Sample records for organic framework mof

  1. Metal-organic framework materials with ultrahigh surface areas

    DOEpatents

    Farha, Omar K.; Hupp, Joseph T.; Wilmer, Christopher E.; Eryazici, Ibrahim; Snurr, Randall Q.; Gomez-Gualdron, Diego A.; Borah, Bhaskarjyoti

    2015-12-22

    A metal organic framework (MOF) material including a Brunauer-Emmett-Teller (BET) surface area greater than 7,010 m.sup.2/g. Also a metal organic framework (MOF) material including hexa-carboxylated linkers including alkyne bond. Also a metal organic framework (MOF) material including three types of cuboctahedron cages fused to provide continuous channels. Also a method of making a metal organic framework (MOF) material including saponifying hexaester precursors having alkyne bonds to form a plurality of hexa-carboxylated linkers including alkyne bonds and performing a solvothermal reaction with the plurality of hexa-carboxylated linkers and one or more metal containing compounds to form the MOF material.

  2. Metallated metal-organic frameworks

    DOEpatents

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-02-07

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  3. Metallated metal-organic frameworks

    DOEpatents

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  4. Metal organic frameworks for the catalytic detoxification of chemical warfare nerve agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hupp, Joseph T.; Farha, Omar K.; Katz, Michael J.

    A method of using a metal organic framework (MOF) comprising a metal ion and an at least bidendate organic ligand to catalytically detoxify chemical warfare nerve agents including exposing the metal-organic-framework (MOF) to the chemical warfare nerve agent and catalytically decomposing the nerve agent with the MOF.

  5. Metal Organic Framework-Metal Oxide Composites for Toxic Gas Adsorption and Sensing

    DTIC Science & Technology

    2014-05-01

    zeolitic imidazolate framework Zn(NO3)2 zinc nitrate ZrCl4 zirconium chloride 21 SUMMARY Metal organic frameworks (MOFs) and metal oxide-MOF...performed better for the other gases and conditions. Compared to the standard adsorbents BPL carbon and zeolite 13X, the cobalt and magnesium MOF...g)24 and zeolite 5A (1.25 mmol/g),25 compared to 3.5 mmol/g for Ni-MOF-74, 4 mmol/g for Mg-MOF-74, and 6 mmol/g for Co-MOF-74. Mg-MOF-74 shows the

  6. Reconfigurable electronics using conducting metal-organic frameworks

    DOEpatents

    Allendorf, Mark D.; Talin, Albert Alec; Leonard, Francois; Stavila, Vitalie

    2017-07-18

    A device including a porous metal organic framework (MOF) disposed between two terminals, the device including a first state wherein the MOF is infiltrated by a guest species to form an electrical path between the terminals and a second state wherein the electrical conductivity of the MOF is less than the electrical conductivity in the first state. A method including switching a porous metal organic framework (MOF) between two terminals from a first state wherein a metal site in the MOF is infiltrated by a guest species that is capable of charge transfer to a second state wherein the MOF is less electrically conductive than in the first state.

  7. System and method for the capture and storage of waste

    DOEpatents

    Nenoff, Tina M.; Sava Gallis, Dorina Florentina; Chapman, Karena; Chupas, Peter

    2015-10-20

    The present disclosure is directed to systems and methods that absorb waste into a metal-organic framework (MOF), and applying pressure to the MOF material's framework to crystallize or make amorphous the MOF material thereby changing the MOF's pore structure and sorption characteristics without collapsing the MOF framework.

  8. Structure-directing effects of ionic liquids in the ionothermal synthesis of metal-organic frameworks.

    PubMed

    Vaid, Thomas P; Kelley, Steven P; Rogers, Robin D

    2017-07-01

    Traditional synthesis of metal-organic frameworks (MOFs) involves the reaction of a metal-containing precursor with an organic linker in an organic solvent at an elevated temperature, in what is termed a 'solvothermal' reaction. More recently, many examples have been reported of MOF synthesis in ionic liquids (ILs), rather than an organic solvent, in 'ionothermal' reactions. The high concentration of both cations and anions in an ionic liquid allows for the formation of new MOF structures in which the IL cation or anion or both are incorporated into the MOF. Most commonly, the IL cation is included in the open cavities of the MOF, countering the anionic charge of the MOF framework itself and acting as a template around which the MOF structure forms. Ionic liquids can also serve other structure-directing roles, for example, when an IL containing a single enantiomer of a chiral anion leads to a homochiral MOF, even though the IL anion is not itself incorporated into the MOF. A comprehensive review of ionothermal syntheses of MOFs, and the structure-directing effects of the ILs, is given.

  9. Peptide assembly-driven metal-organic framework (MOF) motors for micro electric generators

    DOE PAGES

    Ikezoe, Yasuhiro; Fang, Justin; Wasik, Tomasz L.; ...

    2014-11-22

    Peptide–metal–organic framework (Pep-MOF) motors, whose motions are driven by anisotropic surface tension gradients created via peptide self-assembly around frameworks, can rotate microscopic rotors and magnets fast enough to generate an electric power of 0.1 μW. Finally, a new rigid Pep-MOF motor can be recycled by refilling the peptide fuel into the nanopores of the MOF.

  10. Colorometric detection of water using MOF-polymer films and composites

    DOEpatents

    Allendorf, Mark D.; Talin, Albert Alec

    2016-05-24

    A method including exposing a mixture of a porous metal organic framework (MOF) and a polymer to a predetermined molecular species, wherein the MOF has an open metal site for the predetermined molecular species and the polymer has a porosity for the predetermined molecular species; and detecting a color change of the MOF in the presence of the predetermined molecular species. A method including combining a porous metal organic framework (MOF) and a polymer, wherein the MOF has an open metal site for a predetermined molecular species and the polymer has a porosity for the predetermined molecular species. An article of manufacture including a mixture of a porous metal organic framework (MOF) and a polymer, wherein the MOF has an open metal site for a predetermined molecular species and the polymer has a porosity for the predetermined molecular species.

  11. Functionalization of cotton fiber by partial etherification and self-assembly of polyoxometalate encapsulated in Cu3(BTC)2 metal-organic framework.

    PubMed

    Lange, Laura E; Obendorf, S Kay

    2015-02-25

    A combination of a Keggin-type polyoxometalate (POM), [CuPW11O39](5-), with a Cu3(BTC)2 metal-organic framework (MOF-199/HKUST-1; where BTC is benzene-1,3,5-tricarboxylate), was successfully self-assembled on a cellulose substrate (cotton) with a room-temperature process. Cotton fibers were functionalized by partial etherification. Cu3(BTC)2 metal-organic framework and polyoxometalate encapsulated in Cu3(BTC)2 metal-organic framework were self-assembled on the carboxymethylate ion sites initiated with copper nitrate using ethanol and water as solvents. Octahedral crystals were observed on both MOF-cotton and POM-MOF-cotton; both contained copper while the POM-MOF-cotton also contained tungsten. Occupancy of POM in MOF cages was calculated to be about 13%. Moisture content remained at 3 to 4 wt % similar to that of untreated cotton. Reactivity to both hydrogen sulfide and methyl parathion was higher for POM-MOF-cotton due to the Keggin polyoxometalate and the extra-framework cations Cu(2+) ions compensating the charges of the encapsulated Keggins. The POM-MOF material was found to effectively remove 0.089 mg of methyl parathion per mg of MOF from a hexane solution while MOF-cotton removed only 0.054 mg of methyl parathion per mg of MOF.

  12. Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal-organic frameworks.

    PubMed

    Guillerm, Vincent; Weseliński, Łukasz J; Belmabkhout, Youssef; Cairns, Amy J; D'Elia, Valerio; Wojtas, Łukasz; Adil, Karim; Eddaoudi, Mohamed

    2014-08-01

    Metal-organic frameworks (MOFs) are a promising class of porous materials because it is possible to mutually control their porous structure, composition and functionality. However, it is still a challenge to predict the network topology of such framework materials prior to their synthesis. Here we use a new rare earth (RE) nonanuclear carboxylate-based cluster as an 18-connected molecular building block to form a gea-MOF (gea-MOF-1) based on a (3,18)-connected net. We then utilized this gea net as a blueprint to design and assemble another MOF (gea-MOF-2). In gea-MOF-2, the 18-connected RE clusters are replaced by metal-organic polyhedra, peripherally functionalized so as to have the same connectivity as the RE clusters. These metal-organic polyhedra act as supermolecular building blocks when they form gea-MOF-2. The discovery of a (3,18)-connected MOF followed by deliberate transposition of its topology to a predesigned second MOF with a different chemical system validates the prospective rational design of MOFs.

  13. Polymer–Metal–Organic Frameworks (polyMOFs) as Water Tolerant Materials for Selective Carbon Dioxide Separations

    DOE PAGES

    Zhang, Zhenjie; Nguyen, Ha Thi Hoang; Miller, Stephen A.; ...

    2015-12-28

    Recently, polymer–metal–organic frameworks (polyMOFs) were reported as a new class of hybrid porous materials that combine advantages of both organic polymers and crystalline MOFs. Herein, we report a bridging coligand strategy to prepare new types of polyMOFs, demonstrating that polyMOFs are compatible with additional MOF architectures besides that of the earlier reported IRMOF-1 type polyMOF. Gas sorption studies revealed that these polyMOF materials exhibited relatively high CO 2 sorption but very low N 2 sorption, making them promising materials for CO 2/N 2 separations. Furthermore, these polyMOFs demonstrated exceptional water stability attributed to the hydrophobicity of polymer ligands as wellmore » as the cross-linking of the polymer chains within the MOF.« less

  14. Minerals with metal-organic framework structures

    PubMed Central

    Huskić, Igor; Pekov, Igor V.; Krivovichev, Sergey V.; Friščić, Tomislav

    2016-01-01

    Metal-organic frameworks (MOFs) are an increasingly important family of advanced materials based on open, nanometer-scale metal-organic architectures, whose design and synthesis are based on the directed assembly of carefully designed subunits. We now demonstrate an unexpected link between mineralogy and MOF chemistry by discovering that the rare organic minerals stepanovite and zhemchuzhnikovite exhibit structures found in well-established magnetic and proton-conducting metal oxalate MOFs. Structures of stepanovite and zhemchuzhnikovite, exhibiting almost nanometer-wide and guest-filled apertures and channels, respectively, change the perspective of MOFs as exclusively artificial materials and represent, so far, unique examples of open framework architectures in organic minerals. PMID:27532051

  15. Nanoscale Fluorescent Metal-Organic Framework@Microporous Organic Polymer Composites for Enhanced Intracellular Uptake and Bioimaging.

    PubMed

    Wang, Lei; Wang, Weiqi; Zheng, Xiaohua; Li, Zhensheng; Xie, Zhigang

    2017-01-26

    Polymer-modified metal-organic frameworks combine the advantages of both soft polymers and crystalline metal-organic frameworks (MOFs). It is a big challenge to develop simple methods for surface modification of MOFs. In this work, MOF@microporous organic polymer (MOP) hybrid nanoparticles (UNP) have been synthesized by epitaxial growth of luminescent boron-dipyrromethene (BODIPYs)-imine MOPs on the surface of UiO-MOF seeds, which exhibit low cytotoxicity, smaller size distribution, well-retained pore integrity, and available functional sites. After folic acid grafting, the enhanced intracellular uptake and bioimaging was validated. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Minerals with metal-organic framework structures.

    PubMed

    Huskić, Igor; Pekov, Igor V; Krivovichev, Sergey V; Friščić, Tomislav

    2016-08-01

    Metal-organic frameworks (MOFs) are an increasingly important family of advanced materials based on open, nanometer-scale metal-organic architectures, whose design and synthesis are based on the directed assembly of carefully designed subunits. We now demonstrate an unexpected link between mineralogy and MOF chemistry by discovering that the rare organic minerals stepanovite and zhemchuzhnikovite exhibit structures found in well-established magnetic and proton-conducting metal oxalate MOFs. Structures of stepanovite and zhemchuzhnikovite, exhibiting almost nanometer-wide and guest-filled apertures and channels, respectively, change the perspective of MOFs as exclusively artificial materials and represent, so far, unique examples of open framework architectures in organic minerals.

  17. Non-platinum metal-organic framework based electro-catalyst for promoting oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Das, Dipanwita; Raut, Vrushali; Kireeti, Kota V. M. K.; Jha, Neetu

    2018-04-01

    We developed two non-precious Metal Organic Framework (MOF) based electrocatalysts, MOF-5 and MOF-i using solvothermal and refluxing methods. The MOFs prepared has been characterized by powder X-ray diffractometer (XRD), Fourier Transform Infra-Red Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) for structural and morphological insights. SEM images reveal cubic shape for solvothermally synthesized MOF-5, whereas refluxing method leads to platelet morphology of MOF-i. The synthesized MOFs has been investigated for Oxygen Reduction Reaction (ORR) studies using Cyclic Voltammetry (CV) and Linear Sweep Voltammetry (LSV), with MOF modified Glassy Carbon (GC) as working electrode. The electrochemical data suggests higher activity of MOF-5 towards ORR compared to MOF-i.

  18. Peptide assembly-driven metal-organic framework (MOF) motors for micro electric generators.

    PubMed

    Ikezoe, Yasuhiro; Fang, Justin; Wasik, Tomasz L; Uemura, Takashi; Zheng, Yongtai; Kitagawa, Susumu; Matsui, Hiroshi

    2015-01-14

    Peptide-metal-organic framework (Pep-MOF) motors, whose motions are driven by anisotropic surface tension gradients created via peptide self-assembly around frameworks, can rotate microscopic rotors and magnets fast enough to generate an electric power of 0.1 μW. A new rigid Pep-MOF motor can be recycled by refilling the peptide fuel into the nanopores of the MOF. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Stable metal-organic frameworks as a host platform for catalysis and biomimetics.

    PubMed

    Qin, Jun-Sheng; Yuan, Shuai; Lollar, Christina; Pang, Jiandong; Alsalme, Ali; Zhou, Hong-Cai

    2018-04-24

    Recent years have witnessed the exploration and synthesis of an increasing number of metal-organic frameworks (MOFs). The utilization of stable MOFs as a platform for catalysis and biomimetics is discussed. This Feature Article will provide insights into the rational design and synthesis of three types of stable MOF catalysts on the basis of structural features of MOFs, that is, (i) MOF catalysts with catalytic sites on metal nodes, (ii) MOF catalysts with catalytic sites immobilized in organic struts, and (iii) MOF catalysts with catalytic centres encapsulated in the pores. Then, MOFs used in biomimetics including biomimetic mineralization, biosensors and biomimetic replication are introduced. Finally, a discussion on the challenges that must be addressed for successful implementation of MOFs in catalysis and biomimetics is presented.

  20. Metal-organic framework catalysts for selective cleavage of aryl-ether bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allendorf, Mark D.; Stavila, Vitalie

    The present invention relates to methods of employing a metal-organic framework (MOF) as a catalyst for cleaving chemical bonds. In particular instances, the MOF results in selective bond cleavage that results in hydrogenolyzis. Furthermore, the MOF catalyst can be reused in multiple cycles. Such MOF-based catalysts can be useful, e.g., to convert biomass components.

  1. Guest-induced emergent properties in Metal–Organic Frameworks

    DOE PAGES

    Allendorf, Mark D.; Foster, Michael E.; Léonard, François; ...

    2015-03-19

    Metal–Organic frameworks (MOFs) are crystalline nanoporous materials comprised of organic electron donors linked to metal ions by strong coordination bonds. Applications such as gas storage and separations are currently receiving considerable attention, but if the unique properties of MOFs could be extended to electronics, magnetics, and photonics, the impact on material science would greatly increase. Recently, we obtained “emergent properties,” such as electronic conductivity and energy transfer, by infiltrating MOF pores with “guest” molecules that interact with the framework electronic structure. In this Perspective, we define a path to emergent properties based on the Guest@MOF concept, using zinc-carboxylate and copper-paddlewheelmore » MOFs for illustration. Energy transfer and light harvesting are discussed for zinc carboxylate frameworks infiltrated with triplet-scavenging organometallic compounds and thiophene- and fullerene-infiltrated MOF-177. In addition, we discuss the mechanism of charge transport in TCNQ-infiltrated HKUST-1, the first MOF with electrical conductivity approaching conducting organic polymers. Lastly, these examples show that guest molecules in MOF pores should be considered not merely as impurities or analytes to be sensed but also as an important aspect of rational design.« less

  2. Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal-Organic Frameworks.

    PubMed

    Feng, Liang; Yuan, Shuai; Zhang, Liang-Liang; Tan, Kui; Li, Jia-Luo; Kirchon, Angelo; Liu, Ling-Mei; Zhang, Peng; Han, Yu; Chabal, Yves J; Zhou, Hong-Cai

    2018-02-14

    Sufficient pore size, appropriate stability, and hierarchical porosity are three prerequisites for open frameworks designed for drug delivery, enzyme immobilization, and catalysis involving large molecules. Herein, we report a powerful and general strategy, linker thermolysis, to construct ultrastable hierarchically porous metal-organic frameworks (HP-MOFs) with tunable pore size distribution. Linker instability, usually an undesirable trait of MOFs, was exploited to create mesopores by generating crystal defects throughout a microporous MOF crystal via thermolysis. The crystallinity and stability of HP-MOFs remain after thermolabile linkers are selectively removed from multivariate metal-organic frameworks (MTV-MOFs) through a decarboxylation process. A domain-based linker spatial distribution was found to be critical for creating hierarchical pores inside MTV-MOFs. Furthermore, linker thermolysis promotes the formation of ultrasmall metal oxide nanoparticles immobilized in an open framework that exhibits high catalytic activity for Lewis acid-catalyzed reactions. Most importantly, this work provides fresh insights into the connection between linker apportionment and vacancy distribution, which may shed light on probing the disordered linker apportionment in multivariate systems, a long-standing challenge in the study of MTV-MOFs.

  3. Method for the capture and storage of waste

    DOEpatents

    None

    2017-01-24

    Systems and methods for capturing waste are disclosed. The systems and methods provide for a high level of confinement and long term stability. The systems and methods include adsorbing waste into a metal-organic framework (MOF), and applying pressure to the MOF material's framework to crystallize or make amorphous the MOF material thereby changing the MOF's pore structure and sorption characteristics without collapsing the MOF framework.

  4. Metal-Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production.

    PubMed

    Dhakshinamoorthy, Amarajothi; Asiri, Abdullah M; García, Hermenegildo

    2016-04-25

    Metal-organic frameworks (MOFs) are crystalline porous materials formed from bi- or multipodal organic linkers and transition-metal nodes. Some MOFs have high structural stability, combined with large flexibility in design and post-synthetic modification. MOFs can be photoresponsive through light absorption by the organic linker or the metal oxide nodes. Photoexcitation of the light absorbing units in MOFs often generates a ligand-to-metal charge-separation state that can result in photocatalytic activity. In this Review we discuss the advantages and uniqueness that MOFs offer in photocatalysis. We present the best practices to determine photocatalytic activity in MOFs and for the deposition of co-catalysts. In particular we give examples showing the photocatalytic activity of MOFs in H2 evolution, CO2 reduction, photooxygenation, and photoreduction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A mixed molecular building block strategy for the design of nested polyhedron metal-organic frameworks.

    PubMed

    Tian, Dan; Chen, Qiang; Li, Yue; Zhang, Ying-Hui; Chang, Ze; Bu, Xian-He

    2014-01-13

    A mixed molecular building block (MBB) strategy for the synthesis of double-walled cage-based porous metal-organic frameworks (MOFs) is presented. By means of this method, two isostructural porous MOFs built from unprecedented double-walled metal-organic octahedron were obtained by introducing two size-matching C3 -symmetric molecular building blocks with different rigidities. With their unique framework structures, these MOFs provide, to the best of our knowledge, the first examples of double-walled octahedron-based MOFs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Construction of flexible metal-organic framework (MOF) papers through MOF growth on filter paper and their selective dye capture.

    PubMed

    Park, Jeehyun; Oh, Moonhyun

    2017-09-14

    The conjugation of metal-organic frameworks (MOFs) with other materials is an excellent strategy for the production of advanced materials having desired properties and so appropriate applicability. In particular, the integration of MOFs with a flexible paper is expected to form valuable materials in separation technology. Here we report a simple method for the generation of MOF papers through the compact and uniform growth of MOF nanoparticles on the cellulose surface of a carboxymethylated filter paper. The resulting MOF papers show a selective capture ability for negatively charged organic dyes and they can be used for dye separation through simple filtration of a dye solution on the MOF papers. In addition, MOF papers can be reused after a simple washing process without losing their effective dye capture ability.

  7. Metal-organic frameworks for adsorption and separation of noble gases

    DOEpatents

    Allendorf, Mark D.; Greathouse, Jeffery A.; Staiger, Chad

    2017-05-30

    A method including exposing a gas mixture comprising a noble gas to a metal organic framework (MOF), including an organic electron donor and an adsorbent bed operable to adsorb a noble gas from a mixture of gases, the adsorbent bed including a metal organic framework (MOF) including an organic electron donor.

  8. Metal-organic-framework-derived carbons: Applications as solid-base catalyst and support for Pd nanoparticles in tandem catalysis

    DOE PAGES

    Li, Xinle; Zhang, Biying; Fang, Yuhui; ...

    2017-02-11

    Here, the facile pyrolysis of a bipyridyl metal-organic framework, MOF-253, produces N-doped porous carbons (Cz-MOF-253), which exhibit excellent catalytic activity in the Knoevenagel condensation reaction and outperform other nitrogen-containing MOF-derived carbons. More importantly, by virtue of their high Lewis basicity and porous nature, Cz-MOF-253-supported Pd nanoparticles (Pd/Cz-MOF-253-800) show excellent performance in a one-pot sequential Knoevenagel condensation-hydrogenation reaction.

  9. Substrate-Independent Epitaxial Growth of the Metal-Organic Framework MOF-508a.

    PubMed

    Wilson, M; Barrientos-Palomo, S N; Stevens, P C; Mitchell, N L; Oswald, G; Nagaraja, C M; Badyal, J P S

    2018-01-31

    Plasmachemical deposition is a substrate-independent method for the conformal surface functionalization of solid substrates. Structurally well-defined pulsed plasma deposited poly(1-allylimidazole) layers provide surface imidazole linker groups for the directed liquid-phase epitaxial (layer-by-layer) growth of metal-organic frameworks (MOFs) at room temperature. For the case of microporous [Zn (benzene-1,4-dicarboxylate)-(4,4'-bipyridine) 0.5 ] (MOF-508), the MOF-508a polymorph containing two interpenetrating crystal lattice frameworks undergoes orientated Volmer-Weber growth and displays CO 2 gas capture behavior at atmospheric concentrations in proportion to the number of epitaxially grown MOF-508 layers.

  10. An in situ self-assembly template strategy for the preparation of hierarchical-pore metal-organic frameworks

    PubMed Central

    Huang, Hongliang; Li, Jian-Rong; Wang, Keke; Han, Tongtong; Tong, Minman; Li, Liangsha; Xie, Yabo; Yang, Qingyuan; Liu, Dahuan; Zhong, Chongli

    2015-01-01

    Metal-organic frameworks (MOFs) have recently emerged as a new type of nanoporous materials with tailorable structures and functions. Usually, MOFs have uniform pores smaller than 2 nm in size, limiting their practical applications in some cases. Although a few approaches have been adopted to prepare MOFs with larger pores, it is still challenging to synthesize hierarchical-pore MOFs (H-MOFs) with high structural controllability and good stability. Here we demonstrate a facile and versatile method, an in situ self-assembly template strategy for fabricating stable H-MOFs, in which multi-scale soluble and/or acid-sensitive metal-organic assembly (MOA) fragments form during the reactions between metal ions and organic ligands (to construct MOFs), and act as removable dynamic chemical templates. This general strategy was successfully used to prepare various H-MOFs that show rich porous properties and potential applications, such as in large molecule adsorption. Notably, the mesopore sizes of the H-MOFs can be tuned by varying the amount of templates. PMID:26548441

  11. Metal-organic frameworks with high capacity and selectivity for harmful gases

    PubMed Central

    Britt, David; Tranchemontagne, David; Yaghi, Omar M.

    2008-01-01

    Benchmarks have been established for the performance of six metal-organic frameworks (MOFs) and isoreticular MOFs (IRMOFs, which have the same underlying topology as MOF-5), MOF-5, IRMOF-3, MOF-74, MOF-177, MOF-199, and IRMOF-62, as selective adsorbents for eight harmful gases: sulfur dioxide, ammonia, chlorine, tetrahydrothiophene, benzene, dichloromethane, ethylene oxide, and carbon monoxide. Kinetic breakthrough measurements are used to determine the calculated dynamic adsorption capacity of each “benchmark” MOF for each gas. The capacity of each MOF is compared to that of a sample of Calgon BPL activated carbon. We find that pore functionality plays a dominant role in determining the dynamic adsorption performance of MOFs. MOFs featuring reactive functionality outperform BPL carbon in all but one case and exhibit high dynamic adsorption capacities up to 35% by weight. PMID:18711128

  12. A Titanium–Organic Framework as an Exemplar of Combining the Chemistry of Metal– and Covalent–Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ha L.; Gándara, Felipe; Furukawa, Hiroyasu

    A crystalline material with a two-dimensional structure, termed metal–organic framework-901 (MOF-901), was prepared using a strategy that combines the chemistry of MOFs and covalent–organic frameworks (COFs). This strategy involves in situ generation of an amine-functionalized titanium oxo cluster, Ti6O6(OCH3)6(AB)6 (AB = 4-aminobenzoate), which was linked with benzene-1,4-dialdehyde using imine condensation reactions, typical of COFs. The crystal structure of MOF-901 is composed of hexagonal porous layers that are likely stacked in staggered conformation (hxl topology). This MOF represents the first example of combining metal cluster chemistry with dynamic organic covalent bond formation to give a new crystalline, extended framework of titaniummore » metal, which is rarely used in MOFs. The incorporation of Ti(IV) units made MOF-901 useful in the photocatalyzed polymerization of methyl methacrylate (MMA). The resulting polyMMA product was obtained with a high-number-average molar mass (26 850 g mol–1) and low polydispersity index (1.6), which in many respects are better than those achieved by the commercially available photocatalyst (P-25 TiO2). Additionally, the catalyst can be isolated, reused, and recycled with no loss in performance.« less

  13. Molecular Retrofitting Adapts a Metal–Organic Framework to Extreme Pressure

    DOE PAGES

    Kapustin, Eugene A.; Lee, Seungkyu; Alshammari, Ahmad S.; ...

    2017-06-07

    Despite numerous studies on chemical and thermal stability of metal-organic frameworks (MOFs), mechanical stability remains largely undeveloped. No strategy exists to control the mechanical deformation of MOFs under ultrahigh pressure, to date. We show that the mechanically unstable MOF-520 can be retrofitted by precise placement of a rigid 4,4'-biphenyldicarboxylate (BPDC) linker as a "girder" to afford a mechanically robust framework: MOF-520-BPDC. This retrofitting alters how the structure deforms under ultrahigh pressure and thus leads to a drastic enhancement of its mechanical robustness. While in the parent MOF-520 the pressure transmitting medium molecules diffuse into the pore and expand the structuremore » from the inside upon compression, the girder in the new retrofitted MOF-520-BPDC prevents the framework from expansion by linking two adjacent secondary building units together. As a result, the modified MOF is stable under hydrostatic compression in a diamond-anvil cell up to 5.5 gigapascal. The increased mechanical stability of MOF-520-BPDC prohibits the typical amorphization observed for MOFs in this pressure range. Direct correlation between the orientation of these girders within the framework and its linear strain was estimated, providing new insights for the design of MOFs with optimized mechanical properties.« less

  14. Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations.

    PubMed

    Chughtai, Adeel H; Ahmad, Nazir; Younus, Hussein A; Laypkov, A; Verpoort, Francis

    2015-10-07

    Novel catalytic materials are highly demanded to perform a variety of catalytic organic reactions. MOFs combine the benefits of heterogeneous catalysis like easy post reaction separation, catalyst reusability, high stability and homogeneous catalysis such as high efficiency, selectivity, controllability and mild reaction conditions. The possible organization of active centers like metallic nodes, organic linkers, and their chemical synthetic functionalization on the nanoscale shows potential to build up MOFs particularly modified for catalytic challenges. In this review, we have summarized the recent research progress in heterogeneous catalysis by MOFs and their catalytic behavior in various organic reactions, highlighting the key features of MOFs as catalysts based on the active sites in the framework. Examples of their post functionalization, inclusion of active guest species and metal nanoparticles have been discussed. Finally, the use of MOFs as catalysts for asymmetric heterogeneous catalysis and stability of MOFs has been presented as separate sections.

  15. Surfactant-thermal method to prepare two new cobalt metal-organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xianglin; Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430074; Toh, Yong Siang

    2015-12-15

    Employing surfactants as reaction media, two new metal-organic frameworks (MOFs):(HTEA){sub 3}[Co{sub 3}(BTC){sub 3}] (NTU-Z33) and (HTEA)[Co{sub 3}(HBTC){sub 2}(BTC)] (NTU-Z34) (H{sub 3}BTC=1,3,5-benzenetricarboxylic acid, TEA=trimethylamine, and NTU=Nanyang Technological University), have been successfully synthesized and fully characterized. Note that NTU-Z33 has an unusual trimeric [Co{sub 3}(COO){sub 9}] secondary building unit (SBU). Magnetic characterization suggests that both compounds have weak antiferromagnetic behaviors. Our success in preparing new crystalline Co-BTC based MOFs under different surfactant media could provide a new road to prepare new diverse MOFs through various combinations of surfactants. - Graphical abstract: Employing surfactants as reaction media, two new metal-organic frame-works (MOFs) havemore » been successfully synthesized and magnetic study suggests that both compounds have weak antiferromagnetic behaviors. - Highlights: • Two novel metal-organic frame-works (MOFs). • Synthesis through surfactant-thermal condition. • weak antiferromagnetic behaviors for both compounds.« less

  16. Pristine Metal-Organic Frameworks and their Composites for Energy Storage and Conversion.

    PubMed

    Liang, Zibin; Qu, Chong; Guo, Wenhan; Zou, Ruqiang; Xu, Qiang

    2017-11-22

    Metal-organic frameworks (MOFs), a new class of crystalline porous organic-inorganic hybrid materials, have recently attracted increasing interest in the field of energy storage and conversion. Herein, recent progress of MOFs and MOF composites for energy storage and conversion applications, including photochemical and electrochemical fuel production (hydrogen production and CO 2 reduction), water oxidation, supercapacitors, and Li-based batteries (Li-ion, Li-S, and Li-O 2 batteries), is summarized. Typical development strategies (e.g., incorporation of active components, design of smart morphologies, and judicious selection of organic linkers and metal nodes) of MOFs and MOF composites for particular energy storage and conversion applications are highlighted. A broad overview of recent progress is provided, which will hopefully promote the future development of MOFs and MOF composites for advanced energy storage and conversion applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Electronic properties of bimetallic metal–organic frameworks (MOFs): Tailoring the density of electronic states through MOF modularity

    DOE PAGES

    Dolgopolova, Ekaterina A.; Brandt, Amy J.; Ejegbavwo, Otega A.; ...

    2017-03-18

    The development of porous well-defined hybrid materials (e.g., metal-organic frameworks or MOFs) will add a new dimension to a wide number of applications ranging from supercapacitors and electrodes to 'smart' membranes and thermoelectrics. From this perspective, the understanding and tailoring of the electronic properties of MOFs are key fundamental challenges that could unlock the full potential of these materials. In this work, we focused on the fundamental insights responsible for the electronic properties of three distinct classes of bimetallic systems, M x-yM' y-MOFs, M xM' y- MOFs, and M x(ligand-M' y)-MOFs, in which the second metal (M') incorporation occurs throughmore » (i) metal (M) replacement in the framework nodes (type I), (ii) metal node extension (type II), and (iii) metal coordination to the organic ligand (type III), respectively. We employed microwave conductivity, X-ray photoelectron spectroscopy, diffuse reflectance spectroscopy, powder X-ray diffraction, inductively coupled plasma atomic emission spectroscopy, pressed-pellet conductivity, and theoretical modeling to shed light on the key factors responsible for the tunability of MOF electronic structures. Experimental prescreening of MOFs was performed based on changes in the density of electronic states near the Fermi edge, which was used as a starting point for further selection of suitable MOFs. As a result, we demonstrated that the tailoring of MOF electronic properties could be performed as a function of metal node engineering, framework topology, and/or the presence of unsaturated metal sites while preserving framework porosity and structural integrity. Finally, these studies unveil the possible pathways for transforming the electronic properties of MOFs from insulating to semiconducting, as well as provide a blueprint for the development of hybrid porous materials with desirable electronic structures.« less

  18. New Autonomous Motors of Metal-Organic Framework (MOF) Powered by Reorganization of Self-Assembled Peptides at interfaces

    PubMed Central

    Ikezoe, Yasuhiro; Washino, Gosuke; Uemura, Takashi; Kitagawa, Susumu; Matsui, Hiroshi

    2012-01-01

    There have developed a variety of microsystems that harness energy and convert it to mechanical motion. Here we developed new autonomous biochemical motors by integrating metal-organic framework (MOF) and self-assembling peptides. MOF is applied as an energy-storing cell that assembles peptides inside nanoscale pores of the coordination framework. The robust assembling nature of peptides enables reconfiguring their assemblies at the water-MOF interface, which is converted to fuel energy. Re-organization of hydrophobic peptides could create the large surface tension gradient around the MOF and it efficiently powers the translation motion of MOF. As a comparison, the velocity of normalized by volume for the DPA-MOF particle is faster and the kinetic energy per the unit mass of fuel is more than twice as large as the one for previous gel motor systems. This demonstration opens the new application of MOF and reconfigurable molecular self-assembly and it may evolve into the smart autonomous motor that mimic bacteria to swim and harvest target chemicals by integrating recognition units. PMID:23104155

  19. Silver-induced reconstruction of an adeninate-based metal-organic framework for encapsulation of luminescent adenine-stabilized silver clusters.

    PubMed

    Jonckheere, Dries; Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Bueken, Bart; Reinsch, Helge; Stassen, Ivo; Fenwick, Oliver; Richard, Fanny; Samorì, Paolo; Ameloot, Rob; Hofkens, Johan; Roeffaers, Maarten B J; De Vos, Dirk E

    2016-05-21

    Bright luminescent silver-adenine species were successfully stabilized in the pores of the MOF-69A (zinc biphenyldicarboxylate) metal-organic framework, starting from the intrinsically blue luminescent bio-MOF-1 (zinc adeninate 4,4'-biphenyldicarboxylate). Bio-MOF-1 is transformed to the MOF-69A framework by selectively leaching structural adenine linkers from the original framework using silver nitrate solutions in aqueous ethanol. Simultaneously, bright blue-green luminescent silver-adenine clusters are formed inside the pores of the recrystallized MOF-69A matrix in high local concentrations. The structural transition and concurrent changes in optical properties were characterized using a range of structural, physicochemical and spectroscopic techniques (steady-state and time-resolved luminescence, quantum yield determination, fluorescence microscopy). The presented results open new avenues for exploring the use of MOFs containing luminescent silver clusters for solid-state lighting and sensor applications.

  20. Transformation of metal-organic framework to polymer gel by cross-linking the organic ligands preorganized in metal-organic framework.

    PubMed

    Ishiwata, Takumi; Furukawa, Yuki; Sugikawa, Kouta; Kokado, Kenta; Sada, Kazuki

    2013-04-10

    Until now, seamless fusion of metal-organic frameworks (MOFs) and covalently cross-linked polymer gels (PG) at molecular level has been extremely rare, since these two matters have been regarded as opposite, that is, hard versus soft. In this report, we demonstrate transformation of cubic MOF crystals to PG via inner cross-linking of the organic linkers in the void space of MOF, followed by decomposition of the metal coordination. The obtained PG behaved as a polyelectrolyte gel, indicating the high content of ionic groups inside. Metal ions were well adsorbed in the PG due to its densely packed carboxylate groups. A chimera-type hybrid material consisting of MOF and PG was obtained by partial hydrolysis of resulting cross-linked MOF. The shape of resulting PG network well reflected the crystal structure of MOF employed as a template. Our results will connect the two different network materials that have been ever studied in the two different fields to provide new soft and hard hybrid materials, and the unique copolymerization in the large void space of the MOF will open a new horizon toward "ideal network polymers" never prepared before now.

  1. Recent Advances in Metal-Organic Frameworks for Heterogeneous Catalyzed Organic Transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabale, Sandip R.; Zheng, Jian; Vemuri, Venkata Rama Ses

    2016-12-12

    In this review, we have summarized the recent advances in MOF based heterogeneous catalytic chemistry. Catalytic performance of various configurations of MOFs such as active sites, post synthetic modification and MOF derived catalyst, has been summarized in the context of various organic transformation reactions. Post synthetic modification of MOFs via functionalization of organic linkers with active catalytic moieties was deliberated. Also, efficacy of carbonaceous catalysts derived from MOFs was discussed.

  2. Metal-organic frameworks in chromatography.

    PubMed

    Yusuf, Kareem; Aqel, Ahmad; ALOthman, Zeid

    2014-06-27

    Metal-organic frameworks (MOFs) emerged approximately two decades ago and are the youngest class of porous materials. Despite their short existence, MOFs are finding applications in a variety of fields because of their outstanding chemical and physical properties. This review article focuses on the applications of MOFs in chromatography, including high-performance liquid chromatography (HPLC), gas chromatography (GC), and other chromatographic techniques. The use of MOFs in chromatography has already had a significant impact; however, the utilisation of MOFs in chromatography is still less common than other applications, and the number of MOF materials explored in chromatography applications is limited. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Stable metal–organic frameworks as a host platform for catalysis and biomimetics

    DOE PAGES

    Qin, Jun-Sheng; Yuan, Shuai; Lollar, Christina; ...

    2018-01-01

    Recent years have witnessed the exploration and synthesis of an increasing number of metal–organic frameworks (MOFs). The utilization of stable MOFs as a platform for catalysis and biomimetics is discussed.

  4. A Review on Breathing Behaviors of Metal-Organic-Frameworks (MOFs) for Gas Adsorption

    PubMed Central

    Alhamami, Mays; Doan, Huu; Cheng, Chil-Hung

    2014-01-01

    Metal-organic frameworks (MOFs) are a new class of microporous materials that possess framework flexibility, large surface areas, “tailor-made” framework functionalities, and tunable pore sizes. These features empower MOFs superior performances and broader application spectra than those of zeolites and phosphine-based molecular sieves. In parallel with designing new structures and new chemistry of MOFs, the observation of unique breathing behaviors upon adsorption of gases or solvents stimulates their potential applications as host materials in gas storage for renewable energy. This has attracted intense research energy to understand the causes at the atomic level, using in situ X-ray diffraction, calorimetry, Fourier transform infrared spectroscopy, and molecular dynamics simulations. This article is developed in the following order: first to introduce the definition of MOFs and the observation of their framework flexibility. Second, synthesis routes of MOFs are summarized with the emphasis on the hydrothermal synthesis, owing to the environmental-benign and economically availability of water. Third, MOFs exhibiting breathing behaviors are summarized, followed by rationales from thermodynamic viewpoint. Subsequently, effects of various functionalities on breathing behaviors are appraised, including using post-synthetic modification routes. Finally, possible framework spatial requirements of MOFs for yielding breathing behaviors are highlighted as the design strategies for new syntheses. PMID:28788614

  5. Tunable electrical conductivity in metal-organic framework thin film devices

    DOEpatents

    Talin, Albert Alec; Allendorf, Mark D.; Stavila, Vitalie; Leonard, Francois

    2016-08-30

    A composition including a porous metal organic framework (MOF) including an open metal site and a guest species capable of charge transfer that can coordinate with the open metal site, wherein the composition is electrically conductive. A method including infiltrating a porous metal organic framework (MOF) including an open metal site with a guest species that is capable of charge transfer; and coordinating the guest species to the open metal site to form a composition including an electrical conductivity greater than an electrical conductivity of the MOF.

  6. Tunable electrical conductivity in metal-organic framework thin film devices

    DOEpatents

    Talin, Albert Alec; Allendorf, Mark D.; Stavila, Vitalie; Leonard, Francois

    2016-05-24

    A composition including a porous metal organic framework (MOF) including an open metal site and a guest species capable of charge transfer that can coordinate with the open metal site, wherein the composition is electrically conductive. A method including infiltrating a porous metal organic framework (MOF) including an open metal site with a guest species that is capable of charge transfer; and coordinating the guest species to the open metal site to form a composition including an electrical conductivity greater than an electrical conductivity of the MOF.

  7. Hierarchical 3D ordered meso-/macroporous metal-organic framework produced through a facile template-free self-assembly

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoli; Wu, Suilan; Wang, Panhao; Yang, Lin

    2018-02-01

    The synthesis of well-ordered hierarchical metal-organic frameworks (MOFs) in an efficient manner is a great challenge. Here, a 3D regular ordered meso-/macroporous MOF of Cu-TATAB (referred to as MM-MOF) was synthesized through a facile template-free self-assembly process with pore sizes of 31 nm and 119 nm.

  8. Double-Sided Electrochromic Device Based on Metal-Organic Frameworks.

    PubMed

    Mjejri, Issam; Doherty, Cara M; Rubio-Martinez, Marta; Drisko, Glenna L; Rougier, Aline

    2017-11-22

    Devices displaying controllably tunable optical properties through an applied voltage are attractive for smart glass, mirrors, and displays. Electrochromic material development aims to decrease power consumption while increasing the variety of attainable colors, their brilliance, and their longevity. We report the first electrochromic device constructed from metal organic frameworks (MOFs). Two MOF films, HKUST-1 and ZnMOF-74, are assembled so that the oxidation of one corresponds to the reduction of the other, allowing the two sides of the device to simultaneously change color. These MOF films exhibit cycling stability unrivaled by other MOFs and a significant optical contrast in a lithium-based electrolyte. HKUST-1 reversibly changed from bright blue to light blue and ZnMOF-74 from yellow to brown. The electrochromic device associates the two MOF films via a PMMA-lithium based electrolyte membrane. The color-switching of these MOFs does not arise from an organic-linker redox reaction, signaling unexplored possibilities for electrochromic MOF-based materials.

  9. Mechanized azobenzene-functionalized zirconium metal-organic framework for on-command cargo release.

    PubMed

    Meng, Xiangshi; Gui, Bo; Yuan, Daqiang; Zeller, Matthias; Wang, Cheng

    2016-08-01

    Stimuli-responsive metal-organic frameworks (MOFs) have gained increasing attention recently for their potential applications in many areas. We report the design and synthesis of a water-stable zirconium MOF (Zr-MOF) that bears photoresponsive azobenzene groups. This particular MOF can be used as a reservoir for storage of cargo in water, and the cargo-loaded MOF can be further capped to construct a mechanized MOF through the binding of β-cyclodextrin with the azobenzene stalks on the MOF surface. The resulting mechanized MOF has shown on-command cargo release triggered by ultraviolet irradiation or addition of competitive agents without premature release. This study represents a simple approach to the construction of stimuli-responsive mechanized MOFs, and considering mechanized UiO-68-azo made from biocompatible components, this smart system may provide a unique MOF platform for on-command drug delivery in the future.

  10. Mechanized azobenzene-functionalized zirconium metal-organic framework for on-command cargo release

    PubMed Central

    Meng, Xiangshi; Gui, Bo; Yuan, Daqiang; Zeller, Matthias; Wang, Cheng

    2016-01-01

    Stimuli-responsive metal-organic frameworks (MOFs) have gained increasing attention recently for their potential applications in many areas. We report the design and synthesis of a water-stable zirconium MOF (Zr-MOF) that bears photoresponsive azobenzene groups. This particular MOF can be used as a reservoir for storage of cargo in water, and the cargo-loaded MOF can be further capped to construct a mechanized MOF through the binding of β-cyclodextrin with the azobenzene stalks on the MOF surface. The resulting mechanized MOF has shown on-command cargo release triggered by ultraviolet irradiation or addition of competitive agents without premature release. This study represents a simple approach to the construction of stimuli-responsive mechanized MOFs, and considering mechanized UiO-68-azo made from biocompatible components, this smart system may provide a unique MOF platform for on-command drug delivery in the future. PMID:27493996

  11. Regulating the spatial distribution of metal nanoparticles within metal-organic frameworks to enhance catalytic efficiency

    DOE PAGES

    Yang, Qiu; Liu, Wenxian; Wang, Bingqing; ...

    2017-02-14

    Composites incorporating metal nanoparticles (MNPs) within metal-organic frameworks (MOFs) have broad applications in many fields. However, the controlled spatial distribution of the MNPs within MOFs remains a challenge for addressing key issues in catalysis, for example, the efficiency of catalysts due to the limitation of molecular diffusion within MOF channels. We report a facile strategy that enables MNPs to be encapsulated into MOFs with controllable spatial localization by using metal oxide both as support to load MNPs and as a sacrificial template to grow MOFs. This strategy is versatile to a variety of MNPs and MOF crystals. By localizing themore » encapsulated MNPs closer to the surface of MOFs, the resultant MNPs@MOF composites not only exhibit effective selectivity derived from MOF cavities, but also enhanced catalytic activity due to the spatial regulation of MNPs as close as possible to the MOF surface.« less

  12. Liquid phase blending of metal-organic frameworks.

    PubMed

    Longley, Louis; Collins, Sean M; Zhou, Chao; Smales, Glen J; Norman, Sarah E; Brownbill, Nick J; Ashling, Christopher W; Chater, Philip A; Tovey, Robert; Schönlieb, Carola-Bibiane; Headen, Thomas F; Terrill, Nicholas J; Yue, Yuanzheng; Smith, Andrew J; Blanc, Frédéric; Keen, David A; Midgley, Paul A; Bennett, Thomas D

    2018-06-15

    The liquid and glass states of metal-organic frameworks (MOFs) have recently become of interest due to the potential for liquid-phase separations and ion transport, alongside the fundamental nature of the latter as a new, fourth category of melt-quenched glass. Here we show that the MOF liquid state can be blended with another MOF component, resulting in a domain structured MOF glass with a single, tailorable glass transition. Intra-domain connectivity and short range order is confirmed by nuclear magnetic resonance spectroscopy and pair distribution function measurements. The interfacial binding between MOF domains in the glass state is evidenced by electron tomography, and the relationship between domain size and T g investigated. Nanoindentation experiments are also performed to place this new class of MOF materials into context with organic blends and inorganic alloys.

  13. Tuning metal–carboxylate coordination in crystalline metal–organic frameworks through surfactant media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Junkuo; Ye, Kaiqi; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012

    Although it has been widely demonstrated that surfactants can efficiently control the size, shape and surface properties of micro/nanocrystals of metal–organic frameworks (MOFs) due to the strong interactions between surfactants and crystal facets of MOFs, the use of surfactants as reaction media to grow MOF single crystals is unprecedented. In addition, compared with ionic liquids, surfactants are much cheaper and can have multifunctional properties such as acidic, basic, neutral, cationic, anionic, or even block. These factors strongly motivate us to develop a new synthetic strategy: growing crystalline MOFs in surfactants. In this report, eight new two-dimensional (2D) or three-dimensional (3D)more » MOFs have been successfully synthesized in an industrially-abundant and environmentally-friendly surfactant: polyethylene glycol-200 (PEG-200). Eight different coordination modes of carboxylates, ranging from monodentate η{sup 1} mode to tetra-donor coordination µ{sub 3}-η{sup 1}:η{sup 2}:η{sup 1} mode, have been founded in our research. The magnetic properties of Co-based MOFs were investigated and MOF NTU-Z6b showed a phase transition with a Curie temperature (T{sub c}) at 5 K. Our strategy of growing crystalline MOFs in surfactant could offer exciting opportunities for preparing novel MOFs with diverse structures and interesting properties. - Graphical abstract: Surfactants have been used as reaction media to grow MOF single crystals for the first time. Eight new two-dimensional or three-dimensional MOFs were successfully synthesized in surfactant polyethylene glycol-200 (PEG-200). Coordination modes of carboxylates up to eight were founded. Our strategy of growing crystalline MOFs in surfactant could offer exciting opportunities for preparing novel MOFs with diverse structures and interesting properties. Display Omitted - Highlights: • Surfactant-thermal synthesis of crystalline metal–organic frameworks. • Eight new 2-D or 3-D metal–organic frameworks. • Eight different metal–carboxylate coordination modes.« less

  14. [Ti8Zr2O12(COO)16] Cluster: An Ideal Inorganic Building Unit for Photoactive Metal–Organic Frameworks

    PubMed Central

    2017-01-01

    Metal–organic frameworks (MOFs) based on Ti-oxo clusters (Ti-MOFs) represent a naturally self-assembled superlattice of TiO2 nanoparticles separated by designable organic linkers as antenna chromophores, epitomizing a promising platform for solar energy conversion. However, despite the vast, diverse, and well-developed Ti-cluster chemistry, only a scarce number of Ti-MOFs have been documented. The synthetic conditions of most Ti-based clusters are incompatible with those required for MOF crystallization, which has severely limited the development of Ti-MOFs. This challenge has been met herein by the discovery of the [Ti8Zr2O12(COO)16] cluster as a nearly ideal building unit for photoactive MOFs. A family of isoreticular photoactive MOFs were assembled, and their orbital alignments were fine-tuned by rational functionalization of organic linkers under computational guidance. These MOFs demonstrate high porosity, excellent chemical stability, tunable photoresponse, and good activity toward photocatalytic hydrogen evolution reactions. The discovery of the [Ti8Zr2O12(COO)16] cluster and the facile construction of photoactive MOFs from this cluster shall pave the way for the development of future Ti-MOF-based photocatalysts. PMID:29392182

  15. Emerging Multifunctional Metal-Organic Framework Materials.

    PubMed

    Li, Bin; Wen, Hui-Min; Cui, Yuanjing; Zhou, Wei; Qian, Guodong; Chen, Banglin

    2016-10-01

    Metal-organic frameworks (MOFs), also known as coordination polymers, represent an interesting type of solid crystalline materials that can be straightforwardly self-assembled through the coordination of metal ions/clusters with organic linkers. Owing to the modular nature and mild conditions of MOF synthesis, the porosities of MOF materials can be systematically tuned by judicious selection of molecular building blocks, and a variety of functional sites/groups can be introduced into metal ions/clusters, organic linkers, or pore spaces through pre-designing or post-synthetic approaches. These unique advantages enable MOFs to be used as a highly versatile and tunable platform for exploring multifunctional MOF materials. Here, the bright potential of MOF materials as emerging multifunctional materials is highlighted in some of the most important applications for gas storage and separation, optical, electric and magnetic materials, chemical sensing, catalysis, and biomedicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Phenanthroline-based metal–organic frameworks for Fe-catalyzed C sp3 –H amination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thacker, Nathan C.; Ji, Pengfei; Lin, Zekai

    2017-01-01

    We report here the synthesis of a robust and highly porous Fe-phenanthroline-based metal–organic framework (MOF) and its application in catalyzing challenging inter- and intramolecular C–H amination reactions. For the intermolecular amination reactions, a FeBr 2-metalated MOF selectively functionalized secondary benzylic and allylic C–H bonds. The intramolecular amination reactions utilizing organic azides as the nitrene source required the reduction of the FeBr 2-metalated MOF with NaBHEt 3to generate the active catalyst. For both reactions, Fe or Zr leaching was less than 0.1%, and MOFs could be recycled and reused with no loss in catalytic activity. Furthermore, MOF catalysts were significantly moremore » active than the corresponding homogeneous analogs. This work demonstrates the great potential of MOFs in generating highly active, recyclable, and reusable earth abundant metal catalysts for challenging organic transformations.« less

  17. Breaking Down Chemical Weapons by Metal-Organic Frameworks.

    PubMed

    Mondal, Suvendu Sekhar; Holdt, Hans-Jürgen

    2016-01-04

    Seek and destroy: Filtration schemes and self-detoxifying protective fabrics based on the Zr(IV)-containing metal-organic frameworks (MOFs) MOF-808 and UiO-66 doped with LiOtBu have been developed that capture and hydrolytically detoxify simulants of nerve agents and mustard gas. Both MOFs function as highly catalytic elements in these applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Purification of metal-organic framework materials

    DOEpatents

    Farha, Omar K.; Hupp, Joseph T.

    2012-12-04

    A method of purification of a solid mixture of a metal-organic framework (MOF) material and an unwanted second material by disposing the solid mixture in a liquid separation medium having a density that lies between those of the wanted MOF material and the unwanted material, whereby the solid mixture separates by density differences into a fraction of wanted MOF material and another fraction of unwanted material.

  19. Purification of metal-organic framework materials

    DOEpatents

    Farha, Omar K.; Hupp, Joseph T.

    2015-06-30

    A method of purification of a solid mixture of a metal-organic framework (MOF) material and an unwanted second material by disposing the solid mixture in a liquid separation medium having a density that lies between those of the wanted MOF material and the unwanted material, whereby the solid mixture separates by density differences into a fraction of wanted MOF material and another fraction of unwanted material.

  20. Metal–Organic Frameworks as Active Materials in Electronic Sensor Devices

    PubMed Central

    Campbell, Michael G.; Dincă, Mircea

    2017-01-01

    In the past decade, advances in electrically conductive metal–organic frameworks (MOFs) and MOF-based electronic devices have created new opportunities for the development of next-generation sensors. Here we review this rapidly-growing field, with a focus on the different types of device configurations that have allowed for the use of MOFs as active components of electronic sensor devices. PMID:28498308

  1. Tunable photoluminescent metal-organic-frameworks and method of making the same

    DOEpatents

    Nenoff, Tina M.; Sava Gallis, Dorina Florentina; Rohwer, Lauren E.S.

    2017-08-22

    The present disclosure is directed to new photoluminescent metal-organic frameworks (MOFs). The newly developed MOFs include either non rare earth element (REE) transition metal atoms or limited concentrations of REE atoms, including: Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Ru, Ag, Cd, Sn, Sb, Ir, Pb, Bi, that are located in the MOF framework in site isolated locations, and have emission colors ranging from white to red, depending on the metal concentration levels and/or choice of ligand.

  2. Selectively catalytic activity of metal–organic frameworks depending on the N-position within the pyridine ring of their building blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Haitao, E-mail: xuhaitao@ecust.edu.cn; Gou, Yongxia; Ye, Jing

    2016-05-15

    Iron metal–organic frameworks (MOFs) [Fe(L){sub 2}(SCN){sub 2}]{sub ∝} (L1: 4-bpdh=2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene for 1Fe; and L2: 3-bpdh=2,5-bis(3-pyridyl)-3,4-diaza-2,4-hexadiene for 2Fe) were assembled in a MeOH–H{sub 2}O solvent system. 1Fe exhibits a two-dimensional extended-grid network, whereas 2Fe exhibits a stair-like double-chain; the N-position within the pyridine ring of the complexes was observed to regulate the MOF structure as layers or chains. Furthermore, selectively catalytic activity was observed for the layered MOF but not the chain-structured MOF; micro/nanoparticles of the layered MOF were therefore investigated for new potential applications of micro/nano MOFs. - Graphical abstract: Iron metal–organic frameworks (MOFs) [Fe(L){sub 2}(SCN){sub 2}]{sub ∝} (L1: 4-bpdh=2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadienemore » for 1Fe; and L2: 3-bpdh=2,5-bis(3-pyridyl)-3,4-diaza-2,4-hexadiene for 2Fe) were assembled in a MeOH–H{sub 2}O solvent system. The N-position within the pyridine ring of the complexes was observed to regulate the MOF structure as layers or chains. Selectively catalytic activity was observed for the layered MOF but not the chain-structured MOF. - Highlights: • Synthesis and structure of metal–organic framework [Fe(L){sub 2}(SCN){sub 2}]{sub ∝}. • Selectively catalytic activity depending on the N-position within the pyridine ring. • The degradation and conversion of methyl orange.« less

  3. Peptide Assembly-Driven Metal-Organic Framework (MOF) Motors for Micro Electric Generator

    PubMed Central

    Ikezoe, Yasuhiro; Fang, Justin; Wasik, Tomasz L.; Uemura, Takashi; Zheng, Yongtai; Kitagawa, Susumu

    2014-01-01

    Peptide-MOF motors, whose motions are driven by anisotropic surface gradients created via peptide self-assembly around nanopores of MOFs, can rotate microscopic rotors and magnet fast enough to generate electric power of 0.1 µW. To make the peptide-MOF generator recyclable, a new MOF is applied as a host motor engine, which has a more rigid framework with higher H2O affinity so that peptide release occurs more efficiently via guest exchange without the destruction of MOF. PMID:25418936

  4. Large H2 storage capacity of a new polyhedron-based metal-organic framework with high thermal and hygroscopic stability.

    PubMed

    Hong, Seunghee; Oh, Minhak; Park, Mira; Yoon, Ji Woong; Chang, Jong-San; Lah, Myoung Soo

    2009-09-28

    Two metal-organic frameworks (MOFs) based on metal-organic cuboctahedra were prepared using a rigid C3 symmetric ligand, where Zn polyhedron-based MOF (PMOF-2(Zn)) did not show any significant gas sorption behavior, whereas the isostructural Cu polyhedron-based MOF (PMOF-2(Cu)) showed a large surface area of approximately 4180 m2 g(-1), high hydrothermal stability, and very promising H2 sorption properties.

  5. Computational discovery of metal-organic frameworks with high gas deliverable capacity

    NASA Astrophysics Data System (ADS)

    Bao, Yi

    Metal-organic frameworks (MOFs) are a rapidly emerging class of nanoporous materials with largely tunable chemistry and diverse applications in gas storage, gas purification, catalysis, sensing and drug delivery. Efforts have been made to develop new MOFs with desirable properties both experimentally and computationally for decades. To guide experimental synthesis, we here develop a computational methodology to explore MOFs with high gas deliverable capacity. This de novo design procedure applies known chemical reactions, considers synthesizability and geometric requirements of organic linkers, and efficiently evolves a population of MOFs to optimize a desirable property. We identify 48 MOFs with higher methane deliverable capacity at 65-5.8 bar condition than the MOF-5 reference in nine networks. In a more comprehensive work, we predict two sets of MOFs with high methane deliverable capacity at a 65-5.8 bar loading-delivery condition or a 35-5.8 bar loading-delivery condition. We also optimize a set of MOFs with high methane accessible internal surface area to investigate the relationship between deliverable capacities and internal surface area. This methodology can be extended to MOFs with multiple types of linkers and multiple SBUs. Flexibile MOFs may allow for sophisticated heat management strategies and also provide higher gas deliverable capacity than rigid frameworks. We investigate flexible MOFs, such as MIL-53 families, and Fe(bdp) and Co(bdp) analogs, to understand the structural phase transition of frameworks and the resulting influence on heat of adsorption. Challenges of simulating a system with a flexible host structure and incoming guest molecules are discussed. Preliminary results from isotherm simulation using the hybrid MC/MD simulation scheme on MIL-53(Cr) are presented. Suggestions for proceeding to understand the free energy profile of flexible MOFs are provided.

  6. Multiaxis sensing using metal organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talin, Albert Alec; Allendorf, Mark D.; Leonard, Francois

    2017-01-17

    A sensor device including a sensor substrate; and a thin film comprising a porous metal organic framework (MOF) on the substrate that presents more than one transduction mechanism when exposed to an analyte. A method including exposing a porous metal organic framework (MOF) on a substrate to an analyte; and identifying more than one transduction mechanism in response to the exposure to the analyte.

  7. Predictive framework for shape-selective separations in three-dimensional zeolites and metal-organic frameworks.

    PubMed

    First, Eric L; Gounaris, Chrysanthos E; Floudas, Christodoulos A

    2013-05-07

    With the growing number of zeolites and metal-organic frameworks (MOFs) available, computational methods are needed to screen databases of structures to identify those most suitable for applications of interest. We have developed novel methods based on mathematical optimization to predict the shape selectivity of zeolites and MOFs in three dimensions by considering the energy costs of transport through possible pathways. Our approach is applied to databases of over 1800 microporous materials including zeolites, MOFs, zeolitic imidazolate frameworks, and hypothetical MOFs. New materials are identified for applications in gas separations (CO2/N2, CO2/CH4, and CO2/H2), air separation (O2/N2), and chemicals (propane/propylene, ethane/ethylene, styrene/ethylbenzene, and xylenes).

  8. Chemiresistive Sensor Arrays from Conductive 2D Metal–Organic Frameworks

    DOE PAGES

    Campbell, Michael G.; Liu, Sophie F.; Swager, Timothy M.; ...

    2015-10-11

    Applications of porous metal–organic frameworks (MOFs) in electronic devices are rare, owing in large part to a lack of MOFs that display electrical conductivity. Here, we describe the use of conductive two-dimensional (2D) MOFs as a new class of materials for chemiresistive sensing of volatile organic compounds (VOCs). We demonstrate that a family of structurally analogous 2D MOFs can be used to construct a cross-reactive sensor array that allows for clear discrimination between different categories of VOCs. Lastly, experimental data show that multiple sensing mechanisms are operative with high degrees of orthogonality, establishing that the 2D MOFs used here aremore » mechanistically unique and offer advantages relative to other known chemiresistor materials.« less

  9. Patterning techniques for metal organic frameworks.

    PubMed

    Falcaro, Paolo; Buso, Dario; Hill, Anita J; Doherty, Cara M

    2012-06-26

    The tuneable pore size and architecture, chemical properties and functionalization make metal organic frameworks (MOFs) attractive versatile stimuli-responsive materials. In this context, MOFs hold promise for industrial applications and a fervent research field is currently investigating MOF properties for device fabrication. Although the material properties have a crucial role, the ability to precisely locate the functional material is fundamental for device fabrication. In this progress report, advancements in the control of MOF positioning and precise localization of functional materials within MOF crystals are presented. Advantages and limitations of each reviewed technique are critically investigated, and several important gaps in the technological development for device fabrication are highlighted. Finally, promising patterning techniques are presented which are inspired by previous studies in organic and inorganic crystal patterning for the future of MOF lithography. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Enzyme-MOF (metal-organic framework) composites.

    PubMed

    Lian, Xizhen; Fang, Yu; Joseph, Elizabeth; Wang, Qi; Li, Jialuo; Banerjee, Sayan; Lollar, Christina; Wang, Xuan; Zhou, Hong-Cai

    2017-06-06

    The ex vivo application of enzymes in various processes, especially via enzyme immobilization techniques, has been extensively studied in recent years in order to enhance the recyclability of enzymes, to minimize enzyme contamination in the product, and to explore novel horizons for enzymes in biomedical applications. Possessing remarkable amenability in structural design of the frameworks as well as almost unparalelled surface tunability, Metal-Organic Frameworks (MOFs) have been gaining popularity as candidates for enzyme immobilization platforms. Many MOF-enzyme composites have achieved unprecedented results, far outperforming free enzymes in many aspects. This review summarizes recent developments of MOF-enzyme composites with special emphasis on preparative techniques and the synergistic effects of enzymes and MOFs. The applications of MOF-enzyme composites, primarily in transferation, catalysis and sensing, are presented as well. The enhancement of enzymatic activity of the composites over free enzymes in biologically incompatible conditions is emphasized in many cases.

  11. Metal-organic frameworks for thermoelectric energy-conversion applications

    DOE PAGES

    Talin, Albert Alec; Jones, Reese E.; Hopkins, Patrick E.

    2016-11-07

    Motivated by low cost, low toxicity, mechanical flexibility, and conformability over complex shapes, organic semiconductors are currently being actively investigated as thermoelectric (TE) materials to replace the costly, brittle, and non-eco-friendly inorganic TEs for near-ambient-temperature applications. Metal–organic frameworks (MOFs) share many of the attractive features of organic polymers, including solution processability and low thermal conductivity. A potential advantage of MOFs and MOFs with guest molecules (Guest@MOFs) is their synthetic and structural versatility, which allows both the electronic and geometric structure to be tuned through the choice of metal, ligand, and guest molecules. This could solve the long-standing challenge of findingmore » stable, high-TE-performance n-type organic semiconductors, as well as promote high charge mobility via the long-range crystalline order inherent in these materials. In this paper, we review recent advances in the synthesis of MOF and Guest@MOF TEs and discuss how the Seebeck coefficient, electrical conductivity, and thermal conductivity could be tuned to further optimize TE performance.« less

  12. Inkjet Printing of Lanthanide-Organic Frameworks for Anti-Counterfeiting Applications.

    PubMed

    da Luz, Leonis L; Milani, Raquel; Felix, Jorlandio F; Ribeiro, Igor R B; Talhavini, Márcio; Neto, Brenno A D; Chojnacki, Jaroslaw; Rodrigues, Marcelo O; Júnior, Severino A

    2015-12-16

    Photoluminescent lanthanide-organic frameworks (Ln-MOFs) were printed onto plastic and paper foils with a conventional inkjet printer. Ln-MOF inks were used to reproduce color images that can only be observed under UV light irradiation. This approach opens a new window for exploring Ln-MOF materials in technological applications, such as optical devices (e.g., lab-on-a-chip), as proof of authenticity for official documents.

  13. Mixed-linker strategy for the construction of multifunctional metal–organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Jun-Sheng; Yuan, Shuai; Wang, Qi

    2017-01-01

    Mixed-linker strategy is a promising way to construct multifunctional metal–organic frameworks (MOFs). In this review, we demonstrate the recent developments, discussions and challenges related to the preparation and applications of four types of mixed-linker MOF materials.

  14. Unveiling the Effects of Linker Substitution in Suzuki Coupling with Palladium Nanoparticles in Metal–Organic Frameworks [Unveiling the Effects of Linker Substitution in Suzuki Coupling Reaction with Palladium Nanoparticles in Metal–Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xinle; Zhang, Biying; Van Zeeland, Ryan

    The establishment of structure–property relationships in heterogeneous catalysis is of prime importance but remains a formidable challenge. Metal–organic frameworks (MOFs) featuring excellent chemical tunability are emerging as an auspicious platform for the atomic-level control of heterogeneous catalysis. Herein, we encapsulate palladium nanoparticles (Pd NPs) in a series of isoreticular mixed-linker MOFs, and the obtained MOF-Pd NPs catalysts were used to unveil the electronic and steric effects of linker substitution on the activity of these catalysts in the Suzuki–Miyaura cross-coupling reactions. Significantly, m-6,6'-Me2bpy-MOF-Pd exhibits a remarkable enhancement in the activity compared to non-functionalized m-bpy-MOF-Pd and m-4,4'-Me 2bpy-MOF-Pd. This study unambiguously demonstratesmore » that the stereoelectronic properties of linker units are crucial to the catalytic activity of nanoparticles encapsulated in MOFs. More interestingly, the trend of activity change is consistent with our previous work on catalytic sites generated in situ from Pd(II) coordinated in MOFs bearing the same functional groups, which suggests that both MOF-Pd NPs and MOF-Pd(II) catalysts generate similar active centers during Suzuki–Miyaura coupling reactions. Lastly, this work paves a new avenue to the fabrication of advanced and tunable MOF-based catalysts through rational linker engineering.« less

  15. Unveiling the Effects of Linker Substitution in Suzuki Coupling with Palladium Nanoparticles in Metal–Organic Frameworks [Unveiling the Effects of Linker Substitution in Suzuki Coupling Reaction with Palladium Nanoparticles in Metal–Organic Frameworks

    DOE PAGES

    Li, Xinle; Zhang, Biying; Van Zeeland, Ryan; ...

    2018-01-18

    The establishment of structure–property relationships in heterogeneous catalysis is of prime importance but remains a formidable challenge. Metal–organic frameworks (MOFs) featuring excellent chemical tunability are emerging as an auspicious platform for the atomic-level control of heterogeneous catalysis. Herein, we encapsulate palladium nanoparticles (Pd NPs) in a series of isoreticular mixed-linker MOFs, and the obtained MOF-Pd NPs catalysts were used to unveil the electronic and steric effects of linker substitution on the activity of these catalysts in the Suzuki–Miyaura cross-coupling reactions. Significantly, m-6,6'-Me2bpy-MOF-Pd exhibits a remarkable enhancement in the activity compared to non-functionalized m-bpy-MOF-Pd and m-4,4'-Me 2bpy-MOF-Pd. This study unambiguously demonstratesmore » that the stereoelectronic properties of linker units are crucial to the catalytic activity of nanoparticles encapsulated in MOFs. More interestingly, the trend of activity change is consistent with our previous work on catalytic sites generated in situ from Pd(II) coordinated in MOFs bearing the same functional groups, which suggests that both MOF-Pd NPs and MOF-Pd(II) catalysts generate similar active centers during Suzuki–Miyaura coupling reactions. Lastly, this work paves a new avenue to the fabrication of advanced and tunable MOF-based catalysts through rational linker engineering.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talin, Albert Alec; Jones, Reese E.; Spataru, Dan Catalin

    Metal organic frameworks (MOFs) are extended, nanoporous crystalline compounds consisting of metal ions interconnected by organic ligands. Their synthetic versatility suggest a disruptive class of opto - electronic materials with a high degree of electrical tunability and without the property - degrading disorder of organic conductors. In this project we determined the factors controlling charge and energy transport in MOFs and evaluated their potential for thermoelectric energy conversion. Two strategies for a chieving electronic conductivity in MOFs were explored: 1) using redox active 'guest' molecules introduced into the pores to dope the framework via charge - transfer coupling (Guest@MOF), 2)more » metal organic graphene analogs (MOGs) with dispersive band structur es arising from strong electronic overlap between the MOG metal ions and its coordinating linker groups. Inkjet deposition methods were developed to facilitate integration of the guest@MOF and MOG materials into practical devices.« less

  17. Stable Metal–Organic Frameworks with Group 4 Metals: Current Status and Trends

    PubMed Central

    2018-01-01

    Group 4 metal-based metal–organic frameworks (MIV-MOFs), including Ti-, Zr-, and Hf-based MOFs, are one of the most attractive classes of MOF materials owing to their superior chemical stability and structural tunability. Despite being a relatively new field, MIV-MOFs have attracted significant research attention in the past few years, leading to exciting advances in syntheses and applications. In this outlook, we start with a brief overview of the history and current status of MIV-MOFs, emphasizing the challenges encountered in their syntheses. The unique properties of MIV-MOFs are discussed, including their high chemical stability and strong tolerance toward defects. Particular emphasis is placed on defect engineering in Zr-MOFs which offers additional routes to tailor their functions. Photocatalysis of MIV-MOF is introduced as a representative example of their emerging applications. Finally, we conclude with the perspective of new opportunities in synthesis and defect engineering. PMID:29721526

  18. Three-Dimensional Networked Metal-Organic Frameworks with Conductive Polypyrrole Tubes for Flexible Supercapacitors.

    PubMed

    Xu, Xingtao; Tang, Jing; Qian, Huayu; Hou, Shujin; Bando, Yoshio; Hossain, Md Shahriar A; Pan, Likun; Yamauchi, Yusuke

    2017-11-08

    Metal-organic frameworks (MOFs) with high porosity and a regular porous structure have emerged as a promising electrode material for supercapacitors, but their poor electrical conductivity limits their utilization efficiency and capacitive performance. To increase the overall electrical conductivity as well as the efficiency of MOF particles, three-dimensional networked MOFs are developed via using preprepared conductive polypyrrole (PPy) tubes as the support for in situ growth of MOF particles. As a result, the highly conductive PPy tubes that run through the MOF particles not only increase the electron transfer between MOF particles and maintain the high effective porosity of the MOFs but also endow the MOFs with flexibility. Promoted by such elaborately designed MOF-PPy networks, the specific capacitance of MOF particles has been increased from 99.2 F g -1 for pristine zeolitic imidazolate framework (ZIF)-67 to 597.6 F g -1 for ZIF-PPy networks, indicating the importance of the design of the ZIF-PPy continuous microstructure. Furthermore, a flexible supercapacitor device based on ZIF-PPy networks shows an outstanding areal capacitance of 225.8 mF cm -2 , which is far above other MOFs-based supercapacitors reported up to date, confirming the significance of in situ synthetic chemistry as well as the importance of hybrid materials on the nanoscale.

