Water-resources programs and hydrologic-information needs, Marion County, Indiana, 1987
Duwelius, R.F.
1990-01-01
Water resources are abundant in Marion County, Indiana, and have been developed for public and industrial supply, energy generation, irrigation, and recreation. The largest water withdrawals are from surface water, and the two largest water uses are public supply and cooling water for electrical-generating plants. Water-resources programs in the county are carried out by Federal, State and local agencies to address issues of surface and groundwater availability and quality. The programs of each agency are related to the functions and goals of the agency. Although each agency has specific information needs to fulfill its functions, sometimes these needs overlap, and there are times when the same hydrologic information benefits all. Overlapping information needs and activities create opportunities for interagency coordination and cooperation. Such cooperation could lead to a savings of dollars spent on water-resources programs and could assure an improved understanding of the water resources of the county. Representatives from four agencies-- the Indiana Department of Environmental Management, the Indiana Department of Natural Resources, the Indianapolis Department of Public Works, and the U.S. Geological Survey--met four times in 1987 to describe their own water-resources programs, to identify hydrologic-information needs, and to contact other agencies with related programs. This report presents the interagency findings and is intended to further communication among water resource agencies by identifying current programs and common needs for hydrologic information. Hydrologic information needs identified by the agency representatives include more precise methods for determining the volume of water withdrawals and for determining the volume of industrial and municipal discharges to surface water. Maps of flood-prone areas need to be updated as more of the county is developed. Improved aquifer maps of the inter-till aquifers are needed, and additional observation wells are needed in the inter-till and bedrock aquifers. Finally, immediate access to instantaneous precipitation data is needed to assess flooding potential. (USGS)
Nanowire nanocomputer as a finite-state machine.
Yao, Jun; Yan, Hao; Das, Shamik; Klemic, James F; Ellenbogen, James C; Lieber, Charles M
2014-02-18
Implementation of complex computer circuits assembled from the bottom up and integrated on the nanometer scale has long been a goal of electronics research. It requires a design and fabrication strategy that can address individual nanometer-scale electronic devices, while enabling large-scale assembly of those devices into highly organized, integrated computational circuits. We describe how such a strategy has led to the design, construction, and demonstration of a nanoelectronic finite-state machine. The system was fabricated using a design-oriented approach enabled by a deterministic, bottom-up assembly process that does not require individual nanowire registration. This methodology allowed construction of the nanoelectronic finite-state machine through modular design using a multitile architecture. Each tile/module consists of two interconnected crossbar nanowire arrays, with each cross-point consisting of a programmable nanowire transistor node. The nanoelectronic finite-state machine integrates 180 programmable nanowire transistor nodes in three tiles or six total crossbar arrays, and incorporates both sequential and arithmetic logic, with extensive intertile and intratile communication that exhibits rigorous input/output matching. Our system realizes the complete 2-bit logic flow and clocked control over state registration that are required for a finite-state machine or computer. The programmable multitile circuit was also reprogrammed to a functionally distinct 2-bit full adder with 32-set matched and complete logic output. These steps forward and the ability of our unique design-oriented deterministic methodology to yield more extensive multitile systems suggest that proposed general-purpose nanocomputers can be realized in the near future.
Nanowire nanocomputer as a finite-state machine
Yao, Jun; Yan, Hao; Das, Shamik; Klemic, James F.; Ellenbogen, James C.; Lieber, Charles M.
2014-01-01
Implementation of complex computer circuits assembled from the bottom up and integrated on the nanometer scale has long been a goal of electronics research. It requires a design and fabrication strategy that can address individual nanometer-scale electronic devices, while enabling large-scale assembly of those devices into highly organized, integrated computational circuits. We describe how such a strategy has led to the design, construction, and demonstration of a nanoelectronic finite-state machine. The system was fabricated using a design-oriented approach enabled by a deterministic, bottom–up assembly process that does not require individual nanowire registration. This methodology allowed construction of the nanoelectronic finite-state machine through modular design using a multitile architecture. Each tile/module consists of two interconnected crossbar nanowire arrays, with each cross-point consisting of a programmable nanowire transistor node. The nanoelectronic finite-state machine integrates 180 programmable nanowire transistor nodes in three tiles or six total crossbar arrays, and incorporates both sequential and arithmetic logic, with extensive intertile and intratile communication that exhibits rigorous input/output matching. Our system realizes the complete 2-bit logic flow and clocked control over state registration that are required for a finite-state machine or computer. The programmable multitile circuit was also reprogrammed to a functionally distinct 2-bit full adder with 32-set matched and complete logic output. These steps forward and the ability of our unique design-oriented deterministic methodology to yield more extensive multitile systems suggest that proposed general-purpose nanocomputers can be realized in the near future. PMID:24469812
High efficiency organic photovoltaic cells employing hybridized mixed-planar heterojunctions
Xue, Jiangeng; Uchida, Soichi; Rand, Barry P.; Forrest, Stephen
2015-08-18
A device is provided, having a first electrode, a second electrode, and a photoactive region disposed between the first electrode and the second electrode. The photoactive region includes a first photoactive organic layer that is a mixture of an organic acceptor material and an organic donor material, wherein the first photoactive organic layer has a thickness not greater than 0.8 characteristic charge transport lengths; a second photoactive organic layer in direct contact with the first organic layer, wherein the second photoactive organic layer is an unmixed layer of the organic acceptor material of the first photoactive organic layer, and the second photoactive organic layer has a thickness not less than about 0.1 optical absorption lengths; and a third photoactive organic layer disposed between the first electrode and the second electrode and in direct contact with the first photoactive organic layer. The third photoactive organic layer is an unmixed layer of the organic donor layer of the first photoactive organic layer and has a thickness not less than about 0.1 optical absorption lengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrest, Stephen R.; Zimmerman, Jeramy D.; Lassiter, Brian E .
Disclosed herein are methods for fabricating an organic photovoltaic device comprising depositing an amorphous organic layer and a crystalline organic layer over a first electrode, wherein the amorphous organic layer and the crystalline organic layer contact one another at an interface; annealing the amorphous organic layer and the crystalline organic layer for a time sufficient to induce at least partial crystallinity in the amorphous organic layer; and depositing a second electrode over the amorphous organic layer and the crystalline organic layer. In the methods and devices herein, the amorphous organic layer may comprise at least one material that undergoes inverse-quasimore » epitaxial (IQE) alignment to a material of the crystalline organic layer as a result of the annealing.« less
High efficiency organic photovoltaic cells employing hybridized mixed-planar heterojunctions
Xue, Jiangeng; Uchida, Soichi; Rand, Barry P; Forrest, Stephen
2013-11-19
A device is provided, having a first electrode, a second electrode, and a photoactive region disposed between the first electrode and the second electrode. The photoactive region includes a first organic layer comprising a mixture of an organic acceptor material and an organic donor material, wherein the first organic layer has a thickness not greater than 0.8 characteristic charge transport lengths, and a second organic layer in direct contact with the first organic layer, wherein: the second organic layer comprises an unmixed layer of the organic acceptor material or the organic donor material of the first organic layer, and the second organic layer has a thickness not less than about 0.1 optical absorption lengths. Preferably, the first organic layer has a thickness not greater than 0.3 characteristic charge transport lengths. Preferably, the second organic layer has a thickness of not less than about 0.2 optical absorption lengths. Embodiments of the invention can be capable of power efficiencies of 2% or greater, and preferably 5% or greater.
Architectures and criteria for the design of high efficiency organic photovoltaic cells
Rand, Barry; Forrest, Stephen R; Burk, Diana Pendergrast
2015-03-24
An organic photovoltaic cell includes an anode and a cathode, and a plurality of organic semiconductor layers between the anode and the cathode. At least one of the anode and the cathode is transparent. Each two adjacent layers of the plurality of organic semiconductor layers are in direct contact. The plurality of organic semiconductor layers includes an intermediate layer consisting essentially of a photoconductive material, and two sets of at least three layers. A first set of at least three layers is between the intermediate layer and the anode. Each layer of the first set consists essentially of a different organic semiconductor material having a higher LUMO and a higher HOMO, relative to the material of an adjacent layer of the plurality of organic semiconductor layers closer to the cathode. A second set of at least three layers is between the intermediate layer and the cathode. Each layer of the second set consists essentially of a different organic semiconductor material having a lower LUMO and a lower HOMO, relative to the material of an adjacent layer of the plurality of organic semiconductor layers closer to the anode.
Organic electronic devices with multiple solution-processed layers
Forrest, Stephen R.; Lassiter, Brian E.; Zimmerman, Jeramy D.
2015-08-04
A method of fabricating a tandem organic photosensitive device involves depositing a first layer of an organic electron donor type material film by solution-processing of the organic electron donor type material dissolved in a first solvent; depositing a first layer of an organic electron acceptor type material over the first layer of the organic electron donor type material film by a dry deposition process; depositing a conductive layer over the interim stack by a dry deposition process; depositing a second layer of the organic electron donor type material over the conductive layer by solution-processing of the organic electron donor type material dissolved in a second solvent, wherein the organic electron acceptor type material and the conductive layer are insoluble in the second solvent; depositing a second layer of an organic electron acceptor type material over the second layer of the organic electron donor type material film by a dry deposition process, resulting in a stack.
Organic electronic devices with multiple solution-processed layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrest, Stephen R.; Lassiter, Brian E.; Zimmerman, Jeramy D.
2016-07-05
A method for fabricating an organic light emitting device stack involves depositing a first conductive electrode layer over a substrate; depositing a first set of one or more organic layers, wherein at least one of the first set of organic layers is a first emissive layer and one of the first set of organic layers is deposited by a solution-based process that utilizes a first solvent; depositing a first conductive interlayer by a dry deposition process; and depositing a second set of one or more organic layers, wherein at least one of the second set of organic layers is amore » second emissive layer and one of the second set of organic layers is deposited by a solution-based process that utilizes a second solvent, wherein all layers that precede the layer deposited using the second solvent are insoluble in the second solvent.« less
Peumans, Peter; Uchida, Soichi; Forrest, Stephen R.
2013-06-18
Organic photosensitive optoelectronic devices are disclosed. The devises are thin-film crystalline organic optoelectronic devices capable of generating a voltage when exposed to light, and prepared by a method including the steps of: depositing a first organic layer over a first electrode; depositing a second organic layer over the first organic layer; depositing a confining layer over the second organic layer to form a stack; annealing the stack; and finally depositing a second electrode over the second organic layer.
Organic photovoltaic cells utilizing ultrathin sensitizing layer
Rand, Barry P [Princeton, NJ; Forrest, Stephen R [Princeton, NJ
2011-05-24
A photosensitive device includes a series of organic photoactive layers disposed between two electrodes. Each layer in the series is in direct contact with a next layer in the series. The series is arranged to form at least one donor-acceptor heterojunction, and includes a first organic photoactive layer comprising a first host material serving as a donor, a thin second organic photoactive layer comprising a second host material disposed between the first and a third organic photoactive layer, and the third organic photoactive layer comprising a third host material serving as an acceptor. The first, second, and third host materials are different. The thin second layer serves as an acceptor relative to the first layer or as a donor relative to the third layer.
Organic light emitting device architecture for reducing the number of organic materials
D'Andrade, Brian [Westampton, NJ; Esler, James [Levittown, PA
2011-10-18
An organic light emitting device is provided. The device includes an anode and a cathode. A first emissive layer is disposed between the anode and the cathode. The first emissive layer includes a first non-emitting organic material, which is an organometallic material present in the first emissive layer in a concentration of at least 50 wt %. The first emissive layer also includes a first emitting organic material. A second emissive layer is disposed between the first emissive layer and the cathode, preferably, in direct contact with the first emissive layer. The second emissive material includes a second non-emitting organic material and a second emitting organic material. The first and second non-emitting materials, and the first and second emitting materials, are all different materials. A first non-emissive layer is disposed between the first emissive layer and the anode, and in direct contact with the first emissive layer. The first non- emissive layer comprises the first non-emissive organic material.
TFB:TPDSi2 interfacial layer usable in organic photovoltaic cells
Marks, Iobin J [Evanston, IL; Hains, Alexander W [Evanston, IL
2011-02-15
The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode; an active organic layer comprising an electron-donating organic material and an electron-accepting organic material; and an interfacial layer formed between the anode and active organic layer, where the interfacial layer comprises a hole-transporting polymer characterized with a hole-mobility higher than that of the electron-donating organic material in the active organic layer, and a small molecule that has a high hole-mobility and is capable of crosslinking on contact with air.
NASA Astrophysics Data System (ADS)
Zhao, Hua; Meng, Wei-Feng
2017-10-01
In this paper a five layer organic electronic device with alternately placed ferromagnetic metals and organic polymers: ferromagnetic metal/organic layer/ferromagnetic metal/organic layer/ferromagnetic metal, which is injected a spin-polarized electron from outsides, is studied theoretically using one-dimensional tight binding model Hamiltonian. We calculated equilibrium state behavior after an electron with spin is injected into the organic layer of this structure, charge density distribution and spin polarization density distribution of this injected spin-polarized electron, and mainly studied possible transport behavior of the injected spin polarized electron in this multilayer structure under different external electric fields. We analyze the physical process of the injected electron in this multilayer system. It is found by our calculation that the injected spin polarized electron exists as an electron-polaron state with spin polarization in the organic layer and it can pass through the middle ferromagnetic layer from the right-hand organic layer to the left-hand organic layer by the action of increasing external electric fields, which indicates that this structure may be used as a possible spin-polarized charge electronic device and also may provide a theoretical base for the organic electronic devices and it is also found that in the boundaries between the ferromagnetic layer and the organic layer there exist induced interface local dipoles due to the external electric fields.
Controlled growth of larger heterojunction interface area for organic photosensitive devices
Yang, Fan [Somerset, NJ; Forrest, Stephen R [Ann Arbor, MI
2009-12-29
An optoelectronic device and a method of fabricating a photosensitive optoelectronic device includes depositing a first organic semiconductor material on a first electrode to form a continuous first layer having protrusions, a side of the first layer opposite the first electrode having a surface area at least three times greater than an underlying lateral cross-sectional area; depositing a second organic semiconductor material directly on the first layer to form a discontinuous second layer, portions of the first layer remaining exposed; depositing a third organic semiconductor material directly on the second layer to form a discontinuous third layer, portions of at least the second layer remaining exposed; depositing a fourth organic semiconductor material on the third layer to form a continuous fourth layer, filling any exposed gaps and recesses in the first, second, and third layers; and depositing a second electrode on the fourth layer, wherein at least one of the first electrode and the second electrode is transparent, and the first and third organic semiconductor materials are both of a donor-type or an acceptor-type relative to second and fourth organic semiconductor materials, which are of the other material type.
Environmental barrier material for organic light emitting device and method of making
Graff, Gordon L [West Richland, WA; Gross, Mark E [Pasco, WA; Affinito, John D [Kennewick, WA; Shi, Ming-Kun [Richland, WA; Hall, Michael [West Richland, WA; Mast, Eric [Richland, WA
2003-02-18
An encapsulated organic light emitting device. The device includes a first barrier stack comprising at least one first barrier layer and at least one first polymer layer. There is an organic light emitting layer stack adjacent to the first barrier stack. A second barrier stack is adjacent to the organic light emitting layer stack. The second barrier stack has at least one second barrier layer and at least one second polymer layer. A method of making the encapsulated organic light emitting device is also provided.
An, Jae Seok; Jang, Ha Jun; Park, Cheol Young; Youn, Hongseok; Lee, Jong Ho; Heo, Gi-Seok; Choi, Bum Ho; Lee, Choong Hun
2015-10-01
Inorganic/organic hybrid thin film encapsulation layers consist of a thin Al2O3 layer together with polymer material. We have investigated optical properties of thin film encapsulation layers for top-emission flexible organic light-emitting diodes. The transmittance of hybrid thin film encapsulation layers and the electroluminescent spectrum of organic light-emitting diodes that were passivated by hybrid organic/inorganic thin film encapsulation layers were also examined as a function of the thickness of inorganic Al203 and monomer layers. The number of interference peaks, their intensity, and their positions in the visible range can be controlled by varying the thickness of inorganic Al2O3 layer. On the other hand, changing the thickness of monomer layer had a negligible effect on the optical properties. We also verified that there is a trade-off between transparency in the visible range and the permeation of water vapor in hybrid thin film encapsulation layers. As the number of dyads decreased, optical transparency improved while the water vapor permeation barrier was degraded. Our study suggests that, in top-emission organic light-emitting diodes, the thickness of each thin film encapsulation layer, in particular that of the inorganic layer, and the number of dyads should be controlled for highly efficient top-emission flexible organic light-emitting diodes.
Irwin, Michael D; Buchholz, Donald B; Marks, Tobin J; Chang, Robert P. H.
2014-11-25
The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode, a p-type semiconductor layer formed on the anode, and an active organic layer formed on the p-type semiconductor layer, where the active organic layer has an electron-donating organic material and an electron-accepting organic material.
Organic photosensitive cells grown on rough electrode with nano-scale morphology control
Yang, Fan [Piscataway, NJ; Forrest, Stephen R [Ann Arbor, MI
2011-06-07
An optoelectronic device and a method for fabricating the optoelectronic device includes a first electrode disposed on a substrate, an exposed surface of the first electrode having a root mean square roughness of at least 30 nm and a height variation of at least 200 nm, the first electrode being transparent. A conformal layer of a first organic semiconductor material is deposited onto the first electrode by organic vapor phase deposition, the first organic semiconductor material being a small molecule material. A layer of a second organic semiconductor material is deposited over the conformal layer. At least some of the layer of the second organic semiconductor material directly contacts the conformal layer. A second electrode is deposited over the layer of the second organic semiconductor material. The first organic semiconductor material is of a donor-type or an acceptor-type relative to the second organic semiconductor material, which is of the other material type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tynell, Tommi; Yamauchi, Hisao; Karppinen, Maarit, E-mail: maarit.karppinen@aalto.fi
2014-01-15
A combination of the atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques is successfully employed to fabricate thin films incorporating superlattice structures that consist of single layers of organic molecules between thicker layers of ZnO. Diethyl zinc and water are used as precursors for the deposition of ZnO by ALD, while three different organic precursors are investigated for the MLD part: hydroquinone, 4-aminophenol and 4,4′-oxydianiline. The successful superlattice formation with all the organic precursors is verified through x-ray reflectivity studies. The effects of the interspersed organic layers/superlattice structure on the electrical and thermoelectric properties of ZnO are investigatedmore » through resistivity and Seebeck coefficient measurements at room temperature. The results suggest an increase in carrier concentration for small concentrations of organic layers, while higher concentrations seem to lead to rather large reductions in carrier concentration.« less
Self-organizing sensing and actuation for automatic control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, George Shu-Xing
A Self-Organizing Process Control Architecture is introduced with a Sensing Layer, Control Layer, Actuation Layer, Process Layer, as well as Self-Organizing Sensors (SOS) and Self-Organizing Actuators (SOA). A Self-Organizing Sensor for a process variable with one or multiple input variables is disclosed. An artificial neural network (ANN) based dynamic modeling mechanism as part of the Self-Organizing Sensor is described. As a case example, a Self-Organizing Soft-Sensor for CFB Boiler Bed Height is presented. Also provided is a method to develop a Self-Organizing Sensor.
Method of fabricating an optoelectronic device having a bulk heterojunction
Shtein, Max [Princeton, NJ; Yang, Fan [Princeton, NJ; Forrest, Stephen R [Princeton, NJ
2008-09-02
A method of fabricating an organic optoelectronic device having a bulk heterojunction comprises the steps of: depositing a first layer over a first electrode by organic vapor phase deposition, wherein the first layer comprises a first organic small molecule material; depositing a second layer on the first layer such that the second layer is in physical contact with the first layer, wherein the interface of the second layer on the first layer forms a bulk heterojunction; and depositing a second electrode over the second layer to form the optoelectronic device. In another embodiment, a first layer having protrusions is deposited over the first electrode, wherein the first layer comprises a first organic small molecule material. For example, when the first layer is an electron donor layer, the first electrode is an anode, the second layer is an electron acceptor layer, and the second electrode is a cathode. As a further example, when the first layer is an electron acceptor layer, the first electrode is a cathode, the second layer is an electron donor layer, and the second electrode is an anode.
Method of fabricating an optoelectronic device having a bulk heterojunction
Shtein, Max [Ann Arbor, MI; Yang, Fan [Princeton, NJ; Forrest, Stephen R [Princeton, NJ
2008-10-14
A method of fabricating an optoelectronic device comprises: depositing a first layer having protrusions over a first electrode, in which the first layer comprises a first organic small molecule material; depositing a second layer on the first layer such that the second layer is in physical contact with the first layer; in which the smallest lateral dimension of the protrusions are between 1 to 5 times the exciton diffusion length of the first organic small molecule material; and depositing a second electrode over the second layer to form the optoelectronic device. A method of fabricating an organic optoelectronic device having a bulk heterojunction is also provided and comprises: depositing a first layer with protrusions over an electrode by organic vapor phase deposition; depositing a second layer on the first layer where the interface of the first and second layers forms a bulk heterojunction; and depositing another electrode over the second layer.
Generation of organized germ layers from a single mouse embryonic stem cell.
Poh, Yeh-Chuin; Chen, Junwei; Hong, Ying; Yi, Haiying; Zhang, Shuang; Chen, Junjian; Wu, Douglas C; Wang, Lili; Jia, Qiong; Singh, Rishi; Yao, Wenting; Tan, Youhua; Tajik, Arash; Tanaka, Tetsuya S; Wang, Ning
2014-05-30
Mammalian inner cell mass cells undergo lineage-specific differentiation into germ layers of endoderm, mesoderm and ectoderm during gastrulation. It has been a long-standing challenge in developmental biology to replicate these organized germ layer patterns in culture. Here we present a method of generating organized germ layers from a single mouse embryonic stem cell cultured in a soft fibrin matrix. Spatial organization of germ layers is regulated by cortical tension of the colony, matrix dimensionality and softness, and cell-cell adhesion. Remarkably, anchorage of the embryoid colony from the 3D matrix to collagen-1-coated 2D substrates of ~1 kPa results in self-organization of all three germ layers: ectoderm on the outside layer, mesoderm in the middle and endoderm at the centre of the colony, reminiscent of generalized gastrulating chordate embryos. These results suggest that mechanical forces via cell-matrix and cell-cell interactions are crucial in spatial organization of germ layers during mammalian gastrulation. This new in vitro method could be used to gain insights on the mechanisms responsible for the regulation of germ layer formation.
Organic photovoltaic device with interfacial layer and method of fabricating same
Marks, Tobin J.; Hains, Alexander W.
2013-03-19
An organic photovoltaic device and method of forming same. In one embodiment, the organic photovoltaic device has an anode, a cathode, an active layer disposed between the anode and the cathode; and an interfacial layer disposed between the anode and the active layer, the interfacial layer comprising 5,5'-bis[(p-trichlorosilylpropylphenyl)phenylamino]-2,2'-bithiophene (PABTSi.sub.2).
Membrane architectures for ion-channel switch-based electrochemical biosensors
Sansinena, Jose-Maria; Redondo, Antonio; Swanson, Basil I.; Yee, Chanel Kitmon; Sapuri/Butti, Annapoorna R.; Parikh, Atul N.; Yang, Calvin
2008-10-28
The present invention is directed to a process of forming a bilayer lipid membrane structure by depositing an organic layer having a defined surface area onto an electrically conductive substrate, removing portions of said organic layer upon said electrically conductive substrate whereby selected portions of said organic layer are removed to form defined voids within said defined surface area of said organic layer and defined islands of organic layer upon said electrically conductive substrate, and, depositing a bilayer lipid membrane over the defined voids and defined islands of organic layer upon said substrate whereby aqueous reservoirs are formed between said electrically conductive substrate and said bilayer lipid membrane, said bilayer lipid membrane characterized as spanning across the defined voids between said defined islands. A lipid membrane structure is also described together with an array of such lipid membrane structure.
Method of making organic light emitting devices
Shiang, Joseph John [Niskayuna, NY; Janora, Kevin Henry [Schenectady, NY; Parthasarathy, Gautam [Saratoga Springs, NY; Cella, James Anthony [Clifton Park, NY; Chichak, Kelly Scott [Clifton Park, NY
2011-03-22
The present invention provides a method for the preparation of organic light-emitting devices comprising a bilayer structure made by forming a first film layer comprising an electroactive material and an INP precursor material, and exposing the first film layer to a radiation source under an inert atmosphere to generate an interpenetrating network polymer composition comprising the electroactive material. At least one additional layer is disposed on the reacted first film layer to complete the bilayer structure. The bilayer structure is comprised within an organic light-emitting device comprising standard features such as electrodes and optionally one or more additional layers serving as a bipolar emission layer, a hole injection layer, an electron injection layer, an electron transport layer, a hole transport layer, exciton-hole transporting layer, exciton-electron transporting layer, a hole transporting emission layer, or an electron transporting emission layer.
Organic spintronic devices and methods for making the same
Vardeny, Zee Valentine; Ndobe, Alex
2014-09-23
An organic spintronic photovoltaic device (100) having an organic electron active layer (102) functionally associated with a pair of electrodes (104, 106). The organic electron active layer (102) can include a spin active molecular radical distributed in the active layer (102) which increases spin-lattice relaxation rates within the active layer (102). The increased spin lattice relaxation rate can also influence the efficiency of OLED and charge mobility in FET devices.
Decreasing the electronic confinement in layered perovskites through intercalation.
Smith, Matthew D; Pedesseau, Laurent; Kepenekian, Mikaël; Smith, Ian C; Katan, Claudine; Even, Jacky; Karunadasa, Hemamala I
2017-03-01
We show that post-synthetic small-molecule intercalation can significantly reduce the electronic confinement of 2D hybrid perovskites. Using a combined experimental and theoretical approach, we explain structural, optical, and electronic effects of intercalating highly polarizable molecules in layered perovskites designed to stabilize the intercalants. Polarizable molecules in the organic layers substantially alter the optical and electronic properties of the inorganic layers. By calculating the spatially resolved dielectric profiles of the organic and inorganic layers within the hybrid structure, we show that the intercalants afford organic layers that are more polarizable than the inorganic layers. This strategy reduces the confinement of excitons generated in the inorganic layers and affords the lowest exciton binding energy for an n = 1 perovskite of which we are aware. We also demonstrate a method for computationally evaluating the exciton's binding energy by solving the Bethe-Salpeter equation for the exciton, which includes an ab initio determination of the material's dielectric profile across organic and inorganic layers. This new semi-empirical method goes beyond the imprecise phenomenological approximation of abrupt dielectric-constant changes at the organic-inorganic interfaces. This work shows that incorporation of polarizable molecules in the organic layers, through intercalation or covalent attachment, is a viable strategy for tuning 2D perovskites towards mimicking the reduced electronic confinement and isotropic light absorption of 3D perovskites while maintaining the greater synthetic tunability of the layered architecture.
Reflective article having a sacrificial cathodic layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabagambe, Benjamin; Buchanan, Michael J.; Scott, Matthew S.
The present invention relates to reflective articles, such as solar mirrors, that include a sacrificial cathodic layer. The reflective article, more particularly includes a substrate, such as glass, having a multi-layered coating thereon that includes a lead-free sacrificial cathodic layer. The sacrificial cathodic layer includes at least one transition metal, such as a particulate transition metal, which can be in the form of flakes (e.g., zinc flakes). The sacrificial cathodic layer can include an inorganic matrix formed from one or more organo-titanates. Alternatively, the sacrificial cathodic layer can include an organic polymer matrix (e.g., a crosslinked organic polymer matrix formedmore » from an organic polymer and an aminoplast crosslinking agent). The reflective article also includes an outer organic polymer coating, that can be electrodeposited over the sacrificial cathodic layer.« less
Dynamics of active layer in wooded palsas of northern Quebec
NASA Astrophysics Data System (ADS)
Jean, Mélanie; Payette, Serge
2014-02-01
Palsas are organic or mineral soil mounds having a permafrost core. Palsas are widespread in the circumpolar discontinuous permafrost zone. The annual dynamics and evolution of the active layer, which is the uppermost layer over the permafrost table and subjected to the annual freeze-thaw cycle, are influenced by organic layer thickness, snow depth, vegetation type, topography and exposure. This study examines the influence of vegetation types, with an emphasis on forest cover, on active layer dynamics of palsas in the Boniface River watershed (57°45‧ N, 76°00‧ W). In this area, palsas are often colonized by black spruce trees (Picea mariana (Mill.) B.S.P.). Thaw depth and active layer thickness were monitored on 11 wooded or non-wooded mineral and organic palsas in 2009, 2010 and 2011. Snow depth, organic layer thickness, and vegetation types were assessed. The mapping of a palsa covered by various vegetation types and a large range of organic layer thickness were used to identify the factors influencing the spatial patterns of thaw depth and active layer. The active layer was thinner and the thaw rate slower in wooded palsas, whereas it was the opposite in more exposed sites such as forest openings, shrubs and bare ground. Thicker organic layers were associated with thinner active layers and slower thaw rates. Snow depth was not an important factor influencing active layer dynamics. The topography of the mapped palsa was uneven, and the environmental factors such as organic layer, snow depth, and vegetation types were heterogeneously distributed. These factors explain a part of the spatial variation of the active layer. Over the 3-year long study, the area of one studied palsa decreased by 70%. In a context of widespread permafrost decay, increasing our understanding of factors that influence the dynamics of wooded and non-wooded palsas and understanding of the role of vegetation cover will help to define the response of discontinuous permafrost landforms to changing climatic conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Byung Soo; Jeon, Young Pyo; Lee, Dae Uk
2014-10-15
The operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the organic light-emitting device with a molybdenum trioxide layer. The maximum brightness of the tandem green phosphorescent organic light-emitting device at 21.9 V was 26,540 cd/m{sup 2}. The dominant peak of the electroluminescence spectra for the devices was related to the fac-tris(2-phenylpyridine) iridium emission. - Highlights: • Tandem OLEDs with CGL were fabricated to enhance their efficiency. • The operating voltage of the tandem OLED with a HAT-CN layer was improved by 3%. • The efficiency and brightnessmore » of the tandem OLED were 13.9 cd/A and 26,540 cd/m{sup 2}. • Efficiency of the OLED with a HAT-CN layer was lower than that with a MoO{sub 3} layer. - Abstract: Tandem green phosphorescent organic light-emitting devices with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile or a molybdenum trioxide charge generation layer were fabricated to enhance their efficiency. Current density–voltage curves showed that the operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the corresponding organic light-emitting device with a molybdenum trioxide layer. The efficiency and the brightness of the tandem green phosphorescent organic light-emitting device were 13.9 cd/A and 26,540 cd/m{sup 2}, respectively. The current efficiency of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was lower by 1.1 times compared to that of the corresponding organic light-emitting device with molybdenum trioxide layer due to the decreased charge generation and transport in the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer resulting from triplet–triplet exciton annihilation.« less
Phosphorescent organic light emitting diodes with high efficiency and brightness
Forrest, Stephen R; Zhang, Yifan
2015-11-12
An organic light emitting device including a) an anode; b) a cathode; and c) an emissive layer disposed between the anode and the cathode, the emissive layer comprising an organic host compound and a phosphorescent compound exhibiting a Stokes Shift overlap greater than 0.3 eV. The organic light emitting device may further include a hole transport layer disposed between the emissive layer and the anode; and an electron transport layer disposed between the emissive layer and the cathode. In some embodiments, the phosphorescent compound exhibits a phosphorescent lifetime of less than 10 .mu.s. In some embodiments, the concentration of the phosphorescent compound ranges from 0.5 wt. % to 10 wt. %.
Zhang, Lei; Shi, Jiafu; Jiang, Zhongyi; Jiang, Yanjun; Meng, Ruijie; Zhu, Yuanyuan; Liang, Yanpeng; Zheng, Yang
2011-02-01
A novel approach combining biomimetic mineralization and bioadhesion is proposed to prepare robust and versatile organic-inorganic hybrid microcapsules. More specifically, these microcapsules are fabricated by sequential deposition of inorganic layer and organic layer on the surface of CaCO(3) microparticles, followed by the dissolution of CaCO(3) microparticles using EDTA. During the preparation process, protamine induces the hydrolysis and condensation of titania or silica precursor to form the inorganic layer or the biomineral layer. The organic layer or bioadhesive layer was formed through the rapid, spontaneous oxidative polymerization of dopamine into polydopamine (PDA) on the surface of the biomineral layer. There exist multiple interactions between the inorganic layer and the organic layer. Thus, the as-prepared organic-inorganic hybrid microcapsules acquire much higher mechanical stability and surface reactivity than pure titania or pure silica microcapsules. Furthermore, protamine/titania/polydopamine hybrid microcapsules display superior mechanical stability to protamine/silica/polydopamine hybrid microcapsules because of the formation of Ti(IV)-catechol coordination complex between the biomineral layer and the bioadhesive layer. As an example of application, three enzymes are respectively immobilized through physical encapsulation in the lumen, in situ entrapment within the wall and chemical attachment on the out surface of the hybrid microcapsules. The as-constructed multienzyme system displays higher catalytic activity and operational stability. Hopefully, the approach developed in this study will evolve as a generic platform for facile and controllable preparation of organic-inorganic hybrid materials with different compositions and shapes for a variety of applications in catalysis, sensor, drug/gene delivery.
Ordered organic-organic multilayer growth
Forrest, Stephen R.; Lunt, Richard R.
2016-04-05
An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.
Ordered organic-organic multilayer growth
Forrest, Stephen R; Lunt, Richard R
2015-01-13
An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.
2017-01-10
A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.
Wu, Bing; Zhao, Yinghe; Nan, Haiyan; Yang, Ziyi; Zhang, Yuhan; Zhao, Huijuan; He, Daowei; Jiang, Zonglin; Liu, Xiaolong; Li, Yun; Shi, Yi; Ni, Zhenhua; Wang, Jinlan; Xu, Jian-Bin; Wang, Xinran
2016-06-08
Precise assembly of semiconductor heterojunctions is the key to realize many optoelectronic devices. By exploiting the strong and tunable van der Waals (vdW) forces between graphene and organic small molecules, we demonstrate layer-by-layer epitaxy of ultrathin organic semiconductors and heterostructures with unprecedented precision with well-defined number of layers and self-limited characteristics. We further demonstrate organic p-n heterojunctions with molecularly flat interface, which exhibit excellent rectifying behavior and photovoltaic responses. The self-limited organic molecular beam epitaxy (SLOMBE) is generically applicable for many layered small-molecule semiconductors and may lead to advanced organic optoelectronic devices beyond bulk heterojunctions.
Soil Respiration Controls Ionic Nutrient Concentration In Percolating Water In Rice Fields
NASA Astrophysics Data System (ADS)
Kimura, M.
2004-12-01
Soil water in the plow layer in rice fields contains various kinds of cations and anions, and they are lost from the plow layer by water percolation. Some portions of CO2 produced by respirations of rice roots and soil microorganisms are also leached by water percolation to the subsoil layer as HCO3-. As the electrical neutrality of inorganic substances in percolating water is maintained when they are assumed to be in the form of simple cations and anions, soil respiration accelerates the leaching of ionic nutrients from the plow layer by water percolation. The proportion of inorganic carbon (Σ CO2) originated from photosynthates in the total Σ CO2 in soil solution in the plow layer was from 28 to 36 % in the rice straw amended soil and from 16 to 31 % in the soil without rice straw amendment in a soil pot experiment with rice plant after the maximum tillering stage. Most of Σ CO2 in percolating water from the plow layer accumulates in the subsoil layer. Periodical measurement of Σ CO2 in percolating water at 13 and 40 cm soil depths indicated that 10 % of total soil organic C in the plow layer was leached down from the plow layer (13 cm), and that about 90 % of it was retained in the subsoil layer to the depth of 40 cm. Water soluble organic materials are also leached from the plow layer by water percolation, and the leaching is accelerated by soil reduction. Soil reduction decreased the content of organic materials that were bound with ferric iron in soil (extractable by 0.1M Na4P2O7 + NaBH4) and increased the content of organic materials that were extractable by the neutral chelating solution (0.1M Na4P2O7). In addition, water percolation transformed the latter organic materials to those that were extractable by water and a neutral salt. Considerable portions of organic materials in percolating water are adsorbed in the subsoil layer, and then partially decomposed and polymerized to specific soil organic materials in the subsoil. Organic materials that were leached from the plow layer by percolating water amounted to 170 kgC ha-1 in a Japanese rice field, among which 120 kgC of organic materials were adsorbed in the subsoil layer between 13 and 40 cm depth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreedhara, M.B.; Prasad, B.E.; Moirangthem, Monali
2015-04-15
Nanosheets containing few-layers of ferroelectric Aurivillius family of oxides, Bi{sub 2}A{sub n−1}B{sub n}O{sub 3n+3} (where A=Bi{sup 3+}, Ba{sup 2+} etc. and B=Ti{sup 4+}, Fe{sup 3+} etc.) with n=3, 4, 5, 6 and 7 have been prepared by reaction with n-butyllithium, followed by exfoliation in water. The few-layer samples have been characterized by Tyndall cones, atomic force microscopy, optical spectroscopy and other techniques. The few-layer species have a thickness corresponding to a fraction of the c-parameter along which axis the perovskite layers are stacked. Magnetization measurements have been carried out on the few-layer samples containing iron. Few-layer species of a fewmore » layered metal-organic compounds have been obtained by ultrasonication and characterized by Tyndall cones, atomic force microscopy, optical spectroscopy and magnetic measurements. Significant changes in the optical spectra and magnetic properties are found in the few-layer species compared to the bulk samples. Few-layer species of the Aurivillius family of oxides may find uses as thin layer dielectrics in photovoltaics and other applications. - Graphical abstract: Exfoliation of the layered Aurivillius oxides into few-layer nanosheets by chemical Li intercalation using n-BuLi followed by reaction in water. Exfoliation of the layered metal-organic compounds into few-layer nanosheets by ultrasonication. - Highlights: • Few-layer nanosheets of Aurivillius family of oxides with perovskite layers have been generated by lithium intercalation. • Few-layer nanosheets of few layered metal-organic compounds have been generated by ultrasonication. • Few-layer nanosheets of the Aurivillius oxides have been characterized by AFM, TEM and optical spectroscopy. • Aurivillius oxides containing Fe show layer dependent magnetic properties. • Exfoliated few-layer metal-organic compounds show changes in spectroscopic and magnetic properties compared with bulk materials.« less
Organic photovoltaic cells utilizing ultrathin sensitizing layer
Forrest, Stephen R [Ann Arbor, MI; Yang, Fan [Piscataway, NJ; Rand, Barry P [Somers, NY
2011-09-06
A photosensitive device includes a plurality of organic photoconductive materials disposed in a stack between a first electrode and a second electrode, including a first continuous layer of donor host material, a second continuous layer of acceptor host material, and at least one other organic photoconductive material disposed as a plurality of discontinuous islands between the first continuous layer and the second continuous layer. Each of these other photoconductive materials has an absorption spectra different from the donor host material and the acceptor host material. Preferably, each of the discontinuous islands consists essentially of a crystallite of the respective organic photoconductive material, and more preferably, the crystallites are nanocrystals.
Hybrid Organic/Inorganic Materials Depth Profiling Using Low Energy Cesium Ions
NASA Astrophysics Data System (ADS)
Noël, Céline; Houssiau, Laurent
2016-05-01
The structures developed in organic electronics, such as organic light emitting diodes (OLEDs) or organic photovoltaics (OPVs) devices always involve hybrid interfaces, joining metal or oxide layers with organic layers. No satisfactory method to probe these hybrid interfaces physical chemistry currently exists. One promising way to analyze such interfaces is to use in situ ion beam etching, but this requires ion beams able to depth profile both inorganic and organic layers. Mono- or diatomic ion beams commonly used to depth profile inorganic materials usually perform badly on organics, while cluster ion beams perform excellently on organics but yield poor results when organics and inorganics are mixed. Conversely, low energy Cs+ beams (<500 eV) allow organic and inorganic materials depth profiling with comparable erosion rates. This paper shows a successful depth profiling of a model hybrid system made of metallic (Au, Cr) and organic (tyrosine) layers, sputtered with 500 eV Cs+ ions. Tyrosine layers capped with metallic overlayers are depth profiled easily, with high intensities for the characteristic molecular ions and other specific fragments. Metallic Au or Cr atoms are recoiled into the organic layer where they cause some damage near the hybrid interface as well as changes in the erosion rate. However, these recoil implanted metallic atoms do not appear to severely degrade the depth profile overall quality. This first successful hybrid depth profiling report opens new possibilities for the study of OLEDs, organic solar cells, or other hybrid devices.
Organic photosensitive optoelectronic device having a phenanthroline exciton blocking layer
Thompson, Mark E [Anaheim Hills, CA; Li, Jian [Los Angeles, CA; Forrest, Stephen [Princeton, NJ; Rand, Barry [Princeton, NJ
2011-02-22
An organic photosensitive optoelectronic device, having an anode, a cathode, and an organic blocking layer between the anode and the cathode is described, wherein the blocking layer comprises a phenanthroline derivative, and at least partially blocks at least one of excitons, electrons, and holes.
NASA Astrophysics Data System (ADS)
Hauenstein, Simon
2016-04-01
Simon Hauenstein1, Thomas Pütz2, and Yvonne Oelmann1, 1 Geoecology, Department of Geosciences, University of Tübingen, Tübingen, Germany 2 Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany The accumulation of an organic layer in forests is linked to the ratio between litterfall rates and decomposition rates with decomposition rates being decelerated due to acidification and associated nutrient depletion with proceeding ecosystem development. Nevertheless, the nutrient pool in the organic layer might still represent an important source for Phosphorus (P) nutrition of forests on nutrient-poor soils. Our objective was to assess the importance of the organic layer to P nutrition of young beech trees at two sites differing in soil P availability. We established a mesocosm experiment including plants and soil from a Phosphorus depleted forest site on a Haplic Podzol in Lüss and a Phosphorus rich forest site on a Eutric Cambisol in Bad Brückenau either with or without the organic layer. After 1 year under outdoor conditions, we applied 33P to the pots. After 0h, 24h, 48h, 96h, 192h, 528h we destructively harvested the young beech trees (separated into leaves, branches, stems) and sampled the organic layer and mineral soil of the pots. In each soil horizon we measured concentrations of resin-extractable P, plant available P fractions and total P. We extracted the xylem sap of the whole 2-year-old trees by means of scholander pressure bomb. 33P activity was measured for every compartment in soil and plant. The applied 33P was recovered mainly in the organic layer in Lüss, whereas it was evenly distributed among organic and mineral horizons in pots of Bad Brückenau soil. Comparing pots with and without an organic layer, the specific 33P activity differed by 323% between pots with and without an organic layer present in the Lüss soil. For both sites, the presence of the organic layer increased 33P activity in xylem sap compared to the treatment without by 104% in Bad Brückenau and 700% in Lüss. Whereas the existence of an organic layer did not influence the total 33P activity in plant tissue in pots from the site Bad Brückenau over 528h, a strong increase of 155 kBq/g DM was recorded for the site Lüss. Therefore, the key role of the organic layer for plant P nutrition on a P depleted site like Lüss was reflected in the increased P uptake rates (xylem sap) and increased accumulation of P in plant tissue comparing the presence and absence of an organic layerIn conclusion, our results prove the more efficient cycling of P in the organic layers in Lüss as opposed to Bad Brückenau corroborating the hypothesized P recycling and P acquiring strategy in Lüss and Bad Brückenau, respectively.
Megahertz organic/polymer diodes
Katz, Howard Edan; Sun, Jia; Pal, Nath Bhola
2012-12-11
Featured is an organic/polymer diode having a first layer composed essentially of one of an organic semiconductor material or a polymeric semiconductor material and a second layer formed on the first layer and being electrically coupled to the first layer such that current flows through the layers in one direction when a voltage is applied in one direction. The second layer is essentially composed of a material whose characteristics and properties are such that when formed on the first layer, the diode is capable of high frequency rectifications on the order of megahertz rectifications such as for example rectifications at one of above 100KHz, 500KhZ, IMHz, or 10 MHz. In further embodiments, the layers are arranged so as to be exposed to atmosphere.
Organic light emitting diode with surface modification layer
Basil, John D.; Bhandari, Abhinav; Buhay, Harry; Arbab, Mehran; Marietti, Gary J.
2017-09-12
An organic light emitting diode (10) includes a substrate (12) having a first surface (14) and a second surface (16), a first electrode (32), and a second electrode (38). An emissive layer (36) is located between the first electrode (32) and the second electrode (38). The organic light emitting diode (10) further includes a surface modification layer (18). The surface modification layer (18) includes a non-planar surface (30, 52).
Photovoltaic cells with a graded active region achieved using stamp transfer printing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrest, Stephen R.; Lee, Jun Yeob; Cho, Yong Joo
Disclosed herein are processes for fabricating organic photosensitive optoelectronic devices with a vertical compositionally graded organic active layer. The processes use either a single-stamp or double-stamp printing technique to transfer the vertical compositionally graded organic active layer from a starting substrate to a device layer.
NASA Astrophysics Data System (ADS)
Qiu, Jacky; Helander, Michael G.; Wang, Zhibin; Chang, Yi-Lu; Lu, ZhengHong
2012-09-01
Non-blocking Phosphorescent Organic Light Emitting Diode (NB-PHOLED) is a highly simplified device structure that has achieved record high device performance on chlorinated ITO[1], flexible substrates[2], also with Pt based phosphorescent dopants[3] and NB-PHOLED has significantly reduced efficiency roll-off[4]. The principle novel features of NB-PHOLED is the absence of blocking layer in the OLED stack, as well as the absence of organic hole injection layer, this allows for reduction of carrier accumulation in between organic layers and result in higher efficiencies.
Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries
Wu, Xiaoyan; Jin, Shifeng; Zhang, Zhizhen; Jiang, Liwei; Mu, Linqin; Hu, Yong-Sheng; Li, Hong; Chen, Xiaolong; Armand, Michel; Chen, Liquan; Huang, Xuejie
2015-01-01
Organic carbonyl compounds represent a promising class of electrode materials for secondary batteries; however, the storage mechanism still remains unclear. We take Na2C6H2O4 as an example to unravel the mechanism. It consists of alternating Na-O octahedral inorganic layer and π-stacked benzene organic layer in spatial separation, delivering a high reversible capacity and first coulombic efficiency. The experiment and calculation results reveal that the Na-O inorganic layer provides both Na+ ion transport pathway and storage site, whereas the benzene organic layer provides electron transport pathway and redox center. Our contribution provides a brand-new insight in understanding the storage mechanism in inorganic-organic layered host and opens up a new exciting direction for designing new materials for secondary batteries. PMID:26601260
Architectures and criteria for the design of high efficiency organic photovoltaic cells
Rand, Barry; Forrest, Stephen R; Pendergrast Burk, Diane
2015-03-31
A method for fabricating an organic photovoltaic cell includes providing a first electrode; depositing a series of at least seven layers onto the first electrode, each layer consisting essentially of a different organic semiconductor material, the organic semiconductor material of at least an intermediate layer of the sequence being a photoconductive material; and depositing a second electrode onto the sequence of at least seven layers. One of the first electrode and the second electrode is an anode and the other is a cathode. The organic semiconductor materials of the series of at least seven layers are arranged to provide a sequence of decreasing lowest unoccupied molecular orbitals (LUMOs) and a sequence of decreasing highest occupied molecular orbitals (HOMOs) across the series from the anode to the cathode.
Cross Section High Resolution Imaging of Polymer-Based Materials
NASA Astrophysics Data System (ADS)
Delaportas, D.; Aden, P.; Muckle, C.; Yeates, S.; Treutlein, R.; Haq, S.; Alexandrou, I.
This paper describes a methodology for preparing cross sections of organic layers suitable for transmission electron microscopy (TEM) at high resolution. Our principal aim is to prepare samples that are tough enough to allow the slicing into sub-150 nm sections. We also need strong contrast at the organic layer area to make it identifiable during TEM. Our approach is to deposit organic layers on flexible substrates and prepare thin cross sections using ultra-microtomy. We sandwich the organic layer between two metal thin films in order to isolate it and improve contrast. Our methodology is used to study the microstructure of polymer/nanotube composites, allowing us to accurately measure the organic layer thickness, determine nanotube dispersion and assess the effect of nanotube clustering on film structural stability.
Long-range coupling of electron-hole pairs in spatially separated organic donor-acceptor layers
Nakanotani, Hajime; Furukawa, Taro; Morimoto, Kei; Adachi, Chihaya
2016-01-01
Understanding exciton behavior in organic semiconductor molecules is crucial for the development of organic semiconductor-based excitonic devices such as organic light-emitting diodes and organic solar cells, and the tightly bound electron-hole pair forming an exciton is normally assumed to be localized on an organic semiconducting molecule. We report the observation of long-range coupling of electron-hole pairs in spatially separated electron-donating and electron-accepting molecules across a 10-nanometers-thick spacer layer. We found that the exciton energy can be tuned over 100 megaelectron volts and the fraction of delayed fluorescence can be increased by adjusting the spacer-layer thickness. Furthermore, increasing the spacer-layer thickness produced an organic light-emitting diode with an electroluminescence efficiency nearly eight times higher than that of a device without a spacer layer. Our results demonstrate the first example of a long-range coupled charge-transfer state between electron-donating and electron-accepting molecules in a working device. PMID:26933691
Nanoscale lamellar photoconductor hybrids and methods of making same
Stupp, Samuel I; Goldberger, Josh; Sofos, Marina
2013-02-05
An article of manufacture and methods of making same. In one embodiment, the article of manufacture has a plurality of zinc oxide layers substantially in parallel, wherein each zinc oxide layer has a thickness d.sub.1, and a plurality of organic molecule layers substantially in parallel, wherein each organic molecule layer has a thickness d.sub.2 and a plurality of molecules with a functional group that is bindable to zinc ions, wherein for every pair of neighboring zinc oxide layers, one of the plurality of organic molecule layers is positioned in between the pair of neighboring zinc oxide layers to allow the functional groups of the plurality of organic molecules to bind to zinc ions in the neighboring zinc oxide layers to form a lamellar hybrid structure with a geometric periodicity d.sub.1+d.sub.2, and wherein d.sub.1 and d.sub.2 satisfy the relationship of d.sub.1.ltoreq.d.sub.2.ltoreq.3d.sub.1.
Secondary polymer layered impregnated tile
NASA Technical Reports Server (NTRS)
Tran, Huy K. (Inventor); Rasky, Daniel J. (Inventor); Szalai, Christine E. (Inventor); Carroll, Joseph A. (Inventor); Hsu, Ming-ta S. (Inventor)
2005-01-01
A low density organic polymer impregnated preformed fibrous ceramic article includes a plurality of layers. A front layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one organic polymer. A middle layer includes polymer impregnated ceramic fibers. A back layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one low temperature pyrolyzing organic polymer capable of decomposing without depositing residues.
An Assessment and Annotated Bibliography of Marine Bioluminescence Research: 1979-1987
1993-01-01
organisms. An interesting modi- vertical layering , are much more advanced. It is fication of the counterilluminating theory, namely, now reasonably apparent...organisms are preyed upon by various organisms composing the sonic scattering predators with limited visual acuity, so that the layers (both luminescent...catecholaminergic nature of the monoaminergic mesoglea and over all muscle layers on the basis of 13 S several morphological criteria. The 3H-A, but not layer
Organic light emitting device having multiple separate emissive layers
Forrest, Stephen R [Ann Arbor, MI
2012-03-27
An organic light emitting device having multiple separate emissive layers is provided. Each emissive layer may define an exciton formation region, allowing exciton formation to occur across the entire emissive region. By aligning the energy levels of each emissive layer with the adjacent emissive layers, exciton formation in each layer may be improved. Devices incorporating multiple emissive layers with multiple exciton formation regions may exhibit improved performance, including internal quantum efficiencies of up to 100%.
Electrodes mitigating effects of defects in organic electronic devices
Heller, Christian Maria Anton [Albany, NY
2008-05-06
A compound electrode for organic electronic devices comprises a thin first layer of a first electrically conducting material and a second electrically conducting material disposed on the first layer. In one embodiment, the second electrically conducting material is formed into a plurality of elongated members. In another embodiment, the second material is formed into a second layer. The elongated members or the second layer has a thickness greater than that of the first layer. The second layer is separated from the first layer by a conducting material having conductivity less than at least the material of the first layer. The compound electrode is capable of mitigating adverse effects of defects, such as short circuits, in the construction of the organic electronic devices, and can be included in light-emitting or photovoltaic devices.
Monolayer-Mediated Growth of Organic Semiconductor Films with Improved Device Performance.
Huang, Lizhen; Hu, Xiaorong; Chi, Lifeng
2015-09-15
Increased interest in wearable and smart electronics is driving numerous research works on organic electronics. The control of film growth and patterning is of great importance when targeting high-performance organic semiconductor devices. In this Feature Article, we summarize our recent work focusing on the growth, crystallization, and device operation of organic semiconductors intermediated by ultrathin organic films (in most cases, only a monolayer). The site-selective growth, modified crystallization and morphology, and improved device performance of organic semiconductor films are demonstrated with the help of the inducing layers, including patterned and uniform Langmuir-Blodgett monolayers, crystalline ultrathin organic films, and self-assembled polymer brush films. The introduction of the inducing layers could dramatically change the diffusion of the organic semiconductors on the surface and the interactions between the active layer with the inducing layer, leading to improved aggregation/crystallization behavior and device performance.
Visser, Peter; Liu, Yanwen; Zhou, Xiaorong; Hashimoto, Teruo; Thompson, George E; Lyon, Stuart B; van der Ven, Leendert G J; Mol, Arjan J M C; Terryn, Herman A
2015-01-01
Lithium carbonate and lithium oxalate were incorporated as leachable corrosion inhibitors in model organic coatings for the protection of AA2024-T3. The coated samples were artificially damaged with a scribe. It was found that the lithium-salts are able to leach from the organic coating and form a protective layer in the scribe on AA2024-T3 under neutral salt spray conditions. The present paper shows the first observation and analysis of these corrosion protective layers, generated from lithium-salt loaded organic coatings. The scribed areas were examined by scanning and transmission electron microscopy before and after neutral salt spray exposure (ASTM-B117). The protective layers typically consist of three different layered regions, including a relatively dense layer near the alloy substrate, a porous middle layer and a flake-shaped outer layer, with lithium uniformly distributed throughout all three layers. Scanning electron microscopy and white light interferometry surface roughness measurements demonstrate that the formation of the layer occurs rapidly and, therefore provides an effective inhibition mechanism. Based on the observation of this work, a mechanism is proposed for the formation of these protective layers.
Effects of Contact-Induced Doping on the Behaviors of Organic Photovoltaic Devices
Wang, Jian; Xu, Liang; Lee, Yun -Ju; ...
2015-10-09
Substrates can significantly affect the electronic properties of organic semiconductors. In this paper, we report the effects of contact-induced doping, arising from charge transfer between a high work function hole extraction layer (HEL) and the organic active layer, on organic photovoltaic device performance. Employing a high work function HEL is found to increase doping in the active layer and decrease photocurrent. Combined experimental and modeling investigations reveal that higher doping increases polaron–exciton quenching and carrier recombination within the field-free region. Consequently, there exists an optimal HEL work function that enables a large built-in field while keeping the active layer dopingmore » low. This value is found to be ~0.4 eV larger than the pinning level of the active layer material. As a result, these understandings establish a criterion for optimal design of the HEL when adapting a new active layer system and can shed light on optimizing performance in other organic electronic devices.« less
Method of doping organic semiconductors
Kloc,; Christian Leo; Ramirez; Arthur Penn; So, Woo-Young
2010-10-26
An apparatus has a crystalline organic semiconducting region that includes polyaromatic molecules. A source electrode and a drain electrode of a field-effect transistor are both in contact with the crystalline organic semiconducting region. A gate electrode of the field-effect transistor is located to affect the conductivity of the crystalline organic semiconducting region between the source and drain electrodes. A dielectric layer of a first dielectric that is substantially impermeable to oxygen is in contact with the crystalline organic semiconducting region. The crystalline organic semiconducting region is located between the dielectric layer and a substrate. The gate electrode is located on the dielectric layer. A portion of the crystalline organic semiconducting region is in contact with a second dielectric via an opening in the dielectric layer. A physical interface is located between the second dielectric and the first dielectric.
Organic photosensitive cells having a reciprocal-carrier exciton blocking layer
Rand, Barry P [Princeton, NJ; Forrest, Stephen R [Princeton, NJ; Thompson, Mark E [Anaheim Hills, CA
2007-06-12
A photosensitive cell includes an anode and a cathode; a donor-type organic material and an acceptor-type organic material forming a donor-acceptor junction connected between the anode and the cathode; and an exciton blocking layer connected between the acceptor-type organic material of the donor-acceptor junction and the cathode, the blocking layer consisting essentially of a material that has a hole mobility of at least 10.sup.-7 cm.sup.2/V-sec or higher, where a HOMO of the blocking layer is higher than or equal to a HOMO of the acceptor-type material.
Polymer based organic solar cells using ink-jet printed active layers
NASA Astrophysics Data System (ADS)
Aernouts, T.; Aleksandrov, T.; Girotto, C.; Genoe, J.; Poortmans, J.
2008-01-01
Ink-jet printing is used to deposit polymer:fullerene blends suitable as active layer for organic solar cells. We show that merging of separately deposited ink droplets into a continuous, pinhole-free organic thin film results from a balance between ink viscosity and surface wetting, whereas for certain of the studied solutions clear coffee drop effect occurs for single droplets; this can be minimized for larger printed areas, yielding smooth layers with minimal surface roughness. Resulting organic films are used as active layer for solar cells with power conversion efficiency of 1.4% under simulated AM1.5 solar illumination.
Koarashi, Jun; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sanada, Yukihisa
2016-01-01
The Fukushima Daiichi nuclear power plant disaster caused serious radiocesium (137Cs) contamination of forest ecosystems over a wide area. Forest-floor organic layers play a key role in controlling the overall bioavailability of 137Cs in forest ecosystems; however, there is still an insufficient understanding of how forest types influence the retention capability of 137Cs in organic layers in Japanese forest ecosystems. Here we conducted plot-scale investigations on the retention of 137Cs in organic layers at two contrasting forest sites in Fukushima. In a deciduous broad-leaved forest, approximately 80% of the deposited 137Cs migrated to mineral soil located below the organic layers within two years after the accident, with an ecological half-life of approximately one year. Conversely, in an evergreen coniferous forest, more than half of the deposited 137Cs remained in the organic layers, with an ecological half-life of 2.1 years. The observed retention behavior can be well explained by the tree phenology and accumulation of 137Cs associated with litter materials with different degrees of degradation in the organic layers. Spatial and temporal patterns of gamma-ray dose rates depended on the retention capability. Our results demonstrate that enhanced radiation risks last longer in evergreen coniferous forests than in deciduous broad-leaved forests. PMID:27974832
NASA Astrophysics Data System (ADS)
Koarashi, Jun; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sanada, Yukihisa
2016-12-01
The Fukushima Daiichi nuclear power plant disaster caused serious radiocesium (137Cs) contamination of forest ecosystems over a wide area. Forest-floor organic layers play a key role in controlling the overall bioavailability of 137Cs in forest ecosystems; however, there is still an insufficient understanding of how forest types influence the retention capability of 137Cs in organic layers in Japanese forest ecosystems. Here we conducted plot-scale investigations on the retention of 137Cs in organic layers at two contrasting forest sites in Fukushima. In a deciduous broad-leaved forest, approximately 80% of the deposited 137Cs migrated to mineral soil located below the organic layers within two years after the accident, with an ecological half-life of approximately one year. Conversely, in an evergreen coniferous forest, more than half of the deposited 137Cs remained in the organic layers, with an ecological half-life of 2.1 years. The observed retention behavior can be well explained by the tree phenology and accumulation of 137Cs associated with litter materials with different degrees of degradation in the organic layers. Spatial and temporal patterns of gamma-ray dose rates depended on the retention capability. Our results demonstrate that enhanced radiation risks last longer in evergreen coniferous forests than in deciduous broad-leaved forests.
Permafrost and organic layer interactions over a climate gradient in a discontinuous permafrost zone
Kristofer D. Johnson; Jennifer W. Harden; A. David McGuire; Mark Clark; Fengming Yuan; Andrew O. Finley
2013-01-01
Permafrost is tightly coupled to the organic soil layer, an interaction that mediates permafrost degradation in response to regional warming. We analyzed changes in permafrost occurrence and organic layer thickness (OLT) using more than 3000 soil pedons across a mean annual temperature (MAT) gradient. Cause and effect relationships between permafrost probability (PF),...
Two stacked tandem white organic light-emitting diodes employing WO3 as a charge generation layer
NASA Astrophysics Data System (ADS)
Bin, Jong-Kwan; Lee, Na Yeon; Lee, SeungJae; Seo, Bomin; Yang, JoongHwan; Kim, Jinook; Yoon, Soo Young; Kang, InByeong
2016-09-01
Recently, many studies have been conducted to improve the electroluminescence (EL) performance of organic lightemitting diodes (OLEDs) by using appropriate organic or inorganic materials as charge generation layer (CGL) for their application such as full color displays, backlight units, and general lighting source. In a stacked tandem white organic light-emitting diodes (WOLEDs), a few emitting units are electrically interconnected by a CGL, which plays the role of generating charge carriers, and then facilitate the injection of it into adjacent emitting units. In the present study, twostacked WOLEDs were fabricated by using tungsten oxide (WO3) as inorganic charge generation layer and 1,4,5,8,9,11- hexaazatriphenylene hexacarbonitrile (HAT-CN) as organic charge generation layer (P-CGL). Organic P-CGL materials were used due to their ease of use in OLED fabrication as compared to their inorganic counterparts. To obtain high efficiency, we demonstrate two-stacked tandem WOLEDs as follows: ITO/HIL/HTL/HTL'/B-EML/ETL/N-CGL/P-CGL (WO3 or HAT-CN)/HTL″/YG-EML/ETL/LiF/Al. The tandem devices with blue- and yellow-green emitting layers were sensitive to the thickness of an adjacent layer, hole transporting layer for the YG emitting layer. The WOLEDs containing the WO3 as charge generation layer reach a higher power efficiency of 19.1 lm/W and the current efficiency of 51.2 cd/A with the white color coordinate of (0.316, 0.318) than the power efficiency of 13.9 lm/W, and the current efficiency of 43.7 cd/A for organic CGL, HAT-CN at 10 mA/cm2, respectively. This performance with inserting WO3 as CGL exhibited the highest performance with excellent CIE color coordinates in the two-stacked tandem OLEDs.
Perrotta, Alberto; Fuentes-Hernandez, Canek; Khan, Talha M.; ...
2016-12-02
Plasma-assisted atomic layer deposition (ALD) is used for the deposition of environmental barriers directly onto organic photovoltaic devices (OPVs) at near room temperature (30 °C). To study the effect of the ALD process on the organic materials forming the device, the precursor diffusion and intermixing at the interface during the growth of different plasma- assisted ALD inorganic barriers (i.e. Al2O3 and TiO2) onto the organic photoactive layer (P3HT:ICBA) was investigated. Depth profile x-ray photoelectron spectroscopy was used to analyze the composition of the organic/inorganic interface to investigate the infiltration of the plasma-assisted ALD precursors into the photoactive layer as amore » function of the precursor dimension, the process temperature, and organic layer morphology. The free volume in the photoactive layer accessible to the ALD precursor was characterized by means of ellipsometric porosimetry (EP) and spectroscopic ellipsometry as a function of temperature. The organic layer is shown to exhibit free volume broadening at high temperatures, increasing the infiltration depth of the ALD precursor into the photoactive layer. Furthermore, based on previous investigations, the intrinsic permeation properties of the inorganic layers deposited by plasma-assisted ALD were predicted from the nano-porosity content as measured by EP and found to be in the 10-6 gm-2 d-1 range. Insight from our studies was used to design and fabricate multilayer barriers synthesized at near-room temperature by plasma-assisted ALD in combination with plasma-enhanced CVD onto organic photovoltaic (OPVs) devices. Encapsulated OPVs displayed shelf-lifetimes up to 1400 h at ambient conditions.« less
In situ analysis of the organic framework in the prismatic layer of mollusc shell.
Tong, Hua; Hu, Jiming; Ma, Wentao; Zhong, Guirong; Yao, Songnian; Cao, Nianxing
2002-06-01
A novel in situ analytic approach was constructed by means of ion sputtering, decalcification and deprotein techniques combining with scanning electron microscopy (SEM) and transmission electron microscope (TEM) ultrastructural analysis. The method was employed to determine the spatial distribution of the organic framework outside and the inner crystal and organic/inorganic interface spatial geometrical relationship in the prismatic layer of cristaris plicate (leach). The results show that there is a substructure of organic matrix in the intracrystalline region. The prismatic layer forms according to strict hierarchical configuration of regular pattern. Each unit of organic template of prismatic layer can uniquely determine the column crystal growth direction, spatial orientation and size. Cavity templates are responsible for supporting. limiting size and shape and determining the crystal growth spatial orientation, while the intracrystal organic matrix is responsible for providing nucleation point and inducing the nucleation process of calcite. The stereo hierarchical fabrication of prismatic layer was elucidated for the first time.
NASA Astrophysics Data System (ADS)
Ahmad, Shahab; Prakash, G. Vijaya
2014-01-01
Many varieties of layered inorganic-organic (IO) perovskite of type (MX4 (where R: organic moiety, M: divalent metal, and X: halogen) were successfully fabricated and characterized. X-ray diffraction data suggest that these inorganic and organic structures are alternatively stacked up along c-axis, where inorganic mono layers are of extended corner-shared MX6 octahedra and organic spacers are the bi-layers of organic entities. These layered perovskites show unusual room-temperature exciton absorption and photoluminescence due to the quantum and dielectric confinement-induced enhancement in the exciton binding energies. A wide spectral range of optical exciton tunability (350 to 600 nm) was observed experimentally from systematic compositional variation in (i) divalent metal ions (M=Pb, Sn, Hg), (ii) halides (X=I and Br-), and (iii) organic moieties (R). Specific photoluminescence features are due to the structure of the extended MX42- network and the eventual electronic band structure. The compositionally dependent photoluminescence of these IO hybrids could be useful in various photonic and optoelectronic devices.
NASA Astrophysics Data System (ADS)
Trugman, A. T.; Fenton, N.; Bergeron, Y.; Xu, X.; Welp, L.; Medvigy, D.
2015-12-01
Soil organic layer dynamics strongly affect boreal forest development after fire. Field studies show that soil organic layer thickness exerts a species-specific control on propagule establishment in the North American boreal forest. On organic soils thicker than a few centimeters, all propagules are less able to recruit, but broadleaf trees recruit less effectively than needleleaf trees. In turn, forest growth controls organic layer accumulation through modulating litter input and litter quality. These dynamics have not been fully incorporated into models, but may be essential for accurate projections of ecosystem carbon storage. Here, we develop a data-constrained model for understanding boreal forest development after fire. We update the ED2 model to include new aspen and black spruce species-types, species-specific propagule survivorship dependent on soil organic layer depth, species-specific litter decay rates, dynamically accumulating moss and soil organic layers, and nitrogen fixation by cyanobacteria associated with moss. The model is validated against diverse observations ranging from monthly to centennial timescales and spanning a climate gradient in Alaska, central Canada, and Quebec. We then quantify differences in forest development that result from changes in organic layer accumulation, temperature, and nitrogen. We find that (1) the model accurately reproduces a range of observations throughout the North American boreal forest; (2) the presence of a thick organic layer results in decreased decomposition and decreased aboveground productivity, effects that can increase or decrease ecosystem carbon uptake depending on location-specific attributes; (3) with a mean warming of 4°C, some forests switch from undergoing succession to needleleaf forests to recruiting multiple cohorts of broadleaf trees, decreasing ecosystem accumulation by ~30% after 300 years; (4) the availability of nitrogen regulates successional dynamics such than broadleaf species are less able to compete with needleleaf trees under low nitrogen regimes. We conclude that a joint regulation between the soil organic layer, temperature, and nitrogen will likely play an important role in influencing boreal forests development after fire in future climates, and should be represented in models.
NASA Astrophysics Data System (ADS)
Zhang, Yifu; Zheng, Jiqi; Wang, Qiushi; Hu, Tao; Tian, Fuping; Meng, Changgong
2017-03-01
Layer-by-layer V2O5 structures self-assembly by quadrate sheets like "multilayer cake" were successfully synthesized using NH4VO3 as the vanadium sources by a facile hydrothermal route and combination of the calcination. The structure and composition were characterized by field emission scanning electron microscopy, energy-dispersive X-ray spectrometer, X-ray powder diffraction, Raman and Fourier transform infrared spectroscopy. The optical properties of the as-obtained V2O5 layer-by-layer structures were investigated by the Ultraviolet-visible spectroscopy and photoluminescence spectrum. The electrochemical properties of the as-obtained V2O5 layer-by-layer structures as electrodes in supercapacitor device were measured by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) both in the aqueous and organic electrolyte. The specific capacitance is 347 F g-1 at 1 A g-1 in organic electrolyte, which is improved by 46% compared with 238 F g-1 in aqueous electrolyte. During the cycle performance, the specific capacitances of V2O5 layer-by-layer structures after 100 cycles are 30% and 82% of the initial discharge capacity in the aqueous and organic electrolyte, respectively, indicating the cycle performance is significantly improved in organic electrolyte. Our results turn out that layer-by-layer V2O5 structures are an ideal material for supercapacitor electrode in the present work.
Tuning the Performance of Organic Spintronic Devices Using X-Ray Generated Traps
2012-08-16
observed in organic devices using the same organic semiconductor, namely tris(8-hydroxyquinoli- nato)aluminium ( Alq3 ) [5,15]. Here we will show that the...manufacturing steps were carried out in a deposition chamber located inside a nitrogen glovebox. Next, the organic layer Alq3 (70 to 100 nm) followed by the...As the organic semiconductor spacer layer, the Alq3 layer was fabricated by thermal evaporation in a vacuum of 10Ś mbar at a rate of 0:1 nm=s. The Fe
Effects of trees on the burning of organic layers on permafrost terrain
Eric S. Kasischke; Merritt R. Turetsky; Evan S. Kane
2012-01-01
We collected data to estimate depth of the remaining (residual) organic layer as well as data to estimate total pre-fire organic layer depth in 99 plots located in mature black spruce (Picea mariana (Mill.) BSP) forests in interior Alaska that burned during the large fire seasons of 2004 and 2005. These data were collected immediately adjacent to...
