Science.gov

Sample records for organic matter diagenesis

  1. Carbon isotope fractionation of sapropelic organic matter during early diagenesis

    USGS Publications Warehouse

    Spiker, E. C.; Hatcher, P.G.

    1984-01-01

    Study of an algal, sapropelic sediment from Mangrove Lake, Bermuda shows that the mass balance of carbon and stable carbon isotopes in the major organic constituents is accounted for by a relatively straightforward model of selective preservation during diagenesis. The loss of 13C-enriched carbohydrates is the principal factor controlling the intermolecular mass balance of 13C in the sapropel. Results indicate that labile components are decomposed leaving as a residual concentrate in the sediment an insoluble humic substance that may be an original biochemical component of algae and associated bacteria. An overall decrease of up to about 4??? in the ?? 13C values of the organic matter is observed as a result of early diagenesis. ?? 1984.

  2. Organic matter diagenesis in shallow water carbonate sediments

    NASA Astrophysics Data System (ADS)

    Ingalls, Anitra E.; Aller, Robert C.; Lee, Cindy; Wakeham, Stuart G.

    2004-11-01

    Muddy carbonate deposits near the Dry Tortugas, Florida, are characterized by high organic carbon remineralization rates. However, approximately half of the total sedimentary organic matter potentially supporting remineralization is occluded in CaCO 3 minerals (intracrystalline). While a portion of nonintracrystalline organic matter appears to cycle rapidly, intracrystalline organic matter has an approximately constant concentration with depth, suggesting that as long as its protective mineral matrix is intact, it is not readily remineralized. Organic matter in excess of intracrystalline organic matter that is preserved may have a variety of mineral associations (e.g., intercrystalline, adsorbed or detrital). In surface sediment, aspartic acid contributed ˜22 mole % and ˜50 mole % to nonintracrystalline and intracrystalline pools, respectively. In deeper sediment (1.6-1.7m), the composition of hydrolyzable amino acids in both pools was similar (aspartic acid ˜40 mole %). Like amino acids, intracrystalline and nonintracrystalline fatty acids have different compositions in surface sediments, but are indistinguishable at depth. These data suggest that preserved organic matter in the nonintracrystalline pool is stabilized by its interactions with CaCO 3. Neutral lipids are present in very low abundances in the intracrystalline pool and are extensively degraded in both the intracrystalline and nonintracrystalline pools, suggesting that mineral interactions do not protect these compounds from degradation. The presence of chlorophyll- a, but absence of phytol, in the intracrystalline lipid pool demonstrates that chloropigments are present only in the nonintracrystalline pool. Sedimentary chloropigments decrease with depth at similar rates in Dry Tortugas sediments as found in alumino-silicate sediments from the Long Island Sound, suggesting that chloropigment degradation is largely unaffected by mineral interactions. Overall, however, inclusion and protection of

  3. Organic matter oxidation and aragonite diagenesis in a coral reef

    SciTech Connect

    Tribble, G.W. Univ. of Hawaii, Honolulu )

    1993-05-01

    A combination of field and theoretical work is used to study controls on the saturation state of aragonite inside a coral-reef framework. A closed-system ion-speciation model is used to evaluate the effect of organic-matter oxidation on the saturation state of aragonite. The aragonite saturation state initially drops below 1 but becomes oversaturated during sulfate reduction. The C:N ratio of the organic matter affects the degree of oversaturation with N-poor organic material resulting in a system more corrosive to aragonite. Precipitation of sulfide as FeS strongly affects the aragonite saturation state, and systems with much FeS formation will have a stronger tendency to become oversaturated with respect to aragonite. Both precipitation and dissolution of aragonite are predicted at different stages of the organic reaction pathway if the model system is maintained at aragonite saturation. Field data from a coral-reef framework indicate that the system maintains itself at aragonite saturation, and model-predicted changes in dissolved calcium follow those observed in the interstitial waters of the reef. Aragonite probably acts as a solid-phase buffer in regulating the pH of interstitial waters. Because interstitial water in the reef has a short residence time, the observed equilibration suggests rapid kinetics.

  4. Microbial Nitrogen Cycling Associated with the Early Diagenesis of Organic Matter in Subseafloor Sediments

    NASA Astrophysics Data System (ADS)

    Zhao, R.

    2015-12-01

    The early diagenesis of organic matter is the major energy source of marine sedimentary biosphere and thus controls its population size; however, the vertical distribution of any functional groups along with the diagenesis of organic matter is remained unclear, especially for those microbes involved in nitrogen transformation which serve as a major control on the nitrogen flux between reservoirs. Here we investigated the vertical distributions of various functional groups in five sediment cores retrieved from Arctic Mid-Ocean Ridge (AMOR), with emphasis on the nitrifiers, denitrifiers and anaerobic ammonium oxidizing bacteria (anammox). We observed the clear geochemical zonation associated with organic matter diagenesis in the sediments based on the pore water profiles of oxygen, nitrate, ammonium, manganese and sulfate, with distinct geochemical transition zones at the boundaries of geochemical zones, including oxic-anoxic transition zone (OATZ) and nitrate-manganese reduction zone (NMTZ). Nitrate was produced in surface oxygenated sediments and nitrate consumption mainly took place at the NMTZ, splitted between re-oxidation of ammonium and manganese (II). Abundances of ammonia oxidizers, nitrite oxidizers, and denitrifiers, estimated through quantitative PCR targeting their respective functional genes, generally decrease with depth, but constantly elevated around the OATZ, NMTZ, and manganese-reduction zone as well. Anammox bacteria were only detected around the NMTZ where both nitrate/nitrite and ammonium are available. These depth profiles of functional groups were also confirmed by the community structure profiling by prokaryotic 16S rRNA gene tag pyrosequencing. Cell-specific rates of nitrification and denitrification, calculated from the bulk net reaction rates divided by functional group abundances, were similar to those values from oligotrophic sediments like North Pond and thus suggested that nitrifiers and denitirifiers populations were in maintenance

  5. Organic matter diagenesis in the northeast Pacific: transition from aerobic red clay to suboxic hemipelagic sediments

    NASA Astrophysics Data System (ADS)

    Murray, James W.; Kuivila, Kathryn M.

    1990-01-01

    Analyses for dissolved oxygen, nitrate, silicate and manganese in the interstitial water from an in situ sampler and from boxcore sediment samples have been combined with solid phase sediment analyses of carbon and nitrogen to study the transition from aerobic to suboxic diagenesis in the northeast Pacific. The station locations coincide with the VERTEX sediment trap stations. This has enabled us to study diagenesis as a function of the flux of organic carbon to the sediment-water interface. Organic carbon in the sediments decreases with distance from the continental margin. At all stations, except 183-2 on the Monterey deep sea fan, organic carbon decreases rapidly below the sediment-water interface. The organic matter at Stas 183-3, 4, 5 and 6 has a C/N molar ratio of 10. At Sta. 183-2 the organic matter has a relatively nitrogen-poor C/N ratio of 15.8, suggesting terrestrial input. The stoichiometry of the decomposing organic matter at Stas 183-3, 4, 5 and 6 was determined from the porewater oxygen and nitrate, and the resulting C/N ratio was 14. The flux of oxygen into the sediments decreases with increasing water depth. Comparison of the oxygen consumption by the sediments with the rain rate of organic carbon indicates that most of the rain of organic carbon is oxidized within the sediments using oxygen as the electron acceptor. The first order degradation rate constant for organic carbon oxidation calculated from the porewater oxygen profiles was found to correlate strongly with the rain rate of organic carbon. The rate constant increases with the rain rate, suggesting that at higher rain rates the organic matter is more "reactive". The mean life for sedimentary organic carbon is 12,000 years in the central North Pacific and decreases to 200 years near the continental boundary.

  6. Early diagenesis of organic matter in a Sawgrass peat from the Everglades, Florida

    USGS Publications Warehouse

    Orem, W.H.; Hatcher, P.G.

