow Grains at Summit, Greenland
NASA Astrophysics Data System (ADS)
Galbavy, E. S.; Ram, K.; Anastasio, C.
2005-12-01
Photochemical reactions in snowpacks produce a number of chemicals species that can significantly impact the overlying atmosphere and transform many organic pollutants. During this past summer's field season at Summit we examined the kinetics for the disappearance of a suite of model organic compounds in surface snowpack. Our compounds (2-nitrobenzaldehyde, sodium benzoate, syringol, 4-chlorophenol, 2-oxo-butanoic acid, and phenanthrene) were chosen because they represent markers from several different emission sources and because they have a range of expected fates, i.e., their lifetimes will be determined by different processes. These processes include direct photolysis and reactions with oxidants such as hydroxyl radical (OH) and singlet molecular oxygen (1O2*) In addition to measuring the rates of loss of the model organics, we also measured concentrations of OH and 1O2* in the snow samples, as well as rates of direct photolysis of the organics in frozen, purified water. Our goal was to compare the measured lifetimes of the organic compounds with calculated lifetimes based on reactions with OH and 1O2* and direct photolysis. While certain compounds behaved as expected, others decayed more slowly, or more rapidly, than expected, indicating that other, unidentified, snow grain reactions and/or mechanisms are significant. The rates of organic compound loss, the potential reasons for the observed differences, and the implications for lifetimes of trace organic pollutants in polar regions will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Lirong; Cantrell, Kirk J.; Mitroshkov, Alexandre V.
2014-05-06
Supercritical CO2 (scCO2) is an excellent solvent for organic compounds, including benzene, toluene, ethyl-benzene, and xylene (BTEX), phenols, and polycyclic aromatic hydrocarbons (PAHs). Monitoring results from geological carbon sequestration (GCS) field tests has shown that organic compounds are mobilized following CO2 injection. Such results have raised concerns regarding the potential for groundwater contamination by toxic organic compounds mobilized during GCS. Knowledge of the mobilization mechanism of organic compounds and their transport and fate in the subsurface is essential for assessing risks associated with GCS. Extraction tests using scCO2 and methylene chloride (CH2Cl2) were conducted to study the mobilization of volatilemore » organic compounds (VOCs, including BTEX), the PAH naphthalene, and n-alkanes (n-C20 – n-C30) by scCO2 from representative reservoir rock and caprock obtained from depleted oil reservoirs and coal from an enhanced coal-bed methane recovery site. More VOCs and naphthalene were extractable by scCO2 compared to the CH2Cl2 extractions, while scCO2 extractable alkane concentrations were much lower than concentrations extractable by CH2Cl2. In addition, dry scCO2 was found to extract more VOCs than water saturated scCO2, but water saturated scCO2 mobilized more naphthalene than dry scCO2. In sand column experiments, moisture content was found to have an important influence on the transport of the organic compounds. In dry sand columns the majority of the compounds were retained in the column except benzene and toluene. In wet sand columns the mobility of the BTEX was much higher than that of naphthalene. Based upon results determined for the reservoir rock, caprock, and coal samples studied here, the risk to aquifers from contamination by organic compounds appears to be relatively low; however, further work is necessary to fully evaluate risks from depleted oil reservoirs.« less
Edible Oil Barriers for Treatment of Chlorinated Solvent Contaminated Groundwater
2009-07-01
CF Chloroform Cl# Chlorine Number CO Carbon Monoxide CT Carbon Tetrachloride CVOC Chlorinated Volatile Organic Compound 1,2-DCA 1,2...As Safe HCl Hydrochloric Acid HRC® Hydrogen Release Compound IDW Investigation-Derived Waste ISCO In Situ Chemical Oxidation LEL Lower...Total Organic Carbon VC Vinyl Chloride VFA Volatile Fatty Acid VOC Volatile Organic Compound ZVI Zero Valent Iron viii ACKNOWLEDGEMENTS
Cost-Effective, Ultra-Sensitive Groundwater Monitoring for Site Remediation and Management
2015-05-01
Example anion concentrations in groundwater used for feasibility studies. ................... 30 Table 5. Compounds screened in the laboratory for IS2...phase extraction ST storage tank SVOC semivolatile organic compound TCE trichloroethene TPH total petroleum hydrocarbon USEPA U.S. Environmental...Protection Agency UST underground storage tank V volt VOA volatile organic analysis VOC volatile organic compound Technical material
Improving rubber concrete by waste organic sulfur compounds.
Chou, Liang-Hisng; Lin, Chun-Nan; Lu, Chun-Ku; Lee, Cheng-Haw; Lee, Maw-Tien
2010-01-01
In this study, the use of crumb tyres as additives to concrete was investigated. For some time, researchers have been studying the physical properties of concrete to determine why the inclusion of rubber particles causes the concrete to degrade. Several methods have been developed to improve the bonding between rubber particles and cement hydration products (C-S-H) with the hope of creating a product with an improvement in mechanical strength. In this study, the crumb tyres were treated with waste organic sulfur compounds from a petroleum refining factory in order to modify their surface properties. Organic sulfur compounds with amphiphilic properties can enhance the hydrophilic properties of the rubber and increase the intermolecular interaction forces between rubber and C-S-H. In the present study, a colloid probe of C-S-H was prepared to measure these intermolecular interaction forces by utilizing an atomic force microscope. Experimental results showed that rubber particles treated with waste organic sulfur compounds became more hydrophilic. In addition, the intermolecular interaction forces increased with the adsorption of waste organic sulfur compounds on the surface of the rubber particles. The compressive, tensile and flexural strengths of concrete samples that included rubber particles treated with organic sulfur compound also increased significantly.
Bártíková, Hana; Skálová, Lenka; Stuchlíková, Lucie; Vokřál, Ivan; Vaněk, Tomáš; Podlipná, Radka
2015-08-01
Many various xenobiotics permanently enter plants and represent potential danger for their organism. For that reason, plants have evolved extremely sophisticated detoxification systems including a battery of xenobiotic-metabolizing enzymes. Some of them are similar to those in humans and animals, but there are several plant-specific ones. This review briefly introduces xenobiotic-metabolizing enzymes in plants and summarizes present information about their action toward veterinary drugs. Veterinary drugs are used worldwide to treat diseases and protect animal health. However, veterinary drugs are also unwantedly introduced into environment mostly via animal excrements, they persist in the environment for a long time and may impact on the non-target organisms. Plants are able to uptake, transform the veterinary drugs to non- or less-toxic compounds and store them in the vacuoles and cell walls. This ability may protect not only plant themselves but also other organisms, predominantly invertebrates and wild herbivores. The aim of this review is to emphasize the importance of plants in detoxification of veterinary drugs in the environment. The results of studies, which dealt with transport and biotransformation of veterinary drugs in plants, are summarized and evaluated. In conclusion, the risks and consequences of veterinary drugs in the environment and the possibilities of phytoremediation technologies are considered and future perspectives are outlined.
Banks, William S.L.; Reyes, Betzaida
2009-01-01
A source- and finished-water-quality assessment of groundwater was conducted in the Piedmont Physiographic Province of Maryland and Virginia in the Potomac River Basin during 2003-04 as part of the U.S. Geological Survey's National Water-Quality Assessment Program. This assessment used a two-phased approach to sampling that allowed investigators to evaluate the occurrence of more than 280 anthropogenic organic compounds (volatile organic compounds, pesticides and pesticide degradates, and other anthropogenic organic compounds). Analysis of waters from 15 of the largest community water systems in the study area were included in the assessment. Source-water samples (raw-water samples collected prior to treatment) were collected at the well head. Finished-water samples (raw water that had been treated and disinfected) were collected after treatment and prior to distribution. Phase one samples, collected in August and September 2003, focused on source water. Phase two analyzed both source and finished water, and samples were collected in August and October of 2004. The results from phase one showed that samples collected from the source water for 15 community water systems contained 92 anthropogenic organic compounds (41 volatile organic compounds, 37 pesticides and pesticide degradates, and 14 other anthropogenic organic compounds). The 5 most frequently occurring anthropogenic organic compounds were detected in 11 of the 15 source-water samples. Deethylatrazine, a degradate of atrazine, was present in all 15 samples and metolachlor ethanesulfonic acid, a degradate of metolachlor, and chloroform were present in 13 samples. Atrazine and metolachlor were present in 12 and 11 samples, respectively. All samples contained a mixture of compounds with an average of about 14 compounds per sample. Phase two sampling focused on 10 of the 15 community water systems that were selected for resampling on the basis of occurrence of anthropogenic organic compounds detected most frequently during the first phase. A total of 48 different anthropogenic organic compounds were detected in samples collected from source and finished water. There were a similar number of compounds detected in finished water (41) and in source water (39). The most commonly detected group of anthropogenic organic compounds in finished water was trihalomethanes - compounds associated with the disinfection of drinking water. This group of compounds accounted for 30 percent of the detections in source water and 44 percent of the detections in finished water, and were generally found in higher concentrations in finished water. Excluding trihalomethanes, the number of total detections was about the same in source-water samples (33) as it was in finished-water samples (35). During both phases of the study, two measurements for human-health assessment were used. The first, the Maximum Contaminant Level for drinking water, is set by the U.S. Environmental Protection Agency and represents a legally enforceable maximum concentration of a contaminant permitted in drinking water. The second, the Health-Based Screening Level, was developed by the U.S. Geological Survey, is not legally enforceable, and represents a limit for more chronic exposures. Maximum concentrations for each detected compound were compared with either the Maximum Contaminant Level or the Health-Based Screening Level when available. More than half of the compounds detected had either a Maximum Contaminant Level or a Health-Based Screening Level. A benchmark quotient was set at 10 percent (greater than or equal to 0.1) of the ratio of the detected concentration of a particular compound to its Maximum Contaminant Level, or Health-Based Screening Level. This was considered a threshold for further monitoring. During phase one, when only source water was sampled, seven compounds (chloroform, benzene, acrylonitrile, methylene chloride, atrazine, alachlor, and dieldrin) met or exceeded a benchmark quotient. No de
EFFECT OF NON-TARGET ORGANICS ON ORGANIC CHEMICAL TRANSPORT
To improve our standard of living, man has synthesized organic compounds for use in products considered essential for life. These compounds are having and will continue to have a significant impact on the terrestrial environment. Understanding organic chemical transport through s...
NASA Astrophysics Data System (ADS)
Ho, K. F.; Lee, S. C.; Chiu, Gloria M. Y.