  19. Metal-organic framework tethering PNIPAM for ON-OFF controlled release in solution.

    PubMed

    Nagata, Shunjiro; Kokado, Kenta; Sada, Kazuki

    2015-05-21

    A smart metal-organic framework (MOF) exhibiting controlled release was achieved by modification with a thermoresponsive polymer (PNIPAM) via a surface-selective post-synthetic modification technique. Simple temperature variation readily switches "open" (lower temperature) and "closed" (higher temperature) states of the polymer-modified MOF through conformational change of PNIPAM grafted onto the MOF, resulting in controlled release of the included guest molecules such as resorufin, caffeine, and procainamide.

  20. Post Modification of Metal-Organic Framework and Their Application In Cancer Theranostics

    NASA Astrophysics Data System (ADS)

    Lakkakula, Hima bindu

    The research proposal aims to demonstrate that Metal-Organic Frameworks (MOFs) are mainly used for cancer theranostics which is the combination of both diagnostic and therapeutic functions. The research will emphasis on synthesis of Fe- MOFs by solvothermal nucleation, crystallization, characterization by microscopy and spectroscopy and evaluation with different lattice parameters and its morphology. Nowadays MOFs are used for the novel drug delivery purposes. The current published Fe- MOFs research focus is on the cancer theranostics by Indian medicines which will be impregnated into the MOFs and which will evaluate bioavailability and the chemotherapeutic activity of the drug. Nanotechnology provides the target specificity without affecting the healthy tissues. Other research problems to be addressed are the relationship between metal connectivity and ligand-based luminescence, MOF stability in an aqueous environment and activating it at increased temperature serves as a crucial role. The merits of this research are to increase the surface area and pore size of the drug so that the therapeutic efficacy can be improved. Moreover, the stabilization of metal-organic frameworks can also be enhanced with high surface area.

  1. Green Synthesis of Cyclodextrin-Based Metal-Organic Frameworks through the Seed-Mediated Method for the Encapsulation of Hydrophobic Molecules.

    PubMed

    Qiu, Chao; Wang, Jinpeng; Qin, Yang; Fan, Haoran; Xu, Xueming; Jin, Zhengyu

    2018-04-25

    Metal-organic frameworks (MOFs) are attracting considerable attention as a result of their unique structural properties, such as a high surface area, highly porous topology, and tunable size and shape, which enable them to have potential applications as a new class of carriers for functional agent or drug delivery. However, most of the MOFs and the polymers used are not pharmaceutically acceptable. For the first time, this study successfully conducted the rapid synthesis of cyclodextrin metal-organic frameworks (CD-MOFs) through a facile and green seed-mediated method. The size control, crystal structure, and thermal properties of CD-MOFs with and without seeds were investigated. When 1 mg/mL seed was added, the size of γ-CD-MOF crystals decreased from 6.2 ± 0.8 to 1.8 ± 0.4 μm. The CD-MOFs synthesized though the seed-mediated method had higher crystallinity and thermal stability than those that were not. Furthermore, the CD-MOFs could encapsulate hydrophobic molecules, such as Nile red (NR), which was chosen as a model, and the interaction mechanism between γ-CD-MOFs and NR was investigated. Results showed the formation of a 1:1 complex between NR and CD-MOFs, demonstrating the potential of these polymers as carriers for hydrophobic drug delivery applications.

  2. Complete Transmetalation in a Metal-Organic Framework by Metal Ion Metathesis in a Single Crystal for Selective Sensing of Phosphate Ions in Aqueous Media.

    PubMed

    Asha, K S; Bhattacharjee, Rameswar; Mandal, Sukhendu

    2016-09-12

    A complete transmetalation has been achieved on a barium metal-organic framework (MOF), leading to the isolation of a new Tb-MOF in a single-crystal (SC) to single-crystal (SC) fashion. It leads to the transformation of an anionic framework with cations in the pore to one that is neutral. The mechanistic studies proposed a core-shell metal exchange through dissociation of metal-ligand bonds. This Tb-MOF exhibits enhanced photoluminescence and acts as a selective sensor for phosphate anion in aqueous medium. Thus, this work not only provides a method to functionalize a MOF that can have potential application in sensing but also elucidates the formation mechanism of the resulting MOF. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Antifungal activity of water-stable copper-containing metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Bouson, Supaporn; Krittayavathananon, Atiweena; Phattharasupakun, Nutthaphon; Siwayaprahm, Patcharaporn; Sawangphruk, Montree

    2017-10-01

    Although metal-organic frameworks (MOFs) or porous coordination polymers have been widely studied, their antimicrobial activities have not yet been fully investigated. In this work, antifungal activity of copper-based benzene-tricarboxylate MOF (Cu-BTC MOF), which is water stable and industrially interesting, is investigated against Candida albicans, Aspergillus niger, Aspergillus oryzae and Fusarium oxysporum. The Cu-BTC MOF can effectively inhibit the growth rate of C. albicans and remarkably inhibit the spore growth of A. niger, A. oryzae and F. oxysporum. This finding shows the potential of using Cu-BTC MOF as a strong biocidal material against representative yeasts and moulds that are commonly found in the food and agricultural industries.

  4. Antifungal activity of water-stable copper-containing metal-organic frameworks

    PubMed Central

    Bouson, Supaporn; Krittayavathananon, Atiweena; Phattharasupakun, Nutthaphon; Siwayaprahm, Patcharaporn

    2017-01-01

    Although metal-organic frameworks (MOFs) or porous coordination polymers have been widely studied, their antimicrobial activities have not yet been fully investigated. In this work, antifungal activity of copper-based benzene-tricarboxylate MOF (Cu-BTC MOF), which is water stable and industrially interesting, is investigated against Candida albicans, Aspergillus niger, Aspergillus oryzae and Fusarium oxysporum. The Cu-BTC MOF can effectively inhibit the growth rate of C. albicans and remarkably inhibit the spore growth of A. niger, A. oryzae and F. oxysporum. This finding shows the potential of using Cu-BTC MOF as a strong biocidal material against representative yeasts and moulds that are commonly found in the food and agricultural industries. PMID:29134075

  5. Surface functionalization of metal organic frameworks for mixed matrix membranes

    DOEpatents

    Albenze, Erik; Lartey, Michael; Li, Tao; Luebke, David R.; Nulwala, Hunaid B.; Rosi, Nathaniel L.; Venna, Surendar R.

    2017-03-21

    Mixed Matrix Membrane (MMM) are composite membranes for gas separation and comprising a quantity of inorganic filler particles, in particular metal organic framework (MOF), dispersed throughout a polymer matrix comprising one or more polymers. This disclosure is directed to MOF functionalized through addition of a pendant functional group to the MOF, in order to improve interaction with a surrounding polymer matrix in a MMM. The improved interaction aids in avoiding defects in the MMM due to incompatible interfaces between the polymer matrix and the MOF particle, in turn increasing the mechanical and gas separation properties of the MMM. The disclosure is also directed to a MMM incorporating the surface functionalized MOF.

  6. Transient Mass and Thermal Transport during Methane Adsorption into the Metal-Organic Framework HKUST-1.

    PubMed

    Babaei, Hasan; McGaughey, Alan J H; Wilmer, Christopher E

    2018-01-24

    Methane adsorption into the metal-organic framework (MOF) HKUST-1 and the resulting heat generation and dissipation are investigated using molecular dynamics simulations. Transient simulations reveal that thermal transport in the MOF occurs two orders of magnitude faster than gas diffusion. A large thermal resistance at the MOF-gas interface (equivalent to 127 nm of bulk HKUST-1), however, prevents fast release of the generated heat. The mass transport resistance at the MOF-gas interface is equivalent to 1 nm of bulk HKUST-1 and does not present a bottleneck in the adsorption process. These results provide important insights into the application of MOFs for gas storage applications.

  7. Metal organic frameworks as sorption media for volatile and semi-volatile organic compounds at ambient conditions

    PubMed Central

    Vellingiri, Kowsalya; Szulejko, Jan E.; Kumar, Pawan; Kwon, Eilhann E.; Kim, Ki-Hyun; Deep, Akash; Boukhvalov, Danil W.; Brown, Richard J. C.

    2016-01-01

    In this research, we investigated the sorptive behavior of a mixture of 14 volatile and semi-volatile organic compounds (four aromatic hydrocarbons (benzene, toluene, p-xylene, and styrene), six C2-C5 volatile fatty acids (VFAs), two phenols, and two indoles) against three metal-organic frameworks (MOFs), i.e., MOF-5, Eu-MOF, and MOF-199 at 5 to 10 mPa VOC partial pressures (25 °C). The selected MOFs exhibited the strongest affinity for semi-volatile (polar) VOC molecules (skatole), whereas the weakest affinity toward was volatile (non-polar) VOC molecules (i.e., benzene). Our experimental results were also supported through simulation analysis in which polar molecules were bound most strongly to MOF-199, reflecting the presence of strong interactions of Cu2+ with polar VOCs. In addition, the performance of selected MOFs was compared to three well-known commercial sorbents (Tenax TA, Carbopack X, and Carboxen 1000) under the same conditions. The estimated equilibrium adsorption capacity (mg.g−1) for the all target VOCs was in the order of; MOF-199 (71.7) >Carboxen-1000 (68.4) >Eu-MOF (27.9) >Carbopack X (24.3) >MOF-5 (12.7) >Tenax TA (10.6). Hopefully, outcome of this study are expected to open a new corridor to expand the practical application of MOFs for the treatment diverse VOC mixtures. PMID:27324522

  8. Metal-organic framework templated synthesis of porous inorganic materials as novel sorbents

    DOEpatents

    Taylor-Pashow, Kathryn M. L.; Lin, Wenbin; Abney, Carter W.

    2017-03-21

    A novel metal-organic framework (MOF) templated process for the synthesis of highly porous inorganic sorbents for removing radionuclides, actinides, and heavy metals is disclosed. The highly porous nature of the MOFs leads to highly porous inorganic sorbents (such as oxides, phosphates, sulfides, etc) with accessible surface binding sites that are suitable for removing radionuclides from high level nuclear wastes, extracting uranium from acid mine drainage and seawater, and sequestering heavy metals from waste streams. In some cases, MOFs can be directly used for removing these metal ions as MOFs are converted to highly porous inorganic sorbents in situ.

  9. Modeling adsorption properties of structurally deformed metal–organic frameworks using structure–property map

    PubMed Central

    Lim, Dae-Woon; Kim, Sungjune; Harale, Aadesh; Yoon, Minyoung; Suh, Myunghyun Paik; Kim, Jihan

    2017-01-01

    Structural deformation and collapse in metal-organic frameworks (MOFs) can lead to loss of long-range order, making it a challenge to model these amorphous materials using conventional computational methods. In this work, we show that a structure–property map consisting of simulated data for crystalline MOFs can be used to indirectly obtain adsorption properties of structurally deformed MOFs. The structure–property map (with dimensions such as Henry coefficient, heat of adsorption, and pore volume) was constructed using a large data set of over 12000 crystalline MOFs from molecular simulations. By mapping the experimental data points of deformed SNU-200, MOF-5, and Ni-MOF-74 onto this structure–property map, we show that the experimentally deformed MOFs share similar adsorption properties with their nearest neighbor crystalline structures. Once the nearest neighbor crystalline MOFs for a deformed MOF are selected from a structure–property map at a specific condition, then the adsorption properties of these MOFs can be successfully transformed onto the degraded MOFs, leading to a new way to obtain properties of materials whose structural information is lost. PMID:28696307

  10. Impact of linker engineering on the catalytic activity of metal–organic frameworks containing Pd(II)–bipyridine complexes

    DOE PAGES

    Li, Xinle; Van Zeeland, Ryan; Maligal-Ganesh, Raghu V.; ...

    2016-08-09

    A series of mixed-linker bipyridyl metal–organic framework (MOF)-supported palladium(II) catalysts were used to elucidate the electronic and steric effects of linker substitution on the activity of these catalysts in the context of Suzuki–Miyaura cross-coupling reactions. m-6,6'-Me 2bpy-MOF-PdCl 2 exhibited 110- and 496-fold enhancements in activity compared to nonfunctionalized m-bpy-MOF-PdCl 2 and m-4,4'-Me 2bpy-MOF-PdCl 2, respectively. Furthermore, this result clearly demonstrates that the stereoelectronic properties of metal-binding linker units are critical to the activity of single-site organometallic catalysts in MOFs and highlights the importance of linker engineering in the design and development of efficient MOF catalysts.

  11. Research Update: Mechanical properties of metal-organic frameworks - Influence of structure and chemical bonding

    NASA Astrophysics Data System (ADS)

    Li, Wei; Henke, Sebastian; Cheetham, Anthony K.

    2014-12-01

    Metal-organic frameworks (MOFs), a young family of functional materials, have been attracting considerable attention from the chemistry, materials science, and physics communities. In the light of their potential applications in industry and technology, the fundamental mechanical properties of MOFs, which are of critical importance for manufacturing, processing, and performance, need to be addressed and understood. It has been widely accepted that the framework topology, which describes the overall connectivity pattern of the MOF building units, is of vital importance for the mechanical properties. However, recent advances in the area of MOF mechanics reveal that chemistry plays a major role as well. From the viewpoint of materials science, a deep understanding of the influence of chemical effects on MOF mechanics is not only highly desirable for the development of novel functional materials with targeted mechanical response, but also for a better understanding of important properties such as structural flexibility and framework breathing. The present work discusses the intrinsic connection between chemical effects and the mechanical behavior of MOFs through a number of prototypical examples.

  12. Silver-induced reconstruction of an adeninate-based metal–organic framework for encapsulation of luminescent adenine-stabilized silver clusters† †Electronic supplementary information (ESI) available: Experimental details and additional structural, physicochemical and optical characterisation. See DOI: 10.1039/c6tc00260a Click here for additional data file.

    PubMed Central

    Jonckheere, Dries; Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Bueken, Bart; Reinsch, Helge; Stassen, Ivo; Fenwick, Oliver; Richard, Fanny; Samorì, Paolo; Ameloot, Rob; Hofkens, Johan

    2016-01-01

    Bright luminescent silver-adenine species were successfully stabilized in the pores of the MOF-69A (zinc biphenyldicarboxylate) metal–organic framework, starting from the intrinsically blue luminescent bio-MOF-1 (zinc adeninate 4,4′-biphenyldicarboxylate). Bio-MOF-1 is transformed to the MOF-69A framework by selectively leaching structural adenine linkers from the original framework using silver nitrate solutions in aqueous ethanol. Simultaneously, bright blue-green luminescent silver-adenine clusters are formed inside the pores of the recrystallized MOF-69A matrix in high local concentrations. The structural transition and concurrent changes in optical properties were characterized using a range of structural, physicochemical and spectroscopic techniques (steady-state and time-resolved luminescence, quantum yield determination, fluorescence microscopy). The presented results open new avenues for exploring the use of MOFs containing luminescent silver clusters for solid-state lighting and sensor applications. PMID:28496980

  13. Intercalation of Coordinatively Unsaturated Fe(III) Ion within Interpenetrated Metal-Organic Framework MOF-5.

    PubMed

    Holmberg, Rebecca J; Burns, Thomas; Greer, Samuel M; Kobera, Libor; Stoian, Sebastian A; Korobkov, Ilia; Hill, Stephen; Bryce, David L; Woo, Tom K; Murugesu, Muralee

    2016-06-01

    Coordinatively unsaturated Fe(III) metal sites were successfully incorporated into the iconic MOF-5 framework. This new structure, Fe(III) -iMOF-5, is the first example of an interpenetrated MOF linked through intercalated metal ions. Structural characterization was performed with single-crystal and powder XRD, followed by extensive analysis by spectroscopic methods and solid-state NMR, which reveals the paramagnetic ion through its interaction with the framework. EPR and Mössbauer spectroscopy confirmed that the intercalated ions were indeed Fe(III) , whereas DFT calculations were employed to ascertain the unique pentacoordinate architecture around the Fe(III) ion. Interestingly, this is also the first crystallographic evidence of pentacoordinate Zn(II) within the MOF-5 SBU. This new MOF structure displays the potential for metal-site addition as a framework connector, thus creating further opportunity for the innovative development of new MOF materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Visible Light Induced Organic Transformations Using Metal-Organic-Frameworks (MOFs).

    PubMed

    Deng, Xiaoyu; Li, Zhaohui; García, Hermenegildo

    2017-08-22

    With the aim of developing renewable energy based processes, researchers are paying increasing interest to light induced organic transformations. Metal-organic frameworks (MOFs), a class of micro-/mesoporous hybrid materials, are recently emerging as a new type of photoactive materials for organic syntheses due to their unique structural characteristics. In this Review, we summarized the recent applications of MOFs as photocatalysts for light induced organic transformations, including (1) oxidation of alcohols, amines, alkene, alkanes and sulfides; (2) hydroxylation of aromatic compounds like benzene; (3) activation of the C-H bonds to construct new C-C or C-X bonds; (4) atom-transfer radical polymerization (ATRP). This Review starts with general background information of using MOFs in photocatalysis, followed by a description of light induced organic transformations promoted by photoactive inorganic nodes and photocatalytic active ligands in MOFs, respectively. Thereafter, the use of MOFs as multifunctional catalysts for light induced organic transformations via an efficient merge of the metal/ligand/guest based catalysis where the photocatalytic activity of MOFs plays a key role are discussed. Finally, the limitations, challenges and the future perspective of the application of MOFs for light induced organic transformations were addressed. The objective of this Review is to serve as a starting point for other researchers to get into this largely unexplored field. It is also our goal to stimulate intensive research in this field for rational designing of MOF materials to overcome their current limitations in photocatalysis, which can lead to more creative visible-light-induced organic transformations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Enhanced stability of vitamin A palmitate microencapsulated by γ-cyclodextrin metal-organic frameworks.

    PubMed

    Zhang, Guoqing; Meng, Fanyue; Guo, Zhen; Guo, Tao; Peng, Hui; Xiao, Jian; Liu, Botao; Singh, Vikaramjeet; Gui, Shuangying; York, Peter; Qian, Wei; Wu, Li; Zhang, Jiwen

    2018-04-24

    γ-Cyclodextrin metal-organic frameworks (γ-CD-MOFs) are highly porous and bio-friendly novel materials formed by γ-CD as an organic ligand and potassium ion as an inorganic metal centre. The aim of this study was to enhance the stability of vitamin A palmitate (VAP) using γ-CD-MOFs as the carrier. Herein, γ-CD-MOFs displayed VAP microencapsulating capacity of 9.77 ± 0.24% with molar ratio as n MOFs :n VAP  = 3.2:1.0. It was important to find that the improved stability of VAP microencapsulated by γ-CD-MOFs without addition of any antioxidant(s) was better than that of the best available reference product in the market, with 1.6-fold elongated half-life. The protecting mechanism of γ-CD-MOFs for VAP contributed that VAP molecules preferentially curled inside the cavities of dual γ-CD pairs in γ-CD-MOFs. It was proved that γ-CD-MOFs were an efficient new carrier to deliver and protect VAP for food and pharmaceutical applications.

  16. A novel hybrid metal-organic framework-polymeric monolith for solid-phase microextraction.

    PubMed

    Lin, Chen-Lan; Lirio, Stephen; Chen, Ya-Ting; Lin, Chia-Her; Huang, Hsi-Ya

    2014-03-17

    This study describes the fabrication of a novel hybrid metal-organic framework- organic polymer (MOF-polymer) for use as a stationary phase in fritless solid-phase microextraction (SPME) for validating analytical methods. The MOF-polymer was prepared by using ethylene dimethacrylate (EDMA), butyl methacrylate (BMA), and an imidazolium-based ionic liquid as porogenic solvent followed by microwave-assisted polymerization with the addition of 25 % MOF. This novel hybrid MOF-polymer was used to extract penicillin (penicillin G, penicillin V, oxacillin, cloxacillin, nafcillin, dicloxacillin) under different conditions. Quantitative analysis of the extracted penicillin samples using the MOF-organic polymer for SPME was conducted by using capillary electrochromatography (CEC) coupled with UV analysis. The penicillin recovery was 63-96.2 % with high reproducibility, sensitivity, and reusability. The extraction time with the proposed fabricated SPME was only 34 min. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. High-internal-phase emulsions stabilized by metal-organic frameworks and derivation of ultralight metal-organic aerogels

    PubMed Central

    Zhang, Bingxing; Zhang, Jianling; Liu, Chengcheng; Peng, Li; Sang, Xinxin; Han, Buxing; Ma, Xue; Luo, Tian; Tan, Xiuniang; Yang, Guanying

    2016-01-01

    To design high-internal-phase emulsion (HIPE) systems is of great interest from the viewpoints of both fundamental researches and practical applications. Here we demonstrate for the first time the utilization of metal-organic framework (MOF) for HIPE formation. By stirring the mixture of water, oil and MOF at room temperature, the HIPE stabilized by the assembly of MOF nanocrystals at oil-water interface could be formed. The MOF-stabilized HIPE provides a novel route to produce highly porous metal-organic aerogel (MOA) monolith. After removing the liquids from the MOF-stabilized HIPE, the ultralight MOA with density as low as 0.01 g·cm−3 was obtained. The HIPE approach for MOA formation has unique advantages and is versatile in producing different kinds of ultralight MOAs with tunable porosities and structures. PMID:26892258

  18. Planar Heterojunction Perovskite Solar Cells Incorporating Metal-Organic Framework Nanocrystals.

    PubMed

    Chang, Ting-Hsiang; Kung, Chung-Wei; Chen, Hsin-Wei; Huang, Tzu-Yen; Kao, Sheng-Yuan; Lu, Hsin-Che; Lee, Min-Han; Boopathi, Karunakara Moorthy; Chu, Chih-Wei; Ho, Kuo-Chuan

    2015-11-25

    Zr-based porphyrin metal-organic framework (MOF-525) nanocrystals with a crystal size of about 140 nm are synthesized and incorporated into perovskite solar cells. The morphology and crystallinity of the perovskite thin film are enhanced since the micropores of MOF-525 allow the crystallization of perovskite to occur inside; this observation results in a higher cell efficiency of the obtained MOF/perovskite solar cell. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Detection of an explosive simulant via electrical impedance spectroscopy utilizing the UiO-66-NH2 metal-organic framework.

    PubMed

    Peterson, G W; McEntee, M; Harris, C R; Klevitch, A D; Fountain, A W; Soliz, J R; Balboa, A; Hauser, A J

    2016-11-01

    Electrical impedance spectroscopy, in conjunction with the metal-organic framework (MOF) UiO-66-NH 2 , is used to detect trace levels of the explosive simulant 2,6-dinitrotoluene. The combination of porosity and functionality of the MOF provides an effective dielectric structure, resulting in changes of impedance magnitude and phase angle. The promising data indicate that MOFs may be used in low-cost, robust explosive detection devices.

  20. A single crystalline porphyrinic titanium metal–organic framework

    DOE PAGES

    Yuan, Shuai; Liu, Tian -Fu; Feng, Dawei; ...

    2015-04-28

    We successfully assembled the photocatalytic titanium-oxo cluster and photosensitizing porphyrinic linker into a metal–organic framework (MOF), namely PCN-22. A preformed titanium-oxo carboxylate cluster is adopted as the starting material to judiciously control the MOF growth process to afford single crystals. This synthetic method is useful to obtain highly crystalline titanium MOFs, which has been a daunting challenge in this field. Moreover, PCN-22 demonstrated permanent porosity and photocatalytic activities toward alcohol oxidation.

  1. On the electrochemical deposition of metal–organic frameworks

    DOE PAGES

    Campagnol, Nicolo; Van Assche, Tom R. C.; Li, Minyuan; ...

    2016-02-11

    In this paper we study and compare the anodic and cathodic electrodeposition of Metal–Organic Frameworks (MOFs) and suggest guidelines for the electrodeposition of new MOFs with this technique. KHUST-1 was electrodeposited both anodically and cathodically and a four step mechanism is proposed to explain the anodic synthesis.

  2. Surfactant-thermal method to synthesize a new Zn(II)-trimesic MOF with confined Ru(bpy){sub 3}{sup 2+} complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Hui; Gao, Junkuo, E-mail: jkgao@zstu.edu.cn; Wang, Jiangpeng

    2015-03-15

    A surfactant-thermal method was used to prepare a new zinc-1,3,5-benzentricarboxylate-based metal-organic framework (ZJU-100) with confined Ru(bpy){sub 3}{sup 2+} (RuBpy) complex by using surfactant PEG 400 as reaction medium. The RuBpy molecules were encapsulated between the 2-D sheets in ZJU-100. ZJU-100 showed bathochromic shift in the steady-state emission spectrum and increased emission lifetimes relative to RuBpy molecules. The extended lifetime is attributed to the reduced nonradiative decay rate due to the stabilization of RuBpy within the rigid MOF framework. These results represent the first example of MOF with confined complex synthesized by surfactant, indicating that the surfactant-thermal method could offer excitingmore » opportunities for preparing new MOFs host/guest materials with novel structures and interesting luminescent properties. - Graphical abstract: A surfactant-thermal method was used to prepare a new zinc-1,3,5-benzentricarboxylate-based metal-organic framework (ZJU-100) with confined Ru(bpy){sub 3}{sup 2+} (RuBpy) complex by using surfactant PEG 400 as reaction medium. - Highlights: • Surfactant-thermal synthesis of crystalline metal-organic framework host/guest materials. • RuBpy molecules were encapsulated between the 2-D sheets of MOFs. • Extended lifetime is observed due to the stabilization of RuBpy within the rigid MOF framework.« less

  3. Liquid- and Gas-Phase Diffusion of Ferrocene in Thin Films of Metal-Organic Frameworks

    PubMed Central

    Zhou, Wencai; Wöll, Christof; Heinke, Lars

    2015-01-01

    The mass transfer of the guest molecules in nanoporous host materials, in particular in metal-organic frameworks (MOFs), is among the crucial features of their applications. By using thin surface-mounted MOF films in combination with a quartz crystal microbalance (QCM), the diffusion of ferrocene vapor and of ethanolic and hexanic ferrocene solution in HKUST-1 was investigated. For the first time, liquid- and gas-phase diffusion in MOFs was compared directly in the identical sample. The diffusion coefficients are in the same order of magnitude (~10−16 m2·s−1), whereas the diffusion coefficient of ferrocene in the empty framework is roughly 3-times smaller than in the MOF which is filled with ethanol or n-hexane.

  4. Construction of hierarchically porous metal–organic frameworks through linker labilization

    DOE PAGES

    Yuan, Shuai; Zou, Lanfang; Qin, Jun-Sheng; ...

    2017-05-25

    One major goal of metal–organic framework (MOF) research is the expansion of pore size and volume. Although many approaches have been attempted to increase the pore size of MOF materials, it is still a challenge to construct MOFs with precisely customized pore apertures for specific applications. W present a new method, namely linker labilization, to increase the MOF porosity and pore size, giving rise to hierarchical-pore architectures. Microporous MOFs with robust metal nodes and pro-labile linkers were initially synthesized. The mesopores were subsequently created as crystal defects through the splitting of a pro-labile-linker and the removal of the linker fragmentsmore » by acid treatment. We also demonstrate that linker labilization method can create controllable hierarchical porous structures in stable MOFs, which facilitates the diffusion and adsorption process of guest molecules to improve the performances of MOFs in adsorption and catalysis.« less

  5. Chiral Recognition and Separation by Chirality-Enriched Metal-Organic Frameworks.

    PubMed

    Das, Saikat; Xu, Shixian; Ben, Teng; Qiu, Shilun

    2018-05-16

    Endowed with chiral channels and pores, chiral metal-organic frameworks (MOFs) are highly useful; however, their synthesis remains a challenge given that most chiral building blocks are expensive. Although MOFs with induced chirality have been reported to avoid this shortcoming, no study providing evidence for the ee value of such MOFs has yet been reported. We herein describe the first study on the efficiency of chiral induction in MOFs using inexpensive achiral building blocks and fully recoverable chiral dopants to control the handedness of racemic MOFs. This method yielded chirality-enriched MOFs with accessible pores. The ability of the materials to form host-guest complexes was probed with enantiomers of varying size and coordination and in solvents with varying polarity. Furthermore, mixed-matrix membranes (MMMs) composed of chirality-enriched MOF particles dispersed in a polymer matrix demonstrated a new route for chiral separation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Construction of hierarchically porous metal-organic frameworks through linker labilization

    NASA Astrophysics Data System (ADS)

    Yuan, Shuai; Zou, Lanfang; Qin, Jun-Sheng; Li, Jialuo; Huang, Lan; Feng, Liang; Wang, Xuan; Bosch, Mathieu; Alsalme, Ali; Cagin, Tahir; Zhou, Hong-Cai

    2017-05-01

    A major goal of metal-organic framework (MOF) research is the expansion of pore size and volume. Although many approaches have been attempted to increase the pore size of MOF materials, it is still a challenge to construct MOFs with precisely customized pore apertures for specific applications. Herein, we present a new method, namely linker labilization, to increase the MOF porosity and pore size, giving rise to hierarchical-pore architectures. Microporous MOFs with robust metal nodes and pro-labile linkers were initially synthesized. The mesopores were subsequently created as crystal defects through the splitting of a pro-labile-linker and the removal of the linker fragments by acid treatment. We demonstrate that linker labilization method can create controllable hierarchical porous structures in stable MOFs, which facilitates the diffusion and adsorption process of guest molecules to improve the performances of MOFs in adsorption and catalysis.

  7. Fabrication of COF-MOF Composite Membranes and Their Highly Selective Separation of H2/CO2.

    PubMed

    Fu, Jingru; Das, Saikat; Xing, Guolong; Ben, Teng; Valtchev, Valentin; Qiu, Shilun

    2016-06-22

    The search for new types of membrane materials has been of continuous interest in both academia and industry, given their importance in a plethora of applications, particularly for energy-efficient separation technology. In this contribution, we demonstrate for the first time that a metal-organic framework (MOF) can be grown on the covalent-organic framework (COF) membrane to fabricate COF-MOF composite membranes. The resultant COF-MOF composite membranes demonstrate higher separation selectivity of H2/CO2 gas mixtures than the individual COF and MOF membranes. A sound proof for the synergy between two porous materials is the fact that the COF-MOF composite membranes surpass the Robeson upper bound of polymer membranes for mixture separation of a H2/CO2 gas pair and are among the best gas separation MOF membranes reported thus far.

  8. Construction of hierarchically porous metal–organic frameworks through linker labilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Shuai; Zou, Lanfang; Qin, Jun-Sheng

    One major goal of metal–organic framework (MOF) research is the expansion of pore size and volume. Although many approaches have been attempted to increase the pore size of MOF materials, it is still a challenge to construct MOFs with precisely customized pore apertures for specific applications. W present a new method, namely linker labilization, to increase the MOF porosity and pore size, giving rise to hierarchical-pore architectures. Microporous MOFs with robust metal nodes and pro-labile linkers were initially synthesized. The mesopores were subsequently created as crystal defects through the splitting of a pro-labile-linker and the removal of the linker fragmentsmore » by acid treatment. We also demonstrate that linker labilization method can create controllable hierarchical porous structures in stable MOFs, which facilitates the diffusion and adsorption process of guest molecules to improve the performances of MOFs in adsorption and catalysis.« less

  9. A Sr2+-metal-organic framework with high chemical stability: synthesis, crystal structure and photoluminescence property.

    PubMed

    Jia, Yan-Yuan; Liu, Xiao-Ting; Wang, Wen-He; Zhang, Li-Zhu; Zhang, Ying-Hui; Bu, Xian-He

    2017-01-13

    Metal-organic frameworks (MOFs) are typically built by assembly of metal centres and organic linkers, and have emerged as promising crystalline materials in a variety of fields. However, the stability of MOFs is a key limitation for their practical applications. Herein, we report a novel Sr 2+: -MOF [Sr 4 (Tdada) 2 (H 2 O) 3 (DMF) 2 ] (denoted as NKU- 105: , NKU = Nankai University; H 4 Tdada = 5,5'-((thiophene-2,5-dicar bonyl)bis(azanediyl))diisophthalic acid; DMF = N,N-dimethylformamide) featuring an open square channel of about 6 Å along the c-axis. Notably, NKU- 105: exhibits much outstanding chemical stability against common organic solvents, boiling water, acids and bases, relative to most MOF materials. Furthermore, NKU- 105: is an environment-friendly luminescent material with a bright cyan emission.This article is part of the themed issue 'Coordination polymers and metal-organic frameworks: materials by design'. © 2016 The Author(s).

  10. A Sr2+-metal–organic framework with high chemical stability: synthesis, crystal structure and photoluminescence property

    PubMed Central

    Jia, Yan-Yuan; Liu, Xiao-Ting; Wang, Wen-He; Zhang, Li-Zhu; Bu, Xian-He

    2017-01-01

    Metal–organic frameworks (MOFs) are typically built by assembly of metal centres and organic linkers, and have emerged as promising crystalline materials in a variety of fields. However, the stability of MOFs is a key limitation for their practical applications. Herein, we report a novel Sr2+-MOF [Sr4(Tdada)2(H2O)3(DMF)2] (denoted as NKU-105, NKU = Nankai University; H4Tdada = 5,5'-((thiophene-2,5-dicar bonyl)bis(azanediyl))diisophthalic acid; DMF = N,N-dimethylformamide) featuring an open square channel of about 6 Å along the c-axis. Notably, NKU-105 exhibits much outstanding chemical stability against common organic solvents, boiling water, acids and bases, relative to most MOF materials. Furthermore, NKU-105 is an environment-friendly luminescent material with a bright cyan emission. This article is part of the themed issue ‘Coordination polymers and metal–organic frameworks: materials by design’. PMID:27895256

  11. The Cooperativity of Fe3O4 and Metal-Organic Framework as Multifunctional Nanocomposites for Laser Desorption Ionization Process.

    PubMed

    Fu, Chung-Wei; Lirio, Stephen; Shih, Yung-Han; Liu, Wan-Ling; Lin, Chia-Her; Huang, Hsi-Ya

    2018-05-10

    We report a novel and facile strategy for developing a water stable magnetic metal organic framework nanocomposite (Fe3O4@MOF), in which a Keggin polyoxometalate, phosphotungstic acid (HPW), was encapsulated within the MOF framework via one-pot synthesis method. The combination of HPW-embedded MOF and Fe3O4 endowed the composite with high surface area, strong UV absorption, good hydrophilicity, and enhanced water stability. With these unique properties, the Fe3O4@MOF embedded HPW were served as adsorbent as well as matrix for (surface-assisted laser desorption ionization mass spectrometry) SALDI-MS analysis of polar and non-polar compounds. The synergistic effect of Fe3O4 and MOF showed an interference-free background at low mass region than the pristine MOF or Fe3O4 counterpart. This simple approach can be used as new platform in developing magnetic MOF composites without the time consuming and labor-intensive preparation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthesis and Characterization of Metal-Organic Frameworks (MOFs) That Are Difficult to Access De Novo

    NASA Astrophysics Data System (ADS)

    Karagiaridi, Olga

    Metal-organic frameworks (MOFs) are a class of intriguing hybrid materials, comprised of metal-based nodes joined by organic linkers into a crystalline, porous, three-dimensional lattice. Their signature properties (well-defined surfaces, tailorability and ultra-high porosity) render them promising candidates for many applications, including, but not limited to, gas storage, gas separation, catalysis and sensing. One of the greatest challenges associated with MOF synthesis lies in the fact that obtaining a desired MOF structure that is tailored to perform a specific application is often not trivial. Traditional synthetic pathways termed "de novo synthesis" (typically one-pot reactions between the MOF structural building blocks under solvothermal conditions) often give rise to side products that do not possess the desired structure. To circumvent this problem, we have studied in depth two powerful MOF synthetic techniques -- solvent-assisted linker exchange (SALE) and transmetalation. These are heterogeneous reactions of parent MOF crystals with concentrated solutions of organic linkers and inorganic metal salts, respectively, that lead to the replacement of the linkers or metal nodes within the parent MOFs by the desired components, while the overall framework topology is preserved. The projects described in this dissertation have aimed to apply these techniques to transform simple (unfunctionalized) and easy to synthesize representative materials from various MOF systems to structurally and functionally interesting daughter products. Examples include synthesis of MOFs that are energetically "unfavorable", extension of MOF cages by longer linker incorporation, functionalization of MOF pores and endowment of MOFs with permanent and persistent porosity. Through these projects, we have been able to formulate a set of rules that can be applied to predict the successful outcome of SALE. Since the allure of MOFs lies in their applications, expanding the range of accessible MOF structures translates into potentially solving more relevant problems - especially those related to alternative energy and sustainability, which urgently need to be addressed given our current energy demands. We hope that SALE and transmetalation can provide alternative routes towards the synthesis of many new and exciting MOFs that can provide creative solutions to many of the problems that we face.

  13. Single crystalline hollow metal-organic frameworks: a metal-organic polyhedron single crystal as a sacrificial template.

    PubMed

    Kim, Hyehyun; Oh, Minhak; Kim, Dongwook; Park, Jeongin; Seong, Junmo; Kwak, Sang Kyu; Lah, Myoung Soo

    2015-02-28

    Single crystalline hollow metal-organic frameworks (MOFs) with cavity dimensions on the order of several micrometers and hundreds of micrometers were prepared using a metal-organic polyhedron single crystal as a sacrificial hard template. The hollow nature of the MOF crystal was confirmed by scanning electron microscopy of the crystal sliced using a focused ion beam.

  14. Bipyridine- and phenanthroline-based metal-organic frameworks for highly efficient and tandem catalytic organic transformations via directed C-H activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manna, Kuntal; Zhang, Teng; Greene, Francis X.

    2015-02-16

    We report here the synthesis of a series of robust and porous bipyridyl- and phenanthryl-based metal–organic frameworks (MOFs) of UiO topology (BPV-MOF, mBPV-MOF, and mPT-MOF) and their postsynthetic metalation to afford highly active single-site solid catalysts. While BPV-MOF was constructed from only bipyridyl-functionalized dicarboxylate linker, both mBPV- and mPT-MOF were built with a mixture of bipyridyl- or phenanthryl-functionalized and unfunctionalized dicarboxylate linkers. The postsynthetic metalation of these MOFs with [Ir(COD)(OMe)] 2 provided Ir-functionalized MOFs (BPV-MOF-Ir, mBPV-MOF-Ir, and mPT-MOF-Ir), which are highly active catalysts for tandem hydrosilylation of aryl ketones and aldehydes followed by dehydrogenative ortho-silylation of benzylicsilyl ethers as wellmore » as C–H borylation of arenes using B₂pin₂. Both mBPV-MOF-Ir and mPT-MOF-Ir catalysts displayed superior activities compared to BPV-MOF-Ir due to the presence of larger open channels in the mixed-linker MOFs. Impressively, mBPV-MOF-Ir exhibited high TONs of up to 17000 for C–H borylation reactions and was recycled more than 15 times. The mPT-MOF-Ir system is also active in catalyzing tandem dehydrosilylation/dehydrogenative cyclization of N-methylbenzyl amines to azasilolanes in the absence of a hydrogen acceptor. Importantly, MOF-Ir catalysts are significantly more active (up to 95 times) and stable than their homogeneous counterparts for all three reactions, strongly supporting the beneficial effects of active site isolation within MOFs. This work illustrates the ability to increase MOF open channel sizes by using the mixed linker approach and shows the enormous potential of developing highly active and robust single-site solid catalysts based on MOFs containing nitrogen-donor ligands for important organic transformations.« less

  15. A New Class of Metal-Cyclam-Based Zirconium Metal-Organic Frameworks for CO2 Adsorption and Chemical Fixation.

    PubMed

    Zhu, Jie; Usov, Pavel M; Xu, Wenqian; Celis-Salazar, Paula J; Lin, Shaoyang; Kessinger, Matthew C; Landaverde-Alvarado, Carlos; Cai, Meng; May, Ann M; Slebodnick, Carla; Zhu, Dunru; Senanayake, Sanjaya D; Morris, Amanda J

    2018-01-24

    Metal-organic frameworks (MOFs) have shown great promise in catalysis, mainly due to their high content of active centers, large internal surface areas, tunable pore size, and versatile chemical functionalities. However, it is a challenge to rationally design and construct MOFs that can serve as highly stable and reusable heterogeneous catalysts. Here two new robust 3D porous metal-cyclam-based zirconium MOFs, denoted VPI-100 (Cu) and VPI-100 (Ni), have been prepared by a modulated synthetic strategy. The frameworks are assembled by eight-connected Zr 6 clusters and metallocyclams as organic linkers. Importantly, the cyclam core has accessible axial coordination sites for guest interactions and maintains the electronic properties exhibited by the parent cyclam ring. The VPI-100 MOFs exhibit excellent chemical stability in various organic and aqueous solvents over a wide pH range and show high CO 2 uptake capacity (up to ∼9.83 wt% adsorption at 273 K under 1 atm). Moreover, VPI-100 MOFs demonstrate some of the highest reported catalytic activity values (turnover frequency and conversion efficiency) among Zr-based MOFs for the chemical fixation of CO 2 with epoxides, including sterically hindered epoxides. The MOFs, which bear dual catalytic sites (Zr and Cu/Ni), enable chemistry not possible with the cyclam ligand under the same conditions and can be used as recoverable stable heterogeneous catalysts without losing performance.

  16. Synthesis and Electric Properties of a Two-Dimensional Metal-Organic Framework Based on Phthalocyanine.

    PubMed

    Nagatomi, Hisanori; Yanai, Nobuhiro; Yamada, Teppei; Shiraishi, Kanji; Kimizuka, Nobuo

    2018-02-06

    Complexation of copper(II) 2,3,9,10,16,17,23,24-octahydroxy-29H,31H-phthalocyanine (CuPcOH) with copper(II) ions gives a two-dimensional (2D) metal-organic framework (MOF). This is the first report of a phthalocyanine-based MOF. This 2D MOF was obtained as a black powder and showed an electrical conductivity of 1.6×10 -6  S cm -1 at 80 °C. When this MOF is used as a cathode of lithium ion battery (LIB), large charge/discharge capacities of 151/128 mAh g -1 were obtained. In addition, it showed a good stability during 200 charge/discharge cycles. The obtained LIB performance mainly originates from the electrically conductive and redox-active framework of the phthalocyanine-based 2D MOF and its hierarchical microporous/mesoporous structure. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. MOF-Sensitized Solar Cells Enabled by a Pillared Porphyrin Framework

    DOE PAGES

    Spoerke, Erik D.; Small, Leo J.; Foster, Michael E.; ...

    2017-03-01

    Metal–organic frameworks (MOFs) are highly ordered, functionally tunable supramolecular materials with the potential to improve dye-sensitized solar cells (DSSCs). Several recent reports have indicated that photocurrent can be generated in Grätzel-type DSSC devices when MOFs are used as the sensitizer. However, the specific role(s) of the incorporated MOFs and the potential influence of residual MOF precursor species on device performance are unclear. Herein, we describe the assembly and characterization of a simplified DSSC platform in which isolated MOF crystals are used as the sensitizer in a planar device architecture. We selected a pillared porphyrin framework (PPF) as the MOF sensitizer,more » taking particular care to avoid contamination from light-absorbing MOF precursors. Photovoltaic and electrochemical characterization under simulated 1-sun and wavelength-selective illumination revealed photocurrent generation that is clearly ascribable to the PPF MOF. In conclusion, continued refinement of highly versatile MOF structure and chemistry holds promise for dramatic improvements in emerging photovoltaic technologies.« less

  18. Copper Benzenetricarboxylate Metal-Organic Framework Nucleation Mechanisms on Metal Oxide Powders and Thin Films formed by Atomic Layer Deposition.

    PubMed

    Lemaire, Paul C; Zhao, Junjie; Williams, Philip S; Walls, Howard J; Shepherd, Sarah D; Losego, Mark D; Peterson, Gregory W; Parsons, Gregory N

    2016-04-13

    Chemically functional microporous metal-organic framework (MOF) crystals are attractive for filtration and gas storage applications, and recent results show that they can be immobilized on high surface area substrates, such as fiber mats. However, fundamental knowledge is still lacking regarding initial key reaction steps in thin film MOF nucleation and growth. We find that thin inorganic nucleation layers formed by atomic layer deposition (ALD) can promote solvothermal growth of copper benzenetricarboxylate MOF (Cu-BTC) on various substrate surfaces. The nature of the ALD material affects the MOF nucleation time, crystal size and morphology, and the resulting MOF surface area per unit mass. To understand MOF nucleation mechanisms, we investigate detailed Cu-BTC MOF nucleation behavior on metal oxide powders and Al2O3, ZnO, and TiO2 layers formed by ALD on polypropylene substrates. Studying both combined and sequential MOF reactant exposure conditions, we find that during solvothermal synthesis ALD metal oxides can react with the MOF metal precursor to form double hydroxy salts that can further convert to Cu-BTC MOF. The acidic organic linker can also etch or react with the surface to form MOF from an oxide metal source, which can also function as a nucleation agent for Cu-BTC in the mixed solvothermal solution. We discuss the implications of these results for better controlled thin film MOF nucleation and growth.

  19. Isotropic and Anisotropic Growth of Metal-Organic Framework (MOF) on MOF: Logical Inference on MOF Structure Based on Growth Behavior and Morphological Feature.

    PubMed

    Choi, Sora; Kim, Taeho; Ji, Hoyeon; Lee, Hee Jung; Oh, Moonhyun

    2016-11-02

    The growth of one metal-organic framework (MOF) on another MOF for constructing a heterocompositional hybrid MOF is an interesting research topic because of the curiosity regarding the occurrence of this phenomenon and the value of hybrid MOFs as multifunctional materials or routes for fine-tuning MOF properties. In particular, the anisotropic growth of MOF on MOF is fascinating for the development of MOFs possessing atypical shapes and heterostructures or abnormal properties. Herein, we clarify the understanding of growth behavior of a secondary MOF on an initial MOF template, such as isotropic or anisotropic ways associated with their cell parameters. The isotropic growth of MIL-68-Br on the MIL-68 template results in the formation of core-shell-type MIL-68@MIL-68-Br. However, the unique anisotropic growth of a secondary MOF (MOF-NDC) on the MIL-68 template results in semitubular particles, and structural features of this unknown secondary MOF are successfully speculated for the first time on the basis of its unique growth behavior and morphological characteristics. Finally, the validation of this structural speculation is verified by the powder X-ray diffraction and the selected area electron diffraction studies. The results suggests that the growth behavior and morphological features of MOFs should be considered to be important factors for understanding the MOFs' structures.

  20. System and method for generating and/or screening potential metal-organic frameworks

    DOEpatents

    Wilmer, Christopher E; Leaf, Michael; Snurr, Randall Q; Farha, Omar K; Hupp, Joseph T

    2015-04-21

    A system and method for systematically generating potential metal-organic framework (MOFs) structures given an input library of building blocks is provided herein. One or more material properties of the potential MOFs are evaluated using computational simulations. A range of material properties (surface area, pore volume, pore size distribution, powder x-ray diffraction pattern, methane adsorption capability, and the like) can be estimated, and in doing so, illuminate unidentified structure-property relationships that may only have been recognized by taking a global view of MOF structures. In addition to identifying structure-property relationships, this systematic approach to identify the MOFs of interest is used to identify one or more MOFs that may be useful for high pressure methane storage.

  1. System and method for generating and/or screening potential metal-organic frameworks

    DOEpatents

    Wilmer, Christopher E; Leaf, Michael; Snurr, Randall Q; Farha, Omar K; Hupp, Joseph T

    2014-12-02

    A system and method for systematically generating potential metal-organic framework (MOFs) structures given an input library of building blocks is provided herein. One or more material properties of the potential MOFs are evaluated using computational simulations. A range of material properties (surface area, pore volume, pore size distribution, powder x-ray diffraction pattern, methane adsorption capability, and the like) can be estimated, and in doing so, illuminate unidentified structure-property relationships that may only have been recognized by taking a global view of MOF structures. In addition to identifying structure-property relationships, this systematic approach to identify the MOFs of interest is used to identify one or more MOFs that may be useful for high pressure methane storage.

  2. Efficient photocatalytic degradation of rhodamine 6G with a quantum dot-metal organic framework nanocomposite.

    PubMed

    Kaur, Rajnish; Vellingiri, Kowsalya; Kim, Ki-Hyun; Paul, A K; Deep, Akash

    2016-07-01

    The hybrid structures of metal organic frameworks (MOFs) and nanoparticles may offer the realization of effective photocatalytic materials due to combined benefits of the porous and molecular sieving properties of MOF matrix and the functional characteristics of encapsulated nanoparticles. In this study, cadmium telluride (CdTe) quantum dots (QD) are conjugated with a europium-MOF for the synthesis of a novel nanocomposite material with photocatalytic properties. Successful synthesis of a QD/Eu-MOF nanocomposite was characterized with various spectroscopic and microscopic techniques. This QD/Eu-MOF is found to be an effective catalyst to complete the degradation of Rhodamine 6G dye within 50 min. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A versatile synthetic route for the preparation of titanium metal-organic frameworks

    DOE PAGES

    Zou, Lanfang; Feng, Dawei; Liu, Tian-Fu; ...

    2016-02-01

    Exploitation of new titanium metal–organic frameworks (Ti-MOFs) with high crystallinity has been attracting great attention due to their vast application potential in photocatalysis. Herein a versatile synthetic strategy, namely, High Valence Metathesis and Oxidation (HVMO), is developed to synthesize a series of Ti-MOFs with predesigned topologies and structures. The crystallinity of these Ti-MOFs was well maintained throughout, as confirmed by powder X-ray diffraction and gas adsorption measurements. Significantly, there were only a few examples of Ti-MOFs, not to mention a general synthetic strategy for various kinds of Ti-MOFs in the literature. This contribution also illustrates the intriguing potential of Ti-MOFmore » platforms in photocatalysis.« less

  4. Water depollution using metal-organic frameworks-catalyzed advanced oxidation processes: A review.

    PubMed

    Sharma, Virender K; Feng, Mingbao

    2017-09-28

    This paper presents a review on the environmental applications of metal-organic frameworks (MOFs), which are inorganic-organic hybrid highly porous crystalline materials, prepared from metal ion/clusters and multidentate organic ligands. The emphases are made on the enhancement of the performance of advanced oxidation processes (AOPs) (photocatalysis, Fenton reaction methods, and sulfate radical (SO 4 - )-mediated oxidations) using MOFs materials. MOFs act as adsorption and light absorbers, leading to superior performance of photocatalytic processes. More recent examples of photocatalytic degradation of dyes are presented. Additionally, it is commonly shown that Fe-based MOFs exhibited excellent catalytic performance on the Fenton-based and SO 4 •- -mediated oxidations of organic pollutants (e.g., dyes, phenol and pharmaceuticals). The significantly enhanced generation of reactive species such as OH and/or SO 4 - by both homogeneous and heterogeneous catalysis was proposed as the possible mechanism for water depollution. Based on the existing literature, the challenge and future perspectives in MOF-based AOPs are addressed. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulphur batteries.

    PubMed

    Xi, Kai; Cao, Shuai; Peng, Xiaoyu; Ducati, Caterina; Kumar, R Vasant; Cheetham, Anthony K

    2013-03-18

    This paper presents a novel method and rationale for utilizing carbonized MOFs for sulphur loading to fabricate cathode structures for lithium-sulphur batteries. Unique carbon materials with differing hierarchical pore structures were synthesized from four types of zinc-containing metal-organic frameworks (MOFs). It is found that cathode materials made from MOFs-derived carbons with higher mesopore (2-50 nm) volumes exhibit increased initial discharge capacities, whereas carbons with higher micropore (<2 nm) volumes lead to cathode materials with better cycle stability.

  6. Crystallographic studies of gas sorption in metal–organic frameworks

    PubMed Central

    Carrington, Elliot J.; Vitórica-Yrezábal, Iñigo J.; Brammer, Lee

    2014-01-01

    Metal–organic frameworks (MOFs) are a class of porous crystalline materials of modular design. One of the primary applications of these materials is in the adsorption and separation of gases, with potential benefits to the energy, transport and medical sectors. In situ crystallography of MOFs under gas atmospheres has enabled the behaviour of the frameworks under gas loading to be investigated and has established the precise location of adsorbed gas molecules in a significant number of MOFs. This article reviews progress in such crystallographic studies, which has taken place over the past decade, but has its origins in earlier studies of zeolites, clathrates etc. The review considers studies by single-crystal or powder diffraction using either X-rays or neutrons. Features of MOFs that strongly affect gas sorption behaviour are discussed in the context of in situ crystallographic studies, specifically framework flexibility, and the presence of (organic) functional groups and unsaturated (open) metal sites within pores that can form specific interactions with gas molecules. PMID:24892587

  7. Positronium emission spectra from self-assembled metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Crivelli, P.; Cooke, D.; Barbiellini, B.; Brown, B. L.; Feldblyum, J. I.; Guo, P.; Gidley, D. W.; Gerchow, L.; Matzger, A. J.

    2014-06-01

    Results of positronium (Ps) emission into vacuum from self-assembled metal-organic frameworks (MOFs) are presented and discussed in detail. Four different MOF crystals are considered, namely, MOF-5, IRMOF-8, ZnO4(FMA)3, and IRMOF-20. The measurements reveal that a fraction of the Ps is emitted into vacuum with a distinctly smaller energy than what one would expect for Ps localized in the MOFs' cells. Only calculations considering the Ps delocalized in a Bloch state can reproduce the measured Ps emission energy providing a robust demonstration of wave function delocalization in quantum mechanics. We show how the Bloch state population can be controlled by tuning the initial positron beam energy. Therefore, Ps in MOFs can be used both to simulate the dynamics of delocalized excitations in materials and to probe the MOFs for their advanced characterization.

  8. Topological Transformation of a Metal–Organic Framework Triggered by Ligand Exchange

    DOE PAGES

    Miera, Greco Gonzalez; Gomez, Antonio Bermejo; Chupas, Peter J.; ...

    2017-04-06

    Metal-organic frameworks (MOFs) have shown to be unsuspectedly dynamic. Here we describe the topological interconversion of a new framework in the bio-MOF-100 family (dia-c) into the known isomer (lcs) by doubling the pore volume, which occurs during post-synthesis modifications. During this transformation, re-assembling of the MOF building blocks into a completely different framework occurs, involving breaking/forming of metal-ligand bonds. MOF crystallinity and local structure are retained, as determined by powder X-ray diffraction (PXRD) and pair distribution function (PDF) analyses, respectively. We have exploited the inherent dynamism of bio-MOF-100 by coupling chemical decorations of the framework using solvent-assisted ligand exchange (SALE)more » to the topological change. Following this method and starting from the pristine dense dia-c phase, open lcs-bio-MOF-100 was prepared and functionalized in-situ with an iridium complex (IrL). Alternatively, the dia-c MOF could be modified with wide-ranging amounts of IrL up to ca. 50 mol%, as determined by solution 1H Nuclear Magnetic Resonance (NMR) spectroscopy, by tuning the concentration of the solutions used and with no evidence for isomer interconversion. The single-site nature of the iridium complexes within the MOFs was assessed by X-ray absorption spectroscopy (XAS) and PDF analyses. As a result, ligand exchanges occurred quantitatively at room temperature, with no need of excess of the iridium metallolinker.« less

  9. Topological Transformation of a Metal–Organic Framework Triggered by Ligand Exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miera, Greco Gonzalez; Gomez, Antonio Bermejo; Chupas, Peter J.

    Metal-organic frameworks (MOFs) have shown to be unsuspectedly dynamic. Here we describe the topological interconversion of a new framework in the bio-MOF-100 family (dia-c) into the known isomer (lcs) by doubling the pore volume, which occurs during post-synthesis modifications. During this transformation, re-assembling of the MOF building blocks into a completely different framework occurs, involving breaking/forming of metal-ligand bonds. MOF crystallinity and local structure are retained, as determined by powder X-ray diffraction (PXRD) and pair distribution function (PDF) analyses, respectively. We have exploited the inherent dynamism of bio-MOF-100 by coupling chemical decorations of the framework using solvent-assisted ligand exchange (SALE)more » to the topological change. Following this method and starting from the pristine dense dia-c phase, open lcs-bio-MOF-100 was prepared and functionalized in-situ with an iridium complex (IrL). Alternatively, the dia-c MOF could be modified with wide-ranging amounts of IrL up to ca. 50 mol%, as determined by solution 1H Nuclear Magnetic Resonance (NMR) spectroscopy, by tuning the concentration of the solutions used and with no evidence for isomer interconversion. The single-site nature of the iridium complexes within the MOFs was assessed by X-ray absorption spectroscopy (XAS) and PDF analyses. As a result, ligand exchanges occurred quantitatively at room temperature, with no need of excess of the iridium metallolinker.« less

  10. Photothermal Activation of Metal-Organic Frameworks Using a UV-Vis Light Source.

    PubMed

    Espín, Jordi; Garzón-Tovar, Luis; Carné-Sánchez, Arnau; Imaz, Inhar; Maspoch, Daniel

    2018-03-21

    Metal-organic frameworks (MOFs) usually require meticulous removal of the solvent molecules to unlock their potential porosity. Herein, we report a novel one-step method for activating MOFs based on the photothermal effect induced by directly irradiating them with a UV-vis lamp. The localized light-to-heat conversion produced in the MOF crystals upon irradiation enables a very fast solvent removal, thereby significantly reducing the activation time to as low as 30 min and suppressing the need for time-consuming solvent-exchange procedures and vacuum conditions. This approach is successful for a broad range of MOFs, including HKUST-1, UiO-66-NH 2 , ZIF-67, CPO-27-M (M = Zn, Ni, and Mg), Fe-MIL-101-NH 2 , and IRMOF-3, all of which exhibit absorption bands in the light emission range. In addition, we anticipate that this photothermal activation can also be used to activate covalent organic frameworks (COFs).

  11. Synthesis and Small Molecule Exchange Studies of a Magnesium Bisformate Metal-Organic Framework: An Experiment in Host-Guest Chemistry for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Rood, Jeffrey A.; Henderson, Kenneth W.

    2013-01-01

    concepts of host-guest chemistry and size exclusion in porous metal-organic frameworks (MOFs). The experiment has been successfully carried out in both introductory and advanced-level inorganic chemistry laboratories. Students synthesized the porous MOF, alpha-Mg[subscript…

  12. Light-enhanced acid catalysis over a metal-organic framework.

    PubMed

    Xu, Caiyun; Sun, Keju; Zhou, Yu-Xiao; Ma, Xiao; Jiang, Hai-Long

    2018-03-06

    A Brønsted acid-functionalized metal-organic framework (MOF), MIL-101-SO 3 H, was prepared for acid-engaged esterification reactions. Strikingly, for the first time, the MOF exhibits significantly light-enhanced activity and possesses excellent activity and recyclability, with even higher activity than H 2 SO 4 under light irradiation.

  13. Nanoporous metal organic frameworks as hybrid polymer-metal composites for drug delivery and biomedical applications.

    PubMed

    Beg, Sarwar; Rahman, Mahfoozur; Jain, Atul; Saini, Sumant; Midoux, Patrick; Pichon, Chantal; Ahmad, Farhan Jalees; Akhter, Sohail

    2017-04-01

    Metal organic frameworks (MOFs), porous hybrid polymer-metal composites at the nanoscale, are recent innovations in the field of chemistry; they are novel polymeric materials with diverse biomedical applications. MOFs are nanoporous materials, consisting of metal ions linked together by organic bridging ligands. The unique physical and chemical characteristics of MOFs have attracted wider attention from the scientific community, exploring their utility in the field of material science, biology, nanotechnology and drug delivery. The practical feasibility of MOFs is possible owing to their abilities for biodegradability, excellent porosity, high loading capacity, ease of surface modification, among others. In this regard, this review provides an account of various types of MOFs, their physiochemical characteristics and use in diverse disciplines of biomedical sciences - with special emphasis on drug delivery and theranostics. Moreover, this review also highlights the stability and toxicity issues of MOFs, along with their market potential for biomedical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Novel Applications for Oxalate-Phosphate-Amine Metal-Organic-Frameworks (OPA-MOFs): Can an Iron-Based OPA-MOF Be Used as Slow-Release Fertilizer?

    PubMed Central

    Anstoetz, Manuela; Rose, Terry J.; Clark, Malcolm W.; Yee, Lachlan H.; Raymond, Carolyn A.; Vancov, Tony

    2015-01-01

    A porous iron-based oxalate-phosphate-amine metal-organic framework material (OPA-MOF) was investigated as a microbially-induced slow-release nitrogen (N) and phosphorus (P) fertilizer. Seedling growth, grain yields, nutrient uptake of wheat plants, and soil dynamics in incubated soil, were investigated using OPA-MOF vs standard P (triple-superphosphate) and N (urea) fertilizers in an acidic Ferralsol at two application rates (equivalent 120 and 40 kg N ha-1). While urea hydrolysis in the OPA-MOF treatment was rapid, conversion of ammonium to nitrate was significantly inhibited compared to urea treatment. Reduced wheat growth in OPA-MOF treatments was not caused by N-deficiency, but by limited P-bioavailability. Two likely reasons were slow P-mobilisation from the OPA-MOF or rapid P-binding in the acid soil. P-uptake and yield in OPA-MOF treatments were significantly higher than in nil-P controls, but significantly lower than in conventionally-fertilised plants. OPA-MOF showed potential as enhanced efficiency N fertilizer. However, as P-bioavailability was insufficient to meet plant demands, further work should determine if P-availability may be enhanced in alkaline soils, or whether central ions other than Fe, forming the inorganic metal-P framework in the MOF, may act as a more effective P-source in acid soils. PMID:26633174

  15. Novel Applications for Oxalate-Phosphate-Amine Metal-Organic-Frameworks (OPA-MOFs): Can an Iron-Based OPA-MOF Be Used as Slow-Release Fertilizer?

    PubMed

    Anstoetz, Manuela; Rose, Terry J; Clark, Malcolm W; Yee, Lachlan H; Raymond, Carolyn A; Vancov, Tony

    2015-01-01

    A porous iron-based oxalate-phosphate-amine metal-organic framework material (OPA-MOF) was investigated as a microbially-induced slow-release nitrogen (N) and phosphorus (P) fertilizer. Seedling growth, grain yields, nutrient uptake of wheat plants, and soil dynamics in incubated soil, were investigated using OPA-MOF vs standard P (triple-superphosphate) and N (urea) fertilizers in an acidic Ferralsol at two application rates (equivalent 120 and 40 kg N ha(-1)). While urea hydrolysis in the OPA-MOF treatment was rapid, conversion of ammonium to nitrate was significantly inhibited compared to urea treatment. Reduced wheat growth in OPA-MOF treatments was not caused by N-deficiency, but by limited P-bioavailability. Two likely reasons were slow P-mobilisation from the OPA-MOF or rapid P-binding in the acid soil. P-uptake and yield in OPA-MOF treatments were significantly higher than in nil-P controls, but significantly lower than in conventionally-fertilised plants. OPA-MOF showed potential as enhanced efficiency N fertilizer. However, as P-bioavailability was insufficient to meet plant demands, further work should determine if P-availability may be enhanced in alkaline soils, or whether central ions other than Fe, forming the inorganic metal-P framework in the MOF, may act as a more effective P-source in acid soils.

  16. A supermolecular building approach for the design and construction of metal-organic frameworks.

    PubMed

    Guillerm, Vincent; Kim, Dongwook; Eubank, Jarrod F; Luebke, Ryan; Liu, Xinfang; Adil, Karim; Lah, Myoung Soo; Eddaoudi, Mohamed

    2014-08-21

    In this review, we describe two recently implemented conceptual approaches facilitating the design and deliberate construction of metal–organic frameworks (MOFs), namely supermolecular building block (SBB) and supermolecular building layer (SBL) approaches. Our main objective is to offer an appropriate means to assist/aid chemists and material designers alike to rationally construct desired functional MOF materials, made-to-order MOFs. We introduce the concept of net-coded building units (net-cBUs), where precise embedded geometrical information codes uniquely and matchlessly a selected net, as a compelling route for the rational design of MOFs. This concept is based on employing pre-selected 0-periodic metal–organic polyhedra or 2-periodic metal–organic layers, SBBs or SBLs respectively, as a pathway to access the requisite net-cBUs. In this review, inspired by our success with the original rht-MOF, we extrapolated our strategy to other known MOFs via their deconstruction into more elaborate building units (namely polyhedra or layers) to (i) elucidate the unique relationship between edge-transitive polyhedra or layers and minimal edge-transitive 3-periodic nets, and (ii) illustrate the potential of the SBB and SBL approaches as a rational pathway for the design and construction of 3-periodic MOFs. Using this design strategy, we have also identified several new hypothetical MOFs which are synthetically targetable.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapustin, Eugene A.; Lee, Seungkyu; Alshammari, Ahmad S.

    Despite numerous studies on chemical and thermal stability of metal-organic frameworks (MOFs), mechanical stability remains largely undeveloped. No strategy exists to control the mechanical deformation of MOFs under ultrahigh pressure, to date. We show that the mechanically unstable MOF-520 can be retrofitted by precise placement of a rigid 4,4'-biphenyldicarboxylate (BPDC) linker as a "girder" to afford a mechanically robust framework: MOF-520-BPDC. This retrofitting alters how the structure deforms under ultrahigh pressure and thus leads to a drastic enhancement of its mechanical robustness. While in the parent MOF-520 the pressure transmitting medium molecules diffuse into the pore and expand the structuremore » from the inside upon compression, the girder in the new retrofitted MOF-520-BPDC prevents the framework from expansion by linking two adjacent secondary building units together. As a result, the modified MOF is stable under hydrostatic compression in a diamond-anvil cell up to 5.5 gigapascal. The increased mechanical stability of MOF-520-BPDC prohibits the typical amorphization observed for MOFs in this pressure range. Direct correlation between the orientation of these girders within the framework and its linear strain was estimated, providing new insights for the design of MOFs with optimized mechanical properties.« less

  18. Adsorptive desulfurization with metal-organic frameworks: A density functional theory investigation

    NASA Astrophysics Data System (ADS)

    Chen, Zhiping; Ling, Lixia; Wang, Baojun; Fan, Huiling; Shangguan, Ju; Mi, Jie

    2016-11-01

    The contribution of each fragment of metal-organic frameworks (MOFs) to the adsorption of sulfur compounds were investigated using density functional theory (DFT). The involved sulfur compounds are dimethyl sulfide (CH3SCH3), ethyl mercaptan (CH3CH2SH) and hydrogen sulfide (H2S). MOFs with different organic ligands (NH2-BDC, BDC and NDC), metal centers structures (M, M-M and M3O) and metal ions (Zn, Cu and Fe) were used to study their effects on sulfur species adsorption. The results revealed that, MOFs with coordinatively unsaturated sites (CUS) have the strongest binding strength with sulfur compounds, MOFs with NH2-BDC substituent group ligand comes second, followed by that with saturated metal center, and the organic ligands without substituent group has the weakest adsorption strength. Moreover, it was also found that, among different metal ions (Fe, Zn and Cu), MOFs with unsaturated Fe has the strongest adsorption strength for sulfur compounds. These results are consistent with our previous experimental observations, and therefore provide insights on the better design of MOFs for desulfurization application.

  19. Water Adsorption in Porous Metal-Organic Frameworks and Related Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furukawa, H; Gandara, F; Zhang, YB

    2014-03-19

    Water adsorption in porous materials is important for many applications such as dehumidification, thermal batteries, and delivery of drinking water in remote areas. In this study, we have identified three criteria for achieving high performing porous materials for water adsorption. These criteria deal with condensation pressure of water in the pores, uptake capacity, and recyclability and water stability of the material. In search of an excellently performing porous material, we have studied and compared the water adsorption properties of 23 materials, 20 of which are metal organic frameworks (MOFs). Among the MOFs are 10 zirconium(IV) MOFs with a subset ofmore » these, MOF-801-SC (single crystal form), -802, -805, -806, -808, -812, and -841 reported for the first time. MOF-801-P (microcrystalline powder form) was reported earlier and studied here for its water adsorption properties. MOF-812 was only made and structurally characterized but not examined for water adsorption because it is a byproduct of MOF-841 synthesis. All the new zirconium MOFs are made from the Zr6O4(OH)(4)(-CO2)(n) secondary building units (n = 6, 8, 10, or 12) and variously shaped carboxyl organic linkers to make extended porous frameworks. The permanent porosity of all 23 materials was confirmed and their water adsorption measured to reveal that MOF-801-P and MOF-841 are the highest performers based on the three criteria stated above; they are water stable, do not lose capacity after five adsorption/desorption cycles, and are easily regenerated at room temperature. An X-ray single-crystal study and a powder neutron diffraction study reveal the position of the water adsorption sites in MOF-801 and highlight the importance of the intermolecular interaction between adsorbed water molecules within the pores.« less

  20. Water adsorption in porous metal-organic frameworks and related materials.

    PubMed

    Furukawa, Hiroyasu; Gándara, Felipe; Zhang, Yue-Biao; Jiang, Juncong; Queen, Wendy L; Hudson, Matthew R; Yaghi, Omar M

    2014-03-19

    Water adsorption in porous materials is important for many applications such as dehumidification, thermal batteries, and delivery of drinking water in remote areas. In this study, we have identified three criteria for achieving high performing porous materials for water adsorption. These criteria deal with condensation pressure of water in the pores, uptake capacity, and recyclability and water stability of the material. In search of an excellently performing porous material, we have studied and compared the water adsorption properties of 23 materials, 20 of which are metal-organic frameworks (MOFs). Among the MOFs are 10 zirconium(IV) MOFs with a subset of these, MOF-801-SC (single crystal form), -802, -805, -806, -808, -812, and -841 reported for the first time. MOF-801-P (microcrystalline powder form) was reported earlier and studied here for its water adsorption properties. MOF-812 was only made and structurally characterized but not examined for water adsorption because it is a byproduct of MOF-841 synthesis. All the new zirconium MOFs are made from the Zr6O4(OH)4(-CO2)n secondary building units (n = 6, 8, 10, or 12) and variously shaped carboxyl organic linkers to make extended porous frameworks. The permanent porosity of all 23 materials was confirmed and their water adsorption measured to reveal that MOF-801-P and MOF-841 are the highest performers based on the three criteria stated above; they are water stable, do not lose capacity after five adsorption/desorption cycles, and are easily regenerated at room temperature. An X-ray single-crystal study and a powder neutron diffraction study reveal the position of the water adsorption sites in MOF-801 and highlight the importance of the intermolecular interaction between adsorbed water molecules within the pores.

