Ecosystem properties self-organize in response to a directional fog-vegetation interaction.
Stanton, Daniel E; Armesto, Juan J; Hedin, Lars O
2014-05-01
Feedbacks between vegetation and resource inputs can lead to the local, self-organization of ecosystem properties. In particular, feedbacks in response to directional resources (e.g., coastal fog, slope runoff) can create complex spatial patterns, such as vegetation banding. Although similar feedbacks are thought to be involved in the development of ecosystems, clear empirical examples are rare. We created a simple model of a fog-influenced, temperate rainforest in central Chile, which allows the comparison of natural banding patterns to simulations of various putative mechanisms. We show that only feedbacks between plants and fog were able to replicate the characteristic distributions of vegetation, soil water, and soil nutrients observed in field transects. Other processes, such as rainfall, were unable to match these diagnostic distributions. Furthermore, fog interception by windward trees leads to increased downwind mortality, leading to progressive extinction of the leeward edge. This pattern of ecosystem development and decay through self-organized processes illustrates, on a relatively small spatial and temporal scale, the patterns predicted for ecosystem evolution.
Distribution of Feedback among Teacher and Students in Online Collaborative Learning in Small Groups
ERIC Educational Resources Information Center
Coll, Cesar; Rochera, Maria Jose; de Gispert, Ines; Diaz-Barriga, Frida
2013-01-01
This study explores the characteristics and distribution of the feedback provided by the participants (a teacher and her students) in an activity organized inside a collaborative online learning environment. We analyse 853 submissions made by two groups of graduate students and their teacher (N1 = 629 & N2 = 224) involved in the collaborative…
NASA Astrophysics Data System (ADS)
Azrina Talik, Noor; Boon Kar, Yap; Noradhlia Mohamad Tukijan, Siti; Wong, Chuan Ling
2017-10-01
To date, the state of art organic semiconductor distributed feedback (DFB) lasers gains tremendous interest in the organic device industry. This paper presents a short reviews on the fabrication techniques of DFB based laser by focusing on the fabrication method of DFB corrugated structure and the deposition of organic gain on the nano-patterned DFB resonator. The fabrication techniques such as Laser Direct Writing (LDW), ultrafast photo excitation dynamics, Laser Interference Lithography (LIL) and Nanoimprint Lithography (NIL) for DFB patterning are presented. In addition to that, the method for gain medium deposition method is also discussed. The technical procedures of the stated fabrication techniques are summarized together with their benefits and comparisons to the traditional fabrication techniques.
Distributed force feedback in the spinal cord and the regulation of limb mechanics.
Nichols, T Richard
2018-03-01
This review is an update on the role of force feedback from Golgi tendon organs in the regulation of limb mechanics during voluntary movement. Current ideas about the role of force feedback are based on modular circuits linking idealized systems of agonists, synergists, and antagonistic muscles. In contrast, force feedback is widely distributed across the muscles of a limb and cannot be understood based on these circuit motifs. Similarly, muscle architecture cannot be understood in terms of idealized systems, since muscles cross multiple joints and axes of rotation and further influence remote joints through inertial coupling. It is hypothesized that distributed force feedback better represents the complex mechanical interactions of muscles, including the stresses in the musculoskeletal network born by muscle articulations, myofascial force transmission, and inertial coupling. Together with the strains of muscle fascicles measured by length feedback from muscle spindle receptors, this integrated proprioceptive feedback represents the mechanical state of the musculoskeletal system. Within the spinal cord, force feedback has excitatory and inhibitory components that coexist in various combinations based on motor task and integrated with length feedback at the premotoneuronal and motoneuronal levels. It is concluded that, in agreement with other investigators, autogenic, excitatory force feedback contributes to propulsion and weight support. It is further concluded that coexistent inhibitory force feedback, together with length feedback, functions to manage interjoint coordination and the mechanical properties of the limb in the face of destabilizing inertial forces and positive force feedback, as required by the accelerations and changing directions of both predator and prey.
Toward continuous-wave operation of organic semiconductor lasers
Sandanayaka, Atula S. D.; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya
2017-01-01
The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi–continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture. PMID:28508042
Toward continuous-wave operation of organic semiconductor lasers.
Sandanayaka, Atula S D; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya
2017-04-01
The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi-continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture.
NASA Technical Reports Server (NTRS)
Ross, Muriel D.
1991-01-01
The three-dimensional organization of the vestibular macula is under study by computer assisted reconstruction and simulation methods as a model for more complex neural systems. One goal of this research is to transition knowledge of biological neural network architecture and functioning to computer technology, to contribute to the development of thinking computers. Maculas are organized as weighted neural networks for parallel distributed processing of information. The network is characterized by non-linearity of its terminal/receptive fields. Wiring appears to develop through constrained randomness. A further property is the presence of two main circuits, highly channeled and distributed modifying, that are connected through feedforward-feedback collaterals and biasing subcircuit. Computer simulations demonstrate that differences in geometry of the feedback (afferent) collaterals affects the timing and the magnitude of voltage changes delivered to the spike initiation zone. Feedforward (efferent) collaterals act as voltage followers and likely inhibit neurons of the distributed modifying circuit. These results illustrate the importance of feedforward-feedback loops, of timing, and of inhibition in refining neural network output. They also suggest that it is the distributed modifying network that is most involved in adaptation, memory, and learning. Tests of macular adaptation, through hyper- and microgravitational studies, support this hypothesis since synapses in the distributed modifying circuit, but not the channeled circuit, are altered. Transitioning knowledge of biological systems to computer technology, however, remains problematical.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-12
... Aviation Administration to measure management objectives and analyze customer feedback for ISO-9001. DATES... Aviation System Standards Distribution Dissemination Quality Plan states that the organization shall... Quality Management System in relation to customer satisfaction. The Glenn Dale Distribution Center...
NASA Astrophysics Data System (ADS)
Liu, Lijuan; Zhang, Guiyang; Kong, Xiaobo; Liu, Yonggang; Xuan, Li
2018-01-01
A high conversion efficiency distributed feedback (DFB) laser from a dye-doped holographic polymer dispersed liquid crystal (HPDLC) transmission grating structure was reported. The alignment polyimide (PI) films were used to control the orientation of the phase separated liquid crystals (LCs) to increase the refractive index difference between the LC and the polymer, so it can provide better light feedback. The lasing wavelength located at 645.8 nm near the maximum of the amplified spontaneous emission (ASE) spectrum with the lowest threshold 0.97 μ J/pulse and the highest conversion efficiency 1.6% was obtained. The laser performance under electric field were also investigated and illustrated. The simple configuration, one-step fabrication organic dye laser shows the potential to realize ultra-low cost plastic lasers.
Evaluation of stiffness feedback for hard nodule identification on a phantom silicone model
Konstantinova, Jelizaveta; Xu, Guanghua; He, Bo; Aminzadeh, Vahid; Xie, Jun; Wurdemann, Helge; Althoefer, Kaspar
2017-01-01
Haptic information in robotic surgery can significantly improve clinical outcomes and help detect hard soft-tissue inclusions that indicate potential abnormalities. Visual representation of tissue stiffness information is a cost-effective technique. Meanwhile, direct force feedback, although considerably more expensive than visual representation, is an intuitive method of conveying information regarding tissue stiffness to surgeons. In this study, real-time visual stiffness feedback by sliding indentation palpation is proposed, validated, and compared with force feedback involving human subjects. In an experimental tele-manipulation environment, a dynamically updated color map depicting the stiffness of probed soft tissue is presented via a graphical interface. The force feedback is provided, aided by a master haptic device. The haptic device uses data acquired from an F/T sensor attached to the end-effector of a tele-manipulated robot. Hard nodule detection performance is evaluated for 2 modes (force feedback and visual stiffness feedback) of stiffness feedback on an artificial organ containing buried stiff nodules. From this artificial organ, a virtual-environment tissue model is generated based on sliding indentation measurements. Employing this virtual-environment tissue model, we compare the performance of human participants in distinguishing differently sized hard nodules by force feedback and visual stiffness feedback. Results indicate that the proposed distributed visual representation of tissue stiffness can be used effectively for hard nodule identification. The representation can also be used as a sufficient substitute for force feedback in tissue palpation. PMID:28248996
Evaluation of stiffness feedback for hard nodule identification on a phantom silicone model.
Li, Min; Konstantinova, Jelizaveta; Xu, Guanghua; He, Bo; Aminzadeh, Vahid; Xie, Jun; Wurdemann, Helge; Althoefer, Kaspar
2017-01-01
Haptic information in robotic surgery can significantly improve clinical outcomes and help detect hard soft-tissue inclusions that indicate potential abnormalities. Visual representation of tissue stiffness information is a cost-effective technique. Meanwhile, direct force feedback, although considerably more expensive than visual representation, is an intuitive method of conveying information regarding tissue stiffness to surgeons. In this study, real-time visual stiffness feedback by sliding indentation palpation is proposed, validated, and compared with force feedback involving human subjects. In an experimental tele-manipulation environment, a dynamically updated color map depicting the stiffness of probed soft tissue is presented via a graphical interface. The force feedback is provided, aided by a master haptic device. The haptic device uses data acquired from an F/T sensor attached to the end-effector of a tele-manipulated robot. Hard nodule detection performance is evaluated for 2 modes (force feedback and visual stiffness feedback) of stiffness feedback on an artificial organ containing buried stiff nodules. From this artificial organ, a virtual-environment tissue model is generated based on sliding indentation measurements. Employing this virtual-environment tissue model, we compare the performance of human participants in distinguishing differently sized hard nodules by force feedback and visual stiffness feedback. Results indicate that the proposed distributed visual representation of tissue stiffness can be used effectively for hard nodule identification. The representation can also be used as a sufficient substitute for force feedback in tissue palpation.
Wang, Yue; Tsiminis, Georgios; Kanibolotsky, Alexander L; Skabara, Peter J; Samuel, Ifor D W; Turnbull, Graham A
2013-06-17
Organic semiconductor lasers were fabricated by UV-nanoimprint lithography with thresholds as low as 57 W/cm(2) under 4 ns pulsed operation. The nanoimprinted lasers employed mixed-order distributed feedback resonators, with second-order gratings surrounded by first-order gratings, combined with a light-emitting conjugated polymer. They were pumped by InGaN LEDs to produce green-emitting lasers, with thresholds of 208 W/cm(2) (102 nJ/pulse). These hybrid lasers incorporate a scalable UV-nanoimprint lithography process, compatible with high-performance LEDs, therefore we have demonstrated a coherent, compact, low-cost light source.
Pastick, Neal J.; Rigge, Matthew B.; Wylie, Bruce K.; Jorgenson, M. Torre; Rose, Joshua R.; Johnson, Kristofer D.; Ji, Lei
2014-01-01
Understanding of the organic layer thickness (OLT) and organic layer carbon (OLC) stocks in subarctic ecosystems is critical due to their importance in the global carbon cycle. Moreover, post-fire OLT provides an indicator of long-term successional trajectories and permafrost susceptibility to thaw. To these ends, we 1) mapped OLT and associated uncertainty at 30 m resolution in the Yukon River Basin (YRB), Alaska, employing decision tree models linking remotely sensed imagery with field and ancillary data, 2) converted OLT to OLC using a non-linear regression, 3) evaluate landscape controls on OLT and OLC, and 4) quantified the post-fire recovery of OLT and OLC. Areas of shallow (2 = 0.68; OLC: R2 = 0.66), where an average of 16 cm OLT and 5.3 kg/m2 OLC were consumed by fires. Strong predictors of OLT included climate, topography, near-surface permafrost distributions, soil wetness, and spectral information. Our modeling approach enabled us to produce regional maps of OLT and OLC, which will be useful in understanding risks and feedbacks associated with fires and climate feedbacks.
Tunable organic distributed feedback dye laser device excited through Förster mechanism
NASA Astrophysics Data System (ADS)
Tsutsumi, Naoto; Hinode, Taiki
2017-03-01
Tunable organic distributed feedback (DFB) dye laser performances are re-investigated and characterized. The slab-type waveguide DFB device consists of air/active layer/glass substrate. Active layer consisted of tris(8-quinolinolato)aluminum (Alq3), 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) dye, and polystyrene (PS) matrix. Effective energy transfer from Alq3 to DCM through Förster mechanism enhances the laser emission. Slope efficiency in the range of 4.9 and 10% is observed at pump energy region higher than 0.10-0.15 mJ cm-2 (lower threshold), which is due to the amplified spontaneous emission (ASE) and lasing. Typical slope efficiency for lasing in the range of 2.0 and 3.0% is observed at pump energy region higher than 0.25-0.30 mJ cm-2 (higher threshold). The tuning wavelength for the laser emission is ranged from 620 to 645 nm depending on the ASE region.
NASA Astrophysics Data System (ADS)
Zhao, Jian-Yi; Chen, Xin; Zhou, Ning; Huang, Xiao-Dong; Cao, Ming-De; Liu, Wen
2014-07-01
A 16-channel distributed-feedback (DFB) laser array with a monolithic integrated arrayed waveguide grating multiplexer for a wavelength division multiplex-passive optical network system is fabricated by using the butt-joint metal organic chemical vapor deposition technology and nanoimpirnt technology. The results show that the threshold current is about 20-30 mA at 25°C. The DFB laser side output power is about 16 mW with a 150 mA injection current. The lasing wavelength is from 1550 nm to 1575 nm covering a more than 25 nm range with 200 GHz channel space. A more than 55 dB sidemode suppression ratio is obtained.
Nanoimprinted organic semiconductor laser pumped by a light-emitting diode.
Tsiminis, Georgios; Wang, Yue; Kanibolotsky, Alexander L; Inigo, Anto R; Skabara, Peter J; Samuel, Ifor D W; Turnbull, Graham A
2013-05-28
An organic semiconductor laser, simply fabricated by UV-nanoimprint lithography (UV-NIL), that is pumped with a pulsed InGaN LED is demonstrated. Molecular weight optimization of the polymer gain medium on a nanoimprinted polymer distributed feedback resonator enables the lowest reported UV-NIL laser threshold density of 770 W cm(-2) , establishing the potential for scalable organic laser fabrication compatible with mass-produced LEDs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Spatial self-organization favors heterotypic cooperation over cheating.
Momeni, Babak; Waite, Adam James; Shou, Wenying
2013-11-12
Heterotypic cooperation-two populations exchanging distinct benefits that are costly to produce-is widespread. Cheaters, exploiting benefits while evading contribution, can undermine cooperation. Two mechanisms can stabilize heterotypic cooperation. In 'partner choice', cooperators recognize and choose cooperating over cheating partners; in 'partner fidelity feedback', fitness-feedback from repeated interactions ensures that aiding your partner helps yourself. How might a spatial environment, which facilitates repeated interactions, promote fitness-feedback? We examined this process through mathematical models and engineered Saccharomyces cerevisiae strains incapable of recognition. Here, cooperators and their heterotypic cooperative partners (partners) exchanged distinct essential metabolites. Cheaters exploited partner-produced metabolites without reciprocating, and were competitively superior to cooperators. Despite initially random spatial distributions, cooperators gained more partner neighbors than cheaters did. The less a cheater contributed, the more it was excluded and disfavored. This self-organization, driven by asymmetric fitness effects of cooperators and cheaters on partners during cell growth into open space, achieves assortment. DOI: http://dx.doi.org/10.7554/eLife.00960.001.
NASA Astrophysics Data System (ADS)
Liu, Minghuan; Liu, Yonggang; Zhang, Guiyang; Peng, Zenghui; Li, Dayu; Ma, Ji; Xuan, Li
2016-11-01
Holographic polymer dispersed liquid crystal (HPDLC) based distributed feedback (DFB) lasers were prepared with poly (-methoxy-5-(2‧-ethyl-hexyloxy)-1,4-phenylene-vinylene) (MEH-PPV) film as the active medium layer. The HPDLC grating film was fabricated via holographic induced photopolymerization. The pure film spectra of MEH-PPV and the amplified spontaneous emission (ASE) spectrum were investigated. The laser device was single-longitudinal mode operation. The tunability of the HPDLC DFB laser was achieved by selecting different grating periods. The lasing performances were also characterized and compared from different diffraction orders. The lasing threshold increased with the diffraction order and the third order laser possessed the largest conversion efficiency in this device. The experimental results were in good agreement with the theoretical calculations.
Liu, Minghuan; Liu, Yonggang; Peng, Zenghui; Wang, Shaoxin; Wang, Qidong; Mu, Quanquan; Cao, Zhaoliang; Xuan, Li
2017-05-07
Organic solid-state tri-wavelength lasing was demonstrated from dye-doped holographic polymer-dispersed liquid crystal (HPDLC) distributed feedback (DFB) laser with semiconducting polymer poly[-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene-vinylene] (MEH-PPV) and laser dye [4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran] (DCM) by a one-step holography technique, which centered at 605.5 nm, 611.9 nm, and 671.1 nm. The temperature-dependence tuning range for the tri-wavelength dye-doped HPDLC DFB laser was as high as 8 nm. The lasing emission from the 9th order HPDLC DFB laser with MEH-PPV as active medium was also investigated, which showed excellent s-polarization characterization. The diffraction order is 9th and 8th for the dual-wavelength lasing with DCM as the active medium. The results of this work provide a method for constructing the compact and cost-effective all solid-state smart laser systems, which may find application in scientific and applied research where multi-wavelength radiation is required.
The Self-Organization of a Spoken Word
Holden, John G.; Rajaraman, Srinivasan
2012-01-01
Pronunciation time probability density and hazard functions from large speeded word naming data sets were assessed for empirical patterns consistent with multiplicative and reciprocal feedback dynamics – interaction dominant dynamics. Lognormal and inverse power law distributions are associated with multiplicative and interdependent dynamics in many natural systems. Mixtures of lognormal and inverse power law distributions offered better descriptions of the participant’s distributions than the ex-Gaussian or ex-Wald – alternatives corresponding to additive, superposed, component processes. The evidence for interaction dominant dynamics suggests fundamental links between the observed coordinative synergies that support speech production and the shapes of pronunciation time distributions. PMID:22783213
Real-time monitoring of volatile organic compounds using chemical ionization mass spectrometry
Mowry, Curtis Dale; Thornberg, Steven Michael
1999-01-01
A system for on-line quantitative monitoring of volatile organic compounds (VOCs) includes pressure reduction means for carrying a gaseous sample from a first location to a measuring input location maintained at a low pressure, the system utilizing active feedback to keep both the vapor flow and pressure to a chemical ionization mode mass spectrometer constant. A multiple input manifold for VOC and gas distribution permits a combination of calibration gases or samples to be applied to the spectrometer.
Convective aggregation in idealised models and realistic equatorial cases
NASA Astrophysics Data System (ADS)
Holloway, Chris
2015-04-01
Idealised explicit convection simulations of the Met Office Unified Model are shown to exhibit spontaneous self-aggregation in radiative-convective equilibrium, as seen previously in other models in several recent studies. This self-aggregation is linked to feedbacks between radiation, surface fluxes, and convection, and the organization is intimately related to the evolution of the column water vapour (CWV) field. To investigate the relevance of this behaviour to the real world, these idealized simulations are compared with five 15-day cases of real organized convection in the tropics, including multiple simulations of each case testing sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. Despite similar large-scale forcing via lateral boundary conditions, systematic differences in mean CWV, CWV distribution shape, and the length scale of CWV features are found between the different sensitivity runs, showing that there are at least some similarities in sensitivities to these feedbacks in both idealized and realistic simulations.
Convective aggregation in idealised models and realistic equatorial cases
NASA Astrophysics Data System (ADS)
Holloway, C. E.
2014-12-01
Idealised explicit convection simulations of the Met Office Unified Model are shown to exhibit spontaneous self-aggregation in radiative-convective equilibrium, as seen previously in other models in several recent studies. This self-aggregation is linked to feedbacks between radiation, surface fluxes, and convection, and the organization is intimately related to the evolution of the column water vapor (CWV) field. To investigate the relevance of this behavior to the real world, these idealized simulations are compared with five 15-day cases of real organized convection in the tropics, including multiple simulations of each case testing sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. Despite similar large-scale forcing via lateral boundary conditions, systematic differences in mean CWV, CWV distribution shape, and the length scale of CWV features are found between the different sensitivity runs, showing that there are at least some similarities in sensitivities to these feedbacks in both idealized and realistic simulations.
Elnicki, D Michael; Lescisin, Dianne A; Case, Susan
2002-06-01
To provide a consensus opinion on modifying the National Board of Medical Examiners (NBME) Medicine Subject Exam (Shelf) to: 1) reflect the internal medicine clerkship curriculum, developed by the Society of General Internal Medicine (SGIM) and the Clerkship Directors in Internal Medicine (CDIM); 2) emphasize knowledge important for a clerkship student; and 3) obtain feedback about students' performances on the Shelf. Two-round Delphi technique. The CDIM Research and Evaluation Committee and CDIM members on NBME Step 2 Committees. Using 1-5 Likert scales (5 = highest ratings), the group rated test question content for relevance to the SGIM-CDIM Curriculum Guide and importance for clerkship students' knowledge. The Shelf content is organized into 4 physician tasks and into 11 sections that are generally organ system based. Each iteration of the Shelf has 100 questions. Participants indicated a desired distribution of questions by physician task and section, topics critical for inclusion on each exam, and new topics to include. They specified the types of feedback clerkship directors desired on students' performances. Following the first round, participants viewed pooled results prior to submitting their second-round responses. Of 15 individuals contacted, 12 (80%) participated in each round. The desired distribution by physician task was: diagnosis (43), treatment (23), mechanism of disease (20), and health maintenance (15). The sections with the most questions requested were the cardiovascular (17), respiratory (15), and gastroenterology (12) sections. The fewest were requested in aging/ethics (4) and neurology, dermatology, and immunology (5 each). Examples of low-rated content were Wilson's Disease, chancroid and tracheal rupture (all <2.0). Health maintenance in type 2 diabetes, hypertension, and cardiovascular disease all received 5.0 ratings. Participants desired feedback by: section (4.6) and physician task (3.9), on performances of the entire class (4.0), and for individual students (3.8). Clerkship directors identified test content that was relevant to the curricular content and important for clerkship students to know, and they indicated a desired question distribution. They would most like feedback on their students' performance by organ system-based sections for the complete academic year. This collaborative effort could serve as a model for aligning national exams with course goals.
Expected Number of Fixed Points in Boolean Networks with Arbitrary Topology.
Mori, Fumito; Mochizuki, Atsushi
2017-07-14
Boolean network models describe genetic, neural, and social dynamics in complex networks, where the dynamics depend generally on network topology. Fixed points in a genetic regulatory network are typically considered to correspond to cell types in an organism. We prove that the expected number of fixed points in a Boolean network, with Boolean functions drawn from probability distributions that are not required to be uniform or identical, is one, and is independent of network topology if only a feedback arc set satisfies a stochastic neutrality condition. We also demonstrate that the expected number is increased by the predominance of positive feedback in a cycle.
Quantum decision-maker theory and simulation
NASA Astrophysics Data System (ADS)
Zak, Michail; Meyers, Ronald E.; Deacon, Keith S.
2000-07-01
A quantum device simulating the human decision making process is introduced. It consists of quantum recurrent nets generating stochastic processes which represent the motor dynamics, and of classical neural nets describing the evolution of probabilities of these processes which represent the mental dynamics. The autonomy of the decision making process is achieved by a feedback from the mental to motor dynamics which changes the stochastic matrix based upon the probability distribution. This feedback replaces unavailable external information by an internal knowledge- base stored in the mental model in the form of probability distributions. As a result, the coupled motor-mental dynamics is described by a nonlinear version of Markov chains which can decrease entropy without an external source of information. Applications to common sense based decisions as well as to evolutionary games are discussed. An example exhibiting self-organization is computed using quantum computer simulation. Force on force and mutual aircraft engagements using the quantum decision maker dynamics are considered.
Physics textbooks from the viewpoint of network structures
NASA Astrophysics Data System (ADS)
Králiková, Petra; Teleki, Aba
2017-01-01
We can observe self-organized networks all around us. These networks are, in general, scale invariant networks described by the Bianconi-Barabasi model. The self-organized networks (networks formed naturally when feedback acts on the system) show certain universality. These networks, in simplified models, have scale invariant distribution (Pareto distribution type I) and parameter α has value between 2 and 5. The textbooks are extremely important in the learning process and from this reason we studied physics textbook at the level of sentences and physics terms (bipartite network). The nodes represent physics terms, sentences, and pictures, tables, connected by links (by physics terms and transitional words and transitional phrases). We suppose that learning process are more robust and goes faster and easier if the physics textbook has a structure similar to structures of self-organized networks.
Containment 2.0: U.S. Political Warfare
2016-12-01
School Writing Center coach. She spent many hours reading through my drafts and providing detailed feedback on sentence and paragraph structure. Her...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release. Distribution is unlimited. CONTAINMENT 2.0: U.S. POLITICAL...Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) N/A 10
Hendrickson, Phillip J; Yu, Gene J; Song, Dong; Berger, Theodore W
2016-01-01
This paper describes a million-plus granule cell compartmental model of the rat hippocampal dentate gyrus, including excitatory, perforant path input from the entorhinal cortex, and feedforward and feedback inhibitory input from dentate interneurons. The model includes experimentally determined morphological and biophysical properties of granule cells, together with glutamatergic AMPA-like EPSP and GABAergic GABAA-like IPSP synaptic excitatory and inhibitory inputs, respectively. Each granule cell was composed of approximately 200 compartments having passive and active conductances distributed throughout the somatic and dendritic regions. Modeling excitatory input from the entorhinal cortex was guided by axonal transport studies documenting the topographical organization of projections from subregions of the medial and lateral entorhinal cortex, plus other important details of the distribution of glutamatergic inputs to the dentate gyrus. Information contained within previously published maps of this major hippocampal afferent were systematically converted to scales that allowed the topographical distribution and relative synaptic densities of perforant path inputs to be quantitatively estimated for inclusion in the current model. Results showed that when medial and lateral entorhinal cortical neurons maintained Poisson random firing, dentate granule cells expressed, throughout the million-cell network, a robust nonrandom pattern of spiking best described as a spatiotemporal "clustering." To identify the network property or properties responsible for generating such firing "clusters," we progressively eliminated from the model key mechanisms, such as feedforward and feedback inhibition, intrinsic membrane properties underlying rhythmic burst firing, and/or topographical organization of entorhinal afferents. Findings conclusively identified topographical organization of inputs as the key element responsible for generating a spatiotemporal distribution of clustered firing. These results uncover a functional organization of perforant path afferents to the dentate gyrus not previously recognized: topography-dependent clusters of granule cell activity as "functional units" or "channels" that organize the processing of entorhinal signals. This modeling study also reveals for the first time how a global signal processing feature of a neural network can evolve from one of its underlying structural characteristics.
Hendrickson, Phillip J.; Yu, Gene J.; Song, Dong; Berger, Theodore W.
2016-01-01
Goal This manuscript describes a million-plus granule cell compartmental model of the rat hippocampal dentate gyrus, including excitatory, perforant path input from the entorhinal cortex, and feedforward and feedback inhibitory input from dentate interneurons. Methods The model includes experimentally determined morphological and biophysical properties of granule cells, together with glutamatergic AMPA-like EPSP and GABAergic GABAA-like IPSP synaptic excitatory and inhibitory inputs, respectively. Each granule cell was composed of approximately 200 compartments having passive and active conductances distributed throughout the somatic and dendritic regions. Modeling excitatory input from the entorhinal cortex was guided by axonal transport studies documenting the topographical organization of projections from subregions of the medial and lateral entorhinal cortex, plus other important details of the distribution of glutamatergic inputs to the dentate gyrus. Information contained within previously published maps of this major hippocampal afferent were systematically converted to scales that allowed the topographical distribution and relative synaptic densities of perforant path inputs to be quantitatively estimated for inclusion in the current model. Results Results showed that when medial and lateral entorhinal cortical neurons maintained Poisson random firing, dentate granule cells expressed, throughout the million-cell network, a robust, non-random pattern of spiking best described as spatio-temporal “clustering”. To identify the network property or properties responsible for generating such firing “clusters”, we progressively eliminated from the model key mechanisms such as feedforward and feedback inhibition, intrinsic membrane properties underlying rhythmic burst firing, and/or topographical organization of entorhinal afferents. Conclusion Findings conclusively identified topographical organization of inputs as the key element responsible for generating a spatio-temporal distribution of clustered firing. These results uncover a functional organization of perforant path afferents to the dentate gyrus not previously recognized: topography-dependent clusters of granule cell activity as “functional units” or “channels” that organize the processing of entorhinal signals. This modeling study also reveals for the first time how a global signal processing feature of a neural network can evolve from one of its underlying structural characteristics. PMID:26087482
Disseminating educational innovations in health care practice: training versus social networks.
Jippes, Erik; Achterkamp, Marjolein C; Brand, Paul L P; Kiewiet, Derk Jan; Pols, Jan; van Engelen, Jo M L
2010-05-01
Improvements and innovation in health service organization and delivery have become more and more important due to the gap between knowledge and practice, rising costs, medical errors, and the organization of health care systems. Since training and education is widely used to convey and distribute innovative initiatives, we examined the effect that following an intensive Teach-the-Teacher training had on the dissemination of a new structured competency-based feedback technique of assessing clinical competencies among medical specialists in the Netherlands. We compared this with the effect of the structure of the social network of medical specialists, specifically the network tie strength (strong ties versus weak ties). We measured dissemination of the feedback technique by using a questionnaire filled in by Obstetrics & Gynecology and Pediatrics residents (n=63). Data on network tie strength was gathered with a structured questionnaire given to medical specialists (n=81). Social network analysis was used to compose the required network coefficients. We found a strong effect for network tie strength and no effect for the Teach-the-Teacher training course on the dissemination of the new structured feedback technique. This paper shows the potential that social networks have for disseminating innovations in health service delivery and organization. Further research is needed into the role and structure of social networks on the diffusion of innovations between departments and the various types of innovations involved. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, D.-H.; Sandanayaka, A. S. D.; Zhao, L.; Pitrat, D.; Mulatier, J. C.; Matsushima, T.; Andraud, C.; Ribierre, J. C.; Adachi, C.
2017-01-01
We report on the photophysical, amplified spontaneous emission (ASE), and electroluminescence properties of a blue-emitting octafluorene derivative in spin-coated films. The neat film shows an extremely low ASE threshold of 90 nJ/cm2, which is related to its high photoluminescence quantum yield of 87% and its large radiative decay rate of 1.7 × 109 s-1. Low-threshold organic distributed feedback semiconductor lasers and fluorescent organic light-emitting diodes with a maximum external quantum efficiency as high as 4.4% are then demonstrated, providing evidence that this octafluorene derivative is a promising candidate for organic laser applications.
Discovery of fairy circles in Australia supports self-organization theory
Getzin, Stephan; Yizhaq, Hezi; Bell, Bronwyn; Erickson, Todd E.; Postle, Anthony C.; Katra, Itzhak; Tzuk, Omer; Zelnik, Yuval R.; Wiegand, Kerstin; Wiegand, Thorsten; Meron, Ehud
2016-01-01
Vegetation gap patterns in arid grasslands, such as the “fairy circles” of Namibia, are one of nature’s greatest mysteries and subject to a lively debate on their origin. They are characterized by small-scale hexagonal ordering of circular bare-soil gaps that persists uniformly in the landscape scale to form a homogeneous distribution. Pattern-formation theory predicts that such highly ordered gap patterns should be found also in other water-limited systems across the globe, even if the mechanisms of their formation are different. Here we report that so far unknown fairy circles with the same spatial structure exist 10,000 km away from Namibia in the remote outback of Australia. Combining fieldwork, remote sensing, spatial pattern analysis, and process-based mathematical modeling, we demonstrate that these patterns emerge by self-organization, with no correlation with termite activity; the driving mechanism is a positive biomass–water feedback associated with water runoff and biomass-dependent infiltration rates. The remarkable match between the patterns of Australian and Namibian fairy circles and model results indicate that both patterns emerge from a nonuniform stationary instability, supporting a central universality principle of pattern-formation theory. Applied to the context of dryland vegetation, this principle predicts that different systems that go through the same instability type will show similar vegetation patterns even if the feedback mechanisms and resulting soil–water distributions are different, as we indeed found by comparing the Australian and the Namibian fairy-circle ecosystems. These results suggest that biomass–water feedbacks and resultant vegetation gap patterns are likely more common in remote drylands than is currently known. PMID:26976567
Negative feedback in ants: crowding results in less trail pheromone deposition
Czaczkes, Tomer J.; Grüter, Christoph; Ratnieks, Francis L. W.
2013-01-01
Crowding in human transport networks reduces efficiency. Efficiency can be increased by appropriate control mechanisms, which are often imposed externally. Ant colonies also have distribution networks to feeding sites outside the nest and can experience crowding. However, ants do not have external controllers or leaders. Here, we report a self-organized negative feedback mechanism, based on local information, which downregulates the production of recruitment signals in crowded parts of a network by Lasius niger ants. We controlled crowding by manipulating trail width and the number of ants on a trail, and observed a 5.6-fold reduction in the number of ants depositing trail pheromone from least to most crowded conditions. We also simulated crowding by placing glass beads covered in nest-mate cuticular hydrocarbons on the trail. After 10 bead encounters over 20 cm, forager ants were 45 per cent less likely to deposit pheromone. The mechanism of negative feedback reported here is unusual in that it acts by downregulating the production of a positive feedback signal, rather than by direct inhibition or the production of an inhibitory signal. PMID:23365196
Li, Xiao-Zhou; Li, Song-Sui; Zhuang, Jun-Ping; Chan, Sze-Chun
2015-09-01
A semiconductor laser with distributed feedback from a fiber Bragg grating (FBG) is investigated for random bit generation (RBG). The feedback perturbs the laser to emit chaotically with the intensity being sampled periodically. The samples are then converted into random bits by a simple postprocessing of self-differencing and selecting bits. Unlike a conventional mirror that provides localized feedback, the FBG provides distributed feedback which effectively suppresses the information of the round-trip feedback delay time. Randomness is ensured even when the sampling period is commensurate with the feedback delay between the laser and the grating. Consequently, in RBG, the FBG feedback enables continuous tuning of the output bit rate, reduces the minimum sampling period, and increases the number of bits selected per sample. RBG is experimentally investigated at a sampling period continuously tunable from over 16 ns down to 50 ps, while the feedback delay is fixed at 7.7 ns. By selecting 5 least-significant bits per sample, output bit rates from 0.3 to 100 Gbps are achieved with randomness examined by the National Institute of Standards and Technology test suite.
NASA Astrophysics Data System (ADS)
Pelletier, Jon D.; Barron-Gafford, Greg A.; Breshears, David D.; Brooks, Paul D.; Chorover, Jon; Durcik, Matej; Harman, Ciaran J.; Huxman, Travis E.; Lohse, Kathleen A.; Lybrand, Rebecca; Meixner, Tom; McIntosh, Jennifer C.; Papuga, Shirley A.; Rasmussen, Craig; Schaap, Marcel; Swetnam, Tyson L.; Troch, Peter A.
2013-06-01
among vegetation dynamics, pedogenesis, and topographic development affect the "critical zone"—the living filter for Earth's hydrologic, biogeochemical, and rock/sediment cycles. Assessing the importance of such feedbacks, which may be particularly pronounced in water-limited systems, remains a fundamental interdisciplinary challenge. The sky islands of southern Arizona offer an unusually well-defined natural experiment involving such feedbacks because mean annual precipitation varies by a factor of five over distances of approximately 10 km in areas of similar rock type (granite) and tectonic history. Here we compile high-resolution, spatially distributed data for Effective Energy and Mass Transfer (EEMT: the energy available to drive bedrock weathering), above-ground biomass, soil thickness, hillslope-scale topographic relief, and drainage density in two such mountain ranges (Santa Catalina: SCM; Pinaleño: PM). Strong correlations exist among vegetation-soil-topography variables, which vary nonlinearly with elevation, such that warm, dry, low-elevation portions of these ranges are characterized by relatively low above-ground biomass, thin soils, minimal soil organic matter, steep slopes, and high drainage densities; conversely, cooler, wetter, higher elevations have systematically higher biomass, thicker organic-rich soils, gentler slopes, and lower drainage densities. To test if eco-pedo-geomorphic feedbacks drive this pattern, we developed a landscape evolution model that couples pedogenesis and topographic development over geologic time scales, with rates explicitly dependent on vegetation density. The model self-organizes into states similar to those observed in SCM and PM. Our results highlight the potential importance of eco-pedo-geomorphic feedbacks, mediated by soil thickness, in water-limited systems.
Diode-Pumped Organo-Lead Halide Perovskite Lasing in a Metal-Clad Distributed Feedback Resonator.
Jia, Yufei; Kerner, Ross A; Grede, Alex J; Brigeman, Alyssa N; Rand, Barry P; Giebink, Noel C
2016-07-13
Organic-inorganic lead halide perovskite semiconductors have recently reignited the prospect of a tunable, solution-processed diode laser, which has the potential to impact a wide range of optoelectronic applications. Here, we demonstrate a metal-clad, second-order distributed feedback methylammonium lead iodide perovskite laser that marks a significant step toward this goal. Optically pumping this device with an InGaN diode laser at low temperature, we achieve lasing above a threshold pump intensity of 5 kW/cm(2) for durations up to ∼25 ns at repetition rates exceeding 2 MHz. We show that the lasing duration is not limited by thermal runaway and propose instead that lasing ceases under continuous pumping due to a photoinduced structural change in the perovskite that reduces the gain on a submicrosecond time scale. Our results indicate that the architecture demonstrated here could provide the foundation for electrically pumped lasing with a threshold current density Jth < 5 kA/cm(2) under sub-20 ns pulsed drive.
Ordered materials for organic electronics and photonics.
O'Neill, Mary; Kelly, Stephen M
2011-02-01
We present a critical review of semiconducting/light emitting, liquid crystalline materials and their use in electronic and photonic devices such as transistors, photovoltaics, OLEDs and lasers. We report that annealing from the mesophase improves the order and packing of organic semiconductors to produce state-of-the-art transistors. We discuss theoretical models which predict how charge transport and light emission is affected by the liquid crystalline phase. Organic photovoltaics and OLEDs require optimization of both charge transport and optical properties and we identify the various trade-offs involved for ordered materials. We report the crosslinking of reactive mesogens to give pixellated full-colour OLEDs and distributed bi-layer photovoltaics. We show how the molecular organization inherent to the mesophase can control the polarization of light-emitting devices and the gain in organic, thin-film lasers and can also provide distributed feedback in chiral nematic mirrorless lasers. We update progress on the surface alignment of liquid crystalline semiconductors to obtain monodomain devices without defects or devices with spatially varying properties. Finally the significance of all of these developments is assessed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tune, A. K.; Druhan, J. L.; Wang, J.; Cargill, S.; Murphy, C.; Rempe, D. M.
2017-12-01
A principle challenge in quantifying feedbacks between continental weathering and atmospheric CO2 is to improve understanding of how biogeochemical processes in the critical zone influence the distribution and mobility of organic and inorganic carbon. In particular, in landscapes characterized by thin soils and heterogeneous weathered and fractured bedrock, little data exist to inform and constrain predictive models for carbon dynamics. Here, we present the results of an intensive water and gas sampling campaign across an 18 m thick, variably saturated argillite weathering profile in the Eel River CZO. We monitor water content in situ and regularly collect samples of freely-draining water, tightly-held water, and gas through wet and dry seasons using a novel Vadose-zone Monitoring System (VMS) consisting of sensors and samplers distributed across a 20 m long inclined borehole. This novel approach facilitates the interception of gas and water during transport across the entire variably saturated weathering profile. The data demonstrate that seasonal changes in saturation control the vertical distribution and mobility of carbon in the fractured critical zone. Concentrations of gaseous CO2, O2, and dissolved organic and inorganic carbon fluctuate significantly and repeatably with seasonal additions of water infiltrating the weathered bedrock. A persistent vertical structure in the concentrations of dissolved phases and gas concentrations broadly corresponds to depths associated with unsaturated, seasonally saturated, and chronically saturated zones. Associated variations in the vertical structure of mineralogy and elemental composition, including solid phase organic carbon content, are observed in core obtained during drilling. Together, our observations indicate significant respiration of organic carbon at depths greater than the base of the soil, and thus motivate further investigation of the role of heterogeneous weathered, bedrock environments, which are needed to improve quantitative models for feedbacks between terrestrial and atmospheric CO2.
Spatial self-organization favors heterotypic cooperation over cheating
Momeni, Babak; Waite, Adam James; Shou, Wenying
2013-01-01
Heterotypic cooperation—two populations exchanging distinct benefits that are costly to produce—is widespread. Cheaters, exploiting benefits while evading contribution, can undermine cooperation. Two mechanisms can stabilize heterotypic cooperation. In ‘partner choice’, cooperators recognize and choose cooperating over cheating partners; in ‘partner fidelity feedback’, fitness-feedback from repeated interactions ensures that aiding your partner helps yourself. How might a spatial environment, which facilitates repeated interactions, promote fitness-feedback? We examined this process through mathematical models and engineered Saccharomyces cerevisiae strains incapable of recognition. Here, cooperators and their heterotypic cooperative partners (partners) exchanged distinct essential metabolites. Cheaters exploited partner-produced metabolites without reciprocating, and were competitively superior to cooperators. Despite initially random spatial distributions, cooperators gained more partner neighbors than cheaters did. The less a cheater contributed, the more it was excluded and disfavored. This self-organization, driven by asymmetric fitness effects of cooperators and cheaters on partners during cell growth into open space, achieves assortment. DOI: http://dx.doi.org/10.7554/eLife.00960.001 PMID:24220506
Transversely bounded DFB lasers. [bounded distributed-feedback lasers
NASA Technical Reports Server (NTRS)
Elachi, C.; Evans, G.; Yeh, C.
1975-01-01
Bounded distributed-feedback (DFB) lasers are studied in detail. Threshold gain and field distribution for a number of configurations are derived and analyzed. More specifically, the thin-film guide, fiber, diffusion guide, and hollow channel with inhomogeneous-cladding DFB lasers are considered. Optimum points exist and must be used in DFB laser design. Different-modes feedback and the effects of the transverse boundaries are included. A number of applications are also discussed.
Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation.
El-Taher, A E; Harper, P; Babin, S A; Churkin, D V; Podivilov, E V; Ania-Castanon, J D; Turitsyn, S K
2011-01-15
We experimentally demonstrate a Raman fiber laser based on multiple point-action fiber Bragg grating reflectors and distributed feedback via Rayleigh scattering in an ~22-km-long optical fiber. Twenty-two lasing lines with spacing of ~100 GHz (close to International Telecommunication Union grid) in the C band are generated at the watt level. In contrast to the normal cavity with competition between laser lines, the random distributed feedback cavity exhibits highly stable multiwavelength generation with a power-equalized uniform distribution, which is almost independent on power.
The Role of Data and Feedback Error in Inference and Prediction
1998-06-01
O’Connor Bowling Green State University Research and Advanced Concepts Office Michael Drillings, Chief This Document Contains Missing Page/s...Bowling Green State University Technical Review by Michael Drillings, ARI NOTICES DISTRIBUTION: This Research Note has been cleared for release to...0601102A 2O161102B74F TA 1012 WU C06 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Bowling Green State University , 120 Mcfall Center, Research
Mishra, U.; Jastrow, J.D.; Matamala, R.; Hugelius, G.; Koven, C.D.; Harden, Jennifer W.; Ping, S.L.; Michaelson, G.J.; Fan, Z.; Miller, R.M.; McGuire, A.D.; Tarnocai, C.; Kuhry, P.; Riley, W.J.; Schaefer, K.; Schuur, E.A.G.; Jorgenson, M.T.; Hinzman, L.D.
2013-01-01
The vast amount of organic carbon (OC) stored in soils of the northern circumpolar permafrost region is a potentially vulnerable component of the global carbon cycle. However, estimates of the quantity, decomposability, and combustibility of OC contained in permafrost-region soils remain highly uncertain, thereby limiting our ability to predict the release of greenhouse gases due to permafrost thawing. Substantial differences exist between empirical and modeling estimates of the quantity and distribution of permafrost-region soil OC, which contribute to large uncertainties in predictions of carbon–climate feedbacks under future warming. Here, we identify research challenges that constrain current assessments of the distribution and potential decomposability of soil OC stocks in the northern permafrost region and suggest priorities for future empirical and modeling studies to address these challenges.
Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature
NASA Astrophysics Data System (ADS)
Bousseksou, A.; Chassagneux, Y.; Coudevylle, J. R.; Colombelli, R.; Sirtori, C.; Patriarche, G.; Beaudoin, G.; Sagnes, I.
2009-08-01
We report distributed-feedback surface-plasmon quantum cascade lasers operating at λ ≈7.6μm. The distributed feedback is obtained by the sole patterning of the top metal contact on a surface plasmon waveguide. Single mode operation with more than 30dB side mode suppression ratio is obtained in pulsed mode and at room temperature. A careful experimental study confirms that by varying the grating duty cycle, one can reduce the waveguide losses with respect to standard, unpatterned surface-plasmon devices. This allows one to reduce the laser threshold current of more than a factor of 2 in the 200-300K temperature range. This approach may lead to a fabrication technology for midinfrared distributed-feedback lasers based on a very simple processing.
Single-Mode, Distributed Feedback Interband Cascade Lasers
NASA Technical Reports Server (NTRS)
Frez, Clifford F. (Inventor); Borgentun, Carl E. (Inventor); Briggs, Ryan M. (Inventor); Bagheri, Mahmood (Inventor); Forouhar, Siamak (Inventor)
2016-01-01
Single-mode, distributed feedback interband cascade lasers (ICLs) using distributed-feedback gratings (e.g., lateral Bragg gratings) and methods of fabricating such ICLs are provided. The ICLs incorporate distributed-feedback gratings that are formed above the laser active region and adjacent the ridge waveguide (RWG) of the ICL. The ICLs may incorporate a double-ridge system comprising an optical confinement structure (e.g., a RWG) disposed above the laser active region that comprises the first ridge of the double ridge system, a DFB grating (e.g., lateral Bragg grating) disposed above the laser active region and adjacent the optical confinement structure, and an electric confinement structure that passes at least partially through the laser active region and that defines the boundary of the second ridge comprises and the termination of the DFB grating.
NASA Astrophysics Data System (ADS)
Larsen, L.; Watts, D.; Khurana, A.; Anderson, J. L.; Xu, C.; Merritts, D. J.
2015-12-01
The classic signal of self-organization in nature is pattern formation. However, the interactions and feedbacks that organize depositional landscapes do not always result in regular or fractal patterns. How might we detect their existence and effects in these "irregular" landscapes? Emergent landscapes such as newly forming deltaic marshes or some restoration sites provide opportunities to study the autogenic processes that organize landscapes and their physical signatures. Here we describe a quest to understand autogenic vs. allogenic controls on landscape evolution in Big Spring Run, PA, a landscape undergoing restoration from bare-soil conditions to a target wet meadow landscape. The contemporary motivation for asking questions about autogenic vs. allogenic controls is to evaluate how important initial conditions or environmental controls may be for the attainment of management objectives. However, these questions can also inform interpretation of the sedimentary record by enabling researchers to separate signals that may have arisen through self-organization processes from those resulting from environmental perturbations. Over three years at Big Spring Run, we mapped the dynamic evolution of floodplain vegetation communities and distributions of abiotic variables and topography. We used principal component analysis and transition probability analysis to detect associative interactions between vegetation and geomorphic variables and convergent cross-mapping on lidar data to detect causal interactions between biomass and topography. Exploratory statistics revealed that plant communities with distinct morphologies exerted control on landscape evolution through stress divergence (i.e., channel initiation) and promoting the accumulation of fine sediment in channels. Together, these communities participated in a negative feedback that maintains low energy and multiple channels. Because of the spatially explicit nature of this feedback, causal interactions could not be uncovered from convergent cross-mapping with this limited dataset, serving as a reminder that spatially explicit approaches for revealing causality are needed to reconstruct self-organizing mechanisms from data.
Elzubeir, Margaret
2011-01-01
This report describes and explores the impact of a series of faculty-led faculty development programs underpinned by principles of distributed educational leadership. We aimed to prepare faculty for their roles as facilitators and assessors in a newly implemented problem-based (PBL) graduate entry medical program. We asked participants attending a series of faculty development programs to evaluate workshops attended using an in-house designed survey. Overall descriptive statistics for all workshops and qualitative feedback for PBL workshops alone were examined. It was concluded that clinical faculty who are not specialized in medical education can offer high-quality, well-accepted training for their peers. Faculty development, underpinned by a distributed leadership approach which supports learning organization tenets, imaginative, flexible and democratic approaches to developing and nurturing expertise at all levels of the organization, is likely to lead to improvements in medical education. Despite the limitations of the survey approach to evaluation of faculty development programs, the information provided is useful both as a basis for decision making and program improvement.
Narrow-band generation in random distributed feedback fiber laser.
Sugavanam, Srikanth; Tarasov, Nikita; Shu, Xuewen; Churkin, Dmitry V
2013-07-15
Narrow-band emission of spectral width down to ~0.05 nm line-width is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ~10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning.
A Web of applicant attraction: person-organization fit in the context of Web-based recruitment.
Dineen, Brian R; Ash, Steven R; Noe, Raymond A
2002-08-01
Applicant attraction was examined in the context of Web-based recruitment. A person-organization (P-O) fit framework was adopted to examine how the provision of feedback to individuals regarding their potential P-O fit with an organization related to attraction. Objective and subjective P-O fit, agreement with fit feedback, and self-esteem also were examined in relation to attraction. Results of an experiment that manipulated fit feedback level after a self-assessment provided by a fictitious company Web site found that both feedback level and objective P-O fit were positively related to attraction. These relationships were fully mediated by subjective P-O fit. In addition, attraction was related to the interaction of objective fit, feedback, and agreement and objective fit, feedback, and self-esteem. Implications and future Web-based recruitment research directions are discussed.
NASA Astrophysics Data System (ADS)
Baryshev, V. I.; Golikova, E. G.; Duraev, V. P.; Kuchinskiĭ, V. I.; Kizhaev, K. Yu; Kuksenkov, D. V.; Portnoĭ, E. L.; Smirnitskiĭ, V. B.
1988-11-01
A study was made of stimulated emission from mesa-stripe distributed-feedback lasers in the form of double heterostructures with separate electron and optical confinement. A diffraction grating with a period Λ = 0.46 μm, formed on the surface of the upper waveguide layer by holographic lithography, ensured distributed feedback in the second order. The threshold current for cw operation at room temperature was 35-70 mA, the shift of the emission wavelength with temperature was ~ 0.08 nm/K, and the feedback coefficient deduced from the width of a "Bragg gap" was 110-150 cm- 1.
Incident Management Organization succession planning stakeholder feedback
Anne E. Black
2013-01-01
This report presents complete results of a 2011 stakeholder feedback effort conducted for the National Wildfire Coordination Group (NWCG) Executive Board concerning how best to organize and manage national wildland fire Incident Management Teams in the future to meet the needs of the public, agencies, fire service and Team members. Feedback was collected from 858...
Random distributed feedback fiber laser at 2.1 μm.
Jin, Xiaoxi; Lou, Zhaokai; Zhang, Hanwei; Xu, Jiangming; Zhou, Pu; Liu, Zejin
2016-11-01
We demonstrate a random distributed feedback fiber laser at 2.1 μm. A high-power pulsed Tm-doped fiber laser operating at 1.94 μm with a temporal duty ratio of 30% was employed as a pump laser to increase the equivalent incident pump power. A piece of 150 m highly GeO2-doped silica fiber that provides a strong Raman gain and random distributed feedbacks was used to act as the gain medium. The maximum output power reached 0.5 W with the optical efficiency of 9%, which could be further improved by more pump power and optimized fiber length. To the best of our knowledge, this is the first demonstration of random distributed feedback fiber laser at 2 μm band based on Raman gain.
Simultaneous RGB lasing from a single-chip polymer device.
Yamashita, Kenichi; Takeuchi, Nobutaka; Oe, Kunishige; Yanagi, Hisao
2010-07-15
This Letter describes the fabrication and operation of a single-chip white-laser device. The laser device has a multilayered structure consisting of three laser layers. Each laser layer comprises polymer claddings and a waveguide core doped with organic dye. In each laser layer, grating corrugations were fabricated by UV-nanoimprint lithography that act as distributed-feedback cavity structures. Under optical pumping, lasing output with red, green, and blue colors was simultaneously obtained from the sample edge.
NASA Astrophysics Data System (ADS)
Wing, A. A.; Camargo, S. J.; Sobel, A. H.
2015-12-01
"Self-aggregation" is a mode of convective organization found in idealized numerical simulations, in which there is a spontaneous transition from randomly distributed to organized convection despite homogeneous boundary conditions. Self-aggregation has primarily been studied in a non-rotating framework, but it has been hypothesized to be important to tropical cyclogenesis. In numerical simulations of tropical cyclones, a broad vortex or saturated column is often used to initialize the circulation. Here, we instead allow a circulation to develop spontaneously from a homogeneous environment in 3-d cloud-resolving simulations of radiative-convective equilibrium in a rotating framework, with interactive radiation and surface fluxes and fixed sea surface temperature. The goals of this study are two-fold: to study tropical cyclogenesis in an unperturbed environment free from the influence of a prescribed initial vortex or external disturbances, and to compare cyclogenesis to non-rotating self-aggregation. We quantify the feedbacks leading to tropical cyclogenesis using a variance budget equation for the vertically integrated frozen moist static energy. In the initial development of a broad circulation, the feedback processes are similar to the initial phase of non-rotating aggregation. Sensitivity tests in which the degree of interactive radiation is modified are also performed to determine the extent to which the radiative feedbacks that are essential to non-rotating self-aggregation are important for tropical cyclogenesis. Finally, we examine the evolution of the rotational and divergent flow, to determine the point at which rotation becomes important and the cyclogenesis process begins to differ from non-rotating aggregation.
NASA Technical Reports Server (NTRS)
Cook, Anthony L. (Inventor); Hendricks, Herbert D. (Inventor)
2000-01-01
The linewidth of a distributed feedback semiconductor laser or a distributed Bragg reflector laser having one or more second order gratings is reduced by using an external cavity to couple the vertical emission back into the laser. This method and device prevent disturbance of the main laser beam, provide unobstructed access to laser emission for the formation of the external cavity, and do not require a very narrow heat sink. Any distributed Bragg reflector semiconductor laser or distributed feedback semiconductor laser that can produce a vertical emission through the epitaxial material and through a window in the top metallization can be used. The external cavity can be formed with an optical fiber or with a lens and a mirror or grating.
NASA Technical Reports Server (NTRS)
Cook, Anthony L. (Inventor); Hendricks, Herbert D. (Inventor)
1998-01-01
The linewidth of a distributed feedback semiconductor laser or a distributed Bragg reflector laser having one or more second order gratings is reduced by using an external cavity to couple the vertical emission back into the laser. This method and device prevent disturbance of the main laser beam. provide unobstructed access to laser emission for the formation of the external cavity. and do not require a very narrow heat sink. Any distributed Bragg reflector semiconductor laser or distributed feedback semiconductor laser that can produce a vertical emission through the epitaxial material and through a window in the top metallization can be used. The external cavity can be formed with an optical fiber or with a lens and a mirror of grating.
Survey Feedback as an Organization Development Strategy in a Public School District.
ERIC Educational Resources Information Center
Rosenbach, William E.; And Others
1983-01-01
Survey feedback can be applied as an organization development (OD) technique in public school systems. The technique, if suited to goals of an OD effort, can result in multiple positive outcomes. In addition to improvements characteristic of OD, the results of survey feedback can be utilized in making strategic decisions. (Author/MH)
Dissociating error-based and reinforcement-based loss functions during sensorimotor learning
McGregor, Heather R.; Mohatarem, Ayman
2017-01-01
It has been proposed that the sensorimotor system uses a loss (cost) function to evaluate potential movements in the presence of random noise. Here we test this idea in the context of both error-based and reinforcement-based learning. In a reaching task, we laterally shifted a cursor relative to true hand position using a skewed probability distribution. This skewed probability distribution had its mean and mode separated, allowing us to dissociate the optimal predictions of an error-based loss function (corresponding to the mean of the lateral shifts) and a reinforcement-based loss function (corresponding to the mode). We then examined how the sensorimotor system uses error feedback and reinforcement feedback, in isolation and combination, when deciding where to aim the hand during a reach. We found that participants compensated differently to the same skewed lateral shift distribution depending on the form of feedback they received. When provided with error feedback, participants compensated based on the mean of the skewed noise. When provided with reinforcement feedback, participants compensated based on the mode. Participants receiving both error and reinforcement feedback continued to compensate based on the mean while repeatedly missing the target, despite receiving auditory, visual and monetary reinforcement feedback that rewarded hitting the target. Our work shows that reinforcement-based and error-based learning are separable and can occur independently. Further, when error and reinforcement feedback are in conflict, the sensorimotor system heavily weights error feedback over reinforcement feedback. PMID:28753634
Dissociating error-based and reinforcement-based loss functions during sensorimotor learning.
Cashaback, Joshua G A; McGregor, Heather R; Mohatarem, Ayman; Gribble, Paul L
2017-07-01
It has been proposed that the sensorimotor system uses a loss (cost) function to evaluate potential movements in the presence of random noise. Here we test this idea in the context of both error-based and reinforcement-based learning. In a reaching task, we laterally shifted a cursor relative to true hand position using a skewed probability distribution. This skewed probability distribution had its mean and mode separated, allowing us to dissociate the optimal predictions of an error-based loss function (corresponding to the mean of the lateral shifts) and a reinforcement-based loss function (corresponding to the mode). We then examined how the sensorimotor system uses error feedback and reinforcement feedback, in isolation and combination, when deciding where to aim the hand during a reach. We found that participants compensated differently to the same skewed lateral shift distribution depending on the form of feedback they received. When provided with error feedback, participants compensated based on the mean of the skewed noise. When provided with reinforcement feedback, participants compensated based on the mode. Participants receiving both error and reinforcement feedback continued to compensate based on the mean while repeatedly missing the target, despite receiving auditory, visual and monetary reinforcement feedback that rewarded hitting the target. Our work shows that reinforcement-based and error-based learning are separable and can occur independently. Further, when error and reinforcement feedback are in conflict, the sensorimotor system heavily weights error feedback over reinforcement feedback.
HOT Faults", Fault Organization, and the Occurrence of the Largest Earthquakes
NASA Astrophysics Data System (ADS)
Carlson, J. M.; Hillers, G.; Archuleta, R. J.
2006-12-01
We apply the concept of "Highly Optimized Tolerance" (HOT) for the investigation of spatio-temporal seismicity evolution, in particular mechanisms associated with largest earthquakes. HOT provides a framework for investigating both qualitative and quantitative features of complex feedback systems that are far from equilibrium and punctuated by rare, catastrophic events. In HOT, robustness trade-offs lead to complexity and power laws in systems that are coupled to evolving environments. HOT was originally inspired by biology and engineering, where systems are internally very highly structured, through biological evolution or deliberate design, and perform in an optimum manner despite fluctuations in their surroundings. Though faults and fault systems are not designed in ways comparable to biological and engineered structures, feedback processes are responsible in a conceptually comparable way for the development, evolution and maintenance of younger fault structures and primary slip surfaces of mature faults, respectively. Hence, in geophysical applications the "optimization" approach is perhaps more aptly replaced by "organization", reflecting the distinction between HOT and random, disorganized configurations, and highlighting the importance of structured interdependencies that evolve via feedback among and between different spatial and temporal scales. Expressed in the terminology of the HOT concept, mature faults represent a configuration optimally organized for the release of strain energy; whereas immature, more heterogeneous fault networks represent intermittent, suboptimal systems that are regularized towards structural simplicity and the ability to generate large earthquakes more easily. We discuss fault structure and associated seismic response pattern within the HOT concept, and outline fundamental differences between this novel interpretation to more orthodox viewpoints like the criticality concept. The discussion is flanked by numerical simulations of a 2D fault model, where we investigate different feedback mechanisms and their effect on seismicity evolution. We introduce an approach to estimate the state of a fault and thus its capability of generating a large (system-wide) event assuming likely heterogeneous distributions of hypocenters and stresses, respectively.
Liu, Xin; Klinkhammer, Sönke; Wang, Ziyao; Wienhold, Tobias; Vannahme, Christoph; Jakobs, Peter-Jürgen; Bacher, Andreas; Muslija, Alban; Mappes, Timo; Lemmer, Uli
2013-11-18
Optically excited organic semiconductor distributed feedback (DFB) lasers enable efficient lasing in the visible spectrum. Here, we report on the rapid and parallel fabrication of DFB lasers via transferring a nanograting structure from a flexible mold onto an unstructured film of the organic gain material. This geometrically well-defined structure allows for a systematic investigation of the laser threshold behavior. The laser thresholds for these devices show a strong dependence on the pump spot diameter. This experimental finding is in good qualitative agreement with calculations based on coupled-wave theory. With further investigations on various DFB laser geometries prepared by different routes and based on different organic gain materials, we found that these findings are quite general. This is important for the comparison of threshold values of various devices characterized under different excitation areas.
Tani, Jun; Nishimoto, Ryunosuke; Paine, Rainer W
2008-05-01
The current paper examines how compositional structures can self-organize in given neuro-dynamical systems when robot agents are forced to learn multiple goal-directed behaviors simultaneously. Firstly, we propose a basic model accounting for the roles of parietal-premotor interactions for representing skills for goal-directed behaviors. The basic model had been implemented in a set of robotics experiments employing different neural network architectures. The comparative reviews among those experimental results address the issues of local vs distributed representations in representing behavior and the effectiveness of level structures associated with different sensory-motor articulation mechanisms. It is concluded that the compositional structures can be acquired "organically" by achieving generalization in learning and by capturing the contextual nature of skilled behaviors under specific conditions. Furthermore, the paper discusses possible feedback for empirical neuroscience studies in the future.