Volatile organic compounds (VOCs), PAHs and carbonyl compounds are the major toxic components in Hong Kong. Emissions from motor vehicles have been one of the primary pollution sources in the metropolitan areas throughout Hong Kong for a long time. A 1-yr monitoring program for VOCs, PAHs and carbonyl compounds had been performed at a roadside urban station at Hong Kong Polytechnic University in order to determine the variations and correlations of each selected species (VOCs, PAHs and carbonyl compounds). This study is aimed to analyze toxic volatile organic compounds (benzene, toluene, ethylbenzene and xylene), two carbonyl compounds (formaldehyde, acetaldehyde), and selective polycyclic aromatic hydrocarbons. The monitoring program started from 16 April 1999 to 30 March 2000. Ambient VOC concentrations, many of which originate from the same sources as particulate PAHs and carbonyls compounds, show significant quantities of benzene, toluene and xylenes. Correlations and multivariate analysis of selected gaseous and particulate phase organic pollutants were performed. Source identification by principle component analysis and hierarchical cluster analysis allowed the identification of four sources (factors) for the roadside monitoring station. Factor 1 represents the effect of diesel vehicle exhaust. Factor 2 shows the contribution of aromatic compounds. Factor 3 explains photochemical products—formaldehyde and acetaldehyde. Factor 4 explains the effect of gasoline vehicle exhaust.
Organic Superconductor, Made without Metals.
ERIC Educational Resources Information Center
Science News, 1980
1980-01-01
The discovery of a superconducting organic compound is reported. The compound, (TMTSF)-2, has no metal in its composition, and the author believes that it is the precursor of a family of superconducting organics. (Author/SA)
Shock Modifications of Organic Compounds in Carbonaceous Chondrite Parent Bodies
NASA Technical Reports Server (NTRS)
Cooper, George W.
1998-01-01
Impacts among asteroidal objects would have altered or destroyed pre-existing organic matter in both targets and projectiles to a greater or lesser degree depending upon impact velocities. To begin filling a knowledge gap on the shock metamorphism of organic compounds, we are studying the effects of shock impacts on selected classes of organic compounds utilizing laboratory shock facilities. Our approach is to subject mixtures of organic compounds, embedded in the matrix of the Murchison meteorite, to simulated hypervelocity impacts by firing them into targets at various pressures. The mixtures are then analyzed to determine the amount of each compound that survives as well as to determine if new compounds are being synthesized. The initial compounds added to the matrix (with the exception of thiosulfate). The sulfonic acids were chosen in part because they are relatively abundant in Murchison, relatively stable, and because they and the phosphonic acids are the first well-characterized homologous series of organic sulfur and phosphorus compounds identified in an extraterrestrial material. Experimental procedures were more fully described in the original proposal. A 20 mm gun, with its barrel extending into a vacuum chamber (10(exp -2) torr), was used to launch the projectile containing the sample at approx. 1.6 km/sec (3,600 mi/hr) into the target material. Maximum pressure of impact depend on target/projectile materials. The target was sufficiently thin to assure minimum pressure decay over the total sample thickness.
BIOTIC FACTORS IN AMPHIBIAN POPULATION DECLINES
Amphibians evolved in, and continue to exist in, habitats that are replete with many other organisms. Some of these organisms serve as prey for amphibians and others interact with amphibians as predators, competitors, pathogens, or symbionts. Still other organisms in their enviro...
Process for forming a metal compound coating on a substrate
Sharp, D.J.; Vernon, M.E.; Wright, S.A.
1988-06-29
A method of coating a substrate with a thin layer of a metal compound by forming a dispersion of an electrophoretically active organic colloid and a precursor of the metal compound in an electrolytic cell in which the substrate is an electrode. Upon application of an electric potential, the electrode is coated with a mixture of the organic colloid and the precursor to the metal compound, and the coated substrate is then heated in the presence of an atmosphere or vacuum to decompose the organic colloid and form a coating of either a combination of metal compound and carbon, or optionally forming a porous metal compound coating by heating to a temperature high enough to chemically react the carbon.
NASA Astrophysics Data System (ADS)
Pracht, Lara E.; Tfaily, Malak M.; Ardissono, Robert J.; Neumann, Rebecca B.
2018-03-01
Bioavailable organic carbon in aquifer recharge waters and sediments can fuel microbial reactions with implications for groundwater quality. A previous incubation experiment showed that sedimentary organic carbon (SOC) mobilized off sandy sediment collected from an arsenic-contaminated and methanogenic aquifer in Bangladesh was bioavailable; it was transformed into methane. We used high-resolution mass spectrometry to molecularly characterize this mobilized SOC, reference its composition against dissolved organic carbon (DOC) in surface recharge water, track compositional changes during incubation, and advance understanding of microbial processing of organic carbon in anaerobic environments. Organic carbon mobilized off aquifer sediment was more diverse, proportionately larger, more aromatic, and more oxidized than DOC in surface recharge. Mobilized SOC was predominately composed of terrestrially derived organic matter and had characteristics signifying that it evaded microbial processing within the aquifer. Approximately 50 % of identified compounds in mobilized SOC and in DOC from surface recharge water contained sulfur. During incubation, after mobilized SOC was converted into methane, new organosulfur compounds with high S-to-C ratios and a high nominal oxidation state of carbon (NOSC) were detected. We reason that these detected compounds formed abiotically following microbial reduction of sulfate to sulfide, which could have occurred during incubation but was not directly measured or that they were microbially synthesized. Most notably, microbes transformed all carbon types during incubation, including those currently considered thermodynamically unviable for microbes to degrade in anaerobic conditions (i.e., those with a low NOSC). In anaerobic environments, energy yields from redox reactions are small and the amount of energy required to remove electrons from highly reduced carbon substrates during oxidation decreases the thermodynamic favorability of degrading compounds with a low NOSC. While all compound types were eventually degraded during incubation, NOSC and compound size controlled the rates of carbon transformation. Large, more thermodynamically favorable compounds (e.g., aromatics with a high NOSC) were targeted first, while small, less thermodynamically favorable compounds (e.g., alkanes and olefinics with a low NOSC) were used last. These results indicate that in anaerobic conditions, microbial communities are capable of degrading and mineralizing all forms of organic matter, converting larger energy-rich compounds into smaller energy-poor compounds. However, in an open system, where fresh carbon is continually supplied, the slower degradation rate of reduced carbon compounds would enable this portion of the organic carbon pool to build up, explaining the apparent persistence of compounds with a low NOSC in anaerobic environments.
Prebiotic organic synthesis under hydrothermal conditions: an overview
NASA Astrophysics Data System (ADS)
Simoneit, Bernd R. T.
Organic compounds which are obviously synthesized from inorganic precursors (e.g., CO) by hydrothermal activity are currently a research topic in prebiotic chemistry leading to the origin of life. However, such de novo products would be overwhelmed in present Earth environments, by an excess of thermal alteration (pyrolysis) products formed from contemporary life (e.g., hydrocarbons, alkanoic acids, etc.). Thus, organic syntheses must be demonstrated and distinguished from organic matter alteration initially in the laboratory and then in the field. Organic synthesis under hydrothermal conditions is theoretically possible and various established industrial processes are used to synthesize organic compounds from inorganic substrates with the aid of catalysts. A set of Strecker-type synthesis experiments has been carried out under hydrothermal conditions (150 °C), producing various amino acids. The formation of lipid compounds during an aqueous organic synthesis (Fischer-Tropsch-type) reaction was reported, using solutions of oxalic acid (also formic acid) as the carbon and hydrogen sources, and heating at discrete temperatures (50° intervals) from 100 to 400 °C. The maximum lipid yield, especially for oxygenated compounds was in the window of 150-250 °C. The compounds range from C6 to >C33, including n-alkanols, n-alkanoic acids, n-alkyl formates, n-alkanones, and n-alkanes, all with no carbon number preferences. These lipid compounds, especially the acids, can form lipid bilayers or micelles, potential precursors for membranes. Reductive condensation (i.e., dehydration) reactions also occur under simulated hydrothermal conditions and form amide, nitrile and ester bonds. The chemistry and kinetics of the condensation reactions are under further study and have the potential for oligomerization of acid-amides in aqueous medium. Abiotic organic compounds are not biomarkers per se because they do not originate from biosynthesis. Thus, they should be regarded as a distinctly separate group, termed prebiotic or synthetic organic compounds, in explorations for evidence of life.
Prebiotic Organic Synthesis under Hydrothermal Conditions - An Overview
NASA Astrophysics Data System (ADS)
Simoneit, B.
Organic compounds which are obviously synthesized from inorganic precursors (e.g., CO) by hydrothermal activity are currently a research topic in prebiotic chemistry leading to the origin of life. However, such de novo products would be overwhelmed in present Earth environments, by an excess of thermal alteration (pyrolysis) products formed from contemporary life (e.g., hydrocarbons, alkanoic acids, etc.). Thus, organic syntheses must be demonstrated and distinguished from organic matter alteration initially in the laboratory and then in the field. Organic synthesis under hydrothermal conditions is theoretically possible and various established industrial processes are used to synthesize organic compounds from inorganic substrates with the aid of catalysts. A set of Strecker-type synthesis experiments has been carried out under hydrothermal conditions (150°C), producing various amino acids. The formation of lipid compounds during an aqueous organic synthesis (Fischer-Tropsch-type) reaction was reported, using solutions of oxalic acid (also formic acid) as the carbon and hydrogen sources, and heating at discrete temperatures (50° intervals) from 100- 400°C. The maximum lipid yield, especially for oxygenated compounds was in the window of 150-250°C. The compounds range from C6 to >C3 3 , including n-alkanols, n-alkanoic acids, n-alkyl formates, n-alkanones, and n-alkanes, all with no carbon number preferences. These lipid compounds, especially the acids, can form lipid bilayers or micelles, potential precursors for membranes. Reductive condensation (i.e., dehydration) reactions also occur under simulated hydrothermal conditions and form amide, nitrile and ester bonds. The chemistry and kinetics of the condensation reactions are under further study and have the potential for oligomerization of acid-amides in aqueous medium. Abiotic organic compounds are not biomarkers per se because they do not originate from biosynthesis. Thus, they should be regarded as a distinctly separate group, termed prebiotic or synthetic organic compounds, in explorations for evidence of life.
Isolation of Purines and Pyrimidines from the Murchison Meteorite Using Sublimation
NASA Technical Reports Server (NTRS)
Glavin, D. P.; Bada, J. L.