Timothy J. Veverica; Evan S. Kane; Eric S. Kasischke
2012-01-01
Organic layer consumption during forest fires is hard to quantify. These data suggest that the adventitious root methods developed for reconstructing organic layer depths following wildfires in boreal black spruce forests can also be applied to mixed tamarack forests growing in temperate regions with glacially transported soils.
Kristensen, Terje; Ohlson, Mikael; Bolstad, Paul; Nagy, Zoltan
2015-08-01
Accurate field measurements from inventories across fine spatial scales are critical to improve sampling designs and to increase the precision of forest C cycling modeling. By studying soils undisturbed from active forest management, this paper gives a unique insight in the naturally occurring variability of organic layer C and provides valuable references against which subsequent and future sampling schemes can be evaluated. We found that the organic layer C stocks displayed great short-range variability with spatial autocorrelation distances ranging from 0.86 up to 2.85 m. When spatial autocorrelations are known, we show that a minimum of 20 inventory samples separated by ∼5 m is needed to determine the organic layer C stock with a precision of ±0.5 kg C m(-2). Our data also demonstrates a strong relationship between the organic layer C stock and horizon thickness (R (2) ranging from 0.58 to 0.82). This relationship suggests that relatively inexpensive measurements of horizon thickness can supplement soil C sampling, by reducing the number of soil samples collected, or to enhance the spatial resolution of organic layer C mapping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akselrod, Gleb M.; Bawendi, Moungi G.; Bulovic, Vladimir
Disclosed are a device and a method for the design and fabrication of the device for enhancing the brightness of luminescent molecules, nanostructures, and thin films. The device includes a mirror, a dielectric medium or spacer, an absorptive layer, and a luminescent layer. The absorptive layer is a continuous thin film of a strongly absorbing organic or inorganic material. The luminescent layer may be a continuous luminescent thin film or an arrangement of isolated luminescent species, e.g., organic or metal-organic dye molecules, semiconductor quantum dots, or other semiconductor nanostructures, supported on top of the absorptive layer.
Nomoto, Naoki; Ali, Muntjeer; Jayaswal, Komal; Iguchi, Akinori; Hatamoto, Masashi; Okubo, Tsutomu; Takahashi, Masanobu; Kubota, Kengo; Tagawa, Tadashi; Uemura, Shigeki; Yamaguchi, Takashi; Harada, Hideki
2018-04-01
Profile analysis of the down-flow hanging sponge (DHS) reactor was conducted under various temperature and organic load conditions to understand the organic removal and nitrification process for sewage treatment. Under high organic load conditions (3.21-7.89 kg-COD m -3 day -1 ), dissolved oxygen (DO) on the upper layer of the reactor was affected by organic matter concentration and water temperature, and sometimes reaches around zero. Almost half of the COD Cr was removed by the first layer, which could be attributed to the adsorption of organic matter on sponge media. After the first layer, organic removal proceeded along the first-order reaction equation from the second to the fourth layers. The ammoniacal nitrogen removal ratio decreased under high organic matter concentration (above 100 mg L -1 ) and low DO (less than 1 mg L -1 ) condition. Ammoniacal nitrogen removal proceeded via a zero-order reaction equation along the reactor height. In addition, the profile results of DO, COD Cr , and NH 3 -N were different in the horizontal direction. Thus, it is thought the concentration of these items and microbial activities were not in a uniform state even in the same sponge layer of the DHS reactor.
Organic solar cells with graded absorber layers processed from nanoparticle dispersions.
Gärtner, Stefan; Reich, Stefan; Bruns, Michael; Czolk, Jens; Colsmann, Alexander
2016-03-28
The fabrication of organic solar cells with advanced multi-layer architectures from solution is often limited by the choice of solvents since most organic semiconductors dissolve in the same aromatic agents. In this work, we investigate multi-pass deposition of organic semiconductors from eco-friendly ethanol dispersion. Once applied, the nanoparticles are insoluble in the deposition agent, allowing for the application of further nanoparticulate layers and hence for building poly(3-hexylthiophene-2,5-diyl):indene-C60 bisadduct absorber layers with vertically graded polymer and conversely graded fullerene concentration. Upon thermal annealing, we observe some degrees of polymer/fullerene interdiffusion by means of X-ray photoelectron spectroscopy and Kelvin probe force microscopy. Replacing the common bulk-heterojunction by such a graded photo-active layer yields an enhanced fill factor of the solar cell due to an improved charge carrier extraction, and consequently an overall power conversion efficiency beyond 4%. Wet processing of such advanced device architectures paves the way for a versatile, eco-friendly and industrially feasible future fabrication of organic solar cells with advanced multi-layer architectures.
Lipids from the nacreous and prismatic layers of two Pteriomorpha Mollusc shells
NASA Astrophysics Data System (ADS)
Farre, B.; Dauphin, Y.
2009-04-01
Mollusc shells are the best-known Ca-carbonate biominerals. They are commonly described as a mineralized two layered structure: an outer layer composed of calcite prismatic units, and an internal layer composed of tablets of aragonite: the nacreous layer. An external organic layer (periostracum) is present in most taxa. However, the most common structure in the Mollusc shell is the aragonite crossed lamellar layer, but aragonite prisms, calcite foliated layers and homogeneous layers have been also described by Boggild (1930) in all the Mollusc orders. Since, more detailed descriptions of Bivalve shells have been done (Taylor et al., 1969, 1973). Despite the nacroprismatic arrangement is rare, calcite prismatic and aragonite nacreous layers are the best studied because of their simple 3D structure and large units. Among these Molluscs, some Bivalve species composed of these two layers are of commercial interest, such as the pearl oyster, Pinctada margaritifera, cultivated in French Polynesia to produce black pearls. It is well established that Mollusc shells are composite structures of organic and inorganic components (Hatchett, 1799; Grégoire et al., 1955; Beedham, 1958; Simkiss, 1965; Mutvei, 1969; Cuif et al., 1980; Berman et al., 1993; Kobayashi and Samata, 2006). Numerous studies are concerned with the organic matrix of the shell. Organic components are commonly obtained after a strong or mild decalcification process. They are said to consist of both a soluble and insoluble fraction. The main part of studies is dedicated to the soluble components, and among them, proteins (Grégoire et al., 1955; Grégoire, 1961; Krampitz et al., 1976; Samata et al., 1980, 2004; Weiner, 1983; Miyamoto et al., 2006). Despite the pioneering work of Wada (1980) sugars are usually neglected despite their role in biomineralization. The third component of the organic matrix of calcareous biominerals is lipids. To date, there is a paucity of information concerning the presence, abundance and composition of these components in Mollusc shells. Goulletquer and Wolowicz (1989) have estimated that proteins represent 90% of the organic matrix of the shell, carbohydrates vary from 0.15 to 0.29%, while lipids vary from 0.8 to 2.9%. Fatty acids, cholesterol, phytadienes and ketones have been described in modern and fossil shells (Cobabe and Pratt, 1995). Using a procedure to extract intra- and intercrystalline organic matrices, Collins et al. (1995) have detected n-alkanes, n-alcohols, fatty acids and sterols in modern shells. It is suggested that the contents and ratios of these components are dependant on the environment and phylogeny. Lipids of the nacreous layer of Pinctada are diverse, with cholesterol, fatty acids, triglycerides and other unknown components (Rousseau et al., 2006). It has been established that the main part of the soluble organic matrices of the nacreous layer is composed of acidic proteins (Samata, 1988, 1990), whereas the prismatic layer of Pinna is mainly composed of acidic and sulphated polysaccharides (Dauphin, 2002; Dauphin et al., 2003). The amino acid compositions of the two layers are also different (Samata, 1990). Because the organic matrices extracted from the aragonite nacre and calcite prisms are the best known materials, the lipids extracted from the calcite prisms of Pinna nobilis and Pinctada margaritifera and the aragonite nacre of P. margaritifera have been chosen as test material for characterisation of the lipid fraction of molusk shells. The nacreous layer of Pinctada is thick,whereas its prismatic layer is thin, and the prisms display complex structures. On the opposite, the calcitic prismatic layer of Pinna is thick, with no intraprismatic membranes, and its nacreous layer is thin and present only in the oldest part of the shell. Moreover, these layers have a simple geometry so that some organic components (membranes, wall…) said to be insoluble, are clearly visible. Lipids were extracted from the calcite prismatic and aragonite nacreous layer of two mollusc shells thanks organic solvents. Two methods were used for the characterisation of the lipid obtaiened Fourier Tranform Infrared Spectrometry and thin layed chromatography. Fourier Transform Infrared Spectrometry shows that lipids are present in both samples, but they are not similar. Thin layer chromatography confirms that lipids are different in the two studied layers, so that it may be suggested they are species-dependant, but also structure-dependant. Although not yet deciphered, their role in biomineralization and fossilisation processes is probably important.
Simplified efficient phosphorescent organic light-emitting diodes by organic vapor phase deposition
NASA Astrophysics Data System (ADS)
Pfeiffer, P.; Beckmann, C.; Stümmler, D.; Sanders, S.; Simkus, G.; Heuken, M.; Vescan, A.; Kalisch, H.
2017-12-01
The most efficient phosphorescent organic light-emitting diodes (OLEDs) are comprised of complex stacks with numerous organic layers. State-of-the-art phosphorescent OLEDs make use of blocking layers to confine charge carriers and excitons. On the other hand, simplified OLEDs consisting of only three organic materials have shown unexpectedly high efficiency when first introduced. This was attributed to superior energy level matching and suppressed external quantum efficiency (EQE) roll-off. In this work, we study simplified OLED stacks, manufactured by organic vapor phase deposition, with a focus on charge balance, turn-on voltage (Von), and efficiency. To prevent electrons from leaking through the device, we implemented a compositionally graded emission layer. By grading the emitter with the hole transport material, charge confinement is enabled without additional blocking layers. Our best performing organic stack is composed of only three organic materials in two layers including the emitter Ir(ppy)3 and yields a Von of 2.5 V (>1 cd/m2) and an EQE of 13% at 3000 cd/m2 without the use of any additional light extraction techniques. Changes in the charge balance, due to barrier tuning or adjustments in the grading parameters and layer thicknesses, are clearly visible in the current density-voltage-luminance (J-V-L) measurements. As charge injection at the electrodes and organic interfaces is of great interest but difficult to investigate in complex device structures, we believe that our simplified organic stack is not only a potent alternative to complex state-of-the-art OLEDs but also a well suited test vehicle for experimental studies focusing on the modification of the electrode-organic semiconductor interface.
Structural complexities in the active layers of organic electronics.
Lee, Stephanie S; Loo, Yueh-Lin
2010-01-01
The field of organic electronics has progressed rapidly in recent years. However, understanding the direct structure-function relationships between the morphology in electrically active layers and the performance of devices composed of these materials has proven difficult. The morphology of active layers in organic electronics is inherently complex, with heterogeneities existing across multiple length scales, from subnanometer to micron and millimeter range. A major challenge still facing the organic electronics community is understanding how the morphology across all of the length scales in active layers collectively determines the device performance of organic electronics. In this review we highlight experiments that have contributed to the elucidation of structure-function relationships in organic electronics and also point to areas in which knowledge of such relationships is still lacking. Such knowledge will lead to the ability to select active materials on the basis of their inherent properties for the fabrication of devices with prespecified characteristics.
Growth and characterization of organic layers deposited on porous-patterned Si surface
NASA Astrophysics Data System (ADS)
Gorbach, Tamara Ya.; Smertenko, Petro S.; Olkhovik, G. P.; Wisz, Grzegorz
2017-01-01
The organic layers with the thickness from a few nanometers up to few micrometers have been deposited from the chemical solution at room temperature on porous patterned Si surfaces using two medical solutions: thiamine diphosphide (pH=1÷2) and metamizole sodium (pH=6÷7). Based on evolution of morphology, structural and compositional features obtained by scanning electron microscopy, X-ray analysis, reflectance high energy electron diffraction the grown mechanisms in thin organic layers are discussed in the terms of terrace-step-kink model whereas self-organized assemblies evaluated more thick layers. Transport mechanism features and possible photovoltaic properties are discussed on the base of differential current-voltage characteristics.
Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J.; Chang, Robert P. H.; Facchetti, Antonio; Marks, Tobin J.
2015-01-01
In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor–inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance. PMID:26080437
Zhou, Nanjia; Kim, Myung -Gil; Loser, Stephen; ...
2015-06-15
In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor– inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactivemore » materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Lastly, continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.« less
Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J; Chang, Robert P H; Facchetti, Antonio; Marks, Tobin J
2015-06-30
In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor-inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.
Stacked white OLED having separate red, green and blue sub-elements
Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael
2014-07-01
The present invention relates to efficient organic light emitting devices (OLEDs). The devices employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. Thus, the devices may be white-emitting OLEDs, or WOLEDs. Each sub-element comprises at least one organic layer which is an emissive layer--i.e., the layer is capable of emitting light when a voltage is applied across the stacked device. The sub-elements are vertically stacked and are separated by charge generating layers. The charge-generating layers are layers that inject charge carriers into the adjacent layer(s) but do not have a direct external connection.
NASA Astrophysics Data System (ADS)
Singh, Joginder; Nirwal, Varun Singh; Bhatnagar, P. K.; Peta, Koteswara Rao
2018-05-01
Solution processable organic solar cells have attracted significant interest in scientific community due to their easy processability, flexibility and eco friendly fabrication. In these organic solar cells structure, PEDOT:PSS layer has major importance as it used as hole transporting layer. In the present work, we have analyzed the effect of incorporation of silver nanoparticles (AgNPs) in PEDOT:PSS layer for P3HT:PCBM based organic solar cells. The presence of Ag nanoparticles in PEDOT:PSS film is confirmed by atomic force microscopy (AFM) images. It has been observed that PEDOT:PSS layer with AgNPs has ˜5.4% more transmittance than PEDOT:PSS layer in most of the visible region, which helps in reaching more light on active layer. Finally, solar cell with structure ITO/PEDOT:PSS:AgNPs/Al is fabricated and J-V characteristics are plotted under illumination. It is observed that there is a significant (˜10%) enhancement in short circuit current and slight increment in open circuit voltage with addition of AgNPs in PEDOT:PSS layer. The calculated value of power conversion efficiency (PCE) of fabricated device without AgNPs in PEDOT:PSS was 1.67%, which increased to 2.02% after addition of AgNPs in PEDOT:PSS layer.
Adhesive flexible barrier film, method of forming same, and organic electronic device including same
Blizzard, John Donald; Weidner, William Kenneth
2013-02-05
An adhesive flexible barrier film comprises a substrate and a barrier layer disposed on the substrate. The barrier layer is formed from a barrier composition comprising an organosilicon compound. The adhesive flexible barrier film also comprises an adhesive layer disposed on the barrier layer and formed from an adhesive composition. A method of forming the adhesive flexible barrier film comprises the steps of disposing the barrier composition on the substrate to form the barrier layer, disposing the adhesive composition on the barrier layer to form the adhesive layer, and curing the barrier layer and the adhesive layer. The adhesive flexible barrier film may be utilized in organic electronic devices.
Solid state photosensitive devices which employ isolated photosynthetic complexes
Peumans, Peter; Forrest, Stephen R.
2009-09-22
Solid state photosensitive devices including photovoltaic devices are provided which comprise a first electrode and a second electrode in superposed relation; and at least one isolated Light Harvesting Complex (LHC) between the electrodes. Preferred photosensitive devices comprise an electron transport layer formed of a first photoconductive organic semiconductor material, adjacent to the LHC, disposed between the first electrode and the LHC; and a hole transport layer formed of a second photoconductive organic semiconductor material, adjacent to the LHC, disposed between the second electrode and the LHC. Solid state photosensitive devices of the present invention may comprise at least one additional layer of photoconductive organic semiconductor material disposed between the first electrode and the electron transport layer; and at least one additional layer of photoconductive organic semiconductor material, disposed between the second electrode and the hole transport layer. Methods of generating photocurrent are provided which comprise exposing a photovoltaic device of the present invention to light. Electronic devices are provided which comprise a solid state photosensitive device of the present invention.
He, Ruoyang; Yang, Kaijun; Li, Zhijie; Schädler, Martin; Yang, Wanqin; Wu, Fuzhong; Tan, Bo; Zhang, Li; Xu, Zhenfeng
2017-01-01
Forest land-use changes have long been suggested to profoundly affect soil microbial communities. However, how forest type conversion influences soil microbial properties remains unclear in Tibetan boreal forests. The aim of this study was to explore variations of soil microbial profiles in the surface organic layer and subsurface mineral soil among three contrasting forests (natural coniferous forest, NF; secondary birch forest, SF and spruce plantation, PT). Soil microbial biomass, activity and community structure of the two layers were investigated by chloroform fumigation, substrate respiration and phospholipid fatty acid analysis (PLFA), respectively. In the organic layer, both NF and SF exhibited higher soil nutrient levels (carbon, nitrogen and phosphorus), microbial biomass carbon and nitrogen, microbial respiration, PLFA contents as compared to PT. However, the measured parameters in the mineral soils often did not differ following forest type conversion. Irrespective of forest types, the microbial indexes generally were greater in the organic layer than in the mineral soil. PLFAs biomarkers were significantly correlated with soil substrate pools. Taken together, forest land-use change remarkably altered microbial community in the organic layer but often did not affect them in the mineral soil. The microbial responses to forest land-use change depend on soil layer, with organic horizons being more sensitive to forest conversion.
Atiwongsangthong, Narin
2012-08-01
The purpose of this research, the nanoporous silicon layer were fabricated and investigated the physical properties such as photoluminescence and the electrical properties in order to develop organic vapor sensor by using nanoporous silicon. The Changes in the photoluminescence intensity of nanoporous silicon samples are studied during ultraviolet illumination in various ambient gases such as nitrogen, oxigen and vacuum. In this paper, the nanoporous silicon layer was used as organic vapor adsorption and sensing element. The advantage of this device are simple process compatible in silicon technology and usable in room temperature. The structure of this device consists of nanoporous silicon layer which is formed by anodization of silicon wafer in hydrofluoric acid solution and aluminum electrode which deposited on the top of nanoporous silicon layer by evaporator. The nanoporous silicon sensors were placed in a gas chamber with various organic vapor such as ethanol, methanol and isopropyl alcohol. From studying on electrical characteristics of this device, it is found that the nanoporous silicon layer can detect the different organic vapor. Therefore, the nanoporous silicon is important material for organic vapor sensor and it can develop to other applications about gas sensors in the future.
Xu, Wenhua; Li, Wei; Jiang, Ping; Wang, Hui; Bai, Edith
2014-01-01
The roles of substrate availability and quality in determining temperature sensitivity (Q10) of soil carbon (C) decomposition are still unclear, which limits our ability to predict how soil C storage and cycling would respond to climate change. Here we determined Q10 in surface organic layer and subsurface mineral soil along an elevation gradient in a temperate forest ecosystem. Q10 was calculated by comparing the times required to respire a given amount of soil C at 15 and 25°C in a 350-day incubation. Results indicated that Q10 of the organic layer was 0.22–0.71 (absolute difference) higher than Q10 of the mineral soil. Q10 in both the organic layer (2.5–3.4) and the mineral soil (2.1–2.8) increased with decreasing substrate quality during the incubation. This enhancement of Q10 over incubation time in both layers suggested that Q10 of more labile C was lower than that of more recalcitrant C, consistent with the Arrhenius kinetics. No clear trend of Q10 was found along the elevation gradient. Because the soil organic C pool of the organic layer in temperate forests is large, its higher temperature sensitivity highlights its importance in C cycling under global warming. PMID:25270905
Li, Wen; Guo, Fengning; Ling, Haifeng; Zhang, Peng; Yi, Mingdong; Wang, Laiyuan; Wu, Dequn; Xie, Linghai; Huang, Wei
2017-08-01
Nonvolatile organic field-effect transistor (OFET) memory devices based on pentacene/ N , N '-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13)/pentacene trilayer organic heterostructures have been proposed. The discontinuous n-type P13 embedded in p-type pentacene layers can not only provide electrons in the semiconductor layer that facilitates electron trapping process; it also works as charge trapping sites, which is attributed to the quantum well-like pentacene/P13/pentacene organic heterostructures. The synergistic effects of charge trapping in the discontinuous P13 and the charge-trapping property of the poly(4-vinylphenol) (PVP) layer remarkably improve the memory performance. In addition, the trilayer organic heterostructures have also been successfully applied to multilevel and flexible nonvolatile memory devices. The results provide a novel design strategy to achieve high-performance nonvolatile OFET memory devices and allow potential applications for different combinations of various organic semiconductor materials in OFET memory.
Li, Wen; Guo, Fengning; Ling, Haifeng; Zhang, Peng; Wang, Laiyuan; Wu, Dequn
2017-01-01
Nonvolatile organic field‐effect transistor (OFET) memory devices based on pentacene/N,N′‐ditridecylperylene‐3,4,9,10‐tetracarboxylic diimide (P13)/pentacene trilayer organic heterostructures have been proposed. The discontinuous n‐type P13 embedded in p‐type pentacene layers can not only provide electrons in the semiconductor layer that facilitates electron trapping process; it also works as charge trapping sites, which is attributed to the quantum well‐like pentacene/P13/pentacene organic heterostructures. The synergistic effects of charge trapping in the discontinuous P13 and the charge‐trapping property of the poly(4‐vinylphenol) (PVP) layer remarkably improve the memory performance. In addition, the trilayer organic heterostructures have also been successfully applied to multilevel and flexible nonvolatile memory devices. The results provide a novel design strategy to achieve high‐performance nonvolatile OFET memory devices and allow potential applications for different combinations of various organic semiconductor materials in OFET memory. PMID:28852619
Does It Matter How the U.S. Army Organizes To Deal with Cyber Threats?
2013-12-10
document “Joint Operating Environment 2010” conceptualizes the cyber domain into three layers: the physical layer, the logical layer, and the social ...the network of nodes; and the social layer consists of the human and cognitive aspects of the cyber domain.14 The layers of the cyber domain...Innovations and Organizations. (1973), 131. Expanding upon the findings of Zaltman et al., social scientists developed a model to illustrate four
NASA Astrophysics Data System (ADS)
Trugman, A. T.; Fenton, N. J.; Bergeron, Y.; Xu, X.; Welp, L. R.; Medvigy, D.
2016-09-01
Previous empirical work has shown that feedbacks between fire severity, soil organic layer thickness, tree recruitment, and forest growth are important factors controlling carbon accumulation after fire disturbance. However, current boreal forest models inadequately simulate this feedback. We address this deficiency by updating the ED2 model to include a dynamic feedback between soil organic layer thickness, tree recruitment, and forest growth. The model is validated against observations spanning monthly to centennial time scales and ranging from Alaska to Quebec. We then quantify differences in forest development after fire disturbance resulting from changes in soil organic layer accumulation, temperature, nitrogen availability, and atmospheric CO2. First, we find that ED2 accurately reproduces observations when a dynamic soil organic layer is included. Second, simulations indicate that the presence of a thick soil organic layer after a mild fire disturbance decreases decomposition and productivity. The combination of the biological and physical effects increases or decreases total ecosystem carbon depending on local conditions. Third, with a 4°C temperature increase, some forests transition from undergoing succession to needleleaf forests to recruiting multiple cohorts of broadleaf trees, decreasing total ecosystem carbon by ˜40% after 300 years. However, the presence of a thick soil organic layer due to a persistently mild fire regime can prevent this transition and mediate carbon losses even under warmer temperatures. Fourth, nitrogen availability regulates successional dynamics; broadleaf species are less competitive with needleleaf trees under low nitrogen regimes. Fifth, the boreal forest shows additional short-term capacity for carbon sequestration as atmospheric CO2 increases.
System for rapid biohydrogen phenotypic screening of microorganisms using a chemochromic sensor
Seibert, Michael; Benson, David K.; Flynn, Timothy Michael
2002-01-01
Provided is a system for identifying a hydrogen gas producing organism. The system includes a sensor film having a first layer comprising a transition metal oxide or oxysalt and a second layer comprising a hydrogen-dissociative catalyst metal, the first and second layers having an inner and an outer surface wherein the inner surface of the second layer is deposited on the outer surface of the first layer, and a substrate adjacent to the outer surface of the second layer, the organism isolated on the substrate.
Seibert, Michael; Benson, David K.; Flynn, Timothy Michael
2001-01-01
The invention provides an assay system for identifying a hydrogen-gas-producing organism, including a sensor film having a first layer comprising a transition metal oxide or oxysalt and a second layer comprising hydrogen-dissociative catalyst metal, the first and second layers having an inner and an outer surface wherein the inner surface of the second layer is deposited on the outer surface of the first layer, and a substrate disposed proximally to the outer surface of the second layer, the organism being isolated on the substrate.
Mechanically flexible organic electroluminescent device with directional light emission
Duggal, Anil Raj; Shiang, Joseph John; Schaepkens, Marc
2005-05-10
A mechanically flexible and environmentally stable organic electroluminescent ("EL") device with directional light emission comprises an organic EL member disposed on a flexible substrate, a surface of which is coated with a multilayer barrier coating which includes at least one sublayer of a substantially transparent organic polymer and at least one sublayer of a substantially transparent inorganic material. The device includes a reflective metal layer disposed on the organic EL member opposite to the substrate. The reflective metal layer provides an increased external quantum efficiency of the device. The reflective metal layer and the multilayer barrier coating form a seal around the organic EL member to reduce the degradation of the device due to environmental elements.
NASA Astrophysics Data System (ADS)
Xue, Qin; Liu, Shouyin; Zhang, Shiming; Chen, Ping; Zhao, Yi; Liu, Shiyong
2013-01-01
We fabricated organic light-emitting devices (OLEDs) employing 2-methyl-9,10-di(2-naphthyl)-anthracene (MADN) as hole-transport material (HTM) instead of commonly used N,N'-bis-(1-naphthyl)-N,N'-diphenyl,1,1'-biphenyl-4,4'-diamine (NPB). After inserting a 0.9 nm thick molybdenum oxide (MoOx) layer at the indium tin oxide (ITO)/MADN interface and a 5 nm thick mixed layer at the organic/organic heterojunction interface, the power conversion efficiency of the device can be increased by 4-fold.
Charge transfer at organic-inorganic interfaces—Indoline layers on semiconductor substrates
NASA Astrophysics Data System (ADS)
Meyenburg, I.; Falgenhauer, J.; Rosemann, N. W.; Chatterjee, S.; Schlettwein, D.; Heimbrodt, W.
2016-12-01
We studied the electron transfer from excitons in adsorbed indoline dye layers across the organic-inorganic interface. The hybrids consist of indoline derivatives on the one hand and different inorganic substrates (TiO2, ZnO, SiO2(0001), fused silica) on the other. We reveal the electron transfer times from excitons in dye layers to the organic-inorganic interface by analyzing the photoluminescence transients of the dye layers after femtosecond excitation and applying kinetic model calculations. A correlation between the transfer times and four parameters have been found: (i) the number of anchoring groups, (ii) the distance between the dye and the organic-inorganic interface, which was varied by the alkyl-chain lengths between the carboxylate anchoring group and the dye, (iii) the thickness of the adsorbed dye layer, and (iv) the level alignment between the excited dye ( π* -level) and the conduction band minimum of the inorganic semiconductor.
NASA Astrophysics Data System (ADS)
Yeom, Bongjun; Char, Kookheon
2016-06-01
Laminated nanostructures in nacre have been adopted as models in the fabrication of strong, tough synthetic nanocomposites. However, the utilization of CaCO3 biominerals in these composites is limited by the complexity of the synthesis method for nanosized biominerals. In this study, we use the enzymatic reaction of urease to generate a nanoscale CaCO3 thin film to prepare CaCO3/polymer hybrid nanolaminates. Additional layers of CaCO3 thin film are consecutively grown over the base CaCO3 layer with the intercalation of organic layers. The morphology and crystallinity of the added CaCO3 layers depend strongly on the thickness of the organic layer coated on the underlying CaCO3 layer. When the organic layer is less than 20 nm thick, the amorphous CaCO3 layer is spontaneously transformed into crystalline calcite layer during the growth process. We also observe crystalline continuity between adjacent CaCO3 layers through interconnecting mineral bridges. The formation of these mineral bridges is crucial to the epitaxial growth of CaCO3 layers, similar to the formation of natural nacre.
Subbiah, Anand S.; Mahuli, Neha; Agarwal, Sumanshu; ...
2017-07-21
Hybrid perovskite photovoltaic devices heavily rely on the use of organic (rather than inorganic) charge-transport layers on top of a perovskite absorber layer because of difficulties in depositing inorganic materials on top of these fragile absorber layers. However, in comparison to the unstable and expensive organic transport materials, inorganic charge-transport layers provide improved charge transport and stability to the device architecture. Here, we report photovoltaic devices using all-inorganic transport layers in a planar p-i-n junction device configuration using formamidinium lead tribromide (FAPbBr 3) as an absorber. Efficient planar devices are obtained through atomic layer deposition of nickel oxide and sputteredmore » zinc oxide as hole- and electron-transport materials, respectively. Using only inorganic charge-transport layers resulted in planar FAPbBr 3 devices with a power conversion efficiency of 6.75% at an open-circuit voltage of 1.23 V. In conclusion, the transition of planar FAPbBr 3 devices making from all-organic towards all-inorganic charge-transport layers is studied in detail.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subbiah, Anand S.; Mahuli, Neha; Agarwal, Sumanshu
Hybrid perovskite photovoltaic devices heavily rely on the use of organic (rather than inorganic) charge-transport layers on top of a perovskite absorber layer because of difficulties in depositing inorganic materials on top of these fragile absorber layers. However, in comparison to the unstable and expensive organic transport materials, inorganic charge-transport layers provide improved charge transport and stability to the device architecture. Here, we report photovoltaic devices using all-inorganic transport layers in a planar p-i-n junction device configuration using formamidinium lead tribromide (FAPbBr 3) as an absorber. Efficient planar devices are obtained through atomic layer deposition of nickel oxide and sputteredmore » zinc oxide as hole- and electron-transport materials, respectively. Using only inorganic charge-transport layers resulted in planar FAPbBr 3 devices with a power conversion efficiency of 6.75% at an open-circuit voltage of 1.23 V. In conclusion, the transition of planar FAPbBr 3 devices making from all-organic towards all-inorganic charge-transport layers is studied in detail.« less
Furutani, Rui
2008-09-01
The present investigation carried out Nissl, Klüver-Barrera, and Golgi studies of the cerebral cortex in three distinct genera of oceanic dolphins (Risso's dolphin, striped dolphin and bottlenose dolphin) to identify and classify cortical laminar and cytoarchitectonic structures in four distinct functional areas, including primary motor (M1), primary sensory (S1), primary visual (V1), and primary auditory (A1) cortices. The laminar and cytoarchitectonic organization of each of these cortical areas was similar among the three dolphin species. M1 was visualized as five-layer structure that included the molecular layer (layer I), external granular layer (layer II), external pyramidal layer (layer III), internal pyramidal layer (layer V), and fusiform layer (layer VI). The internal granular layer was absent. The cetacean sensory-related cortical areas S1, V1, and A1 were also found to have a five-layer organization comprising layers I, II, III, V and VI. In particular, A1 was characterized by the broadest layer I, layer II and developed band of pyramidal neurons in layers III (sublayers IIIa, IIIb and IIIc) and V. The patch organization consisting of the layer IIIb-pyramidal neurons was detected in the S1 and V1, but not in A1. The laminar patterns of V1 and S1 were similar, but the cytoarchitectonic structures of the two areas were different. V1 was characterized by a broader layer II than that of S1, and also contained the specialized pyramidal and multipolar stellate neurons in layers III and V.
Xu, Zhengtao; Mitzi, David B; Medeiros, David R
2003-03-10
The organic-inorganic hybrid [(CH(3))(3)NCH(2)CH(2)NH(3)]SnI(4) presents a layered perovskite structure, templated by an organic dication containing both a primary and a quaternary ammonium group. Due to the high charge density and small size of the organic cation, the separation of the perovskite layers is small and short iodine-iodine contacts of 4.19 A are formed between the layers. Optical thin-film measurements on this compound indicate a significant red shift of the exciton peak (630 nm) associated with the band gap, as compared with other SnI(4)(2)(-)-based layered perovskite structures.
NASA Astrophysics Data System (ADS)
Ni, Yao; Zhou, Jianlin; Kuang, Peng; Lin, Hui; Gan, Ping; Hu, Shengdong; Lin, Zhi
2017-08-01
We report organic thin film transistors (OTFTs) with pentacene/fluorinated copper phthalo-cyanine (F16CuPc)/pentacene (PFP) sandwich configuration as active layers. The sandwich devices not only show hole mobility enhancement but also present a well control about threshold voltage and off-state current. By investigating various characteristics, including current-voltage hysteresis, organic film morphology, capacitance-voltage curve and resistance variation of active layers carefully, it has been found the performance improvement is mainly attributed to the low carrier traps and the higher conductivity of the sandwich active layer due to the additional induced carriers in F16CuPc/pentacene. Therefore, using proper multiple active layer is an effective way to gain high performance OTFTs.
Organic layer serves as a hotspot of microbial activity and abundance in Arctic tundra soils.
Lee, Seung-Hoon; Jang, Inyoung; Chae, Namyi; Choi, Taejin; Kang, Hojeong
2013-02-01
Tundra ecosystem is of importance for its high accumulation of organic carbon and vulnerability to future climate change. Microorganisms play a key role in carbon dynamics of the tundra ecosystem by mineralizing organic carbon. We assessed both ecosystem process rates and community structure of Bacteria, Archaea, and Fungi in different soil layers (surface organic layer and subsurface mineral soil) in an Arctic soil ecosystem located at Spitsbergen, Svalbard during the summer of 2008 by using biochemical and molecular analyses, such as enzymatic assay, terminal restriction fragment length polymorphism (T-RFLP), quantitative polymerase chain reaction (qPCR), and pyrosequencing. Activity of hydrolytic enzymes showed difference according to soil type. For all three microbial communities, the average gene copy number did not significantly differ between soil types. However, archaeal diversities appeared to differ according to soil type, whereas bacterial and fungal diversity indices did not show any variation. Correlation analysis between biogeochemical and microbial parameters exhibited a discriminating pattern according to microbial or soil types. Analysis of the microbial community structure showed that bacterial and archaeal communities have different profiles with unique phylotypes in terms of soil types. Water content and hydrolytic enzymes were found to be related with the structure of bacterial and archaeal communities, whereas soil organic matter (SOM) and total organic carbon (TOC) were related with bacterial communities. The overall results of this study indicate that microbial enzyme activity were generally higher in the organic layer than in mineral soils and that bacterial and archaeal communities differed between the organic layer and mineral soils in the Arctic region. Compared to mineral soil, peat-covered organic layer may represent a hotspot for secondary productivity and nutrient cycling in this ecosystem.
He, Ruoyang; Yang, Kaijun; Li, Zhijie; Schädler, Martin; Yang, Wanqin; Wu, Fuzhong; Tan, Bo; Zhang, Li
2017-01-01
Forest land-use changes have long been suggested to profoundly affect soil microbial communities. However, how forest type conversion influences soil microbial properties remains unclear in Tibetan boreal forests. The aim of this study was to explore variations of soil microbial profiles in the surface organic layer and subsurface mineral soil among three contrasting forests (natural coniferous forest, NF; secondary birch forest, SF and spruce plantation, PT). Soil microbial biomass, activity and community structure of the two layers were investigated by chloroform fumigation, substrate respiration and phospholipid fatty acid analysis (PLFA), respectively. In the organic layer, both NF and SF exhibited higher soil nutrient levels (carbon, nitrogen and phosphorus), microbial biomass carbon and nitrogen, microbial respiration, PLFA contents as compared to PT. However, the measured parameters in the mineral soils often did not differ following forest type conversion. Irrespective of forest types, the microbial indexes generally were greater in the organic layer than in the mineral soil. PLFAs biomarkers were significantly correlated with soil substrate pools. Taken together, forest land-use change remarkably altered microbial community in the organic layer but often did not affect them in the mineral soil. The microbial responses to forest land-use change depend on soil layer, with organic horizons being more sensitive to forest conversion. PMID:28982191
Organic light emitting diode with light extracting electrode
Bhandari, Abhinav; Buhay, Harry
2017-04-18
An organic light emitting diode (10) includes a substrate (20), a first electrode (12), an emissive active stack (14), and a second electrode (18). At least one of the first and second electrodes (12, 18) is a light extracting electrode (26) having a metallic layer (28). The metallic layer (28) includes light scattering features (29) on and/or in the metallic layer (28). The light extracting features (29) increase light extraction from the organic light emitting diode (10).
1980-09-01
bacteria and also for the development of a surface organic layer on the plots that aided in the removal of wastewater bacteria through filtration and...better conditions not only for protozoan predation of fecal bacteria but also for the development of a surface organic layer on the plots. This organic... layer acted to increase the detention of the wastewater bacteria through filtration and entrapment. The intermittently treated plots promoted the
Pedersen, E B L; Angmo, D; Dam, H F; Thydén, K T S; Andersen, T R; Skjønsfjell, E T B; Krebs, F C; Holler, M; Diaz, A; Guizar-Sicairos, M; Breiby, D W; Andreasen, J W
2015-08-28
Organic solar cells have great potential for upscaling due to roll-to-roll processing and a low energy payback time, making them an attractive sustainable energy source for the future. Active layers coated with water-dispersible Landfester particles enable greater control of the layer formation and easier access to the printing industry, which has reduced the use of organic solvents since the 1980s. Through ptychographic X-ray computed tomography (PXCT), we image quantitatively a roll-to-roll coated photovoltaic tandem stack consisting of one bulk heterojunction active layer and one Landfester particle active layer. We extract the layered morphology with structural and density information including the porosity present in the various layers and the silver electrode with high resolution in 3D. The Landfester particle layer is found to have an undesired morphology with negatively correlated top- and bottom interfaces, wide thickness distribution and only partial surface coverage causing electric short circuits through the layer. By top coating a polymer material onto the Landfester nanoparticles we eliminate the structural defects of the layer such as porosity and roughness, and achieve the increased performance larger than 1 V expected for a tandem cell. This study highlights that quantitative imaging of weakly scattering stacked layers of organic materials has become feasible by PXCT, and that this information cannot be obtained by other methods. In the present study, this technique specifically reveals the need to improve the coatability and layer formation of Landfester nanoparticles, thus allowing improved solar cells to be produced.
Resistance to forced airflow through layers of composting organic material.
Teixeira, Denis Leocádio; de Matos, Antonio Teixeira; Melo, Evandro de Castro
2015-02-01
The objective of this study was to adjust equations to estimate the static pressure gradient of airflow through layers of organic residues submitted to two stages of biochemical degradation, and to evaluate the static pressure drop of airflow thought the material layer. Measurements of static pressure drop in the layers of sugarcane bagasse and coffee husks mixed with poultry litter on day 0 and after 30 days of composting were performed using a prototype with specific airflow rates ranging from 0.02 to 0.13 m(3) s(-1) m(-2). Static pressure gradient and specific airflow rate data were properly fit to the Shedd, Hukill & Ives and Ergun models, which may be used to predict the static pressure gradient of air to be blown through the organic residue layers. However, the Shedd model was that which best represented the phenomenon studied. The static pressure drop of airflow increased as a power of the material layer thickness and showed tendency for decreasing with the biochemical degradation time of the organic material. Copyright © 2014 Elsevier Ltd. All rights reserved.
Universal Strategy To Reduce Noise Current for Sensitive Organic Photodetectors.
Xiong, Sixing; Li, Lingliang; Qin, Fei; Mao, Lin; Luo, Bangwu; Jiang, Youyu; Li, Zaifang; Huang, Jinsong; Zhou, Yinhua
2017-03-15
Low noise current is critical for achieving high-detectivity organic photodetectors. Inserting charge-blocking layers is an effective approach to suppress the reverse-biased dark current. However, in solution-processed organic photodetectors, the charge-transport material needs to be dissolved in solvents that do not dissolve the underneath light-absorbing layer, which is not always possible for all kinds of light-absorbing materials developed. Here, we introduce a universal strategy of transfer-printing a conjugated polymer, poly(3-hexylthiophene) (P3HT), as the electron-blocking layer to realize highly sensitive photodetectors. The transfer-printed P3HT layers substantially and universally reduced the reverse-biased dark current by about 3 orders of magnitude for various photodetectors with different active layers. These photodetectors can detect the light signal as weak as several picowatts per square centimeter, and the device detectivity is over 10 12 Jones. The results suggest that the strategy of transfer-printing P3HT films as the electron-blocking layer is universal and effective for the fabrication of sensitive organic photodetectors.
Efficient and bright organic light-emitting diodes on single-layer graphene electrodes
NASA Astrophysics Data System (ADS)
Li, Ning; Oida, Satoshi; Tulevski, George S.; Han, Shu-Jen; Hannon, James B.; Sadana, Devendra K.; Chen, Tze-Chiang
2013-08-01
Organic light-emitting diodes are emerging as leading technologies for both high quality display and lighting. However, the transparent conductive electrode used in the current organic light-emitting diode technologies increases the overall cost and has limited bendability for future flexible applications. Here we use single-layer graphene as an alternative flexible transparent conductor, yielding white organic light-emitting diodes with brightness and efficiency sufficient for general lighting. The performance improvement is attributed to the device structure, which allows direct hole injection from the single-layer graphene anode into the light-emitting layers, reducing carrier trapping induced efficiency roll-off. By employing a light out-coupling structure, phosphorescent green organic light-emitting diodes exhibit external quantum efficiency >60%, while phosphorescent white organic light-emitting diodes exhibit external quantum efficiency >45% at 10,000 cd m-2 with colour rendering index of 85. The power efficiency of white organic light-emitting diodes reaches 80 lm W-1 at 3,000 cd m-2, comparable to the most efficient lighting technologies.
Surface Characterization of an Organized Titanium Dioxide Layer
NASA Astrophysics Data System (ADS)
Curtis, Travis
Soft lithographic printing techniques can be used to control the surface morphology of titanium dioxide layers on length scales of several hundred nanometers. Controlling surface morphology and volumetric organization of titanium dioxide electrodes can potentially be used in dye-sensitized solar cell devices. This thesis explores how layer-by-layer replication can lead to well defined, dimensionally controlled volumes and details how these control mechanisms influence surface characteristics of the semiconducting oxide.
Fabrication of Organic Thin Film Transistors Using Layer-By-Layer Assembly (Preprint)
2007-03-01
thin-film transistors ( TFTs ) have received considerable attention as a low- cost, light-weight, flexible alternative to traditional amorphous silicon...Previous studies have investigated the use of a number of materials for both the active layer and the gate dielectric in various TFT architectures. These...performance. Conjugated small molecules, such as pentacene, or polymers, such as poly(3- hexylthiophene), are commonly used as the active layer in organic TFT
Interaction of Vascular Smooth Muscle Cells Under Low Shear Stress
NASA Technical Reports Server (NTRS)
Seidel, Charles L.
1998-01-01
The blood vessel wall consists of three cellular layers, an outer adventitial, a middle medial and an inner intimal layer. When the blood vessel forms in the embryo it begins as a tube composed of a single cell type called endothelial cells. Over time, other cells are recruited from the surrounding tissue to form additional layers on the outer surface of the endothelial tube. The cells that are recruited are called mesenchymal cells. Mesenchymal cells are responsible for the production of connective tissue that holds the blood vessel together and for developing into vascular smooth muscle cells that are responsible for regulating the diameter of the vessel (1) and therefore, blood flow. In a fully developed blood vessel, the endothelial cells make- up the majority of cells in the intimal layer while the mesenchymal cells make-up the majority of cells in the medial and adventitial layers. Within the medial layer of a mature vessel, cells are organized into multiple circular layers of alternating bands of connective tissue and cells. The cell layer is composed of a mixture of mesenchymal cells that have not developed into smooth muscle cells and fully developed smooth muscle cells (2). The assembly and organization of complex tissues is directed in part by a signaling system composed of proteins on the cell surface called adhesion molecules. Adhesion molecules enable cells to recognize each other as well as the composition of the connective tissue in which they reside (3). It was hypothesized that the different cell types that compose the vascular wall possess different adhesion molecules that enable them to recognize each other and through this recognition system, form the complex layered organization of the vascular wall. In other words, the layered organization is an intrinsic property of the cells. If this hypothesis is correct then the different cells that make up the vessel wall, when mixed together, should organize themselves into a layered structure resembling an intact blood vessel. Experiments described below were designed to test this hypothesis.
UV/Vis visible optical waveguides fabricated using organic-inorganic nanocomposite layers.
Simone, Giuseppina; Perozziello, Gerardo
2011-03-01
Nanocomposite layers based on silica nanoparticles and a methacrylate matrix are synthesized by a solvent-free process and characterized in order to realize UV/Vis transparent optical waveguides. Chemical functionalization of the silica nanoparticles permits to interface the polymers and the silica. The refractive index, roughness and wettability and the machinability of the layers can be tuned changing the silica nanoparticle concentration and chemical modification of the surface of the nanoparticles. The optical transparency of the layers is affected by the nanoparticles organization between the organic chains, while it increased proportionally with respect to silica concentration. Nanocomposite layers with a concentration of 40 wt% in silica reached UV transparency for a wavelength of 250 nm. UV/Vis transparent waveguides were micromilled through nanocomposite layers and characterized. Propagation losses were measured to be around 1 dB cm(-1) at a wavelength of 350 nm.
NASA Astrophysics Data System (ADS)
Sharkov, I. N.; Samokhvalova, L. M.; Mishina, P. V.
2016-07-01
Changes in the contents of total organic carbon and the carbon of easily mineralizable fractions of organic matter (labile humus, detritus, and mortmass) in the layers of 0-10, 10-25, and 0-25 cm were studied in leached chernozems ((Luvic Chernozems (Loamic, Aric)) subjected to deep plowing and surface tillage for nine years. In the layer of 0-25 cm, the content of Corg did not show significant difference between these two treatments and comprised 3.68-3.92% in the case of deep plowing and 3.63-4.08% in the case of surface tillage. Tillage practices greatly affected the distribution of easily mineralizable fractions of organic matter in the layers of 0-10 and 10-25 cm, though the difference between two treatments for the entire layer (0-25 cm) was insignificant. Surface tillage resulted in the increase in the contents of mortmass (by 59%), detritus (by 32%), and labile humus (by 8%) in the layer of 0-10 cm in comparison with deep plowing. At the same time, the contents of these fractions in the layer of 10-25 cm in the surface tillage treatment decreased by 67, 46, and 3%, respectively. The estimate of the nitrogen-mineralizing capacity made according to the data on the uptake of soil nitrogen by oat plants in a special greenhouse experiment confirmed the observed regularities of the redistribution of easily mineralizable organic matter fractions by the soil layers. In case of surface tillage, it increased by 23% in the layer of 0-10 cm; for the layer of 0-25 cm, no significant differences in the uptake of nitrogen by oat plants were found for the two studied treatments.
Zhu, Han-hua; Huang, Dao-you; Liu, Shou-long; Zhu, Qi-hong
2007-11-01
Two typical land-use types, i.e., newly cultivated slope land and mellow upland, were selected to investigate the effects of ex situ rice straw incorporation on the organic matter content, field water-holding capacity, bulk density, and porosity of hilly red soil, and to approach the correlations between these parameters. The results showed that ex situ incorporation of rice straw increased soil organic matter content, ameliorated soil physical properties, and improved soil water storage. Comparing with non-fertilization and applying chemical fertilizers, ex situ incorporation of rice straw increased the contents of organic matter (5.8%-28.9%) and > 0.25 mm water-stable aggregates in 0-20 cm soil layer, and increased the field water-holding capacity (6.8%-16.2%) and porosity (4.8%-7.7%) significantly (P < 0.05) while decreased the bulk density (4.5%-7.5%) in 10-15 cm soil layer. The organic matter content in 0-20 cm soil layer was significantly correlated to the bulk density, porosity, and field water-holding capacity in 10-15 cm soil layer (P < 0.01), and the field water-holding capacity in 0-20 cm and 10-15 cm soil layers was significantly correlated to the bulk density and porosity in these two layers (P < 0.05).
Hirschfeld, T.B.
1985-09-30
A chemoresistive gas sensor is provided which has improved sensitivity. A layer of organic semiconductor is disposed between two electrodes which, in turn, are connected to a voltage source. High conductivity material is dispersed within the layer of organic semiconductor in the form of very small particles, or islands. The average interisland spacing is selected so that the predominant mode of current flow is by way of electron tunneling. Adsorption of gaseous contaminant onto the layer of organic semiconductor modulates the tunneling current in a quantitative manner.
Hirschfeld, Tomas B.
1987-01-01
A chemoresistive gas sensor is provided which has improved sensitivity. A layer of organic semiconductor is disposed between two electrodes which, in turn, are connected to a voltage source. High conductivity material is dispersed within the layer of organic semiconductor in the form of very small particles, or islands. The average interisland spacing is selected so that the predominant mode of current flow is by way of electron funneling. Adsorption of gaseous contaminant onto the layer of organic semiconductor modulates the tunneling current in a quantitative manner.
Hirschfeld, T.B.
1987-06-23
A chemoresistive gas sensor is provided which has improved sensitivity. A layer of organic semiconductor is disposed between two electrodes which, in turn, are connected to a voltage source. High conductivity material is dispersed within the layer of organic semiconductor in the form of very small particles, or islands. The average interisland spacing is selected so that the predominant mode of current flow is by way of electron funneling. Adsorption of gaseous contaminant onto the layer of organic semiconductor modulates the tunneling current in a quantitative manner. 2 figs.
Furutani, Rui
2008-01-01
The present investigation carried out Nissl, Klüver-Barrera, and Golgi studies of the cerebral cortex in three distinct genera of oceanic dolphins (Risso's dolphin, striped dolphin and bottlenose dolphin) to identify and classify cortical laminar and cytoarchitectonic structures in four distinct functional areas, including primary motor (M1), primary sensory (S1), primary visual (V1), and primary auditory (A1) cortices. The laminar and cytoarchitectonic organization of each of these cortical areas was similar among the three dolphin species. M1 was visualized as five-layer structure that included the molecular layer (layer I), external granular layer (layer II), external pyramidal layer (layer III), internal pyramidal layer (layer V), and fusiform layer (layer VI). The internal granular layer was absent. The cetacean sensory-related cortical areas S1, V1, and A1 were also found to have a five-layer organization comprising layers I, II, III, V and VI. In particular, A1 was characterized by the broadest layer I, layer II and developed band of pyramidal neurons in layers III (sublayers IIIa, IIIb and IIIc) and V. The patch organization consisting of the layer IIIb-pyramidal neurons was detected in the S1 and V1, but not in A1. The laminar patterns of V1 and S1 were similar, but the cytoarchitectonic structures of the two areas were different. V1 was characterized by a broader layer II than that of S1, and also contained the specialized pyramidal and multipolar stellate neurons in layers III and V. PMID:18625031
Eucalyptus obliqua seedling growth in organic vs. mineral soil horizons
Barry, Karen M.; Janos, David P.; Nichols, Scott; Bowman, David M. J. S.
2015-01-01
Eucalyptus obliqua, the most widespread timber tree in Tasmania, is a pioneer after fire which can eliminate the organic layer of forest soil, exposing the underlying mineral soil. We compared seedling growth, mycorrhiza formation, and mineral nutrient limitation in organic layer vs. mineral soil. We grew E. obliqua seedlings separately in pots of organic layer and mineral soil in a glasshouse. Additional treatments of organic soil only, involved fully crossed methyl-bromide fumigation and fertilization. Fertilization comprised chelated iron for 121 days after transplant (DAT) followed by soluble phosphorus. At 357 DAT, whole plant dry weight was three times greater in ambient organic than in mineral soil. In organic soil, fumigation halved ectomycorrhiza abundance and reduced seedling growth at 149 DAT, but by 357 DAT when negative effects of fumigation on seedling growth had disappeared, neither fumigation nor fertilization affected mycorrhiza abundance. Iron fertilization diminished seedling growth, but subsequent phosphorus fertilization improved it. E. obliqua seedlings grow much better in organic layer soil than in mineral soil, although phosphorus remains limiting. The prevalent forestry practice of burning to mineral soil after timber harvest exposes a poor growth medium likely only partially compensated by fire-induced mineral soil alterations. PMID:25750650
Self-organizing layers from complex molecular anions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warneke, Jonas; McBriarty, Martin E.; Riechers, Shawn L.
Ions are promising building blocks for tunable self-organizing materials with advanced technological applications. However, because of strong Coulomb attraction with counterions, the intrinsic properties of ions are difficult to exploit for preparation of bulk materials. Here, we report the precisely-controlled preparation of macroscopic surface layers by soft landing of mass selected complex anions which determine the self organization of the layers with their molecular properties. The family of halogenated dodecaborates [B12X12]2- (X = F, Cl, Br, I), in which the internal charge distribution between core and shell regions of the molecular ions systematically vary, was deposited on different self assembledmore » monolayer surfaces (SAMs) on gold at high coverage. Layers of anions were found to be stabilized by accumulation of neutral molecules. Different phases, self-organization mechanisms and optical properties were observed to depend upon the internal charge distribution of the deposited anions, the underlying surface and the coadsorbed molecules. This demonstrates rational control of the properties of anion based layers.« less
Effect of oxide insertion layer on resistance switching properties of copper phthalocyanine
NASA Astrophysics Data System (ADS)
Joshi, Nikhil G.; Pandya, Nirav C.; Joshi, U. S.
2013-02-01
Organic memory device showing resistance switching properties is a next-generation of the electrical memory unit. We have investigated the bistable resistance switching in current-voltage (I-V) characteristics of organic diode based on copper phthalocyanine (CuPc) film sandwiched between aluminum (Al) electrodes. Pronounced hysteresis in the I-V curves revealed a resistance switching with on-off ratio of the order of 85%. In order to control the charge injection in the CuPc, nanoscale indium oxide buffer layer was inserted to form Al/CuPc/In2O3/Al device. Analysis of I-V measurements revealed space charge limited switching conduction at the Al/CuPc interface. The traps in the organic layer and charge blocking by oxide insertion layer have been used to explain the absence of resistance switching in the oxide buffer layered memory device cell. Present study offer potential applications for CuPc organic semiconductor in low power non volatile resistive switching memory and logic circuits.
NASA Technical Reports Server (NTRS)
Houser, Paul (Technical Monitor); Patton, Edward G.; Sullivan, Peter P.; Moeng, Chin-Hoh
2003-01-01
We examine the influence of surface heterogeneity on boundary layers using a large-eddy simulation coupled to a land-surface model. Heterogeneity, imposed in strips varying from 2-30 km (1 less than lambda/z(sub i) less than 18), is found to dramatically alter the structure of the free convective boundary layer by inducing significant organized circulations. A conditional sampling technique, based on the scale of the surface heterogeneity (phase averaging), is used to identify and quantify the organized surface fluxes and motions in the atmospheric boundary layer. The impact of the organized motions on turbulent transport depends critically on the scale of the heterogeneity lambda, the boundary layer height zi and the initial moisture state of the boundary layer. Dynamical and scalar fields respond differently as the scale of the heterogeneity varies. Surface heterogeneity of scale 4 less than lamba/z(sub i) less than 9 induces the strongest organized flow fields (up, wp) while heterogeneity with smaller or larger lambda/z(sub i) induces little organized motion. However, the organized components of the scalar fields (virtual potential temperature and mixing ratio) grow continuously in magnitude and horizontal scale, as lambda/z(sub i) increases. For some cases, the organized motions can contribute nearly 100% of the total vertical moisture flux. Patch-induced fluxes are shown to dramatically impact point measurements that assume the time-average vertical velocity to be zero. The magnitude and sign of this impact depends on the location of the measurement within the region of heterogeneity.
Keratin-lipid structural organization in the corneous layer of snake.
Ripamonti, Alberto; Alibardi, Lorenzo; Falini, Giuseppe; Fermani, Simona; Gazzano, Massimo
2009-12-01
The shed epidermis (molt) of snakes comprises four distinct layers. The upper two layers, here considered as beta-layer, contain essentially beta-keratin. The following layer, known as mesos-layer, is similar to the human stratum corneum, and is formed by thin cells surrounded by intercellular lipids. The latter layer mainly contains alpha-keratin. In this study, the molecular assemblies of proteins and lipids contained in these layers have been analyzed in the scale of two species of snakes, the elapid Tiger snake (TS, Notechis scutatus) and the viperid Gabon viper (GV, Bitis gabonica). Scanning X-ray micro-diffraction, FTIR and Raman spectroscopies, thermal analysis, and scanning electron microscopy experiments confirm the presence of the three layers in the GV skin scale. Conversely, in the TS molt a typical alpha-keratin layer appears to be absent. In the latter, experimental data suggest the presence of two domains similar to those found in the lipid intercellular matrix of stratum corneum. X-ray diffraction data also allow to determine the relative orientation of keratins and lipids. The keratin fibrils are randomly oriented inside the layers parallel to the surface of scales while the lipids are organized in lamellar structures having aliphatic chains normal to the scale surface. The high ordered lipid organization in the mature mesos layer probably increases its effectiveness in limiting water-loss.
Organic and inorganic–organic thin film structures by molecular layer deposition: A review
Sundberg, Pia
2014-01-01
Summary The possibility to deposit purely organic and hybrid inorganic–organic materials in a way parallel to the state-of-the-art gas-phase deposition method of inorganic thin films, i.e., atomic layer deposition (ALD), is currently experiencing a strongly growing interest. Like ALD in case of the inorganics, the emerging molecular layer deposition (MLD) technique for organic constituents can be employed to fabricate high-quality thin films and coatings with thickness and composition control on the molecular scale, even on complex three-dimensional structures. Moreover, by combining the two techniques, ALD and MLD, fundamentally new types of inorganic–organic hybrid materials can be produced. In this review article, we first describe the basic concepts regarding the MLD and ALD/MLD processes, followed by a comprehensive review of the various precursors and precursor pairs so far employed in these processes. Finally, we discuss the first proof-of-concept experiments in which the newly developed MLD and ALD/MLD processes are exploited to fabricate novel multilayer and nanostructure architectures by combining different inorganic, organic and hybrid material layers into on-demand designed mixtures, superlattices and nanolaminates, and employing new innovative nanotemplates or post-deposition treatments to, e.g., selectively decompose parts of the structure. Such layer-engineered and/or nanostructured hybrid materials with exciting combinations of functional properties hold great promise for high-end technological applications. PMID:25161845
Identification of in-sewer sources of organic solids contributing to combined sewer overflows.
Ahyerre, M; Chebbo, G
2002-09-01
Previous research has shown that combined sewer systems are the main source of particle and organic pollution during rainfall events contributing to combined sewer overflow. The aim of this article is to identify in an urban catchment area called "Le Marais", in the center of Paris, the types of sediments that are eroded and contribute to the pollution of combined sewer overflow. Three sediment types are considered: granular material found in the inverts of pipes, organic biofilms and organic sediment at the water bed interface, identified as an immobile layer in the "Le Marais" catchment area. The method used consist, firstly, of sampling and assessing the organic pollutant loads and metallic loads of the particles in each type of sediment. Then, the mass of each type of sediment is assessed. The mass and the characteristics of each type of sediment is finally compared to the mass and characteristics of the particles eroded in the catchment area, estimated by mass balances, in order to find the source of eroded particles. The only identified type of deposit that can contribute to combined sewer overflows is the organic layer. Indeed, the solids of this layer have mean and metallic loads that are of the same order of magnitude as the eroded particles. Moreover, the mass of the organic layer considered over different time scales is of the same order of magnitude as the eroded masses during rainfall events and an erosion experiment showed that the organic layer is actually eroded.
NASA Astrophysics Data System (ADS)
Guedes, Andre F. S.; Guedes, Vilmar P.; Souza, Monica L.; Tartari, Simone; Cunha, Idaulo J.
2015-09-01
Flexible organic photovoltaic solar cells have drawn intense attention due to their advantages over competing solar cell technologies. The method utilized to deposit as well as to integrate solutions and processed materials, manufacturing organic solar cells by the Electrodeposition System, has been presented in this research. In addition, we have demonstrated a successful integration of a process for manufacturing the flexible organic solar cell prototype and we have discussed on the factors that make this process possible. The maximum process temperature was 120°C, which corresponds to the baking of the active polymeric layer. Moreover, the new process of the Electrodeposition of complementary active layer is based on the application of voltage versus time in order to obtain a homogeneous layer with thin film. This thin film was not only obtained by the electrodeposition of PANI-X1 on P3HT/PCBM Blend, but also prepared in perchloric acid solution. Furthermore, these flexible organic photovoltaic solar cells presented power conversion efficiency of 12% and the inclusion of the PANI-X1 layer reduced the effects of degradation on these organic photovoltaic panels induced by solar irradiation. Thus, in the Scanning Electron Microscopy (SEM), these studies have revealed that the surface of PANI-X1 layers is strongly conditioned by the dielectric surface morphology.
Simple single-emitting layer hybrid white organic light emitting with high color stability
NASA Astrophysics Data System (ADS)
Nguyen, C.; Lu, Z. H.
2017-10-01
Simultaneously achieving a high efficiency and color quality at luminance levels required for solid-state lighting has been difficult for white organic light emitting diodes (OLEDs). Single-emitting layer (SEL) white OLEDs, in particular, exhibit a significant tradeoff between efficiency and color stability. Furthermore, despite the simplicity of SEL white OLEDs being its main advantage, the reported device structures are often complicated by the use of multiple blocking layers. In this paper, we report a highly simplified three-layered white OLED that achieves a low turn-on voltage of 2.7 V, an external quantum efficiency of 18.9% and power efficiency of 30 lm/W at 1000 cd/cm2. This simple white OLED also shows good color quality with a color rendering index of 75, CIE coordinates (0.42, 0.46), and little color shifting at high luminance. The device consists of a SEL sandwiched between a hole transport layer and an electron transport layer. The SEL comprises a thermally activated delayer fluorescent molecule having dual functions as a blue emitter and as a host for other lower energy emitters. The improved color stability and efficiency in such a simple device structure is explained as due to the elimination of significant energy barriers at various organic-organic interfaces in the traditional devices having multiple blocking layers.
NASA Astrophysics Data System (ADS)
Laird, Darin W.; Vaidya, Swanand; Li, Sergey; Mathai, Mathew; Woodworth, Brian; Sheina, Elena; Williams, Shawn; Hammond, Troy
2007-09-01
We report NREL-certified efficiencies and initial lifetime data for organic photovoltaic (OPV) cells based on Plexcore PV photoactive layer and Plexcore HTL-OPV hole transport layer technology. Plexcore PV-F3, a photoactive layer OPV ink, was certified in a single-layer OPV cell at the National Renewable Energy Laboratory (NREL) at 5.4%, which represents the highest official mark for a single-layer organic solar cell. We have fabricated and measured P3HT:PCBM solar cells with a peak efficiency of 4.4% and typical efficiencies of 3 - 4% (internal, NREL-calibrated measurement) with P3HT manufactured at Plextronics by the Grignard Metathesis (GRIM) method. Outdoor and accelerated lifetime testing of these devices is reported. Both Plexcore PV-F3 and P3HT:PCBM-based OPV cells exhibit >750 hours of outdoor roof-top, non-accelerated lifetime with less than 8% loss in initial efficiency for both active layer systems when exposed continuously to the climate of Western Pennsylvania. These devices are continuously being tested to date. Accelerated testing using a high-intensity (1000W) metal-halide lamp affords shorter lifetimes; however, the true acceleration factor is still to be determined.
NASA Astrophysics Data System (ADS)
Jastrow, J. D.; Burke, V. J.; Vugteveen, T. W.; Fan, Z.; Hofmann, S. M.; Lederhouse, J. S.; Matamala, R.; Michaelson, G. J.; Mishra, U.; Ping, C. L.
2015-12-01
The decomposability of soil organic carbon (SOC) in permafrost regions is a key uncertainty in efforts to predict carbon release from thawing permafrost and its impacts. The cold and often wet environment is the dominant factor limiting decomposer activity, and soil organic matter is often preserved in a relatively undecomposed and uncomplexed state. Thus, the impacts of soil warming and permafrost thaw are likely to depend at least initially on the genesis and past history of organic matter degradation before its stabilization in permafrost. We compared the bioavailability and relative degradation state of SOC in active layer and permafrost soils from Arctic tundra in Alaska. To assess readily bioavailable SOC, we quantified salt (0.5 M K2SO4) extractable organic matter (SEOM), which correlates well with carbon mineralization rates in short-term soil incubations. To assess the relative degradation state of SOC, we used particle size fractionation to isolate fibric (coarse) from more degraded (fine) particulate organic matter (POM) and separated mineral-associated organic matter into silt- and clay-sized fractions. On average, bulk SOC concentrations in permafrost were lower than in comparable active layer horizons. Although SEOM represented a very small proportion of the bulk SOC, this proportion was greater in permafrost than in comparable active layer soils. A large proportion of bulk SOC was found in POM for all horizons. Even for mineral soils, about 40% of bulk SOC was in POM pools, indicating that organic matter in both active layer and permafrost mineral soils was relatively undecomposed compared to typical temperate soils. Not surprisingly, organic soils had a greater proportion of POM and mineral soils had greater silt- and clay-sized carbon pools, while cryoturbated soils were intermediate. For organic horizons, permafrost organic matter was generally more degraded than in comparable active layer horizons. However, in mineral and cryoturbated horizons, the presence of permafrost appeared to have little effect on SOC distribution among size fractions. Future studies will investigate the utility of using organic matter pools defined by SEOM and particle size to predict the bioavailable pools characterized through more time-consuming long-term incubation studies of permafrost region soils.
Denitrification potential in relation to lithology in five headwater riparian zones.
Hill, Alan R; Vidon, Philippe G F; Langat, Jackson
2004-01-01
The influence of riparian zone lithology on nitrate dynamics is poorly understood. We investigated vertical variations in potential denitrification activity in relation to the lithology and stratigraphy of five headwater riparian zones on glacial till and outwash landscapes in southern Ontario, Canada. Conductive coarse sand and gravel layers occurred in four of the five riparian areas. These layers were thin and did not extend to the field-riparian perimeter in some riparian zones, which limited their role as conduits for ground water flow. We found widespread organic-rich layers at depths ranging from 40 to 300 cm that resulted from natural floodplain processes and the burial of surface soils by rapid valley-bottom sedimentation after European settlement. The organic matter content of these layers varied considerably from 2 to 5% (relic channel deposit) to 5 to 21% (buried soils) and 30 to 62% (buried peat). Denitrification potential (DNP) was measured by the acetylene block method in sediment slurries amended with nitrate. The highest DNP rates were usually found in the top 0- to 15-cm surface soil layer in all riparian zones. However, a steep decline in DNP with depth was often absent and high DNP activity occurred in the deep organic-rich layers. Water table variations in 2000-2002 indicated that ground water only interacted frequently with riparian surface soils between late March and May, whereas subsurface organic layers that sustain considerable DNP were below the water table for most of the year. These results suggest that riparian zones with organic deposits at depth may effectively remove nitrate from ground water even when the water table does not interact with organic-rich surface soil horizons.
Sever, Hakan; Makineci, Ender
2009-08-01
Mining operations on open coal mines in Agacli-Istanbul have resulted in the destruction of vast amounts of land. To rehabilitate these degraded lands, plantations on this area began in 1988. Twelve tree species were planted, however, the most planted tree species was maritime pine (Pinus pinaster Aiton). This study performed on 14 sample plots randomly selected in maritime pine plantations on coal mine soil/spoils in 2005. Soil samples were taken from eight different soil layers (0-1, 1-3, 3-5, 5-10, 10-20, 20-30, 30-40 and 40-50 cm) into the soil profile. On soil samples; fine soil fraction (<2 mm), soil acidity (pH), organic carbon (C(org)) and total nitrogen (N(t)) contents were investigated, and results were compared statistically among soil layers. As a result, 17 years after plantations, total forest floor accumulation determined as 17,973.20 kg ha(-1). Total nitrogen and organic matter amounts of forest floor were 113.90 and 14,640.92 kg ha(-1) respectively. Among soil layers, the highest levels of organic carbon (1.77%) and total nitrogen (0.096%) and the lowest pH value (pH 5.38) were found in 0-1 cm soil layer, and the variation differs significantly among soil layers. Both organic carbon and total nitrogen content decreased, pH values increased from 0-1 to 5-10 cm layer. In conclusion, according to results obtained maritime pine plantations on coal mine spoils; slow accumulation and decomposition of forest floor undergo simultaneously. Depending on these changes organic carbon and total nitrogen contents increased in upper layer of soil/spoil.
Ramsden, Helen L; Sürmeli, Gülşen; McDonagh, Steven G; Nolan, Matthew F
2015-01-01
Neural circuits in the medial entorhinal cortex (MEC) encode an animal's position and orientation in space. Within the MEC spatial representations, including grid and directional firing fields, have a laminar and dorsoventral organization that corresponds to a similar topography of neuronal connectivity and cellular properties. Yet, in part due to the challenges of integrating anatomical data at the resolution of cortical layers and borders, we know little about the molecular components underlying this organization. To address this we develop a new computational pipeline for high-throughput analysis and comparison of in situ hybridization (ISH) images at laminar resolution. We apply this pipeline to ISH data for over 16,000 genes in the Allen Brain Atlas and validate our analysis with RNA sequencing of MEC tissue from adult mice. We find that differential gene expression delineates the borders of the MEC with neighboring brain structures and reveals its laminar and dorsoventral organization. We propose a new molecular basis for distinguishing the deep layers of the MEC and show that their similarity to corresponding layers of neocortex is greater than that of superficial layers. Our analysis identifies ion channel-, cell adhesion- and synapse-related genes as candidates for functional differentiation of MEC layers and for encoding of spatial information at different scales along the dorsoventral axis of the MEC. We also reveal laminar organization of genes related to disease pathology and suggest that a high metabolic demand predisposes layer II to neurodegenerative pathology. In principle, our computational pipeline can be applied to high-throughput analysis of many forms of neuroanatomical data. Our results support the hypothesis that differences in gene expression contribute to functional specialization of superficial layers of the MEC and dorsoventral organization of the scale of spatial representations.