Feedback-Equivalence of Nonlinear Systems with Applications to Power System Equations.
NASA Astrophysics Data System (ADS)
Marino, Riccardo
The key concept of the dissertation is feedback equivalence among systems affine in control. Feedback equivalence to linear systems in Brunovsky canonical form and the construction of the corresponding feedback transformation are used to: (i) design a nonlinear regulator for a detailed nonlinear model of a synchronous generator connected to an infinite bus; (ii) establish which power system network structures enjoy the feedback linearizability property and design a stabilizing control law for these networks with a constraint on the control space which comes from the use of d.c. lines. It is also shown that the feedback linearizability property allows the use of state feedback to contruct a linear controllable system with a positive definite linear Hamiltonian structure for the uncontrolled part if the state space is even; a stabilizing control law is derived for such systems. Feedback linearizability property is characterized by the involutivity of certain nested distributions for strongly accessible analytic systems; if the system is defined on a manifold M diffeomorphic to the Euclidean space, it is established that the set where the property holds is a submanifold open and dense in M. If an analytic output map is defined, a set of nested involutive distributions can be always defined and that allows the introduction of an observability property which is the dual concept, in some sense, to feedback linearizability: the goal is to investigate when a nonlinear system affine in control with an analytic output map is feedback equivalent to a linear controllable and observable system. Finally a nested involutive structure of distributions is shown to guarantee the existence of a state feedback that takes a nonlinear system affine in control to a single input one, both feedback equivalent to linear controllable systems, preserving one controlled vector field.
Awazu, Akinori; Tanabe, Takahiro; Kamitani, Mari; Tezuka, Ayumi; Nagano, Atsushi J
2018-05-29
Gene expression levels exhibit stochastic variations among genetically identical organisms under the same environmental conditions. In many recent transcriptome analyses based on RNA sequencing (RNA-seq), variations in gene expression levels among replicates were assumed to follow a negative binomial distribution, although the physiological basis of this assumption remains unclear. In this study, RNA-seq data were obtained from Arabidopsis thaliana under eight conditions (21-27 replicates), and the characteristics of gene-dependent empirical probability density function (ePDF) profiles of gene expression levels were analyzed. For A. thaliana and Saccharomyces cerevisiae, various types of ePDF of gene expression levels were obtained that were classified as Gaussian, power law-like containing a long tail, or intermediate. These ePDF profiles were well fitted with a Gauss-power mixing distribution function derived from a simple model of a stochastic transcriptional network containing a feedback loop. The fitting function suggested that gene expression levels with long-tailed ePDFs would be strongly influenced by feedback regulation. Furthermore, the features of gene expression levels are correlated with their functions, with the levels of essential genes tending to follow a Gaussian-like ePDF while those of genes encoding nucleic acid-binding proteins and transcription factors exhibit long-tailed ePDF.
Full State Feedback Control for Virtual Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jay Tillay
This report presents an object-oriented implementation of full state feedback control for virtual power plants (VPP). The components of the VPP full state feedback control are (1) objectoriented high-fidelity modeling for all devices in the VPP; (2) Distribution System Distributed Quasi-Dynamic State Estimation (DS-DQSE) that enables full observability of the VPP by augmenting actual measurements with virtual, derived and pseudo measurements and performing the Quasi-Dynamic State Estimation (QSE) in a distributed manner, and (3) automated formulation of the Optimal Power Flow (OPF) in real time using the output of the DS-DQSE, and solving the distributed OPF to provide the optimalmore » control commands to the DERs of the VPP.« less
Physician performance feedback in a Canadian academic center.
Garvin, Dennis; Worthington, James; McGuire, Shaun; Burgetz, Stephanie; Forster, Alan J; Patey, Andrea; Gerin-Lajoie, Caroline; Turnbull, Jeffrey; Roth, Virginia
2017-10-02
Purpose This paper aims at the implementation and early evaluation of a comprehensive, formative annual physician performance feedback process in a large academic health-care organization. Design/methodology/approach A mixed methods approach was used to introduce a formative feedback process to provide physicians with comprehensive feedback on performance and to support professional development. This initiative responded to organization-wide engagement surveys through which physicians identified effective performance feedback as a priority. In 2013, physicians primarily affiliated with the organization participated in a performance feedback process, and physician satisfaction and participant perceptions were explored through participant survey responses and physician leader focus groups. Training was required for physician leaders prior to conducting performance feedback discussions. Findings This process was completed by 98 per cent of eligible physicians, and 30 per cent completed an evaluation survey. While physicians endorsed the concept of a formative feedback process, process improvement opportunities were identified. Qualitative analysis revealed the following process improvement themes: simplify the tool, ensure leaders follow process, eliminate redundancies in data collection (through academic or licensing requirements) and provide objective quality metrics. Following physician leader training on performance feedback, 98 per cent of leaders who completed an evaluation questionnaire agreed or strongly agreed that the performance feedback process was useful and that training objectives were met. Originality/value This paper introduces a physician performance feedback model, leadership training approach and first-year implementation outcomes. The results of this study will be useful to health administrators and physician leaders interested in implementing physician performance feedback or improving physician engagement.
Rougier, Patrice R
2009-05-01
Provided through the screen of a monitor, the participant's resultant center of pressure (CPRes) movements from a force platform device, modified the postural performance of a healthy individual. However, these effects could largely vary with the axis that researchers consider (mediolateral [ML] or anteroposterior [AP]), because they know these controls are involved in 2 distinct ankle and hip mechanisms. To demonstrate this organization, the author tested a group of healthy adults in several conditions that gave the whole or some part of the information in the CPRes displacements. Compared with the CPRes feedback, left and right plantar CP or body weight distribution feedback deteriorated the control of the vertically projected center of gravity (CGv) along the ML and AP axes, whose amplitudes increased, respectively. These data highlight the primary role of loading or unloading and pressure variations in the achievement of postural control along each ML or AP axis, respectively. It is interesting that merging these 2 pieces of information (CPRes displacements) helped participants optimize their postural performance.
Self-organizing dynamic stability of far-from-equilibrium biological systems
NASA Astrophysics Data System (ADS)
Ivanitskii, G. R.
2017-10-01
One indication of the stability of a living system is the variation of the system’s characteristic time scales. Underlying the stability mechanism are the structural hierarchy and self-organization of systems, factors that give rise to a positive (accelerating) feedback and a negative (braking) feedback. Information processing in the brain cortex plays a special role in highly organized living organisms.
ERIC Educational Resources Information Center
Indiana Univ., Bloomington. Mathematics Education Development Center.
This appendix to the Mathematical Problem Solving Project "Module Development and Formative Evaluation" contains trials 1 and 2 of the Organizing Lists quiz. Editorial feedback from teachers on the Organizing Lists booklet is given for trials 1 and 2. Editorial feedback from teachers on the Organizing Lists problem deck is given for…
Feedback and rewards, part II: formal and informal feedback reviews.
Harolds, Jay
2013-02-01
There are 2 major classes of feedback. One class of feedback consists of the informal, numerous conversations between various people in the organization regarding the performance, behavior, and goals of an individual. Another class of feedback consists of formal reviews held once or twice a year between a supervisor and an individual. This article discusses both types of feedback.
Distributed feedback acoustic surface wave oscillator
NASA Technical Reports Server (NTRS)
Elachi, C.
1974-01-01
Using a simple model, the feasibility of applying the distributed feedback concept to the generation of acoustic surface waves is evaluated. It is shown that surface corrugation of the piezoelectric boundary in a semiconductor-piezoelectric surface acoustic wave amplifier could lead to self-sustained oscillations.
Calzado, Eva M.; Boj, Pedro G.; Díaz-García, María A.
2009-01-01
This review compiles the work performed in the field of organic solid-state lasers with the hole-transporting organic molecule N,N´-bis(3-methylphenyl)-N,N´-diphenyl-benzidine system (TPD), in view of improving active laser material properties. The optimization of the amplified spontaneous emission characteristics, i.e., threshold, linewidth, emission wavelength and photostability, of polystyrene films doped with TPD in waveguide configuration has been achieved by investigating the influence of several materials parameters such as film thickness and TPD concentration. In addition, the influence in the emission properties of the inclusion of a second-order distributed feedback grating in the substrate is discussed.
Tree range expansion may be enhanced by escape from negative plant-soil feedbacks.
McCarthy-Neumann, Sarah; Ibáñez, Inés
2012-12-01
Many plant species are expected to shift their distributional ranges in response to global warming. As they arrive at new sites, migrant plant species may be released from their natural soil pathogens and/or deprived of key symbiotic organisms. Under such scenarios plant-soil feedbacks (PSF) will likely have an impact on plant species' ability to establish in new areas. In this study we evaluated the role that PSF may play on the migratory potential of dominant temperate tree species at the northern limit of their distributional range in the Great Lakes region of North America. To test their ability to expand their current range, we assessed seedling establishment, i.e., survival, of local and potential migrant tree species in a field transplant experiment. To test for the presence and strength of PSF, we also assessed seedling survival during establishment in a greenhouse experiment, where the potential migrant species were grown in soils collected within and beyond their distributional ranges. The combination of experiments provided us with a comprehensive understanding of the role of PSF in seedling establishment in new areas. In the field, we found that survival for most migrant species was similar to those of the local community, ensuring that these species could establish in areas beyond their current range. In the greenhouse, we found that the majority of species experienced strong negative conspecific feedbacks mediated by soil biota, but these responses occurred for most species only in low light conditions. Lastly, our combined results indicate that migrant tree species can colonize and may even have enhanced short-term recruitment beyond their ranges due to a lack of conspecific adults (and the resulting negative PSF from these adults).
de Jong, Kim; de Goede, Marije
2015-01-01
Despite research on its effectiveness, many therapists still have negative attitudes toward using outcome monitoring feedback. The current study aims to investigate how the perceived match between values of an individual and those of the organization (Person-Organization fit; PO fit), and motivation to prevent failure or to achieve success (regulatory focus) are related to therapists' attitude, attitude changes over time, and outcomes. Therapists (n = 20) filled out a feedback attitude questionnaire at two points in time: before the start of outcome monitoring, and after six months. In addition, they completed measures on PO fit and regulatory focus. PO fit was predictive of outcomes, when feedback was provided, but did not predict therapists' attitude. Therapists with a strong prevention focus (prevent failures), had a more positive attitude toward feedback, but achieved slower symptom reduction in their at risk cases. A strong promotion focus (achieve success) was not predictive of attitude, but did result in faster symptom reduction in at risk patients when feedback was provided. Therapists motivational approach to work and the perceived match with the organization they work for, can influence both their attitude toward outcome monitoring and their outcomes.
Murray, James A H; Jones, Angharad; Godin, Christophe; Traas, Jan
2012-10-01
The shoot apical meristem (SAM) is a small population of stem cells that continuously generates organs and tissues. This review covers our current understanding of organ initiation by the SAM in Arabidopsis thaliana. Meristem function and maintenance involves two major hormones, cytokinins and auxins. Cytokinins appear to play a major role in meristem maintenance and in controlling meristematic properties, such as cell proliferation. Self-organizing transport processes, which are still only partially understood, lead to the patterned accumulation of auxin at particular positions, where organs will grow out. A major downstream target of auxin-mediated growth regulation is the cell wall, which is a determinant for both growth rates and growth distribution, but feedbacks with metabolism and the synthetic capacity of the cytoplasm are crucial as well. Recent work has also pointed at a potential role of mechanical signals in growth coordination, but the precise mechanisms at work remain to be elucidated.
Feedback and the Reconstruction of Meaning.
ERIC Educational Resources Information Center
Langer, Philip; And Others
This investigation of the impact of feedback upon scrambled discourse was intended to show the effects of idiosyncratic processing and to provide a more sensitive indicator of feedback usefulness. Learner schemata, text organization, and feedback strategies interact in processing discourse, although past research has favored limited models…
Freyre-González, Julio A; Tauch, Andreas
2017-09-10
Corynebacterium glutamicum is a Gram-positive, anaerobic, rod-shaped soil bacterium able to grow on a diversity of carbon sources like sugars and organic acids. It is a biotechnological relevant organism because of its highly efficient ability to biosynthesize amino acids, such as l-glutamic acid and l-lysine. Here, we reconstructed the most complete C. glutamicum regulatory network to date and comprehensively analyzed its global organizational properties, systems-level features and functional architecture. Our analyses show the tremendous power of Abasy Atlas to study the functional organization of regulatory networks. We created two models of the C. glutamicum regulatory network: all-evidences (containing both weak and strong supported interactions, genomic coverage=73%) and strongly-supported (only accounting for strongly supported evidences, genomic coverage=71%). Using state-of-the-art methodologies, we prove that power-law behaviors truly govern the connectivity and clustering coefficient distributions. We found a non-previously reported circuit motif that we named complex feed-forward motif. We highlighted the importance of feedback loops for the functional architecture, beyond whether they are statistically over-represented or not in the network. We show that the previously reported top-down approach is inadequate to infer the hierarchy governing a regulatory network because feedback bridges different hierarchical layers, and the top-down approach disregards the presence of intermodular genes shaping the integration layer. Our findings all together further support a diamond-shaped, three-layered hierarchy exhibiting some feedback between processing and coordination layers, which is shaped by four classes of systems-level elements: global regulators, locally autonomous modules, basal machinery and intermodular genes. Copyright © 2016 Elsevier B.V. All rights reserved.
Event-triggered output feedback control for distributed networked systems.
Mahmoud, Magdi S; Sabih, Muhammad; Elshafei, Moustafa
2016-01-01
This paper addresses the problem of output-feedback communication and control with event-triggered framework in the context of distributed networked control systems. The design problem of the event-triggered output-feedback control is proposed as a linear matrix inequality (LMI) feasibility problem. The scheme is developed for the distributed system where only partial states are available. In this scheme, a subsystem uses local observers and share its information to its neighbors only when the subsystem's local error exceeds a specified threshold. The developed method is illustrated by using a coupled cart example from the literature. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Mass distribution in galaxy clusters: the role of Active Galactic Nuclei feedback
NASA Astrophysics Data System (ADS)
Teyssier, Romain; Moore, Ben; Martizzi, Davide; Dubois, Yohan; Mayer, Lucio
2011-06-01
We use 1-kpc resolution cosmological Adaptive Mesh Refinement (AMR) simulations of a Virgo-like galaxy cluster to investigate the effect of feedback from supermassive black holes on the mass distribution of dark matter, gas and stars. We compared three different models: (i) a standard galaxy formation model featuring gas cooling, star formation and supernovae feedback, (ii) a 'quenching' model for which star formation is artificially suppressed in massive haloes and finally (iii) the recently proposed active galactic nucleus (AGN) feedback model of Booth and Schaye. Without AGN feedback (even in the quenching case), our simulated cluster suffers from a strong overcooling problem, with a stellar mass fraction significantly above observed values in M87. The baryon distribution is highly concentrated, resulting in a strong adiabatic contraction (AC) of dark matter. With AGN feedback, on the contrary, the stellar mass in the brightest cluster galaxy (BCG) lies below observational estimates and the overcooling problem disappears. The stellar mass of the BCG is seen to increase with increasing mass resolution, suggesting that our stellar masses converge to the correct value from below. The gas and total mass distributions are in better agreement with observations. We also find a slight deficit (˜10 per cent) of baryons at the virial radius, due to the combined effect of AGN-driven convective motions in the inner parts and shock waves in the outer regions, pushing gas to Mpc scales and beyond. This baryon deficit results in a slight adiabatic expansion of the dark matter distribution that can be explained quantitatively by AC theory.
Nearly-octave wavelength tuning of a continuous wave fiber laser
Zhang, Lei; Jiang, Huawei; Yang, Xuezong; Pan, Weiwei; Cui, Shuzhen; Feng, Yan
2017-01-01
The wavelength tunability of conventional fiber lasers are limited by the bandwidth of gain spectrum and the tunability of feedback mechanism. Here a fiber laser which is continuously tunable from 1 to 1.9 μm is reported. It is a random distributed feedback Raman fiber laser, pumped by a tunable Yb doped fiber laser. The ultra-wide wavelength tunability is enabled by the unique property of random distributed feedback Raman fiber laser that both stimulated Raman scattering gain and Rayleigh scattering feedback are available at any wavelength. The dispersion property of the gain fiber is used to control the spectral purity of the laser output. PMID:28198414
Community Organizing for Database Trial Buy-In by Patrons
ERIC Educational Resources Information Center
Pionke, J. J.
2015-01-01
Database trials do not often garner a lot of feedback. Using community-organizing techniques can not only potentially increase the amount of feedback received but also deepen the relationship between the librarian and his or her constituent group. This is a case study of the use of community-organizing techniques in a series of database trials for…
NASA Astrophysics Data System (ADS)
Baughman, C. A.; Mann, D. H.; Verbyla, D.; Valentine, D.; Kunz, M. L.; Heiser, P. A.
2013-12-01
Accumulated organic matter at the ground surface plays an important role in arctic ecosystems. These soil surface organic layers (SSOLs) influence temperature, moisture, and chemistry in the underlying mineral soil and, on a global basis, comprise enormous stores of labile carbon. Understanding the dynamics of SSOLs is prerequisite to modeling the responses of arctic ecosystem processes to climate changes. Here, we ask three questions regarding SSOLs in the Arctic Foothills in northern Alaska: 1) What environmental factors control their spatial distribution? 2) How long do they take to form? 3) What is the relationship between SSOL thickness and mineral soil temperature through the growing season? The best topographically-controlled predictors of SSOL thickness and spatial distribution are duration of sunlight during the growing-season, upslope drainage area, slope gradient, and elevation. SSOLs begin to form within several decades following disturbance but require 500-700 years to reach equilibrium states. Once formed, mature SSOLs lower peak growing-season temperature and mean annual temperature in the underlying mineral horizon by 8° and 3° C respectively, which reduces available growing degree days within the upper mineral soil by nearly 80%. How ongoing climate change in northern Alaska will affect the region's SSOLs is an open and potentially crucial question.
Plasmon-polariton distributed-feedback laser pumped by a fast drift current in graphene
NASA Astrophysics Data System (ADS)
Zolotovskii, Igor O.; Dadoenkova, Yuliya S.; Moiseev, Sergey G.; Kadochkin, Aleksei S.; Svetukhin, Vyacheslav V.; Fotiadi, Andrei A.
2018-05-01
We propose a model of a slow surface plasmon-polariton distributed-feedback laser with pump by drift current. The amplification in the dielectric-semiconducting film-dielectric waveguide structure is created by fast drift current in the graphene layer, placed at the semiconductor/dielectric interface. The feedback is provided due to a periodic change in the thickness of the semiconducting film. We have shown that in such a system it is possible to achieve surface plasmon-polariton generation in the terahertz region.
Landform elevation suggests ecohydrologic footprints in subsurface geomorphology
NASA Astrophysics Data System (ADS)
Watts, A. C.; Watts, D.; Kaplan, D. A.; Mclaughlin, D. L.; Heffernan, J. B.; Martin, J. B.; Murray, A.; Osborne, T.; Cohen, M. J.; Kobziar, L. N.
2012-12-01
Many landscapes exhibit patterns in their arrangement of biota, or in their surface geomorphology as a result of biotic activity. Examples occur around the globe and include northern peatlands, Sahelian savannas, and shallow marine reefs. Such self-organized patterning is strongly suggestive of coupled, reciprocal feedbacks (i.e. locally positive, and distally negative) among biota and their environment. Much research on patterned landscapes has concerned emergent biogeomorphologic surfaces such as those found in peatlands, or the influence of biota on soil formation or transport. Our research concerns ecohydrologic feedbacks hypothesized to produce patterned occurrence of depressions in a subtropical limestone karst landscape. Our findings show strong evidence of self-organized patterning, in the form of overdispersed dissolution basins. Distributions of randomized bedrock elevation measurements on the landscape are bimodal, with means clustered about either higher- or lower-elevation modes. Measurements on the thin mantle of soil overlying this landscape, however, display reduced bimodality and mode separation. These observations indicate abiotic processes in diametric opposition to the biogenic forces which may be responsible for generating landscape pattern. Correlograms show higher spatial autocorrelation among soil measurements compared to bedrock measurements, and measurements of soil-layer thickness show high negative correlation with bedrock elevation. Our results are consistent with predictions of direct ecohydrologic feedbacks that would produce patterned "footprints" directly on bedrock, and of abiotic processes operating to obfuscate this pattern. The study suggests new steps to identify biogeochemical mechanisms for landscape patterning: an "ecological drill" by which plant communities modify geology.
Diz-Muñoz, Alba; Thurley, Kevin; Chintamen, Sana; Altschuler, Steven J.; Fletcher, Daniel A.; Weiner, Orion D.
2016-01-01
For efficient polarity and migration, cells need to regulate the magnitude and spatial distribution of actin assembly. This process is coordinated by reciprocal interactions between the actin cytoskeleton and mechanical forces. Actin polymerization-based protrusion increases tension in the plasma membrane, which in turn acts as a long-range inhibitor of actin assembly. These interactions form a negative feedback circuit that limits the magnitude of membrane tension in neutrophils and prevents expansion of the existing front and the formation of secondary fronts. It has been suggested that the plasma membrane directly inhibits actin assembly by serving as a physical barrier that opposes protrusion. Here we show that efficient control of actin polymerization-based protrusion requires an additional mechanosensory feedback cascade that indirectly links membrane tension with actin assembly. Specifically, elevated membrane tension acts through phospholipase D2 (PLD2) and the mammalian target of rapamycin complex 2 (mTORC2) to limit actin nucleation. In the absence of this pathway, neutrophils exhibit larger leading edges, higher membrane tension, and profoundly defective chemotaxis. Mathematical modeling suggests roles for both the direct (mechanical) and indirect (biochemical via PLD2 and mTORC2) feedback loops in organizing cell polarity and motility—the indirect loop is better suited to enable competition between fronts, whereas the direct loop helps spatially organize actin nucleation for efficient leading edge formation and cell movement. This circuit is essential for polarity, motility, and the control of membrane tension. PMID:27280401
NASA Technical Reports Server (NTRS)
Briggs, Ryan M.; Frez, Clifford; Ksendzov, Alexander; Franz, Kale J.; Bagheri, Mahmood; Forouhar, Siamak
2012-01-01
We demonstrate single-mode laterally coupled distributed-feedback diode lasers at 2.05 microns employing low-loss etched gratings. Single-facet CW output exceeds 50 mW near room temperature with linewidth below 1 MHz over 10-ms observation times
Soil organic carbon stocks in Alaska estimated with spatial and pedon data
Bliss, Norman B.; Maursetter, J.
2010-01-01
Temperatures in high-latitude ecosystems are increasing faster than the average rate of global warming, which may lead to a positive feedback for climate change by increasing the respiration rates of soil organic C. If a positive feedback is confirmed, soil C will represent a source of greenhouse gases that is not currently considered in international protocols to regulate C emissions. We present new estimates of the stocks of soil organic C in Alaska, calculated by linking spatial and field data developed by the USDA NRCS. The spatial data are from the State Soil Geographic database (STATSGO), and the field and laboratory data are from the National Soil Characterization Database, also known as the pedon database. The new estimates range from 32 to 53 Pg of soil organic C for Alaska, formed by linking the spatial and field data using the attributes of Soil Taxonomy. For modelers, we recommend an estimation method based on taxonomic subgroups with interpolation for missing areas, which yields an estimate of 48 Pg. This is a substantial increase over a magnitude of 13 Pg estimated from only the STATSGO data as originally distributed in 1994, but the increase reflects different estimation methods and is not a measure of the change in C on the landscape. Pedon samples were collected between 1952 and 2002, so the results do not represent a single point in time. The linked databases provide an improved basis for modeling the impacts of climate change on net ecosystem exchange.
NASA Astrophysics Data System (ADS)
Zhu, Kaiqun; Song, Yan; Zhang, Sunjie; Zhong, Zhaozhun
2017-07-01
In this paper, a non-fragile observer-based output feedback control problem for the polytopic uncertain system under distributed model predictive control (MPC) approach is discussed. By decomposing the global system into some subsystems, the computation complexity is reduced, so it follows that the online designing time can be saved.Moreover, an observer-based output feedback control algorithm is proposed in the framework of distributed MPC to deal with the difficulties in obtaining the states measurements. In this way, the presented observer-based output-feedback MPC strategy is more flexible and applicable in practice than the traditional state-feedback one. What is more, the non-fragility of the controller has been taken into consideration in favour of increasing the robustness of the polytopic uncertain system. After that, a sufficient stability criterion is presented by using Lyapunov-like functional approach, meanwhile, the corresponding control law and the upper bound of the quadratic cost function are derived by solving an optimisation subject to convex constraints. Finally, some simulation examples are employed to show the effectiveness of the method.
Self-organization of pulsing and bursting in a CO{sub 2} laser with opto-electronic feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freire, Joana G.; Instituto de Altos Estudos da Paraíba, Rua Infante Dom Henrique 100-1801, 58039-150 João Pessoa; CELC, Departamento de Matemática, Universidade de Lisboa, 1649-003 Lisboa
We report a detailed investigation of the stability of a CO{sub 2} laser with feedback as described by a six-dimensional rate-equations model which provides satisfactory agreement between numerical and experimental results. We focus on experimentally accessible parameters, like bias voltage, feedback gain, and the bandwidth of the feedback loop. The impact of decay rates and parameters controlling cavity losses are also investigated as well as control planes which imply changes of the laser physical medium. For several parameter combinations, we report stability diagrams detailing how laser spiking and bursting is organized over extended intervals. Laser pulsations are shown to emergemore » organized in several hitherto unseen regular and irregular phases and to exhibit a much richer and complex range of behaviors than described thus far. A significant observation is that qualitatively similar organization of laser spiking and bursting can be obtained by tuning rather distinct control parameters, suggesting the existence of unexpected symmetries in the laser control space.« less
Framing Feedback for School Improvement around Distributed Leadership
ERIC Educational Resources Information Center
Kelley, Carolyn; Dikkers, Seann
2016-01-01
Purpose: The purpose of this article is to examine the utility of framing formative feedback to improve school leadership with a focus on task-based evaluation of distributed leadership rather than on role-based evaluation of an individual leader. Research Methods/Approach: Using data from research on the development of the Comprehensive…
Multi-peak structure of generation spectrum of random distributed feedback fiber Raman lasers.
Vatnik, I D; Zlobina, E A; Kablukov, S I; Babin, S A
2017-02-06
We study spectral features of the generation of random distributed feedback fiber Raman laser arising from two-peak shape of the Raman gain spectral profile realized in the germanosilicate fibers. We demonstrate that number of peaks can be calculated using power balance model considering different subcomponents within each Stokes component.
Sugavanam, S; Yan, Z; Kamynin, V; Kurkov, A S; Zhang, L; Churkin, D V
2014-02-10
Multiwavelength lasing in the random distributed feedback fiber laser is demonstrated by employing an all fiber Lyot filter. Stable multiwavelength generation is obtained, with each line exhibiting sub-nanometer line-widths. A flat power distribution over multiple lines is obtained, which indicates that the power between lines is redistributed in nonlinear mixing processes. The multiwavelength generation is observed both in first and second Stokes waves.
Tree island pattern formation in the Florida Everglades
Carr, Joel; D'Odorico, P.; Engel, Victor C.; Redwine, Jed
2016-01-01
The Florida Everglades freshwater landscape exhibits a distribution of islands covered by woody vegetation and bordered by marshes and wet prairies. Known as “tree islands”, these ecogeomorphic features can be found in few other low gradient, nutrient limited freshwater wetlands. In the last few decades, however, a large percentage of tree islands have either shrank or disappeared in apparent response to altered water depths and other stressors associated with human impacts on the Everglades. Because the processes determining the formation and spatial organization of tree islands remain poorly understood, it is still unclear what controls the sensitivity of these landscapes to altered conditions. We hypothesize that positive feedbacks between woody plants and soil accretion are crucial to emergence and decline of tree islands. Likewise, positive feedbacks between phosphorus (P) accumulation and trees explain the P enrichment commonly observed in tree island soils. Here, we develop a spatially-explicit model of tree island formation and evolution, which accounts for these positive feedbacks (facilitation) as well as for long range competition and fire dynamics. It is found that tree island patterns form within a range of parameter values consistent with field data. Simulated impacts of reduced water levels, increased intensity of drought, and increased frequency of dry season/soil consuming fires on these feedback mechanisms result in the decline and disappearance of tree islands on the landscape.
Reverse technology transfer; obtaining feedback from managers.
A.B. Carey; J.M. Calhoun; B. Dick; K. O' Halloran; L.S. Young; R.E. Bigley; S. Chan; C.A. Harrington; J.P. Hayes; J. Marzluff
1999-01-01
Forestry policy, planning, and practice have changed rapidly with implementation of ecosystem management by federal, state, tribal, and private organizations. Implementation entails new concepts, terminology, and management approaches. Yet there seems to have been little organized effort to obtain feedback from on-the-ground managers on the practicality of implementing...
Kim, Mi Jeong; Maeng, Sung Joon; Cho, Yong Soo
2015-01-01
In this paper, a distributed synchronization technique based on a bio-inspired algorithm is proposed for an orthogonal frequency division multiple access (OFDMA)-based wireless mesh network (WMN) with a time difference of arrival. The proposed time- and frequency-synchronization technique uses only the signals received from the neighbor nodes, by considering the effect of the propagation delay between the nodes. It achieves a fast synchronization with a relatively low computational complexity because it is operated in a distributed manner, not requiring any feedback channel for the compensation of the propagation delays. In addition, a self-organization scheme that can be effectively used to construct 1-hop neighbor nodes is proposed for an OFDMA-based WMN with a large number of nodes. The performance of the proposed technique is evaluated with regard to the convergence property and synchronization success probability using a computer simulation. PMID:26225974
Kim, Mi Jeong; Maeng, Sung Joon; Cho, Yong Soo
2015-07-28
In this paper, a distributed synchronization technique based on a bio-inspired algorithm is proposed for an orthogonal frequency division multiple access (OFDMA)-based wireless mesh network (WMN) with a time difference of arrival. The proposed time- and frequency-synchronization technique uses only the signals received from the neighbor nodes, by considering the effect of the propagation delay between the nodes. It achieves a fast synchronization with a relatively low computational complexity because it is operated in a distributed manner, not requiring any feedback channel for the compensation of the propagation delays. In addition, a self-organization scheme that can be effectively used to construct 1-hop neighbor nodes is proposed for an OFDMA-based WMN with a large number of nodes. The performance of the proposed technique is evaluated with regard to the convergence property and synchronization success probability using a computer simulation.
NASA Astrophysics Data System (ADS)
Hamlet, C. L.; Hoffman, K.; Fauci, L.; Tytell, E.
2016-02-01
The lamprey is a model organism for both neurophysiology and locomotion studies. To study the role of sensory feedback as an organism moves through its environment, a 2D, integrative, multi-scale model of an anguilliform swimmer driven by neural activation from a central pattern generator (CPG) is constructed. The CPG in turn drives muscle kinematics and is fully coupled to the surrounding fluid. The system is numerically evolved in time using an immersed boundary framework producing an emergent swimming mode. Proprioceptive feedback to the CPG based on experimental observations adjust the activation signal as the organism interacts with its environment. Effects on the speed, stability and cost (metabolic work) of swimming due to nonlinear dependencies associated with muscle force development combined with proprioceptive feedback to neural activation are estimated and examined.
Novel hybrid laser modes in composite VCSEL-DFB microcavities (Conference Presentation)
NASA Astrophysics Data System (ADS)
Mischok, Andreas; Wagner, Tim; Sudzius, Markas; Brückner, Robert; Fröb, Hartmut; Lyssenko, Vadim G.; Leo, Karl
2017-02-01
Two of the most successful microcresonator concepts are the vertical cavity surface emitting laser (VCSEL), where light is confined between distributed Bragg reflectors (DBRs), and the distributed feedback (DFB) laser, where a periodic grating provides positive optical feedback to selected modes in an active waveguide (WG) layer. Our work concerns the combination of both into a composite device, facilitating coherent interaction between both regimes and giving rise to novel laser modes in the system. In a first realization, a full VCSEL stack with an organic active layer is evaporated on top of a diffraction grating with a large period (approximately 1 micron), leading to diffraction of waveguided modes into the surface emission of the device. Here, the coherent interaction between VCSEL and WG modes, as observed in an anticrossing of the dispersion lines, facilitates novel hybrid lasing modes with macroscopic in-plane coherence [1]. In further studies, we decrease the grating period of such devices to realise DFB conditions in a second-order Bragg grating which strongly couples photons via first-order light diffraction to the VCSEL. This efficient coupling can be compared to more classical cascade-coupled cavities and is successfully described by a coupled oscillator model [2]. When both resonators are non-degenerate, they are able to function as independent structures without substantial diffraction losses. The realization of such novel devices provides a promising platform for photonic circuits based on organic microlasers. [1] A. Mischok et al., Adv. Opt. Mater., early online, DOI: 10.1002/adom.201600282, (2016) [2] T. Wagner et al., Appl. Phys. Lett., accepted, in production, (2016)
The role of nutricline depth in regulating the ocean carbon cycle
Cermeño, Pedro; Dutkiewicz, Stephanie; Harris, Roger P.; Follows, Mick; Schofield, Oscar; Falkowski, Paul G.
2008-01-01
Carbon uptake by marine phytoplankton, and its export as organic matter to the ocean interior (i.e., the “biological pump”), lowers the partial pressure of carbon dioxide (pCO2) in the upper ocean and facilitates the diffusive drawdown of atmospheric CO2. Conversely, precipitation of calcium carbonate by marine planktonic calcifiers such as coccolithophorids increases pCO2 and promotes its outgassing (i.e., the “alkalinity pump”). Over the past ≈100 million years, these two carbon fluxes have been modulated by the relative abundance of diatoms and coccolithophores, resulting in biological feedback on atmospheric CO2 and Earth's climate; yet, the processes determining the relative distribution of these two phytoplankton taxa remain poorly understood. We analyzed phytoplankton community composition in the Atlantic Ocean and show that the distribution of diatoms and coccolithophorids is correlated with the nutricline depth, a proxy of nutrient supply to the upper mixed layer of the ocean. Using this analysis in conjunction with a coupled atmosphere–ocean intermediate complexity model, we predict a dramatic reduction in the nutrient supply to the euphotic layer in the coming century as a result of increased thermal stratification. Our findings indicate that, by altering phytoplankton community composition, this causal relationship may lead to a decreased efficiency of the biological pump in sequestering atmospheric CO2, implying a positive feedback in the climate system. These results provide a mechanistic basis for understanding the connection between upper ocean dynamics, the calcium carbonate-to-organic C production ratio and atmospheric pCO2 variations on time scales ranging from seasonal cycles to geological transitions. PMID:19075222
The role of nutricline depth in regulating the ocean carbon cycle.
Cermeño, Pedro; Dutkiewicz, Stephanie; Harris, Roger P; Follows, Mick; Schofield, Oscar; Falkowski, Paul G
2008-12-23
Carbon uptake by marine phytoplankton, and its export as organic matter to the ocean interior (i.e., the "biological pump"), lowers the partial pressure of carbon dioxide (pCO(2)) in the upper ocean and facilitates the diffusive drawdown of atmospheric CO(2). Conversely, precipitation of calcium carbonate by marine planktonic calcifiers such as coccolithophorids increases pCO(2) and promotes its outgassing (i.e., the "alkalinity pump"). Over the past approximately 100 million years, these two carbon fluxes have been modulated by the relative abundance of diatoms and coccolithophores, resulting in biological feedback on atmospheric CO(2) and Earth's climate; yet, the processes determining the relative distribution of these two phytoplankton taxa remain poorly understood. We analyzed phytoplankton community composition in the Atlantic Ocean and show that the distribution of diatoms and coccolithophorids is correlated with the nutricline depth, a proxy of nutrient supply to the upper mixed layer of the ocean. Using this analysis in conjunction with a coupled atmosphere-ocean intermediate complexity model, we predict a dramatic reduction in the nutrient supply to the euphotic layer in the coming century as a result of increased thermal stratification. Our findings indicate that, by altering phytoplankton community composition, this causal relationship may lead to a decreased efficiency of the biological pump in sequestering atmospheric CO(2), implying a positive feedback in the climate system. These results provide a mechanistic basis for understanding the connection between upper ocean dynamics, the calcium carbonate-to-organic C production ratio and atmospheric pCO(2) variations on time scales ranging from seasonal cycles to geological transitions.
ERIC Educational Resources Information Center
Goomas, David T.; Smith, Stuart M.; Ludwig, Timothy D.
2011-01-01
Companies operating large industrial settings often find delivering timely and accurate feedback to employees to be one of the toughest challenges they face in implementing performance management programs. In this report, an overhead scoreboard at a retailer's distribution center informed teams of order selectors as to how many tasks were…
Bernhardi, E H; Khan, M R H; Roeloffzen, C G H; van Wolferen, H A G M; Wörhoff, K; de Ridder, R M; Pollnau, M
2012-01-15
We report the fabrication and characterization of a dual-wavelength distributed-feedback channel waveguide laser in ytterbium-doped aluminum oxide. Operation of the device is based on the optical resonances that are induced by two local phase shifts in the distributed-feedback structure. A stable microwave signal at ~15 GHz with a -3 dB width of 9 kHz was subsequently created via the heterodyne photodetection of the two laser wavelengths. The long-term frequency stability of the microwave signal produced by the free-running laser is better than ±2.5 MHz, while the power of the microwave signal is stable within ±0.35 dB.
Influences of the MJO on the space-time organization of tropical convection
NASA Astrophysics Data System (ADS)
Dias, Juliana; Sakaeda, Naoko; Kiladis, George N.; Kikuchi, Kazuyoshi
2017-08-01
The fact that the Madden-Julian Oscillation (MJO) is characterized by large-scale patterns of enhanced tropical rainfall has been widely recognized for decades. However, the precise nature of any two-way feedback between the MJO and the properties of smaller-scale organization that makes up its convective envelope is not well understood. Satellite estimates of brightness temperature are used here as a proxy for tropical rainfall, and a variety of diagnostics are applied to determine the degree to which tropical convection is affected either locally or globally by the MJO. To address the multiscale nature of tropical convective organization, the approach ranges from space-time spectral analysis to an object-tracking algorithm. In addition to the intensity and distribution of global tropical rainfall, the relationship between the MJO and other tropical processes such as convectively coupled equatorial waves, mesoscale convective systems, and the diurnal cycle of tropical convection is also analyzed. The main findings of this paper are that, aside from the well-known increase in rainfall activity across scales within the MJO convective envelope, the MJO does not favor any particular scale or type of organization, and there is no clear signature of the MJO in terms of the globally integrated distribution of brightness temperature or rainfall.
NASA Astrophysics Data System (ADS)
Scholtz, J.; Alexander, D. M.; Harrison, C. M.; Rosario, D. J.; McAlpine, S.; Mullaney, J. R.; Stanley, F.; Simpson, J.; Theuns, T.; Bower, R. G.; Hickox, R. C.; Santini, P.; Swinbank, A. M.
2018-03-01
We present sensitive 870 μm continuum measurements from our ALMA programmes of 114 X-ray selected active galactic nuclei (AGN) in the Chandra Deep Field-South and Cosmic Evolution Survey fields. We use these observations in combination with data from Spitzer and Herschel to construct a sample of 86 X-ray selected AGN, 63 with ALMA constraints at z = 1.5-3.2 with stellar mass >2 × 1010 M⊙. We constructed broad-band spectral energy distributions in the infrared band (8-1000 μm) and constrain star-formation rates (SFRs) uncontaminated by the AGN. Using a hierarchical Bayesian method that takes into account the information from upper limits, we fit SFR and specific SFR (sSFR) distributions. We explore these distributions as a function of both X-ray luminosity and stellar mass. We compare our measurements to two versions of the Evolution and Assembly of GaLaxies and their Environments (EAGLE) hydrodynamical simulations: the reference model with AGN feedback and the model without AGN. We find good agreement between the observations and that predicted by the EAGLE reference model for the modes and widths of the sSFR distributions as a function of both X-ray luminosity and stellar mass; however, we found that the EAGLE model without AGN feedback predicts a significantly narrower width when compared to the data. Overall, from the combination of the observations with the model predictions, we conclude that (1) even with AGN feedback, we expect no strong relationship between the sSFR distribution parameters and instantaneous AGN luminosity and (2) a signature of AGN feedback is a broad distribution of sSFRs for all galaxies (not just those hosting an AGN) with stellar masses above ≈1010 M⊙.
Stellinga, Daan; Pietrzyk, Monika E; Glackin, James M E; Wang, Yue; Bansal, Ashu K; Turnbull, Graham A; Dholakia, Kishan; Samuel, Ifor D W; Krauss, Thomas F
2018-03-27
Optical vortex beams are at the heart of a number of novel research directions, both as carriers of information and for the investigation of optical activity and chiral molecules. Optical vortex beams are beams of light with a helical wavefront and associated orbital angular momentum. They are typically generated using bulk optics methods or by a passive element such as a forked grating or a metasurface to imprint the required phase distribution onto an incident beam. Since many applications benefit from further miniaturization, a more integrated yet scalable method is highly desirable. Here, we demonstrate the generation of an azimuthally polarized vortex beam directly by an organic semiconductor laser that meets these requirements. The organic vortex laser uses a spiral grating as a feedback element that gives control over phase, handedness, and degree of helicity of the emitted beam. We demonstrate vortex beams up to an azimuthal index l = 3 that can be readily multiplexed into an array configuration.
Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers.
Vannahme, Christoph; Klinkhammer, Sönke; Lemmer, Uli; Mappes, Timo
2011-04-25
Laser light excitation of fluorescent markers offers highly sensitive and specific analysis for bio-medical or chemical analysis. To profit from these advantages for applications in the field or at the point-of-care, a plastic lab-on-a-chip with integrated organic semiconductor lasers is presented here. First order distributed feedback lasers based on the organic semiconductor tris(8-hydroxyquinoline) aluminum (Alq3) doped with the laser dye 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyril)-4H-pyrane (DCM), deep ultraviolet induced waveguides, and a nanostructured microfluidic channel are integrated into a poly(methyl methacrylate) (PMMA) substrate. A simple and parallel fabrication process is used comprising thermal imprint, DUV exposure, evaporation of the laser material, and sealing by thermal bonding. The excitation of two fluorescent marker model systems including labeled antibodies with light emitted by integrated lasers is demonstrated.
Better Bet-Hedging with coupled positive and negative feedback loops
NASA Astrophysics Data System (ADS)
Narula, Jatin; Igoshin, Oleg
2011-03-01
Bacteria use the phenotypic heterogeneity associated with bistable switches to distribute the risk of activating stress response strategies like sporulation and persistence. However bistable switches offer little control over the timing of phenotype switching and first passage times (FPT) for individual cells are found to be exponentially distributed. We show that a genetic circuit consisting of interlinked positive and negative feedback loops allows cells to control the timing of phenotypic switching. Using a mathematical model we find that in this system a stable high expression state and stable low expression limit cycle coexist and the FPT distribution for stochastic transitions between them shows multiple peaks at regular intervals. A multimodal FPT distribution allows cells to detect the persistence of stress and control the rate of phenotype transition of the population. We further show that extracellular signals from cell-cell communication that change the strength of the feedback loops can modulate the FPT distribution and allow cells even greater control in a bet-hedging strategy.
NASA Astrophysics Data System (ADS)
Cohen, M. J.; Martin, J. B.; Mclaughlin, D. L.; Osborne, T.; Murray, A.; Watts, A. C.; Watts, D.; Heffernan, J. B.
2012-12-01
Development of karst landscapes is controlled by focused delivery of water undersaturated with respect to the soluble rock minerals. As that water comes to equilibrium with the rock, secondary porosity is incrementally reinforced creating a positive feedback that acts to augment the drainage network and subsequent water delivery. In most self-organizing systems, spatial positive feedbacks create features (in landscapes: patches; in karst aquifers: conduits) whose size-frequency relationship follows a power function, indicating a higher probability of large features than would occur with a random or Gaussian genesis process. Power functions describe several aspects of secondary porosity in the Upper Floridan Aquifer in north Florida. In contrast, a different pattern arises in the karst landscape in southwest Florida (Big Cypress National Preserve; BICY), where low-relief and a shallow aquiclude govern regional hydrology. There, the landscape pattern is highly regular (Fig. 1), with circular cypress-dominated wetlands occupying depressions that are hydrologically isolated and distributed evenly in a matrix of pine uplands. Regular landscape patterning results from spatially coupled feedbacks, one positive operating locally that expands patches coupled to another negative that operates at distance, eventually inhibiting patch expansion. The positive feedback in BICY is thought to derive from the presence of surface depressions, which sustain prolonged inundation in this low-relief setting, and facilitate wetland development that greatly augments dissolution potential of infiltrating water in response to ecosystem metabolic processes. In short, wetlands "drill" into the carbonate leading to both vertical and lateral basin expansion. Wetland expansion occurs at the expense of surrounding upland area, which is the local catchment that subsidizes water availability. A distal inhibitory feedback on basin expansion thus occurs as the water necessary to sustain prolonged inundation becomes limiting. The implied strong reciprocal coupling between surface production of organic matter and patterns of induced subsurface carbonate dissolution are a novel example of co-evolving biogeomorphic processes in the earth system. Fig. 1 - Regular patterned landscape in Big Cypress National Preserve showing cypress dominated wetlands (round features) embedded in a mosaic of pine and grass uplands. Exposed carbonate rings are evident at the margins of many of the wetland basins.
Sales, Anne E; Fraser, Kimberly; Baylon, Melba Andrea B; O'Rourke, Hannah M; Gao, Gloria; Bucknall, Tracey; Maisey, Suzanne
2015-02-12
Long-term care settings provide care to a large proportion of predominantly older, highly disabled adults across the United States and Canada. Managing and improving quality of care is challenging, in part because staffing is highly dependent on relatively non-professional health care aides and resources are limited. Feedback interventions in these settings are relatively rare, and there has been little published information about the process of feedback intervention. Our objectives were to describe the key components of uptake of the feedback reports, as well as other indicators of participant response to the intervention. We conducted this project in nine long-term care units in four facilities in Edmonton, Canada. We used mixed methods, including observations during a 13-month feedback report intervention with nine post-feedback survey cycles, to conduct a process evaluation of a feedback report intervention in these units. We included all facility-based direct care providers (staff) in the feedback report distribution and survey administration. We conducted descriptive analyses of the data from observations and surveys, presenting this in tabular and graphic form. We constructed a short scale to measure uptake of the feedback reports. Our analysis evaluated feedback report uptake by provider type over the 13 months of the intervention. We received a total of 1,080 survey responses over the period of the intervention, which varied by type of provider, facility, and survey month. Total number of reports distributed ranged from 103 in cycle 12 to 229 in cycle 3, although the method of delivery varied widely across the period, from 12% to 65% delivered directly to individuals and 15% to 84% left for later distribution. The key elements of feedback uptake, including receiving, reading, understanding, discussing, and reporting a perception that the reports were useful, varied by survey cycle and provider type, as well as by facility. Uptake, as we measured it, was consistently high overall, but varied widely by provider type and time period. We report detailed process data describing the aspects of uptake of a feedback report during an intensive, longitudinal feedback intervention in long-term care facilities. Uptake is a complex process for which we used multiple measures. We demonstrate the feasibility of conducting a complex longitudinal feedback intervention in relatively resource-poor long-term care facilities to a wider range of provider types than have been included in prior feedback interventions.
ERIC Educational Resources Information Center
Goomas, David T.
2012-01-01
The effects of wireless ring scanners, which provided immediate auditory and visual feedback, were evaluated to increase the performance and accuracy of order selectors at a meat distribution center. The scanners not only increased performance and accuracy compared to paper pick sheets, but were also instrumental in immediate and accurate data…
Varotto, Alessandra; Gamberini, Luciano; Spagnolli, Anna; Martino, Francesco; Giovannardi, Isabella
2016-03-01
This study focuses on social feedback, namely on information on the outcome of users' online activity indirectly generated by other users, and investigates in a real setting whether it can affect subsequent activity and, if so, whether participants are aware of that. SkyPas, an application that calculates, transmits, and displays social feedback, was embedded in a common instant messaging service (Skype(™)) and used during a 7-week trial by 24 office workers at a large business organization. The trial followed an ABA scheme in which the B phase was the feedback provision phase. Results show that social feedback affects users' communication activity (participation, inward communication, outward communication, and reciprocity), sometimes even after the feedback provision phase. At the same time, users were poorly aware of this effect, showing a discrepancy between self-reported and observational measures. These results are then discussed in terms of design transparency and task compatibility.
Harvey, Pam; Radomski, Natalie; O'Connor, Dennis
2013-12-01
The provision of effective feedback on clinical performance for medical students is important for their continued learning. Written feedback is an underutilised medium for linking clinical performances over time. The aim of this study is to investigate how clinical supervisors construct performance orientated written feedback and learning goals for medical students in a geographically distributed medical education (GDME) programme. This qualitative study uses textual analysis to examine the structure and content of written feedback statements in 1000 mini-CEX records from 33 Australian undergraduate medical students during their 36 week GDME programme. The students were in their second clinical year. Forty percent of mini-CEX records contained written feedback statements. Within these statements, 80% included comments relating to student clinical performance. The way in which written feedback statements were recorded varied in structure and content. Only 16% of the statements contained student learning goals focused on improving a student's clinical performance over time. Very few of the written feedback statements identified forward-focused learning goals. Training clinical supervisors in understanding how their feedback contributes to a student's continuity of learning across their GDME clinical placements will enable more focused learning experiences based on student need. To enhance student learning over time and place, effective written feedback should contain focused, coherent phrases that help reflection on current and future clinical performance. It also needs to provide enough detail for other GDME clinical supervisors to understand current student performance and plan future directions for their teaching.
[Computerized ranking test in three French universities: Staff experience and students' feedback].
Roux, D; Meyer, G; Cymbalista, F; Bouaziz, J-D; Falgarone, G; Tesniere, A; Gervais, J; Cariou, A; Peffault de Latour, R; Marat, M; Moenaert, E; Guebli, T; Rodriguez, O; Lefort, A; Dreyfuss, D; Hajage, D; Ricard, J-D
2016-03-01
The year 2016 will be pivotal for the evaluation of French medical students with the introduction of the first computerized National Ranking Test (ECNi). The SIDES, online electronic system for medical student evaluation, was created for this purpose. All the universities have already organized faculty exams but few a joint computerized ranking test at several universities simultaneously. We report our experience on the organization of a mock ECNi by universities Paris Descartes, Paris Diderot and Paris 13. Docimological, administrative and technical working groups were created to organize this ECNi. Students in their fifth year of medical studies, who will be the first students to sit for the official ECNi in 2016, were invited to attend this mock exam that represented more than 50% of what will be proposed in 2016. A final electronic questionnaire allowed a docimological and organizational evaluation by students. An analysis of ratings and rankings and their distribution on a 1000-point scale were performed. Sixty-four percent of enrolled students (i.e., 654) attended the three half-day exams. No difference in total score and ranking between the three universities was observed. Students' feedback was extremely positive. Normalized over 1000 points, 99% of students were scored on 300 points only. Progressive clinical cases were the most discriminating test. The organization of a mock ECNi involving multiple universities was a docimological and technical success but required an important administrative, technical and teaching investment. Copyright © 2016 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.
Feature-Specific Organization of Feedback Pathways in Mouse Visual Cortex.
Huh, Carey Y L; Peach, John P; Bennett, Corbett; Vega, Roxana M; Hestrin, Shaul
2018-01-08
Higher and lower cortical areas in the visual hierarchy are reciprocally connected [1]. Although much is known about how feedforward pathways shape receptive field properties of visual neurons, relatively little is known about the role of feedback pathways in visual processing. Feedback pathways are thought to carry top-down signals, including information about context (e.g., figure-ground segmentation and surround suppression) [2-5], and feedback has been demonstrated to sharpen orientation tuning of neurons in the primary visual cortex (V1) [6, 7]. However, the response characteristics of feedback neurons themselves and how feedback shapes V1 neurons' tuning for other features, such as spatial frequency (SF), remain largely unknown. Here, using a retrograde virus, targeted electrophysiological recordings, and optogenetic manipulations, we show that putatively feedback neurons in layer 5 (hereafter "L5 feedback") in higher visual areas, AL (anterolateral area) and PM (posteromedial area), display distinct visual properties in awake head-fixed mice. AL L5 feedback neurons prefer significantly lower SF (mean: 0.04 cycles per degree [cpd]) compared to PM L5 feedback neurons (0.15 cpd). Importantly, silencing AL L5 feedback reduced visual responses of V1 neurons preferring low SF (mean change in firing rate: -8.0%), whereas silencing PM L5 feedback suppressed responses of high-SF-preferring V1 neurons (-20.4%). These findings suggest that feedback connections from higher visual areas convey distinctly tuned visual inputs to V1 that serve to boost V1 neurons' responses to SF. Such like-to-like functional organization may represent an important feature of feedback pathways in sensory systems and in the nervous system in general. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mental models of audit and feedback in primary care settings.
Hysong, Sylvia J; Smitham, Kristen; SoRelle, Richard; Amspoker, Amber; Hughes, Ashley M; Haidet, Paul
2018-05-30
Audit and feedback has been shown to be instrumental in improving quality of care, particularly in outpatient settings. The mental model individuals and organizations hold regarding audit and feedback can moderate its effectiveness, yet this has received limited study in the quality improvement literature. In this study we sought to uncover patterns in mental models of current feedback practices within high- and low-performing healthcare facilities. We purposively sampled 16 geographically dispersed VA hospitals based on high and low performance on a set of chronic and preventive care measures. We interviewed up to 4 personnel from each location (n = 48) to determine the facility's receptivity to audit and feedback practices. Interview transcripts were analyzed via content and framework analysis to identify emergent themes. We found high variability in the mental models of audit and feedback, which we organized into positive and negative themes. We were unable to associate mental models of audit and feedback with clinical performance due to high variance in facility performance over time. Positive mental models exhibit perceived utility of audit and feedback practices in improving performance; whereas, negative mental models did not. Results speak to the variability of mental models of feedback, highlighting how facilities perceive current audit and feedback practices. Findings are consistent with prior research in that variability in feedback mental models is associated with lower performance.; Future research should seek to empirically link mental models revealed in this paper to high and low levels of clinical performance.
Feasibility of a feedback control of atomic self-organization in an optical cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, D. A., E-mail: ivanov-den@yandex.ru; Ivanova, T. Yu.
Many interesting nonlinear effects are based on the strong interaction of motional degrees of freedom of atoms with an optical cavity field. Among them is the spatial self-organization of atoms in a pattern where the atoms group in either odd or even sites of the cavity-induced optical potential. An experimental observation of this effect can be simplified by using, along with the original cavity-induced feedback, an additional electronic feedback based on the detection of light leaking the cavity and the control of the optical potential for the atoms. Following our previous study, we show that this approach is more efficientmore » from the laser power perspective than the original scheme without the electronic feedback.« less
An integrative model linking feedback environment and organizational citizenship behavior.
Peng, Jei-Chen; Chiu, Su-Fen
2010-01-01
Past empirical evidence has suggested that a positive supervisor feedback environment may enhance employees' organizational citizenship behavior (OCB). In this study, we aim to extend previous research by proposing and testing an integrative model that examines the mediating processes underlying the relationship between supervisor feedback environment and employee OCB. Data were collected from 259 subordinate-supervisor dyads across a variety of organizations in Taiwan. We used structural equation modeling to test our hypotheses. The results demonstrated that supervisor feedback environment influenced employees' OCB indirectly through (1) both positive affective-cognition and positive attitude (i.e., person-organization fit and organizational commitment), and (2) both negative affective-cognition and negative attitude (i.e., role stressors and job burnout). Theoretical and practical implications are discussed.
Liang, Liang; Liu, Minliang; Martin, Caitlin; Sun, Wei
2018-01-01
Structural finite-element analysis (FEA) has been widely used to study the biomechanics of human tissues and organs, as well as tissue-medical device interactions, and treatment strategies. However, patient-specific FEA models usually require complex procedures to set up and long computing times to obtain final simulation results, preventing prompt feedback to clinicians in time-sensitive clinical applications. In this study, by using machine learning techniques, we developed a deep learning (DL) model to directly estimate the stress distributions of the aorta. The DL model was designed and trained to take the input of FEA and directly output the aortic wall stress distributions, bypassing the FEA calculation process. The trained DL model is capable of predicting the stress distributions with average errors of 0.492% and 0.891% in the Von Mises stress distribution and peak Von Mises stress, respectively. This study marks, to our knowledge, the first study that demonstrates the feasibility and great potential of using the DL technique as a fast and accurate surrogate of FEA for stress analysis. © 2018 The Author(s).
Distributed Wireless Power Transfer With Energy Feedback
NASA Astrophysics Data System (ADS)
Lee, Seunghyun; Zhang, Rui
2017-04-01
Energy beamforming (EB) is a key technique for achieving efficient radio-frequency (RF) transmission enabled wireless energy transfer (WET). By optimally designing the waveforms from multiple energy transmitters (ETs) over the wireless channels, they can be constructively combined at the energy receiver (ER) to achieve an EB gain that scales with the number of ETs. However, the optimal design of EB waveforms requires accurate channel state information (CSI) at the ETs, which is challenging to obtain practically, especially in a distributed system with ETs at separate locations. In this paper, we study practical and efficient channel training methods to achieve optimal EB in a distributed WET system. We propose two protocols with and without centralized coordination, respectively, where distributed ETs either sequentially or in parallel adapt their transmit phases based on a low-complexity energy feedback from the ER. The energy feedback only depends on the received power level at the ER, where each feedback indicates one particular transmit phase that results in the maximum harvested power over a set of previously used phases. Simulation results show that the two proposed training protocols converge very fast in practical WET systems even with a large number of distributed ETs, while the protocol with sequential ET phase adaptation is also analytically shown to converge to the optimal EB design with perfect CSI by increasing the training time. Numerical results are also provided to evaluate the performance of the proposed distributed EB and training designs as compared to other benchmark schemes.
ERIC Educational Resources Information Center
Goomas, David T.
2008-01-01
In this report from the field, computerized auditory feedback was used to inform order selectors and order selector auditors in a distribution center to add an electronic article surveillance (EAS) adhesive tag. This was done by programming handheld computers to emit a loud beep for high-priced items upon scanning the item's bar-coded Universal…
Distributed feedback imprinted electrospun fiber lasers.
Persano, Luana; Camposeo, Andrea; Del Carro, Pompilio; Fasano, Vito; Moffa, Maria; Manco, Rita; D'Agostino, Stefania; Pisignano, Dario
2014-10-01
Imprinted, distributed feedback lasers are demonstrated on individual, active electrospun polymer nanofibers. In addition to advantages related to miniaturization, optical confinement and grating nanopatterning lead to a significant threshold reduction compared to conventional thin-film lasers. The possibility of imprinting arbitrary photonic crystal geometries on electrospun lasing nanofibers opens new opportunities for realizing optical circuits and chips. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterization and Dynamic Analysis of Long-Cavity Multi-Section Gain- Levered Quantum-Dot Lasers
2013-03-01
test setup .................................................................... 8 Figure 5: Comparison of a Fabry – Perot and distributed feedback...for example Fabry – Perot and distributed-feedback designs), with each possessing advantages and disadvantages that will be discussed in detail in...contrast to Fabry – Perot cavities (two discrete mirrors) that result in lasing over multiple longitudinal modes supported by the cavity. Figure 5 shows
Contextual Antecedents of Informal Feedback in the Workplace
ERIC Educational Resources Information Center
van der Rijt, Janine; van de Wiel, Margje W. J.; Van den Bossche, Piet; Segers, Mien S. R.; Gijselaers, Wim H.
2012-01-01
This study brings together findings from different research angles on informal feedback in the workplace. We explore the individual and joint influences of three contextual antecedents of seeking feedback: support for learning, psychological safety, and work pressure. Based on our survey of 138 employees from various organizations, hierarchical…
Managing Volunteer Performance: The Role of the Feedback Environment.
ERIC Educational Resources Information Center
Paull, Megan
2000-01-01
Volunteers (n=85) in Australian organizations who responded to a survey indicated that they received both positive and negative feedback from supervisors and coworkers. The feedback environment facilitated or hindered its effectiveness. Effectiveness was enhanced by an organizational culture that was supportive and open and development of…
Listening and Speaking: A Cybernetic Synthesis.
ERIC Educational Resources Information Center
Nord, James R.
1985-01-01
Cybernetic feedback theory sees the individual as a self-organizing feedback control system that generates its own activity to control its own perceptions. Applying the principle of feedback to language use, it appears that speaking as an overt public behavior is controlled by an internally private listening capacity. With that listening capacity,…
Anatomy of hierarchy: Feedforward and feedback pathways in macaque visual cortex
Markov, Nikola T; Vezoli, Julien; Chameau, Pascal; Falchier, Arnaud; Quilodran, René; Huissoud, Cyril; Lamy, Camille; Misery, Pierre; Giroud, Pascale; Ullman, Shimon; Barone, Pascal; Dehay, Colette; Knoblauch, Kenneth; Kennedy, Henry
2013-01-01
The laminar location of the cell bodies and terminals of interareal connections determines the hierarchical structural organization of the cortex and has been intensively studied. However, we still have only a rudimentary understanding of the connectional principles of feedforward (FF) and feedback (FB) pathways. Quantitative analysis of retrograde tracers was used to extend the notion that the laminar distribution of neurons interconnecting visual areas provides an index of hierarchical distance (percentage of supragranular labeled neurons [SLN]). We show that: 1) SLN values constrain models of cortical hierarchy, revealing previously unsuspected areal relations; 2) SLN reflects the operation of a combinatorial distance rule acting differentially on sets of connections between areas; 3) Supragranular layers contain highly segregated bottom-up and top-down streams, both of which exhibit point-to-point connectivity. This contrasts with the infragranular layers, which contain diffuse bottom-up and top-down streams; 4) Cell filling of the parent neurons of FF and FB pathways provides further evidence of compartmentalization; 5) FF pathways have higher weights, cross fewer hierarchical levels, and are less numerous than FB pathways. Taken together, the present results suggest that cortical hierarchies are built from supra- and infragranular counterstreams. This compartmentalized dual counterstream organization allows point-to-point connectivity in both bottom-up and top-down directions. PMID:23983048
Advantages of simulated microgravity in the production of compounds of industrial relevance
NASA Astrophysics Data System (ADS)
Versari, Silvia; Villa, Alessandro; Barenghi, Livia; Bradamante, Silvia
2005-08-01
Glutathione (α-glutamyl-L-cysteinylglycine, GSH) is the most abundant non-protein thiol compound and it is widely distributed in living organisms, mainly, in eukaryotic cells. Inside the cells, GSH assumes pivotal roles in bioreduction processes and protection against oxidative stress. Due to its antioxidant properties, GSH is widely used not only in food and cosmetic area but also as a pharmaceutical compound.The best total GSH production obtained culturing yeast cells in standard conditions is about 3.5% DCW, as the sum of intracellular (mainly) and extracellular GSH. Its production is limited by a feedback inhibition process. Using our patented microgravity (μg) simulator, the NRG bioreactor, we obtained a three-fold increase in total GSH production. In particular we observed an increased GSH extracellular excretion (9%), thus avoiding the feedback inhibition and easing the downstream processing.To confirm the role of μg, we extended our findings on GSH extracellular production using another μg simulator, the Rotating Wall Vessel (RWV).