2004-01-01
The origin of life on Earth, and possibly on other planets such as Mars, would have required the presence of liquid water and a continuous supply of prebiotic organic compounds. The exogenous delivery of organic matter by asteroids, comets, and carbonaceous meteorites could have contributed to the early Earth s prebiotic inventory by seeding the planet with biologically important organic compounds. A wide variety of prebiotic organic compounds have previously been detected in the Murchison CM type carbonaceous chondrite including amino acids, purines and pyrimidines. These compounds dominate terrestrial biochemistry and are integral components of proteins, DNA and RNA. Several purines including adenine, guanine, hypoxanthine, and xanthine, as well as the pyrimidine uracil, have previously been detected in water or formic acid extracts of Murchison using ion-exclusion chromatography and ultraviolet spectroscopy. However, even after purification of these extracts, the accurate identification and quantification of nucleobases is difficult due to interfering UV absorbing compounds. In order to reduce these effects, we have developed an extraction technique using sublimation to isolate purines and pyrimidines from other non-volatile organic compounds in Murchison acid extracts.
Foster, Adam L.; Katz, Brian G.
2010-01-01
The U.S. Geological Survey, in cooperation with the Miami-Dade Water and Sewer Department, conducted a reconnaissance study in 2008 to determine the occurrence of 228 organic compounds in raw, source (untreated) and finished (treated) drinking water at seven municipal water-treatment facilities in Miami-Dade County. Results of this sampling study showed that 25 (about 11 percent) of the 228 organic compounds were detected in at least one source water sample and 22 (about 10 percent) were detected in at least one finished water sample. The concentrations of organic compounds in source water samples were less than or equal to 0.2 (u or mu)g/L (micrograms per liter). The concentrations of organic compounds in finished water samples were generally less than or equal to 0.5 (u or mu)g/L, with the exception of bromoform (a possible disinfection byproduct) at estimated concentrations ranging from 0.7 to 2.8 (u or mu)g/L and diethyl phthalate (a plasticizer compound) at 2 (u or mu)g/L.
NASA Technical Reports Server (NTRS)
Mcadam, Amy Catherine; Franz, Heather Bryant
2014-01-01
The Sample Analysis at Mars (SAM) instrument suite detected SO2, H2S, OCS, and CS2 from approx.450 to 800 C during evolved gas analysis (EGA) of materials from the Rocknest aeolian deposit in Gale Crater, Mars. This was the first detection of evolved sulfur species from a Martian surface sample during in situ EGA. SO2(approx. 3-22 micro-mol) is consistent with the thermal decomposition of Fe sulfates or Ca sulfites, or evolution/desorption from sulfur-bearing amorphous phases. Reactions between reduced sulfur phases such as sulfides and evolved O2 or H2O in the SAM oven are another candidate SO2 source. H2S (approx.41-109 nmol) is consistent with interactions of H2O, H2 and/or HCl with reduced sulfur phases and/or SO2 in the SAM oven. OCS (approx.1-5 nmol) and CS2(approx.0.2-1 nmol) are likely derived from reactions between carbon-bearing compounds and reduced sulfur. Sulfates and sulfites indicate some aqueous interactions, although not necessarily at the Rocknest site; Fe sulfates imply interaction with acid solutions whereas Ca sulfites can form from acidic to near-neutral solutions. Sulfides in the Rocknest materials suggest input from materials originally deposited in a reducing environment or from detrital sulfides from an igneous source. The presence of sulfides also suggests that the materials have not been extensively altered by oxidative aqueous weathering. The possibility of both reduced and oxidized sulfur compounds in the deposit indicates a nonequilibrium assemblage. Understanding the sulfur mineralogy in Rocknest materials, which exhibit chemical similarities to basaltic fines analyzed elsewhere on Mars, can provide insight in to the origin and alteration history of Martian surface materials.
40 CFR 60.665 - Reporting and recordkeeping requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Volatile Organic Compound (VOC) Emissions From Synthetic Organic Chemical Manufacturing Industry (SOCMI... level or reading indicated by the organics monitoring device at the outlet of the absorber, condenser... the final recovery device in a recovery system, and where an organic compound monitoring device is not...
40 CFR 60.665 - Reporting and recordkeeping requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Volatile Organic Compound (VOC) Emissions From Synthetic Organic Chemical Manufacturing Industry (SOCMI... level or reading indicated by the organics monitoring device at the outlet of the absorber, condenser... the final recovery device in a recovery system, and where an organic compound monitoring device is not...
(CHINA) PERFLUORINATED ORGANIC COMPOUND EXPOSURE ASSESSMENT RESEARCH
A wide range of perfluorinated organic compounds (PFCs) has been used in a variety of industrial processes and consumer products. The most commonly studied PFCs include perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), but there are many more compounds in this c...
PERFLUORINATED ORGANIC COMPOUND EXPOSURE ASSESSMENT RESEARCH
A wide range of perfluorinated organic compounds (PFCs) has been used in a variety of industrial processes and consumer products. The most commonly studied PFCs include perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), but there are many more compounds in this c...
Amino Acids, Aromatic Compounds, and Carboxylic Acids: How Did They Get Their Common Names?
ERIC Educational Resources Information Center
Leung, Sam H.
2000-01-01
Surveys the roots of the common names of organic compounds most likely to be encountered by undergraduate organic chemistry students. Includes information for 19 amino acids, 17 aromatic compounds, and 21 carboxylic acids. (WRM)
FACTORS CONTROLLING THE EMISSIONS OF MONOTERPENES AND OTHER VOLATILE ORGANIC COMPOUNDS
Plants contain a number of volatile organic compounds, including isoprene, mono- and sesquiterpenes, alcohols, aldehydes, ketones, and esters. ndividual plant species have unique combinations of these compounds; consequently, the emission pattern for each species is also specific...
40 CFR 59.412 - Incorporations by reference.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Architectural Coatings § 59.412 Incorporations by... 19428-2959. (1) ASTM Method C 1315-95, Standard Specification for Liquid Membrane-Forming Compounds...
40 CFR 59.412 - Incorporations by reference.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Architectural Coatings § 59.412 Incorporations by... 19428-2959. (1) ASTM Method C 1315-95, Standard Specification for Liquid Membrane-Forming Compounds...
Effects of Vertex Activity and Self-organized Criticality Behavior on a Weighted Evolving Network
NASA Astrophysics Data System (ADS)
Zhang, Gui-Qing; Yang, Qiu-Ying; Chen, Tian-Lun
2008-08-01
Effects of vertex activity have been analyzed on a weighted evolving network. The network is characterized by the probability distribution of vertex strength, each edge weight and evolution of the strength of vertices with different vertex activities. The model exhibits self-organized criticality behavior. The probability distribution of avalanche size for different network sizes is also shown. In addition, there is a power law relation between the size and the duration of an avalanche and the average of avalanche size has been studied for different vertex activities.
Müller, Werner E G; Wang, Xiaohong; Proksch, Peter; Perry, Carole C; Osinga, Ronald; Gardères, Johan; Schröder, Heinz C
2013-08-01
The process of biofouling of marine structures and substrates, such as platforms or ship hulls, proceeds in multiple steps. Soon after the formation of an initial conditioning film, formed via the adsorption of organic particles to natural or man-made substrates, a population of different bacterial taxa associates under the formation of a biofilm. These microorganisms communicate through a complex quorum sensing network. Macro-foulers, e.g., barnacles, then settle and form a fouling layer on the marine surfaces, a process that globally has severe impacts both on the economy and on the environment. Since the ban of tributyltin, an efficient replacement of this antifouling compound by next-generation antifouling coatings that are environmentally more acceptable and also showing longer half-lives has not yet been developed. The sponges, as sessile filter-feeder animals, have evolved antifouling strategies to protect themselves against micro- and subsequent macro-biofouling processes. Experimental data are summarized and suggest that coating of the sponge surface with bio-silica contributes to the inhibition of the formation of a conditioning film. A direct adsorption of the surfaces by microorganisms can be impaired through poisoning the organisms with direct-acting secondary metabolites or toxic peptides. In addition, first, compounds from sponges have been identified that interfere with the anti-quorum sensing network. Sponge secondary metabolites acting selectively on diatom colonization have not yet been identified. Finally, it is outlined that direct-acting secondary metabolites inhibiting the growth of macro-fouling animals and those that poison the multidrug resistance pump are available. It is concluded that rational screening programs for inhibitors of the complex and dynamic problem of biofilm production, based on multidisciplinary studies and using sponges as a model, are required in the future.
Wason, Elizabeth L; Agrawal, Anurag A; Hunter, Mark D
2013-08-01
The existence of predictable latitudinal variation in plant defense against herbivores remains controversial. A prevailing view holds that higher levels of plant defense evolve at low latitudes compared to high latitudes as an adaptive plant response to higher herbivore pressure on low-latitude plants. To date, this prediction has not been examined with respect to volatile organic compounds (VOCs) that many plants emit, often thus attracting the natural enemies of herbivores. Here, we compared genetically-based constitutive and herbivore-induced aboveground vegetative VOC emissions from plants originating across a gradient of more than 10° of latitude (>1,500 km). We collected headspace VOCs from Asclepias syriaca (common milkweed) originating from 20 populations across its natural range and grown in a common garden near the range center. Feeding by specialist Danaus plexippus (monarch) larvae induced VOCs, and field environmental conditions (temperature, light, and humidity) also influenced emissions. Monarch damage increased plant VOC concentrations and altered VOC blends. We found that genetically-based induced VOC emissions varied with the latitude of plant population origin, although the pattern followed the reverse of that predicted-induced VOC concentration increased with increasing latitude. This pattern appeared to be driven by a greater induction of sesquiterpenoids at higher latitudes. In contrast, constitutive VOC emission did not vary systematically with latitude, and the induction of green leafy volatiles declined with latitude. Our results do not support the prevailing view that plant defense is greater at lower than at higher latitudes. That the pattern holds only for herbivore-induced VOC emission, and not constitutive emission, suggests that latitudinal variation in VOCs is not a simple adaptive response to climatic factors.
NASA Astrophysics Data System (ADS)
Bianco, A.; Chaumerliac, N.; Vaitilingom, M.; Deguillaume, L.; Bridoux, M. C.