Ramsden, Helen L.; Sürmeli, Gülşen; McDonagh, Steven G.; Nolan, Matthew F.
2015-01-01
Neural circuits in the medial entorhinal cortex (MEC) encode an animal’s position and orientation in space. Within the MEC spatial representations, including grid and directional firing fields, have a laminar and dorsoventral organization that corresponds to a similar topography of neuronal connectivity and cellular properties. Yet, in part due to the challenges of integrating anatomical data at the resolution of cortical layers and borders, we know little about the molecular components underlying this organization. To address this we develop a new computational pipeline for high-throughput analysis and comparison of in situ hybridization (ISH) images at laminar resolution. We apply this pipeline to ISH data for over 16,000 genes in the Allen Brain Atlas and validate our analysis with RNA sequencing of MEC tissue from adult mice. We find that differential gene expression delineates the borders of the MEC with neighboring brain structures and reveals its laminar and dorsoventral organization. We propose a new molecular basis for distinguishing the deep layers of the MEC and show that their similarity to corresponding layers of neocortex is greater than that of superficial layers. Our analysis identifies ion channel-, cell adhesion- and synapse-related genes as candidates for functional differentiation of MEC layers and for encoding of spatial information at different scales along the dorsoventral axis of the MEC. We also reveal laminar organization of genes related to disease pathology and suggest that a high metabolic demand predisposes layer II to neurodegenerative pathology. In principle, our computational pipeline can be applied to high-throughput analysis of many forms of neuroanatomical data. Our results support the hypothesis that differences in gene expression contribute to functional specialization of superficial layers of the MEC and dorsoventral organization of the scale of spatial representations. PMID:25615592
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dongcheng; Zhou, Hu; Cai, Ping
2014-02-03
A triazine- and pyridinium-containing water-soluble material of 1,1′,1″-(4,4′,4″-(1,3,5-triazine-2,4,6-triyl)tris(benzene-4,1-diyl)) tris(methylene)tripyridinium bromide (TzPyBr) was developed as an organic electron-selective layer in solution-processed inverted organic solar cells due to its strong anti-erosion capacity against non-polar organic solvents commonly used for the active layer. Ohmic-like contact with the adjacent active materials like fullerene derivatives is speculated to be formed, as confirmed by the work-function measurements with scanning Kelvin probe and ultraviolet photoelectron spectroscopy techniques. Besides, considering the deep highest occupied molecular orbital energy level of TzPyBr, excellent hole-blocking property of the electron-selective layer is also anticipated. The inverted organic photovoltaic devices based on themore » TzPyBr/ITO (indium tin oxide) bilayer cathode exhibit dramatically enhanced performance compared to the control devices with bare ITO as the cathode and even higher efficiency than the conventional type devices with ITO and Al as the electrodes.« less
Wang, Jian-Xun; Hyung, Gun Woo; Li, Zhao-Hui; Son, Sung-Yong; Kwon, Sang Jik; Kim, Young Kwan; Cho, Eou Sik
2012-07-01
In this research, we reported on the fabrication of top-contact amorphous-indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) with an organic buffer layer between inorganic gate dielectric and active layer in order to improve the electrical properties of devices. By inserting an organic buffer layer, it was possible to make an affirmation of the improvements in the electrical characteristics of a-IGZO TFTs such as subthreshold slope (SS), on/off current ratio (I(ON/OFF)), off-state current, and saturation field-effect mobility (muFE). The a-IGZO TFTs with the cross-linked polyvinyl alcohol (c-PVA) buffer layer exhibited the pronounced improvements of the muFE (17.4 cm2/Vs), SS (0.9 V/decade), and I(ON/OFF) (8.9 x 10(6)).
NASA Technical Reports Server (NTRS)
Richmond, Robert Chaffee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor)
2015-01-01
Lubrication additives of the current invention require formation of emulsions in base lubricants, created with an aqueous salt solution plus a single-phase compound such that partitioning within the resulting emulsion provides thermodynamically targeted compounds for boundary layer organization thus establishing anti-friction and/or anti-wear. The single-phase compound is termed "boundary layer organizer", abbreviated BLO. These emulsion-contained compounds energetically favor association with tribologic surfaces in accord with the Second Law of Thermodynamics, and will organize boundary layers on those surfaces in ways specific to the chemistry of the salt and BLO additives. In this way friction modifications may be provided by BLOs targeted to boundary layers via emulsions within lubricating fluids, wherein those lubricating fluids may be water-based or oil-based.
Active control of magnetoresistance of organic spin valves using ferroelectricity
Sun, Dali; Fang, Mei; Xu, Xiaoshan; Jiang, Lu; Guo, Hangwen; Wang, Yanmei; Yang, Wenting; Yin, Lifeng; Snijders, Paul C.; Ward, T. Z.; Gai, Zheng; Zhang, X.-G.; Lee, Ho Nyung; Shen, Jian
2014-01-01
Organic spintronic devices have been appealing because of the long spin lifetime of the charge carriers in the organic materials and their low cost, flexibility and chemical diversity. In previous studies, the control of resistance of organic spin valves is generally achieved by the alignment of the magnetization directions of the two ferromagnetic electrodes, generating magnetoresistance. Here we employ a new knob to tune the resistance of organic spin valves by adding a thin ferroelectric interfacial layer between the ferromagnetic electrode and the organic spacer: the magnetoresistance of the spin valve depends strongly on the history of the bias voltage, which is correlated with the polarization of the ferroelectric layer; the magnetoresistance even changes sign when the electric polarization of the ferroelectric layer is reversed. These findings enable active control of resistance using both electric and magnetic fields, opening up possibility for multi-state organic spin valves. PMID:25008155
NASA Astrophysics Data System (ADS)
Kraker, E.; Lamprecht, B.; Haase, A.; Jakopic, G.; Abel, T.; Konrad, C.; Köstler, S.; Tscherner, M.; Stadlober, B.; Mayr, T.
2010-08-01
A compact, integrated photoluminescence based oxygen sensor, utilizing an organic light emitting device (OLED) as the light source and an organic photodiode (OPD) as the detection unit, is described. The detection system of the sensor array consists of an array of circular screen-printed fluorescent sensor spots surrounded by organic photodiodes as integrated fluorescence detectors. The OPD originates from the well-known Tang photodiode, consisting of a stacked layer of copper phthalocyanine (CuPc, p-type material) and perylene tetracarboxylic bisbenzimidazole (PTCBi, n-type material). An additional layer of tris-8-hydroxyquinolinatoaluminium (Alq3, n-type material) was inserted between the PTCBi layer and cathode. An ORMOCERR layer was used as encapsulation layer. For excitation an organic light emitting diode is used. The sensor spot and the detector are processed on the same flexible substrate. This approach not only simplifies the detection system by minimizing the numbers of required optical components - no optical filters have to be used for separating the excitation light and the luminescent emission-, but also has a large potential for low-cost sensor applications. The feasibility of the concept is demonstrated by an integrated oxygen sensor, indicating good performance. Sensor schemes for other chemical parameters are proposed.
Gan, Lu; Li, Jing; Fang, Zhishan; He, Haiping; Ye, Zhizhen
2017-10-19
In recent years, 2D layered organic-inorganic lead halide perovskites have attracted considerable attention due to the distinctive quantum confinement effects as well as prominent excitonic luminescence. Herein, we show that the recombination dynamics and photoluminescence (PL) of the 2D layered perovskites can be tuned by the organic cation length. 2D lead iodide perovskite crystals with increased length of the organic chains reveal blue-shifted PL as well as enhanced relative internal quantum efficiency. Furthermore, we provide experimental evidence that the formation of face-sharing [PbI 6 ] 4- octahedron in perovskites with long alkyls induces additional confinement for the excitons, leading to 1D-like recombination. As a result, the PL spectra show enhanced inhomogeneous broadening at low temperature. Our work provides physical understanding of the role of organic cation in the optical properties of 2D layered perovskites, and would benefit the improvement of luminescence efficiency of such materials.
NASA Astrophysics Data System (ADS)
Watanabe, Mebae; Fujihara, Shinobu
2014-02-01
Inorganic-organic layered rare-earth compounds were synthesized on the basis of a biphasic liquid-liquid system in one pot. Layered yttrium hydroxides (LYHs) were chosen as a host material for the intercalation of hydrophobic organic guest anions such as benzoate, sebacate, or laurate. In a typical synthesis, an organic phase dissolving carboxylic acid was placed in contact with an equal amount of an aqueous phase dissolving yttrium nitrate n-hydrate and urea. At elevated temperatures up to 80 °C, urea was hydrolyzed to release hydroxyl anions which were used to form yttrium hydroxide layers. LYHs were then precipitated with the intercalation of carboxylate anions delivered from the organic phase under the distribution law. The structure and the morphology of the LYHs could be modulated by the intercalated anions. Doped with Eu3+ ions, the LYHs exhibited red photoluminescence which was enhanced by the intercalated anions due to the antenna effect.
NASA Astrophysics Data System (ADS)
Liu, Kong; Lu, Shudi; Yue, Shizhong; Ren, Kuankuan; Azam, Muhammad; Tan, Furui; Wang, Zhijie; Qu, Shengchun; Wang, Zhanguo
2016-11-01
To enable organic solar cells with a competent charge transport efficiency, reducing the thickness of active layer without sacrificing light absorption efficiency turns out to be of high feasibility. Herein, organic solar cells on wrinkled metal surface are designed. The purposely wrinkled Al/Au film with a smooth surface provides a unique scaffold for constructing thin organic photovoltaic devices by avoiding pinholes and defects around sharp edges in conventional nanostructures. The corresponding surface light trapping effect enables the thin active layer (PTB7-Th:PC71BM) with a high absorption efficiency. With the innovative MoO3/Ag/ZnS film as the top transparent electrode, the resulting Indium Tin Oxide-free wrinkled devices show a power conversion efficiency as 7.57% (50 nm active layer), higher than the planner counterparts. Thus, this paper provides a new methodology to improve the performance of organic solar cells by balancing the mutual restraint factors to a high level.
Cheng, Xue-Feng; Hou, Xiang; Qian, Wen-Hu; He, Jing-Hui; Xu, Qing-Feng; Li, Hua; Li, Na-Jun; Chen, Dong-Yun; Lu, Jian-Mei
2017-08-23
Herein, for the first time, quaternary resistive memory based on an organic molecule is achieved via surface engineering. A layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) was inserted between the indium tin oxide (ITO) electrode and the organic layer (squaraine, SA-Bu) to form an ITO/PEDOT-PSS/SA-Bu/Al architecture. The modified resistive random-access memory (RRAM) devices achieve quaternary memory switching with the highest yield (∼41%) to date. Surface morphology, crystallinity, and mosaicity of the deposited organic grains are greatly improved after insertion of a PEDOT-PSS interlayer, which provides better contacts at the grain boundaries as well as the electrode/active layer interface. The PEDOT-PSS interlayer also reduces the hole injection barrier from the electrode to the active layer. Thus, the threshold voltage of each switching is greatly reduced, allowing for more quaternary switching in a certain voltage window. Our results provide a simple yet powerful strategy as an alternative to molecular design to achieve organic quaternary resistive memory.
Organic photosensitive devices using subphthalocyanine compounds
Rand, Barry [Princeton, NJ; Forrest, Stephen R [Ann Arbor, MI; Mutolo, Kristin L [Hollywood, CA; Mayo, Elizabeth [Alhambra, CA; Thompson, Mark E [Anaheim Hills, CA
2011-07-05
An organic photosensitive optoelectronic device, having a donor-acceptor heterojunction of a donor-like material and an acceptor-like material and methods of making such devices is provided. At least one of the donor-like material and the acceptor-like material includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound; and/or the device optionally has at least one of a blocking layer or a charge transport layer, where the blocking layer and/or the charge transport layer includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound.
Opitz, Andreas; Wilke, Andreas; Amsalem, Patrick; Oehzelt, Martin; Blum, Ralf-Peter; Rabe, Jürgen P.; Mizokuro, Toshiko; Hörmann, Ulrich; Hansson, Rickard; Moons, Ellen; Koch, Norbert
2016-01-01
We reveal the rather complex interplay of contact-induced re-orientation and interfacial electronic structure – in the presence of Fermi-level pinning – at prototypical molecular heterojunctions comprising copper phthalocyanine (H16CuPc) and its perfluorinated analogue (F16CuPc), by employing ultraviolet photoelectron and X-ray absorption spectroscopy. For both layer sequences, we find that Fermi-level (EF) pinning of the first layer on the conductive polymer substrate modifies the work function encountered by the second layer such that it also becomes EF-pinned, however, at the interface towards the first molecular layer. This results in a charge transfer accompanied by a sheet charge density at the organic/organic interface. While molecules in the bulk of the films exhibit upright orientation, contact formation at the heterojunction results in an interfacial bilayer with lying and co-facial orientation. This interfacial layer is not EF-pinned, but provides for an additional density of states at the interface that is not present in the bulk. With reliable knowledge of the organic heterojunction’s electronic structure we can explain the poor performance of these in photovoltaic cells as well as their valuable function as charge generation layer in electronic devices. PMID:26887445
Ma, Xin-Xin; Xu, Ming-Xiang; Yang, Kai
2012-11-01
The deep soil layer (below 100 cm) stores considerable soil organic carbon (SOC). We can reveal its stability and provide the basis for certification of the deep soil carbon sinks by studying the SOC mineralization in the deep soil layer. With the shallow soil layer (0-100 cm) as control, the SOC mineralization under the condition (temperature 15 degrees C, the soil water content 8%) of Black Locust forest in the deep soil layer (100-400 cm) of the hilly region of the Loess Plateau was studied. The results showed that: (1) There was a downward trend in the total SOC mineralization with the increase of soil depth. The total SOC mineralization in the sub-deep soil (100-200 cm) and deep soil (200-400 cm) were equivalent to approximately 88.1% and 67.8% of that in the shallow layer (0-100 cm). (2) Throughout the carbon mineralization process, the same as the shallow soil, the sub-deep and deep soil can be divided into 3 stages. In the rapid decomposition phase, the ratio of the mineralization or organic carbon to the total mineralization in the sub-deep and deep layer (0-10 d) was approximately 50% of that in the shallow layer (0-17 d). In the slow decomposition phase, the ratio of organic carbon mineralization to total mineralization in the sub-deep, deep layer (11-45 d) was 150% of that in the shallow layer (18-45 d). There was no significant difference in this ratio among these three layers (46-62 d) in the relatively stable stage. (3) There was no significant difference (P > 0.05) in the mineralization rate of SOC among the shallow, sub-deep, deep layers. The stability of SOC in the deep soil layer (100-400 cm) was similar to that in the shallow soil layer and the SOC in the deep soil layer was also involved in the global carbon cycle. The change of SOC in the deep soil layer should be taken into account when estimating the effects of soil carbon sequestration in the Hilly Region of the Loess Plateau, China.
Significantly improved efficiency of organic solar cells incorporating Co3O4 NPs in the active layer
NASA Astrophysics Data System (ADS)
Yousaf, S. Amber; Ikram, M.; Ali, S.
2018-03-01
Effect of various concentrations of fabricated cobalt oxide (Co3O4) nanoparticles (NPs) in the active layer of different donors and acceptors based hybrid organic bulk heterojunction-BHJ devices were investigated using inverted architecture. The organic active layer comprising different donors P3HT (poly(3-hexylthiophene-2,5-diyl) and PTB7 (Poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b] thiophenediyl
Conducting tin halides with a layered organic-based perovskite structure
NASA Astrophysics Data System (ADS)
Mitzi, D. B.; Feild, C. A.; Harrison, W. T. A.; Guloy, A. M.
1994-06-01
THE discovery1 of high-temperature superconductivity in layered copper oxide perovskites has generated considerable fundamental and technological interest in this class of materials. Only a few other examples of conducting layered perovskites are known; these are also oxides such as (La1-xSrx)n+1 MnnO3n+1 (ref. 2), Lan+1NinO3n+1 (ref. 3) and Ban+1PbnO3n+1 (ref. 4), all of which exhibit a trend from semiconducting to metallic behaviour with increasing number of perovskite layers (n). We report here the synthesis of a family of organic-based layered halide perovskites, (C4H9NH3)2(CH3NH3)n-1Snnl3n+1 which show a similar transition from semiconducting to metallic behaviour with increasing n. The incorporation of an organic modulation layer between the conducting tin iodide sheets potentially provides greater flexibility for tuning the electrical properties of the perovskite sheets, and we suggest that such an approach will prove valuable for exploring the range of transport properties possible with layered perovskites.
NASA Astrophysics Data System (ADS)
Jolinat, P.; Clergereaux, R.; Farenc, J.; Destruel, P.
1998-05-01
Organic electroluminescent diodes based on thin organic layers are one of the most promising next-generation systems for the backlighting of the liquid crystal screens. Among other methods to obtain white light, three-layer luminescent devices with each layer emitting one of the three fundamental colours have been studied here. Red, green and blue light were produced by 0022-3727/31/10/018/img1 doped with Nile red, 0022-3727/31/10/018/img1 and TPD layers respectively. A fourth thin film of TAZ has been inserted between TPD and 0022-3727/31/10/018/img1 to control injection of electrons into the TPD. The effect of the layers' thicknesses on the spectral emission of the device has been examined. Results show that the thicknesses of TAZ and doped 0022-3727/31/10/018/img1 layers have to be controlled to within a precision of better than 5 Å. The discussion turns on the possibility of applying this technology to screen backlighting.
Uric Acid Spherulites in the Reflector Layer of Firefly Light Organ
Goh, King-Siang; Sheu, Hwo-Shuenn; Hua, Tzu-En; Kang, Mei-Hua; Li, Chia-Wei
2013-01-01
Background In firefly light organs, reflector layer is a specialized tissue which is believed to play a key role for increasing the bioluminescence intensity through reflection. However, the nature of this unique tissue remains elusive. In this report, we investigated the role, fine structure and nature of the reflector layer in the light organ of adult Luciola cerata. Principal Findings Our results indicated that the reflector layer is capable of reflecting bioluminescence, and contains abundant uric acid. Electron microscopy (EM) demonstrated that the cytosol of the reflector layer's cells is filled with densely packed spherical granules, which should be the uric acid granules. These granules are highly regular in size (∼700 nm in diameter), and exhibit a radial internal structure. X-ray diffraction (XRD) analyses revealed that an intense single peak pattern with a d-spacing value of 0.320 nm is specifically detected in the light organ, and is highly similar to the diffraction peak pattern and d-spacing value of needle-formed crystals of monosodium urate monohydrate. However, the molar ratio evaluation of uric acid to various cations (K+, Na+, Ca2+ and Mg2+) in the light organ deduced that only a few uric acid molecules were in the form of urate salts. Thus, non-salt uric acid should be the source of the diffraction signal detected in the light organ. Conclusions In the light organ, the intense single peak diffraction signal might come from a unique needle-like uric acid form, which is different from other known structures of non-salt uric acid form. The finding of a radial structure in the granules of reflector layer implies that the spherical uric acid granules might be formed by the radial arrangement of needle-formed packing matter. PMID:23441187
Poerschmann, Juergen; Koschorreck, Matthias; Górecki, Tadeusz
2017-02-01
Natural neutralization of acidic mining lakes is often limited by organic matter. The knowledge of the sources and degradability of organic matter is crucial for understanding alkalinity generation in these lakes. Sediments collected at different depths (surface sediment layer from 0 to 1 cm and deep sediment layer from 4 to 5cm) from an acidic mining lake were studied in order to characterize sedimentary organic matter based on neutral signature markers. Samples were exhaustively extracted, subjected to pre-chromatographic derivatizations and analyzed by GC/MS. Herein, molecular distributions of diagnostic alkanes/alkenes, terpenes/terpenoids, polycyclic aromatic hydrocarbons, aliphatic alcohols and ketones, sterols, and hopanes/hopanoids were addressed. Characterization of the contribution of natural vs. anthropogenic sources to the sedimentary organic matter in these extreme environments was then possible based on these distributions. With the exception of polycyclic aromatic hydrocarbons, combined concentrations across all marker classes proved higher in the surface sediment layer as compared to those in the deep sediment layer. Alkane and aliphatic alcohol distributions pointed to predominantly allochthonous over autochthonous contribution to sedimentary organic matter. Sterol patterns were dominated by phytosterols of terrestrial plants including stigmasterol and β-sitosterol. Hopanoid markers with the ββ-biohopanoid "biological" configuration were more abundant in the surface sediment layer, which pointed to higher bacterial activity. The pattern of polycyclic aromatic hydrocarbons pointed to prevailing anthropogenic input. Pyrolytic makers were likely to due to atmospheric deposition from a nearby former coal combustion facility. The combined analysis of the array of biomarkers provided new insights into the sources and transformations of organic matter in lake sediments. Copyright © 2016 Elsevier B.V. All rights reserved.
Modeling Fusion of Cellular Aggregates in Biofabrication Using Phase Field Theories (Preprint)
2011-01-01
biofabrication process known as bioprinting [25], live multicellular aggregates/clusters are used to make tissue or organ constructs via the layer-by-layer...recipient organism , where the maturation of the new organ takes place [17, 24]. In a novel biomimetic biofabrication process, called “ bioprinting ...fundamental biophysical process in emerging organ bioprinting technology. The bio-constructs ranging from the ones comprised of tissue spheroids to
Doped bottom-contact organic field-effect transistors
NASA Astrophysics Data System (ADS)
Liu, Shiyi; Billig, Paul; Al-Shadeedi, Akram; Kaphle, Vikash; Lüssem, Björn
2018-07-01
The influence of doping on doped bottom-gate bottom-contact organic field-effect transistors (OFETs) is discussed. It is shown that the inclusion of a doped layer at the dielectric/organic semiconductor layer leads to a significant reduction in the contact resistances and a fine control of the threshold voltage. Through varying the thickness of the doped layer, a linear shift of threshold voltage V T from ‑3.1 to ‑0.22 V is observed for increasing thickness of doped layer. Meanwhile, the contact resistance at the source and drain electrode is reduced from 138.8 MΩ at V GS = ‑10 V for 3 nm to 0.3 MΩ for 7 nm thick doped layers. Furthermore, an increase of charge mobility is observed for increasing thickness of doped layer. Overall, it is shown that doping can minimize injection barriers in bottom-contact OFETs with channel lengths in the micro-meter regime, which has the potential to increase the performance of this technology further.
Articles including thin film monolayers and multilayers
Li, DeQuan; Swanson, Basil I.
1995-01-01
Articles of manufacture including: (a) a base substrate having an oxide surface layer, and a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, (b) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, and a metal species attached to the multidentate ligand, (c) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, a metal species attached to the multidentate ligand, and a multifunctional organic ligand attached to the metal species, and (d) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, a metal species attached to the multidentate ligand, a multifunctional organic ligand attached to the metal species, and a second metal species attached to the multifunctional organic ligand, are provided, such articles useful in detecting the presence of a selected target species, as nonliear optical materials, or as scavengers for selected target species.
Tunneling and Origin of Large Access Resistance in Layered-Crystal Organic Transistors
NASA Astrophysics Data System (ADS)
Hamai, Takamasa; Arai, Shunto; Minemawari, Hiromi; Inoue, Satoru; Kumai, Reiji; Hasegawa, Tatsuo
2017-11-01
Layered crystallinity of organic semiconductors is crucial to obtaining high-performance organic thin-film transistors (OTFTs), as it allows both smooth-channel-gate-insulator interface formation and efficient two-dimensional carrier transport along the interface. However, the role of vertical transport across the crystalline molecular layers in device operations has not been a crucial subject so far. Here, we show that the interlayer carrier transport causes unusual nonlinear current-voltage characteristics and enormous access resistance in extremely high-quality single-crystal OTFTs based on 2-decyl-7-phenyl[1]-benzothieno[3 ,2 -b ][1]benzothiophene (Ph -BTBT -C10 ) that involve inherent multiple semiconducting π -conjugated layers interposed, respectively, by electrically inert alkyl-chain layers. The output characteristics present layer-number (n )-dependent nonlinearity that becomes more evident at larger n (1 ≤n ≤15 ), demonstrating tunneling across multiple alkyl-chain layers. The n -dependent device mobility and four-probe measurements reveal that the alkyl-chain layers generate a large access resistance that suppresses the device mobility from the intrinsic value of about 20 cm2 V-1 s-1 . Our findings clarify the reason why device characteristics are distributed in single-crystal OTFTs.
Methodological comparison on hybrid nano organic solar cell fabrication
NASA Astrophysics Data System (ADS)
Vairavan, Rajendaran; Hambali, Nor Azura Malini Ahmad; Wahid, Mohamad Halim Abd; Retnasamy, Vithyacharan; Shahimin, Mukhzeer Mohamad
2018-02-01
The development of low cost solar cells has been the main focus in recent years. This has lead to the generation of photovoltaic cells based on hybrid of nanoparticle-organic polymer materials. This type of hybrid photovoltaic cells can overcome the problem of polymeric devices having low optical absorption and carrier mobilities. The hybrid cell has the potential of bridging the efficiency gap, which in present in organic and inorganic semiconductor materials. This project focuses on obtaining an hybrid active layer consisting of nanoparticles and organic polymer, to understand the parameter involved in obtaining this active layer and finally to investigate if the addition of nano particles in to the active layer could enhance the output of the hybrid solar cell. The hybrid active layer have will be deposited using the spin coating technique by using CdTe, CdS nano particles mixed with poly (2-methoxy,5-(2-ethyl-hexyloxy)-p-phenylvinylene)MEH-PPV.
Conducting Layered Organic-inorganic Halides Containing <110>-Oriented Perovskite Sheets.
Mitzi, D B; Wang, S; Feild, C A; Chess, C A; Guloy, A M
1995-03-10
Single crystals of the layered organic-inorganic perovskites, [NH(2)C(I=NH(2)](2)(CH(3)NH(3))m SnmI3m+2, were prepared by an aqueous solution growth technique. In contrast to the recently discovered family, (C(4)H(9)NH(3))(2)(CH(3)NH(3))n-1SnnI3n+1, which consists of (100)-terminated perovskite layers, structure determination reveals an unusual structural class with sets of m <110>-oriented CH(3)NH(3)SnI(3) perovskite sheets separated by iodoformamidinium cations. Whereas the m = 2 compound is semiconducting with a band gap of 0.33 +/- 0.05 electron volt, increasing m leads to more metallic character. The ability to control perovskite sheet orientation through the choice of organic cation demonstrates the flexibility provided by organic-inorganic perovskites and adds an important handle for tailoring and understanding lower dimensional transport in layered perovskites.
STM-induced light emission enhanced by weakly coupled organic ad-layers
NASA Astrophysics Data System (ADS)
Cottin, M. C.; Ekici, E.; Bobisch, C. A.
2018-03-01
We analyze the light emission induced by the tunneling current flowing in a scanning tunneling microscopy experiment. In particular, we study the influence of organic ad-layers on the light emission on the initial monolayer of bismuth (Bi) on Cu(111) in comparison to the well-known case of organic ad-layers on Ag(111). On the Bi/Cu(111)-surface, we find that the scanning tunneling microscopy-induced light emission is considerably enhanced if an organic layer, e.g., the fullerene C60 or the perylene derivate perylene-tetracarboxylic-dianhydride, is introduced into the tip-sample junction. The enhancement can be correlated with a peculiarly weak interaction between the adsorbed molecules and the underlying Bi/Cu(111) substrate as compared to the Ag(111) substrate. This allows us to efficiently enhance and tune the coupling of the tunneling current to localized excitations of the tip-sample junction, which in turn couple to radiative decay channels.
Zhou, Lijie; Zhuang, Wei-Qin; Wang, Xin; Yu, Ke; Yang, Shufang; Xia, Siqing
2017-11-01
In previous studies, cake layer analysis in membrane bioreactor (MBR) was both carried out with synthetic and practical municipal wastewater (SMW and PMW), leading to different results. This study aimed to identify the comparison between SMW and PMW in cake layer characteristic analysis of MBR. Two laboratory-scale anoxic/oxic MBRs were operated for over 90days with SMW and PMW, respectively. Results showed that PMW led to rough cake layer surface with particles, and the aggravation of cake layer formation with thinner and denser cake layer. Additionally, inorganic components, especially Si and Al, in PMW accumulated into cake layer and strengthened the cake layer structure, inducing severer biofouling. However, SMW promoted bacterial metabolism during cake layer formation, thus aggravated the accumulation of organic components into cake layer. Therefore, SMW highlighted the organic components in cake layer, but weakened the inorganic functions in practical MBR operation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shi, Wei; Zheng, Yifan; Taylor, André D.; Yu, Junsheng; Katz, Howard E.
2017-07-01
Layer-by-layer deposited guanine and pentacene in organic field-effect transistors (OFETs) is introduced. Through adjusting the layer thickness ratio of guanine and pentacene, the tradeoff of two electronic parameters in OFETs, charge carrier mobility and current on/off ratio, was controlled. The charge mobility was enhanced by depositing pentacene over and between guanine layers and by increasing the proportion of pentacene in the layer-by-layer system, while the current on/off ratio was increased via the decreased off current induced by the guanine layers. The tunable device performance was mainly ascribed to the trap and dopant neutralizing properties of the guanine layers, which would decrease the density of free hydroxyl groups in the OFETs. Furthermore, the cost of the devices could be reduced remarkably via the adoption of low-cost guanine.
VizieR Online Data Catalog: VIKING catalogue data release 2 (Edge+, 2016)
NASA Astrophysics Data System (ADS)
Edge, A.; Sutherland, W.; Viking Team
2016-10-01
The VIKING survey with VISTA (ESO programme ID 179.A-2004) is a wide area (eventually 1500 sq.degrees), intermediate-depth (5-sigma detection limit J=21 on Vega system) near-infrared imaging survey, in the five broadband filters Z, Y, J, H, Ks. The planned sky coverage is at high galactic latitudes, and includes two main stripes 70x10°2 each: one in the South Galactic cap near Dec~-30°, and one near Dec~0° in the North galactic cap; in addition, there are two smaller outrigger patches called GAMA09 and CFHLS-W1. Science goals include z>6.5 quasars, extreme brown dwarfs, and multiwavelength coverage and identifications for a range of other imaging surveys, notably VST-KIDS and Herschel-ATLAS. This second public data release of VIKING data covers all of the highest quality data taken between the start of the survey (12th of November 2009) and the end of Period 92 (30th September 2013). This release supersedes the first release (VIKING and VIKING CAT published 28.06.2013 and 16.12.2013 respectively) as it includes improved CASU processing (V1.3) that gives better tile grouting and zero point corrections This release contains 396 tiles with coverage in all five VIKING filters, 379 of which have a deep co-add in J, and an additional 81 with at least two filters where the second OB has not been executed yet or one filter in an OB was poor quality. These 477 fields cover a total of ~690 square degrees and the resulting catalogues include a total of 46,270,162 sources (including low-reliability single-band detections). The imaging and catalogues (both single-band and band-merged) total 839.3GB. The coverage in each of the five sub-areas is not completely contiguous but any inter-tile gaps are relatively small. More details can be found in the accompanying documentation: vikingcatdr2.pdf (2 data files).
Maximizing the value of gate capacitance in field-effect devices using an organic interface layer
NASA Astrophysics Data System (ADS)
Kwok, H. L.
2015-12-01
Past research has confirmed the existence of negative capacitance in organics such as tris (8-Hydroxyquinoline) Aluminum (Alq3). This work explored using such an organic interface layer to enhance the channel voltage in the field-effect transistor (FET) thereby lowering the sub-threshold swing. In particular, if the values of the positive and negative gate capacitances are approximately equal, the composite negative capacitance will increase by orders of magnitude. One concern is the upper frequency limit (∼100 Hz) over which negative capacitance has been observed. Nonetheless, this frequency limit can be raised to kHz when the organic layer is subjected to a DC bias.
Kim, Hye Min; Lee, Min Jin; Jung, Ji Young; Hwang, Chung Yeon; Kim, Mincheol; Ro, Hee-Myong; Chun, Jongsik; Lee, Yoo Kyung
2016-11-01
The increasing temperature in Arctic tundra deepens the active layer, which is the upper layer of permafrost soil that experiences repeated thawing and freezing. The increasing of soil temperature and the deepening of active layer seem to affect soil microbial communities. Therefore, information on soil microbial communities at various soil depths is essential to understand their potential responses to climate change in the active layer soil. We investigated the community structure of soil bacteria in the active layer from moist acidic tundra in Council, Alaska. We also interpreted their relationship with some relevant soil physicochemical characteristics along soil depth with a fine scale (5 cm depth interval). The bacterial community structure was found to change along soil depth. The relative abundances of Acidobacteria, Gammaproteobacteria, Planctomycetes, and candidate phylum WPS-2 rapidly decreased with soil depth, while those of Bacteroidetes, Chloroflexi, Gemmatimonadetes, and candidate AD3 rapidly increased. A structural shift was also found in the soil bacterial communities around 20 cm depth, where two organic (upper Oi and lower Oa) horizons are subdivided. The quality and the decomposition degree of organic matter might have influenced the bacterial community structure. Besides the organic matter quality, the vertical distribution of bacterial communities was also found to be related to soil pH and total phosphorus content. This study showed the vertical change of bacterial community in the active layer with a fine scale resolution and the possible influence of the quality of soil organic matter on shaping bacterial community structure.
Voet, Vincent S D; Kumar, Kamlesh; ten Brinke, Gerrit; Loos, Katja
2015-10-01
The unique mechanical performance of nacre, the pearly internal layer of shells, is highly dependent on its complex morphology. Inspired by the structure of nacre, the fabrication of well-ordered layered inorganic-organic nanohybrids is presented herein. This biomimetic approach includes the use of a block copolymer template, consisting of hydrophobic poly(vinylidene fluoride) (PVDF) lamellae covered with hydrophilic poly(methacrylic acid) (PMAA), to direct silica (SiO2 ) mineralization. The resulting PVDF/PMAA/SiO2 nanohybrid material resembles biogenic nacre with respect to its well-ordered and layered nanostructure, alternating organic-inorganic phases, macromolecular template, and mild processing conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Degradation of Bilayer Organic Light-Emitting Diodes Studied by Impedance Spectroscopy.
Sato, Shuri; Takata, Masashi; Takada, Makoto; Naito, Hiroyoshi
2016-04-01
The degradation of bilayer organic light-emitting diodes (OLEDs) with a device structure of N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine (α-NPD) (hole transport layer) and tris-(8-hydroxyquinolate)aluminum (Alq3) (emissive layer and electron transport layer) has been studied by impedance spectroscopy and device simulation. Two modulus peaks are found in the modulus spectra of the OLEDs below the electroluminescence threshold. After aging of the OLEDs, the intensity of electroluminescence is degraded and the modulus peak due to the Alq3 layer is shifted to lower frequency, indicating that the resistance of the Alq3 layer is increased. Device simulation reveals that the increase in the resistance of the Alq3 layer is due to the decrease in the electron mobility in the Alq3 layer.
Langmuir-Blodgett Thin Films of Diketopyrrolopyrrole-Based Amphiphiles.
Lo, Chi Kin; Wang, Cheng-Yin; Oosterhout, Stefan D; Zheng, Zilong; Yi, Xueping; Fuentes-Hernandez, Canek; So, Franky; Coropceanu, Veaceslav; Brédas, Jean-Luc; Toney, Michael F; Kippelen, Bernard; Reynolds, John R
2018-04-11
We report on two π-conjugated donor-acceptor-donor (D-A-D) molecules of amphiphilic nature, aiming to promote intermolecular ordering and carrier mobility in organic electronic devices. Diketopyrrolopyrrole was selected as the acceptor moiety that was disubstituted with nonpolar and polar functional groups, thereby providing the amphiphilic structures. This structural design resulted in materials with a strong intermolecular order in the solid state, which was confirmed by differential scanning calorimetry and polarized optical microscopy. Langmuir-Blodgett (LB) films of ordered mono- and multilayers were transferred onto glass and silicon substrates, with layer quality, coverage, and intermolecular order controlled by layer compression pressure on the LB trough. Organic field-effect transistors and organic photovoltaics devices with active layers consisting of the amphiphilic conjugated D-A-D-type molecules were constructed to demonstrate that the LB technique is an effective layer-by-layer deposition approach to fabricate self-assembled, ordered thin films.
Langmuir–Blodgett Thin Films of Diketopyrrolopyrrole-Based Amphiphiles
Lo, Chi Kin; Wang, Cheng -Yin; Oosterhout, Stefan D.; ...
2018-03-30
Here, we report on two π-conjugated donor–acceptor–donor (D–A–D) molecules of amphiphilic nature, aiming to promote intermolecular ordering and carrier mobility in organic electronic devices. Diketopyrrolopyrrole was selected as the acceptor moiety that was disubstituted with nonpolar and polar functional groups, thereby providing the amphiphilic structures. This structural design resulted in materials with a strong intermolecular order in the solid state, which was confirmed by differential scanning calorimetry and polarized optical microscopy. Langmuir–Blodgett (LB) films of ordered mono- and multilayers were transferred onto glass and silicon substrates, with layer quality, coverage, and intermolecular order controlled by layer compression pressure on themore » LB trough. Organic field-effect transistors and organic photovoltaics devices with active layers consisting of the amphiphilic conjugated D–A–D-type molecules were constructed to demonstrate that the LB technique is an effective layer-by-layer deposition approach to fabricate self-assembled, ordered thin films.« less
Numerical study of the light output intensity of the bilayer organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Lu, Feiping
2017-02-01
The structure of organic light-emitting diodes (OLEDs) is one of most important issues that influence the light output intensity (LOI) of OLEDs. In this paper, based on a simple but accurate optical model, the influences of hole and electron transport layer thickness on the LOI of bilayer OLEDs, which with N,N0- bis(naphthalen-1-yl)-N,N0- bis(phenyl)- benzidine (NPB) or N,N'- diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4-diamine (TPD) as hole transport layer, with tris(8-hydroxyquinoline) aluminum (Alq3) as electron transport and light emitting layers, were investigated. The laws of LOI for OLEDs under different organic layer thickness values were obtained. The results show that the LOI of devices varies in accordance with damped cosine or sine function as the increasing of organic layer thickness, and the results show that the bilayer OLEDs with the structure of Glass/ITO/NPB (55 nm)/Alq3 (75 nm)/Al and Glass/ITO/TPB (60 nm)/Alq3 (75 nm)/Al have most largest LOI. When the thickness of Alq3 is less than 105 nm, the OLEDs with TPD as hole transport layer have larger LOI than that with NPB as hole transport layer. The results obtained in this paper can present an in-depth understanding of the working mechanism of OLEDs and help ones fabricate high efficiency OLEDs.
Air stable organic-inorganic nanoparticles hybrid solar cells
Qian, Lei; Yang, Jihua; Xue, Jiangeng; Holloway, Paul H.
2015-09-29
A solar cell includes a low work function cathode, an active layer of an organic-inorganic nanoparticle composite, a ZnO nanoparticle layer situated between and physically contacting the cathode and active layers; and a transparent high work function anode that is a bilayer electrode. The inclusion of the ZnO nanoparticle layer results in a solar cell displaying a conversion efficiency increase and reduces the device degradation rate. Embodiments of the invention are directed to novel ZnO nanoparticles that are advantageous for use as the ZnO nanoparticle layers of the novel solar cells and a method to prepare the ZnO nanoparticles.
Physics-based deformable organisms for medical image analysis
NASA Astrophysics Data System (ADS)
Hamarneh, Ghassan; McIntosh, Chris
2005-04-01
Previously, "Deformable organisms" were introduced as a novel paradigm for medical image analysis that uses artificial life modelling concepts. Deformable organisms were designed to complement the classical bottom-up deformable models methodologies (geometrical and physical layers), with top-down intelligent deformation control mechanisms (behavioral and cognitive layers). However, a true physical layer was absent and in order to complete medical image segmentation tasks, deformable organisms relied on pure geometry-based shape deformations guided by sensory data, prior structural knowledge, and expert-generated schedules of behaviors. In this paper we introduce the use of physics-based shape deformations within the deformable organisms framework yielding additional robustness by allowing intuitive real-time user guidance and interaction when necessary. We present the results of applying our physics-based deformable organisms, with an underlying dynamic spring-mass mesh model, to segmenting and labelling the corpus callosum in 2D midsagittal magnetic resonance images.
Multi-layered nanocomposite dielectrics for high density organic memory devices
NASA Astrophysics Data System (ADS)
Kang, Moonyeong; Chung, Kyungwha; Baeg, Kang-Jun; Kim, Dong Ha; Kim, Choongik
2015-01-01
We fabricated organic memory devices with metal-pentacene-insulator-silicon structure which contain double dielectric layers comprising 3D pattern of Au nanoparticles (Au NPs) and block copolymer (PS-b-P2VP). The role of Au NPs is to charge/discharge carriers upon applied voltage, while block copolymer helps to form highly ordered Au NP patterns in the dielectric layer. Double-layered nanocomposite dielectrics enhanced the charge trap density (i.e., trapped charge per unit area) by Au NPs, resulting in increase of the memory window (ΔVth).
Peterson, Gregory W; Lu, Annie X; Hall, Morgan G; Browe, Matthew A; Tovar, Trenton; Epps, Thomas H
2018-02-28
This work describes a new strategy for fabricating mixed matrix composites containing layered metal-organic framework (MOF)/polymer films as functional barriers for chemical warfare agent protection. Through the use of mechanically robust polymers as the top and bottom encasing layers, a high-MOF-loading, high-performance-core layer can be sandwiched within. We term this multifunctional composite "MOFwich". We found that the use of elastomeric encasing layers enabled core layer reformation after breakage, an important feature for composites and membranes alike. The incorporation of MOFs into the core layer led to enhanced removal of chemical warfare agents while simultaneously promoting moisture vapor transport through the composite, showcasing the promise of these composites for protection applications.
Organic doping of rotated double layer graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, Lijin; Jaiswal, Manu, E-mail: manu.jaiswal@iitm.ac.in
2016-05-06
Charge transfer techniques have been extensively used as knobs to tune electronic properties of two- dimensional systems, such as, for the modulation of conductivity \\ mobility of single layer graphene and for opening the bandgap in bilayer graphene. The charge injected into the graphene layer shifts the Fermi level away from the minimum density of states point (Dirac point). In this work, we study charge transfer in rotated double-layer graphene achieved by the use of organic dopant, Tetracyanoquinodimethane. Naturally occurring bilayer graphene has a well-defined A-B stacking whereas in rotated double-layer the two graphene layers are randomly stacked with differentmore » rotational angles. This rotation is expected to significantly alter the interlayer interaction. Double-layer samples are prepared using layer-by-layer assembly of chemical vapor deposited single-layer graphene and they are identified by characteristic resonance in the Raman spectrum. The charge transfer and distribution of charges between the two graphene layers is studied using Raman spectroscopy and the results are compared with that for single-layer and A-B stacked bilayer graphene doped under identical conditions.« less
Jafarov, Elchin E.; Romanovsky, Vladimir E.; Genet, Helene; McGuire, Anthony David; Marchenko, Sergey S.
2013-01-01
Fire is an important factor controlling the composition and thickness of the organic layer in the black spruce forest ecosystems of interior Alaska. Fire that burns the organic layer can trigger dramatic changes in the underlying permafrost, leading to accelerated ground thawing within a relatively short time. In this study, we addressed the following questions. (1) Which factors determine post-fire ground temperature dynamics in lowland and upland black spruce forests? (2) What levels of burn severity will cause irreversible permafrost degradation in these ecosystems? We evaluated these questions in a transient modeling–sensitivity analysis framework to assess the sensitivity of permafrost to climate, burn severity, soil organic layer thickness, and soil moisture content in lowland (with thick organic layers, ~80 cm) and upland (with thin organic layers, ~30 cm) black spruce ecosystems. The results indicate that climate warming accompanied by fire disturbance could significantly accelerate permafrost degradation. In upland black spruce forest, permafrost could completely degrade in an 18 m soil column within 120 years of a severe fire in an unchanging climate. In contrast, in a lowland black spruce forest, permafrost is more resilient to disturbance and can persist under a combination of moderate burn severity and climate warming.
Zhang, Yuhan; Qiao, Jingsi; Gao, Si; Hu, Fengrui; He, Daowei; Wu, Bing; Yang, Ziyi; Xu, Bingchen; Li, Yun; Shi, Yi; Ji, Wei; Wang, Peng; Wang, Xiaoyong; Xiao, Min; Xu, Hangxun; Xu, Jian-Bin; Wang, Xinran
2016-01-08
One of the basic assumptions in organic field-effect transistors, the most fundamental device unit in organic electronics, is that charge transport occurs two dimensionally in the first few molecular layers near the dielectric interface. Although the mobility of bulk organic semiconductors has increased dramatically, direct probing of intrinsic charge transport in the two-dimensional limit has not been possible due to excessive disorders and traps in ultrathin organic thin films. Here, highly ordered single-crystalline mono- to tetralayer pentacene crystals are realized by van der Waals (vdW) epitaxy on hexagonal BN. We find that the charge transport is dominated by hopping in the first conductive layer, but transforms to bandlike in subsequent layers. Such an abrupt phase transition is attributed to strong modulation of the molecular packing by interfacial vdW interactions, as corroborated by quantitative structural characterization and density functional theory calculations. The structural modulation becomes negligible beyond the second conductive layer, leading to a mobility saturation thickness of only ∼3 nm. Highly ordered organic ultrathin films provide a platform for new physics and device structures (such as heterostructures and quantum wells) that are not possible in conventional bulk crystals.
Measurement of Small Molecular Dopant F4TCNQ and C 60F 36 Diffusion in Organic Bilayer Architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jun; Rochester, Chris W.; Jacobs, Ian E.
2015-12-03
The diffusion of molecules through and between organic layers is a serious stability concern in organic electronic devices. In this paper, the temperature-dependent diffusion of molecular dopants through small molecule hole transport layers is observed. Specifically we investigate bilayer stacks of small molecules used for hole transport (MeO-TPD) and p-type dopants (F4TCNQ and C 60F 36) used in hole injection layers for organic light emitting diodes and hole collection electrodes for organic photovoltaics. With the use of absorbance spectroscopy, photoluminescence spectroscopy, neutron reflectometry, and near-edge X-ray absorption fine structure spectroscopy, we are able to obtain a comprehensive picture of themore » diffusion of fluorinated small molecules through MeO-TPD layers. F4TCNQ spontaneously diffuses into the MeO-TPD material even at room temperature, while C 60F 36, a much bulkier molecule, is shown to have a substantially higher morphological stability. Finally, this study highlights that the differences in size/geometry and thermal properties of small molecular dopants can have a significant impact on their diffusion in organic device architectures.« less
NASA Astrophysics Data System (ADS)
Zhang, Yuhan; Qiao, Jingsi; Gao, Si; Hu, Fengrui; He, Daowei; Wu, Bing; Yang, Ziyi; Xu, Bingchen; Li, Yun; Shi, Yi; Ji, Wei; Wang, Peng; Wang, Xiaoyong; Xiao, Min; Xu, Hangxun; Xu, Jian-Bin; Wang, Xinran
2016-01-01
One of the basic assumptions in organic field-effect transistors, the most fundamental device unit in organic electronics, is that charge transport occurs two dimensionally in the first few molecular layers near the dielectric interface. Although the mobility of bulk organic semiconductors has increased dramatically, direct probing of intrinsic charge transport in the two-dimensional limit has not been possible due to excessive disorders and traps in ultrathin organic thin films. Here, highly ordered single-crystalline mono- to tetralayer pentacene crystals are realized by van der Waals (vdW) epitaxy on hexagonal BN. We find that the charge transport is dominated by hopping in the first conductive layer, but transforms to bandlike in subsequent layers. Such an abrupt phase transition is attributed to strong modulation of the molecular packing by interfacial vdW interactions, as corroborated by quantitative structural characterization and density functional theory calculations. The structural modulation becomes negligible beyond the second conductive layer, leading to a mobility saturation thickness of only ˜3 nm . Highly ordered organic ultrathin films provide a platform for new physics and device structures (such as heterostructures and quantum wells) that are not possible in conventional bulk crystals.
Stability of organic carbon in deep soil layers controlled by fresh carbon supply.
Fontaine, Sébastien; Barot, Sébastien; Barré, Pierre; Bdioui, Nadia; Mary, Bruno; Rumpel, Cornelia
2007-11-08
The world's soils store more carbon than is present in biomass and in the atmosphere. Little is known, however, about the factors controlling the stability of soil organic carbon stocks and the response of the soil carbon pool to climate change remains uncertain. We investigated the stability of carbon in deep soil layers in one soil profile by combining physical and chemical characterization of organic carbon, soil incubations and radiocarbon dating. Here we show that the supply of fresh plant-derived carbon to the subsoil (0.6-0.8 m depth) stimulated the microbial mineralization of 2,567 +/- 226-year-old carbon. Our results support the previously suggested idea that in the absence of fresh organic carbon, an essential source of energy for soil microbes, the stability of organic carbon in deep soil layers is maintained. We propose that a lack of supply of fresh carbon may prevent the decomposition of the organic carbon pool in deep soil layers in response to future changes in temperature. Any change in land use and agricultural practice that increases the distribution of fresh carbon along the soil profile could however stimulate the loss of ancient buried carbon.
Chemical Microsensors For Detection Of Explosives And Chemical Warfare Agents
Yang, Xiaoguang; Swanson, Basil I.
2001-11-13
An article of manufacture is provided including a substrate having an oxide surface layer and a layer of a cyclodextrin derivative chemically bonded to said substrate, said layer of a cyclodextrin derivative adapted for the inclusion of selected compounds, e.g., nitro-containing organic compounds, therewith. Such an article can be a chemical microsensor capable of detecting a resultant mass change from inclusion of the nitro-containing organic compound.
Liu, Shihao; Zhang, Xiang; Zhang, Letian; Xie, Wenfa
2016-11-22
Ultrasonic spray coating process (USCP) with high material -utilization, low manufacture costs and compatibility to streamline production has been attractive in researches on photoelectric devices. However, surface tension exists in the solvent is still a huge obstacle to realize smooth organic film for organic light emitting devices (OLEDs) by USCP. Here, high quality polymer anode buffer layer and small molecular emitting layer are successfully realized through USCP by introducing extra-low surface tension diluent and surface tension control method. The introduction of low surface tension methyl alcohol is beneficial to the formation of poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) films and brings obvious phase separation and improved conductivity to PEDOT:PSS film. Besides, a surface tension control method, in which new stable tension equilibrium is built at the border of wetting layer, is proposed to eliminate the effect of surface tension during the solvent evaporation stage of ultrasonic spray coating the film consists of 9,9-Spirobifluoren-2-yl-diphenyl-phosphine oxide doped with 10 wt% tris [2-(p -tolyl) pyridine] iridium (III). A smooth and homogenous small molecular emitting layer without wrinkles is successfully realized. The effectiveness of the ultrasonic spray coating polymer anode buffer layer and small molecular emitting layer are also proved by introducing them in OLEDs.
Rapid Water Transport through Organic Layers on Ice.
Kong, Xiangrui; Toubin, Céline; Habartova, Alena; Pluharova, Eva; Roeselova, Martina; Pettersson, Jan B C
2018-05-31
Processes involving atmospheric aerosol and cloud particles are affected by condensation of organic compounds that are omnipresent in the atmosphere. On ice particles, organic compounds with hydrophilic functional groups form hydrogen bonds with the ice and orient their hydrophobic groups away from the surface. The organic layer has been expected to constitute a barrier to gas uptake, but recent experimental studies suggest that the accommodation of water molecules on ice is only weakly affected by condensed short-chain alcohol layers. Here, we employ molecular dynamics simulations to study the water interactions with n-butanol covered ice at 200 K and show that the small effect of the condensed layer is due to efficient diffusion of water molecules along the surface plane while seeking appropriate sites to penetrate, followed by penetration driven by the combined attractive forces from butanol OH groups and water molecules within the ice. The water molecules that penetrate through the n-butanol layer become strongly bonded by approximately three hydrogen bonds at the butanol-ice interface. The obtained accommodation coefficient (0.81 ± 0.03) is in excellent agreement with results from previous environmental molecular beam experiments, leading to a picture where an adsorbed n-butanol layer does not alter the apparent accommodation coefficient but dramatically changes the detailed molecular dynamics and kinetics.
Ultrasonic spray coating polymer and small molecular organic film for organic light-emitting devices
NASA Astrophysics Data System (ADS)
Liu, Shihao; Zhang, Xiang; Zhang, Letian; Xie, Wenfa
2016-11-01
Ultrasonic spray coating process (USCP) with high material -utilization, low manufacture costs and compatibility to streamline production has been attractive in researches on photoelectric devices. However, surface tension exists in the solvent is still a huge obstacle to realize smooth organic film for organic light emitting devices (OLEDs) by USCP. Here, high quality polymer anode buffer layer and small molecular emitting layer are successfully realized through USCP by introducing extra-low surface tension diluent and surface tension control method. The introduction of low surface tension methyl alcohol is beneficial to the formation of poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) films and brings obvious phase separation and improved conductivity to PEDOT:PSS film. Besides, a surface tension control method, in which new stable tension equilibrium is built at the border of wetting layer, is proposed to eliminate the effect of surface tension during the solvent evaporation stage of ultrasonic spray coating the film consists of 9,9-Spirobifluoren-2-yl-diphenyl-phosphine oxide doped with 10 wt% tris [2-(p -tolyl) pyridine] iridium (III). A smooth and homogenous small molecular emitting layer without wrinkles is successfully realized. The effectiveness of the ultrasonic spray coating polymer anode buffer layer and small molecular emitting layer are also proved by introducing them in OLEDs.
NASA Astrophysics Data System (ADS)
Pandey, Rina; Lim, Ju Won; Kim, Jung Hyuk; Angadi, Basavaraj; Choi, Ji Won; Choi, Won Kook
2018-06-01
In this study, Iridium (Ir) metallic layer as an ultra-thin surface modifier (USM) was deposited on ITO coated glass substrate using radio frequency magnetron sputtering for improving the photo-conversion efficiency of organic photovoltaic cells. Ultra-thin Ir acts as a surface modifier replacing the conventional hole transport layer (HTL) PEDOT:PSS in organic photovoltaic (OPV) cells with two different active layers P3HT:PC60BM and PTB7:PC70BM. The Ir USM (1.0 nm) coated on ITO glass substrate showed transmittance of 84.1% and work function of >5.0 eV, which is higher than that of ITO (4.5-4.7 eV). The OPV cells with Ir USM (1.0 nm) exhibits increased power conversion efficiency of 3.70% (for P3HT:PC60BM active layer) and 7.28% (for PTB7:PC70BM active layer) under 100 mW/cm2 illumination (AM 1.5G) which are higher than those of 3.26% and 6.95% for the same OPV cells but with PEDOT:PSS as HTL instead of Ir USM. The results reveal that the chemically stable Ir USM layer could be used as an alternative material for PEDOT:PSS in organic photovoltaic cells.
Ultrasonic spray coating polymer and small molecular organic film for organic light-emitting devices
Liu, Shihao; Zhang, Xiang; Zhang, Letian; Xie, Wenfa
2016-01-01
Ultrasonic spray coating process (USCP) with high material -utilization, low manufacture costs and compatibility to streamline production has been attractive in researches on photoelectric devices. However, surface tension exists in the solvent is still a huge obstacle to realize smooth organic film for organic light emitting devices (OLEDs) by USCP. Here, high quality polymer anode buffer layer and small molecular emitting layer are successfully realized through USCP by introducing extra-low surface tension diluent and surface tension control method. The introduction of low surface tension methyl alcohol is beneficial to the formation of poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) films and brings obvious phase separation and improved conductivity to PEDOT:PSS film. Besides, a surface tension control method, in which new stable tension equilibrium is built at the border of wetting layer, is proposed to eliminate the effect of surface tension during the solvent evaporation stage of ultrasonic spray coating the film consists of 9,9-Spirobifluoren-2-yl-diphenyl-phosphine oxide doped with 10 wt% tris [2-(p -tolyl) pyridine] iridium (III). A smooth and homogenous small molecular emitting layer without wrinkles is successfully realized. The effectiveness of the ultrasonic spray coating polymer anode buffer layer and small molecular emitting layer are also proved by introducing them in OLEDs. PMID:27874030
Hydroquinone-ZnO nano-laminate deposited by molecular-atomic layer deposition
NASA Astrophysics Data System (ADS)
Huang, Jie; Lucero, Antonio T.; Cheng, Lanxia; Hwang, Hyeon Jun; Ha, Min-Woo; Kim, Jiyoung
2015-03-01
In this study, we have deposited organic-inorganic hybrid semiconducting hydroquinone (HQ)/zinc oxide (ZnO) superlattices using molecular-atomic layer deposition, which enables accurate control of film thickness, excellent uniformity, and sharp interfaces at a low deposition temperature (150 °C). Self-limiting growth of organic layers is observed for the HQ precursor on ZnO surface. Nano-laminates were prepared by varying the number of HQ to ZnO cycles in order to investigate the physical and electrical effects of different HQ to ZnO ratios. It is indicated that the addition of HQ layer results in enhanced mobility and reduced carrier concentration. The highest Hall mobility of approximately 2.3 cm2/V.s and the lowest n-type carrier concentration of approximately 1.0 × 1018/cm3 were achieved with the organic-inorganic superlattice deposited with a ratio of 10 ZnO cycles to 1 HQ cycle. This study offers an approach to tune the electrical transport characteristics of ALD ZnO matrix thin films using an organic dopant. Moreover, with organic embedment, this nano-laminate material may be useful for flexible electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabri, Nasehah Syamin; Yap, Chi Chin; Yahaya, Muhammad
2013-11-27
This work presents the influence of simultaneous electrical and thermal treatment on the performance of organic solar cell blended with organic salt. The organic solar cells were composed of indium tin oxide as anode, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]: (6,6)-phenyl-C61 butyric acid methyl ester: tetrabutylammonium hexafluorophosphate blend as organic active layer and aluminium as cathode. The devices underwent a simultaneous fixed-voltage electrical and thermal treatment at different temperatures of 25, 50 and 75 °C. It was found that photovoltaic performance improved with the thermal treatment temperature. Accumulation of more organic salt ions in the active layer leads to broadening of p-n doped regions andmore » hence higher built-in electric field across thin intrinsic layer. The simultaneous electrical and thermal treatment has been shown to be able to reduce the electrical treatment voltage.« less
Intercalation of anionic organic ultraviolet ray absorbers into layered zinc hydroxide nitrate.
Cursino, Ana Cristina Trindade; Gardolinski, José Eduardo Ferreira da Costa; Wypych, Fernando
2010-07-01
Layered zinc hydroxide nitrate (ZHN) was synthesized and nitrate ions were topotactically exchanged with three different anionic species of commercial organic ultraviolet (UV) ray absorbers: 2-mercaptobenzoic acid, 2-aminobenzoic acid, and 4-aminobenzoic acid. The exchange reactions were confirmed by X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR), ultraviolet visible (UV-Vis) spectroscopy, and thermal analysis (thermogravimetry, TGA, and differential thermal analysis, DTA). In all the anionic exchanged products, evidence of grafting of the organic species onto the inorganic matrix was obtained. In general, after intercalation/grafting, the UV absorption ability was improved in relation to the use of the parent organic material, showing that layered hydroxide salts (LHS) can be good alternative matrixes for the immobilization of organic species with UV-blocking properties in cosmetic products. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fu, Yao-Tsung
The experimental analysis of nanometer-scale separation processes and mechanical properties at buried interfaces in nanocomposites has remained difficult. We have employed molecular dynamics simulation in relation to available experimental data to alleviate such limitations and gain insight into the dispersion and mechanical stability of organically modified layered silicates in hydrophobic polymer matrices. We analyzed cleavage energies of various organically modified silicates as a function of the cation exchange capacity, surfactant head group chemistry, and chain length using MD simulations with the PCFF-PHYLLOSILICATE force field. The range of the cleavage energy is between 25 and 210 mJ/m2 upon the molecular structures and packing of surfactants. As a function of chain length, the cleavage energy indicates local minima for interlayer structures comprised of loosely packed layers of alkyl chains and local maxima for interlayer structures comprised of densely packed layers of alkyl chains between the layers. In addition, the distribution of cationic head groups between the layers in the equilibrium state determines whether large increases in cleavage energy due to Coulomb attraction. We have also examined mechanical bending and failure mechanisms of layered silicates on the nanometer scale using molecular dynamics simulation in comparison to a library of TEM data of polymer nanocomposites. We investigated the energy of single clay lamellae as a function of bending radius and different cation density. The layer energy increases particularly for bending radii below 20 nm and is largely independent of cation exchange capacity. The analysis of TEM images of agglomerated and exfoliated aluminosilicates of different CEC in polymer matrices at small volume fractions showed bending radii in excess of 100 nm due to free volumes in the polymer matrix. At a volume fraction >5%, however, bent clay layers were found with bending radii <20 nm and kinks as a failure mechanism in good agreement with simulation results. We have examined thermal conductivity of organically modified layered silicates using molecular dynamics simulation in comparison to experimental results by laser measurement. The thermal conductivity slightly increased from 0.08 to 0.14 Wm-1K-1 with increasing chain length, related to the gallery spacing and interlayer density of the organic material.
NASA Astrophysics Data System (ADS)
Drapak, S. I.; Gavrylyuk, S. V.; Kaminskii, V. M.; Kovalyuk, Z. D.
2008-09-01
The structures of the molecular propolis films deposited from an alcohol solution on the (0001) cleavage surface of layered bismuth selenide and telluride are studied by X-ray diffraction. Despite the chemical interaction between the semiconductor substrates and the organic-substance components, the molecular structural ordering of the propolis films is shown to be identical to that in the films of this substance on the surface of amorphous glass substrates. The chemical and deformation interaction between the organic substance and the layered V2VI3 compounds is found to result in the formation of an organic-inorganic sandwich nanostructure at a distance of ˜0.3 μm from the layered crystal-propolis film interface.
Jothi, Raja; Balaji, S; Wuster, Arthur; Grochow, Joshua A; Gsponer, Jörg; Przytycka, Teresa M; Aravind, L; Babu, M Madan
2009-01-01
Although several studies have provided important insights into the general principles of biological networks, the link between network organization and the genome-scale dynamics of the underlying entities (genes, mRNAs, and proteins) and its role in systems behavior remain unclear. Here we show that transcription factor (TF) dynamics and regulatory network organization are tightly linked. By classifying TFs in the yeast regulatory network into three hierarchical layers (top, core, and bottom) and integrating diverse genome-scale datasets, we find that the TFs have static and dynamic properties that are similar within a layer and different across layers. At the protein level, the top-layer TFs are relatively abundant, long-lived, and noisy compared with the core- and bottom-layer TFs. Although variability in expression of top-layer TFs might confer a selective advantage, as this permits at least some members in a clonal cell population to initiate a response to changing conditions, tight regulation of the core- and bottom-layer TFs may minimize noise propagation and ensure fidelity in regulation. We propose that the interplay between network organization and TF dynamics could permit differential utilization of the same underlying network by distinct members of a clonal cell population.
Du, J H; Jin, H; Zhang, Z K; Zhang, D D; Jia, S; Ma, L P; Ren, W C; Cheng, H M; Burn, P L
2017-01-07
The large surface roughness, low work function and high cost of transparent electrodes using multilayer graphene films can limit their application in organic photovoltaic (OPV) cells. Here, we develop single layer graphene (SLG) films as transparent anodes for OPV cells that contain light-absorbing layers comprised of the evaporable molecular organic semiconductor materials, zinc phthalocyanine (ZnPc)/fullerene (C60), as well as a molybdenum oxide (MoO x ) interfacial layer. In addition to an increase in the optical transmittance, the SLG anodes had a significant decrease in surface roughness compared to two and four layer graphene (TLG and FLG) anodes fabricated by multiple transfer and stacking of SLGs. Importantly, the introduction of a MoO x interfacial layer not only reduced the energy barrier between the graphene anode and the active layer, but also decreased the resistance of the SLG by nearly ten times. The OPV cells with the structure of polyethylene terephthalate/SLG/MoO x /CuI/ZnPc/C60/bathocuproine/Al were flexible, and had a power conversion efficiency of up to 0.84%, which was only 17.6% lower than the devices with an equivalent structure but prepared on commercial indium tin oxide anodes. Furthermore, the devices with the SLG anode were 50% and 86.7% higher in efficiency than the cells with the TLG and FLG anodes. These results show the potential of SLG electrodes for flexible and wearable OPV cells as well as other organic optoelectronic devices.
Antimicrobial-Resistant Campylobacter in Organically and Conventionally Raised Layer Chickens.
Kassem, Issmat I; Kehinde, Olugbenga; Kumar, Anand; Rajashekara, Gireesh
2017-01-01
Poultry is a major source of Campylobacter, which can cause foodborne bacterial gastroenteritis in humans. Additionally, poultry-associated Campylobacter can develop resistance to important antimicrobials, which increases the risk to public health. While broiler chickens have been the focus of many studies, the emergence of antimicrobial-resistant Campylobacter on layer farms has not received equal attention. However, the growing popularity of cage-free and organic layer farming necessitates a closer assessment of (1) the impact of these farming practices on the emergence of antimicrobial-resistant Campylobacter and (2) layers as a potential source for the transmission of these pathogens. Here, we showed that the prevalence of Campylobacter on organic and conventional layer farms was statistically similar (p > 0.05). However, the average number of Campylobacter jejuni-positive organically grown hens was lower (p < 0.05) in comparison to conventionally grown hens. Campylobacter isolated from both production systems carried antimicrobial resistance genes. The tet(O) and cmeB were the most frequently detected genes, while the occurrence of aph-3-1 and blaOXA-61 was significantly lower (p < 0.05). Farming practices appeared to have an effect on the antimicrobial resistance phenotype, because the isolates from organically grown hens on two farms (OF-2 and OF-3) exhibited significantly lower resistance (p < 0.05) to ciprofloxacin, erythromycin, and tylosin. However, on one of the sampled organic farms (OF-1), a relatively high number of antimicrobial-resistant Campylobacter were isolated. We conclude that organic farming can potentially impact the emergence of antimicrobial-resistant Campylobacter. Nevertheless, this impact should be regularly monitored to avoid potential relapses.
Ultrabright fluorescent OLEDS using triplet sinks
Zhang, Yifan; Forrest, Stephen R; Thompson, Mark
2013-06-04
A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer further comprises an organic host compound, an organic emitting compound capable of fluorescent emission at room temperature, and an organic dopant compound. The triplet energy of the dopant compound is lower than the triplet energy of the host compound. The dopant compound does not strongly absorb the fluorescent emission of the emitting compound.
High efficiency and brightness fluorescent organic light emitting diode by triplet-triplet fusion
Forrest, Stephen; Zhang, Yifan
2015-02-10
A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer may include an organic host compound and at least one organic emitting compound capable of fluorescent emission at room temperature. Various configurations are described for providing a range of current densities in which T-T fusion dominates over S-T annihilation, leading to very high efficiency fluorescent OLEDs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenjin, Zeng; Ran, Bi; Hongmei, Zhang, E-mail: iamhmzhang@njupt.edu.cn, E-mail: iamwhuang@njupt.edu.cn
2014-12-14
Efficient single-layer organic light-emitting diodes (OLEDs) were reported based on a green fluorescent dye 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7–tetramethyl-1H,5H,11H-(1) benzopyropyrano (6,7-8-I,j)quinolizin-11-one (C545T). Herein, poly(3,4-ethylenedioxy thiophene) poly(styrene sulfonate) were, respectively, applied as the injection layer for comparison. The hole transport properties of the emission layer with different hole injection materials are well investigated via current-voltage measurement. It was clearly found that the hole injection layers (HILs) play an important role in the adjustment of the electron/hole injection to attain transport balance of charge carriers in the single emission layer of OLEDs with electron-transporting host. The layer of tris-(8-hydroxyquinoline) aluminum played a dual role of hostmore » and electron-transporting materials within the emission layer. Therefore, appropriate selection of hole injection layer is a key factor to achieve high efficiency OLEDs with single emission layer.« less
NASA Astrophysics Data System (ADS)
Zhang, Le; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa
2013-05-01
By using current-voltage (I-V) measurements and optical modulation spectroscopy, we investigated the dependence of the carrier behaviour on the film thickness of the buried pentacene layer in C60/pentacene ambipolar double-layer organic field-effect transistors (OFETs). It was found that the buried pentacene layer not only acted as a hole transport layer, but also accounted for the properties of the C60/pentacene interface. The hole and electron behaviour exhibited different thickness dependence on the buried pentacene layer, implying the presence of the spatially separated conduction paths. It was suggested that the injected holes transported along the pentacene/gate dielectric interface, which were little affected by the buried pentacene layer thickness or the upper C60 layer; while, the injected electrons accumulated at the C60/pentacene interface, which were sensitive to the interfacial conditions or the buried pentacene layer. Furthermore, it was suggested that the enhanced surface roughness of the buried pentacene layer was responsible for the observed electron behaviour, especially when dpent>10 nm.
Yu, Pengfei; Toon, Owen B.; Neely, Ryan R.; ...
2015-04-10
Recent studies revealed layers of enhanced aerosol scattering in the upper troposphere and lower stratosphere over Asia (Asian Tropopause Aerosol Layer (ATAL)) and North America (North American Tropospheric Aerosol Layer (NATAL)). We use a sectional aerosol model (Community Aerosol and Radiation Model for Atmospheres (CARMA)) coupled with the Community Earth System Model version 1 (CESM1) to explore the composition and optical properties of these aerosol layers. The observed aerosol extinction enhancement is reproduced by CESM1/CARMA. Both model and observations indicate a strong gradient of the sulfur-to-carbon ratio from Europe to the Asia on constant pressure surfaces. We found that themore » ATAL is mostly composed of sulfates, surface-emitted organics, and secondary organics; the NATAL is mostly composed of sulfates and secondary organics. In conclusion, the model also suggests that emission increases in Asia between 2000 and 2010 led to an increase of aerosol optical depth of the ATAL by 0.002 on average which is consistent with observations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Pengfei; Toon, Owen B.; Neely, Ryan R.