    1987-01-01

    The transformation of plant biopolymers to humic substances in peats during early diagenesis is a critical but poorly understood step in the formation of coal. This paper presents results concerning the structural interrelationships among various fractions of the organic matter in peat and the dissolved organic matter in the pore water from a site in The Everglades, relying primarily on elemental analysis and 13C nuclear magnetic resonance for structural elucidation. Our goal was to obtaine some insight into the sequence of steps involved in the formation of humic substances. Results show that the major change occurring in the whole peat during diagenesis is loss of carbohydrates. The components of the peat which are more resistant to microbial degradation become concentrated in the humin fraction. This resistant fraction of the organic matter includes aliphatic and aromatic components. The aromatic components are thought to be derived from lignin while the aliphatic moieties may represent decomposed algal remains. The carbohydrates lost from the whole peat appear to be concentrated in the fulvic acids and the dissolved organic matter in the pore water. The humic acids consist predominantly of aromatic and aliphatic structures, and may represent partially degraded lignin-like structures and aliphatic compounds from algae. The data presented here suggest that humic and fulvic acids are the partially degraded fractions of the peat while the humin contains the resistant or preserved portion of the organic matter. The proposition that humic substances are formed by the condensation of amino acids and sugars is not supported by the results of this study. ?? 1987.

  7. Biological early diagenesis and insolation-paced paleoproductivity signified in deep core sediment organic matter.

    PubMed

    Chen, Meilian; Kim, Ji-Hoon; Choi, Jiyoung; Lee, Yun Kyung; Hur, Jin

    2017-05-08

    The dynamics of a large stock of organic matter contained in deep sediments of marginal seas plays pivotal role in global carbon cycle, yet it is poorly constrained. Here, dissolved organic matter (DOM) in sediments was investigated for core sediment up to ~240 meters deep in the East/Japan Sea. The upper downcore profile (≤118 mbsf, or meters below seafloor) at a non-chimney site (U1) featured the exponential production of dissolved organic carbon (DOC) and optically active DOM with time in the pore water above sulfate-methane-transition-zone (SMTZ), concurrent with the increases of nutrients and alkalinity, and the reduction of sulfate. Such depth profiles signify a biological pathway of the DOM production during the early diagenesis of particulate organic matter presumably dominated by sulfate reduction. Below the SMTZ, an insolation-paced oscillation of DOM in a ~405-Kyr cycle of orbital eccentricity was observed at site U1, implying astronomically paced paleoproductivity stimulated by light availability. Furthermore, DOM dynamics of the deep sediments were likely governed by intensive humification as revealed by the less pronounced protein-like fluorescence and the lower H/C and O/C ratios below SMTZ among 15,281 formulas identified. Our findings here provide novel insights into organic matter dynamics in deep sediments.

  8. Sources and diagenesis of organic matter in tidal flat sediments from the German Wadden Sea

    NASA Astrophysics Data System (ADS)

    Volkman, J. K.; Rohjans, D.; Rullkötter, J.; Scholz-Böttcher, B. M.; Liebezeit, G.

    2000-07-01

    The sources and diagenesis of organic matter in a sediment core from the Swinnplate backbarrier area near Spiekeroog Island in the northwest German Wadden Sea have been examined using stable carbon isotopes, 14C-ages and lipid biomarker data. Twenty-two core sections were analysed from the surface to a depth of 90 cm, representing sedimentation over the past approximately 200 years. Total organic carbon (TOC) contents were highly variable (0.1-1%), as was the grain size with some core sections containing up to 50% of clay and silt (mud fraction). These data indicate a highly variable depositional regime in which organic matter is extensively degraded both before and after incorporation into the sediments. The TOC content was strongly correlated with the abundance of the mud fraction, indicating the importance of organic matter sorption onto particles for preservation of both marine and terrestrial organic matter. Sediments near the top of the core were enriched in marine organic matter, but terrestrial organic matter predominated in most core sections. Some samples showed higher TOC contents than might be predicted from the TOC-grain size relationship. Isotope and biomarker studies showed that these contained additional terrestrial organic matter from peats, possibly eroded from areas to the west of the investigated area. The organic matter in these layers had the lightest values of δ 13C (about -26‰ compared with a more typical mixed marine-terrestrial value of -24‰). Most of the n-alkane distributions show a strong predominance of odd-carbon-number alkanes typical of the distributions found in higher plant waxes. All core sections contained abundant long-chain alcohols and triterpenoid alcohols such as α-amyrin, β-amyrin, lupeol, taraxerol, taraxerone and friedelin from higher plants. The dihydroxy triterpenoid betulin was particularly abundant confirming that eroded peats are a major source of the lipids. Further confirmation was obtained from AMS

  9. Organic matter diagenesis and hydrocarbon generation on outer Continental Margin of northwestern Australia

    SciTech Connect

    Meyers, P.A.; Snowdon, L.R.; Heggie, D.; Bent, A.

    1989-03-01

    Organic geochemical analyses of sediments and rocks obtained from drill sites on the Exmouth and Wombat Plateaus and the Argo Abyssal Plain on the northwestern margin of Australia were done onboard the JOIDES Resolution during Ocean Drilling Program Legs 122 and 123. These analyses provide information about the sources of organic matter to these offshore locations from Triassic to Holocene times and also indicate the degree of postdepositional diagenesis and maturation the organic matter has experienced. Because this margin has interest to petroleum explorationists, these data have practical as well as fundamental significance. Triassic claystones (equivalent to the onshore Mungeroo Formation) from the Wombat Plateau contain up to several percent of land-derived organic carbon. Neocomian siltstones and claystones (equivalent to the Barrow Group and Muderong Shale) from the Exmouth Plateau hold similar organic matter but at lower concentrations. Younger sediments are generally very lean in organic matter. Gas chromatographic analysis of extractable hydrocarbons shows a large and often dominant contribution of continental components, notably n-alkanes with a strong odd/even ratio and tricyclic diterpanes. Both Rock-Eval and hydrocarbon results agree in indicating low to moderate levels of thermal maturity. Locations on the Exmouth Plateau typically contain large amounts of thermogenic gaseous hydrocarbons dominated by methane. Concentrations peak in Senonian chalk sequences. In Neocomian siltstones and claystones, methane-ethane ratios diminish as concentrations decrease. The source of these hydrocarbons is likely to be the Triassic coals and coaly material below the Dingo claystone, which was not drilled during these legs but has been characterized from industry wells on this passive margin.

  10. Comprehensive assessment of precursors, diagenesis, and reactivity to water treatment of dissolved and colloidal organic matter

    USGS Publications Warehouse

    Leenheer, J.A.

    2004-01-01

    A comprehensive isolation, fractionation, and characterization research approach was developed for dissolved and colloidal organic matter (DOM) in water, and it was applied to various surface- and groundwaters to assess DOM precursors, DOM diagenesis, and DOM reactivity to water treatment processes. Major precursors for natural DOM are amino sugars, condensed tannins, and terpenoids. Amino sugar colloids derived from bacterial cell walls are incompletely removed by drinking water treatment and foul reverse osmosis membranes, but are nearly quantitatively removed by soil/aquifer treatment. When chlorinated, amino sugars produce low yields of regulated disinfection by-products (DBFs) but they produce significant chlorine demand that is likely caused by chlorination of free amino groups. Condensed tannins are major precursors for "blackwater" DOM such as that found in the Suwannee River. This DOM produces high yields of DBPs upon chorination, and is efficiently removed by coagulation/flocculation treatment. Terpenoid-derived DOM appears to be biologically refractory, infiltrates readily into groundwater with little removal by soil/aquifer treatment, gives low DBF-yields upon chlorination and is poorly removed by coagulation/flocculation treatments. Peptides derived from proteins are major components of the base DOM fraction (10% or less of the mass of DOM), and this fraction produces large yields of haloacetonitriles upon chorination.

  11. Early diagenesis of recently deposited organic matter: A 9-yr time-series study of a flood deposit

    NASA Astrophysics Data System (ADS)

    Tesi, T.; Langone, L.; Goñi, M. A.; Wheatcroft, R. A.; Miserocchi, S.; Bertotti, L.