2017-12-01
The chemical composition of organic matter in cloud water is highly complex. The organic species result from their dissolution from the gas phase or from the soluble fraction of the particle phase. They are also produced by aqueous phase reactivity. Several low molecular weight organic species have been quantified such as aldehydes and carboxylic acids. Recently, amino acids were also detected in cloud water and their presence is related to the presence of microorganisms. Compounds presenting similarities with high molecular weight organic substances or HULIS found in aerosols were also observed in clouds. Overall, these studies mainly focused on individual compounds or functional groups rather than the complex mixture at the molecular level. This study presents a non-targeted approach to characterize the organic matter in clouds. Samples were collected at the puy de Dôme Mountain (France). Two cloud water samples (June & July 2016) were analyzed using high resolution mass spectrometry (ESI-FT-ICR-MS 9.4T). A reversed solid phase extraction (SPE) procedure was performed to concentrate dissolved organic matter components. Composer (v.1.5.3) software was used to filter the mass spectral data, recalibrate externally the dataset and calculate all possible formulas for detected anions. The first cloud sample (June) resulted from air mass coming from the North (North Sea) while the second one (July) resulted from air mass coming from the West (Atlantic Ocean). Thus, both cloud events derived from marine air masses but were characterized by different hydrogen peroxide concentration and dissolved organic carbon content and were sampled at different periods during the day. Elemental compositions of 6487 and 3284 unique molecular species were identified in each sample. Nitrogen-containing compounds (CHNO compounds), sulfur-containing compounds (CHOS & CHNOS compounds) and other oxygen-containing compounds (CHO compounds) with molecular weights up to 800 Da were detected. The main class is CHNO (53% for both samples) while sulfur-containing compounds represent for the two samples respectively 21 & 14% of the total assigned molecular formulas. CHO compounds molecular formulas are respectively 25 & 32%. Among the two samples, only 2490 molecular formulas were found common to the two samples.
Bajracharya, Suman; Vanbroekhoven, Karolien; Buisman, Cees J N; Strik, David P B T B; Pant, Deepak
2017-09-21
The recent concept of microbial electrosynthesis (MES) has evolved as an electricity-driven production technology for chemicals from low-value carbon dioxide (CO 2 ) using micro-organisms as biocatalysts. MES from CO 2 comprises bioelectrochemical reduction of CO 2 to multi-carbon organic compounds using the reducing equivalents produced at the electrically-polarized cathode. The use of CO 2 as a feedstock for chemicals is gaining much attention, since CO 2 is abundantly available and its use is independent of the food supply chain. MES based on CO 2 reduction produces acetate as a primary product. In order to elucidate the performance of the bioelectrochemical CO 2 reduction process using different operation modes (batch vs. continuous), an investigation was carried out using a MES system with a flow-through biocathode supplied with 20 : 80 (v/v) or 80 : 20 (v/v) CO 2 : N 2 gas. The highest acetate production rate of 149 mg L -1 d -1 was observed with a 3.1 V applied cell-voltage under batch mode. While running in continuous mode, high acetate production was achieved with a maximum rate of 100 mg L -1 d -1 . In the continuous mode, the acetate production was not sustained over long-term operation, likely due to insufficient microbial biocatalyst retention within the biocathode compartment (i.e. suspended micro-organisms were washed out of the system). Restarting batch mode operations resulted in a renewed production of acetate. This showed an apparent domination of suspended biocatalysts over the attached (biofilm forming) biocatalysts. Long term CO 2 reduction at the biocathode resulted in the accumulation of acetate, and more reduced compounds like ethanol and butyrate were also formed. Improvements in the production rate and different biomass retention strategies (e.g. selecting for biofilm forming micro-organisms) should be investigated to enable continuous biochemical production from CO 2 using MES. Certainly, other process optimizations will be required to establish MES as an innovative sustainable technology for manufacturing biochemicals from CO 2 as a next generation feedstock.
Effect of plant diversity on the diversity of soil organic compounds.
El Moujahid, Lamiae; Le Roux, Xavier; Michalet, Serge; Bellvert, Florian; Weigelt, Alexandra; Poly, Franck
2017-01-01
The effect of plant diversity on aboveground organisms and processes was largely studied but there is still a lack of knowledge regarding the link between plant diversity and soil characteristics. Here, we analyzed the effect of plant identity and diversity on the diversity of extractible soil organic compounds (ESOC) using 87 experimental grassland plots with different levels of plant diversity and based on a pool of over 50 plant species. Two pools of low molecular weight organic compounds, LMW1 and LMW2, were characterized by GC-MS and HPLC-DAD, respectively. These pools include specific organic acids, fatty acids and phenolics, with more organic acids in LMW1 and more phenolics in LMW2. Plant effect on the diversity of LMW1 and LMW2 compounds was strong and weak, respectively. LMW1 richness observed for bare soil was lower than that observed for all planted soils; and the richness of these soil compounds increased twofold when dominant plant species richness increased from 1 to 6. Comparing the richness of LMW1 compounds observed for a range of plant mixtures and for plant monocultures of species present in these mixtures, we showed that plant species richness increases the richness of these ESOC mainly through complementarity effects among plant species associated with contrasted spectra of soil compounds. This could explain previously reported effects of plant diversity on the diversity of soil heterotrophic microorganisms.
Effect of plant diversity on the diversity of soil organic compounds
El Moujahid, Lamiae; Michalet, Serge; Bellvert, Florian; Weigelt, Alexandra; Poly, Franck
2017-01-01
The effect of plant diversity on aboveground organisms and processes was largely studied but there is still a lack of knowledge regarding the link between plant diversity and soil characteristics. Here, we analyzed the effect of plant identity and diversity on the diversity of extractible soil organic compounds (ESOC) using 87 experimental grassland plots with different levels of plant diversity and based on a pool of over 50 plant species. Two pools of low molecular weight organic compounds, LMW1 and LMW2, were characterized by GC-MS and HPLC-DAD, respectively. These pools include specific organic acids, fatty acids and phenolics, with more organic acids in LMW1 and more phenolics in LMW2. Plant effect on the diversity of LMW1 and LMW2 compounds was strong and weak, respectively. LMW1 richness observed for bare soil was lower than that observed for all planted soils; and the richness of these soil compounds increased twofold when dominant plant species richness increased from 1 to 6. Comparing the richness of LMW1 compounds observed for a range of plant mixtures and for plant monocultures of species present in these mixtures, we showed that plant species richness increases the richness of these ESOC mainly through complementarity effects among plant species associated with contrasted spectra of soil compounds. This could explain previously reported effects of plant diversity on the diversity of soil heterotrophic microorganisms. PMID:28166250
Cormier, Marc-André; Werner, Roland A; Sauer, Peter E; Gröcke, Darren R; Leuenberger, Markus C; Wieloch, Thomas; Schleucher, Jürgen; Kahmen, Ansgar
2018-04-01
Hydrogen (H) isotope ratio (δ 2 H) analyses of plant organic compounds have been applied to assess ecohydrological processes in the environment despite a large part of the δ 2 H variability observed in plant compounds not being fully elucidated. We present a conceptual biochemical model based on empirical H isotope data that we generated in two complementary experiments that clarifies a large part of the unexplained variability in the δ 2 H values of plant organic compounds. The experiments demonstrate that information recorded in the δ 2 H values of plant organic compounds goes beyond hydrological signals and can also contain important information on the carbon and energy metabolism of plants. Our model explains where 2 H-fractionations occur in the biosynthesis of plant organic compounds and how these 2 H-fractionations are tightly coupled to a plant's carbon and energy metabolism. Our model also provides a mechanistic basis to introduce H isotopes in plant organic compounds as a new metabolic proxy for the carbon and energy metabolism of plants and ecosystems. Such a new metabolic proxy has the potential to be applied in a broad range of disciplines, including plant and ecosystem physiology, biogeochemistry and palaeoecology. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Reverse Osmosis Processing of Organic Model Compounds and Fermentation Broths
2006-04-01
AFRL-ML-TY-TP-2007-4545 POSTPRINT REVERSE OSMOSIS PROCESSING OF ORGANIC MODEL COMPOUNDS AND FERMENTATION BROTHS Robert Diltz...TELEPHONE NUMBER (Include area code) Bioresource Technology 98 (2007) 686–695Reverse osmosis processing of organic model compounds and fermentation broths...December 2005; accepted 31 January 2006 Available online 4 April 2006Abstract Post-treatment of an anaerobic fermentation broth was evaluated using a 150
Induction of glutathione S-Transferase in Helicoverpa zea fed cashew flour.
USDA-ARS?s Scientific Manuscript database
H. zea and other insects have evolved strategies to counteract the plant protective proteins and defensive compounds they may encounter during feeding. We sought to take advantage of this phenomenon by identifying proteins upregulated in H. zea in response to the inclusion of cashew nut flour in th...
A heterozygous moth genome provides insights into herbivory and detoxification
USDA-ARS?s Scientific Manuscript database
How an insect evolves to become a successful herbivore is of profound biological and practical importance. Herbivores are often adapted to feed on a specific group of evolutionarily and biochemically related host plants, but the genetic and molecular bases for adaptation to plant defense compounds r...
NASA Astrophysics Data System (ADS)
Rivas-Ubach, A.; Liu, Y.; Bianchi, T. S.; Tolic, N.; Jansson, C.; Paša-Tolić, L.
2017-12-01
The role of nutrients in organisms, especially primary producers, has been a topic of special interest in ecosystem research for understanding the ecosystem structure and function. The majority of macro-elements in organisms, such as C, H, O, N and P, do not act as single elements but are components of organic compounds (lipids, peptides, carbohydrates, etc), which are more directly related to the physiology of organisms and thus to the ecosystem function. However, accurately deciphering the overall content of the main compound classes (lipids, proteins, carbohydrates,…) in organisms is still a major challenge. van Krevelen (vK) diagrams have been widely used as an estimation of the main compound categories present in environmental samples based on O:C vs H:C molecular ratios, but a stoichiometric classification based exclusively on O:C and H:C ratios is feeble. Different compound classes show large O:C and H:C ratio overlapping and other heteroatoms, such as N and P, should be considered to robustly distinguish the different classes. We propose a new compound classification for biological/environmental samples based on the C:H:O:N:P stoichiometric ratios of thousands of molecular formulas of characterized compounds from 6 different main categories: lipids, peptides, amino-sugars, carbohydrates, nucleotides and phytochemical compounds (oxy-aromatic compounds). This new multidimensional stoichiometric compound constraints classification (MSCC) can be applied to data obtained with high resolution mass spectrometry (HRMS), allowing an accurate overview of the relative abundances of the main compound categories present in organismal samples. The MSCC has been optimized for plants, but it could be also applied to different organisms and serve as a strong starting point to further investigate other environmental complex matrices (soils, aerosols, etc). The proposed MSCC advances environmental research, especially eco-metabolomics, ecophysiology and ecological stoichiometry studies, providing a new tool to understand the ecosystem structure and function at the molecular level.