Recent studies revealed layers of enhanced aerosol scattering in the upper troposphere and lower stratosphere over Asia (Asian Tropopause Aerosol Layer (ATAL)) and North America (North American Tropospheric Aerosol Layer (NATAL)). We use a sectional aerosol model (Community Aerosol and Radiation Model for Atmospheres (CARMA)) coupled with the Community Earth System Model version 1 (CESM1) to explore the composition and optical properties of these aerosol layers. The observed aerosol extinction enhancement is reproduced by CESM1/CARMA. Both model and observations indicate a strong gradient of the sulfur-to-carbon ratio from Europe to the Asia on constant pressure surfaces. We found that themore » ATAL is mostly composed of sulfates, surface-emitted organics, and secondary organics; the NATAL is mostly composed of sulfates and secondary organics. In conclusion, the model also suggests that emission increases in Asia between 2000 and 2010 led to an increase of aerosol optical depth of the ATAL by 0.002 on average which is consistent with observations.« less
Cell Type-Specific Structural Organization of the Six Layers in Rat Barrel Cortex
Narayanan, Rajeevan T.; Udvary, Daniel; Oberlaender, Marcel
2017-01-01
The cytoarchitectonic subdivision of the neocortex into six layers is often used to describe the organization of the cortical circuitry, sensory-evoked signal flow or cortical functions. However, each layer comprises neuronal cell types that have different genetic, functional and/or structural properties. Here, we reanalyze structural data from some of our recent work in the posterior-medial barrel-subfield of the vibrissal part of rat primary somatosensory cortex (vS1). We quantify the degree to which somata, dendrites and axons of the 10 major excitatory cell types of the cortex are distributed with respect to the cytoarchitectonic organization of vS1. We show that within each layer, somata of multiple cell types intermingle, but that each cell type displays dendrite and axon distributions that are aligned to specific cytoarchitectonic landmarks. The resultant quantification of the structural composition of each layer in terms of the cell type-specific number of somata, dendritic and axonal path lengths will aid future studies to bridge between layer- and cell type-specific analyses. PMID:29081739
NASA Astrophysics Data System (ADS)
Lin, Hui; Kong, Xiao; Li, Yiran; Kuang, Peng; Tao, Silu
2018-03-01
In this article, we have investigated the effect of nanocomposite gate dielectric layer built by alumina (Al2O3) and poly(4-vinyphenol) (PVP) with solution method which could enhance the dielectric capability and decrease the surface polarity. Then, we used modify layer to optimize the surface morphology of dielectric layer to further improve the insulation capability, and finally we fabricated the high-performance and low-voltage organic thin-film transistors by using this nanocomposite dielectric layer. The result shows that the devices with Al2O3:10%PVP dielectric layer with a modified layer exhibited a mobility of 0.49 cm2/Vs, I on/Ioff ratio of 7.8 × 104, threshold voltage of - 1.2 V, sub-threshold swing of 0.3 V/dec, and operating voltage as low as - 4 V. The improvement of devices performance was owing to the good insulation capability, appropriate capacitance of dielectric layer, and preferable interface contact, smaller crystalline size of active layer.
NASA Astrophysics Data System (ADS)
Sabri, Nasehah Syamin; Lim, Eng Liang; Yap, Chi Chin; Yahaya, Muhammad; Salleh, Muhamad Mat; Jumali, Mohammad Hafizuddin Haji
2017-05-01
In this work, the effect of multiple deposition of nickel oxide (NiO) hole transport layer (HTL) on the performance of inverted type organic solar cell with a configuration of fluorine tin oxide (FTO)/zinc oxide (ZnO) nanorods/ poly(3-hexylthiopene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM)/NiO/silver (Ag) was investigated. The NiO nanoparticles solution was spin-coated on top of the photoactive layer (P3HT:PCBM) prior to deposition of Ag electrode. Different numbers of NiO layers (1, 2, and 4) were deposited on the photoactive layer to obtain the optimum surface morphology of HTL. The device with 2 layers of NiO exhibited the optimum power conversion efficiency of 1.10%. It is believed that the optimum NiO deposition layer gives the complete coverage at photoactive layer and forms ohmic contact between the photoactive layer and Ag electrode.
1997-04-18
DNA polymerase Alcohol dehydrogenase Hexokinase Glucose-6- phosphatase Arginase Pyruvate kinase (also requires Mg2•) Urease Nitrate...cyclohexane. The layers are separated by centrifugation (5 min at 1000 x g), the top organic layer is removed and dried with anhydrous sodium sulfate...An aliquot of the dried organic layer is transferred to a clean tube and evaporated under a gentle stream of nitrogen at room temperature
NASA Astrophysics Data System (ADS)
Shu, Andrew Leo
Organic electronics is a topic of interest due to its potential for low temperature and solution processing for large area and flexible applications. Examples of organic electronic devices are already available on the market; however these are, in general, still rather expensive. In order to fully realize inexpensive and efficient organic electronics, the properties of organic films need to be understood and strategies developed to take advantage of these properties to improve device performance. This work focuses on two strategies that can be used to control charge transport at interfaces with active organic semiconducting thin films. These strategies are studied and verified with a range of photoemission spectroscopy, surface probe microscopy, and electrical measurements. Vacuum evaporated molecular organic devices have long used layer stacking of different materials as a method of dividing roles in a device and modifying energy level alignment to improve device performance and efficiency. Applying this type of architecture for solution-processed devices, on the other hand, is nontrivial, as an issue of removal of or mixing with underlying layers arises. We present and examine here soft-contact lamination as a viable technique for depositing solution-processed multilayer structures. The energetics at homojunctions of a couple of air-stable polymers is investigated. Charge transport is then compared between a two-layer film and a single-layer film of equivalent thicknesses. The interface formed by soft-contact lamination is found to be transparent with respect to electronic charge carriers. We also propose a technique for modifying electronic level alignment at active organic-organic heterojunctions using dipolar self-assembled monolayers (SAM). An ultra-thin metal oxide is first deposited via a gentle low temperature chemical vapor deposition as an adhesion layer for the SAM. The deposition is shown to be successful for a variety of organic films. A series of phenylphosphonic acid SAM molecules with various molecular dipoles is then used to functionalize the surface of an organic film and found to modify the work function depending on the molecular dipole across the molecule. This in turn is found to modify the energy level alignment between the underlying organic film with an organic film deposited on top.
Dark current of organic heterostructure devices with insulating spacer layers
NASA Astrophysics Data System (ADS)
Yin, Sun; Nie, Wanyi; Mohite, Aditya D.; Saxena, Avadh; Smith, Darryl L.; Ruden, P. Paul
2015-03-01
The dark current density at fixed voltage bias in donor/acceptor organic planar heterostructure devices can either increase or decrease when an insulating spacer layer is added between the donor and acceptor layers. The dominant current flow process in these systems involves the formation and subsequent recombination of an interfacial exciplex state. If the exciplex formation rate limits current flow, the insulating interface layer can increase dark current whereas, if the exciplex recombination rate limits current flow, the insulating interface layer decreases dark current. We present a device model to describe this behavior and illustrate it experimentally for various donor/acceptor systems, e.g. P3HT/LiF/C60.
Current–voltage characteristics of organic heterostructure devices with insulating spacer layers
Yin, Sun; Nie, Wanyi; Mohite, Aditya D.; ...
2015-05-14
The dark current density in donor/acceptor organic planar heterostructure devices at a given forward voltage bias can either increase or decrease when an insulating spacer layer is added between the donor and acceptor layers. The dominant current flow process in these systems involves the formation and subsequent recombination of interfacial exciplex states. If the exciplex recombination rate limits current flow, an insulating interface layer decreases the dark current. However, if the exciplex formation rate limits the current, an insulating interface layer may increase the dark current. As a result, we present a device model to describe this behavior, and wemore » discuss relevant experimental data.« less
Höfle, Stefan; Bernhard, Christoph; Bruns, Michael; Kübel, Christian; Scherer, Torsten; Lemmer, Uli; Colsmann, Alexander
2015-04-22
Tandem organic light emitting diodes (OLEDs) utilizing fluorescent polymers in both sub-OLEDs and a regular device architecture were fabricated from solution, and their structure and performance characterized. The charge carrier generation layer comprised a zinc oxide layer, modified by a polyethylenimine interface dipole, for electron injection and either MoO3, WO3, or VOx for hole injection into the adjacent sub-OLEDs. ToF-SIMS investigations and STEM-EDX mapping verified the distinct functional layers throughout the layer stack. At a given device current density, the current efficiencies of both sub-OLEDs add up to a maximum of 25 cd/A, indicating a properly working tandem OLED.
NASA Astrophysics Data System (ADS)
Kondo, Takeshi
2007-12-01
Current-voltage (I-V) characteristics of organic molecular glasses and solution processable materials embedded between two electrodes were studied to find materials possessing high charge-carrier mobilities and to design organic memory devices. The comparison studies between TOF, FET and SCLC measurements confirm the validity of using analyses of I-V characteristics to determine the mobility of organic semiconductors. Hexaazatrinaphthylene derivatives tri-substituted by electron withdrawing groups were characterized as potential electron transporting molecular glasses. The presence of two isomers has important implications for film morphology and effective mobility. The statistical isomer mixture of hexaazatrinaphthylene derivatized with pentafluoro-phenylmethyl ester is able to form amorphous films, and electron mobilities with the range of 10--2 cm2/Vs are observed in their I-V characteristics. Single-layer organic memory devices consisting of a polymer layer embedded between an Al electrode and ITO modified with Ag nanodots (Ag-NDs) prepared by a solution-based surface assembly demonstrated a potential capability as nonvolatile organic memory device with high ON/OFF switching ratios of 10 4. This level of performance could be achieved by modifying the ITO electrodes with some Ag-NDs that act as trapping sites, reducing the current in the OFF state. Based upon the observed electrical characteristics, the currents of the low-resistance state can be attributed to a tunneling through low-resistance pathways of metal particles originating from the metal top electrode in the organic layer and that the high-resistance state is controlled by charge trapping by the metal particles including Ag-NDs. In an alternative approach, complex films of AgNO3: hexaazatrinaphthylene derivatives were studied as the active layers for all-solution processed and air-stable organic memory devices. Rewritable memory effects were observed in the devices comprised of a thin polymer dielectric layer deposited on the bottom electrode, the complex film, and a conducting polymer film as the top electrode. The electrical characteristics indicate that the accumulation of Ag+ ions at the interface of the complex film and the top electrode may contribute to the switching effect.
NASA Astrophysics Data System (ADS)
Dey, Biswajit; Choudhury, Somnath Ray; Suresh, Eringathodi; Jana, Atish Dipankar; Mukhopadhyay, Subrata
2009-03-01
We propose a crystal engineering principle where we show that it might be possible to direct the organization of molecular complexes into hydrogen bonded supramolecular layers through the use of suitable co-ligands possessing both the hydrogen-bonding as well as π-π stacking capability. This principle has been tested for the organization of [Cu(NTA) 2] units (H 3NTA = nitrilotriacetic acid, N(CH 2CO 2H) 3) in the molecular complex with formula (2-A-PH) 4[Cu(NTA) 2]·6H 2O ( 1), where 2-A-PH is protonated 2-amino-4-picoline. In 1, the 2-amino-4-picoline co-ligands have been utilized to direct the organization of [Cu(NTA) 2] units into hydrogen bonded layers. The linear stacking of π-π bonded protonated 2-amino-4-picoline molecules can be thought as the influencing agent for the organization of [Cu(NTA) 2] units into hydrogen bonded layers.
NASA Astrophysics Data System (ADS)
Lei, Hao; Wang, Meihan; Hoshi, Yoichi; Uchida, Takayuki; Kobayashi, Shinichi; Sawada, Yutaka
2013-11-01
Aluminum (III) bis(2-methyl-8-quninolinato)-4-phenylphenolate (BAlq) was respectively bombarded and irradiated by Ar ions, oxygen ions, electron beam and ultraviolet light to confirm damages during the sputter-deposition of transparent conductive oxide (TCO) on organic layer. The degree of damage was evaluated by the photoluminescence (PL) spectra of BAlq. The results confirmed the oxygen ions led to a larger damage and were thought to play the double roles of bombardment to organic layer and reaction with organic layer as well. The comparative studies on PL spectra of BAlq after the deposition of TCO films by various sputtering systems, such as conventional magnetron sputtering (MS), low voltage sputtering (LVS) and kinetic-energy-control-deposition (KECD) system, facing target sputtering (FTS) were performed. Relative to MS, LVS and KECD system, FTS can completely suppress the bombardment of the secondary electrons and oxygen negative ions, and keep a higher deposition rate simultaneously, thus it is a good solution to attain a low-damage sputter-deposition.
NASA Astrophysics Data System (ADS)
Lin, Meng-Kai; Nakayama, Yasuo; Zhuang, Ying-Jie; Wang, Chin-Yung; Pi, Tun-Wen; Ishii, Hisao; Tang, S.-J.
The key properties of organic films such as energy level alignment (ELA), work functions, and injection barriers are closely linked to this dipole layer. Using angle resolved photoemission spectroscopy (ARPES), we systemically investigate the coverage-dependent work functions and spectra line shapes of occupied molecular orbital states of a polar molecule, chloroaluminium phthalocyanine (ClAlPc), grown on Ag(111) to show that the orientations of the first ClAlPc layer can be manipulated via the molecule deposition rate and post annealing, causing ELA at organic-metal interface to differ for about 0.3 eV between Cl-up and Cl-down configuration. Moreover, by comparing the experimental results with the calculations based on both gas-phase model and realistic model of ClAlPc on Ag(111) , we evidence that the different orientations of ClAlPc dipole layers lead to different charge-transfer channels between ClAlPc and Ag, a key factor that controls the ELA at organic-metal interface.
On the properties of organic heterostructures prepared with nano-patterned metallic electrode
NASA Astrophysics Data System (ADS)
Breazu, C.; Socol, M.; Preda, N.; Matei, E.; Rasoga, O.; Girtan, M.; Mallet, R.; Stanculescu, F.; Stanculescu, A.
2018-06-01
This paper presents a comparative study between the properties of the heterostructures realized with single/multi layer organic (zinc phthalocyanine or/and fullerene) prepared on Si substrate between flat or patterned aluminum (Al) layer metallic electrode and multi layer ZnO/Au/ZnO transparent conductor electrode (TCE). The UV-Nanoimprint Lithography was used for the realization of a 2D array of nanostructures (holes/pillars) characterized by a periodicity of 1.1 μm and cylindrical shape: diameter = 400 nm and depth/height = 300 nm. The effect of the electrode patterning on the properties of the organic heterostructures was analyzed. For the samples with patterned Al electrode was remarked a slight red shift of the peaks in the reflection spectra determined by an increased interaction between the organic molecules in the delimited region of the patterned holes. The shape of the emission spectra at excitation with UV light showed a narrow intense peak around 500 nm associated with the intense resonance phenomena between the energy of the incident light and the surface plasmons in the patterned Al layer. The TCE followed the morphology of the organic film on which it was deposited. The significant differences between the morphology of the top layer in the heterostructures realized on flat and patterned Al are correlated with the total thickness of the successively deposited layers and with the particularities of the molecular arrangement, leading to the preservation or deleting of patterning. An injection contact behavior was evidence for most heterostructures built on flat and patterned Al. The slight increase in current at an applied bias <1 V in the heterostructure Si/Al/ZnPc/TCE is attributed to the larger interfacial area between the patterned Al electrode and ZnPc layer compared to the interface area between flat Al and ZnPc. A buffer layer of 1,4,5,8-naphthalen-tetracarboxylic dianhydride (NTCDA), sandwiched between the flat metallic electrode and organic film in the heterostructure Si/Al/C60/ZnPc/TCE has determined an increase in the current at low applied voltages.
NASA Astrophysics Data System (ADS)
Borthakur, Tribeni; Sarma, Ranjit
2017-05-01
Top-contact Pentacene-based organic thin film transistors (OTFTs) with a thin layer of Vanadium Pent-oxide between Pentacene and Au layer are fabricated. Here we have found that the devices with V2O5/Au bi-layer source-drain electrode exhibit better field-effect mobility, high on-off ratio, low threshold voltage and low sub-threshold slope than the devices with Au only. The field-effect mobility, current on-off ratio, threshold voltage and sub-threshold slope of V2O5/Au bi-layer OTFT estimated from the device with 15 nm thick V2O5 layer is .77 cm2 v-1 s-1, 7.5×105, -2.9 V and .36 V/decade respectively.
Organic materials and devices for detecting ionizing radiation
Doty, F Patrick [Livermore, CA; Chinn, Douglas A [Livermore, CA
2007-03-06
A .pi.-conjugated organic material for detecting ionizing radiation, and particularly for detecting low energy fission neutrons. The .pi.-conjugated materials comprise a class of organic materials whose members are intrinsic semiconducting materials. Included in this class are .pi.-conjugated polymers, polyaromatic hydrocarbon molecules, and quinolates. Because of their high resistivities (.gtoreq.10.sup.9 ohmcm), these .pi.-conjugated organic materials exhibit very low leakage currents. A device for detecting and measuring ionizing radiation can be made by applying an electric field to a layer of the .pi.-conjugated polymer material to measure electron/hole pair formation. A layer of the .pi.-conjugated polymer material can be made by conventional polymer fabrication methods and can be cast into sheets capable of covering large areas. These sheets of polymer radiation detector material can be deposited between flexible electrodes and rolled up to form a radiation detector occupying a small volume but having a large surface area. The semiconducting polymer material can be easily fabricated in layers about 10 .mu.m to 100 .mu.m thick. These thin polymer layers and their associated electrodes can be stacked to form unique multi-layer detector arrangements that occupy small volume.
Ambipolar pentacene field-effect transistor with double-layer organic insulator
NASA Astrophysics Data System (ADS)
Kwak, Jeong-Hun; Baek, Heume-Il; Lee, Changhee
2006-08-01
Ambipolar conduction in organic field-effect transistor is very important feature to achieve organic CMOS circuitry. We fabricated an ambipolar pentacene field-effect transistors consisted of gold source-drain electrodes and double-layered PMMA (Polymethylmethacrylate) / PVA (Polyvinyl Alcohol) organic insulator on the ITO(Indium-tin-oxide)-patterned glass substrate. These top-contact geometry field-effect transistors were fabricated in the vacuum of 10 -6 Torr and minimally exposed to atmosphere before its measurement and characterized in the vacuum condition. Our device showed reasonable p-type characteristics of field-effect hole mobility of 0.2-0.9 cm2/Vs and the current ON/OFF ratio of about 10 6 compared to prior reports with similar configurations. For the n-type characteristics, field-effect electron mobility of 0.004-0.008 cm2/Vs and the current ON/OFF ratio of about 10 3 were measured, which is relatively high performance for the n-type conduction of pentacene field-effect transistors. We attributed these ambipolar properties mainly to the hydroxyl-free PMMA insulator interface with the pentacene active layer. In addition, an increased insulator capacitance due to double-layer insulator structure with high-k PVA layer also helped us to observe relatively good n-type characteristics.
NASA Astrophysics Data System (ADS)
Smalenskaite, A.; Salak, A. N.; Ferreira, M. G. S.; Skaudzius, R.; Kareiva, A.
2018-06-01
Mg3/Al1 and Mg3Al1-xTbx layered double hydroxides (LDHs) intercalated with terephthalate anion were synthesized using sol-gel method. The obtained materials were characterized by X-ray diffraction (XRD) analysis, infrared (FTIR) spectroscopy, fluorescence spectroscopy (FLS) and scanning electron microscopy (SEM). The Tb3+ substitution effects in the Mg3Al1-xTbx LDHs were investigated by changing the Tb3+ concentration in the cation layers. The study indicates that the organic guest-terephthalate in the interlayer spacing of the LDH host influences the luminescence of the hybrid inorganic-organic materials.
Self-organizing layers from complex molecular anions
Warneke, Jonas; McBriarty, Martin E.; Riechers, Shawn L.; ...
2018-05-14
The formation of traditional ionic materials occurs principally via joint accumulation of both anions and cations. Here in this paper, we describe a previously unreported phenomenon by which macroscopic liquid-like thin layers with tunable self-organization properties form through accumulation of stable complex ions of one polarity on surfaces. Using a series of highly stable molecular anions we demonstrate a strong influence of the internal charge distribution of the molecular ions, which is usually shielded by counterions, on the properties of the layers. Detailed characterization reveals that the intrinsically unstable layers of anions on surfaces are stabilized by simultaneous accumulation ofmore » neutral molecules from the background environment. Different phases, self-organization mechanisms and optical properties are observed depending on the molecular properties of the deposited anions, the underlying surface and the coadsorbed neutral molecules. This demonstrates rational control of the macroscopic properties (morphology and size of the formed structures) of the newly discovered anion-based layers.« less
NASA Astrophysics Data System (ADS)
Amri, R.; Sahel, S.; Gamra, D.; Lejeune, M.; Clin, M.; Zellama, K.; Bouchriha, H.
2018-02-01
Hybrid inorganic/organic one dimensional photonic crystal based on alternating layers of Si/HMDSO is elaborated. The inorganic silicon is deposited by radiofrequency magnetron sputtering and the organic HMDSO is deposited by PECVD technique. As the Si refractive index is n = 3.4, and the refractive index of HMDSO layer depend on the deposition conditions, to get a photonic crystal with high and low refractive index presenting a good contrast, we have varied the radiofrequency power of PECVD process to obtain HMDSO layer with low refractive index (n = 1.45). Photonic band gap of this hybrid structure is obtained from the transmission and reflection spectra and appears after 9 alternative layers of Si/HMDSO. The introduction of defects in our photonic crystal leads to the emergence of localized modes within the photonic band gap. Our results are interpreted by using a theoretical model based on transfer matrix.
Self-organizing layers from complex molecular anions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warneke, Jonas; McBriarty, Martin E.; Riechers, Shawn L.
The formation of traditional ionic materials occurs principally via joint accumulation of both anions and cations. Here in this paper, we describe a previously unreported phenomenon by which macroscopic liquid-like thin layers with tunable self-organization properties form through accumulation of stable complex ions of one polarity on surfaces. Using a series of highly stable molecular anions we demonstrate a strong influence of the internal charge distribution of the molecular ions, which is usually shielded by counterions, on the properties of the layers. Detailed characterization reveals that the intrinsically unstable layers of anions on surfaces are stabilized by simultaneous accumulation ofmore » neutral molecules from the background environment. Different phases, self-organization mechanisms and optical properties are observed depending on the molecular properties of the deposited anions, the underlying surface and the coadsorbed neutral molecules. This demonstrates rational control of the macroscopic properties (morphology and size of the formed structures) of the newly discovered anion-based layers.« less
NASA Astrophysics Data System (ADS)
Li, Mingtao; Li, Wenlian; Chen, Lili; Kong, Zhiguo; Chu, Bei; Li, Bin; Hu, Zhizhi; Zhang, Zhiqiang
2006-02-01
Electroluminescent colors of organic light-emitting diodes (OLEDs) can be tuned by modulating the thickness of gadolinium (Gd) complex layer sandwiched between an electron-transporting layer (ETL) and a hole-transporting layer (HTL). The emission colors, which originate from the two interfacial exciplexes simultaneously, can be tuned from green to orange by increasing the thickness of the Gd-complex layer. The atom force microscope images have proved that there are many gaps in the thinner Gd-complex layers. Therefore, besides the exciplex formation between Gd complex and HTL, the exciplex between ETL and HTL is also formed. The results demonstrate that a simple way of color tuning can be realized by inserting a thin layer of color tuning material between HTL with lower ionization potentials and ETL with higher electron affinities. Moreover, photovoltaic device and white OLED based on the two exciplexes are also discussed.
NASA Astrophysics Data System (ADS)
Era, Masanao; Shironita, Yu; Soda, Koichi
2018-03-01
Using the squeezed out technique, we successfully prepared PbBr-based layered perovskite Langmuir-Blodgett (LB) films, which have π-conjugated materials as an organic layer (i.e., a phenylenevinylene oligomer, a dithienylethene derivative, and a π-conjugated polyfluorene derivative). The mixed monolayers of π-conjugated materials and octadecylammonium bromide were spread on an aqueous subphase containing saturated PbBr2. During pressing, octadecylammonium molecules were squeezed from the mixed monolayer, and the squeezed ammonium molecules formed the PbBr-based layered perovskite structure at the air-aqueous subphase interface. The monolayers with the PbBr-based layered perovskite structure could be deposited on fused quartz substrates by the LB technique. In addition to the preparation procedure, the structural and optical properties of the layered perovskite LB films and their formation mechanism are reported in this paper.
NASA Astrophysics Data System (ADS)
Yu, Deying
Stretchable organic electronics have emerged as interesting technologies for several applications where stretchability is considered important. The easy and low-cost deposition procedures for the fabrication of stretchable organic solar cells and organic light emitting devices reduce the overall cost for the fabrication of these devices. However, the interfacial cracks and defects at the interfaces of the devices, during fabrication, are detrimental to the performance of stretchable organic electronic devices. Also, as the devices are deformed under service conditions, it is possible for cracks to grow. Furthermore, the multilayered structures of the devices can fail due to the delamination and buckling of the layered structures. There is, therefore, a need to study the failure mechanism in the layered structures that are relevant to stretchable organic electronic devices. Hence, in this study, a combined experimental, analytical and computational approach is used to study the effects of adhesion and deformation on the failure mechanisms in structures that are relevant to stretchable electronic devices. First, the failure mechanisms are studied in stretchable inorganic electronic structures. The wrinkles and buckles are formed by the unloading of pre-stretched PDMS/Au structure, after the evaporation of nano-scale Au layers. They are then characterized using atomic force microscopy and scanning electron microscopy. Analytical models are used to determine the critical stresses for wrinkling and buckling. The interfacial cracking and film buckling that can occur are also studied using finite element simulations. The implications of the results are then discussed for the potential applications of micro-wrinkles and micro-buckles in the stretchable electronic structures and biomedical devices. Subsequently, the adhesion between bi-material pairs that are relevant to organic light emitting devices, composite organic/inorganic light emitting devices, organic bulk heterojunction solar cells, and composite organic/inorganic solar cells on flexible substrates, is measured using force microscopy (AFM) techniques. The AFM measurements are incorporated into the Derjaguin-Muller-Toporov model to calculate the adhesion energies. The implications of the results are then discussed for the design of robust organic and composite organic/inorganic electronic devices. Finally, the lamination of organic solar cells and organic light emitting devices is studied using a combination of experimental, computational, and analytical approaches. First, the effects of applied lamination force (on contact between the laminated layers) are studied using experiments and models. The crack driving forces associated with the interfacial cracks that form at the interfaces between layers (at the bi-material interfaces) are estimated along with the critical interfacial crack driving forces associated with the separation of thin films, after layer transfer. The conditions for successful lamination are predicted using a combination of experiments and models. Guidelines are developed for the lamination of low-cost organic electronic structures.
Polymer and small molecule based hybrid light source
Choong, Vi-En; Choulis, Stelios; Krummacher, Benjamin Claus; Mathai, Mathew; So, Franky
2010-03-16
An organic electroluminescent device, includes: a substrate; a hole-injecting electrode (anode) coated over the substrate; a hole injection layer coated over the anode; a hole transporting layer coated over the hole injection layer; a polymer based light emitting layer, coated over the hole transporting layer; a small molecule based light emitting layer, thermally evaporated over the polymer based light emitting layer; and an electron-injecting electrode (cathode) deposited over the electroluminescent polymer layer.
Modification of Ti6Al4V surface by diazonium compounds
NASA Astrophysics Data System (ADS)
Sandomierski, Mariusz; Buchwald, Tomasz; Strzemiecka, Beata; Voelkel, Adam
2018-02-01
Ti6Al4V alloy is the most commonly used in orthopedic industry as an endoprosthesis. Ti6Al4V exhibits good mechanical properties, except the abrasion resistance. Surface modification of Ti6Al4V in order to obtain organic layer, and then the attachment of the polymer, can allow for overcoming this problem. The aim of the work was the modification of Ti6Al4V surface by diazonium compounds: salt or cation generated in situ and examine the influence of the reducing agent - ascorbic acid, and the temperature of reaction on modification process. Moreover, the simulated body fluid was used for the assessment of the organic layer stability on Ti6Al4V surface. The evaluation of the modification was carried out using the following methods: Raman microspectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Higher temperature of modification by 4-hydroxymethylbenzenediazonium cation, provides the largest amount of organic layer on the Ti6Al4V alloy. In the case of the Ti6Al4V modified by Variamine Blue B salt, the amount of organic layer is not dependent on the reaction condition. Moreover, the ascorbic acid and the presence of TiO2 does not effect on the modification. The modified surface is completely coated with the organic layer which is stable in simulated body fluid.
Permeability of uncharged organic molecules in reverse osmosis desalination membranes.
Dražević, Emil; Košutić, Krešimir; Svalina, Marin; Catalano, Jacopo
2017-06-01
Reverse osmosis (RO) membranes are primarily designed for removal of salts i.e. for desalination of brackish and seawater, but they have also found applications in removal of organic molecules. While it is clear that steric exclusion is the dominant removal mechanism, the fundamental explanation for how and why the separation occurs remains elusive. Until recently there was no strong microscopic evidences elucidating the structure of the active polyamide layers of RO membranes, and thus they have been conceived as "black boxes"; or as an array of straight capillaries with a distribution of radii; or as polymers with a small amount of polymer free domains. The knowledge of diffusion and sorption coefficients is a prerequisite for understanding the intrinsic permeability of any organic solute in any polymer. At the same time, it is technically challenging to accurately measure these two fundamental parameters in very thin (20-300 nm) water-swollen active layers. In this work we have measured partition and diffusion coefficients and RO permeabilities of ten organic solutes in water-swollen active layers of two types of RO membranes, low (SWC4+) and high flux (XLE). We deduced from our results and recent microscopic studies that the solute flux of organic molecules in polyamide layer of RO membranes occurs in two domains, dense polymer (the key barrier layer) and the water filled domains. Copyright © 2017 Elsevier Ltd. All rights reserved.
Love, John A; Feuerstein, Markus; Wolff, Christian M; Facchetti, Antonio; Neher, Dieter
2017-12-06
Hybrid lead halide perovskites are introduced as charge generation layers (CGLs) for the accurate determination of electron mobilities in thin organic semiconductors. Such hybrid perovskites have become a widely studied photovoltaic material in their own right, for their high efficiencies, ease of processing from solution, strong absorption, and efficient photogeneration of charge. Time-of-flight (ToF) measurements on bilayer samples consisting of the perovskite CGL and an organic semiconductor layer of different thickness are shown to be determined by the carrier motion through the organic material, consistent with the much higher charge carrier mobility in the perovskite. Together with the efficient photon-to-electron conversion in the perovskite, this high mobility imbalance enables electron-only mobility measurement on relatively thin application-relevant organic films, which would not be possible with traditional ToF measurements. This architecture enables electron-selective mobility measurements in single components as well as bulk-heterojunction films as demonstrated in the prototypical polymer/fullerene blends. To further demonstrate the potential of this approach, electron mobilities were measured as a function of electric field and temperature in an only 127 nm thick layer of a prototypical electron-transporting perylene diimide-based polymer, and found to be consistent with an exponential trap distribution of ca. 60 meV. Our study furthermore highlights the importance of high mobility charge transporting layers when designing perovskite solar cells.
NASA Astrophysics Data System (ADS)
Sugiyama, Takuro; Furukawa, Yukio
2008-05-01
We have measured the temperatures of the organic layers in operating organic light-emitting diodes (OLEDs) by Raman spectroscopy. The wavenumbers of the Raman bands due to N,N'-di-naphthaleyl-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPD) and copper phthalocyanine (CuPc) have been measured as a function of temperature in the range of 25-191 °C. The observed positions of strong bands around 1607 cm-1 (NPD) and 1531 cm-1 (CuPc) shifted downward linearly with increasing temperature in the ranges lower than 92 and 191 °C, respectively. We have determined the temperatures of the NPD and CuPc layers in an operating OLED from the wavenumber-temperature relations of these bands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, William T.; Mudrick, John P.; Xue, Jiangeng, E-mail: jxue@mse.ufl.edu
2014-12-07
We present detailed studies of the high photocurrent gain behavior in multilayer organic photodiodes containing tailored carrier blocking layers we reported earlier in a Letter [W. T. Hammond and J. Xue, Appl. Phys. Lett. 97, 073302 (2010)], in which a high photocurrent gain of up to 500 was attributed to the accumulation of photogenerated holes at the anode/organic active layer interface and the subsequent drastic increase in secondary electron injection from the anode. Here, we show that both the hole-blocking layer structure and layer thickness strongly influence the magnitude of the photocurrent gain. Temporal studies revealed that the frequency responsemore » of such devices is limited by three different processes with lifetimes of 10 μs, 202 μs, and 2.72 ms for the removal of confined holes, which limit the 3 dB bandwidth of these devices to 1.4 kHz. Furthermore, the composition in the mixed organic donor-acceptor photoactive layer affects both gain and bandwidth, which is attributed to the varying charge transport characteristics, and the optimal gain-bandwidth product is achieved with approximately 30% donor content. Finally, these devices show a high dynamic range of more than seven orders of magnitude, although the photocurrent shows a sublinear dependence on the incident optical power.« less
Electrical in-situ characterisation of interface stabilised organic thin-film transistors
Striedinger, Bernd; Fian, Alexander; Petritz, Andreas; Lassnig, Roman; Winkler, Adolf; Stadlober, Barbara
2015-01-01
We report on the electrical in-situ characterisation of organic thin film transistors under high vacuum conditions. Model devices in a bottom-gate/bottom-contact (coplanar) configuration are electrically characterised in-situ, monolayer by monolayer (ML), while the organic semiconductor (OSC) is evaporated by organic molecular beam epitaxy (OMBE). Thermal SiO2 with an optional polymer interface stabilisation layer serves as the gate dielectric and pentacene is chosen as the organic semiconductor. The evolution of transistor parameters is studied on a bi-layer dielectric of a 150 nm of SiO2 and 20 nm of poly((±)endo,exo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid, diphenylester) (PNDPE) and compared to the behaviour on a pure SiO2 dielectric. The thin layer of PNDPE, which is an intrinsically photo-patternable organic dielectric, shows an excellent stabilisation performance, significantly reducing the calculated interface trap density at the OSC/dielectric interface up to two orders of magnitude, and thus remarkably improving the transistor performance. PMID:26457122
Insausti, Ricardo; Muñoz-López, Mónica; Insausti, Ana M.; Artacho-Pérula, Emilio
2017-01-01
The cortical mantle is not homogeneous, so that three types of cortex can be distinguished: allocortex, periallocortex and isocortex. The main distinction among those three types is based on morphological differences, in particular the number of layers, overall organization, appearance, etc., as well as its connectivity. Additionally, in the phylogenetic scale, this classification is conserved among different mammals. The most primitive and simple cortex is the allocortex, which is characterized by the presence of three layers, with one cellular main layer; it is continued by the periallocortex, which presents six layers, although with enough differences in the layer pattern to separate three different fields: presubiculum (PrS), parasubiculum (PaS), and entorhinal cortex (EC). The closest part to the allocortex (represented by the subiculum) is the PrS, which shows outer (layers I–III) and inner (V–VI) principal layers (lamina principalis externa and lamina principalis interna), both separated by a cell poor band, parallel to the pial surface (layer IV or lamina dissecans). This layer organization is present throughout the anterior-posterior axis. The PaS continues the PrS, but its rostrocaudal extent is shorter than the PrS. The organization of the PaS shows the layer pattern more clearly than in the PrS. Up to six layers are recognizable in the PaS, with layer IV as lamina dissecans between superficial (layers I–III) and deep (V–VI) layers, as in the PrS. The EC presents even more clearly the layer pattern along both mediolateral and rostrocaudal extent. The layer pattern is a thick layer I, layer II in islands, layer III medium pyramids, layer IV as lamina dissecans (not present throughout the EC extent), layer V with dark and big pyramids and a multiform layer VI. The EC borders laterally the proisocortex (incomplete type of isocortex). Variations in the appearance of its layers justify the distinction of subfields in the EC, in particular in human and nonhuman primates. EC layers are not similar to those in the neocortex. The transition between the periallocortical EC and isocortex is not sharp, so that the proisocortex forms an intervening cortex, which fills the gap between the periallocortex and the isocortex. PMID:29046628
Insausti, Ricardo; Muñoz-López, Mónica; Insausti, Ana M; Artacho-Pérula, Emilio
2017-01-01
The cortical mantle is not homogeneous, so that three types of cortex can be distinguished: allocortex, periallocortex and isocortex. The main distinction among those three types is based on morphological differences, in particular the number of layers, overall organization, appearance, etc., as well as its connectivity. Additionally, in the phylogenetic scale, this classification is conserved among different mammals. The most primitive and simple cortex is the allocortex, which is characterized by the presence of three layers, with one cellular main layer; it is continued by the periallocortex, which presents six layers, although with enough differences in the layer pattern to separate three different fields: presubiculum (PrS), parasubiculum (PaS), and entorhinal cortex (EC). The closest part to the allocortex (represented by the subiculum) is the PrS, which shows outer (layers I-III) and inner (V-VI) principal layers ( lamina principalis externa and lamina principalis interna ), both separated by a cell poor band, parallel to the pial surface (layer IV or lamina dissecans ). This layer organization is present throughout the anterior-posterior axis. The PaS continues the PrS, but its rostrocaudal extent is shorter than the PrS. The organization of the PaS shows the layer pattern more clearly than in the PrS. Up to six layers are recognizable in the PaS, with layer IV as lamina dissecans between superficial (layers I-III) and deep (V-VI) layers, as in the PrS. The EC presents even more clearly the layer pattern along both mediolateral and rostrocaudal extent. The layer pattern is a thick layer I, layer II in islands, layer III medium pyramids, layer IV as lamina dissecans (not present throughout the EC extent), layer V with dark and big pyramids and a multiform layer VI. The EC borders laterally the proisocortex (incomplete type of isocortex). Variations in the appearance of its layers justify the distinction of subfields in the EC, in particular in human and nonhuman primates. EC layers are not similar to those in the neocortex. The transition between the periallocortical EC and isocortex is not sharp, so that the proisocortex forms an intervening cortex, which fills the gap between the periallocortex and the isocortex.
Luo, Da; Feng, Qiu-hong; Shi, Zuo-min; Li, Dong-sheng; Yang, Chang-xu; Liu, Qian-li; He, Jian-she
2015-04-01
The carbon and nitrogen storage and distribution patterns of Cupressus chengiana plantation ecosystems with different stand ages in the arid valley of Minjiang River were studied. The results showed that carbon contents in different organs of C. chengiana were relatively stable, while nitrogen contents were closely related to different organs, and soil organic carbon and nitrogen contents increased with the stand age. Carbon and nitrogen storage in vegetation layer, soil layer, and the whole ecosystem of the plantation increased with the stand age. The values of total carbon storage in the 13-, 11-, 8-, 6- and 4-year-old C. chengiana plantation ecosystems were 190.90, 165.91, 144.57, 119.44, and 113.49 t x hm(-2), and the values of total nitrogen storage were 19.09, 17.97, 13.82, 13.42, and 12.26 t x hm(-2), respectively. Most of carbon and nitrogen were stored in the 0-60 cm soil layer in the plantation ecosystems and occupied 92.8% and 98.8%, respectively, and the amounts of carbon and nitrogen stored in the top 0-20 cm soil layer, accounted for 54.4% and 48.9% of those in the 0-60 cm soil layer, respectively. Difference in distribution of carbon and nitrogen storage was observed in the vegetation layer. The percentage of carbon storage in tree layer (3.7%) were higher than that in understory vegetation (3.5%), while the percentage of nitrogen storage in tree layer (0.5%) was lower than that in understory (0.7%). The carbon and nitrogen storage and distribution patterns in the plantations varied obviously with the stand age, and the plantation ecosystems at these age stages could accumulate organic carbon and nitrogen continuously.
Xue, S; Zhao, Q L; Wei, L L; Ma, X P; Tie, M
2013-01-01
The aim of this study was to identify qualitative and quantitative changes in the character of water-extractable organic matter (WEOM) in soils as a consequence of soil aquifer treatment (SAT). Soil samples were obtained from a soil-column system with a 2-year operation, and divided into seven layers from top to bottom: CS1 (0-12.5 cm), CS2 (12.5-25 cm), CS3 (25-50 cm), CS4 (50-75 cm), CS5 (75-100 cm), CS6 (100-125 cm) and CS7 (125-150 cm). A sample of the original soil used to pack the columns was also analysed to determine the effects of SAT. Following 2 years of SAT operation, both soil organic carbon and water-extractable organic carbon were shown to accumulate in the top soil layer (0-12.5 cm), and to decrease in soil layers deeper than 12.5 cm. The WEOM in the top soil layer was characterized by low aromaticity index (AI), low emission humification index (HIX) and low fluorescence efficiency index (F(eff)). On the other hand, the WEOM in soil layers deeper than 12.5 cm had increased values of HIX and F(eff), as well as decreased AI values relative to the original soil before SAT. In all soil layers, the percentage of hydrophobic and transphilic fractions decreased, while that of the hydrophilic fraction increased, as a result of SAT. The production of the amide-2 functional groups was observed in the top soil layer. SAT operation also led to the enrichment of hydrocarbon and amide-1 functional groups, as well as the depletion of oxygen-containing functional groups in soil layers deeper than 12.5 cm.
Black painted pottery, Kildehuse II, Odense County, Denmark.
Trąbska, Joanna; Wesełucha-Birczyńska, Aleksandra; Zięba-Palus, Janina; Runge, Mads Thagård
2011-08-15
This work aimed at characterization of a black layer covering a Bronze Age (period VI) pot surface. To solve research problems plane polarized light microscopy (PLM), scanning microscopy with X-ray microanalyser (SEM/EDS), Raman and FTIR microspectroscopies were applied. Observation of the black layer under the PLM suggests that we deal with an opaque, isotropic layer, purposely put on leather-hard, burnished surface of a pot. No traces of organic substances that might have modified a pot surface before painting were detected. The black layer coats the pot with a continuous 0.2-0.4 μm thick layer. The black layer must have been applied while warm or hot. It is recognized that the black layer is a true painting layer. Spectroscopic analyses (Raman and FTIR) point that birch tar or a birch-pine tar had been applied. Carbon black should be definitely excluded. The analyzed organic substance is structurally ordered in various degrees, due to varying temperature influence. Some Raman spectra reveal, in second-order region of the spectrum (>2000 cm(-1)), the graphite presence. Scarce points reveal the presence of inorganic admixtures: clay minerals, feldspars and quartz. The next question is: Is it an organic paint or a carbon-based, "mixed" paint? Inorganic admixtures are only casual. Relatively high concentration of alumina is expected to have appeared due to aluminum mobility in acidic environment and this was provided by organic tar/pitch substances. Phosphorus (usually with calcium) mostly concentrates together with clay minerals. Thus, hypothesis on bone powder or ash addition to tar/pitch should be excluded. Some elements may originate not only from inorganic substances but also from wood ashes. Copyright © 2010 Elsevier B.V. All rights reserved.
Black painted pottery, Kildehuse II, Odense County, Denmark
NASA Astrophysics Data System (ADS)
Trąbska, Joanna; Wesełucha-Birczyńska, Aleksandra; Zięba-Palus, Janina; Runge, Mads Thagård
2011-08-01
This work aimed at characterization of a black layer covering a Bronze Age (period VI) pot surface. To solve research problems plane polarized light microscopy (PLM), scanning microscopy with X-ray microanalyser (SEM/EDS), Raman and FTIR microspectroscopies were applied. Observation of the black layer under the PLM suggests that we deal with an opaque, isotropic layer, purposely put on leather-hard, burnished surface of a pot. No traces of organic substances that might have modified a pot surface before painting were detected. The black layer coats the pot with a continuous 0.2-0.4 μm thick layer. The black layer must have been applied while warm or hot. It is recognized that the black layer is a true painting layer. Spectroscopic analyses (Raman and FTIR) point that birch tar or a birch-pine tar had been applied. Carbon black should be definitely excluded. The analyzed organic substance is structurally ordered in various degrees, due to varying temperature influence. Some Raman spectra reveal, in second-order region of the spectrum (>2000 cm -1), the graphite presence. Scarce points reveal the presence of inorganic admixtures: clay minerals, feldspars and quartz. The next question is: Is it an organic paint or a carbon-based, "mixed" paint? Inorganic admixtures are only casual. Relatively high concentration of alumina is expected to have appeared due to aluminum mobility in acidic environment and this was provided by organic tar/pitch substances. Phosphorus (usually with calcium) mostly concentrates together with clay minerals. Thus, hypothesis on bone powder or ash addition to tar/pitch should be excluded. Some elements may originate not only from inorganic substances but also from wood ashes.
Response of organic matter quality in permafrost soils to warming
NASA Astrophysics Data System (ADS)
Plaza, C.; Pegoraro, E.; Schuur, E.
2016-12-01
Global warming is predicted to thaw large quantities of the perennially frozen organic matter stored in northern permafrost soils. Upon thaw, this organic matter will be exposed to lateral export to water bodies and to microbial decomposition, which may exacerbate climate change by releasing significant amounts of greenhouse gases. To gain an insight into these processes, we investigated how the quality of permafrost soil organic matter responded to five years of warming. In particular, we sampled control and experimentally warmed soils in 2009 and 2013 from an experiment established in 2008 in a moist acidic tundra ecosystem in Healy, Alaska. We examined surface organic (0 to 15 cm), deep organic (15 to 35 cm), and mineral soil layers (35 to 55 cm) separately by means of stable isotope analysis (δ13C and δ15N) and solid-state 13C nuclear magnetic resonance. Compared to the control, the experimental warming did not affect the isotopic and molecular composition of soil organic matter across the depth profile. However, we did find significant changes with time. In particular, in the surface organic layer, δ13C decreased and alkyl/O-alkyl ratio increased from 2009 to 2013, which indicated variations in soil organic sources (e.g., changes in vegetation) and accelerated decomposition. In the deep organic layer, we found a slight increase in δ15N with time. In the mineral layer, δ13C values decreased slightly, whereas alkyl C/O-alkyl ratio increased, suggesting a preferential loss of relatively more degraded organic matter fractions probably by lateral transport by water flowing through the soil. Acknowledgements: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 654132. Web site: http://vulcan.comule.com
Ma, Li; Yang, Lin-Zhang; Ci, En; Wang, Yan; Yin, Shi-Xue; Shen, Ming-Xing
2008-09-01
Soil samples were collected from an experimental paddy field with long-term (26 years) fertilization in Taihu Lake region of Jiangsu Province to study the effects of different fertilization on the organic carbon distribution and stable carbon isotope natural abundance (delta 13C) in the soil profile, and on the humus composition. The results showed that long-term fertilization increased the organic carbon content in top soil significantly, and there was a significantly negative exponential correlation between soil organic carbon content and soil depth (P < 0.01). The organic carbon content in 10-30 cm soil layer under chemical fertilizations and in 20-40 cm soil layer under organic fertilizations was relatively stable. Soil delta 13C increased gradually with soil depth, its variation range being from -24% per thousand to -28 per thousand, and had a significantly negative linear correlation with soil organic carbon content (P < 0.05). In 0-20 cm soil layer, the delta 13C in treatments organic manure (M), M + NP, M + NPK, M + straw (R) + N, and R + N decreased significantly; while in 30-50 cm soil layer, the delta 13C in all organic fertilization treatments except R + N increased significantly. Tightly combined humus (humin) was the main humus composition in the soil, occupying 50% or more, and the rest were loosely and stably combined humus. Long-term fertilization increased the content of loosely combined humus and the ratio of humic acid (HA) to fulvic acid (FA).
Kataoka, Sho; Kamimura, Yoshihiro; Endo, Akira
2018-04-10
Hybrid organic-inorganic layered perovskites are typically nonporous solids. However, the incorporation of silsesquioxanes with a cubic cage structure as interlayer materials creates micropores between the perovskite layers. In this study, we increase in the micropore volume in layered perovskites by replacing a portion of the silsesquioxane interlayers with organic amines. In the proposed method, approximately 20% of the silsesquioxane interlayers can be replaced without changing the layer distance owing to the size of the silsesquioxane. When small amines (e.g., ethylamine) are used in this manner, the micropore volume of the obtained hybrid layered perovskites increases by as much as 44%; when large amines (e.g., phenethylamine) are used, their micropore volume decreases by as much as 43%. Through the variation of amine fraction, the micropore volume can be adjusted in the range. Finally, the magnetic moment measurements reveal that the layered perovskites with mixed interlayers exhibit ferromagnetic ordering at temperature below 20 K, thus indicating that the obtained perovskites maintain their functions as layered perovskites.
Inorganic-Organic Coating via Molecular Layer Deposition Enables Long Life Sodium Metal Anode.
Zhao, Yang; Goncharova, Lyudmila V; Zhang, Qian; Kaghazchi, Payam; Sun, Qian; Lushington, Andrew; Wang, Biqiong; Li, Ruying; Sun, Xueliang
2017-09-13
Metallic Na anode is considered as a promising alternative candidate for Na ion batteries (NIBs) and Na metal batteries (NMBs) due to its high specific capacity, and low potential. However, the unstable solid electrolyte interphase layer caused by serious corrosion and reaction in electrolyte will lead to big challenges, including dendrite growth, low Coulombic efficiency and even safety issues. In this paper, we first demonstrate the inorganic-organic coating via advanced molecular layer deposition (alucone) as a protective layer for metallic Na anode. By protecting Na anode with controllable alucone layer, the dendrites and mossy Na formation have been effectively suppressed and the lifetime has been significantly improved. Moreover, the molecular layer deposition alucone coating shows better performances than the atomic layer deposition Al 2 O 3 coating. The novel design of molecular layer deposition protected Na metal anode may bring in new opportunities to the realization of the next-generation high energy-density NIBs and NMBs.
Assembly of Layered Monetite-Chitosan Nanocomposite and Its Transition to Organized Hydroxyapatite.
Ruan, Qichao; Liberman, David; Zhang, Yuzheng; Ren, Dongni; Zhang, Yunpeng; Nutt, Steven; Moradian-Oldak, Janet
2016-06-13
Bioinspired synthesis of hierarchically structured calcium phosphate (CaP) material is a highly promising strategy for developing improved bone substitute materials. However, synthesis of CaP materials with outstanding mechanical properties still remains an ongoing challenge. Inspired by the formation of lamellar structure in nacre, we designed an organic matrix composed of chitosan and cis-butenediolic acid (maleic acid, MAc) that could assemble into a layered complex and further guide the mineralization of monetite crystals, resulting in the formation of organized and parallel arrays of monetite platelets with a brick-and-mortar structure. Using the layered monetite-chitosan composite as a precursor, we were able to synthesize hydroxyapatite (HAp) with multiscale hierarchically ordered structure via a topotactic phase transformation process. On the nanoscale, needlelike HAp crystallites assembled into organized bundles that aligned to form highly oriented plates on the microscale. On the large-scale level, these plates with different crystal orientations were stacked together to form a layered structure. The organized structures and composite feature yielded CaP materials with improved mechanical properties close to those of bone. Our study introduces a biomimetic approach that may be practical for the design of advanced, mechanically robust materials for biomedical applications.
[Optical and electrical properties of NPB/Alq3 organic quantum well].
Huang, Jin-Zhao; Xu, Zheng; Zhao, Su-Ling; Zhang, Fu-Jun; Wang, Yong
2007-04-01
In the present paper, the organic quantum-well device similar to the type-II quantum well of inorganic semiconductor material was prepared by heat evaporation. NPB (N, N'-di-[(1-naphthalenyl)-N, N'-diphenyl]-(1,1'-biphenyl)-4,4'-diamine) and Alq3 (Tris-(8-quinolinolato) aluminum) act as the potential barrier layer and the potential well layer respectively. Besides, the single layer structure of Alq3 was prepared. In the experiments, the Forster nonradiative resonant energy transfer from the barrier layer to the well layer was identified, and the quantum well luminescence device possesses a favorable current-voltage property. The narrowing of spectrum was observed, and the spectrum shifted to blue region continuously when the applied voltage increased.
NASA Astrophysics Data System (ADS)
Lee, Sunwoo; Yoon, Seungki; Park, In-Sung; Ahn, Jinho
2009-04-01
We studied the electrical characteristics of an organic field effect transistor (OFET) formed by the hydrogen (H2) and nitrogen (N2) mixed gas treatment of a gate dielectric layer. We also investigated how device mobility is related to the length and width variations of the channel. Aluminum oxide (Al2O3) was used as the gate dielectric layer. After the treatment, the mobility and subthreshold swing were observed to be significantly improved by the decreased hole carrier localization at the interfacial layer between the gate oxide and pentacene channel layers. H2 gas plays an important role in removing the defects of the gate oxide layer at temperatures below 100 °C.
Lifetime Improvement of Organic Light Emitting Diodes using LiF Thin Film and UV Glue Encapsulation
NASA Astrophysics Data System (ADS)
Huang, Jian-Ji; Su, Yan-Kuin; Chang, Ming-Hua; Hsieh, Tsung-Eong; Huang, Bohr-Ran; Wang, Shun-Hsi; Chen, Wen-Ray; Tsai, Yu-Sheng; Hsieh, Huai-En; Liu, Mark O.; Juang, Fuh-Shyang
2008-07-01
This work demonstrates the use of lithium fluoride (LiF) as a passivation layer and a newly developed UV glue for encapsulation on the LiF passivation layer to enhance the stability of organic light-emitting devices (OLEDs). Devices with double protective layers showed a 25-fold increase in operational lifetime compared to those without any packaging layers. LiF has a low melting point and insulating characteristics and it can be adapted as both a protective layer and pre-encapsulation film. The newly developed UV glue has a fast curing time of only 6 s and can be directly spin-coated onto the surface of the LiF passivation layer. The LiF thin film plus spin-coated UV glue is a simple packaging method that reduces the fabrication costs of OLEDs.
What makes a feather shine? A nanostructural basis for glossy black colours in feathers.
Maia, Rafael; D'Alba, Liliana; Shawkey, Matthew D
2011-07-07
Colours in feathers are produced by pigments or by nanostructurally organized tissues that interact with light. One of the simplest nanostructures is a single layer of keratin overlying a linearly organized layer of melanosomes that create iridescent colours of feather barbules through thin-film interference. Recently, it has been hypothesized that glossy (i.e. high specular reflectance) black feathers may be evolutionarily intermediate between matte black and iridescent feathers, and thus have a smooth keratin layer that produces gloss, but not the layered organization of melanosomes needed for iridescence. However, the morphological bases of glossiness remain unknown. Here, we use a theoretical approach to generate predictions about morphological differences between matte and glossy feathers that we then empirically test. Thin-film models predicted that glossy spectra would result from a keratin layer 110-180 nm thick and a melanin layer greater than 115 nm thick. Transmission electron microscopy data show that nanostructure of glossy barbules falls well within that range, but that of matte barbules does not. Further, glossy barbules had a thinner and more regular keratin cortex, as well as a more continuous underlying melanin layer, than matte barbules. Thus, their quasi-ordered nanostructures are morphologically intermediate between matte black and iridescent feathers, and perceived gloss may be a form of weakly chromatic iridescence.
Fredj, Donia; Pourcin, Florent; Alkarsifi, Riva; Kilinc, Volkan; Liu, Xianjie; Ben Dkhil, Sadok; Boudjada, Nassira Chniba; Fahlman, Mats; Videlot-Ackermann, Christine; Margeat, Olivier; Ackermann, Jörg; Boujelbene, Mohamed
2018-05-23
Organic-inorganic hybrid materials composed of bismuth and diaminopyridine are studied as novel materials for electron extraction layers in polymer solar cells using regular device structures. The hybrid materials are solution processed on top of two different low band gap polymers (PTB7 or PTB7-Th) as donor materials mixed with fullerene PC 70 BM as the acceptor. The intercalation of the hybrid layer between the photoactive layer and the aluminum cathode leads to solar cells with a power conversion efficiency of 7.8% because of significant improvements in all photovoltaic parameters, that is, short-circuit current density, fill factor, and open-circuit voltage, similar to the reference devices using ZnO as the interfacial layer. However when using thick layers of such hybrid materials for electron extraction, only small losses in photocurrent density are observed in contrast to the reference material ZnO of pronounced losses because of optical spacer effects. Importantly, these hybrid electron extraction layers also strongly improve the device stability in air compared with solar cells processed with ZnO interlayers. Both results underline the high potential of this new class of hybrid materials as electron extraction materials toward robust processing of air stable organic solar cells.
Fabritius, Helge; Walther, Paul; Ziegler, Andreas
2005-05-01
Before the molt terrestrial isopods resorb calcium from the posterior cuticle and store it in large deposits within the first four anterior sternites. In Porcellio scaber the deposits consist of three structurally distinct layers consisting of amorphous CaCO3 (ACC) and an organic matrix that consists of concentric and radial elements. It is thought that the organic matrix plays a role in the structural organization of deposits and in the stabilization of ACC, which is unstable in vitro. In this paper, we present a thorough analysis of the ultrastructure of the organic matrix in the CaCO3 deposits using high-resolution field-emission scanning electron microscopy. The spherules and the homogeneous layer contain an elaborate organic matrix with similar structural organization consisting of concentric reticules and radial strands. The decalcification experiments reveal an inhomogeneous solubility of ACC within the spherules probably caused by variations in the stabilizing properties of matrix components. The transition between the three layers can be explained by changes in the number of spherule nucleation sites.
Sinkkonen, Aki; Kauppi, Sari; Simpanen, Suvi; Rantalainen, Anna-Lea; Strömmer, Rauni; Romantschuk, Martin
2013-03-01
Chlorophenols, like many other synthetic compounds, are persistent problem in industrial areas. These compounds are easily degraded in certain natural environments where the top soil is organic. Some studies suggest that mineral soil contaminated with organic compounds is rapidly remediated if it is mixed with organic soil. We hypothesized that organic soil with a high degradation capacity even on top of the contaminated mineral soil enhances degradation of recalcitrant chlorophenols in the mineral soil below. We first compared chlorophenol degradation in different soils by spiking pristine and pentachlorophenol-contaminated soils with 2,4,6-trichlorophenol in 10-L buckets. In other experiments, we covered contaminated mineral soil with organic pine forest soil. We also monitored in situ degradation on an old sawmill site where mineral soil was either left intact or covered with organic pine forest soil. 2,4,6-Trichlorophenol was rapidly degraded in organic pine forest soil, but the degradation was slower in other soils. If a thin layer of the pine forest humus was added on top of mineral sawmill soil, the original chlorophenol concentrations (high, ca. 70 μg g(-1), or moderate, ca. 20 μg g(-1)) in sawmill soil decreased by >40 % in 24 days. No degradation was noticed if the mineral soil was kept bare or if the covering humus soil layer was sterilized beforehand. Our results suggest that covering mineral soil with an organic soil layer is an efficient way to remediate recalcitrant chlorophenol contamination in mineral soils. The results of the field experiment are promising.
NASA Astrophysics Data System (ADS)
Shin, Jong-Yeol; Kim, Tae Wan; Kim, Gwi-Yeol; Lee, Su-Min; Shrestha, Bhanu; Hong, Jin-Woong
2016-05-01
Performance of organic light-emitting diodes was investigated depending on the electron-injection materials of metal carbonates (Li2CO3 and Cs2CO3 ); and number of layers. In order to improve the device efficiency, two types of devices were manufactured by using the hole-injection material (Teflon-amorphous fluoropolymer -AF) and electron-injection materials; one is a two-layer reference device ( ITO/Teflon-AF/Alq3/Al ) and the other is a three-layer device (ITO/Teflon-AF/Alq3/metal carbonate/Al). From the results of the efficiency for the devices with hole-injection layer and electron-injection layer, it was found that the electron-injection layer affects the electrical properties of the device more than the hole-injection layer. The external-quantum efficiency for the three-layer device with Li2CO3 and Cs2CO3 layer is improved by approximately six and eight times, respectively, compared with that of the two-layer reference device. It is thought that a use of electron-injection layer increases recombination rate of charge carriers by the active injection of electrons and the blocking of holes.
Permafrost and organic layer interactions over a climate gradient in a discontinuous permafrost zone
NASA Astrophysics Data System (ADS)
Johnson, Kristofer D.; Harden, Jennifer W.; McGuire, A. David; Clark, Mark; Yuan, Fengming; Finley, Andrew O.
2013-09-01
Permafrost is tightly coupled to the organic soil layer, an interaction that mediates permafrost degradation in response to regional warming. We analyzed changes in permafrost occurrence and organic layer thickness (OLT) using more than 3000 soil pedons across a mean annual temperature (MAT) gradient. Cause and effect relationships between permafrost probability (PF), OLT, and other topographic factors were investigated using structural equation modeling in a multi-group analysis. Groups were defined by slope, soil texture type, and shallow (<28 cm) versus deep organic (≥28 cm) layers. The probability of observing permafrost sharply increased by 0.32 for every 10-cm OLT increase in shallow OLT soils (OLTs) due to an insulation effect, but PF decreased in deep OLT soils (OLTd) by 0.06 for every 10-cm increase. Across the MAT gradient, PF in sandy soils varied little, but PF in loamy and silty soils decreased substantially from cooler to warmer temperatures. The change in OLT was more heterogeneous across soil texture types—in some there was no change while in others OLTs soils thinned and/or OLTd soils thickened at warmer locations. Furthermore, when soil organic carbon was estimated using a relationship with thickness, the average increase in carbon in OLTd soils was almost four times greater compared to the average decrease in carbon in OLTs soils across all soil types. If soils follow a trajectory of warming that mimics the spatial gradients found today, then heterogeneities of permafrost degradation and organic layer thinning and thickening should be considered in the regional carbon balance.
Permafrost and organic layer interactions over a climate gradient in a discontinuous permafrost zone
Johnson, Kristofer D.; Harden, Jennifer W.; McGuire, A. David; Clark, Mark; Yuan, Fengming; Finley, Andrew O.
2013-01-01
Permafrost is tightly coupled to the organic soil layer, an interaction that mediates permafrost degradation in response to regional warming. We analyzed changes in permafrost occurrence and organic layer thickness (OLT) using more than 3000 soil pedons across a mean annual temperature (MAT) gradient. Cause and effect relationships between permafrost probability (PF), OLT, and other topographic factors were investigated using structural equation modeling in a multi-group analysis. Groups were defined by slope, soil texture type, and shallow (<28 cm) versus deep organic (≥28 cm) layers. The probability of observing permafrost sharply increased by 0.32 for every 10-cm OLT increase in shallow OLT soils (OLTs) due to an insulation effect, but PF decreased in deep OLT soils (OLTd) by 0.06 for every 10-cm increase. Across the MAT gradient, PF in sandy soils varied little, but PF in loamy and silty soils decreased substantially from cooler to warmer temperatures. The change in OLT was more heterogeneous across soil texture types—in some there was no change while in others OLTs soils thinned and/or OLTd soils thickened at warmer locations. Furthermore, when soil organic carbon was estimated using a relationship with thickness, the average increase in carbon in OLTd soils was almost four times greater compared to the average decrease in carbon in OLTs soils across all soil types. If soils follow a trajectory of warming that mimics the spatial gradients found today, then heterogeneities of permafrost degradation and organic layer thinning and thickening should be considered in the regional carbon balance.
Substrate-Independent Epitaxial Growth of the Metal-Organic Framework MOF-508a.
Wilson, M; Barrientos-Palomo, S N; Stevens, P C; Mitchell, N L; Oswald, G; Nagaraja, C M; Badyal, J P S
2018-01-31
Plasmachemical deposition is a substrate-independent method for the conformal surface functionalization of solid substrates. Structurally well-defined pulsed plasma deposited poly(1-allylimidazole) layers provide surface imidazole linker groups for the directed liquid-phase epitaxial (layer-by-layer) growth of metal-organic frameworks (MOFs) at room temperature. For the case of microporous [Zn (benzene-1,4-dicarboxylate)-(4,4'-bipyridine) 0.5 ] (MOF-508), the MOF-508a polymorph containing two interpenetrating crystal lattice frameworks undergoes orientated Volmer-Weber growth and displays CO 2 gas capture behavior at atmospheric concentrations in proportion to the number of epitaxially grown MOF-508 layers.
Effect of thermal annealing Super Yellow emissive layer on efficiency of OLEDs
Burns, Samantha; MacLeod, Jennifer; Trang Do, Thu; Sonar, Prashant; Yambem, Soniya D.
2017-01-01
Thermal annealing of the emissive layer of an organic light emitting diode (OLED) is a common practice for solution processable emissive layers and reported annealing temperatures varies across a wide range of temperatures. We have investigated the influence of thermal annealing of the emissive layer at different temperatures on the performance of OLEDs. Solution processed polymer Super Yellow emissive layers were annealed at different temperatures and their performances were compared against OLEDs with a non-annealed emissive layer. We found a significant difference in the efficiency of OLEDs with different annealing temperatures. The external quantum efficiency (EQE) reached a maximum of 4.09% with the emissive layer annealed at 50 °C. The EQE dropped by ~35% (to 2.72%) for OLEDs with the emissive layers annealed at 200 °C. The observed performances of OLEDs were found to be closely related to thermal properties of polymer Super Yellow. The results reported here provide an important guideline for processing emissive layers and are significant for OLED and other organic electronics research communities. PMID:28106082
NASA Astrophysics Data System (ADS)
Ji, Chang-Yan; Gu, Zheng-Tian; Kou, Zhi-Qi
2016-10-01
The electrical and optical properties of the blue phosphorescent organic light-emitting diodes (PHOLEDs) can be affected by the various structure of confinement layer in the emitting layer (EML). A series of devices with different electron or hole confinement layer (TCTA or Bphen) are fabricated, it is more effective to balance charge carriers injection for the device with the double electron confinement layers structure, the power efficiency and luminance can reach 17.7 lm/W (at 103 cd/m2) and 3536 cd/m2 (at 8 V). In case of the same double electron confinement layers, another series of devices with different profile of EML are fabricated by changing the confinement layers position, the power efficiency and luminance can be improved to 21.7 lm/W (at 103 cd/m2) and 7674 cd/m2 (at 8 V) when the thickness of EML separated by confinement layers increases gradually from the hole injection side to the electron injection side, the driving voltage can also be reduced.
Organic Light-Emitting Diodes with a Perylene Interlayer Between the Electrode-Organic Interface
NASA Astrophysics Data System (ADS)
Saikia, Dhrubajyoti; Sarma, Ranjit
2018-01-01
The performance of an organic light-emitting diode (OLED) with a vacuum-deposited perylene layer over a fluorine-doped tin oxide (FTO) surface is reported. To investigate the effect of the perylene layer on OLED performance, different thicknesses of perylene are deposited on the FTO surface and their current density-voltages (J-V), luminance-voltages (L-V) and device efficiency characteristics at their respective thickness are studied. Further analysis is carried out with an UV-visible light double-beam spectrophotometer unit, a four-probe resistivity unit and a field emission scanning electron microscope set up to study the optical transmittance, sheet resistance and surface morphology of the bilayer anode film. We used N,N'-bis(3-methyl phenyl)- N,N'(phenyl)-benzidine (TPD) as the hole transport layer, Tris(8-hydroxyquinolinato)aluminum (Alq3) as a light-emitting layer and lithium fluoride as an electron injection layer. The luminance efficiency of an OLED structure with a 9-nm-thick perylene interlayer is increased by 2.08 times that of the single-layer FTO anode OLED. The maximum value of current efficiency is found to be 5.25 cd/A.
TiO2 as diffusion barrier at Co/Alq3 interface studied by x-ray standing wave technique
NASA Astrophysics Data System (ADS)
Phatak Londhe, Vaishali; Gupta, A.; Ponpandian, N.; Kumar, D.; Reddy, V. R.
2018-06-01
Nano-scale diffusion at the interfaces in organic spin valve thin films plays a vital role in controlling the performance of magneto-electronic devices. In the present work, it is shown that a thin layer of titanium dioxide at the interface of Co/Alq3 can act as a good diffusion barrier. The buried interfaces of Co/Alq3/Co organic spin valve thin film has been studied using x-ray standing waves technique. A planar waveguide is formed with Alq3 layer forming the cavity and Co layers as the walls of the waveguide. Precise information about diffusion of Co into Alq3 is obtained through excitation of the waveguide modes. It is found that the top Co layer diffuses deep into the Alq3 resulting in incorporation of 3.1% Co in the Alq3 layer. Insertion of a 1.7 nm thick barrier layer of TiO2 at Co/Alq3 interface results in a drastic reduction in the diffusion of Co into Alq3 to a value of only 0.4%. This suggests a better performance of organic spin valve with diffusion barrier of TiO2.