Bertheloot, Jessica; Cournède, Paul-Henry; Andrieu, Bruno
2011-10-01
Models simulating nitrogen use by plants are potentially efficient tools to optimize the use of fertilizers in agriculture. Most crop models assume that a target nitrogen concentration can be defined for plant tissues and formalize a demand for nitrogen, depending on the difference between the target and actual nitrogen concentrations. However, the teleonomic nature of the approach has been criticized. This paper proposes a mechanistic model of nitrogen economy, NEMA (Nitrogen Economy Model within plant Architecture), which links nitrogen fluxes to nitrogen concentration and physiological processes. A functional-structural approach is used: plant aerial parts are described in a botanically realistic way and physiological processes are expressed at the scale of each aerial organ or root compartment as a function of local conditions (light and resources). NEMA was developed for winter wheat (Triticum aestivum) after flowering. The model simulates the nitrogen (N) content of each photosynthetic organ as regulated by Rubisco turnover, which depends on intercepted light and a mobile N pool shared by all organs. This pool is enriched by N acquisition from the soil and N release from vegetative organs, and is depleted by grain uptake and protein synthesis in vegetative organs; NEMA accounts for the negative feedback from circulating N on N acquisition from the soil, which is supposed to follow the activities of nitrate transport systems. Organ N content and intercepted light determine dry matter production via photosynthesis, which is distributed between organs according to a demand-driven approach. NEMA integrates the main feedbacks known to regulate plant N economy. Other novel features are the simulation of N for all photosynthetic tissues and the use of an explicit description of the plant that allows how the local environment of tissues regulates their N content to be taken into account. We believe this represents an appropriate frame for modelling nitrogen in functional-structural plant models. A companion paper will present model evaluation and analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidler, Meinrad; Institute for Quantum Electronics, ETH Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich; Rauter, Patrick
2014-02-03
We demonstrate a multi-wavelength distributed feedback (DFB) quantum cascade laser (QCL) operating in a lensless external micro-cavity and achieve switchable single-mode emission at three distinct wavelengths selected by the DFB grating, each with a side-mode suppression ratio larger than 30 dB. Discrete wavelength tuning is achieved by modulating the feedback experienced by each mode of the multi-wavelength DFB QCL, resulting from a variation of the external cavity length. This method also provides a post-fabrication control of the lasing modes to correct for fabrication inhomogeneities, in particular, related to the cleaved facets position.
2015-10-01
Modulated Sensory Feedback from, a Hand Prosthesis PRINCIPAL INVESTIGATOR: Bradley Greger, PhD CONTRACTING ORGANIZATION: Arizona State University...Residual Peripheral Nerves to Provide Dextrous Control of, and Modulated Sensory Feedback from, a Hand Prosthesis 5a. CONTRACT NUMBER 5b. GRANT...Peripheral Nerve Interface, Prosthetic Hand, Neural Prosthesis , Sensory Feedback, Micro-stimulation, Electrophysiology, Action Potentials, Micro
An Investigation on the Use of Oral Corrective Feedback in Turkish EFL Classrooms
ERIC Educational Resources Information Center
Öztürk, Gökhan
2016-01-01
This classroom research study investigates corrective feedback implications in a sample of Turkish EFL classrooms. The types of corrective feedback, their distribution and the reasons of error ignorance were the foci. Four speaking classes in the English preparatory program of a Turkish state university were video-recorded for 12 hours in total…
Meaning in Constant Flow--University Teachers' Understanding of Examination Tasks
ERIC Educational Resources Information Center
Sellbjer, Stefan
2017-01-01
Effective feedback presupposes that students understand the task on which feedback is given. But what about the teachers formulating and assessing the task? Do they always understand it as intended? And if so, feedback on what? The purpose of this study is to examine how university teachers individually understand tasks distributed to students.…
ERIC Educational Resources Information Center
Norris-Watts, Christina; Levy, Paul E.
2004-01-01
The Feedback Environment, as opposed to the formal performance appraisal process, is comprised of the daily interactions between members of an organization (Steelman, Levy, & Snell, in press). Relations between the feedback environment and work outcome variables such as Organizational Citizenship Behavior (OCB) were examined through the mediating…
ERIC Educational Resources Information Center
Florin-Thuma, Beth C.; Boudreau, John W.
1987-01-01
Investigated the frequent but previously untested assertion that utility analysis can improve communication and decision making about human resource management programs by examining a performance feedback intervention in a small fast-food store. Results suggest substantial payoffs from performance feedback, though the store's owner-managers had…
Upgrading IEC strategy: the happy family coupon campaign.
Alberto, C S
1976-01-01
The Information, Education and Communication Division of the Family Planning Organization of the Philippines launched a Happy Family Coupon Campaign, a project to test the feasibility and the potential of a scheme whereby materials were distributed in response to individuals' expressed needs and interest. The project aims were: 1) to reach specific target groups, represented by readers of commercially printed materials; 2) to explore the potential of the mail system as a medium for the distribution of family planning materials; 3) to test the effectiveness of commercial publications as a vehicle for creating demand for family planning information; and 4) to secure feedback regarding preferences for the various family planning materials. The campaign had 2 major components: 1) advertising as a means of informing readers about the availability of certain family planning information materils, and 2) mail service as a channel for delivering requested materials to the respondents. 12 types of informational materials were distributed, each written in English, Filipino, and the Ilocano, Cebuano, and Ilongo dialects. These pamphlets and leaflets are described. The campaign drew a total of 24,226 respondents from August 1974 to December 1975. 58.7% of the respondents had 1-4 children, 26.4% had 5 or more children, and the remaining 14.9% gave no information concerning the number of children. It appears that the project has already achieved a measure of success as indicated by: 1) specific target groups were reached, 2) the potential of the mail system as a channel for the distribution of family planning was not confined to the buyers of the publications, 3) the potential of commercial publications as vehicles for creating demand for family planning information was tested, and 4) feedback regarding preferences of various groups for different family planning materials was obtained.
ERIC Educational Resources Information Center
Sakurai, Shogo
2014-01-01
There are a number of studies on teachers' corrective feedback and students' uptakes in immersion settings, but the majority is carried out in the North American context. Based on limited data, "the counter-balance hypothesis" was proposed by Lyster and Mori (2006) to explain distributions of teacher feedback and students' uptakes in…
Optical feedback in dfb quantum cascade laser for mid-infrared cavity ring-down spectroscopy
NASA Astrophysics Data System (ADS)
Terabayashi, Ryohei; Sonnenschein, Volker; Tomita, Hideki; Hayashi, Noriyoshi; Kato, Shusuke; Jin, Lei; Yamanaka, Masahito; Nishizawa, Norihiko; Sato, Atsushi; Nozawa, Kohei; Hashizume, Kenta; Oh-hara, Toshinari; Iguchi, Tetsuo
2017-11-01
A simple external optical feedback system has been applied to a distributed feedback quantum cascade laser (DFB QCL) for cavity ring-down spectroscopy (CRDS) and a clear effect of feedback was observed. A long external feedback path length of up to 4m can decrease the QCL linewidth to around 50kHz, which is of the order of the transmission linewidth of our high finesse ring-down cavity. The power spectral density of the transmission signal from high finesse cavity reveals that the noise at frequencies above 20kHz is reduced dramatically.
Distributed meandering waveguides (DMWs) for novel photonic circuits (Conference Presentation)
NASA Astrophysics Data System (ADS)
Dag, Ceren B.; Anil, Mehmet Ali; Serpengüzel, Ali
2017-05-01
Meandering waveguide distributed feedback structures are novel integrated photonic lightwave and microwave circuit elements. Meandering waveguide distributed feedback structures with a variety of spectral responses can be designed for a variety of lightwave and microwave circuit element functions. Distributed meandering waveguide (DMW) structures [1] show a variety of spectral behaviors with respect to the number of meandering loop mirrors (MLMs) [2] used in their composition as well as their internal coupling constants (Cs). DMW spectral behaviors include Fano resonances, coupled resonator induced transparency (CRIT), notch, add-drop, comb, and hitless filters. What makes the DMW special is the self-coupling property intrinsic to the DMW's nature. The basic example of DMW's nature is motivated through the analogy between the so-called symmetric meandering resonator (SMR), which consists of two coupled MLMs, and the resonator enhanced Mach-Zehnder interferometer (REMZI) [3]. A SMR shows the same spectral characteristics of Fano resonances with its self-coupling property, similar to the single, distributed and binary self coupled optical waveguide (SCOW) resonators [4]. So far DMWs have been studied for their electric field intensity, phase [5] and phasor responses [6]. The spectral analysis is performed using the coupled electric field analysis and the generalization of single meandering loop mirrors to multiple meandering distributed feedback structures is performed with the transfer matrix method. The building block of the meandering waveguide structures, the meandering loop mirror (MLM), is the integrated analogue of the fiber optic loop mirrors. The meandering resonator (MR) is composed of two uncoupled MLM's. The meandering distributed feedback (MDFB) structure is the DFB of the MLM. The symmetric MR (SMR) is composed of two coupled MLM's, and has the characteristics of a Fano resonator in the general case, and tunable power divider or tunable hitless filter in special cases. The antisymmetric MR (AMR) is composed of two coupled MLM's. The AMR has the characteristics of an add-drop filter in the general case, and coupled resonator induced transparency (CRIT) filter in a special case. The symmetric MDFB (SMDFB) is composed of multiple coupled MLM's. The antisymmetric MDFB (AMDFB) is composed of multiple coupled MLM's. The SMDFB and AMDFB can be utilized as band-pass, Fano, or Lorentzian filters, or Rabi splitters. Distributed meandering waveguide elements with extremely rich spectral and phase responses can be designed with creative combinations of distributed meandering waveguides structures for various novel photonic circuits. References [1 ] C. B. Dağ, M. A. Anıl, and A. Serpengüzel, "Meandering Waveguide Distributed Feedback Lightwave Circuits," J. Lightwave Technol, vol. 33, no. 9, pp. 1691-1702, May 2015. [2] N. J. Doran and D. Wood, "Nonlinear-optical loop mirror," Opt. Lett. vol. 13, no. 1, pp. 56-58, Jan. 1988. [3] L. Zhou and A. W. Poon, "Fano resonance-based electrically reconfigurable add-drop filters in silicon microring resonator-coupled Mach-Zehnder interferometers," Opt. Lett. vol. 32, no. 7, pp. 781-783, Apr. 2007. [4] Z. Zou, L. Zhou, X. Sun, J. Xie, H. Zhu, L. Lu, X. Li, and J. Chen, "Tunable two-stage self-coupled optical waveguide resonators," Opt. Lett. vol. 38, no. 8, pp. 1215-1217, Apr. 2013. [5] C. B. Dağ, M. A. Anıl, and A. Serpengüzel, "Novel distributed feedback lightwave circuit elements," in Proc. SPIE, San Francisco, 2015, vol. 9366, p. 93660A. [6] C. B. Dağ, M. A. Anıl, and A. Serpengüzel, "Meandering Waveguide Distributed Feedback Lightwave Elements: Phasor Diagram Analysis," in Proc. PIERS, Prague, 1986-1990 (2015).
Self-organization of river channels as a critical filter on climate signals.
Phillips, Colin B; Jerolmack, Douglas J
2016-05-06
Spatial and temporal variations in rainfall are hypothesized to influence landscape evolution through erosion and sediment transport by rivers. However, determining the relation between rainfall and river dynamics requires a greater understanding of the feedbacks between flooding and a river's capacity to transport sediment. We analyzed channel geometry and stream-flow records from 186 coarse-grained rivers across the United States. We found that channels adjust their shape so that floods slightly exceed the critical shear velocity needed to transport bed sediment, independently of climatic, tectonic, and bedrock controls. The distribution of fluid shear velocity associated with floods is universal, indicating that self-organization of near-critical channels filters the climate signal evident in discharge. This effect blunts the impact of extreme rainfall events on landscape evolution. Copyright © 2016, American Association for the Advancement of Science.
An Adapting Auditory-motor Feedback Loop Can Contribute to Generating Vocal Repetition
Brainard, Michael S.; Jin, Dezhe Z.
2015-01-01
Consecutive repetition of actions is common in behavioral sequences. Although integration of sensory feedback with internal motor programs is important for sequence generation, if and how feedback contributes to repetitive actions is poorly understood. Here we study how auditory feedback contributes to generating repetitive syllable sequences in songbirds. We propose that auditory signals provide positive feedback to ongoing motor commands, but this influence decays as feedback weakens from response adaptation during syllable repetitions. Computational models show that this mechanism explains repeat distributions observed in Bengalese finch song. We experimentally confirmed two predictions of this mechanism in Bengalese finches: removal of auditory feedback by deafening reduces syllable repetitions; and neural responses to auditory playback of repeated syllable sequences gradually adapt in sensory-motor nucleus HVC. Together, our results implicate a positive auditory-feedback loop with adaptation in generating repetitive vocalizations, and suggest sensory adaptation is important for feedback control of motor sequences. PMID:26448054
ERIC Educational Resources Information Center
Yoon, Susan A.; Klopfer, Eric
2006-01-01
This paper reports on the efficacy of a professional development framework premised on four complex systems design principles: Feedback, Adaptation, Network Growth and Self-organization (FANS). The framework is applied to the design and delivery of the first 2 years of a 3-year study aimed at improving teacher and student understanding of…
Fiber distributed feedback laser
NASA Technical Reports Server (NTRS)
Elachi, C.; Evans, G. A.; Yeh, C. (Inventor)
1976-01-01
Utilizing round optical fibers as communication channels in optical communication networks presents the problem of obtaining a high efficiency coupling between the optical fiber and the laser. A laser is made an integral part of the optical fiber channel by either diffusing active material into the optical fiber or surrounding the optical fiber with the active material. Oscillation within the active medium to produce lasing action is established by grating the optical fiber so that distributed feedback occurs.
Distributed Feedback Laser Based on Single Crystal Perovskite
NASA Astrophysics Data System (ADS)
Sun, Shang; Xiao, Shumin; Song, Qinghai
2017-06-01
We demonstrate a single crystal perovskite based, with grating-structured photoresist on top, highly polarized distributed feedback laser. A lower laser threshold than the Fabry-Perot mode lasers from the same single crystal CH3NH3PbBr3 microplate was obtained. Single crystal CH3NH3PbBr3 microplates was synthesized with one-step solution processed precipitation method. Once the photoresist on top of the microplate was patterned with electron beam, the device was realized. This one-step fabrication process utilized the advantage of single crystal to the greatest extend. The ultra-low defect density in single crystalline microplate offer an opportunity for lower threshold lasing action compare with poly-crystal perovskite films. In the experiment, the lasing action based on the distributed feedback grating design was found with lower threshold and higher intensity than the Fabry-Perot mode lasers supported by the flat facets of the same microplate.
Study of gain-coupled distributed feedback laser based on high order surface gain-coupled gratings
NASA Astrophysics Data System (ADS)
Gao, Feng; Qin, Li; Chen, Yongyi; Jia, Peng; Chen, Chao; Cheng, LiWen; Chen, Hong; Liang, Lei; Zeng, Yugang; Zhang, Xing; Wu, Hao; Ning, Yongqiang; Wang, Lijun
2018-03-01
Single-longitudinal-mode, gain-coupled distributed feedback (DFB) lasers based on high order surface gain-coupled gratings are achieved. Periodic surface metal p-contacts with insulated grooves realize gain-coupled mechanism. To enhance gain contrast in the quantum wells without the introduction of effective index-coupled effect, groove length and depth were well designed. Our devices provided a single longitudinal mode with the maximum CW output power up to 48.8 mW/facet at 971.31 nm at 250 mA without facet coating, 3dB linewidth (<3.2 pm) and SMSR (>39 dB). Optical bistable characteristic was observed with a threshold current difference. Experimentally, devices with different cavity lengths were contrasted on power-current and spectrum characteristics. Due to easy fabrication technique and stable performance, it provides a method of fabricating practical gain-coupled distributed feedback lasers for commercial applications.
Wada, Kenji; Matsukura, Satoru; Tanaka, Amaka; Matsuyama, Tetsuya; Horinaka, Hiromichi
2015-09-07
A simple method to measure single-mode optical fiber lengths is proposed and demonstrated using a gain-switched 1.55-μm distributed feedback laser without a fast photodetector or an optical interferometer. From the variation in the amplified spontaneous emission noise intensity with respect to the modulation frequency of the gain switching, the optical length of a 1-km single-mode fiber immersed in water is found to be 1471.043915 m ± 33 μm, corresponding to a relative standard deviation of 2.2 × 10(-8). This optical length is an average value over a measurement time of one minute under ordinary laboratory conditions.
Nutrient feedbacks to soil heterotrophic nitrogen fixation in forests
Perakis, Steven; Pett-Ridge, Julie C.; Catricala, Christina E.
2017-01-01
Multiple nutrient cycles regulate biological nitrogen (N) fixation in forests, yet long-term feedbacks between N-fixation and coupled element cycles remain largely unexplored. We examined soil nutrients and heterotrophic N-fixation across a gradient of 24 temperate conifer forests shaped by legacies of symbiotic N-fixing trees. We observed positive relationships among mineral soil pools of N, carbon (C), organic molybdenum (Mo), and organic phosphorus (P) across sites, evidence that legacies of symbiotic N-fixing trees can increase the abundance of multiple elements important to heterotrophic N-fixation. Soil N accumulation lowered rates of heterotrophic N-fixation in organic horizons due to both N inhibition of nitrogenase enzymes and declines in soil organic matter quality. Experimental fertilization of organic horizon soil revealed widespread Mo limitation of heterotrophic N-fixation, especially at sites where soil Mo was scarce relative to C. Fertilization also revealed widespread absence of P limitation, consistent with high soil P:Mo ratios. Responses of heterotrophic N-fixation to added Mo (positive) and N (negative) were correlated across sites, evidence that multiple nutrient controls of heterotrophic N-fixation were more common than single-nutrient effects. We propose a conceptual model where symbiotic N-fixation promotes coupled N, C, P, and Mo accumulation in soil, leading to positive feedback that relaxes nutrient limitation of overall N-fixation, though heterotrophic N-fixation is primarily suppressed by strong negative feedback from long-term soil N accumulation.
Transformation through Research-Based Reflection: A Self-Study of Written Feedback Practice
ERIC Educational Resources Information Center
Best, Karen
2011-01-01
This study investigates the written feedback the author gave during her first year as a university English as a second language writing instructor. The article investigates the form (questions, commands, comments) and the themes (organization, content, grammar) of feedback, the use of mitigation, and the treatment of grammar errors. It shows how…
Relationships among supervisor feedback environment, work-related stressors, and employee deviance.
Peng, Jei-Chen; Tseng, Mei-Man; Lee, Yin-Ling
2011-03-01
Previous research has demonstrated that the employee deviance imposes enormous costs on organizational performance and productivity. Similar research supports the positive effect of favorable supervisor feedback on employee job performance. In light of such, it is important to understand the interaction between supervisor feedback environment and employee deviant behavior to streamline organization operations. The purposes of this study were to explore how the supervisor feedback environment influences employee deviance and to examine the mediating role played by work-related stressors. Data were collected from 276 subordinate-supervisor dyads at a regional hospital in Yilan. Structural equation modeling analyses were conducted to test hypotheses. Structural equation modeling analysis results show that supervisor feedback environment negatively related to interpersonal and organizational deviance. Moreover, work-related stressors were found to partially mediate the relationship between supervisor feedback environment and employee deviance. Study findings suggest that when employees (nurses in this case) perceive an appropriate supervisor-provided feedback environment, their deviance is suppressed because of the related reduction in work-related stressors. Thus, to decrease deviant behavior, organizations may foster supervisor integration of disseminated knowledge such as (a) how to improve employees' actual performance, (b) how to effectively clarify expected performance, and (c) how to improve continuous performance feedback. If supervisors absorb this integrated feedback knowledge, they should be in a better position to enhance their own daily interactions with nurses and reduce nurses' work-related stress and, consequently, decrease deviant behavior.
Perceived Insider Status and Feedback Reactions: A Dual Path of Feedback Motivation Attribution.
Chen, Xiao; Liao, JianQiao; Wu, Weijiong; Zhang, Wei
2017-01-01
Many studies have evaluated how the characteristics of feedback receiver, feedback deliverer and feedback information influence psychological feedback reactions of the feedback receiver while largely neglecting that feedback intervention is a kind of social interaction process. To address this issue, this study proposes that employees' perceived insider status (PIS), as a kind of employee-organization relationship, could also influence employees' reactions to supervisory feedback. In particular, this study investigates the influence of PIS focusing on affective and cognitive feedback reactions, namely feedback satisfaction and feedback utility. Surveys were conducted in a machinery manufacturing company in the Guangdong province of China. Samples were collected from 192 employees. Data analysis demonstrated that PIS and feedback utility possessed a U-shaped relationship, whereas PIS and feedback satisfaction exhibited positively linear relationships. The analysis identified two kinds of mediating mechanisms related to feedback satisfaction and feedback utility. Internal feedback motivation attribution partially mediated the relationship between PIS and feedback satisfaction but failed to do the same with respect to the relationship between PIS and feedback utility. In contrast, external feedback motivation attribution partially mediated the relationship between PIS and feedback utility while failing to mediate the relationship between PIS and feedback satisfaction. Theoretical contributions and practical implications of the findings are discussed at the end of the paper.
Perceived Insider Status and Feedback Reactions: A Dual Path of Feedback Motivation Attribution
Chen, Xiao; Liao, JianQiao; Wu, Weijiong; Zhang, Wei
2017-01-01
Many studies have evaluated how the characteristics of feedback receiver, feedback deliverer and feedback information influence psychological feedback reactions of the feedback receiver while largely neglecting that feedback intervention is a kind of social interaction process. To address this issue, this study proposes that employees’ perceived insider status (PIS), as a kind of employee-organization relationship, could also influence employees’ reactions to supervisory feedback. In particular, this study investigates the influence of PIS focusing on affective and cognitive feedback reactions, namely feedback satisfaction and feedback utility. Surveys were conducted in a machinery manufacturing company in the Guangdong province of China. Samples were collected from 192 employees. Data analysis demonstrated that PIS and feedback utility possessed a U-shaped relationship, whereas PIS and feedback satisfaction exhibited positively linear relationships. The analysis identified two kinds of mediating mechanisms related to feedback satisfaction and feedback utility. Internal feedback motivation attribution partially mediated the relationship between PIS and feedback satisfaction but failed to do the same with respect to the relationship between PIS and feedback utility. In contrast, external feedback motivation attribution partially mediated the relationship between PIS and feedback utility while failing to mediate the relationship between PIS and feedback satisfaction. Theoretical contributions and practical implications of the findings are discussed at the end of the paper. PMID:28507527
A theory of circular organization and negative feedback: defining life in a cybernetic context.
Tsokolov, Sergey
2010-12-01
All life today incorporates a variety of systems controlled by negative feedback loops and sometimes amplified by positive feedback loops. The first forms of life necessarily also required primitive versions of feedback, yet surprisingly little emphasis has been given to the question of how feedback emerged out of primarily chemical systems. One chemical system has been established that spontaneously develops autocatalytic feedback, the Belousov-Zhabotinsky (BZ) reaction. In this essay, I discuss the BZ reaction as a possible model for similar reactions that could have occurred under prebiotic Earth conditions. The main point is that the metabolism of contemporary life evolved from primitive homeostatic networks regulated by negative feedback. Because life could not exist in their absence, feedback loops should be included in definitions of life.
A Theory of Circular Organization and Negative Feedback: Defining Life in a Cybernetic Context
NASA Astrophysics Data System (ADS)
Tsokolov, Sergey
2010-12-01
All life today incorporates a variety of systems controlled by negative feedback loops and sometimes amplified by positive feedback loops. The first forms of life necessarily also required primitive versions of feedback, yet surprisingly little emphasis has been given to the question of how feedback emerged out of primarily chemical systems. One chemical system has been established that spontaneously develops autocatalytic feedback, the Belousov-Zhabotinsky (BZ) reaction. In this essay, I discuss the BZ reaction as a possible model for similar reactions that could have occurred under prebiotic Earth conditions. The main point is that the metabolism of contemporary life evolved from primitive homeostatic networks regulated by negative feedback. Because life could not exist in their absence, feedback loops should be included in definitions of life.
Jackman, Jay M; Strober, Myra H
2003-04-01
Nobody likes performance reviews. Subordinates are terrified they'll hear nothing but criticism. Bosses think their direct reports will respond to even the mildest criticism with anger or tears. The result? Everyone keeps quiet. That's unfortunate, because most people need help figuring out how to improve their performance and advance their careers. This fear of feedback doesn't come into play just during annual reviews. At least half the executives with whom the authors have worked never ask for feedback. Many expect the worst: heated arguments, even threats of dismissal. So rather than seek feedback, people try to guess what their bosses are thinking. Fears and assumptions about feedback often manifest themselves in psychologically maladaptive behaviors such as procrastination, denial, brooding, jealousy, and self-sabotage. But there's hope, say the authors. Those who learn adaptive techniques can free themselves from destructive responses. They'll be able to deal with feedback better if they acknowledge negative emotions, reframe fear and criticism constructively, develop realistic goals, create support systems, and reward themselves for achievements along the way. Once you've begun to alter your maladaptive behaviors, you can begin seeking regular feedback from your boss. The authors take you through four steps for doing just that: self-assessment, external assessment, absorbing the feedback, and taking action toward change. Organizations profit when employees ask for feedback and deal well with criticism. Once people begin to know how they are doing relative to management's priorities, their work becomes better aligned with organizational goals. What's more, they begin to transform a feedback-averse environment into a more honest and open one, in turn improving performance throughout the organization.
NASA Software Engineering Benchmarking Effort
NASA Technical Reports Server (NTRS)
Godfrey, Sally; Rarick, Heather
2012-01-01
Benchmarking was very interesting and provided a wealth of information (1) We did see potential solutions to some of our "top 10" issues (2) We have an assessment of where NASA stands with relation to other aerospace/defense groups We formed new contacts and potential collaborations (1) Several organizations sent us examples of their templates, processes (2) Many of the organizations were interested in future collaboration: sharing of training, metrics, Capability Maturity Model Integration (CMMI) appraisers, instructors, etc. We received feedback from some of our contractors/ partners (1) Desires to participate in our training; provide feedback on procedures (2) Welcomed opportunity to provide feedback on working with NASA
High performance organic distributed Bragg reflector lasers fabricated by dot matrix holography.
Wan, Wenqiang; Huang, Wenbin; Pu, Donglin; Qiao, Wen; Ye, Yan; Wei, Guojun; Fang, Zongbao; Zhou, Xiaohong; Chen, Linsen
2015-12-14
We report distributed Bragg reflector (DBR) polymer lasers fabricated using dot matrix holography. Pairs of distributed Bragg reflector mirrors with variable mirror separations are fabricated and a novel energy transfer blend consisting of a blue-emitting conjugated polymer and a red-emitting one is spin-coated onto the patterned substrate to complete the device. Under optical pumping, the device emits sing-mode lasing around 622 nm with a bandwidth of 0.41 nm. The working threshold is as low as 13.5 μJ/cm² (~1.68 kW/cm²) and the measured slope efficiency reaches 5.2%. The distributed feedback (DFB) cavity and the DBR cavity resonate at the same lasing wavelength while the DFB laser shows a much higher threshold. We further show that flexible DBR lasers can be conveniently fabricated through the UV-imprinting technique by using the patterned silica substrate as the mold. Dot matrix holography represents a versatile approach to control the number, the size, the location and the orientation of DBR mirrors, thus providing great flexibility in designing DBR lasers.
Feedback, Lineages and Self-Organizing Morphogenesis
Calof, Anne L.; Lowengrub, John S.; Lander, Arthur D.
2016-01-01
Feedback regulation of cell lineage progression plays an important role in tissue size homeostasis, but whether such feedback also plays an important role in tissue morphogenesis has yet to be explored. Here we use mathematical modeling to show that a particular feedback architecture in which both positive and negative diffusible signals act on stem and/or progenitor cells leads to the appearance of bistable or bi-modal growth behaviors, ultrasensitivity to external growth cues, local growth-driven budding, self-sustaining elongation, and the triggering of self-organization in the form of lamellar fingers. Such behaviors arise not through regulation of cell cycle speeds, but through the control of stem or progenitor self-renewal. Even though the spatial patterns that arise in this setting are the result of interactions between diffusible factors with antagonistic effects, morphogenesis is not the consequence of Turing-type instabilities. PMID:26989903
Cosmic distribution of highly ionized metals and their physical conditions in the EAGLE simulations
NASA Astrophysics Data System (ADS)
Rahmati, Alireza; Schaye, Joop; Crain, Robert A.; Oppenheimer, Benjamin D.; Schaller, Matthieu; Theuns, Tom
2016-06-01
We study the distribution and evolution of highly ionized intergalactic metals in the Evolution and Assembly of Galaxies and their Environment (EAGLE) cosmological, hydrodynamical simulations. EAGLE has been shown to reproduce a wide range of galaxy properties while its subgrid feedback was calibrated without considering gas properties. We compare the predictions for the column density distribution functions (CDDFs) and cosmic densities of Si IV, C IV, N V, O VI and Ne VIII absorbers with observations at redshift z = 0 to ˜6 and find reasonable agreement, although there are some differences. We show that the typical physical densities of the absorbing gas increase with column density and redshift, but decrease with the ionization energy of the absorbing ion. The typical metallicity increases with both column density and time. The fraction of collisionally ionized metal absorbers increases with time and ionization energy. While our results show little sensitivity to the presence or absence of AGN feedback, increasing/decreasing the efficiency of stellar feedback by a factor of 2 substantially decreases/increases the CDDFs and the cosmic densities of the metal ions. We show that the impact of the efficiency of stellar feedback on the CDDFs and cosmic densities is largely due to its effect on the metal production rate. However, the temperatures of the metal absorbers, particularly those of strong O VI, are directly sensitive to the strength of the feedback.
Simulating Eastern- and Central-Pacific Type ENSO Using a Simple Coupled Model
NASA Astrophysics Data System (ADS)
Fang, Xianghui; Zheng, Fei
2018-06-01
Severe biases exist in state-of-the-art general circulation models (GCMs) in capturing realistic central-Pacific (CP) El Niño structures. At the same time, many observational analyses have emphasized that thermocline (TH) feedback and zonal advective (ZA) feedback play dominant roles in the development of eastern-Pacific (EP) and CP El Niño-Southern Oscillation (ENSO), respectively. In this work, a simple linear air-sea coupled model, which can accurately depict the strength distribution of the TH and ZA feedbacks in the equatorial Pacific, is used to investigate these two types of El Niño. The results indicate that the model can reproduce the main characteristics of CP ENSO if the TH feedback is switched off and the ZA feedback is retained as the only positive feedback, confirming the dominant role played by ZA feedback in the development of CP ENSO. Further experiments indicate that, through a simple nonlinear control approach, many ENSO characteristics, including the existence of both CP and EP El Niño and the asymmetries between El Niño and La Niña, can be successfully captured using the simple linear air-sea coupled model. These analyses indicate that an accurate depiction of the climatological sea surface temperature distribution and the related ZA feedback, which are the subject of severe biases in GCMs, is very important in simulating a realistic CP El Niño.
A negative feedback signal that is triggered by peril curbs honey bee recruitment.
Nieh, James C
2010-02-23
Decision making in superorganisms such as honey bee colonies often uses self-organizing behaviors, feedback loops that allow the colony to gather information from multiple individuals and achieve reliable and agile solutions. Honey bees use positive feedback from the waggle dance to allocate colony foraging effort. However, the use of negative feedback signals by superorganisms is poorly understood. I show that conspecific attacks at a food source lead to the production of stop signals, communication that was known to reduce waggle dancing and recruitment but lacked a clear natural trigger. Signalers preferentially targeted nestmates visiting the same food source, on the basis of its odor. During aggressive food competition, attack victims increased signal production by 43 fold. Foragers that attacked competitors or experienced no aggression did not alter signal production. Biting ambush predators also attack foragers at flowers. Simulated biting of foragers or exposure to bee alarm pheromone also elicited signaling (88-fold and 14-fold increases, respectively). This provides the first clear evidence of a negative feedback signal elicited by foraging peril to counteract the positive feedback of the waggle dance. As in intra- and intercellular communication, negative feedback may play an important, though currently underappreciated, role in self-organizing behaviors within superorganisms. Copyright 2010 Elsevier Ltd. All rights reserved.
Distributed feedback acoustic surface wave oscillator
NASA Technical Reports Server (NTRS)
Elachi, C. (Inventor)
1977-01-01
An acoustic surface wave oscillator is constructed from a semiconductor piezoelectric acoustic surface wave amplifier by providing appropriate perturbations at the piezoelectric boundary. The perturbations cause Bragg order reflections that maintain acoustic wave oscillation under certain conditions of gain and feedback.
Morales-Vidal, Marta; Boj, Pedro G.; Villalvilla, José M.; Quintana, José A.; Yan, Qifan; Lin, Nai-Ti; Zhu, Xiaozhang; Ruangsupapichat, Nopporn; Casado, Juan; Tsuji, Hayato; Nakamura, Eiichi; Díaz-García, María A.
2015-01-01
Thin film organic lasers represent a new generation of inexpensive, mechanically flexible devices for spectroscopy, optical communications and sensing. For this purpose, it is desired to develop highly efficient, stable, wavelength-tunable and solution-processable organic laser materials. Here we report that carbon-bridged oligo(p-phenylenevinylene)s serve as optimal materials combining all these properties simultaneously at the level required for applications by demonstrating amplified spontaneous emission and distributed feedback laser devices. A series of six compounds, with the repeating unit from 1 to 6, doped into polystyrene films undergo amplified spontaneous emission from 385 to 585 nm with remarkably low threshold and high net gain coefficients, as well as high photostability. The fabricated lasers show narrow linewidth (<0.13 nm) single mode emission at very low thresholds (0.7 kW cm−2), long operational lifetimes (>105 pump pulses for oligomers with three to six repeating units) and wavelength tunability across the visible spectrum (408–591 nm). PMID:26416643
NASA Astrophysics Data System (ADS)
Huneeus, Nicolas; Boucher, Olivier; Alterskjær, Kari; Cole, Jason N. S.; Curry, Charles L.; Ji, Duoying; Jones, Andy; Kravitz, Ben; Kristjánsson, Jón Egill; Moore, John C.; Muri, Helene; Niemeier, Ulrike; Rasch, Phil; Robock, Alan; Singh, Balwinder; Schmidt, Hauke; Schulz, Michael; Tilmes, Simone; Watanabe, Shingo; Yoon, Jin-Ho
2014-05-01
The effective radiative forcings (including rapid adjustments) and feedbacks associated with an instantaneous quadrupling of the preindustrial CO2 concentration and a counterbalancing reduction of the solar constant are investigated in the context of the Geoengineering Model Intercomparison Project (GeoMIP). The forcing and feedback parameters of the net energy flux, as well as its different components at the top-of-atmosphere (TOA) and surface, were examined in 10 Earth System Models to better understand the impact of solar radiation management on the energy budget. In spite of their very different nature, the feedback parameter and its components at the TOA and surface are almost identical for the two forcing mechanisms, not only in the global mean but also in their geographical distributions. This conclusion holds for each of the individual models despite intermodel differences in how feedbacks affect the energy budget. This indicates that the climate sensitivity parameter is independent of the forcing (when measured as an effective radiative forcing). We also show the existence of a large contribution of the cloudy-sky component to the shortwave effective radiative forcing at the TOA suggesting rapid cloud adjustments to a change in solar irradiance. In addition, the models present significant diversity in the spatial distribution of the shortwave feedback parameter in cloudy regions, indicating persistent uncertainties in cloud feedback mechanisms.
Implementing Audio Digital Feedback Loop Using the National Instruments RIO System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, G.; Byrd, J. M.
2006-11-20
Development of system for high precision RF distribution and laser synchronization at Berkeley Lab has been ongoing for several years. Successful operation of these systems requires multiple audio bandwidth feedback loops running at relatively high gains. Stable operation of the feedback loops requires careful design of the feedback transfer function. To allow for flexible and compact implementation, we have developed digital feedback loops on the National Instruments Reconfigurable Input/Output (RIO) platform. This platform uses an FPGA and multiple I/Os that can provide eight parallel channels running different filters. We present the design and preliminary experimental results of this system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jumpertz, L., E-mail: louise.jumpertz@telecom-paristech.fr; Alcatel Thales III-V Lab, Campus de Polytechnique, 1 avenue Augustin Fresnel, 91767 Palaiseau; Carras, M.
2014-09-29
External optical feedback is studied experimentally in mid-infrared quantum cascade lasers. These structures exhibit a dynamical response close to that observed in interband lasers, with threshold reduction and optical power enhancement when increasing the feedback ratio. The study of the optical spectrum proves that the laser undergoes five distinct regimes depending on the phase and amplitude of the reinjected field. These regimes are mapped in the plane of external cavity length and feedback strength, revealing unstable behavior only for a very narrow range of operation, making quantum cascade lasers much more stable than their interband counterparts.
Feedback and rewards part III: commitment, goals, compensation, and job changes.
Harolds, Jay A
2013-03-01
Formal and informal feedback is important to improve the performance, skill sets, commitment, accountability, and morale of the person being evaluated. Feedback can help people achieve their goals. Feedback is a basis for changes in compensation and other rewards. Formal reviews can also be the foundation for job changes. The latter includes promotions, lateral moves that are a better fit or will help the individual have new experiences or achieve new areas of proficiency, or finding opportunities to work outside the organization.
The Role of Stellar Feedback on the Structure of the ISM and Star Formation in Galaxies
NASA Astrophysics Data System (ADS)
Grisdale, Kearn Michael
2017-08-01
Stellar feedback refers to the injection of energy, momentum and mass into the interstellar medium (ISM) by massive stars. This feedback owes to a combination of ionising radiation, radiation pressure, stellar winds and supernovae and is likely responsible both for the inefficiency of star formation in galaxies, and the observed super-sonic turbulence of the ISM. In this thesis, I study how stellar feedback shapes the ISM thereby regulating galaxy evolution. In particular, I focus on three key questions: (i) How does stellar feedback shape the gas density distribution of the ISM? (ii) How does feedback change or influence the distribution of the kinetic energy in the ISM? and (iii) What role does feedback play in determining the star formation efficiency of giant molecular clouds (GMCs)? To answer these questions, I run high resolution (Deltax 4.6 pc) numerical simulations of three isolated galaxies, both with and without stellar feedback. I compare these simulations to observations of six galaxies from The HI Nearby Galaxy Survey (THINGS) using power spectra, and I use clump finding techniques to identify GMCs in my simulations and calculate their properties. I find that the kinetic energy power spectra in stellar feedback- regulated galaxies, regardless of the galaxy's mass and size, show scalings in excellent agreement with supersonic turbulence on scales below the thickness of the HI layer. I show that feedback influences the gas density field, and drives gas turbulence, up to large (kiloparsec) scales. This is in stark contrast to the density fields generated by large-scale gravity-only driven turbulence (i.e. without stellar feedback). Simulations with stellar feedback are able to reproduce the internal properties of GMCs such as: mass, size and velocity dispersion. Finally, I demonstrate that my simulations naturally reproduce the observed scatter (3.5-4 dex) in the star formation efficiency per free-fall time of GMCs, despite only employing a simple Schmidt star formation law. I conclude that the neutral gas content of galaxies carries signatures of stellar feedback on all scales and that stellar feedback is, therefore, key to regulating the evolution of galaxies over cosmic time.
Handschuh, Juliane
2014-01-01
Dopaminergic neurotransmission in primary auditory cortex (AI) has been shown to be involved in learning and memory functions. Moreover, dopaminergic projections and D1/D5 receptor distributions display a layer-dependent organization, suggesting specific functions in the cortical circuitry. However, the circuit effects of dopaminergic neurotransmission in sensory cortex and their possible roles in perception, learning, and memory are largely unknown. Here, we investigated layer-specific circuit effects of dopaminergic neuromodulation using current source density (CSD) analysis in AI of Mongolian gerbils. Pharmacological stimulation of D1/D5 receptors increased auditory-evoked synaptic currents in infragranular layers, prolonging local thalamocortical input via positive feedback between infragranular output and granular input. Subsequently, dopamine promoted sustained cortical activation by prolonged recruitment of long-range corticocortical networks. A detailed circuit analysis combining layer-specific intracortical microstimulation (ICMS), CSD analysis, and pharmacological cortical silencing revealed that cross-laminar feedback enhanced by dopamine relied on a positive, fast-acting recurrent corticoefferent loop, most likely relayed via local thalamic circuits. Behavioral signal detection analysis further showed that activation of corticoefferent output by infragranular ICMS, which mimicked auditory activation under dopaminergic influence, was most effective in eliciting a behaviorally detectable signal. Our results show that D1/D5-mediated dopaminergic modulation in sensory cortex regulates positive recurrent corticoefferent feedback, which enhances states of high, persistent activity in sensory cortex evoked by behaviorally relevant stimuli. In boosting horizontal network interactions, this potentially promotes the readout of task-related information from cortical synapses and improves behavioral stimulus detection. PMID:24453315
Positive and Negative Feedbacks and Free-Scale Pattern Distribution in Rural-Population Dynamics
Alados, Concepción L.; Errea, Paz; Gartzia, Maite; Saiz, Hugo; Escós, Juan
2014-01-01
Depopulation of rural areas is a widespread phenomenon that has occurred in most industrialized countries, and has contributed significantly to a reduction in the productivity of agro-ecological resources. In this study, we identified the main trends in the dynamics of rural populations in the Central Pyrenees in the 20th C and early 21st C, and used density independent and density dependent models and identified the main factors that have influenced the dynamics. In addition, we investigated the change in the power law distribution of population size in those periods. Populations exhibited density-dependent positive feedback between 1960 and 2010, and a long-term positive correlation between agricultural activity and population size, which has resulted in a free-scale population distribution that has been disrupted by the collapse of the traditional agricultural society and by emigration to the industrialized cities. We concluded that complex socio-ecological systems that have strong feedback mechanisms can contribute to disruptive population collapses, which can be identified by changes in the pattern of population distribution. PMID:25474704
[Organization of safe cost-effective blood transfusion: experience APHM-EFSAM].
Ferrera-Tourenc, V; Dettori, I; Chiaroni, J; Lassale, B
2013-03-01
Blood transfusion safety depends on strict compliance with each step of a process beginning with the order for labile blood products and related immunohematologic testing and ending with administration and follow-up of the receiver. This process is governed by stringent regulatory texts and guidelines. Despite precautions, processing errors are still reported. Analysis of incident reports shows that the most common cause involves patient identification and that most errors occur at two levels, i.e. the entry of patient information and management of multiple regulatory crosschecks and record-keeping using different systems. The purpose of this report is to describe the collaborative approach implemented by the Établissement français du Sang Alpes-Méditerranée (EFSAM) and the Assistance publique des Hôpitaux de Marseille (APHM) to secure the blood transfusion process and protect interfaces while simplifying and facilitating exchanges. Close cooperation has had a threefold impact with simplification of administration, improvement of experience feedback, and better management of test ordering. The organization implemented between the two institutions has minimized document redundancy and interfaces between immunohematologic testing and delivery. Collaboration based on experience feedback has improved the level of quality and cost control. In the domain of blood transfusion safety, the threshold of 10(-5) has been reached with regard to the risk of ABO errors in the distribution concentrated red cells (CRC). In addition, this collaborative organization has created further opportunity for improvement by deploying new methods to identify simplification measures and by controlling demand and usage. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
DISTRIBUTED AMPLIFIER INCORPORATING FEEDBACK
Bell, P.R. Jr.
1958-10-21
An improved distributed amplifier system employing feedback for stabilization is presented. In accordance with the disclosed invention, a signal to be amplified is applled to one end of a suitable terminated grid transmission line. At intervals along the transmission line, the signal is fed to stable, resistance-capacitance coupled amplifiers incorporating feedback loops therein. The output current from each amplifier is passed through an additional tube to minimize the electrostatic capacitance between the tube elements of the last stage of the amplifier, and fed to appropriate points on an output transmission line, similar to the grid line, but terminated at the opposite (input) end. The output taken from the unterminated end of the plate transmission line is proportional to the input voltage impressed upon the grid line.
Gray, Thomas G; Hood, Gill; Farrell, Tom
2015-11-06
Feedback drives learning in medical education. Healthcare Supervision Logbook (HSL) is a Smartphone App developed at Sheffield Teaching Hospitals for providing feedback on medical training, from both a trainee's and a supervisor's perspective. In order to establish a mandate for the role of HSL in clinical practice, a large survey was carried out. Two surveys (one for doctors undertaking specialty training and a second for consultants supervising their training) were designed. The survey for doctors-in-training was distributed to all specialty trainees in the South and West localities of the Health Education Yorkshire and the Humber UK region. The survey for supervisors was distributed to all consultants involved in educational and clinical supervision of specialty trainees at Sheffield Teaching Hospitals. The results confirm that specialty trainees provide feedback on their training infrequently-66 % do so only annually. 96 % of the specialty trainees owned a Smartphone and 45 % said that they would be willing to use a Smartphone App to provide daily feedback on the clinical and educational supervision they receive. Consultant supervisors do not receive regular feedback on the educational and clinical supervision they provide to trainees-56 % said they never received such feedback and 33 % said it was only on an annual basis. 86 % of consultants surveyed owned a Smartphone and 41 % said they would be willing to use a Smartphone App to provide feedback on the performance of trainees they were supervising. Feedback on medical training is recorded by specialty trainees infrequently and consultants providing educational and clinical supervision often do not receive any feedback on their performance in this area. HSL is a simple, quick and efficient way to collect and collate feedback on medical training to improve this situation. Good support and education needs to be provided when implementing this new technology.
An organic self-regulating microfluidic system.
Eddington, D T; Liu, R H; Moore, J S; Beebe, D J
2001-12-01
In this paper we present an organic feedback scheme that merges microfluidics and responsive materials to address several limitations of current microfluidic systems. By using in situ fabrication and by taking advantage of microscale phenomena (e.g., laminar flow, short diffusion times), we have demonstrated feedback control of the output pH in a completely organic system. The system autonomously regulates an output stream at pH 7 under a range of input flow conditions. A single responsive hydrogel component performs the functionality of traditional feedback system components. Vertically stacked laminar flow is used to improve the time response of the hydrogel actuator. A star shaped orifice is utilized to improve the flow characteristics of the membrane/orifice valve. By changing the chemistry of the hydrogel component, the system can be altered to regulate flow based on hydrogels sensitive to temperature, light, biological/molecular, and others.
Kim, Namje; Han, Sang-Pil; Ryu, Han-Cheol; Ko, Hyunsung; Park, Jeong-Woo; Lee, Donghun; Jeon, Min Yong; Park, Kyung Hyun
2012-07-30
A widely tunable dual mode laser diode with a single cavity structure is demonstrated. This novel device consists of a distributed feedback (DFB) laser diode and distributed Bragg reflector (DBR). Micro-heaters are integrated on the top of each section for continuous and independent wavelength tuning of each mode. By using a single gain medium in the DFB section, an effective common optical cavity and common modes are realized. The laser diode shows a wide tunability of the optical beat frequency, from 0.48 THz to over 2.36 THz. Continuous wave THz radiation is also successfully generated with low-temperature grown InGaAs photomixers from 0.48 GHz to 1.5 THz.
ERIC Educational Resources Information Center
Tornow, Walter W.; London, Manuel
Ways in which organizations can enhance their use of "360-degree feedback" are presented. The book begins with a review of the process itself, emphasizing that 360-degree feedback should be a core element of self-development. The book is divided into three parts. Part 1 describes how to maximize the value of the process for individual…
Gregarious Convection and Radiative Feedbacks in Idealized Worlds
2016-08-29
exist neither on the globe nor within the cloud model. Since mesoscales impose great computational costs on atmosphere models, as well as inconven...Atmospheric Science, University of Miami, Miami, Florida, USA Abstract What role does convection play in cloud feedbacks? What role does convective... cloud fields depends systematically on global temperature, then convective organization could be a climate system feedback. How reconcilable and how
Feedback, Goal Setting, and Incentives Effects on Organizational Productivity.
1987-06-01
frequency of feedback (Chobbar & Wallin, 1984; Ivancevich , Donnelly, & Lyon , 1970). Greller (1975) focused on the sources of feedback in organizations...of ApDlied Psychalody, 0(4), 349-371. Ivancevich , J.M., Donnelly, J.N., & Lyon , J.L. (1970). A study of the impact of management by objectives on...Dockstader, Nebeker, & Shumate, 1977; Ilgen, Fisher, & Taylor, 1979; Ivancevich & McMahon, 1982; Pnitchard, Bigby, Beiting, Coverdale, & Morgan, 1981
NASA Astrophysics Data System (ADS)
Faria, Teresa; Oliveira, José J.
This paper addresses the local and global stability of n-dimensional Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. Necessary and sufficient conditions for local stability independent of the choice of the delay functions are given, by imposing a weak nondelayed diagonal dominance which cancels the delayed competition effect. The global asymptotic stability of positive equilibria is established under conditions slightly stronger than the ones required for the linear stability. For the case of monotone interactions, however, sharper conditions are presented. This paper generalizes known results for discrete delays to systems with distributed delays. Several applications illustrate the results.
A cost-effective measurement-device-independent quantum key distribution system for quantum networks
NASA Astrophysics Data System (ADS)
Valivarthi, Raju; Zhou, Qiang; John, Caleb; Marsili, Francesco; Verma, Varun B.; Shaw, Matthew D.; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang
2017-12-01
We experimentally realize a measurement-device-independent quantum key distribution (MDI-QKD) system. It is based on cost-effective and commercially available hardware such as distributed feedback lasers and field-programmable gate arrays that enable time-bin qubit preparation and time-tagging, and active feedback systems that allow for compensation of time-varying properties of photons after transmission through deployed fiber. We examine the performance of our system, and conclude that its design does not compromise performance. Our demonstration paves the way for MDI-QKD-based quantum networks in star-type topology that extend over more than 100 km distance.
NASA Technical Reports Server (NTRS)
Maughan, P. M.; Marmelstein, A. D.; Hecht, K.; Broadhead, G. C.; Alverson, F. G.; Peckham, C. G.
1971-01-01
A study to evaluate the applications of remote sensing in commercial fishing is reported, and the basis for effective communications between NASA and the U.S. fishing industry are established. Detailed information is presented in the following areas: organization of the fishing complex and communication levels within and between the components; organization of the fishing industry and the communications within and between both selected fisheries and various industry groups; relationships and communications between federal, state, and local government agencies and the fishing industry; relationships and communications between international and regional fisheries commissions; and intergovernmental agency relationships relevant to the fishing industry. It will be necessary to educate those individuals having access to the techniques and resultant data, and channels for distribution of the information to selected fisheries are recommended. Procedures for feedback information loops are also established.
Hierarchical Feedback Modules and Reaction Hubs in Cell Signaling Networks
Xu, Jianfeng; Lan, Yueheng
2015-01-01
Despite much effort, identification of modular structures and study of their organizing and functional roles remain a formidable challenge in molecular systems biology, which, however, is essential in reaching a systematic understanding of large-scale cell regulation networks and hence gaining capacity of exerting effective interference to cell activity. Combining graph theoretic methods with available dynamics information, we successfully retrieved multiple feedback modules of three important signaling networks. These feedbacks are structurally arranged in a hierarchical way and dynamically produce layered temporal profiles of output signals. We found that global and local feedbacks act in very different ways and on distinct features of the information flow conveyed by signal transduction but work highly coordinately to implement specific biological functions. The redundancy embodied with multiple signal-relaying channels and feedback controls bestow great robustness and the reaction hubs seated at junctions of different paths announce their paramount importance through exquisite parameter management. The current investigation reveals intriguing general features of the organization of cell signaling networks and their relevance to biological function, which may find interesting applications in analysis, design and control of bio-networks. PMID:25951347
ERIC Educational Resources Information Center
VanDeWeghe, Rick
2005-01-01
The critical role played by the teacher feedback on the students' drafts is discussed. The standards-based scales measuring content, organization, and mechanics was used to determine the quality of students' writing and the teachers' feedback commentaries were considered either content level or surface level.
Mesoscale modeling of smoke radiative feedback over the Sahel region
NASA Astrophysics Data System (ADS)
Yang, Z.; Wang, J.; Ichoku, C. M.; Ellison, L.; Zhang, F.; Yue, Y.
2013-12-01
This study employs satellite observations and a fully-coupled meteorology-chemistry-aerosol model, Weather Research and Forecasting model with Chemistry (WRF-Chem) to study the smoke radative feedback on surface energy budget, boundary layer processes, and atmospheric lapse rate in February 2008 over the Sahel region. The smoke emission inventories we use come from various sources, including but not limited to the Fire Locating and Modeling of Burning Emissions (FLAMBE) developed by NRL and the Fire Energetic and Emissions Research (FEER) developed by NASA GSFC. Model performance is evaluated using numerous satellite and ground-based datasets: MODIS true color images, ground-based Aerosol Optical Depth (AOD) measurements from AERONET, MODIS AOD retrievals, and Cloud-Aerosol Lidar data with Orthogonal Polarization (CALIOP) atmospheric backscattering and extinction products. Specification of smoke injection height of 650 m in WRF-Chem yields aerosol vertical profiles that are most consistent with CALIOP observations of aerosol layer height. Statistically, 5% of the CALIPSO valid measurements of aerosols in February 2008 show aerosol layers either above the clouds or between the clouds, reinforcing the importance of the aerosol vertical distribution for quantifying aerosol impact on climate in the Sahel region. The results further show that the smoke radiative feedbacks are sensitive to assumptions of black carbon and organic carbon ratio in the particle emission inventory. Also investigated is the smoke semi-direct effect as a function of cloud fraction.
WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity
Vasileva, Mina; Sauer, Michael
2018-01-01
Auxin is unique among plant hormones due to its directional transport that is mediated by the polarly distributed PIN auxin transporters at the plasma membrane. The canalization hypothesis proposes that the auxin feedback on its polar flow is a crucial, plant-specific mechanism mediating multiple self-organizing developmental processes. Here, we used the auxin effect on the PIN polar localization in Arabidopsis thaliana roots as a proxy for the auxin feedback on the PIN polarity during canalization. We performed microarray experiments to find regulators of this process that act downstream of auxin. We identified genes that were transcriptionally regulated by auxin in an AXR3/IAA17- and ARF7/ARF19-dependent manner. Besides the known components of the PIN polarity, such as PID and PIP5K kinases, a number of potential new regulators were detected, among which the WRKY23 transcription factor, which was characterized in more detail. Gain- and loss-of-function mutants confirmed a role for WRKY23 in mediating the auxin effect on the PIN polarity. Accordingly, processes requiring auxin-mediated PIN polarity rearrangements, such as vascular tissue development during leaf venation, showed a higher WRKY23 expression and required the WRKY23 activity. Our results provide initial insights into the auxin transcriptional network acting upstream of PIN polarization and, potentially, canalization-mediated plant development. PMID:29377885
Gittleman, Janie L; Gardner, Paige C; Haile, Elizabeth; Sampson, Julie M; Cigularov, Konstantin P; Ermann, Erica D; Stafford, Pete; Chen, Peter Y
2010-06-01
The present study describes a response to eight tragic deaths over an eighteen month times span on a fast track construction project on the largest commercial development project in U.S. history. Four versions of a survey were distributed to workers, foremen, superintendents, and senior management. In addition to standard Likert-scale safety climate scale items, an open-ended item was included at the end of the survey. Safety climate perceptions differed by job level. Specifically, management perceived a more positive safety climate as compared to workers. Content analysis of the open-ended item was used to identify important safety and health concerns which might have been overlooked with the qualitative portion of the survey. The surveys were conducted to understand workforce issues of concern with the aim of improving site safety conditions. Such efforts can require minimal investment of resources and time and result in critical feedback for developing interventions affecting organizational structure, management processes, and communication. The most important lesson learned was that gauging differences in perception about site safety can provide critical feedback at all levels of a construction organization. Implementation of multi-level organizational perception surveys can identify major safety issues of concern. Feedback, if acted upon, can potentially result in fewer injuries and fatal events. (c) 2010 Elsevier Ltd. All rights reserved.
Mixed Poisson distributions in exact solutions of stochastic autoregulation models.
Iyer-Biswas, Srividya; Jayaprakash, C
2014-11-01
In this paper we study the interplay between stochastic gene expression and system design using simple stochastic models of autoactivation and autoinhibition. Using the Poisson representation, a technique whose particular usefulness in the context of nonlinear gene regulation models we elucidate, we find exact results for these feedback models in the steady state. Further, we exploit this representation to analyze the parameter spaces of each model, determine which dimensionless combinations of rates are the shape determinants for each distribution, and thus demarcate where in the parameter space qualitatively different behaviors arise. These behaviors include power-law-tailed distributions, bimodal distributions, and sub-Poisson distributions. We also show how these distribution shapes change when the strength of the feedback is tuned. Using our results, we reexamine how well the autoinhibition and autoactivation models serve their conventionally assumed roles as paradigms for noise suppression and noise exploitation, respectively.
MQW Optical Feedback Modulators And Phase Shifters
NASA Technical Reports Server (NTRS)
Jackson, Deborah J.
1995-01-01
Laser diodes equipped with proposed multiple-quantum-well (MQW) optical feedback modulators prove useful in variety of analog and digital optical-communication applications, including fiber-optic signal-distribution networks and high-speed, low-crosstalk interconnections among super computers or very-high-speed integrated circuits. Development exploits accompanying electro-optical aspect of QCSE - variation in index of refraction with applied electric field. Also exploits sensitivity of laser diodes to optical feedback. Approach is reverse of prior approach.
Laterally Coupled Quantum-Dot Distributed-Feedback Lasers
NASA Technical Reports Server (NTRS)
Qui, Yueming; Gogna, Pawan; Muller, Richard; Maker, paul; Wilson, Daniel; Stintz, Andreas; Lester, Luke
2003-01-01
InAs quantum-dot lasers that feature distributed feedback and lateral evanescent- wave coupling have been demonstrated in operation at a wavelength of 1.3 m. These lasers are prototypes of optical-communication oscillators that are required to be capable of stable single-frequency, single-spatial-mode operation. A laser of this type (see figure) includes an active layer that comprises multiple stacks of InAs quantum dots embedded within InGaAs quantum wells. Distributed feedback is provided by gratings formed on both sides of a ridge by electron lithography and reactive-ion etching on the surfaces of an AlGaAs/GaAs waveguide. The lateral evanescent-wave coupling between the gratings and the wave propagating in the waveguide is strong enough to ensure operation at a single frequency, and the waveguide is thick enough to sustain a stable single spatial mode. In tests, the lasers were found to emit continuous-wave radiation at temperatures up to about 90 C. Side modes were found to be suppressed by more than 30 dB.
Output Feedback Distributed Containment Control for High-Order Nonlinear Multiagent Systems.
Li, Yafeng; Hua, Changchun; Wu, Shuangshuang; Guan, Xinping
2017-01-31
In this paper, we study the problem of output feedback distributed containment control for a class of high-order nonlinear multiagent systems under a fixed undirected graph and a fixed directed graph, respectively. Only the output signals of the systems can be measured. The novel reduced order dynamic gain observer is constructed to estimate the unmeasured state variables of the system with the less conservative condition on nonlinear terms than traditional Lipschitz one. Via the backstepping method, output feedback distributed nonlinear controllers for the followers are designed. By means of the novel first virtual controllers, we separate the estimated state variables of different agents from each other. Consequently, the designed controllers show independence on the estimated state variables of neighbors except outputs information, and the dynamics of each agent can be greatly different, which make the design method have a wider class of applications. Finally, a numerical simulation is presented to illustrate the effectiveness of the proposed method.
A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems
NASA Astrophysics Data System (ADS)
Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.
2017-08-01
This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.
NASA Astrophysics Data System (ADS)
Feehan, S.; Ruggiero, P.; Hempel, L. A.; Anderson, D. L.; Cohn, N.