Lyford, F.P.; Kliever, J.D.; Scott, Clifford
1999-01-01
Volatile organic compounds are present in ground water at the Allen Harbor Landfill and the Calf Pasture Point sites on the former Naval Construction Battalion Center in Davisville, R.I. Vapor-diffusion samplers were used at the two sites during March-April 1998 to identify possible discharge points for contaminants along the shore of Allen Harbor and in two wetland areas near the shore. Results from vapor-diffusion samplers will be used in conjunction with other site information to evaluate proposed ground-water monitoring programs. Volatile organic compounds were detected in 41 of 115 samplers placed along the shoreline at the Allen Harbor Landfill. Trichloroethylene was the principal volatile organic compound detected of eight target compounds. The highest vapor concentration measured exceeded 300,000 parts per billion by volume in an area where TCE was detected in groundwater from nearby monitoring wells. Other chemicals detected in vapor-diffusion samplers included tetrachloroethylene, toluene, and benzene. Concentrations of individual volatile organic compounds were less than 100 parts per billion by volume in most samplers. Volatile organic compounds, principally trichloroethylene, were detected in 7 of 30 samplers placed along the shoreline at Calf Pasture Point; the highest trichloroethylene concentration was 1,900 parts per billion by volume. A trace concentration of tetrachloroethylene was detected in one of the samplers. One of 24 samplers placed in two wetland areas near the shore (suspected discharge areas for ground-water containing volatile organic compounds) detected trichloroethylene at a vapor concentration of 14 parts per billion by volume.
Korpi, A; Kasanen, J P; Alarie, Y; Kosma, V M; Pasanen, A L
1999-01-01
The authors investigated the ability/potencies of 3 microbial volatile organic compounds and a mixture of 5 microbial volatile organic compounds to cause eye and upper respiratory tract irritation (i.e., sensory irritation), with an animal bioassay. The authors estimated potencies by determining the concentration capable of decreasing the respiratory frequency of mice by 50% (i.e., the RD50 value). The RD50 values for 1-octen-3-ol, 3-octanol, and 3-octanone were 182 mg/m3 (35 ppm), 1359 mg/m3 (256 ppm), and 17586 mg/m3 (3360 ppm), respectively. Recommended indoor air levels calculated from the individual RD50 values for 1-octen-3-ol, 3-octanol, and 3-octanone were 100, 1000, and 13000 microg/m3, respectively-values considerably higher than the reported measured indoor air levels for these compounds. The RD50 value for a mixture of 5 microbial volatile organic compounds was also determined and found to be 3.6 times lower than estimated from the fractional concentrations and the respective RD50s of the individual components. The data support the conclusion that a variety of microbial volatile organic compounds may have some synergistic effects for the sensory irritation response, which constrains the interpretation and application of recommended indoor air levels of individual microbial volatile organic compounds. The results also showed that if a particular component of a mixture was much more potent than the other components, it may dominate the sensory irritation effect. With respect to irritation symptoms reported in moldy houses, the results of this study indicate that the contribution of microbial volatile organic compounds to these symptoms seems less than previously supposed.
40 CFR 60.705 - Reporting and recordkeeping requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Volatile Organic Compound Emissions From Synthetic Organic Chemical Manufacturing Industry (SOCMI) Reactor...) (i), (ii) or (iii), the concentration level or reading indicated by the organics monitoring device at... recovery system, and where an organic compound monitoring device is not used: (i) All 3-hour periods of...
40 CFR 60.705 - Reporting and recordkeeping requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Volatile Organic Compound Emissions From Synthetic Organic Chemical Manufacturing Industry (SOCMI) Reactor...) (i), (ii) or (iii), the concentration level or reading indicated by the organics monitoring device at... recovery system, and where an organic compound monitoring device is not used: (i) All 3-hour periods of...
Keren, Yonatan; Borisover, Mikhail; Bukhanovsky, Nadezhda
2015-11-01
The organic compound-soil interactions may be strongly influenced by changes in soil organic matter (OM) which affects the environmental fate of multiple organic pollutants. The soil OM changes may be caused by land disposal of various OM-containing wastes. One unique type of OM-rich waste is olive mill-related wastewater (OMW) characterized by high levels of OM, the presence of fatty aliphatics and polyphenolic aromatics. The systematic data on effects of the land-applied OMW on organic compound-soil interactions is lacking. Therefore, aqueous sorption of simazine and diuron, two herbicides, was examined in batch experiments onto three soils, including untreated and OMW-affected samples. Typically, the organic compound-soil interactions increased following the prior land application of OMW. This increase is associated with the changes in sorption mechanisms and cannot be attributed solely to the increase in soil organic carbon content. A novel observation is that the OMW application changes the soil-sorbent matrix in such a way that the solute uptake may become cooperative or the existing ability of a soil sorbent to cooperatively sorb organic molecules from water may become characterized by a larger affinity. The remarkable finding of this study was that in some cases a cooperative uptake of organic molecules by soils makes itself evident in distinct sigmoidal sorption isotherms rarely observed in soil sorption of non-ionized organic compounds; the cooperative herbicide-soil interactions may be characterized by the Hill model coefficients. However, no single trend was found for the effect of applied OMW on the mechanisms of organic compound-soil interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.
VOLATILE ORGANIC COMPOUNDS (VOCS) CHAPTER 31.
The term "volatile organic compounds' (VOCs) was originally coined to refer, as a class, to carbon-containing chemicals that participate in photochemical reactions in the ambient (outdoor) are. The regulatory definition of VOCs used by the U.S. EPA is: Any compound of carbon, ex...
Code of Federal Regulations, 2010 CFR
2010-07-01
... methods as presented in current environmental and analytical chemistry literature. Examples of analytical....001 microgram (µg) of compound per milligram of organic extract) of these compounds in the extractable organic matter. The concentration of each individual PAH or NPAH compound identified shall be reported in...
VOLATILE ORGANIC COMPOUNDS MEASURED IN DEARS PASSIVE SAMPLERS
A suite of 27 volatile organic compounds (VOCs) were monitored in personal exposures, indoors and outdoors of participant's residences, and at a central community site during the DEARS summer 2004 monitoring season. The list of VOCs focused on compounds typically associated with ...
Harden, Stephen L.
2009-01-01
Water-quality and hydrologic data were collected during 2008 to examine the occurrence of organic wastewater compounds at a concentrated swine feeding operation located in the North Carolina Coastal Plain. Continuous groundwater level and stream-stage data were collected at one monitoring well and one stream site, respectively, throughout 2008. One round of environmental and quality-control samples was collected in September 2008 following a period of below-normal precipitation and when swine waste was not being applied to the spray fields. Samples were collected at one lagoon site, seven shallow groundwater sites, and one surface-water site for analysis of 111 organic wastewater compounds, including household, industrial, and agricultural-use compounds, sterols, pharmaceutical compounds, hormones, and antibiotics. Analytical data for environmental samples collected during the study provide preliminary information on the occurrence of organic wastewater compounds in the lagoon-waste source material, groundwater beneath fields that receive spray applications of the lagoon wastes, and surface water in the tributary adjacent to the site. Overall, 28 organic wastewater compounds were detected in the collected samples, including 11 household, industrial, and agricultural-use compounds; 3 sterols; 2 pharmaceutical compounds; 5 hormones; and 7 antibiotics. The lagoon sample had the greatest number (20) and highest concentrations of compounds compared to groundwater and surface-water samples. The antibiotic lincomycin had the maximum detected concentration (393 micrograms per liter) in the lagoon sample. Of the 11 compounds identified in the groundwater and surface-water samples, all with reported concentrations less than 1 microgram per liter, only lincomycin identified in groundwater at 1 well and 3-methyl-1H-indole and indole identified in surface water at 1 site also were identified in the lagoon waste material.
Atmospheric Chemistry of Micrometeoritic Organic Compounds
NASA Technical Reports Server (NTRS)
Kress, M. E.; Belle, C. L.; Pevyhouse, A. R.; Iraci, L. T.
2011-01-01
Micrometeorites approx.100 m in diameter deliver most of the Earth s annual accumulation of extraterrestrial material. These small particles are so strongly heated upon atmospheric entry that most of their volatile content is vaporized. Here we present preliminary results from two sets of experiments to investigate the fate of the organic fraction of micrometeorites. In the first set of experiments, 300 m particles of a CM carbonaceous chondrite were subject to flash pyrolysis, simulating atmospheric entry. In addition to CO and CO2, many organic compounds were released, including functionalized benzenes, hydrocarbons, and small polycyclic aromatic hydrocarbons. In the second set of experiments, we subjected two of these compounds to conditions that simulate the heterogeneous chemistry of Earth s upper atmosphere. We find evidence that meteor-derived compounds can follow reaction pathways leading to the formation of more complex organic compounds.
Hallmann, Ewelina; Rembiałkowska, Ewa
2012-09-01
Sweet red bell pepper is one of the best sources of ascorbic acid and carotenoids as well as phenolic compounds important in the human diet. There have been some studies showing a higher level of bioactive compounds in organic bell pepper fruits compared with conventional fruits, but not all studies have been consistent in this respect. The levels of carotenoids and phenolics are very variable and may be affected by ripeness, genotype and cultivation. The results obtained in this study showed that an organic growing system affected the level of bioactive compounds (carotenoids and polyphenols) in sweet bell pepper fruits cultivated in Poland. Organic bell pepper fruits contained significantly more dry matter, vitamin C, total carotenoids, β-carotene, α-carotene, cis-β-carotene, total phenolic acids (as well as individual gallic and chlorogenic acids) and flavonoids (quercetin D-glucoside, quercetin and kaempferol) compared with conventional fruits. The bell pepper variety also affected the level of antioxidant compounds in fruits. Organic growing increased the level of antioxidant compounds such as carotenoids, phenolic compounds and vitamin C in sweet bell pepper. The second significant factor affecting the antioxidant compound content of sweet bell pepper was variety. It would be necessary to continue this study as a long-term experiment in order to eliminate the influence of seasonality. Copyright © 2012 Society of Chemical Industry.
Wasielewski, Michael R.; Gaines, George L.; Niemczyk, Mark P.; Johnson, Douglas G.; Gosztola, David J.; O'Neil, Michael P.
1996-01-01
A light-intensity dependent molecular switch comprised of a compound which shuttles an electron or a plurality of electrons from a plurality of electron donors to an electron acceptor upon being stimulated with light of predetermined wavelengths, said donors selected from porphyrins and other compounds, and a method for making said compound.
Process for removing sulfur from coal
Aida, Tetsuo; Squires, Thomas G.; Venier, Clifford G.
1985-02-05
A process for the removal of divalent organic and inorganic sulfur compounds from coal and other carbonaceous material. A slurry of pulverized carbonaceous material is contacted with an electrophilic oxidant which selectively oxidizes the divalent organic and inorganic compounds to trivalent and tetravalent compounds. The carbonaceous material is then contacted with a molten caustic which dissolves the oxidized sulfur compounds away from the hydrocarbon matrix.