Kim, Minwook; Farrell, Megan J; Steinberg, David R; Burdick, Jason A; Mauck, Robert L
2017-08-01
Biomimetic design in cartilage tissue engineering is a challenge given the complexity of the native tissue. While numerous studies have generated constructs with near-native bulk properties, recapitulating the depth-dependent features of native tissue remains a challenge. Furthermore, limitations in nutrient transport and matrix accumulation in engineered constructs hinders maturation within the central core of large constructs. To overcome these limitations, we fabricated tri-layered constructs that recapitulate the depth-dependent cellular organization and functional properties of native tissue using zonally derived chondrocytes co-cultured with MSCs. We also introduced porous hollow fibers (HFs) and HFs/cotton threads to enhance nutrient transport. Our results showed that tri-layered constructs with depth-dependent organization and properties could be fabricated. The addition of HFs or HFs/threads improved matrix accumulation in the central core region. With HF/threads, the local modulus in the deep region of tri-layered constructs nearly matched that of native tissue, though the properties in the central regions remained lower. These constructs reproduced the zonal organization and depth-dependent properties of native tissue, and demonstrate that a layer-by-layer fabrication scheme holds promise for the biomimetic repair of focal cartilage defects. Articular cartilage is a highly organized tissue driven by zonal heterogeneity of cells, extracellular matrix proteins and fibril orientations, resulting in depth-dependent mechanical properties. Therefore, the recapitulation of the functional properties of native cartilage in a tissue engineered construct requires such a biomimetic design of the morphological organization, and this has remained a challenge in cartilage tissue engineering. This study demonstrates that a layer-by-layer fabrication scheme, including co-cultures of zone-specific articular CHs and MSCs, can reproduce the depth-dependent characteristics and mechanical properties of native cartilage while minimizing the need for large numbers of chondrocytes. In addition, introduction of a porous hollow fiber (combined with a cotton thread) enhanced nutrient transport and depth-dependent properties of the tri-layered construct. Such a tri-layered construct may provide critical advantages for focal cartilage repair. These constructs hold promise for restoring native tissue structure and function, and may be beneficial in terms of zone-to-zone integration with adjacent host tissue and providing more appropriate strain transfer after implantation. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Highly Bendable In-Ga-ZnO Thin Film Transistors by Using a Thermally Stable Organic Dielectric Layer
Kumaresan, Yogeenth; Pak, Yusin; Lim, Namsoo; kim, Yonghun; Park, Min-Ji; Yoon, Sung-Min; Youn, Hyoc-Min; Lee, Heon; Lee, Byoung Hun; Jung, Gun Young
2016-01-01
Flexible In-Ga-ZnO (IGZO) thin film transistor (TFT) on a polyimide substrate is produced by employing a thermally stable SA7 organic material as the multi-functional barrier and dielectric layers. The IGZO channel layer was sputtered at Ar:O2 gas flow rate of 100:1 sccm and the fabricated TFT exhibited excellent transistor performances with a mobility of 15.67 cm2/Vs, a threshold voltage of 6.4 V and an on/off current ratio of 4.5 × 105. Further, high mechanical stability was achieved by the use of organic/inorganic stacking of dielectric and channel layers. Thus, the IGZO transistor endured unprecedented bending strain up to 3.33% at a bending radius of 1.5 mm with no significant degradation in transistor performances along with a superior reliability up to 1000 cycles. PMID:27876893
Kumaresan, Yogeenth; Pak, Yusin; Lim, Namsoo; Kim, Yonghun; Park, Min-Ji; Yoon, Sung-Min; Youn, Hyoc-Min; Lee, Heon; Lee, Byoung Hun; Jung, Gun Young
2016-11-23
Flexible In-Ga-ZnO (IGZO) thin film transistor (TFT) on a polyimide substrate is produced by employing a thermally stable SA7 organic material as the multi-functional barrier and dielectric layers. The IGZO channel layer was sputtered at Ar:O 2 gas flow rate of 100:1 sccm and the fabricated TFT exhibited excellent transistor performances with a mobility of 15.67 cm 2 /Vs, a threshold voltage of 6.4 V and an on/off current ratio of 4.5 × 10 5 . Further, high mechanical stability was achieved by the use of organic/inorganic stacking of dielectric and channel layers. Thus, the IGZO transistor endured unprecedented bending strain up to 3.33% at a bending radius of 1.5 mm with no significant degradation in transistor performances along with a superior reliability up to 1000 cycles.
The Microcircuit Concept Applied to Cortical Evolution: from Three-Layer to Six-Layer Cortex
Shepherd, Gordon M.
2011-01-01
Understanding the principles of organization of the cerebral cortex requires insight into its evolutionary history. This has traditionally been the province of anatomists, but evidence regarding the microcircuit organization of different cortical areas is providing new approaches to this problem. Here we use the microcircuit concept to focus first on the principles of microcircuit organization of three-layer cortex in the olfactory cortex, hippocampus, and turtle general cortex, and compare it with six-layer neocortex. From this perspective it is possible to identify basic circuit elements for recurrent excitation and lateral inhibition that are common across all the cortical regions. Special properties of the apical dendrites of pyramidal cells are reviewed that reflect the specific adaptations that characterize the functional operations in the different regions. These principles of microcircuit function provide a new approach to understanding the expanded functional capabilities elaborated by the evolution of the neocortex. PMID:21647397
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mescher, Jan, E-mail: jan.mescher@kit.edu; Mertens, Adrian; Egel, Amos
2015-07-15
In most future organic photovoltaic applications, such as fixed roof installations, facade or clothing integration, the solar cells will face the sun under varying angles. By a combined simulative and experimental study, we investigate the mutual interdependencies of the angle of light incidence, the absorber layer thickness and the photon harvesting efficiency within a typical organic photovoltaic device. For thin absorber layers, we find a steady decrease of the effective photocurrent towards increasing angles. For 90-140 nm thick absorber layers, however, we observe an effective photocurrent enhancement, exhibiting a maximum yield at angles of incidence of about 50°. Both effectsmore » mainly originate from the angle-dependent spatial broadening of the optical interference pattern inside the solar cell and a shift of the absorption maximum away from the metal electrode.« less
NASA Astrophysics Data System (ADS)
Mescher, Jan; Mertens, Adrian; Egel, Amos; Kettlitz, Siegfried W.; Lemmer, Uli; Colsmann, Alexander
2015-07-01
In most future organic photovoltaic applications, such as fixed roof installations, facade or clothing integration, the solar cells will face the sun under varying angles. By a combined simulative and experimental study, we investigate the mutual interdependencies of the angle of light incidence, the absorber layer thickness and the photon harvesting efficiency within a typical organic photovoltaic device. For thin absorber layers, we find a steady decrease of the effective photocurrent towards increasing angles. For 90-140 nm thick absorber layers, however, we observe an effective photocurrent enhancement, exhibiting a maximum yield at angles of incidence of about 50°. Both effects mainly originate from the angle-dependent spatial broadening of the optical interference pattern inside the solar cell and a shift of the absorption maximum away from the metal electrode.
Araki, Takahiro; Kondo, Atsushi; Maeda, Kazuyuki
2015-04-13
Novel isomorphous pillared-layer-type crystalline lanthanide 1,3,5-benzenetriphosphonates were prepared with bpy and dbo as organic pillars (LnBP-bpy and LnBP-dbo; Ln: Ce, Pr, and Nd). Ab initio crystal structure solution using synchrotron X-ray powder diffraction data revealed that the organic pillars do not exist as neutral coordinating ligands but as cationic molecules. Especially the LnBP-dbo phases have ordered interlayer space filled with water molecules between the dbo pillars, and the interlayer water is successfully removed by heating under vacuum with slightly distorted but basically retained pillared layer structures. Microporosity of the materials is confirmed by adsorption of nitrogen, carbon dioxide, and hydrogen gases. Such microporous layered metal phosphonates pillared with cationic molecules should be unprecedented and should offer new strategies to design ordered microporous materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Use of laser drilling in the manufacture of organic inverter circuits.
Iba, Shingo; Kato, Yusaku; Sekitani, Tsuyoshi; Kawaguchi, Hiroshi; Sakurai, Takayasu; Someya, Takao
2006-01-01
Inverter circuits have been made by connecting two high-quality pentacene field-effect transistors. A uniform and pinhole-free 900 nm thick polyimide gate-insulating layer was formed on a flexible polyimide film with gold gate electrodes and partially removed by using a CO2 laser drilling machine to make via holes and contact holes. Subsequent evaporation of the gold layer results in good electrical connection with a gold gate layer underneath the gate-insulating layer. By optimization of the settings of the CO2 laser drilling machine, contact resistance can be reduced to as low as 3 ohms for 180 microm square electrodes. No degradation of the transport properties of the organic transistors was observed after the laser-drilling process. This study demonstrates the feasibility of using the laser drilling process for implementation of organic transistors in integrated circuits on flexible polymer films.
NASA Astrophysics Data System (ADS)
Drevet, R.; Dragoé, D.; Barthés-Labrousse, M. G.; Chaussé, A.; Andrieux, M.
2016-10-01
This work presents the synthesis and the characterization of hybrid material thin films obtained by the combination of two processes. The electrochemical grafting of organic layers made of carboxyphenyl moieties is carried out from the reduction of a diazonium salt on tin dioxide (SnO2) thin films previously deposited on Si substrates by metal organic chemical vapor deposition (MOCVD). Since the MOCVD experimental parameters impact the crystal growth of the SnO2 layer (i.e. its morphology and its texturation), various electrochemical grafting models can occur, producing different hybrid materials. In order to evidence the efficiency of the electrochemical grafting of the carboxyphenyl moieties, X-ray Photoelectron Spectroscopy (XPS) is used to characterize the first nanometers in depth of the synthesized hybrid material layer. Then three electrochemical grafting models are proposed.
Jeff Heikoop; Heather Throckmorton
2015-05-15
Dataset includes nitrate concentrations for polygonal active layer samples, snowmelt; ammonium concentrations for active layer samples; nitrate isotopes for active layer samples, snowmelt, permafrost; ammonium isotopes for active layer samples; and nitrogen isotopes for soils and dissolved organic nitrogen extracted from soil pore waters.
Xiong, Li; Xu, Zhen-Feng; Wu, Fu-Zhong; Yang, Wan-Qin; Yin, Rui; Li, Zhi-Ping; Gou, Xiao-Lin; Tang, Shi-Shan
2014-05-01
This study characterized the dynamics of the activities of urease, nitrate reductase and nitrite reductase in both soil organic layer and mineral soil layer under three depths of snow pack (deep snowpack, moderate snowpack and shallow snowpack) over the three critical periods (snow formed period, snow stable period, and snow melt period) in the subalpine Abies faxoniana forest of western Sichuan in the winter of 2012 and 2013. Throughout the winter, soil temperature under deep snowpack increased by 46.2% and 26.2%, respectively in comparison with moderate snowpack and shallow snowpack. In general, the three nitrogen-related soil enzyme activities under shallow snowpack were 0.8 to 3.9 times of those under deep snowpack during the winter. In the beginning and thawing periods of seasonal snow pack, shallow snowpack significantly increased the activities of urease, nitrate and nitrite reductase enzyme in both soil organic layer and mineral soil layer. Although the activities of the studied enzymes in soil organic layer and mineral soil layer were observed to be higher than those under deep- and moderate snowpacks in deep winter, no significant difference was found under the three snow packs. Meanwhile, the effects of snowpack on the activities of the measured enzymes were related with season, soil layer and enzyme type. Significant variations of the activities of nitrogen-related enzymes were found in three critical periods over the winter, and the three measured soil enzymes were significantly higher in organic layer than in mineral layer. In addition, the activities of the three measured soil enzymes were closely related with temperature and moisture in soils. In conclusion, the decrease of snow pack induced by winter warming might increase the activities of soil enzymes related with nitrogen transformation and further stimulate the process of wintertime nitrogen transformation in soils of the subalpine forest.
Improved performance of organic solar cells with solution processed hole transport layer
NASA Astrophysics Data System (ADS)
Bhargav, Ranoo; Gairola, S. P.; Patra, Asit; Naqvi, Samya; Dhawan, S. K.
2018-06-01
This work is based on Cobalt Oxide as solution processed, inexpensive and effective hole transport layer (HTL) for efficient organic photovoltaic applications (OPVs). In Organic solar cell (OSC) devices ITO coated glass substrate used as a transparent anode electrode for light incident, HTL material Co3O4 dissolve in DMF solvent deposited on anode electrode, after that active layer material (donor/acceptor) deposited on to HTL and finally Al were deposited by thermal evaporation used as cathode electrode. These devices were fabricated with PCDTBT well known low band gap donor material in OSCs and blended with PC71BM as an acceptor material using simplest device structure ITO/Co3O4/active layer/Al at ambient conditions. The power conversion efficiencies (PCEs) based on Co3O4 and PEDOT:PSS have been achieved to up to 3.21% and 1.47% with PCDTBT respectively. In this study we reported that the devices fabricated with Co3O4 showed better performance as compare to the devices fabricated with well known and most studied solution processed HTL material PEDOT:PSS under identical environmental conditions. The surface morphology of the HTL film was characterized by (AFM). Lastly, we have provided Co3O4 as an efficient hole transport material HTL for solution processed organic photovoltaic applications.
NASA Astrophysics Data System (ADS)
Drapak, S. I.; Bakhtinov, A. P.; Gavrylyuk, S. V.; Kovalyuk, Z. D.; Lytvyn, O. S.
2008-10-01
Propolis (honeybee glue) organic films were prepared from an alcoholic solution on the surfaces of inorganic layered semiconductors (indium, gallium and bismuth selenides). Atomic force microscopy (AFM) and X-ray diffraction (XRD) are used to characterize structural properties of an organic/inorganic interfaces. It is shown that nanodimensional linear defects and nanodimensional cavities of various shapes are formed on the van der Waals (VDW) surfaces of layered crystals as a result of chemical interaction between the components of propolis (flavonoids, aminoacids and phenolic acids) and the VDW surfaces as well as deformation interaction between the VDW surfaces and propolis films during their polymerization. The nanocavities are formed as a result of the rupture of strong covalent bonds in the upper layers of layered crystals and have the shape of hexagons or triangles in the (0001) plane. The shape, lateral size and distribution of nanodimensional defects on the VDW surfaces depends on the type of crystals, the magnitude and distribution of surface stresses. We have obtained self-organized nanofold structures of propolis/InSe interface. It is established that such heterostructures have photosensitivity in the infrared range hν<1.2 eV (the values of energy gap are 1.2 eV for InSe and 3.07 eV for propolis films at room temperature).
Liquid eutectic GaIn as an alternative electrode for PTB7:PCBM organic solar cells
NASA Astrophysics Data System (ADS)
Thanh Hau Pham, Viet; Kieu Trinh, Thanh; Tam Nguyen Truong, Nguyen; Park, Chinho
2017-04-01
Conventional vacuum deposition process of aluminum (Al) is costly, time-consuming and difficult to apply to the large-scale production of organic photovoltaic devices (OPV). This paper reports a vacuum-free fabrication process of poly[[4,8-bis(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b‧]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thienophenediyl]:[6,6]-phenyl C71 butyric acid methyl ester (PTB7:PCBM) bulk heterojunction organic solar cell with liquid eutectic gallium-indium (EGaIn) electrode as an alternative to the common Al electrode. The insertion of a thin poly(ethylene oxide) (PEO) layer after depositing organic photoactive layer could help prevent the diffusion of liquid EGaIn into the active layer and allow the deposition of the EGaIn electrode. The PEO interfacial layer was formed by spin-coating from a mixed solvent of alcohol and water. Among different alcohol+water (methanol, ethanol, ethylene glycol, n-propanol, isopropanol, and isobutanol) mixed solvent tested, the n-propanol+water mixed solvent showed the greatest enhancement to the performance of OPVs. The improved device performance was attributed to the reactivity of mixed solvent n-propanol+water toward the surface of PTB7:PCBM active layer, which could help optimize surface morphology.
Membrane-Mediated Extraction and Biodegradation of Volatile Organic Compounds From Air
2005-01-01
side boundary-layer mass transfer resistance is a significant fraction of the total mass transfer resistance ( Raghunath , 1992). In some cases where...Sci. 59: 53–72. Raghunath , B., and S.–T. Hwang (1992). “Effect of boundary layer mass transfer resistance in the pervaporation of dilute organics
Kwon, Guhyun; Kim, Keetae; Choi, Byung Doo; Roh, Jeongkyun; Lee, Changhee; Noh, Yong-Young; Seo, SungYong; Kim, Myung-Gil; Kim, Choongik
2017-06-01
The stabilization and control of the electrical properties in solution-processed amorphous-oxide semiconductors (AOSs) is crucial for the realization of cost-effective, high-performance, large-area electronics. In particular, impurity diffusion, electrical instability, and the lack of a general substitutional doping strategy for the active layer hinder the industrial implementation of copper electrodes and the fine tuning of the electrical parameters of AOS-based thin-film transistors (TFTs). In this study, the authors employ a multifunctional organic-semiconductor (OSC) interlayer as a solution-processed thin-film passivation layer and a charge-transfer dopant. As an electrically active impurity blocking layer, the OSC interlayer enhances the electrical stability of AOS TFTs by suppressing the adsorption of environmental gas species and copper-ion diffusion. Moreover, charge transfer between the organic interlayer and the AOS allows the fine tuning of the electrical properties and the passivation of the electrical defects in the AOS TFTs. The development of a multifunctional solution-processed organic interlayer enables the production of low-cost, high-performance oxide semiconductor-based circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Busani, Tito L.; Lavrova, Olga; Erdman, Matthew; Martinez, Julio; Dawson, Noel M.
2015-10-01
We designed and studied a radial junction composed by a photovoltaic and thermoelectric array based on ZnO and CdTe nanowires surrounded by an absorbing organic self assembled in order to efficiently convert UV-visible and IR energy into electricity. The hot anode of n-type ZnO nanowires was fabricated using a thermal process on pre-seeded layer and results to be crystalline with a transmittance up to 92 % and a bandgap of ~ 3.32 eV. Conductivity measurements reveal diode-like behavior for the ZnO nanowires. The organic layer was deposited between the anode and cathode at room temperature The organic layer is composed of oppositely charged porphyrin metal (Zn(II) and Sn(IV)(OH)2) derivatives that are separately water soluble, but when combined form a virtually insoluble solid. The electron donor/acceptor properties (energy levels, band gaps) of the solid can be controlled by the choice of metals and the nature of the peripheral substituent groups of the porphyrin ring. A defect free sub nanometer deposition was achieved using a layer-by-layer deposition onto both ZnO and Bi2Te3 nanowires. The highly thermoelectric structure, which acts as a cold cathode, is composed of p-type Bi2Te3 nanowires with a thermoelectric efficiency (ZT) between ~0.7 to 1, values that are twice that expected for bulk Bi2Te3. Optoelectronic and structural properties shows that with 6 nm of organic layer it is possible to form a 3% efficient solar device with an enhanced thermo electric effected with a temperature gradient of 300 C.
Puhakainen, M; Riekkinen, I; Heikkinen, T; Jaakkola, T; Steinnes, E; Rissanen, K; Suomela, M; Thørring, H
2001-01-01
The aim of the present study was to determine the forms of 137Cs, 90Sr and 239,240Pu occurring in different soil horizons using sequential extraction of samples taken from four sites located along a pollution gradient from the copper-nickel smelter at Monchegorsk in the Kola Peninsula, Russia, and from a reference site in Finnish Lapland in 1997. A selective sequential-leaching procedure was employed using a modification of the method of Tessier, Cambell and Bisson ((1979). Analytical Chemistry, 51, 844-851). For 137Cs the organic (O) and uppermost mineral (E1) layer were studied, for 90Sr and 239,240Pu only the uppermost organic layer (Of). The fraction of 137Cs occurring in readily exchangeable form in the organic layer was about 50% at the reference site and decreased as a function of pollution, being 15% at the most polluted site in the Kola Peninsula. There was a clear positive correlation in the O layer between the distance from the smelter and the percentage of 137Cs extracted in the readily exchangeable fraction (Spearman correlation rsp = 0.7805, p = 0.0001), whereas in the E1 layer no correlation was evident. The distribution of 90Sr in the Of layer was similar at all sites, with the highest amounts occurring in exchangeable form and bound to organic matter, whereas stable Sr showed a somewhat different distribution with the highest amount in the oxide fraction. Most of the 239,240Pu was bound to organic matter. Chemical pollution affected the exchangeable fraction of 239,240Pu, which was about 1% at the most polluted site and 4-6% at the other sites.
Triacetin as food additive in gummy candy and other foodstuffs on the market.
Ogawa, T; Moriwaki, N; Fujii, R; Tanaka, K; Mori, E; Saitou, M; Yoshizawa, H; Sakaguchi, H
1992-04-01
The qualitative and quantitative analytical methods were proposed for the simple and rapid determination of triacetin (TAc) in commercial gummy candies and other foodstuffs by gas chromatography (GC), thin layer chromatography (TLC) and infrared spectroscopy (IR). Each extract from the samples was obtained by pretreatment of the foodstuffs as follows: (A) Gummy candy was dissolved in warm water and the solution was extracted with chloroform. The organic (chloroform) layer was separated. (B) Samples (such as ice cream) containing substantial water were mixed with anhydrous Na2SO4 and stirred to sandy appearance and dried. The residue was homogenized with ether, followed by centrifuging, and the organic (ether) layer was separated. (C) Dried samples (such as chocolate and cookie) were smashed, homogenized with ether, and followed by centrifuging, and the organic (ether) layer was separated. (D) Candy was dissolved in warm water and the solution was extracted with ether. The organic (ether) layer was separated. Each organic layer from (A)-(D) was washed with 10% NaHCO3 and evaporated. The residue containing TAc was dissolved in dichloromethane. The extract obtained was subjected to column chromatography on silica gel. The fractions containing TAc were employed in GC with 25% PEG-20M column, TLC, and IR analyses. Recovery of TAc from gummy candy was 99.1 +/- 3.0% and those from other foodstuffs ranged from was 82.1 to 99.4% by GC. Detection limit by this method was 10 ppm. TAc was found to contain at a level as high as 550 ppm in one domestic gummy candy. On the other hand, one imported gummy candy contained no more than 20 ppm of TAc gummy candy.
Zhang, Xiu Lan; Wang, Fang Chao; Fang, Xiang Min; He, Ping; Zhang, Yu Fei; Chen, Fu Sheng; Wang, Hui Min
2017-02-01
A series of nitrogen (N) and phosphorus (P) addition experiments using treatments of N 0 (0 kg N·hm -2 ·a -1 ), N 1 (50 kg N·hm -2 ·a -1 ), N 2 (100 kg N·hm -2 ·a -1 ), P (50 kg P·hm -2 ·a -1 ), N 1 P and N 2 P were conducted at Cunninghamia lanceolata plantations in subtropical China. The responses of soil organic carbon (SOC), particulate organic carbon (POC) and water-soluble organic carbon (WSOC) to the nutrient addition treatments after 3 years were determined. The results showed that N and P additions had no significant effects on SOC concentration in 0-20 cm soil layer, while P addition significantly decreased soil POC content in 0-5 cm soil layer by 26.1%. The responses of WSOC to N and P addition were mainly found in 0-5 cm soil layer, and low level N and P addition significantly increased the WSOC content in 0-5 cm soil layer. Nitrogen addition had no significant effect on POC/SOC, while the POC/SOC significantly decreased by 15.9% in response to P addition in 0-5 cm soil layer. In 5-10 cm and 10-20 cm soil layers, POC/SOC was not significantly altered in N and P addition treatments. Therefore, the forest soil C stability was mainly controlled by P content in subtropical areas. P addition was liable to cause the decomposition of surface soil active organic C and increased the soil C stability in the short term treatment.
Bioprinting toward organ fabrication: challenges and future trends.
Ozbolat, Ibrahim T; Yu, Yin
2013-03-01
Tissue engineering has been a promising field of research, offering hope for bridging the gap between organ shortage and transplantation needs. However, building three-dimensional (3-D) vascularized organs remains the main technological barrier to be overcome. Organ printing, which is defined as computer-aided additive biofabrication of 3-D cellular tissue constructs, has shed light on advancing this field into a new era. Organ printing takes advantage of rapid prototyping (RP) technology to print cells, biomaterials, and cell-laden biomaterials individually or in tandem, layer by layer, directly creating 3-D tissue-like structures. Here, we overview RP-based bioprinting approaches and discuss the current challenges and trends toward fabricating living organs for transplant in the near future.
NASA Technical Reports Server (NTRS)
Barrett, K.; Kasischke, E. S.; McGuire, A. D.; Turetsky, M. R.; Kane, E. S.
2010-01-01
Biomass burning in the Alaskan interior is already a major disturbance and source of carbon emissions, and is likely to increase in response to the warming and drying predicted for the future climate. In addition to quantifying changes to the spatial and temporal patterns of burned areas, observing variations in severity is the key to studying the impact of changes to the fire regime on carbon cycling, energy budgets, and post-fire succession. Remote sensing indices of fire severity have not consistently been well-correlated with in situ observations of important severity characteristics in Alaskan black spruce stands, including depth of burning of the surface organic layer. The incorporation of ancillary data such as in situ observations and GIS layers with spectral data from Landsat TM/ETM+ greatly improved efforts to map the reduction of the organic layer in burned black spruce stands. Using a regression tree approach, the R2 of the organic layer depth reduction models was 0.60 and 0.55 (pb0.01) for relative and absolute depth reduction, respectively. All of the independent variables used by the regression tree to estimate burn depth can be obtained independently of field observations. Implementation of a gradient boosting algorithm improved the R2 to 0.80 and 0.79 (pb0.01) for absolute and relative organic layer depth reduction, respectively. Independent variables used in the regression tree model of burn depth included topographic position, remote sensing indices related to soil and vegetation characteristics, timing of the fire event, and meteorological data. Post-fire organic layer depth characteristics are determined for a large (N200,000 ha) fire to identify areas that are potentially vulnerable to a shift in post-fire succession. This application showed that 12% of this fire event experienced fire severe enough to support a change in post-fire succession. We conclude that non-parametric models and ancillary data are useful in the modeling of the surface organic layer fire depth. Because quantitative differences in post-fire surface characteristics do not directly influence spectral properties, these modeling techniques provide better information than the use of remote sensing data alone.
Optical and electronic processes in organic photovoltaic devices
NASA Astrophysics Data System (ADS)
Myers, Jason David
Organic photovoltaic devices (OPVs) have become a promising research field. OPVs have intrinsic advantages over conventional inorganic technologies: they can be produced from inexpensive source materials using high-throughput techniques on a variety of substrates, including glass and flexible plastics. However, organic semiconductors have radically different operation characteristics which present challenges to achieving high performance OPVs. To increase the efficiency of OPVs, knowledge of fundamental operation principles is crucial. Here, the photocurrent behavior of OPVs with different heterojunction architectures was studied using synchronous photocurrent detection. It was revealed that photocurrent is always negative in planar and planar-mixed heterojunction devices as it is dominated by photocarrier diffusion. In mixed layer devices, however, the drift current dominates except at biases where the internal electric field is negligible. At these biases, the diffusion current dominates, exhibiting behavior that is correlated to the optical interference patterns within the device active layer. Further, in an effort to increase OPV performance without redesigning the active layer, soft-lithographically stamped microlens arrays (MLAs) were developed and applied to a variety of devices. MLAs refract and reflect incident light, giving light a longer path length through the active layer compared to a device without a MLA; this increases absorption and photocurrent. The experimentally measured efficiency enhancements range from 10 to 60%, with the bulk of this value coming from increased photocurrent. Additionally, because the enhancement is dependent on the substrate/air interface and not the active layer, MLAs are applicable to all organic material systems. Finally, novel architectures for bifunctional organic optoelectronic devices (BFDs), which can function as either an OPV or an organic light emitting device (OLED), were investigated. Because OPVs and OLEDs have inherently opposing operation principles, BFDs suffer from poor performance. A new architecture was developed to incorporate the phosphorescent emitter platinum octaethylporphine (PtOEP) into a rubrene/C60 bilayer BFD to make more efficient use of injected carriers. While the emission was localized to a PtOEP emitter layer by an electron permeable exciton blocking layer of N, N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine (NPB), total performance was not improved. From these experiments, a new understanding of the material requirements for BFDs was obtained.
Barrett, Kirsten M.; Kasischke, E.S.; McGuire, A.D.; Turetsky, M.R.; Kane, E.S.
2010-01-01
Biomass burning in the Alaskan interior is already a major disturbance and source of carbon emissions, and is likely to increase in response to the warming and drying predicted for the future climate. In addition to quantifying changes to the spatial and temporal patterns of burned areas, observing variations in severity is the key to studying the impact of changes to the fire regime on carbon cycling, energy budgets, and post-fire succession. Remote sensing indices of fire severity have not consistently been well-correlated with in situ observations of important severity characteristics in Alaskan black spruce stands, including depth of burning of the surface organic layer. The incorporation of ancillary data such as in situ observations and GIS layers with spectral data from Landsat TM/ETM+ greatly improved efforts to map the reduction of the organic layer in burned black spruce stands. Using a regression tree approach, the R2 of the organic layer depth reduction models was 0.60 and 0.55 (pb0.01) for relative and absolute depth reduction, respectively. All of the independent variables used by the regression tree to estimate burn depth can be obtained independently of field observations. Implementation of a gradient boosting algorithm improved the R2 to 0.80 and 0.79 (pb0.01) for absolute and relative organic layer depth reduction, respectively. Independent variables used in the regression tree model of burn depth included topographic position, remote sensing indices related to soil and vegetation characteristics, timing of the fire event, and meteorological data. Post-fire organic layer depth characteristics are determined for a large (N200,000 ha) fire to identify areas that are potentially vulnerable to a shift in post-fire succession. This application showed that 12% of this fire event experienced fire severe enough to support a change in post-fire succession. We conclude that non-parametric models and ancillary data are useful in the modeling of the surface organic layer fire depth. Because quantitative differences in post-fire surface characteristics do not directly influence spectral properties, these modeling techniques provide better information than the use of remote sensing data alone.
Modification of Ti6Al4V surface by diazonium compounds.
Sandomierski, Mariusz; Buchwald, Tomasz; Strzemiecka, Beata; Voelkel, Adam
2018-02-15
Ti6Al4V alloy is the most commonly used in orthopedic industry as an endoprosthesis. Ti6Al4V exhibits good mechanical properties, except the abrasion resistance. Surface modification of Ti6Al4V in order to obtain organic layer, and then the attachment of the polymer, can allow for overcoming this problem. The aim of the work was the modification of Ti6Al4V surface by diazonium compounds: salt or cation generated in situ and examine the influence of the reducing agent - ascorbic acid, and the temperature of reaction on modification process. Moreover, the simulated body fluid was used for the assessment of the organic layer stability on Ti6Al4V surface. The evaluation of the modification was carried out using the following methods: Raman microspectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Higher temperature of modification by 4-hydroxymethylbenzenediazonium cation, provides the largest amount of organic layer on the Ti6Al4V alloy. In the case of the Ti6Al4V modified by Variamine Blue B salt, the amount of organic layer is not dependent on the reaction condition. Moreover, the ascorbic acid and the presence of TiO 2 does not effect on the modification. The modified surface is completely coated with the organic layer which is stable in simulated body fluid. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Shiqiang; Wang, Shuwei; Hu, Guohong; Cheong, Ling-Zhi; Shen, Cai
2018-05-01
Solid-electrolyte interphase (SEI) layer is an organic-inorganic composite layer that allows Li+ transport across but blocks electron flow across and prevents solvent diffusing to electrode surface. Morphology, thickness, mechanical and chemical properties of SEI are important for safety and cycling performance of lithium-ion batteries. Herein, we employ a combination of in-situ AFM and XPS to investigate the effects of two electrolyte additives namely lithium difluoro(oxalate)borate (LiDFOB) and lithium bis(oxalato)borate (LiBOB) on SEI layer. LiDFOB is found to result in a thin but hard SEI layer containing more inorganic species (LiF and LiCO3); meanwhile LiBOB promotes formation of a thick but soft SEI layer containing more organic species such as ROCO2Li. Findings from present study will help development of electrolyte additives that promote formation of good SEI layer.
Zhang, Xinyuan; Li, Zhiqi; Liu, Chunyu; Guo, Jiaxin; Shen, Liang; Guo, Wenbin
2018-03-15
The charge transfer and separation are significantly affected by the electron properties of the interface between the electron-donor layer and the carrier-transporting layer in polymer solar cells (PSCs). In this study, we investigate the electron extraction mechanism of PSCs with a low temperature solution-processed ZnO/PEI as electron transport layer. The incorporation of PEI layer can decrease the work function of ZnO and reduce interfacial barrier, which facilitates electron extraction and suppresses bimolecular recombination, leading to a significant performance enhancement. Furthermore, PEI layer can induce phase separation and passivite inorganic surface trap states as well as shift the interfacial energy offset between metal oxide and organic materials. This work offers a simple and effective way to improve the charge transporting property of organic photovoltaic devices. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Yuehua; Hao, Lin; Zhang, Xinwen; Zhang, Xiaolin; Liu, Mengjiao; Zhang, Mengke; Wang, Jiong; Lai, Wen-Yong; Huang, Wei
2017-08-01
In this paper, solution-processed nickel oxide (NiOx) is used as hole-injection layers (HILs) in solution-processed phosphorescent organic light-emitting diodes (PhOLEDs). Serious exciton quenching is verified at the NiOx/emitting layer (EML) interface, resulting in worse device performance. The device performance is significantly improved by inserting a layer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) between the EML and NiOx. The solution-processed blue PhOLED with the double-stacked NiOx/PEDOT:PSS HILs shows a maximum current efficiency of 30.5 cd/A, which is 75% and 30% higher than those of the devices with a single NiOx HIL and a PEDOT:PSS HIL, respectively. Improvement of device efficiency can be attributed to reducing exciton quenching of the PEDOT:PSS layer as well as the electron blocking effect of the NiOx layer.
Park, Hyesung; Howden, Rachel M; Barr, Miles C; Bulović, Vladimir; Gleason, Karen; Kong, Jing
2012-07-24
For the successful integration of graphene as a transparent conducting electrode in organic solar cells, proper energy level alignment at the interface between the graphene and the adjacent organic layer is critical. The role of a hole transporting layer (HTL) thus becomes more significant due to the generally lower work function of graphene compared to ITO. A commonly used HTL material with ITO anodes is poly(3,4-ethylenedioxythiophene) (PEDOT) with poly(styrenesulfonate) (PSS) as the solid-state dopant. However, graphene's hydrophobic surface renders uniform coverage of PEDOT:PSS (aqueous solution) by spin-casting very challenging. Here, we introduce a novel, yet simple, vapor printing method for creating patterned HTL PEDOT layers directly onto the graphene surface. Vapor printing represents the implementation of shadow masking in combination with oxidative chemical vapor deposition (oCVD). The oCVD method was developed for the formation of blanket (i.e., unpatterened) layers of pure PEDOT (i.e., no PSS) with systematically variable work function. In the unmasked regions, vapor printing produces complete, uniform, smooth layers of pure PEDOT over graphene. Graphene electrodes were synthesized under low-pressure chemical vapor deposition (LPCVD) using a copper catalyst. The use of another electron donor material, tetraphenyldibenzoperiflanthene, instead of copper phthalocyanine in the organic solar cells also improves the power conversion efficiency. With the vapor printed HTL, the devices using graphene electrodes yield comparable performances to the ITO reference devices (η(p,LPCVD) = 3.01%, and η(p,ITO) = 3.20%).
Lasko, G; Schäfer, I; Burghard, Z; Bill, J; Schmauder, S; Weber, U; Galler, D
2013-03-01
Owing to the apparent simple morphology and peculiar properties, nacre, an iridescent layer, coating of the inner part of mollusk shells, has attracted considerable attention of biologists, material scientists and engineers. The basic structural motif in nacre is the assembly of oriented plate-like aragonite crystals with a 'brick' (CaCO3 crystals) and 'mortar' (macromolecular components like proteins) organization. Many scientific researchers recognize that such structures are associated with the excellent mechanical properties of nacre and biomimetic strategies have been proposed to produce new layered nanocomposites. During the past years, increasing efforts have been devoted towards exploiting nacre's structural design principle in the synthesis of novel nanocomposites. However, the direct transfer of nacre's architecture to an artificial inorganic material has not been achieved yet. In the present contribution we report on laminated architecture, composed of the inorganic oxide (TiO2) and organic polyelectrolyte (PE) layers which fulfill this task. To get a better insight and understanding concerning the mechanical behaviour of bio-inspired layered materials consisting of oxide ceramics and organic layers, the elastic-plastic properties of titanium dioxide and organic polyelectrolyte phase are determined via FE-modelling of the nanoindentation process. With the use of inverse modeling and based on numerical models which are applied on the microscopic scale, the material properties of the constituents are derived.
Fabrication of hierarchical hybrid structures using bio-enabled layer-by-layer self-assembly.
Hnilova, Marketa; Karaca, Banu Taktak; Park, James; Jia, Carol; Wilson, Brandon R; Sarikaya, Mehmet; Tamerler, Candan
2012-05-01
Development of versatile and flexible assembly systems for fabrication of functional hybrid nanomaterials with well-defined hierarchical and spatial organization is of a significant importance in practical nanobiotechnology applications. Here we demonstrate a bio-enabled self-assembly technique for fabrication of multi-layered protein and nanometallic assemblies utilizing a modular gold-binding (AuBP1) fusion tag. To accomplish the bottom-up assembly we first genetically fused the AuBP1 peptide sequence to the C'-terminus of maltose-binding protein (MBP) using two different linkers to produce MBP-AuBP1 hetero-functional constructs. Using various spectroscopic techniques, surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR), we verified the exceptional binding and self-assembly characteristics of AuBP1 peptide. The AuBP1 peptide tag can direct the organization of recombinant MBP protein on various gold surfaces through an efficient control of the organic-inorganic interface at the molecular level. Furthermore using a combination of soft-lithography, self-assembly techniques and advanced AuBP1 peptide tag technology, we produced spatially and hierarchically controlled protein multi-layered assemblies on gold nanoparticle arrays with high molecular packing density and pattering efficiency in simple, reproducible steps. This model system offers layer-by-layer assembly capability based on specific AuBP1 peptide tag and constitutes novel biological routes for biofabrication of various protein arrays, plasmon-active nanometallic assemblies and devices with controlled organization, packing density and architecture. Copyright © 2011 Wiley Periodicals, Inc.
Yamaguchi, Yuji; Suzuki, Mitsuharu; Motoyama, Takao; Sugii, Shuhei; Katagiri, Chiho; Takahira, Katsuya; Ikeda, Shinya; Yamada, Hiroko; Nakayama, Ken-ichi
2014-01-01
The vertical composition profile of active layer has a major effect on the performance of organic photovoltaic devices (OPVs). While stepwise deposition of different materials is a conceptually straightforward method for controlled preparation of multi-component active layers, it is practically challenging for solution processes because of dissolution of the lower layer. Herein, we overcome this difficulty by employing the photoprecursor approach, in which a soluble photoprecursor is solution-deposited then photoconverted in situ to a poorly soluble organic semiconductor. This approach enables solution-processing of the p-i-n triple-layer architecture that has been suggested to be effective in obtaining efficient OPVs. We show that, when 2,6-dithienylanthracene and a fullerene derivative PC71BM are used as donor and acceptor, respectively, the best p-i-n OPV affords a higher photovoltaic efficiency than the corresponding p-n device by 24% and bulk-heterojunction device by 67%. The photoprecursor approach is also applied to preparation of three-component p-i-n films containing another donor 2,6-bis(5′-(2-ethylhexyl)-(2,2′-bithiophen)-5-yl)anthracene in the i-layer to provide a nearly doubled efficiency as compared to the original two-component p-i-n system. These results indicate that the present approach can serve as an effective means for controlled preparation of well-performing multi-component active layers in OPVs and related organic electronic devices. PMID:25413952
Organic electronic devices via interface engineering
NASA Astrophysics Data System (ADS)
Xu, Qianfei
This dissertation focuses on interface engineering and its influence on organic electronic devices. A comprehensive review of interface studies in organic electronic devices is presented in Chapter 1. By interface engineering at the cathode contact, an ultra-high efficiency green polymer light emitting diode is demonstrated in Chapter 2. The interface modification turns out to be solution processable by using calcium acetylacetonate, donated by Ca(acac)2. The device structure is Induim Tin Oxide (ITO)/3,4-polyethylenedioxythiophene-polystyrene-sulfonate (PEDOT)/Green polyfluorene/Ca(acac) 2/Al. Based on this structure, we obtained device efficiencies as high as 28 cd/A at 2650 cd/m2, which is about a 3 times improvement over previous devices. The mechanism of this nano-layer has been studied by I-L-V measurements, photovoltaic measurements, XPS/UPS studies, impedance measurements as well as transient EL studies. The interfacial layer plays a crucial role for the efficiency improvement. It is believed to work as a hole blocking layer as well as an electron injection layer. Meanwhile, a systematic study on ITO electrodes is also carried out in Chapter 4. By engineering the interface at ITO electrode, the device lifetime has been improved. In Chapter 5, very bright white emission PLEDs are fabricated based on blue polyfluorene (PF) doped with 1 wt% 6, 8, 15, 17-tetraphyenyl-1.18, 4.5, 9.10, 13.14-tetrabenzoheptacene (TBH). The maximum luminance exceeds 20,000 cd/m2. The maximum luminance efficiency is 3.55 cd/A at 4228 cd/m2 while the maximum power efficiency is 1.6 lm/W at 310 cd/m2. The white color is achieved by an incomplete energy transfer from blue PF to TBH. The devices show super stable CIE coordinates as a function of current density. The interface engineering is also applied to memory devices. In Chapter 6, a novel nonvolatile memory device is fabricated by inserting a buffer layer at the anode contact. Devices with the structure of Cu/Buffer-layer/organic layer/Cu show very attractive electrical bi-stability. The switching mechanism is believed to origin from by the different copper ion concentrations in the organic layer. This opens up a promising way to achieve high-performance organic electronic devices.
Huh, Yoon Ho; Bae, In-Gon; Jeon, Hong Goo; Park, Byoungchoo
2016-10-31
We herein report a homogeneous [6,6]-phenyl C61 butyric acid methyl ester (PCBM) layer, produced by a solution process of horizontal-dipping (H-dipping) to improve the photovoltaic (PV) effects of bilayer heterojunction organic photovoltaic cells (OPVs) based on a bi-stacked poly(3-hexylthiophene) (P3HT) electron donor layer and a PCBM electron acceptor layer (P3HT/PCBM). It was shown that a homogeneous and uniform coating of PCBM layers in the P3HT/PCBM bilayer OPVs resulted in reliable and reproducible device performance. We recorded a power conversion efficiency (PCE) of 2.89%, which is higher than that (2.00%) of bilayer OPVs with a spin-coated PCBM layer. Moreover, introducing surfactant additives of poly(oxyethylene tridecyl ether) (PTE) into the homogeneous P3HT/PCBM PV layers resulted in the bilayer OPVs showing a PCE value of 3.95%, which is comparable to those of conventional bulk-heterojunction (BHJ) OPVs (3.57-4.13%) fabricated by conventional spin-coating. This improved device performance may be attributed to the selective collection of charge carriers at the interfaces among the active layers and electrodes due to the PTE additives as well as the homogeneous formation of the functional PCBM layer on the P3HT layer. Furthermore, H-dip-coated PCBM layers were deposited onto aligned P3HT layers by a rubbing technique, and the rubbed bilayer OPV exhibited improved in-plane anisotropic PV effects with PCE anisotropy as high as 1.81, which is also higher than that (1.54) of conventional rubbed BHJ OPVs. Our results suggest that the use of the H-dip-coating process in the fabrication of PCBM layers with the PTE interface-engineering additive could be of considerable interest to those seeking to improve PCBM-based opto-electrical organic thin-film devices.
Li, Cheng; Credgington, Dan; Ko, Doo-Hyun; Rong, Zhuxia; Wang, Jianpu; Greenham, Neil C
2014-06-28
The performance of organic solar cells incorporating solution-processed titanium suboxide (TiOx) as electron-collecting layers can be improved by UV illumination. We study the mechanism of this improvement using electrical measurements and electroabsorption spectroscopy. We propose a model in which UV illumination modifies the effective work function of the oxide layer through a significant increase in its free electron density. This leads to a dramatic improvement in device power conversion efficiency through several mechanisms - increasing the built-in potential by 0.3 V, increasing the conductivity of the TiOx layer and narrowing the interfacial Schottky barrier between the suboxide and the underlying transparent electrode. This work highlights the importance of considering Fermi-level equilibration when designing multi-layer transparent electrodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wook Kim, Jin; Yoo, Seung Il; Sung Kang, Jin
2015-06-28
We analyzed the performance of multi-emissive white phosphorescent organic light-emitting diodes (PHOLEDs) in relation to various red emitting sites of hole and electron transport layers (HTL and ETL). The shift of the recombination zone producing stable white emission in PHOLEDs was utilized as luminance was increased with red emission in its electron transport layer. Multi-emissive white PHOLEDs including the red light emitting electron transport layer yielded maximum external quantum efficiency of 17.4% with CIE color coordinates (−0.030, +0.001) shifting only from 1000 to 10 000 cd/m{sup 2}. Additionally, we observed a reduction of energy loss in the white PHOLED via Ir(piq){submore » 3} as phosphorescent red dopant in electron transport layer.« less
NASA Astrophysics Data System (ADS)
Minagawa, Masahiro; Kim, Yeongin; Claus, Martin; Bao, Zhenan
2017-09-01
Bottom-contact organic field-effect transistors (OFETs) are prepared by inserting an AgO x layer between a pentacene layer and the source-drain electrodes. The contact resistance in the device is ˜8.1 kΩ·cm with an AgO x layer oxidized for 60 s but reaches 116.9 kΩ·cm with a non-oxidized Ag electrode. The drain current and mobility in the OFETs with the AgO x layer increase with the oxidization time and then gradually plateau, and this trend strongly depends on the work function of the Ag surface. Further, the hole injection is enhanced by the presence of Ag2O but inhibited by the presence of AgO.
Inverted organic electronic and optoelectronic devices
NASA Astrophysics Data System (ADS)
Small, Cephas E.
The research and development of organic electronics for commercial application has received much attention due to the unique properties of organic semiconductors and the potential for low-cost high-throughput manufacturing. For improved large-scale processing compatibility and enhanced device stability, an inverted geometry has been employed for devices such as organic light emitting diodes and organic photovoltaic cells. These improvements are attributed to the added flexibility to incorporate more air-stable materials into the inverted device geometry. However, early work on organic electronic devices with an inverted geometry typically showed reduced device performance compared to devices with a conventional structure. In the case of organic light emitting diodes, inverted devices typically show high operating voltages due to insufficient carrier injection. Here, a method for enhancing hole injection in inverted organic electronic devices is presented. By incorporating an electron accepting interlayer into the inverted device, a substantial enhancement in hole injection efficiency was observed as compared to conventional devices. Through a detailed carrier injection study, it is determined that the injection efficiency enhancements in the inverted devices are due to enhanced charge transfer at the electron acceptor/organic semiconductor interface. A similar situation is observed for organic photovoltaic cells, in which devices with an inverted geometry show limited carrier extraction in early studies. In this work, enhanced carrier extraction is demonstrated for inverted polymer solar cells using a surface-modified ZnO-polymer composite electron-transporting layer. The insulating polymer in the composite layer inhibited aggregation of the ZnO nanoparticles, while the surface-modification of the composite interlayer improved the electronic coupling with the photoactive layer. As a result, inverted polymer solar cells with power conversion efficiencies of over 8% were obtained. To further study carrier extraction in inverted polymer solar cells, the active layer thickness dependence of the efficiency was investigated. For devices with active layer thickness < 200 nm, power conversion efficiencies over 8% was obtained. This result is important for demonstrating improved large-scale processing compatibility. Above 200 nm, significant reduction in cell efficiency were observed. A detailed study of the loss processes that contributed to the reduction in efficiency for thick-film devices are presented.
Effect of inserting a hole injection layer in organic light-emitting diodes: A numerical approach
NASA Astrophysics Data System (ADS)
Lee, Hyeongi; Hwang, Youngwook; Won, Taeyoung
2015-01-01
For investigating the effect of inserting a hole injection layer (HIL), we carried out a computational study concerning organic light-emitting diodes (OLEDs) that had a thin CuPc layer as the hole injection layer. We used S-TAD (2, 2', 7, 7'-tetrakis-(N, Ndiphenylamino)-9, 9-spirobifluoren) for the hole transfer layer, S-DPVBi (4, 4'-bis (2, 2'-diphenylvinyl)-1, 1'-spirobiphenyl) for the emission layer and Alq3 (Tris (8-hyroxyquinolinato) aluminium) for the electron transfer layer. This tri-layer device was compared with four-layer devices. To this tri-layer device, we added a thin CuPc layer, which had a 5.3 eV highest occupied molecular orbital (HOMO) level and a 3.8 eV lowest unoccupied molecular orbital (LUMO) level, as a hole injection layer, and we chose this device for Device A. Also, we varied the LUMO level or the HOMO level of the thin CuPc layer. These two devices were identified as Device C and Device D, respectively. In this paper, we simulated the carrier injection, transport and recombination in these four devices. Thereby, we showed the effect of the HIL, and we demonstrated that the characteristics of these devices were improved by adding a thin layer of CuPc between the anode and the HTL.
NASA Astrophysics Data System (ADS)
North, L.; Labonte, D.; Oyen, M. L.; Coleman, M. P.; Caliskan, H. B.; Johnston, R. E.
2017-11-01
"Cuttlebone," the internalized shell found in all members of the cephalopod family Sepiidae, is a sophisticated buoyancy device combining high porosity with considerable strength. Using a complementary suite of characterization tools, we identified significant structural, chemical, and mechanical variations across the different structural units of the cuttlebone: the dorsal shield consists of two stiff and hard layers with prismatic mineral organization which encapsulate a more ductile and compliant layer with a lamellar structure, enriched with organic matter. A similar organization is found in the chambers, which are separated by septa, and supported by meandering plates ("pillars"). Like the dorsal shield, septa contain two layers with lamellar and prismatic organization, respectively, which differ significantly in their mechanical properties: layers with prismatic organization are a factor of three stiffer and up to a factor of ten harder than those with lamellar organization. The combination of stiff and hard, and compliant and ductile components may serve to reduce the risk of catastrophic failure, and reflect the role of organic matter for the growth process of the cuttlebone. Mechanically "weaker" units may function as sacrificial structures, ensuring a stepwise failure of the individual chambers in cases of overloading, allowing the animals to retain near-neutral buoyancy even with partially damaged cuttlebones. Our findings have implications for our understanding of the structure-property-function relationship of cuttlebone, and may help to identify novel bioinspired design strategies for light-weight yet high-strength foams.
Organ printing: from bioprinter to organ biofabrication line.
Mironov, Vladimir; Kasyanov, Vladimir; Markwald, Roger R
2011-10-01
Organ printing, or the layer by layer additive robotic biofabrication of functional three-dimensional tissue and organ constructs using self-assembling tissue spheroid building blocks, is a rapidly emerging technology that promises to transform tissue engineering into a commercially successful biomedical industry. It is increasingly obvious that similar well-established industries implement automated robotic systems on the path to commercial translation and economic success. The use of robotic bioprinters alone however is not sufficient for the development of large industrial scale organ biofabrication. The design and development of a fully integrated organ biofabrication line is imperative for the commercial translation of organ printing technology. This paper presents recent progress and challenges in the development of the essential components of an organ biofabrication line. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wang, Chao; Lee, Wen-Ya; Kong, Desheng; Pfattner, Raphael; Schweicher, Guillaume; Nakajima, Reina; Lu, Chien; Mei, Jianguo; Lee, Tae Hoon; Wu, Hung-Chin; Lopez, Jeffery; Diao, Ying; Gu, Xiaodan; Himmelberger, Scott; Niu, Weijun; Matthews, James R; He, Mingqian; Salleo, Alberto; Nishi, Yoshio; Bao, Zhenan
2015-12-14
Both high gain and transconductance at low operating voltages are essential for practical applications of organic field-effect transistors (OFETs). Here, we describe the significance of the double-layer capacitance effect in polar rubbery dielectrics, even when present in a very low ion concentration and conductivity. We observed that this effect can greatly enhance the OFET transconductance when driven at low voltages. Specifically, when the polar elastomer poly(vinylidene fluoride-co-hexafluoropropylene) (e-PVDF-HFP) was used as the dielectric layer, despite a thickness of several micrometers, we obtained a transconductance per channel width 30 times higher than that measured for the same organic semiconductors fabricated on a semicrystalline PVDF-HFP with a similar thickness. After a series of detailed experimental investigations, we attribute the above observation to the double-layer capacitance effect, even though the ionic conductivity is as low as 10(-10) S/cm. Different from previously reported OFETs with double-layer capacitance effects, our devices showed unprecedented high bias-stress stability in air and even in water.
Wang, Chao; Lee, Wen-Ya; Kong, Desheng; Pfattner, Raphael; Schweicher, Guillaume; Nakajima, Reina; Lu, Chien; Mei, Jianguo; Lee, Tae Hoon; Wu, Hung-Chin; Lopez, Jeffery; Diao, Ying; Gu, Xiaodan; Himmelberger, Scott; Niu, Weijun; Matthews, James R.; He, Mingqian; Salleo, Alberto; Nishi, Yoshio; Bao, Zhenan
2015-01-01
Both high gain and transconductance at low operating voltages are essential for practical applications of organic field-effect transistors (OFETs). Here, we describe the significance of the double-layer capacitance effect in polar rubbery dielectrics, even when present in a very low ion concentration and conductivity. We observed that this effect can greatly enhance the OFET transconductance when driven at low voltages. Specifically, when the polar elastomer poly(vinylidene fluoride-co-hexafluoropropylene) (e-PVDF-HFP) was used as the dielectric layer, despite a thickness of several micrometers, we obtained a transconductance per channel width 30 times higher than that measured for the same organic semiconductors fabricated on a semicrystalline PVDF-HFP with a similar thickness. After a series of detailed experimental investigations, we attribute the above observation to the double-layer capacitance effect, even though the ionic conductivity is as low as 10–10 S/cm. Different from previously reported OFETs with double-layer capacitance effects, our devices showed unprecedented high bias-stress stability in air and even in water. PMID:26658331
Stacked Multilayer Self-Organizing Map for Background Modeling.
Zhao, Zhenjie; Zhang, Xuebo; Fang, Yongchun
2015-09-01
In this paper, a new background modeling method called stacked multilayer self-organizing map background model (SMSOM-BM) is proposed, which presents several merits such as strong representative ability for complex scenarios, easy to use, and so on. In order to enhance the representative ability of the background model and make the parameters learned automatically, the recently developed idea of representative learning (or deep learning) is elegantly employed to extend the existing single-layer self-organizing map background model to a multilayer one (namely, the proposed SMSOM-BM). As a consequence, the SMSOM-BM gains several merits including strong representative ability to learn background model of challenging scenarios, and automatic determination for most network parameters. More specifically, every pixel is modeled by a SMSOM, and spatial consistency is considered at each layer. By introducing a novel over-layer filtering process, we can train the background model layer by layer in an efficient manner. Furthermore, for real-time performance consideration, we have implemented the proposed method using NVIDIA CUDA platform. Comparative experimental results show superior performance of the proposed approach.
Formation of mixed organic layers by stepwise electrochemical reduction of diazonium compounds.
Santos, Luis; Ghilane, Jalal; Lacroix, Jean Christophe
2012-03-28
This work describes the formation of a mixed organic layer covalently attached to a carbon electrode. The strategy adopted is based on two successive electrochemical reductions of diazonium salts. First, bithiophene phenyl (BTB) diazonium salt is reduced using host/guest complexation in a water/cyclodextrin (β-CD) solution. The resulting layer consists of grafted BTB oligomers and cyclodextrin that can be removed from the surface. The electrochemical response of several outer-sphere redox probes on such BTB/CD electrodes is close to that of a diode, thanks to the easily p-dopable oligo(BTB) moieties. When CD is removed from the surface, pinholes are created and this diode like behavior is lost. Following this, nitrophenyl (NP) diazonium is reduced to graft a second component. Electrochemical study shows that upon grafting NP insulating moieties, the diode-like behavior of the layer is restored which demonstrates that NP is grafted predominately in the empty spaces generated by β-CD desorption. As a result, a mixed BTB/NP organic layer covalently attached to a carbon electrode is obtained using a stepwise electrochemical reduction of two diazonium compounds.
Stable blue phosphorescent organic light emitting devices
Forrest, Stephen R.; Thompson, Mark; Giebink, Noel
2014-08-26
Novel combination of materials and device architectures for organic light emitting devices is provided. An organic light emitting device, is provided, having an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer includes a host and a phosphorescent emissive dopant having a peak emissive wavelength less than 500 nm, and a radiative phosphorescent lifetime less than 1 microsecond. Preferably, the phosphorescent emissive dopant includes a ligand having a carbazole group.
Irwin, Michael D.; Buchholz, D. Bruce; Hains, Alexander W.; Chang, Robert P. H.; Marks, Tobin J.
2008-01-01
To minimize interfacial power losses, thin (5–80 nm) layers of NiO, a p-type oxide semiconductor, are inserted between the active organic layer, poly(3-hexylthiophene) (P3HT) + [6,6]-phenyl-C61 butyric acid methyl ester (PCBM), and the ITO (tin-doped indium oxide) anode of bulk-heterojunction ITO/P3HT:PCBM/LiF/Al solar cells. The interfacial NiO layer is deposited by pulsed laser deposition directly onto cleaned ITO, and the active layer is subsequently deposited by spin-coating. Insertion of the NiO layer affords cell power conversion efficiencies as high as 5.2% and enhances the fill factor to 69% and the open-circuit voltage (Voc) to 638 mV versus an ITO/P3HT:PCBM/LiF/Al control device. The value of such hole-transporting/electron-blocking interfacial layers is clearly demonstrated and should be applicable to other organic photovoltaics.
Laboratory observation of multiple double layer resembling space plasma double layer
NASA Astrophysics Data System (ADS)
Alex, Prince; Arumugam, Saravanan; Sinha, Suraj
2017-10-01
Perceptible double layer consisting of more than one layers were produced in laboratory using a double discharge plasma setup. The confinement of oppositely charged particles in each layer with sharply defined luminous boarder is attributed to the self-organization scenario. This structure is generated in front of a positively biased electrode when the electron drift velocity (νd) exceeds 1.3 times the electron thermal velocity (νte) . Stable multiple double layer structures were observed only between 1.3 νte <=νd <= 3 νte. At νd = 1.3 νte, oscillations were excited in the form of large amplitude burst followed by a high frequency stable oscillation. Beyond νd = 3 νte, multiple double layer begins to collapse which is characterized by an emergence in turbulence. Long range dependence in the corresponding electrostatic potential fluctuations indicates the role of self-organized criticality in the emergence of turbulence. The algebraic decaying tale of the autocorrelation function and power law behavior in the power spectrum are consistent with the observation.
NASA Astrophysics Data System (ADS)
Assis, Anu; Shahul Hameed T., A.; Predeep, P.
2017-06-01
Mobility and current handling capabilities of Organic Field Effect Transistor (OFET) are vitally important parameters in the electrical performance where the material parameters and thickness of different layers play significant role. In this paper, we report the simulation of an OFET using multi physics tool, where the active layer is pentacene and Poly Methyl Methacrylate (PMMA) forms the dielectric. Electrical characterizations of the OFET on varying the thickness of the dielectric layer from 600nm to 400nm are simulated and drain current, transconductance and mobility are analyzed. In the study it is found that even though capacitance increases with reduction in dielectric layer thickness, the transconductance effect is reflected many more times in the mobility which in turn could be attributed to the variations in transverse electric field. The layer thickness below 300nm may result in gate leakage current points to the requirement of optimizing the thickness of different layers for better performance.
Molle, Pascal
2014-01-01
French vertical flow constructed wetlands, treating directly raw wastewater, have become the main systems implemented for communities under 2,000 population equivalent in France. Like in sludge drying reed beds, an organic deposit layer is formed over time at the top surface of the filter. This deposit layer is a key factor in the performance of the system as it impacts hydraulic, gas transfers, filtration efficiency and water retention time. The paper discusses the role of this deposit layer on the hydraulic and biological behaviour of the system. It presents results from different studies to highlight the positive role of the layer but, as well, the difficulties in modelling this organic layer. As hydraulic, oxygen transfers, and biological activity are interlinked and impacted by the deposit layer, it seems essential to focus on its role (and its quantification) to find new developments of vertical flow constructed wetlands fed with raw wastewater.
Schaffer, Mario; Kröger, Kerrin Franziska; Nödler, Karsten; Ayora, Carlos; Carrera, Jesús; Hernández, Marta; Licha, Tobias
2015-05-01
Soil aquifer treatment is widely applied to improve the quality of treated wastewater in its reuse as alternative source of water. To gain a deeper understanding of the fate of thereby introduced organic micropollutants, the attenuation of 28 compounds was investigated in column experiments using two large scale column systems in duplicate. The influence of increasing proportions of solid organic matter (0.04% vs. 0.17%) and decreasing redox potentials (denitrification vs. iron reduction) was studied by introducing a layer of compost. Secondary effluent from a wastewater treatment plant was used as water matrix for simulating soil aquifer treatment. For neutral and anionic compounds, sorption generally increases with the compound hydrophobicity and the solid organic matter in the column system. Organic cations showed the highest attenuation. Among them, breakthroughs were only registered for the cationic beta-blockers atenolol and metoprolol. An enhanced degradation in the columns with organic infiltration layer was observed for the majority of the compounds, suggesting an improved degradation for higher levels of biodegradable dissolved organic carbon. Solely the degradation of sulfamethoxazole could clearly be attributed to redox effects (when reaching iron reducing conditions). The study provides valuable insights into the attenuation potential for a wide spectrum of organic micropollutants under realistic soil aquifer treatment conditions. Furthermore, the introduction of the compost layer generally showed positive effects on the removal of compounds preferentially degraded under reducing conditions and also increases the residence times in the soil aquifer treatment system via sorption. Copyright © 2015 Elsevier Ltd. All rights reserved.
New approach for pattern collapse problem by increasing contact area at sub-100nm patterning
NASA Astrophysics Data System (ADS)
Lee, Sung-Koo; Jung, Jae Chang; Lee, Min Suk; Lee, Sung K.; Kim, Sam Young; Hwang, Young-Sun; Bok, Cheol K.; Moon, Seung-Chan; Shin, Ki S.; Kim, Sang-Jung
2003-06-01
To accomplish minimizing feature size to sub 100nm, new light sources for photolithography are emerging, such as ArF(193nm), F2(157nm), and EUV(13nm). However as the pattern size decreases to sub 100nm, a new obstacle, that is pattern collapse problem, becomes most serious bottleneck to the road for the sub 100 nm lithography. The main reason for this pattern collapse problem is capillary force that is increased as the pattern size decreases. As a result there were some trials to decrease this capillary force by changing developer or rinse materials that had low surface tension. On the other hands, there were other efforts to increase adhesion between resists and sub materials (organic BARC). In this study, we will propose a novel approach to solve pattern collapse problems by increasing contact area between sub material (organic BARC) and resist pattern. The basic concept of this approach is that if nano-scale topology is made at the sub material, the contact area between sub materials and resist will be increased. The process scheme was like this. First after coating and baking of organic BARC material, the nano-scale topology (3~10nm) was made by etching at this organic BARC material. On this nano-scale topology, resist was coated and exposed. Finally after develop, the contact area between organic BARC and resist could be increased. Though nano-scale topology was made by etching technology, this 20nm topology variation induced large substrate reflectivity of 4.2% and as a result the pattern fidelity was not so good at 100nm 1:1 island pattern. So we needed a new method to improve pattern fidelity problem. This pattern fidelity problem could be solved by introducing a sacrificial BARC layer. The process scheme was like this. First organic BARC was coated of which k value was about 0.64 and then sacrificial BARC layers was coated of which k value was about 0.18 on the organic BARC. The nano-scale topology (1~4nm) was made by etching of this sacrificial BARC layer and then as the same method mentioned above, the contact area between sacrificial layer and resist could be increased. With this introduction of sacrificial layer, the substrate reflectivity of sacrificial BARC layer was decreased enormously to 0.2% though there is 20nm topology variation of sacrificial BARC layer. With this sacrificial BARC layer, we could get 100nm 1:1 L/S pattern. With conventional process, the minimum CD where no collapse occurred, was 96.5nm. By applying this sacrificial BARC layer, the minimum CD where no collapse occurred, was 65.7nm. In conclusion, with nano-scale topology and sacrificial BARC layer, we could get very small pattern that was strong to pattern collapse issue.
NASA Astrophysics Data System (ADS)
Shamrikova, E. V.; Kubik, O. S.; Punegov, V. V.; Gruzdev, I. V.
2014-03-01
Water extracts from the organic horizons of southern-tundra loamy permafrost-affected soils (a surface-gleyed tundra soil, a surface-gleyed soddy tundra soil (Haplic Stagnosols (Gelic)), and a peaty tundra soil (Histic Cryosol (Reductaquic)) and their undecomposed moss layers have been analyzed. The total weight concentration of the cations (Ca2+, Mg2+, K+, and Na+) determined by the atomic absorption method reaches 20 mg/dm3 in the organic horizons and 40-90 mg/dm3 in the undecomposed moss layers. Potassium and calcium ions dominate in all the organic horizons (80-90% of the total weight); potassium ions prevail in the mosses (about 70%). The weight concentration of carbon in the water-soluble organic compounds is 0.04-0.07 g/dm3 in the organic horizons and 0.20-0.40 g/dm3 in the undecomposed moss layers. The content of low-molecular-weight organic compounds (alcohols, carbohydrates, and acids) identified by gas chromatography and chromatomass spectrometry is 1-30 mg/dm3 in the organic horizons of the soils and 80-180 mg/dm3 in the mosses, which does not exceed 26% of the total organic carbon in the extracts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khachatryan, B.; Devir-Wolfman, A. H.; Ehrenfreund, E., E-mail: eitane@technion.ac.il
Vertical organic field effect transistors having a patterned source electrode and an a-SiO{sub 2} insulation layer show high performance as a switching element with high transfer characteristics. By measuring the low field magneto-conductance under ambient conditions at room temperature, we show here that the proximity of the inorganic a-SiO{sub 2} insulation to the organic conducting channel affects considerably the magnetic response. We propose that in n-type devices, electrons in the organic conducting channel and spin bearing charged defects in the inorganic a-SiO{sub 2} insulation layer (e.g., O{sub 2} = Si{sup +·}) form oppositely charged spin pairs whose singlet-triplet spin configurations are mixedmore » through the relatively strong hyperfine field of {sup 29}Si. By increasing the contact area between the insulation layer and the conducting channel, the ∼2% magneto-conductance response may be considerably enhanced.« less
P-doped organic semiconductor: Potential replacement for PEDOT:PSS in organic photodetectors
NASA Astrophysics Data System (ADS)
Herrbach, J.; Revaux, A.; Vuillaume, D.; Kahn, A.
2016-08-01
In this work, we present an alternative to the use of PEDOT:PSS as hole transport and electron blocking layers in organic photodetectors processed by solution. As Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) is known to be sensitive to humidity, oxygen, and UV, removing this layer is essential for lifetime improvements. As a first step to achieving this goal, we need to find an alternative layer that fulfills the same role in order to obtain a working diode with similar or better performance. As a replacement, a layer of poly[(4,8-bis-(2-ethylhexyloxy)-benzo(1,2-b:4,5-b')dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene-)-2-6-diyl)] (PBDTTT-c) p-doped with the dopant tris-[1-(trifluoroethanoyl)-2-(trifluoromethyl)ethane-1,2-dithiolene] (Mo(tfd-COCF3)3) is used. This p-doped layer effectively lowers the hole injection barrier, and the low electron affinity of the polymer prevents the injection of electrons into the active layer. We show similar device performance under light and the improvements of detection performance with the doped layer in comparison with PEDOT:PSS, leading to a detectivity of 1.9 × 1013 cm (Hz)1/2 (W)-1, competitive with silicon diodes used in imaging applications. Moreover, contrary to PEDOT:PSS, no localization of the p-doped layer is needed, leading to a diode active area defined by the patterned electrodes.
Sajjan, Dayanand B; Hinchigeri, Shivayogeppa B
2016-03-01
Baculoviruses are the ingenious insect pathogens. Outside the host, baculovirus occlusion bodies (OB) provide stability to occlusion-derived viruses (ODV) embedded within. The OB is an organized structure, chiefly composed of proteins namely polyhedrin, polyhedron envelope protein (PEP) and P10. Currently, the structural organization of OB is poorly understood and the role of OB proteins in conferring the stability to ODV is unknown. Here we have shown that the assembly of polyhedrin unit cells into an OB is a rapid process; the PEP forms in multiple layers; the PEP layers predominantly contribute to ODV viability. Full-grown OBs (n = 36) were found to be 4.0 ± 1.0 µm in diameter and possessed a peculiar geometry of a truncated rhombic dodecahedron. The atomic force microscopy (AFM) study on the structure of OBs at different stages of growth in insect cells revealed polyhedrin assembly and thickness of PEP layers. The thickness of PEP layers at 53 h post-transfection (hpt) ranged from 56 to 80 nm. Mature PEP layers filled up approximately one third of the OB volume. The size of ODV nucleocapsid was found to be 433 ± 10 nm in length. The zeta potential and particle size distribution study of viruses revealed the protective role of PEP layers. The presence of a multilayered PEP confers a viable advantage to the baculoviruses compared to single-layered PEP. Thus, these findings may help in developing PEP layer-based biopolymers for protein-based nanodevices, nanoelectrodes and more stable biopesticides.
Das, Sanjib; Browning, Jim; Gu, Gong; ...
2015-07-16
Advances in materials design and device engineering led to inverted organic solar cells (i-OSCs) with superior power conversion efficiencies (PCEs) to their conventional counterparts, in addition to the well-known better ambient stability. Despite the significant progress, however, it has so far been unclear how the morphologies of the photoactive layer and its interface with the cathode modifying layer impact device performance. Here, we report an in-depth morphology study of the i-OSC active and cathode modifying layers, employing a model system with the well-established bulk-heterojunction, PTB7:PC 71BM as the active layer and poly-[(9,9-bis(3 -( N,N-dimethylamino)propyl)-2,7-fluorene)- alt-2,7-(9,9-dioctylfluorene)] (PFN) as the cathode surfacemore » modifying layer. We have also identified the role of a processing additive, 1,8-diiodooctane (DIO), used in the spin-casting of the active layer to increase PCE. Using a variety of characterization techniques, we demonstrate that the high PCEs of i-OSCs are due to the smearing (diffusion) of electron-accepting PC 71BM into the PFN layer, resulting in improved electron transport. The PC 71BM diffusion occurs after spin-casting the active layer onto the PFN layer, when residual solvent molecules act as a plasticizer. Furthermore, the DIO additive, with a higher boiling point than the host solvent, has a longer residence time in the spin-cast active layer, resulting in more PC 71BM smearing and therefore more efficient electron transport. This work provides important insight and guidance to further enhancement of i-OSC performance by materials and interface engineering.« less
[The photoluminescence characteristics of organic multilayer quantum wells].
Zhao, De-Wei; Song, Shu-Fang; Zhao, Su-Ling; Xu, Zheng; Wang, Yong-Sheng; Xu, Xu-Rong
2007-04-01
By the use of multi-source high-vaccum organic beam deposition system, the authors prepared organic multilayer quantum well structures, which consist of alternate organic small molecule materials PBD and Alq3. Based on 4-period organic quantum wells, different samples with different thickness barriers and wells were prepared. The authors measured the lowest unoccupied molecular orbit (LUMO) and the highest occupied molecular orbit (HOMO) by electrochemistry cyclic voltammetry and optical absorption. From the energy diagrams, it seems like type-I quantum well structures of the inorganic semiconductor, in which PBD is used as a barrier layer and Alq3 as a well layer and emitter. From small angle X-ray diffraction measurements, the results indicate that these structures have high interface quality and uniformity. The photoluminescence characteristics of organic multilayer quantum wells were investigated. The PL peak has a blue-shift with the decrease of the well layer thickness. Meanwhile as the barrier thickness decreases the PL peaks of PBD disappear gradually. And the energy may be effectively transferred from PBD to Alq3, inducing an enhancement of the luminescence of Alq3.