2016-12-01
Characterizing Feedbacks Between Environmental Forcing and Sediment Characteristics in Fluvial and Coastal Systems American Geophysical Union, 2016 Fall Meeting: San Francisco, CA Authors: Scott Feehan, Peter Ruggiero, Laura Hempel, and Dylan Anderson Linking transport processes and sediment characteristics within different environments along the source to sink continuum provides critical insight into the dominant feedbacks between grain size distributions and morphological evolution. This research is focused on evaluating differences in sediment size distributions across both fluvial and coastal environments in the U.S. Pacific Northwest. The Cascades' high relief is characterized by diverse flow regimes with high peak/flashy flows and sub-threshold flows occurring in relative proximity and one of the most energetic wave climates in the world. Combining analyses of both fluvial and coastal environments provides a broader understanding of the dominant forces driving differences between each system's grain size distributions, sediment transport processes, and resultant evolution. We consider sediment samples taken during a large-scale flume experiment that simulated floods representative of both high/flashy peak flows analogous to runoff dominated rivers and sub-threshold flows, analogous to spring-fed rivers. High discharge flows resulted in narrower grain size distributions while low flows where less skewed. Relative sediment size showed clear dependence on distance from source and the environments' dominant fluid motion. Grain size distributions and sediment transport rates were also quantified in both wave dominated nearshore and aeolian dominated backshore portions of Long Beach Peninsula, Washington during SEDEX2, the Sandbar-aEolian-Dune EXchange Experiment of summer 2016. The distributions showed spatial patterns in mean grain size, skewness, and kurtosis dependent on the dominant sediment transport process. The feedback between these grain size distributions and the predominant driver of sediment transport controls the potential for geomorphic change on societally relevant time scales in multiple settings.
Two-dimensional dissipative rogue waves due to time-delayed feedback in cavity nonlinear optics.
Tlidi, Mustapha; Panajotov, Krassimir
2017-01-01
We demonstrate a way to generate two-dimensional rogue waves in two types of broad area nonlinear optical systems subject to time-delayed feedback: in the generic Lugiato-Lefever model and in the model of a broad-area surface-emitting laser with saturable absorber. The delayed feedback is found to induce a spontaneous formation of rogue waves. In the absence of delayed feedback, spatial pulses are stationary. The rogue waves are exited and controlled by the delay feedback. We characterize their formation by computing the probability distribution of the pulse height. The long-tailed statistical contribution, which is often considered as a signature of the presence of rogue waves, appears for sufficiently strong feedback. The generality of our analysis suggests that the feedback induced instability leading to the spontaneous formation of two-dimensional rogue waves is a universal phenomenon.
Adaptive self-organization of Bali's ancient rice terraces.
Lansing, J Stephen; Thurner, Stefan; Chung, Ning Ning; Coudurier-Curveur, Aurélie; Karakaş, Çağil; Fesenmyer, Kurt A; Chew, Lock Yue
2017-06-20
Spatial patterning often occurs in ecosystems as a result of a self-organizing process caused by feedback between organisms and the physical environment. Here, we show that the spatial patterns observable in centuries-old Balinese rice terraces are also created by feedback between farmers' decisions and the ecology of the paddies, which triggers a transition from local to global-scale control of water shortages and rice pests. We propose an evolutionary game, based on local farmers' decisions that predicts specific power laws in spatial patterning that are also seen in a multispectral image analysis of Balinese rice terraces. The model shows how feedbacks between human decisions and ecosystem processes can evolve toward an optimal state in which total harvests are maximized and the system approaches Pareto optimality. It helps explain how multiscale cooperation from the community to the watershed scale could persist for centuries, and why the disruption of this self-organizing system by the Green Revolution caused chaos in irrigation and devastating losses from pests. The model shows that adaptation in a coupled human-natural system can trigger self-organized criticality (SOC). In previous exogenously driven SOC models, adaptation plays no role, and no optimization occurs. In contrast, adaptive SOC is a self-organizing process where local adaptations drive the system toward local and global optima.
An Analysis of Personal and Professional Development in the United States Navy
2012-03-01
growing in popularity among some of the world’s largest organizations is the 360-degree feedback system ( Tornow & London, 1998). The 360-degree...use of 360-degree feedback for developmental purposes has its roots in several traditions in industrial and organizational psychology ( Tornow ...FEEDBACK The use of 360-degree for developmental purposes has its roots in several traditions in industrial and organizational psychology ( Tornow
Steady state statistical correlations predict bistability in reaction motifs.
Chakravarty, Suchana; Barik, Debashis
2017-03-28
Various cellular decision making processes are regulated by bistable switches that take graded input signals and convert them to binary all-or-none responses. Traditionally, a bistable switch generated by a positive feedback loop is characterized either by a hysteretic signal response curve with two distinct signaling thresholds or by characterizing the bimodality of the response distribution in the bistable region. To identify the intrinsic bistability of a feedback regulated network, here we propose that bistability can be determined by correlating higher order moments and cumulants (≥2) of the joint steady state distributions of two components connected in a positive feedback loop. We performed stochastic simulations of four feedback regulated models with intrinsic bistability and we show that for a bistable switch with variation of the signal dose, the steady state variance vs. covariance adopts a signatory cusp-shaped curve. Further, we find that the (n + 1)th order cross-cumulant vs. nth order cross-cumulant adopts a closed loop structure for at least n = 3. We also propose that our method is capable of identifying systems without intrinsic bistability even though the system may show bimodality in the marginal response distribution. The proposed method can be used to analyze single cell protein data measured at steady state from experiments such as flow cytometry.
Hendriks, Marloes; Ravenek, Janneke M; Smit-Tiekstra, Annemiek E; van der Paauw, Jan Willem; de Caluwe, Hannie; van der Putten, Wim H; de Kroon, Hans; Mommer, Liesje
2015-08-01
Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairwise competition experiment combined with heterogeneous distribution of soil biota using four grassland plant species and their soil biota. Patches were applied as quadrants of 'own' and 'foreign' soils from all plant species in all pairwise combinations. To evaluate interspecific root responses, species-specific root biomass was quantified using real-time PCR. All plant species suffered negative soil feedback, but strength was species-specific, reflected by a decrease in root growth in own compared with foreign soil. Reduction in root growth in own patches by the superior plant competitor provided opportunities for inferior competitors to increase root biomass in these patches. These patterns did not cascade into above-ground effects during our experiment. We show that root distributions can be determined by spatial heterogeneity of soil biota, affecting plant below-ground competitive interactions. Thus, spatial heterogeneity of soil biota may contribute to plant species coexistence in species-rich grasslands. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Feedback Effects of Teaching Quality Assessment: Macro and Micro Evidence
ERIC Educational Resources Information Center
Bianchini, Stefano
2014-01-01
This study investigates the feedback effects of teaching quality assessment. Previous literature looked separately at the evolution of individual and aggregate scores to understand whether instructors and university performance depends on its past evaluation. I propose a new quantitative-based methodology, combining statistical distributions and…
Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode.
Klinkhammer, Sönke; Liu, Xin; Huska, Klaus; Shen, Yuxin; Vanderheiden, Sylvia; Valouch, Sebastian; Vannahme, Christoph; Bräse, Stefan; Mappes, Timo; Lemmer, Uli
2012-03-12
The fabrication and characterization of continuously tunable, solution-processed distributed feedback (DFB) lasers in the visible regime is reported. Continuous thin film thickness gradients were achieved by means of horizontal dipping of several conjugated polymer and blended small molecule solutions on cm-scale surface gratings of different periods. We report optically pumped continuously tunable laser emission of 13 nm in the blue, 16 nm in the green and 19 nm in the red spectral region on a single chip respectively. Tuning behavior can be described with the Bragg-equation and the measured thickness profile. The laser threshold is low enough that inexpensive laser diodes can be used as pump sources.
Haptic Feedback in Robot-Assisted Minimally Invasive Surgery
Okamura, Allison M.
2009-01-01
Purpose of Review Robot-assisted minimally invasive surgery (RMIS) holds great promise for improving the accuracy and dexterity of a surgeon while minimizing trauma to the patient. However, widespread clinical success with RMIS has been marginal. It is hypothesized that the lack of haptic (force and tactile) feedback presented to the surgeon is a limiting factor. This review explains the technical challenges of creating haptic feedback for robot-assisted surgery and provides recent results that evaluate the effectiveness of haptic feedback in mock surgical tasks. Recent Findings Haptic feedback systems for RMIS are still under development and evaluation. Most provide only force feedback, with limited fidelity. The major challenge at this time is sensing forces applied to the patient. A few tactile feedback systems for RMIS have been created, but their practicality for clinical implementation needs to be shown. It is particularly difficult to sense and display spatially distributed tactile information. The cost-benefit ratio for haptic feedback in RMIS has not been established. Summary The designs of existing commercial RMIS systems are not conducive for force feedback, and creative solutions are needed to create compelling tactile feedback systems. Surgeons, engineers, and neuroscientists should work together to develop effective solutions for haptic feedback in RMIS. PMID:19057225
Two passive mechanical conditions modulate power generation by the outer hair cells
Gracewski, Sheryl M.
2017-01-01
In the mammalian cochlea, small vibrations of the sensory epithelium are amplified due to active electro-mechanical feedback of the outer hair cells. The level of amplification is greater in the base than in the apex of the cochlea. Theoretical studies have used longitudinally varying active feedback properties to reproduce the location-dependent amplification. The active feedback force has been considered to be proportional to the basilar membrane displacement or velocity. An underlying assumption was that organ of Corti mechanics are governed by rigid body kinematics. However, recent progress in vibration measurement techniques reveals that organ of Corti mechanics are too complicated to be fully represented with rigid body kinematics. In this study, two components of the active feedback are considered explicitly—organ of Corti mechanics, and outer hair cell electro-mechanics. Physiological properties for the outer hair cells were incorporated, such as the active force gain, mechano-transduction properties, and membrane RC time constant. Instead of a kinematical model, a fully deformable 3D finite element model was used. We show that the organ of Corti mechanics dictate the longitudinal trend of cochlear amplification. Specifically, our results suggest that two mechanical conditions are responsible for location-dependent cochlear amplification. First, the phase of the outer hair cell’s somatic force with respect to its elongation rate varies along the cochlear length. Second, the local stiffness of the organ of Corti complex felt by individual outer hair cells varies along the cochlear length. We describe how these two mechanical conditions result in greater amplification toward the base of the cochlea. PMID:28880884
Distributing Leadership for Sustainable Peer Feedback on Tertiary Teaching
ERIC Educational Resources Information Center
Wingrove, Dallas; Clarke, Angela; Chester, Andrea
2015-01-01
A growing evidence-based literature supports the value of peer feedback as a positive professional learning activity that enhances confidence, builds collegial relationships and supports reflective practice. Less clear is how best to embed such programs in university practices. This paper describes a leadership approach developed to support the…
Interresponse Time Structures in Variable-Ratio and Variable-Interval Schedules
ERIC Educational Resources Information Center
Bowers, Matthew T.; Hill, Jade; Palya, William L.
2008-01-01
The interresponse-time structures of pigeon key pecking were examined under variable-ratio, variable-interval, and variable-interval plus linear feedback schedules. Whereas the variable-ratio and variable-interval plus linear feedback schedules generally resulted in a distinct group of short interresponse times and a broad distribution of longer…
77 FR 2740 - Agency Information Collection Activities: Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-19
... distribution with no or minimal interaction. Assessment and Referral Tool. This tool provides descriptive... crisis counselor. Participant Feedback. These surveys are completed by and collected from a sample of... Provider Feedback. These surveys are completed by and collected from the CCP service providers anonymously...
Tschechne, Stephan; Neumann, Heiko
2014-01-01
Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1–V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy. PMID:25157228
Tschechne, Stephan; Neumann, Heiko
2014-01-01
Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1-V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy.
Kelay, Tanika; Chan, Kah Leong; Ako, Emmanuel; Yasin, Mohammad; Costopoulos, Charis; Gold, Matthew; Kneebone, Roger K; Malik, Iqbal S; Bello, Fernando
2017-01-01
Distributed Simulation is the concept of portable, high-fidelity immersive simulation. Here, it is used for the development of a simulation-based training programme for cardiovascular specialities. We present an evidence base for how accessible, portable and self-contained simulated environments can be effectively utilised for the modelling, development and testing of a complex training framework and assessment methodology. Iterative user feedback through mixed-methods evaluation techniques resulted in the implementation of the training programme. Four phases were involved in the development of our immersive simulation-based training programme: ( 1) initial conceptual stage for mapping structural criteria and parameters of the simulation training framework and scenario development ( n = 16), (2) training facility design using Distributed Simulation , (3) test cases with clinicians ( n = 8) and collaborative design, where evaluation and user feedback involved a mixed-methods approach featuring (a) quantitative surveys to evaluate the realism and perceived educational relevance of the simulation format and framework for training and (b) qualitative semi-structured interviews to capture detailed feedback including changes and scope for development. Refinements were made iteratively to the simulation framework based on user feedback, resulting in (4) transition towards implementation of the simulation training framework, involving consistent quantitative evaluation techniques for clinicians ( n = 62). For comparative purposes, clinicians' initial quantitative mean evaluation scores for realism of the simulation training framework, realism of the training facility and relevance for training ( n = 8) are presented longitudinally, alongside feedback throughout the development stages from concept to delivery, including the implementation stage ( n = 62). Initially, mean evaluation scores fluctuated from low to average, rising incrementally. This corresponded with the qualitative component, which augmented the quantitative findings; trainees' user feedback was used to perform iterative refinements to the simulation design and components (collaborative design), resulting in higher mean evaluation scores leading up to the implementation phase. Through application of innovative Distributed Simulation techniques, collaborative design, and consistent evaluation techniques from conceptual, development, and implementation stages, fully immersive simulation techniques for cardiovascular specialities are achievable and have the potential to be implemented more broadly.
All-Union Conference on Laser Optics, 4th, Leningrad, USSR, January 13-18, 1984, Proceedings
NASA Astrophysics Data System (ADS)
Bukhenskii, M. F.
1984-08-01
The papers presented in this volume provide an overview of current theoretical and experimental research in laser optics. Topics discussed include electronically controlled tunable lasers, nonlinear phenomena in fiber-optic waveguides, holographic distributed-feedback dye lasers, and new developments in solid-state lasers. Papers are also presented on the generation of picosecond pulses through self-Q-switching in a distributed-feedback laser, temporal compression of light pulses during stimulated backscattering, and optimization of second harmonic generation in a multimode Nd:glass laser.
Distributed-feedback Terahertz Quantum-cascade Lasers with Laterally Corrugated Metal Waveguides
NASA Technical Reports Server (NTRS)
Williams, Benjamin S.; Kumar, Sushil; Hu, Qing; Reno, John L.
2005-01-01
We report the demonstration of distributed-feedback terahertz quantum-cascade lasers based on a first-order grating fabricated via a lateral corrugation in a double-sided metal ridge waveguide. The phase of the facet reflection was precisely set by lithographically defined facets by dry etching. Single-mode emission was observed at low to moderate injection currents, although multimode emission was observed far beyond threshold owing to spatial hole burning. Finite-element simulations were used to calculate the modal and threshold characteristics for these devices, with results in good agreement with experiments.
Li, Jingsi; Wang, Huan; Chen, Xiangfei; Yin, Zuowei; Shi, Yuechun; Lu, Yanqing; Dai, Yitang; Zhu, Hongliang
2009-03-30
In this paper we report, to the best of our knowledge, the first experimental realization of distributed feedback (DFB) semiconductor lasers based on reconstruction-equivalent-chirp (REC) technology. Lasers with different lasing wavelengths are achieved simultaneously on one chip, which shows a potential for the REC technology in combination with the photonic integrated circuits (PIC) technology to be a possible method for monolithic integration, in that its fabrication is as powerful as electron beam technology and the cost and time-consuming are almost the same as standard holographic technology.
Wang, Mo; Burlacu, Gabriela; Truxillo, Donald; James, Keith; Yao, Xiang
2015-07-01
Organizations worldwide are currently experiencing shifts in the age composition of their workforces. The workforce is aging and becoming increasingly age-diverse, suggesting that organizational researchers and practitioners need to better understand how age differences may manifest in the workplace and the implications for human resource practice. Integrating socioemotional selectivity theory with the performance feedback literature and using a time-lagged design, the current study examined age differences in moderating the relationships between the characteristics of performance feedback and employee reactions to the feedback event. The results suggest that older workers had higher levels of feedback orientation on social awareness, but lower levels of feedback orientation on utility than younger workers. Furthermore, the positive associations between favorability of feedback and feedback delivery and feedback reactions were stronger for older workers than for younger workers, whereas the positive association between feedback quality and feedback reactions was stronger for younger workers than for older workers. Finally, the current study revealed that age-related differences in employee feedback orientation could explain the different patterns of relationships between feedback characteristics and feedback reactions across older and younger workers. These findings have both theoretical and practical implications for building theory about workplace aging and improving ways that performance feedback is managed across employees from diverse age groups. (c) 2015 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Fuller, Brian M.; Sklar, Leonard S.; Compson, Zacchaeus G.; Adams, Kenneth J.; Marks, Jane C.; Wilcox, Andrew C.
2011-03-01
The linkages between fluvial geomorphology and aquatic ecosystems are commonly conceptualized as a one-way causal chain in which geomorphic processes create the physical template for ecological dynamics. In streams with a travertine step-pool morphology, however, biotic processes strongly influence the formation and growth of travertine dams, creating the potential for numerous feedbacks. Here we take advantage of the decommissioning of a hydroelectric project on Fossil Creek, Arizona, where restoration of CaCO 3-rich baseflow has triggered rapid regrowth of travertine dams, to explore the interactions between biotic and abiotic factors in travertine morphodynamics. We consider three conceptual frameworks, where biotic factors independently modulate the rate of physical and chemical processes that produce travertine dams; combine with abiotic factors in a set of feedback loops; and work in opposition to abiotic processes, such that the travertine step-pool morphology reflects a dynamic balance between dominantly-biotic constructive processes and dominantly-abiotic destructive processes. We consider separately three phases of an idealized life cycle of travertine dams: dam formation, growth, and destruction by erosive floods. Dam formation is catalyzed by abiotic factors (e.g. channel constrictions, and bedrock steps) and biotic factors (e.g. woody debris, and emergent vegetation). From measurements of changes over time in travertine thickness on a bedrock step, we find evidence for a positive feedback between flow hydraulics and travertine accrual. Measurements of organic content in travertine samples from this step show that algal growth contributes substantially to travertine accumulation and suggest that growth is most rapid during seasonal algal blooms. To document vertical growth of travertine dams, we embedded 252 magnets into nascent travertine dams, along a 10 km stretch of river. Growth rates are calculated from changes over time in the magnetic field intensity at the dam surface. At each magnet we record a range of hydraulic and travertine composition variables to characterize the dominant mechanism of growth: abiotic precipitation, algal growth, trapping of organic material, or in situ plant growth. We find: (1) rapid growth of travertine dams following flow restoration, averaging more than 2 cm/year; (2) growth rates decline downstream, consistent with loss of dissolved constituents because of upstream travertine deposition, but also parallel to a decline in organic content in dam surface material and a downstream shift in dominant biotic mechanism; (3) biotic mechanisms are associated with faster growth rates; and (4) correlations between hydraulic attributes and growth rates are more consistent with biotic than abiotic controls. We conclude that the strong influence of living organisms on rates of travertine growth, coupled with the beneficial effects of travertine on ecosystem dynamics, demonstrate a positive feedback between biology and geomorphology. During our two-year study period, erosive flood flows occurred causing widespread removal of travertine. The temporal distribution of travertine growth and erosion over the study period is consistent with a bimodal magnitude-frequency relation in which growth dominates except when large, infrequent storms occur. This model may be useful in other systems where biology exerts strong controls on geomorphic processes.
NASA Astrophysics Data System (ADS)
Saco, Patricia; Azadi, Samira; Moreno-de las Heras, Mariano; Keesstra, Saskia
2017-04-01
In semiarid systems, hydrologic, geomorphic and ecological processes are tightly coupled through strong feedback mechanisms occurring across fine to coarse scales. These feedbacks have implications for equilibrium and resilience of the landscape and are particularly relevant for understanding the potential degradation effects of climate and anthropogenic pressures. The vegetation of these regions is sparse and often associated to the development and maintenance of spatially variable infiltration rates, with lower infiltration in the bare areas. These variable infiltration rates have been observed in many field studies and are responsible for the emergence of a runoff-runon system, and for the associated redistribution of water and sediments. We will present a modelling framework developed to understand the role of surface water connectivity in degradation processes in semiarid landscapes with patchy vegetation. Surface water connectivity in these systems is highly dynamic and emerges from non-linear feedbacks between vegetation patterns and the coevolving landforms. The model captures these feedbacks through the coupled nature of the processes included in the landform-vegetation modules. As increased surface runoff connectivity has been linked to degradation, we focus on evolving hydrologic connectivity patterns resulting from feedback effects and co-evolving structures. First, we will discuss some general results on the coevolution of semiarid rangelands, and the effects of varying abiotic and biotic conditions. Next we will present results in which we investigate changes in functional hydrologic connectivity, and the existence of tipping points as observed in several sites in Australia. These results are based on data from our recent studies along a precipitation gradient in the Mulga bioregion of Australia. The analysis from satellite images reveals a major role of surface connectivity on the spatial organization of patchy vegetation, suggesting that transitions on the distribution of vegetation leading to degradation are related to sharp variations on the landscape surface connectivity. Finally we will discuss results analysing the potential effect of soils depths on the coevolution of system structures and connectivity. The relevance and implications of these results for the successful reclamation of water-limited environments in which vegetation stability largely depends on the redistribution of the scarce water resources will be discussed.
Impact of the Supervisor Feedback Environment on Creative Performance: A Moderated Mediation Model.
Zhang, Jian; Gong, Zhenxing; Zhang, Shuangyu; Zhao, Yujia
2017-01-01
Studies on the relationship between feedback and creative performance have only focused on the feedback-self and have underestimated the value of the feedback environment. Building on Self Determined Theory, the purpose of this article is to examine the relationship among feedback environment, creative personality, goal self-concordance and creative performance. Hierarchical regression analysis of a sample of 162 supervisor-employee dyads from nine industry firms. The results indicate that supervisor feedback environment is positively related to creative performance, the relationship between the supervisor feedback environment and creative performance is mediated by goal self-concordance perfectly and moderated by creative personality significantly. The mediation effort of goal self-concordance is significantly influenced by creative personality. The implication of improving employees' creative performance is further discussed. The present study advances several perspectives of previous studies, echoes recent suggestions that organizations interested in stimulating employee creativity might profitably focus on developing work contexts that support it.
NASA Astrophysics Data System (ADS)
Jia, Chen; Qian, Hong; Chen, Min; Zhang, Michael Q.
2018-03-01
The transient response to a stimulus and subsequent recovery to a steady state are the fundamental characteristics of a living organism. Here we study the relaxation kinetics of autoregulatory gene networks based on the chemical master equation model of single-cell stochastic gene expression with nonlinear feedback regulation. We report a novel relation between the rate of relaxation, characterized by the spectral gap of the Markov model, and the feedback sign of the underlying gene circuit. When a network has no feedback, the relaxation rate is exactly the decaying rate of the protein. We further show that positive feedback always slows down the relaxation kinetics while negative feedback always speeds it up. Numerical simulations demonstrate that this relation provides a possible method to infer the feedback topology of autoregulatory gene networks by using time-series data of gene expression.
Management of a TIFS System: Organizing Tests with Instructional Feedback on Slides.
ERIC Educational Resources Information Center
Brown, F. Dale; Mitchell, Thomas O.
1980-01-01
Presents three components of the tests with instructional feedback on slides system (TIFS), the needs of the three, background on the production of the test item reference card, and the advantage of the system for both instructor and student. (MER)
Hartzler, Bryan; Beadnell, Blair; Calsyn, Donald A
2014-08-01
Sexual risk is an important, oft-neglected area in addiction treatment. This report examines computerized sexual risk assessment and client feedback at intake as means of enhancing counselor awareness of client risk behavior during early treatment, as well as any clinical impact of that counselor awareness. In 2009-2011, new clients at both opiate treatment and drug-free treatment programs endorsed in a computer-assisted assessment at intake 90-day retrospective indices for: being sexually active, having multiple partners, having sex under drug influence, and inconsistently using condoms. Clients were randomly assigned in a 2:1 ratio to receive or not receive a personal feedback report, and those receiving a report chose if a counselor copy was also distributed. Ninety days later, retained clients (N = 79) repeated the assessment and their counselors concurrently reported perceptions of recent client risk behavior. Based on client reports, pretreatment risk behaviors were prevalent among men and women and remained so during treatment. A general linear model revealed greater counselor awareness of subsequent client risk behavior with mutual distribution of intake feedback reports to client and counselor, and at the opiate treatment program. A repeated-measures analysis of variance indicated that counselor awareness did not predict change in temporally stable patterns of sexual risk behavior. CONCLUSIONS/IMPORTANCE: Findings document that computerized intake assessment of sexual risk and mutually distributed feedback reports prompt greater counselor awareness of clients' subsequent risk behavior. Future research is needed to determine how best to prepare counselors to use such awareness to effectively prompt risk reduction in routine care.
Ahlfors, Seppo P.; Jones, Stephanie R.; Ahveninen, Jyrki; Hämäläinen, Matti S.; Belliveau, John W.; Bar, Moshe
2014-01-01
Identifying inter-area communication in terms of the hierarchical organization of functional brain areas is of considerable interest in human neuroimaging. Previous studies have suggested that the direction of magneto- and electroencephalography (MEG, EEG) source currents depends on the layer-specific input patterns into a cortical area. We examined the direction in MEG source currents in a visual object recognition experiment in which there were specific expectations of activation in the fusiform region being driven by either feedforward or feedback inputs. The source for the early non-specific visual evoked response, presumably corresponding to feedforward driven activity, pointed outward, i.e., away from the white matter. In contrast, the source for the later, object-recognition related signals, expected to be driven by feedback inputs, pointed inward, toward the white matter. Associating specific features of the MEG/EEG source waveforms to feedforward and feedback inputs could provide unique information about the activation patterns within hierarchically organized cortical areas. PMID:25445356
Klink, P Christiaan; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Roelfsema, Pieter R
2017-07-05
The visual cortex is hierarchically organized, with low-level areas coding for simple features and higher areas for complex ones. Feedforward and feedback connections propagate information between areas in opposite directions, but their functional roles are only partially understood. We used electrical microstimulation to perturb the propagation of neuronal activity between areas V1 and V4 in monkeys performing a texture-segregation task. In both areas, microstimulation locally caused a brief phase of excitation, followed by inhibition. Both these effects propagated faithfully in the feedforward direction from V1 to V4. Stimulation of V4, however, caused little V1 excitation, but it did yield a delayed suppression during the late phase of visually driven activity. This suppression was pronounced for the V1 figure representation and weaker for background representations. Our results reveal functional differences between feedforward and feedback processing in texture segregation and suggest a specific modulating role for feedback connections in perceptual organization. Copyright © 2017 Elsevier Inc. All rights reserved.
Navigators for motion detection during real-time MRI-guided radiotherapy
NASA Astrophysics Data System (ADS)
Stam, Mette K.; Crijns, Sjoerd P. M.; Zonnenberg, Bernard A.; Barendrecht, Maurits M.; van Vulpen, Marco; Lagendijk, Jan J. W.; Raaymakers, Bas W.
2012-11-01
An MRI-linac system provides direct MRI feedback and with that the possibility of adapting radiation treatments to the actual tumour position. This paper addresses the use of fast 1D MRI, pencil-beam navigators, for this feedback. The accuracy of using navigators was determined on a moving phantom. The possibility of organ tracking and breath-hold monitoring based on navigator guidance was shown for the kidney. Navigators are accurate within 0.5 mm and the analysis has a minimal time lag smaller than 30 ms as shown for the phantom measurements. The correlation of 2D kidney images and navigators shows the possibility of complete organ tracking. Furthermore the breath-hold monitoring of the kidney is accurate within 1.5 mm, allowing gated radiotherapy based on navigator feedback. Navigators are a fast and precise method for monitoring and real-time tracking of anatomical landmarks. As such, they provide direct MRI feedback on anatomical changes for more precise radiation delivery.
Self-organizing biochemical cycle in dynamic feedback with soil structure
NASA Astrophysics Data System (ADS)
Vasilyeva, Nadezda; Vladimirov, Artem; Smirnov, Alexander; Matveev, Sergey; Tyrtyshnikov, Evgeniy; Yudina, Anna; Milanovskiy, Evgeniy; Shein, Evgeniy
2016-04-01
In the present study we perform bifurcation analysis of a physically-based mathematical model of self-organized structures in soil (Vasilyeva et al., 2015). The state variables in this model included microbial biomass, two organic matter types, oxygen, carbon dioxide, water content and capillary pore size. According to our previous experimental studies, organic matter affinity to water is an important property affecting soil structure. Therefore, organic matter wettability was taken as principle distinction between organic matter types in this model. It considers general known biological feedbacks with soil physical properties formulated as a system of parabolic type non-linear partial differential equations with elements of discrete modeling for water and pore formation. The model shows complex behavior, involving emergence of temporal and spatial irregular auto-oscillations from initially homogeneous distributions. The energy of external impact on a system was defined by a constant oxygen level on the boundary. Non-linear as opposed to linear oxygen diffusion gives possibility of modeling anaerobic micro-zones formation (organic matter conservation mechanism). For the current study we also introduced population competition of three different types of microorganisms according to their mobility/feeding (diffusive, moving and fungal growth). The strongly non-linear system was solved and parameterized by time-optimized algorithm combining explicit and implicit (matrix form of Thomas algorithm) methods considering the time for execution of the evaluated time-step according to accuracy control. The integral flux of the CO2 state variable was used as a macroscopic parameter to describe system as a whole and validation was carried out on temperature series of moisture dependence for soil heterotrophic respiration data. Thus, soil heterotrophic respiration can be naturally modeled as an integral result of complex dynamics on microscale, arising from biological processes formulated as a sum of state variables products, with no need to introduce any saturation functions, such as Mikhaelis-Menten type kinetics, inside the model. Analyzed dynamic soil model is being further developed to describe soil structure formation and its effect on organic matter decomposition at macro-scale, to predict changes with external perturbations. To link micro- and macro-scales we additionally model soil particles aggregation process. The results from local biochemical soil organic matter cycle serve as inputs to aggregation process, while the output aggregate size distributions define physical properties in the soil profile, these in turn serve as dynamic parameters in local biochemical cycles. The additional formulation is a system of non-linear ordinary differential equations, including Smoluchowski-type equations for aggregation and reaction kinetics equations for coagulation/adsorption/adhesion processes. Vasilyeva N.A., Ingtem J.G., Silaev D.A. Nonlinear dynamical model of microbial growth in soil medium. Computational Mathematics and Modeling, vol. 49, p.31-44, 2015 (in Russian). English version is expected in corresponding vol.27, issue 2, 2016.
Not the last word: dissemination strategies for patient-centred research in nursing.
Hagan, Teresa L; Schmidt, Karen; Ackison, Guyanna R; Murphy, Megan; Jones, Jennifer R
2017-08-01
Research results hold value for many stakeholders including researchers, patient populations, advocacy organizations, and community groups. The aim of this study is to describe our research team's systematic process to designing a dissemination strategy for a completed research study. We organized a dissemination event to feed the results of our study to participants and stakeholders and collect feedback regarding our study. We applied the Agency for Healthcare Research and Quality's dissemination framework to guide the development of the event and collected participant feedback during the event. We describe our dissemination strategy along with attendees' feedback and suggestions for our research as an example of a way to design a patient- and community-focused dissemination. We explain the details of our dissemination strategy including (a) our process of reporting a large research study into a stakeholder event, (b) stakeholder feedback collected at the event, and (c) the translation of feedback into our research team's research. We also describe challenges encountered during the dissemination process and ways to handle issues such as logistics, funding, and staff. This analysis provides key insights and practical advice for researchers looking for innovative ways to disseminate their findings within the lay and scientific communities.
Yoshikawa, Naoya; Suzuki, Yasuyuki; Kiyono, Ken; Nomura, Taishin
2016-01-01
The stabilization of an inverted pendulum on a manually controlled cart (cart-inverted-pendulum; CIP) in an upright position, which is analogous to balancing a stick on a fingertip, is considered in order to investigate how the human central nervous system (CNS) stabilizes unstable dynamics due to mechanical instability and time delays in neural feedback control. We explore the possibility that a type of intermittent time-delayed feedback control, which has been proposed for human postural control during quiet standing, is also a promising strategy for the CIP task and stick balancing on a fingertip. Such a strategy hypothesizes that the CNS exploits transient contracting dynamics along a stable manifold of a saddle-type unstable upright equilibrium of the inverted pendulum in the absence of control by inactivating neural feedback control intermittently for compensating delay-induced instability. To this end, the motions of a CIP stabilized by human subjects were experimentally acquired, and computational models of the system were employed to characterize the experimental behaviors. We first confirmed fat-tailed non-Gaussian temporal fluctuation in the acceleration distribution of the pendulum, as well as the power-law distributions of corrective cart movements for skilled subjects, which was previously reported for stick balancing. We then showed that the experimental behaviors could be better described by the models with an intermittent delayed feedback controller than by those with the conventional continuous delayed feedback controller, suggesting that the human CNS stabilizes the upright posture of the pendulum by utilizing the intermittent delayed feedback-control strategy. PMID:27148031
Yoshikawa, Naoya; Suzuki, Yasuyuki; Kiyono, Ken; Nomura, Taishin
2016-01-01
The stabilization of an inverted pendulum on a manually controlled cart (cart-inverted-pendulum; CIP) in an upright position, which is analogous to balancing a stick on a fingertip, is considered in order to investigate how the human central nervous system (CNS) stabilizes unstable dynamics due to mechanical instability and time delays in neural feedback control. We explore the possibility that a type of intermittent time-delayed feedback control, which has been proposed for human postural control during quiet standing, is also a promising strategy for the CIP task and stick balancing on a fingertip. Such a strategy hypothesizes that the CNS exploits transient contracting dynamics along a stable manifold of a saddle-type unstable upright equilibrium of the inverted pendulum in the absence of control by inactivating neural feedback control intermittently for compensating delay-induced instability. To this end, the motions of a CIP stabilized by human subjects were experimentally acquired, and computational models of the system were employed to characterize the experimental behaviors. We first confirmed fat-tailed non-Gaussian temporal fluctuation in the acceleration distribution of the pendulum, as well as the power-law distributions of corrective cart movements for skilled subjects, which was previously reported for stick balancing. We then showed that the experimental behaviors could be better described by the models with an intermittent delayed feedback controller than by those with the conventional continuous delayed feedback controller, suggesting that the human CNS stabilizes the upright posture of the pendulum by utilizing the intermittent delayed feedback-control strategy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortega, John; Turnipseed, A.; Guenther, Alex B.
2014-01-01
The Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen (BEACHON) project seeks to understand the feedbacks and interrelationships between hydrology, biogenic emissions, carbon assimilation, aerosol properties, clouds and associated feedbacks within water-limited ecosystems. The Manitou Experimental Forest Observatory (MEFO) was established in 2008 by the National Center for Atmospheric Research to address many of the BEACHON research objectives, and it now provides a fixed field site with significant infrastructure. MEFO is a mountainous, semi-arid ponderosa pine-dominated forest site that is normally dominated by clean continental air but is periodically influenced by anthropogenic sources from Colorado Front Range cities.more » This article summarizes the past and ongoing research activities at the site, and highlights some of the significant findings that have resulted from these measurements. These activities include – soil property measurements; – hydrological studies; – measurements of high-frequency turbulence parameters; – eddy covariance flux measurements of water, energy, aerosols and carbon dioxide through the canopy; – determination of biogenic and anthropogenic volatile organic compound emissions and their influence on regional atmospheric chemistry; – aerosol number and mass distributions; – chemical speciation of aerosol particles; – characterization of ice and cloud condensation nuclei; – trace gas measurements; and – model simulations using coupled chemistry and meteorology. In addition to various long-term continuous measurements, three focused measurement campaigns with state-of-the-art instrumentation have taken place since the site was established, and two of these studies are the subjects of this special issue: BEACHON-ROCS (Rocky Mountain Organic Carbon Study, 2010) and BEACHON-RoMBAS (Rocky Mountain Biogenic Aerosol Study, 2011).« less
FUB at TREC 2008 Relevance Feedback Track: Extending Rocchio with Distributional Term Analysis
2008-11-01
starting point is the improved version [ Salton and Buckley 1990] of the original Rocchio’s formula [Rocchio 1971]: newQ = α ⋅ origQ + β R r r∈R ∑ − γR...earlier studies about the low effect of the main relevance feedback parameters on retrieval performance (e.g., Salton and Buckley 1990), while they seem...Relevance feedback in information retrieval. In The SMART retrieval system - experiments in automatic document processing, Salton , G., Ed., Prentice Hall
Improving the efficiency of cognitive-behavioural therapy by using formal client feedback.
Janse, Pauline D; De Jong, Kim; Van Dijk, Maarten K; Hutschemaekers, Giel J M; Verbraak, Marc J P M
2017-09-01
Feedback from clients on their view of progress and the therapeutic relationship can improve effectiveness and efficiency of psychological treatments in general. However, what the added value is of client feedback specifically within cognitive-behavioural therapy (CBT), is not known. Therefore, the extent to which the outcome of CBT can be improved is investigated by providing feedback from clients to therapists using the Outcome Rating Scale (ORS) and Session Rating Scale (SRS). Outpatients (n = 1006) of a Dutch mental health organization either participated in the "treatment as usual" (TAU) condition, or in Feedback condition of the study. Clients were invited to fill in the ORS and SRS and in the Feedback condition therapists were asked to frequently discuss client feedback. Outcome on the SCL-90 was only improved specifically with mood disorders in the Feedback condition. Also, in the Feedback condition, in terms of process, the total number of required treatment sessions was on average two sessions fewer. Frequently asking feedback from clients using the ORS/SRS does not necessarily result in a better treatment outcome in CBT. However, for an equal treatment outcome significantly fewer sessions are needed within the Feedback condition, thus improving efficiency of CBT.
Wu, Shuang; Wang, Dehui; Xiang, Rong; Zhou, Junfeng; Ma, Yangcheng; Gui, Huaqiao; Liu, Jianguo; Wang, Huanqin; Lu, Liang; Yu, Benli
2016-07-27
In this paper, a novel velocimeter based on laser self-mixing Doppler technology has been developed for speed measurement. The laser employed in our experiment is a distributed feedback (DFB) fiber laser, which is an all-fiber structure using only one Fiber Bragg Grating to realize optical feedback and wavelength selection. Self-mixing interference for optical velocity sensing is experimentally investigated in this novel system, and the experimental results show that the Doppler frequency is linearly proportional to the velocity of a moving target, which agrees with the theoretical analysis commendably. In our experimental system, the velocity measurement can be achieved in the range of 3.58 mm/s-2216 mm/s with a relative error under one percent, demonstrating that our novel all-fiber configuration velocimeter can implement wide-range velocity measurements with high accuracy.
Stability of uncertain systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Blankenship, G. L.
1971-01-01
The asymptotic properties of feedback systems are discussed, containing uncertain parameters and subjected to stochastic perturbations. The approach is functional analytic in flavor and thereby avoids the use of Markov techniques and auxiliary Lyapunov functionals characteristic of the existing work in this area. The results are given for the probability distributions of the accessible signals in the system and are proved using the Prohorov theory of the convergence of measures. For general nonlinear systems, a result similar to the small loop-gain theorem of deterministic stability theory is given. Boundedness is a property of the induced distributions of the signals and not the usual notion of boundedness in norm. For the special class of feedback systems formed by the cascade of a white noise, a sector nonlinearity and convolution operator conditions are given to insure the total boundedness of the overall feedback system.
Self-organization and feedback effects in the shock compressed media
NASA Astrophysics Data System (ADS)
Khantuleva, Tatyana
2005-07-01
New theoretical approach to the transport in condensed matter far from equilibrium combines methods of statistical mechanics and cybernetic physics in order to construct closed mathematical model of a system with self-organization and self-regulation. Mesoscopic effects are considered as a result of the structure formation and the feedback effects in an open system under dynamic loading. Nonequilibrium state equations had been involved to incorporate the velocity dispersion. Integrodifferential balance equations describe both wave and dissipative transport properties. Boundary conditions determine the internal scale spectra. The model is completed by the feedback that introduces the structure evolution basing the methods of cybernetic physics. The obtained results open a wide prospective for the control methods in applications to new technologies, intellectual systems and prediction of catastrophic phenomena.
NASA Astrophysics Data System (ADS)
Tang, X. H.; Zou, Xingfu
We consider a non-autonomous Lotka-Volterra competition system with distributed delays but without instantaneous negative feedbacks (i.e., pure delay systems). We establish some 3/2-type and M-matrix-type criteria for global attractivity of the positive equilibrium of the system, which generalise and improve the existing ones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Anese, Emiliano; Simonetto, Andrea
This paper considers distribution networks featuring inverter-interfaced distributed energy resources, and develops distributed feedback controllers that continuously drive the inverter output powers to solutions of AC optimal power flow (OPF) problems. Particularly, the controllers update the power setpoints based on voltage measurements as well as given (time-varying) OPF targets, and entail elementary operations implementable onto low-cost microcontrollers that accompany power-electronics interfaces of gateways and inverters. The design of the control framework is based on suitable linear approximations of the AC power-flow equations as well as Lagrangian regularization methods. Convergence and OPF-target tracking capabilities of the controllers are analytically established. Overall,more » the proposed method allows to bypass traditional hierarchical setups where feedback control and optimization operate at distinct time scales, and to enable real-time optimization of distribution systems.« less
NASA Technical Reports Server (NTRS)
Wu, M. C.; Boenke, M. M.; Wang, S.; Clark, W. M., Jr.; Stevens, E. H.
1988-01-01
The performance of a GaAs/GaAlAs distributed Bragg reflector (DBR) laser using a focused ion beam implanted grating (FIB-DBR) is reported for the first time. Stripes of Si(2+) with a period of 2300 A and a dose about 10 to the 14th/sq cm are directly implanted into the passive large optical cavity layer to provide the distributed feedback. Surface-emitting light from the second-order grating is observed. Threshold current of 110 mA and single DBR mode operation from 20 to 40 C are obtained. The wavelength tuning rate with temperature is 0.8 A/C. The coupling coefficient is estimated to be 15/cm. The results show that FIB technology is practical for distributed feedback and DBR lasers and optoelectronic integrated circuits.
Ant Colony Optimization Analysis on Overall Stability of High Arch Dam Basis of Field Monitoring
Liu, Xiaoli; Chen, Hong-Xin; Kim, Jinxie
2014-01-01
A dam ant colony optimization (D-ACO) analysis of the overall stability of high arch dams on complicated foundations is presented in this paper. A modified ant colony optimization (ACO) model is proposed for obtaining dam concrete and rock mechanical parameters. A typical dam parameter feedback problem is proposed for nonlinear back-analysis numerical model based on field monitoring deformation and ACO. The basic principle of the proposed model is the establishment of the objective function of optimizing real concrete and rock mechanical parameter. The feedback analysis is then implemented with a modified ant colony algorithm. The algorithm performance is satisfactory, and the accuracy is verified. The m groups of feedback parameters, used to run a nonlinear FEM code, and the displacement and stress distribution are discussed. A feedback analysis of the deformation of the Lijiaxia arch dam and based on the modified ant colony optimization method is also conducted. By considering various material parameters obtained using different analysis methods, comparative analyses were conducted on dam displacements, stress distribution characteristics, and overall dam stability. The comparison results show that the proposal model can effectively solve for feedback multiple parameters of dam concrete and rock material and basically satisfy assessment requirements for geotechnical structural engineering discipline. PMID:25025089
Effects of Combined Stellar Feedback on Star Formation in Stellar Clusters
NASA Astrophysics Data System (ADS)
Wall, Joshua Edward; McMillan, Stephen; Pellegrino, Andrew; Mac Low, Mordecai; Klessen, Ralf; Portegies Zwart, Simon
2018-01-01
We present results of hybrid MHD+N-body simulations of star cluster formation and evolution including self consistent feedback from the stars in the form of radiation, winds, and supernovae from all stars more massive than 7 solar masses. The MHD is modeled with the adaptive mesh refinement code FLASH, while the N-body computations are done with a direct algorithm. Radiation is modeled using ray tracing along long characteristics in directions distributed using the HEALPIX algorithm, and causes ionization and momentum deposition, while winds and supernova conserve momentum and energy during injection. Stellar evolution is followed using power-law fits to evolution models in SeBa. We use a gravity bridge within the AMUSE framework to couple the N-body dynamics of the stars to the gas dynamics in FLASH. Feedback from the massive stars alters the structure of young clusters as gas ejection occurs. We diagnose this behavior by distinguishing between fractal distribution and central clustering using a Q parameter computed from the minimum spanning tree of each model cluster. Global effects of feedback in our simulations will also be discussed.
Position-sensitive proportional counter with low-resistance metal-wire anode
Kopp, Manfred K.
1980-01-01
A position-sensitive proportional counter circuit is provided which allows the use of a conventional (low-resistance, metal-wire anode) proportional counter for spatial resolution of an ionizing event along the anode of the counter. A pair of specially designed active-capacitance preamplifiers are used to terminate the anode ends wherein the anode is treated as an RC line. The preamplifiers act as stabilized active capacitance loads and each is composed of a series-feedback, low-noise amplifier, a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at the anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction and handling of the anodes, and stabilizes the anode resistivity at high count rates (>10.sup.6 counts/sec).
Computer-Supported Feedback Message Tailoring for Healthcare Providers in Malawi: Proof-of-Concept.
Landis-Lewis, Zach; Douglas, Gerald P; Hochheiser, Harry; Kam, Matthew; Gadabu, Oliver; Bwanali, Mwatha; Jacobson, Rebecca S
2015-01-01
Although performance feedback has the potential to help clinicians improve the quality and safety of care, healthcare organizations generally lack knowledge about how this guidance is best provided. In low-resource settings, tools for theory-informed feedback tailoring may enhance limited clinical supervision resources. Our objectives were to establish proof-of-concept for computer-supported feedback message tailoring in Malawi, Africa. We conducted this research in five stages: clinical performance measurement, modeling the influence of feedback on antiretroviral therapy (ART) performance, creating a rule-based message tailoring process, generating tailored messages for recipients, and finally analysis of performance and message tailoring data. We retrospectively generated tailored messages for 7,448 monthly performance reports from 11 ART clinics. We found that tailored feedback could be routinely generated for four guideline-based performance indicators, with 35% of reports having messages prioritized to optimize the effect of feedback. This research establishes proof-of-concept for a novel approach to improving the use of clinical performance feedback in low-resource settings and suggests possible directions for prospective evaluations comparing alternative designs of feedback messages.
Kaipio, Johanna; Stenhammar, Hanna; Immonen, Susanna; Litovuo, Lauri; Axelsson, Minja; Lantto, Minna; Lahdenne, Pekka
2018-01-01
Patient feedback is considered important for healthcare organizations. However, measurement and analysis of patient reported data is useful only if gathered insights are transformed into actions. This article focuses on gathering and utilization of patient experience data at hospitals with the aim of supporting the development of patient-centered services. The study was designed to explore both current practices of collecting and utilizing patient feedback at hospitals as well as future feedback-related opportunities. Nine people working at different hierarchical levels of three university hospitals in Finland participated in in-depth interviews. Findings indicate that current feedback processes are poorly planned and inflexible. Some feedback data are gathered, but not systematically utilized. Currently, it is difficult to obtain a comprehensive picture of the situation. One future hope was to increase the amount of patient feedback to be able to better generalize and utilize the data. Based on the findings the following recommendations are given: attention to both patients' and healthcare staff's perspectives when collecting feedback, employing a coordinated approach for collecting and utilizing patient feedback, and organizational transformation towards a patient-centric culture.
A systematic review of the use of theory in randomized controlled trials of audit and feedback
2013-01-01
Background Audit and feedback is one of the most widely used and promising interventions in implementation research, yet also one of the most variably effective. Understanding this variability has been limited in part by lack of attention to the theoretical and conceptual basis underlying audit and feedback. Examining the extent of theory use in studies of audit and feedback will yield better understanding of the causal pathways of audit and feedback effectiveness and inform efforts to optimize this important intervention. Methods A total of 140 studies in the 2012 Cochrane update on audit and feedback interventions were independently reviewed by two investigators. Variables were extracted related to theory use in the study design, measurement, implementation or interpretation. Theory name, associated reference, and the location of theory use as reported in the study were extracted. Theories were organized by type (e.g., education, diffusion, organization, psychology), and theory utilization was classified into seven categories (justification, intervention design, pilot testing, evaluation, predictions, post hoc, other). Results A total of 20 studies (14%) reported use of theory in any aspect of the study design, measurement, implementation or interpretation. In only 13 studies (9%) was a theory reportedly used to inform development of the intervention. A total of 18 different theories across educational, psychological, organizational and diffusion of innovation perspectives were identified. Rogers’ Diffusion of Innovations and Bandura’s Social Cognitive Theory were the most widely used (3.6% and 3%, respectively). Conclusions The explicit use of theory in studies of audit and feedback was rare. A range of theories was found, but not consistency of theory use. Advancing our understanding of audit and feedback will require more attention to theoretically informed studies and intervention design. PMID:23759034
A systematic review of the use of theory in randomized controlled trials of audit and feedback.
Colquhoun, Heather L; Brehaut, Jamie C; Sales, Anne; Ivers, Noah; Grimshaw, Jeremy; Michie, Susan; Carroll, Kelly; Chalifoux, Mathieu; Eva, Kevin W
2013-06-10
Audit and feedback is one of the most widely used and promising interventions in implementation research, yet also one of the most variably effective. Understanding this variability has been limited in part by lack of attention to the theoretical and conceptual basis underlying audit and feedback. Examining the extent of theory use in studies of audit and feedback will yield better understanding of the causal pathways of audit and feedback effectiveness and inform efforts to optimize this important intervention. A total of 140 studies in the 2012 Cochrane update on audit and feedback interventions were independently reviewed by two investigators. Variables were extracted related to theory use in the study design, measurement, implementation or interpretation. Theory name, associated reference, and the location of theory use as reported in the study were extracted. Theories were organized by type (e.g., education, diffusion, organization, psychology), and theory utilization was classified into seven categories (justification, intervention design, pilot testing, evaluation, predictions, post hoc, other). A total of 20 studies (14%) reported use of theory in any aspect of the study design, measurement, implementation or interpretation. In only 13 studies (9%) was a theory reportedly used to inform development of the intervention. A total of 18 different theories across educational, psychological, organizational and diffusion of innovation perspectives were identified. Rogers' Diffusion of Innovations and Bandura's Social Cognitive Theory were the most widely used (3.6% and 3%, respectively). The explicit use of theory in studies of audit and feedback was rare. A range of theories was found, but not consistency of theory use. Advancing our understanding of audit and feedback will require more attention to theoretically informed studies and intervention design.
Narayanan, Vignesh; Jagannathan, Sarangapani
2017-06-08
This paper presents an approximate optimal distributed control scheme for a known interconnected system composed of input affine nonlinear subsystems using event-triggered state and output feedback via a novel hybrid learning scheme. First, the cost function for the overall system is redefined as the sum of cost functions of individual subsystems. A distributed optimal control policy for the interconnected system is developed using the optimal value function of each subsystem. To generate the optimal control policy, forward-in-time, neural networks are employed to reconstruct the unknown optimal value function at each subsystem online. In order to retain the advantages of event-triggered feedback for an adaptive optimal controller, a novel hybrid learning scheme is proposed to reduce the convergence time for the learning algorithm. The development is based on the observation that, in the event-triggered feedback, the sampling instants are dynamic and results in variable interevent time. To relax the requirement of entire state measurements, an extended nonlinear observer is designed at each subsystem to recover the system internal states from the measurable feedback. Using a Lyapunov-based analysis, it is demonstrated that the system states and the observer errors remain locally uniformly ultimately bounded and the control policy converges to a neighborhood of the optimal policy. Simulation results are presented to demonstrate the performance of the developed controller.
Ice-Rich Yedoma Permafrost: A Synthesis of Circum-Arctic Distribution and Thickness
NASA Astrophysics Data System (ADS)
Strauss, J.; Fedorov, A. N.; Fortier, D.; Froese, D. G.; Fuchs, M.; Grosse, G.; Günther, F.; Harden, J. W.; Hugelius, G.; Kanevskiy, M. Z.; Kholodov, A. L.; Kunitsky, V.; Laboor, S.; Lapointe Elmrabti, L.; Rivkina, E.; Robinson, J. E.; Schirrmeister, L.; Shmelev, D.; Shur, Y.; Spektor, V.; Ulrich, M.; Veremeeva, A.; Walter Anthony, K. M.; Zimov, S. A.
2015-12-01
Vast portions of Arctic and sub-Arctic Siberia, Alaska and the Yukon Territory are covered by ice-rich silts that are penetrated by large ice wedges, resulting from syngenetic sedimentation and freezing. Accompanied by wedge-ice growth, the sedimentation process was driven by cold continental climatic and environmental conditions in unglaciated regions during the late Pleistocene, inducing the accumulation of the unique Yedoma permafrost deposits up to 50 meter thick. Because of fast incorporation of organic material into permafrost during formation, Yedoma deposits include low-decomposed organic matter. Moreover, ice-rich permafrost deposits like Yedoma are especially prone to degradation triggered by climate changes or human activity. When Yedoma deposits degrade, large amounts of sequestered organic carbon as well as other nutrients are released and become part of active biogeochemical cycling. This could be of global significance for the climate warming, as increased permafrost thaw is likely to cause a positive feedback loop. Therefore, a detailed assessment of the Yedoma deposit volume is of importance to estimate its potential future climate response. Moreover, as a step beyond the objectives of this synthesis study, our coverage (see figure for the Yedoma domain) and thickness estimation will provide critical data to refine the Yedoma permafrost organic carbon inventory, which is assumed to have freeze-locked between 83±12 and 129±30 gigatonnes (Gt) of organic carbon. Hence, we here synthesize data on the circum-Arctic and sub-Arctic distribution and thickness of Yedoma permafrost (see figure for the Yedoma domain) in the framework of an Action Group funded by the International Permafrost Association (IPA). The quantification of the Yedoma coverage is conducted by the digitization of geomorphological and Quaternary geological maps. Further data on Yedoma thickness is contributed from boreholes and exposures reported in the scientific literature.
Investigating the Impact of Peer Feedback in Foreign Language Writing
ERIC Educational Resources Information Center
Levi Altstaedter, Laura
2018-01-01
The present quasi-experimental study aimed at investigating the impact of trained and untrained peer feedback on students' written comment types and writing quality. Significant differences were found in terms of comment types provided: trained students provided a significantly higher number of comments focused on organization and content (global…
A basic understanding of the endocrinology of the hypothalamic-pituitary-thyroid (HPT) axis of anuran larvae is necessary for predicting the consequences of HPT perturbation by thyroid-disrupting chemicals (TDCs) on the whole organism. This project examined negative feedback con...
Lean, Lyn Li; Hong, Ryan Yee Shiun; Ti, Lian Kah
2017-08-01
Communication of feedback during teaching of practical procedures is a fine balance of structure and timing. We investigate if continuous in-task (IT) or end-task feedback (ET) is more effective in teaching spinal anaesthesia to medical students. End-task feedback was hypothesized to improve both short-term and long-term procedural learning retention as experiential learning promotes active learning after encountering errors during practice. Upon exposure to a 5-min instructional video, students randomized to IT or ET feedbacks were trained using a spinal simulator mannequin. A blinded expert tested the students using a spinal anaesthesia checklist in the short term (immediate) and long-term (average 4 months). Sixty-five students completed the training and testing. There were no differences in demographics of age or gender within IT or ET distributions. Both short-term and long-term learning retention of spinal anaesthesia ET feedback proved to be better (P < 0.01) than IT feedback. The time taken for ET students was shorter at long-term testing. End-task feedback improves both short-term and long-term procedural learning retention.
Broadening the concept of marketing.
Kotler, P; Levy, S J
1969-01-01
Marketing in business is the task of finding and stimulating buyers for a firms's output. Product development, pricing, distribution, and communication are the mainstays of marketing, while progressive firms also develop new products and chart the trends and changes in people's needs and desires. Marketing can either apply its knowledge to social problems and organizations or remain in a narrowly defined business activity. Every organization has basically the same functions: personnel management, production, income, and promotion, which are using modern marketing skills in commercial sectors. Suppliers and consumers are needed by all organizations. In Canada a group wished to promote an antismoking campaign but they had little money compared to the tobacco companies. This group used modern marketing techniques to combat their lack of funds and found many ways, e.g., books, articles. A business firm uses a multitude of marketing tools to sell its product. Nonbusiness organizations frequently do not integrate their programs the way the businesses place all activities under one marketing vice president and department. Astute marketing depends on continuous feedback from consumers and suppliers. They are dependent upon up-to-the-minute research that tells them about changes in the environment and moves of competitors. Nonbusiness organizations are often casual about the research upon which they base their vital decisions.
NASA Astrophysics Data System (ADS)
Li, Jing Xia; Xu, Hang; Liu, Li; Su, Peng Cheng; Zhang, Jian Guo
2015-05-01
We report a chaotic optical time-domain reflectometry for fiber fault location, where a chaotic probe signal is generated by driving a distributed feedback laser diode with an improved Colpitts chaotic oscillator. The results show that the unterminated fiber end, the loose connector, and the mismatch connector can be precisely located. A measurement range of approximately 91 km and a range independent resolution of 6 cm are achieved. This implementation method is easy to integrate and is cost effective, which gives it great potential for commercial applications.
NASA Astrophysics Data System (ADS)
Cho, Chun-Hyung; Kim, Jongseong; Sung, Hyuk-Kee
2016-09-01
We report on the enhancement of the static extinction ratio by using a dual-section distributed feedback laser diode integrated with an electro-absorption modulator. A directly- modulated dual-section laser can provide improved modulation performance under a low bias level ( i.e., below the threshold level) compared with a standard directly-modulated laser. By combining the extinction ratio from a dual-section laser with that from an electro-absorption modulator section, a total extinction ratio of 49.6. dB are successfully achieved.
Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers
NASA Astrophysics Data System (ADS)
Duan, J.; Huang, H.; Lu, Z. G.; Poole, P. J.; Wang, C.; Grillot, F.
2018-03-01
This paper reports on the spectral linewidth of InAs/InP quantum dot distributed feedback lasers. Owing to a low inversion factor and a low linewidth enhancement factor, a narrow spectral linewidth of 160 kHz (80 kHz intrinsic linewidth) with a low sensitivity to temperature is demonstrated. When using anti-reflection coatings on both facets, narrow linewidth operation is extended to high powers, believed to be due to a reduction in the longitudinal spatial hole burning. These results confirm the high potential of quantum dot lasers for increasing transmission capacity in future coherent communication systems.
Cellular Mechanisms of Gravitropic Response in Higher Plants
NASA Astrophysics Data System (ADS)
Medvedev, Sergei; Smolikova, Galina; Pozhvanov, Gregory; Suslov, Dmitry
The evolutionary success of land plants in adaptation to the vectorial environmental factors was based mainly on the development of polarity systems. In result, normal plant ontogenesis is based on the positional information. Polarity is a tool by which the developing plant organs and tissues are mapped and the specific three-dimensional structure of the organism is created. It is due to their polar organization plants are able to orient themselves relative to the gravity vector and different vectorial cues, and to respond adequately to various stimuli. Gravitation is one of the most important polarized environmental factor that guides the development of plant organisms in space. Every plant can "estimate" its position relative to the gravity vector and correct it, if necessary, by means of polarized growth. The direction and the magnitude of gravitational stimulus are constant during the whole plant ontogenesis. The key plant response to the action of gravity is gravitropism, i.e. the directed growth of organs with respect to the gravity vector. This response is a very convenient model to study the mechanisms of plant orientation in space. The present report is focused on the main cellular mechanisms responsible for graviropic bending in higher plants. These mechanisms and structures include electric polarization of plant cells, Ca ({2+) }gradients, cytoskeleton, G-proteins, phosphoinositides and the machinery responsible for asymmetric auxin distribution. Those mechanisms tightly interact demonstrating some hierarchy and multiple feedbacks. The Ca (2+) gradients provide the primary physiological basis of polarity in plant cells. Calcium ions influence on the bioelectric potentials, the organization of actin cytoskeleton, the activity of Ca (2+) -binding proteins and Ca (2+) -dependent protein kinases. Protein kinases modulate transcription factors activity thereby regulating the gene expression and switching the developmental programs. Actin cytoskeleton affects the molecular machinery of polar auxin transport. It results in the changes of auxin gradients in plant organs and tissues, which modulate all cellular mechanisms of polarity via multiple feedback loops. The understanding of the mechanisms of plant organism orientation relative to the gravity vector will allow us to develop efficient technologies for plant growing in microgravity conditions at orbital space stations and during long piloted space flights. This work was supported by the grant of Russian Foundation for Basic Research (N 14-04-01-624) and by the grant of St.-Petersburg State University (N 1.38.233.2014).
Convective aggregation in realistic convective-scale simulations
NASA Astrophysics Data System (ADS)
Holloway, Christopher E.
2017-06-01
To investigate the real-world relevance of idealized-model convective self-aggregation, five 15 day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibrium. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy shows that control runs have significant positive contributions to organization from radiation and negative contributions from surface fluxes and transport, similar to idealized runs once they become aggregated. Despite identical lateral boundary conditions for all experiments in each case, systematic differences in mean column water vapor (CWV), CWV distribution shape, and CWV autocorrelation length scale are found between the different sensitivity runs, particularly for those without interactive radiation, showing that there are at least some similarities in sensitivities to these feedbacks in both idealized and realistic simulations (although the organization of precipitation shows less sensitivity to interactive radiation). The magnitudes and signs of these systematic differences are consistent with a rough equilibrium between (1) equalization due to advection from the lateral boundaries and (2) disaggregation due to the absence of interactive radiation, implying disaggregation rates comparable to those in idealized runs with aggregated initial conditions and noninteractive radiation. This points to a plausible similarity in the way that radiation feedbacks maintain aggregated convection in both idealized simulations and the real world.