Phosphorescent organic light emitting diodes with high efficiency and brightness
Forrest, Stephen R; Zhang, Yifan
2015-11-12
An organic light emitting device including a) an anode; b) a cathode; and c) an emissive layer disposed between the anode and the cathode, the emissive layer comprising an organic host compound and a phosphorescent compound exhibiting a Stokes Shift overlap greater than 0.3 eV. The organic light emitting device may further include a hole transport layer disposed between the emissive layer and the anode; and an electron transport layer disposed between the emissive layer and the cathode. In some embodiments, the phosphorescent compound exhibits a phosphorescent lifetime of less than 10 .mu.s. In some embodiments, the concentration of the phosphorescent compound ranges from 0.5 wt. % to 10 wt. %.
Catalyst for Oxidation of Volatile Organic Compounds
NASA Technical Reports Server (NTRS)
Wood, George M. (Inventor); Upchurch, Billy T. (Inventor); Schryer, David R. (Inventor); Davis, Patricia P. (Inventor); Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); Schyryer, Jacqueline L. (Inventor); DAmbrosia, Christine M. (Inventor)
2000-01-01
Disclosed is a process for oxidizing volatile organic compounds to carbon dioxide and water with the minimal addition of energy. A mixture of the volatile organic compound and an oxidizing agent (e.g. ambient air containing the volatile organic compound) is exposed to a catalyst which includes a noble metal dispersed on a metal oxide which possesses more than one oxidation state. Especially good results are obtained when the noble metal is platinum, and the metal oxide which possesses more than one oxidation state is tin oxide. A promoter (i.e., a small amount of an oxide of a transition series metal) may be used in association with the tin oxide to provide very beneficial results.
Steinheimer, T.R.; Pereira, W.E.; Johnson, S.M.
1981-01-01
A bed sediment sample taken from an area impacted by heavy industrial activity was analyzed for organic compounds of environmental significance. Extraction was effected on a Soxhlet apparatus using a freeze-dried sample. The Soxhlet extract was fractionated by silica gel micro-column adsorption chromatography. Separation and identification of the organic compounds was accomplished by capillary gas chromatography/mass spectrometry techniques. More than 50 compounds were identified; these include saturated hydrocarbons, olefins, aromatic hydrocarbons, alkylated polycyclic aromatic hydrocarbons, and oxygenated compounds such as aldehydes and ketones. The role of bed sediments as a source or sink for organic pollutants is discussed. ?? 1981.
POTENTIAL EMISSIONS OF HAZARDOUS ORGANIC COMPOUNDS FROM SEWAGE SLUDGE INCINERATION
Laboratory thermal decomposition studies were undertaken to evaluate potential organic emissions from sewage sludge incinerators. Precisely controlled thermal decomposition experiments were conducted on sludge spiked with mixtures of hazardous organic compounds, on the mixtures o...
EMISSION OF ORGANIC SUBSTANCES FROM INDOOR SURFACE MATERIALS
A wide variety of surface materials in buildings can release organic compounds. Examples include building materials, furnishings, maintenance materials, clothing, and paper products. These sources contribute substantially to the hundreds of organic compounds that have been measur...
NASA Technical Reports Server (NTRS)
1972-01-01
Various methods used in the organic analysis of lunar samples are reviewed. The scope, advantages, and limitations of these methods are discussed, with particular emphasis on possible sources of contamination and experimental artifacts inherent in their use. A broad survey of the organogenic elements and compounds found in lunar samples covers the search for biogenic structures and viable organisms; the abundance and isotopic composition of various elements and compounds; the search for porphyrins, amino acids, or amino acid precursors; and the presence of heterocylics, aromatic hydrocarbons, and other organic compounds. The sources of the organogenic elements and compounds detected in lunar samples are discussed. The significance of the lunar organic analysis for exobiology is discussed in terms of its relevance to and implications for the studies of chemical evolution and terrestrial organic geochemistry. Individual items are announced in this issue.
Fernandes, Annabel; Coelho, João; Ciríaco, Lurdes; Pacheco, Maria José; Lopes, Ana
2016-12-01
Boron-doped diamond (BDD) and Ti/Pt/PbO 2 anodes were utilized to perform the electrodegradation of synthetic samples containing humic acid in the presence of different organic and inorganic carbon-containing and nitrogen-containing compounds. The influence of the chloride ion in the degradation process of the different synthetic samples was also assessed. The results showed that the anodic oxidation process can efficiently degrade recalcitrant compounds such as humic acid. The presence of carbonate in solution enhances the nitrogen removal, whereas it hinders the oxidation of the organic compounds. When organic nitrogen is present, it is converted to NH 4 + , which in turn is oxidized to nitrate and to volatile nitrogen compounds. Hydroxyl radicals are more prone to oxidize the organic nitrogen than the ammonium nitrogen. The presence of chloride enhances the organic matter and nitrogen removal rates, BDD being the anode material that yields the highest removals.
NASA Astrophysics Data System (ADS)
Monsores Paixão, Monique; Tadeu Gomes Vianna, Marco; Marques, Marcia
2018-01-01
Aromatic organic pollutants are highly toxic to the human and environmental health and are considered as priority pollutants by regulatory agencies. Managing contaminated sites with organic pollutants is one of the major environmental challenges today. Of all technologies that have been proposed to remove contaminants, adsorption is recognized worldwide as an attractive option due to its versatility, wide applicability and economic viability. Recent studies report the use of graphene (GN), a recently carbon nanomaterial, and its derivatives in sorption processes for the removal of aromatic organic compounds. The present review has shown that GN structures are a promising alternative to traditional adsorbent materials, with excellent results in the removal of organic compounds from water, due to their unique structural characteristics and great adsorption capacity for organic compounds. Although, there is still a long way to go until that practical applications can be implemented.
Hinkle, Stephen J.; Weick, Rodney J.; Johnson, Jill M.; Cahill, Jeffery D.; Smith, Steven G.; Rich, Barbara J.
2005-01-01
The occurrence of organic wastewater compounds (components of 'personal care products' and other common household chemicals), pharmaceuticals (human prescription and nonprescription medical drugs), and coliphage (viruses that infect coliform bacteria, and found in high concentrations in municipal wastewater) in onsite wastewater (septic tank effluent) and in a shallow, unconfined, sandy aquifer that serves as the primary source of drinking water for most residents near La Pine, Oregon, was documented. Samples from two types of observation networks provided basic occurrence data for onsite wastewater and downgradient ground water. One observation network was a group of 28 traditional and innovative (advanced treatment) onsite wastewater treatment systems and associated downgradient drainfield monitoring wells, referred to as the 'innovative systems network'. The drainfield monitoring wells were located adjacent to or under onsite wastewater treatment system drainfield lines. Another observation network, termed the 'transect network', consisted of 31 wells distributed among three transects of temporary, stainless-steel-screened, direct-push monitoring wells installed along three plumes of onsite wastewater. The transect network, by virtue of its design, also provided a basis for increased understanding of the transport of analytes in natural systems. Coliphage were frequently detected in onsite wastewater. Coliphage concentrations in onsite wastewater were highly variable, ranging from less than 1 to 3,000,000 plaque forming units per 100 milliliters. Coliphage were occasionally detected (eight occurrences) at low concentrations in samples from wells located downgradient from onsite wastewater treatment system drainfield lines. However, coliphage concentrations were below method detection limits in replicate or repeat samples collected from the eight sites. The consistent absence of coliphage detections in the replicate or repeat samples is interpreted to indicate that the detections reported for ground-water samples represented low-level field or laboratory contamination, and it would appear that coliphage were effectively attenuated to less than 1 PFU/100 mL over distances of several feet of transport in the La Pine aquifer and (or) overlying unsaturated zone. Organic wastewater compounds were frequently detected in onsite wastewater. Of the 63 organic wastewater compounds in the analytical schedule, 45 were detected in the 21 samples of onsite wastewater. Concentrations of organic wastewater compounds reached a maximum of 1,300 ug/L (p-cresol). Caffeine was detected at concentrations as high as 320 ug/L. Fourteen of the 45 compounds were detected in more than 90 percent of onsite wastewater samples. Fewer (nine) organic wastewater compounds were detected in ground water, despite the presence of nitrate and chloride likely from onsite wastewater sources. The nine organic wastewater compounds that were detected in ground-water samples were acetyl-hexamethyl-tetrahydro-naphthalene (AHTN), caffeine, cholesterol, hexahydrohexamethyl-cyclopentabenzopyran, N,N-diethyl-meta-toluamide (DEET), tetrachloroethene, tris (2-chloroethyl) phosphate, tris (dichloroisopropyl) phosphate, and tributyl phosphate. Frequent detection of household-chemical type organic wastewater compounds in onsite wastewater provides evidence that some of these organic wastewater compounds may be useful indicators of human waste effluent dispersal in some hydrologic environments. The occurrence of organic wastewater compounds in ground water downgradient from onsite wastewater treatment systems demonstrates that a subgroup of organic wastewater compounds is transported in the La Pine aquifer. The consistently low concentrations (generally less than 1 ug/L) of organic wastewater compounds in water samples collected from wells located no more than 19 feet from drainfield lines indicates that the reactivity (sorption, degradation) of this suite of organic waste
NASA Astrophysics Data System (ADS)
Song, Hyun-Pa; Shim, Sung-Lye; Lee, Sun-Im; Kim, Dong-Ho; Kwon, Joong-Ho; Kim, Kyong-Su
2012-08-01
The volatile organic compounds of non-irradiated and electron-beam irradiated 'Fuji' apples (Malus domestica Borkh.) at 0, 0.5, and 1 kGy were isolated through simultaneous distillation extractions and analyzed using gas chromatograph-mass spectrometry. A total of 53 volatile organic compounds were characterized in 0 and 1 kGy irradiated samples, whereas two more compounds related to ketone and terpenoid group were identified in 0.5 kGy irradiated samples. The contents of volatile compounds were 24.33, 36.49, and 35.28 mg/kg in 0, 0.5, and 1 kGy irradiated samples, respectively. The major compounds identified were butanol, hexanal, [E]-2-hexenal, and hexanol in all samples. The relative content of alcohol increased after 30 days of storage in all samples, whereas that of aldehyde decreased. Although the contents of some volatile compounds were changed by electron-beam irradiation, the total yield and major flavor compounds of irradiated 'Fuji' apples were similar to, or even greater than, those of the control. Therefore, the application of e-beam irradiation if required for microbial decontamination of 'Fuji' apples is an acceptable method as it does not bring about any major quantitative changes of volatile organic compounds.
Removal of organic contaminants by RO and NF membranes
NASA Technical Reports Server (NTRS)
Yoon, Yeomin; Lueptow, Richard M.