    2012-04-01

    In Fall 2000, the Po River (Italy) experienced a 100-yr return period flood that resulted in a 1-25 cm-thick deposit in the adjacent prodelta (10-25 m water depth). In the following years, numerous post-depositional perturbations occurred including bioturbation, reworking by waves with heights exceeding 5 m, as well as periods of extremely high and low sediment supply. Cores collected in the central prodelta after the Fall 2000 flood and over the following 9 yr, allowed characterization of the event-strata in their initial state and documentation of their subsequent evolution. Sedimentological characteristics were investigated using X-radiographs and sediment texture analyses, whereas the composition of sedimentary organic matter (OM) was studied via bulk and biomarker analyses, including organic carbon (OC), total nitrogen (TN), carbon stable isotope composition (δ13C), lignin phenols, cutin-products, p-hydroxy benzenes, benzoic acids, dicarboxylic acids, and fatty acids. The 9-yr time-series analysis indicated that roughly the lower half of the original event bed was preserved in the sediment record. Conversely, the upper half of the deposit experienced significant alterations including bioturbation, addition of new material, as well as coarsening. Comparison of the recently deposited material with 9-yr old preserved strata represented a unique natural laboratory to investigate the diagenesis of sedimentary OM in a non-steady system. Bulk data indicated that OC and TN were degraded at similar rates (loss ∼17%) whereas biomarkers exhibited a broad spectrum of reactivities (loss from ∼6% to ∼60%) indicating selective preservation during early diagenesis. Given the relevance of episodic sedimentation in several margins, this study has demonstrated the utility of event-response and time-series sampling of the seabed for understanding the early diagenesis in non-steady conditions.

  12. Hydrocarbon potential, organic matter diagenesis, sedimentology, and paleoenvironment of upper Mesozoic dark shales, northern Himalayas and Argo abyssal plain

    SciTech Connect

    Thurow, J.; Gibling, M.

    1989-03-01

    The Late Jurassic was a time favorable for the deposition of black shale-type sediments in shallow environments as known from circum-North Atlantic basins, North Sea, and Himalayan Tethys regions. Locally these shales have excellent hydrocarbon source potential. The site of the Spiti shales in the Thakkola region of north-central Nepal provides the opportunity to study a long-term (Oxfordian-Tithonian) stable, shallow, and oxygen-depleted environment. Strata with calcareous benthic communities show that the environment was not anoxic. Organic geochemical and sedimentological analyses on the Spiti shales (Oxfordian-Valanginian) were done to understand the hydrocarbon potential, organic matter diagenesis, sedimentology, and paleoenvironment of this sequence. The depositional environment changed, driven by tectono-eustatic and climatic events, from an open shelf (approximately 250 m) with low amounts of detrital input and rich macrofossil communities to an extremely shallow, partly continental environment with intercalations of quartzose channel fill, silty shales, rare lumachelle layers, and coal seams. Paleocurrents suggest a north-facing continental margin bordering the Tethys Sea. The organic matter changed from marine (Jurassic) to terrestrial in the Cretaceous. Analysis of coeval strata, deposited in the deep-marine environment off the northern Indian shelf (contiguous with the present-day Argo abyssal plain), demonstrates the changing shallow to deep-water hydrocarbon potential. It reflects the more advanced organic matter maturation of the onshore material due to Himalayan tectonics and allows tracing the transport of the organic matter.

  13. Impact of the simulated diagenesis on sorption of naphthalene and 1-naphthol by soil organic matter and its precursors.

    PubMed

    Guo, Xiaoying; Wang, Xilong; Zhou, Xinzhe; Ding, Xing; Fu, Bin; Tao, Shu; Xing, Baoshan

    2013-01-01

    Soil organic matter (SOM) in a peat soil, humic acid, and humin and their precursors (i.e., cellulose and lignin) were treated at high temperature (250 and 400 °C) with high pressure in a sealed platinum reaction kittle to simulate the influence of diagenesis on their composition and structure, and impact of the simulated diagenesis on sorption behaviors of hydrophobic organic compounds (HOCs) (i.e., naphthalene and 1-naphthol) by these samples was investigated. High temperature and pressure treatment greatly influenced chemical composition and physical properties of the original samples and their sorption for both naphthalene and 1-naphthol. Sorption of naphthalene by all samples was jointly regulated by hydrophobic and π-π interactions with their alkyl and aromatic carbon moieties, which was derived from the positive correlation between total hydrophobic carbon content of all sorbents and their organic carbon content-normalized sorption coefficients (Koc) for this compound (p = 0.075). However, sorption of 1-naphthol by the tested sorbents was governed by hydrogen bonding with their O-containing polar functionalities, as derived from the positive correlation between Koc values of 1-Naph and their polarity index ((O+N)/C). Difference in sorption mechanisms of naphthalene and 1-naphthol by the original and treated samples noted the great influence of chemical composition of sorbates on their interaction and essential roles of specific interactions (e.g., hydrogen bonding) in sorption of polar compound (i.e., 1-naphthol) to these sorbents. Surface area (SA) and porosity data of sorbents obtained from N2 sorption-desorption isotherms at 77 K showed that new SA and pores were created during the diagenetic process of all original samples, which provided substantial sorption sites and thus enhanced sorption of naphthalene and 1-naphthol. Among all tested samples, physicochemical properties of cellulose were most strongly affected by the simulated diagenetic process

  14. Jellyfish Lake, Palau: early diagenesis of organic matter in sediments of an anoxic marine lake

    USGS Publications Warehouse

    Orem, W.H.; Burnett, W.C.; Landing, W.M.; Lyons, W.B.; Showers, W.

    1991-01-01

    The major postdepositional change in the sedimentary organic matter is carbohydrate biodegradation. Lignin and aliphatic substances are preserved in the sediments. Dissolved organic matter in pore waters is primarily composed of carbohydrates, reflecting the degradation of sedimentary carbohydrates. Rate constants for organic carbon degradation and sulfate reduction in sediments of the lake are about 10?? lower than in other anoxic sediments. This may reflect the vascular plant source and partly degraded nature of the organic matter reaching the sediments of the lake. -from Authors

  15. Organic matter diagenesis as the key to a unifying theory for the genesis of tabular uranium-vanadium deposits in the Morrison Formation, Colorado Plateau

    USGS Publications Warehouse

    Hansley, P.L.; Spirakis, C.S.

    1992-01-01

    Interstitial, epigenetic amorphous organic matter is intimately associated with uranium in the Grants uranium region and is considered essential to genetic models for these deposits. In contrast, uranium minerals are intimately associated with authigenic vanadium chlorite and vanadium oxides in amorphous organic matter-poor ores of the Slick Rock and Henry Mountains mining districts and therefore, in some genetic models amorphous organic matter is not considered crucial to the formation of these deposits. Differences in organic matter content can be explained by recognizing that amorphous organic matter-poor deposits have been subjected to more advanced stages of diagenesis than amorphous organic matter-rich deposits. Evidence that amorphous organic matter was involved in the genesis of organic matter-poor, as well as organic matter-rich, deposits is described. -from Authors

  16. A quantitative reconstruction of organic matter and nutrient diagenesis in Mediterranean Sea sediments over the Holocene

    NASA Astrophysics Data System (ADS)

    Reed, Daniel C.; Slomp, Caroline P.; de Lange, Gert J.

    2011-10-01

    A multicomponent diagenetic model was developed and applied to reconstruct the conditions under which the most recent sapropel, S1, was deposited in the eastern Mediterranean Sea. Simulations demonstrate that bottom waters must have been anoxic and sulphidic during the formation of S1 and that organic matter deposition was approximately three times higher than at present. Nevertheless, most present day sediment and pore water profiles — with the exception of pyrite, iron oxyhydroxides, iron-bound phosphorus and phosphate — can be reproduced under a wide range of redox conditions during formation of S1 by varying the depositional flux of organic carbon. As a result, paleoredox indicators (e.g., C org:S ratio, C org:P org ratio, trace metals) are needed when assessing the contribution of oxygen-depletion and enhanced primary production to the formation of organic-rich layers in the geological record. Furthermore, simulations show that the organic carbon concentration in sediments is a direct proxy for export production under anoxic bottom waters. The model is also used to examine the post-depositional alteration of the organic-rich layer focussing on nitrogen, phosphorus, and organic carbon dynamics. After sapropel formation, remineralisation is dominated by aerobic respiration at a rate that is inversely proportional to the time since bottom waters became oxic once again. A sensitivity analysis was undertaken to identify the most pertinent parameters in regulating the oxidation of sapropels, demonstrating that variations in sedimentation rate, depositional flux of organic carbon during sapropel formation, bottom water oxygen concentration, and porosity have the largest impact. Simulations reveal that sedimentary nutrient cycling was markedly different during the formation of S1, as well as after reoxygenation of bottom waters. Accumulation of organic nitrogen in sediments doubled during sapropel deposition, representing a significant nitrogen sink. Following

  17. Early diagenesis of organic matter in sediments off the coast of Peru

    NASA Astrophysics Data System (ADS)

    Rowe, Gilbert T.; Howarth, Robert

    1985-01-01

    Measured rates of SO 4 reducing metabolism and pore water concentrations of SO 4 and NH 4 were used to estimate organic matter regeneration from the sediments in an area of intense upwelling and high primary production off Peru. While the estimated rates of remineralization were high compared to other ecosystems at comparable water depths, this source of nutrients appeared to be on the order of 10% of the phytoplankton demand. Disparities between measured vs modelled estimates of sulfate reduction appear to be a function of the concentration gradients across the sediment-water interfface and mixing by biological and physical processes. The suite of measurements allowed estimation of 'irrigation' and an 'irrigation' coefficient at the nearshore station where measured rates were considerably above those estimated from the pore water sulfate gradient.