NASA Astrophysics Data System (ADS)
Palm, Juliane; Klaus, Julian; van Schaik, Loes; Zehe, Erwin; Schröder, Boris
2010-05-01
Soils provide central ecosystem functions in recycling nutrients, detoxifying harmful chemicals as well as regulating microclimate and local hydrological processes. The internal regulation of these functions and therefore the development of healthy and fertile soils mainly depend on the functional diversity of plants and animals. Soil organisms drive essential processes such as litter decomposition, nutrient cycling, water dynamics, and soil structure formation. Disturbances by different soil management practices (e.g., soil tillage, fertilization, pesticide application) affect the distribution and abundance of soil organisms and hence influence regulating processes. The strong relationship between environmental conditions and soil organisms gives us the opportunity to link spatiotemporal distribution patterns of indicator species with the potential provision of essential soil processes on different scales. Earthworms are key organisms for soil function and affect, among other things, water dynamics and solute transport in soils. Through their burrowing activity, earthworms increase the number of macropores by building semi-permanent burrow systems. In the unsaturated zone, earthworm burrows act as preferential flow pathways and affect water infiltration, surface-, subsurface- and matrix flow as well as the transport of water and solutes into deeper soil layers. Thereby different ecological earthworm types have different importance. Deep burrowing anecic earthworm species (e.g., Lumbricus terrestris) affect the vertical flow and thus increase the risk of potential contamination of ground water with agrochemicals. In contrast, horizontal burrowing endogeic (e.g., Aporrectodea caliginosa) and epigeic species (e.g., Lumbricus rubellus) increase water conductivity and the diffuse distribution of water and solutes in the upper soil layers. The question which processes are more relevant is pivotal for soil management and risk assessment. Thus, finding relevant environmental predictors which explain the distribution and dynamics of different ecological earthworm types can help us to understand where or when these processes are relevant in the landscape. Therefore, we develop species distribution models which are a useful tool to predict spatiotemporal distributions of earthworm occurrence and abundance under changing environmental conditions. On field scale, geostatistical distribution maps have shown that the spatial distribution of earthworms depends on soil parameters such as food supply, soil moisture, bulk density but with different patterns for earthworm stages (adult, juvenile) and ecological types (anecic, endogeic, epigeic). On landscape scales, earthworm distribution seems to be strongly controlled by management/disturbance-related factors. Our study shows different modelling approaches for predicting distribution patterns of earthworms in the Weiherbach area, an agricultural site in Kraichtal (Baden-Württemberg, Germany). We carried out field studies on arable fields differing in soil management practices (conventional, conservational), soil properties (organic matter content, texture, soil moisture), and topography (slope, elevation) in order to identify predictors for earthworm occurrence, abundance and biomass. Our earthworm distribution models consider all ecological groups as well as different life stages, accounting for the fact that the activity of juveniles is sometimes different from those of adults. Within our BIOPORE-project it is our final goal to couple our distribution models with population dynamic models and a preferential flow model to an integrated ecohydrological model to analyse feedbacks between earthworm engineering and transport characteristics affecting the functioning of (agro-) ecosystems.
Sun, Xiangfei; Ng, Carla A; Small, Mitchell J
2018-06-12
Organisms have long been treated as receptors in exposure studies of polychlorinated biphenyls (PCBs) and other persistent organic pollutants (POPs). The influences of environmental pollution on organisms are well recognized. However, the impact of biota on PCB transport in an environmental system has not been considered in sufficient detail. In this study, a population-based multi-compartment fugacity model is developed by reconfiguring the organisms as populated compartments and reconstructing all the exchange processes between the organism compartments and environmental compartments, especially the previously ignored feedback routes from biota to the environment. We evaluate the model performance by simulating the PCB concentration distribution in Lake Ontario using published loading records. The lake system is divided into three environment compartments (air, water, and sediment) and several organism groups according to the dominant local biotic species. The comparison indicates that the simulated results are well-matched by a list of published field measurements from different years. We identify a new process, called Facilitated Biotic Intermedia Transport (FBIT), to describe the enhanced pollution transport that occurs between environmental media and organisms. As the hydrophobicity of PCB congener increases, the organism population exerts greater influence on PCB mass flows. In a high biomass scenario, the model simulation indicates significant FBIT effects and biotic storage effects with hydrophobic PCB congeners, which also lead to significant shifts in systemic contaminant exchange rates between organisms and the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Narrow log-periodic modulations in non-Markovian random walks
NASA Astrophysics Data System (ADS)
Diniz, R. M. B.; Cressoni, J. C.; da Silva, M. A. A.; Mariz, A. M.; de Araújo, J. M.
2017-12-01
What are the necessary ingredients for log-periodicity to appear in the dynamics of a random walk model? Can they be subtle enough to be overlooked? Previous studies suggest that long-range damaged memory and negative feedback together are necessary conditions for the emergence of log-periodic oscillations. The role of negative feedback would then be crucial, forcing the system to change direction. In this paper we show that small-amplitude log-periodic oscillations can emerge when the system is driven by positive feedback. Due to their very small amplitude, these oscillations can easily be mistaken for numerical finite-size effects. The models we use consist of discrete-time random walks with strong memory correlations where the decision process is taken from memory profiles based either on a binomial distribution or on a delta distribution. Anomalous superdiffusive behavior and log-periodic modulations are shown to arise in the large time limit for convenient choices of the models parameters.
Wu, Shuang; Wang, Dehui; Xiang, Rong; Zhou, Junfeng; Ma, Yangcheng; Gui, Huaqiao; Liu, Jianguo; Wang, Huanqin; Lu, Liang; Yu, Benli
2016-01-01
In this paper, a novel velocimeter based on laser self-mixing Doppler technology has been developed for speed measurement. The laser employed in our experiment is a distributed feedback (DFB) fiber laser, which is an all-fiber structure using only one Fiber Bragg Grating to realize optical feedback and wavelength selection. Self-mixing interference for optical velocity sensing is experimentally investigated in this novel system, and the experimental results show that the Doppler frequency is linearly proportional to the velocity of a moving target, which agrees with the theoretical analysis commendably. In our experimental system, the velocity measurement can be achieved in the range of 3.58 mm/s–2216 mm/s with a relative error under one percent, demonstrating that our novel all-fiber configuration velocimeter can implement wide-range velocity measurements with high accuracy. PMID:27472342
Atomic switch networks as complex adaptive systems
NASA Astrophysics Data System (ADS)
Scharnhorst, Kelsey S.; Carbajal, Juan P.; Aguilera, Renato C.; Sandouk, Eric J.; Aono, Masakazu; Stieg, Adam Z.; Gimzewski, James K.
2018-03-01
Complexity is an increasingly crucial aspect of societal, environmental and biological phenomena. Using a dense unorganized network of synthetic synapses it is shown that a complex adaptive system can be physically created on a microchip built especially for complex problems. These neuro-inspired atomic switch networks (ASNs) are a dynamic system with inherent and distributed memory, recurrent pathways, and up to a billion interacting elements. We demonstrate key parameters describing self-organized behavior such as non-linearity, power law dynamics, and multistate switching regimes. Device dynamics are then investigated using a feedback loop which provides control over current and voltage power-law behavior. Wide ranging prospective applications include understanding and eventually predicting future events that display complex emergent behavior in the critical regime.
NASA Astrophysics Data System (ADS)
Duarte-Cabral, A.; Acreman, D. M.; Dobbs, C. L.; Mottram, J. C.; Gibson, S. J.; Brunt, C. M.; Douglas, K. A.
2015-03-01
We present CO, H2, H I and HISA (H I self-absorption) distributions from a set of simulations of grand design spirals including stellar feedback, self-gravity, heating and cooling. We replicate the emission of the second galactic quadrant by placing the observer inside the modelled galaxies and post-process the simulations using a radiative transfer code, so as to create synthetic observations. We compare the synthetic data cubes to observations of the second quadrant of the Milky Way to test the ability of the current models to reproduce the basic chemistry of the Galactic interstellar medium (ISM), as well as to test how sensitive such galaxy models are to different recipes of chemistry and/or feedback. We find that models which include feedback and self-gravity can reproduce the production of CO with respect to H2 as observed in our Galaxy, as well as the distribution of the material perpendicular to the Galactic plane. While changes in the chemistry/feedback recipes do not have a huge impact on the statistical properties of the chemistry in the simulated galaxies, we find that the inclusion of both feedback and self-gravity are crucial ingredients, as our test without feedback failed to reproduce all of the observables. Finally, even though the transition from H2 to CO seems to be robust, we find that all models seem to underproduce molecular gas, and have a lower molecular to atomic gas fraction than is observed. Nevertheless, our fiducial model with feedback and self-gravity has shown to be robust in reproducing the statistical properties of the basic molecular gas components of the ISM in our Galaxy.
Approaching Error-Free Customer Satisfaction through Process Change and Feedback Systems
ERIC Educational Resources Information Center
Berglund, Kristin M.; Ludwig, Timothy D.
2009-01-01
Employee-based errors result in quality defects that can often impact customer satisfaction. This study examined the effects of a process change and feedback system intervention on error rates of 3 teams of retail furniture distribution warehouse workers. Archival records of error codes were analyzed and aggregated as the measure of quality. The…
Modeling, Control, and Estimation of Flexible, Aerodynamic Structures
NASA Astrophysics Data System (ADS)
Ray, Cody W.
Engineers have long been inspired by nature’s flyers. Such animals navigate complex environments gracefully and efficiently by using a variety of evolutionary adaptations for high-performance flight. Biologists have discovered a variety of sensory adaptations that provide flow state feedback and allow flying animals to feel their way through flight. A specialized skeletal wing structure and plethora of robust, adaptable sensory systems together allow nature’s flyers to adapt to myriad flight conditions and regimes. In this work, motivated by biology and the successes of bio-inspired, engineered aerial vehicles, linear quadratic control of a flexible, morphing wing design is investigated, helping to pave the way for truly autonomous, mission-adaptive craft. The proposed control algorithm is demonstrated to morph a wing into desired positions. Furthermore, motivated specifically by the sensory adaptations organisms possess, this work transitions to an investigation of aircraft wing load identification using structural response as measured by distributed sensors. A novel, recursive estimation algorithm is utilized to recursively solve the inverse problem of load identification, providing both wing structural and aerodynamic states for use in a feedback control, mission-adaptive framework. The recursive load identification algorithm is demonstrated to provide accurate load estimate in both simulation and experiment.
Distributed state machine supervision for long-baseline gravitational-wave detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rollins, Jameson Graef, E-mail: jameson.rollins@ligo.org
The Laser Interferometer Gravitational-wave Observatory (LIGO) consists of two identical yet independent, widely separated, long-baseline gravitational-wave detectors. Each Advanced LIGO detector consists of complex optical-mechanical systems isolated from the ground by multiple layers of active seismic isolation, all controlled by hundreds of fast, digital, feedback control systems. This article describes a novel state machine-based automation platform developed to handle the automation and supervisory control challenges of these detectors. The platform, called Guardian, consists of distributed, independent, state machine automaton nodes organized hierarchically for full detector control. User code is written in standard Python and the platform is designed to facilitatemore » the fast-paced development process associated with commissioning the complicated Advanced LIGO instruments. While developed specifically for the Advanced LIGO detectors, Guardian is a generic state machine automation platform that is useful for experimental control at all levels, from simple table-top setups to large-scale multi-million dollar facilities.« less
NASA Astrophysics Data System (ADS)
Bikkina, Srinivas; Kawamura, Kimitaka; Miyazaki, Yuzo; Fu, Pingqing
2014-05-01
Atmospheric dicarboxylic acids (DCA) are a ubiquitous water-soluble component of secondary organic aerosols (SOA), which can act as cloud condensation nuclei (CCN), affecting the Earth's climate. Despite the high abundances of oxalic acid and related compounds in the marine aerosols, there is no consensus on what controls their distributions over the open ocean. Marine biological productivity could play a role in the production of DCA, but there is no substantial evidence to support this hypothesis. Here we present latitudinal distributions of DCA, oxoacids and α-dicarbonyls in the marine aerosols from the remote Pacific. Their concentrations were found several times higher in more biologically influenced aerosols (MBA) than less biologically influenced aerosols. We propose isoprene and unsaturated fatty acids as sources of DCA as inferred from significantly higher abundances of isoprene-SOA tracers and azelaic acid in MBA. These results have implications toward the reassessment of climate forcing feedbacks of marine-derived SOA.
NASA Astrophysics Data System (ADS)
Liu, D.; Tian, F.; Lin, M.; Sivapalan, M.
2015-02-01
The complex interactions and feedbacks between humans and water are critically important issues but remain poorly understood in the newly proposed discipline of socio-hydrology (Sivapalan et al., 2012). An exploratory model with the appropriate level of simplification can be valuable for improving our understanding of the co-evolution and self-organization of socio-hydrological systems driven by interactions and feedbacks operating at different scales. In this study, a simplified conceptual socio-hydrological model based on logistic growth curves is developed for the Tarim River basin in western China and is used to illustrate the explanatory power of such a co-evolutionary model. The study area is the main stream of the Tarim River, which is divided into two modeling units. The socio-hydrological system is composed of four sub-systems, i.e., the hydrological, ecological, economic, and social sub-systems. In each modeling unit, the hydrological equation focusing on water balance is coupled to the other three evolutionary equations to represent the dynamics of the social sub-system (denoted by population), the economic sub-system (denoted by irrigated crop area ratio), and the ecological sub-system (denoted by natural vegetation cover), each of which is expressed in terms of a logistic growth curve. Four feedback loops are identified to represent the complex interactions among different sub-systems and different spatial units, of which two are inner loops occurring within each separate unit and the other two are outer loops linking the two modeling units. The feedback mechanisms are incorporated into the constitutive relations for model parameters, i.e., the colonization and mortality rates in the logistic growth curves that are jointly determined by the state variables of all sub-systems. The co-evolution of the Tarim socio-hydrological system is then analyzed with this conceptual model to gain insights into the overall system dynamics and its sensitivity to the external drivers and internal system variables. The results show a costly pendulum swing between a balanced distribution of socio-economic and natural ecologic resources among the upper and lower reaches and a highly skewed distribution towards the upper reach. This evolution is principally driven by the attitudinal changes occurring within water resources management policies that reflect the evolving community awareness of society to concerns regarding the ecology and environment.
Impact of the Supervisor Feedback Environment on Creative Performance: A Moderated Mediation Model
Zhang, Jian; Gong, Zhenxing; Zhang, Shuangyu; Zhao, Yujia
2017-01-01
Studies on the relationship between feedback and creative performance have only focused on the feedback-self and have underestimated the value of the feedback environment. Building on Self Determined Theory, the purpose of this article is to examine the relationship among feedback environment, creative personality, goal self-concordance and creative performance. Hierarchical regression analysis of a sample of 162 supervisor–employee dyads from nine industry firms. The results indicate that supervisor feedback environment is positively related to creative performance, the relationship between the supervisor feedback environment and creative performance is mediated by goal self-concordance perfectly and moderated by creative personality significantly. The mediation effort of goal self-concordance is significantly influenced by creative personality. The implication of improving employees’ creative performance is further discussed. The present study advances several perspectives of previous studies, echoes recent suggestions that organizations interested in stimulating employee creativity might profitably focus on developing work contexts that support it. PMID:28275362
NASA Technical Reports Server (NTRS)
Timothy, J. G.; Bybee, R. L.
1977-01-01
Up to now, microchannel array plates (MCPs) have been constructed with microchannels having a straight geometry and hence have been prone to ion-feedback instabilities at high operating potentials and high ambient pressures. This paper describes the performances of MCPs with curved (J and C configuration) microchannels to inhibit ion feedback. Plates with curved microchannels have demonstrated performances comparable to those of conventional channel electron multipliers with saturated output pulse-height distributions and modal gain values in excess of 10 to the 6th electrons/pulse.
NASA Astrophysics Data System (ADS)
Soom, F.; Ulrich, C.; Dafflon, B.; Wu, Y.; Kneafsey, T. J.; López, R. D.; Peterson, J.; Hubbard, S. S.
2016-12-01
The Arctic tundra with its permafrost dominated soils is one of the regions most affected by global climate change, and in turn, can also influence the changing climate through biogeochemical processes, including greenhouse gas release or storage. Characterization of shallow permafrost distribution and characteristics are required for predicting ecosystem feedbacks to a changing climate over decadal to century timescales, because they can drive active layer deepening and land surface deformation, which in turn can significantly affect hydrological and biogeochemical responses, including greenhouse gas dynamics. In this study, part of the Next-Generation Ecosystem Experiment (NGEE-Arctic), we use X-ray computed tomography (CT) to estimate wet bulk density of cores extracted from a field site near Barrow AK, which extend 2-3m through the active layer into the permafrost. We use multi-dimensional relationships inferred from destructive core sample analysis to infer organic matter density, dry bulk density and ice content, along with some geochemical properties from nondestructive CT-scans along the entire length of the cores, which was not obtained by the spatially limited destructive laboratory analysis. Multi-parameter cross-correlations showed good agreement between soil properties estimated from CT scans versus properties obtained through destructive sampling. Soil properties estimated from cores located in different types of polygons provide valuable information about the vertical distribution of soil and permafrost properties as a function of geomorphology.
Not the last word: dissemination strategies for patient-centred research in nursing
Hagan, Teresa L.; Schmidt, Karen; Ackison, Guyanna R.; Murphy, Megan; Jones, Jennifer R.
2017-01-01
Introduction Research results hold value for many stakeholders including researchers, patient populations, advocacy organizations, and community groups. The aim of this study is to describe our research team’s systematic process to designing a dissemination strategy for a completed research study. Methodology We organized a dissemination event to feed the results of our study to participants and stakeholders and collect feedback regarding our study. We applied the Agency for Healthcare Research and Quality’s dissemination framework to guide the development of the event and collected participant feedback during the event. Results We describe our dissemination strategy along with attendees’ feedback and suggestions for our research as an example of a way to design a patient- and community-focused dissemination. We explain the details of our dissemination strategy including (a) our process of reporting a large research study into a stakeholder event, (b) stakeholder feedback collected at the event, and (c) the translation of feedback into our research team’s research. We also describe challenges encountered during the dissemination process and ways to handle issues such as logistics, funding, and staff. Conclusions This analysis provides key insights and practical advice for researchers looking for innovative ways to disseminate their findings within the lay and scientific communities. PMID:29081824
Linear systems with structure group and their feedback invariants
NASA Technical Reports Server (NTRS)
Martin, C.; Hermann, R.
1977-01-01
A general method described by Hermann and Martin (1976) for the study of the feedback invariants of linear systems is considered. It is shown that this method, which makes use of ideas of topology and algebraic geometry, is very useful in the investigation of feedback problems for which the classical methods are not suitable. The transfer function as a curve in the Grassmanian is examined. The general concepts studied in the context of specific systems and applications are organized in terms of the theory of Lie groups and algebraic geometry. Attention is given to linear systems which have a structure group, linear mechanical systems, and feedback invariants. The investigation shows that Lie group techniques are powerful and useful tools for analysis of the feedback structure of linear systems.
The Universe Adventure - Feedback
like to hear back from us): How can we contact you? Occupation (high school student, physics teacher , cosmologist, et cetera): What is your occupation? Type: Type of Feedback Organization/Format Content Fundamentals of Cosmology Evidence for the Big Bang Eras of the Cosmos The Final Frontier Glossary Other
A Learning Progression for Feedback Loop Reasoning at Lower Elementary Level
ERIC Educational Resources Information Center
Hokayem, Hayat; Ma, Jingjing; Jin, Hui
2015-01-01
This study examines to what extent elementary students use feedback loop reasoning, a key component of systems thinking, to reason about interactions among organisms in ecosystems. We conducted clinical interviews with 44 elementary students (1st through 4th grades). We asked students to explain how populations change in two contexts: a…
Educational Accountability and Policy Feedback
ERIC Educational Resources Information Center
McDonnell, Lorraine M.
2013-01-01
Over the past 30 years, accountability policies have become more prominent in public K-12 education and have changed how teaching and learning are organized. It is less clear the extent to which these policies have altered the politics of education. This article begins to address that question through the lens of policy feedback. It identifies…
The Feedback Environment Scale: Construct Definition, Measurement, and Validation
ERIC Educational Resources Information Center
Steelman, Lisa A.; Levy, Paul E.; Snell, Andrea F.
2004-01-01
Managers are increasingly being held accountable for providing resources that support employee development, particularly in the form of feedback and coaching. To support managers as trainers and coaches, organizations must provide managers with the tools they need to succeed in this area. This article presents a new tool to assist in the diagnosis…
Survey Feedback and the Problem of Change in Teacher Education.
ERIC Educational Resources Information Center
Hopkins, David
The problem of change in Canadian teacher education was studied, and the effectiveness of survey feedback, an organization development intervention, was tested in twelve Canadian teacher education institutions. Based on a review of the literature on change and teacher education, the argument is made that the impetus for change occurs as a result…
RGB and white-emitting organic lasers on flexible glass.
Foucher, C; Guilhabert, B; Kanibolotsky, A L; Skabara, P J; Laurand, N; Dawson, M D
2016-02-08
Two formats of multiwavelength red, green and blue (RGB) laser on mechanically-flexible glass are demonstrated. In both cases, three all-organic, vertically-emitting distributed feedback (DFB) lasers are assembled onto a common ultra-thin glass membrane substrate and fully encapsulated by a thin polymer overlayer and an additional 50 µm-thick glass membrane in order to improve the performance. The first device format has the three DFB lasers sitting next to each other on the glass substrate. The DFB lasers are simultaneously excited by a single overlapping optical pump, emitting spatially separated red, green and blue laser output with individual thresholds of, respectively, 28 µJ/cm(2), 11 µJ/cm(2) and 32 µJ/cm(2) (for 5 ns pump pulses). The second device format has the three DFB lasers, respectively the red, green and blue laser, vertically stacked onto the flexible glass. This device format emits a white laser output for an optical pump fluence above 42 µJ/cm(2).
NASA Astrophysics Data System (ADS)
Gallas, Michelle R.; Gallas, Marcia R.; Gallas, Jason A. C.
2014-10-01
We study complex oscillations generated by the de Pillis-Radunskaya model of cancer growth, a model including interactions between tumor cells, healthy cells, and activated immune system cells. We report a wide-ranging systematic numerical classification of the oscillatory states and of their relative abundance. The dynamical states of the cell populations are characterized here by two independent and complementary types of stability diagrams: Lyapunov and isospike diagrams. The model is found to display stability phases organized regularly in old and new ways: Apart from the familiar spirals of stability, it displays exceptionally long zig-zag networks and intermixed cascades of two- and three-doubling flanked stability islands previously detected only in feedback systems with delay. In addition, we also characterize the interplay between continuous spike-adding and spike-doubling mechanisms responsible for the unbounded complexification of periodic wave patterns. This article is dedicated to Prof. Hans Jürgen Herrmann on the occasion of his 60th birthday.
Effect of Real-Time Feedback on Screw Placement Into Synthetic Cancellous Bone.
Gustafson, Peter A; Geeslin, Andrew G; Prior, David M; Chess, Joseph L
2016-08-01
The objective of this study is to evaluate whether real-time torque feedback may reduce the occurrence of stripping when inserting nonlocking screws through fracture plates into synthetic cancellous bone. Five attending orthopaedic surgeons and 5 senior level orthopaedic residents inserted 8 screws in each phase. In phase I, screws were inserted without feedback simulating conventional techniques. In phase II, screws were driven with visual torque feedback. In phase III, screws were again inserted with conventional techniques. Comparison of these 3 phases with respect to screw insertion torque, surgeon rank, and perception of stripping was used to establish the effects of feedback. Seventy-three of 239 screws resulted in stripping. During the first phase, no feedback was provided and the overall strip rate was 41.8%; this decreased to 15% with visual feedback (P < 0.001) and returned to 35% when repeated without feedback. With feedback, a lower average torque was applied over a narrower torque distribution. Residents stripped 40.8% of screws compared with 20.2% for attending surgeons. Surgeons were poor at perceiving whether they stripped. Prevention and identification of stripping is influenced by surgeon perception of tactile sensation. This is significantly improved with utilization of real-time visual feedback of a torque versus roll curve. This concept of real-time feedback seems beneficial toward performance in synthetic cancellous bone and may lead to improved fixation in cancellous bone in a surgical setting.
Evaluative-feedback stimuli selectively activate the self-related brain area: an fMRI study.
Pan, Xiaohong; Hu, Yang; Li, Lei; Li, Jianqi
2009-11-06
Evaluative-feedback, occurring in our daily life, generally contains subjective appraisal of one's specific abilities and personality characteristics besides objective right-or-wrong information. Traditional psychological researches have proved it to be important in building up one's self-concept; however, the neural basis underlying its cognitive processing remains unclear. The present neuroimaging study revealed the mechanism of evaluative-feedback processing at the neural level. 19 healthy Chinese subjects participated in this experiment, and completed the time-estimation task to better their performance according to four types of feedback, namely positive evaluative- and performance-feedback as well as negative evaluative- and performance-feedback. Neuroimaging findings showed that evaluative- rather than performance-feedback can induce increased activities mainly distributed in the cortical midline structures (CMS), including medial prefrontal cortex (BA 8/9)/anterior cigulate cortex (ACC, BA 20), precuneus (BA 7/31) adjacent to posterior cingulate gyrus (PCC, BA 23) of both hemispheres, as well as right inferior lobule (BA 40). This phenomenon can provide evidence that evaluative-feedback may significantly elicit the self-related processing in our brain. In addition, our results also revealed that more brain areas, particularly some self-related neural substrates were activated by the positive evaluative-feedback, in comparative with the negative one. In sum, this study suggested that evaluative-feedback was closely correlated with the self-concept processing, which distinguished it from the performance-feedback.
Carbon Storage in Wetlands and Lakes of the Eastern US
NASA Technical Reports Server (NTRS)
Renik, Byrdie; Peteet, Dorothy; Hansen, James E. (Technical Monitor)
2001-01-01
Carbon stored underground may participate in a positive feedback with climate warming, as higher temperatures accelerate decomposition reactions and hence CO2 release. Assessing how below-ground carbon storage varies with modern climate and paleoclimate will advance understanding of this feedback in two ways. First, it will estimate the sensitivity of carbon storage to temperature and precipitation changes. Second, it will help quantify the size of carbon stocks available for the feedback, by indicating how current regional climate differences affect carbon storage. Whereas many studies of below-ground carbon storage concentrate on soils, this investigation focuses on the saturated and primarily organic material stored in wetlands and lake sediments. This study surveys research done on organic sediment depth and organic content at 50-100 sites in the eastern U.S., integrating our own research with the work of others. Storage depth is evaluated for sediments from the past 10,000 years, a date reflected in pollen profiles. Organic content is measured chiefly by loss-on-ignition (101). These variables are compared to characteristics of the sites such as latitude, altitude, and vegetation as well as local climate. Preliminary results suggest a strong relationship between latitude and depth of organic material stored over the last 10,000 years, with more accumulation in the northeastern US than the southeastern US. Linking the percent organic matter to actual carbon content is in progress with wetlands from Black Rock Forest and Alpine Swamp.
NASA Astrophysics Data System (ADS)
Trugman, A. T.; Fenton, N. J.; Bergeron, Y.; Xu, X.; Welp, L. R.; Medvigy, D.
2016-09-01
Previous empirical work has shown that feedbacks between fire severity, soil organic layer thickness, tree recruitment, and forest growth are important factors controlling carbon accumulation after fire disturbance. However, current boreal forest models inadequately simulate this feedback. We address this deficiency by updating the ED2 model to include a dynamic feedback between soil organic layer thickness, tree recruitment, and forest growth. The model is validated against observations spanning monthly to centennial time scales and ranging from Alaska to Quebec. We then quantify differences in forest development after fire disturbance resulting from changes in soil organic layer accumulation, temperature, nitrogen availability, and atmospheric CO2. First, we find that ED2 accurately reproduces observations when a dynamic soil organic layer is included. Second, simulations indicate that the presence of a thick soil organic layer after a mild fire disturbance decreases decomposition and productivity. The combination of the biological and physical effects increases or decreases total ecosystem carbon depending on local conditions. Third, with a 4°C temperature increase, some forests transition from undergoing succession to needleleaf forests to recruiting multiple cohorts of broadleaf trees, decreasing total ecosystem carbon by ˜40% after 300 years. However, the presence of a thick soil organic layer due to a persistently mild fire regime can prevent this transition and mediate carbon losses even under warmer temperatures. Fourth, nitrogen availability regulates successional dynamics; broadleaf species are less competitive with needleleaf trees under low nitrogen regimes. Fifth, the boreal forest shows additional short-term capacity for carbon sequestration as atmospheric CO2 increases.
Feasibility of a computer-assisted feedback system between dispatch centre and ambulances.
Lindström, Veronica; Karlsten, Rolf; Falk, Ann-Charlotte; Castrèn, Maaret
2011-06-01
The aim of the study was to evaluate the feasibility of a newly developed computer-assisted feedback system between dispatch centre and ambulances in Stockholm, Sweden. A computer-assisted feedback system based on a Finnish model was designed to fit the Swedish emergency medical system. Feedback codes were identified and divided into three categories; assessment of patients' primary condition when ambulance arrives at scene, no transport by the ambulance and level of priority. Two ambulances and one emergency medical communication centre (EMCC) in Stockholm participated in the study. A sample of 530 feedback codes sent through the computer-assisted feedback system was reviewed. The information on the ambulance medical records was compared with the feedback codes used and 240 assignments were further analyzed. The used feedback codes sent from ambulance to EMCC were correct in 92% of the assignments. The most commonly used feedback code sent to the emergency medical dispatchers was 'agree with the dispatchers' assessment'. In addition, in 160 assignments there was a mismatch between emergency medical dispatchers and ambulance nurse assessments. Our results have shown a high agreement between medical dispatchers and ambulance nurse assessment. The feasibility of the feedback codes seems to be acceptable based on the small margin of error. The computer-assisted feedback system may, when used on a daily basis, make it possible for the medical dispatchers to receive feedback in a structural way. The EMCC organization can directly evaluate any changes in the assessment protocol by structured feedback sent from the ambulance.
ERIC Educational Resources Information Center
Ludwig, Timothy D.; Goomas, David T.
2007-01-01
Field study was conducted in auto-parts after-market distribution centers where selectors used handheld computers to receive instructions and feedback about their product selection process. A wireless voice-interaction technology was then implemented in a multiple baseline fashion across three departments of a warehouse (N = 14) and was associated…
Paret, Christian; Zähringer, Jenny; Ruf, Matthias; Gerchen, Martin Fungisai; Mall, Stephanie; Hendler, Talma; Schmahl, Christian; Ende, Gabriele
2018-03-30
Brain-computer interfaces provide conscious access to neural activity by means of brain-derived feedback ("neurofeedback"). An individual's abilities to monitor and control feedback are two necessary processes for effective neurofeedback therapy, yet their underlying functional neuroanatomy is still being debated. In this study, healthy subjects received visual feedback from their amygdala response to negative pictures. Activation and functional connectivity were analyzed to disentangle the role of brain regions in different processes. Feedback monitoring was mapped to the thalamus, ventromedial prefrontal cortex (vmPFC), ventral striatum (VS), and rostral PFC. The VS responded to feedback corresponding to instructions while rPFC activity differentiated between conditions and predicted amygdala regulation. Control involved the lateral PFC, anterior cingulate, and insula. Monitoring and control activity overlapped in the VS and thalamus. Extending current neural models of neurofeedback, this study introduces monitoring and control of feedback as anatomically dissociated processes, and suggests their important role in voluntary neuromodulation. © 2018 Wiley Periodicals, Inc.
Automatic and controlled processing in the corticocerebellar system.
Ramnani, Narender
2014-01-01
During learning, performance changes often involve a transition from controlled processing in which performance is flexible and responsive to ongoing error feedback, but effortful and slow, to a state in which processing becomes swift and automatic. In this state, performance is unencumbered by the requirement to process feedback, but its insensitivity to feedback reduces its flexibility. Many properties of automatic processing are similar to those that one would expect of forward models, and many have suggested that these may be instantiated in cerebellar circuitry. Since hierarchically organized frontal lobe areas can both send and receive commands, I discuss the possibility that they can act both as controllers and controlled objects and that their behaviors can be independently modeled by forward models in cerebellar circuits. Since areas of the prefrontal cortex contribute to this hierarchically organized system and send outputs to the cerebellar cortex, I suggest that the cerebellum is likely to contribute to the automation of cognitive skills, and to the formation of habitual behavior which is resistant to error feedback. An important prerequisite to these ideas is that cerebellar circuitry should have access to higher order error feedback that signals the success or failure of cognitive processing. I have discussed the pathways through which such feedback could arrive via the inferior olive and the dopamine system. Cerebellar outputs inhibit both the inferior olive and the dopamine system. It is possible that learned representations in the cerebellum use this as a mechanism to suppress the processing of feedback in other parts of the nervous system. Thus, cerebellar processes that control automatic performance may be completed without triggering the engagement of controlled processes by prefrontal mechanisms. © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mao, Xuefeng; Zhou, Xinlei; Yu, Qingxu
2016-02-01
We describe a stabilizing operation point technique based on the tunable Distributed Feedback (DFB) laser for quadrature demodulation of interferometric sensors. By introducing automatic lock quadrature point and wavelength periodically tuning compensation into an interferometric system, the operation point of interferometric system is stabilized when the system suffers various environmental perturbations. To demonstrate the feasibility of this stabilizing operation point technique, experiments have been performed using a tunable-DFB-laser as light source to interrogate an extrinsic Fabry-Perot interferometric vibration sensor and a diaphragm-based acoustic sensor. Experimental results show that good tracing of Q-point was effectively realized.
Optical bending sensor using distributed feedback solid state dye lasers on optical fiber.
Kubota, Hiroyuki; Oomi, Soichiro; Yoshioka, Hiroaki; Watanabe, Hirofumi; Oki, Yuji
2012-07-02
Novel type of optical fiber sensor was proposed and demonstrated. The print-like fabrication technique fabricates multiple distributed feedback solid state dye lasers on a polymeric optical fiber (POF) with tapered coupling. This multi-active-sidecore structure was easily fabricated and provides multiple functions. Mounting the lasers on the same point of a multimode POF demonstrated a bending radius sensitivity of 20 m without any supports. Two axis directional sensing without cross talk was also confirmed. A more complicated mounting formation can demonstrate a twisted POF. The temperature property of the sensor was also studied, and elimination of the temperature influence was experimentally attained.
Clusters of poverty and disease emerge from feedbacks on an epidemiological network.
Pluciński, Mateusz M; Ngonghala, Calistus N; Getz, Wayne M; Bonds, Matthew H
2013-03-06
The distribution of health conditions is characterized by extreme inequality. These disparities have been alternately attributed to disease ecology and the economics of poverty. Here, we provide a novel framework that integrates epidemiological and economic growth theory on an individual-based hierarchically structured network. Our model indicates that, under certain parameter regimes, feedbacks between disease ecology and economics create clusters of low income and high disease that can stably persist in populations that become otherwise predominantly rich and free of disease. Surprisingly, unlike traditional poverty trap models, these localized disease-driven poverty traps can arise despite homogeneity of parameters and evenly distributed initial economic conditions.
Cascaded Raman lasing in a PM phosphosilicate fiber with random distributed feedback
NASA Astrophysics Data System (ADS)
Lobach, Ivan A.; Kablukov, Sergey I.; Babin, Sergey A.
2018-02-01
We report on the first demonstration of a linearly polarized cascaded Raman fiber laser based on a simple half-open cavity with a broadband composite reflector and random distributed feedback in a polarization maintaining phosphosilicate fiber operating beyond zero dispersion wavelength ( 1400 nm). With increasing pump power from a Yb-doped fiber laser at 1080 nm, the random laser generates subsequently 8 W at 1262 nm and 9 W at 1515 nm with polarization extinction ratio of 27 dB. The generation linewidths amount to about 1 nm and 3 nm, respectively, being almost independent of power, in correspondence with the theory of a cascaded random lasing.
Jechow, Andreas; Schedel, Marco; Stry, Sandra; Sacher, Joachim; Menzel, Ralf
2007-10-15
A continuous-wave distributed feedback diode laser emitting at 976 nm was frequency doubled by the use of a periodically poled lithium niobate waveguide crystal with a channel size of 3 microm x 5 microm and an interaction length of 10 mm. A laser to waveguide coupling efficiency of 75% could be achieved resulting in 304 mW of incident infrared light inside the waveguide. Blue laser light emission of 159 mW at 488 nm has been generated, which equals to a conversion efficiency of 52%. The resulting wall plug efficiency was 7.4%.
Temperature dependence of spectral linewidth of InAs/InP quantum dot distributed feedback lasers
NASA Astrophysics Data System (ADS)
Duan, J.; Huang, H.; Schires, K.; Poole, P. J.; Wang, C.; Grillot, F.
2018-02-01
In this paper, we investigate the temperature dependence of spectral linewidth of InAs/InP quantum dot distributed feedback lasers. In comparison with their quantum well counterparts, results show that quantum dot lasers have spectral linewidths rather insensitive to the temperature with minimum values below 200 kHz in the range of 283K to 303K. The experimental results are also well confirmed by numerical simulations. Overall, this work shows that quantum dot lasers are excellent candidates for various applications such as coherent communication systems, high-resolution spectroscopy, high purity photonic microwave generation and on-chip atomic clocks.
Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin
2016-01-01
We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900–2000 nm. PMID:27416893
Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin
2016-07-15
We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900-2000 nm.
Electrotactile EMG feedback improves the control of prosthesis grasping force
NASA Astrophysics Data System (ADS)
Schweisfurth, Meike A.; Markovic, Marko; Dosen, Strahinja; Teich, Florian; Graimann, Bernhard; Farina, Dario
2016-10-01
Objective. A drawback of active prostheses is that they detach the subject from the produced forces, thereby preventing direct mechanical feedback. This can be compensated by providing somatosensory feedback to the user through mechanical or electrical stimulation, which in turn may improve the utility, sense of embodiment, and thereby increase the acceptance rate. Approach. In this study, we compared a novel approach to closing the loop, namely EMG feedback (emgFB), to classic force feedback (forceFB), using electrotactile interface in a realistic task setup. Eleven intact-bodied subjects and one transradial amputee performed a routine grasping task while receiving emgFB or forceFB. The two feedback types were delivered through the same electrotactile interface, using a mixed spatial/frequency coding to transmit 8 discrete levels of the feedback variable. In emgFB, the stimulation transmitted the amplitude of the processed myoelectric signal generated by the subject (prosthesis input), and in forceFB the generated grasping force (prosthesis output). The task comprised 150 trials of routine grasping at six forces, randomly presented in blocks of five trials (same force). Interquartile range and changes in the absolute error (AE) distribution (magnitude and dispersion) with respect to the target level were used to assess precision and overall performance, respectively. Main results. Relative to forceFB, emgFB significantly improved the precision of myoelectric commands (min/max of the significant levels) for 23%/36% as well as the precision of force control for 12%/32%, in intact-bodied subjects. Also, the magnitude and dispersion of the AE distribution were reduced. The results were similar in the amputee, showing considerable improvements. Significance. Using emgFB, the subjects therefore decreased the uncertainty of the forward pathway. Since there is a correspondence between the EMG and force, where the former anticipates the latter, the emgFB allowed for predictive control, as the subjects used the feedback to adjust the desired force even before the prosthesis contacted the object. In conclusion, the online emgFB was superior to the classic forceFB in realistic conditions that included electrotactile stimulation, limited feedback resolution (8 levels), cognitive processing delay, and time constraints (fast grasping).
Learning from Evaluation by Peer Team: A Case Study of a Family Counselling Organization
ERIC Educational Resources Information Center
Muniute-Cobb, Eivina I.; Alfred, Mary V.
2010-01-01
This qualitative study explores how employees learn from Team Primacy Concept-based employee evaluation and how they use the feedback in performing their jobs. Team Primacy Concept-based evaluation is a type of multirater evaluation. The distinctive characteristic of such evaluation is its peer feedback component during which the employee's…
The Impact of Level of Performance on Feedback Strategy
ERIC Educational Resources Information Center
Beaulieu, R. P.; Love, Kevin G.
2006-01-01
The primary purpose of this study was to investigate the impact of the level of observed performance on the feedback strategy selected by a performance evaluator. One hundred and twenty-three actual performance evaluators from 15 different organizations and 123 college students reviewed, in groups which ranged from 2 to 20, a job description for…
J. Ortega; A. Turnipseed; A. B. Guenther; T. G. Karl; D. A. Day; D. Gochis; J. A. Huffman; A. J. Prenni; E. J. T. Levin; S. M. Kreidenweis; P. J. DeMott; Y. Tobo; E. G. Patton; A. Hodzic; Y. Y. Cui; P. C. Harley; R. S. Hornbrook; E. C. Apel; R. K. Monson; A. S. D. Eller; J. P. Greenberg; M. C. Barth; P. Campuzano-Jost; B. B. Palm; J. L. Jimenez; A. C. Aiken; M. K. Dubey; C. Geron; J. Offenberg; M. G. Ryan; P. J. Fornwalt; S. C. Pryor; F. N. Keutsch; J. P. DiGangi; A. W. H. Chan; A. H. Goldstein; G. M. Wolfe; S. Kim; L. Kaser; R. Schnitzhofer; A. Hansel; C. A. Cantrell; R. L. Mauldin; J. N. Smith
2014-01-01
The Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen (BEACHON) project seeks to understand the feedbacks and interrelationships between hydrology, biogenic emissions, carbon assimilation, aerosol properties, clouds and associated feedbacks within water-limited ecosystems. The Manitou Experimental Forest Observatory (MEFO) was...
Feedback, Questions and Information Processing--Putting It All Together.
ERIC Educational Resources Information Center
Wager, Walter; Mory, Edna
This review of research on the effectiveness of adding questions to text materials to improve learning and the research on feedback posits that there is a connection between the findings in these two areas that can be viewed from an information processing perspective. A model of information processing taken from Gagne is used to organize the…
Developmental remodeling of corticocortical feedback circuits in ferret visual cortex
Khalil, Reem; Levitt, Jonathan B.
2014-01-01
Visual cortical areas in the mammalian brain are linked through a system of interareal feedforward and feedback connections, which presumably underlie different visual functions. We characterized the refinement of feedback projections to primary visual cortex (V1) from multiple sources in juvenile ferrets ranging in age from four to ten weeks postnatal. We studied whether the refinement of different aspects of feedback circuitry from multiple visual cortical areas proceeds at a similar rate in all areas. We injected the neuronal tracer cholera toxin B (CTb) into V1, and mapped the areal and laminar distribution of retrogradely labeled cells in extrastriate cortex. Around the time of eye opening at four weeks postnatal, the retinotopic arrangement of feedback appears essentially adultlike; however, Suprasylvian cortex supplies the greatest proportion of feedback, whereas area 18 supplies the greatest proportion in the adult. The density of feedback cells and the ratio of supragranular/infragranular feedback contribution declined in this period at a similar rate in all cortical areas. We also find significant feedback to V1 from layer IV of all extrastriate areas. The regularity of cell spacing, the proportion of feedback arising from layer IV, and the tangential extent of feedback in each area all remained essentially unchanged during this period, except for the infragranular feedback source in area 18 which expanded. Thus, while much of the basic pattern of cortical feedback to V1 is present before eye opening, there is major synchronous reorganization after eye opening, suggesting a crucial role for visual experience in this remodeling process. PMID:24665018
Developmental remodeling of corticocortical feedback circuits in ferret visual cortex.
Khalil, Reem; Levitt, Jonathan B
2014-10-01
Visual cortical areas in the mammalian brain are linked through a system of interareal feedforward and feedback connections, which presumably underlie different visual functions. We characterized the refinement of feedback projections to primary visual cortex (V1) from multiple sources in juvenile ferrets ranging in age from 4-10 weeks postnatal. We studied whether the refinement of different aspects of feedback circuitry from multiple visual cortical areas proceeds at a similar rate in all areas. We injected the neuronal tracer cholera toxin B (CTb) into V1 and mapped the areal and laminar distribution of retrogradely labeled cells in extrastriate cortex. Around the time of eye opening at 4 weeks postnatal, the retinotopic arrangement of feedback appears essentially adult-like; however, suprasylvian cortex supplies the greatest proportion of feedback, whereas area 18 supplies the greatest proportion in the adult. The density of feedback cells and the ratio of supragranular/infragranular feedback contribution declined in this period at a similar rate in all cortical areas. We also found significant feedback to V1 from layer IV of all extrastriate areas. The regularity of cell spacing, the proportion of feedback arising from layer IV, and the tangential extent of feedback in each area all remained essentially unchanged during this period, except for the infragranular feedback source in area 18, which expanded. Thus, while much of the basic pattern of cortical feedback to V1 is present before eye opening, there is major synchronous reorganization after eye opening, suggesting a crucial role for visual experience in this remodeling process. © 2014 Wiley Periodicals, Inc.
1977-12-01
Effects of Survey Feedback as an Action Research Jan. 1977- Dec. 1977 Intervention on Unit Efficiency, Employee Afecti-0’ PERFORMINI ORG. REPORT NUMBER R...INTERVENTION, SATISFACTION, OREANIZATION, EFFECTIVENESS, CONSULTATION, EVALUATION RESEARCH 20. ABSTRACT (Continue on reverse side It necessary and identify...by block number) A six month action research project designed to evaluate the effects of survey feedback u:;edl as an intervention strategy wittin
Thermo-spectral properties of plastic lasers
NASA Astrophysics Data System (ADS)
Dawson, Nathan J.; Aviles, Michael; Andrews, James H.; Crescimanno, Michael; Petrus, Joshua B.; Mazzocco, Anthony; Singer, Kenneth D.; Baer, Eric; Song, Hyunmin
2013-09-01
We study the effects of temperature changes on the operating wavelength of all-polymer microresonator lasers, particularly on multilayered defect distributed feedback and distributed Bragg reflector lasers. The parameters that change the operating wavelength are discussed with comparisons between experiments and simulations.
NASA Technical Reports Server (NTRS)
Cess, R. D.; Potter, G. L.; Blanchet, J. P.; Boer, G. J.; Del Genio, A. D.
1990-01-01
The present study provides an intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. This intercomparison uses sea surface temperature change as a surrogate for climate change. The interpretation of cloud-climate interactions is given special attention. A roughly threefold variation in one measure of global climate sensitivity is found among the 19 models. The important conclusion is that most of this variation is attributable to differences in the models' depiction of cloud feedback, a result that emphasizes the need for improvements in the treatment of clouds in these models if they are ultimately to be used as reliable climate predictors. It is further emphazied that cloud feedback is the consequence of all interacting physical and dynamical processes in a general circulation model. The result of these processes is to produce changes in temperature, moisture distribution, and clouds which are integrated into the radiative response termed cloud feedback.
VISTILES: Coordinating and Combining Co-located Mobile Devices for Visual Data Exploration.
Langner, Ricardo; Horak, Tom; Dachselt, Raimund
2017-08-29
We present VISTILES, a conceptual framework that uses a set of mobile devices to distribute and coordinate visualization views for the exploration of multivariate data. In contrast to desktop-based interfaces for information visualization, mobile devices offer the potential to provide a dynamic and user-defined interface supporting co-located collaborative data exploration with different individual workflows. As part of our framework, we contribute concepts that enable users to interact with coordinated & multiple views (CMV) that are distributed across several mobile devices. The major components of the framework are: (i) dynamic and flexible layouts for CMV focusing on the distribution of views and (ii) an interaction concept for smart adaptations and combinations of visualizations utilizing explicit side-by-side arrangements of devices. As a result, users can benefit from the possibility to combine devices and organize them in meaningful spatial layouts. Furthermore, we present a web-based prototype implementation as a specific instance of our concepts. This implementation provides a practical application case enabling users to explore a multivariate data collection. We also illustrate the design process including feedback from a preliminary user study, which informed the design of both the concepts and the final prototype.
Modeling East Asian Dust and Its Radiative Feedbacks in CAM4-BAM
NASA Astrophysics Data System (ADS)
Xie, Xiaoning; Liu, Xiaodong; Che, Huizheng; Xie, Xiaoxun; Wang, Hongli; Li, Jiandong; Shi, Zhengguo; Liu, Yangang
2018-01-01
East Asian dust and its radiative feedbacks are analyzed by the use of the fourth version of the Community Atmosphere Model (CAM4) with a bulk aerosol model parameterization (BAM) for the dust size distribution (CAM4-BAM). Two numerical experiments are conducted and intercompared: one with (Active) and one without (Passive) the radiative effects of dust aerosols. This CAM4-BAM captures the main spatial distribution of the dust aerosol optical depth (AOD) and the dust surface concentrations over East Asia, with positive correlations with the local observational data on annual and seasonal means. A comparative analysis of the Active and Passive experiments reveals that consideration of the dust-radiation interaction can significantly reduce dust emissions, loading, transport, and dry and wet depositions over East Asia, which is opposite to the enhanced dust cycle over North Africa. Further analysis of the contrasting dust-radiation feedbacks between North Africa and East Asia shows that over North Africa, the dust radiative forcing significantly increases the surface temperature and 10 m wind speed, whereas it decreases the surface temperature and the surface wind speeds over East Asia. These contrasting radiative effects, in turn, result in distinct dust cycle changes over these two regions. Mechanistic analysis reveals that the radiative contrasts between East Asia and North Africa are mainly due to the differences in their regional surface albedo, dust vertical distribution, and size distribution.
Single-user MIMO versus multi-user MIMO in distributed antenna systems with limited feedback
NASA Astrophysics Data System (ADS)
Schwarz, Stefan; Heath, Robert W.; Rupp, Markus
2013-12-01
This article investigates the performance of cellular networks employing distributed antennas in addition to the central antennas of the base station. Distributed antennas are likely to be implemented using remote radio units, which is enabled by a low latency and high bandwidth dedicated link to the base station. This facilitates coherent transmission from potentially all available antennas at the same time. Such distributed antenna system (DAS) is an effective way to deal with path loss and large-scale fading in cellular systems. DAS can apply precoding across multiple transmission points to implement single-user MIMO (SU-MIMO) and multi-user MIMO (MU-MIMO) transmission. The throughput performance of various SU-MIMO and MU-MIMO transmission strategies is investigated in this article, employing a Long-Term evolution (LTE) standard compliant simulation framework. The previously theoretically established cell-capacity improvement of MU-MIMO in comparison to SU-MIMO in DASs is confirmed under the practical constraints imposed by the LTE standard, even under the assumption of imperfect channel state information (CSI) at the base station. Because practical systems will use quantized feedback, the performance of different CSI feedback algorithms for DASs is investigated. It is shown that significant gains in the CSI quantization accuracy and in the throughput of especially MU-MIMO systems can be achieved with relatively simple quantization codebook constructions that exploit the available temporal correlation and channel gain differences.
The Halo Occupation Distribution of Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Chatterjee, Suchetana; Nagai, D.; Richardson, J.; Zheng, Z.; Degraf, C.; DiMatteo, T.
2011-05-01
We investigate the halo occupation distribution of active galactic nuclei (AGN) using a state-of-the-art cosmological hydrodynamic simulation that self-consistently incorporates the growth and feedback of supermassive black holes and the physics of galaxy formation (DiMatteo et al. 2008). We show that the mean occupation function can be modeled as a softened step function for central AGN and a power law for the satellite population. The satellite occupation is consistent with weak redshift evolution and a power law index of unity. The number of satellite black holes at a given halo mass follows a Poisson distribution. We show that at low redshifts (z=1.0) feedback from AGN is responsible for higher suppression of black hole growth in higher mass halos. This effect introduces a bias in the correlation between instantaneous AGN luminosity and the host halo mass, making AGN clustering depend weakly on luminosity at low redshifts. We show that the radial distribution of AGN follows a power law which is fundamentally different from those of galaxies and dark matter. The best-fit power law index is -2.26 ± 0.23. The power law exponent do not show any evolution with redshift, host halo mass and AGN luminosity within statistical limits. Incorporating the environmental dependence of supermassive black hole accretion and feedback, our formalism provides the most complete theoretical tool for interpreting current and future measurements of AGN clustering.
Landscape fires dominate terrestrial natural aerosol - climate feedbacks
NASA Astrophysics Data System (ADS)
Scott, C.; Arnold, S.; Monks, S. A.; Asmi, A.; Paasonen, P.; Spracklen, D. V.
2017-12-01
The terrestrial biosphere is an important source of natural aerosol including landscape fire emissions and secondary organic aerosol (SOA) formed from biogenic volatile organic compounds (BVOCs). Atmospheric aerosol alters the Earth's climate by absorbing and scattering radiation (direct radiative effect; DRE) and by perturbing the properties of clouds (aerosol indirect effect; AIE). Natural aerosol sources are strongly controlled by, and can influence, climate; giving rise to potential natural aerosol-climate feedbacks. Earth System Models (ESMs) include a description of some of these natural aerosol-climate feedbacks, predicting substantial changes in natural aerosol over the coming century with associated radiative perturbations. Despite this, the sensitivity of natural aerosols simulated by ESMs to changes in climate or emissions has not been robustly tested against observations. Here we combine long-term observations of aerosol number and a global aerosol microphysics model to assess terrestrial natural aerosol-climate feedbacks. We find a strong positive relationship between the summertime anomaly in observed concentration of particles greater than 100 nm diameter and the anomaly in local air temperature. This relationship is reproduced by the model and driven by variability in dynamics and meteorology, as well as natural sources of aerosol. We use an offline radiative transfer model to determine radiative effects due to changes in two natural aerosol sources: landscape fire and biogenic SOA. We find that interannual variability in the simulated global natural aerosol radiative effect (RE) is negatively related to the global temperature anomaly. The magnitude of global aerosol-climate feedback (sum of DRE and AIE) is estimated to be -0.15 Wm-2 K-1 for landscape fire aerosol and -0.06 Wm-2 K-1 for biogenic SOA. These feedbacks are comparable in magnitude, but opposite in sign to the snow albedo feedback, highlighting the need for natural aerosol feedbacks to be included in climate simulations.
Organizational Climate of the Association of Leadership Educators
ERIC Educational Resources Information Center
Moore, Lori; McKim, Billy; Bruce, Jackie
2013-01-01
Without feedback from members and former members, professional organizations run the risk of being stalemated. This study sought to explore perceptions of current and former members of the Association of Leadership Educators (ALE) related to the organization and the climate within the organization. No statistical differences were found in the…
NASA Astrophysics Data System (ADS)
Jastrow, J. D.; Ping, C. L.; Deck, C. B.; Matamala, R.; Vugteveen, T. W.; Lederhouse, J. S.; Michaelson, G. J.
2016-12-01
Estimates of the amount of organic carbon (C) stored in permafrost-region soils and its susceptibility to mobilization with changing climate are improving but remain high, affecting the ability to reliably predict regional C-climate feedbacks. In lowland permafrost soils, much of the organic matter exists in a poorly degraded state and is often weakly associated with soil minerals due to the cold, wet environment and cryoturbation. Thus, the impacts of warming and permafrost thaw likely will depend, at least initially, on the past history of soil organic matter (SOM) degradation. Ice wedge polygons are ubiquitous, patterned ground features throughout Arctic coastal plain regions and are large enough (5-30 m across) that a better three-dimensional understanding of their C stocks and relative degradation state could improve geospatial upscaling of observational data and contribute benchmarks for constraining model parameters. We investigated the distribution and existing degradation state of SOM to a depth of 2 meters across three polygon types on the Arctic Coastal Plain of Alaska: flat-centered (FCP), low-centered (LCP), and high-centered (HCP) polygons, with each type replicated 3 times. To assess the relative degradation state of SOM, we used particle size fractionation to isolate fibric (coarse) from more degraded (fine) particulate organic matter and separated mineral-associated organic matter into silt- and clay-sized fractions. We found variations in the thickness and quality of surface organic layers for different polygon types. Below the active layer, organic-rich cryoturbated layers were located in the transition zone and fingered down into the upper permafrost. Soil organic C stocks varied across individual polygons and differed among polygon types, with HCPs generally having the largest C stocks. The relative degradation state of SOM also varied spatially and vertically within polygons and differed among polygon types. Our findings suggest that accounting for polygon-scale (wedge to center to wedge) and landscape-scale (polygon type) variations could help reduce the uncertainties in observational estimates of soil C stocks and their degradation state for areas dominated by ice wedge polygons.
Han, Heeyoung; Papireddy, Muralidhar Reddy; Hingle, Susan T; Ferguson, Jacqueline Anne; Koschmann, Timothy; Sandstrom, Steve
2018-07-01
Individualized structured feedback is an integral part of a resident's learning in communication skills. However, it is not clear what feedback residents receive for their communication skills development in real patient care. We will identify the most common feedback topics given to residents regarding communication skills during Internal Medicine residency training. We analyzed Resident Audio-recording Project feedback data from 2008 to 2013 by using a content analysis approach. Using open coding and an iterative categorization process, we identified 15 emerging themes for both positive and negative feedback. The most recurrent feedback topics were Patient education, Thoroughness, Organization, Questioning strategy, and Management. The residents were guided to improve their communication skills regarding Patient education, Thoroughness, Management, and Holistic exploration of patient's problem. Thoroughness and Communication intelligibility were newly identified themes that were rarely discussed in existing frameworks. Assessment rubrics serve as a lens through which we assess the adequacy of the residents' communication skills. Rather than sticking to a specific rubric, we chose to let the rubric evolve through our experience.
ARTIFICIAL INTELLIGENCE , THEORY), NERVE CELLS, SIMULATION, SENSE ORGANS, SENSES(PHYSIOLOGY), CONDITIONED RESPONSE, MATRICES(MATHEMATICS), MAPPING (TRANSFORMATIONS), MATHEMATICAL MODELS, FEEDBACK, BIONICS
ERIC Educational Resources Information Center
Llinares, Ana; Lyster, Roy
2014-01-01
This study compares the frequency and distribution of different types of corrective feedback (CF) (recasts, prompts and explicit correction) and learner uptake in 43 hours of classroom interaction at the 4th-5th grade level across three instructional settings: (1) two content and language integrated learning (CLIL) classrooms in Spain with English…
Spontaneous neuronal activity as a self-organized critical phenomenon
NASA Astrophysics Data System (ADS)
de Arcangelis, L.; Herrmann, H. J.
2013-01-01
Neuronal avalanches are a novel mode of activity in neuronal networks, experimentally found in vitro and in vivo, and exhibit a robust critical behaviour. Avalanche activity can be modelled within the self-organized criticality framework, including threshold firing, refractory period and activity-dependent synaptic plasticity. The size and duration distributions confirm that the system acts in a critical state, whose scaling behaviour is very robust. Next, we discuss the temporal organization of neuronal avalanches. This is given by the alternation between states of high and low activity, named up and down states, leading to a balance between excitation and inhibition controlled by a single parameter. During these periods both the single neuron state and the network excitability level, keeping memory of past activity, are tuned by homeostatic mechanisms. Finally, we verify if a system with no characteristic response can ever learn in a controlled and reproducible way. Learning in the model occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. Learning is a truly collective process and the learning dynamics exhibits universal features. Even complex rules can be learned provided that the plastic adaptation is sufficiently slow.
Brain aromatase: roles in reproduction and neuroprotection.
Roselli, Charles F
2007-01-01
It is well established that aromatization constitutes an essential part of testosterone's signaling pathway in brain and that estrogen metabolites, often together with testosterone, organize and activate masculine neural circuits. This paper summarizes the current understanding regarding the distribution, regulation and function of brain aromatase in mammals. Data from our laboratory are presented that highlight the important function of aromatase in the regulation of androgen feedback sensitivity in non-human primates and the possible role that aromatase plays in determining the brain structure and sexual partner preferences of rams. In addition, new data is presented indicating that the capacity for aromatization in cortical astrocytes is associated with cell survival and may be important for neuroprotection. It is anticipated that a better appreciation of the physiological and pathophysiological functions of aromatase will lead to important clinical insights.
Leung, Chi K.; Wang, Ying; Deonarine, Andrew; Tang, Lanlan; Prasse, Stephanie
2013-01-01
Negative-feedback loops between transcription factors and repressors in responses to xenobiotics, oxidants, heat, hypoxia, DNA damage, and infection have been described. Although common, the function of feedback is largely unstudied. Here, we define a negative-feedback loop between the Caenorhabditis elegans detoxification/antioxidant response factor SKN-1/Nrf and its repressor wdr-23 and investigate its function in vivo. Although SKN-1 promotes stress resistance and longevity, we find that tight regulation by WDR-23 is essential for growth and reproduction. By disabling SKN-1 transactivation of wdr-23, we reveal that feedback is required to set the balance between growth/reproduction and stress resistance/longevity. We also find that feedback is required to set the sensitivity of a core SKN-1 target gene to an electrophile. Interestingly, the effect of feedback on target gene induction is greatly reduced when the stress response is strongly activated, presumably to ensure maximum activation of cytoprotective genes during potentially fatal conditions. Our work provides a framework for understanding the function of negative feedback in inducible stress responses and demonstrates that manipulation of feedback alone can shift the balance of competing animal processes toward cell protection, health, and longevity. PMID:23836880
Improving the Usefulness and Use of Patient Survey Programs: National Health Service Interview Study
Darzi, Ara; Gancarczyk, Sarah; Mayer, Erik
2018-01-01
Background A growing body of evidence suggests a concerning lag between collection of patient experience data and its application in service improvement. This study aims to identify what health care staff perceive to be the barriers and facilitators to using patient-reported feedback and showcase successful examples of doing so. Objective This study aimed to apply a systems perspective to suggest policy improvements that could support efforts to use data on the frontlines. Methods Qualitative interviews were conducted in eight National Health Service provider locations in the United Kingdom, which were selected based on National Inpatient Survey scores. Eighteen patient-experience leads were interviewed about using patient-reported feedback with relevant staff. Interviews were transcribed and underwent thematic analysis. Staff-identified barriers and facilitators to using patient experience feedback were obtained. Results The most frequently cited barriers to using patient reported feedback pertained to interpreting results, understanding survey methodology, presentation of data in both national Care Quality Commission and contractor reports, inability to link data to other sources, and organizational structure. In terms of a wish list for improved practice, staff desired more intuitive survey methodologies, the ability to link patient experience data to other sources, and more examples of best practice in patient experience improvement. Three organizations also provided examples of how they successfully used feedback to improve care. Conclusions Staff feedback provides a roadmap for policy makers to reconsider how data is collected and whether or not the national regulations on surveys and patient experience data are meeting the quality improvement needs of local organizations. PMID:29691207
Lobach, Ivan A; Drobyshev, Roman V; Fotiadi, Andrei A; Podivilov, Evgeniy V; Kablukov, Sergey I; Babin, Sergey A
2017-10-15
Dynamic population inversion gratings induced in an active medium by counter-propagating optical fields may have a reverse effect on writing laser radiation via feedback they provide. In this Letter we report, to the best of our knowledge, on the first demonstration of an open-cavity fiber laser in which the distributed feedback is provided by a dynamic grating "written" in a Yb-doped active fiber, either by an external source or self-induced via a weak (∼0.1%) reflection from an angle-cleaved fiber end. It has been shown that meters-long dynamic grating is formed with a narrow bandwidth (<50 MHz) and a relatively high-reflection coefficient (>7%) securing single-frequency operation, but the subsequent hole-burning effects accompanied by new grating formation lead to the switching from one longitudinal mode to another. providing a regular pulse-mode dynamics. As a result, periodically generated pulse trains cover a spectrum range of several terahertz delivering millions of cavity modes in sequent pulses.