2005-01-01
Rejection characteristics of organic and inorganic compounds were examined for six reverse osmosis (RO) membranes and two nanofiltration (NF) membranes that are commercially available. A batch stirred-cell was employed to determine the membrane flux and the solute rejection for solutions at various concentrations and different pH conditions. The results show that for ionic solutes the degree of separation is influenced mainly by electrostatic exclusion, while for organic solutes the removal depends mainly upon the solute radius and molecular structure. In order to provide a better understanding of rejection mechanisms for the RO and NF membranes, the ratio of solute radius (r(i,s)) to effective membrane pore radius (r(p)) was employed to compare rejections. An empirical relation for the dependence of the rejection of organic compounds on the ratio r(i,s)/r(p) is presented. The rejection for organic compounds is over 75% when r(i,s)/r(p) is greater than 0.8. In addition, the rejection of organic compounds is examined using the extended Nernst-Planck equation coupled with a steric hindrance model. The transport of organic solutes is controlled mainly by diffusion for the compounds that have a high r(i,s)/r(p) ratio, while convection is dominant for compounds that have a small r(i,s)/r(p) ratio. c2005 Elsevier B.V. All rights reserved.
Identification of organic compounds in landfill leachate treated by advanced oxidation processes.
Scandelai, Ana Paula Jambers; Sloboda Rigobello, Eliane; Oliveira, Beatriz Lopes Corso de; Tavares, Célia Regina Granhen
2017-11-27
Landfill leachates are considered to be complex effluents of a variable composition containing many biorecalcitrant and highly toxic compounds. Considering the shortage of studies concerning the treatment of landfill leachates using ozone, as well as its combination with catalysts, the aim of this paper was to identify the organic compounds in this effluent treated with advanced oxidation processes (AOPs) of ozonation (O 3 ), and heterogeneous catalytic ozonation with TiO 2 (O 3 /TiO 2 ) and with ZnO (O 3 /ZnO). In addition, this study sought to assess the efficiency of the removal of the organic matter present in the leachate. For the pre- and post-AOPs, the leachate was characterized through physicochemical parameters and identification of organic compounds using gas chromatography coupled to the mass spectrometry (GC-MS). The three processes studied (O 3 , O 3 /TiO 2 , and O 3 /ZnO) presented color removal, turbidity, BOD above 95%, and lower COD removals (19%, 24%, and 33%, respectively). All AOPs studied promoted a similar reduction of organic compounds from leachate, some of which with toxic and carcinogenic potential, such as p-cresol, bisphenol A, atrazine, and hexazinone. In addition, upon the removal of organic matter and organic compounds, the heterogeneous catalytic ozonation processes proved more efficient than the process carried out only with ozone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowen, J.M.
1988-09-01
The interactions between minerals representative of the bulk composition of oil shales and organic compounds that have been found in oil shale leachates were investigated. The method used to directly determine the type of interactions that could take place between organic compounds and oil shale mineral phases was Fourier transform infrared spectroscopy (FTIR) using several advanced detection methods, including diffuse reflectance (DRIFT) and photoacoustics (PAS). The minerals that were investigated include quartz, calcite, and dolomite, which are known to figure significantly in the composition of processed oil shales. The organic chemical compounds used were chosen from a list of compoundsmore » identified in spent oil shale leachates, and they include pyridine, phenol, p-cresol, and acetone. The sorption interactions for the study were prepared by exposing each of the minerals to the organic compounds by three different methods. These were vapor deposition, direct application, and immersion in an aqueous solution at pH 12. 41 refs., 3 figs., 4 tabs.« less
Detection, composition and treatment of volatile organic compounds from waste treatment plants.
Font, Xavier; Artola, Adriana; Sánchez, Antoni
2011-01-01
Environmental policies at the European and global level support the diversion of wastes from landfills for their treatment in different facilities. Organic waste is mainly treated or valorized through composting, anaerobic digestion or a combination of both treatments. Thus, there are an increasing number of waste treatment plants using this type of biological treatment. During waste handling and biological decomposition steps a number of gaseous compounds are generated or removed from the organic matrix and emitted. Different families of Volatile Organic Compounds (VOC) can be found in these emissions. Many of these compounds are also sources of odor nuisance. In fact, odors are the main source of complaints and social impacts of any waste treatment plant. This work presents a summary of the main types of VOC emitted in organic waste treatment facilities and the methods used to detect and quantify these compounds, together with the treatment methods applied to gaseous emissions commonly used in composting and anaerobic digestion facilities.
Detection, Composition and Treatment of Volatile Organic Compounds from Waste Treatment Plants
Font, Xavier; Artola, Adriana; Sánchez, Antoni
2011-01-01
Environmental policies at the European and global level support the diversion of wastes from landfills for their treatment in different facilities. Organic waste is mainly treated or valorized through composting, anaerobic digestion or a combination of both treatments. Thus, there are an increasing number of waste treatment plants using this type of biological treatment. During waste handling and biological decomposition steps a number of gaseous compounds are generated or removed from the organic matrix and emitted. Different families of Volatile Organic Compounds (VOC) can be found in these emissions. Many of these compounds are also sources of odor nuisance. In fact, odors are the main source of complaints and social impacts of any waste treatment plant. This work presents a summary of the main types of VOC emitted in organic waste treatment facilities and the methods used to detect and quantify these compounds, together with the treatment methods applied to gaseous emissions commonly used in composting and anaerobic digestion facilities. PMID:22163835
NASA Astrophysics Data System (ADS)
Rossinskyi, Volodymyr
2018-02-01
The biological wastewater treatment technologies in anoxic and aerobic bioreactors with recycle of sludge mixture are used for the effective removal of organic compounds from wastewater. The change rate of sludge mixture recirculation between bioreactors leads to a change and redistribution of concentrations of organic compounds in sludge mixture in bioreactors and change hydrodynamic regimes in bioreactors. Determination of the coefficient of internal recirculation of sludge mixture between bioreactors is important for the choice of technological parameters of biological treatment (wastewater treatment duration in anoxic and aerobic bioreactors, flow capacity of recirculation pumps). Determination of the coefficient of internal recirculation of sludge mixture requires integrated consideration of hydrodynamic parameter (flow rate), kinetic parameter (rate of oxidation of organic compounds) and physical-chemical parameter of wastewater (concentration of organic compounds). The conducted numerical experiment from the proposed mathematical equations allowed to obtain analytical dependences of the coefficient of internal recirculation sludge mixture between bioreactors on the concentration of organic compounds in wastewater, the duration of wastewater treatment in bioreactors.
Enzymatic versus nonenzymatic mechanisms for Fe(III) reduction in aquatic sediments
Lovley, D.R.; Phillips, E.J.P.; Lonergan, D.J.
1991-01-01
The potential for nonenzymatic reduction of Fe(III) either by organic compounds or by the development of a low redox potential during microbial metabolism was compared with direct, enzymatic Fe(III) reduction by Fe(III)-reducing microorganisms. At circumneutral pH, very few organic compounds nonenzymatically reduced Fe(III). In contrast, in the presence of the appropriate Fe(IH)-reducing microorganisms, most of the organic compounds examined could be completely oxidized to carbon dioxide with the reduction of Fe(III). Even for those organic compounds that could nonenzymatically reduce Fe(III), microbial Fe(III) reduction was much more extensive. The development of a low redox potential during microbial fermentation did not result in nonenzymatic Fe(III) reduction. Model organic compounds were readily oxidized in Fe(III)-reducing aquifer sediments, but not in sterilized sediments. These results suggest that microorganisms enzymatically catalyze most of the Fe(III) reduction in the Fe(III) reduction zone of aquatic sediments and aquifers.
On the Implications of aerosol liquid water and phase separation for modeled organic aerosol mass
Current chemical transport models assume that organic aerosol (OA)-forming compounds partition mostly to a water-poor, organic-rich phase in accordance with their vapor pressures. However, in the southeast United States, a significant fraction of ambient organic compounds are wat...
Synthesis Road Map Problems in Organic Chemistry
ERIC Educational Resources Information Center
Schaller, Chris P.; Graham, Kate J.; Jones, T. Nicholas
2014-01-01
Road map problems ask students to integrate their knowledge of organic reactions with pattern recognition skills to "fill in the blanks" in the synthesis of an organic compound. Students are asked to identify familiar organic reactions in unfamiliar contexts. A practical context, such as a medicinally useful target compound, helps…
The magnitudes, distributions, controlling processes and uncertainties associated with North American natural emissions of oxidant precursors are reviewed. Natural emissions are repsonsible for a major portion of the compounds, including non-methane volatile organic compounds (N...
DEVELOPMENT OF IMPROVED TITANIUM ORGANIC COMPOUNDS FOR USE AS HYDRAULIC FLUIDS
HYDRAULIC FLUIDS, *METALORGANIC COMPOUNDS, *TITANATES, *TITANIUM COMPOUNDS, ALKYL RADICALS, CATALYSTS , CHLORIDES, COMPLEX COMPOUNDS, FLUIDS, PHOSPHORIC ACIDS, PROPYL RADICALS, VISCOSITY, ZINC COMPOUNDS
Keto-acids in Carbonaceous Meteorites
NASA Technical Reports Server (NTRS)
Cooper, G.; Chang, P. M.; Dugas, A.; Byrd, A.; Chang, P. M.; Washington, N.
2005-01-01
The Murchison and Murray meteorites are the best-characterized carbonaceous meteorites with respect to organic chemistry and are generally used as references for organic compounds in extraterrestrial material. Among the classes of organic compounds found in these meteorites are amino acids, carboxylic acids, hydroxy acids, purines, and pyrimidines. Such compounds, important in contemporary biochemistry, are thought to have been delivered to the early Earth in asteroids and comets and may have played a role in early life and/or the origin of life. Absent among (today's) critically important biological compounds reported in carbonaceous meteorites are keto acids, i.e., pyruvic acid, acetoacetic acid, and higher homologs. These compounds are key intermediates in such critical processes as glycolysis and the citric acid cycle. In this study several individual meteoritic keto acids were identified by gas chromatography-mass spectrometry (GC-MS) (see figure below). All compounds were identified as their trimethylsilyl (TMS), isopropyl ester (ISP), and tert-butyldimethylsilyl (tBDMS) derivatives. In general, the compounds follow the abiotic synthesis pattern of other known meteorite classes of organic compounds [1,2]: a general decrease in abundance with increasing carbon number within a class of compounds and many, if not all, possible isomers present at a given carbon number. The majority of the shown compounds was positively identified by comparison of their mass spectra to commercially available standards or synthesized standards.
Adsorption of dissolved organics in lake water by aluminum oxide. Effect of molecular weight
Davis, J.A.; Gloor, R.