  18. Deposition, diagenesis, and maturation of organic matter in rift-basin lacustrine shales of Triassic-Jurassic Newark Supergroup

    SciTech Connect

    Pratt, L.M.

    1989-03-01

    Evaluating the petroleum source potential of rift basins in frontier areas is difficult because rift lakes vary greatly in areal extent, water depth, water chemistry, and longevity. In addition, climatic cycles are often strongly expressed in lacustrine settings. Triassic-Jurassic deposits in the continental rift basins on the Atlantic margin of North America are one of the few cases where lateral and vertical variations in the content (C/sub org/, hydrogen index) and thermal maturity (T/sub max/, R/sub 0/) of bulk organic matter are well documented. Relatively little is known, however, about sulfur content (S/sub org/, S/sub total/) and the composition of biomarkers in these strata. New data on low-maturity shales (R/sub o/ < 0.4%) in the Jurassic portion of the Hartford basin show wide variation in S/sub total//C/sub org/ ratios, suggesting that paleolimnological conditions ranged from fresh to alkaline or saline. Stratigraphic profiles of C/sub org/ and S/sub total/ through individual shale beds indicate rapid and repeated changes in water chemistry during each lacustrine cycle. Bitumens extracted from samples with less than about 0.05% S/sub total/ are characterized by dominance or high abundance of carotanes and extended regular isoprenoids in the saturated hydrocarbons. These biomarkers are probably derived from carotenoid pigments of algae or bacteria. Early diagenesis in the absence of hydrogen sulfide may account for the unusual preservation of extended isoprenoids and carotanes in the bitumen.

  19. Nitrogen isotope geochemistry of organic matter and minerals during diagenesis and hydrocarbon migration

    NASA Astrophysics Data System (ADS)

    Williams, Lynda B.; Ferrell, Ray E., Jr.; Hutcheon, Ian; Bakel, Allen J.; Walsh, Maud M.; Krouse, H. Roy

    1995-02-01

    The magnitude of isotopic variations between organic and inorganic nitrogen was examined in samples from three stacked hydrocarbon reservoirs in the Fordoche Field (Louisiana Gulf Coast Basin, USA). Measurements were made of δ 15N in kerogen, bitumen, oil, formation water, and fixed-NH 4 extracted from mudstones, nonproductive sandstones, and productive sandstones. Nitrogen isotope fractionation occurs because 14N is released preferentially to 15N from organic molecules during thermal maturation. Released 14N goes into solution, or may be adsorbed by minerals, leaving crude oil enriched in 15N. Diagenetic clay minerals (e.g., illite) commonly form in the temperature range of hydrocarbon generation, and NH 4+ may be fixed in clay interlayers with an isotopic ratio similar to that of the migrating fluids. Results indicate that the influence of organic matter on mineral δ 15N depends on the timing of authigenic mineral formation relative to fluid migration. The average δ 15N of kerogen (3.2 ± 0.3‰) and fixed-NH 4 from mudstones (3.0 ± 1.4) is similar, while bitumen increases from +3.5 to +5.1‰ with depth. In deep reservoir sandstones (>100°C), the δ 15N of crude oil averages +5.2 ± 0.4‰, similar to the δ 15N of bitumen in the proposed source rocks. Formation waters are 14N-enriched with an average δ 15N of -2.2 ± 2.6‰. Fixed-NH 4 δ 15N values lie between that of the oil and water. The average δ 15N of fixed-NH 4 is 3.0 ± 1.2‰ in productive sandstones, and 0.2 ± 2.4‰ innonproductive sandstones. In the shallower reservoir sandstones (<90°C) fixed-NH 4 is apparently not influenced by the presently associated fluids. Productive and nonproductive sandstones have distinctly low average δ 15N values (-1.2 ± 0.8‰), yet crude oil (+11.1 ± 0.3‰) and water (+3.8 ± 0.1‰) have been 15N-enriched by ˜6‰ relative to the deeper reservoirs. This suggests that the present fluids migrated into the reservoir after authigenic illite had formed

  20. Early diagenesis of recently deposited organic matter: a 9-yr time-series study of a flood deposit

    NASA Astrophysics Data System (ADS)

    Tesi, T.; Goñi, M. A.; Langone, L.; Wheatcroft, R. A.; Miserocchi, S.; Bertotti, L.

    2012-04-01

    Because the preservation of organic carbon (OC) in river-dominated margins accounts for a significant fraction of OC burial in the ocean, biochemical studies must find novel ways to explicitly address the non-steadiness of these settings. In this study, we approached this issue by collecting event-beds soon after their emplacement (event-response sampling) and following their evolution with time (time-series analysis). In Fall 2000, the Po River (Italy) experienced a 100-yr return period flood that resulted in a thick deposit in the adjacent prodelta. Cores collected in the central prodelta after the flood event and over the following 9 years (8 sediment cores), allowed characterization of the event-strata in their initial state and documentation of their subsequent evolution. The characterization of sedimentary organic matter (OM) collected soon after the flood deposit emplacement and the description of its subsequent evolution with time provided extraordinary opportunity to investigate the reactivity of OM on a 9-yr time scale. Our analysis included the evaluation of the whole spectrum of CuO reaction products such as lignin phenols, p-hydroxy benzenes, benzoic acids, cutin-derived products, dicarboxylic acids, and fatty acids, as well as bulk organic carbon, nitrogen and carbon stable isotopes. Sedimentological characteristics were investigated using x-radiographs and sediment texture analyses whereas the evolution of sedimentary OM was evaluated via inventories of bulk elements and biomarkers. Remineralization of organic nitrogen and organic carbon occurred at similar rates (% change ~-17%) indicating that the overall elemental composition of sedimentary OM remained stable with time. This steadiness was confirmed by lack of temporal changes of the OC/TN ratio. Despite the steady OC/TN ratio, changes in δ13C revealed preferential loss of isotopically enriched organic material. Biomarker inventories indicated selective degradation during diagenesis, consistent

  1. Carbonate and silicate cementation of siliciclastic sediments of the New Jersey shelf (IODP Expedition 313): relation with organic matter diagenesis and submarine groundwater discharge

    NASA Astrophysics Data System (ADS)

    Pierre, Catherine; Blanc-Valleron, Marie-Madeleine; Boudouma, Omar; Lofi, Johanna

    2017-04-01

    The New Jersey continental shelf extends 150 km off the shoreline. During IODP Expedition 313, siliciclastic deposits of late Eocene to late Pleistocene age were drilled down to 631, 669 and 755 m below seafloor at sites 27A, 28A and 29A respectively in very shallow waters (33.5 to 36 m depth). Pore water salinities display multilayered brackish-salty-brine units 10 to 170 m thick, where low-salinity water is preferentially stored in fine-grained sediments. The sharp boundaries of these buried aquifers are often marked by cemented layers a few centimetres thick. The mineralogy and scanning electron microscope observations of these layers show two phases of cementation by authigenic minerals: (1) the early carbonate cement is frequently associated with pyrite, and (2) the late silicate cement infills the residual porosity. The isotopic compositions of the carbonate cements vary widely: -2.4 < δ18O ‰ VPDB < +2.8; -15.1 < δ13C ‰ VPDB < +15.6. The δ18O values indicate that the carbonate cements precipitated with pore waters comprising variable mixtures of seawater and 18O-depleted fresh water originating from submarine groundwater discharge. The δ13C values of the carbonate cements are related to organic matter diagenesis, providing 13C-depleted dissolved inorganic carbon during bacterial sulphate reduction and anaerobic oxidation of methane, and 13C-rich dissolved inorganic carbon during methanogenesis. The diagenetic cementation processes included chemical weathering of reactive silicate minerals by the CO2-rich pore waters issued from organic matter diagenesis that released bicarbonate, cations and dissolved silica, which were further precipitated as carbonate and silicate cements. The estimated range of temperature (18±4 °C) during carbonate precipitation is consistent with carbonate cementation at moderate burial depths; however, silicate cementation occurred later during diagenesis at deeper burial depths.