Distributed feedback interband cascade lasers with top grating and corrugated sidewalls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Feng; Stocker, Michael; Pham, John
Distributed feedback (DFB) interband cascade lasers (ICLs) with a 1st order top surface grating were designed and fabricated. Partially corrugated sidewalls were implemented to suppress high order lateral modes. The DFB ICLs have 4 mm long and 4.5 mu m wide ridge waveguides and are mounted epi-up on AlN submounts. We demonstrated a continuous-wave (CW) DFB ICL, from a first wafer which has a large detuning of the gain peak from the DFB wavelength, with a side mode suppression ratio of 30 dB. With proper matching of grating feedback and the gain peak wavelength for the second wafer, a DFBmore » ICL was demonstrated with a maximum CW output power and a maximum wall plug efficiency reaching 42 mW and 2%, respectively, at 25 degrees C. The lasing wavelengths of both lasers are around 3.3 mu m at 25 degrees C. Published by AIP Publishing.« less
Losses, gain, and lasing in organic and perovskite active materials (Conference Presentation)
NASA Astrophysics Data System (ADS)
Pourdavoud, Neda; Riedl, Thomas J.
2016-09-01
Organic solid state lasers (OSLs) based on semiconducting polymers or small molecules have seen some significant progress over the past decade. Highly efficient organic gain materials combined with high-Q resonator geometries (distributed feedback (DFB), VCSEL, etc.) have enabled OSLs, optically pumped by simple inorganic laser diodes or even LEDs. However, some fundamental goals remain to be reached, like continuous wave (cw) operation and injection lasing. I will address various loss mechanisms related to accumulated triplet excitons or long-lived polarons that in combination with the particular photo-physics of organic gain media state the dominant road-blocks on the way to reach these goals. I will discuss the recent progress in fundamental understanding of these loss processes, which now provides a solid basis for modelling, e.g. of laser dynamics. Avenues to mitigate these fundamental loss mechanisms, e.g. by alternative materials will be presented. In this regard, a class of gain materials based on organo-lead halide perovskites re-entered the scene as light emitters, recently. Enjoying a tremendous lot of attention as active material for solution processed solar cells with a 20+% efficiency, they have recently unveiled their exciting photo-physics for lasing applications. Optically pumped lasing in these materials has been achieved. I will discuss some of the unique properties that render this class of materials a promising candidate to overcome some of the limitations of "classical" organic gain media.
Research in the Optical Sciences
1990-03-12
organics for guided wave devices; nonlinear propagation and wave mixing in sodium vapor: gain/feedback approach to optical instabilities; conical... SODIUM VAPOR: GAIN/FEEDBACK APPROACH TO OPTICAL INSTABILITIES; CONICAL EMISSION; KALEIDOSCOPIC SPATIAL INSTABILITY G. Khitrova and H . M . Gibbs...Falco, "Ex situ characterization of MBE-grown molybdenum silicide thin films, The 8th Annual Symposium of the Arizona chapter of The American Vacuum
ERIC Educational Resources Information Center
Zheng, Zane Z.; Munhall, Kevin G.; Johnsrude, Ingrid S.
2010-01-01
The fluency and the reliability of speech production suggest a mechanism that links motor commands and sensory feedback. Here, we examined the neural organization supporting such links by using fMRI to identify regions in which activity during speech production is modulated according to whether auditory feedback matches the predicted outcome or…
ERIC Educational Resources Information Center
James, Deborah Michelle; Hall, Alex; Lombardo, Chiara; McGovern, Will
2016-01-01
Background: In this study, we explored the impact of staff training that used video feedback to help staff see the effect of their interactional work with service users. The study was based at a large organization delivering services for children and adults with autism. Materials and Methods: A longitudinal qualitative study with semi-structured…
NASA Astrophysics Data System (ADS)
Acharya, S.; Kaplan, D. A.; Casey, S.; Cohen, M. J.; Jawitz, J. W.
2015-05-01
Self-organized landscape patterning can arise in response to multiple processes. Discriminating among alternative patterning mechanisms, particularly where experimental manipulations are untenable, requires process-based models. Previous modeling studies have attributed patterning in the Everglades (Florida, USA) to sediment redistribution and anisotropic soil hydraulic properties. In this work, we tested an alternate theory, the self-organizing-canal (SOC) hypothesis, by developing a cellular automata model that simulates pattern evolution via local positive feedbacks (i.e., facilitation) coupled with a global negative feedback based on hydrology. The model is forced by global hydroperiod that drives stochastic transitions between two patch types: ridge (higher elevation) and slough (lower elevation). We evaluated model performance using multiple criteria based on six statistical and geostatistical properties observed in reference portions of the Everglades landscape: patch density, patch anisotropy, semivariogram ranges, power-law scaling of ridge areas, perimeter area fractal dimension, and characteristic pattern wavelength. Model results showed strong statistical agreement with reference landscapes, but only when anisotropically acting local facilitation was coupled with hydrologic global feedback, for which several plausible mechanisms exist. Critically, the model correctly generated fractal landscapes that had no characteristic pattern wavelength, supporting the invocation of global rather than scale-specific negative feedbacks.
NASA Astrophysics Data System (ADS)
Acharya, S.; Kaplan, D. A.; Casey, S.; Cohen, M. J.; Jawitz, J. W.
2015-01-01
Self-organized landscape patterning can arise in response to multiple processes. Discriminating among alternative patterning mechanisms, particularly where experimental manipulations are untenable, requires process-based models. Previous modeling studies have attributed patterning in the Everglades (Florida, USA) to sediment redistribution and anisotropic soil hydraulic properties. In this work, we tested an alternate theory, the self-organizing canal (SOC) hypothesis, by developing a cellular automata model that simulates pattern evolution via local positive feedbacks (i.e., facilitation) coupled with a global negative feedback based on hydrology. The model is forced by global hydroperiod that drives stochastic transitions between two patch types: ridge (higher elevation) and slough (lower elevation). We evaluated model performance using multiple criteria based on six statistical and geostatistical properties observed in reference portions of the Everglades landscape: patch density, patch anisotropy, semivariogram ranges, power-law scaling of ridge areas, perimeter area fractal dimension, and characteristic pattern wavelength. Model results showed strong statistical agreement with reference landscapes, but only when anisotropically acting local facilitation was coupled with hydrologic global feedback, for which several plausible mechanisms exist. Critically, the model correctly generated fractal landscapes that had no characteristic pattern wavelength, supporting the invocation of global rather than scale-specific negative feedbacks.
Rooting Theories of Plant Community Ecology in Microbial Interactions
Bever, James D.; Dickie, Ian A.; Facelli, Evelina; Facelli, Jose M.; Klironomos, John; Moora, Mari; Rillig, Matthias C.; Stock, William D.; Tibbett, Mark; Zobel, Martin
2010-01-01
Predominant frameworks for understanding plant ecology have an aboveground bias that neglects soil micro-organisms. This is inconsistent with recent work illustrating the importance of soil microbes in terrestrial ecology. Microbial effects have been incorporated into plant community dynamics using ideas of niche modification and plant-soil community feedbacks. Here, we expand and integrate qualitative conceptual models of plant niche and feedback to explore implications of microbial interactions for understanding plant community ecology. At the same time we review the empirical evidence for these processes. We also consider common mycorrhizal networks, and suggest these are best interpreted within the feedback framework. Finally, we apply our integrated model of niche and feedback to understanding plant coexistence, monodominance, and invasion ecology. PMID:20557974
Large deviation analysis of a simple information engine
NASA Astrophysics Data System (ADS)
Maitland, Michael; Grosskinsky, Stefan; Harris, Rosemary J.
2015-11-01
Information thermodynamics provides a framework for studying the effect of feedback loops on entropy production. It has enabled the understanding of novel thermodynamic systems such as the information engine, which can be seen as a modern version of "Maxwell's Dæmon," whereby a feedback controller processes information gained by measurements in order to extract work. Here, we analyze a simple model of such an engine that uses feedback control based on measurements to obtain negative entropy production. We focus on the distribution and fluctuations of the information obtained by the feedback controller. Significantly, our model allows an analytic treatment for a two-state system with exact calculation of the large deviation rate function. These results suggest an approximate technique for larger systems, which is corroborated by simulation data.
Hamker, Fred H; Wiltschut, Jan
2007-09-01
Most computational models of coding are based on a generative model according to which the feedback signal aims to reconstruct the visual scene as close as possible. We here explore an alternative model of feedback. It is derived from studies of attention and thus, probably more flexible with respect to attentive processing in higher brain areas. According to this model, feedback implements a gain increase of the feedforward signal. We use a dynamic model with presynaptic inhibition and Hebbian learning to simultaneously learn feedforward and feedback weights. The weights converge to localized, oriented, and bandpass filters similar as the ones found in V1. Due to presynaptic inhibition the model predicts the organization of receptive fields within the feedforward pathway, whereas feedback primarily serves to tune early visual processing according to the needs of the task.
NASA Astrophysics Data System (ADS)
Song, Yan; Fang, Xiaosheng; Diao, Qingda
2016-03-01
In this paper, we discuss the mixed H2/H∞ distributed robust model predictive control problem for polytopic uncertain systems subject to randomly occurring actuator saturation and packet loss. The global system is decomposed into several subsystems, and all the subsystems are connected by a fixed topology network, which is the definition for the packet loss among the subsystems. To better use the successfully transmitted information via Internet, both the phenomena of actuator saturation and packet loss resulting from the limitation of the communication bandwidth are taken into consideration. A novel distributed controller model is established to account for the actuator saturation and packet loss in a unified representation by using two sets of Bernoulli distributed white sequences with known conditional probabilities. With the nonlinear feedback control law represented by the convex hull of a group of linear feedback laws, the distributed controllers for subsystems are obtained by solving an linear matrix inequality (LMI) optimisation problem. Finally, numerical studies demonstrate the effectiveness of the proposed techniques.
Transition in the waiting-time distribution of price-change events in a global socioeconomic system
NASA Astrophysics Data System (ADS)
Zhao, Guannan; McDonald, Mark; Fenn, Dan; Williams, Stacy; Johnson, Nicholas; Johnson, Neil F.
2013-12-01
The goal of developing a firmer theoretical understanding of inhomogeneous temporal processes-in particular, the waiting times in some collective dynamical system-is attracting significant interest among physicists. Quantifying the deviations between the waiting-time distribution and the distribution generated by a random process may help unravel the feedback mechanisms that drive the underlying dynamics. We analyze the waiting-time distributions of high-frequency foreign exchange data for the best executable bid-ask prices across all major currencies. We find that the lognormal distribution yields a good overall fit for the waiting-time distribution between currency rate changes if both short and long waiting times are included. If we restrict our study to long waiting times, each currency pair’s distribution is consistent with a power-law tail with exponent near to 3.5. However, for short waiting times, the overall distribution resembles one generated by an archetypal complex systems model in which boundedly rational agents compete for limited resources. Our findings suggest that a gradual transition arises in trading behavior between a fast regime in which traders act in a boundedly rational way and a slower one in which traders’ decisions are driven by generic feedback mechanisms across multiple timescales and hence produce similar power-law tails irrespective of currency type.
Batterham, Philip J; Calear, Alison L; Sunderland, Matthew; Carragher, Natacha; Brewer, Jacqueline L
2016-01-01
Community-based screening for mental health problems may increase service use through feedback to individuals about their severity of symptoms and provision of contacts for appropriate services. The effect of symptom feedback on service use was assessed. Secondary outcomes included symptom change and study attrition. Using online recruitment, 2773 participants completed a comprehensive survey including screening for depression ( n =1366) or social anxiety ( n =1407). Across these two versions, approximately half ( n =1342) of the participants were then randomly allocated to receive tailored feedback. Participants were reassessed after 3 months (Australian New Zealand Clinical Trials Registry ANZCTR12614000324617). A negative effect of providing social anxiety feedback to individuals was observed, with significant reductions in professional service use. Greater attrition and lower intentions to seek help were also observed after feedback. Online mental health screening with feedback is not effective for promoting professional service use. Alternative models of online screening require further investigation. None. © The Royal College of Psychiatrists 2016. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) licence.
Calear, Alison L.; Sunderland, Matthew; Carragher, Natacha; Brewer, Jacqueline L.
2016-01-01
Background Community-based screening for mental health problems may increase service use through feedback to individuals about their severity of symptoms and provision of contacts for appropriate services. Aims The effect of symptom feedback on service use was assessed. Secondary outcomes included symptom change and study attrition. Method Using online recruitment, 2773 participants completed a comprehensive survey including screening for depression (n=1366) or social anxiety (n=1407). Across these two versions, approximately half (n=1342) of the participants were then randomly allocated to receive tailored feedback. Participants were reassessed after 3 months (Australian New Zealand Clinical Trials Registry ANZCTR12614000324617). Results A negative effect of providing social anxiety feedback to individuals was observed, with significant reductions in professional service use. Greater attrition and lower intentions to seek help were also observed after feedback. Conclusions Online mental health screening with feedback is not effective for promoting professional service use. Alternative models of online screening require further investigation. Declaration of interest None. Copyright and usage © The Royal College of Psychiatrists 2016. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) licence. PMID:27703756
Stellar feedback strongly alters the amplification and morphology of galactic magnetic fields
NASA Astrophysics Data System (ADS)
Su, Kung-Yi; Hayward, Christopher C.; Hopkins, Philip F.; Quataert, Eliot; Faucher-Giguère, Claude-André; Kereš, Dušan
2018-01-01
Using high-resolution magnetohydrodynamic simulations of idealized, non-cosmological galaxies, we investigate how cooling, star formation and stellar feedback affect galactic magnetic fields. We find that the amplification histories, saturation values and morphologies of the magnetic fields vary considerably depending on the baryonic physics employed, primarily because of differences in the gas density distribution. In particular, adiabatic runs and runs with a subgrid (effective equation of state) stellar feedback model yield lower saturation values and morphologies that exhibit greater large-scale order compared with runs that adopt explicit stellar feedback and runs with cooling and star formation but no feedback. The discrepancies mostly lie in gas denser than the galactic average, which requires cooling and explicit fragmentation to capture. Independent of the baryonic physics included, the magnetic field strength scales with gas density as B ∝ n2/3, suggesting isotropic flux freezing or equipartition between the magnetic and gravitational energies during the field amplification. We conclude that accurate treatments of cooling, star formation and stellar feedback are crucial for obtaining the correct magnetic field strength and morphology in dense gas, which, in turn, is essential for properly modelling other physical processes that depend on the magnetic field, such as cosmic ray feedback.
Climate change and the permafrost carbon feedback
Schuur, E.A.G.; McGuire, A. David; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; Natali, Susan M.; Olefeldt, David; Romanovsky, V.E.; Schaefer, K.; Turetsky, M.R.; Treat, C.C.; Vonk, J.E.
2015-01-01
Large quantities of organic carbon are stored in frozen soils (permafrost) within Arctic and sub-Arctic regions. A warming climate can induce environmental changes that accelerate the microbial breakdown of organic carbon and the release of the greenhouse gases carbon dioxide and methane. This feedback can accelerate climate change, but the magnitude and timing of greenhouse gas emission from these regions and their impact on climate change remain uncertain. Here we find that current evidence suggests a gradual and prolonged release of greenhouse gas emissions in a warming climate and present a research strategy with which to target poorly understood aspects of permafrost carbon dynamics.
Climate change and the permafrost carbon feedback.
Schuur, E A G; McGuire, A D; Schädel, C; Grosse, G; Harden, J W; Hayes, D J; Hugelius, G; Koven, C D; Kuhry, P; Lawrence, D M; Natali, S M; Olefeldt, D; Romanovsky, V E; Schaefer, K; Turetsky, M R; Treat, C C; Vonk, J E
2015-04-09
Large quantities of organic carbon are stored in frozen soils (permafrost) within Arctic and sub-Arctic regions. A warming climate can induce environmental changes that accelerate the microbial breakdown of organic carbon and the release of the greenhouse gases carbon dioxide and methane. This feedback can accelerate climate change, but the magnitude and timing of greenhouse gas emission from these regions and their impact on climate change remain uncertain. Here we find that current evidence suggests a gradual and prolonged release of greenhouse gas emissions in a warming climate and present a research strategy with which to target poorly understood aspects of permafrost carbon dynamics.
Self-organization of sorted patterned ground.
Kessler, M A; Werner, B T
2003-01-17
Striking circular, labyrinthine, polygonal, and striped patterns of stones and soil self-organize in many polar and high alpine environments. These forms emerge because freeze-thaw cycles drive an interplay between two feedback mechanisms. First, formation of ice lenses in freezing soil sorts stones and soil by displacing soil toward soil-rich domains and stones toward stone-rich domains. Second, stones are transported along the axis of elongate stone domains, which are squeezed and confined as freezing soil domains expand. In a numerical model implementing these feedbacks, circles, labyrinths, and islands form when sorting dominates; polygonal networks form when stone domain squeezing and confinement dominate; and stripes form as hillslope gradient is increased.
Erickson III, David J.; Sulzberger, Barbara; Zepp, Richard G.; ...
2014-11-07
Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment include: (i) enhanced UV-induced mineralisation of above ground litter due to aridification; (ii) enhanced UV-induced mineralisation of photoreactive dissolved organic matter (DOM) in aquatic ecosystems due to changes in continental runoff and ice melting; (iii) reduced efficiency of the biological pump due to UV-induced bleaching of coloured dissolved organic matter (CDOM) in stratified aquatic ecosystems, where CDOM protects phytoplankton from the damaging solarmore » UV-B radiation. Mineralisation of organic matter results in the production and release of CO 2, whereas the biological pump is the main biological process for CO 2 removal by aquatic ecosystems. This research also assesses the interactive effects of solar UV radiation and climate change on the biogeochemical cycling of aerosols and trace gases other than CO 2, as well as of chemical and biological contaminants. Lastly,, interacting effects of solar UV radiation and climate change on biogeochemical cycles are particularly pronounced at terrestrial-aquatic interfaces.« less
Prioritizing guideline topics: development and evaluation of a practical tool.
Ketola, Eeva; Toropainen, Erja; Kaila, Minna; Luoto, Riitta; Mäkelä, Marjukka
2007-08-01
A clear process for selecting and adopting clinical practice guidelines in the new topic areas is needed. The aim of this study is to design and develop a practical tool to assess guideline topics that have been suggested to the organization responsible for producing guidelines. We carried out an iterative development, feasibility and validation study of a guideline topic prioritization tool. The setting included the guideline producer organization and the tax-funded health care system. In the first stage of the tool development, participants were researchers, members of the Current Care Board and experts from health care organizations. In the second stage, the evaluation was done internally within the project by three independent reviewers. The main outcome measures were responses to an evaluation questionnaire, qualitative process feedback and analysis of the performance of the instrument on a random set of guidelines. Evaluations by three independent reviewers revealed good agreement and face validity with respect to its feasibility as a planning tool at the guideline board level. Feedback from board members suggested that the instrument is useful in prioritizing guideline topics. This instrument was accepted for use by the Board. Further developments are needed to ensure feedback and acceptability of the instrument by those proposing topics.
Coupled ridge waveguide distributed feedback quantum cascade laser arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ying-Hui; Zhang, Jin-Chuan, E-mail: zhangjinchuan@semi.ac.cn; Yan, Fang-Liang
2015-04-06
A coupled ridge waveguide quantum cascade laser (QCL) array consisting of fifteen elements with parallel integration was presented. In-phase fundamental mode operation in each element is secured by both the index-guided nature of the ridge and delicate loss management by properly designed geometries of the ridges and interspaces. Single-lobe lateral far-field with a nearly diffraction limited beam pattern was obtained. By incorporating a one-dimensional buried distributed feedback grating, the in-phase-operating coupled ridge waveguide QCL design provides an efficient solution to obtaining high output power and stable single longitudinal mode emission. The simplicity of this structure and fabrication process makes thismore » approach attractive to many practical applications.« less
Zhang, Hanwei; Zhou, Pu; Wang, Xiong; Du, Xueyuan; Xiao, Hu; Xu, Xiaojun
2015-06-29
Two kinds of hundred-watt-level random distributed feedback Raman fiber have been demonstrated. The optical efficiency can reach to as high as 84.8%. The reported power and efficiency of the random laser is the highest one as we know. We have also demonstrated that the developed random laser can be further used to pump a Ho-doped fiber laser for mid-infrared laser generation. Finally, 23 W 2050 nm laser is achieved. The presented laser can obtain high power output efficiently and conveniently and opens a new direction for high power laser sources at designed wavelength.
Kim, Namje; Shin, Jaeheon; Sim, Eundeok; Lee, Chul Wook; Yee, Dae-Su; Jeon, Min Yong; Jang, Yudong; Park, Kyung Hyun
2009-08-03
We report on a monolithic dual-mode semiconductor laser operating in the 1550-nm range as a compact optical beat source for tunable continuous-wave (CW) terahertz (THz) generation. It consists of two distributed feedback (DFB) laser sections and one phase section between them. Each wavelength of the two modes can be independently tuned by adjusting currents in micro-heaters which are fabricated on the top of the each DFB section. The continuous tuning of the CW THz emission from Fe(+)-implanted InGaAs photomixers is successfully demonstrated using our dual-mode laser as the excitation source. The CW THz frequency is continuously tuned from 0.17 to 0.49 THz.
Photonic integrated circuits unveil crisis-induced intermittency.
Karsaklian Dal Bosco, Andreas; Akizawa, Yasuhiro; Kanno, Kazutaka; Uchida, Atsushi; Harayama, Takahisa; Yoshimura, Kazuyuki
2016-09-19
We experimentally investigate an intermittent route to chaos in a photonic integrated circuit consisting of a semiconductor laser with time-delayed optical feedback from a short external cavity. The transition from a period-doubling dynamics to a fully-developed chaos reveals a stage intermittently exhibiting these two dynamics. We unveil the bifurcation mechanism underlying this route to chaos by using the Lang-Kobayashi model and demonstrate that the process is based on a phenomenon of attractor expansion initiated by a particular distribution of the local Lyapunov exponents. We emphasize on the crucial importance of the distribution of the steady-state solutions introduced by the time-delayed feedback on the existence of this intermittent dynamics.
Using Popular Nonfiction in Organic Chemistry: Teaching More than Content
ERIC Educational Resources Information Center
Amaral, Katie E.; Shibley, Ivan A., Jr.
2010-01-01
Assigning a popular nonfiction book as a supplemental text in organic chemistry can help students learn valuable skills. An analysis of student feedback on assignments related to a nonfiction book in two different organic courses revealed that students applied the information from the book, improved their communication skills, and were more…
Sakharkar, Amul J; Singru, Praful S; Sarkar, Koustav; Subhedar, Nishikant K
2005-08-22
We studied the organization of the neuropeptide Y (NPY)-immunoreactive system in the forebrain of adult male cichlid fish Oreochromis mossambicus and its response to castration and testosterone replacement by using morphometric methods. Immunoreactivity for NPY was widely distributed in the forebrain, and the pattern generally resembled that in other teleosts. Whereas immunoreactivity was conspicuous in the ganglia of nervus terminalis (NT; or nucleus olfactoretinalis), a weak reaction was detected in some granule cells in the olfactory bulb and in the cells of area ventralis telencephali pars lateralis (Vl). Moderately to intensely immunoreactive cells were distinctly seen in the nucleus entopeduncularis (NE), nucleus preopticus (NPO), nucleus lateralis tuberis (NLT), paraventricular organ (PVO), and midbrain tegmentum (MT). NPY fibers were widely distributed in the forebrain. Castration for 10/15 days resulted in a drastic loss of immunoreactivity in the cells of NE (P<0.001) and a significant decrease (P<0.01) in their cell nuclear size. However, cell nuclei of the NT neurons showed a significant increase in size. A highly significant reduction in the NPY-immunoreactive fiber density (P<0.001) was observed in several areas of the forebrain. Although testosterone replacement reversed these changes, fibers in some areas showed supranormal responses. Immunoreactive cells in Vl, NPO, NLT, PVO, and MT and fiber density in some other areas did not respond to castration. We suggest that the NPY-immunoreactive elements that respond to castration and testosterone replacement may serve as the substrate for processing the positive feedback action of the steroid hormone. (c) 2005 Wiley-Liss, Inc.
Hongtao, Li; Shichao, Chen; Yanjun, Han; Yi, Luo
2013-01-14
A feedback method combined with fitting technique based on variable separation mapping is proposed to design freeform optical systems for an extended LED source with prescribed illumination patterns, especially with uniform illuminance distribution. Feedback process performs well with extended sources, while fitting technique contributes not only to the decrease of pieces of sub-surfaces in discontinuous freeform lenses which may cause loss in manufacture, but also the reduction in the number of feedback iterations. It is proved that light control efficiency can be improved by 5%, while keeping a high uniformity of 82%, with only two feedback iterations and one fitting operation can improve. Furthermore, the polar angle θ and azimuthal angle φ is used to specify the light direction from the light source, and the (θ,φ)-(x,y) based mapping and feedback strategy makes sure that even few discontinuous sections along the equi-φ plane exist in the system, they are perpendicular to the base plane, making it eligible for manufacturing the surfaces using injection molding.
Optimal feedback control infinite dimensional parabolic evolution systems: Approximation techniques
NASA Technical Reports Server (NTRS)
Banks, H. T.; Wang, C.
1989-01-01
A general approximation framework is discussed for computation of optimal feedback controls in linear quadratic regular problems for nonautonomous parabolic distributed parameter systems. This is done in the context of a theoretical framework using general evolution systems in infinite dimensional Hilbert spaces. Conditions are discussed for preservation under approximation of stabilizability and detectability hypotheses on the infinite dimensional system. The special case of periodic systems is also treated.
A Non-Gaussian Stock Price Model: Options, Credit and a Multi-Timescale Memory
NASA Astrophysics Data System (ADS)
Borland, L.
We review a recently proposed model of stock prices, based on astatistical feedback model that results in a non-Gaussian distribution of price changes. Applications to option pricing and the pricing of debt is discussed. A generalization to account for feedback effects over multiple timescales is also presented. This model reproduces most of the stylized facts (ie statistical anomalies) observed in real financial markets.
NASA Technical Reports Server (NTRS)
Banks, H. T.; Rosen, I. G.
1984-01-01
Approximation ideas are discussed that can be used in parameter estimation and feedback control for Euler-Bernoulli models of elastic systems. Focusing on parameter estimation problems, ways by which one can obtain convergence results for cubic spline based schemes for hybrid models involving an elastic cantilevered beam with tip mass and base acceleration are outlined. Sample numerical findings are also presented.
NASA Astrophysics Data System (ADS)
Atkinson, Carla L.; Allen, Daniel C.; Davis, Lisa; Nickerson, Zachary L.
2018-03-01
Decades of interdisciplinary research show river form and function depends on interactions between the living and nonliving world, but a dominant paradigm underlying ecogeomorphic work consists of a top-down, unidirectional approach with abiotic forces driving biotic systems. Stream form and location within the stream network does dictate the habitat and resources available for organisms and overall community structure. Yet this traditional hierarchal framework on its own is inadequate in communicating information regarding the influence of biological systems on fluvial geomorphology that lead to changes in channel morphology, sediment cycling, and system-scale functions (e.g., sediment yield, biogeochemical nutrient cycling). Substantial evidence that organisms influence fluvial geomorphology exists, specifically the ability of aquatic vegetation and lotic animals to modify flow velocities and sediment deposition and transport - thus challenging the traditional hierarchal framework. Researchers recognize the need for ecogeomorphic frameworks that conceptualize feedbacks between organisms, sediment transport, and geomorphic structure. Furthermore, vital ecosystem processes, such as biogeochemical nutrient cycling represent the conversations that are occurring between geomorphological and biological systems. Here we review and synthesize selected case studies highlighting the role organisms play in moderating geomorphic processes and likely interact with these processes to have an impact on an essential ecosystem process, biogeochemical nutrient recycling. We explore whether biophysical interactions can provide information essential to improving predictions of system-scale river functions, specifically sediment transport and biogeochemical cycling, and discuss tools used to study these interactions. We suggest that current conceptual frameworks should acknowledge that hydrologic, geomorphologic, and ecologic processes operate on different temporal scales, generating bidirectional feedback loops over space and time. Hydro- and geomorphologic processes, operating episodically during bankfull conditions, influence ecological processes (e.g., biogeochemical cycling) occurring over longer time periods during base-flow conditions. This ecological activity generates the antecedent conditions that influence the hydro- and geomorphologic processes occurring during the next high flow event, creating a bidirectional feedback. This feedback should enhance the resiliency of fluvial landforms and ecosystem processes, allowing physical and biological processes to pull and push against each other over time.
Functioning of the Ocean Biological Pump in the Oxygen Minimum Zones
NASA Astrophysics Data System (ADS)
Moore, J. K.
2015-12-01
Oxygen minimum zones occur at mid-depths in the water column in regions with weak ventilation and relatively high export of organic matter from surface waters. They are important ocean for ocean biogeochemistry, and potentially for climate, as sites of water column denitrification and nitrous oxide production. Denitrification is the dominant loss process for fixed nitrogen in the oceans, and can thus affect the ocean inventory of this key nutrient. Denitrification is less energetically efficient than oxic remineralization. Larger zooplankton, which feed on sinking particles, are not present in the lowest oxygen waters. Both of these factors suggest that the remineralization of sinking particles may be slower within the OMZs than in more oxygenated waters. There is limited field evidence and from some modeling studies that remineralization is slower (remineralization length scales are longer) within OMZ waters. In this talk, I will present results from the Community Earth System Model (CESM) ocean component attempting to test this hypothesis. Comparing model results with observed ocean biogeochemical tracer distributions (i.e., phosphate, oxygen), I will examine whether slower remineralization within low oxygen waters provides a better match between simulated and observed tracer distributions. Longer remineralization length scales under low oxygen conditions would provide a negative feedback under global warming scenarios. The biological pump would transfer organic materials to depth more efficiently as ocean oxygen concentrations decline and the OMZs expand.
Learning in depth with the bespoke rubric-supported online poster presentation
NASA Astrophysics Data System (ADS)
Lajevardipour, Alireza; Wood, Andrew
2017-08-01
In our course of Biomedical Imaging, we introduced a research project as an assignment that included an online poster presentation. To assess the assignment, an adjusted criteria sheet was created, where it facilitated providing students with an effective feedback linked to particular criteria. Students are expected to produce a scientific poster to present the result of their investigation and upload it to an online discussion board. In addition, they are required to read their colleagues' works and provide peer-feedback by asking quality questions about principles and results, also on-line. Subtle distribution of marks in the rubric balances focus between preparing poster and providing peer-feedbacks.
NASA Astrophysics Data System (ADS)
Teplov, Vladimir A.
2017-06-01
The modes of continuously distributed mechanochemical self-sustained oscillations (autowaves) exhibited by the Physarum plasmodium under different experimental conditions are reviewed. The role of the stretch-induced activation of contractile oscillations in the spatiotemporal self-organization of the plasmodium is elucidated. Different mathematical models describing contractile autowaves in ectoplasm and the streaming of the endoplasm are considered. Our mathematical models, which are based on the hypothesis of local positive feedback between the deformation and contraction of the contractile apparatus, are also presented. The feedback is mediated through a chemical regulatory system, whose kinetics involves the coupling to the mechanical strain. The mathematical analysis and computer simulations have demonstrated that the solutions of the models agree quantitatively with the experimental data. In particular, the only hydrodynamic interactions between the different parts of the plasmodium via the streaming endoplasm can lead to globally coordinated ectoplasmic contractions and vigorous shuttle endoplasmic streaming. These models, with empirically determined values of the viscoelastic parameters, well simulate the form and duration of the transient contractile processes observed after the isolation of the strands as well as the subsequent excitation of auto-oscillations and their stretch-induced activation under isotonic and isometric conditions.
Slattery, M. L.; Schumacher, M. C.; Lanier, A. P.; Edwards, S.; Edwards, R.; Murtaugh, M. A.; Sandidge, J.; Day, G. E.; Kaufman, D.; Kanekar, S.; Tom-Orme, L.; Henderson, J. A.
2008-01-01
In 2001, the National Cancer Institute funded three centers to test the feasibility of establishing a cohort of American Indian and Alaska Native people. Participating tribal organizations named the study EARTH (Education and Research Towards Health). This paper describes the study methods. A computerized data collection and tracking system was developed using audio computer-assisted survey methodology with touch screens. Data were collected on diet, physical activity, lifestyle and cultural practices, medical and reproductive history, and family history of heart disease, diabetes, and cancer. In addition, a small panel of medical measurements was obtained, including height, weight, waist and hip circumferences, blood pressure, and a lipid panel plus glucose. At the completion of the enrollment visit, data were used to provide immediate health feedback to study participants. During the initial funding period, the authors anticipate enrolling 16,000 American Indian and Alaska Native participants. The age distribution of the study population was similar to that reported in the 2000 US Census for the relevant populations. A component critical to the success of the EARTH Study has been the partnerships with tribal members. The study has focused on involvement of American Indian and Alaska Native communities in development and implementation and on provision of feedback to participants and communities. PMID:17586578
Chaotic dynamics and diffusion in a piecewise linear equation
NASA Astrophysics Data System (ADS)
Shahrear, Pabel; Glass, Leon; Edwards, Rod
2015-03-01
Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems.
HESS Opinions Catchments as meta-organisms - a new blueprint for hydrological modelling
NASA Astrophysics Data System (ADS)
Savenije, Hubert H. G.; Hrachowitz, Markus
2017-02-01
Catchment-scale hydrological models frequently miss essential characteristics of what determines the functioning of catchments. The most important active agent in catchments is the ecosystem. It manipulates and partitions moisture in a way that supports the essential functions of survival and productivity: infiltration of water, retention of moisture, mobilization and retention of nutrients, and drainage. Ecosystems do this in the most efficient way, establishing a continuous, ever-evolving feedback loop with the landscape and climatic drivers. In brief, hydrological systems are alive and have a strong capacity to adjust themselves to prevailing and changing environmental conditions. Although most models take Newtonian theory at heart, as best they can, what they generally miss is Darwinian theory on how an ecosystem evolves and adjusts its environment to maintain crucial hydrological functions. In addition, catchments, such as many other natural systems, do not only evolve over time, but develop features of spatial organization, including surface or sub-surface drainage patterns, as a by-product of this evolution. Models that fail to account for patterns and the associated feedbacks miss a critical element of how systems at the interface of atmosphere, biosphere and pedosphere function. In contrast to what is widely believed, relatively simple, semi-distributed conceptual models have the potential to accommodate organizational features and their temporal evolution in an efficient way, a reason for that being that because their parameters (and their evolution over time) are effective at the modelling scale, and thus integrate natural heterogeneity within the system, they may be directly inferred from observations at the same scale, reducing the need for calibration and related problems. In particular, the emergence of new and more detailed observation systems from space will lead towards a more robust understanding of spatial organization and its evolution. This will further permit the development of relatively simple time-dynamic functional relationships that can meaningfully represent spatial patterns and their evolution over time, even in poorly gauged environments.
NASA Astrophysics Data System (ADS)
Moffett, K. B.; Smith, B. C.; O'Connor, M.; Mohrig, D. C.
2014-12-01
Coastal fluvial delta morphodynamics are prominently controlled by external fluvial sediment and water supplies; however, internal sediment-water-vegetation feedbacks are now being proposed as potentially equally significant in organizing and maintaining the progradation and aggradation of such systems. The time scales of fluvial and climate influences on these feedbacks, and of their responses, are also open questions. Historical remote sensing study of the Wax Lake Delta model system (Louisiana, USA) revealed trends in the evolution of the subaerial island surfaces from a non-systematic arrangement of elevations to a discrete set of levees and intra-island platforms with distinct vegetation types, designated as high marsh, low marsh, and mudflat habitat. We propose that this elevation zonation is consistent with multiple stable state theory, e.g. as applied to tidal salt marsh systems but not previously to deltas. According to zonally-distributed sediment core analyses, differentiation of island elevations was not due to organic matter accumulation as in salt marshes, but rather by differential mineral sediment accumulation with some organic contributions. Mineral sediment accumulation rates suggested that elevation growth was accelerating or holding steady over time, at least to date in this young delta, in contrast to theory suggesting rates should slow as elevation increases above mean water level. Hydrological analysis of island flooding suggested a prominent role of stochastic local storm events in raising island water levels and supplying mineral sediment to the subaerial island surfaces at short time scales; over longer time scales, the relative influences of local storms and inland/regional floods on the coupled sediment-water-vegetation system of the subaerial delta island surfaces remain the subject of ongoing study. These results help provide an empirical foundation for the next generation of coupled sediment-water-vegetation modeling and theory.
NASA Astrophysics Data System (ADS)
Kempa, Wojciech M.
2017-12-01
A finite-capacity queueing system with server breakdowns is investigated, in which successive exponentially distributed failure-free times are followed by repair periods. After the processing a customer may either rejoin the queue (feedback) with probability q, or definitely leave the system with probability 1 - q. The system of integral equations for transient queue-size distribution, conditioned by the initial level of buffer saturation, is build. The solution of the corresponding system written for Laplace transforms is found using the linear algebraic approach. The considered queueing system can be successfully used in modelling production lines with machine failures, in which the parameter q may be considered as a typical fraction of items demanding corrections. Morever, this queueing model can be applied in the analysis of real TCP/IP performance, where q stands for the fraction of packets requiring retransmission.
ERIC Educational Resources Information Center
Halawa, Ahmed; Sharma, Ajay; Bridson, Julie M.; Lyon, Sarah; Prescott, Denise; Guha, Arpan; Taylor, David
2017-01-01
Introduction: It was a challenge to design a feedback pathway for distance learning course that deals with complex and ambiguous clinical subject like organ transplantation. This course attracts mature clinicians (n = 117 spread over three modules) from 27 countries where in addition to the time and zone barriers; there are cultural, institutional…
Modeling East Asian Dust and Its Radiative Feedbacks in CAM4-BAM
Xie, Xiaoning; Liu, Xiaodong; Che, Huizheng; ...
2018-01-18
East Asian dust and its radiative feedbacks are analyzed by the use of the fourth version of the Community Atmosphere Model (CAM4) with a bulk aerosol model parameterization (BAM) for the dust size distribution (CAM4-BAM). Two numerical experiments are conducted and intercompared: one with (Active) and one without (Passive) the radiative effects of dust aerosols. This CAM4-BAM captures the main spatial distribution of the dust aerosol optical depth (AOD) and the dust surface concentrations over East Asia, with positive correlations with the local observational data on annual and seasonal means. A comparative analysis of the Active and Passive experiments revealsmore » that consideration of the dust-radiation interaction can significantly reduce dust emissions, loading, transport, and dry and wet depositions over East Asia, which is opposite to the enhanced dust cycle over North Africa. Further analysis of the contrasting dust-radiation feedbacks between North Africa and East Asia shows that over North Africa, the dust radiative forcing significantly increases the surface temperature and 10-m wind speed, whereas it decreases the surface temperature and the surface wind speeds over East Asia. These contrasting radiative effects, in turn, result in distinct dust cycle changes over these two regions. Thus, mechanistic analysis reveals that the radiative contrasts between East Asia and North Africa are mainly due to the differences in their regional surface albedo, dust vertical distribution and size distribution.« less
Modeling East Asian Dust and Its Radiative Feedbacks in CAM4-BAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Xiaoning; Liu, Xiaodong; Che, Huizheng
East Asian dust and its radiative feedbacks are analyzed by the use of the fourth version of the Community Atmosphere Model (CAM4) with a bulk aerosol model parameterization (BAM) for the dust size distribution (CAM4-BAM). Two numerical experiments are conducted and intercompared: one with (Active) and one without (Passive) the radiative effects of dust aerosols. This CAM4-BAM captures the main spatial distribution of the dust aerosol optical depth (AOD) and the dust surface concentrations over East Asia, with positive correlations with the local observational data on annual and seasonal means. A comparative analysis of the Active and Passive experiments revealsmore » that consideration of the dust-radiation interaction can significantly reduce dust emissions, loading, transport, and dry and wet depositions over East Asia, which is opposite to the enhanced dust cycle over North Africa. Further analysis of the contrasting dust-radiation feedbacks between North Africa and East Asia shows that over North Africa, the dust radiative forcing significantly increases the surface temperature and 10-m wind speed, whereas it decreases the surface temperature and the surface wind speeds over East Asia. These contrasting radiative effects, in turn, result in distinct dust cycle changes over these two regions. Thus, mechanistic analysis reveals that the radiative contrasts between East Asia and North Africa are mainly due to the differences in their regional surface albedo, dust vertical distribution and size distribution.« less
Social is special: A normative framework for teaching with and learning from evaluative feedback.
Ho, Mark K; MacGlashan, James; Littman, Michael L; Cushman, Fiery
2017-10-01
Humans often attempt to influence one another's behavior using rewards and punishments. How does this work? Psychologists have often assumed that "evaluative feedback" influences behavior via standard learning mechanisms that learn from environmental contingencies. On this view, teaching with evaluative feedback involves leveraging learning systems designed to maximize an organism's positive outcomes. Yet, despite its parsimony, programs of research predicated on this assumption, such as ones in developmental psychology, animal behavior, and human-robot interaction, have had limited success. We offer an explanation by analyzing the logic of evaluative feedback and show that specialized learning mechanisms are uniquely favored in the case of evaluative feedback from a social partner. Specifically, evaluative feedback works best when it is treated as communicating information about the value of an action rather than as a form of reward to be maximized. This account suggests that human learning from evaluative feedback depends on inferences about communicative intent, goals and other mental states-much like learning from other sources, such as demonstration, observation and instruction. Because these abilities are especially developed in humans, the present account also explains why evaluative feedback is far more widespread in humans than non-human animals. Copyright © 2017 Elsevier B.V. All rights reserved.
Kilby, Melissa C; Slobounov, Semyon M; Newell, Karl M
2016-06-01
The experiment manipulated real-time kinematic feedback of the motion of the whole body center of mass (COM) and center of pressure (COP) in anterior-posterior (AP) and medial-lateral (ML) directions to investigate the variables actively controlled in quiet standing of young adults. The feedback reflected the current 2D postural positions within the 2D functional stability boundary that was scaled to 75%, 30% and 12% of its original size. The findings showed that the distance of both COP and COM to the respective stability boundary was greater during the feedback trials compared to a no feedback condition. However, the temporal safety margin of the COP, that is, the virtual time-to-contact (VTC), was higher without feedback. The coupling relation of COP-COM showed stable in-phase synchronization over all of the feedback conditions for frequencies below 1Hz. For higher frequencies (up to 5Hz), there was progressive reduction of COP-COM synchronization and local adaptation under the presence of augmented feedback. The findings show that the augmented feedback of COM and COP motion differentially and adaptively influences spatial and temporal properties of postural motion relative to the stability boundary while preserving the organization of the COM-COP coupling in postural control. Copyright © 2016. Published by Elsevier B.V.
Substantial large-scale feedbacks between natural aerosols and climate
NASA Astrophysics Data System (ADS)
Scott, C. E.; Arnold, S. R.; Monks, S. A.; Asmi, A.; Paasonen, P.; Spracklen, D. V.
2018-01-01
The terrestrial biosphere is an important source of natural aerosol. Natural aerosol sources alter climate, but are also strongly controlled by climate, leading to the potential for natural aerosol-climate feedbacks. Here we use a global aerosol model to make an assessment of terrestrial natural aerosol-climate feedbacks, constrained by observations of aerosol number. We find that warmer-than-average temperatures are associated with higher-than-average number concentrations of large (>100 nm diameter) particles, particularly during the summer. This relationship is well reproduced by the model and is driven by both meteorological variability and variability in natural aerosol from biogenic and landscape fire sources. We find that the calculated extratropical annual mean aerosol radiative effect (both direct and indirect) is negatively related to the observed global temperature anomaly, and is driven by a positive relationship between temperature and the emission of natural aerosol. The extratropical aerosol-climate feedback is estimated to be -0.14 W m-2 K-1 for landscape fire aerosol, greater than the -0.03 W m-2 K-1 estimated for biogenic secondary organic aerosol. These feedbacks are comparable in magnitude to other biogeochemical feedbacks, highlighting the need for natural aerosol feedbacks to be included in climate simulations.
Organization Development: A Case Study in Blockages.
ERIC Educational Resources Information Center
McIntyre, Martin
1981-01-01
Organization Development is a management science that defines and solves organizational problems. Procedures include: (1) diagnosis of problem; (2) gathering of data related to problem; (3) obtaining feedback; (4) developing various change strategies; (5) developing an action plan; and (6) implementing the plan. (CJ)
Cheah, Whye Lian; Giloi, Nelbon; Chang, Ching Thon; Lim, Jac Fang
2012-07-01
This study aimed to determine the perception and level of safety satisfaction of staff nurses with regards to Occupational Safety and Health (OSH) management practice in the Sabah Health Department, and to associate the OSH management dimensions, to Safety Satisfaction and Safety Feedback. A cross-sectional study using a validated self-administered questionnaire was conducted among randomly respondents. 135 nurses responded the survey. Mean (SD) score for each dimension ranged from 1.70 ± 0.68-4.04 ± 0.65, with Training and Competence dimension (mean [SD], 4.04 ± 0.65) had the highest while Safety Incidence was the least score (mean [SD], 1.70 ± 0.68). Both mean (SD) scores for Safety Satisfaction and Safety Feedback was high, 3.28 ± 0.51 and 3.57 ± 0.73, respectively. Pearson's correlation analysis indicated that all OSH dimensions had significant correlation with Safety Satisfaction and Safety Feedback (r coefficient ranged from 0.176-0.512) except for Safety Incidence. The overall perception of OSH management was rather low. Significant correlation between Safety Satisfaction and Safety Feedback and several dimensions, suggest that each organization to put in place the leaders who have appropriate leadership and supervisory skills and committed in providing staff training to improve staff's competency in OSH practice. In addition, clear goals, rules, and reporting system will help the organization to implement proper OSH management practice.
Distributive and Procedural Justice as Related to Satisfaction and Commitment.
ERIC Educational Resources Information Center
Tang, Thomas Li-Ping; Sarsfield-Baldwin, Linda J.
Randomly selected employees from a Veterans Administration Medical Center (n=200) were asked to complete measures on distributive justice and procedural justice 4 weeks before their performance appraisal; and on job satisfaction, commitment, involvement, and self-reported performance feedback 4 weeks after their performance appraisals.…
García-Patrón, Raúl; Pirandola, Stefano; Lloyd, Seth; Shapiro, Jeffrey H
2009-05-29
In this Letter we define a family of entanglement distribution protocols assisted by feedback classical communication that gives an operational interpretation to reverse coherent information, i.e., the symmetric counterpart of the well-known coherent information. This leads to the definition of a new entanglement distribution capacity that exceeds the unassisted capacity for some interesting channels.
NASA Technical Reports Server (NTRS)
Milman, Mark H.
1987-01-01
The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary systems. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.
Observation of local cloud and moisture feedbacks over high ocean and desert surface temperatures
NASA Technical Reports Server (NTRS)
Chahine, Moustafa T.
1995-01-01
New data on clouds and moisture, made possible by reanalysis of weather satellite observations, show that the atmosphere reacts to warm clusters of very high sea surface temperatures in the western Pacific Ocean with increased moisture, cloudiness, and convection, suggesting a negative feedback limiting the sea surface temperature rise. The reverse was observed over dry and hot deserts where both moisture and cloudiness decrease, suggesting a positive feedback perpetuating existing desert conditions. In addition, the observations show a common critical surface temperature for both oceans and land; the distribution of atmospheric moisture is observed to reach a maximum value when the daily surface temperatures approach 304 +/- 1 K. These observations reveal complex dynamic-radiative interactions where multiple processes act simultaneously at the surface as well as in the atmosphere to regulate the feedback processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jumpertz, L., E-mail: louise.jumpertz@telecom-paristech.fr; MirSense, 8 avenue de la Vauve, F-91120 Palaiseau; Michel, F.
2016-01-15
Precise knowledge of the linewidth enhancement factor of a semiconductor laser under actual operating conditions is of prime importance since this parameter dictates various phenomena such as linewidth broadening or optical nonlinearities enhancement. The above-threshold linewidth enhancement factor of a mid-infrared quantum cascade laser structure operated at 10{sup ∘}C is determined experimentally using two different methods based on optical feedback. Both Fabry-Perot and distributed feedback quantum cascade lasers based on the same active area design are studied, the former by following the wavelength shift as a function of the feedback strength and the latter by self-mixing interferometry. The results aremore » consistent and unveil a clear pump current dependence of the linewidth enhancement factor, with values ranging from 0.8 to about 3.« less
NASA Technical Reports Server (NTRS)
Milman, Mark H.
1988-01-01
The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary schemes. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.
Emmert-Streib, Frank; Zhang, Shu-Dong; Hamilton, Peter
2014-12-01
In this paper, we present a meeting report for the 2nd Summer School in Computational Biology organized by the Queen's University of Belfast. We describe the organization of the summer school, its underlying concept and student feedback we received after the completion of the summer school.
Positive Change in Feedback Perceptions and Behavior: A 10-Year Follow-up Study.
Balmer, Dorene F; Tenney-Soeiro, Rebecca; Mejia, Erika; Rezet, Beth
2018-01-01
Providing and learning from feedback are essential components of medical education, and typically described as resistant to change. But given a decade of change in the clinical context in which feedback occurs, the authors asked if, and how, perceptions of feedback and feedback behaviors might have changed in response to contextual affordances. In 2017, the authors conducted a follow-up, ethnographic study on 2 general pediatric floors at the same children's hospital where another ethnographic study on a general pediatric floor was conducted in 2007. Data sources included (1) 21 and 34 hours of observation in 2007 and 2017, respectively, (2) 35 and 25 interviews with general pediatric attending physicians and residents in 2007 and 2017, respectively, and (3) a review of 120 program documents spanning 2007 to 2017. Data were coded and organized around 3 recommendations for feedback that were derived from 2007 data and served as standards for assessing change in 2017. Data revealed progress in achieving each recommendation. Compared with 2007, participants in 2017 more clearly distinguished between feedback and evaluation; residents were more aware of in-the-moment feedback, and they had shifted their orientation from evaluation and grades to feedback and learning. Explanations for progress in achieving recommendations, which were derived from the data, pointed to institutional and national influences, namely, the pediatric milestones. On the basis of follow-up, ethnographic data, changes in the clinical context of pediatric education may afford positive change in perceptions of feedback and feedback behavior and point to influences within and beyond the institution. Copyright © 2018 by the American Academy of Pediatrics.
NASA Technical Reports Server (NTRS)
Hof, P. R.; Ungerleider, L. G.; Webster, M. J.; Gattass, R.; Adams, M. M.; Sailstad, C. A.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)
1996-01-01
Previous studies of the primate cerebral cortex have shown that neurofilament protein is present in pyramidal neuron subpopulations displaying specific regional and laminar distribution patterns. In order to characterize further the neurochemical phenotype of the neurons furnishing feedforward and feedback pathways in the visual cortex of the macaque monkey, we performed an analysis of the distribution of neurofilament protein in corticocortical projection neurons in areas V1, V2, V3, V3A, V4, and MT. Injections of the retrogradely transported dyes Fast Blue and Diamidino Yellow were placed within areas V4 and MT, or in areas V1 and V2, in 14 adult rhesus monkeys, and the brains of these animals were processed for immunohistochemistry with an antibody to nonphosphorylated epitopes of the medium and heavy molecular weight subunits of the neurofilament protein. Overall, there was a higher proportion of neurons projecting from areas V1, V2, V3, and V3A to area MT that were neurofilament protein-immunoreactive (57-100%), than to area V4 (25-36%). In contrast, feedback projections from areas MT, V4, and V3 exhibited a more consistent proportion of neurofilament protein-containing neurons (70-80%), regardless of their target areas (V1 or V2). In addition, the vast majority of feedback neurons projecting to areas V1 and V2 were located in layers V and VI in areas V4 and MT, while they were observed in both supragranular and infragranular layers in area V3. The laminar distribution of feedforward projecting neurons was heterogeneous. In area V1, Meynert and layer IVB cells were found to project to area MT, while neurons projecting to area V4 were particularly dense in layer III within the foveal representation. In area V2, almost all neurons projecting to areas MT or V4 were located in layer III, whereas they were found in both layers II-III and V-VI in areas V3 and V3A. These results suggest that neurofilament protein identifies particular subpopulations of corticocortically projecting neurons with distinct regional and laminar distribution in the monkey visual system. It is possible that the preferential distribution of neurofilament protein within feedforward connections to area MT and all feedback projections is related to other distinctive properties of these corticocortical projection neurons.
Subduction controls the distribution and fragmentation of Earth’s tectonic plates.
Mallard, Claire; Coltice, Nicolas; Seton, Maria; Müller, R Dietmar; Tackley, Paul J
2016-07-07
The theory of plate tectonics describes how the surface of Earth is split into an organized jigsaw of seven large plates of similar sizes and a population of smaller plates whose areas follow a fractal distribution. The reconstruction of global tectonics during the past 200 million years suggests that this layout is probably a long-term feature of Earth, but the forces governing it are unknown. Previous studies, primarily based on the statistical properties of plate distributions, were unable to resolve how the size of the plates is determined by the properties of the lithosphere and the underlying mantle convection. Here we demonstrate that the plate layout of Earth is produced by a dynamic feedback between mantle convection and the strength of the lithosphere. Using three-dimensional spherical models of mantle convection that self-consistently produce the plate size–frequency distribution observed for Earth, we show that subduction geometry drives the tectonic fragmentation that generates plates. The spacing between the slabs controls the layout of large plates, and the stresses caused by the bending of trenches break plates into smaller fragments. Our results explain why the fast evolution in small back-arc plates reflects the marked changes in plate motions during times of major reorganizations. Our study opens the way to using convection simulations with plate-like behaviour to unravel how global tectonics and mantle convection are dynamically connected.
Wei, Shiping; Cui, Hongpeng; He, Hao; Hu, Fei; Su, Xin; Zhu, Youhai
2014-01-01
Accompanying the thawing permafrost expected to result from the climate change, microbial decomposition of the massive amounts of frozen organic carbon stored in permafrost is a potential emission source of greenhouse gases, possibly leading to positive feedbacks to the greenhouse effect. In this study, the community composition of archaea in stratigraphic soils from an alpine permafrost of Qinghai-Tibetan Plateau was investigated. Phylogenic analysis of 16S rRNA sequences revealed that the community was predominantly constituted by Crenarchaeota and Euryarchaeota. The active layer contained a proportion of Crenarchaeota at 51.2%, with the proportion of Euryarchaeota at 48.8%, whereas the permafrost contained 41.2% Crenarchaeota and 58.8% Euryarchaeota, based on 16S rRNA gene sequence analysis. OTU1 and OTU11, affiliated to Group 1.3b/MCG-A within Crenarchaeota and the unclassified group within Euryarchaeota, respectively, were widely distributed in all sediment layers. However, OTU5 affiliated to Group 1.3b/MCG-A was primarily distributed in the active layers. Sequence analysis of the DGGE bands from the 16S rRNAs of methanogenic archaea showed that the majority of methanogens belonged to Methanosarcinales and Methanomicrobiales affiliated to Euryarchaeota and the uncultured ZC-I cluster affiliated to Methanosarcinales distributed in all the depths along the permafrost profile, which indicated a dominant group of methanogens occurring in the cold ecosystems.
Cui, Hongpeng; He, Hao; Hu, Fei; Su, Xin; Zhu, Youhai
2014-01-01
Accompanying the thawing permafrost expected to result from the climate change, microbial decomposition of the massive amounts of frozen organic carbon stored in permafrost is a potential emission source of greenhouse gases, possibly leading to positive feedbacks to the greenhouse effect. In this study, the community composition of archaea in stratigraphic soils from an alpine permafrost of Qinghai-Tibetan Plateau was investigated. Phylogenic analysis of 16S rRNA sequences revealed that the community was predominantly constituted by Crenarchaeota and Euryarchaeota. The active layer contained a proportion of Crenarchaeota at 51.2%, with the proportion of Euryarchaeota at 48.8%, whereas the permafrost contained 41.2% Crenarchaeota and 58.8% Euryarchaeota, based on 16S rRNA gene sequence analysis. OTU1 and OTU11, affiliated to Group 1.3b/MCG-A within Crenarchaeota and the unclassified group within Euryarchaeota, respectively, were widely distributed in all sediment layers. However, OTU5 affiliated to Group 1.3b/MCG-A was primarily distributed in the active layers. Sequence analysis of the DGGE bands from the 16S rRNAs of methanogenic archaea showed that the majority of methanogens belonged to Methanosarcinales and Methanomicrobiales affiliated to Euryarchaeota and the uncultured ZC-I cluster affiliated to Methanosarcinales distributed in all the depths along the permafrost profile, which indicated a dominant group of methanogens occurring in the cold ecosystems. PMID:25525409
Donadeu, Meritxell; Fahrion, Anna S; Olliaro, Piero L; Abela-Ridder, Bernadette
2017-09-01
Target Product Profiles (TPPs) are process tools providing product requirements to guide researchers, developers and manufacturers in their efforts to develop effective and useful products such as biologicals, drugs or diagnostics. During a WHO Stakeholders Meeting on Taenia solium diagnostics, several TPPs were initiated to address diagnostic needs for different stages in the parasite's transmission (taeniasis, human and porcine cysticercosis). Following the meeting, draft TPPs were completed and distributed for consultation to 100 people/organizations, including experts in parasitology, human and pig cysticercosis, diagnostic researchers and manufacturers, international organizations working with neglected or zoonotic diseases, Ministries of Health and Ministries of Livestock in some of the endemic countries, WHO regional offices and other interested parties. There were 53 respondents. All comments and feedback received were considered and discussions were held with different experts according to their area of expertise. The comments were consolidated and final TPPs are presented here. They are considered to be live documents which are likely to undergo review and updating in the future when new knowledge and technologies become available.
Fahrion, Anna S.; Olliaro, Piero L.; Abela-Ridder, Bernadette
2017-01-01
Target Product Profiles (TPPs) are process tools providing product requirements to guide researchers, developers and manufacturers in their efforts to develop effective and useful products such as biologicals, drugs or diagnostics. During a WHO Stakeholders Meeting on Taenia solium diagnostics, several TPPs were initiated to address diagnostic needs for different stages in the parasite’s transmission (taeniasis, human and porcine cysticercosis). Following the meeting, draft TPPs were completed and distributed for consultation to 100 people/organizations, including experts in parasitology, human and pig cysticercosis, diagnostic researchers and manufacturers, international organizations working with neglected or zoonotic diseases, Ministries of Health and Ministries of Livestock in some of the endemic countries, WHO regional offices and other interested parties. There were 53 respondents. All comments and feedback received were considered and discussions were held with different experts according to their area of expertise. The comments were consolidated and final TPPs are presented here. They are considered to be live documents which are likely to undergo review and updating in the future when new knowledge and technologies become available. PMID:28892472
Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor
NASA Astrophysics Data System (ADS)
Jia, Yufei; Kerner, Ross A.; Grede, Alex J.; Rand, Barry P.; Giebink, Noel C.
2017-12-01
Hybrid organic-inorganic perovskites have emerged as promising gain media for tunable, solution-processed semiconductor lasers. However, continuous-wave operation has not been achieved so far1-3. Here, we demonstrate that optically pumped continuous-wave lasing can be sustained above threshold excitation intensities of 17 kW cm-2 for over an hour in methylammonium lead iodide (MAPbI3) distributed feedback lasers that are maintained below the MAPbI3 tetragonal-to-orthorhombic phase transition temperature of T ≈ 160 K. In contrast with the lasing death phenomenon that occurs for pure tetragonal-phase MAPbI3 at T > 160 K (ref. 4), we find that continuous-wave gain becomes possible at T ≈ 100 K from tetragonal-phase inclusions that are photogenerated by the pump within the normally existing, larger-bandgap orthorhombic host matrix. In this mixed-phase system, the tetragonal inclusions function as carrier recombination sinks that reduce the transparency threshold, in loose analogy to inorganic semiconductor quantum wells, and may serve as a model for engineering improved perovskite gain media.