1981-01-01
Dissolved organic compounds in a Swiss lake were fractionated into three molecular size classes by gel exclusion chromatography, and adsorption of each fraction on colloidal alumina was studied as a function of pH. Organic compounds with molecular weight (Mr) greater than 1000 formed strong complexes with the alumina surface, but low molecular weight compounds were weakly adsorbed. Electrophoretic mobility measurements indicated that alumina particles suspended in the original lake water were highly negatively charged because of adsorbed organic matter. Most of the adsorbed organic compounds were in the Mr range 1000 < Mr < 3000. Adsorption of these compounds during the treatment of drinking water by alum coagulation may be responsible for the preferential removal of trihalomethane precursors. Adsorption may also influence the molecular-weight distribution of dissolved organic material in lakes. surface, the present work will focus on the influence of molecular size and pH on the adsorption behavior of dissolved organic material of a Swiss lake. From a geochemical point of view, it is important to know the molecular-weight distribution of adsorbed organic matter so that we may better assess its reactivity with trace elements. The study also serves as a first step in quantifying the role of adsorption in the geochemical cycle of organic carbon in lacustrine environments. For water-treatment practice, we need to determine whether molecular weight fractionation occurs during adsorption by aluminum oxide. Such a fractionation could be significant in the light of recent reports that chloroform and other organochlorine compounds are preferentially produced by particular molecular-weight fractions (25-27). ?? 1981 American Chemical Society.
Beckwith, Michael A.
2002-01-01
Most of the analytical results for synthetic organic compounds were reported as either estimated or non-detected values. Phthalates and polycyclic aromatic hydrocarbons were the most frequently detected classes of synthetic organic compounds in streambed sediment. Organochlorine pesticide residues were detected at two sites. Polychlorinated biphenyls were detected at one site.
Li, DeQuan; Swanson, Basil I.
1995-01-01
An article of manufacture is provided including a substrate having an oxide surface layer and a selective thin film of a cyclodextrin derivative chemically bound upon said substrate, said film is adapted for the inclusion of a selected organic compound therewith. Such an article can be either a chemical sensor capable of detecting a resultant mass change from inclusion of the selected organic compound or a chemical separator capable of reversibly selectively separating a selected organic compound.
Nature and changes in organic matter in organic sediments. [organic matter in ocean sediments
NASA Technical Reports Server (NTRS)
Kaplan, I. R.
1973-01-01
A series of isoprenoid compounds were isolated from a heat treated marine sediment (from Tanner Basin) which were not present in the original sediment. Among the compounds identified were: phytol, dihydrophytol, C-18-isoprenoid ketone, phytanic and pristanic acids, C-19- and C-10-monoolefines, and the alkanes pristane and phytane. The significance and possible routes leading to these compounds is discussed.
Reflectance spectroscopy of organic compounds: 1. Alkanes
NASA Astrophysics Data System (ADS)
Clark, Roger N.; Curchin, John M.; Hoefen, Todd M.; Swayze, Gregg A.
2009-03-01
Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 μm. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.
Reflectance spectroscopy of organic compounds: 1. Alkanes
Clark, R.N.; Curchin, J.M.; Hoefen, T.M.; Swayze, G.A.
2009-01-01
Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 /??m. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the. universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even ' when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.
Brooker, M R; Longnecker, K; Kujawinski, E B; Evert, M H; Mouser, P J
2018-06-19
Phosphorus loads are strongly associated with the severity of harmful algal blooms in Lake Erie, a Great Lake situated between the United States and Canada. Inorganic and total phosphorus measurements have historically been used to estimate nonpoint and point source contributions, from contributing watersheds with organic phosphorus often neglected. Here, we used ultrahigh resolution mass spectrometry to characterize the dissolved organic matter and specifically dissolved organic phosphorus composition of several nutrient pollutant source materials and aqueous samples in a Lake Erie tributary. We detected between 23 and 313 organic phosphorus formulas across our samples, with manure samples having greater abundance of phosphorus- and nitrogen containing compounds compared to other samples. Manures also were enriched in lipids and protein-like compounds. The greatest similarities were observed between the Sandusky River and wastewater treatment plant effluent (WWTP), or the Sandusky River and agricultural edge of field samples. These sample pairs shared 84% of organic compounds and 59-73% of P-containing organic compounds, respectively. This similarity suggests that agricultural and/or WWTP sources dominate the supply of organic phosphorus compounds to the river. We identify formulas shared between the river and pollutant sources that could serve as possible markers of source contamination in the tributary.
Source apportionment of airborne particulate matter using organic compounds as tracers
NASA Astrophysics Data System (ADS)
Schauer, James J.; Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.
A chemical mass balance receptor model based on organic compounds has been developed that relates source contributions to airborne fine particle mass concentrations. Source contributions to the concentrations of specific organic compounds are revealed as well. The model is applied to four air quality monitoring sites in southern California using atmospheric organic compound concentration data and source test data collected specifically for the purpose of testing this model. The contributions of up to nine primary particle source types can be separately identified in ambient samples based on this method, and approximately 85% of the organic fine aerosol is assigned to primary sources on an annual average basis. The model provides information on source contributions to fine mass concentrations, fine organic aerosol concentrations and individual organic compound concentrations. The largest primary source contributors to fine particle mass concentrations in Los Angeles are found to include diesel engine exhaust, paved road dust, gasoline-powered vehicle exhaust, plus emissions from food cooking and wood smoke, with smaller contribution from tire dust, plant fragments, natural gas combustion aerosol, and cigarette smoke. Once these primary aerosol source contributions are added to the secondary sulfates, nitrates and organics present, virtually all of the annual average fine particle mass at Los Angeles area monitoring sites can be assigned to its source.
Source apportionment of airborne particulate matter using organic compounds as tracers
NASA Astrophysics Data System (ADS)
Schauer, James J.; Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.
A chemical mass balance receptor model based on organic compounds has been developed that relates sours; contributions to airborne fine particle mass concentrations. Source contributions to the concentrations of specific organic compounds are revealed as well. The model is applied to four air quality monitoring sites in southern California using atmospheric organic compound concentration data and source test data collected specifically for the purpose of testing this model. The contributions of up to nine primary particle source types can be separately identified in ambient samples based on this method, and approximately 85% of the organic fine aerosol is assigned to primary sources on an annual average basis. The model provides information on source contributions to fine mass concentrations, fine organic aerosol concentrations and individual organic compound concentrations. The largest primary source contributors to fine particle mass concentrations in Los Angeles are found to include diesel engine exhaust, paved road dust, gasoline-powered vehicle exhaust, plus emissions from food cooking and wood smoke, with smaller contribution:; from tire dust, plant fragments, natural gas combustion aerosol, and cigarette smoke. Once these primary aerosol source contributions are added to the secondary sulfates, nitrates and organics present, virtually all of the annual average fine particle mass at Los Angeles area monitoring sites can be assigned to its source.
ERIC Educational Resources Information Center
Campbell, Hugh; Rosin, Christopher
2011-01-01
This article uses the evolving understandings of commercial organic agriculture within two research programmes in New Zealand to address three problematic claims and associated framings that have underpinned analysis of the political economy of commercial organic agriculture. These three framings are: 1) that recent commercial developments in…
Levy, Amalie T; Lee, Kelvin H; Hanson, Thomas E
2016-11-01
Microbial sulfur metabolism, particularly the formation and consumption of insoluble elemental sulfur (S 0 ), is an important biogeochemical engine that has been harnessed for applications ranging from bioleaching and biomining to remediation of waste streams. Chlorobaculum tepidum, a low-light-adapted photoautolithotrophic sulfur-oxidizing bacterium, oxidizes multiple sulfur species and displays a preference for more reduced electron donors: sulfide > S 0 > thiosulfate. To understand this preference in the context of light energy availability, an "energy landscape" of phototrophic sulfur oxidation was constructed by varying electron donor identity, light flux, and culture duration. Biomass and cellular parameters of C. tepidum cultures grown across this landscape were analyzed. From these data, a correction factor for colorimetric protein assays was developed, enabling more accurate biomass measurements for C. tepidum, as well as other organisms. C. tepidum's bulk amino acid composition correlated with energy landscape parameters, including a tendency toward less energetically expensive amino acids under reduced light flux. This correlation, paired with an observation of increased cell size and storage carbon production under electron-rich growth conditions, suggests that C. tepidum has evolved to cope with changing energy availability by tuning its proteome for energetic efficiency and storing compounds for leaner times. How microbes cope with and adapt to varying energy availability is an important factor in understanding microbial ecology and in designing efficient biotechnological processes. We explored the response of a model phototrophic organism, Chlorobaculum tepidum, across a factorial experimental design that enabled simultaneous variation and analysis of multiple growth conditions, what we term the "energy landscape." C. tepidum biomass composition shifted toward less energetically expensive amino acids at low light levels. This observation provides experimental evidence for evolved efficiencies in microbial proteomes and emphasizes the role that energy flux may play in the adaptive responses of organisms. From a practical standpoint, our data suggest that bulk biomass amino acid composition could provide a simple proxy to monitor and identify energy stress in microbial systems. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
2016-01-01
ABSTRACT Microbial sulfur metabolism, particularly the formation and consumption of insoluble elemental sulfur (S0), is an important biogeochemical engine that has been harnessed for applications ranging from bioleaching and biomining to remediation of waste streams. Chlorobaculum tepidum, a low-light-adapted photoautolithotrophic sulfur-oxidizing bacterium, oxidizes multiple sulfur species and displays a preference for more reduced electron donors: sulfide > S0 > thiosulfate. To understand this preference in the context of light energy availability, an “energy landscape” of phototrophic sulfur oxidation was constructed by varying electron donor identity, light flux, and culture duration. Biomass and cellular parameters of C. tepidum cultures grown across this landscape were analyzed. From these data, a correction factor for colorimetric protein assays was developed, enabling more accurate biomass measurements for C. tepidum, as well as other organisms. C. tepidum's bulk amino acid composition correlated with energy landscape parameters, including a tendency toward less energetically expensive amino acids under reduced light flux. This correlation, paired with an observation of increased cell size and storage carbon production under electron-rich growth conditions, suggests that C. tepidum has evolved to cope with changing energy availability by tuning its proteome for energetic efficiency and storing compounds for leaner times. IMPORTANCE How microbes cope with and adapt to varying energy availability is an important factor in understanding microbial ecology and in designing efficient biotechnological processes. We explored the response of a model phototrophic organism, Chlorobaculum tepidum, across a factorial experimental design that enabled simultaneous variation and analysis of multiple growth conditions, what we term the “energy landscape.” C. tepidum biomass composition shifted toward less energetically expensive amino acids at low light levels. This observation provides experimental evidence for evolved efficiencies in microbial proteomes and emphasizes the role that energy flux may play in the adaptive responses of organisms. From a practical standpoint, our data suggest that bulk biomass amino acid composition could provide a simple proxy to monitor and identify energy stress in microbial systems. PMID:27565613