  1. Supercapacitors of nanocrystalline metal-organic frameworks.

    PubMed

    Choi, Kyung Min; Jeong, Hyung Mo; Park, Jung Hyo; Zhang, Yue-Biao; Kang, Jeung Ku; Yaghi, Omar M

    2014-07-22

    The high porosity of metal-organic frameworks (MOFs) has been used to achieve exceptional gas adsorptive properties but as yet remains largely unexplored for electrochemical energy storage devices. This study shows that MOFs made as nanocrystals (nMOFs) can be doped with graphene and successfully incorporated into devices to function as supercapacitors. A series of 23 different nMOFs with multiple organic functionalities and metal ions, differing pore sizes and shapes, discrete and infinite metal oxide backbones, large and small nanocrystals, and a variety of structure types have been prepared and examined. Several members of this series give high capacitance; in particular, a zirconium MOF exhibits exceptionally high capacitance. It has the stack and areal capacitance of 0.64 and 5.09 mF cm(-2), about 6 times that of the supercapacitors made from the benchmark commercial activated carbon materials and a performance that is preserved over at least 10000 charge/discharge cycles.

  2. Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gómez-Gualdrón, Diego A.; Colón, Yamil J.; Zhang, Xu

    Metal–organic frameworks (MOFs) are porous materials synthesized by combining inorganic and organic molecular building blocks into crystalline networks of distinct topologies. Due to the combinatorial possibilities, there are millions of possible MOF structures. Aiming to exploit their exceptional tunability, surface areas and pore volumes, researchers have investigated MOFs for storage of gaseous fuels such as hydrogen for over a decade, but a suitable MOF to store hydrogen at ambient conditions has not yet been found. Here, we sought to rapidly determine the viability of using MOFs for hydrogen storage at recently proposed, cryogenic operating conditions. We constructed a large andmore » structurally diverse set of 13 512 potential MOF structures based on 41 different topologies and used molecular simulation to determine MOF hydrogen deliverable capacities between 100 bar/77 K and 5 bar/160 K. The highest volumetric deliverable capacity was 57 g L-1 of MOF, which surpasses the 37 g L-1 of tank of the incumbent technology (compressing hydrogen to 700 bar at ambient temperature). To validate our in silico MOF construction method, we synthesized a new isoreticular family of MOFs (she-MOF-x series) based on the she topology, which is extremely rare among MOFs. To validate our hydrogen storage predictions, we activated and measured hydrogen adsorption on she-MOF-1 and NU-1103. The latter MOF showed outstanding stability and a good combination of volumetric and gravimetric performance, presenting 43.2 g L-1 of MOF and 12.6 wt% volumetric and gravimetric deliverable capacities, respectively.« less

  3. A Triazole-Containing Metal-Organic Framework as a Highly Effective and Substrate Size-Dependent Catalyst for CO2 Conversion.

    PubMed

    Li, Pei-Zhou; Wang, Xiao-Jun; Liu, Jia; Lim, Jie Sheng; Zou, Ruqiang; Zhao, Yanli

    2016-02-24

    A highly porous metal-organic framework (MOF) incorporating both exposed metal sites and nitrogen-rich triazole groups was successfully constructed via solvothermal assembly of a clicked octcarboxylate ligand and Cu(II) ions, which presents a high affinity toward CO2 molecules clearly verified by gas adsorption and Raman spectral detection. The constructed MOF featuring CO2-adsorbing property and exposed Lewis-acid metal sites could serve as an excellent catalyst for CO2-based chemical fixation. Catalytic activity of the MOF was confirmed by remarkably high efficiency on CO2 cycloaddition with small epoxides. When extending the substrates to larger ones, its activity showed a sharp decrease. These observations reveal that MOF-catalyzed CO2 cycloaddition of small substrates was carried out within the framework, while large ones cannot easily enter into the porous framework for catalytic reactions. Thus, the synthesized MOF exhibits high catalytic selectivity to different substrates on account of the confinement of the pore diameter. The high efficiency and size-dependent selectivity toward small epoxides on catalytic CO2 cycloaddition make this MOF a promising heterogeneous catalyst for carbon fixation.

  4. Bimetallic Metal-Organic Frameworks for Controlled Catalytic Graphitization of Nanoporous Carbons

    PubMed Central

    Tang, Jing; Salunkhe, Rahul R.; Zhang, Huabin; Malgras, Victor; Ahamad, Tansir; Alshehri, Saad M.; Kobayashi, Naoya; Tominaka, Satoshi; Ide, Yusuke; Kim, Jung Ho; Yamauchi, Yusuke

    2016-01-01

    Single metal-organic frameworks (MOFs), constructed from the coordination between one-fold metal ions and organic linkers, show limited functionalities when used as precursors for nanoporous carbon materials. Herein, we propose to merge the advantages of zinc and cobalt metals ions into one single MOF crystal (i.e., bimetallic MOFs). The organic linkers that coordinate with cobalt ions tend to yield graphitic carbons after carbonization, unlike those bridging with zinc ions, due to the controlled catalytic graphitization by the cobalt nanoparticles. In this work, we demonstrate a feasible method to achieve nanoporous carbon materials with tailored properties, including specific surface area, pore size distribution, degree of graphitization, and content of heteroatoms. The bimetallic-MOF-derived nanoporous carbon are systematically characterized, highlighting the importance of precisely controlling the properties of the carbon materials. This can be done by finely tuning the components in the bimetallic MOF precursors, and thus designing optimal carbon materials for specific applications. PMID:27471193

  5. Structural dynamics inside a functionalized metal–organic framework probed by ultrafast 2D IR spectroscopy

    DOE PAGES

    Nishida, Jun; Tamimi, Amr; Fei, Honghan; ...

    2014-12-15

    One key property of metal-organic frameworks (MOFs) are their structural elasticity. IHere we show that 2D IR spectroscopy with pulse-shaping techniques can probe the ultrafast structural fluctuations of MOFs. 2D IR data, obtained from a vibrational probe attached to the linkers of UiO-66 MOF in low concentration, revealed that the structural fluctuations have time constants of 7 and 670 ps with no solvent. Filling the MOF pores with dimethylformamide (DMF) slows the structural fluctuations by reducing the ability of the MOF to undergo deformations, and the dynamics of the DMF molecules are also greatly restricted. Finally, methodology advances were requiredmore » to remove the severe light scattering caused by the macroscopic-sized MOF particles, eliminate interfering oscillatory components from the 2D IR data, and address Förster vibrational excitation transfer.« less

  6. Synthesis, functionalization, and applications of metal-organic frameworks in biomedicine.

    PubMed

    Chen, Wei; Wu, Chunsheng

    2018-02-13

    Metal-organic frameworks (MOFs), also known as coordination polymers, have attracted extensive research interest in the past few decades due to their unique physical structures and potentially vast applications. In this review, we outline the recent progress in the synthesis, functionalization and applications of MOFs in biomedicine, mainly focusing on two promising, yet challenging areas, i.e., drug delivery and biosensing applications. A major challenge is the proper functionalization of MOFs with demanding properties suitable for biomedical applications. Extensive studies on MOFs in biomedicine have led to substantial progress in the control of key properties of MOFs such as toxicity, size and shape, and biological stability. Due to their flexible composition, pore size and easy functionalization properties, MOFs can be utilized as key components for the development of various functional systems, and their applications in drug delivery and biosensing are reviewed. Future trends and perspectives in these research areas are also outlined.

  7. The first chiral diene-based metal-organic frameworks for highly enantioselective carbon-carbon bond formation reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawano, Takahiro; Ji, Pengfei; McIsaac, Alexandra R.

    2016-02-01

    We have designed the first chiral diene-based metal–organic framework (MOF), E₂-MOF, and postsynthetically metalated E₂-MOF with Rh(I) complexes to afford highly active and enantioselective single-site solid catalysts for C–C bond formation reactions. Treatment of E₂-MOF with [RhCl(C₂H₄)₂]₂ led to a highly enantioselective catalyst for 1,4-additions of arylboronic acids to α,β-unsaturated ketones, whereas treatment of E₂-MOF with Rh(acac)(C₂H₄)₂ afforded a highly efficient catalyst for the asymmetric 1,2-additions of arylboronic acids to aldimines. Interestingly, E₂-MOF·Rh(acac) showed higher activity and enantioselectivity than the homogeneous control catalyst, likely due to the formation of a true single-site catalyst in the MOF. E₂-MOF·Rh(acac) was also successfullymore » recycled and reused at least seven times without loss of yield and enantioselectivity.« less

  8. Imparting biomolecules to a metal-organic framework material by controlled DNA tetrahedron encapsulation

    PubMed Central

    Jia, Yongmei; Wei, Benmei; Duan, Ruixue; Zhang, Ying; Wang, Boya; Hakeem, Abdul; Liu, Nannan; Ou, Xiaowen; Xu, Shaofang; Chen, Zhifei; Lou, Xiaoding; Xia, Fan

    2014-01-01

    Recently, the incorporation of biomolecules in Metal-organic frameworks (MOFs) attracts many attentions because of controlling the functions, properties and stability of trapped molecules. Although there are few reports on protein/MOFs composites and their applications, none of DNA/MOFs composite is reported, as far as we know. Here, we report a new composite material which is self-assembled from 3D DNA (guest) and pre-synthesized MOFs (host) by electrostatic interactions and hydrophilic interactions in a well-dispersed fashion. Its biophysical characterization is well analyzed by fluorescence spectroscopy, quartz crystal microbalance (QCM) and transmission electron microscopy (TEM). This new composite material keeps 3D DNA nanostructure more stable than only 3D DNA nanostructure in DI water at room temperature, and stores amounts of genetic information. It will make DNA as a guest for MOFs and MOFs become a new platform for the development of DNA nanotechnology. PMID:25090047

  9. An Ultrahydrophobic Fluorous Metal-Organic Framework Derived Recyclable Composite as a Promising Platform to Tackle Marine Oil Spills.

    PubMed

    Mukherjee, Soumya; Kansara, Ankit M; Saha, Debasis; Gonnade, Rajesh; Mullangi, Dinesh; Manna, Biplab; Desai, Aamod V; Thorat, Shridhar H; Singh, Puyam S; Mukherjee, Arnab; Ghosh, Sujit K

    2016-07-25

    Derived from a strategically chosen hexafluorinated dicarboxylate linker aimed at the designed synthesis of a superhydrophobic metal-organic framework (MOF), the fluorine-rich nanospace of a water-stable MOF (UHMOF-100) exhibits excellent water-repellent features. It registered the highest water contact angle (≈176°) in the MOF domain, marking the first example of an ultrahydrophobic MOF. Various experimental and theoretical studies reinforce its distinctive water-repellent characteristics, and the conjugation of superoleophilicity and unparalleled hydrophobicity of a MOF material has been coherently exploited to achieve real-time oil/water separation in recyclable membrane form, with significant absorption capacity performance. This is also the first report of an oil/water separating fluorinated ultrahydrophobic MOF-based membrane material, with potential promise for tackling marine oil spillages. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. An efficient synthesis strategy for metal-organic frameworks: Dry-gel synthesis of MOF-74 framework with high yield and improved performance

    DOE PAGES

    Das, Atanu Kumar; Vemuri, Rama Sesha; Kutnyakov, Igor; ...

    2016-06-16

    Here, vapor-assisted dry-gel synthesis of MOF-74 structure, specifically NiMOF-74 from its synthetic precursors, was conducted with high yield and improved performance showing promise for gas (CO 2) and water adsorption applications. Unlike conventional synthesis, which takes 72 h, this kinetic study showed that NiMOF-74 forms within 12 h under dry-gel conditions with similar performance characteristics and exhibits the best performance characteristics after 48 h of heating.

  11. Crystal conversion between metal-organic frameworks with different crystal topologies for efficient crystal design on two-dimensional substrates

    NASA Astrophysics Data System (ADS)

    Tsuruoka, Takaaki; Inoue, Kohei; Miyanaga, Ayumi; Tobiishi, Kaho; Ohhashi, Takashi; Hata, Manami; Takashima, Yohei; Akamatsu, Kensuke

    2018-04-01

    Crystal conversion of metal-organic frameworks (MOFs) between different crystal topologies on a polymer substrate has been successfully achieved by localized dissolution of MOF crystals followed by a rapid self-assembly of framework components. Upon addition of the desired organic linkers to the reaction system containing MOF crystals on the substrate, reversible crystal conversion between the [Cu2(btc)3]n and [Cu2(ndc)2(dabco)]n frameworks (btc = 1,3,5-benzene tricarboxylate, ndc = 1,4-naphthalene dicarboxylate, dabco = 1,4-diazabicyclo[2.2.2]octane) could be routinely achieved in high yields. Most surprisingly, in the case of conversion from the [Cu2(ndc)2(dabco)]n to [Cu2(btc)3]n frameworks, the [Cu2(btc)3]n crystals with unique shapes (cuboctahedron and truncated cube) could be prepared using butanol as a reaction medium.

  12. A New Class of Metal-Cyclam-Based Zirconium Metal–Organic Frameworks for CO 2 Adsorption and Chemical Fixation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jie; Usov, Pavel M.; Xu, Wenqian

    Metal–organic frameworks (MOFs) have shown great promise in catalysis, mainly due to their high content of active centers, large internal surface areas, tunable pore size, and versatile chemical functionalities. However, it is a challenge to rationally design and construct MOFs that can serve as highly stable and reusable heterogeneous catalysts. Here two new robust 3D porous metal-cyclam-based zirconium MOFs, denoted VPI-100 (Cu) and VPI-100 (Ni), have been prepared by a modulated synthetic strategy. The frameworks are assembled by eight-connected Zr 6 clusters and metallocyclams as organic linkers. Importantly, the cyclam core has accessible axial coordination sites for guest interactions andmore » maintains the electronic properties exhibited by the parent cyclam ring. The VPI-100 MOFs exhibit excellent chemical stability in various organic and aqueous solvents over a wide pH range and show high CO 2 uptake capacity (up to ~9.83 wt% adsorption at 273 K under 1 atm). Moreover, VPI-100 MOFs demonstrate some of the highest reported catalytic activity values (turnover frequency and conversion efficiency) among Zr-based MOFs for the chemical fixation of CO 2 with epoxides, including sterically hindered epoxides. Thus, the MOFs, which bear dual catalytic sites (Zr and Cu/Ni), enable chemistry not possible with the cyclam ligand under the same conditions and can be used as recoverable stable heterogeneous catalysts without losing performance.« less

  13. A New Class of Metal-Cyclam-Based Zirconium Metal–Organic Frameworks for CO 2 Adsorption and Chemical Fixation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jie; Usov, Pavel M.; Xu, Wenqian

    Metal-organic frameworks (MOFs) have shown great promise in catalysis, mainly due to their high content of active centers, large internal surface areas, tunable pore size, and versatile chemical functionalities. However, it is a challenge to rationally design and construct MOFs that can serve as highly stable and reusable heterogeneous catalysts. Here two new robust 3D porous metal-cyclam-based zirconium MOFs, denoted VPI-100 (Cu) and VPI-100 (Ni), have been prepared by a modulated synthetic strategy. The frameworks are assembled by eight-connected Zr-6 clusters and metallocyclams as organic linkers. Importantly, the cyclam core has accessible axial coordination sites for guest interactions and maintainsmore » the electronic properties exhibited by the parent cyclam ring. The VPI-100 MOFs exhibit excellent chemical stability in various organic and aqueous solvents over a wide pH range and show high CO2 uptake capacity (up to similar to 9.83 wt% adsorption at 273 K under 1 atm). Moreover, VPI-100 MOFs demonstrate some of the highest reported catalytic activity values (turnover frequency and conversion efficiency) among Zr-based MOFs for the chemical fixation of CO2 with epoxides, including sterically hindered epoxides. The MOFs, which bear dual catalytic sites (Zr and Cu/Ni), enable chemistry not possible with the cyclam ligand under the same conditions and can be used as recoverable stable heterogeneous catalysts without losing performance.« less

  14. A New Class of Metal-Cyclam-Based Zirconium Metal–Organic Frameworks for CO 2 Adsorption and Chemical Fixation

    DOE PAGES

    Zhu, Jie; Usov, Pavel M.; Xu, Wenqian; ...

    2017-12-22

    Metal–organic frameworks (MOFs) have shown great promise in catalysis, mainly due to their high content of active centers, large internal surface areas, tunable pore size, and versatile chemical functionalities. However, it is a challenge to rationally design and construct MOFs that can serve as highly stable and reusable heterogeneous catalysts. Here two new robust 3D porous metal-cyclam-based zirconium MOFs, denoted VPI-100 (Cu) and VPI-100 (Ni), have been prepared by a modulated synthetic strategy. The frameworks are assembled by eight-connected Zr 6 clusters and metallocyclams as organic linkers. Importantly, the cyclam core has accessible axial coordination sites for guest interactions andmore » maintains the electronic properties exhibited by the parent cyclam ring. The VPI-100 MOFs exhibit excellent chemical stability in various organic and aqueous solvents over a wide pH range and show high CO 2 uptake capacity (up to ~9.83 wt% adsorption at 273 K under 1 atm). Moreover, VPI-100 MOFs demonstrate some of the highest reported catalytic activity values (turnover frequency and conversion efficiency) among Zr-based MOFs for the chemical fixation of CO 2 with epoxides, including sterically hindered epoxides. Thus, the MOFs, which bear dual catalytic sites (Zr and Cu/Ni), enable chemistry not possible with the cyclam ligand under the same conditions and can be used as recoverable stable heterogeneous catalysts without losing performance.« less

  15. Metal-Organic Framework Thin Film Coated Optical Fiber Sensors: A Novel Waveguide-Based Chemical Sensing Platform.

    PubMed

    Kim, Ki-Joong; Lu, Ping; Culp, Jeffrey T; Ohodnicki, Paul R

    2018-02-23

    Integration of optical fiber with sensitive thin films offers great potential for the realization of novel chemical sensing platforms. In this study, we present a simple design strategy and high performance of nanoporous metal-organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework. Thin and compact MOF films can be uniformly formed and tightly bound on the surface of etched optical fiber through a simple solution method which is critical for manufacturability of MOF-based sensor devices. The resulting sensors show high sensitivity/selectivity to CO 2 gas relative to other small gases (H 2 , N 2 , O 2 , and CO) with rapid (

  16. Screening metal-organic frameworks for selective noble gas adsorption in air: effect of pore size and framework topology.

    PubMed

    Parkes, Marie V; Staiger, Chad L; Perry, John J; Allendorf, Mark D; Greathouse, Jeffery A

    2013-06-21

    The adsorption of noble gases and nitrogen by sixteen metal-organic frameworks (MOFs) was investigated using grand canonical Monte Carlo simulation. The MOFs were chosen to represent a variety of net topologies, pore dimensions, and metal centers. Three commercially available MOFs (HKUST-1, AlMIL-53, and ZIF-8) and PCN-14 were also included for comparison. Experimental adsorption isotherms, obtained from volumetric and gravimetric methods, were used to compare krypton, argon, and nitrogen uptake with the simulation results. Simulated trends in gas adsorption and predicted selectivities among the commercially available MOFs are in good agreement with experiment. In the low pressure regime, the expected trend of increasing adsorption with increasing noble gas polarizabilty is seen. For each noble gas, low pressure adsorption correlates with several MOF properties, including free volume, topology, and metal center. Additionally, a strong correlation exists between the Henry's constant and the isosteric heat of adsorption for all gases and MOFs considered. Finally, we note that the simulated and experimental gas selectivities demonstrated by this small set of MOFs show improved performance compared to similar values reported for zeolites.

  17. Ionic Liquid/Metal-Organic Framework Composites: From Synthesis to Applications.

    PubMed

    Kinik, Fatma Pelin; Uzun, Alper; Keskin, Seda

    2017-07-21

    Metal-organic frameworks (MOFs) have been widely studied for different applications owing to their fascinating properties such as large surface areas, high porosities, tunable pore sizes, and acceptable thermal and chemical stabilities. Ionic liquids (ILs) have been recently incorporated into the pores of MOFs as cavity occupants to change the physicochemical properties and gas affinities of MOFs. Several recent studies have shown that IL/MOF composites show superior performances compared with pristine MOFs in various fields, such as gas storage, adsorption and membrane-based gas separation, catalysis, and ionic conductivity. In this review, we address the recent advances in syntheses of IL/MOF composites and provide a comprehensive overview of their applications. Opportunities and challenges of using IL/MOF composites in many applications are reviewed and the requirements for the utilization of these composite materials in real industrial processes are discussed to define the future directions in this field. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Electrocatalytic Metal-Organic Frameworks for Energy Applications.

    PubMed

    Downes, Courtney A; Marinescu, Smaranda C

    2017-11-23

    With the global energy demand expected to increase drastically over the next several decades, the development of a sustainable energy system to meet this increase is paramount. Renewable energy sources can be coupled with electrochemical conversion processes to store energy in chemical bonds. To promote these difficult transformations, electrocatalysts that operate at high conversion rates and efficiency are required. Metal-organic frameworks (MOFs) have emerged as a promising class of materials; however, the insulating nature of MOFs has limited their application as electrocatalysts. The recent development of conductive MOFs has led to several electrocatalytic MOFs that display activity comparable to that of the best-performing heterogeneous catalysts. Although many electrocatalytic MOFs exhibit low activity and stability, the few successful examples highlight the possibility of MOF electrocatalysts as replacements for noble-metal-based catalysts in commercial energy-converting devices. We review herein the use of pristine MOFs as electrocatalysts to facilitate important energy-related reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges.

    PubMed

    Wu, Hao Bin; Lou, Xiong Wen David

    2017-12-01

    In addition to their conventional uses, metal-organic frameworks (MOFs) have recently emerged as an interesting class of functional materials and precursors of inorganic materials for electrochemical energy storage and conversion technologies. This class of MOF-related materials can be broadly categorized into two groups: pristine MOF-based materials and MOF-derived functional materials. Although the diversity in composition and structure leads to diverse and tunable functionalities of MOF-based materials, it appears that much more effort in this emerging field is devoted to synthesizing MOF-derived materials for electrochemical applications. This is in view of two main drawbacks of MOF-based materials: the low conductivity nature and the stability issue. On the contrary, MOF-derived synthesis strategies have substantial advantages in controlling the composition and structure of MOF-derived materials. From this perspective, we review some emerging applications of both groups of MOF-related materials as electrode materials for rechargeable batteries and electrochemical capacitors, efficient electrocatalysts, and even electrolytes for electrochemical devices. By highlighting the advantages and challenges of each class of materials for different applications, we hope to shed some light on the future development of this highly exciting area.

  20. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges

    PubMed Central

    Wu, Hao Bin; Lou, Xiong Wen (David)

    2017-01-01

    In addition to their conventional uses, metal-organic frameworks (MOFs) have recently emerged as an interesting class of functional materials and precursors of inorganic materials for electrochemical energy storage and conversion technologies. This class of MOF-related materials can be broadly categorized into two groups: pristine MOF-based materials and MOF-derived functional materials. Although the diversity in composition and structure leads to diverse and tunable functionalities of MOF-based materials, it appears that much more effort in this emerging field is devoted to synthesizing MOF-derived materials for electrochemical applications. This is in view of two main drawbacks of MOF-based materials: the low conductivity nature and the stability issue. On the contrary, MOF-derived synthesis strategies have substantial advantages in controlling the composition and structure of MOF-derived materials. From this perspective, we review some emerging applications of both groups of MOF-related materials as electrode materials for rechargeable batteries and electrochemical capacitors, efficient electrocatalysts, and even electrolytes for electrochemical devices. By highlighting the advantages and challenges of each class of materials for different applications, we hope to shed some light on the future development of this highly exciting area. PMID:29214220

  1. Electrochemistry and electrochemiluminescence from a redox-active metal-organic framework.

    PubMed

    Xu, Yang; Yin, Xue-Bo; He, Xi-Wen; Zhang, Yu-Kui

    2015-06-15

    The marriage of metal-organic frameworks (MOFs) and electrochemiluminescence (ECL) can combine their merits together. Designing ECL-active MOF with a high electron transfer capacity and high stability is critical for ECL emission. Here we reported the ECL from a redox-active MOF prepared from {Ru[4,4'-(HO2C)2-bpy]2bpy}(2+) and Zn(2+); a property of MOFs has not been reported previously. The MOF structure is independent of its charge and is therefore stable electrochemically. The redox-activity and well-ordered porous structure of the MOF were confirmed by its electrochemical properties and ECL emission. The high ECL emission indicated the ease of electron transfer between the MOF and co-reactants. Furthermore, the MOF exhibited permselectivity, charge selectivity, and catalytic selectivity along with a stable and concentration-dependent ECL emission toward co-reactants. ECL mechanism was proposed based on the results. The detection and recovery of cocaine in the serum sample was used to validate the feasibility of MOF- based ECL system. The information obtained in this study provides a better understanding of the redox properties of MOFs and their potential electrochemical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Pickering emulsions stabilized by a metal-organic framework (MOF) and graphene oxide (GO) for producing MOF/GO composites.

    PubMed

    Zhang, Fanyu; Liu, Lifei; Tan, Xiuniang; Sang, Xinxin; Zhang, Jianling; Liu, Chengcheng; Zhang, Bingxing; Han, Buxing; Yang, Guanying

    2017-10-18

    Herein we demonstrate the formation of a novel kind of Pickering emulsion that is stabilized by a Zr-based metal-organic framework (Zr-MOF) and graphene oxide (GO). It was found that the Zr-BDC-NO 2 and GO solids assembling at the oil/water interface can effectively stabilize the oil droplets that are dispersed in the water phase. Such a Pickering emulsion offers a facile route for fabricating Zr-MOF/GO composite materials. After removing water and oil by freeze drying from Pickering emulsions, the Zr-MOF/GO composites were obtained and their morphologies, structures and interaction properties were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectrometry, respectively. The influences of the concentration of GO and Zr-MOF on the emulsion microstructures and the properties of the MOF/GO composites were studied. Based on experimental results, the mechanisms for the emulsion formation by Zr-MOF and GO and the as-synthesized superstructures of the Zr-MOF/GO composite were proposed. It is expected that this facile and tunable route can be applied to the synthesis of different kinds of MOF-based or GO-based composite materials.

  3. Crystal Engineering of an nbo Topology Metal-Organic Framework for Chemical Fixation of CO₂ under Ambient Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Wen-Yang; Chen, Yao; Niu, Youhong

    Crystal engineering of the nbo metal–organic framework (MOF) platform MOF-505 with a custom-designed azamacrocycle ligand (1,4,7,10-tetrazazcyclododecane-N,N',N'',N'''-tetra-p-methylbenzoic acid) leads to a high density of well-oriented Lewis active sites within the cuboctahedral cage in MMCF-2, [Cu₂(Cu-tactmb)(H₂O)₃(NO₃)₂]. This MOF demonstrates high catalytic activity for the chemical fixation of CO₂ into cyclic carbonates at room temperature under 1 atm pressure.

  4. Dual-Function Metal-Organic Framework as a Versatile Catalyst for Detoxifying Chemical Warfare Agent Simulants.

    PubMed

    Liu, Yangyang; Moon, Su-Young; Hupp, Joseph T; Farha, Omar K

    2015-12-22

    The nanocrystals of a porphyrin-based zirconium(IV) metal-organic framework (MOF) are used as a dual-function catalyst for the simultaneous detoxification of two chemical warfare agent simulants at room temperature. Simulants of nerve agent (such as GD, VX) and mustard gas, dimethyl 4-nitrophenyl phosphate and 2-chloroethyl ethyl sulfide, have been hydrolyzed and oxidized, respectively, to nontoxic products via a pair of pathways catalyzed by the same MOF. Phosphotriesterase-like activity of the Zr6-containing node combined with photoactivity of the porphyrin linker gives rise to a versatile MOF catalyst. In addition, bringing the MOF crystals down to the nanoregime leads to acceleration of the catalysis.

  5. Dubinin-Astakhov model for acetylene adsorption on metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Cheng, Peifu; Hu, Yun Hang

    2016-07-01

    Acetylene (C2H2) is explosive at a pressure above 29 psi, causing a safety issue for its storage and applications. C2H2 adsorption on metal-organic frameworks (MOFs) has been explored to solve the issue. However, a suitable isotherm equation for C2H2 adsorption on various MOFs has not been found. In this paper, it was demonstrated that Dubinin-Astakhov equation can be exploited as a general isotherm model to depict C2H2 adsorption on MOF-5, ZIF-8, HKUST-1, and MIL-53. In contrast, commonly used Langmuir and BET models exhibited their inapplicability for C2H2 adsorption on those MOFs.

  6. A rare 3D chloro-laced Mn(II) metal-organic framework to show sensitive probing effect to Hg2+

    NASA Astrophysics Data System (ADS)

    Ming, Mei; Bai, Na

    2017-10-01

    Two 3D Mn(II) metal-organic frameworks (MOFs), [Mn(L-Cl)(DMA)](H2O) (1) and Mn(L-CH3)(DMA) (2) (H2L-Cl = 2,2'-dichloro-4,4'-azodibenzoic acid, H2L-CH3 = 2,2'-dimethyl-4,4'-azodibenzoic acid) were synthesized under similar solvothermal condition. Both MOFs crystallize in the orthorhombic system and show the 3D rod-packing networks in 2-fold interpenetrated pattern with sra topology. Due to the different substituent laces of MOFs (-Cl vs -CH3), only MOF 1 shows highly selective and sensitive fluorescence sensing effect for detecting Hg2+ ion.

  7. Versatile Surface Functionalization of Metal-Organic Frameworks through Direct Metal Coordination with a Phenolic Lipid Enables Diverse Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Wei; Xiang, Guolei; Shang, Jin

    Here, a novel strategy for the versatile functionalization of the external surface of metal-organic frameworks (MOFs) has been developed based on the direct coordination of a phenolic-inspired lipid molecule DPGG (1,2-dipalmitoyl-sn-glycero-3-galloyl) with metal nodes/sites surrounding MOF surface. X-ray diffraction and Argon sorption analysis prove that the modified MOF particles retain their structural integrity and porosity after surface modification. Density functional theory calculations reveal that strong chelation strength between the metal sites and the galloyl head group of DPGG is the basic prerequisite for successful coating. Due to the pH-responsive nature of metal-phenol complexation, the modification process is reversible by simplemore » washing in weak acidic water, showing an excellent regeneration ability for water-stable MOFs. Moreover, the colloidal stability of the modified MOFs in the nonpolar solvent allows them to be further organized into 2 dimensional MOF or MOF/polymer monolayers by evaporation-induced interfacial assembly conducted on an air/water interface. Lastly, the easy fusion of a second functional layer onto DPGG-modified MOF cores, enabled a series of MOF-based functional nanoarchitectures, such as MOFs encapsulated within hybrid supported lipid bilayers (so-called protocells), polyhedral core-shell structures, hybrid lipid-modified-plasmonic vesicles and multicomponent supraparticles with target functionalities, to be generated. for a wide range of applications.« less

  8. Bimetallic Metal-Organic Frameworks: Probing the Lewis Acid Site for CO2 Conversion.

    PubMed

    Zou, Ruyi; Li, Pei-Zhou; Zeng, Yong-Fei; Liu, Jia; Zhao, Ruo; Duan, Hui; Luo, Zhong; Wang, Jin-Gui; Zou, Ruqiang; Zhao, Yanli

    2016-05-01

    A highly porous metal-organic framework (MOF) incorporating two kinds of second building units (SBUs), i.e., dimeric paddlewheel (Zn2 (COO)4 ) and tetrameric (Zn4 (O)(CO2 )6 ), is successfully assembled by the reaction of a tricarboxylate ligand with Zn(II) ion. Subsequently, single-crystal-to-single-crystal metal cation exchange using the constructed MOF is investigated, and the results show that Cu(II) and Co(II) ions can selectively be introduced into the MOF without compromising the crystallinity of the pristine framework. This metal cation-exchangeable MOF provides a useful platform for studying the metal effect on both gas adsorption and catalytic activity of the resulted MOFs. While the gas adsorption experiments reveal that Cu(II) and Co(II) exchanged samples exhibit comparable CO2 adsorption capability to the pristine Zn(II) -based MOF under the same conditions, catalytic investigations for the cycloaddition reaction of CO2 with epoxides into related carbonates demonstrate that Zn(II) -based MOF affords the highest catalytic activity as compared with Cu(II) and Co(II) exchanged ones. Molecular dynamic simulations are carried out to further confirm the catalytic performance of these constructed MOFs on chemical fixation of CO2 to carbonates. This research sheds light on how metal exchange can influence intrinsic properties of MOFs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Formation of bimetallic metal-organic framework nanosheets and their derived porous nickel-cobalt sulfides for supercapacitors.

    PubMed

    Chen, Chen; Wu, Meng-Ke; Tao, Kai; Zhou, Jiao-Jiao; Li, Yan-Li; Han, Xue; Han, Lei

    2018-04-24

    Metal-organic frameworks (MOFs) show great advantages as new kinds of active materials for energy storage. In this study, bimetallic metal-organic frameworks (Ni/Co-MOFs) with nanosheet-assembled flower-like structures were synthesized by etching Ni-MOF microspheres in a cobalt nitrate solution. It can be clearly observed that the amount of Co(NO3)2 and etching time play crucial roles in the formation of Ni/Co-MOF nanosheets. The Ni/Co-MOFs were used as electrode materials for supercapacitors and the optimized Ni/Co-MOF-5 exhibited the highest capacitances of 1220.2 F g-1 and 986.7 F g-1 at current densities of 1 A g-1 and 10 A g-1, respectively. Ni/Co-MOF-5 was further sulfurized, and the derived Ni-Co-S electrode showed a higher specific capacitance of 1377.5 F g-1 at a current density of 1 A g-1 and a retention of 89.4% when the current density was increased to 10 A g-1, indicating superior rate capability. Furthermore, Ni/Co-MOF-5 and Ni-Co-S showed excellent cycling stability, i.e. about 87.8% and 93.7% of initial capacitance can be still maintained after 3000 cycles of charge-discharge. More interestingly, the Ni/Co-MOF-5//AC ASC shows an energy density of 30.9 W h kg-1 at a power density of 1132.8 W kg-1, and the Ni-Co-S//AC ASC displays a high energy density of 36.9 W h kg-1 at a power density of 1066.42 W kg-1. These results demonstrate that the as-synthesized bimetallic Ni/Co-MOF nanosheets and their derived nickel-cobalt sulfides have promising applications in electrochemical supercapacitors.

  10. Tunable Impedance Spectroscopy Sensors via Selective Nanoporous Materials.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nenoff, Tina M.; Small, Leo J

    Impedance spectroscopy was leveraged to directly detect the sorption of I 2 by selective adsorption into nanoporous metal organic frameworks (MOF). Films of three different types of MOF frameworks, respectively, were drop cast onto platinum interdigitated electrodes, dried, and exposed to gaseous I 2 at 25, 40, or 70 C. The MOF frameworks varied in topology from small pores (equivalent to I 2 diameter) to large pore frameworks. The combination of the chemistry of the framework and pore size dictated quantity and kinetics of I 2 adsorption. Air, argon, methanol, and water were found to produce minimal changes in ZIF-8more » impedance. Independent of MOF framework characteristics, all resultant sensors showed high response to I 2 in air. As an example of sensor output, I 2 was readily detected at 25 C in air within 720 s of exposure, using an un-optimized sensor geometry with a small pored MOF. Further optimization of sensor geometry, decreasing MOF film thicknesses and maximizing sensor capacitance, will enable faster detection of trace I 2 .« less

  11. Photocatalytic CO2 Reduction to Formate Using a Mn(I) Molecular Catalyst in a Robust Metal-Organic Framework.

    PubMed

    Fei, Honghan; Sampson, Matthew D; Lee, Yeob; Kubiak, Clifford P; Cohen, Seth M

    2015-07-20

    A manganese bipyridine complex, Mn(bpydc)(CO)3Br (bpydc = 5,5'-dicarboxylate-2,2'-bipyridine), has been incorporated into a highly robust Zr(IV)-based metal-organic framework (MOF) for use as a CO2 reduction photocatalyst. In conjunction with [Ru(dmb)3](2+) (dmb = 4,4'-dimethyl-2,2'-bipyridine) as a photosensitizer and 1-benzyl-1,4-dihydronicotinamide (BNAH) as a sacrificial reductant, Mn-incorporated MOFs efficiently catalyze CO2 reduction to formate in DMF/triethanolamine under visible-light irradiation. The photochemical performance of the Mn-incorporated MOF reached a turnover number of approximately 110 in 18 h, exceeding that of the homogeneous reference systems. The increased activity of the MOF-incorporated Mn catalyst is ascribed to the struts of the framework providing isolated active sites, which stabilize the catalyst and inhibit dimerization of the singly reduced Mn complex. The MOF catalyst largely retained its crystallinity throughout prolonged catalysis and was successfully reused over several catalytic runs.

  12. A Multi-responsive Regenerable Europium-Organic Framework Luminescent Sensor for Fe3+ , CrVI Anions, and Picric Acid.

    PubMed

    Liu, Wei; Huang, Xin; Xu, Cong; Chen, Chunyang; Yang, Lizi; Dou, Wei; Chen, Wanmin; Yang, Huan; Liu, Weisheng

    2016-12-23

    A novel luminescent microporous lanthanide metal-organic framework (Ln-MOF) based on a urea-containing ligand has been successfully assembled. Structural analysis revealed that the framework features two types of 1D channels, with urea N-H bonds projecting into the pores. Luminescence studies have revealed that the Ln-MOF exhibits high sensitivity, good selectivity, and a fast luminescence quenching response towards Fe 3+ , Cr VI anions, and picric acid. In particular, in the detection of Cr 2 O 7 2- and picric acid, the Ln-MOF can be simply and quickly regenerated, thus exhibiting excellent recyclability. To the best of our knowledge, this is the first example of a multi-responsive luminescent Ln-MOF sensor for Fe 3+ , Cr VI anions, and picric acid based on a urea derivative. This Ln-MOF may potentially be used as a multi-responsive regenerable luminescent sensor for the quantitative detection of toxic and harmful substances. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synthesis of metal-organic framework films by pore diffusion method

    NASA Astrophysics Data System (ADS)

    Murayama, Naohiro; Nishimura, Yuki; Kajiro, Hiroshi; Kishida, Satoru; Kinoshita, Kentaro; Tottori Univ Team; Nippon Steel; Sumitomo Metal Co. Collaboration; Tottori Integrated Frontier Resaerch Center (Tifrec) Collaboration; Tottori University Electronic Display Resaerch Center (Tedrec) Collaboration

    Metal-organic frameworks (MOFs) presents high controllability in designing the nano-scale pore, and this enable molecular storages, catalysts, gas sensors, gas separation membranes, and electronic devices for next-generation. Therefore, a simple method for film synthesis of MOFs compared with conventional methods [1] is strongly required. In this paper, we provide pore diffusion method, in which a substrate containing constituent metals of MOF is inserted in solution that includes only linker molecules of MOF. As a result, 2D growth of MOF was effectively enhanced, and the formation of flat and dense MOF films was attained. The growth time, t, dependence of film thickness, d, can be expressed by the relation of d = Aln(t + 1) + B, where A and B are constants. It means that ionized coppers diffuse through the pores of MOFs and the synthesis reaction proceeds at the MOF/solvent interface. We demonstrated the fabrication of a HKUST-1/Cu-TPA hetero structure by synthesizing a Cu-TPA film continuously after the growth of a HKUST-1 film on the CuOx substrate.

  14. Improvement in Thermal Stability of Sucralose by γ-Cyclodextrin Metal-Organic Frameworks.

    PubMed

    Lv, Nana; Guo, Tao; Liu, Botao; Wang, Caifen; Singh, Vikaramjeet; Xu, Xiaonan; Li, Xue; Chen, Dawei; Gref, Ruxandra; Zhang, Jiwen

    2017-02-01

    To explain thermal stability enhancement of an organic compound, sucralose, with cyclodextrin based metal organic frameworks. Micron and nanometer sized basic CD-MOFs were successfully synthesized by a modified vapor diffusion method and further neutralized with glacial acetic acid. Sucralose was loaded into CD-MOFs by incubating CD-MOFs with sucralose ethanol solutions. Thermal stabilities of sucralose-loaded basic CD-MOFs and neutralized CD-MOFs were investigated using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and high performance liquid chromatography with evaporative light-scattering detection (HPLC-ELSD). Scanning electron microscopy (SEM) and powder X-ray diffraction (PXRD) results showed that basic CD-MOFs were cubic crystals with smooth surface and uniform sizes. The basic CD-MOFs maintained their crystalline structure after neutralization. HPLC-ELSD analysis indicated that the CD-MOF crystal size had significant influence on sucralose loading (SL). The maximal SL of micron CD-MOFs (CD-MOF-Micro) was 17.5 ± 0.9% (w/w). In contrast, 27.9 ± 1.4% of sucralose could be loaded in nanometer-sized basic CD-MOFs (CD-MOF-Nano). Molecular docking modeling showed that sucralose molecules preferentially located inside the cavities of γ-CDs pairs in CD-MOFs. Raw sucralose decomposed fast at 90°C, with 86.2 ± 0.2% of the compound degraded within only 1 h. Remarkably, sucralose stability was dramatically improved after loading in neutralized CD-MOFs, with only 13.7 ± 0.7% degradation at 90°C within 24 h. CD-MOFs efficiently incorporated sucralose and maintained its integrity upon heating at elevated temperatures.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgopolova, Ekaterina A.; Brandt, Amy J.; Ejegbavwo, Otega A.

    The development of porous well-defined hybrid materials (e.g., metal-organic frameworks or MOFs) will add a new dimension to a wide number of applications ranging from supercapacitors and electrodes to 'smart' membranes and thermoelectrics. From this perspective, the understanding and tailoring of the electronic properties of MOFs are key fundamental challenges that could unlock the full potential of these materials. In this work, we focused on the fundamental insights responsible for the electronic properties of three distinct classes of bimetallic systems, M x-yM' y-MOFs, M xM' y- MOFs, and M x(ligand-M' y)-MOFs, in which the second metal (M') incorporation occurs throughmore » (i) metal (M) replacement in the framework nodes (type I), (ii) metal node extension (type II), and (iii) metal coordination to the organic ligand (type III), respectively. We employed microwave conductivity, X-ray photoelectron spectroscopy, diffuse reflectance spectroscopy, powder X-ray diffraction, inductively coupled plasma atomic emission spectroscopy, pressed-pellet conductivity, and theoretical modeling to shed light on the key factors responsible for the tunability of MOF electronic structures. Experimental prescreening of MOFs was performed based on changes in the density of electronic states near the Fermi edge, which was used as a starting point for further selection of suitable MOFs. As a result, we demonstrated that the tailoring of MOF electronic properties could be performed as a function of metal node engineering, framework topology, and/or the presence of unsaturated metal sites while preserving framework porosity and structural integrity. Finally, these studies unveil the possible pathways for transforming the electronic properties of MOFs from insulating to semiconducting, as well as provide a blueprint for the development of hybrid porous materials with desirable electronic structures.« less

  16. Facile xenon capture and release at room temperature using a metal-organic framework: a comparison with activated charcoal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thallapally, Praveen K.; Grate, Jay W.; Motkuri, Radha K.

    2012-01-11

    Two well known Metal organic frameworks (MOF-5, NiDOBDC) were synthesized and studied for facile xenon capture and separation. Our results indicate the NiDOBDC adsorbs significantly more xenon than MOF-5, releases it more readily than activated carbon, and is more selective for Xe over Kr than activated carbon.

  17. Preparation and Analysis of Cyclodextrin-Based Metal-Organic Frameworks: Laboratory Experiments Adaptable for High School through Advanced Undergraduate Students

    ERIC Educational Resources Information Center

    Smith, Merry K.; Angle, Samantha R.; Northrop, Brian H.

    2015-01-01

    ?-Cyclodextrin can assemble in the presence of KOH or RbOH into metal-organic frameworks (CD-MOFs) with applications in gas adsorption and environmental remediation. Crystalline CD-MOFs are grown by vapor diffusion and their reversible adsorption of CO[subscript 2](g) is analyzed both qualitatively and quantitatively. The experiment can be…

  18. Microfluidic approach toward continuous and ultrafast synthesis of metal-organic framework crystals and hetero structures in confined microdroplets.

    PubMed

    Faustini, Marco; Kim, Jun; Jeong, Guan-Young; Kim, Jin Yeong; Moon, Hoi Ri; Ahn, Wha-Seung; Kim, Dong-Pyo

    2013-10-02

    Herein, we report a novel nanoliter droplet-based microfluidic strategy for continuous and ultrafast synthesis of metal-organic framework (MOF) crystals and MOF heterostructures. Representative MOF structures, such as HKUST-1, MOF-5, IRMOF-3, and UiO-66, were synthesized within a few minutes via solvothermal reactions with substantially faster kinetics in comparison to the conventional batch processes. The approach was successfully extended to the preparation of a demanding Ru3BTC2 structure that requires high-pressure hydrothermal synthesis conditions. Finally, three different types of core-shell MOF composites, i.e., Co3BTC2@Ni3BTC2, MOF-5@diCH3-MOF-5, and Fe3O4@ZIF-8, were synthesized by exploiting a unique two-step integrated microfluidic synthesis scheme in a continuous-flow mode. The synthesized MOF crystals were characterized by X-ray diffraction, scanning electron microscopy, and BET surface area measurements. In comparison with bare MOF-5, MOF-5@diCH3-MOF-5 showed enhanced structural stability in the presence of moisture, and the catalytic performance of Fe3O4@ZIF-8 was examined using Knoevenagel condensation as a probe reaction. The microfluidic strategy allowed continuous fabrication of high-quality MOF crystals and composites exhibiting distinct morphological characteristics in a time-efficient manner and represents a viable alternative to the time-consuming and multistep MOF synthesis processes.

  19. Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach.

    PubMed

    Yazaydin, A Ozgür; Snurr, Randall Q; Park, Tae-Hong; Koh, Kyoungmoo; Liu, Jian; Levan, M Douglas; Benin, Annabelle I; Jakubczak, Paulina; Lanuza, Mary; Galloway, Douglas B; Low, John J; Willis, Richard R

    2009-12-30

    A diverse collection of 14 metal-organic frameworks (MOFs) was screened for CO(2) capture from flue gas using a combined experimental and modeling approach. Adsorption measurements are reported for the screened MOFs at room temperature up to 1 bar. These data are used to validate a generalized strategy for molecular modeling of CO(2) and other small molecules in MOFs. MOFs possessing a high density of open metal sites are found to adsorb significant amounts of CO(2) even at low pressure. An excellent correlation is found between the heat of adsorption and the amount of CO(2) adsorbed below 1 bar. Molecular modeling can aid in selection of adsorbents for CO(2) capture from flue gas by screening a large number of MOFs.

  20. A porphyrin-based metal–organic framework as a pH-responsive drug carrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Wenxin; Hu, Quan; Jiang, Ke

    A low cytotoxic porphyrin-based metal–organic framework (MOF) PCN-221, which exhibited high PC12 cell viability via 3-(4,5-dimethylthiazol-2-yl)−2,5-diphenyl tetrazolium (MTT) assay, was selected as an oral drug carrier. Methotrexate (MTX) was chosen as the model drug molecule which was absorbed into inner pores and channels of MOFs by diffusion. PCN-221 showed high drug loading and sustained release behavior under physiological environment without “burst effect”. The controlled pH-responsive release of drugs by PCN-221 revealed its promising application in oral drug delivery. - Graphical abstract: The porous crystals PCN-221 with pore openings (MOF) PCN-221 was prepared exhibiting low cytotoxicity. PCN-221 showed high drug Methotrexatemore » loading and controlled pH-responsive release of Methotrexate. - Highlights: • A porphyrin-based metal–organic framework (MOF) PCN-221 was prepared showing low cytotoxicity. • PCN-221 showed high drug Methotrexate loading. • PCN-221 showed controlled pH-responsive release of Methotrexate.« less

  1. A facile strategy for enzyme immobilization with highly stable hierarchically porous metal-organic frameworks.

    PubMed

    Liu, Xiao; Qi, Wei; Wang, Yuefei; Su, Rongxin; He, Zhimin

    2017-11-16

    Metal-organic frameworks (MOFs) have drawn extensive research interest as candidates for enzyme immobilization owing to their tunable porosity, high surface area, and excellent chemical/thermal stability. Herein, we report a facile and universal strategy for enzyme immobilization using highly stable hierarchically porous metal-organic frameworks (HP-MOFs). The HP-MOFs were stable over a wide pH range (pH = 2-11 for HP-DUT-5) and met the catalysis conditions of most enzymes. The as-prepared hierarchical micro/mesoporous MOFs with mesoporous defects showed a superior adsorption capacity towards enzymes. The maximum adsorption capacity of HP-DUT-5 for glucose oxidase (GOx) and uricase was 208 mg g -1 and 225 mg g -1 , respectively. Furthermore, we constructed two multi-enzyme biosensors for glucose and uric acid (UA) by immobilizing GOx and uricase with horseradish peroxidase (HRP) on HP-DUT-5, respectively. These sensors were efficiently applied in the colorimetric detection of glucose and UA and showed good sensitivity, selectivity, and recyclability.

  2. Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy.

    PubMed

    Zhu, Yihan; Ciston, Jim; Zheng, Bin; Miao, Xiaohe; Czarnik, Cory; Pan, Yichang; Sougrat, Rachid; Lai, Zhiping; Hsiung, Chia-En; Yao, Kexin; Pinnau, Ingo; Pan, Ming; Han, Yu

    2017-05-01

    Metal-organic frameworks (MOFs) are crystalline porous materials with designable topology, porosity and functionality, having promising applications in gas storage and separation, ion conduction and catalysis. It is challenging to observe MOFs with transmission electron microscopy (TEM) due to the extreme instability of MOFs upon electron beam irradiation. Here, we use a direct-detection electron-counting camera to acquire TEM images of the MOF ZIF-8 with an ultralow dose of 4.1 electrons per square ångström to retain the structural integrity. The obtained image involves structural information transferred up to 2.1 Å, allowing the resolution of individual atomic columns of Zn and organic linkers in the framework. Furthermore, TEM reveals important local structural features of ZIF-8 crystals that cannot be identified by diffraction techniques, including armchair-type surface terminations and coherent interfaces between assembled crystals. These observations allow us to understand how ZIF-8 crystals self-assemble and the subsequent influence of interfacial cavities on mass transport of guest molecules.

  3. Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Yihan; Ciston, Jim; Zheng, Bin; Miao, Xiaohe; Czarnik, Cory; Pan, Yichang; Sougrat, Rachid; Lai, Zhiping; Hsiung, Chia-En; Yao, Kexin; Pinnau, Ingo; Pan, Ming; Han, Yu

    2017-05-01

    Metal-organic frameworks (MOFs) are crystalline porous materials with designable topology, porosity and functionality, having promising applications in gas storage and separation, ion conduction and catalysis. It is challenging to observe MOFs with transmission electron microscopy (TEM) due to the extreme instability of MOFs upon electron beam irradiation. Here, we use a direct-detection electron-counting camera to acquire TEM images of the MOF ZIF-8 with an ultralow dose of 4.1 electrons per square ångström to retain the structural integrity. The obtained image involves structural information transferred up to 2.1 Å, allowing the resolution of individual atomic columns of Zn and organic linkers in the framework. Furthermore, TEM reveals important local structural features of ZIF-8 crystals that cannot be identified by diffraction techniques, including armchair-type surface terminations and coherent interfaces between assembled crystals. These observations allow us to understand how ZIF-8 crystals self-assemble and the subsequent influence of interfacial cavities on mass transport of guest molecules.

  4. Self-Template-Directed Metal-Organic Frameworks Network and the Derived Honeycomb-Like Carbon Flakes via Confinement Pyrolysis.

    PubMed

    Wang, Jie; Tang, Jing; Ding, Bing; Chang, Zhi; Hao, Xiaodong; Takei, Toshiaki; Kobayashi, Naoya; Bando, Yoshio; Zhang, Xiaogang; Yamauchi, Yusuke

    2018-04-01

    Metal-organic frameworks (MOFs) have become a research hotspot since they have been explored as convenient precursors for preparing various multifunctional nanomaterials. However, the preparation of MOF networks with controllable flake morphology in large scale is not realized yet. Herein, a self-template strategy is developed to prepare MOF networks. In this work, layered double-metal hydroxide (LDH) and other layered metal hydroxides are used not only as a scaffold but also as a self-sacrificed metal source. After capturing the abundant metal cations identically from the LDH by the organic linkers, MOF networks are in situ formed. It is interesting that the MOF network-derived carbon materials retain the flake morphology and exhibit a unique honeycomb-like macroporous structure due to the confined shrinkage of the polyhedral facets. The overall properties of the carbon networks are adjustable according to the tailored metal compositions in LDH and the derived MOFs, which are desirable for target-oriented applications as exemplified by the electrochemical application in supercapacitors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Microporous rod metal-organic frameworks with diverse Zn/Cd-triazolate ribbons as secondary building units for CO2 uptake and selective adsorption of hydrocarbons.

    PubMed

    Zhang, Jian-Wei; Hu, Man-Cheng; Li, Shu-Ni; Jiang, Yu-Cheng; Zhai, Quan-Guo

    2017-01-17

    The synthetic design of new porous open-framework materials with pre-designed pore properties for desired applications such as gas adsorption and separation remains challenging. We proposed one such class of materials, rod metal-organic frameworks (rod MOFs), which can be tuned by using rod secondary building units (rod SBUs) with different geometrical and chemical features. Our approach takes advantage of the readily accessible metal-triazolate 1-D motifs as rod SBUs to combine with dicarboxylate ligands to prepare target rod MOFs. Herein we report three such metal-triazolate-dicarboxylate frameworks (SNNU-21, -22 and -23). During the formation of these three MOFs, Cd or Zn ions are firstly connected by 1,2,4-triazole through the N1,N2,N4-mode to form 1-D metal-organic ribbon-like rod SBUs, which further joint four adjacent rod SBUs via eight BDC linkers to give 3-D microporous frameworks. However, tuned by the different NH 2 groups from metal-triazolate rod SBUs, different space groups, pore sizes and shapes are observed for SNNU-21-23. All of these rod MOFs show not only remarkable CO 2 uptake capacity, but also high CO 2 over CH 4 and C 2 -hydrocarbons over CH 4 selectivity under ambient conditions. Specially, SNNU-23 exhibits a very high isosteric heat of adsorption (Q st ) for C 2 H 2 (62.2 kJ mol -1 ), which outperforms the values of all MOF materials reported to date including the famous MOF-74-Co.

  6. Robust and Porous β-Diketiminate-Functionalized Metal–Organic Frameworks for Earth-Abundant-Metal-Catalyzed C–H Amination and Hydrogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thacker, Nathan C.; Lin, Zekai; Zhang, Teng

    We have designed a strategy for postsynthesis installation of the β-diketiminate (NacNac) functionality in a metal–organic framework (MOF) of UiO-topology. Metalation of the NacNac-MOF (I) with earth-abundant metal salts afforded the desired MOF-supported NacNac-M complexes (M = Fe, Cu, and Co) with coordination environments established by detailed EXAFS studies. The NacNac-Fe-MOF catalyst, I•Fe(Me), efficiently catalyzed the challenging intramolecular sp 3 C–H amination of a series of alkyl azides to afford α-substituted pyrrolidines. The NacNac-Cu-MOF catalyst, I•Cu(THF), was effective in promoting the intermolecular sp 3 C–H amination of cyclohexene using unprotected anilines to provide access to secondary amines in excellent selectivity.more » Finally, the NacNac-Co-MOF catalyst, I•Co(H), was used to catalyze alkene hydrogenation with turnover numbers (TONs) as high as 700 000. All of the NacNac-M-MOF catalysts were more effective than their analogous homogeneous catalysts and could be recycled and reused without a noticeable decrease in yield. The NacNac-MOFs thus provide a novel platform for engineering recyclable earth-abundant-element-based single-site solid catalysts for many important organic transformations.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Jun-Sheng; Yuan, Shuai; Lollar, Christina

    Recent years have witnessed the exploration and synthesis of an increasing number of metal–organic frameworks (MOFs). The utilization of stable MOFs as a platform for catalysis and biomimetics is discussed.

  8. A New Approach to Non-Coordinating Anions: Lewis Acid Enhancement of Porphyrin Metal Centers in a Zwitterionic Metal$-$Organic Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jacob A.; Petersen, Brenna M.; Kormos, Attila

    Here, we describe a new strategy to generate non-coordinating anions using zwitterionic metal–organic frameworks (MOFs). By assembly of anionic inorganic secondary building blocks (SBUs) ([In(CO 2) 4] $-$) with cationic metalloporphyrin-based organic linkers, we prepared zwitterionic MOFs in which the complete internal charge separation effectively prevents the potential binding of the counteranion to the cationic metal center. We demonstrate the enhanced Lewis acidity of Mn III- and Fe III-porphyrins in the zwitterionic MOFs in three representative electrocyclization reactions: [2 + 1] cycloisomerization of enynes, [3 + 2] cycloaddition of aziridines and alkenes, and [4 + 2] hetero-Diels–Alder cycloaddition of aldehydesmore » with dienes. Lastly, this work paves a new way to design functional MOFs for tunable chemical catalysis.« less

  9. Mixed-Metal Strategy on Metal-Organic Frameworks (MOFs) for Functionalities Expansion: Co Substitution Induces Aerobic Oxidation of Cyclohexene over Inactive Ni-MOF-74.

    PubMed

    Sun, Dengrong; Sun, Fangxiang; Deng, Xiaoyu; Li, Zhaohui

    2015-09-08

    Different amounts of Co-substituted Ni-MOF-74 have been prepared via a post-synthetic metal exchange. Inductively coupled plasma mass spectrometry, powder X-ray diffraction (XRD), N2 adsorption/desorption, and extended X-ray absorption fine structure (EXAFS) analyses indicated the successful metathesis between Co and Ni in Ni-MOF-74 to form the solid-solution-like mixed-metal Co/Ni-MOF-74. It was found that introduction of active Co into the Ni-MOF-74 framework enabled the inert Ni-MOF-74 to show activity for cyclohexene oxidation. Since Co was favorably substituted at positions more accessible to the substrate, the mixed-metal Co/Ni-MOF-74 showed superior catalytic performance, compared with pure Co-MOF-74 containing a similar amount of Co. This study provides a facile method to develop solid-solution-like MOFs for heterogeneous catalysis and highlights the great potential of this mixed-metal strategy in the development of MOFs with specific endowed functionalities.

  10. Multirate delivery of multiple therapeutic agents from metal-organic frameworks

    DOE PAGES

    McKinlay, Alistair C.; Allan, Phoebe K.; Renouf, Catherine L.; ...

    2014-12-01

    The highly porous nature of metal-organic frameworks (MOFs) offers great potential for the delivery of therapeutic agents. Here, we show that highly porous metal-organic frameworks can be used to deliver multiple therapeutic agents—a biologically active gas, an antibiotic drug molecule, and an active metal ion—simultaneously but at different rates. The possibilities offered by delivery of multiple agents with different mechanisms of action and, in particular, variable timescales may allow new therapy approaches. Here, we show that the loaded MOFs are highly active against various strains of bacteria.

  11. Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion.

    PubMed

    Cao, Xiehong; Tan, Chaoliang; Sindoro, Melinda; Zhang, Hua

    2017-05-22

    Metal-organic frameworks (MOFs), an important class of inorganic-organic hybrid crystals with intrinsic porous structures, can be used as versatile precursors or sacrificial templates for preparation of numerous functional nanomaterials for various applications. Recent developments of MOF-derived hybrid micro-/nano-structures, constructed by more than two components with varied functionalities, have revealed their extensive capabilities to overcome the weaknesses of the individual counterparts and thus give enhanced performance for energy storage and conversion. In this tutorial review, we summarize the recent advances in MOF-derived hybrid micro-/nano-structures. The synthetic strategies for preparing MOF-derived hybrid micro-/nano-structures are first introduced. Focusing on energy storage and conversion, we then discuss their potential applications in lithium-ion batteries, lithium-sulfur batteries, supercapacitors, lithium-oxygen batteries and fuel cells. Finally, we give our personal insights into the challenges and opportunities for the future research of MOF-derived hybrid micro-/nano-structures.

  12. Mechanical Properties in Metal-Organic Frameworks: Emerging Opportunities and Challenges for Device Functionality and Technological Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burtch, Nicholas C.; Heinen, Jurn; Bennett, Thomas D.

    We report that some of the most remarkable recent developments in metal–organic framework (MOF) performance properties can only be rationalized by the mechanical properties endowed by their hybrid inorganic–organic nanoporous structures. While these characteristics create intriguing application prospects, the same attributes also present challenges that will need to be overcome to enable the integration of MOFs with technologies where these promising traits can be exploited. In this review, emerging opportunities and challenges are identified for MOF-enabled device functionality and technological applications that arise from their fascinating mechanical properties. This is discussed not only in the context of their more well-studiedmore » gas storage and separation applications, but also for instances where MOFs serve as components of functional nanodevices. Recent advances in understanding MOF mechanical structure–property relationships due to attributes such as defects and interpenetration are highlighted, and open questions related to state-of-the-art computational approaches for quantifying their mechanical properties are critically discussed.« less

  13. Mechanical Properties in Metal-Organic Frameworks: Emerging Opportunities and Challenges for Device Functionality and Technological Applications

    DOE PAGES

    Burtch, Nicholas C.; Heinen, Jurn; Bennett, Thomas D.; ...

    2017-11-17

    We report that some of the most remarkable recent developments in metal–organic framework (MOF) performance properties can only be rationalized by the mechanical properties endowed by their hybrid inorganic–organic nanoporous structures. While these characteristics create intriguing application prospects, the same attributes also present challenges that will need to be overcome to enable the integration of MOFs with technologies where these promising traits can be exploited. In this review, emerging opportunities and challenges are identified for MOF-enabled device functionality and technological applications that arise from their fascinating mechanical properties. This is discussed not only in the context of their more well-studiedmore » gas storage and separation applications, but also for instances where MOFs serve as components of functional nanodevices. Recent advances in understanding MOF mechanical structure–property relationships due to attributes such as defects and interpenetration are highlighted, and open questions related to state-of-the-art computational approaches for quantifying their mechanical properties are critically discussed.« less

  14. Mechanical Properties in Metal-Organic Frameworks: Emerging Opportunities and Challenges for Device Functionality and Technological Applications.

    PubMed

    Burtch, Nicholas C; Heinen, Jurn; Bennett, Thomas D; Dubbeldam, David; Allendorf, Mark D

    2017-11-17

    Some of the most remarkable recent developments in metal-organic framework (MOF) performance properties can only be rationalized by the mechanical properties endowed by their hybrid inorganic-organic nanoporous structures. While these characteristics create intriguing application prospects, the same attributes also present challenges that will need to be overcome to enable the integration of MOFs with technologies where these promising traits can be exploited. In this review, emerging opportunities and challenges are identified for MOF-enabled device functionality and technological applications that arise from their fascinating mechanical properties. This is discussed not only in the context of their more well-studied gas storage and separation applications, but also for instances where MOFs serve as components of functional nanodevices. Recent advances in understanding MOF mechanical structure-property relationships due to attributes such as defects and interpenetration are highlighted, and open questions related to state-of-the-art computational approaches for quantifying their mechanical properties are critically discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Metal-organic frameworks as biosensors for luminescence-based detection and imaging

    PubMed Central

    Miller, Sophie E.; Teplensky, Michelle H.; Moghadam, Peyman Z.; Fairen-Jimenez, David

    2016-01-01

    Metal-organic frameworks (MOFs), formed by the self-assembly of metal centres or clusters and organic linkers, possess many key structural and chemical features that have enabled them to be used in sensing platforms for a variety of environmentally, chemically and biomedically relevant compounds. In particular, their high porosity, large surface area, tuneable chemical composition, high degree of crystallinity, and potential for post-synthetic modification for molecular recognition make MOFs promising candidates for biosensing applications. In this review, we separate our discussion of MOF biosensors into two categories: quantitative sensing, focusing specifically on luminescence-based sensors for the direct measurement of a specific analyte, and qualitative sensing, where we describe MOFs used for fluorescence microscopy and as magnetic resonance imaging contrast agents. We highlight several key publications in each of these areas, concluding that MOFs present an exciting, versatile new platform for biosensing applications and imaging, and we expect to see their usage grow as the field progresses. PMID:27499847

  16. Helically structured metal–organic frameworks fabricated by using supramolecular assemblies as templates† †Electronic supplementary information (ESI) available: Detailed TEM images and other extensive figures. See DOI: 10.1039/c4sc03278k Click here for additional data file.

    PubMed Central

    Wang, Hui; Zhu, Wei; Li, Jian; Tian, Tian; Lan, Yue; Gao, Ning; Wang, Chen; Zhang, Meng; Faul, Charl F. J.

    2015-01-01

    The controlled formation of MOF-based superstructures with well-defined nanoscale sizes and exquisite morphologies represents a big challenge, but can trigger a new set of properties distinct from their bulk counterparts. Here we report on the use of a self-assembled organic object to template the first example of a nanoscale metal–organic framework (MOF) with a helical morphology. Two prototypical MOFs (HKUST-1 and MIL-100) were used to exemplify the growth of such materials on supramolecular assemblies. Interestingly, it was found that, dependent on the nature of the precursors, not only could well-defined helical MOF nanotubes be facilely fabricated, but novel helical bundle nanostructures could also be formed. These resultant MOF superstructures show additional optical properties and could be used as precursors for the preparation of chiral nanocarbons. PMID:28757993

  17. Design and construction of porous metal-organic frameworks based on flexible BPH pillars

    NASA Astrophysics Data System (ADS)

    Hao, Xiang-Rong; Yang, Guang-sheng; Shao, Kui-Zhan; Su, Zhong-Min; Yuan, Gang; Wang, Xin-Long

    2013-02-01

    Three metal-organic frameworks (MOFs), [Co2(BPDC)2(4-BPH)·3DMF]n (1), [Cd2(BPDC)2(4-BPH)2·2DMF]n (2) and [Ni2(BDC)2(3-BPH)2 (H2O)·4DMF]n (3) (H2BPDC=biphenyl-4,4'-dicarboxylic acid, H2BDC=terephthalic acid, BPH=bis(pyridinylethylidene)hydrazine and DMF=N,N'-dimethylformamide), have been solvothermally synthesized based on the insertion of heterogeneous BPH pillars. Framework 1 has "single-pillared" MOF-5-like motif with inner cage diameters of up to 18.6 Å. Framework 2 has "double pillared" MOF-5-like motif with cage diameters of 19.2 Å while 3 has "double pillared" 8-connected framework with channel diameters of 11.0 Å. Powder X-ray diffraction (PXRD) shows that 3 is a dynamic porous framework.

  18. Highly Efficient Cooperative Catalysis by Co III (Porphyrin) Pairs in Interpenetrating Metal-Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zekai; Zhang, Zhi-Ming; Chen, Yu-Sheng

    2016-12-02

    A series of porous twofold interpenetrated In-Co III(porphyrin) metal–organic frameworks (MOFs) were constructed by in situ metalation of porphyrin bridging ligands and used as efficient cooperative catalysts for the hydration of terminal alkynes. The twofold interpenetrating structure brings adjacent Co III(porphyrins) in the two networks parallel to each other with a distance of about 8.8 Å, an ideal distance for the simultaneous activation of both substrates in alkyne hydration reactions. As a result, the In-Co III(porphyrin) MOFs exhibit much higher (up to 38 times) catalytic activity than either homogeneous catalysts or MOF controls with isolated Co III(porphyrin) centers, thus highlightingmore » the potential application of MOFs in cooperative catalysis.« less

  19. Molecular simulation of separation of CO{sub 2} from flue gases in Cu-BTC metal-organic framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Q.Y.; Xue, C.Y.; Zhong, C.L.

    2007-11-15

    In this work, a computational study was performed on the adsorption separation of CO{sub 2} from flue gases (mixtures of CO{sub 2}/N{sub 2}/O{sub 2}) in Cu-BTC metal-organic framework (MOF) to investigate the applicability of MOFs to this important industrial system. The computational results showed that Cu-BTC is a promising material for separation of CO{sub 2} from flue gases, and the macroscopic separation behaviors of the MOF were elucidated at a molecular level to give insight into the underlying mechanisms. The present work not only provided useful information for understanding the separation characteristics of MOFs, but also showed their potential applicationsmore » in chemical industry.« less

  20. Facile synthesis of nickel-based metal organic framework [Ni3(HCOO)6] by microwave method and application for supercapacitor

    NASA Astrophysics Data System (ADS)

    Luo, Jujie; Yang, Xing; Wang, Shumin; Bi, Yuhong; Nautiyal, Amit; Zhang, Xinyu

    The metal organic framework (MOF) [Ni3(HCOO)6] was synthesized via the simple and fast microwave method, and the effect of irradiation power on crystallinity of synthesized Ni-based MOF was studied. The samples were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The synthesized Ni-based MOF was electrochemically characterized by using galvanostatic charge-discharge (GCD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) techniques. The synthesized MOF showed the highest specific capacitance of 1196.2F/g at 1A/g with excellent cyclability (86.04% capacitance retention after 2,000 cycles), thereby demonstrating its potential application in supercapacitors.

  1. Achieving Amphibious Superprotonic Conductivity in a CuI Metal-Organic Framework by Strategic Pyrazinium Salt Impregnation.

    PubMed

    Khatua, Sajal; Bar, Arun Kumar; Sheikh, Javeed Ahmad; Clearfield, Abraham; Konar, Sanjit

    2018-01-19

    Treatment of a pyrazine (pz)-impregnated Cu I metal-organic framework (MOF) ([1⊃pz]) with HCl vapor renders an interstitial pyrazinium chloride salt-hybridized MOF ([1⊃pz⋅6 HCl]) that exhibits proton conductivity over 10 -2  S cm -1 both in anhydrous and under humid conditions. Framework [1⊃pz⋅6 HCl] features the highest anhydrous proton conductivity among the lesser-known examples of MOF-based materials exhibiting proton conductivity under both anhydrous and humid conditions. Moreover, [1⊃pz] and corresponding pyrazinium sulfate- and pyrazinium phosphate-hybridized MOFs also exhibit superprotonic conductivity over 10 -2  S cm -1 under humid conditions. The impregnated pyrazinium ions play a crucial role in protonic conductivity, which occurs through a Grotthuss mechanism. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A luminescent Cd(II)-based metal-organic framework for detection of Fe(III) ions in aqueous solution

    NASA Astrophysics Data System (ADS)

    Li, Fen-Fang; Zhu, Miao-Li; Lu, Li-Ping

    2018-05-01

    A novel Cd((II)-organic framework [Cd(Hcbic)]n (H3cbic = 1-(4-carboxybenz-yl)-1H-benzoim-idazole-5, 6-dicarboxylic acid) was assembled and characterized by X-ray single crystal analysis. The Cd-MOF features one-dimensional left and right-handed double helical chains with screw-pitch of about 4.727 Å and the 4-methyl benzoic acid groups of Hcbic2- ligands in MOF-1 play many ribbons distributing in the two sides of the 2D networks. It is found that MOF-1 shows high selectivity (KSV = 1.8 × 105 L / mol) for Fe3+ ions in water solution with luminescent quenching because of the existence of uncoordinated carboxyl groups within open frameworks, which indicates that MOF-1 is a simple and reliable detection sensing reagent for Fe3+ in practical applications.