NASA Astrophysics Data System (ADS)
Pudasaini, P. R.; Ayon, A. A.
2013-12-01
Organic/inorganic hybrid structures are considered innovative alternatives for the next generation of low-cost photovoltaic devices because they combine advantages of the purely organic and inorganic versions. Here, we report an efficient hybrid solar cell based on sub-wavelength silicon nanotexturization in combination with the spin-coating of poly (3,4-ethylene-dioxythiophene):polystyrenesulfonate (PEDOT:PSS). The described devices were analyzed by collecting current-voltage and capacitance-voltage measurements in order to explore the organic/inorganic heterojunction properties. ALD deposited ultrathin aluminium oxide was used as a junction passivation layer between the nanotextured silicon surface and the organic polymer. The measured interface defect density of the device was observed to decrease with the inclusion of an ultrathin Al2O3 passivation layer leading to an improved electrical performance. This effect is thought to be ascribed to the suppression of charge recombination at the organic/inorganic interface. A maximum power conversion efficiency in excess of 10% has been achieved for the optimized geometry of the device, in spite of lacking an antireflection layer or back surface field enhancement schemes.
Chatzistathis, T; Papaioannou, A; Gasparatos, D; Molassiotis, A
2017-12-01
Organic farming has been proposed as an alternative agricultural system to help solve environmental problems, like the sustainable management of soil micronutrients, without inputs of chemical fertilizers. The purposes of this study were: i) to assess Fe, Mn, Zn and Cu bioavailability through the determination of sequentially extracted chemical forms (fractions) and their correlation with foliar micronutrient concentrations in mature organic olive (cv. 'Chondrolia Chalkidikis') groves; ii) to determine the soil depth and the available forms (fractions) by which the 4 metals are taken up by olive trees. DTPA extractable (from the soil layers 0-20, 20-40 and 40-60 cm) and foliar micronutrient concentrations were determined in two organic olive groves. Using the Tessier fractionation, five fractions, for all the metals, were found: exchangeable, bound to carbonates (acid-soluble), bound to Fe-Mn oxides (reducible), organic (oxidizable), as well as residual form. Our results indicated that Fe was taken up by the olive trees as organic complex, mainly from the soil layer 40-60 cm. Manganese was taken up from the exchangeable fraction (0-20 cm); Zinc was taken up as organic complex from the layers 0-20 and 40-60 cm, as well as in the exchangeable form from the upper 20 cm. Copper was taken up from the soil layers 0-20 and 40-60 cm as soluble organic complex, and as exchangeable ion from the upper 20 cm. Our data reveal the crucial role of organic matter to sustain metal (Fe, Zn and Cu) uptake -as soluble complexes-by olive trees, in mature organic groves grown on calcareous soils; it is also expected that these data will constitute a thorough insight and useful tool towards a successful nutrient and organic C management for organic olive groves, since no serious nutritional deficiencies were found. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yang, Ning; Zou, Dongsheng; Yang, Manyuan; Lin, Zhonggui
2016-01-01
Crust restoration is increasingly being done but we lack quantitative information on soil improvements. The study aimed to elucidate the dynamics involving soil microbial biomass carbon and soil dissolved organic carbon in the re-vegetation chronosequences of a hillslope land with purple soil in Hengyang, Hunan Province. The soil can cause serious disasters with both soil erosion and seasonal drought, and also becomes a typical representative of ecological disaster area in South China. Using the space-for-time method, we selected six typical sampling plots, designated as follows: grassplot community, meadow thicket community, frutex community, frutex and arbor community, arbor community, and top-level vegetation community. These plots were established to analyze the changes in soil microbial biomass carbon, soil microbial quotien, dissolved organic carbon, dissolved organic carbon/soil organic carbon, and soil basal respiration in 0-10, 10-20, and 20-40 cm soil layers. The relationships of these parameters with soils physic-chemical properties were also determined. The ecological environment of the 6 plant communities is similar and typical; they denoted six different successive stages of restoration on hillslopes with purple soils in Hengyang, Hunan Province. The soil microbial biomass carbon and soil basal respiration contents decreased with increasing soil depth but increased with re-vegetation. By contrast, soil microbial quotient increased with increasing soil depth and re-vegetation. From 0-10 cm soil layer to 20-40 cm soil layer, the dissolved organic carbon content decreased in different re-vegetation stages. In the process of re-vegetation, the dissolved organic carbon content increased in the 0-10 and 10-20 cm soil layers, whereas the dissolved organic carbon content decreased after an initial increase in the 20-40 cm soil layers. Meanwhile, dissolved organic carbon/soil organic carbon increased with increasing soil depth but decreased with re-vegetation. Significant correlations existed among soil microbial biomass carbon, soil microbial quotient, dissolved organic carbon, soil basal respiration and soil physic-chemical properties associated with soil fertility. The results showed that re-vegetation was conducive to the soil quality improvement and the accumulation of soil organic carbon pool of the hillslope land with purple soil in Hengyang, Hunan Province.
Yang, Ning; Zou, Dongsheng; Yang, Manyuan; Lin, Zhonggui
2016-01-01
Crust restoration is increasingly being done but we lack quantitative information on soil improvements. The study aimed to elucidate the dynamics involving soil microbial biomass carbon and soil dissolved organic carbon in the re-vegetation chronosequences of a hillslope land with purple soil in Hengyang, Hunan Province. The soil can cause serious disasters with both soil erosion and seasonal drought, and also becomes a typical representative of ecological disaster area in South China. Using the space-for-time method, we selected six typical sampling plots, designated as follows: grassplot community, meadow thicket community, frutex community, frutex and arbor community, arbor community, and top-level vegetation community. These plots were established to analyze the changes in soil microbial biomass carbon, soil microbial quotien, dissolved organic carbon, dissolved organic carbon/soil organic carbon, and soil basal respiration in 0–10, 10–20, and 20–40 cm soil layers. The relationships of these parameters with soils physic-chemical properties were also determined. The ecological environment of the 6 plant communities is similar and typical; they denoted six different successive stages of restoration on hillslopes with purple soils in Hengyang, Hunan Province. The soil microbial biomass carbon and soil basal respiration contents decreased with increasing soil depth but increased with re-vegetation. By contrast, soil microbial quotient increased with increasing soil depth and re-vegetation. From 0–10 cm soil layer to 20–40 cm soil layer, the dissolved organic carbon content decreased in different re-vegetation stages. In the process of re-vegetation, the dissolved organic carbon content increased in the 0–10 and 10–20 cm soil layers, whereas the dissolved organic carbon content decreased after an initial increase in the 20–40 cm soil layers. Meanwhile, dissolved organic carbon/soil organic carbon increased with increasing soil depth but decreased with re-vegetation. Significant correlations existed among soil microbial biomass carbon, soil microbial quotient, dissolved organic carbon, soil basal respiration and soil physic-chemical properties associated with soil fertility. The results showed that re-vegetation was conducive to the soil quality improvement and the accumulation of soil organic carbon pool of the hillslope land with purple soil in Hengyang, Hunan Province. PMID:27977678
Layer-by-Layer Templated Assembly of Silica at the Nanoscale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinestrosa, Juan Pablo; Sutton, Jonathan E.; Allison, David P.
2013-01-29
Bioinspired bottom-up assembly and layer-by-layer (LbL) construction of inorganic materials from lithographically defined organic templates enables the fabrication of nanostructured systems under mild temperature and pH conditions. Such processes open the door to low-impact manufacturing and facile recycling of hybrid materials for energy, biology, and information technologies. Here, templated LbL assembly of silica was achieved using a combination of electron beam lithography, chemical lift-off, and aqueous solution chemistry. Nanopatterns of lines, honeycomb-lattices, and dot arrays were defined in polymer resist using electron beam lithography. Following development, exposed areas of silicon were functionalized with a vapor deposited amine-silane monolayer. Silicic acidmore » solutions of varying pH and salt content were reacted with the patterned organic amine-functional templates. Vapor treatment and solution reaction could be repeated, allowing LbL deposition. Conditions for the silicic acid deposition had a strong effect on thickness of each layer, and the morphology of the amorphous silica formed. Defects in the arrays of silica nanostructures were minor and do not affect the overall organization of the layers. In conclusion, the bioinspired method described here facilitates the bottom-up assembly of inorganic nanostructures defined in three dimensions and provides a path, via LbL processing, for the construction of layered hybrid materials under mild conditions.« less
NASA Astrophysics Data System (ADS)
Peltzer, Edward T.; Hayward, Nancy A.
Total organic carbon (TOC) was analyzed on four transects along 140°W in 1992 using a high temperature combustion/discrete injection (HTC/DI) analyzer. For two of the transects, the analyses were conducted on-board ship. Mixed-layer concentrations of organic carbon varied from about 80 μM C at either end of the transect (12°N and 12°S) to about 60 μM C at the equator. Total organic carbon concentrations decreased rapidly below the mixed-layer to about 38-40 μM C at 1000 m across the transect. Little variation was observed below this depth; deep water concentrations below 2000m were virtually monotonic at about 36 μM C. Repeat measurements made on subsequent cruises consistently found the same concentrations at 1000 m or deeper, but substantial variations were observed in the mixed-layer and the upper water column above 400 m depth. Linear mixing models of total organic carbon versus σθ exhibited zones of organic carbon formation and consumption. TOC was found to be inversely correlated with apparent oxygen utilization (AOU) in the region between the mixed-layer and the oxygen minimum. In the mixed-layer, TOC concentrations varied seasonally. Part of the variations in TOC at the equator was driven by changes in the upwelling rate in response to variations in physical forcing related to an El Niño and to the passage of tropical instability waves. TOC export fluxes, calculated from simple box models, averaged 8±4 mmol C m -2day -1 at the equator and also varied seasonally. These export fluxes account for 50-75% of the total carbon deficit and are consistent with other estimates and model predictions.
NASA Astrophysics Data System (ADS)
Fan, Ching-Lin; Lin, Wei-Chun; Chen, Hao-Wei
2018-06-01
This work demonstrates pentacene-based organic thin-film transistors (OTFTs) fabricated by inserting a 6,13-pentacenequinone (PQ) carrier injection layer between the source/drain (S/D) metal Au electrodes and pentacene channel layer. Compared to devices without a PQ layer, the performance characteristics including field-effect mobility, threshold voltage, and On/Off current ratio were significantly improved for the device with a 5-nm-thick PQ interlayer. These improvements are attributed to significant reduction of hole barrier height at the Au/pentacene channel interfaces. Therefore, it is believed that using PQ as the carrier injection layer is a good candidate to improve the pentacene-based OTFTs electrical performance.
NASA Astrophysics Data System (ADS)
Takada, Shunji; Ihama, Mikio; Inuiya, Masafumi
2006-02-01
Digital still cameras overtook film cameras in Japanese market in 2000 in terms of sales volume owing to their versatile functions. However, the image-capturing capabilities such as sensitivity and latitude of color films are still superior to those of digital image sensors. In this paper, we attribute the cause for the high performance of color films to their multi-layered structure, and propose the solid-state image sensors with stacked organic photoconductive layers having narrow absorption bands on CMOS read-out circuits.
Highly efficient organic light-emitting diodes with a quantum dot interfacial layer.
Ryu, Seung Yoon; Hwang, Byoung Har; Park, Ki Wan; Hwang, Hyeon Seok; Sung, Jin Woo; Baik, Hong Koo; Lee, Chang Ho; Song, Seung Yong; Lee, Jun Yeob
2009-02-11
Advanced organic light-emitting diodes (OLEDs), based on a multiple structure, were achieved in combination with a quantum dot (QD) interfacial layer. The authors used core/shell CdSe/ZnS QDs passivated with trioctylphosphine oxide (TOPO) and TOPO-free QDs as interlayers. Multiple-structure OLEDs (MOLEDs) with TOPO-free QDs showed higher device efficiency because of a well-defined interfacial monolayer formation. Additionally, the three-unit MOLED showed high performance for device efficiency with double-structured QD interfacial layers due to the enhanced charge balance and recombination probability.
Fukuda, Kenjiro; Takeda, Yasunori; Mizukami, Makoto; Kumaki, Daisuke; Tokito, Shizuo
2014-01-01
Printing fully solution-processed organic electronic devices may potentially revolutionize production of flexible electronics for various applications. However, difficulties in forming thin, flat, uniform films through printing techniques have been responsible for poor device performance and low yields. Here, we report on fully solution-processed organic thin-film transistor (TFT) arrays with greatly improved performance and yields, achieved by layering solution-processable materials such as silver nanoparticle inks, organic semiconductors, and insulating polymers on thin plastic films. A treatment layer improves carrier injection between the source/drain electrodes and the semiconducting layer and dramatically reduces contact resistance. Furthermore, an organic semiconductor with large-crystal grains results in TFT devices with shorter channel lengths and higher field-effect mobilities. We obtained mobilities of over 1.2 cm2 V−1 s−1 in TFT devices with channel lengths shorter than 20 μm. By combining these fabrication techniques, we built highly uniform organic TFT arrays with average mobility levels as high as 0.80 cm2 V−1 s−1 and ideal threshold voltages of 0 V. These results represent major progress in the fabrication of fully solution-processed organic TFT device arrays. PMID:24492785
Nano-photonic light trapping near the Lambertian limit in organic solar cell architectures.
Biswas, Rana; Timmons, Erik
2013-09-09
A critical step to achieving higher efficiency solar cells is the broad band harvesting of solar photons. Although considerable progress has recently been achieved in improving the power conversion efficiency of organic solar cells, these cells still do not absorb upto ~50% of the solar spectrum. We have designed and developed an organic solar cell architecture that can boost the absorption of photons by 40% and the photo-current by 50% for organic P3HT-PCBM absorber layers of typical device thicknesses. Our solar cell architecture is based on all layers of the solar cell being patterned in a conformal two-dimensionally periodic photonic crystal architecture. This results in very strong diffraction of photons- that increases the photon path length in the absorber layer, and plasmonic light concentration near the patterned organic-metal cathode interface. The absorption approaches the Lambertian limit. The simulations utilize a rigorous scattering matrix approach and provide bounds of the fundamental limits of nano-photonic light absorption in periodically textured organic solar cells. This solar cell architecture has the potential to increase the power conversion efficiency to 10% for single band gap organic solar cells utilizing long-wavelength absorbers.
Li, Dongwei; Hu, Yongsheng; Zhang, Nan; Lv, Ying; Lin, Jie; Guo, Xiaoyang; Fan, Yi; Luo, Jinsong; Liu, Xingyuan
2017-10-18
The near-infrared (NIR) to visible upconversion devices have attracted great attention because of their potential applications in the fields of night vision, medical imaging, and military security. Herein, a novel all-organic upconversion device architecture has been first proposed and developed by incorporating a NIR absorption layer between the carrier transport layer and the emission layer in heterostructured organic light-emitting field effect transistors (OLEFETs). The as-prepared devices show a typical photon-to-photon upconversion efficiency as high as 7% (maximum of 28.7% under low incident NIR power intensity) and millisecond-scale response time, which are the highest upconversion efficiency and one of the fastest response time among organic upconversion devices as referred to the previous reports up to now. The high upconversion performance mainly originates from the gain mechanism of field-effect transistor structures and the unique advantage of OLEFETs to balance between the photodetection and light emission. Meanwhile, the strategy of OLEFETs also offers the advantage of high integration so that no extra OLED is needed in the organic upconversion devices. The results would pave way for low-cost, flexible and portable organic upconversion devices with high efficiency and simplified processing.
Diffusion of Chlorinated Organic Contaminants into Aquitards: Enhanced by the Flocculation of Clay?
NASA Astrophysics Data System (ADS)
Ayral, D.; Otero, M.; Demond, A. H.; Goltz, M. N.; Huang, J.
2011-12-01
Waste organic contaminants stored in low permeability subsurface layers serve as long-term sources for dissolved phase contaminant plumes. Current models consider the movement into and out of aquitards or other low permeability layers to occur through transverse diffusion. Yet, field evidence suggests higher transport rates of contaminants than can be accounted for by diffusion alone. Waste organic liquids contain both organic liquid solvents as well as surface-active solutes. Measurements using montmorillonite in contact with pure chlorinated organic liquids such as trichloroethylene (TCE) showed that the basal spacing is similar to the case of montmorillonite in contact with air, thus suggesting that these fluids have similar flocculation effects. On the other hand, the basal spacing increased in contact with aqueous surfactant solutions. Measurements of the basal spacing in contact with a TCE waste gave the same results as with pure TCE, suggesting that effect on basal spacing is dominated by the organic solvent matrix rather than by the surfactant content. Since flocculation can lead to cracking, this behavior suggests that aquitards underlying aquifers contaminated with chlorinated organic wastes may develop cracks, thus enhancing the transport into low permeability layers.
Lim, Kyung-Geun; Choi, Mi-Ri; Kim, Ji-Hoon; Kim, Dong Hun; Jung, Gwan Ho; Park, Yongsup; Lee, Jong-Lam; Lee, Tae-Woo
2014-04-01
Although rapid progress has been made recently in bulk heterojunction organic solar cells, systematic studies on an ultrathin interfacial layer at the electron extraction contact have not been conducted in detail, which is important to improve both the device efficiency and the lifetime. We find that an ultrathin BaF2 layer at the electron extraction contact strongly influences the open-circuit voltage (Voc ) as the nanomorphology evolves with increasing BaF2 thickness. A vacuum-deposited ultrathin BaF2 layer grows by island growth, so BaF2 layers with a nominal thickness less than that of single-coverage layer (≈3 nm) partially cover the polymeric photoactive layer. As the nominal thickness of the BaF2 layer increased to that of a single-coverage layer, the Voc and power conversion efficiency (PCE) of the organic photovoltaic cells (OPVs) increased but the short-circuit current remained almost constant. The fill factor and the PCE decreased abruptly as the thickness of the BaF2 layer exceeded that of a single-coverage layer, which was ascribed to the insulating nature of BaF2 . We find the major cause of the increased Voc observed in these devices is the lowered work function of the cathode caused by the reaction and release of Ba from thin BaF2 films upon deposition of Al. The OPV device with the BaF2 layer showed a slightly improved maximum PCE (4.0 %) and a greatly (approximately nine times) increased device half-life under continuous simulated solar irradiation at 100 mW cm(-2) as compared with the OPV without an interfacial layer (PCE=2.1 %). We found that the photodegradation of the photoactive layer was not a major cause of the OPV degradation. The hugely improved lifetime with cathode interface modification suggests a significant role of the cathode interfacial layer that can help to prolong device lifetimes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Inorganic, Radioisotopic, and Organic Analysis of 241-AP-101 Tank Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiskum, S.K.; Bredt, P.R.; Campbell, J.A.
2000-10-17
Battelle received five samples from Hanford waste tank 241-AP-101, taken at five different depths within the tank. No visible solids or organic layer were observed in the individual samples. Individual sample densities were measured, then the five samples were mixed together to provide a single composite. The composite was homogenized and representative sub-samples taken for inorganic, radioisotopic, and organic analysis. All analyses were performed on triplicate sub-samples of the composite material. The sample composite did not contain visible solids or an organic layer. A subsample held at 10 C for seven days formed no visible solids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jr., Jie Jerry; Sista, Srinivas Prasad; Shi, Xiaolei
Optoelectronic devices with enhanced internal outcoupling include a substrate, an anode, a cathode, an electroluminescent layer, and an electron transporting layer comprising inorganic nanoparticles dispersed in an organic matrix.
IZO deposited by PLD on flexible substrate for organic heterostructures
NASA Astrophysics Data System (ADS)
Socol, M.; Preda, N.; Stanculescu, A.; Breazu, C.; Florica, C.; Rasoga, O.; Stanculescu, F.; Socol, G.
2017-05-01
In:ZnO (IZO) thin films were deposited on flexible plastic substrates by pulsed laser deposition (PLD) method. The obtained layers present adequate optical and electrical properties competitive with those based on indium tin oxide (ITO). The figure of merit (9 × 10-3 Ω-1) calculated for IZO layers demonstrates that high quality coatings can be prepared by this deposition technique. A thermal annealing (150 °C for 1 h) or an oxygen plasma etching (6 mbar for 10 min.) were applied to the IZO layers to evaluate the influence of these treatments on the properties of the transparent coatings. Using vacuum evaporation, organic heterostructures based on cooper phthalocyanine (CuPc) and 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) were deposited on the untreated and treated IZO layers. The optical and electrical properties of the heterostructures were investigated by UV-Vis, FTIR and current-voltage ( I- V) measurements. For the heterostructure fabricated on IZO treated in oxygen plasma, an improvement in the current value with at least one order of magnitude was evidenced in the I- V characteristics recorded in dark conditions. Also, an increase in the current value for the heterostructure deposited on untreated IZO layer can be achieved by adding an organic layer such as tris-8-hydroxyquinoline aluminium (Alq3).
Impact of Interfacial Layers in Perovskite Solar Cells.
Cho, An-Na; Park, Nam-Gyu
2017-10-09
Perovskite solar cells (PCSs) are composed of organic-inorganic lead halide perovskite as the light harvester. Since the first report on a long-term-durable, 9.7 % efficient, solid-state perovskite solar cell, organic-inorganic halide perovskites have received considerable attention because of their excellent optoelectronic properties. As a result, a power conversion efficiency (PCE) exceeding 22 % was certified. Controlling the grain size, grain boundary, morphology, and defects of the perovskite layer is important for achieving high efficiency. In addition, interfacial engineering is equally or more important to further improve the PCE through better charge collection and a reduction in charge recombination. In this Review, the type of interfacial layers and their impact on photovoltaic performance are investigated for both the normal and the inverted cell architectures. Four different interfaces of fluorine-doped tin oxide (FTO)/electron-transport layer (ETL), ETL/perovskite, perovskite/hole-transport layer (HTL), and HTL/metal are classified, and their roles are investigated. The effects of interfacial engineering with organic or inorganic materials on photovoltaic performance are described in detail. Grain-boundary engineering is also included because it is related to interfacial engineering and the grain boundary in the perovskite layer plays an important role in charge conduction, recombination, and chargecarrier life time. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Maple prepared organic heterostructures for photovoltaic applications
NASA Astrophysics Data System (ADS)
Stanculescu, A.; Socol, M.; Socol, G.; Mihailescu, I. N.; Girtan, M.; Stanculescu, F.
2011-09-01
In this study, we present the deposition of ZnPc, Alq3, and PTCDA thin films using Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. We also report the realisation of multilayer structures, made by the successive application of MAPLE. The films have been characterized by spectroscopic (UV-VIS and Photoluminescence) and microscopic (SEM and AFM) methods, and the effect of different deposition conditions such as fluence, number of pulses, and target concentration on the properties has been analysed. This paper also presents some investigations on the electrical conduction in sandwich type structures ITO or Si/organic layer/Au or Cu and ITO/double organic layer/Cu, emphasising the dominant effect of the height of the energetic barriers at the inorganic/organic and organic/organic interfaces.
Huang, Chun-mei; Cui, Xiu-ming; Lan, Lei; Chen, Wei-dong; Wang, Cheng-xiao; Yang, Xiao-yan; Lu, Da-hui; Yang, Ye
2015-08-01
The output and agronomic characters of 3-year-old Panax notoginseng cultured under stereo structure (upper, middle and down layers) were investigated, and the annual change of N, P and K of its planting soil were also studied. Results showed that, compared with field cultured Panax notoginseng, growth vigour and output of stereo-cultivation were significantly lower. But the total production of the 3 layers was 1.6 times of field. The growth vigor and production of P. notoginseng was in the order of upper layer > middle layer > down layer. The content of ginsenoside in rhizome, root tuber and hair root of P. notoginseng was in the order of upper layer > field > middle layer > down layer. Organic matter content and pH of stereo-cultivation soil decreased with the prolonging of planting time, which with the same trend of yield. Organic matter content of stereo-cultivation soil was significantly higher than field, but the pH was significantly lower. Contents of total and available N, P and K in stereo-cultivation soil and field decreased with the prolonging of planting time. The content of N and P were in the order of upper layer > middle layer > yield > down layer, the content of K was in the order of upper layer > middle layer > down layer > yield. Compared with field, the proportion of N and P in the organ of underground (rhizome, root tuber and hair root) of upper layer were increased, while decreased in middle and down layers. Proportion of K in underground decreased significantly of the 3 layers. In conclusion, the agronomic characters and production of stereo-cultivation were significantly lower than that of yield. But the total production of the 3 layers were significantly higher than field of unit area. And the aim of improving land utilization efficiency was achieved. Nutritions in the soil of stereo-cultivation were enough to support the development of P. notoginseng, which was not the cause of weak growth and low production. The absorbing ability of P. notoginseng to N, P and K nutrients was decreased by stereo-cultivation mode. So, improve the growth vigour of P. notoginseng from the perspective of adjusting the stereo-cultivation mode so as to improve the nutrient absorption capacity is the future direction.
NASA Astrophysics Data System (ADS)
Park, Baek Sung; Hyung, Kyung Hee; Oh, Gwi Jeong; Jung, Hyun Wook
2018-02-01
The color filter (CF) is one of the key components for improving the performance of TV displays such as liquid crystal display (LCD) and white organic light emitting diodes (WOLED). The profile defects like undercut during the fine fabrication processes for CF layers are inevitably generated through the UV exposure and development processes, however, these can be controlled through the baking process. In order to resolve the profile defects of CF layers, in this study, the real-time dynamic changes of CF layers are monitored during the baking process by changing components such as polymeric binder and acrylate. The motion of pigment particles in CF layers during baking is quantitatively interpreted using multi-speckle diffusing wave spectroscopy (MSDWS), in terms of the autocorrelation function and the characteristic time of α-relaxation.
Red phosphorescent organic light-emitting diodes based on the simple structure.
Seo, Ji Hyun; Lee, Seok Jae; Kim, Bo Young; Choi, Eun Young; Han, Wone Keun; Lee, Kum Hee; Yoon, Seung Soo; Kim, Young Kwan
2012-05-01
We demonstrated that the simple layered red phosphorescent organic light-emitting diodes (OLEDs) are possible to have high efficiency, low driving voltage, stable roll-off efficiency, and pure emission color without hole injection and transport layers. We fabricated the OLEDs with a structure of ITO/CBP doped with Ir(pq)2(acac)/BPhen/Liq/Al, where the doping concentration of red dopant, Ir(pq)2(acac), was varied from 4% to 20%. As a result, the quantum efficiencies of 13.4, 11.2, 16.7, 10.8 and 9.8% were observed in devices with doping concentrations of 4, 8, 12, 16 and 20%, respectively. Despite of absence of the hole injection and transport layers, these efficiencies are superior to efficiencies of device with hole transporting layer due to direct hole injection from anode to dopant in emission layer.
NASA Astrophysics Data System (ADS)
Sheraw, Christopher Duncan
2003-10-01
Organic thin film transistors are attractive candidates for a variety of low cost, large area commercial electronics including smart cards, RF identification tags, and flat panel displays. Of particular interest are high performance organic thin film transistors (TFTs) that can be fabricated on flexible polymeric substrates allowing low-cost, lightweight, rugged electronics such as flexible active matrix displays. This thesis reports pentacene organic thin film transistors fabricated on flexible polymeric substrates with record performance, the fastest photolithographically patterned organic TFT integrated circuits on polymeric substrates reported to date, and the fabrication of the organic TFT backplanes used to build the first organic TFT-driven active matrix liquid crystal display (AMLCD), also the first AMLCD on a flexible substrate, ever reported. In addition, the first investigation of functionalized pentacene derivatives used as the active layer in organic thin film transistors is reported. A low temperature (<110°C) process technology was developed allowing the fabrication of high performance organic TFTs, integrated circuits, and large TFT arrays on flexible polymeric substrates. This process includes the development of a novel water-based photolithographic active layer patterning process using polyvinyl alcohol that allows the patterning of organic semiconductor materials for elimination of active layer leakage current without causing device degradation. The small molecule aromatic hydrocarbon pentacene was used as the active layer material to fabricate organic TFTs on the polymeric material polyethylene naphthalate with field-effect mobility as large as 2.1 cm2/V-s and on/off current ratio of 108. These are the best values reported for organic TFTs on polymeric substrates and comparable to organic TFTs on rigid substrates. Analog and digital integrated circuits were also fabricated on polymeric substrates using pentacene TFTs with propagation delay as low as 38 musec and clocked digital circuits that operated at 1.1 kHz. These are the fastest photolithographically patterned organic TFT circuits on polymeric substrates reported to date. Finally, 16 x 16 pentacene TFT pixel arrays were fabricated on polymeric substrates and integrated with polymer dispersed liquid crystal to build an AMLCD. The pixel arrays showed good optical response to changing data signals when standard quarter-VGA display waveforms were applied. This result marks the first organic TFT-driven active matrix liquid crystal display ever reported as well as the first active matrix liquid crystal display on a flexible polymeric substrate. Lastly, functionalized pentacene derivatives were used as the active layer in organic thin film transistor materials. Functional groups were added to the pentacene molecule to influence the molecular ordering so that the amount of pi-orbital overlap would be increased allowing the potential for improved field-effect mobility. The functionalization of these materials also improves solubility allowing for the possibility of solution-processed devices and increased oxidative stability. Organic thin film transistors were fabricated using five different functionalized pentacene active layers. Devices based on the pentacene derivative triisopropylsilyl pentacene were found to have the best performance with field-effect mobility as large as 0.4 cm 2/V-s.
NASA Astrophysics Data System (ADS)
Peng, Yingquan; Ding, Sihan; Wen, Zhanwei; Xu, Sunan; Lv, Wenli; Xu, Ziqiang; Yang, Yuhuan; Wang, Ying; Wei, Yi; Tang, Ying
2017-03-01
Encapsulation is indispensable for organic thin-film electronic devices to ensure reliable operation and long-term stability. For thin-film encapsulating organic electronic devices, insulating polymers and inorganic metal oxides thin films are widely used. However, spin-coating of insulating polymers directly on organic electronic devices may destroy or introduce unwanted impurities in the underlying organic active layers. And also, sputtering of inorganic metal oxides may damage the underlying organic semiconductors. Here, we demonstrated that by utilizing vacuum evaporated lithium fluoride (LiF) as protective buffer layer, spin-coated insulating polymer polyvinyl alcohol (PVA), and sputtered inorganic material Er2O3, can be successfully applied for thin film encapsulation of copper phthalocyanine (CuPc)-based organic diodes. By encapsulating with LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films, the device lifetime improvements of 10 and 15 times can be achieved. These methods should be applicable for thin-film encapsulation of all kinds of organic electronic devices. Moisture-induced hole trapping, and Al top electrode oxidation are suggest to be the origins of current decay for the LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films encapsulated devices, respectively.
Nelson, K L
2003-01-01
During treatment in wastewater stabilization ponds (WSPs) many pathogens, in particular helminth eggs, are concentrated in the sludge layer. Because periodic removal of the sludge is often required, information is needed on the concentrations and inactivation of pathogens in the sludge layer to evaluate the public health risk they pose upon removal of the sludge. In this paper, previous reports on the sludge concentrations of various pathogen indicator organisms and helminth eggs are reviewed and results from our own recent experiments are reported. The advantages and disadvantages of several methods for studying inactivation in the sludge layer are discussed, as well as implications for the management of WSP sludge. In our recent experiments, which were conducted at three WSPs in central Mexico, sludge cores, dialysis chambers, and batch experiments were used to measure the inactivation rates of fecal coliform bacteria, fecal enterococci, F+ coliphage, somatic coliphage, and Ascaris eggs. The first-order inactivation rate constants were found to be approximately 0.1, 0.1, 0.01, 0.001, and 0.001 d(-1), respectively. The concentrations of all the organisms were found to vary both vertically and horizontally in the sludge layer; therefore, to determine the maximum and average concentration of organisms in the sludge layer of a WSP, complete sludge cores must be collected from representative locations throughout the pond.
Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump
Dall’Olmo, Giorgio; Dingle, James; Polimene, Luca; Brewin, Robert J.W.; Claustre, Hervé
2016-01-01
The “mesopelagic” is the region of the ocean between about 100 and 1000 m that harbours one of the largest ecosystems and fish stocks on the planet1,2. This vastly unexplored ecosystem is believed to be mostly sustained by chemical energy, in the form of fast-sinking particulate organic carbon, supplied by the biological carbon pump3. Yet, this supply appears insufficient to match mesopelagic metabolic demands4–6. The mixed-layer pump is a physically-driven biogeochemical process7–11 that could further contribute to meet these energetic requirements. However, little is known about the magnitude and spatial distribution of this process at the global scale. Here we show that the mixed-layer pump supplies an important seasonal flux of organic carbon to the mesopelagic. By combining mixed-layer depths from Argo floats with satellite retrievals of particulate organic carbon, we estimate that this pump exports a global flux of about 0.3 Pg C yr−1 (range 0.1 – 0.5 Pg C yr−1). In high-latitude regions where mixed-layers are deep, this flux is on average 23%, but can be greater than 100% of the carbon supplied by fast sinking particles. Our results imply that a relatively large flux of organic carbon is missing from current energy budgets of the mesopelagic. PMID:27857779
Efficient double-emitting layer inverted organic light-emitting devices with different spacer layers
NASA Astrophysics Data System (ADS)
Nie, Qu-yang; Zhang, Fang-hui
2017-09-01
Double-emitting layer inverted organic light-emitting devices (IOLEDs) with different spacer layers were investigated, where 2,20,7,70-tetrakis(carbazol-9-yl)-9,9-spirobifluorene (CBP), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen) and 4,40,400-tris(N-carbazolyl)-triphenylamine (TCTA) were used as spacer layers, respectively, and GIr1 and R-4b were used as green and red guest phosphorescent materials, respectively. The results show that the device with BCP spacer layer has the best performance. The maximum current efficiency of the BCP spacer layer device reaches up to 24.15 cd·A-1 when the current density is 3.99 mA·cm-2, which is 1.23 times bigger than that of the CBP spacer layer device. The performance is better than that of corresponding conventional device observably. The color coordinate of the device with BCP spacer layer only changes from (0.625 1, 0.368 0) to (0.599 5, 0.392 8) when the driving voltage increases from 6 V to 10 V, so it shows good stability in color coordinate, which is due to the adoption of the co-doping evaporation method for cladding luminous layer and the effective restriction of spacer layer to carriers in emitting layer.
Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momblona, C.; Malinkiewicz, O.; Soriano, A.
2014-08-01
Efficient methylammonium lead iodide perovskite-based solar cells have been prepared in which the perovskite layer is sandwiched in between two organic charge transporting layers that block holes and electrons, respectively. This configuration leads to stable and reproducible devices that do not suffer from strong hysteresis effects and when optimized lead to efficiencies close to 15%. The perovskite layer is formed by using a dual-source thermal evaporation method, whereas the organic layers are processed from solution. The dual-source thermal evaporation method leads to smooth films and allows for high precision thickness variations. Devices were prepared with perovskite layer thicknesses ranging frommore » 160 to 900 nm. The short-circuit current observed for these devices increased with increasing perovskite layer thickness. The main parameter that decreases with increasing perovskite layer thickness is the fill factor and as a result optimum device performance is obtained for perovskite layer thickness around 300 nm. However, here we demonstrate that with a slightly oxidized electron blocking layer the fill factor for the solar cells with a perovskite layer thickness of 900 nm increases to the same values as for the devices with thin perovskite layers. As a result the power conversion efficiencies for the cells with 300 and 900 nm are very similar, 12.7% and 12%, respectively.« less
Genet, H.; McGuire, Anthony David; Barrett, K.; Breen, A.; Euskirchen, E.S.; Johnstone, J.F.; Kasischke, E.S.; Melvin, A.M.; Bennett, A.; Mack, M.C.; Rupp, T.S.; Schuur, A.E.G.; Turetsky, M.R.; Yuan, F.
2013-01-01
There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layer caused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness of 1.1 m on average by 2100. The combination of warming and fire led to a simulated cumulative loss of 9.6 kgC m−2 on average by 2100. Our analysis suggests that ecosystem carbon storage in boreal forests in interior Alaska is particularly vulnerable, primarily due to the combustion of organic layer thickness in fire and the related increase in active layer thickness that exposes previously protected permafrost soil carbon to decomposition.
USDA-ARS?s Scientific Manuscript database
In this presentation, new approaches for flame retardant textile by using supercritical carbon dioxide (scCO2) and layer-by-layer processing will be discussed. Due to its environmentally benign character, the scCO2 is considered in green chemistry as a substitute for organic solvents in chemical rea...
Obrist, Daniel; Zielinska, Barbara; Perlinger, Judith A
2015-09-01
We characterized distributions of 23 polycyclic aromatic hydrocarbons (Σ23PAH) and nine oxygenated PAHs (Σ9OPAH) in four remote forests. We observed highest Σ23PAH and Σ9OPAH concentrations in a coniferous forest in Florida, particularly in organic layers which we attributed to frequent prescribed burning. Across sites, Σ23PAH and Σ9OPAH concentrations strongly increased from surface to humidified organic layers (+1626%) where concentrations reached up to 584 ng g(-1). Concentrations in mineral soils were lower (average 37 ± 8 ng g(-1)); but when standardized per unit organic carbon (OC), PAH/OC and OPAH/OC ratios were at or above levels observed in organic layers. Accumulation in litter and soils (i.e., enrichment factors with depth) negatively correlated with octanol-water partition coefficients (Kow) and therefore was linked to water solubility of compounds. Concentrations of Σ9OPAHs ranged from 6 ± 6 ng g(-1) to 39 ± 25 ng g(-1) in organic layers, and from 3 ± 1 ng g(-1) to 11 ± 3 ng g(-1) in mineral soils, and were significantly and positively correlated to Σ23PAHs concentrations (r(2) of 0.90) across sites and horizons. While OPAH concentrations generally decreased from organic layers to mineral soil horizons, OPAH/OC ratios increased more strongly with depth compared to PAHs, in particular for anthrone, anthraquinone, fluorenone, and acenaphthenequinone. The strong vertical accumulation of OPAH relative to OC was exponentially and negatively correlated to C/N ratios (r(2)=0.67), a measure that often is used for tissue age. In fact, C/N ratios alone explained two-thirds of the variability in OPAH/OC ratios suggesting particularly high retention, sorption, and persistency of OPAHs in old, decomposed carbon fractions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Supramolecular Approaches to Nanoscale Morphological Control in Organic Solar Cells
Haruk, Alexander M.; Mativetsky, Jeffrey M.
2015-01-01
Having recently surpassed 10% efficiency, solar cells based on organic molecules are poised to become a viable low-cost clean energy source with the added advantages of mechanical flexibility and light weight. The best-performing organic solar cells rely on a nanostructured active layer morphology consisting of a complex organization of electron donating and electron accepting molecules. Although much progress has been made in designing new donor and acceptor molecules, rational control over active layer morphology remains a central challenge. Long-term device stability is another important consideration that needs to be addressed. This review highlights supramolecular strategies for generating highly stable nanostructured organic photovoltaic active materials by design. PMID:26110382
Interconnections of the visual cortex with the frontal cortex in the rat.
Sukekawa, K
1988-01-01
Horseradish peroxidase conjugated to wheat germ agglutinin (WGA-HRP) and autoradiography of tritiated leucine were used to trace the cortical origins and terminations of the connections between the visual and frontal cortices in the rat. Ipsilateral reciprocal connections between each subdivision of the visual cortex (areas 17, 18a and 18b) and the posterior half of the medial part of the frontal agranular cortex (PAGm), and their laminar organizations were confirmed. These connections did not appear to have a significant topographic organization. Although in areas 17 and 18b terminals or cells of origin in this fiber system were confined to the anterior half of these cortices, in area 18a they were observed spanning the anteroposterior extent of this cortex, with in part a column like organization. No evidence could be found for the participation of both the posterior parts of areas 17 and 18b and the anterior half of this frontal agranular cortex in these connections. Fibers from each subdivision of the visual cortex to the PAGm terminated predominantly in the lower part of layer I and in layer II. In area 17, this occipito-frontal projection was found to arise from the scattered pyramidal cells in layer V and more prominently from pyramidal cells in layer V of area 17/18a border. In area 18a, the fibers projecting to the PAGm originated mainly from pyramidal cells primarily in layer V and to a lesser extent in layers II, III and VI. Whereas in area 18b, this projection was found to arise mainly from pyramidal cells in layers II and III, to a lesser extent in layers V and VI, and less frequent in layer IV. On the other hand, the reciprocal projection to the visual cortex was found to originate largely from pyramidal cells in layers III and V of the PAGm. In areas 17 and 18a, these fibers terminated in layers I and VI, and in layers I, V and VI, respectively. Whereas in area 18b, they were distributed throughout all layers except layer II.
NASA Astrophysics Data System (ADS)
Hördemann, C.; Hirschfelder, K.; Schaefer, M.; Gillner, A.
2015-09-01
The breakthrough of flexible organic electronics and especially organic photovoltaics is highly dependent on cost-efficient production technologies. Roll-2-Roll processes show potential for a promising solution in terms of high throughput and low-cost production of thin film organic components. Solution based material deposition and integrated laser patterning processes offer new possibilities for versatile production lines. The use of flexible polymeric substrates brings along challenges in laser patterning which have to be overcome. One main challenge when patterning transparent conductive layers on polymeric substrates are material bulges at the edges of the ablated area. Bulges can lead to short circuits in the layer system leading to device failure. Therefore following layers have to have a sufficient thickness to cover and smooth the ridge. In order to minimize the bulging height, a study has been carried out on transparent conductive ITO layers on flexible PET substrates. Ablation results using different beam shapes, such as Gaussian beam, Top-Hat beam and Donut-shaped beam, as well as multi-pass scribing and double-pulsed ablation are compared. Furthermore, lab scale methods for cleaning the patterned layer and eliminating bulges are contrasted to the use of additional water based sacrificial layers in order to obtain an alternative procedure suitable for large scale Roll-2-Roll manufacturing. Besides progress in research, ongoing transfer of laser processes into a Roll-2-Roll demonstrator is illustrated. By using fixed optical elements in combination with a galvanometric scanner, scribing, variable patterning and edge deletion can be performed individually.
Effects of wildfire and permafrost on soil organic matter and soil climate in interior Alaska
Harden, J.W.; Manies, K.L.; Turetsky, M.R.; Neff, J.C.
2006-01-01
The influence of discontinuous permafrost on ground-fuel storage, combustion losses, and postfire soil climates was examined after a wildfire near Delta Junction, AK in July 1999. At this site, we sampled soils from a four-way site comparison of burning (burned and unburned) and permafrost (permafrost and nonpermafrost). Soil organic layers (which comprise ground-fuel storage) were thicker in permafrost than nonpermafrost soils both in burned and unburned sites. While we expected fire severity to be greater in the drier site (without permafrost), combustion losses were not significantly different between the two burned sites. Overall, permafrost and burning had significant effects on physical soil variables. Most notably, unburned permafrost sites with the thickest organic mats consistently had the coldest temperatures and wettest mineral soil, while soils in the burned nonpermafrost sites were warmer and drier than the other soils. For every centimeter of organic mat thickness, temperature at 5cm depth was about 0.5??C cooler during summer months. We propose that organic soil layers determine to a large extent the physical and thermal setting for variations in vegetation, decomposition, and carbon balance across these landscapes. In particular, the deep organic layers maintain the legacies of thermal and nutrient cycling governed by fire and revegetation. We further propose that the thermal influence of deep organic soil layers may be an underlying mechanism responsible for large regional patterns of burning and regrowth, detected in fractal analyses of burn frequency and area. Thus, fractal geometry can potentially be used to analyze changes in state of these fire prone systems. ?? 2006 Blackwell Publishing Ltd.
Kintsu, Hiroyuki; Okumura, Taiga; Negishi, Lumi; Ifuku, Shinsuke; Kogure, Toshihiro; Sakuda, Shohei; Suzuki, Michio
2017-07-22
Biomineralization, in which organisms create biogenic hard tissues, with hardness or flexibility enhanced by organic-inorganic interaction is an interesting and attractive focus for application of biomimetic functional materials. Calcites in the prismatic layer of Pinctada fucata are tougher than abiotic calcites due to small crystal defects. However, the molecular mechanism of the defect formation remains unclear. Here, chitin and two chitinolytic enzymes, chitinase and chitobiase, were identified as organic matrices related to for the formation of small crystal defects in the prismatic layer. Experiments with a chitinase inhibitor in vivo showed chitinase is necessary to form the prismatic layer. Analysis of calcite crystals, which were synthesized in a chitin hydrogel treated with chitinolytic enzymes, by electron microscopy and X-ray diffraction showed that crystal defects became larger as chitin was more degraded. These results suggest that interactions between chitin and calcium carbonate increase as chitin is thinner. Copyright © 2017. Published by Elsevier Inc.
Exciplex formation and electroluminescent absorption in ultraviolet organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Zhang, Qi; Zhang, Hao; Zhang, Xiao-Wen; Xu, Tao; Wei, Bin
2015-02-01
We investigated the formation of exciplex and electroluminescent absorption in ultraviolet organic light-emitting diodes (UV OLEDs) using different heterojunction structures. It is found that an energy barrier of over 0.3 eV between the emissive layer (EML) and adjacent transport layer facilitates exciplex formation. The electron blocking layer effectively confines electrons in the EML, which contributes to pure UV emission and enhances efficiency. The change in EML thickness generates tunable UV emission from 376 nm to 406 nm. In addition, the UV emission excites low-energy organic function layers and produces photoluminescent emission. In UV OLED, avoiding the exciplex formation and averting light absorption can effectively improve the purity and efficiency. A maximum external quantum efficiency of 1.2% with a UV emission peak of 376 nm is realized. Project supported by the National Natural Science Foundation of China (Grant Nos. 61136003 and 61275041) and the Guangxi Provincial Natural Science Foundation, China (Grant No. 2012GXNSFBA053168).
Nanosheets of oxides and hydroxides: Ultimate 2D charge-bearing functional crystallites.
Ma, Renzhi; Sasaki, Takayoshi
2010-12-01
A wide variety of cation-exchangeable layered transition metal oxides and their relatively rare counterparts, anion-exchangeable layered hydroxides, have been exfoliated into individual host layers, i.e., nanosheets. Exfoliation is generally achieved via a high degree of swelling, typically driven either by intercalation of bulky organic ions (quaternary ammonium cations, propylammonium cations, etc.) for the layered oxides or by solvation with organic solvents (formamide, butanol, etc.) for the hydroxides. Ultimate two-dimensional (2D) anisotropy for the nanosheets, with thickness of around one nanometer versus lateral size ranging from submicrometer to several tens of micrometers, allows them to serve either as an ideal quantum system for fundamental study or as a basic building block for functional assembly. The charge-bearing inorganic macromolecule-like nanosheets can be assembled or organized through various solution-based processing techniques (e.g., flocculation, electrostatic sequential deposition, or the Langmuir-Blodgett method) to produce a range of nanocomposites, multilayer nanofilms, and core-shell nanoarchitectures, which have great potential for electronic, magnetic, optical, photochemical, and catalytic applications.
Bimetallic nanocomposite as hole transport co-buffer layer in organic solar cell
NASA Astrophysics Data System (ADS)
Mola, Genene Tessema; Arbab, Elhadi A. A.
2017-12-01
Silver-zinc bimetallic nanocomposite (Ag:Zn BiM-NPs) was used as an inter-facial buffer layer in the preparation of thin film organic solar cell (TFOSC). The current investigation focuses on the effect of bimetallic nanoparticles on the performance of TFOSC. A number experiments were conducted by employing Ag:Zn nanocomposite buffer layer of thickness 1 nm at various positions of the device structure. In all cases, we found significant improvement on the power conversion efficiency of the solar cells. It is also noted that the open circuit voltage of the devices are decreasing when Ag:Zn form direct contact with the ITO electrode and without the inclusion of PEDOT:PSS. However, all results show that the introduction of Ag:Zn nanocomposite layer close to PEDOT:PSS could be beneficial to improve the charge transport processes in the preparation of thin film organic solar cell. The Ag:Zn BiM-NPs and the device properties were presented and discussed in terms of optical, electrical and film morphologies of the devices.
Marine Boundary Layer Cloud Properties From AMF Point Reyes Satellite Observations
NASA Technical Reports Server (NTRS)
Jensen, Michael; Vogelmann, Andrew M.; Luke, Edward; Minnis, Patrick; Miller, Mark A.; Khaiyer, Mandana; Nguyen, Louis; Palikonda, Rabindra
2007-01-01
Cloud Diameter, C(sub D), offers a simple measure of Marine Boundary Layer (MBL) cloud organization. The diurnal cycle of cloud-physical properties and C(sub D) at Pt Reyes are consistent with previous work. The time series of C(sub D) can be used to identify distinct mesoscale organization regimes within the Pt. Reyes observation period.
Theory of Excitation Transfer between Two-Dimensional Semiconductor and Molecular Layers
NASA Astrophysics Data System (ADS)
Specht, Judith F.; Verdenhalven, Eike; Bieniek, Björn; Rinke, Patrick; Knorr, Andreas; Richter, Marten
2018-04-01
The geometry-dependent energy transfer rate from an electrically pumped inorganic semiconductor quantum well into an organic molecular layer is studied theoretically. We focus on Förster-type nonradiative excitation transfer between the organic and inorganic layers and include quasimomentum conservation and intermolecular coupling between the molecules in the organic film. (Transition) partial charges calculated from density-functional theory are used to calculate the coupling elements. The partial charges describe the spatial charge distribution and go beyond the common dipole-dipole interaction. We find that the transfer rates are highly sensitive to variations in the geometry of the hybrid inorganic-organic system. For instance, the transfer efficiency is improved by up to 2 orders of magnitude by tuning the spatial arrangement of the molecules on the surface: Parameters of importance are the molecular packing density along the effective molecular dipole axis and the distance between the molecules and the surface. We also observe that the device performance strongly depends on the orientation of the molecular dipole moments relative to the substrate dipole moments determined by the inorganic crystal structure. Moreover, the operating regime is identified where inscattering dominates over unwanted backscattering from the molecular layer into the substrate.
Mei, Yaochuan; Diemer, Peter J.; Niazi, Muhammad R.; Hallani, Rawad K.; Jarolimek, Karol; Day, Cynthia S.; Risko, Chad; Anthony, John E.; Amassian, Aram
2017-01-01
The temperature dependence of the charge-carrier mobility provides essential insight into the charge transport mechanisms in organic semiconductors. Such knowledge imparts critical understanding of the electrical properties of these materials, leading to better design of high-performance materials for consumer applications. Here, we present experimental results that suggest that the inhomogeneous strain induced in organic semiconductor layers by the mismatch between the coefficients of thermal expansion (CTE) of the consecutive device layers of field-effect transistors generates trapping states that localize charge carriers. We observe a universal scaling between the activation energy of the transistors and the interfacial thermal expansion mismatch, in which band-like transport is observed for similar CTEs, and activated transport otherwise. Our results provide evidence that a high-quality semiconductor layer is necessary, but not sufficient, to obtain efficient charge-carrier transport in devices, and underline the importance of holistic device design to achieve the intrinsic performance limits of a given organic semiconductor. We go on to show that insertion of an ultrathin CTE buffer layer mitigates this problem and can help achieve band-like transport on a wide range of substrate platforms. PMID:28739934
Plasmon-organic fiber interactions in diamond-like carbon coated nanostructured gold films
NASA Astrophysics Data System (ADS)
Cielecki, Paweł Piotr; Sobolewska, Elżbieta Karolina; Kostiuočenko, Oksana; Leißner, Till; Tamulevičius, Tomas; Tamulevičius, Sigitas; Rubahn, Horst-Günter; Adam, Jost; Fiutowski, Jacek
2017-11-01
Gold is the most commonly used plasmonic material, however soft and prone to mechanical deformations. It has been shown that the durability of gold plasmonic substrates can be improved by applying a protective diamond-like carbon (DLC) coating. In this work, we investigate the influence of such protective layers on plasmonic interactions in organic-plasmonic hybrid systems. We consider systems, consisting of 1-Cyano-quaterphenylene nanofibers on top of gold nano-square plasmonic arrays, coated with protective layers of varying thickness. We numerically investigate the spectral position of surface plasmon polariton resonances and electric field intensity, as a function of protective layer thickness, using the finite-difference time-domain method. To confirm the numerically indicated field enhancement preservation on top of protective layers, we experimentally map the second harmonic response of organic nanofibers. Subsequently, we characterize the plasmonic coupling between organic nanofibers and underlying substrates, considered as one of the main loss channels for photoluminescence from nanofibers, by time-resolved photoluminescence spectroscopy. Our findings reveal that, for the investigated system, plasmonic interactions are preserved for DLC coatings up to 55 nm. This is relevant for the fabrication of new passive and active plasmonic components with increased durability and hence prolonged lifetime.
NASA Astrophysics Data System (ADS)
Shijeesh, M. R.; Vikas, L. S.; Jayaraj, M. K.; Puigdollers, J.
2014-10-01
The OTFTs with both p type and n type channel layers were fabricated using the inverted-staggered (top contact) structure by thermal vapour deposition on Si/SiO2 substrate. Pentacene and N,N'-Dioctyl- 3,4,9,10- perylenedicarboximide (PTCDI-C8) were used as channel layer for the fabrications of p type and n type OTFTs respectively. A comparative study on the degradation and density of states (DOS) of p type and n type organic semiconductors have been carried out. In order to compare the stability and degradation of pentacene and PTCDI-C8 OTFTs, the devices were exposed to air for 2 h before performing electrical measurements in air. The DOS measurements revealed that a level with defect density of 1020 cm-3 was formed only in PTCDI C8 layer on exposure to air. The oxygen adsorption into the PTCDI-C8 active layer can be attributed to the formation of this level at 0.15 eV above the LUMO level. The electrical charge transport is strongly affected by the oxygen traps and hence n type organic materials are less stable than p type organic materials.
Mei, Yaochuan; Diemer, Peter J; Niazi, Muhammad R; Hallani, Rawad K; Jarolimek, Karol; Day, Cynthia S; Risko, Chad; Anthony, John E; Amassian, Aram; Jurchescu, Oana D
2017-08-15
The temperature dependence of the charge-carrier mobility provides essential insight into the charge transport mechanisms in organic semiconductors. Such knowledge imparts critical understanding of the electrical properties of these materials, leading to better design of high-performance materials for consumer applications. Here, we present experimental results that suggest that the inhomogeneous strain induced in organic semiconductor layers by the mismatch between the coefficients of thermal expansion (CTE) of the consecutive device layers of field-effect transistors generates trapping states that localize charge carriers. We observe a universal scaling between the activation energy of the transistors and the interfacial thermal expansion mismatch, in which band-like transport is observed for similar CTEs, and activated transport otherwise. Our results provide evidence that a high-quality semiconductor layer is necessary, but not sufficient, to obtain efficient charge-carrier transport in devices, and underline the importance of holistic device design to achieve the intrinsic performance limits of a given organic semiconductor. We go on to show that insertion of an ultrathin CTE buffer layer mitigates this problem and can help achieve band-like transport on a wide range of substrate platforms.
[Effects of simulated nitrogen deposition on organic matter leaching in forest soil].
Duan, Lei; ma, Xiao-Xiao; Yu, De-Xiang; Tan, Bing-Quan
2013-06-01
The impact of nitrogen deposition on the dynamics of carbon pool in forest soil was studied through a field experiment at Tieshanping, Chongqing in Southwest China. The changes of dissolved organic matter (DOM) concentration in soil water in different soil layers were monitored for five years after addition of ammonium nitrate (NH4NO3) or sodium nitrate (NaNO3) at the same dose as the current nitrogen deposition to the forest floor. The results indicated that the concentration and flux of dissolved organic carbon (DOC) were increased in the first two years and then decreased by fertilizing. Fertilizing also reduced the DOC/DON (dissolved organic nitrogen) ratio of soil water in the litter layer and the DOC concentration of soil water in the upper mineral layer, but had no significant effect on DOC flux in the lower soil layer. Although there was generally no effect of increasing nitrogen deposition on the forest carbon pool during the experimental period, the shift from C-rich to N-rich DOM might occur. In addition, the species of nitrogen deposition, i. e., NH4(+) and NO3(-), did not show difference in their effect on soil DOM with the same equivalence.
Zhu, Xiaojing; He, Jiangtao; Su, Sihui; Zhang, Xiaoliang; Wang, Fei
2016-05-01
To explore the interactions between soil organic matter and minerals, humic acid (HA, as organic matter), kaolin (as a mineral component) and Ca(2+) (as metal ions) were used to prepare HA-kaolin and Ca-HA-kaolin complexes. These complexes were used in trichloroethylene (TCE) sorption experiments and various characterizations. Interactions between HA and kaolin during the formation of their complexes were confirmed by the obvious differences between the Qe (experimental sorbed TCE) and Qe_p (predicted sorbed TCE) values of all detected samples. The partition coefficient kd obtained for the different samples indicated that both the organic content (fom) and Ca(2+) could significantly impact the interactions. Based on experimental results and various characterizations, a concept model was developed. In the absence of Ca(2+), HA molecules first patched onto charged sites of kaolin surfaces, filling the pores. Subsequently, as the HA content increased and the first HA layer reached saturation, an outer layer of HA began to form, compressing the inner HA layer. As HA loading continued, the second layer reached saturation, such that an outer-third layer began to form, compressing the inner layers. In the presence of Ca(2+), which not only can promote kaolin self-aggregation but can also boost HA attachment to kaolin, HA molecules were first surrounded by kaolin. Subsequently, first and second layers formed (with inner layer compression) via the same process as described above in the absence of Ca(2+), except that the second layer continued to load rather than reach saturation, within the investigated conditions, because of enhanced HA aggregation caused by Ca(2+). Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yokokura, Yuya; Dogase, Tomomichi; Shinbo, Tatsuki; Nakayashiki, Yuya; Takagi, Yusuke; Ueda, Kazuyoshi; Sarangerel, Khayankhyarvaa; Delgertsetseg, Byambasuren; Ganzorig, Chimed; Sakomura, Masaru
2017-08-01
The use of Langmuir-Blodgett (LB) monolayers to modify the indium tin oxide (ITO) work function and thus improve the performance of zinc phthalocyanine (ZnPc)/fullerene (C60)-based and boron subphthalocyanine chloride (SubPc)/C60-based small molecule organic photovoltaic devices (OPVs) was examined. In general, LB precursor compounds contain one or more long alkyl chain substituents that can act as spacers to prevent electrical contact with adjoining electrode surfaces. As one example of such a compound, arachidic acid (CH3(CH2)18COOH) was inserted in the forms of one-layer, three-layer or five-layer LB films between the anode ITO layer and the p-type layer in ZnPc-C60-based OPVs to investigate the effects of the long alkyl chain group when it acts as an electrically insulating spacer. The short-circuit current density (Jsc) values of the OPVs with the three- and five-layer inserts (1.78 mA.cm-2 and 0.61 mA.cm-2, respectively) were reduced dramatically, whereas the Jsc value for the OPV with the single-layer insertion (2.88 mA.cm-2) was comparable to that of the OPV without any insert (3.14 mA.cm-2). The ITO work function was shifted positively by LB deposition of a surfactant compound, C9F19C2H4-O-C2H4-COOH (PFECA), which contained a fluorinated head group. This positive effect was maintained even after formation of an upper p-type organic layer. The Jsc and open-circuit voltage (Voc) of the SubPc-C60-based OPV with the LB-modified ITO layers were effectively enhanced. As a result, a 42% increase in device efficiency was achieved.
You, Longzhen; Liu, Bin; Liu, Tao; Fan, Bingbing; Cai, Yunhao; Guo, Lin; Sun, Yanming
2017-04-12
Tungsten oxide as an alternative to conventional acidic PEDOT:PSS has attracted much attention in organic solar cells (OSCs). However, the vacuum-processed WO 3 layer and high-temperature sol-gel hydrolyzed WO X are incompatible with large-scale manufacturing of OSCs. Here, we report for the first time that a specific tungsten oxide WO 2.72 (W 18 O 49 ) nanowire can function well as the anode buffer layer. The nw-WO 2.72 film exhibits a high optical transparency. The power conversion efficiency (PCE) of OSCs based on three typical polymer active layers PTB7:PC 71 BM, PTB7-Th:PC 71 BM, and PDBT-T1:PC 71 BM with nw-WO 2.72 layer were improved significantly from 7.27 to 8.23%, from 8.44 to 9.30%, and from 8.45 to 9.09%, respectively compared to devices with PEDOT:PSS. Moreover, the photovoltaic performance of OSCs based on small molecule p-DTS(FBTTh 2 ) 2 :PC 71 BM active layer was also enhanced with the incorporation of nw-WO 2.72 . The enhanced performance is mainly attributed to the improved short-circuit current density (J sc ), which benefits from the oxygen vacancies and the surface apophyses for better charge extraction. Furthermore, OSCs based on nw-WO 2.72 show obviously improved ambient stability compared to devices with PEDOT:PSS layer. The results suggest that nw-WO 2.72 is a promising candidate for the anode buffer layer materials in organic solar cells.
Zhang, Shuai; Xu, Ming-Xiang; Zhang, Ya-Feng; Wang, Chao-Hua; Chen, Gai
2015-02-01
Response of soil active organic carbon to land-use change has become a hot topic in current soil carbon and nutrient cycling study. Soil active organic carbon distribution characteristics in soil profile under four land-use types were investigated in Ziwuling forest zone of the Hilly Loess Plateau region. The four types of land-use changes included natural woodland converted into artificial woodland, natural woodland converted into cropland, natural shrubland converted into cropland and natural shrubland converted into revegetated grassland. Effects of land-use changes on soil active organic carbon in deep soil layers (60-200 cm) were explored by comparison with the shallow soil layers (0-60 cm). The results showed that: (1) The labile organic carbon ( LOC) and microbial carbon (MBC) content were mainly concentrated in the shallow 0-60 cm soil, which accounted for 49%-66% and 71%-84% of soil active organic carbon in the profile (0-200 cm) under different land-use types. Soil active organic carbon content in shallow soil was significantly varied for the land-use changes types, while no obvious difference was observed in soil active organic carbon in deep soil layer. (2) Land-use changes exerted significant influence on soil active organic carbon, the active organic carbon in shallow soil was more sensitive than that in deep soil. The four types of land-use changes, including natural woodland to planted woodland, natural woodland to cropland, natural shrubland to revegetated grassland and natural shrubland to cropland, LOC in shallow soil was reduced by 10%, 60%, 29%, 40% and LOC in the deep layer was decreased by 9%, 21%, 12%, 1%, respectively. MBC in the shallow soil was reduced by 24% 73%, 23%, 56%, and that in the deep layer was decreased by 25%, 18%, 8% and 11%, respectively. (Land-use changes altered the distribution ratio of active organic carbon in soil profile. The ratio between LOC and SOC in shallow soil increased when natural woodland and shrubland were converted into farmland, but no obvious difference was observed in deep soil. The ratio of MBC/SOC in shallow soil decreased when natural shrubland was converted into farmland, also, no significant difference was detected in the ratio of MBC/SOC for other land-use change types. The results suggested that land-use change exerted significant influence on soil active organic carbon content and distribution proportion in soil profile. Soil organic carbon in deep soil was more stable than that in shallow soil.
Sakaida, Shun; Haraguchi, Tomoyuki; Otsubo, Kazuya; Sakata, Osami; Fujiwara, Akihiko; Kitagawa, Hiroshi
2017-07-17
We report the fabrication and characterization of the first example of a tetracyanonickelate-based two-dimensional-layered metal-organic framework, {Fe(py) 2 Ni(CN) 4 } (py = pyridine), thin film. To fabricate a nanometer-sized thin film, we utilized the layer-by-layer method, whereby a substrate was alternately soaked in solutions of the structural components. Surface X-ray studies revealed that the fabricated film was crystalline with well-controlled growth directions both parallel and perpendicular to the substrate. In addition, lattice parameter analysis indicated that the crystal system is found to be close to higher symmetry by being downsized to a thin film.
Monte Carlo model of light transport in multi-layered tubular organs
NASA Astrophysics Data System (ADS)
Zhang, Yunyao; Zhu, Jingping; Zhang, Ning
2017-02-01
We present a Monte Carlo static light migration model (Endo-MCML) to simulate endoscopic optical spectroscopy for tubular organs such as esophagus and colon. The model employs multi-layered hollow cylinder which emitting and receiving light both from the inner boundary to meet the conditions of endoscopy. Inhomogeneous sphere can be added in tissue layers to model cancer or other abnormal changes. The 3D light distribution and exit angle would be recorded as results. The accuracy of the model has been verified by Multi-layered Monte Carlo(MCML) method and NIRFAST. This model can be used for the forward modeling of light transport during endoscopically diffuse optical spectroscopy, light scattering spectroscopy, reflectance spectroscopy and other static optical detection or imaging technologies.
NASA Astrophysics Data System (ADS)
Chu, Ta-Ya; Lee, Yong-Han; Song, Ok-Keun
2007-11-01
The authors have demonstrated that the increase of electron injection barrier height between tris(8-hydroxyquinoline)aluminum (Alq3) and LiF /Al cathode is one of the most critical parameters to determine the reliability of organic light-emitting diode with the typical structure of indium tin oxide/N ,N'-bis(naphthalen-1-yl)-N ,N'-bis(phenyl) benzidine/Alq3/LiF /Al. The electrical properties of several devices (hole only, electron only, and integrated double-layered devices) have been measured in the function of operating time to analyze the bulk and interface property changes. Bulk properties of trap energy and mobility in an organic layer have been estimated by using trap-charge-limited currents and transient electroluminescence measurements.
Hori, Tetsuro; Moritou, Hiroki; Fukuoka, Naoki; Sakamoto, Junki; Fujii, Akihiko; Ozaki, Masanori
2010-01-01
Organic thin-film solar cells with a conducting polymer (CP)/fullerene (C60) interpenetrating heterojunction structure, fabricated by spin-coating a CP onto a C60 deposit thin film, have been investigated and demonstrated to have high efficiency. The photovoltaic properties of solar cells with a structure of indium-tin-oxide/C60/poly(3-hexylthiophene) (PAT6)/Au have been improved by the insertion of molybdenum trioxide (VI) (MoO3) and zinc oxide charge transport buffer layers. The enhanced photovoltaic properties have been discussed, taking into consideration the ground-state charge transfer between PAT6 and MoO3 by measurement of the differential absorption spectra and the suppressed contact resistance at the interface between the organic and buffer layers. PMID:28883360
NASA Astrophysics Data System (ADS)
Han, Tae-Hee; Kwon, Sung-Joo; Seo, Hong-Kyu; Lee, Tae-Woo
2016-03-01
Ultraviolet ozone (UVO) surface treatment of graphene changes its sp2-hybridized carbons to sp3-bonded carbons, and introduces oxygen-containing components. Oxidized graphene has a finite energy band gap, so UVO modification of the surface of a four-layered graphene anode increases its surface ionization potential up to ∼5.2 eV and improves the hole injection efficiency (η) in organic electronic devices by reducing the energy barrier between the graphene anode and overlying organic layers. By controlling the conditions of the UVO treatment, the electrical properties of the graphene can be tuned to improve η. This controlled surface modification of the graphene will provide a way to achieve efficient and stable flexible displays and solid-state lighting.
Organic light emitting diode with light extracting layer
Lu, Songwei
2016-06-14
A light extraction substrate includes a glass substrate having a first surface and a second surface. A light extraction layer is formed on at least one of the surfaces. The light extraction layer is a coating, such as a silicon-containing coating, incorporating nanoparticles.
New Failure Mode of Flip-Chip Solder Joints Related to the Metallization of an Organic Substrate
NASA Astrophysics Data System (ADS)
Jang, J. W.; Yoo, S. J.; Hwang, H. I.; Yuk, S. Y.; Kim, C. K.; Kim, S. J.; Han, J. S.; An, S. H.
2015-10-01
We report a new failure phenomenon during flip-chip die attach. After reflow, flip-chip bumps were separated between the Al and Ti layers on the Si die side. This was mainly observed at the Si die corner. Transmission electron microscopy images revealed corrosion of the Al layer at the edge of the solder bump metallization. The corrosion at the metallization edge exhibited a notch shape with high stress concentration factor. The organic substrate had Cu metallization with an organic solderable preservative (OSP) coating layer, where a small amount of Cl ions were detected. A solder bump separation mechanism is suggested based on the reaction between Al and Cl, related to the flow of soldering flux. During reflow, the flux will dissolve the Cl-containing OSP layer and flow up to the Al layer on the Si die side. Then, the Cl-dissolved flux will actively react with Al, forming AlCl3. During cooling, solder bumps at the Si die corner will separate through the location of Al corrosion. This demonstrated that the chemistry of the substrate metallization can affect the thermomechanical reliability of flip-chip solder joints.
Li, Hong; Ge, Yunsheng; Zhang, Pengyun; Wu, Lingxiang; Chen, Shiyi
2012-01-01
Surface coating with an organic layer-by-layer self-assembled template of chitosan and hyaluronic acid on a poly(ethylene terephthalate) (PET) artificial ligament was designed for the promotion and enhancement of graft-to-bone healing after artificial ligament implantation in a bone tunnel. The results of in vitro culturing of MC3T3-E1 mouse osteoblastic cells supported the hypothesis that the layer-by-layer coating of chitosan and hyaluronic acid could promote the cell compatibility of grafts and could promote osteoblast proliferation. A rabbit extra-articular tendon-to-bone healing model was used to evaluate the effect of this kind of surface-modified stainless artificial ligament in vivo. The final results proved that this organic compound coating could significantly promote and enhance new bone formation at the graft-bone interface histologically and, correspondingly, the experimental group with coating had significantly higher biomechanical properties compared with controls at 8 weeks (P < 0.05).