  2. Behavior of dioxin like PCBs and PBDEs during early diagenesis of organic matter in settling material and bottom sediments from the sewage impacted Buenos Aires' coastal area, Argentina.

    PubMed

    Cappelletti, N; Skorupka, C N; Migoya, M C; Tatone, L; Astoviza, M; Colombo, J C

    2014-10-01

    Settling particles (SPs) and sediments collected in the Buenos Aires sewer area were analyzed for dioxin like polychlorinated biphenyls (dlPCBs) and polybrominated diphenyl ethers (PBDEs) to follow early diagenetic changes during transport and deposition of organic matter. SP showed a temporal trend of higher total organic carbon (TOC) and fresher dlPCBs and PBDEs signatures during warm-rainy months related to more efficient washout of residues. TOC-normalized sediment trap concentrations suggest a diagenetic magnification of dlPCBs during cold-dry months due to enhanced decomposition of TOC, whereas most labile PBDEs appear to follow TOC decay. The diagenetic behavior of individual congeners along seasonal changes (cold/warm) and during deposition (bottom sediment/SP) shows the selective preservation of heavier, more persistent congeners with a positive relationship with sediment half-lives. The 3-4 times diagenetic magnification of heavier congeners observed in bottom sediments would be a prevailing long-term pathway for dlPCBs and PBDEs bioaccumulation in detritus feeding organisms.

  3. Organic carbon concentration profiles in recent cave sediments: records of agricultural pollution or diagenesis?

    PubMed

    Bottrell, S H

    1996-01-01

    Recent (<7 years old) cave sediments in Speedwell Cavern, Derbyshire, show an approximately exponential decay of organic carbon with depth. This phenomenon was thought to be due to one of two causes: (i) changing agricultural practice within the catchment feeding the cave, especially the increased use of sewage sludge and animal slurry as fertilizer; (ii) a relatively constant organic carbon concentration over time in the input sediment, with subsequent carbon mineralization during diagenesis. Carbon isotope composition of the organic material and the evolution of H/C ratio with depth indicate that the latter hypothesis is correct and that the profiles result from microbial diagenesis, not increased organic carbon inputs. By comparison with sediment of known (7 years) age, temporal decay constants for organic matter can be derived; these lie between rates previously determined for organic matter decomposition in marine sediments and soils. The H/C ratio of organic matter can be modelled as a function of time and proceeds in a similar fashion to soil organic material.

  4. Role of microbial processes in linking sandstone diagenesis with organic-rich clays

    USGS Publications Warehouse

    McMahon, P.B.; Chapelle, F.H.; Falls, W.F.; Bradley, P.M.

    1992-01-01

    Shows that the processes of microbial organic-acid production (via fermentation) in clays and microbial organic-acid consumption (via sulfate reduction) in sands effectively link organic-rich clays to sandstone diagenesis in the Black Creek Formation of South Carolina. Diagenetic processes have resulted in the formation of 10 volume percent calcite cement, 0.1 volume percent authigenic pyrite, and 1.5 volume percent secondary porosity in Black Creek sands. However, the distribution of these diagenetic processes is not uniform, resulting in net destruction of porosity in some parts of the sand and net porosity enchancement in other parts. -from Authors

  5. Sediment Diagenesis and Benthic Flux

    NASA Astrophysics Data System (ADS)

    Emerson, S.; Hedges, J.

    2003-12-01

    Chemical reactions in marine sediments and the resulting fluxes across the sediment-water interface influence the global carbon cycle and the pH of the sea and affect the abundance of CaCO3 and opal-forming plankton in the ocean. On very long timescales these diagenetic reactions control carbon burial in sedimentary rocks and the oxygen content of the atmosphere. Sedimentary deposits that remain after diagenesis are the geochemical artifacts used for interpreting past changes in ocean circulation, biogeochemical cycles, and climate. This chapter is about the processes of diagenesis and burial of the chemical elements that make up the bulk of the particulate matter that reaches the seafloor (organic matter, CaCO3, SiO2, Fe, Mn, and aluminosilicates).Understanding of sediment diagenesis and benthic fluxes has evolved with advances in both experimental methods and modeling. Measurements of chemical concentrations in sediments, their associated pore waters and fluxes at the sediment-water interface have been used to identify the most important reactions. Because transport in pore waters is usually by molecular diffusion, this medium is conducive to interpretation by models of heterogeneous chemical equilibrium and kinetics. Large chemical changes and manageable transport mechanisms have led to elegant models of sediment diagenesis and great advances in understanding of diagenetic processes.We shall see, though, that the environment does not yield totally to simple models of chemical equilibrium and chemical kinetics, and laboratory determined constants often cannot explain the field observations. For example, organic matter degradation rate constants determined from modeling are so variable that there are essentially no constraints on these values from laboratory experiments. In addition, reaction rates of CaCO3 and opal dissolution determined from modeling pore waters usually cannot be reproduced in laboratory experiments of these reactions. The inability to

  6. Sulfur diagenesis in marine sediments

    NASA Technical Reports Server (NTRS)

    Goldhaber, M.

    1985-01-01

    Bacterial sulfate reduction occurs in all marine sediments that contain organic matter. Aqueous sulfide (HS-, H2S), one of the initial products of bacterial sulfide reduction, is extremely reactive with iron bearing minerals: sulfur is fixed into sediments as iron sulfide (first FeS and then Fe2S2). A working definition is given of sulfur diagenesis in marine sediments. Controls and consequences of sulfate reduction rates in marine sediments are examined.

  7. Is old organic matter simple organic matter?

    NASA Astrophysics Data System (ADS)

    Nunan, Naoise; Lerch, Thomas; Pouteau, Valérie; Mora, Philippe; Changey, Fréderique; Kätterer, Thomas; Herrmann, Anke

    2016-04-01

    Bare fallow soils that have been deprived of fresh carbon inputs for prolonged periods contain mostly old, stable organic carbon. In order to shed light on the nature of this carbon, the functional diversity profiles (MicroResp™, Biolog™ and enzyme activity spectra) of the microbial communities of long-term barefallow soils were analysed and compared with those of the microbial communities from their cultivated counterparts. The study was based on the idea that microbial communities adapt to their environment and that therefore the catabolic and enzymatic profiles would reflect the type of substrates available to the microbial communities. The catabolic profiles suggested that the microbial communities in the long-term bare-fallow soil were exposed to a less diverse range of substrates and that these substrates tended to be of simpler molecular forms. Both the catabolic and enzyme activity profiles suggested that the microbial communities from the long-term bare-fallow soils were less adapted to using polymers. These results do not fit with the traditional view of old, stable carbon being composed of complex, recalcitrant polymers. An energetics analysis of the substrate use of the microbial communities for the different soils suggested that the microbial communities from the long-term bare-fallow soils were better adapted to using readily oxidizable,although energetically less rewarding, substrates. Microbial communities appear to adapt to the deprivation of fresh organic matter by using substrates that require little investment.

  8. First data on methylhopanes in Lower Cambrian organic matter of the Siberian platform

    NASA Astrophysics Data System (ADS)

    Parfenova, T. M.

    2017-07-01

    Hopane hydrocarbons of bitumoids from the organic matter of the Lower Cambrian Sinyaya and Kutorgina formations on the northern slope of the Aldan anteclise were studied using chromatography-mass spectrometry. Methylhopanes were found for the first time in autochthonous bitumoids of scattered organic matter from Cambrian sedimentary basins in Siberia. The biological sources of these molecules, along with the features of geochemistry, sedimentation conditions, diagenesis, and degree of maturity of methylhopanecontaining organic matter are considered. Methylhopanes were recommended to be used jointly with other biomarkers of the Sinyaya formation rocks enriched in organic matter to determine the possible source of naphthides in the southeastern part of the Siberian platform.