  3. Catalysis by metal-organic frameworks: fundamentals and opportunities.

    PubMed

    Ranocchiari, Marco; van Bokhoven, Jeroen Anton

    2011-04-14

    Crystalline porous materials are extremely important for developing catalytic systems with high scientific and industrial impact. Metal-organic frameworks (MOFs) show unique potential that still has to be fully exploited. This perspective summarizes the properties of MOFs with the aim to understand what are possible approaches to catalysis with these materials. We categorize three classes of MOF catalysts: (1) those with active site on the framework, (2) those with encapsulated active species, and (3) those with active sites attached through post-synthetic modification. We identify the tunable porosity, the ability to fine tune the structure of the active site and its environment, the presence of multiple active sites, and the opportunity to synthesize structures in which key-lock bonding of substrates occurs as the characteristics that distinguish MOFs from other materials. We experience a unique opportunity to imagine and design heterogeneous catalysts, which might catalyze reactions previously thought impossible.

  4. Force-Field Prediction of Materials Properties in Metal-Organic Frameworks

    PubMed Central

    2016-01-01

    In this work, MOF bulk properties are evaluated and compared using several force fields on several well-studied MOFs, including IRMOF-1 (MOF-5), IRMOF-10, HKUST-1, and UiO-66. It is found that, surprisingly, UFF and DREIDING provide good values for the bulk modulus and linear thermal expansion coefficients for these materials, excluding those that they are not parametrized for. Force fields developed specifically for MOFs including UFF4MOF, BTW-FF, and the DWES force field are also found to provide accurate values for these materials’ properties. While we find that each force field offers a moderately good picture of these properties, noticeable deviations can be observed when looking at properties sensitive to framework vibrational modes. This observation is more pronounced upon the introduction of framework charges. PMID:28008758

  5. Metal–Organic Framework Thin Film Coated Optical Fiber Sensors: A Novel Waveguide-Based Chemical Sensing Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ki-Joong; Lu, Ping; Culp, Jeffrey T.

    Integration of optical fiber with sensitive thin films offers great potential for the realization of novel chemical sensing platforms. In this study, we present a simple design strategy and high performance of nanoporous metal–organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework. Thin and compact MOF films can be uniformly formed and tightly bound on the surface of etched optical fiber through a simple solution method which is critical for manufacturability ofmore » MOF-based sensor devices. The resulting sensors show high sensitivity/selectivity to CO 2 gas relative to other small gases (H 2, N 2, O 2, and CO) with rapid (< tens of seconds) response time and excellent reversibility, which can be well correlated to the physisorption of gases into a nanoporous MOF. We propose a refractive index based sensing mechanism for the MOF-integrated optical fiber platform which results in an amplification of inherent optical absorption present within the MOF-based sensing layer with increasing values of effective refractive index associated with adsorption of gases.« less

  6. Metal–Organic Framework Thin Film Coated Optical Fiber Sensors: A Novel Waveguide-Based Chemical Sensing Platform

    DOE PAGES

    Kim, Ki-Joong; Lu, Ping; Culp, Jeffrey T.; ...

    2018-01-18

    Integration of optical fiber with sensitive thin films offers great potential for the realization of novel chemical sensing platforms. In this study, we present a simple design strategy and high performance of nanoporous metal–organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework. Thin and compact MOF films can be uniformly formed and tightly bound on the surface of etched optical fiber through a simple solution method which is critical for manufacturability ofmore » MOF-based sensor devices. The resulting sensors show high sensitivity/selectivity to CO 2 gas relative to other small gases (H 2, N 2, O 2, and CO) with rapid (< tens of seconds) response time and excellent reversibility, which can be well correlated to the physisorption of gases into a nanoporous MOF. We propose a refractive index based sensing mechanism for the MOF-integrated optical fiber platform which results in an amplification of inherent optical absorption present within the MOF-based sensing layer with increasing values of effective refractive index associated with adsorption of gases.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondo, Atsushi, E-mail: kondoa@cc.tuat.ac.jp; Maeda, Kazuyuki

    A 3D flexible metal–organic framework (MOF) with 1D hydrophilic and hydrophobic pores shows anisotropic thermal expansion with relatively large thermal expansion coefficient (α{sub a}=−21×10{sup −6} K{sup −1} and α{sub c}=79×10{sup −6} K{sup −1}) between 133 K and 383 K. Temperature change gives deformation of both pores, which expand in diameter and elongate in length on cooling and vice versa. The thermally induced structural change should be derived from a unique framework topology like “lattice fence”. Silica accommodation changes not only the nature of the MOF but also thermal responsiveness of the MOF. Since the hydrophobic pores in the material aremore » selectively blocked by the silica, the MOF with the silica is considered as a hydrophilic microporous material. Furthermore, inclusion of silica resulted in a drastic pore contraction in diameter and anisotropically changed the thermal responsiveness of the MOF. - Graphical abstract: A 3D metal–organic framework with hydrophilic and hydrophobic pores shows anisotropic thermal expansion behavior. The influence of silica filler in the hydrophobic pore was investigated. - Highlights: • Thermally induced structural change of a 3D MOF with a lattice fence topology was investigated. • The structural change was analyzed by synchrotron X-ray diffraction patterns. • Temperature change induces anisotropic thermal expansion/contraction of the MOF. • Silica inclusion anisotropically changes the thermal responsiveness of the MOF.« less

  8. Computational Design of Functionalized Metal–Organic Framework Nodes for Catalysis

    PubMed Central

    2017-01-01

    Recent progress in the synthesis and characterization of metal–organic frameworks (MOFs) has opened the door to an increasing number of possible catalytic applications. The great versatility of MOFs creates a large chemical space, whose thorough experimental examination becomes practically impossible. Therefore, computational modeling is a key tool to support, rationalize, and guide experimental efforts. In this outlook we survey the main methodologies employed to model MOFs for catalysis, and we review selected recent studies on the functionalization of their nodes. We pay special attention to catalytic applications involving natural gas conversion. PMID:29392172

  9. Interplay of Metalloligand and Organic Ligand to Tune Micropores within Isostructural Mixed-Metal Organic Frameworks (M MOFs) for Their Highly Selective Separation of Chiral and Achiral Small Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madhab, Das; He, Yabing; Kim, Jaheon

    2012-01-01

    Four porous isostructural mixed-metal-organic frameworks (M'MOFs) have been synthesized and structurally characterized. The pores within these M'MOFs are systematically tuned by the interplay of both the metalloligands and organic ligands which have enabled us not only to direct their highly selective separation of chiral alcohols 1-phenylethanol (PEA), 2-butanol (BUT), and 2-pentanol (2-PEN) with the highest ee up to 82.4% but also to lead highly selective separation of achiral C{sub 2}H{sub 2}/C{sub 2}H{sub 4} separation. The potential application of these M'MOFs for the fixed bed pressure swing adsorption (PSA) separation of C{sub 2}H{sub 2}/C{sub 2}H{sub 4} has been further examined andmore » compared by the transient breakthrough simulations in which the purity requirement of 40 ppm in the outlet gas can be readily fulfilled by the fixed bed M'MOF-4a adsorber at ambient conditions.« less

  10. Boosting Chemical Stability, Catalytic Activity, and Enantioselectivity of Metal-Organic Frameworks for Batch and Flow Reactions.

    PubMed

    Chen, Xu; Jiang, Hong; Hou, Bang; Gong, Wei; Liu, Yan; Cui, Yong

    2017-09-27

    A key challenge in heterogeneous catalysis is the design and synthesis of heterogeneous catalysts featuring high catalytic activity, selectivity, and recyclability. Here we demonstrate that high-performance heterogeneous asymmetric catalysts can be engineered from a metal-organic framework (MOF) platform by using a ligand design strategy. Three porous chiral MOFs with the framework formula [Mn 2 L(H 2 O) 2 ] are prepared from enantiopure phosphono-carboxylate ligands of 1,1'-biphenol that are functionalized with 3,5-bis(trifluoromethyl)-, bismethyl-, and bisfluoro-phenyl substituents at the 3,3'-position. For the first time, we show that not only chemical stability but also catalytic activity and stereoselectivity of the MOFs can be tuned by modifying the ligand structures. Particularly, the MOF incorporated with -CF 3 groups on the pore walls exhibits enhanced tolerance to water, weak acid, and base compared with the MOFs with -F and -Me groups. Under both batch and flow reaction systems, the CF 3 -containing MOF demonstrated excellent reactivity, selectivity, and recyclability, affording high yields and enantioselectivities for alkylations of indoles and pyrrole with a range of ketoesters or nitroalkenes. In contrast, the corresponding homogeneous catalysts gave low enantioselectivity in catalyzing the tested reactions.

  11. Metal-organic framework nanosheets in polymer composite materials for gas separation

    PubMed Central

    Seoane, Beatriz; Miro, Hozanna; Corma, Avelino; Kapteijn, Freek; Llabrés i Xamena, Francesc X.; Gascon, Jorge

    2014-01-01

    Composites incorporating two-dimensional nanostructures within polymeric matrices hold potential as functional components for several technologies, including gas separation. Prospectively, employing metal-organic-frameworks (MOFs) as versatile nanofillers would notably broaden the scope of functionalities. However, synthesizing MOFs in the form of free standing nanosheets has proven challenging. We present a bottom-up synthesis strategy for dispersible copper 1,4-benzenedicarboxylate MOF lamellae of micrometer lateral dimensions and nanometer thickness. Incorporating MOF nanosheets into polymer matrices endows the resultant composites with outstanding CO2 separation performance from CO2/CH4 gas mixtures, together with an unusual and highly desired increment in the separation selectivity with pressure. As revealed by tomographic focused-ion-beam scanning-electron-microscopy, the unique separation behaviour stems from a superior occupation of the membrane cross-section by the MOF nanosheets as compared to isotropic crystals, which improves the efficiency of molecular discrimination and eliminates unselective permeation pathways. This approach opens the door to ultrathin MOF-polymer composites for various applications. PMID:25362353

  12. A new type of polyhedron-based metal-organic frameworks with interpenetrating cationic and anionic nets demonstrating ion exchange, adsorption and luminescent properties.

    PubMed

    Zhang, Zheng-Jie; Shi, Wei; Niu, Zheng; Li, Huan-Huan; Zhao, Bin; Cheng, Peng; Liao, Dai-Zheng; Yan, Shi-Ping

    2011-06-14

    An interesting new MOF, built with interpenetrating cationic (MOF-A(+)) and anionic (MOF-B(-)) nets that do not require counter ions to balance charge, together with an architectural strategy focused on the use of MOPs as nodes and MOCs as spacers for the generation of 3D frameworks, is reported. This journal is © The Royal Society of Chemistry 2011

  13. Drawing Sensors with Ball-Milled Blends of Metal-Organic Frameworks and Graphite

    PubMed Central

    Ko, Michael; Aykanat, Aylin; Smith, Merry K.

    2017-01-01

    The synthetically tunable properties and intrinsic porosity of conductive metal-organic frameworks (MOFs) make them promising materials for transducing selective interactions with gaseous analytes in an electrically addressable platform. Consequently, conductive MOFs are valuable functional materials with high potential utility in chemical detection. The implementation of these materials, however, is limited by the available methods for device incorporation due to their poor solubility and moderate electrical conductivity. This manuscript describes a straightforward method for the integration of moderately conductive MOFs into chemiresistive sensors by mechanical abrasion. To improve electrical contacts, blends of MOFs with graphite were generated using a solvent-free ball-milling procedure. While most bulk powders of pure conductive MOFs were difficult to integrate into devices directly via mechanical abrasion, the compressed solid-state MOF/graphite blends were easily abraded onto the surface of paper substrates equipped with gold electrodes to generate functional sensors. This method was used to prepare an array of chemiresistors, from four conductive MOFs, capable of detecting and differentiating NH3, H2S and NO at parts-per-million concentrations. PMID:28946624

  14. Recent Progress in Metal-Organic Frameworks and Their Derived Nanostructures for Energy and Environmental Applications.

    PubMed

    Xie, Zhiqiang; Xu, Wangwang; Cui, Xiaodan; Wang, Ying

    2017-04-22

    Metal-organic frameworks (MOFs), as a very promising category of porous materials, have attracted increasing interest from research communities due to their extremely high surface areas, diverse nanostructures, and unique properties. In recent years, there is a growing body of evidence to indicate that MOFs can function as ideal templates to prepare various nanostructured materials for energy and environmental cleaning applications. Recent progress in the design and synthesis of MOFs and MOF-derived nanomaterials for particular applications in lithium-ion batteries, sodium-ion batteries, supercapacitors, dye-sensitized solar cells, and heavy-metal-ion detection and removal is reviewed herein. In addition, the remaining major challenges in the above fields are discussed and some perspectives for future research efforts in the development of MOFs are also provided. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Single Pt Atoms Confined into a Metal-Organic Framework for Efficient Photocatalysis.

    PubMed

    Fang, Xinzuo; Shang, Qichao; Wang, Yu; Jiao, Long; Yao, Tao; Li, Yafei; Zhang, Qun; Luo, Yi; Jiang, Hai-Long

    2018-02-01

    It is highly desirable yet remains challenging to improve the dispersion and usage of noble metal cocatalysts, beneficial to charge transfer in photocatalysis. Herein, for the first time, single Pt atoms are successfully confined into a metal-organic framework (MOF), in which electrons transfer from the MOF photosensitizer to the Pt acceptor for hydrogen production by water splitting under visible-light irradiation. Remarkably, the single Pt atoms exhibit a superb activity, giving a turnover frequency of 35 h -1 , ≈30 times that of Pt nanoparticles stabilized by the same MOF. Ultrafast transient absorption spectroscopy further unveils that the single Pt atoms confined into the MOF provide highly efficient electron transfer channels and density functional theory calculations indicate that the introduction of single Pt atoms into the MOF improves the hydrogen binding energy, thus greatly boosting the photocatalytic H 2 production activity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Transformation of metal-organic frameworks for molecular sieving membranes

    PubMed Central

    Li, Wanbin; Zhang, Yufan; Zhang, Congyang; Meng, Qin; Xu, Zehai; Su, Pengcheng; Li, Qingbiao; Shen, Chong; Fan, Zheng; Qin, Lei; Zhang, Guoliang

    2016-01-01

    The development of simple, versatile strategies for the synthesis of metal-organic framework (MOF)-derived membranes are of increasing scientific interest, but challenges exist in understanding suitable fabrication mechanisms. Here we report a route for the complete transformation of a series of MOF membranes and particles, based on multivalent cation substitution. Through our approach, the effective pore size can be reduced through the immobilization of metal salt residues in the cavities, and appropriate MOF crystal facets can be exposed, to achieve competitive molecular sieving capabilities. The method can also be used more generally for the synthesis of a variety of MOF membranes and particles. Importantly, we design and synthesize promising MOF membranes candidates that are hard to achieve through conventional methods. For example, our CuBTC/MIL-100 membrane exhibits 89, 171, 241 and 336 times higher H2 permeance than that of CO2, O2, N2 and CH4, respectively. PMID:27090597

  17. Centimetre-scale micropore alignment in oriented polycrystalline metal-organic framework films via heteroepitaxial growth.

    PubMed

    Falcaro, Paolo; Okada, Kenji; Hara, Takaaki; Ikigaki, Ken; Tokudome, Yasuaki; Thornton, Aaron W; Hill, Anita J; Williams, Timothy; Doonan, Christian; Takahashi, Masahide

    2017-03-01

    The fabrication of oriented, crystalline films of metal-organic frameworks (MOFs) is a critical step toward their application to advanced technologies such as optics, microelectronics, microfluidics and sensing. However, the direct synthesis of MOF films with controlled crystalline orientation remains a significant challenge. Here we report a one-step approach, carried out under mild conditions, that exploits heteroepitaxial growth for the rapid fabrication of oriented polycrystalline MOF films on the centimetre scale. Our methodology employs crystalline copper hydroxide as a substrate and yields MOF films with oriented pore channels on scales that primarily depend on the dimensions of the substrate. To demonstrate that an anisotropic crystalline morphology can translate to a functional property, we assembled a centimetre-scale MOF film in the presence of a dye and showed that the optical response could be switched 'ON' or 'OFF' by simply rotating the film.

  18. Remote Stabilization of Copper Paddlewheel Based Molecular Building Blocks in Metal-Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Wen-Yang; Cai, Rong; Pham, Tony

    Copper paddlewheel based molecular building blocks (MBBs) are ubiquitous and have been widely employed for the construction of highly porous metal–organic frameworks (MOFs). However, most copper paddlewheel based MOFs fail to retain their structural integrity in the presence of water. This instability is directly correlated to the plausible displacement of coordinating carboxylates in the copper paddlewheel MBB, [Cu₂(O₂C-)₄], by the strongly coordinating water molecules. In this comprehensive study, we illustrate the chemical stability control in the rht-MOF platform via strengthening the coordinating bonds within the triangular inorganic MBB, [Cu₃O(N 4–x(CH) xC-)₃] (x = 0, 1, or 2). Remotely, the chemicalmore » stabilization propagated into the paddlewheel MBB to afford isoreticular rht-MOFs with remarkably enhanced water/chemical stabilities compared to the prototypal rht-MOF-1.« less

  19. Guest-Induced Switchable Breathing Behavior in a Flexible Metal-Organic Framework with Pronounced Negative Gas Pressure.

    PubMed

    Shi, Yi-Xiang; Li, Wu-Xiang; Zhang, Wen-Hua; Lang, Jian-Ping

    2018-06-29

    Flexible metal-organic frameworks (MOFs) have attracted great interest for their dynamically structural transformability in response to external stimuli. Herein, we report a switchable "breathing" or "gate-opening" behavior associated with the phase transformation between a narrow pore (np) and a large pore (lp) in a flexible pillared-layered MOF, denoted as MOF-1 as, which is also confirmed by SCXRD and PXRD. The desolvated phase (MOF-1 des) features a unique stepwise adsorption isotherm for N 2 coupled with a pronounced negative gas adsorption pressure. For comparison, however, no appreciable CO 2 adsorption and gate-opening phenomenon with stepwise sorption can be observed. Furthermore, the polar micropore walls decorated with thiophene groups in MOF-1 des reveals the selective sorption of toluene over benzene and p-xylene associated with self-structural adjustment in spite of the markedly similar physicochemical properties of these vapor molecules.

  20. Highly stable aluminum-based metal-organic frameworks as biosensing platforms for assessment of food safety.

    PubMed

    Liu, Chun-Sen; Sun, Chun-Xiao; Tian, Jia-Yue; Wang, Zhuo-Wei; Ji, Hong-Fei; Song, Ying-Pan; Zhang, Shuai; Zhang, Zhi-Hong; He, Ling-Hao; Du, Miao

    2017-05-15

    Two unique immunosensors made of aluminum-based metal-organic frameworks (MOFs), namely, 515- and 516-MOFs, with 4,4',4''-nitrilotribenzoic acid (H 3 NTB) were successfully obtained to efficiently assess food safety. The as-prepared 515- and 516-MOFs exhibited superior thermal and physicochemical stability, high electrochemical activity, and good biocompatibility. Among these immunosensors, 516-MOF showed a preferable biosensing ability toward analytes determined by electrochemical techniques. The developed 516-MOF-based electrochemical biosensor not only demonstrated high sensitivity with low detection limits of 0.70 and 0.40pgmL -1 toward vomitoxin and salbutamol, respectively, but also showed good selectivity in the presence of other interferences. Therefore, with the advantages of high sensitivity, good selectivity, and simple operation, this new strategy is believed to exhibit great potential for simple and convenient detection of poisonous and harmful residues in food. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Hydrogen sensing properties of nanocomposite graphene oxide/Co-based metal organic frameworks (Co-MOFs@GO)

    NASA Astrophysics Data System (ADS)

    Fardindoost, Somayeh; Hatamie, Shadie; Iraji Zad, Azam; Razi Astaraei, Fatemeh

    2018-01-01

    This paper reports on hydrogen sensing based graphene oxide hybrid with Co-based metal organic frameworks (Co-MOFs@GO) prepared by the hydrothermal process. The texture and morphology of the hybrid were characterized by powder x-ray diffraction, scanning electron microscopy and Brunauer-Emmett-Teller analysis. Porous flower like structures assembled from Co-MOFs and GO flakes with sufficient specific surface area are obtained, which are ideal for gas molecules diffusion and interactions. Sensing performance of Co-MOFs@GO were tested and also improved by sputtering platinum (Pt) as a catalyst. The Pt-sputtered Co-MOFs@GO show outstanding hydrogen resistive-sensing with response and recovery times below 12 s at 15 °C. Also, they show stable, repeatable and selective responses to the target gas which make it suitable for the development of a high performance hydrogen sensor.

  2. Zeolite-like metal–organic frameworks (ZMOFs): Design, synthesis, and properties

    DOE PAGES

    Eddaoudi, Mohamed; Sava, Dorina F.; Eubank, Jarrod F.; ...

    2015-10-24

    This study highlights various design and synthesis approaches toward the construction of ZMOFs, which are metal–organic frameworks (MOFs) with topologies and, in some cases, features akin to traditional inorganic zeolites. The interest in this unique subset of MOFs is correlated with their exceptional characteristics arising from the periodic pore systems and distinctive cage-like cavities, in conjunction with modular intra- and/or extra-framework components, which ultimately allow for tailoring of the pore size, pore shape, and properties towards specific applications.

  3. In situ solvothermal growth of metal-organic framework-5 supported on porous copper foam for noninvasive sampling of plant volatile sulfides.

    PubMed

    Hu, Yuling; Lian, Haixian; Zhou, Langjun; Li, Gongke

    2015-01-06

    The present study reported on an in situ solvothermal growth method for immobilization of metal-organic framework MOF-5 on porous copper foam support for enrichment of plant volatile sulfides. The porous copper support impregnated with mother liquor of MOF-5 anchors the nucleation and growth of MOF crystallites at its surface, and its architecture of the three-dimensional channel enables accommodation of the MOF-5 crystallite seed. A continuous and well-intergrown MOF-5 layer, evidenced from scanning electron microscope imaging and X-ray diffraction, was successfully immobilized on the porous metal bar with good adhesion and high stability. Results show that the resultant MOF-5 coating was thermally stable up to 420 °C and robust enough for replicate extraction for at least 200 times. The MOF-5 bar was then applied to the headspace sorptive extraction of the volatile organic sulfur compounds in Chinese chive and garlic sprout in combination with thermal desorption-gas chromatography/mass spectrometry. It showed high extraction sensitivity and good selectivity to these plant volatile sulfides owing to the extraordinary porosity of the metal-organic framework as well as the interaction between the S-donor sites and the surface cations at the crystal edges. Several primary sulfur volatiles containing allyl methyl sulfide, dimethyl disulfide, diallyl sulfide, methyl allyl disulfide, and diallyl disulfide were quantified. Their limits of detection were found to be in the range of 0.2-1.7 μg/L. The organic sulfides were detected in the range of 6.0-23.8 μg/g with recoveries of 76.6-100.2% in Chinese chive and 11.4-54.6 μg/g with recoveries of 77.1-99.8% in garlic sprout. The results indicate the immobilization of MOF-5 on copper foam provides an efficient enrichment formats for noninvasive sampling of plant volatiles.

  4. Flying MOFs: polyamine-containing fluidized MOF/SiO 2 hybrid materials for CO 2 capture from post-combustion flue gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luz, Ignacio; Soukri, Mustapha; Lail, Marty

    Solid-state synthesis ensures a high loading and well dispersed growth of a large collection of metal–organic framework (MOF) nanostructures within a series of commercially available mesoporous silica allowing to render MOFs into fluidized solid sorbents for CO 2 capture from post-combustion flue gas in a fluidized-bed reactor.

  5. Flying MOFs: polyamine-containing fluidized MOF/SiO 2 hybrid materials for CO 2 capture from post-combustion flue gas

    DOE PAGES

    Luz, Ignacio; Soukri, Mustapha; Lail, Marty

    2018-01-01

    Solid-state synthesis ensures a high loading and well dispersed growth of a large collection of metal–organic framework (MOF) nanostructures within a series of commercially available mesoporous silica allowing to render MOFs into fluidized solid sorbents for CO 2 capture from post-combustion flue gas in a fluidized-bed reactor.

  6. In Situ, Time-Resolved, and Mechanistic Studies of Metal–Organic Framework Nucleation and Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Vleet, Mary J.; Weng, Tingting; Li, Xinyi

    The vast chemical and structural diversity of metal–organic frameworks (MOFs) opens up the exciting possibility of “crystal engineering” MOFs tailored for particular catalytic or separation applications. Yet the process of reaction discovery, optimization, and scale-up of MOF synthesis remains extremely challenging, presenting significant obstacles to the synthetic realization of many otherwise promising MOF structures. Recently, significant new insights into the fundamental processes governing MOF nucleation and growth, as well as the relationship between reaction parameters and synthetic outcome, have been derived using powerful in situ, time-resolved and/or mechanistic studies of MOF crystallization. This Review provides a summary and associated criticalmore » analysis of the results of these and other related “direct” studies of MOF nucleation and growth, with a particular emphasis on the recent advances in instrument technologies that have enabled such studies and on the major hypotheses, theories, and models that have been used to explain MOF formation. We conclude with a summary of the major insights that have been gained from the work summarized in this Review, outlining our own perspective on potential fruitful new directions for investigation.« less

  7. One-pot synthesis of binary metal organic frameworks (HKUST-1 and UiO-66) for enhanced adsorptive removal of water contaminants.

    PubMed

    Azhar, Muhammad Rizwan; Abid, Hussein Rasool; Sun, Hongqi; Periasamy, Vijay; Tadé, Moses O; Wang, Shaobin

    2017-03-15

    In this study, binary metal organic frameworks (MOFs) with HKUST-1 and UiO-66 have been synthesized in a one-pot process. The synthesized MOFs were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), N 2 adsorption, and thermogravimetric analysis (TGA). The meso-porosity and thermal stability of the binary MOFs were higher than those of single HKUST-1 or UiO-66. The synthesized MOF hybrids were then tested for adsorptive removal of methylene blue (MB) from wastewater in terms of kinetic and isothermal adsorption as compared to a commercially available activated carbon (AC). All the synthesized MOFs showed significant removal of MB under a wide range of pH. The adsorption capacities of HKUST-1 are higher than UiO-66 and commercial AC while the binary MOFs presented an even higher adsorption capacity than single MOFs. This is the first time that binary HKUST-1 and UiO-66 MOFs have been successfully synthesized and demonstrated enhanced adsorptive removal of contaminants. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. In Situ, Time-Resolved, and Mechanistic Studies of Metal–Organic Framework Nucleation and Growth

    DOE PAGES

    Van Vleet, Mary J.; Weng, Tingting; Li, Xinyi; ...

    2018-03-07

    The vast chemical and structural diversity of metal–organic frameworks (MOFs) opens up the exciting possibility of “crystal engineering” MOFs tailored for particular catalytic or separation applications. Yet the process of reaction discovery, optimization, and scale-up of MOF synthesis remains extremely challenging, presenting significant obstacles to the synthetic realization of many otherwise promising MOF structures. Recently, significant new insights into the fundamental processes governing MOF nucleation and growth, as well as the relationship between reaction parameters and synthetic outcome, have been derived using powerful in situ, time-resolved and/or mechanistic studies of MOF crystallization. This Review provides a summary and associated criticalmore » analysis of the results of these and other related “direct” studies of MOF nucleation and growth, with a particular emphasis on the recent advances in instrument technologies that have enabled such studies and on the major hypotheses, theories, and models that have been used to explain MOF formation. We conclude with a summary of the major insights that have been gained from the work summarized in this Review, outlining our own perspective on potential fruitful new directions for investigation.« less

  9. Biodegradable Core-shell Dual-Metal-Organic-Frameworks Nanotheranostic Agent for Multiple Imaging Guided Combination Cancer Therapy

    PubMed Central

    Wang, Dongdong; Zhou, Jiajia; Shi, Ruohong; Wu, Huihui; Chen, Ruhui; Duan, Beichen; Xia, Guoliang; Xu, Pengping; Wang, Hui; Zhou, Shu; Wang, Chengming; Wang, Haibao; Guo, Zhen; Chen, Qianwang

    2017-01-01

    Metal-organic-frameworks (MOFs) possess high porosity, large surface area, and tunable functionality are promising candidates for synchronous diagnosis and therapy in cancer treatment. Although large number of MOFs has been discovered, conventional MOF-based nanoplatforms are mainly limited to the sole MOF source with sole functionality. In this study, surfactant modified Prussian blue (PB) core coated by compact ZIF-8 shell (core-shell dual-MOFs, CSD-MOFs) has been reported through a versatile stepwise approach. With Prussian blue as core, CSD-MOFs are able to serve as both magnetic resonance imaging (MRI) and fluorescence optical imaging (FOI) agents. We show that CSD-MOFs crystals loading the anticancer drug doxorubicin (DOX) are efficient pH and near-infrared (NIR) dual-stimuli responsive drug delivery vehicles. After the degradation of ZIF-8, simultaneous NIR irradiation to the inner PB MOFs continuously generate heat that kill cancer cells. Their efficacy on HeLa cancer cell lines is higher compared with the respective single treatment modality, achieving synergistic chemo-thermal therapy efficacy. In vivo results indicate that the anti-tumor efficacy of CSD-MOFs@DOX+NIR was 7.16 and 5.07 times enhanced compared to single chemo-therapy and single thermal-therapy respectively. Our strategy opens new possibilities to construct multifunctional theranostic systems through integration of two different MOFs. PMID:29158848

  10. Rigidifying fluorescent linkers by metal-organic framework formation for fluorescence blue shift and quantum yield enhancement.

    PubMed

    Wei, Zhangwen; Gu, Zhi-Yuan; Arvapally, Ravi K; Chen, Ying-Pin; McDougald, Roy N; Ivy, Joshua F; Yakovenko, Andrey A; Feng, Dawei; Omary, Mohammad A; Zhou, Hong-Cai

    2014-06-11

    We demonstrate that rigidifying the structure of fluorescent linkers by structurally constraining them in metal-organic frameworks (MOFs) to control their conformation effectively tunes the fluorescence energy and enhances the quantum yield. Thus, a new tetraphenylethylene-based zirconium MOF exhibits a deep-blue fluorescent emission at 470 nm with a unity quantum yield (99.9 ± 0.5%) under Ar, representing ca. 3600 cm(-1) blue shift and doubled radiative decay efficiency vs the linker precursor. An anomalous increase in the fluorescence lifetime and relative intensity takes place upon heating the solid MOF from cryogenic to ambient temperatures. The origin of these unusual photoluminescence properties is attributed to twisted linker conformation, intramolecular hindrance, and framework rigidity.

  11. Recent progress in the synthesis of metal–organic frameworks

    DOE PAGES

    Sun, Yujia; Zhou, Hong -Cai

    2015-09-25

    Metal–organic frameworks (MOFs) have attracted considerable attention for various applications due to their tunable structure, porosity and functionality. In general, MOFs have been synthesized from isolated metal ions and organic linkers under hydrothermal or solvothermal conditions via one-spot reactions. The emerging precursor approach and kinetically tuned dimensional augmentation strategy add more diversity to this field. In addition, to speed up the crystallization process and create uniform crystals with reduced size, many alternative synthesis routes have been explored. Recent advances in microwave-assisted synthesis and electrochemical synthesis are presented in this review. In recent years, post-synthetic approaches have been shown to bemore » powerful tools to synthesize MOFs with modified functionality, which cannot be attained via de novo synthesis. In this study, some current accomplishments of post-synthetic modification (PSM) based on covalent transformations and coordinative interactions as well as post-synthetic exchange (PSE) in robust MOFs are provided.« less

  12. Luminescent metal-organic frameworks for chemical sensing and explosive detection.

    PubMed

    Hu, Zhichao; Deibert, Benjamin J; Li, Jing

    2014-08-21

    Metal-organic frameworks (MOFs) are a unique class of crystalline solids comprised of metal cations (or metal clusters) and organic ligands that have shown promise for a wide variety of applications. Over the past 15 years, research and development of these materials have become one of the most intensely and extensively pursued areas. A very interesting and well-investigated topic is their optical emission properties and related applications. Several reviews have provided a comprehensive overview covering many aspects of the subject up to 2011. This review intends to provide an update of work published since then and focuses on the photoluminescence (PL) properties of MOFs and their possible utility in chemical and biological sensing and detection. The spectrum of this review includes the origin of luminescence in MOFs, the advantages of luminescent MOF (LMOF) based sensors, general strategies in designing sensory materials, and examples of various applications in sensing and detection.

  13. IM-19: a new flexible microporous gallium based-MOF framework with pressure- and temperature-dependent openings.

    PubMed

    Chaplais, Gérald; Simon-Masseron, Angélique; Porcher, Florence; Lecomte, Claude; Bazer-Bachi, Delphine; Bats, Nicolas; Patarin, Joël

    2009-07-14

    Five metal-organic frameworks (MOFs) based on the same three-dimensional gallium terephthalate network (IM-19) are described, and an incommensurate structure (for the as-synthesized form) as well as two remarkable guest-free polymorphs (open and closed) are highlighted.

  14. Photoswitchable nanoporous films by loading azobenzene in metal-organic frameworks of type HKUST-1.

    PubMed

    Müller, Kai; Wadhwa, Jasmine; Singh Malhi, Jasleen; Schöttner, Ludger; Welle, Alexander; Schwartz, Heidi; Hermann, Daniela; Ruschewitz, Uwe; Heinke, Lars

    2017-07-13

    Photoswitchable metal-organic frameworks (MOFs) enable the dynamic remote control of their key properties. Here, a readily producible approach is presented where photochromic molecules, i.e. azobenzene (AB) and o-tetrafluoroazobenzene (tfAB), are loaded in MOF films of type HKUST-1. These nanoporous films, which can be reversibly switched with UV/visible or only visible light, have remote-controllable guest uptake properties.

  15. Are metal-organic frameworks able to provide a new generation of solid-phase microextraction coatings? - A review.

    PubMed

    Rocío-Bautista, Priscilla; Pacheco-Fernández, Idaira; Pasán, Jorge; Pino, Verónica

    2016-10-05

    Solid-phase microextraction (SPME) is a powerful technique commonly used in sample preparation for extraction/preconcentration of analytes from a wide variety of samples. Among the trends in improving SPME applications, current investigations are focused on the development of novel coatings able to improve the extraction efficiency, sensitivity, and thermal and mechanical stability, within other properties, of current commercial SPME fibers. Metal-organic frameworks (MOFs) merit to be highlighted as promising sorbent materials in SPME schemes. MOFs are porous hybrid materials composed by metal ions and organic linkers, presenting the highest surface areas known, with ease synthesis and high tuneability, together with adequate chemical and thermal stability. For MOF based-SPME fibers, it results important to pretreat adequately the SPME supports to ensure the correct formation of the MOF onto the fiber or the attachment MOF-support. This, in turn, will increase the final stability of the fiber while generating uniform coatings. This review provides a critical overview of the current state of the use of MOFs as SPME coatings, not only highlighting the advantages of these materials versus commercial SPME coatings in terms of stability, selectivity, and sensitivity; but also insightfully describing the current methods to obtain reproducible MOF-based SPME coatings. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Force-field prediction of materials properties in metal-organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Peter G.; Moosavi, Seyed Mohamad; Witman, Matthew

    In this work, MOF bulk properties are evaluated and compared using several force fields on several well-studied MOFs, including IRMOF-1 (MOF-5), IRMOF-10, HKUST-1, and UiO-66. It is found that, surprisingly, UFF and DREIDING provide good values for the bulk modulus and linear thermal expansion coefficients for these materials, excluding those that they are not parametrized for. Force fields developed specifically for MOFs including UFF4MOF, BTW-FF, and the DWES force field are also found to provide accurate values for these materials’ properties. While we find that each force field offers a moderately good picture of these properties, noticeable deviations can bemore » observed when looking at properties sensitive to framework vibrational modes. As a result, this observation is more pronounced upon the introduction of framework charges.« less

  17. Force-field prediction of materials properties in metal-organic frameworks

    DOE PAGES

    Boyd, Peter G.; Moosavi, Seyed Mohamad; Witman, Matthew; ...

    2016-12-23

    In this work, MOF bulk properties are evaluated and compared using several force fields on several well-studied MOFs, including IRMOF-1 (MOF-5), IRMOF-10, HKUST-1, and UiO-66. It is found that, surprisingly, UFF and DREIDING provide good values for the bulk modulus and linear thermal expansion coefficients for these materials, excluding those that they are not parametrized for. Force fields developed specifically for MOFs including UFF4MOF, BTW-FF, and the DWES force field are also found to provide accurate values for these materials’ properties. While we find that each force field offers a moderately good picture of these properties, noticeable deviations can bemore » observed when looking at properties sensitive to framework vibrational modes. As a result, this observation is more pronounced upon the introduction of framework charges.« less

  18. Plasmonic nanopatch array with integrated metal–organic framework for enhanced infrared absorption gas sensing

    DOE PAGES

    Chong, Xinyuan; Kim, Ki-joong; Zhang, Yujing; ...

    2017-06-06

    In this letter, we present a nanophotonic device consisting of plasmonic nanopatch array (NPA) with integrated metal–organic framework (MOF) for enhanced infrared absorption gas sensing. By designing a gold NPA on a sapphire substrate, we are able to achieve enhanced optical field that spatially overlaps with the MOF layer, which can adsorb carbon dioxide (CO 2) with high capacity. Additionally, experimental results show that this hybrid plasmonic–MOF device can effectively increase the infrared absorption path of on-chip gas sensors by more than 1100-fold. Lastly, the demonstration of infrared absorption spectroscopy of CO 2 using the hybrid plasmonic–MOF device proves amore » promising strategy for future on-chip gas sensing with ultra-compact size.« less

  19. Solvent-induced controllable synthesis, single-crystal to single-crystal transformation and encapsulation of Alq3 for modulated luminescence in (4,8)-connected metal-organic frameworks.

    PubMed

    Lan, Ya-Qian; Jiang, Hai-Long; Li, Shun-Li; Xu, Qiang

    2012-07-16

    In this work, for the first time, we have systematically demonstrated that solvent plays crucial roles in both controllable synthesis of metal-organic frameworks (MOFs) and their structural transformation process. With solvent as the only variable, five new MOFs with different structures have been constructed, in which one MOF undergoes solvent-induced single-crystal to single-crystal (SCSC) transformation that involves not only solvent exchange but also the cleavage and formation of coordination bonds. Particularly, a significant crystallographic change has been realized through an unprecedented three-step SCSC transformation process. Furthermore, we have demonstrated that the obtained MOF could be an excellent host for chromophores such as Alq3 for modulated luminescent properties.

  20. Controlled uptake and release of imatinib from ultrasound nanoparticles Cu3(BTC)2 metal-organic framework in comparison with bulk structure.

    PubMed

    Abbasi, Amir Reza; Rizvandi, Maryam; Azadbakht, Azadeh; Rostamnia, Sadegh

    2016-06-01

    The porosity of metal-organic frameworks (MOFs) is an important point concerning the possible use of such functional materials for different purposes. In this work, we study uptake and release properties of imatinib (IM) from nano Cu(II)-MOF in comparison with bulk Cu(II)-MOF. To explore the absorption ability of the Cu(II)-MOF to IM, fresh sample of Cu3(BTC)2 was immersed in an aqueous solution of IM and were monitored in real time with UV/vis spectroscopy. Results show that the adsorbed quantity of IM over nano Cu3(BTC)2 (I) is much higher than those over a bulk Cu3(BTC)2 (II). Copyright © 2016. Published by Elsevier Inc.

  1. Plasmonic nanopatch array with integrated metal–organic framework for enhanced infrared absorption gas sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chong, Xinyuan; Kim, Ki-joong; Zhang, Yujing

    In this letter, we present a nanophotonic device consisting of plasmonic nanopatch array (NPA) with integrated metal–organic framework (MOF) for enhanced infrared absorption gas sensing. By designing a gold NPA on a sapphire substrate, we are able to achieve enhanced optical field that spatially overlaps with the MOF layer, which can adsorb carbon dioxide (CO 2) with high capacity. Additionally, experimental results show that this hybrid plasmonic–MOF device can effectively increase the infrared absorption path of on-chip gas sensors by more than 1100-fold. Lastly, the demonstration of infrared absorption spectroscopy of CO 2 using the hybrid plasmonic–MOF device proves amore » promising strategy for future on-chip gas sensing with ultra-compact size.« less

  2. Vapor-Phase Deposition and Modification of Metal-Organic Frameworks: State-of-the-Art and Future Directions.

    PubMed

    Stassen, Ivo; De Vos, Dirk; Ameloot, Rob

    2016-10-04

    Materials processing, and thin-film deposition in particular, is decisive in the implementation of functional materials in industry and real-world applications. Vapor processing of materials plays a central role in manufacturing, especially in electronics. Metal-organic frameworks (MOFs) are a class of nanoporous crystalline materials on the brink of breakthrough in many application areas. Vapor deposition of MOF thin films will facilitate their implementation in micro- and nanofabrication research and industries. In addition, vapor-solid modification can be used for postsynthetic tailoring of MOF properties. In this context, we review the recent progress in vapor processing of MOFs, summarize the underpinning chemistry and principles, and highlight promising directions for future research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Encapsulation of Hemin in Metal-Organic Frameworks for Catalyzing the Chemiluminescence Reaction of the H2O2-Luminol System and Detecting Glucose in the Neutral Condition.

    PubMed

    Luo, Fenqiang; Lin, Yaolin; Zheng, Liyan; Lin, Xiaomei; Chi, Yuwu

    2015-06-03

    Novel metal-organic frameworks (MOFs) based solid catalysts have been synthesized by encapsulating Hemin into the HKUST-1 MOF materials. These have been first applied in the chemiluminescence field with outstanding performance. The functionalized MOFs not only maintain an excellent catalytic activity inheriting from Hemin but also can be cyclically utilized as solid mimic peroxidases in the neutral condition. The synthesized Hemin@HKUST-1 composites have been used to develop practical sensors for H2O2 and glucose with wide response ranges and low detection limits. It was envisioned that catalyst-functionalized MOFs for chemiluminescence sensing would have promising applications in green, selective, and sensitive detection of target analytes in the future.

  4. Water-Based Assembly of Polymer-Metal Organic Framework (MOF) Functional Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De, Souvik; Nandasiri, Manjula I.; Schaef, Herbert T.

    Metal organic frameworks (MOFs) have gained tremendous attention for their porosity, size selectivity, and structural diversity. There is a need for MOF-based coatings, particularly in applications such as separations, electronics and energy; yet forming thin, functional, conformal coatings is prohibitive because MOFs exist as a powder. Layer-by- layer assembly, a versatile thin film coating approach, offers a unique solution to this problem, but this approach requires MOFs that are water-dispersible and bear a surface charge. Here, we address these issues by examining water-based dispersions of MIL-101(Cr) that facilitate the formation of robust polymer-MOF hybrid coatings. Specifically, the substrate to bemore » coated is alternately exposed to an aqueous solution of poly(styrene sulfonate) and dispersion MIL-101(Cr), yielding linear film growth and coatings with a MOF content as high as 77 wt%.This approach is surface-agnostic, in which the coating is successfully applied to silicon, glass, flexible plastic, and even cotton fabric, conformally coating individual fibers. In contrast, prior attempts at forming MOF-coatings were severely limited to a handful of surfaces, required harsh chemical treatment, and were not conformal. The approach presented here unambiguously confirms that MOFs can be conformally coated onto complex and unusual surfaces, opening the door for a wide variety of applications.« less

  5. Tuning metal-carboxylate coordination in crystalline metal-organic frameworks through surfactant media

    NASA Astrophysics Data System (ADS)

    Gao, Junkuo; Ye, Kaiqi; He, Mi; Xiong, Wei-Wei; Cao, Wenfang; Lee, Zhi Yi; Wang, Yue; Wu, Tom; Huo, Fengwei; Liu, Xiaogang; Zhang, Qichun

    2013-10-01

    Although it has been widely demonstrated that surfactants can efficiently control the size, shape and surface properties of micro/nanocrystals of metal-organic frameworks (MOFs) due to the strong interactions between surfactants and crystal facets of MOFs, the use of surfactants as reaction media to grow MOF single crystals is unprecedented. In addition, compared with ionic liquids, surfactants are much cheaper and can have multifunctional properties such as acidic, basic, neutral, cationic, anionic, or even block. These factors strongly motivate us to develop a new synthetic strategy: growing crystalline MOFs in surfactants. In this report, eight new two-dimensional (2D) or three-dimensional (3D) MOFs have been successfully synthesized in an industrially-abundant and environmentally-friendly surfactant: polyethylene glycol-200 (PEG-200). Eight different coordination modes of carboxylates, ranging from monodentate η1 mode to tetra-donor coordination μ3-η1:η2:η1 mode, have been founded in our research. The magnetic properties of Co-based MOFs were investigated and MOF NTU-Z6b showed a phase transition with a Curie temperature (Tc) at 5 K. Our strategy of growing crystalline MOFs in surfactant could offer exciting opportunities for preparing novel MOFs with diverse structures and interesting properties.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkes, Marie V.; Sava Gallis, Dorina F.; Greathouse, Jeffery A.

    Computational screening of metal-organic framework (MOF) materials for selective oxygen adsorption from air could lead to new sorbents for the oxyfuel combustion process feedstock streams. A comprehensive study on the effect of MOF metal chemistry on gas binding energies in two common but structurally disparate metal-organic frameworks has been undertaken. Dispersion-corrected density functional theory methods were used to calculate the oxygen and nitrogen binding energies with each of fourteen metals, respectively, substituted into two MOF series, M 2(dobdc) and M 3(btc) 2. The accuracy of DFT methods was validated by comparing trends in binding energy with experimental gas sorption measurements.more » A periodic trend in oxygen binding energies was found, with greater oxygen binding energies for early transition-metal-substituted MOFs compared to late transition metal MOFs; this was independent of MOF structural type. The larger binding energies were associated with oxygen binding in a side-on configuration to the metal, with concomitant lengthening of the O-O bond. In contrast, nitrogen binding energies were similar across the transition metal series, regardless of both MOF structural type and metal identity. Altogether, these findings suggest that early transition metal MOFs are best suited to separating oxygen from nitrogen, and that the MOF structural type is less important than the metal identity.« less

  7. Liquid metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Gaillac, Romain; Pullumbi, Pluton; Beyer, Kevin A.; Chapman, Karena W.; Keen, David A.; Bennett, Thomas D.; Coudert, François-Xavier

    2017-11-01

    Metal-organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields, covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including `defective by design’ crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron pair distribution function experiments, and first-principles molecular dynamics simulations to study the melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.

  8. Liquid metal-organic frameworks.

    PubMed

    Gaillac, Romain; Pullumbi, Pluton; Beyer, Kevin A; Chapman, Karena W; Keen, David A; Bennett, Thomas D; Coudert, François-Xavier

    2017-11-01

    Metal-organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields, covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including 'defective by design' crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron pair distribution function experiments, and first-principles molecular dynamics simulations to study the melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.

  9. Liquid metal–organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaillac, Romain; Pullumbi, Pluton; Beyer, Kevin A.

    Metal–organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields, covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including ‘defective by design’ crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron pair distribution function experiments, and first-principles molecular dynamics simulations to study themore » melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.« less

  10. Porous Hydrogen-Bonded Organic Frameworks.

    PubMed

    Han, Yi-Fei; Yuan, Ying-Xue; Wang, Hong-Bo

    2017-02-13

    Ordered porous solid-state architectures constructed via non-covalent supramolecular self-assembly have attracted increasing interest due to their unique advantages and potential applications. Porous metal-coordination organic frameworks (MOFs) are generated by the assembly of metal coordination centers and organic linkers. Compared to MOFs, porous hydrogen-bonded organic frameworks (HOFs) are readily purified and recovered via simple recrystallization. However, due to lacking of sufficiently ability to orientate self-aggregation of building motifs in predictable manners, rational design and preparation of porous HOFs are still challenging. Herein, we summarize recent developments about porous HOFs and attempt to gain deeper insights into the design strategies of basic building motifs.

  11. Synthesis, structural characterization and selectively catalytic properties of metal-organic frameworks with nano-sized channels: A modular design strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu Lingguang; Gu Lina; Hu Gang

    2009-03-15

    Modular design method for designing and synthesizing microporous metal-organic frameworks (MOFs) with selective catalytical activity was described. MOFs with both nano-sized channels and potential catalytic activities could be obtained through self-assembly of a framework unit and a catalyst unit. By selecting hexaaquo metal complexes and the ligand BTC (BTC=1,3,5-benzenetricarboxylate) as framework-building blocks and using the metal complex [M(phen){sub 2}(H{sub 2}O){sub 2}]{sup 2+} (phen=1,10-phenanthroline) as a catalyst unit, a series of supramolecular MOFs 1-7 with three-dimensional nano-sized channels, i.e. [M{sup 1}(H{sub 2}O){sub 6}].[M{sup 2}(phen){sub 2}(H{sub 2}O){sub 2}]{sub 2}.2(BTC).xH{sub 2}O (M{sup 1}, M{sup 2}=Co(II), Ni(II), Cu(II), Zn(II), or Mn(II), phen=1,10-phenanthroline, BTC=1,3,5-benzenetricarboxylate, x=22-24),more » were synthesized through self-assembly, and their structures were characterized by IR, elemental analysis, and single-crystal X-ray diffraction. These supramolecular microporous MOFs showed significant size and shape selectivity in the catalyzed oxidation of phenols, which is due to catalytic reactions taking place in the channels of the framework. Design strategy, synthesis, and self-assembly mechanism for the construction of these porous MOFs were discussed. - Grapical abstract: A modular design strategy has been developed to synthesize microporous metal-organic frameworks with potential catalytic activity by self-assembly of the framework-building blocks and the catalyst unit.« less

  12. Gaseous species as reaction tracers in the solvothermal synthesis of the zinc oxide terephthalate MOF-5.

    PubMed

    Hausdorf, Steffen; Baitalow, Felix; Seidel, Jürgen; Mertens, Florian O R L

    2007-05-24

    Gaseous species emitted during the zinc oxide/zinc hydroxide 1,4-benzenedicarboxylate metal organic framework synthesis (MOF-5, MOF-69c) have been used to investigate the reaction scheme that leads to the framework creation. Changes of the gas-phase composition over time indicate that the decomposition of the solvent diethylformamide occurs at least via two competing reaction pathways that can be linked to the reaction's overall water and pH management. From isotope exchange experiments, we deduce that one of the decomposition pathways leads to the removal of water from the reaction mixture, which sets the conditions when the synthesis of an oxide-based (MOF-5) instead of an hydroxide-based MOF (MOF-69c) occurs. A quantitative account of most reactants and byproducts before and after the MOF-5/MOF-69c synthesis is presented. From the investigation of the reaction intermediates and byproducts, we derive a proposal of a basic reaction scheme for the standard synthesis zinc oxide carboxylate MOFs.

  13. Photocatalytic degradation of organic dyes by a stable and biocompatible Zn(II) MOF having ferulic acid: Experimental findings and theoretical correlation

    NASA Astrophysics Data System (ADS)

    Zhou, En-Hong; Li, Bao-Hong; Chen, Wei-Xin; Luo, Zhidong; Liu, Jianqiang; Singh, Amita; Kumar, Abhinav; Jin, Jun-Cheng

    2017-12-01

    The photocatalytic properties of d10-based metal-organic frameworks (MOFs) have been developed as a potential technology in the photo-degradation of organic dyes. Herein, a biocompatible metal-organic framework (MOF) {[Zn2(fer)2]•0.5H2O}n (1) (fer = ferulic acid) has been selected which shows photocatalytic activity for the degradation of methyl violet (MV) and Rhodamine B (Rh B) in aqueous solution under UV irradiation. The photocatalytic results indicated the 1 exhibit 88% photocatalytic efficiency against Rh B in 100 min, while its against MV was only 54% under the identical experimental conditions. Moreover, a possible mechanism for the photocatalytic activity has proposed by density of states (DOS) calculations.

  14. Surfactant-thermal method to prepare two new cobalt metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Yu, Xianglin; Toh, Yong Siang; Zhao, Jun; Nie, Lina; Ye, Kaiqi; Wang, Yue; Li, Dongsheng; Zhang, Qichun

    2015-12-01

    Employing surfactants as reaction media, two new metal-organic frameworks (MOFs):(HTEA)3[Co3(BTC)3] (NTU-Z33) and (HTEA)[Co3(HBTC)2(BTC)] (NTU-Z34) (H3BTC=1,3,5-benzenetricarboxylic acid, TEA=trimethylamine, and NTU=Nanyang Technological University), have been successfully synthesized and fully characterized. Note that NTU-Z33 has an unusual trimeric [Co3(COO)9] secondary building unit (SBU). Magnetic characterization suggests that both compounds have weak antiferromagnetic behaviors. Our success in preparing new crystalline Co-BTC based MOFs under different surfactant media could provide a new road to prepare new diverse MOFs through various combinations of surfactants.

  15. A force field for dynamic Cu-BTC metal-organic framework.

    PubMed

    Zhao, Lei; Yang, Qingyuan; Ma, Qintian; Zhong, Chongli; Mi, Jianguo; Liu, Dahuan

    2011-02-01

    A new force field that can describe the flexibility of Cu-BTC metal-organic framework (MOF) was developed in this work. Part of the parameters were obtained using density functional theory calculations, and the others were taken from other force fields. The new force field could reproduce well the experimental crystal structure, negative thermal expansion, vibrational properties as well as adsorption behavior in Cu-BTC. In addition, the bulk modulus of Cu-BTC was predicted using the new force field. We believe the new force field is useful in understanding the structure-property relationships for MOFs, and the approach can be extended to other MOFs.

  16. In situ-generated metal oxide catalyst during CO oxidation reaction transformed from redox-active metal-organic framework-supported palladium nanoparticles

    PubMed Central

    2012-01-01

    The preparation of redox-active metal-organic framework (ra-MOF)-supported Pd nanoparticles (NPs) via the redox couple-driven method is reported, which can yield unprotected metallic NPs at room temperature within 10 min without the use of reducing agents. The Pd@ra-MOF has been exploited as a precursor of an active catalyst for CO oxidation. Under the CO oxidation reaction condition, Pd@ra-MOF is transformed into a PdOx-NiOy/C nanocomposite to generate catalytically active species in situ, and the resultant nanocatalyst shows sustainable activity through synergistic stabilization. PMID:22898143

  17. UiO-66-Type Metal-Organic Framework with Free Carboxylic Acid: Versatile Adsorbents via H-bond for Both Aqueous and Nonaqueous Phases.

    PubMed

    Song, Ji Yoon; Ahmed, Imteaz; Seo, Pill Won; Jhung, Sung Hwa

    2016-10-03

    The metal-organic framework (MOF) UiO-66 was synthesized in one step from zirconium chloride and isophthalic acid (IPA), together with the usual link material, terephthalic acid (TPA). UiO-66 with free -COOH can be obtained in a facile way by replacing up to 30% of the TPA with IPA. However, the chemical and thermal stability of the synthesized MOFs decreased with increasing IPA content used in the syntheses, suggesting an increase in the population of imperfect bonds in the MOFs because of the asymmetrical structure of IPA. The obtained MOFs with free -COOH were applied in liquid-phase adsorptions from both water and model fuel to not only estimate the potential applications but also confirm the presence of -COOH in the MOFs. The adsorbed amounts of several organics (triclosan and oxybenzone from water and indole and pyrrole from fuel) increased monotonously with increasing IPA content applied in MOF synthesis (or -COOH in the MOFs). The favorable contribution of free -COOH to adsorption can be explained by H-bonding, and the direction of H-bonds (adsorbates: H donor; MOFs: H acceptor) was confirmed by the adsorption of oxybenzone in a wide pH range. The versatile applications of the MOFs with -COOH in adsorptions from both polar and nonpolar phases are remarkable considering that hydrophobic and hydrophilic adsorbents are generally required for water and fuel purification, respectively. Finally, the presence of free -COOH in the MOFs was confirmed by liquid-phase adsorptions together with general Fourier transform infrared analyses and decreased chemical and thermal stability.

  18. Thermodynamics of metal-organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Di; Navrotsky, Alexandra, E-mail: anavrotsky@ucdavis.edu

    Although there have been extensive studies over the past decade in the synthesis and application of metal-organic frameworks (MOFs), investigation of their thermodynamic stability and of the energetics of guest–host interactions has been much more limited. This review summarizes recent progress in experimental (calorimetric) determination of the thermodynamics of MOF materials. The enthalpies of MOFs relative to dense phase assemblages suggest only modest metastability, with a general increase of enthalpy with increasing molar volume, which becomes less pronounced at higher porosity. The energy landscape of nanoporous materials (inorganic and hybrid) consists of a pair of parallel patterns within a fairlymore » narrow range of metastability of 5–30 kJ per mole of tetrahedra in zeolites and mesoporous silicas or per mole of metal in MOFs. Thus strong thermodynamic instability does not seem to limit framework formation. There are strong interactions within the chemisorption range for small molecule–MOF interactions with defined chemical binding at the metal centers or other specific locations. Coexistence of surface binding and confinement can lead to much stronger guest–host interactions. - Graphical abstract: Energy landscape of inorganic and hybrid porous materials. - Highlights: • Thermochemical data on various MOF structures were experimentally determined. • MOFs are moderately unstable relative to their dense phase assemblage. • Overall energetic landscape of porous materials was revealed. • Guest–host interactions in MOFs were evaluated directly using calorimetry. • Confinement effect and defined chemical binding lead to strong interactions.« less

  19. High conductive, long-term durable, anhydrous proton conductive solid-state electrolyte based on a metal-organic framework impregnated with binary ionic liquids: Synthesis, characteristic and effect of anion

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Han, Shu-Yan; Liu, Rui-Heng; Chen, Teng-Fei; Bi, Kai-Lun; Liang, Jian-Bo; Deng, Yu-Heng; Wan, Chong-Qing

    2018-02-01

    Incorporating ionic liquids (abbreviated as ILs) into porous metal-organic framework (MOF) to obtain ILs@MOF nanocomposites is documented as a feasible method to achieve new type of anhydrous proton conductor with high performance. We newly synthesized a series of ILs with different acid counter anions (R-SO3-) and their ILs@MOF hybrid materials, i.e. SA-EIMS@MIL-101, MSA-EIMS@MIL-101 and PTSA-EIMS@MIL-101 (SA = sulfate acid, MSA = methanesulfonate acid, PTSA = p-toluenesulfonate acid, EIMS = 1-(1-ethyl-3-imidazolium)propane-3-sulfonate). Such hybrid materials displayed as anhydrous proton conduction with long-term durability even heated at 150 °C open to air. σ value of SA-EIMS@MIL-101 is up to 1.89 × 10-3 S cm-1, being in the range of the most conductive MOF-based materials. MOF support exhibited favorable proton transport and long-term retention for ILs. Anion volumes of R-SO3- displayed significant effects on the proton conductivity of such hybrid ILs@MOF materials. The smaller the van der Waals volume of R-SO3- is, the higher the conductivity of ILs@MOF is. This work suggests that the combination of a variety of the incorporated ILs and a MOF framework would afford high proton transport and gives an idea to explore the safe, anhydrous, solid-state electrolyte for high temperature proton exchange membrane fuel cell.

  20. Facile growth of a single-crystal pattern: a case study of HKUST-1.

    PubMed

    Li, Shaozhou; Lu, Guang; Huang, Xiao; Li, Hai; Sun, Yinghui; Zhang, Hua; Chen, Xiaodong; Huo, Fengwei

    2012-12-18

    In order to fabricate metal-organic framework (MOF) based devices, it is desirable to precisely position high-quality and mono-sized MOF crystals on supports. In this work, we demonstrate a facile solution procedure for the fabrication of oriented and monodispersed single-crystal MOF pattern. We expect that such capability will expand the scope of applications of MOFs to advanced fields.

  1. Controllable Syntheses of MOF-Derived Materials.

    PubMed

    Zou, Kang-Yu; Li, Zuo-Xi

    2018-05-02

    Metal-organic frameworks (MOFs), as an important kind of porous inorganic-organic hybrid materials with inherent outstanding physicochemistry characteristics, can be widely applied as versatile precursors for the facile preparation of functional MOF-derived materials. However, there are plenty of sophisticated factors during the synthetic process, which is far from reaching the goal of effectively controlling the nature of MOF-derived materials (such as the composition, morphology and surface area). Therefore, it is urgently necessary to develop regular protocols and concepts for controllable syntheses of MOF-derived materials. In this minireview, we mainly summarize and analyze complicated factors in the fabrication of MOF-derived materials according to recently reported literatures, and this provides a new insight into the rational design and syntheses of MOF-derived materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Cobalt- and Cadmium-Based Metal-Organic Frameworks as High-Performance Anodes for Sodium Ion Batteries and Lithium Ion Batteries.

    PubMed

    Dong, Caifu; Xu, Liqiang

    2017-03-01

    Two multifunctional metal-organic frameworks (MOFs) with the same coordination mode, [Co(L)(H 2 O)] n ·2nH 2 O [defined as "Co(L) MOF"] and [Cd(L)(H 2 O)] n ·2nH 2 O [defined as "Cd(L) MOF"] (L = 5-aminoisophthalic acid) have been fabricated via a simple and versatile scalable solvothermal approach at 85 °C for 24 h. The relationship between the structure of the electrode materials (especially the coordination water and different metal ions) and the electrochemical properties of MOFs have been investigated for the first time. And then the possible electrochemical mechanisms of the electrodes have been studied and proposed. In addition, MOFs/RGO hybrid materials were prepared via ball milling, which demonstrated better electrochemical performances than those of individual Co(L) MOF and Cd(L) MOF. For example, when Co(L) MOF/RGO was applied as anode for sodium ion batteries (SIBs), it retained 206 mA h g -1 after 330 cycles at 500 mA g -1 and 1185 mA h g -1 could be obtained after 50 cycles at 100 mA g -1 for lithium-ion batteries (LIBs). The high-discharge capacity, excellent cyclic stability combined with the facile synthesis procedure enable Co(L) MOF- and Cd(L) MOF-based materials to be prospective anode materials for SIBs and LIBs.

  3. Synthesis and Electrospraying of Nanoscale MOF (Metal Organic Framework) for High-Performance CO2 Adsorption Membrane

    NASA Astrophysics Data System (ADS)

    Wahiduzzaman; Allmond, Kelsey; Stone, John; Harp, Spencer; Mujibur, Khan

    2017-01-01

    We report the sonochemical synthesis of MOF (metal organic framework) nanoparticles of 30-200 nm in size and electrospraying of those particles on electrospun nanofibers to process a MOF-attached nanofibrous membrane. This membrane displayed significant selectivity towards CO2 and capacity of adsorbing with 4000-5000 ppm difference from a mixed gas flow of 1% CO2 and 99% N2. Applying ultrasonic waves during the MOF synthesis offered rapid dispersion and formation of crystalline MOF nanoparticles in room temperature. The MOF nanoparticles of 100-200 nm in size displayed higher surface area and adsorption capacity comparing to that of 30-60 nm in size. Nanofibrous membrane was produced by electrospinning of MOF blended PAN solution followed by electrospraying of additional MOF nanoparticles. This yielded uniform MOF deposition on nanofibers, occurred due to electrostatic attraction between highly charged nanoparticles and conductive nanofibers. A test bench for real-time CO2 adsorption at room temperature was built with non-dispersive Infrared (NDIR) CO2 sensors. Comparative tests were performed on the membrane to investigate its enhanced adsorption capacity. Three layers of the as-produced membranes displayed CO2 adsorption for approximately 2 h. Thermogravimetric analysis (TGA) of the membrane showed the thermal stability of the MOF and PAN up to 290 and 425 °C, respectively.

  4. Effect of metal in M 3(btc) 2 and M 2(dobdc) MOFs for O 2/N 2 separations: A combined density functional theory and experimental study

    DOE PAGES

    Parkes, Marie V.; Sava Gallis, Dorina F.; Greathouse, Jeffery A.; ...

    2015-03-02

    Computational screening of metal-organic framework (MOF) materials for selective oxygen adsorption from air could lead to new sorbents for the oxyfuel combustion process feedstock streams. A comprehensive study on the effect of MOF metal chemistry on gas binding energies in two common but structurally disparate metal-organic frameworks has been undertaken. Dispersion-corrected density functional theory methods were used to calculate the oxygen and nitrogen binding energies with each of fourteen metals, respectively, substituted into two MOF series, M 2(dobdc) and M 3(btc) 2. The accuracy of DFT methods was validated by comparing trends in binding energy with experimental gas sorption measurements.more » A periodic trend in oxygen binding energies was found, with greater oxygen binding energies for early transition-metal-substituted MOFs compared to late transition metal MOFs; this was independent of MOF structural type. The larger binding energies were associated with oxygen binding in a side-on configuration to the metal, with concomitant lengthening of the O-O bond. In contrast, nitrogen binding energies were similar across the transition metal series, regardless of both MOF structural type and metal identity. Altogether, these findings suggest that early transition metal MOFs are best suited to separating oxygen from nitrogen, and that the MOF structural type is less important than the metal identity.« less

  5. Synthesis and Electrospraying of Nanoscale MOF (Metal Organic Framework) for High-Performance CO2 Adsorption Membrane.

    PubMed

    Wahiduzzaman; Allmond, Kelsey; Stone, John; Harp, Spencer; Mujibur, Khan

    2017-12-01

    We report the sonochemical synthesis of MOF (metal organic framework) nanoparticles of 30-200 nm in size and electrospraying of those particles on electrospun nanofibers to process a MOF-attached nanofibrous membrane. This membrane displayed significant selectivity towards CO 2 and capacity of adsorbing with 4000-5000 ppm difference from a mixed gas flow of 1% CO 2 and 99% N 2 . Applying ultrasonic waves during the MOF synthesis offered rapid dispersion and formation of crystalline MOF nanoparticles in room temperature. The MOF nanoparticles of 100-200 nm in size displayed higher surface area and adsorption capacity comparing to that of 30-60 nm in size. Nanofibrous membrane was produced by electrospinning of MOF blended PAN solution followed by electrospraying of additional MOF nanoparticles. This yielded uniform MOF deposition on nanofibers, occurred due to electrostatic attraction between highly charged nanoparticles and conductive nanofibers. A test bench for real-time CO 2 adsorption at room temperature was built with non-dispersive Infrared (NDIR) CO 2 sensors. Comparative tests were performed on the membrane to investigate its enhanced adsorption capacity. Three layers of the as-produced membranes displayed CO 2 adsorption for approximately 2 h. Thermogravimetric analysis (TGA) of the membrane showed the thermal stability of the MOF and PAN up to 290 and 425 °C, respectively.

  6. The Organic Secondary Building Unit: Strong Intermolecular π Interactions Define Topology in MIT-25, a Mesoporous MOF with Proton-Replete Channels.

    PubMed

    Park, Sarah S; Hendon, Christopher H; Fielding, Alistair J; Walsh, Aron; O'Keeffe, Michael; Dincă, Mircea

    2017-03-15

    The structure-directing role of the inorganic secondary building unit (SBU) is key for determining the topology of metal-organic frameworks (MOFs). Here we show that organic building units relying on strong π interactions that are energetically competitive with the formation of common inorganic SBUs can also play a role in defining the topology. We demonstrate the importance of the organic SBU in the formation of Mg 2 H 6 (H 3 O)(TTFTB) 3 (MIT-25), a mesoporous MOF with the new ssp topology. A delocalized electronic hole is critical in the stabilization of the TTF triad organic SBUs and exemplifies a design principle for future MOF synthesis.

  7. Nanoarchitectures for Metal-Organic Framework-Derived Nanoporous Carbons toward Supercapacitor Applications.

    PubMed

    Salunkhe, Rahul R; Kaneti, Yusuf Valentino; Kim, Jeonghun; Kim, Jung Ho; Yamauchi, Yusuke

    2016-12-20

    The future advances of supercapacitors depend on the development of novel carbon materials with optimized porous structures, high surface area, high conductivity, and high electrochemical stability. Traditionally, nanoporous carbons (NPCs) have been prepared by a variety of methods, such as templated synthesis, carbonization of polymer precursors, physical and chemical activation, etc. Inorganic solid materials such as mesoporous silica and zeolites have been successfully utilized as templates to prepare NPCs. However, the hard-templating methods typically involve several synthetic steps, such as preparation of the original templates, formation of carbon frameworks, and removal of the original templates. Therefore, these methods are not favorable for large-scale production. Metal-organic frameworks (MOFs) with high surface areas and large pore volumes have been studied over the years, and recently, enormous efforts have been made to utilize MOFs for electrochemical applications. However, their low conductivity and poor stability still present major challenges toward their practical applications in supercapacitors. MOFs can be used as precursors for the preparation of NPCs with high porosity. Their parent MOFs can be prepared with endless combinations of organic and inorganic constituents by simple coordination chemistry, and it is possible to control their porous architectures, pore volumes, surface areas, etc. These unique properties of MOF-derived NPCs make them highly attractive for many technological applications. Compared with carbonaceous materials prepared using conventional precursors, MOF-derived carbons have significant advantages in terms of a simple synthesis with inherent diversity affording precise control over porous architectures, pore volumes, and surface areas. In this Account, we will summarize our recent research developments on the preparation of three-dimensional (3-D) MOF-derived carbons for supercapacitor applications. This Account will be divided into three main sections: (1) useful background on carbon materials for supercapacitor applications, (2) the importance of MOF-derived carbons, and (3) potential future developments of MOF-derived carbons for supercapacitors. This Account focuses mostly on carbons derived from two types of MOFs, namely, zeolite imidazolate framework-8 (ZIF-8) and ZIF-67. By using examples from our previous works, we will show the uniqueness of these carbons for achieving high performance by control of the chemical reactions/conditions as well proper utilization in asymmetric/symmetric supercapacitor configurations. This Account will promote further developments of MOF-derived multifunctional carbon materials with controlled porous architectures for optimization of their electrochemical performance toward supercapacitor applications.

  8. Gas adsorption properties of highly porous metal-organic frameworks containing functionalized naphthalene dicarboxylate linkers.