Lee, Inhwa; Noh, Jonghyeon; Lee, Jung-Yong; Kim, Taek-Soo
2017-10-25
Here, we demonstrate the cooptimization of the interfacial fracture energy and power conversion efficiency (PCE) of poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT)-based organic solar cells (OSCs) by surface treatments of the buffer layer. The investigated surface treatments of the buffer layer simultaneously changed the crack path and interfacial fracture energy of OSCs under mechanical stress and the work function of the buffer layer. To investigate the effects of surface treatments, the work of adhesion values were calculated and matched with the experimental results based on the Owens-Wendt model. Subsequently, we fabricated OSCs on surface-treated buffer layers. In particular, ZnO layers treated with poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) simultaneously satisfied the high mechanical reliability and PCE of OSCs by achieving high work of adhesion and optimized work function.
Sediment Flux of Particulate Organic Phosphorus in the Open Black Sea
NASA Astrophysics Data System (ADS)
Parkhomenko, A. V.; Kukushkin, A. S.
2018-03-01
The interannual variation of the monthly average (weighted average) concentrations of particulate organic phosphorus (PPOM) in the photosynthetic layer, oxycline, redox zone, and H2S zone in the open Black Sea is estimated based on long-term observation data. The suspension sedimentation rates from the studied layers are assessed using model calculations and published data. The annual variation of PPOM sediment fluxes from the photosynthetic layer, oxycline, redox zone, and upper H2S zone to the anaerobic zone of the sea and the correspondingly annual average values are estimated for the first time. A regular decrease in the PPOM annual average flux with depth in the upper active layer is demonstrated. A correlation between the annual average values of PPOM sediment flux from the photosynthetic layer and ascending phosphate flux to this layer is shown, which suggests their balance in the open sea. The results are discussed in terms of the phosphorus biogeochemical cycle and the concept of new and regenerative primary production in the open Black Sea.
NASA Astrophysics Data System (ADS)
Yang, Su-Hua; Wu, Jian-Ping; Huang, Tao-Liang; Chung, Bin-Fong
2018-02-01
Four configurations of buffer layers were inserted into the structure of a white organic light emitting diode, and their impacts on the hole tunneling-injection and exciton diffusion processes were investigated. The insertion of a single buffer layer of 4,4'-bis(carbazol-9-yl)biphenyl (CBP) resulted in a balanced carrier concentration and excellent color stability with insignificant chromaticity coordinate variations of Δ x < 0.023 and Δ y < 0.023. A device with a 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) buffer layer was beneficial for hole tunneling to the emission layer, resulting in a 1.45-fold increase in current density. The tunneling of holes and the diffusion of excitons were confirmed by the preparation of a dual buffer layer of CBP:tris-(phenylpyridine)-iridine (Ir(ppy)3)/BCP. A maximum current efficiency of 12.61 cd/A with a luminance of 13,850 cd/m2 was obtained at 8 V when a device with a dual-buffer layer of CBP:6 wt.% Ir(ppy)3/BCP was prepared.
NASA Astrophysics Data System (ADS)
Verma, Upendra Kumar; Kumar, Brijesh
2017-10-01
We have modeled a multilayer quantum dot organic solar cell that explores the current-voltage characteristic of the solar cell whose characteristics can be tuned by varying the fabrication parameters of the quantum dots (QDs). The modeled device consists of a hole transport layer (HTL) which doubles up as photon absorbing layer, several quantum dot layers, and an electron transport layer (ETL). The conduction of charge carriers in HTL and ETL has been modeled by the drift-diffusion transport mechanism. The conduction and recombination in the quantum dot layers are described by a system of coupled rate equations incorporating tunneling and bimolecular recombination. Analysis of QD-solar cells shows improved device performance compared to the similar bilayer and trilayer device structures without QDs. Keeping other design parameters constant, solar cell characteristics can be controlled by the quantum dot layers. Bimolecular recombination coefficient of quantum dots is a prime factor which controls the open circuit voltage (VOC) without any significant reduction in short circuit current (JSC).
Geometric Constraints and the Anatomical Interpretation of Twisted Plant Organ Phenotypes
Weizbauer, Renate; Peters, Winfried S.; Schulz, Burkhard
2011-01-01
The study of plant mutants with twisting growth in axial organs, which normally grow straight in the wild-type, is expected to improve our understanding of the interplay among microtubules, cellulose biosynthesis, cell wall structure, and organ biomechanics that control organ growth and morphogenesis. However, geometric constraints based on symplastic growth and the consequences of these geometric constraints concerning interpretations of twisted-organ phenotypes are currently underestimated. Symplastic growth, a fundamental concept in plant developmental biology, is characterized by coordinated growth of adjacent cells based on their connectivity through cell walls. This growth behavior implies that in twisting axial organs, all cell files rotate in phase around the organ axis, as has been illustrated for the Arabidopsis spr1 and twd1 mutants in this work. Evaluating the geometry of such organs, we demonstrate that a radial gradient in cell elongation and changes in cellular growth anisotropy must occur in twisting organs out of geometric necessity alone. In-phase rotation of the different cell layers results in a decrease of length and angle toward organ axis from the outer cell layers inward. Additionally, the circumference of each cell layer increases in twisting organs, which requires compensation through radial expansion or an adjustment of cell number. Therefore, differential cell elongation and growth anisotropy cannot serve as arguments for or against specific hypotheses regarding the molecular cause of twisting growth. We suggest instead, that based on mathematical modeling, geometric constraints in twisting organs are indispensable for the explanation of the causal connection of molecular and biomechanical processes in twisting as well as normal organs. PMID:22645544
Biologically Active Organic Matter in Soils of European Russia
NASA Astrophysics Data System (ADS)
Semenov, V. M.; Kogut, B. M.; Zinyakova, N. B.; Masyutenko, N. P.; Malyukova, L. S.; Lebedeva, T. N.; Tulina, A. S.
2018-04-01
Experimental and literature data on the contents and stocks of active organic matter in 200 soil samples from the forest-tundra, southern-taiga, deciduous-forest, forest-steppe, dry-steppe, semidesert, and subtropical zones have been generalized. Natural lands, agrocenoses, treatments of long-term field experiments (bare fallow, unfertilized and fertilized crop rotations, perennial plantations), and different layers of soil profile are presented. Sphagnum peat and humus-peat soil in the tundra and forest-tundra zones are characterized by a very high content of active organic matter (300-600 mg C/100 g). Among the zonal soils, the content of active organic matter increases from the medium (75-150 mg C/100 g) to the high (150-300 mg C/100 g) level when going from soddy-podzolic soil to gray forest and dark-gray forest soils and then to leached chernozem. In the series from typical chernozem to ordinary and southern chernozem and chestnut and brown semidesert soils, a decrease in the content of active organic matter to the low (35-75 mg C/100 g) and very low (<35 mg C/100 g) levels is observed. Acid brown forest soil in the subtropical zone is characterized by a medium supply with active organic matter. Most arable soils are mainly characterized by low or very low contents of active organic matter. In the upper layers of soils, active organic matter makes up 1.2-11.1% of total Corg. The profile distribution of active organic matter in the studied soils coincides with that of Corg: their contents appreciably decrease with depth, except for brown semidesert soil. The stocks of active organic matter vary from 0.4 to 5.4 t/ha in the layer of 0-20 cm and from 1.0 to 12.4/ha in the layer of 0-50 cm of different soil types.
Kim, Kyung-Jo; Jang, Am
2018-04-01
To enhance the removal of natural organic matter (NOM) in ceramic (Ce) membrane filtration, an iron-aluminum binary oxide (FAO) was applied to the ceramic membrane surface as the adsorbent cake layer, and it was compared with heated aluminum oxide (HAO) for the evaluation of the control of NOM. Both the HAO and FAO adsorbent cake layers efficiently removed the NOM regardless of NOM's hydrophobic/hydrophilic characteristics, and the dissolved organic carbon (DOC) removal in NOM for FAO was 1-1.12 times greater than that for HAO, which means FAO was more efficient in the removal of DOC in NOM. FAO (0.03 μm), which is smaller in size than HAO (0.4 μm), had greater flux reduction than HAO. The flux reduction increased as the filtration proceeded because most of the organic foulants (colloid/particles and soluble NOM) were captured by the adsorbent cake layer, which caused fouling between the membrane surface and the adsorbent cake layer. However, no chemically irreversible fouling was observed on the Ce membrane at the end of the FAO adsorbent cake layer filtration. This means that a stable adsorbent cake layer by FAO formed on the Ce membrane, and that the reduced pure water flux of the Ce membrane, resulting from the NOM fouling, can easily be recovered through physicochemical cleaning. Copyright © 2018 Elsevier Ltd. All rights reserved.
Characterization and use of crystalline bacterial cell surface layers
NASA Astrophysics Data System (ADS)
Sleytr, Uwe B.; Sára, Margit; Pum, Dietmar; Schuster, Bernhard
2001-10-01
Crystalline bacterial cell surface layers (S-layers) are one of the most common outermost cell envelope components of prokaryotic organisms (archaea and bacteria). S-layers are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. S-layers as the most abundant of prokaryotic cellular proteins are appealing model systems for studying the structure, synthesis, genetics, assembly and function of proteinaceous supramolecular structures. The wealth of information existing on the general principle of S-layers have revealed a broad application potential. The most relevant features exploited in applied S-layer research are: (i) pores passing through S-layers show identical size and morphology and are in the range of ultrafiltration membranes; (ii) functional groups on the surface and in the pores are aligned in well-defined positions and orientations and accessible for chemical modifications and binding functional molecules in very precise fashion; (iii) isolated S-layer subunits from a variety of organisms are capable of recrystallizing as closed monolayers onto solid supports (e.g., metals, polymers, silicon wafers) at the air-water interface, on lipid films or onto the surface of liposomes; (iv) functional domains can be incorporated in S-layer proteins by genetic engineering. Thus, S-layer technologies particularly provide new approaches for biotechnology, biomimetics, molecular nanotechnology, nanopatterning of surfaces and formation of ordered arrays of metal clusters or nanoparticles as required for nanoelectronics.
Surface and Interface Engineering of Organometallic and Two Dimensional Semiconductor
NASA Astrophysics Data System (ADS)
Park, Jun Hong
For over half a century, inorganic Si and III-V materials have led the modern semiconductor industry, expanding to logic transistor and optoelectronic applications. However, these inorganic materials have faced two different fundamental limitations, flexibility for wearable applications and scaling limitation as logic transistors. As a result, the organic and two dimensional have been studied intentionally for various fields. In the present dissertation, three different studies will be presented with followed order; (1) the chemical response of organic semiconductor in NO2 exposure. (2) The surface and stability of WSe2 in ambient air. (3) Deposition of dielectric on two dimensional materials using organometallic seeding layer. The organic molecules rely on the van der Waals interaction during growth of thin films, contrast to covalent bond inorganic semiconductors. Therefore, the morphology and electronic property at surface of organic semiconductor in micro scale is more sensitive to change in gaseous conditions. In addition, metal phthalocyanine, which is one of organic semiconductor materials, change their electronic property as reaction with gaseous analytes, suggesting as potential chemical sensing platforms. In the present part, the growth behavior of metal phthalocyanine and surface response to gaseous condition will be elucidated using scanning tunneling microscopy (STM). In second part, the surface of layered transition metal dichalcogenides and their chemical response to exposure ambient air will be investigated, using STM. Layered transition metal dichalcogenides (TMDs) have attracted widespread attention in the scientific community for electronic device applications because improved electrostatic gate control and suppression of short channel leakage resulted from their atomic thin body. To fabricate the transistor based on TMDs, TMDs should be exposed to ambient conditions, while the effect of air exposure has not been understood fully. In this part, the effect of ambient air on TMDs will be investigated and partial oxidation of TMDs. In the last part, uniform deposition of dielectric layers on 2D materials will be presented, employing organic seedling layer. Although 2D materials have been expected as next generation semiconductor platform, direct deposition of dielectric is still challenging and induces leakage current commonly, because inertness of their surface resulted from absent of dangling bond. Here, metal phthalocyanine monolayer (ML) is employed as seedling layers and the growth of atomic layer deposition (ALD) dielectric is investigated in each step using STM.
Layered Architectures for Quantum Computers and Quantum Repeaters
NASA Astrophysics Data System (ADS)
Jones, Nathan C.
This chapter examines how to organize quantum computers and repeaters using a systematic framework known as layered architecture, where machine control is organized in layers associated with specialized tasks. The framework is flexible and could be used for analysis and comparison of quantum information systems. To demonstrate the design principles in practice, we develop architectures for quantum computers and quantum repeaters based on optically controlled quantum dots, showing how a myriad of technologies must operate synchronously to achieve fault-tolerance. Optical control makes information processing in this system very fast, scalable to large problem sizes, and extendable to quantum communication.
Self-organized layered hydrogenation in black Mg2NiHx switchable mirrors.
Lohstroh, W; Westerwaal, R J; Noheda, B; Enache, S; Giebels, I A M E; Dam, B; Griessen, R
2004-11-05
In addition to a mirrorlike (Mg2Ni) and a transparent (Mg2NiH4) state, thin films of Mg2NiHx exhibit a remarkable black state with low reflection over the entire visible spectrum, essentially zero transmission and a low electrical resistivity. Such a black state is not explicable for a homogeneous layer since a large absorption coefficient always yields substantial reflection. We show that it results from a self-organized and reversible double layering of metallic Mg2NiH0.3 and semiconducting Mg2NiH4.
NASA Astrophysics Data System (ADS)
Yamamoto, R.; Yanagita, Y.; Namaizawa, T.; Komuro, S.; Furukawa, T.; Itou, T.; Kato, R.
2018-06-01
We measured the ac magnetic susceptibility for the layered organic superconductor EtMe3P [Pd(dmit)2] 2 under pressure with a dc magnetic field applied perpendicular to the ac field. We investigated the dc field dependence of the ac susceptibility in detail and concluded that the superconductivity in EtMe3P [Pd(dmit)2] 2 is an anisotropic three-dimensional superconductivity even at low temperatures, which contrasts with the large majority of other correlated electron layered superconductors such as high-Tc cuprate and κ -(ET) 2X systems.
Optical and magnetic properties for metal halide-based organic-inorganic layered perovskites
NASA Astrophysics Data System (ADS)
Shikoh, Eiji; Ando, Yasuo; Era, Masanao; Miyazaki, Terunobu
2001-05-01
Layered perovskites (RNH 3) 2CuCl 4, where R was methyl-benzene C 6H 5-CH 2, 1-methyl-naphthalene 1-C 10H 9-CH 2, 1-propyl-naphthalene 1-C 10H 9-O(CH 2) 3 and 1-butyl-naphthalene 1-C 10H 9-O(CH 2) 4, were synthesized. These complexes showed ferromagnetism, with different Curie temperatures, TC, depending on the structure of the molecule. The change of TC by taking into account the overlap of the electronic states between the organic and the inorganic layers were discussed.
NASA Astrophysics Data System (ADS)
Nakami, S.; Narioka, T.; Kobayashi, T.; Nagase, T.; Naito, H.
2017-11-01
The dependence of active-layer thickness on the power conversion efficiency (PCE) of inverted organic photovoltaics (OPVs) based on poly(3-hexylthiphene) and [6,6]-phenyl-C61-butyric acid methyl ester was investigated. When PCEs were measured immediately after device fabrication, the optimum thickness was ~100 nm. It was, however, found that thick OPVs exhibit higher PCEs a few months later, whereas thin OPVs simply degraded with time. Consequently, the optimum thickness changed with time. Considering this fact, we discuss the relationship between the active-layer thickness and PCE.
Organimetallic Fluorescent Complex Polymers For Light Emitting Applications
Shi, Song Q.; So, Franky
1997-10-28
A fluorescent complex polymer with fluorescent organometallic complexes connected by organic chain spacers is utilized in the fabrication of light emitting devices on a substantially transparent planar substrate by depositing a first conductive layer having p-type conductivity on the planar surface of the substrate, depositing a layer of a hole transporting and electron blocking material on the first conductive layer, depositing a layer of the fluorescent complex polymer on the layer of hole transporting and electron blocking material as an electron transporting emissive layer and depositing a second conductive layer having n-type conductivity on the layer of fluorescent complex polymer.
Wang, Xiaoou; Tian, Yimei; Zhao, Xinhua
2017-08-15
This study investigates the ability of dual-substrate-layer extensive green roofs to retain rainwater and reduce pollutant leaching. The substrates in dual-substrate-layer green roofs consist of an upper organic nutrition layer for plant growth and a lower inorganic adsorption layer for water retention and pollutant reduction. One traditional single-substrate-layer extensive green roof was built for comparison with dual-substrate-layer green roofs. During the experimental period, dual-substrate-layer green roofs supported better natural vegetation growth, with coverage exceeding 90%, while the coverage in single-substrate-layer green roof was over 80%. Based on the average retention value of the total rainfall for four types of simulated rains (the total rainfall depth (mm) was 43.2, 54.6, 76.2 and 86.4, respectively), the dual-substrate-layer green roofs, which used the mixture of activated charcoal with perlite and vermiculite as the adsorption substrate, possessed better rainfall retention performance (65.9% and 55.4%) than the single-substrate-layer green roof (52.5%). All of the dual-substrate-layer green roofs appeared to be sinks for organics, heavy metals and all forms of nitrogen in all cases, while acted as sources of phosphorus contaminants in the case of heavy rains. In consideration of the factors of water retention, pollution reduction and service life of the green roof, a mixture of activated charcoal and/or pumice with perlite and vermiculite is recommended as the adsorption substrate. The green roofs were able to mitigate mild acid rain, raising the pH from approximately 5.6 in rainfall to 6.5-7.6 in green roof runoff. No signs of a first flush effect for phosphate, total phosphorus, ammonia nitrogen, nitrate nitrogen, total nitrogen, organics, zinc, lead, chromium, manganese, copper, pH or turbidity were found in the green roof runoff. Cost analysis further proved the practicability of dual-substrate-layer green roofs in retaining rainwater, and their long-term rainwater runoff quantity and quality performance in urban environments merit further investigation. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Won-Ho; Kwon, Jin-Hyuk; Park, Gyeong-Tae; Kim, Jae-Hyun; Bae, Jin-Hyuk; Zhang, Xue; Park, Jaehoon
2014-09-01
Organic ferroelectric capacitors were fabricated using pentacene and poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) as an organic semiconductor and a ferroelectric material, respectively. A paraelectric poly(vinyl cinnamate) layer was adopted as an interlayer between the PVDF-TrFE layer and the bottom electrode. The paraelectric interlayer induced a depolarization field opposite to the direction of the polarization formed in the ferroelectric PVDF-TrFE insulator, thereby suppressing spontaneous polarization. As a result, the Mott-Schottky model could be used to evaluate, from the extracted flat-band voltages, the density of the charge trapped in the organic ferroelectric capacitors.
[Organic carbon and carbon mineralization characteristics in nature forestry soil].
Yang, Tian; Dai, Wei; An, Xiao-Juan; Pang, Huan; Zou, Jian-Mei; Zhang, Rui
2014-03-01
Through field investigation and indoor analysis, the organic carbon content and organic carbon mineralization characteristics of six kinds of natural forest soil were studied, including the pine forests, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed needle leaf and Korean pine and Chinese pine forest. The results showed that the organic carbon content in the forest soil showed trends of gradual decrease with the increase of soil depth; Double exponential equation fitted well with the organic carbon mineralization process in natural forest soil, accurately reflecting the mineralization reaction characteristics of the natural forest soil. Natural forest soil in each layer had the same mineralization reaction trend, but different intensity. Among them, the reaction intensity in the 0-10 cm soil of the Korean pine forest was the highest, and the intensities of mineralization reaction in its lower layers were also significantly higher than those in the same layers of other natural forest soil; comparison of soil mineralization characteristics of the deciduous broad-leaved forest and coniferous and broad-leaved mixed forest found that the differences of litter species had a relatively strong impact on the active organic carbon content in soil, leading to different characteristics of mineralization reaction.
NASA Astrophysics Data System (ADS)
Gries, Katharina I.; Heinemann, Fabian; Rosenauer, Andreas; Fritz, Monika
2012-11-01
Nacre of abalone shells consists of aragonite platelets and organic material, the so-called organic matrix. During the growth process of the shell the aragonite platelets grow into a scaffold formed by the organic matrix. In this work we tried to mimic this growth process by placing a piece of the insoluble organic matrix (which is a part of the organic matrix) of the abalone Haliotis laevigata in a crystallization device which was flowed through by CaCl2 and NaHCO3 solutions. Using this setup amongst others flat aragonite crystals grow on the insoluble organic matrix. When investigating these crystals in a transmission electron microscope it is possible to recognize similarities to the structure of nacre, like the formation of mineral bridges and growth between layers of the insoluble organic matrix. These similarities are presented in this paper.
Thalamic input to auditory cortex is locally heterogeneous but globally tonotopic
Vasquez-Lopez, Sebastian A; Weissenberger, Yves; Lohse, Michael; Keating, Peter; King, Andrew J
2017-01-01
Topographic representation of the receptor surface is a fundamental feature of sensory cortical organization. This is imparted by the thalamus, which relays information from the periphery to the cortex. To better understand the rules governing thalamocortical connectivity and the origin of cortical maps, we used in vivo two-photon calcium imaging to characterize the properties of thalamic axons innervating different layers of mouse auditory cortex. Although tonotopically organized at a global level, we found that the frequency selectivity of individual thalamocortical axons is surprisingly heterogeneous, even in layers 3b/4 of the primary cortical areas, where the thalamic input is dominated by the lemniscal projection. We also show that thalamocortical input to layer 1 includes collaterals from axons innervating layers 3b/4 and is largely in register with the main input targeting those layers. Such locally varied thalamocortical projections may be useful in enabling rapid contextual modulation of cortical frequency representations. PMID:28891466
Destouesse, Elodie; Chambon, Sylvain; Courtel, Stéphanie; Hirsch, Lionel; Wantz, Guillaume
2015-11-11
In organic photovoltaic (PV) devices based on solution-processed small molecules, we report here that the physicochemical properties of the substrate are critical for achieving high-performances organic solar cells. Three different substrates were tested: ITO coated with PSS, ZnO sol-gel, and ZnO nanoparticles. PV performances are found to be low when the ZnO nanoparticles layer is used. This performance loss is attributed to the formation of many dewetting points in the active layer, because of a relatively high roughness of the ZnO nanoparticles layer, compared to the other layers. We successfully circumvented this phenomenon by adding a small quantity of polystyrene (PS) in the active layer. The introduction of PS improves the quality of film forming and reduces the dark currents of solar cells. Using this method, high-efficiency devices were achieved, even in the case of substrates with higher roughness.
Zhao, Yongbiao; Chen, Jiangshan; Ma, Dongge
2013-02-01
In this paper, highly efficient and simple monochrome blue, green, orange, and red organic light emitting diodes (OLEDs) based on ultrathin nondoped emissive layers (EMLs) have been reported. The ultrathin nondoped EML was constructed by introducing a 0.1 nm thin layer of pure phosphorescent dyes between a hole transporting layer and an electron transporting layer. The maximum external quantum efficiencies (EQEs) reached 17.1%, 20.9%, 17.3%, and 19.2% for blue, green, orange, and red monochrome OLEDs, respectively, indicating the universality of the ultrathin nondoped EML for most phosphorescent dyes. On the basis of this, simple white OLED structures are also demonstrated. The demonstrated complementary blue/orange, three primary blue/green/red, and four color blue/green/orange/red white OLEDs show high efficiency and good white emission, indicating the advantage of ultrathin nondoped EMLs on constructing simple and efficient white OLEDs.
Duan, Lian; Tsuboi, Taiju; Qiu, Yong; Li, Yanrui; Zhang, Guohui
2012-06-18
Tandem organic light emitting diodes (OLEDs) are ideal for lighting applications due to their low working current density at high brightness. In this work, we have studied an efficient electron transporting layer of KBH(4) doped 9,10-bis(3-(pyridin-3-yl)phenyl)anthracene (DPyPA) which is located adjacent to charge generation layer of MoO(3)/NPB. The excellent transporting property of the DPyPA:KBH(4) layer helps the tandem OLED to achieve a lower voltage than the tandem device with the widely used tris-(8-hydroxyquinoline)aluminum:Li. For the tandem white OLED with a fluorescent blue unit and a phosphorescent yellow unit, we've achieved a high current efficiency of 75 cd/A, which can be further improved to 120 cd/A by attaching a diffuser layer.
Surface morphology and interdiffusion of LiF in Alq3-based organic light-emitting devices.
Lee, Young Joo; Li, Xiaolong; Kang, Da-Yeon; Park, Seong-Sik; Kim, Jinwoo; Choi, Jeong-Woo; Kim, Hyunjung
2008-09-01
Highly efficient organic light-emitting devices (OLEDs) have been realized by insertion of a thin insulating lithium fluoride (LiF) layer between aluminum (Al) cathode and an electron transport layer, tris-(8-hydroxyquinoline) aluminum (Alq(3)). In this paper, we study the surface morphology of LiF on Alq(3) by synchrotron X-ray scattering and atomic force microscopy (AFM) as a function of thickness of LiF. We also study the interdiffusion of LiF into Al cathode as well as into Alq(3) layer as a function of temperature. Initially, LiF molecules are distributed randomly as clusters on the Alq(3) layer and then gradually form a layer as increasing LiF thickness. The interdiffusion of LiF into Al occurs more actively than into Alq(3) in annealing process. LiF on Alq(3) induces the ordering of Al to (111) direction strongly with increasing LiF thickness.
Li, Y Z; Wang, Z L; Luo, H; Wang, Y Z; Xu, W J; Ran, G Z; Qin, G G; Zhao, W Q; Liu, H
2010-07-19
A phosphorescent organic light-emitting diode (PhOLED) with a nanometer-thick (approximately 10 nm) Ni silicide/ polycrystalline p-Si composite anode is reported. The structure of the PhOLED is Al mirror/ glass substrate / Si isolation layer / Ni silicide / polycrystalline p-Si/ V(2)O(5)/ NPB/ CBP: (ppy)(2)Ir(acac)/ Bphen/ Bphen: Cs(2)CO(3)/ Sm/ Au/ BCP. In the composite anode, the Ni-induced polycrystalline p-Si layer injects holes into the V(2)O(5)/ NPB, and the Ni silicide layer reduces the sheet resistance of the composite anode and thus the series resistance of the PhOLED. By adopting various measures for specially optimizing the thickness of the Ni layer, which induces Si crystallization and forms a Ni silicide layer of appropriate thickness, the highest external quantum efficiency and power conversion efficiency have been raised to 26% and 11%, respectively.
Nucleation and Early Stages of Layer-by-Layer Growth of Metal Organic Frameworks on Surfaces
2015-01-01
High resolution atomic force microscopy (AFM) is used to resolve the evolution of crystallites of a metal organic framework (HKUST-1) grown on Au(111) using a liquid-phase layer-by-layer methodology. The nucleation and faceting of individual crystallites is followed by repeatedly imaging the same submicron region after each cycle of growth and we find that the growing surface is terminated by {111} facets leading to the formation of pyramidal nanostructures for [100] oriented crystallites, and triangular [111] islands with typical lateral dimensions of tens of nanometres. AFM images reveal that crystallites can grow by 5–10 layers in each cycle. The growth rate depends on crystallographic orientation and the morphology of the gold substrate, and we demonstrate that under these conditions the growth is nanocrystalline with a morphology determined by the minimum energy surface. PMID:26709359
USDA-ARS?s Scientific Manuscript database
In this presentation, new approaches for flame retardant textile by using supercritical carbon dioxide (scCO2) and layer-by-layer processing will be discussed. Due to its environmentally benign character, the scCO2 is considered in green chemistry as a substitute for organic solvents in chemical re...
NASA Astrophysics Data System (ADS)
Kaçar, Rifat; Pıravadılı Mucur, Selin; Yıldız, Fikret; Dabak, Salih; Tekin, Emine
2017-06-01
The electrode/organic interface is one of the key factors in attaining superior device performance in organic electronics, and inserting a tailor-made layer can dramatically modify its properties. The use of nano-composite (NC) materials leads to many advantages by combining materials with the objective of obtaining a desirable combination of properties. In this context, zinc oxide/polyethyleneimine (ZnO:PEI) NC film was incorporated as an interfacial layer into inverted bottom-emission organic light emitting diodes (IBOLEDs) and fully optimized. For orange-red emissive MEH-PPV based IBOLEDs, a high power efficiency of 6.1 lm W-1 at a luminance of 1000 cd m-2 has been achieved. Notably, the external quantum efficiency (EQE) increased from 0.1 to 4.8% and the current efficiency (CE) increased from 0.2 to 8.7 cd A-1 with rise in luminance (L) from 1000 to above 10 000 cd m-2 levels when compared to that of pristine ZnO-based devices. An identical device architecture containing a ZnO:PEI NC layer has also been used to successfully fabricate green and blue emissive IBOLEDs. The significant enhancement in the inverted device performance, in terms of luminance and efficiency, is attributed to a good energy-level alignment between the cathode/organic interface which leads to effective carrier balance, resulting in efficient radiative-recombination.
[The role of BCP in electroluminescence of multilayer organic light-emitting devices].
Deng, Zhao-Ru; Yang, Sheng-Yi; Lou, Zhi-Dong; Meng, Ling-Chuan
2009-03-01
As a hole-blocking layer, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) is usually used in blue and white light electroluminescent devices. The ability of blocking holes of BCP layer depends on its thickness, and basically holes can tunnel through thin BCP layer. In order to know the role of BCP layer in electroluminescence (EL) of multilayer organic light-emitting diodes (OLEDs), in the present paper, the authors designed a multilayer OLED ITO/NPB/BCP/Alq3 : DCJTB/Alq3/Al and investigated the influence of thickness of BCP on the EL spectra of multilayer OLEDs at different applied voltages. The experimental data show that thin BCP layer can block holes partially and tune the energy transfer between different emissive layers, and in this way, it is easy to obtain white emission, but its EL spectra will change with the applied voltages. The EL spectra of multilayer device will remain relatively stable when BCP layer is thick enough, and the holes can hardly tunnel through when the thickness of BCP layer is more than 15 nm. Furthermore, the stability of EL spectra of the multilayer OLED at different applied voltages was discussed.
Zhang, Yalei; Zhao, Yangying; Chu, Huaqiang; Zhou, Xuefei; Dong, Bingzhi
2014-01-01
The diatomite dynamic membrane (DDM) was utilized to dewater Chlorella pyrenoidosa of 2 g dry weight/L under continuous-flow mode, whose ultimate algae concentration ranged from 43 g to 22 g dry weight/L of different culture time. The stable flux of DDM could reach 30 L/m(2) h over a 24 h operation time without backwash. Influences of extracellular organic matters (EOM) on filtration behavior and membrane fouling were studied. The DDM was divided into three sub-layers, the slime layer, the algae layer and the diatomite layer from the outside to the inside of the cake layer based on components and morphologies. It was found that EOM caused membrane fouling by accumulating in the slime and algae layers. The DDM intercepted polysaccharides, protein-like substances, humic-like substances and some low-MW organics. Proteins were indicated the major membrane foulants with increased protein/polysaccharide ratio from the slime layer to the diatomite layer as culture time increased. This method could be applied to subsequent treatment of microalgae coupling technology of wastewater treatment or microalgae harvesting for producing biofuel. Copyright © 2013 Elsevier B.V. All rights reserved.
Schumann, Dirk; Hartman, Hyman; Eberl, Dennis D; Sears, S Kelly; Hesse, Reinhard; Vali, Hojatollah
2012-06-01
The potential role of clay minerals in the abiotic origin of life has been the subject of ongoing debate for the past several decades. At issue are the clay minerals found in a class of meteorites known as carbonaceous chondrites. These clay minerals are the product of aqueous alteration of anhydrous mineral phases, such as olivine and orthopyroxene, that are often present in the chondrules. Moreover, there is a strong correlation in the occurrence of clay minerals and the presence of polar organic molecules. It has been shown in laboratory experiments at low temperature and ambient pressure that polar organic molecules, such as the oxalate found in meteorites, can catalyze the crystallization of clay minerals. In this study, we show that oxalate is a robust catalyst in the crystallization of saponite, an Al- and Mg-rich, trioctahedral 2:1 layer silicate, from a silicate gel at 60°C and ambient pressure. High-resolution transmission electron microscopy analysis of the saponite treated with octadecylammonium (n(C)=18) cations revealed the presence of 2:1 layer structures that have variable interlayer charge. The crystallization of these differently charged 2:1 layer silicates most likely occurred independently. The fact that 2:1 layer silicates with variable charge formed in the same gel has implications for our understanding of the origin of life, as these 2:1 clay minerals most likely replicate by a mechanism of template-catalyzed polymerization and transmit the charge distribution from layer to layer. If polar organic molecules like oxalate can catalyze the formation of clay-mineral crystals, which in turn promote clay microenvironments and provide abundant adsorption sites for other organic molecules present in solution, the interaction among these adsorbed molecules could lead to the polymerization of more complex organic molecules like RNA from nucleotides on early Earth.
Schumann, Dirk; Hartman, Hyman; Eberl, Dennis D.; Sears, S. Kelly; Hesse, Reinhard; Vali, Hojatollah
2012-01-01
The potential role of clay minerals in the abiotic origin of life has been the subject of ongoing debate for the past several decades. At issue are the clay minerals found in a class of meteorites known as carbonaceous chondrites. These clay minerals are the product of aqueous alteration of anhydrous mineral phases, such as olivine and orthopyroxene, that are often present in the chondrules. Moreover, there is a strong correlation in the occurrence of clay minerals and the presence of polar organic molecules. It has been shown in laboratory experiments at low temperature and ambient pressure that polar organic molecules, such as the oxalate found in meteorites, can catalyze the crystallization of clay minerals. In this study, we show that oxalate is a robust catalyst in the crystallization of saponite, an Al- and Mg-rich, trioctahedral 2:1 layer silicate, from a silicate gel at 60°C and ambient pressure. High-resolution transmission electron microscopy analysis of the saponite treated with octadecylammonium (n(C)=18) cations revealed the presence of 2:1 layer structures that have variable interlayer charge. The crystallization of these differently charged 2:1 layer silicates most likely occurred independently. The fact that 2:1 layer silicates with variable charge formed in the same gel has implications for our understanding of the origin of life, as these 2:1 clay minerals most likely replicate by a mechanism of template-catalyzed polymerization and transmit the charge distribution from layer to layer. If polar organic molecules like oxalate can catalyze the formation of clay-mineral crystals, which in turn promote clay microenvironments and provide abundant adsorption sites for other organic molecules present in solution, the interaction among these adsorbed molecules could lead to the polymerization of more complex organic molecules like RNA from nucleotides on early Earth.
S-Layer Based Bio-Imprinting - Synthetic S-Layer Polymers
2015-07-09
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION . 1. REPORT DATE (DD-MM-YYYY) 14-07-2015 2. REPORT TYPE Final Performance 3. DATES...NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) ZENTRUM FUER NANOBIOTECHNOLOGIE GREGOR-MENDEL-STRASSE 33 WIEN, 1180 AT 8. PERFORMING... ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) AF Office of Scientific Research 875 N. Randolph St. Room 3112
Inverted organic photovoltaic device with a new electron transport layer
NASA Astrophysics Data System (ADS)
Kim, Hyeong Pil; Yusoff, Abd Rashid bin Mohd; Kim, Hyo Min; Lee, Hee Jae; Seo, Gi Jun; Jang, Jin
2014-03-01
We demonstrate that there is a new solution-processed electron transport layer, lithium-doped zinc oxide (LZO), with high-performance inverted organic photovoltaic device. The device exhibits a fill factor of 68.58%, an open circuit voltage of 0.86 V, a short-circuit current density of -9.35 cm/mA2 along with 5.49% power conversion efficiency. In addition, we studied the performance of blend ratio dependence on inverted organic photovoltaics. Our device also demonstrates a long stability shelf life over 4 weeks in air.
NASA Astrophysics Data System (ADS)
Peixi, Su; Zijuan, Zhou; Rui, Shi; tingting, Xie
2017-04-01
The alpine sod layer is a soft, tough and resistant to shifting surface soil layer under the formation of the natural vegetation in the plateau cold region, understanding its ecological function is a prerequisite to promote grass and animal husbandry production for recuperation and protection, and the active use of project construction. Based on the extensive investigation on the alpine vegetation of the Zoige Plateau in the Eastern Qinghai-Tibetan Plateau of China, set up moisture gradient community sample plots: swamp, degraded swamp, swampy meadow, wet meadow, dry meadow and degraded meadow, and the elevation gradient community sample plots: subalpine meadow, subalpine shrub meadow, alpine shrub meadow and alpine meadow were set up. The sod layer bulk density, soil particle composition and soil organic carbon (SOC) content of different types of community plots were analyzed and to compare its carbon sequestration capacity on the moisture and elevation gradients. The results showed that the average thickness of the sod layer was 30 cm, the bulk density of the swamp was the smallest, and the SOC content was above 300 g/kg. The bulk density of degraded meadow was the highest while its SOC content was decreased significantly. The SOC density of sod layer in different communities was between 10 and 24 kg C/m2, and decreased with the decreasing of soil water availability, and meadow degradation significantly decreased the soil organic carbon storage in sod layer. The sod layer SOC density of alpine shrub meadow was 15% higher than that of meadow on the altitudinal gradient. It was concluded that the mass water content threshold value for maintaining the sod layer stable is 30%. In the degraded succession of alpine vegetation from swamp to meadow, the bulk density and compactness of sod layer became larger, while the organic carbon content, carbon density and carbon storage decreased. The higher the gravel content of swamp, the more easily degraded, and the higher the sand content of the meadow, the more easily degraded. Shrub meadow had higher carbon sequestration capacity than that of meadow, but the productive function of shrub meadow was lower. Keeping the sustainable development of grassland productivity and maintaining the carbon sequestration ecological function, it is necessary to prevent the degradation of the sod layer, and restrain the succession from meadow to scrub meadow. Key Words: surface soil layer, soil organic carbon, carbon density, alpine vegetation, Zoige Plateau
Chen, Xiao-mei; Liu, Ju-xiu; Deng, Qi; Chu, Guo-wei; Zhou, Guo-yi; Zhang, De-qiang
2010-05-01
From December 2006 to June 2008, a field experiment was conducted to study the effects of natural precipitation, doubled precipitation, and no precipitation on the soil organic carbon fractions and their distribution under a successional series of monsoon evergreen broad-leaf forest, pine and broad-leaf mixed forest, and pine forest in Dinghushan Mountain of Southern China. Different precipitation treatments had no significant effects on the total organic carbon (TOC) concentration in the same soil layer under the same forest type (P > 0.05). In treatment no precipitation, particulate organic carbon (POC) and light fraction organic carbon (LFOC) were mainly accumulated in surface soil layer (0-10 cm); but in treatments natural precipitation and doubled precipitation, the two fractions were infiltrated to deeper soil layers. Under pine forest, soil readily oxidizable organic carbon (ROC) was significantly higher in treatment no precipitation than in treatments natural precipitation and doubled precipitation (P < 0.05). The percentage of soil POC, ROC, and LFOC to soil TOC was much greater under the forests at early successional stage than at climax stage, suggesting that the forest at early successional stage might not be an ideal place for soil organic carbon storage. Precipitation intensity less affected TOC, but had greater effects on the labile components POC, ROC, and LFOC.
Alicja Breymeyer; Marek Degorski; David Reed
1998-01-01
The relationship between litter decomposition rate, some chemical properties of upper soil layers (iron, manganese, zinc, copper, lead, mercury, nickel, chrome in humus-mineral horizon-A), and litter (the same eight elements in needle litter fraction) in pine forests of Poland was studied. Heavy metal content in organic-mineral horizon of soils was highly correlated...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genet, Helene; McGuire, A. David; Barrett, K.
There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and testedmore » a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layercaused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness of 1.1 m on average by 2100. The combination of warming and fire led to a simulated cumulative loss of 9.6 kgC m 2 on average by 2100. Our analysis suggests that ecosystem carbon storage in boreal forests in interior Alaska is particularly vulnerable, primarily due to the combustion of organic layer thickness in fire and the related increase in active layer thickness that exposes previously protected permafrost soil carbon to decomposition.« less
Watanabe, Hideyuki; Rajagopalan, Uma Maheswari; Nakamichi, Yu; Igarashi, Kei M.; Madjarova, Violeta Dimitrova; Kadono, Hirofumi; Tanifuji, Manabu
2011-01-01
Here, we report in vivo 3-D visualization of the layered organization of a rat olfactory bulb (OB) by a swept source optical coherence tomography (SS-OCT). The SS-OCT operates at a wavelength of 1334 nm with respective theoretical depth and lateral resolutions of 6.7 μm and 15.4 μm in air and hence it is possible to get a 3D structural map of OB in vivo at the micron level resolution with millimeter-scale imaging depth. Up until now, with methods such as MRI, confocal microscopy, OB depth structure in vivo had not been clearly visualized as these do not satisfy the criterion of simultaneously providing micron-scale spatial resolution and imaging up to a few millimeter in depth. In order to confirm the OB’s layered organization revealed by SS-OCT, we introduced the technique of electrocoagulation to make landmarks across the layered structure. To our knowledge this is such a first study that combines electrocoagulation and OCT in vivo of rat OB. Our results confirmed the layered organization of OB, and moreover the layers were clearly identified by electrocoagulation landmarks both in the OCT structural and anatomical slice images. We expect such a combined study is beneficial for both OCT and neuroscience fields. PMID:21833364
Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau.
Chen, Yong-Liang; Deng, Ye; Ding, Jin-Zhi; Hu, Hang-Wei; Xu, Tian-Le; Li, Fei; Yang, Gui-Biao; Yang, Yuan-He
2017-12-01
Permafrost represents an important understudied genetic resource. Soil microorganisms play important roles in regulating biogeochemical cycles and maintaining ecosystem function. However, our knowledge of patterns and drivers of permafrost microbial communities is limited over broad geographic scales. Using high-throughput Illumina sequencing, this study compared soil bacterial, archaeal and fungal communities between the active and permafrost layers on the Tibetan Plateau. Our results indicated that microbial alpha diversity was significantly higher in the active layer than in the permafrost layer with the exception of fungal Shannon-Wiener index and Simpson's diversity index, and microbial community structures were significantly different between the two layers. Our results also revealed that environmental factors such as soil fertility (soil organic carbon, dissolved organic carbon and total nitrogen contents) were the primary drivers of the beta diversity of bacterial, archaeal and fungal communities in the active layer. In contrast, environmental variables such as the mean annual precipitation and total phosphorus played dominant roles in driving the microbial beta diversity in the permafrost layer. Spatial distance was important for predicting the bacterial and archaeal beta diversity in both the active and permafrost layers, but not for fungal communities. Collectively, these results demonstrated different driving factors of microbial beta diversity between the active layer and permafrost layer, implying that the drivers of the microbial beta diversity observed in the active layer cannot be used to predict the biogeographic patterns of the microbial beta diversity in the permafrost layer. © 2017 John Wiley & Sons Ltd.
Highly organized smectic-like packing in vapor-deposited glasses of a liquid crystal
Gujral, Ankit; Gomez, Jaritza; Jiang, Jing; ...
2016-12-26
Glasses of a model smectic liquid crystal-forming molecule, itraconazole, were prepared by vapor deposition onto substrates with temperatures ranging from T substrate = 0.78T g to 1.02T g, where T g (=330 K) is the glass transition temperature. The films were characterized using X-ray scattering techniques. For T substrate near and below T g, glasses with layered smectic-like structures can be prepared and the layer spacing can be tuned by 16% through the choice of T substrate. Remarkably, glasses prepared with T substrate values above T g exhibit levels of structural organization much higher than that of a thermally annealedmore » film. These results are explained by a mechanism based upon a preferred molecular orientation and enhanced molecular motion at the free surface, indicating that molecular organization in the glass is independent of the anchoring preferred at the substrate. Furthermore, these results suggest new strategies for optimizing molecular packing within active layers of organic electronic and optoelectronic devices.« less
Organic Field Effect Transistor Using Amorphous Fluoropolymer as Gate Insulating Film
NASA Astrophysics Data System (ADS)
Kitajima, Yosuke; Kojima, Kenzo; Mizutani, Teruyoshi; Ochiai, Shizuyasu
Organic field effect transistors are fabricated by the active layer of Regioregular poly (3-hexylthiophene-2,5-diy)(P3HT) thin film. CYTOP thin film made from Amorphous Fluoropolymer and fabricated by spin-coating is adopted to a gate dielectric layer on Polyethylenenaphthalate (PEN) thin film that is the substrate of an organic field effect transistor. The surface morphology and molecular orientation of P3HT thin films is observed by atomic force microscope (AFM) and X-Ray diffractometer (XRD). Grains are observed on the CYTOP thin film via an AFM image and the P3HT molecule is oriented perpendicularly on the CYTOP thin film. Based on the performance of the organic field effect transistor, the carrier mobility is 0.092 cm2/Vs, the ON/OFF ratio is 7, and the threshold voltage is -12 V. The ON/OFF ratio is relatively low and to improve On/Off ratio, the CYTOP/Polyimide double gate insulating layer is adopted to OFET.
Multilayer organic based structures with enhanced hole transport
NASA Astrophysics Data System (ADS)
Mladenova, D.; Sinigersky, V.; Budurova, D.; Dobreva, T.; Karashanova, D.; Dimov, D.; Zhivkov, I.
2010-11-01
Multilayer Organic Based Devices (OBDs) were constructed by subsequent casting of organic films (from polymers, soluble in the same organic solvent). The problem with dissolution of the underlying layer was avoided by using electrophoretic deposition technique. Optimized conditions for electrophoretic deposition (EPD) of thin films with homogeneous and smooth surfaces, as confirmed by SEM, were found. The EPD, carried out at constant current, requires continuous increase of the voltage between the electrodes. In this way the decreased deposition rate caused by the decreased concentration of the material in the suspension and the increased thickness of the film deposited is compensated. The SEM images and the current voltage characteristics recorded, show that the hole transport polyvinylcarbazole (PVK) underlayer survive the treatment with the suspension used for the electrophoretic deposition of the active poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylene vinylene] electroluminescent layer. The PVK hole transport layer increases the device current, as confirmed by the current-voltage measurements. The results obtained demonstrate the possibility of OBDs preparation for electroluminescent and photovoltaic applications.
Oxygen Impurities Link Bistability and Magnetoresistance in Organic Spin Valves.
Bergenti, Ilaria; Borgatti, Francesco; Calbucci, Marco; Riminucci, Alberto; Cecchini, Raimondo; Graziosi, Patrizio; MacLaren, Donald A; Giglia, Angelo; Rueff, Jean Pascal; Céolin, Denis; Pasquali, Luca; Dediu, Valentin
2018-03-07
Vertical crossbar devices based on manganite and cobalt injecting electrodes and a metal-quinoline molecular transport layer are known to manifest both magnetoresistance (MR) and electrical bistability. The two effects are strongly interwoven, inspiring new device applications such as electrical control of the MR and magnetic modulation of bistability. To explain the device functionality, we identify the mechanism responsible for electrical switching by associating the electrical conductivity and the impedance behavior with the chemical states of buried layers obtained by in operando photoelectron spectroscopy. These measurements revealed that a significant fraction of oxygen ions migrate under voltage application, resulting in a modification of the electronic properties of the organic material and of the oxidation state of the interfacial layer with the ferromagnetic contacts. Variable oxygen doping of the organic molecules represents the key element for correlating bistability and MR, and our measurements provide the first experimental evidence in favor of the impurity-driven model describing the spin transport in organic semiconductors in similar devices.
NASA Astrophysics Data System (ADS)
Giri, Ashutosh; Niemelä, Janne-Petteri; Szwejkowski, Chester J.; Karppinen, Maarit; Hopkins, Patrick E.
2016-01-01
We study the influence of molecular monolayers on the thermal conductivities and heat capacities of hybrid inorganic/organic superlattice thin films fabricated via atomic/molecular layer deposition. We measure the cross plane thermal conductivities and volumetric heat capacities of TiO2- and ZnO-based superlattices with periodic inclusion of hydroquinone layers via time domain thermoreflectance. In comparison to their homogeneous counterparts, the thermal conductivities in these superlattice films are considerably reduced. We attribute this reduction in the thermal conductivity mainly due to incoherent phonon boundary scattering at the inorganic/organic interface. Increasing the inorganic/organic interface density reduces the thermal conductivity and heat capacity of these films. High-temperature annealing treatment of the superlattices results in a change in the orientation of the hydroquinone molecules to a 2D graphitic layer along with a change in the overall density of the hybrid superlattice. The thermal conductivity of the hybrid superlattice increases after annealing, which we attribute to an increase in crystallinity.
NASA Astrophysics Data System (ADS)
Matamala, R.; Fan, Z.; Jastrow, J. D.; Liang, C.; Calderon, F.; Michaelson, G.; Ping, C. L.; Mishra, U.; Hofmann, S. M.
2016-12-01
The large amounts of organic matter stored in permafrost-region soils are preserved in a relatively undecomposed state by the cold and wet environmental conditions limiting decomposer activity. With pending climate changes and the potential for warming of Arctic soils, there is a need to better understand the amount and potential susceptibility to mineralization of the carbon stored in the soils of this region. Studies have suggested that soil C:N ratio or other indicators based on the molecular composition of soil organic matter could be good predictors of potential decomposability. In this study, we investigated the capability of Fourier-transform mid infrared spectroscopy (MidIR) spectroscopy to predict the evolution of carbon dioxide (CO2) produced by Arctic tundra soils during a 60-day laboratory incubation. Soils collected from four tundra sites on the Coastal Plain, and Arctic Foothills of the North Slope of Alaska were separated into active-layer organic, active-layer mineral, and upper permafrost and incubated at 1, 4, 8 and 16 °C. Carbon dioxide production was measured throughout the incubations. Total soil organic carbon (SOC) and total nitrogen (TN) concentrations, salt (0.5 M K2SO4) extractable organic matter (SEOM), and MidIR spectra of the soils were measured before and after incubation. Multivariate partial least squares (PLS) modeling was used to predict cumulative CO2 production, decay rates, and the other measurements. MidIR reliably estimated SOC and TN and SEOM concentrations. The MidIR prediction models of CO2 production were very good for active-layer mineral and upper permafrost soils and good for the active-layer organic soils. SEOM was also a very good predictor of CO2 produced during the incubations. Analysis of the standardized beta coefficients from the PLS models of CO2 production for the three soil layers indicated a small number (9) of influential spectral bands. Of these, bands associated with O-H and N-H stretch, carbonates, and ester C-O appeared to be most important for predicting CO2 production for both active-layer mineral and upper permafrost soils. Further analysis of these influential bands and their relationships to SEOM in soil will be explored. Our results show that the MidIR spectra contains valuable information that can be related to decomposability of soils.
NASA Astrophysics Data System (ADS)
Das, Sayantan
The inexorable upsurge in world’s energy demand has steered the search for newer renewable energy sources and photovoltaics seemed to be one of the best alternatives for energy production. Among the various photovoltaic technologies that emerged, organic/polymer photovoltaics based on solution processed bulk-heterojunctions (BHJ) of semiconducting polymers has gained serious attention owing to the use of inexpensive light-weight materials, exhibiting high mechanical flexibility and compatibility with low temperature roll-to-roll manufacturing techniques on flexible substrates. The most widely studied material to date is the blend of regioregular P3HT and PC61BM used as donor and acceptor materials. The object of this study was to investigate and improve the performance/stability of the organic solar cells by use of inexpensive materials. In an attempt to enhance the efficiency of organic solar cells, we have demonstrated the use of hexamethyldisilazane (HMDS) modified indium tin oxide (ITO) electrode in bulk heterojunction solar cell structure The device studies showed a significant enhancement in the short-circuit current as well as in the shunt resistance on use of the hexamethyldisilazane (HMDS) layer. In another approach a p-type CuI hole-transport layer was utilized that could possibly replace the acidic PEDOT:PSS layer in the fabrication of high-efficiency solar cells. The device optimization was done by varying the concentration of CuI in the precursor solution which played an important role in the efficiency of the solar cell devices. Recently a substantial amount of research has been focused on identifying suitable interfacial layers in organic solar cells which has efficient charge transport properties. It was illustrated that a thin layer of silver oxide interfacial layer showed a 28% increase in power conversion efficiency in comparison to that of the control cell. The optoelectronic properties and morphological features of indium-free ZnO/Ag/MoOx electrodes was also studied. Organic solar cells on these composite electrodes revealed good optical and electrical properties, making them a promising alternative indium free and PEDOT:PSS-free organic solar cells. Lastly, inverted solar cells utilizing zinc oxide and yttrium doped zinc oxide electron transport was also created and their device properties revealed that optimum annealing conditions and yttrium doping was essential to obtain high efficiency solar cells.
Direct Free Carrier Photogeneration in Single Layer and Stacked Organic Photovoltaic Devices.
Chandran, Hrisheekesh Thachoth; Ng, Tsz-Wai; Foo, Yishu; Li, Ho-Wa; Qing, Jian; Liu, Xiao-Ke; Chan, Chiu-Yee; Wong, Fu-Lung; Zapien, Juan Antonio; Tsang, Sai-Wing; Lo, Ming-Fai; Lee, Chun-Sing
2017-06-01
High performance organic photovoltaic devices typically rely on type-II P/N junctions for assisting exciton dissociation. Heremans and co-workers recently reported a high efficiency device with a third organic layer which is spatially separated from the active P/N junction; but still contributes to the carrier generation by passing its energy to the P/N junction via a long-range exciton energy transfer mechanism. In this study the authors show that there is an additional mechanism contributing to the high efficiency. Some bipolar materials (e.g., subnaphthalocyanine chloride (SubNc) and subphthalocyanine chloride (SubPc)) are observed to generate free carriers much more effectively than typical organic semiconductors upon photoexcitation. Single-layer devices with SubNc or SubPc sandwiched between two electrodes can give power conversion efficiencies 30 times higher than those of reported single-layer devices. In addition, internal quantum efficiencies (IQEs) of bilayer devices with opposite stacking sequences (i.e., SubNc/SubPc vs SubPc/SubNc) are found to be the sum of IQEs of single layer devices. These results confirm that SubNc and SubPc can directly generate free carriers upon photoexcitation without assistance from a P/N junction. These allow them to be stacked onto each other with reversible sequence or simply stacking onto another P/N junction and contribute to the photocarrier generation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Probing the energetics of organic–nanoparticle interactions of ethanol on calcite
Wu, Di; Navrotsky, Alexandra
2015-01-01
Knowing the nature of interactions between small organic molecules and surfaces of nanoparticles (NP) is crucial for fundamental understanding of natural phenomena and engineering processes. Herein, we report direct adsorption enthalpy measurement of ethanol on a series of calcite nanocrystals, with the aim of mimicking organic–NP interactions in various environments. The energetics suggests a spectrum of adsorption events as a function of coverage: strongest initial chemisorption on active sites on fresh calcite surfaces, followed by major chemical binding to form an ethanol monolayer and, subsequently, very weak, near-zero energy, physisorption. These thermochemical observations directly support a structure where the ethanol monolayer is bonded to the calcite surface through its polar hydroxyl group, leaving the hydrophobic ends of the ethanol molecules to interact only weakly with the next layer of adsorbing ethanol and resulting in a spatial gap with low ethanol density between the monolayer and subsequent added ethanol molecules, as predicted by molecular dynamics and density functional calculations. Such an ordered assembly of ethanol on calcite NP is analogous to, although less strongly bonded than, a capping layer of organics intentionally introduced during NP synthesis, and suggests a continuous variation of surface structure depending on molecular chemistry, ranging from largely disordered surface layers to ordered layers that nevertheless are mobile and can rearrange or be displaced by other molecules to strongly bonded immobile organic capping layers. These differences in surface structure will affect chemical reactions, including the further nucleation and growth of nanocrystals on organic ligand-capped surfaces. PMID:25870281
Plasmon enhanced power conversion efficiency in inverted bulk heterojunction organic solar cell
NASA Astrophysics Data System (ADS)
Mohan, Minu; Ramkumar, S.; Namboothiry, Manoj A. G.
2017-08-01
P3HT:PCBM is one of the most studied polymer-fullerene system. However the reported power conversion efficiency (PCE) values falls within the range of 4% to 5%. The thin film architecture in OPVs exhibits low PCE compared to inorganic photovoltaic cells. This is mainly due to the low exciton diffusion length that limits the active layer thickness which in turn reduces the absorption of incident light. Several strategies are adapted in order to increase the absorption in the active layer without increasing the film thickness. Inclusion of metal nanoparticles into the polymer layer of bulk heterojunction (BHJ) solar cells is one of the promising methods. Incorporation of metal nanostructures increases the absorption of organic materials due to the high electromagnetic field strength in the vicinity of the excited surface plasmons. In this work, we used 60 nm Au plasmonic structures to improve the efficiency of organic solar cell. The prepared metal nano structures were characterized through scanning electron microscopy (SEM), and UV-Visible spectroscopy techniques. These prepared metallic nanoparticles can be incorporated either into the electron transport layer (ETL) or into the active P3HT:PC71BM layer. The effect of incorporation of plasmonic gold (Au) nanoparticle in the inverted bulk heterojunction organic photovoltaic cells (OPVs) of P3HT:PC71BM fabricated in ambient air condition is in progress. Initial studies shows an 8.5% enhancement in the PCE with the incorporation of Au nanoparticles under AM1.5G light of intensity 1 Sun.
Heat-transport mechanisms in molecular building blocks of inorganic/organic hybrid superlattices
NASA Astrophysics Data System (ADS)
Giri, Ashutosh; Niemelä, Janne-Petteri; Tynell, Tommi; Gaskins, John T.; Donovan, Brian F.; Karppinen, Maarit; Hopkins, Patrick E.
2016-03-01
Nanomaterial interfaces and concomitant thermal resistances are generally considered as atomic-scale planes that scatter the fundamental energy carriers. Given that the nanoscale structural and chemical properties of solid interfaces can strongly influence this thermal boundary conductance, the ballistic and diffusive nature of phonon transport along with the corresponding phonon wavelengths can affect how energy is scattered and transmitted across an interfacial region between two materials. In hybrid composites composed of atomic layer building blocks of inorganic and organic constituents, the varying interaction between the phononic spectrum in the inorganic crystals and vibronic modes in the molecular films can provide a new avenue to manipulate the energy exchange between the fundamental vibrational energy carriers across interfaces. Here, we systematically study the heat transfer mechanisms in hybrid superlattices of atomic- and molecular-layer-grown zinc oxide and hydroquinone with varying thicknesses of the inorganic and organic layers in the superlattices. We demonstrate ballistic energy transfer of phonons in the zinc oxide that is limited by scattering at the zinc oxide/hydroquinone interface for superlattices with a single monolayer of hydroquinone separating the thicker inorganic layers. The concomitant thermal boundary conductance across the zinc oxide interfacial region approaches the maximal thermal boundary conductance of a zinc oxide phonon flux, indicative of the contribution of long wavelength vibrations across the aromatic molecular monolayers in transmitting energy across the interface. This transmission of energy across the molecular interface decreases considerably as the thickness of the organic layers are increased.
NASA Astrophysics Data System (ADS)
Tadaki, Daisuke; Ma, Teng; Zhang, Jinyu; Iino, Shohei; Hirano-Iwata, Ayumi; Kimura, Yasuo; Rosenberg, Richard A.; Niwano, Michio
2016-04-01
Organic thin film transistors (OTFTs) have been explored because of their advantageous features such as light-weight, flexible, and large-area. For more practical application of organic electronic devices, it is very important to realize OTFTs that are composed only of organic materials. In this paper, we have fabricated p+-i-p+ type of OTFTs in which an intrinsic (i) regioregular poly (3-hexylthiophene) (P3HT) layer is used as the active layer and highly doped p-type (p+) P3HT is used as the source and drain electrodes. The 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) was used as the p-type dopant. A fabricating method of p+-i-p+ OTFTs has been developed by using SiO2 and aluminum films as capping layers for micro-scaled patterning of the p+-P3HT electrodes. The characteristics of the OTFTs were examined using the photoelectron spectroscopy and electrical measurements. We demonstrated that the fabricated p+-i-p+ OTFTs work with carrier injection through a built-in potential at p+/i interfaces. We found that the p+-i-p+ OTFTs exhibit better FET characteristics than the conventional P3HT-OTFT with metal (Au) electrodes, indicating that the influence of a carrier injection barrier at the interface between the electrode and the active layer was suppressed by replacing the metal electrodes with p+-P3HT layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syme, Alasdair
2016-08-15
Purpose: To use Monte Carlo simulations to optimize the design of an organic field effect transistor (OFET) to maximize water-equivalence across the diagnostic and therapeutic photon energy ranges. Methods: DOSXYZnrc was used to simulate transport of mono-energetic photon beams through OFETs. Dose was scored in the dielectric region of devices and used for evaluating the response of the device relative to water. Two designs were considered: 1. a bottom-gate device on a substrate of polyethylene terephthalate (PET) with an aluminum gate, a dielectric layer of either PMMA or CYTOP (a fluorocarbon) and an organic semiconductor (pentacene). 2. a symmetric bilayermore » design was employed in which two polymer layers (PET and CYTOP) were deposited both below the gate and above the semiconductor to improve water-equivalence and reduce directional dependence. The relative thickness of the layers was optimized to maximize water-equivalence. Results: Without the bilayer, water-equivalence was diminished relative to OFETs with the symmetric bilayer at low photon energies (below 80 keV). The bilayer’s composition was designed to have one layer with an effective atomic number larger than that of water and the other with an effective atomic number lower than that of water. For the particular materials used in this study, a PET layer 0.1mm thick coupled with a CYTOP layer of 900 nm provided a device with a water-equivalence within 3% between 20 keV and 5 MeV. Conclusions: organic electronic devices hold tremendous potential as water-equivalent dosimeters that could be used in a wide range of applications without recalibration.« less
[Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions.
Cao, Rui; Wu, Fu Zhong; Yang, Wan Qin; Xu, Zhen Feng; Tani, Bo; Wang, Bin; Li, Jun; Chang, Chen Hui
2016-04-22
In order to understand the variations of soil microbial biomass and soil enzyme activities with the change of altitude, a field incubation was conducted in dry valley, ecotone between dry valley and mountain forest, subalpine coniferous forest, alpine forest and alpine meadow from 1563 m to 3994 m of altitude in the alpine-gorge region of western Sichuan. The microbial biomass carbon and nitrogen, and the activities of invertase, urease and acid phosphorus were measured in both soil organic layer and mineral soil layer. Both the soil microbial biomass and soil enzyme activities showed the similar tendency in soil organic layer. They increased from 2158 m to 3028 m, then decreased to the lowest value at 3593 m, and thereafter increased until 3994 m in the alpine-gorge region. In contrast, the soil microbial biomass and soil enzyme activities in mineral soil layer showed the trends as, the subalpine forest at 3028 m > alpine meadow at 3994 m > montane forest ecotone at 2158 m > alpine forest at 3593 m > dry valley at 1563 m. Regardless of altitudes, soil microbial biomass and soil enzyme activities were significantly higher in soil organic layer than in mineral soil layer. The soil microbial biomass was significantly positively correlated with the activities of the measured soil enzymes. Moreover, both the soil microbial biomass and soil enzyme activities were significantly positively correlated with soil water content, organic carbon, and total nitrogen. The activity of soil invertase was significantly positively correlated with soil phosphorus content, and the soil acid phosphatase was so with soil phosphorus content and soil temperature. In brief, changes in vegetation and other environmental factors resulting from altitude change might have strong effects on soil biochemical properties in the alpine-gorge region.
2009-09-30
maintenance and dissipation of layers; (2) to understand the spatial coherence and spatial properties of thin layers in the coastal ocean (especially in...ORCAS profilers at K1 South and K2 had a Nortek ADV (Acoustic Doppler Velocity meter) for simultaneously measuring centimeter- scale currents and...year will be used to (1) detect the presence, intensity, thickness, temporal persistence, and spatial coherence of thin optical and acoustical layers
Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer
NASA Astrophysics Data System (ADS)
Ikai, Masamichi; Tokito, Shizuo; Sakamoto, Youichi; Suzuki, Toshiyasu; Taga, Yasunori
2001-07-01
One of the keys to highly efficient phosphorescent emission in organic light-emitting devices is to confine triplet excitons generated within the emitting layer. We employ "starburst" perfluorinated phenylenes (C60F42) as a both hole- and exciton-block layer, and a hole-transport material 4,4',4″-tri(N-carbazolyl) triphenylamine as a host for the phosphorescent dopant dye in the emitting layer. A maximum external quantum efficiency reaches to 19.2%, and keeps over 15% even at high current densities of 10-20 mA/cm2, providing several times the brightness of fluorescent tubes for lighting. The onset voltage of the electroluminescence is as low as 2.4 V and the peak power efficiency is 70-72 lm/W, promising for low-power display devices.
2012-01-01
Surface morphology and thermal stability of Cu-phthalocyanine (CuPc) films grown on an epitaxially grown MgO(001) layer were investigated by using atomic force microscope and X-ray diffractometer. The (002) textured β phase of CuPc films were prepared at room temperature beyond the epitaxial MgO/Fe/MgO(001) buffer layer by the vacuum deposition technique. The CuPc structure remained stable even after post-annealing at 350°C for 1 h under vacuum, which is an important advantage of device fabrication. In order to improve the device performance, we investigated also current-voltage-luminescence characteristics for the new top-emitting organic light-emitting diodes with different thicknesses of CuPc layer. PMID:23181826
Bae, Yu Jeong; Lee, Nyun Jong; Kim, Tae Hee; Cho, Hyunduck; Lee, Changhee; Fleet, Luke; Hirohata, Atsufumi
2012-11-26
Surface morphology and thermal stability of Cu-phthalocyanine (CuPc) films grown on an epitaxially grown MgO(001) layer were investigated by using atomic force microscope and X-ray diffractometer. The (002) textured β phase of CuPc films were prepared at room temperature beyond the epitaxial MgO/Fe/MgO(001) buffer layer by the vacuum deposition technique. The CuPc structure remained stable even after post-annealing at 350°C for 1 h under vacuum, which is an important advantage of device fabrication. In order to improve the device performance, we investigated also current-voltage-luminescence characteristics for the new top-emitting organic light-emitting diodes with different thicknesses of CuPc layer.
Park, Hea Jung; So, Monica C.; Gosztola, David J.
2016-09-28
We demonstrate that thin films of metal organic framework (MOF)-like materials, containing two perylenedlimides (PDICl4, PDIOPh2) and a squaraine dye (S1); can be fabricated by, layer-by-layer assembly (LbL). Interestingly, these LbL films absorb across the visible light region (400-750 nm) and facilitate directional energy transfer. Due to the high spectral overlap and oriented transition dipole moments of the donor (PDICl4 and PDIOPh2) and acceptor (S1) components, directional long-range energy transfer from the bluest to reddest absorber was successfully demonstrated in the multicomponent MOF-like films. These findings have significant implications for the development of solar energy conversion devices based on MOFs.
Gao, Zhi-Da; Han, Yuyao; Wang, Yongmei; Xu, Jingwen; Song, Yan-Yan
2013-01-01
A highly ordered nanoporous NiTi oxide layers were fabricated on Ti alloys with high Ni contents (50.6 at.%) by a combination of self-organizing anodization at 0°C and subsequent selective etching in H2O2. The key for successful formation of such layers is to sufficiently suppress the dissolve of NiO by applying lower temperature during anodization. The resulting nanoporous structure is connected and well-adhered, which exhibits a much higher electrochemical cycling stability in 0.1 M NaOH. Without further surface modification or the use of polymer binders, the layers can be behave as a low-cost, stable and sensitive platform in non-enzymatic glucose sensing. PMID:24270125
Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”
Naguib, Michael; Unocic, Raymond R.; Armstrong, Beth L.; ...
2015-04-17
Herein we report on a general approach to delaminate multi-layered MXenes using an organic base to induce swelling that in turn weakens the bonds between the MX layers. Simple agitation or mild sonication of the swollen MXene in water resulted in the large-scale delamination of the MXene layers. The delamination method is demonstrated for vanadium carbide, and titanium carbonitrides MXenes.
Acoustic Tomography of the Atmospheric Surface Layer
2014-11-28
Report Title Acoustic tomography of the atmospheric surface layer (ASL) is based on the measurements of the travel times of sound propagation between...SECURITY CLASSIFICATION OF: Acoustic tomography of the atmospheric surface layer (ASL) is based on the measurements of the travel times of sound ...organ. In the case of acoustic tomography of the atmospheric surface layer (ASL), the travel times of sound propagation between speakers and
V2O5 thin film deposition for application in organic solar cells
NASA Astrophysics Data System (ADS)
Arbab, Elhadi A. A.; Mola, Genene Tessema
2016-04-01
Vanadium pentoxide V2O5 films were fabricated by way of electrochemical deposition technique for application as hole transport buffer layer in organic solar cell. A thin and uniform V2O5 films were successfully deposited on indium tin oxide-coated glass substrate. The characterization of surface morphology and optical properties of the deposition suggest that the films are suitable for photovoltaic application. Organic solar cell fabricated using V2O5 as hole transport buffer layer showed better devices performance and environmental stability than those devices fabricated with PEDOT:PSS. In an ambient device preparation condition, the power conversion efficiency increases by nearly 80 % compared with PEDOT:PSS-based devices. The devices lifetime using V2O5 buffer layer has improved by a factor of 10 over those devices with PEDOT:PSS.
Fused Methoxynaphthyl Phenanthrimidazole Semiconductors as Functional Layer in High Efficient OLEDs.
Jayabharathi, Jayaraman; Ramanathan, Periyasamy; Karunakaran, Chockalingam; Thanikachalam, Venugopal
2016-01-01
Efficient hole transport materials based on novel fused methoxynaphthyl phenanthrimidazole core structure were synthesised and characterized. Their device performances in phosphorescent organic light emitting diodes were investigated. The high thermal stability in combination with the reversible oxidation process made promising candidates as hole-transporting materials for organic light-emitting devices. Highly efficient Alq3-based organic light emitting devices have been developed using phenanthrimidazoles as functional layers between NPB [4,4-bis(N-(1-naphthyl)-N-phenylamino)biphenyl] and Alq3 [tris(8-hydroxyquinoline)aluminium] layers. Using the device of ITO/NPB/4/Alq3/LiF/Al, a maximum luminous efficiency of 5.99 cd A(-1) was obtained with a maximum brightness of 40,623 cd m(-2) and a power efficiency of 5.25 lm W(-1).