  9. Repetitive, multistage near surface and subsequent burial diagenesis in the Middle Ordovician Chickamauga organic buildups from Alabama

    SciTech Connect

    Tobin, K.J.; Walker, K.R.; Srinivasan, K. . Dept. of Geological Sciences)

    1992-01-01

    Middle Ordovician Chickamauga organic buildups from Red Mountain Expressway (RME) and Tidwell Hollow (TWH) in A have a complex diagenetic history when compared to approximately coeval Holston and Effna buildups of TN and VA. Near surface diagenetic history of the AL buildups at RME consists of two phases of marine and meteoric diagenesis. At TWH meteoric diagenesis occurred between initial and final generations of marine diagenesis. Initial marine diagenesis consisted of decay of sponges and dasyclad algae forming molds, micritization of fossils, and minor precipitation of fibrous calcite and turbid syntaxial overgrowths. A relative sea level rise at the top of the chickamauga is recorded by minor precipitation of fibrous calcite in selective voids and on equant calcite substrates suggestive of replacement of meteoric fluids in voids by marine waters. Extensive development of selective and non-selective porosity occurred during the final meteoric phase. Voids have the following occlusion history: (1) [+-] initial precipitation of a thin layer of equant calcite, (2) peloidal and/or micritic internal sedimentation, (3) [+-] deposition of turbid vadose silt, and (4) precipitation of pore-central equant (drusy) calcite. All meteoric features described above occurred during single generation at TWH and were associated with an exposure surface. A meteoric origin for equant calcite cements is supported by stable isotopic data which is slightly depleted relative to original marine compositions obtained from other Middle Ordovician buildups in the Southern Appalachians. In summary, porosity development is related to extensive subaerial exposure and the lack of continuously increasing burial immediately after deposition. The Holston and Effna buildups were buried under thick onlap sequences immediately after deposition.

  10. Black shale - its deposition and diagenesis.

    USGS Publications Warehouse

    Tourtelot, H.A.

    1979-01-01

    Depositional processes involve a range of relationships among such factors as organic productivity, clastic sedimentation rate, and the intensity of oxidation by which organic matter is destroyed. If enough organic material is present to exhaust the oxygen in the environment, black shale results. During diagenesis for a thickness of a few meters beneath the surface, sulfate is reduced and sulfide minerals may be deposited. Fermentation reactions in the next several hundred meters result in biogenic methane, followed successively at greater depths by decarboxylation reactions and thermal maturation that form additional hydrocarbons. -from Author

  11. Diagenesis, II

    SciTech Connect

    Chilingarian, G.V. ); Wolf, K.H. )

    1988-01-01

    Diagenesis is a highly developed, interdisciplinary field of study. It is reciprocal in that it borrows from numerous scientific or technological specialties and then, in turn, repays them with useful results. Too often, however, the information gained and concepts developed remain unintegrated instead of being utilized quickly by several related earth-science fraternities. This volume attempts to bring together such information, thereby assisting the individual and the research group in keeping up with the data explosion.

  12. Arctic River organic matter transport

    NASA Astrophysics Data System (ADS)

    Raymond, Peter; Gustafsson, Orjan; Vonk, Jorien; Spencer, Robert; McClelland, Jim

    2016-04-01

    Arctic Rivers have unique hydrology and biogeochemistry. They also have a large impact on the Arctic Ocean due to the large amount of riverine inflow and small ocean volume. With respect to organic matter, their influence is magnified by the large stores of soil carbon and distinct soil hydrology. Here we present a recap of what is known of Arctic River organic matter transport. We will present a summary of what is known of the ages and sources of Arctic River dissolved and particulate organic matter. We will also discuss the current status of what is known about changes in riverine organic matter export due to global change.

  13. Non-steady state diagenesis of organic and inorganic sulfur in lake sediments

    NASA Astrophysics Data System (ADS)

    Couture, Raoul-Marie; Fischer, Rachele; Van Cappellen, Philippe; Gobeil, Charles

    2016-12-01

    Sulfur controls the fate of many geochemical elements in lake sediments, including iron, phosphorus and environmentally important trace elements. We measured the speciation of pore-water and sediment-bound sulfur (aqueous sulfate and sulfides, elemental sulfur, iron monosulfide, pyrite, organic sulfur) and supporting geochemical variables (carbon, oxygen, iron) in the sediments of a perennially oxygenated and a seasonally anoxic basin of an oligotrophic lake in Québec, using a combination of pore-water analyses, sequential extractions and X-ray absorption near edge structure. A non-steady state early diagenetic model was developed and calibrated against this extensive dataset to help unravel the pathways and quantify the rates of S transformations. Results suggest that the main source of S to the sediments is the settling of organic ester-sulfate (R-O-SO3-H). Hydrolysis of these compounds provides an additional source of sulfate for anaerobic microbial oxidation of sedimentary organic matter, releasing sulfide to the pore-water. Reduced solid-bound S species accumulate as thiols (R-SH) and iron sulfides in the perennially oxygenated and seasonally anoxic basin, respectively. The model-estimated rate constant for R-SH formation is lower than previously estimated for this particular lacustrine site, but similar to that proposed for marine shelf sediments. The solid sediment S profiles, however, carry the imprint of the time-dependent sulfate input to the lake. Iron sulfide enrichments formed during past decades of elevated atmospheric SO4 deposition are presently dissolving. In the sediments of the perennially oxygenated basin this reaction hampers the build-up of Fe(III) (oxy)hydroxide near the sediment-water interface.

  14. Estrone degradation: does organic matter (quality), matter?

    PubMed

    Tan, David T; Temme, Hanna R; Arnold, William A; Novak, Paige J

    2015-01-06

    Understanding the parameters that drive E1 degradation is necessary to improve existing wastewater treatment systems and evaluate potential treatment options. Organic matter quality could be an important parameter. Microbial communities grown from activated sludge seeds using different dissolved organic matter sources were tested for E1 degradation rates. Synthetic wastewater was aged, filter-sterilized, and used as a carbon and energy source to determine if recalcitrant organic carbon enhances E1 degradation. Higher E1 degradation was observed by biomass grown on 8 d old synthetic wastewater compared to biomass grown on fresh synthetic wastewater (P = 0.033) despite much lower concentrations of bacteria. Minimal or no E1 degradation was observed in biomass grown on 2 d old synthetic wastewater. Organic carbon analyses suggest that products of cell lysis or microbial products released under starvation stress stimulate E1 degradation. Additional water sources were also tested: lake water, river water, and effluents from a municipal wastewater treatement plant and a treatment wetland. E1 degradation was only observed in biomass grown in treatment effluent. Nitrogen, dissolved organic carbon, and trace element concentrations were not causative factors for E1 degradation. In both experiments, spectrophotometric analyses reveal degradation of E1 is associated with microbially derived organic carbon but not general recalcitrance.

  15. Study of the organic matter in the DSDP /JOIDES/ cores, legs 10-15. [Deep Sea Drilling Program

    NASA Technical Reports Server (NTRS)

    Simoneit, B. R. T.; Burlingame, A. L.

    1974-01-01

    The composition of the organic matter collected on legs 10 to 15 of the DSDP (Deep Sea Drilling Project) is described. Distributions of various alkanes, carboxylic acids, steroids and terpenoids, isoprenoid ketones and olefins, and aromatic polycyclic compounds are given. Samples analyzed had terrigenous clay components, with variable organic carbon contents and thus diverse solvent soluble matter. The distribution patterns for the various compound series monitored were of marine derivation, with the terrigenous components superimposed. Diagenesis of steroids appeared to proceed via both stanones and stanols to their respective steranes. Degradative processes were observed to be operative: oxidative products, mainly ketones derived from steroids and phytol, were identified, probably due to microbial alteration prior to or during sedimentation. Loss of alkane and fatty acid C preferences and presence of polycyclic aromatics evinced maturation. Results indicate that the accumulation, degradation, diagenesis and maturation of organic matter occurs in various steps in the deep sea environment.

  16. Preservation of organic matter on Mars by sulfur

    NASA Astrophysics Data System (ADS)

    Eigenbrode, J. L.; Steele, A.; Summons, R. E.; McAdam, A.; Sutter, B.; Franz, H. B.; Freissinet, C.; Millan, M.; Glavin, D. P.; Szopa, C.; Conrad, P. G.; Mahaffy, P. R.