    PubMed

    Sim, Jaeung; Yim, Haneul; Ko, Nakeun; Choi, Sang Beom; Oh, Youjin; Park, Hye Jeong; Park, SangYoun; Kim, Jaheon

    2014-12-28

    Three functionalized metal-organic frameworks (MOFs), MOF-205-NH2, MOF-205-NO2, and MOF-205-OBn, formulated as Zn4O(BTB)4/3(L), where BTB is benzene-1,3,5-tribenzoate and L is 1-aminonaphthalene-3,7-dicarboxylate (NDC-NH2), 1-nitronaphthalene-3,7-dicarboxylate (NDC-NO2) or 1,5-dibenzyloxy-2,6-naphthalenedicarboxylate (NDC-(OBn)2), were synthesized and their gas (H2, CO2, or CH4) adsorption properties were compared to those of the un-functionalized, parent MOF-205. Ordered structural models for MOF-205 and its derivatives were built based on the crystal structures and were subsequently used for predicting porosity properties. Although the Brunauer-Emmett-Teller (BET) surface areas of the three MOF-205 derivatives were reduced (MOF-205, 4460; MOF-205-NH2, 4330; MOF-205-NO2, 3980; MOF-205-OBn, 3470 m(2) g(-1)), all three derivatives were shown to have enhanced H2 adsorption capacities at 77 K and CO2 uptakes at 253, 273, and 298 K respectively at 1 bar in comparison with MOF-205. The results indicate the following trend in H2 adsorption: MOF-205 < MOF-205-NO2 < MOF-205-NH2 < MOF-205-OBn. MOF-205-OBn showed good ideal adsorbed solution theory (IAST) selectivity values of 6.5 for CO2/N2 (15/85 in v/v) and 2.7 for CO2/CH4 (50/50 in v/v) at 298 K. Despite the large reduction (-22%) in the surface area, MOF-205-OBn displayed comparable total volumetric CO2 (at 48 bar) and CH4 (at 35 bar) storage capacities with those of MOF-205 at 298 K: MOF-205-OBn, 305 (CO2) and 112 (CH4) cm(3) cm(-3), and for MOF-205, 307 (CO2) and 120 (CH4) cm(3) cm(-3), respectively.

  9. Metal-organic frameworks for Xe/Kr separation

    DOEpatents

    Ryan, Patrick J.; Farha, Omar K.; Broadbelt, Linda J.; Snurr, Randall Q.; Bae, Youn-Sang

    2014-07-22

    Metal-organic framework (MOF) materials are provided and are selectively adsorbent to xenon (Xe) over another noble gas such as krypton (Kr) and/or argon (Ar) as a result of having framework voids (pores) sized to this end. MOF materials having pores that are capable of accommodating a Xe atom but have a small enough pore size to receive no more than one Xe atom are desired to preferentially adsorb Xe over Kr in a multi-component (Xe--Kr mixture) adsorption method. The MOF material has 20% or more, preferably 40% or more, of the total pore volume in a pore size range of 0.45-0.75 nm which can selectively adsorb Xe over Kr in a multi-component Xe--Kr mixture over a pressure range of 0.01 to 1.0 MPa.

  10. Metal-organic frameworks for Xe/Kr separation

    DOEpatents

    Ryan, Patrick J.; Farha, Omar K.; Broadbelt, Linda J.; Snurr, Randall Q.; Bae, Youn-Sang

    2013-08-27

    Metal-organic framework (MOF) materials are provided and are selectively adsorbent to xenon (Xe) over another noble gas such as krypton (Kr) and/or argon (Ar) as a result of having framework voids (pores) sized to this end. MOF materials having pores that are capable of accommodating a Xe atom but have a small enough pore size to receive no more than one Xe atom are desired to preferentially adsorb Xe over Kr in a multi-component (Xe--Kr mixture) adsorption method. The MOF material has 20% or more, preferably 40% or more, of the total pore volume in a pore size range of 0.45-0.75 nm which can selectively adsorb Xe over Kr in a multi-component Xe--Kr mixture over a pressure range of 0.01 to 1.0 MPa.

  11. Metal-Organic Framework (MOF) Nanorods, Nanotubes, and Nanowires.

    PubMed

    Arbulu, Roberto C; Jiang, Ying-Bing; Peterson, Eric J; Qin, Yang

    2018-05-14

    New mechanisms for the controlled growth of one-dimensional (1D) metal-organic framework (MOF) nano- and superstructures under size-confinement and surface-directing effects have been discovered. Through applying interfacial synthesis templated by track-etched polycarbonate (PCTE) membranes, congruent polycrystalline zeolitic imidazolate framework-8 (ZIF-8) solid nanorods and hollow nanotubes were found to form within 100 nm membrane pores, while single crystalline ZIF-8 nanowires grew inside 30 nm pores, all of which possess large aspect ratios up to 60 and show preferential crystal orientation with the {100} planes aligned parallel to the long axis of the pore. Our findings provide a generalizable method for controlling size, morphology, and lattice orientation of MOF nanomaterials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The concept of mixed organic ligands in metal-organic frameworks: design, tuning and functions.

    PubMed

    Yin, Zheng; Zhou, Yan-Ling; Zeng, Ming-Hua; Kurmoo, Mohamedally

    2015-03-28

    The research on metal-organic frameworks (MOFs) has been developing at an extraordinary pace in its two decades of existence, as judged by the exponential growth of novel structures and the constant expansion of its applicability and research scope. A major part of the research and its success are due to the vital role of the concept of mixed organic ligands in the design, tuning and functions. This perspective, therefore, reviews the recent advances in MOFs based on this concept, which is generally based on employing a small polydentate ligand (here labelled as "nodal ligand") to form either clusters, rods or layers, which are then connected by a second ditopic linker ligand to form the framework. The structures of the materials can be grouped into the following three categories: layer-spacer (usually known as pillared-layer), rod-spacer, and cluster-spacer based MOFs. Depending on the size and geometry of the spacer ligands, interpenetrations of frameworks are occasionally found. These MOFs show a wide range of properties such as (a) crystal-to-crystal transformations upon solvent modifications, post-synthetic metal exchange or ligand reactions, (b) gas sorption, solvent selectivity and purification, (c) specific catalysis, (d) optical properties including colour change, luminescence, non-linear optic, (e) short- and long range magnetic ordering, metamagnetism and reversible ground-state modifications and (f) drug and iodine carriers with controlled release. In the following, we will highlight the importance of the above concept in the design, tuning, and functions of a selection of existing MOFs having mixed organic ligands and their associated structures and properties. The results obtained so far using this concept look very promising for fine-tuning the pore size and shape for selective adsorption and specificity in catalytic reactions, which appears to be one way to propel the advances in the application and commercialization of MOFs.

  13. Ethene/ethane and propene/propane separation via the olefin and paraffin selective metal-organic framework adsorbents CPO-27 and ZIF-8.

    PubMed

    Böhme, Ulrike; Barth, Benjamin; Paula, Carolin; Kuhnt, Andreas; Schwieger, Wilhelm; Mundstock, Alexander; Caro, Jürgen; Hartmann, Martin

    2013-07-09

    Two types of metal-organic frameworks (MOFs) have been synthesized and evaluated in the separation of C2 and C3 olefins and paraffins. Whereas Co2(dhtp) (=Co-CPO-27 = Co-MOF-74) and Mg2(dhtp) show an adsorption selectivity for the olefins ethene and propene over the paraffins ethane and propane, the zeolitic imidazolate framework ZIF-8 behaves in the opposite way and preferentially adsorbs the alkane. Consequently, in breakthrough experiments, the olefins or paraffins, respectively, can be separated.

  14. Heterobimetallic Metal–Organic Framework as a Precursor to Prepare a Nickel/Nanoporous Carbon Composite Catalyst for 4-Nitrophenol Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ying; Zhang, Ying; Sun, Cheng Jun

    2014-11-01

    Nickel/nanoporous carbon (Ni/NPC) composites are facilely prepared by direct pyrolysis of nonporous heterobimetallic zinc-nickel-terephthalate frameworks (Zn1-xNixMOF, x approximate to 0-1, MOF= metal-organic framework) at 1223 K in situ. Tailoring the Ni/Zn ratio creates densely populated and small Ni nanocrystals (Ni NCs) while maintaining sufficient porosity and surface area in the final product, which exhibits the largest activity factor (9.2 s(-1)g(-1)) and excellent stability toward 4-nitrophenol reduction.

  15. Configurations, band structures and photocurrent responses of 4-(4-oxopyridin-1(4H)-yl)phthalic acid and its metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Yan, Xingxiu; Qiu, Xiandeng; Yan, Zhishuo; Li, Hongjiang; Gong, Yun; Lin, Jianhua

    2016-05-01

    4-(4-oxopyridin-1(4 H)-yl)phthalic acid (H2L) and three H2L-based metal-organic frameworks (MOFs) formulated as ZnL(DPE)(H2O)·H2O (DPE=(E)-1, 2-di(pyridine -4-yl)ethene) (1), CdL(H2O)2 (2) and CdL (3) were synthesized and structurally characterized by single-crystal X-ray diffraction. The free H2L ligand shows an enol-form and the L2- ligand in the three MOFs exists as the keto-form. Density functional theory (DFT) calculations indicate H2L and the three MOFs possess different band structures. Due to the existence of the N-donor, DPE in MOF 1, the conduction band (CB) minimum and band gap of MOF 1 are much lower than those of H2L. And MOF 1 yielded much larger photocurrent density than H2L upon visible light illumination. Electrochemical impedance spectroscopy (EIS) shows the interfacial charge transfer impedance in the presence of MOF 1 is lower than that in the presence of H2L. The hydrous MOF 2 and the anhydrous MOF 3 are both constructed by Cd(II) and L2-, and they can be reversibly transformed to each other. However, MOFs 2 and 3 possess different CB minimums and VB maximums, and their band gaps are much larger than that of MOF 1.

  16. Luminescent Lanthanide MOFs: A Unique Platform for Chemical Sensing

    PubMed Central

    Zhao, Shu-Na; Wang, Guangbo

    2018-01-01

    In recent years, lanthanide metal–organic frameworks (LnMOFs) have developed to be an interesting subclass of MOFs. The combination of the characteristic luminescent properties of Ln ions with the intriguing topological structures of MOFs opens up promising possibilities for the design of LnMOF-based chemical sensors. In this review, we present the most recent developments of LnMOFs as chemical sensors by briefly introducing the general luminescence features of LnMOFs, followed by a comprehensive investigation of the applications of LnMOF sensors for cations, anions, small molecules, nitroaromatic explosives, gases, vapors, pH, and temperature, as well as biomolecules. PMID:29642458

  17. Complex Nanostructures from Materials based on Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion.

    PubMed

    Guan, Bu Yuan; Yu, Xin Yao; Wu, Hao Bin; Lou, Xiong Wen David

    2017-12-01

    Metal-organic frameworks (MOFs) have drawn tremendous attention because of their abundant diversity in structure and composition. Recently, there has been growing research interest in deriving advanced nanomaterials with complex architectures and tailored chemical compositions from MOF-based precursors for electrochemical energy storage and conversion. Here, a comprehensive overview of the synthesis and energy-related applications of complex nanostructures derived from MOF-based precursors is provided. After a brief summary of synthetic methods of MOF-based templates and their conversion to desirable nanostructures, delicate designs and preparation of complex architectures from MOFs or their composites are described in detail, including porous structures, single-shelled hollow structures, and multishelled hollow structures, as well as other unusual complex structures. Afterward, their applications are discussed as electrode materials or catalysts for lithium-ion batteries, hybrid supercapacitors, water-splitting devices, and fuel cells. Lastly, the research challenges and possible development directions of complex nanostructures derived from MOF-based-templates for electrochemical energy storage and conversion applications are outlined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effective Recovery of Vanadium from Oil Refinery Waste into Vanadium-Based Metal-Organic Frameworks.

    PubMed

    Zhan, Guowu; Ng, Wei Cheng; Lin, Wenlin Yvonne; Koh, Shin Nuo; Wang, Chi-Hwa

    2018-03-06

    Carbon black waste, an oil refinery waste, contains a high concentration of vanadium(V) leftover from the processing of crude oil. For the sake of environmental sustainability, it is therefore of interest to recover the vanadium as useful products instead of disposing of it. In this work, V was recovered in the form of vanadium-based metal-organic frameworks (V-MOFs) via a novel pathway by using the leaching solution of carbon black waste instead of commercially available vanadium chemicals. Two different types of V-MOFs with high levels of crystallinity and phase purity were fabricated in very high yields (>98%) based on a coordination modulation method. The V-MOFs exhibited well-defined and controlled shapes such as nanofibers (length: > 10 μm) and nanorods (length: ∼270 nm). Furthermore, the V-MOFs showed high catalytic activities for the oxidation of benzyl alcohol to benzaldehyde, indicating the strong potential of the waste-derived V-MOFs in catalysis applications. Overall, our work offers a green synthesis pathway for the preparation of V-MOFs by using heavy metals of industrial waste as the metal source.

  19. Alternative synthetic approaches for metal-organic frameworks: transformation from solid matters.

    PubMed

    Zhan, Guowu; Zeng, Hua Chun

    2016-12-20

    Developing economic and sustainable synthetic strategies for metal-organic frameworks (MOFs) is imperative for promoting MOF materials into large scale industrial use. Very recently, an alternative strategy for MOF synthesis by using solvent-insoluble "solid matters" as cation reservoirs and/or templates has been developed to accomplish this goal, in which the solid matters often refer to metals, metal oxides, hydroxides, carbonates, and so forth, but excluding the soluble metal salts which have been prevailingly used in MOF synthesis. Although most of the pioneering activities in this field have just started in the past 5 years, remarkable achievements have been made covering the synthesis, functionalization, positioning, and applications. A great number of MOFs in powder form, thin-films, or membranes, have been prepared through such solid-to-MOF transformations. This field is rapidly developing and expanding, and the number of related scientific publications has strikingly increased over the last few years. The aim of this review is to summarise the latest developments, highlight the present state-of-the-art, and also provide an overview for future research directions.

  20. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance

    DOE PAGES

    Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.; ...

    2018-01-01

    For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. In this paper, we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is inmore » sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm -3 and high areal capacitances over 20 F cm -2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. In conclusion, these promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.« less

  1. Porous Pt-Ni Nanowires within In Situ Generated Metal-Organic Frameworks for Highly Chemoselective Cinnamaldehyde Hydrogenation.

    PubMed

    Zhang, Nan; Shao, Qi; Wang, Pengtang; Zhu, Xing; Huang, Xiaoqing

    2018-05-01

    Although chemoselective hydrogenation of unsaturated aldehydes is the major route to highly valuable industrially demanded unsaturated alcohols, it is still challenging, as the production of saturated aldehydes is more favorable over unsaturated alcohols from the view of thermodynamics. By combining the structural features of porous nanowires (NWs) and metal-organic frameworks (MOFs), a unique class of porous Pt-Ni NWs in situ encapsuled by MOFs (Pt-Ni NWs@Ni/Fex-MOFs) is designed to enhance the unsaturated alcohols selectivity in the cinnamaldehyde (CAL) hydrogenation. A detailed catalytic study shows that the porous Pt-Ni NWs@Ni/Fe x -MOFs exhibit volcano-type activity and selectivity in CAL hydrogenation as a function of Fe content. The optimized porous PtNi 2.20 NWs@Ni/Fe 4 -MOF is highly active and selective with 99.5% CAL conversion and 83.3% cinnamyl alcohol selectivity due to the confinement effect, appropriate thickness of MOF and its optimized electronic structure, and excellent durability with negligible activity and selectivity loss after five runs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.

    For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. In this paper, we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is inmore » sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm -3 and high areal capacitances over 20 F cm -2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. In conclusion, these promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.« less

  3. Gel-based morphological design of zirconium metal-organic frameworks.

    PubMed

    Bueken, Bart; Van Velthoven, Niels; Willhammar, Tom; Stassin, Timothée; Stassen, Ivo; Keen, David A; Baron, Gino V; Denayer, Joeri F M; Ameloot, Rob; Bals, Sara; De Vos, Dirk; Bennett, Thomas D

    2017-05-01

    The ability of metal-organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero- or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr 4+ -based MOFs: UiO-66-X (X = H, NH 2 , NO 2 , (OH) 2 ), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO 2 . Electron microscopy, combined with N 2 physisorption experiments, was used to show that irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 μm diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations.

  4. Structural and Dielectric Properties of Ionic Liquid Doped Metal Organic Framework based Polymer Electrolyte Nanocomposites

    NASA Astrophysics Data System (ADS)

    Dutta, Rituraj; Kumar, Ashok

    2016-10-01

    Metal Organic Frameworks (MOFs) are mesoporous materials that can be treated as potential hosts for trapping guest molecules in their pores. Ion conduction and phase behavior dynamics of Ionic Liquids (ILs) can be controlled by tunable interactions of MOFs with the ILs. MOFs incorporated with ionic liquid can be dispersed in the polymers to synthesize polymer electrolyte nanocomposites with high ionic conductivity, electrochemical and thermal stability for applications in energy storage and conversion devices such as rechargeable Li-ion batteries. In the present work we have synthesized Cu-based MOF [Cu3(l,3,5-benzene tricarboxylate)2(H2O)] incorporated with the ionic liquid 1-Butyl-3-methylimidazolium bromide at different weight ratios of MOF and IL. The synthesized MOF-IL composites are dispersed in Poly (ethylene oxide) (PEO). Frequency dependent behavior of permittivity and dielectric loss of the nanocomposites depict the non-Debye dielectric relaxation mechanism. The room temperature Nyquist plots reveal decreasing bulk resistance upto 189 Ω with optimum ionic conductivity of 1.3×10-3S cm-1at maximum doping concentration of IL in the nanocomposite system.

  5. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance

    NASA Astrophysics Data System (ADS)

    Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.; Park, Jihye; Huang, Zhehao; Lee, Minah; Shaw, Leo; Chen, Shucheng; Yakovenko, Andrey A.; Kulkarni, Ambarish; Xiao, Jianping; Fredrickson, Kurt; Tok, Jeffrey B.; Zou, Xiaodong; Cui, Yi; Bao, Zhenan

    2018-01-01

    For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. Here we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is in sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm-3 and high areal capacitances over 20 F cm-2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. These promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.

  6. Flexible and Hierarchical Metal-Organic Framework Composites for High-Performance Catalysis.

    PubMed

    Huang, Ning; Drake, Hannah; Li, Jialuo; Pang, Jiangdong; Wang, Ying; Yuan, Shuai; Wang, Qi; Cai, Peiyu; Qin, Junsheng; Zhou, Hong-Cai

    2018-05-18

    The development of new types of porous composite materials is of great significance owing to their potentially improved performance over those of individual components and extensive applications in separation, energy storage, and heterogeneous catalysis. In this work, we integrated mesoporous metal-organic frameworks (MOFs) with macroporous melamine foam (MF) using a one-pot process, generating a series of MOF/MF composite materials with preserved crystallinity, hierarchical porosity, and increased stability over that of melamine foam. The MOF nanocrystals were threaded by the melamine foam networks, resembling a ball-and-stick model overall. As a proof-of-concept study, the resulting MOF/MF composite materials were employed as an effective heterogeneous catalyst for the epoxidation of cholesteryl esters. Combining the advantages of interpenetrative mesoporous and macroporous structures, the MOF/melamine foam composite provided higher dispersibility and more accessibility of catalytic sites, exhibiting excellent catalytic performance. This strategy constitutes an important step forward the development of other MOF composites and exploration of their high-performance catalysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Facile synthesis of glucoamylase embedded metal-organic frameworks (glucoamylase-MOF) with enhanced stability.

    PubMed

    Nadar, Shamraja S; Rathod, Virendra K

    2017-02-01

    The self-assembled glucoamylase metal-organic framework (glucoamylase-MOF) was synthesized by facile one-step method within 20min by simply mixing aqueous solution of 2-methylimidazole (160mM), glucoamylase (5mg/mL) and zinc acetate (40mM) at room temperature (28±2°C). The prepared glucoamylase-MOF was characterized by using FT-IR, confocal scanning laser microscopy, XRD and SEM. The robustness and thermal stability of glucoamylase embedded MOF was evaluated in terms of half-life (in the range of 60-80°C) which showed 6 folds increment as against free form. Further, in Michaelis-Menten kinetics studies, glucoamylase entrapped MOF exhibited higher K m value and lower V max value as compared to native enzyme. Moreover, the immobilized glucoamylase exhibited up to 57% of residual activity after six consecutive cycles of reuse, whereas it retained 91% of residual activity till 25days of storage. Finally, the conformational changes occurred after the encapsulation of glucoamylase in the interior of MOF, which was analyzed by using FT-IR data analysis tools. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A sol-gel monolithic metal-organic framework with enhanced methane uptake.

    PubMed

    Tian, Tian; Zeng, Zhixin; Vulpe, Diana; Casco, Mirian E; Divitini, Giorgio; Midgley, Paul A; Silvestre-Albero, Joaquin; Tan, Jin-Chong; Moghadam, Peyman Z; Fairen-Jimenez, David

    2018-02-01

    A critical bottleneck for the use of natural gas as a transportation fuel has been the development of materials capable of storing it in a sufficiently compact form at ambient temperature. Here we report the synthesis of a porous monolithic metal-organic framework (MOF), which after successful packing and densification reaches 259 cm 3 (STP) cm -3 capacity. This is the highest value reported to date for conformed shape porous solids, and represents a greater than 50% improvement over any previously reported experimental value. Nanoindentation tests on the monolithic MOF showed robust mechanical properties, with hardness at least 130% greater than that previously measured in its conventional MOF counterparts. Our findings represent a substantial step in the application of mechanically robust conformed and densified MOFs for high volumetric energy storage and other industrial applications.

  9. A sol-gel monolithic metal-organic framework with enhanced methane uptake

    NASA Astrophysics Data System (ADS)

    Tian, Tian; Zeng, Zhixin; Vulpe, Diana; Casco, Mirian E.; Divitini, Giorgio; Midgley, Paul A.; Silvestre-Albero, Joaquin; Tan, Jin-Chong; Moghadam, Peyman Z.; Fairen-Jimenez, David

    2018-02-01

    A critical bottleneck for the use of natural gas as a transportation fuel has been the development of materials capable of storing it in a sufficiently compact form at ambient temperature. Here we report the synthesis of a porous monolithic metal-organic framework (MOF), which after successful packing and densification reaches 259 cm3 (STP) cm-3 capacity. This is the highest value reported to date for conformed shape porous solids, and represents a greater than 50% improvement over any previously reported experimental value. Nanoindentation tests on the monolithic MOF showed robust mechanical properties, with hardness at least 130% greater than that previously measured in its conventional MOF counterparts. Our findings represent a substantial step in the application of mechanically robust conformed and densified MOFs for high volumetric energy storage and other industrial applications.

  10. Combi-metal organic framework (Combi-MOF) of α-amylase and glucoamylase for one pot starch hydrolysis.

    PubMed

    Salgaonkar, Manish; Nadar, Shamraja S; Rathod, Virendra K

    2018-07-01

    The multi-enzyme biocatalyst allows to run in vitro multi-step cascade reactions in single pot. An efficient combi-metal organic frameworks (combi-MOF) of α-amylase and glucoamylase for one pot starch hydrolysis was constructed by mixing zinc acetate and 2‑methylimmidazole with enzyme mixture in one pot under biocompatible conditions. The prepared combi-MOF was characterized and analyzed by powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). Thermo-stability was evaluated for combi-MOF in the range of 55 to 75°C which showed three folds improved stability in terms of half-life. In kinetic parameter studies, rate of starch hydrolysis (V max ) of combi-MOF was found to be enhanced after co-immobilization. Further, combi-MOF was recycled in batch mode which retained up to 52% residual activity after five successive cycles of reuse. In addition to that, combi-MOF exhibited extraordinary storage stability till 24days. At the end, starch hydrolytic activity of combi-MOF was tested for different sources of starch (corn, rice, wheat and potato) which exhibited higher rate of hydrolysis than mixture of free enzymes due to spatially co-localized multi-enzymatic systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Toward Metal–Organic Framework-Based Solar Cells: Enhancing Directional Exciton Transport by Collapsing Three-Dimensional Film Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goswami, Subhadip; Ma, Lin; Martinson, Alex B. F.

    Owing to their ability to act as light-harvesting scaffolds, porphyrin-containing metal-organic frameworks (MOFs) are in the forefront of research on the application of highly ordered molecular materials to problems in solar-energy conversion. In this work, solvent-assisted linker exchange (SALE) is performed on a pillared paddlewheel porphyrin containing MOF thin film to collapse a 3D framework to a 2D framework. The change in dimensionality of the framework is confirmed by a decrease in the film thickness, the magnitude of which is in agreement with crystallographic parameters for related bulk materials. Furthermore, NMR spectroscopy performed on the digested sample suggests a similarmore » change in geometry is achieved in bulk MOF samples. The decreased distance between the porphyrin chromophores in the 2D MOF film compared to the 3D film results in enhanced energy transfer through the film. The extent of energy transport was probed by assembling MOF thin film where the outermost layers are palladium porphyrin (P2) units, which act as energy traps and fluorescence quenchers. Steady-state emission spectroscopy together with time-resolved emission spectroscopy indicates that excitons can travel through about 9-11 layers (porphyrin layers) in 2D films, whereas in 3D films energy transfer occurs through no more than about 6-8 layers. The results are difficult to understand if only changes in MOF interlayer spacing are considered but become much more understandable if dipole-dipole coupling distances are considered.« less

  12. Text Mining Metal-Organic Framework Papers.

    PubMed

    Park, Sanghoon; Kim, Baekjun; Choi, Sihoon; Boyd, Peter G; Smit, Berend; Kim, Jihan

    2018-02-26

    We have developed a simple text mining algorithm that allows us to identify surface area and pore volumes of metal-organic frameworks (MOFs) using manuscript html files as inputs. The algorithm searches for common units (e.g., m 2 /g, cm 3 /g) associated with these two quantities to facilitate the search. From the sample set data of over 200 MOFs, the algorithm managed to identify 90% and 88.8% of the correct surface area and pore volume values. Further application to a test set of randomly chosen MOF html files yielded 73.2% and 85.1% accuracies for the two respective quantities. Most of the errors stem from unorthodox sentence structures that made it difficult to identify the correct data as well as bolded notations of MOFs (e.g., 1a) that made it difficult identify its real name. These types of tools will become useful when it comes to discovering structure-property relationships among MOFs as well as collecting a large set of data for references.

  13. Porous Iron-Carboxylate Metal-Organic Framework: A Novel Bioplatform with Sustained Antibacterial Efficacy and Nontoxicity.

    PubMed

    Lin, Sha; Liu, Xiangmei; Tan, Lei; Cui, Zhenduo; Yang, Xianjin; Yeung, Kelvin W K; Pan, Haobo; Wu, Shuilin

    2017-06-07

    Sustained drug release plays a critical role in targeting the therapy of local diseases such as bacterial infections. In the present work, porous iron-carboxylate metal-organic framework [MOF-53(Fe)] nanoparticles (NPs) were designed to entrap the vancomycin (Van) drugs. This system exhibited excellent chemical stability under acidic conditions (pH 7.4, 6.5, and 5.5) and much higher drug-loading capability because of the high porosity and large surface area of MOF NPs. The results showed that the drug-loading ratio of Van could reach 20 wt % and that the antibacterial ratio of the MOF-53(Fe)/Van system against Staphylococcus aureus could reach up to 90%. In addition, this MOF-53(Fe)/Van system exhibited excellent biocompatibility because of its chemical stability and sustained release of iron ions. Hence, these porous MOF NPs are a promising bioplatform not only for local therapy of bacterial infections but also for other biomedical therapies for tissue regeneration.

  14. A flexible ligand-based wavy layered metal-organic framework for lithium-ion storage.

    PubMed

    An, Tiance; Wang, Yuhang; Tang, Jing; Wang, Yang; Zhang, Lijuan; Zheng, Gengfeng

    2015-05-01

    A substantial challenge for direct utilization of metal-organic frameworks (MOFs) as lithium-ion battery anodes is to maintain the rigid MOF structure during lithiation/delithiation cycles. In this work, we developed a flexible, wavy layered nickel-based MOF (C20H24Cl2N8Ni, designated as Ni-Me4bpz) by a solvothermal approach of 3,3',5,5'-tetramethyl-4,4'-bipyrazole (H2Me4bpz) with nickel(II) chloride hexahydrate. The obtained MOF materials (Ni-Me4bpz) with metal azolate coordination mode provide 2-dimensional layered structure for Li(+) intercalation/extraction, and the H2Me4bpz ligands allow for flexible rotation feature and structural stability. Lithium-ion battery anodes made of the Ni-Me4bpz material demonstrate excellent specific capacity and cycling performance, and the crystal structure is well preserved after the electrochemical tests, suggesting the potential of developing flexible layered MOFs for efficient and stable electrochemical storage. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Stable metal–organic framework-supported niobium catalysts

    DOE PAGES

    Ahn, Sol; Thornburg, Nicholas E.; Li, Zhanyong; ...

    2016-10-31

    In this study by developing structurally well-defined, supported oxide catalysts remains a significant challenge. Here, we report the grafting of Nb(V) oxide sites onto the nodes of the Zr-based metal organic framework (MOF) NU-1000 as a stable, well-defined catalyst support. Nb(V) oxide was deposited with loadings up to 1.6 mmol/g via two post-synthetic methods: atomic layer deposition in a MOF (AIM), and solution-phase grafting in a MOF (SIM). Difference envelope density (DED) measurements indicated that the two synthetic methods resulted in different local structures of the Nb(V) ions within NU-1000. Despite their high Nb(V) loadings, which were equivalent to >60%more » surface coverage, nearly all Nb(V) sites of the MOF-supported catalysts were active sites for alkene epoxidation, as confirmed by phenylphosphonic acid titration. The MOF-supported catalysts were more selective than the control Nb-ZrO 2 catalyst for cyclohexene epoxidation with aqueous H 2O 2, and were far more active on a gravimetric basis.« less

  16. Fabrication of zinc-dicarboxylate- and zinc-pyrazolate-carboxylate-framework thin films through vapour-solid deposition.

    PubMed

    Medishetty, Raghavender; Zhang, Zongji; Sadlo, Alexander; Cwik, Stefan; Peeters, Daniel; Henke, Sebastian; Mangayarkarasi, Nagarathinam; Devi, Anjana

    2018-05-17

    Fabrication of three-dimensional metal-organic framework (MOF) thin films has been investigated for the first time through the conversion of a ZnO layer via a pure vapour-solid deposition reaction at ambient pressure. The fabrication of MOF thin films with a dicarboxylate linker, (DMA)2[Zn3(bdc)4] (1) (bdc = 1,4-benzenedicarboxylate), and a carboxy-pyrazolate linker, [Zn4O(dmcapz)6] (2) (dmcapz = 3,5-dimethyl-4-carboxypyrazole), involves the deposition of the linker and/or the preparation of a composite film preliminarily and its subsequent conversion into a MOF film using closed cell thermal treatment. Furthermore, it was possible to isolate thin films with a MOF-5 isotype structure grown along the [110] direction, using a carboxy-pyrazolate linker. This was achieved just by the direct reaction of the ZnO film and the organic linker vapors, employing a simple route that demonstrates the feasibility of MOF thin film fabrication using inexpensive routes at ambient pressure.

  17. Nanomaterials derived from metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Dang, Song; Zhu, Qi-Long; Xu, Qiang

    2018-01-01

    The thermal transformation of metal-organic frameworks (MOFs) generates a variety of nanostructured materials, including carbon-based materials, metal oxides, metal chalcogenides, metal phosphides and metal carbides. These derivatives of MOFs have characteristics such as high surface areas, permanent porosities and controllable functionalities that enable their good performance in sensing, gas storage, catalysis and energy-related applications. Although progress has been made to tune the morphologies of MOF-derived structures at the nanometre scale, it remains crucial to further our knowledge of the relationship between morphology and performance. In this Review, we summarize the synthetic strategies and optimized methods that enable control over the size, morphology, composition and structure of the derived nanomaterials. In addition, we compare the performance of materials prepared by the MOF-templated strategy and other synthetic methods. Our aim is to reveal the relationship between the morphology and the physico-chemical properties of MOF-derived nanostructures to optimize their performance for applications such as sensing, catalysis, and energy storage and conversion.

  18. Topologically Guided, Automated Construction of Metal–Organic Frameworks and Their Evaluation for Energy-Related Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colón, Yamil J.; Gómez-Gualdrón, Diego A.; Snurr, Randall Q.

    Metal-organic frameworks (MOFs) are promising materials for a range of energy and environmental applications. Here we describe in detail a computational algorithm and code to generate MOFs based on edge-transitive topological nets for subsequent evaluation via molecular simulation. This algorithm has been previously used by us to construct and evaluate 13 512 MOFs of 41 different topologies for cryo-adsorbed hydrogen storage. Grand canonical Monte Carlo simulations are used here to evaluate the 13 512 structures for the storage of gaseous fuels such as hydrogen and methane and nondistillative separation of xenon/krypton mixtures at various operating conditions. MOF performance for bothmore » gaseous fuel storage and xenon/krypton separation is influenced by topology. Simulation data suggest that gaseous fuel storage performance is topology-dependent due to MOF properties such as void fraction and surface area combining differently in different topologies, whereas xenon/krypton separation performance is topology-dependent due to how topology constrains the pore size distribution.« less

  19. Evaluation of Heterogeneous Metal-Organic Framework Organocatalysts Prepared by Postsynthetic Modification

    PubMed Central

    Garibay, Sergio J.; Wang, Zhenqiang; Cohen, Seth M.

    2010-01-01

    A metal-organic framework (MOF) containing 2-amino-1,4-benzenedicarboxylate (NH2-BDC) as a building block is shown to undergo chemical modification with a set of cyclic anhydrides. The modification of the aluminum-based MOF known as MIL-53(Al)-NH2 (MIL = Matérial Institut Lavoisier) by these reagents is demonstrated by using a variety of methods, including NMR and ESI-MS, and the structural integrity of the modified MOFs has been confirmed by TGA, PXRD, and gas sorption analysis. Reaction with these cyclic anhydrides produces MOFs that display carboxylic acid functional groups within their pores. Furthermore, it is shown that maleic acid functionalized MIL-53(Al)-AMMal can act as a Brønsted acid catalyst and facilitate the methanolysis of several small epoxides. Experiments show that MIL-53(Al)-AMMal acts in a heterogeneous manner and is recyclable with consistent activity over at least three catalytic cycles. The findings presented here demonstrate several important features of covalent postsynthetic modification (PSM) on MOFs, including: 1) facile introduction of catalytic functionality using simple organic reagents (e.g. anhydrides); 2) the ability to utilize and recycle organocatalytic MOFs; 3) control of catalytic activity through choice of functional group. The findings clearly illustrate that covalent postsynthetic modification represents a powerful means to access new MOF compounds that serve as organocatalytic materials. PMID:20698561

  20. Smart Nanocomposites of Cu-Hemin Metal-Organic Frameworks for Electrochemical Glucose Biosensing

    PubMed Central

    He, Juan; Yang, Han; Zhang, Yayun; Yu, Jie; Miao, Longfei; Song, Yonghai; Wang, Li

    2016-01-01

    Herein, a smart porous material, Cu-hemin metal-organic-frameworks (Cu-hemin MOFs), was synthesized via assembling of Cu2+ with hemin to load glucose oxidase (GOD) for electrochemical glucose biosensing for the first time. The formation of the Cu-hemin MOFs was verified by scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, N2 adsorption/desorption isotherms, UV-vis absorption spectroscopy, fluorescence spectroscopy, thermal analysis and electrochemical techniques. The results indicated that the Cu-hemin MOFs showed a ball-flower-like hollow cage structure with a large specific surface area and a large number of mesopores. A large number of GOD molecules could be successfully loaded in the pores of Cu-hemin MOFs to keep their bioactivity just like in a solution. The GOD/Cu-hemin MOFs exhibited both good performance toward oxygen reduction reaction via Cu-hemin MOFs and catalytic oxidation of glucose via GOD, superior to other GOD/MOFs and GOD/nanomaterials. Accordingly, the performance of GOD/Cu-hemin MOFs-based electrochemical glucose sensor was enhanced greatly, showing a wide linear range from 9.10 μM to 36.0 mM and a low detection limit of 2.73 μM. Moreover, the sensor showed satisfactory results in detection of glucose in human serum. This work provides a practical design of new electrochemical sensing platform based on MOFs and biomolecules. PMID:27811998

  1. Defect-Controlled Preparation of UiO-66 Metal-Organic Framework Thin Films with Molecular Sieving Capability.

    PubMed

    Zhang, Caiqin; Zhao, Yajing; Li, Yali; Zhang, Xuetong; Chi, Lifeng; Lu, Guang

    2016-01-01

    Metal-organic framework (MOF) UiO-66 thin films are solvothermally grown on conducting substrates. The as-synthesized MOF thin films are subsequently dried by a supercritical process or treated with polydimethylsiloxane (PDMS). The obtained UiO-66 thin films show excellent molecular sieving capability as confirmed by the electrochemical studies for redox-active species with different sizes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Graphene/graphene-tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in Li-O₂ batteries.

    PubMed

    Li, Qing; Xu, Ping; Gao, Wei; Ma, Shuguo; Zhang, Guoqi; Cao, Ruiguo; Cho, Jaephil; Wang, Hsing-Lin; Wu, Gang

    2014-03-05

    Nitrogen-doped graphene/graphene-tube nanocomposites are prepared by a hightemperature approach using a newly designed cage-containing metal-organic framework (MOF) to template nitrogen/carbon (dicyandiamide) and iron precursors. The resulting N-Fe-MOF catalysts universally exhibit high oxygen-reduction activity in acidic, alkaline, and non-aqueous electrolytes and superior cathode performance in Li-O2 batteries. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Molecular Level Characterization of the Structure and Interactions in Peptide-Functionalized Metal-Organic Frameworks.

    PubMed

    Todorova, Tanya K; Rozanska, Xavier; Gervais, Christel; Legrand, Alexandre; Ho, Linh N; Berruyer, Pierrick; Lesage, Anne; Emsley, Lyndon; Farrusseng, David; Canivet, Jérôme; Mellot-Draznieks, Caroline

    2016-11-07

    We use density functional theory, newly parameterized molecular dynamics simulations, and last generation 15 N dynamic nuclear polarization surface enhanced solid-state NMR spectroscopy (DNP SENS) to understand graft-host interactions and effects imposed by the metal-organic framework (MOF) host on peptide conformations in a peptide-functionalized MOF. Focusing on two grafts typified by MIL-68-proline (-Pro) and MIL-68-glycine-proline (-Gly-Pro), we identified the most likely peptide conformations adopted in the functionalized hybrid frameworks. We found that hydrogen bond interactions between the graft and the surface hydroxyl groups of the MOF are essential in determining the peptides conformation(s). DNP SENS methodology shows unprecedented signal enhancements when applied to these peptide-functionalized MOFs. The calculated chemical shifts of selected MIL-68-NH-Pro and MIL-68-NH-Gly-Pro conformations are in a good agreement with the experimentally obtained 15 N NMR signals. The study shows that the conformations of peptides when grafted in a MOF host are unlikely to be freely distributed, and conformational selection is directed by strong host-guest interactions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Multifaceted Modularity: A Key for Stepwise Building of Hierarchical Complexity in Actinide Metal–Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgopolova, Ekaterina A.; Ejegbavwo, Otega A.; Martin, Corey R.

    Growing necessity for efficient nuclear waste management is a driving force for development of alternative architectures towards fundamental understanding of mechanisms involved in actinide integration inside extended structures. In this manuscript, metal-organic frameworks (MOFs) were investigated as a model system for engineering radionuclide containing materials through utilization of unprecedented MOF modularity, which cannot be replicated in any other type of materials. Through the implementation of recent synthetic advances in the MOF field, hierarchical complexity of An-materials were built stepwise, which was only feasible due to preparation of the first examples of actinide-based frameworks with “unsaturated” metal nodes. The first successfulmore » attempts of solid-state metathesis and metal node extension in An-MOFs are reported, and the results of the former approach revealed drastic differences in chemical behavior of extended structures versus molecular species. Successful utilization of MOF modularity also allowed us to structurally characterize the first example of bimetallic An-An nodes. To the best of our knowledge, through combination of solid-state metathesis, guest incorporation, and capping linker installation, we were able to achieve the highest Th wt% in mono- and bi-actinide frameworks with minimal structural density. Overall, combination of a multistep synthetic approach with homogeneous actinide distribution and moderate solvothermal conditions could make MOFs an exceptionally powerful tool to address fundamental questions responsible for chemical behavior of An-based extended structures, and therefore, shed light on possible optimization of nuclear waste administration.« less

  5. Multifaceted Modularity: A Key for Stepwise Building of Hierarchical Complexity in Actinide Metal-Organic Frameworks.

    PubMed

    Dolgopolova, Ekaterina A; Ejegbavwo, Otega A; Martin, Corey R; Smith, Mark D; Setyawan, Wahyu; Karakalos, Stavros G; Henager, Charles H; Zur Loye, Hans-Conrad; Shustova, Natalia B

    2017-11-22

    Growing necessity for efficient nuclear waste management is a driving force for development of alternative architectures toward fundamental understanding of mechanisms involved in actinide (An) integration inside extended structures. In this manuscript, metal-organic frameworks (MOFs) were investigated as a model system for engineering radionuclide containing materials through utilization of unprecedented MOF modularity, which cannot be replicated in any other type of materials. Through the implementation of recent synthetic advances in the MOF field, hierarchical complexity of An-materials was built stepwise, which was only feasible due to preparation of the first examples of actinide-based frameworks with "unsaturated" metal nodes. The first successful attempts of solid-state metathesis and metal node extension in An-MOFs are reported, and the results of the former approach revealed drastic differences in chemical behavior of extended structures versus molecular species. Successful utilization of MOF modularity also allowed us to structurally characterize the first example of bimetallic An-An nodes. To the best of our knowledge, through combination of solid-state metathesis, guest incorporation, and capping linker installation, we were able to achieve the highest Th wt % in mono- and biactinide frameworks with minimal structural density. Overall, the combination of a multistep synthetic approach with homogeneous actinide distribution and moderate solvothermal conditions could make MOFs an exceptionally powerful tool to address fundamental questions responsible for chemical behavior of An-based extended structures and, therefore, shed light on possible optimization of nuclear waste administration.

  6. Conformational locking by design: relating strain energy with luminescence and stability in rigid metal-organic frameworks.

    PubMed

    Shustova, Natalia B; Cozzolino, Anthony F; Dincă, Mircea

    2012-12-05

    Minimization of the torsional barrier for phenyl ring flipping in a metal-organic framework (MOF) based on the new ethynyl-extended octacarboxylate ligand H(8)TDPEPE leads to a fluorescent material with a near-dark state. Immobilization of the ligand in the rigid structure also unexpectedly causes significant strain. We used DFT calculations to estimate the ligand strain energies in our and all other topologically related materials and correlated these with empirical structural descriptors to derive general rules for trapping molecules in high-energy conformations within MOFs. These studies portend possible applications of MOFs for studying fundamental concepts related to conformational locking and its effects on molecular reactivity and chromophore photophysics.

  7. Improving Olefin Purification Using Metal Organic Frameworks with Open Metal Sites.

    PubMed

    Luna-Triguero, A; Vicent-Luna, J M; Poursaeidesfahani, A; Vlugt, T J H; Sánchez-de-Armas, R; Gómez-Álvarez, P; Calero, S

    2018-05-16

    The separation and purification of light hydrocarbons is challenging in the industry. Recently, a ZJNU-30 metal-organic framework (MOF) has been found to have the potential for adsorption-based separation of olefins and diolefins with four carbon atoms [H. M. Liu et al. Chem.-Eur. J. 2016, 22, 14988-14997]. Our study corroborates this finding but reveals Fe-MOF-74 as a more efficient candidate for the separation because of the open metal sites. We performed adsorption-based separation, transient breakthrough curves, and density functional theory calculations. This combination of techniques provides an extensive understanding of the studied system. Using this MOF, we propose a separation scheme to obtain a high-purity product.

  8. Platinum nanoparticles encapsulated metal-organic frameworks for the electrochemical detection of telomerase activity.

    PubMed

    Ling, Pinghua; Lei, Jianping; Jia, Li; Ju, Huangxian

    2016-01-21

    A simple and rapid electrochemical sensor is constructed for the detection of telomerase activity based on the electrocatalysis of platinum nanoparticle (Pt NP) encapsulated metal-organic frameworks (MOFs), which are synthesized by one-pot encapsulation of Pt NPs into prototypal MOFs, UiO-66-NH2. Integrating with the efficient electrocatalysis of Pt@MOFs towards NaBH4 oxidation, this biosensor shows the wide dynamic correlation of telomerase activity from 5 × 10(2) to 10(7) HeLa cells mL(-1) and the telomerase activity in a single HeLa cell was calculated to be 2.0 × 10(-11) IU, providing a powerful platform for detecting telomerase activity.

  9. Tailoring porosity and rotational dynamics in a series of octacarboxylate metal-organic frameworks

    PubMed Central

    Moreau, Florian; Kolokolov, Daniil I.; Stepanov, Alexander G.; Easun, Timothy L.; Dailly, Anne; Blake, Alexander J.; Nowell, Harriott; Lennox, Matthew J.; Yang, Sihai; Schröder, Martin

    2017-01-01

    Modulation and precise control of porosity of metal-organic frameworks (MOFs) is of critical importance to their materials function. Here we report modulation of porosity for a series of isoreticular octacarboxylate MOFs, denoted MFM-180 to MFM-185, via a strategy of selective elongation of metal-organic cages. Owing to the high ligand connectivity, these MOFs do not show interpenetration, and are robust structures that have permanent porosity. Interestingly, activated MFM-185a shows a high Brunauer–Emmett–Teller (BET) surface area of 4,734 m2 g−1 for an octacarboxylate MOF. These MOFs show remarkable CH4 and CO2 adsorption properties, notably with simultaneously high gravimetric and volumetric deliverable CH4 capacities of 0.24 g g−1 and 163 vol/vol (298 K, 5–65 bar) recorded for MFM-185a due to selective elongation of tubular cages. The dynamics of molecular rotors in deuterated MFM-180a-d16 and MFM-181a-d16 were investigated by variable-temperature 2H solid-state NMR spectroscopy to reveal the reorientation mechanisms within these materials. Analysis of the flipping modes of the mobile phenyl groups, their rotational rates, and transition temperatures paves the way to controlling and understanding the role of molecular rotors through design of organic linkers within porous MOF materials. PMID:28280097

  10. Time-resolved terahertz spectroscopy of electrically conductive metal-organic frameworks doped with redox active species

    NASA Astrophysics Data System (ADS)

    Alberding, Brian G.; Heilweil, Edwin J.

    2015-09-01

    Metal-Organic Frameworks (MOFs) are three-dimensional coordination polymers that are well known for large pore surface area and their ability to adsorb molecules from both the gaseous and solution phases. In general, MOFs are electrically insulating, but promising opportunities for tuning the electronic structure exist because MOFs possess synthetic versatility; the metal and organic ligand subunits can be exchanged or dopant molecules can be introduced into the pore space. Two such MOFs with demonstrated electrical conductivity are Cu3(1,3,5-benzenetricarboxylate)2, a.k.a HKUST-1, and Cu[Ni(pyrazine-2,3-dithiolate)2]. Herein, these two MOFs have been infiltrated with the redox active species 7,7,8,8-tetracyanoquinodimethane (TCNQ) and iodine under solution phase conditions and shown to produce redox products within the MOF pore space. Vibrational bands assignable to TCNQ anion and triiodide anion have been observed in the Mid-IR and Terahertz ranges using FTIR Spectroscopy. The MOF samples have been further investigated by Time-Resolved Terehertz Spectroscopy (TRTS). Using this technique, the charge mobility, separation, and recombination dynamics have been followed on the picosecond time scale following photoexcitation with visible radiation. The preliminary results show that the MOF samples have small inherent photoconductivity with charge separation lifetimes on the order of a few picoseconds. In the case of HKUST-1, the MOF can also be supported by a TiO2 film and initial results show that charge injection into the TiO2 layer occurs with a comparable efficiency to the dye sensitizer N3, [cis-Bis(isothiocyanato)-bis(2,2'-bipyridyl-4,4'-dicarboxylato ruthenium(II)], and therefore this MOF has potential as a new light absorbing and charge conducting material in photovoltaic devices.

  11. Hollow carbon nanobubbles: monocrystalline MOF nanobubbles and their pyrolysis.

    PubMed

    Zhang, Wei; Jiang, Xiangfen; Zhao, Yanyi; Carné-Sánchez, Arnau; Malgras, Victor; Kim, Jeonghun; Kim, Jung Ho; Wang, Shaobin; Liu, Jian; Jiang, Ji-Sen; Yamauchi, Yusuke; Hu, Ming

    2017-05-01

    While bulk-sized metal-organic frameworks (MOFs) face limits to their utilization in various research fields such as energy storage applications, nanoarchitectonics is believed to be a possible solution. It is highly challenging to realize MOF nanobubbles with monocrystalline frameworks. By a spatially controlled etching approach, here, we can achieve the synthesis of zeolitic imidazolate framework (ZIF-8) nanobubbles with a uniform size of less than 100 nm. Interestingly, the ZIF-8 nanobubbles possess a monocrystalline nanoshell with a thickness of around 10 nm. Under optimal pyrolytic conditions, the ZIF-8 nanobubbles can be converted into hollow carbon nanobubbles while keeping their original shapes. The structure of the nanobubble enhances the fast Na + /K + ion intercalation performance. Such remarkable improvement cannot be realized by conventional MOFs or their derived carbons.

  12. Gas adsorption and gas mixture separations using mixed-ligand MOF material

    DOEpatents

    Hupp, Joseph T [Northfield, IL; Mulfort, Karen L [Chicago, IL; Snurr, Randall Q [Evanston, IL; Bae, Youn-Sang [Evanston, IL

    2011-01-04

    A method of separating a mixture of carbon dioxiode and hydrocarbon gas using a mixed-ligand, metal-organic framework (MOF) material having metal ions coordinated to carboxylate ligands and pyridyl ligands.

  13. Semiconductor Metal-Organic Frameworks: Future Low-Bandgap Materials.

    PubMed

    Usman, Muhammad; Mendiratta, Shruti; Lu, Kuang-Lieh

    2017-02-01

    Metal-organic frameworks (MOFs) with low density, high porosity, and easy tunability of functionality and structural properties, represent potential candidates for use as semiconductor materials. The rapid development of the semiconductor industry and the continuous miniaturization of feature sizes of integrated circuits toward the nanometer (nm) scale require novel semiconductor materials instead of traditional materials like silicon, germanium, and gallium arsenide etc. MOFs with advantageous properties of both the inorganic and the organic components promise to serve as the next generation of semiconductor materials for the microelectronics industry with the potential to be extremely stable, cheap, and mechanically flexible. Here, a perspective of recent research is provided, regarding the semiconducting properties of MOFs, bandgap studies, and their potential in microelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talin, Albert Alec; Jones, Reese E.; Hopkins, Patrick E.

    Motivated by low cost, low toxicity, mechanical flexibility, and conformability over complex shapes, organic semiconductors are currently being actively investigated as thermoelectric (TE) materials to replace the costly, brittle, and non-eco-friendly inorganic TEs for near-ambient-temperature applications. Metal–organic frameworks (MOFs) share many of the attractive features of organic polymers, including solution processability and low thermal conductivity. A potential advantage of MOFs and MOFs with guest molecules (Guest@MOFs) is their synthetic and structural versatility, which allows both the electronic and geometric structure to be tuned through the choice of metal, ligand, and guest molecules. This could solve the long-standing challenge of findingmore » stable, high-TE-performance n-type organic semiconductors, as well as promote high charge mobility via the long-range crystalline order inherent in these materials. In this paper, we review recent advances in the synthesis of MOF and Guest@MOF TEs and discuss how the Seebeck coefficient, electrical conductivity, and thermal conductivity could be tuned to further optimize TE performance.« less

  15. Crystal Engineering of Naphthalenediimide-Based Metal-Organic Frameworks: Structure-Dependent Lithium Storage.

    PubMed

    Tian, Bingbing; Ning, Guo-Hong; Gao, Qiang; Tan, Li-Min; Tang, Wei; Chen, Zhongxin; Su, Chenliang; Loh, Kian Ping

    2016-11-16

    Metal-organic frameworks (MOFs) possess great structural diversity because of the flexible design of linker groups and metal nodes. The structure-property correlation has been extensively investigated in areas like chiral catalysis, gas storage and absorption, water purification, energy storage, etc. However, the use of MOFs in lithium storage is hampered by stability issues, and how its porosity helps with battery performance is not well understood. Herein, through anion and thermodynamic control, we design a series of naphthalenediimide-based MOFs 1-4 that can be used for cathode materials in lithium-ion batteries (LIBs). Complexation of the N,N'-di(4-pyridyl)-1,4,5,8-naphthalenediimide (DPNDI) ligand and CdX 2 (X = NO 3 - or ClO 4 - ) produces complexes MOFs 1 and 2 with a one-dimensional (1D) nonporous network and a porous, noninterpenetrated two-dimensional (2D) square-grid structure, respectively. With the DPNDI ligand and Co(NCS) 2 , a porous 1D MOF 3 as a kinetic product is obtained, while a nonporous, noninterpenetrated 2D square-grid structure MOF 4 as a thermodynamic product is formed. The performance of LIBs is largely affected by the stability and porosity of these MOFs. For instance, the initial charge-discharge curves of MOFs 1 and 2 show a specific capacity of ∼47 mA h g -1 with a capacity retention ratio of >70% during 50 cycles at 100 mA g -1 , which is much better than that of MOFs 3 and 4. The better performances are assigned to the higher stability of Cd(II) MOFs compared to that of Co(II) MOFs during the electrochemical process, according to X-ray diffraction analysis. In addition, despite having the same Cd(II) node in the framework, MOF 2 exhibits a lithium-ion diffusion coefficient (D Li ) larger than that of MOF 1 because of its higher porosity. X-ray photoelectron spectroscopy and Fourier transform infrared analysis indicate that metal nodes in these MOFs remain intact and only the DPNDI ligand undergoes the revisible redox reaction during the lithiation-delithiation process.

  16. Rapid and selective adsorption of cationic dyes by a unique metal-organic framework with decorated pore surface

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Li, Fan; Sun, Qian

    2018-05-01

    Organic dye pollutants become a big headache due to their toxic nature to the environment, and it should be one of the best solutions if we can remove and separate them. Here, a metal-organic framework (MOF) (denoted as Zn-MOF) with carbonyl group based on fluorenone-2,7-dicarboxylate ligand, was directly synthesized without post-synthesis method and applied to selectively absorb cationic dyes such as MB, CV, RhB from aqueous solution, while anionic or neutral dyes were excluded. Characterization of the Zn-MOF was achieved by X-ray diffraction, scanning electron microscope, Fourier transform infrared spectrometry and elemental analysis. The Zn-MOF mainly possesses open pore channels, high surface area, big pore volume, and most important, the pore surface is furnished with carbonyl groups arising from the ligand and pointing toward the centers of the large chambers of the framework, which are benefit for the adsorption of the cationic dyes. The MB maximum adsorption capacities can attain 326 mg g-1, which is probably due to the suitable pore size, higher solvent-accessible void, and the prominent adsorption capacity of the mesoporous material. The dye adsorption process for the material is proven to be charge-selective and size-selective, and the adsorption isotherms, as well as kinetics characteristic of dye adsorption onto the Zn-MOF were also investigated.

  17. Co-metal-organic-frameworks with pure uniform crystal morphology prepared via Co2 + exchange-mediated transformation from Zn-metallogels for luminol catalysed chemiluminescence

    NASA Astrophysics Data System (ADS)

    Tang, Xue Qian; Xiao, Bo Wen; Li, Chun Mei; Wang, Dong Mei; Huang, Cheng Zhi; Li, Yuan Fang

    2017-03-01

    Cation exchange-mediated transformation from Zn-metallogels (MOGs), which was a mild facile strategy relative to the demanding hydrothermal method, was employed to develop Co2 + metal-organic frameworks (Co-MOFs) at room temperature. The obtained Co-MOFs was of uniform octahedral morphology and possessed high activity to catalyze luminol chemiluminescence without extra oxidants. By adding cysteine, the CL emission of luminol-Co-MOFs system was further enhanced. Based on this phenomenon, Co-MOFs was utilized to build a practical sensing platform for cysteine determination. Under the optimized conditions, the relative CL intensity (ΔI) was proportional to the concentration of cysteine in the range of 2-10 μM, and the detection limit was 0.49 μM (3S/N). Moreover, the established method was applied to the determination of cysteine in commercially available pharmaceutical injections.

  18. Self-assembly of silver(i)-based high-energy metal-organic frameworks (HE-MOFs) at ambient temperature and pressure: synthesis, structure and superior explosive performance.

    PubMed

    Shen, Cheng; Liu, Yang; Zhu, Zhong-Qin; Xu, Yuan-Gang; Lu, Ming

    2017-07-04

    Two new high-energy metal-organic frameworks (HE-MOFs), {Ag 2 (DNMAF)(H 2 O) 2 } n (1) and {Ag 2 (DNMAF)} n (2) were prepared using potassium 4,4'-bis(dinitromethyl)-3,3'-azofurazanate (K 2 DNMAF) in a self-assembly strategy. Compound 1 exhibits a 3D HE-MOF structure with coordinated water molecules. Compound 2 exhibits compact solvent-free 3D HE-MOFs. Both compounds show good thermostability (decomposition temperature (T d ) of 211 and 218 °C) and superior detonation velocities (D) of 9673 m s -1 and 10 242 m s -1 , detonation pressures (P) of 50.01 GPa and 58.30 GPa, and heat of detonation (Q) of 1.95 kcal g -1 and 2.19 kcal g -1 , respectively, which are even higher than those of RDX and HMX.

  19. Hydroisomerization of n-Hexane Using Acidified Metal-Organic Framework and Platinum Nanoparticles.

    PubMed

    Sabyrov, Kairat; Jiang, Juncong; Yaghi, Omar M; Somorjai, Gabor A

    2017-09-13

    Exceptionally high surface area and ordered nanopores of a metal-organic framework (MOF) are exploited to encapsulate and homogeneously disperse a considerable amount of phosphotungstic acid (PTA). When combined with platinum nanoparticles positioned on the external surface of the MOF, the construct shows a high catalytic activity for hydroisomerization of n-hexane, a reaction requiring hydrogenation/dehydrogenation and moderate to strong Brønsted acid sites. Characterization of the catalytic activity and acidic sites as a function of PTA loading demonstrates that both the concentration and strength of acidic sites are highest for the catalyst with the largest amount of PTA. The MOF construct containing 60% PTA by weight produces isoalkanes with 100% selectivity and 9-fold increased mass activity as compared to a more traditional aluminosilicate catalyst, further demonstrating the capacity of the MOF to contain a high concentration of active sites necessary for the isomerization reaction.

  20. In silico discovery of metal-organic frameworks for precombustion CO2 capture using a genetic algorithm

    PubMed Central

    Chung, Yongchul G.; Gómez-Gualdrón, Diego A.; Li, Peng; Leperi, Karson T.; Deria, Pravas; Zhang, Hongda; Vermeulen, Nicolaas A.; Stoddart, J. Fraser; You, Fengqi; Hupp, Joseph T.; Farha, Omar K.; Snurr, Randall Q.

    2016-01-01

    Discovery of new adsorbent materials with a high CO2 working capacity could help reduce CO2 emissions from newly commissioned power plants using precombustion carbon capture. High-throughput computational screening efforts can accelerate the discovery of new adsorbents but sometimes require significant computational resources to explore the large space of possible materials. We report the in silico discovery of high-performing adsorbents for precombustion CO2 capture by applying a genetic algorithm to efficiently search a large database of metal-organic frameworks (MOFs) for top candidates. High-performing MOFs identified from the in silico search were synthesized and activated and show a high CO2 working capacity and a high CO2/H2 selectivity. One of the synthesized MOFs shows a higher CO2 working capacity than any MOF reported in the literature under the operating conditions investigated here. PMID:27757420

  1. Experimental and theoretical investigations of the electronic band structure of metal-organic frameworks of HKUST-1 type

    NASA Astrophysics Data System (ADS)

    Gu, Zhi-Gang; Heinke, Lars; Wöll, Christof; Neumann, Tobias; Wenzel, Wolfgang; Li, Qiang; Fink, Karin; Gordan, Ovidiu D.; Zahn, Dietrich R. T.

    2015-11-01

    The electronic properties of metal-organic frameworks (MOFs) are increasingly attracting the attention due to potential applications in sensor techniques and (micro-) electronic engineering, for instance, as low-k-dielectric in semiconductor technology. Here, the band gap and the band structure of MOFs of type HKUST-1 are studied in detail by means of spectroscopic ellipsometry applied to thin surface-mounted MOF films and by means of quantum chemical calculations. The analysis of the density of states, the band structure, and the excitation spectrum reveal the importance of the empty Cu-3d orbitals for the electronic properties of HKUST-1. This study shows that, in contrast to common belief, even in the case of this fairly "simple" MOF, the excitation spectra cannot be explained by a superposition of "intra-unit" excitations within the individual building blocks. Instead, "inter-unit" excitations also have to be considered.

  2. A Water-Stable Proton-Conductive Barium(II)-Organic Framework for Ammonia Sensing at High Humidity.

    PubMed

    Guo, Kaimeng; Zhao, Lili; Yu, Shihang; Zhou, Wenyan; Li, Zifeng; Li, Gang

    2018-06-07

    In view of environmental protection and the need for early prediction of major diseases, it is necessary to accurately monitor the change of trace ammonia concentration in air or in exhaled breath. However, the adoption of proton-conductive metal-organic frameworks (MOFs) as smart sensors in this field is limited by a lack of ultrasensitive gas-detecting performance at high relative humidity (RH). Here, the pellet fabrication of a water-stable proton-conductive MOF, Ba( o-CbPhH 2 IDC)(H 2 O) 4 ] n (1) ( o-CbPhH 4 IDC = 2-(2-carboxylphenyl)-1 H-imidazole-4,5-dicarboxylic acid) is reported. The MOF 1 displays enhanced sensitivity and selectivity to NH 3 gas at high RHs (>85%) and 30 °C, and the sensing mechanism is suggested. The electrochemical impedance gas sensor fabricated by MOF 1 is a promising sensor for ammonia at mild temperature and high RHs.

  3. Highly Fluorescent Metal-Organic-Framework Nanocomposites for Photonic Applications.

    PubMed

    Monguzzi, A; Ballabio, M; Yanai, N; Kimizuka, N; Fazzi, D; Campione, M; Meinardi, F

    2018-01-10

    Metal-organic frameworks (MOFs) are porous hybrid materials built up from organic ligands coordinated to metal ions or clusters by means of self-assembly strategies. The peculiarity of these materials is the possibility, according to specific synthetic routes, to manipulate both the composition and ligands arrangement in order to control their optical and energy-transport properties. Therefore, optimized MOFs nanocrystals (nano-MOFs) can potentially represent the next generation of luminescent materials with features similar to those of their inorganic predecessors, that is, the colloidal semiconductor quantum dots. The luminescence of fluorescent nano-MOFs is generated through the radiative recombination of ligand molecular excitons. The uniqueness of these nanocrystals is the possibility to pack the ligand chromophores close enough to allow a fast exciton diffusion but sufficiently far from each other preventing the aggregation-induced effects of the organic crystals. In particular, the formation of strongly coupled dimers or excimers is avoided, thus preserving the optical features of the isolated molecule. However, nano-MOFs have a very small fluorescence quantum yield (QY). In order to overcome this limitation and achieve highly emitting systems, we analyzed the fluorescence process in blue emitting nano-MOFs and modeled the diffusion and quenching mechanism of photogenerated singlet excitons. Our results demonstrate that the excitons quenching in nano-MOFs is mainly due to the presence of surface-located, nonradiative recombination centers. In analogy with their inorganic counterparts, we found that the passivation of the nano-MOF surfaces is a straightforward method to enhance the emission efficiency. By embedding the nanocrystals in an inert polymeric host, we observed a +200% increment of the fluorescence QY, thus recovering the emission properties of the isolated ligand in solution.

  4. Supercritical processing as a route to high internal surface areas and permanent microporosity in metal-organic framework materials.

    PubMed

    Nelson, Andrew P; Farha, Omar K; Mulfort, Karen L; Hupp, Joseph T

    2009-01-21

    Careful processing of four representative metal-organic framework (MOF) materials with liquid and supercritical carbon dioxide (ScD) leads to substantial, or in some cases spectacular (up to 1200%), increases in gas-accessible surface area. Maximization of surface area is key to the optimization of MOFs for many potential applications. Preliminary evidence points to inhibition of mesopore collapse, and therefore micropore accessibility, as the basis for the extraordinarily efficacious outcome of ScD-based activation.

  5. Metal-Organic Framework-Stabilized CO2/Water Interfacial Route for Photocatalytic CO2 Conversion.

    PubMed

    Luo, Tian; Zhang, Jianling; Li, Wei; He, Zhenhong; Sun, Xiaofu; Shi, Jinbiao; Shao, Dan; Zhang, Bingxing; Tan, Xiuniang; Han, Buxing

    2017-11-29

    Here, we propose a CO 2 /water interfacial route for photocatalytic CO 2 conversion by utilizing a metal-organic framework (MOF) as both an emulsifier and a catalyst. The CO 2 reduction occurring at the CO 2 /water interface produces formate with remarkably enhanced efficiency as compared with that in conventional solvent. The route is efficient, facile, adjustable, and environmentally benign, which is applicable for the CO 2 transformation photocatalyzed by different kinds of MOFs.

  6. Fabrication of porous matrix membrane (PMM) using metal-organic framework as green template for water treatment.

    PubMed

    Lee, Jian-Yuan; Tang, Chuyang Y; Huo, Fengwei

    2014-01-17

    Pressure-driven membranes with high porosity can potentially be fabricated by removing template, such as low water stability metal-organic frameworks (MOFs) or other nanoparticles, in polymeric matrix. We report on the use of benign MOFs as green template to enhance porosity and interconnectivity of the water treatment membranes. Significantly enhanced separation performance was observed which might be attributed to the mass transfer coefficient of the substrate layer increased in ultrafiltration (UF) application.

  7. Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platero-Prats, Ana E.; League, Aaron B.; Bernales, Varinia

    2017-07-24

    Metal-organic frameworks (MOFs), with their well-ordered pore networks and tunable surface chemistries, offer a versatile platform for preparing well-defined nanostructures wherein functionality such as catalysis can be incorporated. We resolved the atomic structure of Ni-oxo species deposited in the MOF NU-1000 through atomic layer deposition using local and long-range structure probes, including X-ray absorption spectroscopy, pair distribution function analysis and difference envelope density analysis, with electron microscopy imaging and computational modeling.

  8. Preparation Methods of Metal Organic Frameworks and Their Capture of CO2

    NASA Astrophysics Data System (ADS)

    Zhang, Linjian; Liand, Fangqin; Luo, Liangfei

    2018-01-01

    The increasingly serious greenhouse effect makes people pay more attention to the capture and storage technology of CO2. Metal organic frameworks (MOFs) have the advantages of high specific surface area, porous structure and controllable structure, and become the research focus of CO2 emission reduction technology in recent years. In this paper, the characteristics, preparation methods and application of MOFs in the field of CO2 adsorption and separation are discussed, especially the application of flue gas environment in power plants.

  9. A multifunctional hemin@metal-organic framework and its application to construct an electrochemical aptasensor for thrombin detection.

    PubMed

    Xie, Shunbi; Ye, Jiawei; Yuan, Yali; Chai, Yaqin; Yuan, Ruo

    2015-11-21

    A new type of multifunctional metal-organic framework (MOF) has been synthesized by encapsulating hemin into the nano-sized Fe-MIL-88 MOFs (hemin@MOFs) and first applied in an electrochemical aptasensor to detect thrombin (TB) with the aid of an enzyme for signal amplification. The gold nanoparticle functionalized hemin@MOFs (Au/hemin@MOFs) have not only simultaneously served as redox mediators and solid electrocatalysts, but have also been utilized as an ideal loading platform to immobilize a large number of biomolecules. In this aptasensor, Au/hemin@MOFs conjugated with glucose oxidase (GOD) and thrombin binding aptamer (TBA II) were used as the secondary aptamer bioconjugates (Au/hemin@MOF-TBA II-GOD bioconjugates), and TB was sandwiched between Au/hemin@MOF-TBA II-GOD bioconjugates and the amino-terminated TBA I which was self-assembled on the gold nanoparticle (AuNP) modified electrode. The GOD could oxidize glucose into gluconic acid accompanied by the generation of H2O2. The generated H2O2 on the electrode surface was further electrocatalyzed by hemin@MOFs to amplify the electrochemical signal of hemin contained in hemin@MOFs. Therefore, the synthesized hemin@MOFs represented a new paradigm for multifunctional materials since it combined three different functions including serving as catalysts, redox mediators and loading platforms within a single material. With such an ingenious design, a wide linear range of 0.0001 nM to 30 nM was acquired with a relatively low detection limit of 0.068 pM for TB detection.

  10. Molecular Building Block-Based Electronic Charges for High-Throughput Screening of Metal-Organic Frameworks for Adsorption Applications.

    PubMed

    Argueta, Edwin; Shaji, Jeena; Gopalan, Arun; Liao, Peilin; Snurr, Randall Q; Gómez-Gualdrón, Diego A

    2018-01-09

    Metal-organic frameworks (MOFs) are porous crystalline materials with attractive properties for gas separation and storage. Their remarkable tunability makes it possible to create millions of MOF variations but creates the need for fast material screening to identify promising structures. Computational high-throughput screening (HTS) is a possible solution, but its usefulness is tied to accurate predictions of MOF adsorption properties. Accurate adsorption simulations often require an accurate description of electrostatic interactions, which depend on the electronic charges of the MOF atoms. HTS-compatible methods to assign charges to MOF atoms need to accurately reproduce electrostatic potentials (ESPs) and be computationally affordable, but current methods present an unsatisfactory trade-off between computational cost and accuracy. We illustrate a method to assign charges to MOF atoms based on ab initio calculations on MOF molecular building blocks. A library of building blocks with built-in charges is thus created and used by an automated MOF construction code to create hundreds of MOFs with charges "inherited" from the constituent building blocks. The molecular building block-based (MBBB) charges are similar to REPEAT charges-which are charges that reproduce ESPs obtained from ab initio calculations on crystallographic unit cells of nanoporous crystals-and thus similar predictions of adsorption loadings, heats of adsorption, and Henry's constants are obtained with either method. The presented results indicate that the MBBB method to assign charges to MOF atoms is suitable for use in computational high-throughput screening of MOFs for applications that involve adsorption of molecules such as carbon dioxide.

  11. Mesoporous Fluorinated Metal-Organic Frameworks with Exceptional Adsorption of Fluorocarbons and CFCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Teng-Hao; Popov, Ilya; Kaveevivitchai, Watchareeya

    2016-02-08

    Two mesoporous fluorinated metal–organic frameworks (MOFs) were synthesized from extensively fluorinated tritopic carboxylate- and tetrazolate-based ligands. The tetrazolate-based framework MOFF-5 has an accessible surface area of 2445 m 2g -1, the highest among fluorinated MOFs. Crystals of MOFF-5 adsorb hydrocarbons, fluorocarbons, and chlorofluorocarbons (CFCs)—the latter two being ozone-depleting substances and potent greenhouse species—with weight capacities of up to 225%. The material exhibits an apparent preference for the adsorption of non-spherical molecules, binding unusually low amounts of both tetrafluoromethane and sulfur hexafluoride.