Balconi, Michela; Crivelli, Davide
2010-02-01
Disruption of the sense of being effective and causally determinant in performing an action was explored in the present research by inducing an erroneous external spatial feedback in response to the subject's behaviour. ERPs were recorded from fifteen subjects when they were receiving mismatching/matching feedback information on direction. In addition, subjective sensitivity to the external cues was monitored by Behavioural Inhibition System (BIS) and Behavioural Activation System (BAS) measures, as well as Behaviour Identification process was tested by Behavior Identification Form (BIF). One negative ERP deflections of higher amplitude was revealed in concomitance to false feedback, peaking at about 210ms post-stimulus, more central-posteriorly localized. We supposed that it may represent feedback-error system of which activity might be reflected in FRN, deputed to monitor the unattended feedback furnished by an external system. Moreover, a P3b effect was also observed in great measure for false spatial feedback, more posteriorly (Pz) distributed. According to the context-updating hypothesis, the P3b may reflect the revision of the mental model of the context. BIS showed to be more sensitive to both veridical and false feedback that increased FRN, whereas higher-BAS and BAS-Reward measures revealed an increased proactive attitude to external feedback (higher P3b). Finally, low-level of action representation explained FRN amplitude more than high-level one.
Brown, Gordon D A; Wood, Alex M; Ogden, Ruth S; Maltby, John
2015-01-01
It was shown that student satisfaction ratings are influenced by context in ways that have important theoretical and practical implications. Using questions from the UK's National Student Survey, the study examined whether and how students' expressed satisfaction with issues such as feedback promptness and instructor enthusiasm depends on the context of comparison (such as possibly inaccurate beliefs about the feedback promptness or enthusiasm experienced at other universities) that is evoked. Experiment 1 found strong effects of experimentally provided comparison context—for example, satisfaction with a given feedback time depended on the time's relative position within a context. Experiment 2 used a novel distribution-elicitation methodology to determine the prior beliefs of individual students about what happens in universities other than their own. It found that these beliefs vary widely and that students' satisfaction was predicted by how they believed their experience ranked within the distribution of others' experiences. A third study found that relative judgement principles also predicted students' intention to complain. An extended model was developed to show that purely rank-based principles of judgement can account for findings previously attributed to range effects. It was concluded that satisfaction ratings and quality of provision are different quantities, particularly when the implicit context of comparison includes beliefs about provision at other universities. Quality and satisfaction should be assessed separately, with objective measures (such as actual times to feedback), rather than subjective ratings (such as satisfaction with feedback promptness), being used to measure quality wherever practicable. © 2014 The Authors. Journal of Behavioral Decision Making published by John Wiley & Sons Ltd. PMID:25620847
Chen, Shaoqiang; Sato, Aya; Ito, Takashi; Yoshita, Masahiro; Akiyama, Hidefumi; Yokoyama, Hiroyuki
2012-10-22
This paper reports generation of sub-5-ps Fourier-transform limited optical pulses from a 1.55-µm gain-switched single-mode distributed-feedback laser diode via nanosecond electric excitation and a simple spectral-filtering technique. Typical damped oscillations of the whole lasing spectrum were observed in the time-resolved waveform. Through a spectral-filtering technique, the initial relaxation oscillation pulse and the following components in the output pulse can be well separated, and the initial short pulse can be selectively extracted by filtering out the short-wavelength components in the spectrum. Short pulses generated by this simple method are expected to have wide potential applications comparable to mode-locking lasers.
Pattern dependence in high-speed Q-modulated distributed feedback laser.
Zhu, Hongli; Xia, Yimin; He, Jian-Jun
2015-05-04
We investigate the pattern dependence in high speed Q-modulated distributed feedback laser based on its complete physical structure and material properties. The structure parameters of the gain section as well as the modulation and phase sections are all taken into account in the simulations based on an integrated traveling wave model. Using this model, we show that an example Q-modulated DFB laser can achieve an extinction ratio of 6.8dB with a jitter of 4.7ps and a peak intensity fluctuation of less than 15% for 40Gbps RZ modulation signal. The simulation method is proved very useful for the complex laser structure design and high speed performance optimization, as well as for providing physical insight of the operation mechanism.
NASA Astrophysics Data System (ADS)
Jeong, Soon Moon; Ha, Na Young; Chee, Mu Guen; Araoka, Fumito; Ishikawa, Ken; Takezoe, Hideo; Nishimura, Suzushi; Suzaki, Goro
2008-12-01
The authors have demonstrated the enhancement of linearly polarized lasing emission intensity using a structure made by a simple fabrication process. The enhanced lasing is achieved using a nanoimprinted distributed feedback structure together with spin-coated polymeric liquid crystals. The backward linearly TE-polarized lasing emission is transformed to left-handed circularly polarized light (L-CPL) by employing a dye-doped polymeric nematic liquid crystal (PNLC) film as a (-1/4)λ[=(3/4)λ] plate. The L-CPL is effectively reflected by a L-polymeric cholesteric liquid crystal film as a reflector and transformed back to TE-polarized light by the PNLC film; as a result one-directional emission intensity is enhanced.
Influence of the UV-induced fiber loss on the distributed feedback fiber lasers
NASA Astrophysics Data System (ADS)
Fan, Wei; Chen, Bai; Qiao, Qiquan; Chen, Jialing; Lin, Zunqi
2003-06-01
It was found that the output power of the distributed feedback fiber lasers would be improved after annealing or left unused for several days after the laser had been fabricated, and the output of the fundamental mode would not increase but be clamped while the ±1 order modes would be predominant with the enhancement of the coupling coefficient during the fabrication. The paper discussed the influence of UV-induced fiber loss on the fiber phase-shifted DFB lasers. Due to the gain saturation and fiber internal loss, which included the temperament loss and permanent loss, there was an optimum coupling coefficient for the DFB fiber lasers that the higher internal fiber loss corresponded to the lower optimum values of coupling coefficient.
Impact of baryonic physics on intrinsic alignments
Tenneti, Ananth; Gnedin, Nickolay Y.; Feng, Yu
2017-01-11
We explore the effects of specific assumptions in the subgrid models of star formation and stellar and AGN feedback on intrinsic alignments of galaxies in cosmological simulations of "MassiveBlack-II" family. Using smaller volume simulations, we explored the parameter space of the subgrid star formation and feedback model and found remarkable robustness of the observable statistical measures to the details of subgrid physics. The one observational probe most sensitive to modeling details is the distribution of misalignment angles. We hypothesize that the amount of angular momentum carried away by the galactic wind is the primary physical quantity that controls the orientationmore » of the stellar distribution. Finally, our results are also consistent with a similar study by the EAGLE simulation team.« less
Leader-following control of multiple nonholonomic systems over directed communication graphs
NASA Astrophysics Data System (ADS)
Dong, Wenjie; Djapic, Vladimir
2016-06-01
This paper considers the leader-following control problem of multiple nonlinear systems with directed communication topology and a leader. If the state of each system is measurable, distributed state feedback controllers are proposed using neighbours' state information with the aid of Lyapunov techniques and properties of Laplacian matrix for time-invariant communication graph and time-varying communication graph. It is shown that the state of each system exponentially converges to the state of a leader. If the state of each system is not measurable, distributed observer-based output feedback control laws are proposed. As an application of the proposed results, formation control of wheeled mobile robots is studied. The simulation results show the effectiveness of the proposed results.
NASA Astrophysics Data System (ADS)
Zheng, Yujin; Sekine, Takashi; Kurita, Takashi; Kato, Yoshinori; Kawashima, Toshiyuki
2018-03-01
We demonstrate continuous-wave dual-wavelength operation of a broad-area distributed feedback (DFB) laser diode with a single external-cavity configuration. This high-power DFB laser has a narrow bandwidth (<0.29 nm) and was used as a single-wavelength source. A volume Bragg grating was used as an output coupler for the external-cavity DFB laser to output another stable wavelength beam with a narrow bandwidth of 0.27 nm. A frequency difference for dual-wavelength operation of 0.88 THz was achieved and an output power of up to 415 mW was obtained. The external-cavity DFB laser showed a stable dual-wavelength operation over the practical current and temperature ranges.
GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating.
Shindo, Takahiko; Okumura, Tadashi; Ito, Hitomi; Koguchi, Takayuki; Takahashi, Daisuke; Atsumi, Yuki; Kang, Joonhyun; Osabe, Ryo; Amemiya, Tomohiro; Nishiyama, Nobuhiko; Arai, Shigehisa
2011-01-31
We fabricated a novel lateral-current-injection-type distributed feedback (DFB) laser with amorphous-Si (a-Si) surface grating as a step to realize membrane lasers. This laser consists of a thin GaInAsP core layer grown on a semi-insulating InP substrate and a 30-nm-thick a-Si surface layer for DFB grating. Under a room-temperature continuous-wave condition, a low threshold current of 7.0 mA and high efficiency of 43% from the front facet were obtained for a 2.0-μm stripe width and 300-μm cavity length. A small-signal modulation bandwidth of 4.8 GHz was obtained at a bias current of 30 mA.
Plasmonic distributed feedback lasers at telecommunications wavelengths.
Marell, Milan J H; Smalbrugge, Barry; Geluk, Erik Jan; van Veldhoven, Peter J; Barcones, Beatrix; Koopmans, Bert; Nötzel, Richard; Smit, Meint K; Hill, Martin T
2011-08-01
We investigate electrically pumped, distributed feedback (DFB) lasers, based on gap-plasmon mode metallic waveguides. The waveguides have nano-scale widths below the diffraction limit and incorporate vertical groove Bragg gratings. These metallic Bragg gratings provide a broad bandwidth stop band (~500 nm) with grating coupling coefficients of over 5000/cm. A strong suppression of spontaneous emission occurs in these Bragg grating cavities, over the stop band frequencies. This strong suppression manifests itself in our experimental results as a near absence of spontaneous emission and significantly reduced lasing thresholds when compared to similar length Fabry-Pérot waveguide cavities. Furthermore, the reduced threshold pumping requirements permits us to show strong line narrowing and super linear light current curves for these plasmon mode devices even at room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen Ba, T.; Triki, M.; Vicet, A., E-mail: a.vicet@univ-montp2.fr
2015-02-15
An antimonide distributed feedback quantum wells diode laser operating at 3.32 μm at near room temperature in the continuous wave regime has been used to perform ethylene detection based on quartz enhanced photoacoustic spectroscopy. An absorption line centered at 3007.52 cm{sup −1} was investigated and a normalized noise equivalent absorption coefficient (1σ) of 3.09 10{sup −7} cm{sup −1} W Hz{sup −1/2} was obtained. The linearity and the stability of the detection have been evaluated. Biological samples’ respiration has been measured to validate the feasibility of the detection setup in an agronomic environment, especially on ripening apples.
Li, Wangzhe; Zhang, Xia; Yao, Jianping
2013-08-26
We report, to the best of our knowledge, the first realization of a multi-wavelength distributed feedback (DFB) semiconductor laser array with an equivalent chirped grating profile based on equivalent chirp technology. All the lasers in the laser array have an identical grating period with an equivalent chirped grating structure, which are realized by nonuniform sampling of the gratings. Different wavelengths are achieved by changing the sampling functions. A multi-wavelength DFB semiconductor laser array is fabricated and the lasing performance is evaluated. The results show that the equivalent chirp technology is an effective solution for monolithic integration of a multi-wavelength laser array with potential for large volume fabrication.
[Organization development of the public health system].
Pfaff, Holger; Klein, Jürgen
2002-05-15
Changes in the German health care system require changes in health care institutions. Organizational development (OD) techniques can help them to cope successfully with their changing environment. OD is defined as a collective process of learning aiming to induce intended organizational change. OD is based on social science methods and conducted by process-oriented consultants. In contrast to techniques of organizational design, OD is characterized by employee participation. One of the most important elements of OD is the so-called "survey-feedback-technique". Five examples illustrate how the survey-feedback-technique can be used to facilitate organisational learning. OD technique supports necessary change in health care organizations. It should be used more frequently.
NASA Technical Reports Server (NTRS)
Kahn, Ralph
2017-01-01
Organizers of the Symposium Clouds, their Properties, and their Climate Feedbacks - What Have We Learned in the Satellite Era, held at Columbia University, NASAGISS June 6-8, 2017 plan to post the presented talks to an online website. http:www.gewex.orgeventclouds-their-properties-and-their-climate-feedbacks-what-have-we-learned-in-the-satellite-era?instance_id293534
Cell-fate specification in the epidermis: a common patterning mechanism in the root and shoot.
Schiefelbein, John
2003-02-01
The specification of epidermal hairs in Arabidopsis provides a useful model for the study of pattern formation in plants. Although the distributions of hair cells in the root and shoot appear quite different, recent studies show that pattern formation in each relies on a common cassette of transcriptional regulators. During development in each organ, neighboring cells compete to express regulators that specify the primary cell fate (including WEREWOLF [WER]/GLABRA1 [GL1], GL3/bHLH, TRANSPARENT TESTA GLABRA [TTG], and GL2), as well as those that prevent their neighbors from adopting this fate (including CAPRICE [CPC] and TRIPTYCHON [TRY]). The basic mechanism of lateral inhibition with feedback that has been uncovered by recent studies provides a conceptual framework for understanding how patterns of cell fate in general may be specified during plant development.
Asymmetries in Climate Change Feedbacks: Why the Future may be Hotter Than you Think
NASA Astrophysics Data System (ADS)
Torn, M. S.; Harte, J.
2006-12-01
Feedbacks in the climate system are major sources of uncertainty, and climate predictions do not yet include one key set of feedbacks, namely biospheric greenhouse gas (GhG) feedbacks. Historical evidence shows that atmospheric GhG concentrations increase during periods of warming, implying a positive feedback to future climate change. We quantify this feedback for carbon dioxide (CO2) and methane (CH4) by combining the mathematics of feedback with both empirical ice-core information and general circulation model climate sensitivity. We find that a warming of 1.7-5.8°C predicted for the year 2100 is amplified to a warming commitment of 1.9-7.7°C, with the range deriving from different GCM simulations and paleo temperature records. Thus, anthropogenic emissions result in higher final GhG concentrations, and therefore more warming, than would be predicted in the absence of this feedback. Uncertainty in climate change predictions have been used as a rationale for inaction against the threat of global warming, based on a prevailing view that the uncertainties are symmetric, giving equal support to climate "optimists" (who think it will be a small problem) and "pessimists," (it will be a big problem). Our results show that even a symmetrical uncertainty in any component of feedback, whether positive or negative, produces an asymmetrical distribution of expected temperatures skewed towards higher temperature. For both reasons, the omission of key positive feedbacks and asymmetrical uncertainty from feedbacks, it is likely that the future will be hotter than we think, which implies more severe climate change impacts. Thus, these results suggest that a conservative policy approach would employ lower emission targets and tighter stabilization time horizons than would otherwise be required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, Michael J.; Tan, Jonathan C.; Teyssier, Romain
2017-06-01
Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H{sub 2}-dissociating feedback results in themore » largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H{sub 2}-dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.« less
Feedback about Teaching in Higher Ed: Neglected Opportunities to Promote Change.
Gormally, Cara; Evans, Mara; Brickman, Peggy
2014-01-01
Despite ongoing dissemination of evidence-based teaching strategies, science teaching at the university level is less than reformed. Most college biology instructors could benefit from more sustained support in implementing these strategies. One-time workshops raise awareness of evidence-based practices, but faculty members are more likely to make significant changes in their teaching practices when supported by coaching and feedback. Currently, most instructional feedback occurs via student evaluations, which typically lack specific feedback for improvement and focus on teacher-centered practices, or via drop-in classroom observations and peer evaluation by other instructors, which raise issues for promotion, tenure, and evaluation. The goals of this essay are to summarize the best practices for providing instructional feedback, recommend specific strategies for providing feedback, and suggest areas for further research. Missed opportunities for feedback in teaching are highlighted, and the sharing of instructional expertise is encouraged. © 2014 M. Evans et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Qian, Jing; Wang, Bin; Han, Zhuo; Song, Baihe
2017-01-01
This research elucidates the role of ethical leadership in employee feedback seeking by examining how and when ethical leadership may exert a positive influence on feedback seeking. Using matched reports from 64 supervisors and 265 of their immediate employees from a hotel group located in a major city in China, we proposed and tested a moderated mediation model that examines leader-member exchange (LMX) as the mediator and emotional intelligence as well as work-unit structure as double moderators in the relationships between ethical leadership and followers' feedback-seeking behavior from supervisors and coworkers. Our findings indicated that (1) LMX mediated the positive relationship between ethical leadership and feedback seeking from both ethical leaders and coworkers, and (2) emotional intelligence and work-unit structure served as joint moderators on the mediated positive relationship in such a way that the relationship was strongest when the emotional intelligence was high and work-unit structure was more of an organic structure rather than a mechanistic structure.
NASA Technical Reports Server (NTRS)
Allan, Brian G.
2000-01-01
A reduced order modeling approach of the Navier-Stokes equations is presented for the design of a distributed optimal feedback kernel. This approach is based oil a Krylov subspace method where significant modes of the flow are captured in the model This model is then used in all optimal feedback control design where sensing and actuation is performed oil tile entire flow field. This control design approach yields all optimal feedback kernel which provides insight into the placement of sensors and actuators in the flow field. As all evaluation of this approach, a two-dimensional shear layer and driven cavity flow are investigated.
Crea, Simona; Cipriani, Christian; Donati, Marco; Carrozza, Maria Chiara; Vitiello, Nicola
2015-03-01
Here we describe a novel wearable feedback apparatus for lower-limb amputees. The system is based on three modules: a pressure-sensitive insole for the measurement of the plantar pressure distribution under the prosthetic foot during gait, a computing unit for data processing and gait segmentation, and a set of vibrating elements placed on the thigh skin. The feedback strategy relies on the detection of specific gait-phase transitions of the amputated leg. Vibrating elements are activated in a time-discrete manner, simultaneously with the occurrence of the detected gait-phase transitions. Usability and effectiveness of the apparatus were successfully assessed through an experimental validation involving ten healthy volunteers.
General, database-driven fast-feedback system for the Stanford Linear Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rouse, F.; Allison, S.; Castillo, S.
A new feedback system has been developed for stabilizing the SLC beams at many locations. The feedback loops are designed to sample and correct at the 60 Hz repetition rate of the accelerator. Each loop can be distributed across several of the standard 80386 microprocessors which control the SLC hardware. A new communications system, KISNet, has been implemented to pass signals between the microprocessors at this rate. The software is written in a general fashion using the state space formalism of digital control theory. This allows a new loop to be implemented by just setting up the online database andmore » perhaps installing a communications link. 3 refs., 4 figs.« less
Cendejas, Richard A; Phillips, Mark C; Myers, Tanya L; Taubman, Matthew S
2010-12-06
An external-cavity (EC) quantum cascade (QC) laser using optical feedback from a partial-reflector is reported. With this configuration, the otherwise multi-mode emission of a Fabry-Perot QC laser was made single-mode with optical output powers exceeding 40 mW. A mode-hop free tuning range of 2.46 cm(-1) was achieved by synchronously tuning the EC length and QC laser current. The linewidth of the partial-reflector EC-QC laser was measured for integration times from 100 μs to 4 seconds, and compared to a distributed feedback QC laser. Linewidths as small as 480 kHz were recorded for the EC-QC laser.
Ursell, Tristan S.; Nguyen, Jeffrey; Monds, Russell D.; Colavin, Alexandre; Billings, Gabriel; Ouzounov, Nikolay; Gitai, Zemer; Shaevitz, Joshua W.; Huang, Kerwyn Casey
2014-01-01
Cells typically maintain characteristic shapes, but the mechanisms of self-organization for robust morphological maintenance remain unclear in most systems. Precise regulation of rod-like shape in Escherichia coli cells requires the MreB actin-like cytoskeleton, but the mechanism by which MreB maintains rod-like shape is unknown. Here, we use time-lapse and 3D imaging coupled with computational analysis to map the growth, geometry, and cytoskeletal organization of single bacterial cells at subcellular resolution. Our results demonstrate that feedback between cell geometry and MreB localization maintains rod-like cell shape by targeting cell wall growth to regions of negative cell wall curvature. Pulse-chase labeling indicates that growth is heterogeneous and correlates spatially and temporally with MreB localization, whereas MreB inhibition results in more homogeneous growth, including growth in polar regions previously thought to be inert. Biophysical simulations establish that curvature feedback on the localization of cell wall growth is an effective mechanism for cell straightening and suggest that surface deformations caused by cell wall insertion could direct circumferential motion of MreB. Our work shows that MreB orchestrates persistent, heterogeneous growth at the subcellular scale, enabling robust, uniform growth at the cellular scale without requiring global organization. PMID:24550515
NASA Astrophysics Data System (ADS)
Sejas, S.; Cai, M.
2012-12-01
Surfing warming due to CO2 doubling is a robust feature of coupled general circulation models (GCM), as noted in the IPCC AR4 assessment report. In this study, the contributions of different climate feedbacks to the magnitude, spatial distribution, and seasonality of the surface warming is examined using data from NCAR's CCSM4. In particular, a focus is placed on polar regions to see which feedbacks play a role in polar amplification and its seasonal pattern. A new climate feedback analysis method is used to isolate the surface warming or cooling contributions of both radiative and non-radiative (dynamical) climate feedbacks to the total (actual) surface temperature change given by the CCSM4. These contributions (or partial surface temperature changes) are additive and their total is approximately equal to the actual surface temperature change. What is found is that the effects of CO2 doubling alone warms the surface throughout with a maximum in polar regions, which indicates the CO2 forcing alone has a degree of polar warming amplification. Water vapor feedback is a positive feedback throughout but is most responsible for the surface warming found in the tropics. Polar warming amplification is found to be strongest away from summer (especially in NH), which is primarily caused by a positive feedback due to cloud feedbacks but with the surface temperature change due to the CO2 forcing alone and the ocean dynamics and storage feedback also playing an important role. Contrary to popular belief, surface albedo feedback (SAF) does not account for much of the polar amplification. SAF tries to amplify polar warming, but in summer. No major polar amplification is seen in summer for the actual surface temperature, so SAF is not the feedback responsible for polar amplification. This is actually a consequence of the ocean dynamics and storage feedback, which negates the effects of SAF to a large degree.
Ultrafast Outflows: Galaxy-scale Active Galactic Nucleus Feedback
NASA Astrophysics Data System (ADS)
Wagner, A. Y.; Umemura, M.; Bicknell, G. V.
2013-01-01
We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.
ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, A. Y.; Umemura, M.; Bicknell, G. V., E-mail: ayw@ccs.tsukuba.ac.jp
We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves inmore » the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.« less
Causality: Physics and Philosophy
ERIC Educational Resources Information Center
Chatterjee, Atanu
2013-01-01
Nature is a complex causal network exhibiting diverse forms and species. These forms or rather systems are physically open, structurally complex and naturally adaptive. They interact with the surrounding media by operating a positive-feedback loop through which, they adapt, organize and self-organize themselves in response to the ever-changing…
Compact Tactile Sensors for Robot Fingers
NASA Technical Reports Server (NTRS)
Martin, Toby B.; Lussy, David; Gaudiano, Frank; Hulse, Aaron; Diftler, Myron A.; Rodriguez, Dagoberto; Bielski, Paul; Butzer, Melisa
2004-01-01
Compact transducer arrays that measure spatial distributions of force or pressure have been demonstrated as prototypes of tactile sensors to be mounted on fingers and palms of dexterous robot hands. The pressure- or force-distribution feedback provided by these sensors is essential for the further development and implementation of robot-control capabilities for humanlike grasping and manipulation.
Feedback Drug Delivery Vehicles
2012-06-28
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing...policy or decision, unless so designated by other documentation. 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for Public Release; Distribution... publications (other than abstracts): Received Paper TOTAL: Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts): Peer
Modeling heart rate variability by stochastic feedback
NASA Technical Reports Server (NTRS)
Amaral, L. A.; Goldberger, A. L.; Stanley, H. E.
1999-01-01
We consider the question of how the cardiac rhythm spontaneously self-regulates and propose a new mechanism as a possible answer. We model the neuroautonomic regulation of the heart rate as a stochastic feedback system and find that the model successfully accounts for key characteristics of cardiac variability, including the 1/f power spectrum, the functional form and scaling of the distribution of variations of the interbeat intervals, and the correlations in the Fourier phases which indicate nonlinear dynamics.
Imaging of acoustic fields using optical feedback interferometry.
Bertling, Karl; Perchoux, Julien; Taimre, Thomas; Malkin, Robert; Robert, Daniel; Rakić, Aleksandar D; Bosch, Thierry
2014-12-01
This study introduces optical feedback interferometry as a simple and effective technique for the two-dimensional visualisation of acoustic fields. We present imaging results for several pressure distributions including those for progressive waves, standing waves, as well as the diffraction and interference patterns of the acoustic waves. The proposed solution has the distinct advantage of extreme optical simplicity and robustness thus opening the way to a low cost acoustic field imaging system based on mass produced laser diodes.
The Effect of AGN Heating on the Low-redshift Lyα Forest
NASA Astrophysics Data System (ADS)
Gurvich, Alex; Burkhart, Blakesley; Bird, Simeon
2017-02-01
We investigate the effects of AGN heating and the ultraviolet background on the low-redshift Lyα forest column density distribution (CDD) using the Illustris simulation. We show that Illustris reproduces observations at z = 0.1 in the column density range {10}12.5{--}{10}13.5 cm-2, relevant for the “photon underproduction crisis.” We attribute this to the inclusion of AGN feedback, which changes the gas distribution so as to mimic the effect of extra photons, as well as the use of the Faucher-Giguère ultraviolet background, which is more ionizing at z = 0.1 than the Haardt & Madau background previously considered. We show that the difference between simulations run with smoothed particle hydrodynamics and simulations using a moving mesh is small in this column density range but can be more significant at larger column densities. We further consider the effect of supernova feedback, Voigt profile fitting, and finite resolution, all of which we show to have little influence on the CDD. Finally, we identify a discrepancy between our simulations and observations at column densities {10}14{--}{10}16 cm-2, where Illustris produces too few absorbers, which suggests the AGN feedback model should be further refined. Since the “photon underproduction crisis” primarily affects lower column density systems, we conclude that AGN feedback and standard ionizing background models can resolve the crisis.
A Bookmarking Service for Organizing and Sharing URLs
NASA Technical Reports Server (NTRS)
Keller, Richard M.; Wolfe, Shawn R.; Chen, James R.; Mathe, Nathalie; Rabinowitz, Joshua L.
1997-01-01
Web browser bookmarking facilities predominate as the method of choice for managing URLs. In this paper, we describe some deficiencies of current bookmarking schemes, and examine an alternative to current approaches. We present WebTagger(TM), an implemented prototype of a personal bookmarking service that provides both individuals and groups with a customizable means of organizing and accessing Web-based information resources. In addition, the service enables users to supply feedback on the utility of these resources relative to their information needs, and provides dynamically-updated ranking of resources based on incremental user feedback. Individuals may access the service from anywhere on the Internet, and require no special software. This service greatly simplifies the process of sharing URLs within groups, in comparison with manual methods involving email. The underlying bookmark organization scheme is more natural and flexible than current hierarchical schemes supported by the major Web browsers, and enables rapid access to stored bookmarks.
Effect of Temperature on Synthetic Positive and Negative Feedback Gene Networks
NASA Astrophysics Data System (ADS)
Charlebois, Daniel A.; Marshall, Sylvia; Balazsi, Gabor
Synthetic biological systems are built and tested under well controlled laboratory conditions. How altering the environment, such as the ambient temperature affects their function is not well understood. To address this question for synthetic gene networks with positive and negative feedback, we used mathematical modeling coupled with experiments in the budding yeast Saccharomyces cerevisiae. We found that cellular growth rates and gene expression dose responses change significantly at temperatures above and below the physiological optimum for yeast. Gene expression distributions for the negative feedback-based circuit changed from unimodal to bimodal at high temperature, while the bifurcation point of the positive feedback circuit shifted up with temperature. These results demonstrate that synthetic gene network function is context-dependent. Temperature effects should thus be tested and incorporated into their design and validation for real-world applications. NSERC Postdoctoral Fellowship (Grant No. PDF-453977-2014).
New nonlinear control algorithms for multiple robot arms
NASA Technical Reports Server (NTRS)
Tarn, T. J.; Bejczy, A. K.; Yun, X.
1988-01-01
Multiple coordinated robot arms are modeled by considering the arms as closed kinematic chains and as a force-constrained mechanical system working on the same object simultaneously. In both formulations, a novel dynamic control method is discussed. It is based on feedback linearization and simultaneous output decoupling technique. By applying a nonlinear feedback and a nonlinear coordinate transformation, the complicated model of the multiple robot arms in either formulation is converted into a linear and output decoupled system. The linear system control theory and optimal control theory are used to design robust controllers in the task space. The first formulation has the advantage of automatically handling the coordination and load distribution among the robot arms. In the second formulation, it was found that by choosing a general output equation it became possible simultaneously to superimpose the position and velocity error feedback with the force-torque error feedback in the task space.
Asymmetric interjoint feedback contributes to postural control of redundant multi-link systems
NASA Astrophysics Data System (ADS)
Bunderson, Nathan E.; Ting, Lena H.; Burkholder, Thomas J.
2007-09-01
Maintaining the postural configuration of a limb such as an arm or leg is a fundamental neural control task that involves the coordination of multiple linked body segments. Biological systems are known to use a complex network of inter- and intra-joint feedback mechanisms arising from muscles, spinal reflexes and higher neuronal structures to stabilize the limbs. While previous work has shown that a small amount of asymmetric heterogenic feedback contributes to the behavior of these systems, a satisfactory functional explanation for this non-conservative feedback structure has not been put forth. We hypothesized that an asymmetric multi-joint control strategy would confer both an energetic and stability advantage in maintaining endpoint position of a kinematically redundant system. We tested this hypothesis by using optimal control models incorporating symmetric versus asymmetric feedback with the goal of maintaining the endpoint location of a kinematically redundant, planar limb. Asymmetric feedback improved endpoint control performance of the limb by 16%, reduced energetic cost by 21% and increased interjoint coordination by 40% compared to the symmetric feedback system. The overall effect of the asymmetry was that proximal joint motion resulted in greater torque generation at distal joints than vice versa. The asymmetric organization is consistent with heterogenic stretch reflex gains measured experimentally. We conclude that asymmetric feedback has a functionally relevant role in coordinating redundant degrees of freedom to maintain the position of the hand or foot.
Asymmetric interjoint feedback contributes to postural control of redundant multi-link systems
Bunderson, Nathan E.; Ting, Lena H.; Burkholder, Thomas J.
2008-01-01
Maintaining the postural configuration of a limb such as an arm or leg is a fundamental neural control task that involves the coordination of multiple linked body segments. Biological systems are known to use a complex network of inter- and intra-joint feedback mechanisms arising from muscles, spinal reflexes, and higher neuronal structures to stabilize the limbs. While previous work has shown that a small amount of asymmetric heterogenic feedback contributes to the behavior of these systems, a satisfactory functional explanation for this nonconservative feedback structure has not been put forth. We hypothesized that an asymmetric multi-joint control strategy would confer both an energetic and stability advantage in maintaining endpoint position of a kinematically redundant system. We tested this hypothesis by using optimal control models incorporating symmetric versus asymmetric feedback with the goal of maintaining the endpoint location of a kinematically redundant, planar limb. Asymmetric feedback improved endpoint control performance of the limb by 16%, reduced energetic cost by 21% and increased interjoint coordination by 40% compared to the symmetric feedback system. The overall effect of the asymmetry was that proximal joint motion resulted in greater torque generation at distal joints than vice versa. The asymmetric organization is consistent with heterogenic stretch reflex gains measured experimentally. We conclude that asymmetric feedback has a functionally relevant role in coordinating redundant degrees of freedom to maintain the position of the hand or foot. PMID:17873426
A Study of Strong Stability of Distributed Systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Cataltepe, Tayfun
1989-01-01
The strong stability of distributed systems is studied and the problem of characterizing strongly stable semigroups of operators associated with distributed systems is addressed. Main emphasis is on contractive systems. Three different approaches to characterization of strongly stable contractive semigroups are developed. The first one is an operator theoretical approach. Using the theory of dilations, it is shown that every strongly stable contractive semigroup is related to the left shift semigroup on an L(exp 2) space. Then, a decomposition for the state space which identifies strongly stable and unstable states is introduced. Based on this decomposition, conditions for a contractive semigroup to be strongly stable are obtained. Finally, extensions of Lyapunov's equation for distributed parameter systems are investigated. Sufficient conditions for weak and strong stabilities of uniformly bounded semigroups are obtained by relaxing the equivalent norm condition on the right hand side of the Lyanupov equation. These characterizations are then applied to the problem of feedback stabilization. First, it is shown via the state space decomposition that under certain conditions a contractive system (A,B) can be strongly stabilized by the feedback -B(*). Then, application of the extensions of the Lyapunov equation results in sufficient conditions for weak, strong, and exponential stabilizations of contractive systems by the feedback -B(*). Finally, it is shown that for a contractive system, the first derivative of x with respect to time = Ax + Bu (where B is any linear bounded operator), there is a related linear quadratic regulator problem and a corresponding steady state Riccati equation which always has a bounded nonnegative solution.
Ribosome flow model with positive feedback
Margaliot, Michael; Tuller, Tamir
2013-01-01
Eukaryotic mRNAs usually form a circular structure; thus, ribosomes that terminatae translation at the 3′ end can diffuse with increased probability to the 5′ end of the transcript, initiating another cycle of translation. This phenomenon describes ribosomal flow with positive feedback—an increase in the flow of ribosomes terminating translating the open reading frame increases the ribosomal initiation rate. The aim of this paper is to model and rigorously analyse translation with feedback. We suggest a modified version of the ribosome flow model, called the ribosome flow model with input and output. In this model, the input is the initiation rate and the output is the translation rate. We analyse this model after closing the loop with a positive linear feedback. We show that the closed-loop system admits a unique globally asymptotically stable equilibrium point. From a biophysical point of view, this means that there exists a unique steady state of ribosome distributions along the mRNA, and thus a unique steady-state translation rate. The solution from any initial distribution will converge to this steady state. The steady-state distribution demonstrates a decrease in ribosome density along the coding sequence. For the case of constant elongation rates, we obtain expressions relating the model parameters to the equilibrium point. These results may perhaps be used to re-engineer the biological system in order to obtain a desired translation rate. PMID:23720534
The Impact of Positive, Negative and Topical Relevance Feedback
2008-11-01
the Netherlands Organization for Scientific Research (NWO, grant # 612.066.513). REFERENCES [1] Y. K. Chang, C. Cirillo, and J . Razon. Evaluation of...feedback retrieval using modified freezing, residual collection and test and control groups. In G. Salton , editor, The SMART retrieval system...information retrieval. In Proceedings SI- GIR 2004, pages 178–185. ACM Press, New York NY, 2004. [3] R. Kaptein and J . Kamps. Web directories as topical context
Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms.
Niu, Shuli; Luo, Yiqi; Fei, Shenfeng; Yuan, Wenping; Schimel, David; Law, Beverly E; Ammann, Christof; Arain, M Altaf; Arneth, Almut; Aubinet, Marc; Barr, Alan; Beringer, Jason; Bernhofer, Christian; Black, T Andrew; Buchmann, Nina; Cescatti, Alessandro; Chen, Jiquan; Davis, Kenneth J; Dellwik, Ebba; Desai, Ankur R; Etzold, Sophia; Francois, Louis; Gianelle, Damiano; Gielen, Bert; Goldstein, Allen; Groenendijk, Margriet; Gu, Lianhong; Hanan, Niall; Helfter, Carole; Hirano, Takashi; Hollinger, David Y; Jones, Mike B; Kiely, Gerard; Kolb, Thomas E; Kutsch, Werner L; Lafleur, Peter; Lawrence, David M; Li, Linghao; Lindroth, Anders; Litvak, Marcy; Loustau, Denis; Lund, Magnus; Marek, Michal; Martin, Timothy A; Matteucci, Giorgio; Migliavacca, Mirco; Montagnani, Leonardo; Moors, Eddy; Munger, J William; Noormets, Asko; Oechel, Walter; Olejnik, Janusz; Kyaw Tha Paw U; Pilegaard, Kim; Rambal, Serge; Raschi, Antonio; Scott, Russell L; Seufert, Günther; Spano, Donatella; Stoy, Paul; Sutton, Mark A; Varlagin, Andrej; Vesala, Timo; Weng, Ensheng; Wohlfahrt, Georg; Yang, Bai; Zhang, Zhongda; Zhou, Xuhui
2012-05-01
• It is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. • Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem-level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. • We found that the temperature response of NEE followed a peak curve, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum temperature) rather than changes in the temperature sensitivity of ecosystem respiration. • Ecosystem-level thermal optimality is a newly revealed ecosystem property, presumably reflecting associated evolutionary adaptation of organisms within ecosystems, and has the potential to significantly regulate ecosystem-climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Liu, Xin; Lebedkin, Sergei; Besser, Heino; Pfleging, Wilhelm; Prinz, Stephan; Wissmann, Markus; Schwab, Patrick M; Nazarenko, Irina; Guttmann, Markus; Kappes, Manfred M; Lemmer, Uli
2015-01-27
Organic semiconductor distributed feedback (DFB) lasers are of interest as external or chip-integrated excitation sources in the visible spectral range for miniaturized Raman-on-chip biomolecular detection systems. However, the inherently limited excitation power of such lasers as well as oftentimes low analyte concentrations requires efficient Raman detection schemes. We present an approach using surface-enhanced Raman scattering (SERS) substrates, which has the potential to significantly improve the sensitivity of on-chip Raman detection systems. Instead of lithographically fabricated Au/Ag-coated periodic nanostructures on Si/SiO2 wafers, which can provide large SERS enhancements but are expensive and time-consuming to fabricate, we use low-cost and large-area SERS substrates made via laser-assisted nanoreplication. These substrates comprise gold-coated cyclic olefin copolymer (COC) nanopillar arrays, which show an estimated SERS enhancement factor of up to ∼ 10(7). The effect of the nanopillar diameter (60-260 nm) and interpillar spacing (10-190 nm) on the local electromagnetic field enhancement is studied by finite-difference-time-domain (FDTD) modeling. The favorable SERS detection capability of this setup is verified by using rhodamine 6G and adenosine as analytes and an organic semiconductor DFB laser with an emission wavelength of 631.4 nm as the external fiber-coupled excitation source.
Cheah, Whye Lian; Giloi, Nelbon; Chang, Ching Thon; Lim, Jac Fang
2012-01-01
Background: This study aimed to determine the perception and level of safety satisfaction of staff nurses with regards to Occupational Safety and Health (OSH) management practice in the Sabah Health Department, and to associate the OSH management dimensions, to Safety Satisfaction and Safety Feedback. Methods: A cross-sectional study using a validated self-administered questionnaire was conducted among randomly respondents. Results: 135 nurses responded the survey. Mean (SD) score for each dimension ranged from 1.70 ± 0.68–4.04 ± 0.65, with Training and Competence dimension (mean [SD], 4.04 ± 0.65) had the highest while Safety Incidence was the least score (mean [SD], 1.70 ± 0.68). Both mean (SD) scores for Safety Satisfaction and Safety Feedback was high, 3.28 ± 0.51 and 3.57 ± 0.73, respectively. Pearson’s correlation analysis indicated that all OSH dimensions had significant correlation with Safety Satisfaction and Safety Feedback (r coefficient ranged from 0.176–0.512) except for Safety Incidence. Conclusion: The overall perception of OSH management was rather low. Significant correlation between Safety Satisfaction and Safety Feedback and several dimensions, suggest that each organization to put in place the leaders who have appropriate leadership and supervisory skills and committed in providing staff training to improve staff’s competency in OSH practice. In addition, clear goals, rules, and reporting system will help the organization to implement proper OSH management practice. PMID:23610550
Long Term Monitoring of Atmospheric Composition at NOAA - Driving Science with 60 Year-old Records
NASA Astrophysics Data System (ADS)
Butler, J. H.
2017-12-01
NOAA's Global Monitoring Division and its precursor organizations have provided some of the longest real-time records of the trends and distributions of climatically relevant substances in the atmosphere, some going back for 60 years (http://www.esrl.noaa.gov/gmd). The focus of these measurements has been on obtaining reliable records of global trends and distributions of these substances, but the experimental design and use of measurements have advanced over time with evolving scientific questions. Today, and into this century, scientific questions continue to progress and the observing systems that address them will need to progress accordingly. Long-term, ground based observing systems in NOAA's Global Monitoring Division focus largely on three sets of questions, two of which align with WCRP grand challenges. These are Carbon Cycle System Feedbacks, Trends in Surface Radiation and Cloud Distributions, and Recovery of Stratospheric Ozone. The data collected and analyzed help us understand radiative forcing, climate sensitivity, air quality, climate modification, renewable energy options, and arctic processes, and they are useful for verifying model output and satellite retrievals. Regional information will become increasingly important for mitigating and adapting to climate change, and this information must be accurate, precise, and without bias. NOAA, with its long-standing networks and its role in providing calibrations for partnering organizations, is well positioned to provide the linkages necessary to assure that regional measurements are comparable. This presentation will identify major, climate-relevant findings that have come from NOAA's networks in the past and will address the long-term monitoring needs to support decision-making over coming decades as society begins to seriously address climate change.
Nabovati, Ehsan; Vakili-Arki, Hasan; Taherzadeh, Zhila; Saberi, Mohammad Reza; Abu-Hanna, Ameen; Eslami, Saeid
2017-06-01
Background When prescribing medications, physicians should recognize clinically relevant potential drug-drug interactions (DDIs). To improve medication safety, it is important to understand prescribers' knowledge and opinions pertaining to DDIs. Objective To determine the current DDI information sources used by medical residents, their knowledge of DDIs, their opinions about performance feedback on co-prescription of interacting drugs. Setting Academic hospitals of Mashhad University of Medical Sciences (MUMS) in Iran. Methods A questionnaire containing questions regarding demographic and practice characteristics, DDI information sources, ability to recognize DDIs, and opinions about performance feedback was distributed to medical residents of 22 specialties in eight academic hospitals in Iran. We analyzed their perception pertaining to DDIs, their performance on classifying drug pairs, and we used a linear regression model to assess the association of potential determinants on their DDI knowledge. Main Outcome Measure prescribers' knowledge and opinions pertaining to DDIs. Results The overall response rate and completion rate for 315 distributed questionnaires were 90% (n = 295) and 86% (n = 281), respectively. Among DDI information sources, books, software on mobile phone or tablet, and Internet were the most commonly-used references. Residents could correctly classify only 41% (5.7/14) of the drug pairs. The regression model showed no significant association between residents' characteristics and their DDI knowledge. An overwhelming majority of the respondents (n = 268, 95.4%) wished to receive performance feedback on co-prescription of interacting drugs in their prescriptions. They mostly selected information technology-based tools (i.e. short text message and email) as their preferred method of receiving feedback. Conclusion Our findings indicate that prescribers may have poor ability to prevent clinically relevant potential DDI occurrence, and they perceive the need for performance feedback. These findings underline the importance of well-designed computerized alerting systems and delivering performance feedback to improve patient safety.
Implementing a Student-Designed Green Chemistry Laboratory Project in Organic Chemistry
ERIC Educational Resources Information Center
Graham, Kate J.; Jones, T. Nicholas; Schaller, Chris P.; McIntee, Edward J.
2014-01-01
A multiweek organic chemistry laboratory project is described that emphasizes sustainable practices in experimental design. An emphasis on student-driven development of the project is meant to mirror the independent nature of research. Students propose environmentally friendly modifications of several reactions. With instructor feedback, students…
The Effects of Teacher Behaviors on Students' Inclination to Inquire and Lifelong Learning
ERIC Educational Resources Information Center
Loes, Chad N.; Saichaie, Kem; Padget, Ryan D.; Pascarella, Ernest T.
2012-01-01
This study estimated the effects of teacher organization, clarity, classroom challenge and faculty expectations, support, and prompt feedback on students' inclination to inquire and lifelong learning during the first year of college. Controlling for a battery of potential confounding influences, teacher organization was positively associated with…
Crisis in Amateur Sports Organizations Viewed by Change Agent Research (CAR).
ERIC Educational Resources Information Center
Guilmette, Ann Marie; Moriarty, Dick
The Sports Institute for Research Through Change Agent Research (SIR/CAR) provides a service whereby organizations through an audit and feedback system prognosticate and identify problems in order to avoid situations discordant with their organizational goals and objectives. This document reports the organizational crisis that faced the Windsor…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avdeeva, V I; Shapiro, Boris I; Kuch'yanov, Aleksandr S
2003-06-30
Ultrashort pulses of duration {approx}13 ps are first obtained in a passively mode-locked Nd:YAG laser with a negative feedback using a thin gelatine-film saturable absorber containing organic-dye J-aggregates. (control of laser radiation parameters)
Design and implementation of an intranet dashboard.
Wolpin, S E
2005-01-01
Healthcare organizations are complex systems and well served by efficient feedback mechanisms. Many organizations have invested in data warehouses; however there are few tools for automatically extracting and delivering relevant measures to decision makers. This research study resulted in the design and implementation of an intranet dashboard linked to a data warehouse.
Burnout in Human Service Organizations: Prevention and Remediation.
ERIC Educational Resources Information Center
McFadden, Hope; Moracco, John
1980-01-01
Burnout in human service organizations can be caused by funding problems, overwork, the nature of clients, and ineffective management. A social-professional support group should be a formal part of the organizational structure to provide opportunities for evaluation and feedback, as well as individual help to professionals. (JAC)
Lasting effect of soil warming on organic matter decomposition depends on tillage practices
USDA-ARS?s Scientific Manuscript database
Global warming affects various parts of carbon (C) cycle including acceleration of soil organic matter (SOM) decomposition with strong feedback to atmospheric CO2 concentration. Despite many soil warming studies showed changes of microbial community structure, very few were focused on the effect of ...
Arnetz, Bengt; Blomkvist, Vanja
2007-01-01
Only a few studies of psychosocial determinants of employee health and organizational development have been prospective, involving more than one organization and applying standardized assessment tools. This limits the ability of providing evidence-based guidance as how to carry out healthy organizational transformations. A total of 6,000 employees responded twice to a validated psychosocial-leadership questionnaire within a 2-year period. The assessment focused on changes over time in the three outcome measures - mental health, efficacy, and leadership, determined to be important indicators of a healthy organization. Changes within and between organization were assessed statistically using regular t tests and general linear modeling. There were major differences between organizations in psychosocial measures, both at the baseline and over time. At the organizational level, changes between study periods in management performance feedback, participatory management, and work tempo were the most consistent predictors of improvements over time in the three outcome measures. Performance feedback and participatory management might be two common predictors of healthy workplaces. Some of the psychosocial determinants of healthy organizations suggested in previous research might not be universally valid. It is suggested that future research should to a larger degree make use of multiple departments and organizations in studies of psychosocial determinants of healthy organizations. Copyright 2007 S. Karger AG, Basel.
Rougier, Patrice R; Boudrahem, Samir
2017-09-01
The technique of additional visual feedback has been shown to significantly decrease the center of pressure (CP) displacements of a standing subject. Body-weight asymmetry is known to increase postural instability due to difficulties in coordinating the reaction forces exerted under each foot and is often a cardinal feature of various neurological and traumatic diseases. To examine the possible interactions between additional visual feedback and body-weight asymmetry effects, healthy adults were recruited in a protocol with and without additional visual feedback, with different levels of body-weight asymmetry. CP displacements under each foot were recorded and used to compute the resultant CP displacements (CP Res ) and to estimate vertically projected center of gravity (CG v ) and CP Res -CG v displacements. Overall, six conditions were randomly proposed combining two factors: asymmetry with three BW percentage distributions (50/50, 35/65 and 20/80; left/right leg) and feedback (with or without additional VFB). The additional visual feedback technique principally reduces CG v displacements, whereas asymmetry increases CP Res -CG v displacements along the mediolateral axis. Some effects on plantar CP displacements were also observed, but only under the unloaded foot. Interestingly, no interaction between additional visual feedback and body-weight asymmetry was reported. These results suggest that the various postural effects that ensue from manipulating additional visual feedback parameters, shown previously in healthy subjects in various studies, could also apply independently of the level of asymmetry. Visual feedback effects could be observed in patients presenting weight-bearing asymmetries. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Hemrová, Lucie; Knappová, Jana; Münzbergová, Zuzana
2016-01-01
Field translocation experiments (i.e., the introduction of seeds or seedlings of different species into different localities) are commonly used to study habitat associations of species, as well as factors limiting species distributions and local abundances. Species planted or sown in sites where they naturally occur are expected to perform better or equally well compared to sites at which they do not occur or are rare. This, however, contrasts with the predictions of the Janzen-Connell hypothesis and commonly reported intraspecific negative plant-soil feedback. The few previous studies indicating poorer performance of plants at sites where they naturally occur did not explore the mechanisms behind this pattern. In this study, we used field translocation experiments established using both seeds and seedlings to study the determinants of local abundance of four dominant species in grasslands. To explore the possible effects of intraspecific negative plant-soil feedback on our results, we tested the effect of local species abundance on the performance of the plants in the field experiment. In addition, we set up a garden experiment to explore the intensity of intraspecific as well as interspecific feedback between the dominants used in the experiment. In some cases, the distribution and local abundances of the species were partly driven by habitat conditions at the sites, and species performed better at their own sites. However, the prevailing pattern was that the local dominants performed worse at sites where they naturally occur than at any other sites. Moreover, the success of plants in the field experiment was lower in the case of higher intraspecific abundance prior to experimental setup. In the garden feedback experiment, two of the species performed significantly worse in soils conditioned by their species than in soils conditioned by the other species. In addition, the performance of the plants was significantly correlated between the two experiments, suggesting that plant-soil feedback is a likely explanation of the patterns observed in the field. All of the results indicate that intraspecific negative plant-soil feedback, either biotic or abiotic, may be a key factor determining the performance of the plants in our field translocation experiment. The possible effects of negative feedback should thus be considered when evaluating results of translocation experiments in future studies.
Hemrová, Lucie; Knappová, Jana; Münzbergová, Zuzana
2016-01-01
Background Field translocation experiments (i.e., the introduction of seeds or seedlings of different species into different localities) are commonly used to study habitat associations of species, as well as factors limiting species distributions and local abundances. Species planted or sown in sites where they naturally occur are expected to perform better or equally well compared to sites at which they do not occur or are rare. This, however, contrasts with the predictions of the Janzen-Connell hypothesis and commonly reported intraspecific negative plant-soil feedback. The few previous studies indicating poorer performance of plants at sites where they naturally occur did not explore the mechanisms behind this pattern. Aims and Methods In this study, we used field translocation experiments established using both seeds and seedlings to study the determinants of local abundance of four dominant species in grasslands. To explore the possible effects of intraspecific negative plant-soil feedback on our results, we tested the effect of local species abundance on the performance of the plants in the field experiment. In addition, we set up a garden experiment to explore the intensity of intraspecific as well as interspecific feedback between the dominants used in the experiment. Key Results In some cases, the distribution and local abundances of the species were partly driven by habitat conditions at the sites, and species performed better at their own sites. However, the prevailing pattern was that the local dominants performed worse at sites where they naturally occur than at any other sites. Moreover, the success of plants in the field experiment was lower in the case of higher intraspecific abundance prior to experimental setup. In the garden feedback experiment, two of the species performed significantly worse in soils conditioned by their species than in soils conditioned by the other species. In addition, the performance of the plants was significantly correlated between the two experiments, suggesting that plant-soil feedback is a likely explanation of the patterns observed in the field. Conclusions All of the results indicate that intraspecific negative plant-soil feedback, either biotic or abiotic, may be a key factor determining the performance of the plants in our field translocation experiment. The possible effects of negative feedback should thus be considered when evaluating results of translocation experiments in future studies. PMID:27336400
Watson, Richard A; Mills, Rob; Buckley, C L
2011-01-01
In some circumstances complex adaptive systems composed of numerous self-interested agents can self-organize into structures that enhance global adaptation, efficiency, or function. However, the general conditions for such an outcome are poorly understood and present a fundamental open question for domains as varied as ecology, sociology, economics, organismic biology, and technological infrastructure design. In contrast, sufficient conditions for artificial neural networks to form structures that perform collective computational processes such as associative memory/recall, classification, generalization, and optimization are well understood. Such global functions within a single agent or organism are not wholly surprising, since the mechanisms (e.g., Hebbian learning) that create these neural organizations may be selected for this purpose; but agents in a multi-agent system have no obvious reason to adhere to such a structuring protocol or produce such global behaviors when acting from individual self-interest. However, Hebbian learning is actually a very simple and fully distributed habituation or positive feedback principle. Here we show that when self-interested agents can modify how they are affected by other agents (e.g., when they can influence which other agents they interact with), then, in adapting these inter-agent relationships to maximize their own utility, they will necessarily alter them in a manner homologous with Hebbian learning. Multi-agent systems with adaptable relationships will thereby exhibit the same system-level behaviors as neural networks under Hebbian learning. For example, improved global efficiency in multi-agent systems can be explained by the inherent ability of associative memory to generalize by idealizing stored patterns and/or creating new combinations of subpatterns. Thus distributed multi-agent systems can spontaneously exhibit adaptive global behaviors in the same sense, and by the same mechanism, as with the organizational principles familiar in connectionist models of organismic learning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darghouth, Naïm R.; Wiser, Ryan; Barbose, Galen
The substantial increase in deployment of customer-sited solar photovoltaics (PV) in the United States has been driven by a combination of steeply declining costs, financing innovations, and supportive policies. Among those supportive policies is net metering, which in most states effectively allows customers to receive compensation for distributed PV generation at the full retail electricity price. The current design of retail electricity rates and the presence of net metering have elicited concerns that the possible under-recovery of fixed utility costs from PV system owners may lead to a feedback loop of increasing retail prices that accelerate PV adoption and furthermore » rate increases. However, a separate and opposing feedback loop could offset this effect: increased PV deployment may lead to a shift in the timing of peak-period electricity prices that could reduce the bill savings received under net metering where time-varying retail electricity rates are used, thereby dampening further PV adoption. In this paper, we examine the impacts of these two competing feedback dynamics on U.S. distributed PV deployment through 2050 for both residential and commercial customers, across states. Our results indicate that, at the aggregate national level, the two feedback effects nearly offset one another and therefore produce a modest net effect, although their magnitude and direction vary by customer segment and by state. We also model aggregate PV deployment trends under various rate designs and net-metering rules, accounting for feedback dynamics. Our results demonstrate that future adoption of distributed PV is highly sensitive to retail rate structures. Whereas flat, time-invariant rates with net metering lead to higher aggregate national deployment levels than the current mix of rate structures (+5% in 2050), rate structures with higher monthly fixed customer charges or PV compensation at levels lower than the full retail rate can dramatically erode aggregate customer adoption of PV (from -14% to -61%, depending on the design). Moving towards time-varying rates, on the other hand, may accelerate near- and medium-term deployment (through 2030), but is found to slow adoption in the longer term (-22% in 2050).« less
Chen, Shaoqiang; Yoshita, Masahiro; Sato, Aya; Ito, Takashi; Akiyama, Hidefumi; Yokoyama, Hiroyuki
2013-05-06
Picosecond-pulse-generation dynamics and pulse-width limiting factors via spectral filtering from intensely pulse-excited gain-switched 1.55-μm distributed-feedback laser diodes were studied. The spectral and temporal characteristics of the spectrally filtered pulses indicated that the short-wavelength component stems from the initial part of the gain-switched main pulse and has a nearly linear down-chirp of 5.2 ps/nm, whereas long-wavelength components include chirped pulse-lasing components and steady-state-lasing components. Rate-equation calculations with a model of linear change in refractive index with carrier density explained the major features of the experimental results. The analysis of the expected pulse widths with optimum spectral widths was also consistent with the experimental data.
Shao, Haifeng; Keyvaninia, Shahram; Vanwolleghem, Mathias; Ducournau, Guillaume; Jiang, Xiaoqing; Morthier, Geert; Lampin, Jean-Francois; Roelkens, Gunther
2014-11-15
We demonstrate an integrated distributed feedback (DFB) laser array as a dual-wavelength source for narrowband terahertz (THz) generation. The laser array is composed of four heterogeneously integrated III-V-on-silicon DFB lasers with different lengths enabling dual-mode lasing tolerant to process variations, bias fluctuations, and ambient temperature variations. By optical heterodyning the two modes emitted by the dual-wavelength DFB laser in the laser array using a THz photomixer composed of an uni-traveling carrier photodiode (UTC-PD), a narrow and stable carrier signal with a frequency of 0.357 THz is generated. The central operating frequency and the emitted terahertz wave linewidth are analyzed, along with their dependency on the bias current applied to the laser diode and ambient temperature.
Lobach, Ivan A; Kablukov, Sergey I; Babin, Sergey A
2017-09-15
We report on, to the best of our knowledge, the first demonstration of a linearly polarized cascaded Raman fiber laser based on a simple half-open cavity with a broadband composite reflector and random distributed feedback in a polarization-maintaining phosphosilicate fiber with a zero dispersion wavelength at ∼1400 nm. Pumped by a 1080 nm Yb-doped fiber laser, the random laser delivers more than 8 W at 1262 nm and 9 W at 1515 nm with a polarization extinction ratio of 27 dB. The generation linewidths amount to about 1 and 3 nm, respectively, being almost independent of power, in correspondence with the theory of a cascaded random fiber lasing.
NASA Astrophysics Data System (ADS)
Chen, Xin; Zhao, Jianyi; Zhou, Ning; Huang, Xiaodong; Cao, Mingde; Wang, Lei; Liu, Wen
2015-01-01
The monolithic integration of 1.5-μm four channels phase shift distributed feedback lasers array (DFB-LD array) with 4×1 multi-mode interference (MMI) optical combiner is demonstrated. A home developed process mainly consists of butt-joint regrowth (BJR) and simultaneous thermal and ultraviolet nanoimprint lithography (STU-NIL) is implemented to fabricate gratings and integrated devices. The threshold currents of the lasers are less than 10 mA and the side mode suppression ratios (SMSR) are better than 40 dB for all channels. Quasi-continuous tuning is realized over 7.5 nm wavelength region with the 30 °C temperature variation. The results indicate that the integration device we proposed can be used in wavelength division multiplexing passive optical networks (WDM-PON).
Tunable terahertz wave generation through a bimodal laser diode and plasmonic photomixer.
Yang, S-H; Watts, R; Li, X; Wang, N; Cojocaru, V; O'Gorman, J; Barry, L P; Jarrahi, M
2015-11-30
We demonstrate a compact, robust, and stable terahertz source based on a novel two section digital distributed feedback laser diode and plasmonic photomixer. Terahertz wave generation is achieved through difference frequency generation by pumping the plasmonic photomixer with two output optical beams of the two section digital distributed feedback laser diode. The laser is designed to offer an adjustable terahertz frequency difference between the emitted wavelengths by varying the applied currents to the laser sections. The plasmonic photomixer is comprised of an ultrafast photoconductor with plasmonic contact electrodes integrated with a logarithmic spiral antenna. We demonstrate terahertz wave generation with 0.15-3 THz frequency tunability, 2 MHz linewidth, and less than 5 MHz frequency stability over 1 minute, at useful power levels for practical imaging and sensing applications.
Loranger, Sébastien; Lambin-Iezzi, Victor; Wahbeh, Mamoun; Kashyap, Raman
2016-04-15
Distributed feedback (DFB) fiber Bragg gratings (FBG) are widely used as narrow-band filters and single-mode cavities for lasers. Recently, a nonlinear generation has been shown in 10-20 cm DFB gratings in a highly nonlinear fiber. First, we show in this Letter a novel fabrication technique of ultra-long DFBs in a standard fiber (SMF-28). Second, we demonstrate nonlinear generation in such gratings. A particular inscription technique was used to fabricate all-in-phase ultra-long FBG and to implement reproducible phase shift to form a DFB mode. We demonstrate stimulated Brillouin scattering (SBS) emission from this DFB mode and characterize the resulting laser. It seems that such a SBS based DFB laser stabilizes a pump's jittering and reduces its linewidth.
Peculiarities of spike multimode generation of a superradiant distributed feedback laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocharovskaya, E R; Ginzburg, N S; Sergeev, A S
2011-08-31
Using one-dimensional semiclassical Maxwell - Bloch equations with account for the coherent polarisation dynamics, we have studied spike generation regimes of a superradiant distributed feedback laser in the case of inhomogeneous broadening of the spectral line of an active medium. By analysing the dynamic spectra of inversion of the active medium and laser radiation, we have revealed the relationship of individual spikes of radiation and their modulation with specific parts in the spectral line of the active medium and mode beatings. It has been shown that the broadening and shift of the lasing spectrum with respect to the initial electromagneticmore » Bragg-cavity modes is accompanied by a strong spectral gradient of inversion that is typical of the superradiant regimes. (control of radiation parameters)« less
NASA Astrophysics Data System (ADS)
Wang, Dong-Bo; Zhang, Jin-Chuan; Cheng, Feng-Min; Zhao, Yue; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo
2018-02-01
In this work, quantum cascade lasers (QCLs) based on strain compensation combined with two-phonon resonance design are presented. Distributed feedback (DFB) laser emitting at 4.76 μm was fabricated through a standard buried first-order grating and buried heterostructure (BH) processing. Stable single-mode emission is achieved under all injection currents and temperature conditions without any mode hop by the optimized antireflection (AR) coating on the front facet. The AR coating consists of a double layer dielectric of Al2O3 and Ge. For a 2-mm laser cavity, the maximum output power of the AR-coated DFB-QCL was more than 170 mW at 20 °C with a high wall-plug efficiency (WPE) of 4.7% in a continuous-wave (CW) mode.
Large depth high-precision FMCW tomography using a distributed feedback laser array
NASA Astrophysics Data System (ADS)
DiLazaro, Thomas; Nehmetallah, George
2018-02-01
Swept-source optical coherence tomography (SS-OCT) has been widely employed in the medical industry for the high resolution imaging of subsurface biological structures. SS-OCT typically exhibits axial resolutions on the order of tens of microns at speeds of hundreds of kilohertz. Using the same coherent heterodyne detection technique, frequency modulated continuous wave (FMCW) ladar has been used for highly precise ranging for distances up to kilometers. Distributed feedback lasers (DFBs) have been used as a simple and inexpensive source for FMCW ranging. Here, we use a bandwidth-combined DFB array for sub-surface volume imaging at a 27 μm axial resolution over meters of distance. 2D and 3D tomographic images of several semi-transparent and diffuse objects at distances up to 10 m will be presented.