    2016-12-01

    Deltaic-lacustrine mudstones at Pahrump Hills, Gale Crater, Mars yielded a variety of sulfur-containing volatiles upon heating to 500-860°C, as detected by the Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover. The detection of organosulfur compounds comprising thiophenes, dimethylsulfide and thiols by gas chromatography-mass spectrometry and evolved gas analyses, together with aromatic and other hydrocarbon molecules with distributions specific to the sample (i.e., not from the SAM background) indicate that some or all of these organic fragments released at high temperatures are indigenous to the mudstones. The organosulfur compounds are most likely derived from sulfur organics in the sediments. However, there is a possibility that sulfurization of some organic fragments occurred in the oven. On Earth, sulfurization of organic matter is a key process that aids preservation over geological time-scales. This is because it reduces reactive functional groups and adds cross links between small unstable molecules thereby converting them into recalcitrant macromolecules. Sulfurization of organic materials prior to deposition and during early diagenesis may have been a key mechanism responsible for organic matter preservation in the Murray formation mudstones. Sulfur-bearing organics have also been observed in carbonaceous meteorites and there is indication of their presence in the Tissint martian meteorite. A quantitative assessment of organosulfur compounds relative to their non-organic counterparts will be presented for the Murray formation mudstones analyzed by SAM and meteorites analyzed in the laboratory under similar analytical conditions.

  17. Organic matter in meteorites.

    PubMed

    Llorca, Jordi

    2004-12-01

    Some primitive meteorites are carbon-rich objects containing a variety of organic molecules that constitute a valuable record of organic chemical evolution in the universe prior to the appearance of microorganisms. Families of compounds include hydrocarbons, alcohols, aldehydes, ketones, carboxylic acids, amino acids, amines, amides, heterocycles, phosphonic acids, sulfonic acids, sugar-related compounds and poorly defined high-molecular weight macromolecules. A variety of environments are required in order to explain this organic inventory, including interstellar processes, gas-grain reactions operating in the solar nebula, and hydrothermal alteration of parent bodies. Most likely, substantial amounts of such organic materials were delivered to the Earth via a late accretion, thereby providing organic compounds important for the emergence of life itself, or that served as a feedstock for further chemical evolution. This review discusses the organic content of primitive meteorites and their relevance to the build up of biomolecules.

  18. Diagenesis of Metals Chemically Complexed to Bacteria: Laboratory Formation of Metal Phosphates, Sulfides, and Organic Condensates in Artificial Sediments

    PubMed Central

    Beveridge, T. J.; Meloche, J. D.; Fyfe, W. S.; Murray, R. G. E.

    1983-01-01

    Cells of Bacillus subtilis, when suspended in a 5mM metal solution, bind metals tenaciously to their cell walls. These metal-loaded cells, when mixed with a synthetic sediment and put under laboratory conditions to simulate low-temperature sediment diagenesis, nucleate the formation of a mixed assemblage of crystalline metal phosphates, metal sulfides, and polymeric, metal-complexed, organic residues. The sequential series of diagenetic events leading to the formation of authigenic mineral phases was followed by transmission electron microscopy and energy-dispersive X-ray analysis. The minerals quartz (SiO2) and calcite (CaCO3) were employed in the synthetic sediment. Crystalline magnetite (Fe2O3) and elemental sulfur were added as redox buffering agents to ensure anoxic conditions. Quartz and magnetite appeared unreactive throughout the experimental conditions. Elemental sulfur interacted with the metal-loaded cells, affected both the eventual chemistry and crystal habit of the metal phosphates, and formed a variety of crystalline metal sulfides. Calcite raised the pH of the fluid phase of the sediment, which influenced phosphate mineralization and inhibited metal sulfide genesis. Images PMID:16346230

  19. Diagenesis and catagenesis of marine kerogen precursors

    SciTech Connect

    Rafalska-Bloch, J.

    1987-01-01

    The approaches used were (1) investigations of marine kerogen precursors in a natural environment, e.g., in reefal carbonate sediments (in Puerto Rico and Belize) and (2) laboratory modeling of the condensation of marine kerogen precursors, i.e., amino acids and sugars and subsequent formation and reactions of melanoidin polymers. The organic facies model of a reef environment was developed from the analysis of (1) total organic carbon, (2) visual protokerogen types, (3) Rock-Eval indices and (4) sedimentological considerations. Rates of melanoidin formation, incorporation of amino acid and glucose into the melanoidin polymers and their attendant decrease in the melanoidin solutions were evaluated. The observed pattern was that of initially rapid loss of biomonomers from the melanoidin solutions and concomitant formation of melanoidin polymers. The rate of incorporation of amino acids into the polymers is related partly to glucose concentration and partly to the type of amino acid. The racemization rates of amino acids were also investigated. During the course of melanoidin formation the original amino acid abundances and stereochemistry are redistributed during simulated diagenesis. This may have implications for natural environments where diagenesis may obscure the original depositional signal and complicate geochronological studies. Catagenetic evolution of both synthetic geopolymer (lysine, histidine, arginine, glucose - melanoidin) and natural geopolymers (Belizian organic matter) was simulated using hydrous pyrolysis.

  20. Dissolved organic matter in anoxic pore waters from Mangrove Lake, Bermuda

    USGS Publications Warehouse

    Orem, W.H.; Hatcher, P.G.; Spiker, E. C.; Szeverenyi, N.M.; Maciel, G.E.

    1986-01-01

    Dissolved organic matter and dissolved inorganic chemical species in anoxic pore water from Mangrove Lake, Bermuda sediments were studied to evaluate the role of pore water in the early diagenesis of organic matter. Dissolved sulphate, titration alkalinity, phosphate, and ammonia concentration versus depth profiles were typical of many nearshore clastic sediments and indicated sulphate reduction in the upper 100 cm of sediment. The dissolved organic matter in the pore water was made up predominantly of large molecules, was concentrated from large quantities of pore water by using ultrafiltration and was extensively tudied by using elemental and stable carbon isotope analysis and high-resolution, solid state 13C nuclear magnetic resonance and infrared spectroscopy. The results indicate that this material has a predominantly polysaccharide-like structure and in addition contains a large amount of oxygen-containing functional groups (e.g., carboxyl groups). The 13C nulcear magnetic resonance spectra of the high-molecular-weight dissolved organic matter resemble those of the organic matter in the surface sediments of Mangrove Lake. We propose that this high-molecular-weight organic matter in pore waters represents the partially degraded, labile organic components of the sedimentary organic matter and that pore waters serve as a conduit for removal of these labile organic components from the sediments. The more refractory components are, thus, selectively preserved in the sediments as humic substances (primarily humin). ?? 1986.

  1. Upper Cretaceous Shannon Sandstone reservoirs, Powder River Basin, Wyoming: evidence for organic acid diagenesis?

    USGS Publications Warehouse

    Hansley, P.L.; Nuccio, V.F.

    1992-01-01

    Comparison of the petrology of shallow and deep oil reservoirs in the Upper Cretaceous Shannon Sandstone Beds of the Steele Member of the Cody Shale strongly suggests that organic acids have had a more significant impact on the diagenetic alteration of aluminosilicate grains and carbonate cements in the deep reservoirs than in the shallow reservoirs. Vitrinite reflectance and Rock-Eval measurements, as well as the time-temperature index and kinetic modeling, indicate that deep reservoirs have been subjected to maximum temperatures of approximately 110-120??C, whereas shallow reservoirs have reached only 75??C. -from Authors

  2. Organic matter and benthic metabolism in Lake Illawarra, Australia

    NASA Astrophysics Data System (ADS)

    Qu, Wenchuan; Morrison, R. J.; West, R. J.; Su, Chenwei

    2006-10-01

    Carbon and nitrogen contents (total organic carbon and total nitrogen), chlorophyll-a concentrations in surface sediments and benthic sediment-water fluxes of oxygen and carbon dioxide were investigated at five stations in Lake Illawarra (Australia) to compare the sources/quality of sedimentary organic matter and the characteristics of diagenesis and benthic biogeochemical processes for different primary producers (e.g., seagrass, microphytobenthos and macroalgae) and/or sediment types (sand or mud). The unvegetated sediments showed lower C/N ratios (with the lowest value occurring in the deep organic-rich muddy site) than the seagrass ( Ruppia or Zostera) beds, which may be due to the contribution of microalgae (mainly diatoms) to the sedimentary organic matter pool. This was also supported by the detection of microalgal pigments in the bare sediments. On an annual basis, seagrass beds exhibited the highest gross primary productivity (O 2 or TCO 2 fluxes), while the lowest rates occurred in the deep central basin of the Lake. Seasonally, there was a general trend of highest production in spring or summer, and lowest production in winter or autumn. Organic carbon oxidation scenarios, evaluated by either calcium carbonate dissolution or sulfate reduction models, indicated that both models can explain organic matter mineralization. Trophic status was evaluated using different indices including benthic trophic state index, net O 2 fluxes and P/ R ratios for Lake Illawarra, which led to similar trophic classifications in general, and also the same trends in spatial and seasonal variations. Overall, these data indicated that the Lake was heterotrophic on an annual basis, as the total community carbon respiration exceeded production, and this supported an earlier LOICZ mass balance/stoichiometric modelling conclusion.