  12. Synthesis, characterization and heterogeneous base catalysis of amino functionalized lanthanide metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Huang, Jinping; Li, Chunmei; Tao, Lingling; Zhu, Huilin; Hu, Gang

    2017-10-01

    Lanthanide metal-organic frameworks (Ln-MOFs) are featured by their tolerance to water and dense structure. In this work, an amine-functionalized Ln-MOF was facilely synthesized by coordination of terbium with 2-aminoterephthalic acid under the condition of microwave irradiation. The crystal structure was characterized by single crystal X-ray diffraction, FT-IR, Raman, TG-DTA and XPS analysis. The basic catalytic activity of the NH2-Tb-MOF was evaluated for Knoevenagel condensation and Henry reactions. Apart from the high activity and 100% selectivity to the condensation product, the NH2-Tb-MOF catalyst could be easily recycled and reused owing to the high stability of the MOF framework formed by coordination of Tb3+ with carboxylic groups. Remarkably, the NH2-Tb-MOF exhibited size-selective catalysis to substrates. For the small-sized reactants, it displayed comparable activity to the homogeneous catalyst of aniline owing to the high dispersion of NH2- active sites and the low diffusion limits. However, in the same reaction system, extremely poor activity in Knoevenagel condensation and Henry reaction for the bulky substrate 4-(tert-butyl) benzaldehyde was observed due to the both effects of substitute and inhibition of diffusion into the micropores. Crystal structure analysis provided a mechanistic evidence that the heterogeneous base catalysis arose from the amino groups densely distributed inside the micropores.

  13. A COMPUTATIONAL AND EXPERIMENTAL STUDY OF METAL AND COVALENT ORGANIC FRAMEWORKS USED IN ADSORPTION COOLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenks, Jeromy WJ; TeGrotenhuis, Ward E.; Motkuri, Radha K.

    2015-07-09

    Metal-organic frameworks (MOFs) have recently attracted enormous interest over the past few years due to their potential applications in energy storage and gas separation. However, there have been few reports on MOFs for adsorption cooling applications. Adsorption cooling technology is an established alternative to mechanical vapor compression refrigeration systems. Adsorption cooling is an excellent alternative in industrial environments where waste heat is available. Applications also include hybrid systems, refrigeration, power-plant dry cooling, cryogenics, vehicular systems and building HVAC. Adsorption based cooling and refrigeration systems have several advantages including few moving parts and negligible power consumption. Key disadvantages include large thermalmore » mass, bulkiness, complex controls, and low COP (0.2-0.5). We explored the use of metal organic frameworks that have very high mass loading and relatively low heats of adsorption, with certain combinations of refrigerants to demonstrate a new type of highly efficient adsorption chiller. An adsorption chiller based on MOFs suggests that a thermally-driven COP>1 may be possible with these materials, which would represent a fundamental breakthrough in performance of adsorption chiller technology. Computational fluid dynamics combined with a system level lumped-parameter model have been used to project size and performance for chillers with a cooling capacity ranging from a few kW to several thousand kW. In addition, a cost model has been developed to project manufactured cost of entire systems. These systems rely on stacked micro/mini-scale architectures to enhance heat and mass transfer. Presented herein are computational and experimental results for hydrophyilic MOFs, fluorophilic MOFs and also flourophilic Covalent-organic frameworks (COFs).« less

  14. In silico design and screening of hypothetical MOF-74 analogs and their experimental synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witman, Matthew; Ling, Sanliang; Anderson, Samantha

    Here, we present the in silico design of metal-organic frameworks (MOFs) exhibiting 1-dimensional rod topologies. We then introduce an algorithm for construction of this family of MOF topologies, and illustrate its application for enumerating MOF-74-type analogs. Furthermore, we perform a broad search for new linkers that satisfy the topological requirements of MOF-74 and consider the largest database of known chemical space for organic compounds, the PubChem database. Our in silico crystal assembly, when combined with dispersion-corrected density functional theory (DFT) calculations, is demonstrated to generate a hypothetical library of open-metal site containing MOF-74 analogs in the 1-D rod topology frommore » which we can simulate the adsorption behavior of CO 2 . We conclude that these hypothetical structures have synthesizable potential through computational identification and experimental validation of a novel MOF-74 analog, Mg 2 (olsalazine).« less

  15. In silico design and screening of hypothetical MOF-74 analogs and their experimental synthesis

    DOE PAGES

    Witman, Matthew; Ling, Sanliang; Anderson, Samantha; ...

    2016-06-21

    Here, we present the in silico design of metal-organic frameworks (MOFs) exhibiting 1-dimensional rod topologies. We then introduce an algorithm for construction of this family of MOF topologies, and illustrate its application for enumerating MOF-74-type analogs. Furthermore, we perform a broad search for new linkers that satisfy the topological requirements of MOF-74 and consider the largest database of known chemical space for organic compounds, the PubChem database. Our in silico crystal assembly, when combined with dispersion-corrected density functional theory (DFT) calculations, is demonstrated to generate a hypothetical library of open-metal site containing MOF-74 analogs in the 1-D rod topology frommore » which we can simulate the adsorption behavior of CO 2 . We conclude that these hypothetical structures have synthesizable potential through computational identification and experimental validation of a novel MOF-74 analog, Mg 2 (olsalazine).« less

  16. Ultrahigh porosity in metal-organic frameworks.

    PubMed

    Furukawa, Hiroyasu; Ko, Nakeun; Go, Yong Bok; Aratani, Naoki; Choi, Sang Beom; Choi, Eunwoo; Yazaydin, A Ozgür; Snurr, Randall Q; O'Keeffe, Michael; Kim, Jaheon; Yaghi, Omar M

    2010-07-23

    Crystalline solids with extended non-interpenetrating three-dimensional crystal structures were synthesized that support well-defined pores with internal diameters of up to 48 angstroms. The Zn4O(CO2)6 unit was joined with either one or two kinds of organic link, 4,4',4''-[benzene-1,3,5-triyl-tris(ethyne-2,1-diyl)]tribenzoate (BTE), 4,4',44''-[benzene-1,3,5-triyl-tris(benzene-4,1-diyl)]tribenzoate (BBC), 4,4',44''-benzene-1,3,5-triyl-tribenzoate (BTB)/2,6-naphthalenedicarboxylate (NDC), and BTE/biphenyl-4,4'-dicarboxylate (BPDC), to give four metal-organic frameworks (MOFs), MOF-180, -200, -205, and -210, respectively. Members of this series of MOFs show exceptional porosities and gas (hydrogen, methane, and carbon dioxide) uptake capacities. For example, MOF-210 has Brunauer-Emmett-Teller and Langmuir surface areas of 6240 and 10,400 square meters per gram, respectively, and a total carbon dioxide storage capacity of 2870 milligrams per gram. The volume-specific internal surface area of MOF-210 (2060 square meters per cubic centimeter) is equivalent to the outer surface of nanoparticles (3-nanometer cubes) and near the ultimate adsorption limit for solid materials.

  17. Encapsulation of redox polysulphides via chemical interaction with nitrogen atoms in the organic linkers of metal-organic framework nanocrystals

    PubMed Central

    Park, Jung Hyo; Choi, Kyung Min; Lee, Dong Ki; Moon, Byeong Cheul; Shin, Sang Rim; Song, Min-Kyu; Kang, Jeung Ku

    2016-01-01

    Lithium polysulphides generated during discharge in the cathode of a lithium-sulphur redox cell are important, but their dissolution into the electrolyte from the cathode during each redox cycle leads to a shortened cycle life. Herein, we use in situ spectroelectrochemical measurements to demonstrate that sp2 nitrogen atoms in the organic linkers of nanocrystalline metal-organic framework-867 (nMOF-867) are able to encapsulate lithium polysulphides inside the microcages of nMOF-867, thus helping to prevent their dissolution into the electrolyte during discharge/charge cycles. This encapsulation mechanism of lithiated/delithiated polysulphides was further confirmed by observations of shifted FTIR spectra for the C = N and C-N bonds, the XPS spectra for the Li-N bonds from nMOF-867, and a visualization method, demonstrating that nMOF-867 prevents lithium polysulphides from being dissolved in the electrolyte. Indeed, a cathode fabricated using nMOF-867 exhibited excellent capacity retention over a long cycle life of 500 discharge/charge cycles, with a capacity loss of approximately 0.027% per cycle from a discharge capacity of 788 mAh/g at a high current rate of 835 mA/g. PMID:27149405

  18. Highly sensitive detection of dipicolinic acid with a water-dispersible terbium-metal organic framework.

    PubMed

    Bhardwaj, Neha; Bhardwaj, Sanjeev; Mehta, Jyotsana; Kim, Ki-Hyun; Deep, Akash

    2016-12-15

    The sensitive detection of dipicolinic acid (DPA) is strongly associated with the sensing of bacterial organisms in food and many types of environmental samples. To date, the demand for a sensitive detection method for bacterial toxicity has increased remarkably. Herein, we investigated the DPA detection potential of a water-dispersible terbium-metal organic framework (Tb-MOF) based on the fluorescence quenching mechanism. The Tb-MOF showed a highly sensitive ability to detect DPA at a limit of detection of 0.04nM (linear range of detection: 1nM to 5µM) and also offered enhanced selectivity from other commonly associated organic molecules. The present study provides a basis for the application of Tb-MOF for direct, convenient, highly sensitive, and specific detection of DPA in the actual samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Submicron sized water-stable metal organic framework (bio-MOF-11) for catalytic degradation of pharmaceuticals and personal care products.

    PubMed

    Azhar, Muhammad Rizwan; Vijay, Periasamy; Tadé, Moses O; Sun, Hongqi; Wang, Shaobin

    2018-04-01

    Water-stable and active metal organic frameworks (MOFs) are important materials for mitigation of water contaminants via adsorption and catalytic reactions. In this study, a highly water-stable Co-based MOF, namely bio-MOF-11-Co, was synthesized by a simplified benign method. Moreover, it was used as a catalyst in successful activation of peroxymonsulfate for catalytic degradation of sulfachloropyradazine (SCP) and para-hydroxybenzoic acid (p-HBA) as representatives of pharmaceuticals and personal care products, respectively. The bio-MOF-11-Co showed rapid degradation of both p-HBA and SCP and could be reused multiple times without losing the activity by simply water washing. The effects of catalyst and PMS loadings as well as temperature were further studied, showing that high catalyst and PMS loadings as well as temperature produced faster kinetic degradation of p-HBA and SCP. The generation of highly reactive and HO radicals during the degradation was investigated by quenching tests and electron paramagnetic resonance. A plausible degradation mechanism was proposed based on the functionalities in the bio-MOF-11-Co. The availability of electron rich nucleobase adenine reinforced the reaction kinetics by electron donation along with cobalt atoms in the bio-MOF-11-Co structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. General and Direct Method for Preparing Oligonucleotide-Functionalized Metal-Organic Framework Nanoparticles.

    PubMed

    Wang, Shunzhi; McGuirk, C Michael; Ross, Michael B; Wang, Shuya; Chen, Pengcheng; Xing, Hang; Liu, Yuan; Mirkin, Chad A

    2017-07-26

    Metal-organic frameworks (MOFs) are a class of modular, crystalline, and porous materials that hold promise for storage and transport of chemical cargoes. Though MOFs have been studied in bulk forms, ways of deliberately manipulating the external surface functionality of MOF nanoparticles are less developed. A generalizable approach to modify their surfaces would allow one to impart chemical functionality onto the particle surface that is independent of the bulk MOF structure. Moreover, the use of a chemically programmable ligand, such as DNA, would allow for the manipulation of interparticle interactions. Herein, we report a coordination chemistry-based strategy for the surface functionalization of the external metal nodes of MOF nanoparticles with terminal phosphate-modified oligonucleotides. The external surfaces of nine distinct archetypical MOF particles containing four different metal species (Zr, Cr, Fe, and Al) were successfully functionalized with oligonucleotides, illustrating the generality of this strategy. By taking advantage of the programmable and specific interactions of DNA, 11 distinct MOF particle-inorganic particle core-satellite clusters were synthesized. In these hybrid nanoclusters, the relative stoichiometry, size, shape, and composition of the building blocks can all be independently controlled. This work provides access to a new set of nucleic acid-nanoparticle conjugates, which may be useful as programmable material building blocks and as probes for measuring and manipulating intracellular processes.

  1. Metal-organic framework mixed-matrix disks: Versatile supports for automated solid-phase extraction prior to chromatographic separation.

    PubMed

    Ghani, Milad; Font Picó, Maria Francesca; Salehinia, Shima; Palomino Cabello, Carlos; Maya, Fernando; Berlier, Gloria; Saraji, Mohammad; Cerdà, Víctor; Turnes Palomino, Gemma

    2017-03-10

    We present for the first time the application of metal-organic framework (MOF) mixed-matrix disks (MMD) for the automated flow-through solid-phase extraction (SPE) of environmental pollutants. Zirconium terephthalate UiO-66 and UiO-66-NH 2 MOFs with different size (90, 200 and 300nm) have been incorporated into mechanically stable polyvinylidene difluoride (PVDF) disks. The performance of the MOF-MMDs for automated SPE of seven substituted phenols prior to HPLC analysis has been evaluated using the sequential injection analysis technique. MOF-MMDs enabled the simultaneous extraction of phenols with the concomitant size exclusion of molecules of larger size. The best extraction performance was obtained using a MOF-MMD containing 90nm UiO-66-NH 2 crystals. Using the selected MOF-MMD, detection limits ranging from 0.1 to 0.2μgL -1 were obtained. Relative standard deviations ranged from 3.9 to 5.3% intra-day, and 4.7-5.7% inter-day. Membrane batch-to-batch reproducibility was from 5.2 to 6.4%. Three different groundwater samples were analyzed with the proposed method using MOF-MMDs, obtaining recoveries ranging from 90 to 98% for all tested analytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Diffusion Control in the in Situ Synthesis of Iconic Metal-Organic Frameworks within an Ionic Polymer Matrix.

    PubMed

    Lim, Jungho; Lee, Eun Ji; Choi, Jae Sun; Jeong, Nak Cheon

    2018-01-31

    Ionic polymers that possess ion-exchangeable sites have been shown to be a greatly useful platform to fabricate mixed matrices (MMs) where metal-organic frameworks (MOFs) can be in situ synthesized, although the in situ synthesis of MOF has been rarely studied. In this study, alginate (ALG), an anionic green polymer that possesses metal-ion-exchangeable sites, is employed as a platform of MMs for the in situ synthesis of iconic MOFs, HKUST-1, and MOF-74(Zn). We demonstrate for the first time that the sequential order of supplying MOF ingredients (metal ion and deprotonated ligand) into the alginate matrix leads to substantially different results because of a difference in the diffusion of the MOF components. For the examples examined, whereas the infusion of BTC 3- ligand into Cu 2+ -exchanged ALG engendered the eggshell-shaped HKUST-1 layers on the surface of MM spheres, the infusion of Cu 2+ ions into BTC 3- -included alginate engendered the high dispersivity and junction contact of HKUST-1 crystals in the alginate matrix. This fundamental property has been exploited to fabricate a flexible MOF-containing mixed matrix membrane by coincorporating poly(vinyl alcohol). Using two molecular dyes, namely, methylene blue and rhodamine 6G, further, we show that this in situ strategy is suitable for fabricating an MOF-MM that exhibits size-selective molecular uptake.

  3. Temperature Treatment of Highly Porous Zirconium-Containing Metal-Organic Frameworks Extends Drug Delivery Release.

    PubMed

    Teplensky, Michelle H; Fantham, Marcus; Li, Peng; Wang, Timothy C; Mehta, Joshua P; Young, Laurence J; Moghadam, Peyman Z; Hupp, Joseph T; Farha, Omar K; Kaminski, Clemens F; Fairen-Jimenez, David

    2017-06-07

    Utilizing metal-organic frameworks (MOFs) as a biological carrier can lower the amount of the active pharmaceutical ingredient (API) required in cancer treatments to provide a more efficacious therapy. In this work, we have developed a temperature treatment process for delaying the release of a model drug compound from the pores of NU-1000 and NU-901, while taking care to utilize these MOFs' large pore volume and size to achieve exceptional model drug loading percentages over 35 wt %. Video-rate super-resolution microscopy reveals movement of MOF particles when located outside of the cell boundary, and their subsequent immobilization when taken up by the cell. Through the use of optical sectioning structured illumination microscopy (SIM), we have captured high-resolution 3D images showing MOF uptake by HeLa cells over a 24 h period. We found that addition of a model drug compound into the MOF and the subsequent temperature treatment process does not affect the rate of MOF uptake by the cell. Endocytosis analysis revealed that MOFs are internalized by active transport and that inhibiting the caveolae-mediated pathway significantly reduced cellular uptake of MOFs. Encapsulation of an anticancer therapeutic, alpha-cyano-4-hydroxycinnamic acid (α-CHC), and subsequent temperature treatment produced loadings of up to 81 wt % and demonstrated efficacy at killing cells beyond the burst release effect.

  4. Photo-triggered release of 5-fluorouracil from a MOF drug delivery vehicle.

    PubMed

    Roth Stefaniak, Kristina; Epley, Charity C; Novak, Joshua J; McAndrew, Margaret L; Cornell, Hannah D; Zhu, Jie; McDaniel, Dylan K; Davis, Jennifer L; Allen, Irving C; Morris, Amanda J; Grove, Tijana Z

    2018-06-21

    A nano metal-organic-framework (nanoMOF) was employed as a first-of-its kind drug delivery vehicle (DDV) for the photo-controlled release of therapeutics with simultaneous breakdown of the carrier into small molecules.

  5. Ab initio investigation on hydrogen adsorption capability in Zn and Cu-based metal organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanuwijaya, V. V., E-mail: viny.veronika@gmail.com; Hidayat, N. N., E-mail: avantgarde.vee@gmail.com; Agusta, M. K., E-mail: kemal@fti.itb.ac.id

    2015-09-30

    One of the biggest challenge in material technology for hydrogen storage application is to increase hydrogen uptake in room temperature and pressure. As a class of highly porous material, Metal-Organic Frameworks (MOF) holds great potential with its tunable structure. However, little is known about the effect of metal cluster to its hydrogen storage capability. Investigation on this matter has been carried out carefully on small cluster of Zn and Cu-based MOF using first principles method. The calculation of two distinct building units of MOFs, namely octahedral and paddle-wheel models, have been done with B3LYP density functional method using 6-31G(d,p) andmore » LANL2DZ basis sets. From geometry optimization of Zn-based MOF linked by benzene-dicarboxylate (MOF-5), it is found that hydrogen tends to keep distance from metal cluster group and stays above benzene ring. In the other hand, hydrogen molecule prefers to stay atop of the exposed Cu atom in Cu-based MOF system linked by the same linker group (Cu-bdc). Calculated hydrogen binding enthalpies for Zn and Cu octahedral cages at ZnO{sub 3} sites are 1.64kJ/mol and 2.73kJ/mol respectively, while hydrogen binding enthalpies for Zn and Cu paddle-wheel cages calculated on top of metal atoms are found to be at 6.05kJ/mol and 6.10kJ/mol respectively. Major difference between Zn-MOF-5 and Cu-bdc hydrogen uptake performance might be caused by unsaturated metal sites present in Cu-bdc system and the influence of their geometric structures, although a small difference on binding energy in the type of transition metal used is also observed. The comparison between Zn and Cu-based MOF may contribute to a comprehensive understanding of metal clusters and the importance of selecting best transition metal for design and synthesis of metal-organic frameworks.« less

  6. Sizable dynamics in small pores: CO2 location and motion in the α-Mg formate metal-organic framework.

    PubMed

    Lu, Yuanjun; Lucier, Bryan E G; Zhang, Yue; Ren, Pengju; Zheng, Anmin; Huang, Yining

    2017-02-22

    Metal-organic frameworks (MOFs) are promising materials for carbon dioxide (CO 2 ) adsorption and storage; however, many details regarding CO 2 dynamics and specific adsorption site locations within MOFs remain unknown, restricting the practical uses of MOFs for CO 2 capture. The intriguing α-magnesium formate (α-Mg 3 (HCOO) 6 ) MOF can adsorb CO 2 and features a small pore size. Using an intertwined approach of 13 C solid-state NMR (SSNMR) spectroscopy, 1 H- 13 C cross-polarization SSNMR, and computational molecular dynamics (MD) simulations, new physical insights and a rich variety of information have been uncovered regarding CO 2 adsorption in this MOF, including the surprising suggestion that CO 2 motion is restricted at elevated temperatures. Guest CO 2 molecules undergo a combined localized rotational wobbling and non-localized twofold jumping between adsorption sites. MD simulations and SSNMR experiments accurately locate the CO 2 adsorption sites; the mechanism behind CO 2 adsorption is the distant interaction between the hydrogen atom of the MOF formate linker and a guest CO 2 oxygen atom, which are ca. 3.2 Å apart.

  7. Application and Limitations of Nanocasting in Metal–Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malonzo, Camille D.; Wang, Zhao; Duan, Jiaxin

    Nanocasting can be a useful strategy to transfer the catalytic metal clusters in metal-organic frameworks (MOFs) to an all-inorganic support such as silica. The incorporation of silica in the MOF pores as a secondary support has the potential to extend the application of the highly tunable metal-based active sites in MOFs to high temperature catalysis. Here, we demonstrate the applicability of the nanocasting method to a range of MOFs that incorporate catalytically attractive hexazirconium, hexacerium, or pentanickel oxide-based clusters (UiO-66, (Ce)UiO-66, (Ce)UiO-67, (Ce)MOF-808, DUT-9, and In- and Ni-post-metalated NU-1000). We describe, in tutorial form, the challenges associated with nanocasting ofmore » MOFs that are related to their small pore size and to considerations of chemical and mechanical stability, and we provide approaches to overcome some of these challenges. Some of these nanocast materials feature the site-isolated clusters in a porous, thermally stable silica matrix, suitable for catalysis at high temperatures; in others, structural rearrangement of clusters or partial cluster aggregation occurs, but extensive aggregation can be mitigated by the silica skeleton introduced during nanocasting.« less

  8. Reusable Oxidation Catalysis Using Metal-Monocatecholato Species in a Robust Metal–Organic Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, Honghan; Shin, JaeWook; Meng, Ying Shirley

    2014-04-02

    An isolated metal-monocatecholato moiety has been achieved in a highly robust metal–organic framework (MOF) by two fundamentally different postsynthetic strategies: postsynthetic deprotection (PSD) and postsynthetic exchange (PSE). Compared with PSD, PSE proved to be a more facile and efficient functionalization approach to access MOFs that could not be directly synthesized under solvothermal conditions. Metalation of the catechol functionality residing in the MOFs resulted in unprecedented Fe-monocatecholato and Cr-monocatecholato species, which were characterized by X-ray absorption spectroscopy, X-band electron paramagnetic resonance spectroscopy, and ⁵⁷Fe Mössbauer spectroscopy. The resulting materials are among the first examples of Zr(IV)-based UiO MOFs (UiO = Universitymore » of Oslo) with coordinatively unsaturated active metal centers. Importantly, the Cr-metalated MOFs are active and efficient catalysts for the oxidation of alcohols to ketones using a wide range of substrates. Catalysis could be achieved with very low metal loadings (0.5–1 mol %). Unlike zeolite-supported, Cr-exchange oxidation catalysts, the MOF-based catalysts reported here are completely recyclable and reusable, which may make them attractive catalysts for ‘green’ chemistry processes.« less

  9. Biomolecule-embedded metal-organic frameworks as an innovative sensing platform.

    PubMed

    Kempahanumakkagari, Sureshkumar; Kumar, Vanish; Samaddar, Pallabi; Kumar, Pawan; Ramakrishnappa, Thippeswamy; Kim, Ki-Hyun

    Technological advancements combined with materials research have led to the generation of enormous types of novel substrates and materials for use in various biological/medical, energy, and environmental applications. Lately, the embedding of biomolecules in novel and/or advanced materials (e.g., metal-organic frameworks (MOFs), nanoparticles, hydrogels, graphene, and their hybrid composites) has become a vital research area in the construction of an innovative platform for various applications including sensors (or biosensors), biofuel cells, and bioelectronic devices. Due to the intriguing properties of MOFs (e.g., framework architecture, topology, and optical properties), they have contributed considerably to recent progresses in enzymatic catalysis, antibody-antigen interactions, or many other related approaches. Here, we aim to describe the different strategies for the design and synthesis of diverse biomolecule-embedded MOFs for various sensing (e.g., optical, electrochemical, biological, and miscellaneous) techniques. Additionally, the benefits and future prospective of MOFs-based biomolecular immobilization as an innovative sensing platform are discussed along with the evaluation on their performance to seek for further development in this emerging research area. Copyright © 2018. Published by Elsevier Inc.

  10. MOFwich: Sandwiched Metal-Organic Framework-Containing Mixed Matrix Composites for Chemical Warfare Agent Removal.

    PubMed

    Peterson, Gregory W; Lu, Annie X; Hall, Morgan G; Browe, Matthew A; Tovar, Trenton; Epps, Thomas H

    2018-02-28

    This work describes a new strategy for fabricating mixed matrix composites containing layered metal-organic framework (MOF)/polymer films as functional barriers for chemical warfare agent protection. Through the use of mechanically robust polymers as the top and bottom encasing layers, a high-MOF-loading, high-performance-core layer can be sandwiched within. We term this multifunctional composite "MOFwich". We found that the use of elastomeric encasing layers enabled core layer reformation after breakage, an important feature for composites and membranes alike. The incorporation of MOFs into the core layer led to enhanced removal of chemical warfare agents while simultaneously promoting moisture vapor transport through the composite, showcasing the promise of these composites for protection applications.

  11. Experimental comparison of chiral metal-organic framework used as stationary phase in chromatography.

    PubMed

    Xie, Sheng-Ming; Zhang, Mei; Fei, Zhi-Xin; Yuan, Li-Ming

    2014-10-10

    Chiral metal-organic frameworks (MOFs) are a new class of multifunctional material, which possess diverse structures and unusual properties such as high surface area, uniform and permanent cavities, as well as good chemical and thermal stability. Their chiral functionality makes them attractive as novel enantioselective adsorbents and stationary phases in separation science. In this paper, the experimental comparison of a chiral MOF [In₃O(obb)₃(HCO₂)(H₂O)] solvent used as a stationary phase was investigated in gas chromatography (GC), high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC). The potential relationship between the structure and components of chiral MOFs with their chiral recognition ability and selectivity are presented. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Dual Role of Water in Heterogeneous Catalytic Hydrolysis of Sarin by Zirconium-Based Metal-Organic Frameworks.

    PubMed

    Momeni, Mohammad R; Cramer, Christopher J

    2018-05-22

    Recent experimental studies on Zr IV -based metal-organic frameworks (MOFs) have shown the extraordinary effectiveness of these porous materials for the detoxification of phosphorus-based chemical warfare agents (CWAs). However, pressing challenges remain with respect to characterizing these catalytic processes both at the molecular and crystalline levels. We here use theory to compare the reactivity of different zirconium-based MOFs for the catalytic hydrolysis of the CWA sarin, using both periodic and cluster modeling. We consider both hydrated and dehydrated secondary building units, as well as linker functionalized MOFs, to more fully understand and rationalize available experimental findings as well as to enable concrete predictions for achieving higher activities for the decomposition of CWAs.

  13. Tunable chiral metal organic frameworks toward visible light–driven asymmetric catalysis

    PubMed Central

    Zhang, Yin; Guo, Jun; Shi, Lin; Zhu, Yanfei; Hou, Ke; Zheng, Yonglong; Tang, Zhiyong

    2017-01-01

    A simple and effective strategy is developed to realize visible light–driven heterogeneous asymmetric catalysis. A chiral organic molecule, which only has very weak catalytic activity in asymmetric α-alkylation of aldehydes under visible light, is utilized as the ligand to coordinate with different types of metal ions, including Zn2+, Zr4+, and Ti4+, for construction of crystalline metal organic frameworks (MOFs). Impressively, when used as heterogeneous catalysts, all of the synthesized MOFs exhibit markedly enhanced activity. Furthermore, the asymmetric catalytic performance of these MOFs could be easily altered by selecting different metal ions, owing to the tunable electron transfer property between metal ions and chiral ligands. This work will provide a new approach for fabrication of heterogeneous catalysts and trigger more enthusiasm to conduct the asymmetric catalysis driven by visible light. PMID:28835929

  14. Metal-organic frameworks for lithium ion batteries and supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke, Fu-Sheng; Wu, Yu-Shan; Deng, Hexiang, E-mail: hdeng@whu.edu.cn

    2015-03-15

    Porous materials have been widely used in batteries and supercapacitors attribute to their large internal surface area (usually 100–1000 m{sup 2} g{sup −1}) and porosity that can favor the electrochemical reaction, interfacial charge transport, and provide short diffusion paths for ions. As a new type of porous crystalline materials, metal-organic frameworks (MOFs) have received huge attention in the past decade due to their unique properties, i.e. huge surface area (up to 7000 m{sup 2} g{sup −1}), high porosity, low density, controllable structure and tunable pore size. A wide range of applications including gas separation, storage, catalysis, and drug delivery benefitmore » from the recent fast development of MOFs. However, their potential in electrochemical energy storage has not been fully revealed. Herein, the present mini review appraises recent and significant development of MOFs and MOF-derived materials for rechargeable lithium ion batteries and supercapacitors, to give a glimpse into these potential applications of MOFs. - Graphical abstract: MOFs with large surface area and high porosity can offer more reaction sites and charge carriers diffusion path. Thus MOFs are used as cathode, anode, electrolyte, matrix and precursor materials for lithium ion battery, and also as electrode and precursor materials for supercapacitors. - Highlights: • MOFs have potential in electrochemical area due to their high porosity and diversity. • We summarized and compared works on MOFs for lithium ion battery and supercapacitor. • We pointed out critical challenges and provided possible solutions for future study.« less

  15. CO2/H2O adsorption equilibrium and rates on metal-organic frameworks: HKUST-1 and Ni/DOBDC.

    PubMed

    Liu, Jian; Wang, Yu; Benin, Annabelle I; Jakubczak, Paulina; Willis, Richard R; LeVan, M Douglas

    2010-09-07

    Metal-organic frameworks (MOFs) have recently attracted intense research interest because of their permanent porous structures, huge surface areas, and potential applications as novel adsorbents and catalysts. In order to provide a basis for consideration of MOFs for removal of carbon dioxide from gases containing water vapor, such as flue gas, we have studied adsorption equilibrium of CO(2), H(2)O vapor, and their mixtures and also rates of CO(2) adsorption in two MOFs: HKUST-1 (CuBTC) and Ni/DOBDC (CPO-27-Ni or Ni/MOF-74). The MOFs were synthesized via solvothermal methods, and the as-synthesized products were solvent exchanged and regenerated before experiments. Pure component adsorption equilibria and CO(2)/H(2)O binary adsorption equilibria were studied using a volumetric system. The effects of H(2)O adsorption on CO(2) adsorption for both MOF samples were determined, and the results for 5A and NaX zeolites were included for comparison. The hydrothermal stabilities for the two MOFs over the course of repetitive measurements of H(2)O and CO(2)/H(2)O mixture equilibria were also studied. CO(2) adsorption rates from helium for the MOF samples were investigated by using a unique concentration-swing frequency response (CSFR) system. Mass transfer into the MOFs is rapid with the controlling resistance found to be macropore diffusion, and rate parameters were established for the mechanism.

  16. Metal-Organic Frameworks for Cultural Heritage Preservation: The Case of Acetic Acid Removal.

    PubMed

    Dedecker, Kevin; Pillai, Renjith S; Nouar, Farid; Pires, João; Steunou, Nathalie; Dumas, Eddy; Maurin, Guillaume; Serre, Christian; Pinto, Moisés L

    2018-04-25

    The removal of low concentrations of acetic acid from indoor air at museums poses serious preservation problems that the current adsorbents cannot easily address owing to their poor affinity for acetic acid and/or their low adsorption selectivity versus water. In this context, a series of topical water-stable metal-organic frameworks (MOFs) with different pore sizes, topologies, hydrophobic characters, and functional groups was explored through a joint experimental-computational exploration. We demonstrate how a subtle combination of sufficient hydrophobicity and optimized host-guest interactions allows one to overcome the challenge of capturing traces of this very polar volatile organic compound in the presence of humidity. The optimal capture of acetic acid was accomplished with MOFs that do not show polar groups in the inorganic node or have lipophilic but polar (e.g., perfluoro) groups functionalized to the organic linkers, that is, the best candidates from the list of explored MOFs are MIL-140B and UiO-66-2CF 3 . These two MOFs present the appropriate pore size to favor a high degree of confinement, together with organic spacers that allow an enhancement of the van der Waals interactions with the acetic acid. We establish in this work that MOFs can be a viable solution to this highly challenging problem in cultural heritage protection, which is a new field of application for this type of hybrid materials.

  17. A high surface area Zr(IV)-based metal–organic framework showing stepwise gas adsorption and selective dye uptake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Xiu-Liang; Tong, Minman; Huang, Hongliang

    2015-03-15

    Exploitation of new metal–organic framework (MOF) materials with high surface areas has been attracting great attention in related research communities due to their broad potential applications. In this work, a new Zr(IV)-based MOF, [Zr{sub 6}O{sub 4}(OH){sub 4}(eddb){sub 6}] (BUT-30, H{sub 2}eddb=4,4′-(ethyne-1,2-diyl)dibenzoic acid) has been solvothermally synthesized, characterized, and explored for gases and dyes adsorptions. Single-crystal X-ray diffraction analysis demonstrates a three-dimensional cubic framework structure of this MOF, in which each Zr{sub 6}O{sub 4}(OH){sub 4} building unit is linked by 12 linear eddb ligands. BUT-30 has been found stable up to 400 °C and has a Brunauer–Emmett–Teller (BET) surface area asmore » high as 3940.6 m{sup 2} g{sup −1} (based on the N{sub 2} adsorption at 77 K) and total pore volume of 1.55 cm{sup 3} g{sup −1}. It is more interesting that this MOF exhibits stepwise adsorption behaviors for Ar, N{sub 2}, and CO{sub 2} at low temperatures, and selective uptakes towards different ionic dyes. - Graphical abstract: A new Zr(IV)-based MOF with high surface area has been synthesized and structurally characterized, which shows stepwise gas adsorption at low temperature and selective dye uptake from solution. - Highlights: • A new Zr-based MOF was synthesized and structurally characterized. • This MOF shows a higher surface area compared with its analogous UiO-67 and 68. • This MOF shows a rare stepwise adsorption towards light gases at low temperature. • This MOF performs selective uptakes towards cationic dyes over anionic ones. • Using triple-bond spacer is confirmed feasible in enhancing MOF surface areas.« less

  18. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion.

    PubMed

    Liang, Zibin; Qu, Chong; Xia, Dingguo; Zou, Ruqiang; Xu, Qiang

    2018-02-19

    Metal sites play an essential role for both electrocatalytic and photocatalytic energy conversion applications. The highly ordered arrangements of the organic linkers and metal nodes and the well-defined pore structures of metal-organic frameworks (MOFs) make them ideal substrates to support atomically dispersed metal sites (ADMSs) located in their metal nodes, linkers, and pores. Besides, porous carbon materials doped with ADMSs can be derived from these ADMS-incorporated MOF precursors through controlled treatments. These ADMSs incorporated in pristine MOFs and MOF-derived carbon materials possess unique merits over the molecular or the bulk metal-based catalysts, bridging the gap between homogeneous and heterogeneous catalysts for energy conversion applications. In this review, recent progress and perspective of design and incorporation of ADMSs in pristine MOFs and MOF-derived materials for energy conversion applications are highlighted, which will hopefully promote further developments of advanced MOF-based catalysts in foreseeable future. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. UiO-66-NH2 Metal-Organic Framework (MOF) Nucleation on TiO2, ZnO, and Al2O3 Atomic Layer Deposition-Treated Polymer Fibers: Role of Metal Oxide on MOF Growth and Catalytic Hydrolysis of Chemical Warfare Agent Simulants.

    PubMed

    Lee, Dennis T; Zhao, Junjie; Oldham, Christopher J; Peterson, Gregory W; Parsons, Gregory N

    2017-12-27

    Metal-organic frameworks (MOFs) chemically bound to polymeric microfibrous textiles show promising performance for many future applications. In particular, Zr-based UiO-66-family MOF-textiles have been shown to catalytically degrade highly toxic chemical warfare agents (CWAs), where favorable MOF/polymer bonding and adhesion are attained by placing a nanoscale metal-oxide layer on the polymer fiber preceding MOF growth. To date, however, the nucleation mechanism of Zr-based MOFs on different metal oxides and how product performance is affected are not well understood. Herein, we provide new insight into how different inorganic nucleation films (i.e., Al 2 O 3 , ZnO, or TiO 2 ) conformally coated on polypropylene (PP) nonwoven textiles via atomic layer deposition (ALD) influence the quality, overall surface area, and the fractional yield of UiO-66-NH 2 MOF crystals solvothermally grown on fiber substrates. Of the materials explored, we find that TiO 2 ALD layers lead to the most effective overall MOF/fiber adhesion, uniformity, and a rapid catalytic degradation rate for a CWA simulant, dimethyl p-nitrophenyl phosphate (DMNP) with t 1/2 = 15 min, 580-fold faster than the catalytic performance of untreated PP textiles. Interestingly, compared to ALD TiO 2 and Al 2 O 3 , ALD ZnO induces a larger MOF yield in solution and mass loading on PP fibrous mats. However, this larger MOF yield is ascribed to chemical instability of the ZnO layer under MOF formation condition, leading to Zn 2+ ions that promote further homogeneous MOF growth. Insights presented here improve understanding of compatibility between active MOF materials and substrate surfaces, which we believe will help advanced MOF composite materials for a variety of useful functions.

  20. Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platero-Prats, Ana E.; League, Aaron B.; Bernales, Varinia

    Metal-organic frameworks (MOFs), with their well-ordered pore networks and tunable surface chemistries, offer a versatile platform for preparing well-defined nanostructures wherein functionality such as catalysis can be incorporated. Notably, atomic layer deposition (ALD) in MOFs has recently emerged as a versatile approach to functionalize MOF surfaces with a wide variety of catalytic metal-oxo species. Understanding the structure of newly deposited species and how they are tethered within the MOF is critical to understanding how these components couple to govern the active material properties. By combining local and long-range structure probes, including X-ray absorption spectroscopy, pair distribution function analysis and differencemore » envelope density analysis, with electron microscopy imag-ing and computational modeling, we resolve the precise atomic structure of metal-oxo species deposited in the MOF NU-1000 through ALD. These analyses demonstrate that deposition of NiO xH y clusters occurs selectively within the smallest pores of NU-1000, between the zirconia nodes, serving to connect these nodes along the c-direction to yield hetero-bimetallic metal-oxo nanowires. Finally, this bridging motif perturbs the NU-1000 framework structure, drawing the zirconia nodes closer together, and also underlies the sintering-resistance of these clusters during the hydrogenation of light olefins.« less

  1. Bridging Zirconia Nodes within a Metal-Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires.

    PubMed

    Platero-Prats, Ana E; League, Aaron B; Bernales, Varinia; Ye, Jingyun; Gallington, Leighanne C; Vjunov, Aleksei; Schweitzer, Neil M; Li, Zhanyong; Zheng, Jian; Mehdi, B Layla; Stevens, Andrew J; Dohnalkova, Alice; Balasubramanian, Mahalingam; Farha, Omar K; Hupp, Joseph T; Browning, Nigel D; Fulton, John L; Camaioni, Donald M; Lercher, Johannes A; Truhlar, Donald G; Gagliardi, Laura; Cramer, Christopher J; Chapman, Karena W

    2017-08-02

    Metal-organic frameworks (MOFs), with their well-ordered pore networks and tunable surface chemistries, offer a versatile platform for preparing well-defined nanostructures wherein functionality such as catalysis can be incorporated. Notably, atomic layer deposition (ALD) in MOFs has recently emerged as a versatile approach to functionalize MOF surfaces with a wide variety of catalytic metal-oxo species. Understanding the structure of newly deposited species and how they are tethered within the MOF is critical to understanding how these components couple to govern the active material properties. By combining local and long-range structure probes, including X-ray absorption spectroscopy, pair distribution function analysis, and difference envelope density analysis, with electron microscopy imaging and computational modeling, we resolve the precise atomic structure of metal-oxo species deposited in the MOF NU-1000 through ALD. These analyses demonstrate that deposition of NiO x H y clusters occurs selectively within the smallest pores of NU-1000, between the zirconia nodes, serving to connect these nodes along the c-direction to yield heterobimetallic metal-oxo nanowires. This bridging motif perturbs the NU-1000 framework structure, drawing the zirconia nodes closer together, and also underlies the sintering resistance of these clusters during the hydrogenation of light olefins.

  2. Toward Understanding Drug Incorporation and Delivery from Biocompatible Metal-Organic Frameworks in View of Cutaneous Administration.

    PubMed

    Rojas, Sara; Colinet, Isabel; Cunha, Denise; Hidalgo, Tania; Salles, Fabrice; Serre, Christian; Guillou, Nathalie; Horcajada, Patricia

    2018-03-31

    Although metal-organic frameworks (MOFs) have widely demonstrated their convenient performances as drug-delivery systems, there is still work to do to fully understand the drug incorporation/delivery processes from these materials. In this work, a combined experimental and computational investigation of the main structural and physicochemical parameters driving drug adsorption/desorption kinetics was carried out. Two model drugs (aspirin and ibuprofen) and three water-stable, biocompatible MOFs (MIL-100(Fe), UiO-66(Zr), and MIL-127(Fe)) have been selected to obtain a variety of drug-matrix couples with different structural and physicochemical characteristics. This study evidenced that the drug-loading and drug-delivery processes are mainly governed by structural parameters (accessibility of the framework and drug volume) as well as the MOF/drug hydrophobic/hydrophilic balance. As a result, the delivery of the drug under simulated cutaneous conditions (aqueous media at 37 °C) demonstrated that these systems fulfill the requirements to be used as topical drug-delivery systems, such as released payload between 1 and 7 days. These results highlight the importance of the rational selection of MOFs, evidencing the effect of geometrical and chemical parameters of both the MOF and the drug on the drug adsorption and release.

  3. Toward Understanding Drug Incorporation and Delivery from Biocompatible Metal–Organic Frameworks in View of Cutaneous Administration

    PubMed Central

    2018-01-01

    Although metal–organic frameworks (MOFs) have widely demonstrated their convenient performances as drug-delivery systems, there is still work to do to fully understand the drug incorporation/delivery processes from these materials. In this work, a combined experimental and computational investigation of the main structural and physicochemical parameters driving drug adsorption/desorption kinetics was carried out. Two model drugs (aspirin and ibuprofen) and three water-stable, biocompatible MOFs (MIL-100(Fe), UiO-66(Zr), and MIL-127(Fe)) have been selected to obtain a variety of drug–matrix couples with different structural and physicochemical characteristics. This study evidenced that the drug-loading and drug-delivery processes are mainly governed by structural parameters (accessibility of the framework and drug volume) as well as the MOF/drug hydrophobic/hydrophilic balance. As a result, the delivery of the drug under simulated cutaneous conditions (aqueous media at 37 °C) demonstrated that these systems fulfill the requirements to be used as topical drug-delivery systems, such as released payload between 1 and 7 days. These results highlight the importance of the rational selection of MOFs, evidencing the effect of geometrical and chemical parameters of both the MOF and the drug on the drug adsorption and release. PMID:29623304

  4. Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires

    DOE PAGES

    Platero-Prats, Ana E.; League, Aaron B.; Bernales, Varinia; ...

    2017-07-11

    Metal-organic frameworks (MOFs), with their well-ordered pore networks and tunable surface chemistries, offer a versatile platform for preparing well-defined nanostructures wherein functionality such as catalysis can be incorporated. Notably, atomic layer deposition (ALD) in MOFs has recently emerged as a versatile approach to functionalize MOF surfaces with a wide variety of catalytic metal-oxo species. Understanding the structure of newly deposited species and how they are tethered within the MOF is critical to understanding how these components couple to govern the active material properties. By combining local and long-range structure probes, including X-ray absorption spectroscopy, pair distribution function analysis and differencemore » envelope density analysis, with electron microscopy imag-ing and computational modeling, we resolve the precise atomic structure of metal-oxo species deposited in the MOF NU-1000 through ALD. These analyses demonstrate that deposition of NiO xH y clusters occurs selectively within the smallest pores of NU-1000, between the zirconia nodes, serving to connect these nodes along the c-direction to yield hetero-bimetallic metal-oxo nanowires. Finally, this bridging motif perturbs the NU-1000 framework structure, drawing the zirconia nodes closer together, and also underlies the sintering-resistance of these clusters during the hydrogenation of light olefins.« less

  5. Metal organic frameworks-derived sensing material of SnO2/NiO composites for detection of triethylamine

    NASA Astrophysics Data System (ADS)

    Bai, Shouli; Liu, Chengyao; Luo, Ruixian; Chen, Aifan

    2018-04-01

    The SnO2/NiO composites were synthesized by hydrothermal followed by calcination using metal-organic framework (MOF) consisting of the ligand of p-benzene-dicarboxylic acid (PTA) and the Sn and Ni center ions as sacrificial templates. The structure and morphology of Sn/Ni-based MOF and SnO2/NiO composites were characterized by XRD, SEM, TEM, FT-IR, TG, XPS and Brunauer-Emmett-Teller analysis. Sensing experiments reveal that the SnO2/NiO composite with the molar ratio of 9:1 not only exhibits the highest response of 14.03 that is 3 times higher than pristine SnO2 to triethylamine at 70 °C, but also shows good selectivity. Such excellent performance is attributed to the MOF-driven strategy and the formation of p-n heterojunctions, because the metal ions can be highly dispersed and separated in the MOFs and can prevent the metal ions aggregation during the MOF decomposition process. The work is a novel route for synthesis of gas sensing material.

  6. Facile Synthesis of Mixed Metal Organic Frameworks: Electrode Materials for Supercapacitor with Excellent Areal Capacitance and Operational Stability.

    PubMed

    Kazemi, Sayed Habib; Hosseinzadeh, Batoul; Kazemi, Hojjat; Kiani, Mohammad Ali; Hajati, Shaaker

    2018-06-08

    Electrode materials with high surface area, tailored pore size and efficient capability for ion insertion and enhanced transport of electrons and ions are needed for advanced supercapacitors. In the present study, a mixed metal organic framework (cobalt and manganese based MOF) was synthesized through a simple one pot solvothermal method and employed as the electrode material for supercapacitor. Notably, Co-Mn MOF electrode displayed a large surface area and excellent cycling stability (over 95% capacitance retention after 1500 cycles). Also, superior pseudocapacitive behavior was observed for Co-Mn MOF electrode in KOH electrolyte with an exceptional areal capacitance of 1.318 F cm-2. Moreover, an asymmetric supercapacitor was assembled using Co-Mn MOF and activated carbon electrode as positive and negative electrodes, respectively. The fabricated supercapacitor showed specific capacitances of 106.7 F g-1 at a scan rate of 10 mV s-1 and delivered maximum energy density of 30 Wh kg-1 at 2285.7 W kg-1. Our studies suggest the Co-Mn MOF as promising electrode materials for supercapacitor applications.

  7. In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plonka, Anna M.; Wang, Qi; Gordon, Wesley O.

    Recently, Zr-based metal organic frameworks (MOFs) were shown to be among the fastest catalysts of nerve-agent hydrolysis in solution. Here, we report a detailed study of the adsorption and decomposition of a nerve-agent simulant, dimethyl methylphosphonate (DMMP), on UiO-66, UiO-67, MOF-808, and NU-1000 using synchrotron-based X-ray powder diffraction, X-ray absorption, and infrared spectroscopy, which reveals key aspects of the reaction mechanism. The diffraction measurements indicate that all four MOFs adsorb DMMP (introduced at atmospheric pressures through a flow of helium or air) within the pore space. In addition, the combination of X-ray absorption and infrared spectra suggests direct coordination ofmore » DMMP to the Zr6 cores of all MOFs, which ultimately leads to decomposition to phosphonate products. Our experimental probes into the mechanism of adsorption and decomposition of chemical warfare agent simulants on Zr-based MOFs open new opportunities in rational design of new and superior decontamination materials.« less

  8. In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plonka, Anna M.; Wang, Qi; Gordon, Wesley O.

    Zr-based metal organic frameworks (MOFs) have been recently shown to be among the fastest catalysts of nerve-agent hydrolysis in solution. We report a detailed study of the adsorption and decomposition of a nerve-agent simulant, dimethyl methylphosphonate (DMMP), on UiO-66, UiO-67, MOF-808, and NU-1000 using synchrotron-based X-ray powder diffraction, X-ray absorption, and infrared spectroscopy, which reveals key aspects of the reaction mechanism. The diffraction measurements indicate that all four MOFs adsorb DMMP (introduced at atmospheric pressures through a flow of helium or air) within the pore space. In addition, the combination of X-ray absorption and infrared spectra suggests direct coordination ofmore » DMMP to the Zr6 cores of all MOFs, which ultimately leads to decomposition to phosphonate products. These experimental probes into the mechanism of adsorption and decomposition of chemical warfare agent simulants on Zr-based MOFs open new opportunities in rational design of new and superior decontamination materials.« less

  9. Stress-induced chemical detection using flexible metal-organic frameworks.

    PubMed

    Allendorf, Mark D; Houk, Ronald J T; Andruszkiewicz, Leanne; Talin, A Alec; Pikarsky, Joel; Choudhury, Arnab; Gall, Kenneth A; Hesketh, Peter J

    2008-11-05

    In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, which causes slight distortions in the MOF crystal structure, can be converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N2 or O2. The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthermore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO2. Finally, we report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds great promise for creating recognition chemistries to enable selective detection of a wide range of analytes.

  10. Silica-Protection-Assisted Encapsulation of Cu2 O Nanocubes into a Metal-Organic Framework (ZIF-8) To Provide a Composite Catalyst.

    PubMed

    Li, Bo; Ma, Jian-Gong; Cheng, Peng

    2018-06-04

    The integration of metal/metal oxide nanoparticles (NPs) into metal-organic frameworks (MOFs) to form composite materials has attracted great interest due to the broad range of applications. However, to date, it has not been possible to encapsulate metastable NPs with high catalytic activity into MOFs, due to their instability during the preparation process. For the first time, we have successfully developed a template protection-sacrifice (TPS) method to encapsulate metastable NPs such as Cu 2 O into MOFs. SiO 2 was used as both a protective shell for Cu 2 O nanocubes and a sacrificial template for forming a yolk-shell structure. The obtained Cu 2 O@ZIF-8 composite exhibits excellent cycle stability in the catalytic hydrogenation of 4-nitrophenol with high activity. This is the first report of a Cu 2 O@MOF-type composite material. The TPS method provides an efficient strategy for encapsulating unstable active metal/metal oxide NPs into MOFs or maybe other porous materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks

    DOE PAGES

    Plonka, Anna M.; Wang, Qi; Gordon, Wesley O.; ...

    2016-12-30

    Recently, Zr-based metal organic frameworks (MOFs) were shown to be among the fastest catalysts of nerve-agent hydrolysis in solution. Here, we report a detailed study of the adsorption and decomposition of a nerve-agent simulant, dimethyl methylphosphonate (DMMP), on UiO-66, UiO-67, MOF-808, and NU-1000 using synchrotron-based X-ray powder diffraction, X-ray absorption, and infrared spectroscopy, which reveals key aspects of the reaction mechanism. The diffraction measurements indicate that all four MOFs adsorb DMMP (introduced at atmospheric pressures through a flow of helium or air) within the pore space. In addition, the combination of X-ray absorption and infrared spectra suggests direct coordination ofmore » DMMP to the Zr6 cores of all MOFs, which ultimately leads to decomposition to phosphonate products. Our experimental probes into the mechanism of adsorption and decomposition of chemical warfare agent simulants on Zr-based MOFs open new opportunities in rational design of new and superior decontamination materials.« less

  12. Pore Breathing of Metal-Organic Frameworks by Environmental Transmission Electron Microscopy.

    PubMed

    Parent, Lucas R; Pham, C Huy; Patterson, Joseph P; Denny, Michael S; Cohen, Seth M; Gianneschi, Nathan C; Paesani, Francesco

    2017-10-11

    Metal-organic frameworks (MOFs) have emerged as a versatile platform for the rational design of multifunctional materials, combining large specific surface areas with flexible, periodic frameworks that can undergo reversible structural transitions, or "breathing", upon temperature and pressure changes, and through gas adsorption/desorption processes. Although MOF breathing can be inferred from the analysis of adsorption isotherms, direct observation of the structural transitions has been lacking, and the underlying processes of framework reorganization in individual MOF nanocrystals is largely unknown. In this study, we describe the characterization and elucidation of these processes through the combination of in situ environmental transmission electron microscopy (ETEM) and computer simulations. This combined approach enables the direct monitoring of the breathing behavior of individual MIL-53(Cr) nanocrystals upon reversible water adsorption and temperature changes. The ability to characterize structural changes in single nanocrystals and extract lattice level information through in silico correlation provides fundamental insights into the relationship between pore size/shape and host-guest interactions.

  13. Lanthanide-Functionalized Metal-Organic Framework Hybrid Systems To Create Multiple Luminescent Centers for Chemical Sensing.

    PubMed

    Yan, Bing

    2017-11-21

    Metal-organic frameworks (MOFs) possess an important advantage over other candidate classes for chemosensory materials because of their exceptional structural tunability and properties. Luminescent sensing using MOFs is a simple, intuitive, and convenient method to recognize species, but the method has limitations, such as insufficient chemical selectivity and signal loss. MOFs contain versatile building blocks (linkers or ligands) with special chemical reactivity, and postsynthetic modification (PSM) provides an opportunity to exploit and expand their unique properties. The linkers in most MOFs contain aromatic subunits that can readily display luminescence after ultraviolet or visible (typically blue) excitation, and this is the main luminescent nature of most MOFs. The introduction of photoactive lanthanide ions (Ln 3+ ) into the MOF hosts may produce new luminescent signals at different positions from that of the MOF linker, but this depends on the intramolecular energy transfer (antenna effect) from the MOF (linkers) to the Ln 3+ ions. Controlling the Ln 3+ content in MOF hybrids may create multiple luminescent centers. The nature of the unique luminescent centers may cause different responses to sensing species (i.e., ratiometric sensing), which may provide a new opportunity for luminescence research with applications to chemical sensing. In this Account, recent research progress on using lanthanide-functionalized MOF hybrid materials to create multiple luminescent centers for chemical sensing is described. Here we propose a general strategy to functionalize MOF hosts with lanthanide ions, compounds, or other luminescent species (organic dyes or carbon dots) and to assemble types of photofunctional hybrid systems based on lanthanide-functionalized MOFs. Five main methods were used to functionalize the MOFs and assemble the hybrid materials: in situ composition, ionic doping, ionic exchange, covalent PSM, and coordinated PSM. Through the lanthanide functionalization, multiple (double or triple) luminescent centers were created with different luminescent bands in the visible region. Because of the different luminescent natures of the lanthanide ions, MOF linkers, and other species (organic dyes or carbon dots), they display different responses to sensing species. Currently, using these strategies, we have utilized a dual-response luminescent probe to realize chemical sensing of different types of cations (Fe 3+ /Fe 2+ , Hg 2+ , and Cd 2+ ), anions (Cr 2 O 7 2- /CrO 4 - and CO 3 2- ), molecules (volatile organic compounds and O 2 ), special air pollutants (formaldehyde), and biomarkers of food spoilage as well as pH and temperature. Additionally, we have achieved triple-luminescence-response sensing of ions (Ag + , Hg 2+ , and S 2- ) in complicated aqueous environments, which was developed using a logic operation.

  14. Tunable Two-color Luminescence and Host-guest Energy Transfer of Fluorescent Chromophores Encapsulated in Metal-Organic Frameworks

    NASA Astrophysics Data System (ADS)

    Yan, Dongpeng; Tang, Yanqun; Lin, Heyang; Wang, Dan

    2014-03-01

    Co-assembly of chromophore guests with host matrices can afford materials which have photofunctionalities different from those of individual components. Compared with clay and zeolite materials, the use of metal-organic frameworks (MOFs) as a host structure for fabricating luminescent host-guest materials is still at an early stage. Herein, we report the incorporation of a laser dye, 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM), into stilbene-based and naphthalene-based MOF systems. The resulting materials exhibit blue/red two-color emission, and the intensity ratio of blue to red fluorescence varies in different planes within the MOF crystal as detected by 3D confocal fluorescence microscopy. The observed changes in ratiometric fluorescence suggest the occurrence of energy transfer from MOF host to DCM molecules, which can be further confirmed by periodic density functional theoretical (DFT) calculations. Moreover, selective changes in luminescence behavior are observed on treating the guest@MOF samples with volatile organic compounds (methanol, acetone and toluene), indicating that these host-guest systems have potential applications as fluorescence sensors. It can be expected that by rational selection of MOF hosts and guest chromophores with suitable emissive colors and energy levels, a wide variety of multi-color luminescent and energy-transfer systems can readily be prepared in a similar manner.

  15. Directing the breathing behavior of pillared-layered metal-organic frameworks via a systematic library of functionalized linkers bearing flexible substituents.

    PubMed

    Henke, Sebastian; Schneemann, Andreas; Wütscher, Annika; Fischer, Roland A

    2012-06-06

    Flexible metal-organic frameworks (MOFs), also referred to as soft porous crystals (SPCs), show reversible structural transitions dependent on the nature and quantity of adsorbed guest molecules. In recent studies it has been reported that covalent functionalization of the organic linker can influence or even integrate framework flexibility ("breathing") in MOFs. However, rational fine-tuning of such responsive properties is very desirable but challenging as well. Here we present a powerful approach for the targeted manipulation of responsiveness and framework flexibility of an important family of pillared-layered MOFs based on the parent structure [Zn(2)(bdc)(2)(dabco)](n) (bdc = 1,4-benzenedicarboxylate; dabco = 1,4-diazabicyclo[2.2.2]octane). A library of functionalized bdc-type linkers (fu-bdc), which bear additional dangling side groups at different positions of the benzene core (alkoxy groups of varying chain length with diverse functionalities and polarity), was generated. Synthesis of the materials [Zn(2)(fu-bdc)(2)(dabco)](n) yields the respective collection of highly responsive MOFs. The parent MOF is only weakly flexible; however, the substituted frameworks of [Zn(2)(fu-bdc)(2)(dabco)](n) contract drastically upon guest removal and expand again upon adsorption of DMF (N,N-dimethylformamide), EtOH, or CO(2), etc., while N(2) is hardly adsorbed and does not open the narrow-pored form. These "breathing" dynamics are attributed to the dangling side chains that act as immobilized "guests", which interact with mobile guest molecules as well as with themselves and with the framework backbone. The structural details of the guest-free, contracted form and the gas sorption behavior (phase transition pressure, hysteresis loop) are highly dependent on the nature of the substituent at the linker and can therefore be adjusted using our approach. Combining our library of functionalized linkers with the concept of mixed-component MOFs (solid solutions) offers very rich additional dimensions of tailoring the structural dynamics and responsiveness. Implementation of two differently functionalized linkers in varying ratios yields multicomponent single-phased [Zn(2)(fu-bdc')(2x)(fu-bdc″)(2-2x)(dabco)](n) MOFs (0 < x < 1) of increased inherent complexity, which feature a non-linear dependence of their gas sorption properties on the applied ratio of components. Hence, the responsive behavior of such pillared-layered MOFs can be extensively tuned via an intelligent combination of functionalized linkers.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qiu; Liu, Wenxian; Wang, Bingqing

    Composites incorporating metal nanoparticles (MNPs) within metal-organic frameworks (MOFs) have broad applications in many fields. However, the controlled spatial distribution of the MNPs within MOFs remains a challenge for addressing key issues in catalysis, for example, the efficiency of catalysts due to the limitation of molecular diffusion within MOF channels. We report a facile strategy that enables MNPs to be encapsulated into MOFs with controllable spatial localization by using metal oxide both as support to load MNPs and as a sacrificial template to grow MOFs. This strategy is versatile to a variety of MNPs and MOF crystals. By localizing themore » encapsulated MNPs closer to the surface of MOFs, the resultant MNPs@MOF composites not only exhibit effective selectivity derived from MOF cavities, but also enhanced catalytic activity due to the spatial regulation of MNPs as close as possible to the MOF surface.« less

  17. A multifunctional hemin@metal-organic framework and its application to construct an electrochemical aptasensor for thrombin detection

    NASA Astrophysics Data System (ADS)

    Xie, Shunbi; Ye, Jiawei; Yuan, Yali; Chai, Yaqin; Yuan, Ruo

    2015-10-01

    A new type of multifunctional metal-organic framework (MOF) has been synthesized by encapsulating hemin into the nano-sized Fe-MIL-88 MOFs (hemin@MOFs) and first applied in an electrochemical aptasensor to detect thrombin (TB) with the aid of an enzyme for signal amplification. The gold nanoparticle functionalized hemin@MOFs (Au/hemin@MOFs) have not only simultaneously served as redox mediators and solid electrocatalysts, but have also been utilized as an ideal loading platform to immobilize a large number of biomolecules. In this aptasensor, Au/hemin@MOFs conjugated with glucose oxidase (GOD) and thrombin binding aptamer (TBA II) were used as the secondary aptamer bioconjugates (Au/hemin@MOF-TBA II-GOD bioconjugates), and TB was sandwiched between Au/hemin@MOF-TBA II-GOD bioconjugates and the amino-terminated TBA I which was self-assembled on the gold nanoparticle (AuNP) modified electrode. The GOD could oxidize glucose into gluconic acid accompanied by the generation of H2O2. The generated H2O2 on the electrode surface was further electrocatalyzed by hemin@MOFs to amplify the electrochemical signal of hemin contained in hemin@MOFs. Therefore, the synthesized hemin@MOFs represented a new paradigm for multifunctional materials since it combined three different functions including serving as catalysts, redox mediators and loading platforms within a single material. With such an ingenious design, a wide linear range of 0.0001 nM to 30 nM was acquired with a relatively low detection limit of 0.068 pM for TB detection.A new type of multifunctional metal-organic framework (MOF) has been synthesized by encapsulating hemin into the nano-sized Fe-MIL-88 MOFs (hemin@MOFs) and first applied in an electrochemical aptasensor to detect thrombin (TB) with the aid of an enzyme for signal amplification. The gold nanoparticle functionalized hemin@MOFs (Au/hemin@MOFs) have not only simultaneously served as redox mediators and solid electrocatalysts, but have also been utilized as an ideal loading platform to immobilize a large number of biomolecules. In this aptasensor, Au/hemin@MOFs conjugated with glucose oxidase (GOD) and thrombin binding aptamer (TBA II) were used as the secondary aptamer bioconjugates (Au/hemin@MOF-TBA II-GOD bioconjugates), and TB was sandwiched between Au/hemin@MOF-TBA II-GOD bioconjugates and the amino-terminated TBA I which was self-assembled on the gold nanoparticle (AuNP) modified electrode. The GOD could oxidize glucose into gluconic acid accompanied by the generation of H2O2. The generated H2O2 on the electrode surface was further electrocatalyzed by hemin@MOFs to amplify the electrochemical signal of hemin contained in hemin@MOFs. Therefore, the synthesized hemin@MOFs represented a new paradigm for multifunctional materials since it combined three different functions including serving as catalysts, redox mediators and loading platforms within a single material. With such an ingenious design, a wide linear range of 0.0001 nM to 30 nM was acquired with a relatively low detection limit of 0.068 pM for TB detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04532k

  18. Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes

    PubMed Central

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin

    2016-01-01

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal–organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C–H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals. PMID:27574182

  19. Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai

    2016-08-30

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal–organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C–H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturatedmore » metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.« less

  20. Titanium-based Organic Frameworks for Chemical Transformations

    EPA Science Inventory

    Metal–organic frameworks (MOFs) based on organic bridging ligands are a promising class of highly ordered porous materials1 with potential applications in catalysis, gas storage and photoelectric devices. The availability of external surface of the solid-state catalysts plays an ...

  1. Recent Advances in Micro-/Nanostructured Metal-Organic Frameworks towards Photonic and Electronic Applications.

    PubMed

    Yang, Xiaogang; Lin, Xianqing; Zhao, Yong Sheng; Yan, Dongpeng

    2018-05-02

    Micro- and nanometer-sized metal-organic frameworks (MOFs) materials have attracted great attention due to their unique properties and various potential applications in photonics, electronics, high-density storage, chemo-, and biosensors. The study of these materials supplies insight into how the crystal structure, molecular components, and micro-/nanoscale effects can influence the performance of inorganic-organic hybrid materials. In this Minireview article, we introduce recent breakthroughs in the controlled synthesis of MOF micro-/nanomaterials with specific structures and compositions, the tunable photonic and electronic properties of which would provide a novel platform for multifunctional applications. Firstly, the design strategies for MOFs based on self-assembly and crystal engineering principles are introduced. Attention is then focused on the methods of fabrication of low-dimensional MOF micro-/nanostructures. Their new applications including two-photon excited fluorescence, multi-photon pumped lasing, optical waveguides, nonlinear optical (NLO), and field-effect transistors are also outlined. Finally, we briefly discuss perspectives on the further development of these hybrid crystalline micro-/nanomaterials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A fluorescent paramagnetic Mn metal–organic framework based on semi-rigid pyrene tetra­carboxylic acid: sensing of solvent polarity and explosive nitroaromatics

    PubMed Central

    Bajpai, Alankriti; Mukhopadhyay, Arindam; Krishna, Manchugondanahalli Shivakumar; Govardhan, Savitha; Moorthy, Jarugu Narasimha

    2015-01-01

    An Mn metal–organic framework (Mn-MOF), Mn-L, based on a pyrene-tetraacid linker (H4 L), displays a respectable fluorescence quantum yield of 8.3% in spite of the presence of the paramagnetic metal ions, due presumably to fixation of the metal ions in geometries that do not allow complete energy/charge-transfer quenching. Remarkably, the porous Mn-L MOF with ∼25% solvent-accessible volume exhibits a heretofore unprecedented solvent-dependent fluorescence emission maximum, permitting its use as a probe of solvent polarity; the emission maxima in different solvents correlate excellently with Reichardt’s solvent polarity parameter (E T N). Further, the applicability of Mn-L to the sensing of nitroaromatics via fluorescence quenching is demonstrated; the detection limit for TNT is shown to be 125 p.p.m. The results bring out the fact that MOFs based on paramagnetic metal ions can indeed find application when the quenching mechanisms are attenuated by certain geometries of the organic linkers of the MOF. PMID:26306197

  3. A fluorescent paramagnetic Mn metal-organic framework based on semi-rigid pyrene tetra-carboxylic acid: sensing of solvent polarity and explosive nitroaromatics.

    PubMed

    Bajpai, Alankriti; Mukhopadhyay, Arindam; Krishna, Manchugondanahalli Shivakumar; Govardhan, Savitha; Moorthy, Jarugu Narasimha

    2015-09-01

    An Mn metal-organic framework (Mn-MOF), Mn-L, based on a pyrene-tetraacid linker (H4 L), displays a respectable fluorescence quantum yield of 8.3% in spite of the presence of the paramagnetic metal ions, due presumably to fixation of the metal ions in geometries that do not allow complete energy/charge-transfer quenching. Remarkably, the porous Mn-L MOF with ∼25% solvent-accessible volume exhibits a heretofore unprecedented solvent-dependent fluorescence emission maximum, permitting its use as a probe of solvent polarity; the emission maxima in different solvents correlate excellently with Reichardt's solvent polarity parameter (E T (N)). Further, the applicability of Mn-L to the sensing of nitroaromatics via fluorescence quenching is demonstrated; the detection limit for TNT is shown to be 125 p.p.m. The results bring out the fact that MOFs based on paramagnetic metal ions can indeed find application when the quenching mechanisms are attenuated by certain geometries of the organic linkers of the MOF.

  4. Design of Single-Site Photocatalyst using Metal-Organic Framework as Matrix.

    PubMed

    Wen, Meicheng; Mori, Kohsuke; Kuwahara, Yasutaka; An, Taicheng; Yamashita, Hiromi

    2018-05-14

    Single-site photocatalyst generally displays excellent photocatalytic activtiy and considerable high stability as compared to homogeneous catalytic system. A rational structural design of single-site photocatalyst with isolated, uniform and spatially separated active sites in a given solid is of prime importance to achieve high photocatalytic activity. Intense attentions have been focused on the engineering and fabrication of single-site photocatalys by using porous materials as platform. Metal-organic frameworks (MOFs) hold great potential for the design and fabrication of single-site photocatalysts due to their remarkable porosity, ultrahigh surface area, extraordinary tailorability and significant diversity. MOFs can provide abundant number of binding sites for anchoring active sites, result in significant enhancement of photocatalytic performance. In this focus review, the development of single-site MOF photocatalysts that perform in important and challenging chemical redox reaction such as photocatalytic water splitting, photocatalytic CO₂ conversion and organic transformations is summarized thoroughly. The successful strategies applied for the construction of single-site MOF photocatalysts and major challenge toward practical application was summarized and pointed out, respectively. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Constructing Free Standing Metal Organic Framework MIL-53 Membrane Based on Anodized Aluminum Oxide Precursor

    PubMed Central

    Zhang, Yunlu; Gao, Qiuming; Lin, Zhi; Zhang, Tao; Xu, Jiandong; Tan, Yanli; Tian, Weiqian; Jiang, Lei

    2014-01-01

    Metal organic framework (MOF) materials have attracted great attention due to their well-ordered and controllable pores possessing of prominent potentials for gas molecule sorption and separation performances. Organizing the MOF crystals to a continuous membrane with a certain scale will better exhibit their prominent potentials. Reports in recent years concentrate on well grown MOF membranes on specific substrates. Free standing MOF membranes could have more important applications since they are independent from the substrates. However, the method to prepare such a membrane has been a great challenge because good mechanical properties and stabilities are highly required. Here, we demonstrate a novel and facile technique for preparing the free standing membrane with a size as large as centimeter scale. The substrate we use proved itself not only a good skeleton but also an excellent precursor to fulfill the reaction. This kind of membrane owns a strong mechanical strength, based on the fact that it is much thinner than the composite membranes grown on substrates and it could exhibit good property of gas separation. PMID:24821299

  6. Mechanical tunability via hydrogen bonding in metal-organic frameworks with the perovskite architecture.

    PubMed

    Li, Wei; Thirumurugan, A; Barton, Phillip T; Lin, Zheshuai; Henke, Sebastian; Yeung, Hamish H-M; Wharmby, Michael T; Bithell, Erica G; Howard, Christopher J; Cheetham, Anthony K

    2014-06-04

    Two analogous metal-organic frameworks (MOFs) with the perovskite architecture, [C(NH2)3][Mn(HCOO)3] (1) and [(CH2)3NH2][Mn(HCOO)3] (2), exhibit significantly different mechanical properties. The marked difference is attributed to their distinct modes of hydrogen bonding between the A-site amine cation and the anionic framework. The stronger cross-linking hydrogen bonding in 1 gives rise to Young's moduli and hardnesses that are up to twice those in 2, while the thermal expansion is substantially smaller. This study presents clear evidence that the mechanical properties of MOF materials can be substantially tuned via hydrogen-bonding interactions.