Zhao, Gang; Tan, Wei; Jia, Mengyuan; Hou, Jiajuan; Ma, Weiguang; Dong, Lei; Zhang, Lei; Feng, Xiaoxia; Wu, Xuechun; Yin, Wangbao; Xiao, Liantuan; Axner, Ove; Jia, Suotang
2016-01-01
A novel, intensity-stabilized, fast-scanned, direct absorption spectroscopy (IS-FS-DAS) instrumentation, based on a distributed feedback (DFB) diode laser, is developed. A fiber-coupled polarization rotator and a fiber-coupled polarizer are used to stabilize the intensity of the laser, which significantly reduces its relative intensity noise (RIN). The influence of white noise is reduced by fast scanning over the spectral feature (at 1 kHz), followed by averaging. By combining these two noise-reducing techniques, it is demonstrated that direct absorption spectroscopy (DAS) can be swiftly performed down to a limit of detection (LOD) (1σ) of 4 × 10−6, which opens up a number of new applications. PMID:27657082
Sklar, A E; Sarter, N B
1999-12-01
Observed breakdowns in human-machine communication can be explained, in part, by the nature of current automation feedback, which relies heavily on focal visual attention. Such feedback is not well suited for capturing attention in case of unexpected changes and events or for supporting the parallel processing of large amounts of data in complex domains. As suggested by multiple-resource theory, one possible solution to this problem is to distribute information across various sensory modalities. A simulator study was conducted to compare the effectiveness of visual, tactile, and redundant visual and tactile cues for indicating unexpected changes in the status of an automated cockpit system. Both tactile conditions resulted in higher detection rates for, and faster response times to, uncommanded mode transitions. Tactile feedback did not interfere with, nor was its effectiveness affected by, the performance of concurrent visual tasks. The observed improvement in task-sharing performance indicates that the introduction of tactile feedback is a promising avenue toward better supporting human-machine communication in event-driven, information-rich domains.
Non-Shilnikov cascades of spikes and hubs in a semiconductor laser with optoelectronic feedback.
Freire, Joana G; Gallas, Jason A C
2010-09-01
Incomplete homoclinic scenarios were recently measured in a semiconductor laser with optoelectronic feedback. We show here that such a laser contains cascades of spirals of periodic oscillations and hubs which look identical to the familiar ones observed in complete homoclinic scenarios. This means that hubs are far more general than presumed so far, being not limited by Shilnikov's theorem. Laser hubs open the possibility of measuring complex distributions of non-Shilnikov laser oscillations, and we briefly discuss how to do it.
Single transverse mode protein laser
NASA Astrophysics Data System (ADS)
Dogru, Itir Bakis; Min, Kyungtaek; Umar, Muhammad; Bahmani Jalali, Houman; Begar, Efe; Conkar, Deniz; Firat Karalar, Elif Nur; Kim, Sunghwan; Nizamoglu, Sedat
2017-12-01
Here, we report a single transverse mode distributed feedback (DFB) protein laser. The gain medium that is composed of enhanced green fluorescent protein in a silk fibroin matrix yields a waveguiding gain layer on a DFB resonator. The thin TiO2 layer on the quartz grating improves optical feedback due to the increased effective refractive index. The protein laser shows a single transverse mode lasing at the wavelength of 520 nm with the threshold level of 92.1 μJ/ mm2.
The effect of AGN feedback on the X-ray morphologies of clusters: Simulations vs. observations
NASA Astrophysics Data System (ADS)
Chon, Gayoung; Puchwein, Ewald; Böhringer, Hans
2016-07-01
Clusters of galaxies probe the large-scale distribution of matter and are a useful tool to test the cosmological models by constraining cosmic structure growth and the expansion of the Universe. It is the scaling relations between mass observables and the true mass of a cluster through which we obtain the cosmological constraints by comparing to theoretical cluster mass functions. These scaling relations are, however, heavily influenced by cluster morphology. The presence of the slight tension in recent cosmological constraints on Ωm and σ8 based on the CMB and clusters has boosted the interests in looking for possible sources for the discrepancy. Therefore we study here the effect of active galactic nucleus (AGN) feedback as one of the major mechanisms modifying the cluster morphology influencing scaling relations. It is known that AGN feedback injects energies up to 1062 erg into the intracluster medium, controls the heating and cooling of a cluster, and re-distributes cold gas from the centre to outer radii. We have also learned that cluster simulations with AGN feedback can reproduce observed cluster properties, for example, the X-ray luminosity, temperature, and cooling rate at the centre better than without the AGN feedback. In this paper using cosmological hydrodynamical simulations we investigate how the AGN feedback changes the X-ray morphology of the simulated systems, and compare this to the observed Representative XMM-Newton Cluster Structure Survey (REXCESS) clusters. We apply two substructure measures, centre shifts (w) and power ratios (e.g. P3/P0), to characterise the cluster morphology, and find that our simulated clusters are more substructured than the observed clusters based on the values of w and P3/P0. We also show that the degree of this discrepancy is affected by the inclusion of AGN feedback. While the clusters simulated with the AGN feedback are in much better agreement with the REXCESS LX-T relation, they are also more substructured, which increases the tension with observations. When classified as non-relaxed or relaxed according to their w and P3/P0 values, we find that there are no relaxed clusters in the simulations with the AGN feedback. This suggests that not only global cluster properties, like LX and T, and radial profiles should be used to compare and to calibrate simulations with observations, but also substructure measures like centre shifts and power ratios. Finally, we discuss what changes in the simulations might ease the tension with observational constraints on these quantities.
Active browsing using similarity pyramids
NASA Astrophysics Data System (ADS)
Chen, Jau-Yuen; Bouman, Charles A.; Dalton, John C.
1998-12-01
In this paper, we describe a new approach to managing large image databases, which we call active browsing. Active browsing integrates relevance feedback into the browsing environment, so that users can modify the database's organization to suit the desired task. Our method is based on a similarity pyramid data structure, which hierarchically organizes the database, so that it can be efficiently browsed. At coarse levels, the similarity pyramid allows users to view the database as large clusters of similar images. Alternatively, users can 'zoom into' finer levels to view individual images. We discuss relevance feedback for the browsing process, and argue that it is fundamentally different from relevance feedback for more traditional search-by-query tasks. We propose two fundamental operations for active browsing: pruning and reorganization. Both of these operations depend on a user-defined relevance set, which represents the image or set of images desired by the user. We present statistical methods for accurately pruning the database, and we propose a new 'worm hole' distance metric for reorganizing the database, so that members of the relevance set are grouped together.
The Astronomical Forcing of Climate Change: Forcings and Feedbacks
NASA Astrophysics Data System (ADS)
Erb, M. P.; Broccoli, A. J.; Clement, A. C.
2010-12-01
Understanding the role that orbital forcing played in driving climate change over the Pleistocene has been a matter of ongoing research. While it is undeniable that variations in Earth’s orbit result in changes in the seasonal and latitudinal distribution of insolation, the specifics of how this forcing leads to the climate changes seen in the paleo record are not fully understood. To research this further, climate simulations have been conducted with the GFDL CM2.1, a coupled atmosphere-ocean GCM. Two simulations represent the extremes of obliquity during the past 600 kyr and four others show key times in the precessional cycle. All non-orbital variables are set to preindustrial levels to isolate the effects of astronomical forcing alone. It is expected that feedbacks should play a large role in dictating climate change, so to investigate this, the so-called “kernel method” is used to calculate the lapse rate, water vapor, albedo, and cloud feedbacks. Preliminary results of these experiments confirm that feedbacks are important in explaining the nature and, in places, even the sign of climate response to orbital forcing. In the case of low obliquity, for instance, a combination of climate feedbacks lead to global cooling in spite of zero global-average top of atmosphere insolation change. Feedbacks will be analyzed in the obliquity and precession experiments so that the role of feedbacks in contributing to climate change may be better understood.
Negative Feedback Enables Fast and Flexible Collective Decision-Making in Ants
Grüter, Christoph; Schürch, Roger; Czaczkes, Tomer J.; Taylor, Keeley; Durance, Thomas; Jones, Sam M.; Ratnieks, Francis L. W.
2012-01-01
Positive feedback plays a major role in the emergence of many collective animal behaviours. In many ants pheromone trails recruit and direct nestmate foragers to food sources. The strong positive feedback caused by trail pheromones allows fast collective responses but can compromise flexibility. Previous laboratory experiments have shown that when the environment changes, colonies are often unable to reallocate their foragers to a more rewarding food source. Here we show both experimentally, using colonies of Lasius niger, and with an agent-based simulation model, that negative feedback caused by crowding at feeding sites allows ant colonies to maintain foraging flexibility even with strong recruitment to food sources. In a constant environment, negative feedback prevents the frequently found bias towards one feeder (symmetry breaking) and leads to equal distribution of foragers. In a changing environment, negative feedback allows a colony to quickly reallocate the majority of its foragers to a superior food patch that becomes available when foraging at an inferior patch is already well underway. The model confirms these experimental findings and shows that the ability of colonies to switch to a superior food source does not require the decay of trail pheromones. Our results help to resolve inconsistencies between collective foraging patterns seen in laboratory studies and observations in the wild, and show that the simultaneous action of negative and positive feedback is important for efficient foraging in mass-recruiting insect colonies. PMID:22984518
Bonachela, Juan A; Pringle, Robert M; Sheffer, Efrat; Coverdale, Tyler C; Guyton, Jennifer A; Caylor, Kelly K; Levin, Simon A; Tarnita, Corina E
2015-02-06
Self-organized spatial vegetation patterning is widespread and has been described using models of scale-dependent feedback between plants and water on homogeneous substrates. As rainfall decreases, these models yield a characteristic sequence of patterns with increasingly sparse vegetation, followed by sudden collapse to desert. Thus, the final, spot-like pattern may provide early warning for such catastrophic shifts. In many arid ecosystems, however, termite nests impart substrate heterogeneity by altering soil properties, thereby enhancing plant growth. We show that termite-induced heterogeneity interacts with scale-dependent feedbacks to produce vegetation patterns at different spatial grains. Although the coarse-grained patterning resembles that created by scale-dependent feedback alone, it does not indicate imminent desertification. Rather, mound-field landscapes are more robust to aridity, suggesting that termites may help stabilize ecosystems under global change. Copyright © 2015, American Association for the Advancement of Science.
Midcingulate Motor Map and Feedback Detection: Converging Data from Humans and Monkeys
Procyk, Emmanuel; Wilson, Charles R. E.; Stoll, Frederic M.; Faraut, Maïlys C. M.; Petrides, Michael; Amiez, Céline
2016-01-01
The functional and anatomical organization of the cingulate cortex across primate species is the subject of considerable and often confusing debate. The functions attributed to the midcingulate cortex (MCC) embrace, among others, feedback processing, pain, salience, action-reward association, premotor functions, and conflict monitoring. This multiplicity of functional concepts suggests either unresolved separation of functional contributions or integration and convergence. We here provide evidence from recent experiments in humans and from a meta-analysis of monkey data that MCC feedback-related activity is generated in the rostral cingulate premotor area by specific body maps directly related to the modality of feedback. As such, we argue for an embodied mechanism for adaptation and exploration in MCC. We propose arguments and precise tools to resolve the origins of performance monitoring signals in the medial frontal cortex, and to progress on issues regarding homology between human and nonhuman primate cingulate cortex. PMID:25217467
On the self-organized critical state of Vesuvio volcano
NASA Astrophysics Data System (ADS)
Luongo, G.; Mazzarella, A.; Palumbo, A.
1996-01-01
The catalogue of volcanic earthquakes recorded at Vesuvio (1972-1993) is shown to be complete for events with magnitude enclosed between 1.8 and 3.0. Such a result is converted in significant fractal laws (power laws) relating the distribution of earthquakes to the distribution of energy release, seismic moment, size of fractured zone and linear dimension of faults. The application of the Cantor dust model to time sequence of Vesuvio seismic and eruptive events allows the determination of significant time-clustering fractal structures. In particular, the Vesuvio eruptive activity shows a double-regime process with a stronger clustering on short-time scales than on long-time scales. The complexity of the Vesuvio system does not depend on the number of geological, geophysical and geochemical factors that govern it, but mainly on the number of their interconnections, on the intensity of such linkages and on the feed-back processes. So, all the identified fractal features are taken as evidence that the Vesuvio system is in a self-organized critical state i.e., in a marginally stable state in which a small perturbation can start a chain reaction that can lead to catastrophe. After the catatrophe, the system regulates itself and begins a new cycle, not necessarily periodic, that will end with a successive catastrophe. The variations of the fractal dimension and of the specific scale ranges, in which the fractal behaviour is found to hold, serve as possible volcanic predictors reflecting changes of the same volcanic process.
NASA Technical Reports Server (NTRS)
Banks, H. T.; Ito, K.
1991-01-01
A hybrid method for computing the feedback gains in linear quadratic regulator problem is proposed. The method, which combines use of a Chandrasekhar type system with an iteration of the Newton-Kleinman form with variable acceleration parameter Smith schemes, is formulated to efficiently compute directly the feedback gains rather than solutions of an associated Riccati equation. The hybrid method is particularly appropriate when used with large dimensional systems such as those arising in approximating infinite-dimensional (distributed parameter) control systems (e.g., those governed by delay-differential and partial differential equations). Computational advantages of the proposed algorithm over the standard eigenvector (Potter, Laub-Schur) based techniques are discussed, and numerical evidence of the efficacy of these ideas is presented.
A numerical algorithm for optimal feedback gains in high dimensional LQR problems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Ito, K.
1986-01-01
A hybrid method for computing the feedback gains in linear quadratic regulator problems is proposed. The method, which combines the use of a Chandrasekhar type system with an iteration of the Newton-Kleinman form with variable acceleration parameter Smith schemes, is formulated so as to efficiently compute directly the feedback gains rather than solutions of an associated Riccati equation. The hybrid method is particularly appropriate when used with large dimensional systems such as those arising in approximating infinite dimensional (distributed parameter) control systems (e.g., those governed by delay-differential and partial differential equations). Computational advantage of the proposed algorithm over the standard eigenvector (Potter, Laub-Schur) based techniques are discussed and numerical evidence of the efficacy of our ideas presented.
NASA Technical Reports Server (NTRS)
Kondrachuk, Alexander V.; Boyle, Richard D.
2005-01-01
The variety of the effects of altered gravity (AG) on development and function of gravireceptors cannot be explained by simple feedback mechanism that correlates gravity level and weight of test mass. The reaction of organisms to the change of gravity depends on the phase of their development. To predict this reaction we need to know the details of the mechanisms of gravireceptor formation
2005-06-01
the effectiveness of this program as a development tool spurred the remarkable growth of acceptance and use within corporate America. Luthans and...that it is a useful development tool for an organization. The study on upward feedback of student leaders and followers at the United States Naval...The subjects were 978 student leaders in their junior year and 1,232 student followers in their freshman year. The followers provided upward
NASA Astrophysics Data System (ADS)
Roner, M.; D'Alpaos, A.; Ghinassi, M.; Marani, M.; Silvestri, S.; Franceschinis, E.; Realdon, N.
2016-07-01
Salt marshes are ubiquitous features of the tidal landscape governed by mutual feedbacks among processes of physical and biological nature. Improving our understanding of these feedbacks and of their effects on tidal geomorphological and ecological dynamics is a critical step to address issues related to salt-marsh conservation and response to changes in the environmental forcing. In particular, the spatial variation of organic and inorganic soil production processes at the marsh scale, a key piece of information to understand marsh responses to a changing climate, remains virtually unexplored. In order to characterize the relative importance of organic vs. inorganic deposition as a function of space, we collected 33 shallow soil sediment samples along three transects in the San Felice and Rigà salt marshes located in the Venice lagoon, Italy. The amount of organic matter in each sample was evaluated using Loss On Ignition (LOI), a hydrogen peroxide (H2O2) treatment, and a sodium hypochlorite (NaClO) treatment following the H2O2 treatment. The grain size distribution of the inorganic fraction was determined using laser diffraction techniques. Our study marshes exhibit a weakly concave-up profile, with maximum elevations and coarser inorganic grains along their edges. The amount of organic and inorganic matter content in the samples varies with the distance from the marsh edge and is very sensitive to the specific analysis method adopted. The use of a H2O2+NaClO treatment yields an organic matter density value which is more than double the value obtained from LOI. Overall, inorganic contributions to soil formation are greatest near the marsh edges, whereas organic soil production is the main contributor to soil accretion in the inner marsh. We interpret this pattern by considering that while plant biomass productivity is generally lower in the inner part of the marsh, organic soil decomposition rates are highest in the better aerated edge soils. Hence the higher inorganic soil content near the edge is due to the preferential deposition of inorganic sediment from the adjacent creek, and to the rapid decomposition of the relatively large biomass production. The higher organic matter content in the inner part of the marsh results from the small amounts of suspended sediment that makes it to the inner marsh, and to the low decomposition rate which more than compensates for the lower biomass productivity in the low-lying inner zones. Finally, the average soil organic carbon density from the LOI measurements is estimated to be 0.044 g C cm-3. The corresponding average carbon accumulation rate for the San Felice and Rigà salt marshes, 132 g C m-2 yr-1, highlights the considerable carbon stock and sequestration rate associated with coastal salt marshes.
An Extended Validity Argument for Assessing Feedback Culture.
Rougas, Steven; Clyne, Brian; Cianciolo, Anna T; Chan, Teresa M; Sherbino, Jonathan; Yarris, Lalena M
2015-01-01
NEGEA 2015 CONFERENCE ABSTRACT (EDITED): Measuring an Organization's Culture of Feedback: Can It Be Done? Steven Rougas and Brian Clyne. CONSTRUCT: This study sought to develop a construct for measuring formative feedback culture in an academic emergency medicine department. Four archetypes (Market, Adhocracy, Clan, Hierarchy) reflecting an organization's values with respect to focus (internal vs. external) and process (flexibility vs. stability and control) were used to characterize one department's receptiveness to formative feedback. The prevalence of residents' identification with certain archetypes served as an indicator of the department's organizational feedback culture. New regulations have forced academic institutions to implement wide-ranging changes to accommodate competency-based milestones and their assessment. These changes challenge residencies that use formative feedback from faculty as a major source of data for determining training advancement. Though various approaches have been taken to improve formative feedback to residents, there currently exists no tool to objectively measure the organizational culture that surrounds this process. Assessing organizational culture, commonly used in the business sector to represent organizational health, may help residency directors gauge their program's success in fostering formative feedback. The Organizational Culture Assessment Instrument (OCAI) is widely used, extensively validated, applicable to survey research, and theoretically based and may be modifiable to assess formative feedback culture in the emergency department. Using a modified Delphi technique and several iterations of focus groups amongst educators at one institution, four of the original six OCAI domains (which each contain 4 possible responses) were modified to create a 16-item Formative Feedback Culture Tool (FFCT) that was administered to 26 residents (response rate = 55%) at a single academic emergency medicine department. The mean score of each item on the FFCT (range = 0-100) was analyzed. Convergent and divergent properties of the four archetypes were assessed using a multitrait-multimethod matrix of Pearson's coefficients. Expecting that items in one archetype would diverge from the others, whereas items within an archetype should have strong convergent properties, convergent validity was assessed by comparing items across domains that all related to the same archetype. Similarly, divergent validity was assessed by comparing the correlation of items within an archetype to the correlations of those items within a hetero-domain block (i.e., to other items within the same domain). Three of the four domains of the FFCT (Overall Departmental Characteristics 35.4 ± 15.4, Departmental Foundation of Feedback 46.1 ± 16.7, and Departmental Emphasis of Feedback 30.3 ± 17.7) had the highest mean in the Market archetype (results/achievement oriented), whereas the final domain (Departmental Definition of Successful Feedback 34.8 ± 22.1) had the highest mean in the Clan archetype (personal growth/team achievement). Item responses in the Clan and Hierarchy archetypes had the strongest convergent and divergent validity, respectively. Item responses in the Adhocracy archetype had the weakest convergent and divergent validity. Although the sample size was small, this initial study demonstrates that a modified organizational culture assessment tool can feasibly be utilized to identify the primary formative feedback archetype of a cohort of residents. This may have future implications for measuring changes in culture after the implementation of strategic programs to address formative feedback. Future studies should examine the generalizability of the FFCT to other institutions, as well as address the weak validity evidence of the Adhocracy archetype in the FFCT.
The role of disappeared disturbances in driving the North American prairie-forest boundary
NASA Astrophysics Data System (ADS)
Heilman, K.; McLachlan, J. S.; Staver, A. C.
2016-12-01
Globally, transitions from savanna to forest are often characterized by abrupt changes in tree density that cannot be fully explained by climate and edaphic factors. In the tropics, fire-vegetation feedbacks drive a bimodal distribution in tree cover that leads to alternative forest and savanna stable states within the same climate space. In temperate North America, the pre-European settlement prairie-forest transition has also been hypothesized to be influenced by widespread fires (anthropogenic or natural). However, large scale evidence for fire disturbance feedbacks on tree density in the temperate zone is currently lacking. We investigate both the pre-European and modern tree density along the North American prairie-forest boundary. We hypothesized that the pre-European distribution of tree density was distinctly bimodal due to intact vegetation-disturbance feedbacks along the prairie-forest boundary before settlement, but that fragmentation and fire suppression has produced a modern prairie-forest boundary that is less abrupt and less bimodal. We estimated tree density from aggregated Public Land Survey (PLS) data collected before the time of European agricultural settlement in Minnesota, Wisconsin, Michigan, Indiana, and Illinois and compared PLS density distributions to tree density estimated from modern USFS Forest Inventory Analysis (FIA) data. PLS tree density follows a bimodal distribution that abruptly shifts from savanna to forest at the boundary. Only 15% of the variance in pre-settlement tree density is explained by historical Mean Annual Precipitation (MAP), suggesting that the bimodality may be due to internal feedbacks in the vegetation-disturbance system, rather than to the past underlying environmental gradient. On the modern landscape, MAP explains 6% of FIA tree density variance, and tree density is not bimodal. Regions that had low tree density savannas in the PLS era have significantly increased in tree density, suggesting that the disappearance of disturbances that accompanied agricultural settlement resulted in closed forests where savannas were once an alternative stable state (p < 0.01). Additionally, the once high tree density forests in the PLS have significantly declined in density, suggesting that logging has contributed to land cover change in North America.
NASA Astrophysics Data System (ADS)
Patil, Sameer; Kobsa, Alfred; John, Ajita; Brotman, Lynne S.; Seligmann, Doree
To understand how collaborators reconcile the often conflicting needs of awareness and privacy, we studied a large software development project in a multinational corporation involving individuals at sites in the U.S. and India. We present a theoretical framework describing privacy management practices and their determinants that emerged from field visits, interviews, and questionnaire responses. The framework identifies five relevant situational characteristics: issue(s) under consideration, physical place(s) involved in interaction(s), temporal aspects, affordances and limitations presented by technology, and nature of relationships among parties. Each actor, in turn, interprets the situation based on several simultaneous influences: self, team, work site, organization, and cultural environment. This interpretation guides privacy management action(s). Past actions form a feedback loop refining and/or reinforcing the interpretive influences. The framework suggests that effective support for privacy management will require that designers follow a socio-technical approach incorporating a wider scope of situational and interpretive differences.
[Central nervous system control of energy homeostasis].
Machleidt, F; Lehnert, H
2011-03-01
The brain is continuously supplied with information about the distribution and amount of energy stores from the body periphery. Endocrine, autonomic and cognitive-hedonic signals are centrally integrated and exert effects on the whole organism via anabolic and catabolic pathways. The adiposity signals insulin and leptin reflect the amount of body fat and are part of a negative feedback mechanism between the periphery and the central nervous system. The hypothalamic arcuate nucleus is the most important central nervous structure, which integrates this information. Furthermore, the CNS is able to directly measure and to respond to changes in the concentration of certain nutrients. In order to develop effective therapies for the treatment of disorders of energy balance the further elucidation of these neuro-biological processes is of crucial importance. This article provides an overview of the CNS regulation of metabolism and its underlying molecular mechanisms. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
An, N. T. M.; Lien, N. T. H.; Hoang, N. D.; Hoa, D. Q.
2018-04-01
Energy transfer between spherical gold nanoparticles with size of more than 15 nm and molecules of organic dye 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4 H-pyran (DCM) has been studied. Such radiative energy transfer led to high local temperature, giving rise to a bleaching effect that resulted in rapid degradation of the laser medium. Gold nanoparticles were dispersed at concentrations from 5 × 109 particles/mL to 5 × 1010 particles/mL in DCM polymethylmethacrylate polymer using a radical polymerization process with 2,2'-azobis(isobutyronitrile) (AIBN) as initiator. Using the fast thermoelectric cooling method, the laser medium stability was significantly improved. The output stability of a distributed feedback dye laser pumped by second-harmonic generation from a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser was investigated. Moreover, bidirectional energy transfer between gold nanoparticles and dye molecules was observed.
Nakrani, Sunil; Tovey, Craig
2007-12-01
An Internet hosting center hosts services on its server ensemble. The center must allocate servers dynamically amongst services to maximize revenue earned from hosting fees. The finite server ensemble, unpredictable request arrival behavior and server reallocation cost make server allocation optimization difficult. Server allocation closely resembles honeybee forager allocation amongst flower patches to optimize nectar influx. The resemblance inspires a honeybee biomimetic algorithm. This paper describes details of the honeybee self-organizing model in terms of information flow and feedback, analyzes the homology between the two problems and derives the resulting biomimetic algorithm for hosting centers. The algorithm is assessed for effectiveness and adaptiveness by comparative testing against benchmark and conventional algorithms. Computational results indicate that the new algorithm is highly adaptive to widely varying external environments and quite competitive against benchmark assessment algorithms. Other swarm intelligence applications are briefly surveyed, and some general speculations are offered regarding their various degrees of success.
NASA Astrophysics Data System (ADS)
Cheng, W. Y.; Kim, D.; Rowe, A.; Park, S.
2017-12-01
Despite the impact of mesoscale convective organization on the properties of convection (e.g., mixing between updrafts and environment), parameterizing the degree of convective organization has only recently been attempted in cumulus parameterization schemes (e.g., Unified Convection Scheme UNICON). Additionally, challenges remain in determining the degree of convective organization from observations and in comparing directly with the organization metrics in model simulations. This study addresses the need to objectively quantify the degree of mesoscale convective organization using high quality S-PolKa radar data from the DYNAMO field campaign. One of the most noticeable aspects of mesoscale convective organization in radar data is the degree of convective clustering, which can be characterized by the number and size distribution of convective echoes and the distance between them. We propose a method of defining contiguous convective echoes (CCEs) using precipitating convective echoes identified by a rain type classification algorithm. Two classification algorithms, Steiner et al. (1995) and Powell et al. (2016), are tested and evaluated against high-resolution WRF simulations to determine which method better represents the degree of convective clustering. Our results suggest that the CCEs based on Powell et al.'s algorithm better represent the dynamical properties of the convective updrafts and thus provide the basis of a metric for convective organization. Furthermore, through a comparison with the observational data, the WRF simulations driven by the DYNAMO large-scale forcing, similarly applied to UNICON Single Column Model simulations, will allow us to evaluate the ability of both WRF and UNICON to simulate convective clustering. This evaluation is based on the physical processes that are explicitly represented in WRF and UNICON, including the mechanisms leading to convective clustering, and the feedback to the convective properties.
Sports Institute for Research/Change Agent Research (SIR/CAR) Windsor Minor Hockey.
ERIC Educational Resources Information Center
Moriarty, Dick; Duthie, James
This organizational analysis of Windsor minor hockey was conducted as a pilot study into the policy decision making process in a sports organization. The study was divided into three phases. In the first phase the organization was audited and provided with information about various feedback channels. In phase two observations, available…
Design and Implementation of an Intranet Dashboard
Wolpin, SE
2005-01-01
Healthcare organizations are complex systems and well served by efficient feedback mechanisms. Many organizations have invested in data warehouses; however there are few tools for automatically extracting and delivering relevant measures to decision makers. This research study resulted in the design and implementation of an intranet dashboard linked to a data warehouse PMID:16779440
User Acceptance of a Haptic Interface for Learning Anatomy
ERIC Educational Resources Information Center
Yeom, Soonja; Choi-Lundberg, Derek; Fluck, Andrew; Sale, Arthur
2013-01-01
Visualizing the structure and relationships in three dimensions (3D) of organs is a challenge for students of anatomy. To provide an alternative way of learning anatomy engaging multiple senses, we are developing a force-feedback (haptic) interface for manipulation of 3D virtual organs, using design research methodology, with iterations of system…
ERIC Educational Resources Information Center
Gunersel, Adalet Baris; Fleming, Steven
2014-01-01
Research shows that computer animations are especially helpful in fields such as chemistry and in this mixed-methods study, we investigate the educational effectiveness of Bio-Organic Reaction Animations (BioORA), a 3-D software, in four undergraduate biochemistry classes at different universities. Statistically significant findings indicate that…
González-Otero, Digna M; de Gauna, Sofía Ruiz; Ruiz, Jesus; Rivero, Raquel; Gutierrez, J J; Saiz, Purificación; Russell, James K
2018-04-20
Out-of-hospital cardiac arrest is common in public locations, including public transportation sites. Feedback devices are increasingly being used to improve chest-compression quality. However, their performance during public transportation has not been studied yet. To test two CPR feedback devices representative of the current technologies (accelerometer and electromag- netic-field) in a long-distance train. Volunteers applied compressions on a manikin during the train route using both feedback devices. Depth and rate measurements computed by the devices were compared to the gold-standard values. Sixty-four 4-min records were acquired. The accelerometer-based device provided visual help in all experiments. Median absolute errors in depth and rate were 2.4 mm and 1.3 compressions per minute (cpm) during conventional speed, and 2.5 mm and 1.2 cpm during high speed. The electromagnetic-field-based device never provided CPR feedback; alert messages were shown instead. However, measurements were stored in its internal memory. Absolute errors for depth and rate were 2.6 mm and 0.7 cpm during conventional speed, and 2.6 mm and 0.7 cpm during high speed. Both devices were accurate despite the accelerations and the electromagnetic interferences induced by the train. However, the electromagnetic-field-based device would require modifications to avoid excessive alerts impeding feedback.
Making the Grade: Using Instructional Feedback and Evaluation to Inspire Evidence-Based Teaching.
Brickman, Peggy; Gormally, Cara; Martella, Amedee Marchand
2016-01-01
Typically, faculty receive feedback about teaching via two mechanisms: end-of-semester student evaluations and peer observation. However, instructors require more sustained encouragement and constructive feedback when implementing evidence-based teaching practices. Our study goal was to characterize the landscape of current instructional-feedback practices in biology and uncover faculty perceptions about these practices. Findings from a national survey of 400 college biology faculty reveal an overwhelming dissatisfaction with student evaluations, regardless of self-reported teaching practices, institution type, or position. Faculty view peer evaluations as most valuable, but less than half of faculty at doctoral-granting institutions report participating in peer evaluation. When peer evaluations are performed, they are more supportive of evidence-based teaching than student evaluations. Our findings reveal a large, unmet desire for greater guidance and assessment data to inform pedagogical decision making. Informed by these findings, we discuss alternate faculty-vetted feedback strategies for providing formative instructional feedback. © 2016 P. Brickman et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Coincident scales of forest feedback on climate and conservation in a diversity hot spot
Webb, Thomas J; Gaston, Kevin J; Hannah, Lee; Ian Woodward, F
2005-01-01
The dynamic relationship between vegetation and climate is now widely acknowledged. Climate influences the distribution of vegetation; and through a number of feedback mechanisms vegetation affects climate. This implies that land-use changes such as deforestation will have climatic consequences. However, the spatial scales at which such feedbacks occur remain largely unknown. Here, we use a large database of precipitation and tree cover records for an area of the biodiversity-rich Atlantic forest region in south eastern Brazil to investigate the forest–rainfall feedback at a range of spatial scales from ca 101–104 km2. We show that the strength of the feedback increases up to scales of at least 103 km2, with the climate at a particular locality influenced by the pattern of landcover extending over a large area. Thus, smaller forest fragments, even if well protected, may suffer degradation due to the climate responding to land-use change in the surrounding area. Atlantic forest vertebrate taxa also require large areas of forest to support viable populations. Areas of forest of ca 103 km2 would be large enough to support such populations at the same time as minimizing the risk of climatic feedbacks resulting from deforestation. PMID:16608697
Coincident scales of forest feedback on climate and conservation in a diversity hot spot.
Webb, Thomas J; Gaston, Kevin J; Hannah, Lee; Ian Woodward, F
2006-03-22
The dynamic relationship between vegetation and climate is now widely acknowledged. Climate influences the distribution of vegetation; and through a number of feedback mechanisms vegetation affects climate. This implies that land-use changes such as deforestation will have climatic consequences. However, the spatial scales at which such feedbacks occur remain largely unknown. Here, we use a large database of precipitation and tree cover records for an area of the biodiversity-rich Atlantic forest region in south eastern Brazil to investigate the forest-rainfall feedback at a range of spatial scales from ca 10(1)-10(4) km2. We show that the strength of the feedback increases up to scales of at least 10(3) km2, with the climate at a particular locality influenced by the pattern of landcover extending over a large area. Thus, smaller forest fragments, even if well protected, may suffer degradation due to the climate responding to land-use change in the surrounding area. Atlantic forest vertebrate taxa also require large areas of forest to support viable populations. Areas of forest of ca 10(3) km2 would be large enough to support such populations at the same time as minimizing the risk of climatic feedbacks resulting from deforestation.
Proprioceptive feedback determines visuomotor gain in Drosophila
Bartussek, Jan; Lehmann, Fritz-Olaf
2016-01-01
Multisensory integration is a prerequisite for effective locomotor control in most animals. Especially, the impressive aerial performance of insects relies on rapid and precise integration of multiple sensory modalities that provide feedback on different time scales. In flies, continuous visual signalling from the compound eyes is fused with phasic proprioceptive feedback to ensure precise neural activation of wing steering muscles (WSM) within narrow temporal phase bands of the stroke cycle. This phase-locked activation relies on mechanoreceptors distributed over wings and gyroscopic halteres. Here we investigate visual steering performance of tethered flying fruit flies with reduced haltere and wing feedback signalling. Using a flight simulator, we evaluated visual object fixation behaviour, optomotor altitude control and saccadic escape reflexes. The behavioural assays show an antagonistic effect of wing and haltere signalling on visuomotor gain during flight. Compared with controls, suppression of haltere feedback attenuates while suppression of wing feedback enhances the animal’s wing steering range. Our results suggest that the generation of motor commands owing to visual perception is dynamically controlled by proprioception. We outline a potential physiological mechanism based on the biomechanical properties of WSM and sensory integration processes at the level of motoneurons. Collectively, the findings contribute to our general understanding how moving animals integrate sensory information with dynamically changing temporal structure. PMID:26909184
NASA Astrophysics Data System (ADS)
Euskirchen, E. S.; Breen, A. L.; Bennett, A.; Genet, H.; Lindgren, M.; Kurkowski, T. A.; McGuire, A. D.; Rupp, S. T.
2016-12-01
A continuing challenge in global change studies is to determine how land surface changes may impact atmospheric heating. Changes in vegetation and snow cover may lead to feedbacks to climate through changes in surface albedo and energy fluxes between the land and atmosphere. In addition to these biogeophysical feedbacks, biogeochemical feedbacks associated with changes in carbon (C) storage in the vegetation and soils may also influence climate. Here, using a transient biogeographic model (ALFRESCO) and an ecosystem model (DOS-TEM), we quantified the biogeophysical feedbacks due to changes in vegetation and snow cover across continuous permafrost to non-permafrost ecosystems in Alaska and northwest Canada. We also computed the changes in carbon storage in this region to provide a general assessment of the direction of the biogeochemical feedback. We considered four ecoregions, or Landscape Conservations Cooperatives (LCCs; including the Arctic, North Pacific, Western Alaska, and Northwest Boreal). We examined the 90-year period from 2010- 2099 using one future emission scenario (A1B), under outputs from two general circulation models (MPI-ECHAM5 and CCCMA-CGCM3.1). We consider a more comprehensive suite of possible feedbacks to climate due to shifts in vegetation than previous studies, including both boreal and tundra fire, an advance of treeline, reduction in forest cover due to drought, and increases in the distribution of shrub tundra. However, changes in snow cover still provided the dominant positive land surface feedback to atmospheric heating. This positive feedback was partially moderated by an increase in area burned in spruce forests and shrub tundra. Overall, increases in C storage in the vegetation and soils across the study region would act as a negative feedback to climate. By exploring these feedbacks, we can reach a more integrated understanding of the vulnerability of this region to changes in climate.
Feed-back modulation of cone synapses by L-horizontal cells of turtle retina.
Gerschenfeld, H M; Piccolino, M; Neyton, J
1980-12-01
Light stimulation of the periphery of the receptive field of turtle cones can evoke both transient and sustained increases of the cone Ca2+ conductance, which may become regenerative. Such increase in the cone Ca2+ conductance evoked by peripheral illumination results from the activation of a polysynaptic pathway involving a feed-back connexion from the L-horizontal cells (L-HC) to the cones. Thus the hyperpolarization of a L-HC by inward current injection can evoke a Ca2+ conductance increase in neighbouring cones. The cone Ca2+ channels thus activated are likely located at its synaptic endings and probably intervene in the cone transmitter release. Therefore the feed-back connexion between L-HC and cones by modifying the Ca2+ conductance of cones could actually modulate the transmitter release from cone synapses. Such feed-back modulation of cone synapses plays a role in the organization of the colour-coded responses of the chromaticity type-horizontal cells and probably of other second order neurones, post-synaptic to the cones. The mechanisms operating the feed-back connexion from L-HC to cones are discussed.
Qian, Jing; Wang, Bin; Han, Zhuo; Song, Baihe
2017-01-01
This research elucidates the role of ethical leadership in employee feedback seeking by examining how and when ethical leadership may exert a positive influence on feedback seeking. Using matched reports from 64 supervisors and 265 of their immediate employees from a hotel group located in a major city in China, we proposed and tested a moderated mediation model that examines leader-member exchange (LMX) as the mediator and emotional intelligence as well as work-unit structure as double moderators in the relationships between ethical leadership and followers’ feedback-seeking behavior from supervisors and coworkers. Our findings indicated that (1) LMX mediated the positive relationship between ethical leadership and feedback seeking from both ethical leaders and coworkers, and (2) emotional intelligence and work-unit structure served as joint moderators on the mediated positive relationship in such a way that the relationship was strongest when the emotional intelligence was high and work-unit structure was more of an organic structure rather than a mechanistic structure. PMID:28744251
Achieving optimal growth: lessons from simple metabolic modules
NASA Astrophysics Data System (ADS)
Goyal, Sidhartha; Chen, Thomas; Wingreen, Ned
2009-03-01
Metabolism is a universal property of living organisms. While the metabolic network itself has been well characterized, the logic of its regulation remains largely mysterious. Recent work has shown that growth rates of microorganisms, including the bacterium Escherichia coli, correlate well with optimal growth rates predicted by flux-balance analysis (FBA), a constraint-based computational method. How difficult is it for cells to achieve optimal growth? Our analysis of representative metabolic modules drawn from real metabolism shows that, in all cases, simple feedback inhibition allows nearly optimal growth. Indeed, product-feedback inhibition is found in every biosynthetic pathway and constitutes about 80% of metabolic regulation. However, we find that product-feedback systems designed to approach optimal growth necessarily produce large pool sizes of metabolites, with potentially detrimental effects on cells via toxicity and osmotic imbalance. Interestingly, the sizes of metabolite pools can be strongly restricted if the feedback inhibition is ultrasensitive (i.e. with high Hill coefficient). The need for ultrasensitive mechanisms to limit pool sizes may therefore explain some of the ubiquitous, puzzling complexity found in metabolic feedback regulation at both the transcriptional and post-transcriptional levels.
Scale-dependent feedbacks between patch size and plant reproduction in desert grassland
Svejcar, Lauren N.; Bestelmeyer, Brandon T.; Duniway, Michael C.; James, Darren K.
2015-01-01
Theoretical models suggest that scale-dependent feedbacks between plant reproductive success and plant patch size govern transitions from highly to sparsely vegetated states in drylands, yet there is scant empirical evidence for these mechanisms. Scale-dependent feedback models suggest that an optimal patch size exists for growth and reproduction of plants and that a threshold patch organization exists below which positive feedbacks between vegetation and resources can break down, leading to critical transitions. We examined the relationship between patch size and plant reproduction using an experiment in a Chihuahuan Desert grassland. We tested the hypothesis that reproductive effort and success of a dominant grass (Bouteloua eriopoda) would vary predictably with patch size. We found that focal plants in medium-sized patches featured higher rates of grass reproductive success than when plants occupied either large patch interiors or small patches. These patterns support the existence of scale-dependent feedbacks in Chihuahuan Desert grasslands and indicate an optimal patch size for reproductive effort and success in B. eriopoda. We discuss the implications of these results for detecting ecological thresholds in desert grasslands.
Feedback coupling in dynamical systems
NASA Astrophysics Data System (ADS)
Trimper, Steffen; Zabrocki, Knud
2003-05-01
Different evolution models are considered with feedback-couplings. In particular, we study the Lotka-Volterra system under the influence of a cumulative term, the Ginzburg-Landau model with a convolution memory term and chemical rate equations with time delay. The memory leads to a modified dynamical behavior. In case of a positive coupling the generalized Lotka-Volterra system exhibits a maximum gain achieved after a finite time, but the population will die out in the long time limit. In the opposite case, the time evolution is terminated in a crash. Due to the nonlinear feedback coupling the two branches of a bistable model are controlled by the the strength and the sign of the memory. For a negative coupling the system is able to switch over between both branches of the stationary solution. The dynamics of the system is further controlled by the initial condition. The diffusion-limited reaction is likewise studied in case the reacting entities are not available simultaneously. Whereas for an external feedback the dynamics is altered, but the stationary solution remain unchanged, a self-organized internal feedback leads to a time persistent solution.
NASA Astrophysics Data System (ADS)
Ozden, Burcu; Yang, Chungman; Tong, Fei; Khanal, Min P.; Mirkhani, Vahid; Sk, Mobbassar Hassan; Ahyi, Ayayi Claude; Park, Minseo
2014-10-01
We have demonstrated that the depth-dependent defect distribution of the deep level traps in the AlGaN/GaN high electron mobility transistor (HEMT) epi-structures can be analyzed by using the depth-resolved ultra-violet (UV) spectroscopic photo current-voltage (IV) (DR-UV-SPIV). It is of great importance to analyze deep level defects in the AlGaN/GaN HEMT structure, since it is recognized that deep level defects are the main source for causing current collapse phenomena leading to reduced device reliability. The AlGaN/GaN HEMT epi-layers were grown on a 6 in. Si wafer by metal-organic chemical vapor deposition. The DR-UV-SPIV measurement was performed using a monochromatized UV light illumination from a Xe lamp. The key strength of the DR-UV-SPIV is its ability to provide information on the depth-dependent electrically active defect distribution along the epi-layer growth direction. The DR-UV-SPIV data showed variations in the depth-dependent defect distribution across the wafer. As a result, rapid feedback on the depth-dependent electrical homogeneity of the electrically active defect distribution in the AlGaN/GaN HEMT epi-structure grown on a Si wafer with minimal sample preparation can be elucidated from the DR-UV-SPIV in combination with our previously demonstrated spectroscopic photo-IV measurement with the sub-bandgap excitation.
Managing distributed software development in the Virtual Astronomical Observatory
NASA Astrophysics Data System (ADS)
Evans, Janet D.; Plante, Raymond L.; Boneventura, Nina; Busko, Ivo; Cresitello-Dittmar, Mark; D'Abrusco, Raffaele; Doe, Stephen; Ebert, Rick; Laurino, Omar; Pevunova, Olga; Refsdal, Brian; Thomas, Brian
2012-09-01
The U.S. Virtual Astronomical Observatory (VAO) is a product-driven organization that provides new scientific research capabilities to the astronomical community. Software development for the VAO follows a lightweight framework that guides development of science applications and infrastructure. Challenges to be overcome include distributed development teams, part-time efforts, and highly constrained schedules. We describe the process we followed to conquer these challenges while developing Iris, the VAO application for analysis of 1-D astronomical spectral energy distributions (SEDs). Iris was successfully built and released in less than a year with a team distributed across four institutions. The project followed existing International Virtual Observatory Alliance inter-operability standards for spectral data and contributed a SED library as a by-product of the project. We emphasize lessons learned that will be folded into future development efforts. In our experience, a well-defined process that provides guidelines to ensure the project is cohesive and stays on track is key to success. Internal product deliveries with a planned test and feedback loop are critical. Release candidates are measured against use cases established early in the process, and provide the opportunity to assess priorities and make course corrections during development. Also key is the participation of a stakeholder such as a lead scientist who manages the technical questions, advises on priorities, and is actively involved as a lead tester. Finally, frequent scheduled communications (for example a bi-weekly tele-conference) assure issues are resolved quickly and the team is working toward a common vision.
Active noise control using a distributed mode flat panel loudspeaker.
Zhu, H; Rajamani, R; Dudney, J; Stelson, K A
2003-07-01
A flat panel distributed mode loudspeaker (DML) has many advantages over traditional cone speakers in terms of its weight, size, and durability. However, its frequency response is uneven and complex, thus bringing its suitability for active noise control (ANC) under question. This paper presents experimental results demonstrating the effective use of panel DML speakers in an ANC application. Both feedback and feedforward control techniques are considered. Effective feedback control with a flat panel speaker could open up a whole range of new noise control applications and has many advantages over feedforward control. The paper develops a new control algorithm to attenuate tonal noise of a known frequency by feedback control. However, due to the uneven response of the speakers, feedback control is found to be only moderately effective even for this narrow-band application. Feedforward control proves to be most capable for the flat panel speaker. Using feedforward control, the sound pressure level can be significantly reduced in close proximity to an error microphone. The paper demonstrates an interesting application of the flat panel in which the panel is placed in the path of sound and effectively used to block sound transmission using feedforward control. This is a new approach to active noise control enabled by the use of flat panels and can be used to prevent sound from entering into an enclosure in the first place rather than the traditional approach of attempting to cancel sound after it enters the enclosure.
Taming stochastic bifurcations in fractional-order systems via noise and delayed feedback
NASA Astrophysics Data System (ADS)
Sun, Zhongkui; Zhang, Jintian; Yang, Xiaoli; Xu, Wei
2017-08-01
The dynamics in fractional-order systems have been widely studied during the past decade due to the potential applications in new materials and anomalous diffusions, but the investigations have been so far restricted to a fractional-order system without time delay(s). In this paper, we report the first study of random responses of fractional-order system coupled with noise and delayed feedback. Stochastic averaging method has been utilized to determine the stationary probability density functions (PDFs) by means of the principle of minimum mean-square error, based on which stochastic bifurcations could be identified through recognizing the shape of the PDFs. It has been found that by changing the fractional order the shape of the PDFs can switch from unimodal distribution to bimodal one, or from bimodal distribution to unimodal one, thus announcing the onset of stochastic bifurcation. Further, we have demonstrated that by merely modulating the time delay, the feedback strengths, or the noise intensity, the shapes of PDFs can transit between a single peak and a double peak. Therefore, it provides an efficient candidate to control, say, induce or suppress, the stochastic bifurcations in fractional-order systems.
NASA Astrophysics Data System (ADS)
Panozzo, M.; Quintero-Quiroz, C.; Tiana-Alsina, J.; Torrent, M. C.; Masoller, C.
2017-11-01
Semiconductor lasers with time-delayed optical feedback display a wide range of dynamical regimes, which have found various practical applications. They also provide excellent testbeds for data analysis tools for characterizing complex signals. Recently, several of us have analyzed experimental intensity time-traces and quantitatively identified the onset of different dynamical regimes, as the laser current increases. Specifically, we identified the onset of low-frequency fluctuations (LFFs), where the laser intensity displays abrupt dropouts, and the onset of coherence collapse (CC), where the intensity fluctuations are highly irregular. Here we map these regimes when both, the laser current and the feedback strength vary. We show that the shape of the distribution of intensity fluctuations (characterized by the standard deviation, the skewness, and the kurtosis) allows to distinguish among noise, LFFs and CC, and to quantitatively determine (in spite of the gradual nature of the transitions) the boundaries of the three regimes. Ordinal analysis of the inter-dropout time intervals consistently identifies the three regimes occurring in the same parameter regions as the analysis of the intensity distribution. Simulations of the well-known time-delayed Lang-Kobayashi model are in good qualitative agreement with the observations.
Cellular self-organization by autocatalytic alignment feedback
Junkin, Michael; Leung, Siu Ling; Whitman, Samantha; Gregorio, Carol C.; Wong, Pak Kin
2011-01-01
Myoblasts aggregate, differentiate and fuse to form skeletal muscle during both embryogenesis and tissue regeneration. For proper muscle function, long-range self-organization of myoblasts is required to create organized muscle architecture globally aligned to neighboring tissue. However, how the cells process geometric information over distances considerably longer than individual cells to self-organize into well-ordered, aligned and multinucleated myofibers remains a central question in developmental biology and regenerative medicine. Using plasma lithography micropatterning to create spatial cues for cell guidance, we show a physical mechanism by which orientation information can propagate for a long distance from a geometric boundary to guide development of muscle tissue. This long-range alignment occurs only in differentiating myoblasts, but not in non-fusing myoblasts perturbed by microfluidic disturbances or other non-fusing cell types. Computational cellular automata analysis of the spatiotemporal evolution of the self-organization process reveals that myogenic fusion in conjunction with rotational inertia functions in a self-reinforcing manner to enhance long-range propagation of alignment information. With this autocatalytic alignment feedback, well-ordered alignment of muscle could reinforce existing orientations and help promote proper arrangement with neighboring tissue and overall organization. Such physical self-enhancement might represent a fundamental mechanism for long-range pattern formation during tissue morphogenesis. PMID:22193956
Order out of Randomness: Self-Organization Processes in Astrophysics
NASA Astrophysics Data System (ADS)
Aschwanden, Markus J.; Scholkmann, Felix; Béthune, William; Schmutz, Werner; Abramenko, Valentina; Cheung, Mark C. M.; Müller, Daniel; Benz, Arnold; Chernov, Guennadi; Kritsuk, Alexei G.; Scargle, Jeffrey D.; Melatos, Andrew; Wagoner, Robert V.; Trimble, Virginia; Green, William H.
2018-03-01
Self-organization is a property of dissipative nonlinear processes that are governed by a global driving force and a local positive feedback mechanism, which creates regular geometric and/or temporal patterns, and decreases the entropy locally, in contrast to random processes. Here we investigate for the first time a comprehensive number of (17) self-organization processes that operate in planetary physics, solar physics, stellar physics, galactic physics, and cosmology. Self-organizing systems create spontaneous " order out of randomness", during the evolution from an initially disordered system to an ordered quasi-stationary system, mostly by quasi-periodic limit-cycle dynamics, but also by harmonic (mechanical or gyromagnetic) resonances. The global driving force can be due to gravity, electromagnetic forces, mechanical forces (e.g., rotation or differential rotation), thermal pressure, or acceleration of nonthermal particles, while the positive feedback mechanism is often an instability, such as the magneto-rotational (Balbus-Hawley) instability, the convective (Rayleigh-Bénard) instability, turbulence, vortex attraction, magnetic reconnection, plasma condensation, or a loss-cone instability. Physical models of astrophysical self-organization processes require hydrodynamic, magneto-hydrodynamic (MHD), plasma, or N-body simulations. Analytical formulations of self-organizing systems generally involve coupled differential equations with limit-cycle solutions of the Lotka-Volterra or Hopf-bifurcation type.
Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification
Zhang, Han; Cao, Long
2016-01-01
Ocean uptake of anthropogenic CO2 reduces pH and saturation state of calcium carbonate materials of seawater, which could reduce the calcification rate of some marine organisms, triggering a negative feedback on the growth of atmospheric CO2. We quantify the effect of this CO2-calcification feedback by conducting a series of Earth system model simulations that incorporate different parameterization schemes describing the dependence of calcification rate on saturation state of CaCO3. In a scenario with SRES A2 CO2 emission until 2100 and zero emission afterwards, by year 3500, in the simulation without CO2-calcification feedback, model projects an accumulated ocean CO2 uptake of 1462 PgC, atmospheric CO2 of 612 ppm, and surface pH of 7.9. Inclusion of CO2-calcification feedback increases ocean CO2 uptake by 9 to 285 PgC, reduces atmospheric CO2 by 4 to 70 ppm, and mitigates the reduction in surface pH by 0.003 to 0.06, depending on the form of parameterization scheme used. It is also found that the effect of CO2-calcification feedback on ocean carbon uptake is comparable and could be much larger than the effect from CO2-induced warming. Our results highlight the potentially important role CO2-calcification feedback plays in ocean carbon cycle and projections of future atmospheric CO2 concentrations. PMID:26838480
1999-09-30
Coupling Behavior and Vertical Distribution of Pteropods in Coastal Waters using Data from the Video Plankton Recorder Scott M. Gallager Woods Hole...gradients. OBJECTIVES My objective in this project is to test the hypothesis that the vertical distribution of the pteropod Limacina retroversa...the mini-VPR are being used to infer behavior of individual pteropods . Third, a random walk turbulence model with behavioral feed-back is providing
Engaging Community Businesses in HIV Prevention: A Feasibility Study
Rovniak, Liza S.; Hovell, Melbourne F.; Hofstetter, C. Richard; Blumberg, Elaine J.; Sipan, Carol L.; Batista, Marcia F.; Martinez-Donate, Ana P.; Mulvihill, Mary M.; Ayala, Guadalupe X.
2009-01-01
Purpose To explore the feasibility of engaging community businesses in HIV prevention. Design Randomly selected business owners/managers were asked to display discreetly wrapped condoms and brochures provided free-of-charge for 3 months. Assessments were conducted at baseline, mid-, and post-program. Customer feedback was obtained through an online survey. Setting San Diego, California neighborhood with a high rate of AIDS. Subjects Fifty-one business owners/managers representing 10 retail categories, and 52 customers. Measures Participation rates, descriptive characteristics, number of condoms and brochures distributed, customer feedback, business owners'/managers' program satisfaction and willingness to provide future support for HIV prevention. Analysis Kruskal-Wallis, Mann-Whitney U, Fisher's exact, and McNemar's tests were used to analyze data. Results The 20 business owners/managers (39%) who agreed to distribute condoms and brochures reported fewer years in business and more employees than those who agreed only to distribute brochures (20%) or refused to participate (41%), p <.05. Bars were the easiest of ten retail categories to recruit. Businesses with more employees and customers distributed more condoms and brochures, p < .05. More than 90% of customers supported distributing condoms and brochures in businesses and 96% of business owners/managers described their program experience as “positive.” Conclusion Businesses are willing to distribute condoms and brochures to prevent HIV. Policies to increase business participation in HIV prevention should be developed and tested. PMID:20465150
Campmans-Kuijpers, Marjo J; Baan, Caroline A; Lemmens, Lidwien C; Rutten, Guy E
2015-02-01
To assess the change in level of diabetes quality management in primary care groups and outpatient clinics after feedback and tailored support. This before-and-after study with a 1-year follow-up surveyed quality managers on six domains of quality management. Questionnaires measured organization of care, multidisciplinary teamwork, patient centeredness, performance results, quality improvement policy, and management strategies (score range 0-100%). Based on the scores, responders received feedback and a benchmark and were granted access to a toolbox of quality improvement instruments. If requested, additional support in improving quality management was available, consisting of an elucidating phone call or a visit from an experienced consultant. After 1 year, the level of quality management was measured again. Of the initially 60 participating care groups, 51 completed the study. The total quality management score improved from 59.8% (95% CI 57.0-62.6%) to 65.1% (62.8-67.5%; P < 0.0001). The same applied to all six domains. The feedback and benchmark improved the total quality management score (P = 0.001). Of the 44 participating outpatient clinics, 28 completed the study. Their total score changed from 65.7% (CI 60.3-71.1%) to 67.3% (CI 62.9-71.7%; P = 0.30). Only the results in the domain multidisciplinary teamwork improved (P = 0.001). Measuring quality management and providing feedback and a benchmark improves the level of quality management in care groups but not in outpatient clinics. The questionnaires might also be a useful asset for other diabetes care groups, such as Accountable Care Organizations. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
NASA Astrophysics Data System (ADS)
Georgiou, K.; Tang, J.; Riley, W. J.; Torn, M. S.
2014-12-01
Soil organic matter (SOM) decomposition is regulated by biotic and abiotic processes. Feedback interactions between such processes may act to dampen oscillatory responses to perturbations from equilibrium. Indeed, although biological oscillations have been observed in small-scale laboratory incubations, the overlying behavior at the plot-scale exhibits a relatively stable response to disturbances in input rates and temperature. Recent studies have demonstrated the ability of microbial models to capture nonlinear feedbacks in SOM decomposition that linear Century-type models are unable to reproduce, such as soil priming in response to increased carbon input. However, these microbial models often exhibit strong oscillatory behavior that is deemed unrealistic. The inherently nonlinear dynamics of SOM decomposition have important implications for global climate-carbon and carbon-concentration feedbacks. It is therefore imperative to represent these dynamics in Earth System Models (ESMs) by introducing sub-models that accurately represent microbial and abiotic processes. In the present study we explore, both analytically and numerically, four microbe-enabled model structures of varying levels of complexity. The most complex model combines microbial physiology, a non-linear mineral sorption isotherm, and enzyme dynamics. Based on detailed stability analysis of the nonlinear dynamics, we calculate the system modes as functions of model parameters. This dependence provides insight into the source of state oscillations. We find that feedback mechanisms that emerge from careful representation of enzyme and mineral interactions, with parameter values in a prescribed range, are critical for both maintaining system stability and capturing realistic responses to disturbances. Corroborating and expanding upon the results of recent studies, we explain the emergence of oscillatory responses and discuss the appropriate microbe-enabled model structure for inclusion in ESMs.
NASA Technical Reports Server (NTRS)
Hearty, Thomas; Savtchenko, Andrey; Vollmer, Bruce; Albayrak, Arif; Theobald, Mike; Esfandiari, Ed; Wei, Jennifer
2015-01-01
This talk will describe the support and distribution of CO2 data products from OCO-2, AIRS, and ACOS, that are archived and distributed from the Goddard Earth Sciences Data and Information Services Center. We will provide a brief summary of the current online archive and distribution metrics for the OCO-2 Level 1 products and plans for the Level 2 products. We will also describe collaborative data sets and services (e.g., matchups with other sensors) and solicit feedback for potential future services.
The CEOS WGISS Atmospheric Composition Portal
NASA Technical Reports Server (NTRS)
Lynnes, Chris
2010-01-01
Goal: Demonstrate the feasibility of connecting distributed atmospheric composition data and analysis tools into a common and shared web framework. Initial effort focused on: a) Collaboratively creating a web application within WDC-RSAT for comparison of satellite derived atmospheric composition datasets accessed from distributed data sources. b) Implementation of data access and interoperability standards. c) Sollicit feedback from paternal users; Especially from ACC participants.
Chandrasekhar equations and computational algorithms for distributed parameter systems
NASA Technical Reports Server (NTRS)
Burns, J. A.; Ito, K.; Powers, R. K.
1984-01-01
The Chandrasekhar equations arising in optimal control problems for linear distributed parameter systems are considered. The equations are derived via approximation theory. This approach is used to obtain existence, uniqueness, and strong differentiability of the solutions and provides the basis for a convergent computation scheme for approximating feedback gain operators. A numerical example is presented to illustrate these ideas.
NASA Astrophysics Data System (ADS)
Kladis, Georgios P.; Menon, Prathyush P.; Edwards, Christopher
2016-12-01
This article proposes a systematic analysis for a tracking problem which ensures cooperation amongst a swarm of unmanned aerial vehicles (UAVs), modelled as nonlinear systems with linear and angular velocity constraints, in order to achieve different goals. A distributed Takagi-Sugeno (TS) framework design is adopted for the representation of the nonlinear model of the dynamics of the UAVs. The distributed control law which is introduced is composed of both node and network level information. Firstly, feedback gains are synthesised using a parallel distributed compensation (PDC) control law structure, for a collection of isolated UAVs; ignoring communications among the swarm. Then secondly, based on an alternation-like procedure, the resulting feedback gains are used to determine Lyapunov matrices which are utilised at network level to incorporate into the control law, the relative differences in the states of the vehicles, and to induce cooperative behaviour. Eventually stability is guaranteed for the entire swarm. The control synthesis is performed using tools from linear control theory: in particular the design criteria are posed as linear matrix inequalities (LMIs). An example based on a UAV tracking scenario is included to outline the efficacy of the approach.
Distributed agile software development for the SKA
NASA Astrophysics Data System (ADS)
Wicenec, Andreas; Parsons, Rebecca; Kitaeff, Slava; Vinsen, Kevin; Wu, Chen; Nelson, Paul; Reed, David
2012-09-01
The SKA software will most probably be developed by many groups distributed across the globe and coming from dierent backgrounds, like industries and research institutions. The SKA software subsystems will have to cover a very wide range of dierent areas, but still they have to react and work together like a single system to achieve the scientic goals and satisfy the challenging data ow requirements. Designing and developing such a system in a distributed fashion requires proper tools and the setup of an environment to allow for ecient detection and tracking of interface and integration issues in particular in a timely way. Agile development can provide much faster feedback mechanisms and also much tighter collaboration between the customer (scientist) and the developer. Continuous integration and continuous deployment on the other hand can provide much faster feedback of integration issues from the system level to the subsystem developers. This paper describes the results obtained from trialing a potential SKA development environment based on existing science software development processes like ALMA, the expected distribution of the groups potentially involved in the SKA development and experience gained in the development of large scale commercial software projects.