Self-organization of palladium nanoislands on GaN and AlxGa1-xN/GaN heterostructures
NASA Astrophysics Data System (ADS)
Stafiniak, Andrzej; Szymański, Tomasz; Paszkiewicz, Regina
2017-12-01
We report on systematic study on the dewetting process of thin Pd layer and self-organized Pd nano-islands on SiO2, GaN and AlxGa1-xN/GaN heterostructures with various Al content. The influence of factors such as the thickness of metal layer, type of top layer of AlGaN/GaN heterostructures, temperature and time of annealing process on the dimensions, shapes and density of Pd islands was analyzed. Comparing the behavior of self-organization of Pd islands on Al0.25Ga0.75N/GaN and SiO2 we can conclude that solid-state dewetting process on SiO2 occures much faster than on Al0.25Ga0.75N. For substrates with SiO2 this process requires less energy and can arise for thicker layer. On the Al0.25Ga0.75N surface the islands take more crystalline shape which is probably due to surface reconstruction of Pd-Ga alloy thin layer on interface. For thin metal layer the coalescence of islands into larger islands similar to Ostwald ripening mechanism was observed. Greater surface roughness of AlxGa1-xN/GaN heterostructures with higher Al content causes an increase of surface density of islands and the reduction of their sizes which improves the roundness. In case of GaN and AlxGa1-xN layers with Al content lower than 20%, the surface degradation caused by annealing process was observed. Probably, this is due to the decomposition of layers with gallium droplet formation on catalytic metal islands.
Christel, Wibke; Zhu, Kun; Hoefer, Christoph; Kreuzeder, Andreas; Santner, Jakob; Bruun, Sander; Magid, Jakob; Jensen, Lars Stoumann
2016-06-01
Organic fertilisation inevitably leads to heterogeneous distribution of organic matter and nutrients in soil, i.e. due to uneven surface spreading or inhomogeneous incorporation. The resulting localised hotspots of nutrient application will induce various biotic and abiotic nutrient turnover processes and fixation in the residue sphere, giving rise to distinct differences in nutrient availability, soil oxygen content and greenhouse gas (GHG) production. In this study we investigated the spatiotemporal dynamics of the reaction of manure solids and manure solids char with soil, focusing on their phosphorus (P) availability, as current emphasis on improving societal P efficiency through recycling waste or bio-based fertilisers necessitates a sound understanding of their behaviour. Soil layers amended at a constant P application rate with either pig manure solids or char made from pig manure solids were incubated for three weeks between layers of non-amended, P-depleted soil. Spatial and temporal changes in and around the amendment layers were simultaneously investigated in this study using a sandwich sensor consisting of a planar oxygen optode and multi-element diffusive gradients in thin films (DGT) gels, combined with GHG emission measurements. After three weeks of incubation, the soil containing a layer amended with manure solids had a lower overall O2 content and had emitted significantly more CO2 than the non-amended control or the char-amended soil. The P availability from manure solids was initially higher than that from the char, but decreased over time, whereas from the char-amended layer P availability increased in the same period. In both treatments, increases in P availability were confined to the amended soil layer and did not greatly affect P availability in the directly adjacent soil layers during the three-week incubation. These results highlight the importance of placing organic P fertilisers close to where the plant roots will grow in order to facilitate optimal fertiliser use efficiency. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Posfai, Mihaly; Simonics, Renata; Li, Jia; Hobbs, Peter V.; Buseck, Peter R.
2003-01-01
Individual aerosol particles in smoke plumes from biomass fires and in regional hazes in southern Africa were studied using analytical transmission electron microscopy (TEM), which allowed detailed characterization of carbonaceous particle types in smoke and determination of changes in particle properties and concentrations during smoke aging. Based on composition, morphology, and microstructure, three distinct types of carbonaceous particles were present in the smoke: organic particles with inorganic (K-salt) inclusions, tar ball particles, and soot. The relative number concentrations of organic particles were largest in young smoke, whereas tar balls were dominant in a slightly aged (1 hour) smoke from a smoldering fire. Flaming fires emitted relatively more soot particles than smoldering fires, but soot was a minor constituent of all studied plumes. Further aging caused the accumulation of sulfate on organic and soot particles, as indicated by the large number of internally mixed organic/sulfate and soot/sulfate particles in the regional haze. Externally mixed ammonium sulfate particles dominated in the boundary layer hazes, whereas organic/sulfate particles were the most abundant type in the upper hazes. Apparently, elevated haze layers were more strongly affected by biomass smoke than those within the boundary layer. Based on size distributions and the observed patterns of internal mixing, we hypothesize that organic and soot particles are the cloud-nucleating constituents of biomass smoke aerosols. Sea-salt particles dominated in the samples taken in stratus clouds over the Atlantic Ocean, off the coast of Namibia, whereas a distinct haze layer above the clouds consisted of aged biomass smoke particles.
Bergauer, Kristin; Fernandez-Guerra, Antonio; Garcia, Juan A L; Sprenger, Richard R; Stepanauskas, Ramunas; Pachiadaki, Maria G; Jensen, Ole N; Herndl, Gerhard J
2018-01-16
The phylogenetic composition of the heterotrophic microbial community is depth stratified in the oceanic water column down to abyssopelagic layers. In the layers below the euphotic zone, it has been suggested that heterotrophic microbes rely largely on solubilized particulate organic matter as a carbon and energy source rather than on dissolved organic matter. To decipher whether changes in the phylogenetic composition with depth are reflected in changes in the bacterial and archaeal transporter proteins, we generated an extensive metaproteomic and metagenomic dataset of microbial communities collected from 100- to 5,000-m depth in the Atlantic Ocean. By identifying which compounds of the organic matter pool are absorbed, transported, and incorporated into microbial cells, intriguing insights into organic matter transformation in the deep ocean emerged. On average, solute transporters accounted for 23% of identified protein sequences in the lower euphotic and ∼39% in the bathypelagic layer, indicating the central role of heterotrophy in the dark ocean. In the bathypelagic layer, substrate affinities of expressed transporters suggest that, in addition to amino acids, peptides and carbohydrates, carboxylic acids and compatible solutes may be essential substrates for the microbial community. Key players with highest expression of solute transporters were Alphaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria, accounting for 40%, 11%, and 10%, respectively, of relative protein abundances. The in situ expression of solute transporters indicates that the heterotrophic prokaryotic community is geared toward the utilization of similar organic compounds throughout the water column, with yet higher abundances of transporters targeting aromatic compounds in the bathypelagic realm. Copyright © 2018 the Author(s). Published by PNAS.
Bergauer, Kristin; Fernandez-Guerra, Antonio; Garcia, Juan A. L.; Sprenger, Richard R.; Stepanauskas, Ramunas; Pachiadaki, Maria G.; Herndl, Gerhard J.
2018-01-01
The phylogenetic composition of the heterotrophic microbial community is depth stratified in the oceanic water column down to abyssopelagic layers. In the layers below the euphotic zone, it has been suggested that heterotrophic microbes rely largely on solubilized particulate organic matter as a carbon and energy source rather than on dissolved organic matter. To decipher whether changes in the phylogenetic composition with depth are reflected in changes in the bacterial and archaeal transporter proteins, we generated an extensive metaproteomic and metagenomic dataset of microbial communities collected from 100- to 5,000-m depth in the Atlantic Ocean. By identifying which compounds of the organic matter pool are absorbed, transported, and incorporated into microbial cells, intriguing insights into organic matter transformation in the deep ocean emerged. On average, solute transporters accounted for 23% of identified protein sequences in the lower euphotic and ∼39% in the bathypelagic layer, indicating the central role of heterotrophy in the dark ocean. In the bathypelagic layer, substrate affinities of expressed transporters suggest that, in addition to amino acids, peptides and carbohydrates, carboxylic acids and compatible solutes may be essential substrates for the microbial community. Key players with highest expression of solute transporters were Alphaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria, accounting for 40%, 11%, and 10%, respectively, of relative protein abundances. The in situ expression of solute transporters indicates that the heterotrophic prokaryotic community is geared toward the utilization of similar organic compounds throughout the water column, with yet higher abundances of transporters targeting aromatic compounds in the bathypelagic realm. PMID:29255014
Organic photosensitive devices
Peumans, Peter; Forrest, Stephen R.
2013-01-22
A photoactive device is provided. The device includes a first electrode, a second electrode, and a photoactive region disposed between and electrically connected to the first and second electrodes. The photoactive region further includes an organic donor layer and an organic acceptor layer that form a donor-acceptor heterojunction. The mobility of holes in the organic donor region and the mobility of electrons in the organic acceptor region are different by a factor of at least 100, and more preferably a factor of at least 1000. At least one of the mobility of holes in the organic donor region and the mobility of electrons in the organic acceptor region is greater than 0.001 cm.sup.2/V-sec, and more preferably greater than 1 cm.sup.2/V-sec. The heterojunction may be of various types, including a planar heterojunction, a bulk heterojunction, a mixed heterojunction, and a hybrid planar-mixed heterojunction.
NASA Astrophysics Data System (ADS)
Wickland, Kimberly P.; Waldrop, Mark P.; Aiken, George R.; Koch, Joshua C.; Torre Jorgenson, M.; Striegl, Robert G.
2018-06-01
Permafrost (perennially frozen) soils store vast amounts of organic carbon (C) and nitrogen (N) that are vulnerable to mobilization as dissolved organic carbon (DOC) and dissolved organic and inorganic nitrogen (DON, DIN) upon thaw. Such releases will affect the biogeochemistry of permafrost regions, yet little is known about the chemical composition and source variability of active-layer (seasonally frozen) and permafrost soil DOC, DON and DIN. We quantified DOC, total dissolved N (TDN), DON, and DIN leachate yields from deep active-layer and near-surface boreal Holocene permafrost soils in interior Alaska varying in soil C and N content and radiocarbon age to determine potential release upon thaw. Soil cores were collected at three sites distributed across the Alaska boreal region in late winter, cut in 15 cm thick sections, and deep active-layer and shallow permafrost sections were thawed and leached. Leachates were analyzed for DOC, TDN, nitrate (NO3 ‑), and ammonium (NH4 +) concentrations, dissolved organic matter optical properties, and DOC biodegradability. Soils were analyzed for C, N, and radiocarbon (14C) content. Soil DOC, TDN, DON, and DIN yields increased linearly with soil C and N content, and decreased with increasing radiocarbon age. These relationships were significantly different for active-layer and permafrost soils such that for a given soil C or N content, or radiocarbon age, permafrost soils released more DOC and TDN (mostly as DON) per gram soil than active-layer soils. Permafrost soil DOC biodegradability was significantly correlated with soil Δ14C and DOM optical properties. Our results demonstrate that near-surface Holocene permafrost soils preserve greater relative potential DOC and TDN yields than overlying seasonally frozen soils that are exposed to annual leaching and decomposition. While many factors control the fate of DOC and TDN, the greater relative yields from newly thawed Holocene permafrost soils will have the largest potential impact in areas dominated by organic-rich soils.
Chien, Huei-Ting; Zach, Peter W; Friedel, Bettina
2017-08-23
In this study, we focus on the induced degradation and spatial inhomogeneity of organic photovoltaic devices under different environmental conditions, uncoupled from the influence of any auxiliary hole-transport (HT) layer. During testing of the corresponding devices comprising the standard photoactive layer of poly(3-hexylthiophene) as donor, blended with phenyl-C 61 -butyric acid methyl ester as acceptor, a comparison was made between the nonencapsulated devices upon exposure to argon in the dark, dry air in the dark, dry air with illumination, and humid air in the dark. The impact on the active layer's photophysics is discussed, along with the device physics in terms of integral solar cell performance and spatially resolved photocurrent distribution with point-to-point analysis of the diode characteristics to determine the origin of the observed integrated organic photovoltaic device behavior. The results show that even without the widely used hygroscopic HT layer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), humidity is still a major factor in the short-term environmental degradation of organic solar cells with this architecture, and not only oxygen or light, as is often reported. Different from previous reports where water-induced device degradation was spatially homogeneous and formation of Al 2 O 3 islands was only seen for oxygen permeation through pinholes in aluminum, we observed insulating islands merely after humidity exposure in the present study. Further, we demonstrated with laser beam induced current mapping and point-to-point diode analysis that the water-induced performance losses are a result of the exposed device area comprising regions with entirely unaltered high output and intact diode behavior and those with severe degradation showing detrimentally lowered output and voltage-independent charge blocking, which is essentially insulating behavior. It is suggested that this is caused by transport of water through pinholes to the organic/metal interface, where they form insulating oxide or hydroxide islands, while the organic active layer stays unharmed.
Structural Design and Photochemical Preparation of Ultrathin Molecular Film Materials
2006-12-01
tetracene and pentacene that have great potential as organic semiconducting materials, have been determined. Overall, we have gained to great extend a...layer of linear acenes, molecules such as tetracene and pentacene that have great potential as organic semiconducting materials, have been determined...intermolecular interaction of mono- and multi-layer linear acenes on metal A systematic study of adsorption of linear acenes, from benzene to pentacene , on metal
Organic light-emitting device with a phosphor-sensitized fluorescent emission layer
Forrest, Stephen [Ann Arbor, MI; Kanno, Hiroshi [Osaka, JP
2009-08-25
The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters. The emissive region of the devices of the present invention comprise at least one phosphor-sensitized layer which has a combined emission from a phosphorescent emitter and a fluorescent emitter. In preferred embodiments, the invention relates to white-emitting OLEDS (WOLEDs).
Aligned Layers of Silver Nano-Fibers.
Golovin, Andrii B; Stromer, Jeremy; Kreminska, Liubov
2012-02-01
We describe a new dichroic polarizers made by ordering silver nano-fibers to aligned layers. The aligned layers consist of nano-fibers and self-assembled molecular aggregates of lyotropic liquid crystals. Unidirectional alignment of the layers is achieved by means of mechanical shearing. Aligned layers of silver nano-fibers are partially transparent to a linearly polarized electromagnetic radiation. The unidirectional alignment and density of the silver nano-fibers determine degree of polarization of transmitted light. The aligned layers of silver nano-fibers might be used in optics, microwave applications, and organic electronics.
Layered structures of organic/inorganic hybrid halide perovskites
NASA Astrophysics Data System (ADS)
Huan, Tran Doan; Tuoc, Vu Ngoc; Minh, Nguyen Viet
2016-03-01
Organic-inorganic hybrid halide perovskites, in which the A cations of an ABX3 perovskite are replaced by organic cations, may be used for photovoltaic and solar thermoelectric applications. In this contribution, we systematically study three lead-free hybrid perovskites, i.e., methylammonium tin iodide CH3NH3SnI3 , ammonium tin iodide NH4SnI3 , and formamidnium tin iodide HC (NH2)2SnI3 by first-principles calculations. We find that in addition to the commonly known motif in which the corner-shared SnI6 octahedra form a three-dimensional network, these materials may also favor a two-dimensional (layered) motif formed by alternating layers of the SnI6 octahedra and the organic cations. These two motifs are nearly equal in free energy and are separated by low barriers. These layered structures features many flat electronic bands near the band edges, making their electronic structures significantly different from those of the structural phases composed of three-dimension networks of SnI6 octahedra. Furthermore, because the electronic structures of HC (NH2)2SnI3 are found to be rather similar to those of CH3NH3SnI3 , formamidnium tin iodide may also be promising for the applications of methylammonium tin iodide.
A supermolecular building approach for the design and construction of metal-organic frameworks.
Guillerm, Vincent; Kim, Dongwook; Eubank, Jarrod F; Luebke, Ryan; Liu, Xinfang; Adil, Karim; Lah, Myoung Soo; Eddaoudi, Mohamed
2014-08-21
In this review, we describe two recently implemented conceptual approaches facilitating the design and deliberate construction of metal–organic frameworks (MOFs), namely supermolecular building block (SBB) and supermolecular building layer (SBL) approaches. Our main objective is to offer an appropriate means to assist/aid chemists and material designers alike to rationally construct desired functional MOF materials, made-to-order MOFs. We introduce the concept of net-coded building units (net-cBUs), where precise embedded geometrical information codes uniquely and matchlessly a selected net, as a compelling route for the rational design of MOFs. This concept is based on employing pre-selected 0-periodic metal–organic polyhedra or 2-periodic metal–organic layers, SBBs or SBLs respectively, as a pathway to access the requisite net-cBUs. In this review, inspired by our success with the original rht-MOF, we extrapolated our strategy to other known MOFs via their deconstruction into more elaborate building units (namely polyhedra or layers) to (i) elucidate the unique relationship between edge-transitive polyhedra or layers and minimal edge-transitive 3-periodic nets, and (ii) illustrate the potential of the SBB and SBL approaches as a rational pathway for the design and construction of 3-periodic MOFs. Using this design strategy, we have also identified several new hypothetical MOFs which are synthetically targetable.
NASA Astrophysics Data System (ADS)
Triyana, Kuwat; Yasuda, Takeshi; Fujita, Katsuhiko; Tsutsui, Tetsuo
2004-04-01
Three thin heterojunctions sandwiched between indium tin oxide (ITO) and the top electrode as triple-heterojunction organic solar cells have been fabricated. Each heterojunction cell consists of CuPc as a donor layer and perilene tetracrboxylic-bis-benzimidazole (PTCBI) as an acceptor layer. Ultra thin (1 nm average thickness) layers of Ag or Au have been inserted between two heterojunctions as an internal electrode. Ag and Au were chosen as materials both for internal floating and top electrodes. Influences of different deposition sequences of the organic layer in each heterojunction cell and different electrode materials were also investigated. The optimum devices were obtained when the same material was used both as an internal electrode and a top electrode. When the deposition sequence of the heterojunction is PTCBI/CuPc, the most suitable electrode is Au and the ITO is negative relative to the top electrode. Meanwhile, Ag is suitable for an electrode when the deposition sequence is CuPc/PTCBI. In this second deposition sequence, the ITO is positive relative to the top electrode. The open circuit voltage (Voc) of both optimum devices is on the order of 1.35-1.5 V. These values are approximately three times higher than that in single-heterojunction organic solar cells.
[Distribution of soil organic carbon storage and carbon density in Gahai Wetland ecosystem].
Ma, Wei-Wei; Wang, Hui; Huang, Rong; Li, Jun-Zhen; Li, De-Yu
2014-03-01
The profile distribution and accumulation characteristics of organic carbon of four typical marshes (herbaceous peat, marsh wetland, mountain wetland, subalpine meadow) were studied in Gahai Wetlands of Gannan in July 2011. The results showed that the soil bulk densities of the four typical marshes ranged from 0.22 to 1.29 g x cm(-3). The content of soil organic carbon in the herbaceous peat was higher than in other types, with its average content of organic carbon (286. 80 g x kg(-1)) being about 2.91, 4.99, 7.31 times as much as that of the marsh wetland, mountain wetland and subalpine meadow, respectively. The average organic carbon densities were in order of herbaceous peat > subalpine meadow > marsh wetland > mountain wetland, with the highest in the 0-10 cm layer. The change of organic carbon density along the soil profile was basically in accordance with the organic carbon content in the four typical marshes, but fluctuated with soil depth. There were obviously two carbon storage layers (0-10 and 20-40 cm, respectively) in the four typical marshes. The amounts of organic carbon stored in the 0-60 cm layer of the four typical marshes were 369.46, 278.83, 276.16, 292.23 t x hm(-2), respectively. The total amount of organic carbon stored in the 0-60 cm of the four typical marshes was about 9.50 x 10(6) t.
Organic C and N stabilization in a forest soil: evidence from sequential density fractionation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sollins, P; Swanston, C; Kleber, M
2005-07-15
In mineral soil, organic matter (OM) accumulates mainly on and around surfaces of silt- and clay-size particles. When fractionated according to particle density, C and N concentration (per g fraction) and C/N of these soil organo-mineral particles decrease with increasing particle density across soils of widely divergent texture, mineralogy, location, and management. The variation in particle density is explained potentially by two factors: (1) a decrease in the mass ratio of organic to mineral phase of these particles, and (2) variations in density of the mineral phase. The first explanation implies that the thickness of the organic accumulations decreases withmore » increasing particle density. The decrease in C/N can be explained at least partially by especially stable sorption of cationic peptidic compounds (amine, amide, and pyrrole) directly to mineral surfaces, a phenomenon well documented both empirically and theoretically. These peptidic compounds, along with ligand-exchanged carboxylic compounds, could then form a stable inner organic layer onto which less polar organics could sorb more readily than onto the highly charged mineral surfaces (''onion'' layering model). To explore mechanisms underlying this trend in C concentration and C/N with particle density, we sequentially density fractionated an Oregon andic soil at 1.65, 1.85, 2.00, 2.28, and 2.55 g cm{sup -3} and analyzed the six fractions for measures of organic matter and mineral phase properties. All measures of OM composition showed either: (1) a monotonic change with density, or (2) a monotonic change across the lightest fractions, then little change over the heaviest fractions. Total C, N, and lignin phenol concentration all decreased monotonically with increasing density, and {sup 14}C mean residence time (MRT) increased with particle density from ca. 150 y to >980 y in the four organo-mineral fractions. In contrast, C/N, {sup 13}C and {sup 15}N concentration all showed the second pattern. All these data are consistent with a general pattern of an increase in extent of microbial processing with increasing organo-mineral particle density, and also with an ''onion'' layering model. X-ray diffraction before and after separation of magnetic materials showed that the sequential density fractionation isolated pools of differing mineralogy, with layer-silicate clays dominating in two of the intermediate fractions and primary minerals in the heaviest two fractions. There was no indication that these differences in mineralogy controlled the differences in density of the organo-mineral particles in this soil. Thus, our data are consistent with the hypothesis that variation in particle density reflects variation in thickness of the organic accumulations and with an ''onion'' layering model for organic matter accumulation on mineral surfaces. However, the mineralogy differences among fractions made it difficult to test either the layer-thickness or ''onion'' layering models with this soil. Although sequential density fractionation isolated pools of distinct mineralogy and organic-matter composition, more work will be needed to understand mechanisms relating the two factors.« less
Courtright, Brett A E; Jenekhe, Samson A
2015-12-02
We report a comparative study of polyethylenimine (PEI) and ethoxylated-polyethylenimine (PEIE) cathode buffer layers in high performance inverted organic photovoltaic devices. The work function of the indium-tin oxide (ITO)/zinc oxide (ZnO) cathode was reduced substantially (Δφ = 0.73-1.09 eV) as the molecular weight of PEI was varied from 800 g mol(-1) to 750 000 g mol(-1) compared with the observed much smaller reduction when using a PEIE thin film (Δφ = 0.56 eV). The reference inverted polymer solar cells based on the small band gap polymer PBDTT-FTTE (ITO/ZnO/PBDTT-FTTE:PC70BM/MoO3/Ag), without a cathode buffer layer, had an average power conversion efficiency (PCE) of 6.06 ± 0.22%. Incorporation of a PEIE cathode buffer layer in the same PBDTT-FTTE:PC70BM blend devices gave an enhanced performance with a PCE of 7.37 ± 0.53%. In contrast, an even greater photovoltaic efficiency with a PCE of 8.22 ± 0.10% was obtained in similar PBDTT-FTTE:PC70BM blend solar cells containing a PEI cathode buffer layer. The temporal stability of the inverted polymer solar cells was found to increase with increasing molecular weight of the cathode buffer layer. The results show that PEI is superior to PEIE as a cathode buffer layer in high performance organic photovoltaic devices and that the highest molecular weight PEI interlayer provides the highest temporal stability.
NASA Astrophysics Data System (ADS)
Auer-Berger, Manuel; Tretnak, Veronika; Wenzl, Franz-Peter; Krenn, Joachim R.; List-Kratochvil, Emil J. W.
2017-10-01
We examine aluminum-nanodisc-induced collective lattice resonances as a means to enhance the efficiency of organic light emitting diodes. Thus, nanodisc arrays were embedded in the hole transporting layer of a solution-processed phosphorescent organic blue-light emitting diode. Through extinction spectroscopy, we confirm the emergence of array-induced collective lattice resonances within the organic light emitting diode. Through finite-difference time domain simulations, we show that the collective lattice resonances yield an enhancement of the electric field intensity within the emissive layer. The effectiveness for improving the light generation and light outcoupling is demonstrated by electro-optical characterization, realizing a gain in a current efficiency of 35%.
NASA Astrophysics Data System (ADS)
Burns, Nancy; Cloy, Joanna; Garnett, Mark; Reay, David; Smith, Keith; Otten, Wilfred
2010-05-01
The effect of temperature on rates of soil respiration is critical to our understanding of the terrestrial carbon cycle and potential feedbacks to climate change. The relative temperature sensitivity of labile and recalcitrant soil organic matter (SOM) is still controversial; different studies have produced contrasting results, indicating limited understanding of the underlying relationships between stabilisation processes and temperature. Current global carbon cycle models still rely on the assumption that SOM pools with different decay rates have the same temperature response, yet small differences in temperature response between pools could lead to very different climate feedbacks. This study examined the temperature response of soil respiration and the age of soil carbon respired from radiocarbon dated fractions of SOM (free, intra-aggregate and mineral-bound) and whole soils (organic and mineral layers). Samples were collected from a peaty gley soil from Harwood Forest, Northumberland, UK. SOM fractions were isolated from organic layer (5 - 17 cm) material using high density flotation and ultrasonic disaggregation - designated as free (< 1.8 g cm-3), intra-aggregate (< 1.8 g cm-3 within aggregates > 1.8 g cm-3) and mineral-bound (> 1.8 g cm-3) SOM. Fractions were analysed for chemical composition (FTIR, CHN analysis, ICP-OES), 14C (AMS), δ13C and δ15N (MS) and thermal properties (DSC). SOM fractions and bulk soil from the organic layer and the mineral layer (20 - 30 cm) were incubated in sealed vessels at 30 ° C and 10 ° C for 3 or 9 months to allow accumulation of CO2 sufficient for sampling. Accumulated respired CO2 samples were collected on zeolite molecular sieve cartridges and used for AMS radiocarbon dating. In parallel, material from the same fractions and layers were incubated at 10 ° C, 15 ° C, 25 ° C and 30 ° C for 6 months and sampled weekly for CO2 flux measurements using GC chromatography. Initial data have shown radiocarbon ages ranging from modern to 219 y BP in bulk soil from the organic layer (5 - 17 cm depth), while free OM ranged from modern to 74 y BP, intra-aggregate OM 413 - 657 y BP and mineral-bound material 562 - 646 y BP. Bulk soil from the mineral layer (20 - 30 cm) was considerably older, at 2142 - 2216 y BP. These results indicate that within the upper layer of soil, mineral-bound OM represents a slow-cycling or recalcitrant pool of SOM; intra-aggregate OM is slightly less recalcitrant than mineral-bound OM, while free OM represents a fast-cycling, labile pool of SOM. Bulk soil from the mineral layer (20 - 30 cm) is much older than mineral-bound OM in the upper layers, suggesting the involvement of other stabilising factors associated with depth besides mineral interactions. The link between age and recalcitrance is corroborated by measured CO2 flux rates, which increase with decreasing age of fractions. Results for the 14C contents and calculated ages of isolated SOM fractions, bulk organic and mineral soils and their respired CO2 at different temperatures will be discussed and compared with long term trends in soil/SOM fraction CO2 fluxes and their temperature sensitivity. Data on soil chemical characteristics and δ13C values will also be presented.
NASA Astrophysics Data System (ADS)
Kim, You-Hyun; Wai Cheah, Kok; Young Kim, Woo
2013-07-01
Phosphorescent white organic light-emitting diodes (PHWOLEDs) with single emissive layer were fabricated by co-doping phosphorescent blue, green, and red emitters with different concentrations. WOLEDs using Ir(piq)3 and Ir(ppy)3 as red and green dopants along with 8% of Firpic as blue dopant with host materials of 4CzPBP in the emissive layer were compared under various doping ratio between Ir(piq)3 and Ir(ppy)3. Triplet-triplet Dexter energy transfer in single emissive PHWOLEDs including three primary colors was saturated from higher triplet energy levels to lower triplet energy levels directly.
Transfer Printing Method to Obtain Polarized Light Emission in Organic Light-Emitting Device
NASA Astrophysics Data System (ADS)
Noh, Hee Yeon; Park, Chang-sub; Park, Ji-Sub; Kang, Shin-Won; Kim, Hak-Rin
2012-06-01
We demonstrate a transfer printing method to obtain polarized light emission in organic light-emitting devices (OLEDs). On a rubbed self-assembled monolayer (SAM), a spin-coated liquid crystalline light-emissive polymer is aligned along the rubbing direction because of the anisotropic interfacial intermolecular interaction. Owing to the low surface energy of the SAM surface, the light-emissive layer was easily transferred to a patterned poly(dimethylsiloxane) (PDMS) stamp surface without degrading the ordering. Finally, a polarized light-emissive OLED device was prepared by transferring the patterned light-emissive layer to the charge transport layer of the OLED structure.
Ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory
NASA Astrophysics Data System (ADS)
Han, Jinhua; Wang, Wei; Ying, Jun; Xie, Wenfa
2014-01-01
An ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory was demonstrated, with discrete distributed gold nanoparticles, tetratetracontane (TTC), pentacene as the floating-gate layer, tunneling layer, and active layer, respectively. The electron traps at the TTC/pentacene interface were significantly suppressed, which resulted in an ambipolar operation in present memory. As both electrons and holes were supplied in the channel and trapped in the floating-gate by programming/erasing operations, respectively, i.e., one type of charge carriers was used to overwrite the other, trapped, one, a large memory window, extending on both sides of the initial threshold voltage, was realized.
Hu, Xuefu; Wang, Zi; Lin, Bangjiang; Zhang, Cankun; Cao, Lingyun; Wang, Tingting; Zhang, Jingzheng; Wang, Cheng; Lin, Wenbin
2017-06-22
A metal-organic layer (MOL) is a new type of 2D material that is derived from metal-organic frameworks (MOFs) by reducing one dimension to a single layer or a few layers. Tetraphenylethylene-based tetracarboxylate ligands (TCBPE), with aggregation-induced emission properties, were assembled into the first luminescent MOL by linking with Zr 6 O 4 (OH) 6 (H 2 O) 2 (HCO 2 ) 6 clusters. The emissive MOL can replace the lanthanide phosphors in white light emitting diodes (WLEDs) with remarkable processability, color rendering, and brightness. Importantly, the MOL-WLED exhibited a physical switching speed three times that of commercial WLEDs, which is crucial for visible-light communication (VLC), an alternative wireless communication technology to Wi-Fi and Bluetooth, by using room lighting to carry transmitted signals. The short fluorescence lifetime (2.6 ns) together with high quantum yield (50 %) of the MOL affords fast switching of the assembled WLEDs for efficient information encoding and transmission. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shim, Hyun-Sub; Moon, Chang-Ki; Kim, Jihun; Wang, Chun-Kai; Sim, Bomi; Lin, Francis; Wong, Ken-Tsung; Seo, Yongsok; Kim, Jang-Joo
2016-01-20
The use of multiple donors in an active layer is an effective way to boost the efficiency of organic solar cells by broadening their absorption window. Here, we report an efficient vacuum-deposited ternary organic photovoltaic (OPV) using two donors, 2-((2-(5-(4-(diphenylamino)phenyl)thieno[3,2-b]thiophen-2-yl)thiazol-5-yl)methylene)malononitrile (DTTz) for visible absorption and 2-((7-(5-(dip-tolylamino)thiophen-2-yl)benzo[c]-[1,2,5]thiadiazol-4-yl)methylene)malononitrile (DTDCTB) for near-infrared absorption, codeposited with C70 in the ternary layer. The ternary device achieved a power conversion efficiency of 8.02%, which is 23% higher than that of binary OPVs. This enhancement is the result of incorporating two donors with complementary absorption covering wavelengths of 350 to 900 nm with higher hole mobility in the ternary layer than that of binary layers consisting of one donor and C70, combined with energy transfer from the donor with lower hole mobility (DTTz) to that with higher mobility (DTDCTB). This structure fulfills all the requirements for efficient ternary OPVs.
Reneau, R B; Pettry, D E; Shanholtz, M I; Graham, S A; Weston, C W
1977-01-01
Distribution of total and fecal coliform bacteria in three Atlantic coastal plain soils in Virginia were monitored in situ over a 3-year period. The soils studied were Varina, Goldsboro, and Beltsville sandy loams. These and similar soils are found extensively along the populous Atlantic seaboard of the United States. They are considered only marginally suitable for septic tank installation because the restricting soil layers result in the subsequent development of seasonal perched water tables. To determine both horizontal and vertical movement of indicator organisms, samples were collected from piezometers placed at selected distances and depths from the drainfields in the direction of the ground water flow. Large reductions in total and fecal coliform bacteria were noted in the perched ground waters above the restricting layers as distance from the drainfield increased. These restricting soil layers appear to be effective barriers to the vertical movement of indicator organisms. The reduction in the density of the coliform bacteria above the restricting soil layers can probably be attributed to dilution, filtration, and dieoff as the bacteria move through the natural soil systems. PMID:325589
NASA Astrophysics Data System (ADS)
Hussein, Mohd Zobir; Hashim, Norhayati; Yahaya, Asmah Hj.; Zainal, Zulkarnain
2010-05-01
A new layered organic-inorganic nanohybrid material in which an agrochemical, 4-(2,4-dichlorophenoxy)butyrate (DPBA) is intercalated into inorganic interlayers of zinc layered hydroxide (ZLH) was synthesized by direct reaction of aqueous DPBA solution with zinc oxide. The resulting nanohybrid is composed of the organic moieties, DPBA sandwiched between ZLH inorganic interlayers. The nanohybrid afforded well ordered crystalline layered structure, a basal spacing of 29.6 Å, 23.5% carbon (w/w) and 47.9% (w/w) loading of DPBA. FTIR study shows that the absorption bands of the resulting nanohybrid composed the FTIR characteristics of both the DPBA and ZLH which further confirmed the intercalation episode. The intercalated organic moiety in the form of nanohybrid is thermally more stable than its sodium salt. Scanning electron micrograph shows the ZnO precursor has very fine granular structure and transformed into a flake-like when the nanohybrid is formed. This work shows that the nanohybrid of DPBA-ZLH can be synthesized using simple, direct reaction of ZnO and DPBA under aqueous environment for the formation of a new generation of agrochemical.
Improving the performance of doped pi-conjugated polymers for use in organic light-emitting diodes
Gross; Muller; Nothofer; Scherf; Neher; Brauchle; Meerholz
2000-06-08
Organic light-emitting diodes (OLEDs) represent a promising technology for large, flexible, lightweight, flat-panel displays. Such devices consist of one or several semiconducting organic layer(s) sandwiched between two electrodes. When an electric field is applied, electrons are injected by the cathode into the lowest unoccupied molecular orbital of the adjacent molecules (simultaneously, holes are injected by the anode into the highest occupied molecular orbital). The two types of carriers migrate towards each other and a fraction of them recombine to form excitons, some of which decay radiatively to the ground state by spontaneous emission. Doped pi-conjugated polymer layers improve the injection of holes in OLED devices; this is thought to result from the more favourable work function of these injection layers compared with the more commonly used layer material (indium tin oxide). Here we demonstrate that by increasing the doping level of such polymers, the barrier to hole injection can be continuously reduced. The use of combinatorial devices allows us to quickly screen for the optimum doping level. We apply this concept in OLED devices with hole-limited electroluminescence (such as polyfluorene-based systems), finding that it is possible to significantly reduce the operating voltage while improving the light output and efficiency.
He, Jian; Gao, Pingqi; Ling, Zhaoheng; Ding, Li; Yang, Zhenhai; Ye, Jichun; Cui, Yi
2016-12-27
Silicon/organic heterojunction solar cells (HSCs) based on conjugated polymers, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and n-type silicon (n-Si) have attracted wide attention due to their potential advantages of high efficiency and low cost. However, the state-of-the-art efficiencies are still far from satisfactory due to the inferior junction quality. Here, facile treatments were applied by pretreating the n-Si wafer in tetramethylammonium hydroxide (TMAH) solution and using a capping copper iodide (CuI) layer on the PEDOT:PSS layer to achieve a high-quality Schottky junction. Detailed photoelectric characteristics indicated that the surface recombination was greatly suppressed after TMAH pretreatment, which increased the thickness of the interfacial oxide layer. Furthermore, the CuI capping layer induced a strong inversion layer near the n-Si surface, resulting in an excellent field effect passivation. With the collaborative improvements in the interface chemical and electrical passivation, a competitive open-circuit voltage of 0.656 V and a high fill factor of 78.1% were achieved, leading to a stable efficiency of over 14.3% for the planar n-Si/PEDOT:PSS HSCs. Our findings suggest promising strategies to further exploit the full voltage as well as efficiency potentials for Si/organic solar cells.
Compact organic vapor jet printing print head
Forrest, Stephen R; McGraw, Gregory
2013-12-24
A first device is provided. The first device includes a print head, and a first gas source hermetically sealed to the print head. The print header further includes a first layer comprising a plurality of apertures, each aperture having a smallest dimension of 0.5 to 500 microns. A second layer is bonded to the first layer. The second layer includes a first via in fluid communication with the first gas source and at least one of the apertures. The second layer is made of an insulating material.
Ellipsometric study of metal-organic chemically vapor deposited III-V semiconductor structures
NASA Technical Reports Server (NTRS)
Alterovitz, Samuel A.; Sekula-Moise, Patricia A.; Sieg, Robert M.; Drotos, Mark N.; Bogner, Nancy A.
1992-01-01
An ellipsometric study of MOCVD-grown layers of AlGaAs and InGaAs in thick films and strained layer complex structures is presented. It is concluded that the ternary composition of thick nonstrained layers can be accurately determined to within experimental errors using numerical algorithms. In the case of complex structures, thickness of all layers and the alloy composition of nonstrained layers can be determined simultaneously, provided that the correlations between parameters is no higher than 0.9.
Hybrid Lead Halide Layered Perovskites with Silsesquioxane Interlayers.
Kataoka, Sho; Kaburagi, Wako; Mochizuki, Hiroyuki; Kamimura, Yoshihiro; Sato, Kazuhiko; Endo, Akira
2018-01-01
Hybrid organic-lead halide perovskites exhibit remarkable properties as semiconductors and light absorbers. Here, we report the formation of silsesquioxane-lead halide hybrid layered perovskites. We prepared silsesquioxane with a cubic cage-like structure and fabricated hybrid silsesquioxane-lead halide layered perovskites in a self-assembled manner. It is demonstrated that the silsesquioxane maintain their cage-like structure between lead halide perovskite layers. The silsesquioxane-lead halide perovskites also show excitonic absorption and emission in the visible light region similar to typical lead halide layered perovskites.
Extended OLED operational lifetime through phosphorescent dopant profile management
Forrest, Stephen R.; Zhang, Yifan
2017-05-30
This disclosure relates, at least in part, an organic light emitting device, which in some embodiments comprises an anode; a cathode; a first emissive layer disposed between the anode and the cathode, the first emissive layer comprising an electron transporting compound and a phosphorescent emissive dopant compound; and wherein the phosphorescent emissive dopant compound has a concentration gradient, in the emissive layer, which varies from the cathode side of the first emissive layer to the anode side of the emissive layer.
Wang, Hui; Ryu, Jeong-Tak; Kwon, Younghwan
2012-05-01
This study examined the influence of the charge injection barriers on the performance of organic light emitting diodes (OLEDs) using polymers with a stepwise tuned ionization potential (I(p) approximately -5.01 - -5.29 eV) between the indium tin oxide (ITO) (phi approximately -4.8 eV) anode and tris(8-hydroxyquinolinato) aluminium (Alq3) (I(p) approximately -5.7 eV) layer. The energy levels of the polymers were tuned by structural modification. Double layer devices were fabricated with a configuration of ITO/polymer/Alq3/LiF/Al, where the polymers, Alq3, and LiF/Al were used as the hole injection/transport layer, emissive electron transport layer, and electron injection/cathode, respectively. Using the current density-voltage (J-V), luminescence-voltage (L-V) and efficiencies in these double layer devices, the device performance was evaluated in terms of the energy level alignments at the interfaces, such as the hole injection barriers (phi(h)(iTO/polymer) and phi(h)(polymer/Alq3)) from ITO through the polymers into the Alq3 layer, and the electron injection barrier (phi(e)(polymer/Alq3) or electron/exciton blocking barrier) at the polymer/Alq3 interface.
NASA Astrophysics Data System (ADS)
Ghanbari, Alireza; Attar, Mohammadreza Mohammadzade
2014-10-01
In this study, the anti-corrosion performance of phosphated and zirconium treated mild steel (ZTMS) with and without organic coating was evaluated using AC and DC electrochemical techniques. The topography and morphology of the zirconium treated samples were studied using atomic force microscopy (AFM) and field emission scanning electron microscope (FE-SEM) respectively. The results revealed that the anti-corrosion performance of the phosphate layer was superior to the zirconium conversion layer without an organic coating due to very low thickness and porous nature of the ZTMS. Additionally, the corrosion behavior of the organic coated substrates was substantially different. It was found that the corrosion protection performance of the phosphate steel and ZTMS with an organic coating is in the same order.
Structure and transport in organic semiconductor thin films
NASA Astrophysics Data System (ADS)
Vos, Sandra Elizabeth Fritz
Organic Semiconductors represent an exciting area of research due to their potential application in cheap and flexible electronics. In spite of the abundant interest in organic electronics the electronic transport mechanism remains poorly understood. Understanding the connection between molecular structure, crystal packing, intermolecular interactions and electronic delocalization is an important aspect of improving the transport properties of organics in thin film transistors (TFTs). In an organic thin film transistor, charge carrier transport is believed to occur within the first few monolayers of the organic material adjacent to the dielectric. It is therefore critical to understand the initial stages of film growth and molecular structure in these first few layers and relate this structure to electronic transport properties. The structure of organic films at the interface with an amorphous silicon dioxide ( a-SiO2) dielectric and how structure relates to transport in a TFT is the focus of this thesis. Pentacene films on a-SiO2 were extensively characterized with specular and in-plane X-ray diffraction, and CuKalpha1, and synchrotron radiation. The first layer of pentacene molecules adjacent to the a-SiO2 crystallized in a rectangular unit cell with the long axis of the molecules perpendicular to the substrate surface. Subsequent layers of pentacene crystallized in a slightly oblique in-plane unit cell that evolved as thickness was increased. The rectangular monolayer phase of pentacene did not persist when subsequent layers were deposited. Specular diffraction with Synchrotron radiation of a 160 A pentacene film (˜ 10 layers) revealed growth initiation of a bulk-like phase and persistence of the thin-film phase. Pentacene molecules were more tilted in the bulk-like phase and the in-plane unit cell was slightly more oblique. Pentacene grains began to grow randomly oriented with respect to the substrate surface (out-of-plane) in films near 650 A in thickness. The single crystal bulk phase of pentacene was observed from specular diffraction (CuKalpha1) of a 2.5 mum film. These results suggest that the thickness of pentacene films on a-SiO2 is an important aspect in the comparison of crystal structure and electronic transport.
Wang, Shuang Lei; Liu, Yan Hui; Song, Xian Liang; Wei, Shao Bin; Li, Jin Pu; Nie, Jun Jun; Qin, Du Lin; Sun, Xue Zhen
2016-12-01
To clarify the effects of cotton straw returning on the composition and contents of nu-trients in different particle sizes of aggregates, two treatments with or without cotton straw returning were tested in continuous three years. After three years straw treatments, we collected undisturbed soil within 0-5, 5-10, 10-20 and 20-30 cm soil layers, and to measure the composition, soil organic carbon, nitrogen, phosphorus and potassium contents in different particle sizes of aggregates classified using dry sieving. Returning cotton straw into the field significantly increased particle contents of 2-5 mm and >5 mm aggregates in 0-5 cm soil layer, while the content of <0.25 mm micro-aggregates was decreased. Cotton straw returning significantly improved soil organic carbon, nitrogen, and potassium contents by 19.2%, 14.2% and 17.3%, respectively, compared to no returning control. In 5-10 cm soil layer, cotton straw returning increased the contents of 2-5 mm and >5 mm aggregates, reduced the content of <0.25 mm micro-aggregate, but significantly increased contents of soil organic carbon, available nitrogen and potassium by 19.6%, 12.6% and 23.4%, compared to no straw returning control. In 10-20 cm soil layer, cotton straw returning significantly reduced the content of <0.25 mm micro-aggregates, and significantly enhanced soil organic carbon, nitrogen, and potassium contents by 8.4%, 10.9% and 11.5%, compared to the control. However, in 20-30 cm soil layer, cotton straw returning only increased soil available potassium content by 12.0%, while there were no significant changes in particle size, organic carbon, nitrogen and phosphorus contents. We concluded that cotton straw returning could significantly improve the structure of surface soil by increasing the number of macro-aggregates, contents of organic carbon, available nitrogen and potassium in aggregates, while decreasing micro-aggregate content. The enhancement of the contribution of macro-aggregates to soil fertility by returning cotton straw could improve soil physical structure, fertility and then increase cotton yield.
Callender, E.
2000-01-01
Rapid sedimentation exerts a pronounced influence on early sedimentary diagenesis in that there is insufficient time for a sediment particle to equilibrate in any one sediment layer before that layer may be displaced vertically by another layer. These sedimentation patterns are common in surface-water reservoirs whose sedimentation rates (1-10 cm yr-1) are several orders of magnitude greater than those for natural lakes (0.01-0.5 cm yr-1). Two examples of the effects of rapid sedimentation on geochemical metal signatures are presented here. Interstitial-water data (Fe) from two sites in the Cheyenne River Embayment of Lake Oahe on the Missouri River illustrate the effects of changing sedimentation rates on dissolved species. Rapid burial during high-flow yrs appears to limit early sedimentary diagenesis to aerobic respiration. Solid-phase metal data (Pb) from a site in Pueblo Reservoir on the upper Arkansas River in Colorado appear to record historical releases by flooding of abandoned mine sites upstream in Leadville, Colorado. Interstitial-water ammonia and ferrous Fe data indicate that at least one interval at depth in the sediment where solid metal concentrations peak is a zone of minimal diagenesis. The principal diagenetic reactions that occur in these sediments are aerobic respiration and the reduction of Mn and Fe oxides. Under slower sedimentation conditions, there is sufficient time for particulate organic matter to decompose and create a diagenetic environment where metal oxides may not be stable. The quasi-steady-state interstitial Fe profiles from Tidal Potomac River sediments are an example of such a situation. This occurs primarily because the residence time of particles in the surficial sediment column is long enough to allow benthic organisms and bacteria to perform their metabolic functions. When faster sedimentation prevails, there is less time for these metabolic reactions to occur since the organisms do not occupy a sediment layer for any length of time. Also, the quantity and quality of the organic matter input to the sediment layer is important in that reservoirs often receive more terrestrial organic matter than natural lakes and this terrestrial organic matter is generally more refractory than autochthonous aquatic organic matter.
Perret, Edith; Highland, M. J.; Stephenson, G. B.; ...
2014-08-04
Non-polar orientations of III-nitride semiconductors have attracted significant interest due to their potential application in optoelectronic devices with enhanced efficiency. Using in-situ surface x-ray scattering during metal-organic vapor phase epitaxy (MOVPE) of GaN on non-polar (m-plane) and polar (c-plane) orientations of single crystal substrates, we have observed the homoepitaxial growth modes as a function of temperature and growth rate. On the m-plane surface we observe all three growth modes (step-flow, layer-by-layer, and three-dimensional) as conditions are varied. In contrast, the +c-plane surface exhibits a direct cross over between step-flow and 3-D growth, with no layer-by-layer regime. The apparent activation energymore » of 2.8 ± 0.2 eV observed for the growth rate at the layer-by-layer to step-flow boundary on the m-plane surface is consistent with those observed for MOVPE growth of other III-V compounds, indicating a large critical nucleus size for islands.« less
Deep SOMs for automated feature extraction and classification from big data streaming
NASA Astrophysics Data System (ADS)
Sakkari, Mohamed; Ejbali, Ridha; Zaied, Mourad
2017-03-01
In this paper, we proposed a deep self-organizing map model (Deep-SOMs) for automated features extracting and learning from big data streaming which we benefit from the framework Spark for real time streams and highly parallel data processing. The SOMs deep architecture is based on the notion of abstraction (patterns automatically extract from the raw data, from the less to more abstract). The proposed model consists of three hidden self-organizing layers, an input and an output layer. Each layer is made up of a multitude of SOMs, each map only focusing at local headmistress sub-region from the input image. Then, each layer trains the local information to generate more overall information in the higher layer. The proposed Deep-SOMs model is unique in terms of the layers architecture, the SOMs sampling method and learning. During the learning stage we use a set of unsupervised SOMs for feature extraction. We validate the effectiveness of our approach on large data sets such as Leukemia dataset and SRBCT. Results of comparison have shown that the Deep-SOMs model performs better than many existing algorithms for images classification.
Zhou, Lijie; Zhang, Zhiqiang; Xia, Siqing; Jiang, Wei; Ye, Biao; Xu, Xiaoyin; Gu, Zaoli; Guo, Wenshan; Ngo, Huu-Hao; Meng, Xiangzhou; Fan, Jinhong; Zhao, Jianfu
2014-01-01
Effects of the suspended titanium dioxide nanoparticles (TiO2 NPs, 50 mg/L) on the cake layer formation in a submerged MBR were systematically investigated. With nanometer sizes, TiO2 NPs were found to aggravate membrane pore blocking but postpone cake layer fouling. TiO2 NPs showed obvious effects on the structure and the distribution of the organic and the inorganic compounds in cake layer. Concentrations of fatty acids and cholesterol in the cake layer increased due to the acute response of bacteria to the toxicity of TiO2 NPs. Line-analysis and dot map of energy-dispersive X-ray were also carried out. Since TiO2 NPs inhibited the interactions between the inorganic and the organic compounds, the inorganic compounds (especially SiO2) were prevented from depositing onto the membrane surface. Thus, the postponed cake layer fouling was due to the changing features of the complexes on the membrane surface caused by TiO2 NPs. Copyright © 2013 Elsevier Ltd. All rights reserved.
Neocortical layers I and II of the hedgehog (Erinaceus europaeus). I. Intrinsic organization.
Valverde, F; Facal-Valverde, M V
1986-01-01
The intrinsic organization and interlaminar connections in neocortical layers I and II have been studied in adult hedgehogs (Erinaceus europaeus) using the Golgi method. Layer I contains a dense plexus of horizontal fibers, the terminal dendritic bouquets of pyramidal cells of layer II and of underlying layers, and varieties of intrinsic neurons. Four main types of cells were found in layer I. Small horizontal cells represent most probably persisting foetal horizontal cells described for other mammals. Large horizontal cells, tufted cells, and spinous horizontal cells were also found in this layer. Layer II contains primitive pyramidal cells representing the most outstanding feature of the neocortex of the hedgehog. Most pyramidal cells in layer II have two, three or more apical dendrites, richly covered by spines predominating over the basal dendrites. These cells resemble pyramidal cells found in the piriform cortex, hippocampus and other olfactory areas. It is suggested that the presence of these neurons reflects the retention of a primitive character in neocortical evolution. Cells with intrinsic axons were found among pyramidal cells in layer II. These have smooth dendrites penetrating layer I and local axons forming extremely complex terminal arborizations around the bodies and proximal dendritic portions of pyramidal cells. They most probably effect numerous axo-somatic contacts resembling basket cells. The similarity of some axonal terminals with the chandelier type of axonal arborization is discussed. Other varieties of cells located in deep cortical layers and having ascending axons for layers I and II were also studied. It is concluded that the two first neocortical layers represent a level of important integration in this primitive mammal.
ELECTRON MICROSCOPIC OBSERVATION OF SPECIMENS UNDER CONTROLLED GAS PRESSURE
Heide, Hans Gunther
1962-01-01
A technique for encasing specimens in a thin gas layer during their observation in the Siemens Elmiskop I is described. All gases can be employed at pressures up to one atmosphere. Destruction of specimens can occur in the beam; all organic specimens are particularly liable to decompose. The conditions under which this can be avoided are given. A useful application of the technique allows one to prevent specimens from drying out, as they normally do in vacuum. A further application uses the controlled removal of carbon for thinning organic layers and for selective etching of organic materials. PMID:13905967
A study on the evaporation process with multiple point-sources
NASA Astrophysics Data System (ADS)
Jun, Sunghoon; Kim, Minseok; Kim, Suk Han; Lee, Moon Yong; Lee, Eung Ki
2013-10-01
In Organic Light Emitting Display (OLED) manufacturing processes, there is a need to enlarge the mother glass substrate to raise its productivity and enable OLED TV. The larger the size of the glass substrate, the more difficult it is to establish a uniform thickness profile of the organic thin-film layer in the vacuum evaporation process. In this paper, a multiple point-source evaporation process is proposed to deposit a uniform organic layer uniformly. Using this method, a uniformity of 3.75% was achieved along a 1,300 mm length of Gen. 5.5 glass substrate (1300 × 1500 mm2).
NASA Astrophysics Data System (ADS)
Ema, K.; Inomata, M.; Kato, Y.; Kunugita, H.; Era, M.
2008-06-01
We report the observation of extremely efficient energy transfer (greater than 99%) in an organic-inorganic hybrid quantum-well structure consisting of perovskite-type lead bromide well layers and naphthalene-linked ammonium barrier layers. Time-resolved photoluminescence measurements confirm that the transfer is triplet-triplet Dexter-type energy transfer from Wannier excitons in the inorganic well to the triplet state of naphthalene molecules in the organic barrier. Using measurements in the 10 300 K temperature range, we also investigated the temperature dependence of the energy transfer.
Using a periclinal chimera to unravel layer-specific gene expression in plants
Filippis, Ioannis; Lopez-Cobollo, Rosa; Abbott, James; Butcher, Sarah; Bishop, Gerard J
2013-01-01
Plant organs are made from multiple cell types, and defining the expression level of a gene in any one cell or group of cells from a complex mixture is difficult. Dicotyledonous plants normally have three distinct layers of cells, L1, L2 and L3. Layer L1 is the single layer of cells making up the epidermis, layer L2 the single cell sub-epidermal layer and layer L3 constitutes the rest of the internal cells. Here we show how it is possible to harvest an organ and characterise the level of layer-specific expression by using a periclinal chimera that has its L1 layer from Solanum pennellii and its L2 and L3 layers from Solanum lycopersicum. This is possible by measuring the level of the frequency of species-specific transcripts. RNA-seq analysis enabled the genome-wide assessment of whether a gene is expressed in the L1 or L2/L3 layers. From 13 277 genes that are expressed in both the chimera and the parental lines and with at least one polymorphism between the parental alleles, we identified 382 genes that are preferentially expressed in L1 in contrast to 1159 genes in L2/L3. Gene ontology analysis shows that many genes preferentially expressed in L1 are involved in cutin and wax biosynthesis, whereas numerous genes that are preferentially expressed in L2/L3 tissue are associated with chloroplastic processes. These data indicate the use of such chimeras and provide detailed information on the level of layer-specific expression of genes. PMID:23725542
Wang, Lei; Yan, Danhua; Shaffer, David W.; ...
2017-12-27
Solution-processable organic semiconductors have potentials as visible photoelectrochemical (PEC) water splitting photoelectrodes due to their tunable small band gap and electronic energy levels, but they are typically limited by poor stability and photocatalytic activity. In this study, we demonstrate the direct visible PEC water oxidation on solution-processed organic semiconductor thin films with improved stability and performance by ultrathin metal oxide passivation layers. N-type fullerene-derivative thin films passivated by sub-2 nm ZnO via atomic layer deposition enabled the visible PEC water oxidation at wavelengths longer than 600 nm in harsh alkaline electrolyte environments with up to 30 μA/cm 2 photocurrents atmore » the thermodynamic water-oxidation equilibrium potential and the photoanode half-lifetime extended to ~1000 s. The systematic investigation reveals the enhanced water oxidation catalytic activity afforded by ZnO passivation and the charge tunneling governing the hole transfer through passivation layers. Further enhanced PEC performances were realized by improving the bottom ohmic contact to the organic semiconductor, achieving ~60 μA/cm 2 water oxidation photocurrent at the equilibrium potential, the highest values reported for organic semiconductor thin films to our knowledge. The improved stability and performance of passivated organic photoelectrodes and discovered design rationales provide useful guidelines for realizing the stable visible solar PEC water splitting based on organic semiconductor thin films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lei; Yan, Danhua; Shaffer, David W.
Solution-processable organic semiconductors have potentials as visible photoelectrochemical (PEC) water splitting photoelectrodes due to their tunable small band gap and electronic energy levels, but they are typically limited by poor stability and photocatalytic activity. In this study, we demonstrate the direct visible PEC water oxidation on solution-processed organic semiconductor thin films with improved stability and performance by ultrathin metal oxide passivation layers. N-type fullerene-derivative thin films passivated by sub-2 nm ZnO via atomic layer deposition enabled the visible PEC water oxidation at wavelengths longer than 600 nm in harsh alkaline electrolyte environments with up to 30 μA/cm 2 photocurrents atmore » the thermodynamic water-oxidation equilibrium potential and the photoanode half-lifetime extended to ~1000 s. The systematic investigation reveals the enhanced water oxidation catalytic activity afforded by ZnO passivation and the charge tunneling governing the hole transfer through passivation layers. Further enhanced PEC performances were realized by improving the bottom ohmic contact to the organic semiconductor, achieving ~60 μA/cm 2 water oxidation photocurrent at the equilibrium potential, the highest values reported for organic semiconductor thin films to our knowledge. The improved stability and performance of passivated organic photoelectrodes and discovered design rationales provide useful guidelines for realizing the stable visible solar PEC water splitting based on organic semiconductor thin films.« less
A charge carrier transport model for donor-acceptor blend layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, Janine, E-mail: janine.fischer@iapp.de; Widmer, Johannes; Koerner, Christian
2015-01-28
Highly efficient organic solar cells typically comprise donor-acceptor blend layers facilitating effective splitting of excitons. However, the charge carrier mobility in the blends can be substantially smaller than in neat materials, hampering the device performance. Currently, available mobility models do not describe the transport in blend layers entirely. Here, we investigate hole transport in a model blend system consisting of the small molecule donor zinc phthalocyanine (ZnPc) and the acceptor fullerene C{sub 60} in different mixing ratios. The blend layer is sandwiched between p-doped organic injection layers, which prevent minority charge carrier injection and enable exploiting diffusion currents for themore » characterization of exponential tail states from a thickness variation of the blend layer using numerical drift-diffusion simulations. Trap-assisted recombination must be considered to correctly model the conductivity behavior of the devices, which are influenced by local electron currents in the active layer, even though the active layer is sandwiched in between p-doped contacts. We find that the density of deep tail states is largest in the devices with 1:1 mixing ratio (E{sub t} = 0.14 eV, N{sub t} = 1.2 × 10{sup 18 }cm{sup −3}) directing towards lattice disorder as the transport limiting process. A combined field and charge carrier density dependent mobility model are developed for this blend layer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jie; Lucero, Antonio T.; Cheng, Lanxia
In this study, we have deposited organic-inorganic hybrid semiconducting hydroquinone (HQ)/zinc oxide (ZnO) superlattices using molecular-atomic layer deposition, which enables accurate control of film thickness, excellent uniformity, and sharp interfaces at a low deposition temperature (150 °C). Self-limiting growth of organic layers is observed for the HQ precursor on ZnO surface. Nano-laminates were prepared by varying the number of HQ to ZnO cycles in order to investigate the physical and electrical effects of different HQ to ZnO ratios. It is indicated that the addition of HQ layer results in enhanced mobility and reduced carrier concentration. The highest Hall mobility of approximatelymore » 2.3 cm{sup 2}/V·s and the lowest n-type carrier concentration of approximately 1.0 × 10{sup 18}/cm{sup 3} were achieved with the organic-inorganic superlattice deposited with a ratio of 10 ZnO cycles to 1 HQ cycle. This study offers an approach to tune the electrical transport characteristics of ALD ZnO matrix thin films using an organic dopant. Moreover, with organic embedment, this nano-laminate material may be useful for flexible electronics.« less
The design of cathode for organic photovoltaic devices
NASA Astrophysics Data System (ADS)
Song, De; Shi, Feng; Xia, Xuan; Li, Ye; Duanmu, Qingduo
2016-11-01
We have discussed the effect of the residual gas in the Al metal cathode deposition process and consequently influence the performance of organic photovoltaic devices (such as organic photoelectron detector or solar cell). We believe that the origin of degradation in Jsc and FF from the Al cathode device should be the formation of AlOx in the C60-Al interface, which contaminate the interface and plays a role like an energy barrier that block the charge collect process. To solve this problem the Ag and Alq3 layer had been inserted before the Al. Owing to the advantageous of Alq3 and Ag layer, the device which Al cathode prepared at a lower vacuum condition exhibits a comparable performance to that device which Al cathode deposited in regular situation. As an additional benefit, since the introducing of Alq3/Ag layer in the VOPc/C60 organic photovoltaic device performs a better near-infrared response, this phenomenon has been confirmed by means of both simulation and experimental data. So the design of our new cathode structure provides a degree of freedom to modulate the light absorption for organic photovoltaic devices in short-wave and long-wave.
Haze aerosols in the atmosphere of early Earth: manna from heaven.
Trainer, Melissa G; Pavlov, Alexander A; Curtis, Daniel B; McKay, Christopher P; Worsnop, Douglas R; Delia, Alice E; Toohey, Darin W; Toon, Owen B; Tolbert, Margaret A
2004-01-01
An organic haze layer in the upper atmosphere of Titan plays a crucial role in the atmospheric composition and climate of that moon. Such a haze layer may also have existed on the early Earth, providing an ultraviolet shield for greenhouse gases needed to warm the planet enough for life to arise and evolve. Despite the implications of such a haze layer, little is known about the organic material produced under early Earth conditions when both CO(2) and CH(4) may have been abundant in the atmosphere. For the first time, we experimentally demonstrate that organic haze can be generated in different CH(4)/CO(2) ratios. Here, we show that haze aerosols are able to form at CH(4) mixing ratios of 1,000 ppmv, a level likely to be present on early Earth. In addition, we find that organic hazes will form at C/O ratios as low as 0.6, which is lower than the predicted value of unity. We also show that as the C/O ratio decreases, the organic particles produced are more oxidized and contain biologically labile compounds. After life arose, the haze may thus have provided food for biota.
Ivanov, M V; Lein, A Iu; Miller, Iu M; Iusunov, S K; Pimenov, N V; Wehrli, B; Rusanov, I I; Zehnder, A
2000-01-01
The isotopic composition of particulate organic carbon (POC) from the Black Sea deep-water zone was studied during a Russian-Swiss expedition in May 1998. POC from the upper part of the hydrogen sulfide zone (the C-layer) was found to be considerably enriched with the 12C isotope, as compared to the POC of the oxycline and anaerobic zone. In the C-layer waters, the concurrent presence of dissolved oxygen and hydrogen sulfide and an increased rate of dark CO2 fixation were recorded, suggesting that the change in the POC isotopic composition occurs at the expense of newly formed isotopically light organic matter of the biomass of autotrophic bacteria involved in the sulfur cycle. In the anaerobic waters below the C-layer, the organic matter of the biomass of autotrophs is consumed by the community of heterotrophic microorganisms; this results in weighting of the POC isotopic composition. Analysis of the data obtained and data available in the literature allows an inference to be made about the considerable seasonable variability of the POC delta 13C value, which depends on the ratio of terrigenic and planktonogenic components in the particulate organic matter.
Organic light emitting device structure for obtaining chromaticity stability
Tung, Yeh-Jiun [Princeton, NJ; Ngo, Tan [Levittown, PA
2007-05-01
The present invention relates to organic light emitting devices (OLEDs). The devices of the present invention are efficient white or multicolored phosphorescent OLEDs which have a high color stability over a wide range of luminances. The devices of the present invention comprise an emissive region having at least two emissive layers, with each emissive layer comprising a different host and emissive dopant, wherein at least one of the emissive dopants emits by phosphorescence.
E.E. Jafarov; V.E. Romanovsky; H. Genet; A.D. McGuire; S.S. Marchenko
2013-01-01
Fire is an important factor controlling the composition and thickness of the organic layer in the black spruce forest ecosystems of interior Alaska. Fire that burns the organic layer can trigger dramatic changes in the underlying permafrost, leading to accelerated ground thawing within a relatively short time. In this study, we addressed the following questions. (1)...
Organic light emitting device structures for obtaining chromaticity stability
Tung, Yeh-Jiun; Lu, Michael; Kwong, Raymond C.
2005-04-26
The present invention relates to organic light emitting devices (OLEDs). The devices of the present invention are efficient white or multicolored phosphorescent OLEDs which have a high color stability over a wide range of luminances. The devices of the present invention comprise an emissive region having at least two emissive layers, with each emissive layer comprising a different host and emissive dopant, wherein at least one of the emissive dopants emits by phosphorescence.
Identification And Survival Of Bacteriohopanepolyol In A Hot Spring Microbial Mat
NASA Technical Reports Server (NTRS)
Janke, Linda L.; Chang, Sherwood (Technical Monitor)
1995-01-01
The polar lipids of a hot spring microbial mat located in Yellowstone National Park were examined for the presence of bacteriohopanepolvols (BHP). BHP are a group of molecules consisting of a hopanoid (peotacyclic triterpene) linked via a n-alkyl polyhydroxylated chain to a variety of polar end groups. BHP have been isolated in varying amounts from phylogenetically diverse eubacterial groups including cyanobacteria, methanotrophs and the Rhodospirillaceae. The hopanoids are excellent biomarkers and have been detected in sedimentary rocks as old as 1.7 bya. In order to interpret the ancient organic record, it is important to understand the abundance, source and fate of such biomarker compounds in microbial mats. A 40 sq cm mat section was taken from a 52 to 55 C site in the effluent channel of Octopus Spring and was sampled vertically over approximately 16 mm. The first 5-6 mm was sectioned into a top green layer (310 mg dry weight) and several subjacent, deep orange layers (240 and 250 mg, respectively). The lower 10 mm of the mat was sectioned into two gelatinous orange layers containing a siliceous gritty material (260 and 440 mg) which increased with depth, and a bottom layer composed almost exclusively of siliceous sinter (4.1 g). The progressive decrease in total organic carbon from 45% in the top green layer to only 4% in the bottom layer reflects the observed increase in siliceous deposition. GC-MS analysis of the phospholipid and glycolipid fatty acids yielded predominantly saturated normal chain acids, n-15 to n-18, and iso-branched acids, i-15 to i-17. Small amounts of unsaturated fatty acids (16:1, two positional isomers of 18:1, and two cyclopropyl acids, C(sub 17) and C(sub 19)) were present mainly in the top layer. Esterified fatty acid which is a good index for intact cellular membrane, i.e. viable organisms, was highest in the top two layers (203 and 231 micro g/mg total lipid, respectively) and gradually decreased to 66 micro g/mg total lipid in the bottom layer. Small amounts of BHP were present in all six layers, however in this case, BHP was lowest in the top green and subjacent deep-orange layers (118 and 172 micro g/mg total lipid, respectively) and increased with depth reaching almost 400 micro g/mg in the bottom two layers. This data suggest that BHP are survivina the initial phase of mat degradation and may be preferentially enriched in any organic record of such thermal environments. The relatively low level of BHP in the top layer also suggests that cyanobacteria may not be the major source of BHP in this mat. Since Chloroflexus a major component of the deep-orange layer has been reported to lack BHP, this material may prove a valuable biomarker for some other mat inhabitant. Further isotopic characterization of this BHP should help resolve this finding.
NASA Astrophysics Data System (ADS)
Bouthinon, B.; Clerc, R.; Verilhac, J. M.; Racine, B.; De Girolamo, J.; Jacob, S.; Lienhard, P.; Joimel, J.; Dhez, O.; Revaux, A.
2018-03-01
The External Quantum Efficiency (EQE) of semi-transparent Bulk Hetero-Junction (BHJ) organic photodiodes processed in air shows significant differences when measured from the front or back side contacts. This difference was found significantly reduced when decreasing the active layer thickness or by applying a negative bias. This work brings new elements to help understanding this effect, providing a large set of experiments featuring different applied voltages, active layers, process conditions, and electron and hole layers. By means of detailed electrical simulations, all these measurements have been found consistent with the mechanisms of irreversible photo-oxidation, modeled as deep trap states (and not as p-type doping). The EQE measurement from front and back sides is thus a simple and efficient way of monitoring the presence and amplitude of oxygen contamination in BHJ organic solar cells and photodiodes.
Recyclable organic solar cells on substrates comprising cellulose nanocrystals (CNC)
Kippelen, Bernard; Fuentes-Hernandez, Canek; Zhou, Yinhua; Moon, Robert; Youngblood, Jeffrey P
2015-12-01
Recyclable organic solar cells are disclosed herein. Systems and methods are further disclosed for producing, improving performance, and for recycling the solar cells. In certain example embodiments, the recyclable organic solar cells disclosed herein include: a first electrode; a second electrode; a photoactive layer disposed between the first electrode and the second electrode; an interlayer comprising a Lewis basic oligomer or polymer disposed between the photoactive layer and at least a portion of the first electrode or the second electrode; and a substrate disposed adjacent to the first electrode or the second electrode. The interlayer reduces the work function associated with the first or second electrode. In certain example embodiments, the substrate comprises cellulose nanocrystals that can be recycled. In certain example embodiments, one or more of the first electrode, the photoactive layer, and the second electrode may be applied by a film transfer lamination method.
Nakazawa, Akira; Tang, Ning; Inoue, Yoshinori; Kamichatani, Waka; Katoh, Toshifumi; Saito, Mitsuru; Obara, Kenji; Toriba, Akira; Hayakawa, Kazuichi
2017-01-01
Diallylamine-maleic acid copolymer (DAM)-nonwoven fabric (DAM-f), a fibrous adsorbent, contains DAM with zwitter-ionic functional groups and forms a hydration layer on the surface. The aim of this report was to evaluate the adsorption selectivity of DAM-f to semi-volatile organic acid (C1-C5). In the aqueous phase, formic acid dissolved in the hydration layer bound to the imino group of DAM-f due to anion exchange interaction. In the gas phase, the adsorption amounts of organic acids increased with the exposure time. Moreover, the adsorption rate constants correlated with the air/water partition coefficients (log K aw ) for formic acid, propionic acid, butyric acid, valeric acid and isovaleric acid, except for acetic acid. These results indicate that DAM-f is highly selective to hydrophilic compounds which easily move from the air to the hydration layer of DAM-f.