  7. Cooperative electrochemical water oxidation by Zr nodes and Ni–porphyrin linkers of a PCN-224 MOF thin film

    DOE PAGES

    Usov, P. M.; Ahrenholtz, S. R.; Maza, W. A.; ...

    2016-10-06

    In this paper, we demonstrate a new strategy for cooperative catalysis and proton abstraction via the incorporation of independent species competent in the desired reactivity into a metal–organic framework (MOF) thin film.

  8. Hollow carbon nanobubbles: monocrystalline MOF nanobubbles and their pyrolysis† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc04903f Click here for additional data file.

    PubMed Central

    Zhang, Wei; Jiang, Xiangfen; Zhao, Yanyi; Carné-Sánchez, Arnau; Malgras, Victor; Kim, Jeonghun; Kim, Jung Ho; Wang, Shaobin; Jiang, Ji-Sen

    2017-01-01

    While bulk-sized metal–organic frameworks (MOFs) face limits to their utilization in various research fields such as energy storage applications, nanoarchitectonics is believed to be a possible solution. It is highly challenging to realize MOF nanobubbles with monocrystalline frameworks. By a spatially controlled etching approach, here, we can achieve the synthesis of zeolitic imidazolate framework (ZIF-8) nanobubbles with a uniform size of less than 100 nm. Interestingly, the ZIF-8 nanobubbles possess a monocrystalline nanoshell with a thickness of around 10 nm. Under optimal pyrolytic conditions, the ZIF-8 nanobubbles can be converted into hollow carbon nanobubbles while keeping their original shapes. The structure of the nanobubble enhances the fast Na+/K+ ion intercalation performance. Such remarkable improvement cannot be realized by conventional MOFs or their derived carbons. PMID:28580098

  9. Metal-organic framework derived hollow polyhedron metal oxide posited graphene oxide for energy storage applications.

    PubMed

    Ramaraju, Bendi; Li, Cheng-Hung; Prakash, Sengodu; Chen, Chia-Chun

    2016-01-18

    A composite made from hollow polyhedron copper oxide and graphene oxide was synthesized by sintering a Cu-based metal-organic framework (Cu-MOF) embedded with exfoliated graphene oxide. As a proof-of-concept application, the obtained Cu(ox)-rGO materials were used in a lithium-ion battery and a sodium-ion battery as anode materials. Overall, the Cu(ox)-rGO composite delivers excellent electrochemical properties with stable cycling when compared to pure CuO-rGO and Cu-MOF.

  10. Postsynthesis Modification of a Metallosalen-Containing Metal-Organic Framework for Selective Th(IV)/Ln(III) Separation.

    PubMed

    Guo, Xiang-Guang; Qiu, Sen; Chen, Xiuting; Gong, Yu; Sun, Xiaoqi

    2017-10-16

    An uncoordinated salen-containing metal-organic framework (MOF) obtained through postsynthesis removal of Mn(III) ions from a metallosalen-containing MOF material has been used for selective separation of Th(IV) ion from Ln(III) ions in methanol solutions for the first time. This material exhibited an adsorption capacity of 46.345 mg of Th/g. The separation factors (β) of Th(IV)/La(III), Th(IV)/Eu(III), and Th(IV)/Lu(III) were 10.7, 16.4, and 10.3, respectively.

  11. Advancements in rationally designed PGM-free fuel cell catalysts derived from metal–organic frameworks

    DOE PAGES

    Barkholtz, Heather M.; Liu, Di -Jia

    2016-11-14

    Over the past several years, metal-organic framework (MOF)-derived platinum group metal free (PGM-free) electrocatalysts have gained considerable attention due to their high efficiency and low cost as potential replacement for platinum in catalyzing oxygen reduction reaction (ORR). In this review, we summarize the recent advancements in design, synthesis and characterization of MOF-derived ORR catalysts and their performances in acidic and alkaline media. As a result, we also discuss the key challenges such as durability and activity enhancement critical in moving forward this emerging electrocatalyst science.

  12. Mechanical properties of metal-organic frameworks: An indentation study on epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Bundschuh, S.; Kraft, O.; Arslan, H. K.; Gliemann, H.; Weidler, P. G.; Wöll, C.

    2012-09-01

    We have determined the hardness and Young's modulus of a highly porous metal-organic framework (MOF) using a standard nanoindentation technique. Despite the very low density of these films, 1.22 g cm-3, Young's modulus reaches values of almost 10 GPa for HKUST-1, demonstrating that this porous coordination polymer is substantially stiffer than normal polymers. This progress in characterizing mechanical properties of MOFs has been made possible by the use of high quality, oriented thin films grown using liquid phase epitaxy on modified Au substrates.

  13. Versatile, High Quality and Scalable Continuous Flow Production of Metal-Organic Frameworks

    PubMed Central

    Rubio-Martinez, Marta; Batten, Michael P.; Polyzos, Anastasios; Carey, Keri-Constanti; Mardel, James I.; Lim, Kok-Seng; Hill, Matthew R.

    2014-01-01

    Further deployment of Metal-Organic Frameworks in applied settings requires their ready preparation at scale. Expansion of typical batch processes can lead to unsuccessful or low quality synthesis for some systems. Here we report how continuous flow chemistry can be adapted as a versatile route to a range of MOFs, by emulating conditions of lab-scale batch synthesis. This delivers ready synthesis of three different MOFs, with surface areas that closely match theoretical maxima, with production rates of 60 g/h at extremely high space-time yields. PMID:24962145

  14. Dynamical Effects in Metal-Organic Frameworks: The Microporous Materials as Shock Absorbers

    NASA Astrophysics Data System (ADS)

    Banlusan, Kiettipong; Strachan, Alejandro

    2017-06-01

    Metal-organic frameworks (MOFs) are a class of nano-porous crystalline solids consisting of inorganic units coordinated to organic linkers. The unique molecular structures and outstanding properties with ultra-high porosity and tunable chemical functionality by various choices of metal clusters and organic ligands make this class of materials attractive for many applications. The complex and quite unique responses of these materials to mechanical loading including void collapse make them attractive for applications in energy absorption and storage. We will present using large-scale molecular dynamics simulations to investigate shock propagation in zeolitic imidazolate framework ZIF-8 and MOF-5. We find that for shock strengths above a threshold a two-wave structure develops with a leading elastic precursor followed by a second wave of structural collapse to relax the stress. Structural transition of MOFs in response to shock waves corresponds to the transition between two Hugoniot curves, and results in abrupt change in temperature. The pore-collapse wave propagates at slower velocity than the leading wave and weakens it, resulting in shock attenuation. Increasing piston speed results in faster propagation of pore-collapse wave, but the leading elastic wave remains unchanged below the overdriven regime. We discuss how the molecular structure of the MOFs and shock propagation direction affect the response of the materials and their ability to weaken shocks. Office of Naval Research, MURI 2012 02341 01.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jian; Vemuri, Rama S.; Estevez, Luis

    Metal–organic frameworks (MOFs) are found to be promising sorbents for adsorption cooling applications. Using organic ligands with 1, 2, and 3 phenylene rings, we construct moisture-stable Ni-MOF-74 members with adjustable pore apertures. These pore-engineered materials exhibit excellent sorption capabilities towards water and fluorocarbons. The adsorption patterns for these materials differ significantly and are attributed to variances in the hydrophobic/hydrophilic pore character, associated with differences in pore size. Complementary ex situ characterizations and in situ FTIR spectra are deployed to understand the correlations between the mechanisms of gas loadings and the pore environment of the MOFs.

  16. Hydrogen storage studies on palladium-doped carbon materials (AC, CB, CNMs) @ metal-organic framework-5.

    PubMed

    Viditha, V; Srilatha, K; Himabindu, V

    2016-05-01

    Metal organic frameworks (MOFs) are a rapidly growing class of porous materials and are considered as best adsorbents for their high surface area and extraordinary porosity. The MOFs are synthesized by using various chemicals like triethylamine, terepthalic acid, zinc acetate dihydrate, chloroform, and dimethylformamide (DMF). Synthesized MOFs are intercalated with palladium/activated carbon, carbon black, and carbon nanomaterials by chemical reduction method for the purpose of enhancing the hydrogen adsorption capacities. We have observed that the palladium doped activated carbon on MOF-5 showed high hydrogen storage capacity. This may be due to the affinity of the palladium toward hydrogen molecule. The samples are characterized by X-ray diffraction, scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analysis. We have observed a clear decrease in the BET surface area and pore volume. The obtained results show a better performance for the synthesized sample. To our best knowledge, no one has reported the work on palladium-doped carbon materials (activated carbon, carbon black, carbon nanomaterials) impregnated to the metal-organic framework-5. We have attempted to synthesize carbon nanomaterials using indigenously fabricated chemical vapor deposition (CVD) unit as a support. We have observed an increase in the hydrogen storage capacities.

  17. Systematic Investigation of Controlled Nanostructuring of Mn 12 Single-Molecule Magnets Templated by Metal–Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aulakh, Darpandeep; Xie, Haomiao; Shen, Zhe

    This is the first systematic study exploring metal–organic frameworks (MOFs) as platforms for the controlled nanostructuring of molecular magnets. We report the incorporation of seven single-molecule magnets (SMMs) of general composition [Mn12O12(O2CR)16(OH2)4], with R = CF3 (1), (CH3)CCH2 (2), CH2Cl (3), CH2Br (4), CHCl2 (5), CH2But (6), and C6H5 (7), into the hexagonal channel pores of a mesoporous MOF host. The resulting nanostructured composites combine the key SMM properties with the functional properties of the MOF. Synchrotron-based powder diffraction with difference envelope density analysis, physisorption analysis (surface area and pore size distribution), and thermal analyses reveal that the well-ordered hexagonalmore » structure of the host framework is preserved, and magnetic measurements indicate that slow relaxation of the magnetization, characteristic of the corresponding Mn12 derivative guests, occurs inside the MOF pores. Structural host–guest correlations including the bulkiness and polarity of peripheral SMM ligands are discussed as fundamental parameters influencing the global SMM@MOF loading capacities. These results demonstrate that employing MOFs as platforms for the nanostructuration of SMMs is not limited to a particular host–guest system but potentially applicable to a multitude of other molecular magnets. Such fundamental findings will assist in paving the way for the development of novel advanced spintronic devices.« less

  18. Encapsulation of lipase within metal-organic framework (MOF) with enhanced activity intensified under ultrasound.

    PubMed

    Nadar, Shamraja S; Rathod, Virendra K

    2018-01-01

    The enzyme under lower-intensity ultrasonic irradiation leads to favorable conformational changes, thereby enhancing its activity. In this study, lipase activity was augmented upto 1.6-folds after ultrasonic treatment at 22kHz and 11.38Wcm -2 for 25min. This highly activated lipase was encapsulated within zeolite imidazolate framework-8 (ZIF-8) as a metal-organic framework (MOF) material via facile one-step biomineralization method by simply mixing aqueous solution of 2-methylimidazole (13.3mmol) and zinc acetate (1.33mmol) along with sonicated lipase within 10min at room temperature (28±2°C). The prepared lipase-MOF was characterized by using FT-IR, FT-Raman, XRD, BET, confocal scanning laser microscopy, TGA and SEM. Further, the thermal stability of lipase embedded MOF was evaluated in the range of 55-75°C on the basis of half-life which showed 3.2 folds increment as against free lipase. In Michaelis-Menten kinetics studies, sonicated lipase entrapped MOF showed nearly same K m and V max values as that of sonicated free lipase. Moreover, the immobilized lipase exhibited up to 54% of residual activity after seven successive cycles of reuse, whereas it retained 90% of residual activity till twenty-five days of storage. Finally, the conformational changes occurred in lipase after sonication treatment and encapsulation within MOF were analyzed by using FT-IR data analysis tools and fluorescent spectroscopy. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Improving the hydrogen storage properties of metal-organic framework by functionalization.

    PubMed

    Xia, Liangzhi; Liu, Qing; Wang, Fengling; Lu, Jinming

    2016-10-01

    Based on the structure of MOF-808, different substituents were introduced to replace hydrogen atom on the phenyl ring of MOF-808. The GCMC method was used to study the effect of functional groups on the hydrogen storage properties of MOF-808-X (X = -OH, -NO 2 , -CH 3 , -CN, -I). The H 2 uptakes and isosteric heat of adsorption were simulated at 77 K. The results indicate that all these substituents have favorable impact on the hydrogen storage capacity, and -CN is found to be the most promising substituent to improve H 2 uptake. These results may be helpful for the design of MOFs with higher hydrogen storage capacity. Graphical abstract Atomistic structures of MOFs. (a) The structures of MOF-808-X. (b) Model of organic linker. Atom color scheme: C, gray; H, white; O, red; X, palegreen (X = -OH, -NO 2 , -CH 3 , -CN, -I).

  20. Hydrothermal synthesis, crystal structures and photoluminescence properties of mixed europium-yttrium organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han Yinfeng; Department of Chemistry and Environmental Science, Taishan University, Taian 271021; Fu Lianshe

    Three mixed europium-yttrium organic frameworks: Eu{sub 2-x}Y{sub x}(Mel)(H{sub 2}O){sub 6} (Mel=mellitic acid or benzene-1,2,3,4,5,6-hexacarboxylic acid, x=0.38 1, 0.74 2, and 0.86 3) have been synthesized and characterized. All the compounds contain a 3-D net with (4, 8)-flu topology. The study indicates that the photoluminescence properties are effectively affected by the different ratios of europium and yttrium ions, the quantum efficiency is increased and the Eu{sup 3+} lifetime becomes longer in these MOFs than those of the Eu analog. - Graphical abstract: Three mixed europium and yttrium organic frameworks: Eu{sub 2-x}Y{sub x}(Mel)(H{sub 2}O){sub 6} (Mel=mellitic acid) have been synthesized and characterized.more » All the compounds contain a 3-D net with (4, 8)-flu topology. The study indicates that the photoluminescence properties are effectively affected by the different ratios of europium and yttrium ions, the quantum efficiency is increased and the Eu{sup 3+} lifetime becomes longer in these MOFs than those of the Eu analog. Highlights: Black-Right-Pointing-Pointer Three (4, 8)-flu topological mixed Eu and Y MOFs were synthesized under mild conditions. Black-Right-Pointing-Pointer Metal ratios were refined by the single crystal data consistent with the EDS analysis. Black-Right-Pointing-Pointer Mixed Eu and Y MOFs show longer lifetime and higher quantum efficiency than the Eu analog. Black-Right-Pointing-Pointer Adding inert lanthanide into luminescent MOFs enlarges the field of luminescent MOFs.« less

  1. Pore-Environment Engineering with Multiple Metal Sites in Rare-Earth Porphyrinic Metal-Organic Frameworks.

    PubMed

    Zhang, Liangliang; Yuan, Shuai; Feng, Liang; Guo, Bingbing; Qin, Jun-Sheng; Xu, Ben; Lollar, Christina; Sun, Daofeng; Zhou, Hong-Cai

    2018-04-23

    Multi-component metal-organic frameworks (MOFs) with precisely controlled pore environments are highly desired owing to their potential applications in gas adsorption, separation, cooperative catalysis, and biomimetics. A series of multi-component MOFs, namely PCN-900(RE), were constructed from a combination of tetratopic porphyrinic linkers, linear linkers, and rare-earth hexanuclear clusters (RE 6 ) under the guidance of thermodynamics. These MOFs exhibit high surface areas (up to 2523 cm 2  g -1 ) and unlimited tunability by modification of metal nodes and/or linker components. Post-synthetic exchange of linear linkers and metalation of two organic linkers were realized, allowing the incorporation of a wide range of functional moieties. Two different metal sites were sequentially placed on the linear linker and the tetratopic porphyrinic linker, respectively, giving rise to an ideal platform for heterogeneous catalysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. TiO2-Containing Carbon Derived from a Metal-Organic Framework Composite: A Highly Active Catalyst for Oxidative Desulfurization.

    PubMed

    Bhadra, Biswa Nath; Song, Ji Yoon; Khan, Nazmul Abedin; Jhung, Sung Hwa

    2017-09-13

    A new metal-organic framework (MOF) composite consisting of Ti- and Zn-based MOFs (ZIF-8(x)@H 2 N-MIL-125; in brief, ZIF(x)@MOF) was designed and synthesized. The pristine MOF [H 2 N-MIL-125 (MOF)]- and an MOF-composite [ZIF(30)@MOF]-derived mesoporous carbons consisting of TiO 2 nanoparticles were prepared by pyrolysis (named MDC-P and MDC-C, respectively). MDC-C showed a higher surface area, larger pore sizes, and larger mesopore volumes than MDC-P. In addition, the TiO 2 nanoparticles on MDC-C have more uniform shapes and sizes and are smaller than those of MDC-P. The obtained MDC-C and MDC-P [together with MOF, ZIF(30)@MOF, pure/nanocrystalline TiO 2 , and activated carbon] were applied in the oxidative desulfurization reaction of dibenzothiophene in a model fuel. The MDC-C, even with a lower TiO 2 content than that of MDC-P, showed an outstanding catalytic performance, especially with a very low catalyst dose (i.e., a very high quantity of dibenzothiophene was converted per unit weight of the catalyst), fast kinetics (∼3 times faster than that for MDC-P), and a low activation energy (lower than that for any reported catalyst) for the oxidation of dibenzothiophene. The large mesopores of MDC-C and the well-dispersed/small TiO 2 might be the dominant factors for the superior catalytic conversions. The oxidative desulfurization of other sulfur-containing organic compounds with various electron densities was also studied with MDC-C to understand the mechanism of catalysis. Moreover, the MDC-C catalyst can be reused many times in the oxidative desulfurization reaction after a simple washing with acetone. Finally, composing MOFs and subsequent pyrolysis is suggested as an effective way to prepare a catalyst with well-dispersed active sites, large pores, and high mesoporosity.

  3. Regioselective atomic layer deposition in metal–organic frameworks directed by dispersion interactions

    DOE PAGES

    Gallington, Leighanne C.; Kim, In Soo; Liu, Wei-Guang; ...

    2016-10-03

    The application of atomic layer deposition (ALD) to metal–organic frameworks (MOFs) offers a promising new approach to synthesize designer functional materials with atomic precision. While ALD on flat substrates is well established, the complexity of the pore architecture and surface chemistry in MOFs present new challenges. Through in situ synchrotron X-ray powder diffraction, we visualize how the deposited atoms are localized and redistribute within the MOF during ALD. We demonstrate that the ALD is regioselective, with preferential deposition of oxy-Zn(II) species within the small pores of NU-1000. As a result, complementary density functional calculations indicate that this startling regioselectivity ismore » driven by dispersion interactions associated with the preferential adsorption sites for the organometallic precursors prior to reaction.« less

  4. Detoxification of Chemical Warfare Agents Using a Zr6 -Based Metal-Organic Framework/Polymer Mixture.

    PubMed

    Moon, Su-Young; Proussaloglou, Emmanuel; Peterson, Gregory W; DeCoste, Jared B; Hall, Morgan G; Howarth, Ashlee J; Hupp, Joseph T; Farha, Omar K

    2016-10-10

    Owing to their high surface area, periodic distribution of metal sites, and water stability, zirconium-based metal-organic frameworks (Zr 6 -MOFs) have shown promising activity for the hydrolysis of nerve agents GD and VX, as well as the simulant, dimethyl 4-nitrophenylphosphate (DMNP), in buffered solutions. A hurdle to using MOFs for this application is the current need for a buffer solution. Here the destruction of the simulant DMNP, as well as the chemical warfare agents (GD and VX) through hydrolysis using a MOF catalyst mixed with a non-volatile, water-insoluble, heterogeneous buffer is reported. The hydrolysis of the simulant and nerve agents in the presence of the heterogeneous buffer was fast and effective. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Regioselective atomic layer deposition in metal–organic frameworks directed by dispersion interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallington, Leighanne C.; Kim, In Soo; Liu, Wei-Guang

    The application of atomic layer deposition (ALD) to metal–organic frameworks (MOFs) offers a promising new approach to synthesize designer functional materials with atomic precision. While ALD on flat substrates is well established, the complexity of the pore architecture and surface chemistry in MOFs present new challenges. Through in situ synchrotron X-ray powder diffraction, we visualize how the deposited atoms are localized and redistribute within the MOF during ALD. We demonstrate that the ALD is regioselective, with preferential deposition of oxy-Zn(II) species within the small pores of NU-1000. As a result, complementary density functional calculations indicate that this startling regioselectivity ismore » driven by dispersion interactions associated with the preferential adsorption sites for the organometallic precursors prior to reaction.« less

  6. Grand Challenges and Future Opportunities for Metal–Organic Frameworks

    PubMed Central

    2017-01-01

    Metal–organic frameworks (MOFs) allow compositional and structural diversity beyond conventional solid-state materials. Continued interest in the field is justified by potential applications of exceptional breadth, ranging from gas storage and separation, which takes advantage of the inherent pores and their volume, to electronic applications, which requires precise control of electronic structure. In this Outlook we present some of the pertinent challenges that MOFs face in their conventional implementations, as well as opportunities in less traditional areas. Here the aim is to discuss select design concepts and future research goals that emphasize nuances relevant to this class of materials as a whole. Particular emphasis is placed on synthetic aspects, as they influence the potential for MOFs in gas separation, electrical conductivity, and catalytic applications. PMID:28691066

  7. Solid-State Molecular Nanomagnet Inclusion into a Magnetic Metal-Organic Framework: Interplay of the Magnetic Properties.

    PubMed

    Mon, Marta; Pascual-Álvarez, Alejandro; Grancha, Thais; Cano, Joan; Ferrando-Soria, Jesús; Lloret, Francesc; Gascon, Jorge; Pasán, Jorge; Armentano, Donatella; Pardo, Emilio

    2016-01-11

    Single-ion magnets (SIMs) are the smallest possible magnetic devices and are a controllable, bottom-up approach to nanoscale magnetism with potential applications in quantum computing and high-density information storage. In this work, we take advantage of the promising, but yet insufficiently explored, solid-state chemistry of metal-organic frameworks (MOFs) to report the single-crystal to single-crystal inclusion of such molecular nanomagnets within the pores of a magnetic MOF. The resulting host-guest supramolecular aggregate is used as a playground in the first in-depth study on the interplay between the internal magnetic field created by the long-range magnetic ordering of the structured MOF and the slow magnetic relaxation of the SIM. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Grand Challenges and Future Opportunities for Metal–Organic Frameworks

    DOE PAGES

    Hendon, Christopher H.; Rieth, Adam J.; Korzyński, Maciej D.; ...

    2017-06-06

    Metal–organic frameworks (MOFs) allow compositional and structural diversity beyond conventional solid-state materials. Continued interest in the field is justified by potential applications of exceptional breadth, ranging from gas storage and separation, which takes advantage of the inherent pores and their volume, to electronic applications, which requires precise control of electronic structure. In this Outlook we present some of the pertinent challenges that MOFs face in their conventional implementations, as well as opportunities in less traditional areas. Here the aim is to discuss select design concepts and future research goals that emphasize nuances relevant to this class of materials as amore » whole. Particular emphasis is placed on synthetic aspects, as they influence the potential for MOFs in gas separation, electrical conductivity, and catalytic applications.« less

  9. Layer-by-Layer Assembled Films of Perylene Diimide- and Squaraine-Containing Metal-Organic Frameworks- like Materials: Solar Energy Capture and Directional Energy Transfer

    DOE PAGES

    Park, Hea Jung; So, Monica C.; Gosztola, David J.

    2016-09-28

    We demonstrate that thin films of metal organic framework (MOF)-like materials, containing two perylenedlimides (PDICl4, PDIOPh2) and a squaraine dye (S1); can be fabricated by, layer-by-layer assembly (LbL). Interestingly, these LbL films absorb across the visible light region (400-750 nm) and facilitate directional energy transfer. Due to the high spectral overlap and oriented transition dipole moments of the donor (PDICl4 and PDIOPh2) and acceptor (S1) components, directional long-range energy transfer from the bluest to reddest absorber was successfully demonstrated in the multicomponent MOF-like films. These findings have significant implications for the development of solar energy conversion devices based on MOFs.

  10. Structure, photoluminescent properties and photocatalytic activities of a new Cd(II) metal-organic framework.

    PubMed

    Zhang, Cheng Yan; Ma, Wei Xing; Wang, Ming Yan; Yang, Xu Jie; Xu, Xing You

    2014-01-24

    A new metal-organic framework, [Cd(TDC)(bix)(H2O)]n (H2TDC = thiophene-2,5-dicarboxylic acid; bix = 1,4-bis(imidazol-1-ylmethyl)benzene), has been synthesized under hydrothermal conditions and structurally characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis, UV-vis and single X-ray diffraction. Cd-MOF is a 2D infinite layer framework, which is further interconnected by hydrogen-bond interactions leading to a 3D supramolecular architecture. The photoluminescent properties of the Cd-MOF were investigated and this compound shows intense fluorescent emissions in the solid state. In addition, it exhibits good photocatalytic activities for the degradation of methyl organic under UV light irradiation. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Tuning the Morphology and Activity of Electrospun Polystyrene/UiO-66-NH2 Metal-Organic Framework Composites to Enhance Chemical Warfare Agent Removal.

    PubMed

    Peterson, Gregory W; Lu, Annie X; Epps, Thomas H

    2017-09-20

    This work investigates the processing-structure-activity relationships that ultimately facilitate the enhanced performance of UiO-66-NH 2 metal-organic frameworks (MOFs) in electrospun polystyrene (PS) fibers for chemical warfare agent detoxification. Key electrospinning processing parameters including solvent type (dimethylformamide [DMF]) vs DMF/tetrahydrofuran [THF]), PS weight fraction in solution, and MOF weight fraction relative to PS were varied to optimize MOF incorporation into the fibers and ultimately improve composite performance. It was found that composites spun from pure DMF generally resulted in MOF crystal deposition on the surface of the fibers, while composites spun from DMF/THF typically led to MOF crystal deposition within the fibers. For cases in which the MOF was incorporated on the periphery of the fibers, the composites generally demonstrated better gas uptake (e.g., nitrogen, chlorine) because of enhanced access to the MOF pores. Additionally, increasing both the polymer and MOF weight percentages in the electrospun solutions resulted in larger diameter fibers, with polymer concentration having a more pronounced effect on fiber size; however, these larger fibers were generally less efficient at gas separations. Overall, exploring the electrospinning parameter space resulted in composites that outperformed previously reported materials for the detoxification of the chemical warfare agent, soman. The data and strategies herein thus provide guiding principles applicable to the design of future systems for protection and separations as well as a wide range of environmental remediation applications.

  12. Thermodynamics of solvent interaction with the metal-organic framework MOF-5.

    PubMed

    Akimbekov, Zamirbek; Wu, Di; Brozek, Carl K; Dincă, Mircea; Navrotsky, Alexandra

    2016-01-14

    The inclusion of solvent in metal-organic framework (MOF) materials is a highly specific form of guest-host interaction. In this work, the energetics of solvent MOF-5 interactions has been investigated by solution calorimetry in 5 M sodium hydroxide (NaOH) at room temperature. Solution calorimetric measurement of enthalpy of formation (ΔH(f)) of Zn4O(C8H4O4)3·C3H7NO (MOF-5·DMF) and Zn4O(C8H4O4)3·0.60C5H11NO (MOF-5·0.60DEF) from the dense components zinc oxide (ZnO), 1,4-benzenedicarboxylic acid (H2BDC), N,N-dimethylformamide (DMF) and N,N-diethylformamide (DEF) gives values of 16.69 ± 1.21 and 45.90 ± 1.46 kJ (mol Zn4O)(-1), respectively. The enthalpies of interaction (ΔH(int)) for DMF and DEF with MOF-5 are -82.78 ± 4.84 kJ (mol DMF)(-1) and -89.28 ± 3.05 kJ (mol DEF)(-1), respectively. These exothermic interaction energies suggest that, at low guest loading, Lewis base solvents interact more strongly with electron accepting Zn4O clusters in the MOF than at high solvent loading. These data provide a quantitative thermodynamic basis to investigate transmetallation and solvent assisted linker exchange (SALE) methods and to synthesize new MOFs.

  13. Development of metal organic fromwork-199 immobilized zeolite foam for adsorption of common indoor VOCs.

    PubMed

    Saini, Vipin K; Pires, João

    2017-05-01

    Reticulated foam shaped adsorbents are more efficient for the removal of volatile organic compounds (VOCs), particularly from low VOC-concentration indoor air streams. In this study composite structure of zeolite and metal organic frameworks (MOFs), referred as ZMF, has been fabricated by immobilization of fine MOF-199 powder on foam shaped Zeolite Socony Mobil-5 (ZSM-5) Zeolitic structure, referred as ZF. The ZMF possess a uniform and well-dispersed coating of MOF-199 on the porous framework of ZF. It shows higher surface area, pore volume, and VOCs adsorption capacity, as compared to ZF-structure. Post-fabrication changes in selective adsorption properties of ZMF were studied with three common indoor VOCs (benzene, n-hexane, and cyclohexane), using gravimetric adsorption technique. The adsorption capacity of ZMF with different VOCs follow the order of benzene>n-hexane>cyclohexane. In comparison with MOF-199 and ZF, the composite structure ZMF shows improvement in selectivity for benzene from other two VOCs. Further, improvement in efficiency and stability of prepared ZMF was found to be associated with its high MOF loading capacity and unique morphological and structural properties. The developed composite structure with improved VOCs removal and recyclability could be a promising material for small to limited scale air pollution treatment units. Copyright © 2016. Published by Elsevier B.V.

  14. A peroxidase mimic with atom transfer radical polymerization activity constructed through the grafting of heme onto metal-organic frameworks.

    PubMed

    Jiang, Wei; Pan, Yue; Yang, Jiebing; Liu, Yong; Yang, Yan; Tang, Jun; Li, Quanshun

    2018-07-01

    Atom transfer radical polymerization (ATRP) has been considered to be an efficient strategy for constructing functional macromolecules owing to its simple operation and versatile monomers, and thus it is of great significance to develop ideal catalysts with higher activity and perfect reusability. We constructed a peroxidase mimic through the grafting of heme onto metal-organic frameworks UiO-66-NH 2 (ZrMOF), namely Heme-ZrMOF. After the systematic characterization of structure, the composite Heme-ZrMOF was demonstrated to possess high peroxidase activity using 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) and 3,3',5,5'-tetramethylbenzidine as substrates. The enzyme mimic was then used as catalysts in the ATRP reactions of different monomers, in which favorable monomer conversion (44.6-98.0%) and product molecular weight (8600-25,600 g/mol) could be obtained. Compared to free heme, Heme-ZrMOF could efficiently achieve the easy separation of heme from the catalytic system and facilitate the ATRP reaction in an aqueous environment to avoid the utilization of organic solvents. In conclusion, the enzyme mimic Heme-ZrMOF could be potentially used as an effective catalyst for preparing well-defined polymers with biomedical applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Templated and template-free fabrication strategies for zero-dimensional hollow MOF superstructures.

    PubMed

    Kim, Hyehyun; Lah, Myoung Soo

    2017-05-16

    Various fabrication strategies for hollow metal-organic framework (MOF) superstructures are reviewed and classified using various types of external templates and their properties. Hollow MOF superstructures have also been prepared without external templates, wherein unstable intermediates obtained during reactions convert to the final hollow MOF superstructures. Many hollow MOF superstructures have been fabricated using hard templates. After the core-shell core@MOF structure was prepared using a hard template, the core was selectively etched to generate a hollow MOF superstructure. Another approach for generating hollow superstructures is to use a solid reactant as a sacrificial template; this method requires no additional etching process. Soft templates such as discontinuous liquid/emulsion droplets and gas bubbles in a continuous soft phase have also been employed to prepare hollow MOF superstructures.

  16. Guest-Induced Two-Way Structural Transformation in a Layered Metal-Organic Framework Thin Film.

    PubMed

    Haraguchi, Tomoyuki; Otsubo, Kazuya; Sakata, Osami; Fujiwara, Akihiko; Kitagawa, Hiroshi

    2016-12-28

    Fabrication of thin films made of metal-organic frameworks (MOFs) has been intensively pursued for practical applications that use the structural response of MOFs. However, to date, only physisorption-induced structural response has been studied in these films. Chemisorption can be expected to provide a remarkable structural response because of the formation of bonds between guest molecules and reactive metal sites in host MOFs. Here, we report that chemisorption-induced two-way structural transformation in a nanometer-sized MOF thin film. We prepared a two-dimensional layered-type MOF Fe[Pt(CN) 4 ] thin film using a step-by-step approach. Although the as-synthesized film showed poor crystallinity, the dehydrated form of this thin film had a highly oriented crystalline nature (Film-D) as confirmed by synchrotron X-ray diffraction (XRD). Surprisingly, under water and pyridine vapors, Film-D showed chemisorption-induced dynamic structural transformations to Fe(L) 2 [Pt(CN) 4 ] thin films [L = H 2 O (Film-H), pyridine (Film-P)], where water and pyridine coordinated to the open Fe 2+ site. Dynamic structural transformations were also confirmed by in situ XRD, sorption measurement, and infrared reflection absorption spectroscopy. This is the first report of chemisorption-induced dynamic structural response in a MOF thin film, and it provides useful insights, which would lead to future practical applications of MOFs utilizing chemisorption-induced structural responses.

  17. Cu-hemin metal-organic frameworks with peroxidase-like activity as peroxidase mimics for colorimetric sensing of glucose

    NASA Astrophysics Data System (ADS)

    Liu, Fenfen; He, Juan; Zeng, Mulang; Hao, Juan; Guo, Qiaohui; Song, Yonghai; Wang, Li

    2016-05-01

    In this work, a facile strategy to synthesize Cu-hemin metal-organic frameworks (MOFs) with peroxidase-like activity was reported. The prepared Cu-hemin MOFs were characterized by various techniques such as scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, UV-visible absorbance spectra, and so on. The results showed that the prepared Cu-hemin MOFs looked like a ball-flower with an average diameter of 10 μm and provided a large specific surface area. The Cu-hemin MOFs possessing peroxidase-like activity could be used to catalyze the peroxidase substrate of 3,3,5,5-tetramethylbenzidine in the presence of H2O2, which was employed to detect H2O2 quantitatively with the linear range from 1.0 μM to 1.0 mM and the detection limit was 0.42 μM. Furthermore, with the additional help of glucose oxidase, a sensitive and selective method to detect glucose was developed by using the Cu-hemin MOFs as catalyst and the linear range was from 10.0 μM to 3.0 mM and the detection limit was 6.9 μM. This work informs researchers of the advantages of MOFs for preparing biomimetic catalysts and extends the functionality of MOFs for biosensor application.

  18. General and Direct Method for Preparing Oligonucleotide-Functionalized Metal–Organic Framework Nanoparticles

    PubMed Central

    2017-01-01

    Metal–organic frameworks (MOFs) are a class of modular, crystalline, and porous materials that hold promise for storage and transport of chemical cargoes. Though MOFs have been studied in bulk forms, ways of deliberately manipulating the external surface functionality of MOF nanoparticles are less developed. A generalizable approach to modify their surfaces would allow one to impart chemical functionality onto the particle surface that is independent of the bulk MOF structure. Moreover, the use of a chemically programmable ligand, such as DNA, would allow for the manipulation of interparticle interactions. Herein, we report a coordination chemistry-based strategy for the surface functionalization of the external metal nodes of MOF nanoparticles with terminal phosphate-modified oligonucleotides. The external surfaces of nine distinct archetypical MOF particles containing four different metal species (Zr, Cr, Fe, and Al) were successfully functionalized with oligonucleotides, illustrating the generality of this strategy. By taking advantage of the programmable and specific interactions of DNA, 11 distinct MOF particle–inorganic particle core–satellite clusters were synthesized. In these hybrid nanoclusters, the relative stoichiometry, size, shape, and composition of the building blocks can all be independently controlled. This work provides access to a new set of nucleic acid–nanoparticle conjugates, which may be useful as programmable material building blocks and as probes for measuring and manipulating intracellular processes. PMID:28718644

  19. A novel cryogenic magnetic refrigerant metal-organic framework based on 1D gadolinium(III) chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Qun; Li, Peng-Fei; Zou, Zhi-Ming, E-mail: 2014005@glut.edu.cn

    2017-02-15

    A metal-organic framework (MOF) based on gadolinium ion (Gd{sup 3+}) and tricarboxylate ligand, [Gd(BTPCA)(H{sub 2}O)]·2DMF·3H{sub 2}O (Gd-BTPCA) (H{sub 3}BTPCA =1,1′,1′-(benzene-1,3,5-triyl)tripiperidine-4-carboxylic acid; DMF=dimethylformamide), was synthesized and structurally characterized. The adjacent Gd{sup 3+} ions are intraconnected by the carboxylate groups of the BTPCA{sup 3-} ligands to form a 1D Gd{sup 3+} ion chain. The 1D Gd{sup 3+} ion chains are interconnected by the BTPCA{sup 3-} ligands, giving rise to a 3D framework with 1D open channel. The magnetic studies indicate that Gd-BTPCA exhibits weak ferromagnetic interactions, and acts as a cryogenic magnetic refrigerant having the magnetic entropy change (−ΔS{sub m}) of 20.40more » J kg{sup −1} K{sup −1} for ΔH =7 T at 3 K. - Graphical abstract: A 1D gadolinium(III) chains-based metal-organic framework performed ferromagnetic coupling on the magnetic property. Magnetic investigation reveals that Gd-BTPCA exhibits the entropy change (−ΔS{sub m}) of 20.40 J kg{sup −1} K{sup −1} for ΔH =7 T at 3 K. - Highlights: • The MOF based on gadolinium ion and tricarboxylate ligand was synthesized. • This MOF is connected with 1D Gd{sup 3+} ions chain and the carboxylate groups of BTPCA{sup 3-} ligands. • The magnetic studies indicate that the MOF exhibits the weak ferromagnetic interactions. • Magnetic investigation reveals that the MOF exhibits the high entropy change.« less

  20. Liquid/vapor-induced reversible dynamic structural transformation of a three-dimensional Cu-based MOF to a one-dimensional MOF showing gate adsorption.

    PubMed

    Kondo, Atsushi; Suzuki, Takayuki; Kotani, Ryosuke; Maeda, Kazuyuki

    2017-05-23

    A new 3D metal-organic framework (MOF), in which 2D layers are interlaced to form a 3D architecture, was synthesized by a reaction of Cu(BF 4 ) 2 and 1,3-bis(4-pyridyl)propane (bpp) in a water/1-hexanol solvent system, and the crystal structure of the MOF was successfully solved. The MOF is reversibly transformed to a 1D chain MOF, which shows gate adsorption properties. The dynamic transformation gives crystal size reduction resulting in a slight change in CO 2 adsorption isotherms. The 1D MOF shows selective adsorption/separation properties on benzene and its analogues with similar sizes and shapes (benzene, toluene, and cyclohexane).

  1. Photocatalytic Performance of a Novel MOF/BiFeO₃ Composite.

    PubMed

    Si, Yunhui; Li, Yayun; Zou, Jizhao; Xiong, Xinbo; Zeng, Xierong; Zhou, Ji

    2017-10-10

    In this study, MOF/BiFeO₃ composite (MOF, metal-organic framework) has been synthesized successfully through a one-pot hydrothermal method. The MOF/BiFeO₃ composite samples, pure MOF samples and BiFeO₃ samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and by UV-vis spectrophotometry. The results and analysis reveal that MOF/BiFeO₃ composite has better photocatalytic behavior for methylene blue (MB) compared to pure MOF and pure BiFeO₃. The enhancement of photocatalytic performance should be due to the introduction of MOF change the surface morphology of BiFeO 3, which will increase the contact area with MB. This composing strategy of MOF/BiFeO₃ composite may bring new insight into the designing of highly efficient photocatalysts.

  2. Understanding the origins of metal-organic framework/polymer compatibility.

    PubMed

    Semino, R; Moreton, J C; Ramsahye, N A; Cohen, S M; Maurin, G

    2018-01-14

    The microscopic interfacial structures for a series of metal-organic framework/polymer composites consisting of the Zr-based UiO-66 coupled with different polymers are systematically explored by applying a computational methodology that integrates density functional theory calculations and force field-based molecular dynamics simulations. These predictions are correlated with experimental findings to unravel the structure-compatibility relationship of the MOF/polymer pairs. The relative contributions of the intermolecular MOF/polymer interactions and the flexibility/rigidity of the polymer with respect to the microscopic structure of the interface are rationalized, and their impact on the compatibility of the two components in the resulting composite is discussed. The most compatible pairs among those investigated involve more flexible polymers, i.e. polyvinylidene fluoride (PVDF) and polyethylene glycol (PEG). These polymers exhibit an enhanced contact surface, due to a better adaptation of their configuration to the MOF surface. In these cases, the irregularities at the MOF surface are filled by the polymer, and even some penetration of the terminal groups of the polymer into the pores of the MOF can be observed. As a result, the affinity between the MOF and the polymer is very high; however, the pores of the MOF may be sterically blocked due to the strong MOF/polymer interactions, as evidenced by UiO-66/PEG composites. In contrast, composites involving polymers that exhibit higher rigidity, such as the polymer of intrinsic microporosity-1 (PIM-1) or polystyrene (PS), present interfacial microvoids that contribute to a decrease in the contact surface between the two components, thus reducing the MOF/polymer affinity.

  3. High performance hydrogen storage from Be-BTB metal-organic framework at room temperature.

    PubMed

    Lim, Wei-Xian; Thornton, Aaron W; Hill, Anita J; Cox, Barry J; Hill, James M; Hill, Matthew R

    2013-07-09

    The metal-organic framework beryllium benzene tribenzoate (Be-BTB) has recently been reported to have one of the highest gravimetric hydrogen uptakes at room temperature. Storage at room temperature is one of the key requirements for the practical viability of hydrogen-powered vehicles. Be-BTB has an exceptional 298 K storage capacity of 2.3 wt % hydrogen. This result is surprising given that the low adsorption enthalpy of 5.5 kJ mol(-1). In this work, a combination of atomistic simulation and continuum modeling reveals that the beryllium rings contribute strongly to the hydrogen interaction with the framework. These simulations are extended with a thermodynamic energy optimization (TEO) model to compare the performance of Be-BTB to a compressed H2 tank and benchmark materials MOF-5 and MOF-177 in a MOF-based fuel cell. Our investigation shows that none of the MOF-filled tanks satisfy the United States Department of Energy (DOE) storage targets within the required operating temperatures and pressures. However, the Be-BTB tank delivers the most energy per volume and mass compared to the other material-based storage tanks. The pore size and the framework mass are shown to be contributing factors responsible for the superior room temperature hydrogen adsorption of Be-BTB.

  4. Co-metal-organic-frameworks with pure uniform crystal morphology prepared via Co2+ exchange-mediated transformation from Zn-metallogels for luminol catalysed chemiluminescence.

    PubMed

    Tang, Xue Qian; Xiao, Bo Wen; Li, Chun Mei; Wang, Dong Mei; Huang, Cheng Zhi; Li, Yuan Fang

    2017-03-15

    Cation exchange-mediated transformation from Zn-metallogels (MOGs), which was a mild facile strategy relative to the demanding hydrothermal method, was employed to develop Co 2+ metal-organic frameworks (Co-MOFs) at room temperature. The obtained Co-MOFs was of uniform octahedral morphology and possessed high activity to catalyze luminol chemiluminescence without extra oxidants. By adding cysteine, the CL emission of luminol-Co-MOFs system was further enhanced. Based on this phenomenon, Co-MOFs was utilized to build a practical sensing platform for cysteine determination. Under the optimized conditions, the relative CL intensity (ΔI) was proportional to the concentration of cysteine in the range of 2-10μM, and the detection limit was 0.49μM (3S/N). Moreover, the established method was applied to the determination of cysteine in commercially available pharmaceutical injections. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A "ship in a bottle" strategy to load a hydrophilic anticancer drug in porous metal organic framework nanoparticles: efficient encapsulation, matrix stabilization, and photodelivery.

    PubMed

    di Nunzio, Maria Rosaria; Agostoni, Valentina; Cohen, Boiko; Gref, Ruxandra; Douhal, Abderrazzak

    2014-01-23

    An essential challenge in the development of nanosized metal organic framework (nanoMOF) materials in biomedicine is to develop a strategy to stabilize their supramolecular structure in biological media while being able to control drug encapsulation and release. We have developed a method to efficiently encapsulate topotecan (TPT, 1), an important cytotoxic drug, in biodegradable nanoMOFs. Once inside the pores, 1 monomers aggregate in a "ship in a bottle" fashion, thus filling practically all of the nanoMOFs' available free volume and stabilizing their crystalline supramolecular structures. Highly efficient results have been found with the human pancreatic cell line PANC1, in contrast with free 1. We also demonstrate that one- and two-photon light irradiation emerges as a highly promising strategy to promote stimuli-dependent 1 release from the nanoMOFs, hence opening new standpoints for further developments in triggered drug delivery.

  6. Conversion of invisible metal-organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption.

    PubMed

    Zhang, Congyang; Wang, Bo; Li, Wanbin; Huang, Shouqiang; Kong, Long; Li, Zhichun; Li, Liang

    2017-10-31

    Traditional smart fluorescent materials, which have been attracting increasing interest for security protection, are usually visible under either ambient or UV light, making them adverse to the potential application of confidential information protection. Herein, we report an approach to realize confidential information protection and storage based on the conversion of lead-based metal-organic frameworks (MOFs) to luminescent perovskite nanocrystals (NCs). Owing to the invisible and controlled printable characteristics of lead-based MOFs, confidential information can be recorded and encrypted by MOF patterns, which cannot be read through common decryption methods. Through our conversion strategy, highly luminescent perovskite NCs can be formed quickly and simply by using a halide salt trigger that reacts with the MOF, thus promoting effective information decryption. Finally, through polar solvents impregnation and halide salt conversion, the luminescence of the perovskite NCs can be quenched and recovered, leading to reversible on/off switching of the luminescence signal for multiple information encryption and decryption processes.

  7. A novel series of isoreticular metal organic frameworks: realizing metastable structures by liquid phase epitaxy

    PubMed Central

    Liu, Jinxuan; Lukose, Binit; Shekhah, Osama; Arslan, Hasan Kemal; Weidler, Peter; Gliemann, Hartmut; Bräse, Stefan; Grosjean, Sylvain; Godt, Adelheid; Feng, Xinliang; Müllen, Klaus; Magdau, Ioan-Bogdan; Heine, Thomas; Wöll, Christof

    2012-01-01

    A novel class of metal organic frameworks (MOFs) has been synthesized from Cu-acetate and dicarboxylic acids using liquid phase epitaxy. The SURMOF-2 isoreticular series exhibits P4 symmetry, for the longest linker a channel-size of 3 × 3 nm2 is obtained, one of the largest values reported for any MOF so far. High quality, ab-initio electronic structure calculations confirm the stability of a regular packing of (Cu++)2- carboxylate paddle-wheel planes with P4 symmetry and reveal, that the SURMOF-2 structures are in fact metastable, with a fairly large activation barrier for the transition to the bulk MOF-2 structures exhibiting a lower, twofold (P2 or C2) symmetry. The theoretical calculations also allow identifying the mechanism for the low-temperature epitaxial growth process and to explain, why a synthesis of this highly interesting, new class of high-symmetry, metastable MOFs is not possible using the conventional solvothermal process. PMID:23213357

  8. Boosting Photocatalytic Hydrogen Production of a Metal-Organic Framework Decorated with Platinum Nanoparticles: The Platinum Location Matters.

    PubMed

    Xiao, Juan-Ding; Shang, Qichao; Xiong, Yujie; Zhang, Qun; Luo, Yi; Yu, Shu-Hong; Jiang, Hai-Long

    2016-08-01

    Improving the efficiency of electron-hole separation and charge-carrier utilization plays a central role in photocatalysis. Herein, Pt nanoparticles of ca. 3 nm are incorporated inside or supported on a representative metal-organic framework (MOF), UiO-66-NH2 , denoted as Pt@UiO-66-NH2 and Pt/UiO-66-NH2 , respectively, for photocatalytic hydrogen production via water splitting. Compared with the pristine MOF, both Pt-decorated MOF nanocomposites exhibit significantly improved yet distinctly different hydrogen-production activities, highlighting that the photocatalytic efficiency strongly correlates with the Pt location relative to the MOF. The Pt@UiO-66-NH2 greatly shortens the electron-transport distance, which favors the electron-hole separation and thereby yields much higher efficiency than Pt/UiO-66-NH2 . The involved mechanism has been further unveiled by means of ultrafast transient absorption and photoluminescence spectroscopy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Metal-organic framework-based separator for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Bai, Songyan; Liu, Xizheng; Zhu, Kai; Wu, Shichao; Zhou, Haoshen

    2016-07-01

    Lithium-sulfur batteries are a promising energy-storage technology due to their relatively low cost and high theoretical energy density. However, one of their major technical problems is the shuttling of soluble polysulfides between electrodes, resulting in rapid capacity fading. Here, we present a metal-organic framework (MOF)-based battery separator to mitigate the shuttling problem. We show that the MOF-based separator acts as an ionic sieve in lithium-sulfur batteries, which selectively sieves Li+ ions while efficiently suppressing undesired polysulfides migrating to the anode side. When a sulfur-containing mesoporous carbon material (approximately 70 wt% sulfur content) is used as a cathode composite without elaborate synthesis or surface modification, a lithium-sulfur battery with a MOF-based separator exhibits a low capacity decay rate (0.019% per cycle over 1,500 cycles). Moreover, there is almost no capacity fading after the initial 100 cycles. Our approach demonstrates the potential for MOF-based materials as separators for energy-storage applications.

  10. Step-by-step fabrication of a highly oriented crystalline three-dimensional pillared-layer-type metal-organic framework thin film confirmed by synchrotron X-ray diffraction.

    PubMed

    Otsubo, Kazuya; Haraguchi, Tomoyuki; Sakata, Osami; Fujiwara, Akihiko; Kitagawa, Hiroshi

    2012-06-13

    Fabrication of a crystalline ordered thin film based on the porous metal-organic frameworks (MOFs) is one of the practical applications of the future functional nanomaterials. Here, we report the creation of a highly oriented three-dimensional (3-D) porous pillared-layer-type MOF thin film on a metal substrate using a step-by-step approach based on liquid-phase epitaxy. Synchrotron X-ray diffraction (XRD) study clearly indicates that the thin film is crystalline and its orientation is highly controlled in both horizontal and vertical directions relative to the substrate. This report provides the first confirmation of details of not only the crystallinity but also the orientation of 3-D MOF thin film using synchrotron XRD. Moreover, we also demonstrate its guest adsorption/desorption behavior by using in situ XRD measurements. The results presented here would promise useful insights for fabrication of MOF-based nanodevices in the future.

  11. Hybrid glasses from strong and fragile metal-organic framework liquids

    PubMed Central

    Bennett, Thomas D.; Tan, Jin-Chong; Yue, Yuanzheng; Baxter, Emma; Ducati, Caterina; Terrill, Nick J.; Yeung, Hamish H. -M.; Zhou, Zhongfu; Chen, Wenlin; Henke, Sebastian; Cheetham, Anthony K.; Greaves, G. Neville

    2015-01-01

    Hybrid glasses connect the emerging field of metal-organic frameworks (MOFs) with the glass formation, amorphization and melting processes of these chemically versatile systems. Though inorganic zeolites collapse around the glass transition and melt at higher temperatures, the relationship between amorphization and melting has so far not been investigated. Here we show how heating MOFs of zeolitic topology first results in a low density ‘perfect' glass, similar to those formed in ice, silicon and disaccharides. This order–order transition leads to a super-strong liquid of low fragility that dynamically controls collapse, before a subsequent order–disorder transition, which creates a more fragile high-density liquid. After crystallization to a dense phase, which can be remelted, subsequent quenching results in a bulk glass, virtually identical to the high-density phase. We provide evidence that the wide-ranging melting temperatures of zeolitic MOFs are related to their network topologies and opens up the possibility of ‘melt-casting' MOF glasses. PMID:26314784

  12. Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO2 Capture.

    PubMed

    Fernandez, Michael; Boyd, Peter G; Daff, Thomas D; Aghaji, Mohammad Zein; Woo, Tom K

    2014-09-04

    In this work, we have developed quantitative structure-property relationship (QSPR) models using advanced machine learning algorithms that can rapidly and accurately recognize high-performing metal organic framework (MOF) materials for CO2 capture. More specifically, QSPR classifiers have been developed that can, in a fraction of a section, identify candidate MOFs with enhanced CO2 adsorption capacity (>1 mmol/g at 0.15 bar and >4 mmol/g at 1 bar). The models were tested on a large set of 292 050 MOFs that were not part of the training set. The QSPR classifier could recover 945 of the top 1000 MOFs in the test set while flagging only 10% of the whole library for compute intensive screening. Thus, using the machine learning classifiers as part of a high-throughput screening protocol would result in an order of magnitude reduction in compute time and allow intractably large structure libraries and search spaces to be screened.

  13. Experimental and theoretical investigations of the electronic band structure of metal-organic frameworks of HKUST-1 type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Zhi-Gang; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou; Heinke, Lars, E-mail: Lars.Heinke@KIT.edu

    The electronic properties of metal-organic frameworks (MOFs) are increasingly attracting the attention due to potential applications in sensor techniques and (micro-) electronic engineering, for instance, as low-k-dielectric in semiconductor technology. Here, the band gap and the band structure of MOFs of type HKUST-1 are studied in detail by means of spectroscopic ellipsometry applied to thin surface-mounted MOF films and by means of quantum chemical calculations. The analysis of the density of states, the band structure, and the excitation spectrum reveal the importance of the empty Cu-3d orbitals for the electronic properties of HKUST-1. This study shows that, in contrast tomore » common belief, even in the case of this fairly “simple” MOF, the excitation spectra cannot be explained by a superposition of “intra-unit” excitations within the individual building blocks. Instead, “inter-unit” excitations also have to be considered.« less

  14. Hybrid glasses from strong and fragile metal-organic framework liquids.

    PubMed

    Bennett, Thomas D; Tan, Jin-Chong; Yue, Yuanzheng; Baxter, Emma; Ducati, Caterina; Terrill, Nick J; Yeung, Hamish H-M; Zhou, Zhongfu; Chen, Wenlin; Henke, Sebastian; Cheetham, Anthony K; Greaves, G Neville

    2015-08-28

    Hybrid glasses connect the emerging field of metal-organic frameworks (MOFs) with the glass formation, amorphization and melting processes of these chemically versatile systems. Though inorganic zeolites collapse around the glass transition and melt at higher temperatures, the relationship between amorphization and melting has so far not been investigated. Here we show how heating MOFs of zeolitic topology first results in a low density 'perfect' glass, similar to those formed in ice, silicon and disaccharides. This order-order transition leads to a super-strong liquid of low fragility that dynamically controls collapse, before a subsequent order-disorder transition, which creates a more fragile high-density liquid. After crystallization to a dense phase, which can be remelted, subsequent quenching results in a bulk glass, virtually identical to the high-density phase. We provide evidence that the wide-ranging melting temperatures of zeolitic MOFs are related to their network topologies and opens up the possibility of 'melt-casting' MOF glasses.

  15. Solvent-Assisted Linker Exchange: An Alternative to the De Novo Synthesis of Unattainable Metal-Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karagiaridi, Olga; Bury, Wojciech; Mondloch, Joseph E.

    Metal-organic frameworks (MOFs) have gained considerable attention as hybrid materials—in part because of a multitude of potential useful applications, ranging from gas separation to catalysis and light harvesting. Unfortunately, de novo synthesis of MOFs with desirable function–property combinations is not always reliable and may suffer from vagaries such as formation of undesirable topologies, low solubility of precursors, and loss of functionality of the sensitive network components. The recently discovered synthetic approach coined solvent-assisted linker exchange (SALE) constitutes a simple to implement strategy for circumventing these setbacks; its use has already led to the generation of a variety of MOF materialsmore » previously unobtainable by direct synthesis methods. This Review provides a perspective of the achievements in MOF research that have been made possible with SALE and examines the studies that have facilitated the understanding and broadened the scope of use of this invaluable synthetic tool.« less

  16. Formation of a new archetypal Metal-Organic Framework from a simple monatomic liquid

    NASA Astrophysics Data System (ADS)

    Metere, Alfredo; Oleynikov, Peter; Dzugutov, Mikhail; O'Keeffe, Michael

    2014-12-01

    We report a molecular-dynamics simulation of a single-component system of particles interacting via a spherically symmetric potential that is found to form, upon cooling from a liquid state, a low-density porous crystalline phase. Its structure analysis demonstrates that the crystal can be described by a net with a topology that belongs to the class of topologies characteristic of the Metal-Organic Frameworks (MOFs). The observed net is new, and it is now included in the Reticular Chemistry Structure Resource database. The observation that a net topology characteristic of MOF crystals, which are known to be formed by a coordination-driven self-assembly process, can be reproduced by a thermodynamically stable configuration of a simple single-component system of particles opens a possibility of using these models in studies of MOF nets. It also indicates that structures with MOF topology, as well as other low-density porous crystalline structures can possibly be produced in colloidal systems of spherical particles, with an appropriate tuning of interparticle interaction.

  17. Metal–organic and covalent organic frameworks as single-site catalysts

    PubMed Central

    Rogge, S. M. J.; Bavykina, A.; Hajek, J.; Garcia, H.; Olivos-Suarez, A. I.; Sepúlveda-Escribano, A.; Vimont, A.; Clet, G.; Bazin, P.; Kapteijn, F.

    2017-01-01

    Heterogeneous single-site catalysts consist of isolated, well-defined, active sites that are spatially separated in a given solid and, ideally, structurally identical. In this review, the potential of metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) as platforms for the development of heterogeneous single-site catalysts is reviewed thoroughly. In the first part of this article, synthetic strategies and progress in the implementation of such sites in these two classes of materials are discussed. Because these solids are excellent playgrounds to allow a better understanding of catalytic functions, we highlight the most important recent advances in the modelling and spectroscopic characterization of single-site catalysts based on these materials. Finally, we discuss the potential of MOFs as materials in which several single-site catalytic functions can be combined within one framework along with their potential as powerful enzyme-mimicking materials. The review is wrapped up with our personal vision on future research directions. PMID:28338128

  18. Metal-Organic Frameworks as Potential Platforms for Carbon Dioxide Capture and Chemical Transformation

    NASA Astrophysics Data System (ADS)

    Gao, Wenyang

    The anthropogenic carbon dioxide (CO2) emission into the atmosphere, mainly through the combustion of fossil fuels, has resulted in a balance disturbance of the carbon cycle. Overwhelming scientific evidence proves that the escalating level of atmospheric CO2 is deemed as the main culprit for global warming and climate change. It is thus imperative to develop viable CO2 capture and sequestration (CCS) technologies to reduce CO2 emissions, which is also essential to avoid the potential devastating effects in future. The drawbacks of energy-cost, corrosion and inefficiency for amine-based wet-scrubbing systems which are currently used in industry, have prompted the exploration of alternative approaches for CCS. Extensive efforts have been dedicated to the development of functional porous materials, such as activated carbons, zeolites, porous organic polymers, and metal-organic frameworks (MOFs) to capture CO2. However, these adsorbents are limited by either poor selectivity for CO2 separation from gas mixtures or low CO2 adsorption capacity. Therefore, it is still highly demanding to design next-generation adsorbent materials fulfilling the requirements of high CO2 selectivity and enough CO2 capacity, as well as high water/moisture stability under practical conditions. Metal-organic frameworks (MOFs) have been positioned at the forefront of this area as a promising type of candidate amongst various porous materials. This is triggered by the modularity and functionality of pore size, pore walls and inner surface of MOFs by use of crystal engineering approaches. In this work, several effective strategies, such as incorporating 1,2,3-triazole groups as moderate Lewis base centers into MOFs and employing flexible azamacrocycle-based ligands to build MOFs, demonstrate to be promising ways to enhance CO 2 uptake capacity and CO2 separation ability of porous MOFs. It is revealed through in-depth studies on counter-intuitive experimental observations that the local electric field favours more than the richness of exposed nitrogen atoms for the interactions between MOFs and CO2 molecules, which provides a new perspective for future design of new MOFs and other types of porous materials for CO2 capture. Meanwhile, to address the water/moisture stability issue of MOFs, remote stabilization of copper paddlewheel clusters is achieved by strengthening the bonding between organic ligands and triangular inorganic copper trimers, which in turn enhances the stability of the whole MOF network and provides a better understanding of the mechanism promoting prospective suitable MOFs with enhanced water stability. In contrast with CO2 capture by sorbent materials, the chemical transformation of the captured CO2 into value-added products represents an alternative which is attractive and sustainable, and has been of escalating interest. The nanospace within MOFs not only provides the inner porosity for CO2 capture, but also engenders accessible room for substrate molecules for catalytic purpose. It is demonstrated that high catalytic efficiency for chemical fixation of CO2 into cyclic carbonates under ambient conditions is achieved on MOF-based nanoreactors featuring a high-density of well-oriented Lewis active sites. Furthermore, described for the first time is that CO 2 can be successfully inserted into aryl C-H bonds of a MOF to generate carboxylate groups. This proof-of-concept study contributes a different perspective to the current landscape of CO2 capture and transformation. In closing, the overarching goal of this work is not only to seek efficient MOF adsorbents for CO2 capture, but also to present a new yet attractive scenario of CO2 utilization on MOF platforms.

  19. Pd Nanoparticles and MOFs Synergistically Hybridized Halloysite Nanotubes for Hydrogen Storage.

    PubMed

    Jin, Jiao; Ouyang, Jing; Yang, Huaming

    2017-12-01

    Natural halloysite nanotubes (HNTs) were hybridized with metal-organic frameworks (MOFs) to prepare novel composites. MOFs were transformed into carbon by carbonization calcination, and palladium (Pd) nanoparticles were introduced to build an emerging ternary compound system for hydrogen adsorption. The hydrogen adsorption capacities of HNT-MOF composites were 0.23 and 0.24 wt%, while those of carbonized products were 0.24 and 0.27 wt% at 25 °C and 2.65 MPa, respectively. Al-based samples showed higher hydrogen adsorption capacities than Zn-based samples on account of different selectivity between metal and hydrogen and approximate porous characteristics. More pore structures are generated by the carbonization reaction from metal-organic frameworks into carbon; high specific surface area, uniform pore size, and large pore volume benefited the hydrogen adsorption ability of composites. Moreover, it was also possible to promote hydrogen adsorption capacity by incorporating Pd. The hydrogen adsorption capacity of ternary compound, Pd-C-H3-MOFs(Al), reached 0.32 wt% at 25 °C and 2.65 MPa. Dissociation was assumed to take place on the Pd particles, then atomic and molecule hydrogen spilled over to the structure of carboxylated HNTs, MOFs, and the carbon products for enhancing the hydrogen adsorption capacity.

  20. Materials and Techniques for Implantable Nutrient Sensing Using Flexible Sensors Integrated with Metal-Organic Frameworks.

    PubMed

    Ling, Wei; Liew, Guoguang; Li, Ya; Hao, Yafeng; Pan, Huizhuo; Wang, Hanjie; Ning, Baoan; Xu, Hang; Huang, Xian

    2018-06-01

    The combination of novel materials with flexible electronic technology may yield new concepts of flexible electronic devices that effectively detect various biological chemicals to facilitate understanding of biological processes and conduct health monitoring. This paper demonstrates single- or multichannel implantable flexible sensors that are surface modified with conductive metal-organic frameworks (MOFs) such as copper-MOF and cobalt-MOF with large surface area, high porosity, and tunable catalysis capability. The sensors can monitor important nutriments such as ascorbicacid, glycine, l-tryptophan (l-Trp), and glucose with detection resolutions of 14.97, 0.71, 4.14, and 54.60 × 10 -6 m, respectively. In addition, they offer sensing capability even under extreme deformation and complex surrounding environment with continuous monitoring capability for 20 d due to minimized use of biological active chemicals. Experiments using live cells and animals indicate that the MOF-modified sensors are biologically safe to cells, and can detect l-Trp in blood and interstitial fluid. This work represents the first effort in integrating MOFs with flexible sensors to achieve highly specific and sensitive implantable electrochemical detection and may inspire appearance of more flexible electronic devices with enhanced capability in sensing, energy storage, and catalysis using various properties of MOFs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Facile preparation of magnetic metal organic frameworks core-shell nanoparticles for stimuli-responsive drug carrier

    NASA Astrophysics Data System (ADS)

    Li, Sheng; Bi, Ke; Xiao, Ling; Shi, Xiaowen

    2017-12-01

    Facile synthesis of core-shell magnetic MOFs for drug delivery is of significance due to the advantages of high drug load and easy separation. In this work, magnetic metal organic frameworks (MOFs, Fe3O4-NH2@MIL101-NH2) core-shell nanoparticles were synthesized rapidly in water phase by microwave irradiation using Fe3+ and 2-amino-1,4-benzenedicarboxylate (BDC-NH2) as metal ions and ligands respectively. The resulting magnetic MOFs exhibit large surface areas (96.04 m2 g-1), excellent magnetic response (20.47 emu g-1) and large mesopore volume (22.07 cm3 g-1) along with spherical morphologies with the diameters ranging from 140-330 nm. Using doxorubicin (DOX) as a model drug, the drug loading capacity of Fe3O4-NH2@MIL101-NH2 could reach 36.02%, substantially higher than pristine MIL101-NH2. Importantly, the release of DOX could be controlled by pH as well as the meso pore size of MOFs. The cytotoxicity assay showed that the magnetic MOFs have low cytotoxicity and good biocompatibility. The results suggest great potential of the magnetic MOFs core-shell nanoparticles fabricated in this study on controlled drug release of DOX.

  2. Facile preparation of magnetic metal organic frameworks core-shell nanoparticles for stimuli-responsive drug carrier.

    PubMed

    Li, Sheng; Bi, Ke; Xiao, Ling; Shi, Xiaowen

    2017-12-08

    Facile synthesis of core-shell magnetic MOFs for drug delivery is of significance due to the advantages of high drug load and easy separation. In this work, magnetic metal organic frameworks (MOFs, Fe 3 O 4 -NH 2 @MIL101-NH 2 ) core-shell nanoparticles were synthesized rapidly in water phase by microwave irradiation using Fe 3+ and 2-amino-1,4-benzenedicarboxylate (BDC-NH 2 ) as metal ions and ligands respectively. The resulting magnetic MOFs exhibit large surface areas (96.04 m 2 g -1 ), excellent magnetic response (20.47 emu g -1 ) and large mesopore volume (22.07 cm 3 g -1 ) along with spherical morphologies with the diameters ranging from 140-330 nm. Using doxorubicin (DOX) as a model drug, the drug loading capacity of Fe 3 O 4 -NH 2 @MIL101-NH 2 could reach 36.02%, substantially higher than pristine MIL101-NH 2 . Importantly, the release of DOX could be controlled by pH as well as the meso pore size of MOFs. The cytotoxicity assay showed that the magnetic MOFs have low cytotoxicity and good biocompatibility. The results suggest great potential of the magnetic MOFs core-shell nanoparticles fabricated in this study on controlled drug release of DOX.

  3. Pd Nanoparticles and MOFs Synergistically Hybridized Halloysite Nanotubes for Hydrogen Storage

    NASA Astrophysics Data System (ADS)

    Jin, Jiao; Ouyang, Jing; Yang, Huaming

    2017-03-01

    Natural halloysite nanotubes (HNTs) were hybridized with metal-organic frameworks (MOFs) to prepare novel composites. MOFs were transformed into carbon by carbonization calcination, and palladium (Pd) nanoparticles were introduced to build an emerging ternary compound system for hydrogen adsorption. The hydrogen adsorption capacities of HNT-MOF composites were 0.23 and 0.24 wt%, while those of carbonized products were 0.24 and 0.27 wt% at 25 °C and 2.65 MPa, respectively. Al-based samples showed higher hydrogen adsorption capacities than Zn-based samples on account of different selectivity between metal and hydrogen and approximate porous characteristics. More pore structures are generated by the carbonization reaction from metal-organic frameworks into carbon; high specific surface area, uniform pore size, and large pore volume benefited the hydrogen adsorption ability of composites. Moreover, it was also possible to promote hydrogen adsorption capacity by incorporating Pd. The hydrogen adsorption capacity of ternary compound, Pd-C-H3-MOFs(Al), reached 0.32 wt% at 25 °C and 2.65 MPa. Dissociation was assumed to take place on the Pd particles, then atomic and molecule hydrogen spilled over to the structure of carboxylated HNTs, MOFs, and the carbon products for enhancing the hydrogen adsorption capacity.

  4. Direct growth of metal-organic frameworks thin film arrays on glassy carbon electrode based on rapid conversion step mediated by copper clusters and hydroxide nanotubes for fabrication of a high performance non-enzymatic glucose sensing platform.

    PubMed

    Shahrokhian, Saeed; Khaki Sanati, Elnaz; Hosseini, Hadi

    2018-07-30

    The direct growth of self-supported metal-organic frameworks (MOFs) thin film can be considered as an effective strategy for fabrication of the advanced modified electrodes in sensors and biosensor applications. However, most of the fabricated MOFs-based sensors suffer from some drawbacks such as time consuming for synthesis of MOF and electrode making, need of a binder or an additive layer, need of expensive equipment and use of hazardous solvents. Here, a novel free-standing MOFs-based modified electrode was fabricated by the rapid direct growth of MOFs on the surface of the glassy carbon electrode (GCE). In this method, direct growth of MOFs was occurred by the formation of vertically aligned arrays of Cu clusters and Cu(OH) 2 nanotubes, which can act as both mediator and positioning fixing factor for the rapid formation of self-supported MOFs on GCE surface. The effect of both chemically and electrochemically formed Cu(OH) 2 nanotubes on the morphological and electrochemical performance of the prepared MOFs were investigated. Due to the unique properties of the prepared MOFs thin film electrode such as uniform and vertically aligned structure, excellent stability, high electroactive surface area, and good availability to analyte and electrolyte diffusion, it was directly used as the electrode material for non-enzymatic electrocatalytic oxidation of glucose. Moreover, the potential utility of this sensing platform for the analytical determination of glucose concentration was evaluated by the amperometry technique. The results proved that the self-supported MOFs thin film on GCE is a promising electrode material for fabricating and designing non-enzymatic glucose sensors. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Three MOF-Templated Carbon Nanocomposites for Potential Platforms of Enzyme Immobilization with Improved Electrochemical Performance.

    PubMed

    Dong, Sheying; Peng, Lei; Wei, Wenbo; Huang, Tinglin

    2018-05-02

    An efficient and facile metal-organic framework (MOF)-template strategy for preparing carbon nanocomposites has been developed. First of all, a series of metal ions, including Fe 3+ , Zr 4+ , and La 3+ , were respectively connected with 2-aminoterephthalate (H 2 ATA) to form three metal-organic frameworks (MOFs) and then three novel MOF-derived materials were obtained by annealing them at 550 °C under N 2 atmosphere. The morphologies and microstructure results showed that they still retained the original structure of MOFs and formed carbon-supported metal oxide hybrid nanomaterials. Interestingly, it was found that La-MOF-NH 2 and its derived materials were first reported, which had wool-ball-like structure formed by many streaky-shaped particles intertwining each other. Furthermore, these MOF-derived materials were all successfully used as effective immobilization matrixes of acetylcholinesterase (AChE) to construct biosensors for the detection of methyl parathion. Especially, [La-MOF-NH 2 ] N 2 with wool-ball-like structure not only provided more active sites of multicontents to increase AChE immobilization amount but also facilitated the accessibility of electron transfer and shorten their diffusion length on the surface of electrode. Under optimal conditions, the biosensor based on [La-MOF-NH 2 ] N 2 displayed the widest linear range of 1.0 × 10 -13 -5.0 × 10 -9 g mL -1 and the lowest detection limit of 5.8 × 10 -14 g mL -1 in three biosensors. This study illustrates the feasibility and the potential of a series of MOF-derived materials for biosensors with improved electrochemical performance.

  6. Luminescent Li-based metal-organic framework tailored for the selective detection of explosive nitroaromatic compounds: direct observation of interaction sites.

    PubMed

    Kim, Tae Kyung; Lee, Jae Hwa; Moon, Dohyun; Moon, Hoi Ri

    2013-01-18

    A luminescent lithium metal-organic framework (MOF) is constructed from the solvothermal reaction of Li(+) and a well-designed organic ligand, bis(4-carboxyphenyl)-N-methylamine (H(2)CPMA). A Li-based MOF can detect an explosive aromatic compound containing nitro groups as an explosophore, by showing a dramatic color change with concurrent luminescence quenching in the solid state. The detection sites are proven directly through single-crystal-to-single-crystal transformations, which show strong interactions between the aromatic rings of the electron-rich CPMA(2-) molecules and the electron-deficient nitrobenzene.

  7. Strategies for Enhancing the Catalytic Performance of Metal-Organic Frameworks in the Fixation of CO2 into Cyclic Carbonates.

    PubMed

    Taherimehr, Masoumeh; Van de Voorde, Ben; Wee, Lik H; Martens, Johan A; De Vos, Dirk E; Pescarmona, Paolo P

    2017-03-22

    Metal-organic frameworks (MOFs) with accessible Lewis acid sites are finding increasing application in the field of heterogeneous catalysis. However, the structural instability of MOFs when they are exposed to high temperature and/or high pressure often limits their applicability. In this study, two strategies were applied to achieve a MOF catalyst with high stability, activity and selectivity in the reaction of CO 2 with styrene oxide to produce styrene carbonate. In the first approach, a MOF with linkers with high connectivity as MIL-100(Cr) was studied, leading to promising activity and recyclability in consecutive catalytic runs without loss of activity. In the second strategy, a MOF with linkers with lower connectivity but with encapsulated Keggin phosphotungstic acid (MIL-101(Cr)[PTA]) was prepared. However, the activity of this catalyst decreased upon reuse as a consequence of deterioration of the MOF. Further investigations were dedicated to the enhancement of the catalytic performance of MIL-100 and included the variation of the metal centre as well as the type and loading of organic salt acting as nucleophile source. This allowed tuning the nature of the organic halide to the specific porous structure of MIL-100(Cr) to prevent diffusion limitations. The best catalytic performance was obtained for MIL-100(Cr) in combination with EMIMBr ionic liquid, which gave very high styrene carbonate yield (94 %) with complete selectivity after 18 h of reaction at mild temperature (60 °C). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Amino substituted Cu3(btc)2: a new metal-organic framework with a versatile functionality.

    PubMed

    Peikert, Katharina; Hoffmann, Frank; Fröba, Michael

    2012-11-25

    A new amino substituted tricarboxylate linker and the new metal-organic framework Cu(3)(NH(2)btc)(2) have been synthesised. The new MOF shows good adsorption properties and is suitable for postsynthetic modification to form an amide functionalised framework.

  9. Increasing the Stability of Metal-Organic Frameworks

    DOE PAGES

    Bosch, Mathieu; Zhang, Muwei; Zhou, Hong-Cai

    2014-01-01

    Metal-organic frameworks (MOFs) are a new category of advanced porous materials undergoing study by many researchers for their vast variety of both novel structures and potentially useful properties arising from them. Their high porosities, tunable structures, and convenient process of introducing both customizable functional groups and unsaturated metal centers have afforded excellent gas sorption and separation ability, catalytic activity, luminescent properties, and more. However, the robustness and reactivity of a given framework are largely dependent on its metal-ligand interactions, where the metal-containing clusters are often vulnerable to ligand substitution by water or other nucleophiles, meaning that the frameworks may collapsemore » upon exposure even to moist air. Other frameworks may collapse upon thermal or vacuum treatment or simply over time. This instability limits the practical uses of many MOFs. In order to further enhance the stability of the framework, many different approaches, such as the utilization of high-valence metal ions or nitrogen-donor ligands, were recently investigated. This review details the efforts of both our research group and others to synthesize MOFs possessing drastically increased chemical and thermal stability, in addition to exemplary performance for catalysis, gas sorption, and separation.« less

  10. Configurations, band structures and photocurrent responses of 4-(4-oxopyridin-1(4H)-yl)phthalic acid and its metal-organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Xingxiu; Qiu, Xiandeng; Yan, Zhishuo

    2016-05-15

    4-(4-oxopyridin-1(4 H)-yl)phthalic acid (H{sub 2}L) and three H{sub 2}L-based metal-organic frameworks (MOFs) formulated as ZnL(DPE)(H{sub 2}O)·H{sub 2}O (DPE=(E)-1, 2-di(pyridine −4-yl)ethene) (1), CdL(H{sub 2}O){sub 2} (2) and CdL (3) were synthesized and structurally characterized by single-crystal X-ray diffraction. The free H{sub 2}L ligand shows an enol-form and the L{sup 2−} ligand in the three MOFs exists as the keto-form. Density functional theory (DFT) calculations indicate H{sub 2}L and the three MOFs possess different band structures. Due to the existence of the N-donor, DPE in MOF 1, the conduction band (CB) minimum and band gap of MOF 1 are much lower thanmore » those of H{sub 2}L. And MOF 1 yielded much larger photocurrent density than H{sub 2}L upon visible light illumination. Electrochemical impedance spectroscopy (EIS) shows the interfacial charge transfer impedance in the presence of MOF 1 is lower than that in the presence of H{sub 2}L. The hydrous MOF 2 and the anhydrous MOF 3 are both constructed by Cd(II) and L{sup 2−}, and they can be reversibly transformed to each other. However, MOFs 2 and 3 possess different CB minimums and VB maximums, and their band gaps are much larger than that of MOF 1. - Graphical abstract: The free ligand, 4-(4-oxopyridin-1(4H)-yl)phthalic acid (H{sub 2}L) shows different configuration from its three MOFs, and they possess different band structures. MOF 1 yielded much larger visible-light-driven photocurrent density than H{sub 2}L. The hydrous MOF 2 and the anhydrous MOF 3 can be transformed to each other, and they have larger band gaps than MOF 1.« less

  11. MOFzyme: Intrinsic protease-like activity of Cu-MOF.

    PubMed

    Li, Bin; Chen, Daomei; Wang, Jiaqiang; Yan, Zhiying; Jiang, Liang; Deliang Duan; He, Jiao; Luo, Zhongrui; Zhang, Jinping; Yuan, Fagui

    2014-10-24

    The construction of efficient enzyme mimetics for the hydrolysis of peptide bonds in proteins is challenging due to the high stability of peptide bonds and the importance of proteases in biology and industry. Metal-organic frameworks (MOFs) consisting of infinite crystalline lattices with metal clusters and organic linkers may provide opportunities for protease mimic which has remained unknown. Herein, we report that Cu₂(C₉H₃O₆)₄/₃ MOF (which is well known as HKUST-1 and denoted as Cu-MOF here), possesses an intrinsic enzyme mimicking activity similar to that found in natural trypsin to bovine serum albumin (BSA) and casein. The Michaelis constant (Km) of Cu-MOF is about 26,000-fold smaller than that of free trypsin indicating a much higher affinity of BSA for Cu-MOF surface. Cu-MOF also exhibited significantly higher catalytic efficiency than homogeneous artificial metalloprotease Cu(II) complexes and could be reused for ten times without losing in its activity. Moreover, Cu-MOF was successfully used to simulate trypsinization in cell culture since it dissociated cells in culture even without EDTA.

  12. MOFzyme: Intrinsic protease-like activity of Cu-MOF

    NASA Astrophysics Data System (ADS)

    Li, Bin; Chen, Daomei; Wang, Jiaqiang; Yan, Zhiying; Jiang, Liang; Deliang Duan; He, Jiao; Luo, Zhongrui; Zhang, Jinping; Yuan, Fagui

    2014-10-01

    The construction of efficient enzyme mimetics for the hydrolysis of peptide bonds in proteins is challenging due to the high stability of peptide bonds and the importance of proteases in biology and industry. Metal-organic frameworks (MOFs) consisting of infinite crystalline lattices with metal clusters and organic linkers may provide opportunities for protease mimic which has remained unknown. Herein, we report that Cu2(C9H3O6)4/3 MOF (which is well known as HKUST-1 and denoted as Cu-MOF here), possesses an intrinsic enzyme mimicking activity similar to that found in natural trypsin to bovine serum albumin (BSA) and casein. The Michaelis constant (Km) of Cu-MOF is about 26,000-fold smaller than that of free trypsin indicating a much higher affinity of BSA for Cu-MOF surface. Cu-MOF also exhibited significantly higher catalytic efficiency than homogeneous artificial metalloprotease Cu(II) complexes and could be reused for ten times without losing in its activity. Moreover, Cu-MOF was successfully used to simulate trypsinization in cell culture since it dissociated cells in culture even without EDTA.

  13. MOFzyme: Intrinsic protease-like activity of Cu-MOF

    PubMed Central

    Li, Bin; Chen, Daomei; Wang, Jiaqiang; Yan, Zhiying; Jiang, Liang; Deliang Duan; He, Jiao; Luo, Zhongrui; Zhang, Jinping; Yuan, Fagui

    2014-01-01

    The construction of efficient enzyme mimetics for the hydrolysis of peptide bonds in proteins is challenging due to the high stability of peptide bonds and the importance of proteases in biology and industry. Metal-organic frameworks (MOFs) consisting of infinite crystalline lattices with metal clusters and organic linkers may provide opportunities for protease mimic which has remained unknown. Herein, we report that Cu2(C9H3O6)4/3 MOF (which is well known as HKUST-1 and denoted as Cu-MOF here), possesses an intrinsic enzyme mimicking activity similar to that found in natural trypsin to bovine serum albumin (BSA) and casein. The Michaelis constant (Km) of Cu-MOF is about 26,000-fold smaller than that of free trypsin indicating a much higher affinity of BSA for Cu-MOF surface. Cu-MOF also exhibited significantly higher catalytic efficiency than homogeneous artificial metalloprotease Cu(II) complexes and could be reused for ten times without losing in its activity. Moreover, Cu-MOF was successfully used to simulate trypsinization in cell culture since it dissociated cells in culture even without EDTA. PMID:25342169

  14. Shrink-wrapping water to conduct protons

    NASA Astrophysics Data System (ADS)

    Shimizu, George K. H.

    2017-11-01

    For proton-conducting metal-organic frameworks (MOFs) to find application as the electrolyte in proton-exchange membrane fuel cells, materials with better stability and conductivity are required. Now, a structurally flexible MOF that is also highly stable is demonstrated to possess high proton conductivity over a range of humidities.

  15. Surface-supported metal-organic framework thin films: fabrication methods, applications, and challenges.

    PubMed

    Liu, Jinxuan; Wöll, Christof

    2017-10-02

    Surface-supported metal-organic framework thin films are receiving increasing attention as a novel form of nanotechnology. New deposition techniques that enable the control of the film thickness, homogeneity, morphology, and dimensions with a huge number of metal-organic framework compounds offer tremendous opportunities in a number of different application fields. In response to increasing demands for environmental sustainability and cleaner energy, much effort in recent years has been devoted to the development of MOF thin films for applications in photovoltaics, CO 2 reduction, energy storage, water splitting, and electronic devices, as well as for the fabrication of membranes. Although existing applications are promising and encouraging, MOF thin films still face numerous challenges, including the need for a more thorough understanding of the thin-film growth mechanism, stability of the internal and external interfaces, strategies for doping and models for charge carrier transport. In this paper, we review the recent advances in MOF thin films, including fabrication and patterning strategies and existing nanotechnology applications. We conclude by listing the most attractive future opportunities as well as the most urgent challenges.

  16. Hierarchical Metal–Organic Framework Hybrids: Perturbation-Assisted Nanofusion Synthesis

    DOE PAGES

    Yue, Yanfeng; Fulvio, Pasquale F.; Dai, Sheng

    2015-12-04

    Metal–organic frameworks (MOFs) represent a new family of microporous materials; however, microporous–mesoporous hierarchical MOF materials have been less investigated because of the lack of simple, reliable methods to introduce mesopores to the crystalline microporous particles. State-of-the-art MOF hierarchical materials have been prepared by ligand extension methods or by using a template, resulting in intrinsic mesopores of longer ligands or replicated pores from template agents, respectively. However, mesoporous MOF materials obtained through ligand extension often collapse in the absence of guest molecules, which dramatically reduces the size of the pore aperture. Although the template-directed strategy allows for the preparation of hierarchicalmore » materials with larger mesopores, the latter requires a template removal step, which may result in the collapse of the implemented mesopores. Recently, a general template-free synthesis of hierarchical microporous crystalline frameworks, such as MOFs and Prussian blue analogues (PBAs), has been reported. Our new method is based on the kinetically controlled precipitation (perturbation), with simultaneous condensation and redissolution of polymorphic nanocrystallites in the mother liquor. This method further eliminates the use of extended organic ligands and the micropores do not collapse upon removal of trapped guest solvent molecules, thus yielding hierarchical MOF materials with intriguing porosity in the gram scale. The hierarchical MOF materials prepared in this way exhibited exceptional properties when tested for the adsorption of large organic dyes over their corresponding microporous frameworks, due to the enhanced pore accessibility and electrolyte diffusion within the mesopores. As for PBAs, the pore size distribution of these materials can be tailored by changing the metals substituting Fe cations in the PB lattice. For these, the textural mesopores increased from approximately 10 nm for Cu analogue (mesoCuHCF), to 16 nm in Co substituted compound (mesoCoHCF), and to as large as 30 nm for the Ni derivative (mesoNiHCF). And while bulk PB and analogues have a higher capacitance than hierarchical analogues for Na-batteries, the increased accessibility to the microporous channels of PBAs allow for faster intercalated ion exchange and diffusion than in bulk PBA crystals. Therefore, hierarchical PBAs are promising candidates for electrodes in future electrochemical energy storage devices with faster charge–discharge rates than batteries, namely pseudocapacitors. Finally, this new synthetic method opens the possibility to prepare hierarchical materials having bimodal distribution of mesopores, and to tailor the structural properties of MOFs for different applications, including contrasting agents for MRI, and drug delivery.« less

  17. Investigation of prototypal MOFs consisting of polyhedral cages with accessible Lewis-acid sites for quinoline synthesis.

    PubMed

    Gao, Wen-Yang; Leng, Kunyue; Cash, Lindsay; Chrzanowski, Matthew; Stackhouse, Chavis A; Sun, Yinyong; Ma, Shengqian

    2015-03-21

    A series of prototypal metal-organic frameworks (MOFs) consisting of polyhedral cages with accessible Lewis-acid sites, have been systematically investigated for Friedländer annulation reaction, a straightforward approach to synthesizing quinoline and its derivatives. Amongst them MMCF-2 demonstrates significantly enhanced catalytic activity compared with the benchmark MOFs, HKUST-1 and MOF-505, as a result of a high-density of accessible Cu(II) Lewis acid sites and large window size in the cuboctahedral cage-based nanoreactor of MMCF-2.

  18. Design and synthesis of polyoxometalate-framework materials from cluster precursors

    NASA Astrophysics Data System (ADS)

    Vilà-Nadal, Laia; Cronin, Leroy

    2017-10-01

    Inorganic oxide materials are used in semiconductor electronics, ion exchange, catalysis, coatings, gas sensors and as separation materials. Although their synthesis is well understood, the scope for new materials is reduced because of the stability limits imposed by high-temperature processing and top-down synthetic approaches. In this Review, we describe the derivatization of polyoxometalate (POM) clusters, which enables their assembly into a range of frameworks by use of organic or inorganic linkers. Additionally, bottom-up synthetic approaches can be used to make metal oxide framework materials, and the features of the molecular POM precursors are retained in these structures. Highly robust all-inorganic frameworks can be made using metal-ion linkers, which combine molecular synthetic control without the need for organic components. The resulting frameworks have high stability, and high catalytic, photochemical and electrochemical activity. Conceptually, these inorganic oxide materials bridge the gap between zeolites and metal-organic frameworks (MOFs) and establish a new class of all-inorganic POM frameworks that can be designed using topological and reactivity principles similar to MOFs.

  19. Metal-Organic Framework-Derived Materials for Sodium Energy Storage.

    PubMed

    Zou, Guoqiang; Hou, Hongshuai; Ge, Peng; Huang, Zhaodong; Zhao, Ganggang; Yin, Dulin; Ji, Xiaobo

    2018-01-01

    Recently, sodium-ion batteries (SIBs) are extensively explored and are regarded as one of the most promising alternatives to lithium-ion batteries for electrochemical energy conversion and storage, owing to the abundant raw material resources, low cost, and similar electrochemical behavior of elemental sodium compared to lithium. Metal-organic frameworks (MOFs) have attracted enormous attention due to their high surface areas, tunable structures, and diverse applications in drug delivery, gas storage, and catalysis. Recently, there has been an escalating interest in exploiting MOF-derived materials as anodes for sodium energy storage due to their fast mass transport resulting from their highly porous structures and relatively simple preparation methods originating from in situ thermal treatment processes. In this Review, the recent progress of the sodium-ion storage performances of MOF-derived materials, including MOF-derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), as SIB anodes is systematically and completely presented and discussed. Moreover, the current challenges and perspectives of MOF-derived materials in electrochemical energy storage are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Programmable Topology in New Families of Heterobimetallic Metal-Organic Frameworks.

    PubMed

    Muldoon, Patrick F; Liu, Chong; Miller, Carson C; Koby, S Benjamin; Gamble Jarvi, Austin; Luo, Tian-Yi; Saxena, Sunil; O'Keeffe, Michael; Rosi, Nathaniel L

    2018-05-09

    Using diverse building blocks, such as different heterometallic clusters, in metal-organic framework (MOF) syntheses greatly increases MOF complexity and leads to emergent synergistic properties. However, applying reticular chemistry to syntheses involving more than two molecular building blocks is challenging and there is limited progress in this area. We are therefore motivated to develop a strategy for achieving systematic and differential control over the coordination of multiple metals in MOFs. Herein, we report the design and synthesis of a diverse series of heterobimetallic MOFs with different metal ions and clusters severally distributed throughout two or three inorganic secondary building units (SBUs). By taking advantage of the bifunctional isonicotinate linker and its derivatives, which can coordinatively distinguish between early and late transition metals, we control the assembly and topology of up to three different inorganic SBUs in one-pot solvothermal reactions. Specifically, M 6 (μ 3 -O) n (μ 3 -OH) 8- n (CO 2 ) 12 (M = Zr 4+ , Hf 4+ , Dy 3+ ) SBUs are formed along with metal-pyridyl complexes. By controlling the geometry of the metal-pyridyl complexes, we direct the overall topology to produce eight new MOFs with fcu, ftw, and previously unreported trinodal pfm crystallographic nets.

  1. In Situ Transformation of MOFs into Layered Double Hydroxide Embedded Metal Sulfides for Improved Electrocatalytic and Supercapacitive Performance.

    PubMed

    Yilmaz, Gamze; Yam, Kah Meng; Zhang, Chun; Fan, Hong Jin; Ho, Ghim Wei

    2017-07-01

    Direct adoption of metal-organic frameworks (MOFs) as electrode materials shows impoverished electrochemical performance owing to low electrical conductivity and poor chemical stability. In this study, we demonstrate self-templated pseudomorphic transformation of MOF into surface chemistry rich hollow framework that delivers highly reactive, durable, and universal electrochemically active energy conversion and storage functionalities. In situ pseudomorphic transformation of MOF-derived hollow rhombic dodecahedron template and sulfurization of nickel cobalt layered double hydroxides (NiCo-LDHs) lead to the construction of interlayered metal sulfides (NiCo-LDH/Co 9 S 8 ) system. The embedment of metal sulfide species (Co 9 S 8 ) at the LDH intergalleries offers optimal interfacing of the hybrid constituent elements and materials stability. The hybrid NiCo-LDH/Co 9 S 8 system collectively presents an ideal porous structure, rich redox chemistry, and high electrical conductivity matrix. This leads to a significant enhancement in its complementary electrocatalytic hydrogen evolution and supercapacitive energy storage properties. This work establishes the potential of MOF derived scaffold for designing of novel class hybrid inorganic-organic functional materials for electrochemical applications and beyond. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Metal-Organic Frameworks for Separation.

    PubMed

    Zhao, Xiang; Wang, Yanxiang; Li, Dong-Sheng; Bu, Xianhui; Feng, Pingyun

    2018-03-27

    Separation is an important industrial step with critical roles in the chemical, petrochemical, pharmaceutical, and nuclear industries, as well as in many other fields. Although much progress has been made, the development of better separation technologies, especially through the discovery of high-performance separation materials, continues to attract increasing interest due to concerns over factors such as efficiency, health and environmental impacts, and the cost of existing methods. Metal-organic frameworks (MOFs), a rapidly expanding family of crystalline porous materials, have shown great promise to address various separation challenges due to their well-defined pore size and unprecedented tunability in both composition and pore geometry. In the past decade, extensive research is performed on applications of MOF materials, including separation and capture of many gases and vapors, and liquid-phase separation involving both liquid mixtures and solutions. MOFs also bring new opportunities in enantioselective separation and are amenable to morphological control such as fabrication of membranes for enhanced separation outcomes. Here, some of the latest progress in the applications of MOFs for several key separation issues, with emphasis on newly synthesized MOF materials and the impact of their compositional and structural features on separation properties, are reviewed and highlighted. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Introduction of functionality, selection of topology, and enhancement of gas adsorption in multivariate metal-organic framework-177.

    PubMed

    Zhang, Yue-Biao; Furukawa, Hiroyasu; Ko, Nakeun; Nie, Weixuan; Park, Hye Jeong; Okajima, Satoshi; Cordova, Kyle E; Deng, Hexiang; Kim, Jaheon; Yaghi, Omar M

    2015-02-25

    Metal-organic framework-177 (MOF-177) is one of the most porous materials whose structure is composed of octahedral Zn4O(-COO)6 and triangular 1,3,5-benzenetribenzoate (BTB) units to make a three-dimensional extended network based on the qom topology. This topology violates a long-standing thesis where highly symmetric building units are expected to yield highly symmetric networks. In the case of octahedron and triangle combinations, MOFs based on pyrite (pyr) and rutile (rtl) nets were expected instead of qom. In this study, we have made 24 MOF-177 structures with different functional groups on the triangular BTB linker, having one or more functionalities. We find that the position of the functional groups on the BTB unit allows the selection for a specific net (qom, pyr, and rtl), and that mixing of functionalities (-H, -NH2, and -C4H4) is an important strategy for the incorporation of a specific functionality (-NO2) into MOF-177 where otherwise incorporation of such functionality would be difficult. Such mixing of functionalities to make multivariate MOF-177 structures leads to enhancement of hydrogen uptake by 25%.

  4. Mimic Carbonic Anhydrase Using Metal-Organic Frameworks for CO2 Capture and Conversion.

    PubMed

    Jin, Chaonan; Zhang, Sainan; Zhang, Zhenjie; Chen, Yao

    2018-02-19

    Carbonic anhydrase (CA) is a zinc-containing metalloprotein, in which the Zn active center plays the key role to transform CO 2 into carbonate. Inspired by nature, herein we used metal-organic frameworks (MOFs) to mimic CA for CO 2 conversion, on the basis of the structural similarity between the Zn coordination in MOFs and CA active center. The biomimetic activity of MOFs was investigated by detecting the hydrolysis of para-nitrophenyl acetate, which is a model reaction used to evaluate CA activity. The biomimetic materials (e.g., CFA-1) showed good catalytic activity, and excellent reusability, and solvent and thermal stability, which is very important for practical applications. In addition, ZIF-100 and CFA-1 were used to mimic CA to convert CO 2 gas, and exhibited good efficiency on CO 2 conversion compared with those of other porous materials (e.g., MCM-41, active carbon). This biomimetic study revealed a novel CO 2 treatment method. Instead of simply using MOFs to absorb CO 2 , ZIF-100 and CFA-1 were used to mimic CA for in situ CO 2 conversion, which provides a new prospect in the biological and industrial applications of MOFs.

  5. Introduction of Functionality, Selection of Topology, and Enhancement of Gas Adsorption in Multivariate Metal–Organic Framework-177

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yue-Biao; Furukawa, Hiroyasu; Ko, Nakeun

    2015-02-25

    Metal–organic framework-177 (MOF-177) is one of the most porous materials whose structure is composed of octahedral Zn 4O(-COO) 6 and triangular 1,3,5-benzenetribenzoate (BTB) units to make a three-dimensional extended network based on the qom topology. This topology violates a long-standing thesis where highly symmetric building units are expected to yield highly symmetric networks. In the case of octahedron and triangle combinations, MOFs based on pyrite (pyr) and rutile (rtl) nets were expected instead of qom. In this study, we have made 24 MOF-177 structures with different functional groups on the triangular BTB linker, having one or more functionalities. We findmore » that the position of the functional groups on the BTB unit allows the selection for a specific net (qom, pyr, and rtl), and that mixing of functionalities (-H, -NH 2, and -C 4H 4) is an important strategy for the incorporation of a specific functionality (-NO 2) into MOF-177 where otherwise incorporation of such functionality would be difficult. Such mixing of functionalities to make multivariate MOF-177 structures leads to enhancement of hydrogen uptake by 25%.« less

  6. In-situ observation for growth of hierarchical metal-organic frameworks and their self-sequestering mechanism for gas storage

    NASA Astrophysics Data System (ADS)

    Hyo Park, Jung; Min Choi, Kyung; Joon Jeon, Hyung; Jung Choi, Yoon; Ku Kang, Jeung

    2015-07-01

    Although structures with the single functional constructions and micropores were demonstrated to capture many different molecules such as carbon dioxide, methane, and hydrogen with high capacities at low temperatures, their feeble interactions still limit practical applications at room temperature. Herein, we report in-situ growth observation of hierarchical pores in pomegranate metal-organic frameworks (pmg-MOFs) and their self-sequestering storage mechanism, not observed for pristine MOFs. Direct observation of hierarchical pores inside the pmg-MOF was evident by in-situ growth X-ray measurements while self-sequestering storage mechanism was revealed by in-situ gas sorption X-ray analysis and molecular dynamics simulations. The results show that meso/macropores are created at the early stage of crystal growth and then enclosed by micropore crystalline shells, where hierarchical pores are networking under self-sequestering mechanism to give enhanced gas storage. This pmg-MOF gives higher CO2 (39%) and CH4 (14%) storage capacity than pristine MOF at room temperature, in addition to fast kinetics with robust capacity retention during gas sorption cycles, thus giving the clue to control dynamic behaviors of gas adsorption.

  7. Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, JA; Sumida, K; Herm, ZR

    Two representative metal-organic frameworks, Zn4O(BTB)(2)(BTB3- = 1,3,5-benzenetribenzoate; MOF-177) and Mg-2(dobdc) (dobdc(4-) = 1,4-dioxido-2,5-benzenedicarboxylate; Mg-MOF-74, CPO-27-Mg), are evaluated in detail for their potential use in post-combustion CO2 capture via temperature swing adsorption (TSA). Low-pressure single-component CO2 and N-2 adsorption isotherms were measured every 10 degrees C from 20 to 200 degrees C, allowing the performance of each material to be analyzed precisely. In order to gain a more complete understanding of the separation phenomena and the thermodynamics of CO2 adsorption, the isotherms were analyzed using a variety of methods. With regard to the isosteric heat of CO2 adsorption, Mg-2(dobdc) exhibits anmore » abrupt drop at loadings approaching the saturation of the Mg2+ sites, which has significant implications for regeneration in different industrial applications. The CO2/N-2 selectivities were calculated using ideal adsorbed solution theory (IAST) for MOF-177, Mg-2(dobdc), and zeolite NaX, and working capacities were estimated using a simplified TSA model. Significantly, MOF-177 fails to exhibit a positive working capacity even at regeneration temperatures as high as 200 degrees C, while Mg-2(dobdc) reaches a working capacity of 17.6 wt% at this temperature. Breakthrough simulations were also performed for the three materials, demonstrating the superior performance of Mg-2(dobdc) over MOF-177 and zeolite NaX. These results show that the presence of strong CO2 adsorption sites is essential for a metal-organic framework to be of utility in post-combustion CO2 capture via a TSA process, and present a methodology for the evaluation of new metal-organic frameworks via analysis of single-component gas adsorption isotherms.« less

  8. Epitaxial Growth of MOF Thin Film for Modifying the Dielectric Layer in Organic Field-Effect Transistors.

    PubMed

    Gu, Zhi-Gang; Chen, Shan-Ci; Fu, Wen-Qiang; Zheng, Qingdong; Zhang, Jian

    2017-03-01

    Metal-organic framework (MOF) thin films are important in the application of sensors and devices. However, the application of MOF thin films in organic field effect transistors (OFETs) is still a challenge to date. Here, we first use the MOF thin film prepared by a liquid-phase epitaxial (LPE) approach (also called SURMOFs) to modify the SiO 2 dielectric layer in the OFETs. After the semiconductive polymer of PTB7-Th (poly[4,8-bis(5-(2-ethylhexyl)thiophene-2-yl)benzo[1,2-b:4,5-b']dithiophene-co-3-fluorothieno[3,4-b]thiophene-2-carboxylate]) was coated on MOF/SiO 2 and two electrodes on the semiconducting film were deposited sequentially, MOF-based OFETs were fabricated successfully. By controlling the LPE cycles of SURMOF HKUST-1 (also named Cu 3 (BTC) 2 , BTC = 1,3,5-benzenetricarboxylate), the performance of the HKUST-1/SiO 2 -based OFETs showed high charge mobility and low threshold voltage. This first report on the application of MOF thin film in OFETs will offer an effective approach for designing a new kind of materials for the OFET application.

  9. Magnetic Control of MOF Crystal Orientation and Alignment.

    PubMed

    Cheng, Fei; Marshall, Ellis S; Young, Adam J; Robinson, Peter J; Bouillard, Jean-Sebastien G; Adawi, Ali M; Vermeulen, Nicolaas A; Farha, Omar K; Reithofer, Michael R; Chin, Jia Min

    2017-11-07

    Most metal-organic frameworks (MOFs) possess anisotropic properties, the full exploitation of which necessitates a general strategy for the controllable orientation of such MOF crystals. Current methods largely rely upon layer-by-layer MOF epitaxy or tuning of MOF crystal growth on appropriate substrates, yielding MOFs with fixed crystal orientations. Here, the dynamic magnetic alignment of different MOF crystals (NH 2 -MIL-53(Al) and NU-1000) is shown. The MOFs were magnetized by electrostatic adsorption of iron oxide nanoparticles, dispersed in curable polymer resins (Formlabs 1+ clear resin/ Sylgard 184), magnetically oriented, and fixed by resin curing. The importance of crystal orientation on MOF functionality was demonstrated whereby magnetically aligned NU-1000/Sylgard 184 composite was excited with linearly polarized 405 nm light, affording an anisotropic fluorescence response dependent on the polarization angle of the excitation beam relative to NU-1000 crystal orientation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. High-throughput Molecular Simulations of MOFs for CO2 Separation: Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Erucar, Ilknur; Keskin, Seda

    2018-02-01

    Metal organic frameworks (MOFs) have emerged as great alternatives to traditional nanoporous materials for CO2 separation applications. MOFs are porous materials that are formed by self-assembly of transition metals and organic ligands. The most important advantage of MOFs over well-known porous materials is the possibility to generate multiple materials with varying structural properties and chemical functionalities by changing the combination of metal centers and organic linkers during the synthesis. This leads to a large diversity of materials with various pore sizes and shapes that can be efficiently used for CO2 separations. Since the number of synthesized MOFs has already reached to several thousand, experimental investigation of each MOF at the lab-scale is not practical. High-throughput computational screening of MOFs is a great opportunity to identify the best materials for CO2 separation and to gain molecular-level insights into the structure-performance relationships. This type of knowledge can be used to design new materials with the desired structural features that can lead to extraordinarily high CO2 selectivities. In this mini-review, we focused on developments in high-throughput molecular simulations of MOFs for CO2 separations. After reviewing the current studies on this topic, we discussed the opportunities and challenges in the field and addressed the potential future developments.

  11. Iron Containing Metal-Organic Frameworks: Structure, Synthesis, and Applications in Environmental Remediation.

    PubMed

    Liu, Xiaocheng; Zhou, Yaoyu; Zhang, Jiachao; Tang, Lin; Luo, Lin; Zeng, Guangming

    2017-06-21

    Metal-organic frameworks (MOFs) with Fe content are gradually developing into an independent branch in environmental remediation, requiring economical, effective, low-toxicity strategies to the complete procedure. In this review, recent advancements in the structure, synthesis, and environmental application focusing on the mechanism are presented. The unique structure of novel design proposed specific characteristics of different iron-containing MOFs with potential innovation. Synthesis of typical MILs, NH 2 -MILs and MILs based materials reveal the basis and defect of the current method, indicating the optimal means for the actual requirements. The adsorption of various contamination with multiple interaction as well as the catalytic degradation over radicals or electron-hole pairs are reviewed. This review implied considerable prospects of iron-containing MOFs in the field of environment and a more comprehensive cognition into the challenges and potential improvement.

  12. Correlation between coordinated water content and proton conductivity in Ca-BTC-based metal-organic frameworks.

    PubMed

    Mallick, Arijit; Kundu, Tanay; Banerjee, Rahul

    2012-09-11

    Proton conductivity of five Ca-based MOFs which depends on the amount of water molecules coordinated to the Ca-centres has been reported. These MOFs show high temperature proton conductivity due to the strong hydrogen bonding between the lattice and coordinated water molecules.

  13. A novel type of matrix for surface-assisted laser desorption-ionization mass spectrometric detection of biomolecules using metal-organic frameworks.

    PubMed

    Fu, Chien-Ping; Lirio, Stephen; Liu, Wan-Ling; Lin, Chia-Her; Huang, Hsi-Ya

    2015-08-12

    A 3D metal-organic framework (MOF) nanomaterial as matrix for surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) and tandem mass spectrometry (MS/MS) was developed for the analysis of complex biomolecules. Unlike other nanoparticle matrices, this MOF nanomaterial does not need chemical modification prior to use. An exceptional signal reproducibility as well as very low background interferences in analyzing mono-/di-saccharides, peptides and complex starch digests demonstrate its high potential for biomolecule assays, especially for small molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Fabrication of composite membranes using copper metal organic framework for energy application

    NASA Astrophysics Data System (ADS)

    Gahlot, Swati; Rajput, Abhishek; Kulshrestha, Vaibhav

    2018-04-01

    Present manuscript deals with the synthesis of nanocomposite polymer electrolyte membrane (PEM) based on copper based metal organic framework (Cu-MOF) and sulfonated poly ether sulfone (SPES) for fuel cell application. Prepared material and composite membrane has been analyzed through various techniques. Structural and thermal characterization of prepared material has been carried out through XRD, FTIR and TGA technique. Measurement shows the successful synthesis of MOF and also confirms the thermal stability. Prepared membranes shows good physicochemical properties and good ionic conductivity which can be utilized as PEM for fuel cell application.

  15. A porphyrin-based metal-organic framework as a pH-responsive drug carrier

    NASA Astrophysics Data System (ADS)

    Lin, Wenxin; Hu, Quan; Jiang, Ke; Yang, Yanyu; Yang, Yu; Cui, Yuanjing; Qian, Guodong

    2016-05-01

    A low cytotoxic porphyrin-based metal-organic framework (MOF) PCN-221, which exhibited high PC12 cell viability via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay, was selected as an oral drug carrier. Methotrexate (MTX) was chosen as the model drug molecule which was absorbed into inner pores and channels of MOFs by diffusion. PCN-221 showed high drug loading and sustained release behavior under physiological environment without "burst effect". The controlled pH-responsive release of drugs by PCN-221 revealed its promising application in oral drug delivery.

  16. Guest molecules as a design element for metal–organic frameworks

    DOE PAGES

    Allendorf, Mark D.; Medishetty, Raghavender; Fischer, Roland A.

    2016-11-07

    The well-known synthetic versatility of MOFs is rooted in the ability to predict the metal ion coordination geometry and the vast possibilities to use organic chemistry to modify the linker groups. However, the use of “non-innocent” guest molecules as a component of framework design has been largely ignored. Nevertheless, recent reports show that the presence of guest molecules can have dramatic effects, even when these are seemingly innocuous species such as water or polar solvents. Advantages of using guests to impart new properties to MOFs include the relative ease of introducing new functionalities, the ability to modify the properties materialmore » at will by removing the guest or inserting different ones, and avoidance of the difficulties associated with synthesizing new frameworks, which can be challenging even when the basic topology remains constant. In this article we describe the “Guest@MOF” concept and provide examples illustrating its potential as a new MOF design element.« less

  17. Sonochemical synthesis and structural characterization of a new Zn(II) nanoplate metal-organic framework with removal efficiency of Sudan red and Congo red.

    PubMed

    Abdollahi, Nasrin; Masoomi, Mohammad Yaser; Morsali, Ali; Junk, Peter C; Wang, Jun

    2018-07-01

    A 3-D Zn(II) based metal-organic framework (MOF) of [Zn 4 (oba) 3 (DMF) 2 ] was synthesized using the nonlinear dicarboxylate ligand, 4,4'-oxybis(benzoic acid) (H 2 oba) via sonochemical and solvothermal routes. IR spectroscopy, single-crystal X-ray crystallography, scanning electron microscopy, and X-ray powder diffraction were used to characterize these MOF samples. The effect of different times of irradiation and various concentrations of primary reagents were experimented for obtaining monotonous morphology. The results show that uniform nanoplates can be achieved by increasing the time of irradiation and decreasing the concentration. N 2 adsorption was applied to examine the effect of synthesis method on porosity of the framework. Also Congo red and Sudan red dyes were employed to explore the efficiency of this MOF in removal of the dye pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. A flexible metal–organic framework: Guest molecules controlled dynamic gas adsorption

    DOE PAGES

    Mahurin, Shannon Mark; Li, Man -Rong; Wang, Hailong; ...

    2015-04-13

    A flexible metal–organic framework (MOF) of [Zn 3(btca) 2(OH) 2]·(guest) n (H 2btca = 1,2,3-benzotriazole-5-carboxylic acid) that exhibits guest molecule-controlled dynamic gas adsorption is reported in which carbon dioxide molecules rather than N 2, He, and Ar induce a structural transition with a corresponding appearance of additional steps in the isotherms. Physical insights into the dynamic adsorption behaviors of flexible compound 1 were detected by gas adsorption at different temperatures and different pressures and confirmed by Fourier transform infrared spectroscopy and molecular simulations. Interestingly, by taking advantage of the flexible nature inherent to the framework, this MOF material enables highlymore » selective adsorption of CO 2/N 2, CO 2/Ar, and CO 2/He of 36.3, 32.6, and 35.9, respectively, at 298 K. Furthermore, this class of flexible MOFs has potential applications for controlled release, molecular sensing, noble gas separation, smart membranes, and nanotechnological devices.« less

  19. Kinetic Stability of MOF-5 in Humid Environments: Impact of Powder Densification, Humidity Level, and Exposure Time.

    PubMed

    Ming, Yang; Purewal, Justin; Yang, Jun; Xu, Chunchuan; Soltis, Rick; Warner, James; Veenstra, Mike; Gaab, Manuela; Müller, Ulrich; Siegel, Donald J

    2015-05-05

    Metal-organic frameworks (MOFs) are an emerging class of microporous, crystalline materials with potential applications in the capture, storage, and separation of gases. Of the many known MOFs, MOF-5 has attracted considerable attention because of its ability to store gaseous fuels at low pressure with high densities. Nevertheless, MOF-5 and several other MOFs exhibit limited stability upon exposure to reactive species such as water. The present study quantifies the impact of humid air exposure on the properties of MOF-5 as a function of exposure time, humidity level, and morphology (i.e., powders vs pellets). Properties examined include hydrogen storage capacity, surface area, and crystallinity. Water adsorption/desorption isotherms are measured using a gravimetric technique; the first uptake exhibits a type V isotherm with a sudden increase in uptake at ∼50% relative humidity. For humidity levels below this threshold only minor degradation is observed for exposure times up to several hours, suggesting that MOF-5 is more stable than generally assumed under moderately humid conditions. In contrast, irreversible degradation occurs in a matter of minutes for exposures above the 50% threshold. Fourier transform infrared spectroscopy indicates that molecular and/or dissociated water is inserted into the skeletal framework after long exposure times. Densification into pellets can slow the degradation of MOF-5 significantly, and may present a pathway to enhance the stability of some MOFs.

  20. A multi-responsive luminescent sensor based on a super-stable sandwich-type terbium(iii)-organic framework.

    PubMed

    Wen, Guo-Xuan; Han, Min-Le; Wu, Xue-Qian; Wu, Ya-Pan; Dong, Wen-Wen; Zhao, Jun; Li, Dong-Sheng; Ma, Lu-Fang

    2016-10-04

    A super-stable multifunctional terbium(iii)-organic framework, namely {[Tb(TATAB) (H 2 O) 2 ]·NMP·H 2 O} n (Tb-MOF, H 3 TATAB = 4,4',4''-s-triazine-1,3,5-triyltri-m-aminobenzoic acid, NMP = N-methyl-2-pyrrolidone) was synthesized. Tb-MOF exhibits a 2D sql structure with binuclear [Tb 2 (COO) 4 (H 2 O) 4 ] 2+ units as 4-connected nodes, and free water and NMP molecules are inserted between 2D layers through hydrogen-bonding interactions, forming a sandwich-type architecture. Observably, such a framework remains intact in a remarkable variety of environments such as common solvents and aqueous solutions with metal cations and inorganic anions, as well as with a pH ranging from 1 to 13. In particular, Tb-MOF can not only detect small organic molecules, metal cations and inorganic anions with high sensitivity and high selectivity, but also can accurately detect explosive 2-nitrophenol, 3-nitrophenol, 4-nitrophenol and 2,4,6-trinitrophenol in water. Its luminescence quenching response to Fe 3+ and Cr 2 O 7 2- ions can be explained in terms of the competitive absorption mechanism. In addition, the luminescence intensity of Tb-MOF is strongly correlated with the pH value in a pH range from 1 to 13. Thus, this material can be potentially used as a multi-responsive luminescent sensor.

  1. Study of the Inorganic Substitution in a Functionalized UiO-66 Metal-Organic Framework

    NASA Astrophysics Data System (ADS)

    Yasin, Alhassan Salman

    Metal-Organic Frameworks (MOFs) have received considerable attention and fast development in the past few years. These materials have demonstrated a wide range of applications due to their porosity, tailorability of optical properties, and chemical selectivity. This report catalogs common MOF designs based on application and diversity in various fields, as well as conduct an in-depth study of inorganic substitution in a functionalized MOF. This study investigates the band gap modulation in response to inorganic ion substitution within a thermally stable UiO-66 Metal-Organic Framework (MOF). A combination of density functional theory (DFT) predictions in conjunction with experimental predictions were used to map out the complete composition space for three inorganic ions (Zr, Hf, Ti) and three functional groups. The three functional groups include an amino group (NH2), a nitro group (NO2), and a hydrogenated case (H). The smallest determined band gap was for a partially substituted UiO-66(Ti5Zr1)-NH2 resulting in 2.60eV. Theoretical findings sup-port that Ti can be fully substituted within the lattice resulting in a predicted band gap as low as 1.62(2.77)eV. Band gap modulation was reasoned to be a result of a mid gap state introduced through the amino functionalization and HOMO shifting as a result of increased binding of the Ti-O-C bonds.

  2. Development and Test Evaluations for Ni-DOBDC Metal Organic Framework (MOF) Engineered Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy G. Garn; Mitchell Greenhalgh

    2013-07-01

    A joint effort to prepare engineered forms of a Ni-DOBDC metal organic framework (MOF) was completed with contributions from PNNL, SNL and the INL. Two independent methods were used at INL and SNL to prepare engineered form (EF) sorbents from Ni-DOBDC MOF powder developed and prepared at PNNL. Xe and Kr capacity test evaluations were performed at ambient temperature with the cryostat experimental setup at INL. The initial INL EF MOF test results indicated a Xe capacity of 1.6 mmol/kg sorbent and no Kr capacity. A large loss of surface area also occurred during minimal testing rendering the INL EFmore » MOF unusable. Four capacity tests were completed using the SNL EF MOF at ambient temperature and resulted in Xe capacities of 1.4, 4.2, 5.0 and 3.8 mmol/kg sorbent with no Kr capacity observed in any ambient temperature tests. Two additional capacity tests were performed at 240 K to further evaluate SNL EF MOF performance. Xe capacities of 50.7 and 49.3 mmol/kg of sorbent and Kr capacities of 0.77 and 0.69 mmol/kg of sorbent were obtained, respectively. Following the adsorption evaluations, the SNL EF MOF material had lost about 40 % of the initial mass and 40 % of the initial surface area. In general, the Xe capacity results at ambient temperature for the INL and SNL EF Ni-DOBDC MOF’s were lower than 9.8 mmol Xe/kg sorbent test results reported by INL in FY-12 using PNNL’s inital EF supplied material.« less

  3. Fabrication of hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor.

    PubMed

    Du, Pengcheng; Dong, Yuman; Liu, Chang; Wei, Wenli; Liu, Dong; Liu, Peng

    2018-05-15

    Hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets is fabricated by a facile hydrothermal process with the existence of trimesic acid and nickel ions. Various structures of Ni-MOFs can be obtained through adjusting the molar ratio of trimesic acid and nickel ion, the obtained hierarchical porous Ni-MOF exhibits optimal porous structure, which also possesses largest specific surface area. The hierarchical porous structure constructed with nanosheets can supply more active sites for electrochemical reactions to realize the excellent electrochemical properties, thus the hierarchical porous Ni-MOF reveals an outstanding specific capacitance of 1057 F/g at current density of 1 A/g, and delivers high specific capacitance of 649 F/g at current density of 30 A/g, indicating that it exhibits good rate capability of 63.4% even up to 30 A/g. The hierarchical porous Ni-MOF keeps 70% of its original value up to 2 500 charge-discharge cycles at the current density of 10 A/g. Furthermore, asymmetric supercapacitors (ASCs) were assembled based on hierarchical porous Ni-MOF and activated carbon (AC), the ASCs reveal specific capacitance of 87 F/g at current density of 0.5 A/g, and exhibit high energy density of 21.05 Wh/kg and power density of 6.03 kW/kg. Additionally, the tandem ASCs can light up a red LED. The hierarchical porous Ni-MOF exhibits promising applications in high performance supercapacitors. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Metal organic frameworks as a drug delivery system for flurbiprofen.

    PubMed

    Al Haydar, Muder; Abid, Hussein Rasool; Sunderland, Bruce; Wang, Shaobin

    2017-01-01

    Metal organic frameworks (MOFs) have attracted more attention in the last decade because of a suitable pore size, large surface area, and high pore volume. Developing biocompatible MOFs such as the MIL family as a drug delivery system is possible. Flurbiprofen (FBP), a nonsteroidal anti-inflammatory agent, is practically insoluble in aqueous solution, and, therefore, needs suitable drug delivery systems. Different biocompatible MOFs such as Ca-MOF and Fe-MILs (53, 100, and 101) were synthesized and employed for FBP delivery. A sample of 50 mg of each MOF was mixed and stirred for 24 h with 10 mL of 5 mg FBP in acetonitrile (40%) in a sealed container. The supernatant of the mixture after centrifuging was analyzed by high-performance liquid chromatography to determine the loaded quantity of FBP on the MOF. The overnight-dried solid material after centrifuging the mixture was analyzed for loading percent using X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, nuclear magnetic resonance, and FBP release profile. The loading values of FBP were achieved at 10.0%±1%, 20%±0.8%, 37%±2.3%, and 46%±3.1% on Ca-MOF, Fe-MIL-53, Fe-MIL-101, and Fe-MIL-100, respectively. The FBP release profiles were investigated in a phosphate buffer solution at pH 7.4. The total release of the FBP after 2 days was obtained at 72.9, 75.2, 78.3, and 90.3% for Ca-MOF, Fe-MIL-100, Fe-MIL-53, and Fe-MIL-101, respectively. The MOFs are shown to be a promising drug delivery option for FBP with a significant loading percent and relatively prolonged drug release.

  5. Cyclodextrin-based metal-organic frameworks particles as efficient carriers for lansoprazole: Study of morphology and chemical composition of individual particles.

    PubMed

    Li, Xue; Guo, Tao; Lachmanski, Laurent; Manoli, Francesco; Menendez-Miranda, Mario; Manet, Ilse; Guo, Zhen; Wu, Li; Zhang, Jiwen; Gref, Ruxandra

    2017-10-15

    Cyclodextrin-based metal-organic frameworks (CD-MOFs) represent an environment-friendly and biocompatible class of MOFs drawing increasing attention in drug delivery. Lansoprazole (LPZ) is a proton-pump inhibitor used to reduce the production of acid in the stomach and recently identified as an antitubercular prodrug. Herein, LPZ loaded CD-MOFs were successfully synthesized upon the assembly with γ-CD in the presence of K + ions using an optimized co-crystallization method. They were characterized in terms of morphology, size and crystallinity, showing almost perfect cubic morphologies with monodispersed size distributions. The crystalline particles, loaded or not with LPZ, have mean diameters of around 6μm. The payloads reached 23.2±2.1% (wt) which corresponds to a molar ratio of 1:1 between LPZ and γ-CD. It was demonstrated that even after two years storage, the incorporated drug inside the CD-MOFs maintained its spectroscopic characteristics. Molecular modelling provided a deeper insight into the interaction between the LPZ and CD-MOFs. Raman spectra of individual particles were recorded, confirming the formation of inclusion complexes within the tridimensional CD-MOF structures. Of note, it was found that each individual particle had the same chemical composition. The LPZ-loaded particles had remarkable homogeneity in terms of both drug loading and size. These results pave the way towards the use of CD-MOFs for drug delivery purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A Copper(II)-Paddlewheel Metal-Organic Framework with Exceptional Hydrolytic Stability and Selective Adsorption and Detection Ability of Aniline in Water.

    PubMed

    Chen, Ya; Wang, Bin; Wang, Xiaoqing; Xie, Lin-Hua; Li, Jinping; Xie, Yabo; Li, Jian-Rong

    2017-08-16

    Copper(II)-paddlewheel-based metal-organic frameworks (CP-MOFs) represent a unique subclass of MOFs with highly predictable porous structures, facile syntheses, and functional open metal sites. However, the lack of high hydrolytic stability is an obstacle for CP-MOFs in many practical applications. In this work, we report a new CP-MOF, [Cu 4 (tdhb)] (BUT-155), which is constructed from a judiciously designed carboxylate ligand with high coordination connectivity (octatopic), abundant hydrophobic substituents (six methyl groups), and substituent constrained geometry (tetrahedral backbone), tdhb 8- [H 8 tdhb = 3,3',5,5'-tetrakis(3,5-dicarboxyphenyl)-2,2',4,4',6,6'-hexamethylbiphenyl)]. BUT-155 shows high porosity with a Brunauer-Emmett-Teller surface area of 2070 m 2 /g. Quite interestingly, this CP-MOF retains its structural integrity after being treated in water for 10 days at room temperature or in boiling water for 24 h. To the best of our knowledge, BUT-155 represents the first CP-MOF that is demonstrated to retain its structural integrity in boiling water. The high hydrolytic stability of BUT-155 allowed us to carry out adsorption studies of water vapor and aqueous organic pollutants on it. Water-vapor adsorption reveals a sigmoidal isotherm and a high uptake (46.7 wt %), which is highly reversible and regenerable. In addition, because of the availability of soft-acid-type open Cu(II) sites, BUT-155 shows a high performance for selective adsorption of soft-base-type aniline over water or phenol, and a naked-eye detectable color change for the MOF sample accompanies this. The adsorption selectivity and high adsorption capacity of aniline in BUT-155 are also well-interpreted by single-crystal structures of the water- and aniline-included phases of BUT-155.

  7. Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal-organic frameworks: A review of studies from the last decade.

    PubMed

    Wen, Jia; Fang, Ying; Zeng, Guangming

    2018-06-01

    The efficient removal of heavy metals (HMs) from the environment has become an important issue from both biological and environmental perspectives. Recently, porous metal-organic frameworks (MOFs), combining central metals and organic ligands, have been proposed as promising materials in the capture of various toxic substances, including HMs, due to their unique characteristics. Here we review recent progress in the field of water remediation from the perspective of primary HMs (including divalent metals and variable-valent metals) in water pollution and the corresponding MOFs (including virgin and modified MOFs, magnetic MOFs composites and so on) that can remove these metals from water. The reported values of various MOFs for adsorption of heavy metal ions were 8.40-313 mg Pb(II) g -1 , 0.65-2173 mg Hg(II) g -1 , 3.63-145 mg Cd(II) g -1 , 14.0-127 mg Cr(III) g -1 , 15.4-145 mg Cr(VI) g -1 , 49.5-123 mg As(III) g -1 , and 12.3-303 mg As(V) g -1 . The main adsorption mechanisms associated with these processes are chemical (including coordination interaction, chemical bonding and acid-base interactions) and physical (including electrostatic interaction, diffusion and van der Waals force) adsorption, which were discussed in detailed. Further efforts should be made towards expanding the repertoire of MOFs that effectively remove multiple targeted HMs, as well as exploring possible applications of MOFs in the removal of HMs from non-aqueous environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Communication: Many-body stabilization of non-covalent interactions: Structure, stability, and mechanics of Ag3Co(CN)6 framework.

    PubMed

    Liu, Xiaofei; Hermann, Jan; Tkatchenko, Alexandre

    2016-12-28

    Stimuli-responsive metal-organic frameworks (MOFs) and other framework materials exhibit a broad variety of useful properties, which mainly stem from an interplay of strong covalent bonds within the organic linkers with presumably weak van der Waals (vdW) interactions which determine the overall packing of the framework constituents. Using Ag 3 Co(CN) 6 as a fundamental test case-a system with a colossal positive and negative thermal expansion [A. L. Goodwin et al., Science 319, 794 (2008)]-we demonstrate that its structure, stability, dielectric, vibrational, and mechanical properties are critically influenced by many-body electronic correlation contributions to non-covalent vdW interactions. The Ag 3 Co(CN) 6 framework is a remarkable molecular crystal, being visibly stabilized, rather than destabilized, by many-body vdW correlations. A detailed comparison with H 3 Co(CN) 6 highlights the crucial role of strongly polarized metallophilic interactions in dictating the exceptional properties of denser MOFs. Beyond MOFs, our findings indicate that many-body electronic correlations can substantially stabilize polarizable materials, providing a novel mechanism for tuning the properties of nanomaterials with intricate structural motifs.

  9. Moisture-Stable Zn(II) Metal-Organic Framework as a Multifunctional Platform for Highly Efficient CO2 Capture and Nitro Pollutant Vapor Detection.

    PubMed

    Chen, Di-Ming; Tian, Jia-Yue; Chen, Min; Liu, Chun-Sen; Du, Miao

    2016-07-20

    A moisture-stable three-dimensional (3D) metal-organic framework (MOF), {(Me2NH2)[Zn2(bpydb)2(ATZ)](DMA)(NMF)2}n (1, where bpydb = 4,4'-(4,4'-bipyridine-2,6-diyl)dibenzoate, ATZ = deprotonated 5-aminotetrazole, DMA = N,N-dimethylacetamide, and NMF = N-methylformamide), with uncoordinated N-donor sites and charged framework skeleton was fabricated. This MOF exhibits interesting structural dynamic upon CO2 sorption at 195 K and high CO2/N2 (127) and CO2/CH4 (131) sorption selectivity at 298 K and 1 bar. Particularly, its CO2/CH4 selectivity is among the highest MOFs for selective CO2 separation. The results of Grand Canonical Monte Carlo (GCMC) simulation indicate that the polar framework contributes to the strong framework-CO2 binding at zero loading, and the tetrazole pillar contributes to the high CO2 uptake capacity at high loading. Furthermore, the solvent-responsive luminescent properties of 1 indicate that it could be utilized as a fluorescent sensor to detect trace amounts of nitrobenzene in both solvent and vapor systems.

  10. Metal–Organic Frameworks Stabilize Solution-Inaccessible Cobalt Catalysts for Highly Efficient Broad-Scope Organic Transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Teng; Manna, Kuntal; Lin, Wenbin

    New and active earth-abundant metal catalysts are critically needed to replace precious metal-based catalysts for sustainable production of commodity and fine chemicals. We report here the design of highly robust, active, and reusable cobalt-bipyridine- and cobalt-phenanthroline-based metal–organic framework (MOF) catalysts for alkene hydrogenation and hydroboration, aldehyde/ketone hydroboration, and arene C–H borylation. In alkene hydrogenation, the MOF catalysts tolerated a variety of functional groups and displayed unprecedentedly high turnover numbers of ~2.5 × 10 6 and turnover frequencies of ~1.1 × 10 5 h –1. Structural, computational, and spectroscopic studies show that site isolation of the highly reactive (bpy)Co(THF) 2 speciesmore » in the MOFs prevents intermolecular deactivation and stabilizes solution-inaccessible catalysts for broad-scope organic transformations. Computational, spectroscopic, and kinetic evidence further support a hitherto unknown (bpy•–)CoI(THF) 2 ground state that coordinates to alkene and dihydrogen and then undergoing σ-complex-assisted metathesis to form (bpy)Co(alkyl)(H). Reductive elimination of alkane followed by alkene binding completes the catalytic cycle. MOFs thus provide a novel platform for discovering new base-metal molecular catalysts and exhibit enormous potential in sustainable chemical catalysis.« less

  11. Adsorptive Removal of Artificial Sweeteners from Water Using Metal-Organic Frameworks Functionalized with Urea or Melamine.

    PubMed

    Seo, Pill Won; Khan, Nazmul Abedin; Hasan, Zubair; Jhung, Sung Hwa

    2016-11-02

    A highly porous metal-organic framework (MOF), MIL-101, was modified to introduce urea or melamine via grafting on open metal sites of the MOF. Adsorptive removal of three artificial sweeteners (ASWs) was studied using the MOFs, with or without modifications (including nitration), and activated carbon (AC). The adsorbed quantities (based on the weight of the adsorbent) of saccharin (SAC) under various conditions decreased in the order urea-MIL-101 > melamine-MIL-101 > MIL-101 > AC > O 2 N-MIL-101; however, the quantities based on unit surface area are in the order melamine-MIL-101 > urea-MIL-101 > MIL-101 > O 2 N-MIL-101. Similar ASWs [acesulfame (ACE) and cyclamate (CYC)] showed the same tendency. The mechanism for very favorable adsorption of SAC, ACE, and CYC over urea- and melamine-MIL-101 could be explained by H-bonding on the basis of the contents of -NH 2 groups on the MOFs and the adsorption results under a wide range of pH values. Moreover, the direction of H-bonding could be clearly defined (H acceptor: ASWs; H donor: MOFs). Urea-MIL-101 and melamine-MIL-101 could be suggested as competitive adsorbents for organic contaminants (such as ASWs) with electronegative atoms, considering their high adsorption capacity (for example, urea-MIL-101 had 2.3 times the SAC adsorption of AC) and ready regeneration.

  12. High-resolution solid-state 13C NMR spectroscopy of the paramagnetic metal-organic frameworks, STAM-1 and HKUST-1.

    PubMed

    Dawson, Daniel M; Jamieson, Lauren E; Mohideen, M Infas H; McKinlay, Alistair C; Smellie, Iain A; Cadou, Romain; Keddie, Neil S; Morris, Russell E; Ashbrook, Sharon E

    2013-01-21

    Solid-state (13)C magic-angle spinning (MAS) NMR spectroscopy is used to investigate the structure of the Cu(II)-based metal-organic frameworks (MOFs), HKUST-1 and STAM-1, and the structural changes occurring within these MOFs upon activation (dehydration). NMR spectroscopy is an attractive technique for the investigation of these materials, owing to its high sensitivity to local structure, without any requirement for longer-range order. However, interactions between nuclei and unpaired electrons in paramagnetic systems (e.g., Cu(II)-based MOFs) pose a considerable challenge, not only for spectral acquisition, but also in the assignment and interpretation of the spectral resonances. Here, we exploit the rapid T(1) relaxation of these materials to obtain (13)C NMR spectra using a spin-echo pulse sequence at natural abundance levels, and employ frequency-stepped acquisition to ensure uniform excitation of resonances over a wide frequency range. We then utilise selective (13)C isotopic labelling of the organic linker molecules to enable an unambiguous assignment of NMR spectra of both MOFs for the first time. We show that the monomethylated linker can be recovered from STAM-1 intact, demonstrating not only the interesting use of this MOF as a protecting group, but also the ability (for both STAM-1 and HKUST-1) to recover isotopically-enriched linkers, thereby reducing significantly the overall cost of the approach.

  13. Chemically Active, Porous 3D-Printed Thermoplastic Composites.

    PubMed

    Evans, Kent A; Kennedy, Zachary C; Arey, Bruce W; Christ, Josef F; Schaef, Herbert T; Nune, Satish K; Erikson, Rebecca L

    2018-05-02

    Metal-organic frameworks (MOFs) exhibit exceptional properties and are widely investigated because of their structural and functional versatility relevant to catalysis, separations, and sensing applications. However, their commercial or large-scale application is often limited by their powder forms which make integration into devices challenging. Here, we report the production of MOF-thermoplastic polymer composites in well-defined and customizable forms and with complex internal structural features accessed via a standard three-dimensional (3D) printer. MOFs (zeolitic imidazolate framework; ZIF-8) were incorporated homogeneously into both poly(lactic acid) (PLA) and thermoplastic polyurethane (TPU) matrices at high loadings (up to 50% by mass), extruded into filaments, and utilized for on-demand access to 3D structures by fused deposition modeling. Printed, rigid PLA/MOF composites display a large surface area (SA avg = 531 m 2 g -1 ) and hierarchical pore features, whereas flexible TPU/MOF composites achieve a high surface area (SA avg = 706 m 2 g -1 ) by employing a simple method developed to expose obstructed micropores postprinting. Critically, embedded particles in the plastic matrices retain their ability to participate in chemical interactions characteristic of the parent framework. The fabrication strategies were extended to other MOFs and illustrate the potential of 3D printing to create unique porous and high surface area chemically active structures.

  14. Continuous, One-pot Synthesis and Post-Synthetic Modification of NanoMOFs Using Droplet Nanoreactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jambovane, Sachin R.; Nune, Satish K.; Kelly, Ryan T.

    Metal-organic frameworks (MOFs); also known as porous coordination polymers (PCP) are a class of porous crystalline materials constructed by connecting metal clusters via organic linkers. The possibility of functionalization leads to virtually infinite MOF designs using generic modular methods. Functionalized MOFs can exhibit interesting physical and chemical properties including accelerated adsorption kinetics and catalysis. Although there are discrete methods to synthesize well-defined nanoscale MOFs, rapid and flexible methods are not available for continuous, one-pot synthesis and post synthesis modification (functionalization) of MOFs. Here, we show a continuous, scalable nanodroplet-based microfluidic route that not only facilitates the synthesis of MOFs atmore » nanoscale, but also offers flexibility for direct functionalization with desired functional groups (e.g., -NH 2, -COCH 3, fluorescein isothiocyanate; FITC). In addition, the presented route of continuous manufacturing of functionalized MOFs takes significantly less time compared to state-of-the-art batch methods currently available (1 hr vs. several days). We envisage our approach to be a breakthrough method for synthesizing complex functionalized nanomaterials (metal, metal oxides, quantum dots and MOFs) that are not accessible by direct batch processing, and expand the range of a new class of functionalized MOF-based functional nanomaterials.« less

  15. Controlled Pyrolysis of Ni-MOF-74 as a Promising Precursor for the Creation of Highly Active Ni Nanocatalysts in Size-Selective Hydrogenation.

    PubMed

    Nakatsuka, Kazuki; Yoshii, Takeharu; Kuwahara, Yasutaka; Mori, Kohsuke; Yamashita, Hiromi

    2018-01-19

    Metal organic frameworks (MOFs) are a class of porous organic-inorganic crystalline materials that have attracted much attention as H 2 storage devices and catalytic supports. In this paper, the synthesis of highly-dispersed Ni nanoparticles (NPs) for the hydrogenation of olefins was achieved by employing Ni-MOF-74 as a precursor. Investigations of the structural transformation of Ni species derived from Ni-MOF-74 during heat treatment were conducted. The transformation was monitored in detail by a combination of XRD, in situ XAFS, and XPS measurements. Ni NPs prepared from Ni-MOF-74 were easily reduced by the generation of reducing gases accompanied by the decomposition of Ni-MOF-74 structures during heat treatment at over 300 °C under N 2 flow. Ni-MOF-74-300 exhibited the highest activity for the hydrogenation of 1-octene due to efficient suppression of excess agglomerated Ni species during heat treatment. Moreover, Ni-MOF-74-300 showed not only high activity for the hydrogenation of olefins but also high size-selectivity because of the selective formation of Ni NPs covered by MOFs and the MOF-derived carbonaceous layer. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Metal Organic Framework-Templated Chemiresistor: Sensing Type Transition from P-to-N Using Hollow Metal Oxide Polyhedron via Galvanic Replacement.

    PubMed

    Jang, Ji-Soo; Koo, Won-Tae; Choi, Seon-Jin; Kim, Il-Doo

    2017-08-30

    Facile synthesis of porous nanobuilding blocks with high surface area and uniform catalyst functionalization has always been regarded as an essential requirement for the development of highly sensitive and selective chemical sensors. Metal-organic frameworks (MOFs) are considered as one of the most ideal templates due to their ability to encapsulate ultrasmall catalytic nanoparticles (NPs) in microporous MOF structures in addition to easy removal of the sacrificial MOF scaffold by calcination. Here, we introduce a MOFs derived n-type SnO 2 (n-SnO 2 ) sensing layer with hollow polyhedron structures, obtained from p-n transition of MOF-templated p-type Co 3 O 4 (p-Co 3 O 4 ) hollow cubes during galvanic replacement reaction (GRR). In addition, the Pd NPs encapsulated in MOF and residual Co 3 O 4 clusters partially remained after GRR led to uniform functionalization of efficient cocatalysts (PdO NPs and p-Co 3 O 4 islands) on the porous and hollow polyhedron SnO 2 structures. Due to high gas accessibility through the meso- and macrosized pores in MOF-templated oxides and effective modulation of electron depletion layer assisted by the creation of numerous p-n junctions, the GRR-treated SnO 2 structures exhibited 21.9-fold higher acetone response (R air /R gas = 22.8 @ 5 ppm acetone, 90%RH) compared to MOF-templated p-Co 3 O 4 hollow structures. To the best of our knowledge, the selectivity and response amplitudes reported here for the detection of acetone are superior to those MOF derived metal oxide sensing layers reported so far. Our results demonstrate that highly active MOF-derived sensing layers can be achieved via p-n semiconducting phase transition, driven by a simple and versatile GRR process combined with MOF templating route.

  17. The Influence of Chemical Modification on Linker Rotational Dynamics in Metal-Organic Frameworks.

    PubMed

    Damron, Joshua T; Ma, Jialiu; Kurz, Ricardo; Saalwächter, Kay; Matzger, Adam J; Ramamoorthy, Ayyalusamy

    2018-05-21

    The robust synthetic flexibility of metal-organic frameworks (MOFs) offers a promising class of tailorable materials, for which the ability to tune specific physicochemical properties is highly desired. This is achievable only through a thorough description of the consequences for chemical manipulations both in structure and dynamics. Magic angle spinning solid-state NMR spectroscopy offers many modalities in this pursuit, particularly for dynamic studies. Herein, we employ a separated-local-field NMR approach to show how specific intraframework chemical modifications to MOF UiO-66 heavily modulate the dynamic evolution of the organic ring moiety over several orders of magnitude. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Uncovering a reconstructive solid-solid phase transition in a metal-organic framework.

    PubMed

    Longley, L; Li, N; Wei, F; Bennett, T D

    2017-11-01

    A nanoporous three-dimensional metal-organic framework (MOF), ZnPurBr undergoes a transition to a previously unreported high-temperature phase, ZnPurBr-ht. The transition, which proceeds without mass loss, is uncovered through the use of differential scanning calorimetry (DSC). The new crystal structure was solved using single-crystal X-ray diffraction, and the mechanical properties of both phases investigated by nanoindentation and density functional theory. The anisotropy of the calculated Young's moduli showed good agreement with the crystallographic alignment of the stiff purinate organic linker. The results provide a prototypical example of the importance of the use of DSC in the MOF field, where its use is not currently standard in characterization.

  19. Ruthenium(ii)-polypyridyl zirconium(iv) metal–organic frameworks as a new class of sensitized solar cells

    DOE PAGES

    Maza, W. A.; Haring, A. J.; Ahrenholtz, S. R.; ...

    2015-10-16

    Ruthenium(ii) polypyridyl-doped metal–organic framework sensitized films on TiO 2 for photovoltaics reveal that the preparative method of dye doping/incorporation into the MOF is integral to the total solar cell efficiency.

  20. Chemically Active, Porous 3D-Printed Thermoplastic Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Kent A.; Kennedy, Zachary C.; Arey, Bruce W.

    Metal-organic frameworks (MOFs) exhibit exceptional properties and are widely investigated because of their structural and functional versatility relevant to catalysis, separations, and sensing applications. However, their commercial or large-scale application is often limited by their powder forms. To address this, we report the production of MOF-thermoplastic polymer composites accessed via a standard 3D printer. MOFs (Zeolitic imidazolate framework; ZIF-8) were successfully incorporated homogeneously into both poly(lactic acid) (PLA) and thermoplastic polyurethane (TPU) matrices, extruded into filaments, and utilized for on-demand access to 3D structures by fused-deposition modeling. Printed rigid PLA-MOF composites displayed good structural integrity, high surface area ((SA)avg =more » 531 m2 g-1) and hierarchical pore features. Flexible TPU-MOF composites (SAavg = 706 m2 g-1) were achieved by employing a sacrificial fluoropolymer readily removed post-printing. Critically, embedded particles in the plastic matrices retain their ability to participate in chemical interactions characteristic of the parent MOF. The fabrication strategies can be extended to other MOFs and illustrate the potential of 3D printing to create unique porous and high surface area chemically-active structures.« less

Top