  3. Boron isotope geochemistry during diagenesis. Part II. Applications to organic-rich sediments

    NASA Astrophysics Data System (ADS)

    Williams, Lynda B.; Hervig, Richard L.; Hutcheon, Ian

    2001-06-01

    The measured clay-water isotope fractionation for boron was applied to natural organic-rich sediments undergoing illitization. Two field areas were chosen that show illitization occurring over a range of temperatures (80-500°C). Samples representing diagenetic temperatures of illitization (80-200°C) are from the Gulf of Mexico sedimentary basin at 4 to 6-km depth in the Eocene Wilcox Fm and Jurassic Norphlet Fm. The higher temperatures of illitization (200-500°C) occur in a contact metamorphic aureole of the Cretaceous Pierre shale near Walsenburg, Colorado. Here the kinetics of the illitization reaction are more rapid than in a slowly subsiding sedimentary basin, but the chemical and mineralogical variations are minimized as complete illitization occurs over a small lateral distance in a single bentonite layer. These studies indicate that B-isotopes provide a more sensitive indicator of fluid variations in sedimentary basins than O-isotopes, and that B-isotope analyses of authigenic illite can be a valuable geochemical tracer of fluid/rock interactions. Boron isotope ratios in authigenic illite (pore filling) and muscovite (stylolites) from reservoir sandstones in the Gulf of Mexico are distinct from adjacent illitic mudstones, whereas the oxygen isotopic ratios show little variation. Fluids in equilibrium with the mudstones cannot precipitate the authigenic clays with higher δ 11B values measured in the hydrocarbon reservoirs. This suggests that the reservoir fluids were not in communication with the adjacent mudstone pore fluids but were introduced from another source area, perhaps carrying a B-isotopic label derived from the hydrocarbon source region. Authigenic illite formed in the Pierre shale meta-bentonite shows large isotopic fractionations of boron (20‰) during illitization at high temperatures. Incorporation of 500 ppm B in illite formed at 500°C shows that illite is a host for B even at metamorphic temperatures. By using the experimentally

  4. The fate of terrestrial organic matter in two Scottish sea lochs

    NASA Astrophysics Data System (ADS)

    Loh, P. S.; Reeves, A. D.; Harvey, S. M.; Overnell, J.; Miller, A. E. J.

    2008-02-01

    Sea lochs are zones of rapid organic matter (OM) turnover. Most of this OM is of allochthonous origin, being introduced into the lochs via freshwater input. In this study the behaviour of terrestrially derived OM was elucidated using a combination of parameters which indicate OM diagenesis in the near surface sediments from two Scottish sea lochs, Loch Creran and Loch Etive. Alkaline CuO oxidation was used to determine lignin phenols which serve as biomarkers for terrestrial OM in sediments. Stable carbon isotope, total carbon and nitrogen and total OM (including the labile and refractory fractions) compositions were also determined. Lignin materials in the lochs were generally highly degraded and undergo little degradation further seaward. The vanillic acid to vanillin ratio, (Ad/Al)v in the lochs ranged from 0.52 to 2.69. However, there was a fraction of relatively fresh, land-derived OM, still undergoing degradation adding to the carbon cycling in the lochs, as indicated by the Rp values (ratio of refractory to total OM) and OC/N ratios in the surface sediments. The hydrological and hydrodynamic regimes in Loch Creran result in several phenomena such as the transportation of terrestrial debris via hydrodynamic sorting processes and the promotion of surface sediment diagenesis by bioturbation. Frequent water renewal results in better water circulation and oxygenation which facilitate OM decomposition. In Loch Etive the less frequent renewal gives rise to a more constant OM diagenesis along the loch.

  5. Extraterrestrial organic matter: a review

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.

    1998-01-01

    We review the nature of the widespread organic material present in the Milky Way Galaxy and in the Solar System. Attention is given to the links between these environments and between primitive Solar System objects and the early Earth, indicating the preservation of organic material as an interstellar cloud collapsed to form the Solar System and as the Earth accreted such material from asteroids, comets and interplanetary dust particles. In the interstellar medium of the Milky Way Galaxy more than 100 molecular species, the bulk of them organic, have been securely identified, primarily through spectroscopy at the highest radio frequencies. There is considerable evidence for significantly heavier organic molecules, particularly polycyclic aromatics, although precise identification of individual species has not yet been obtained. The so-called diffuse interstellar bands are probably important in this context. The low temperature kinetics in interstellar clouds leads to very large isotopic fractionation, particularly for hydrogen, and this signature is present in organic components preserved in carbonaceous chondritic meteorites. Outer belt asteroids are the probable parent bodies of the carbonaceous chondrites, which may contain as much as 5% organic material, including a rich variety of amino acids, purines, pyrimidines, and other species of potential prebiotic interest. Richer in volatiles and hence less thermally processed are the comets, whose organic matter is abundant and poorly characterized. Cometary volatiles, observed after sublimation into the coma, include many species also present in the interstellar medium. There is evidence that most of the Earth's volatiles may have been supplied by a 'late' bombardment of comets and carbonaceous meteorites, scattered into the inner Solar System following the formation of the giant planets. How much in the way of intact organic molecules of potential prebiotic interest survived delivery to the Earth has become an

  6. Extraterrestrial organic matter: a review

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.

    1998-01-01

    We review the nature of the widespread organic material present in the Milky Way Galaxy and in the Solar System. Attention is given to the links between these environments and between primitive Solar System objects and the early Earth, indicating the preservation of organic material as an interstellar cloud collapsed to form the Solar System and as the Earth accreted such material from asteroids, comets and interplanetary dust particles. In the interstellar medium of the Milky Way Galaxy more than 100 molecular species, the bulk of them organic, have been securely identified, primarily through spectroscopy at the highest radio frequencies. There is considerable evidence for significantly heavier organic molecules, particularly polycyclic aromatics, although precise identification of individual species has not yet been obtained. The so-called diffuse interstellar bands are probably important in this context. The low temperature kinetics in interstellar clouds leads to very large isotopic fractionation, particularly for hydrogen, and this signature is present in organic components preserved in carbonaceous chondritic meteorites. Outer belt asteroids are the probable parent bodies of the carbonaceous chondrites, which may contain as much as 5% organic material, including a rich variety of amino acids, purines, pyrimidines, and other species of potential prebiotic interest. Richer in volatiles and hence less thermally processed are the comets, whose organic matter is abundant and poorly characterized. Cometary volatiles, observed after sublimation into the coma, include many species also present in the interstellar medium. There is evidence that most of the Earth's volatiles may have been supplied by a 'late' bombardment of comets and carbonaceous meteorites, scattered into the inner Solar System following the formation of the giant planets. How much in the way of intact organic molecules of potential prebiotic interest survived delivery to the Earth has become an

  7. Photodissolution of soil organic matter

    USGS Publications Warehouse

    Mayer, L.M.; Thornton, K.R.; Schick, L.L.; Jastrow, J.D.; Harden, J.W.

    2012-01-01

    Sunlight has been shown to enhance loss of organic matter from aquatic sediments and terrestrial plant litter, so we tested for similar reactions in mineral soil horizons. Losses of up to a third of particulate organic carbon occurred after continuous exposure to full-strength sunlight for dozens of hours, with similar amounts appearing as photodissolved organic carbon. Nitrogen dissolved similarly, appearing partly as ammonium. Modified experiments with interruption of irradiation to include extended dark incubation periods increased loss of total organic carbon, implying remineralization by some combination of light and microbes. These photodissolution reactions respond strongly to water content, with reaction extent under air-dry to fully wet conditions increasing by a factor of 3-4 fold. Light limitation was explored using lamp intensity and soil depth experiments. Reaction extent varied linearly with lamp intensity. Depth experiments indicate that attenuation of reaction occurs within the top tens to hundreds of micrometers of soil depth. Our data allow only order-of-magnitude extrapolations to field conditions, but suggest that this type of reaction could induce loss of 10-20% of soil organic carbon in the top 10. cm horizon over a century. It may therefore have contributed to historical losses of soil carbon via agriculture, and should be considered in soil management on similar time scales. ?? 2011 Elsevier B.V.

  8. Stoichiometric modeling of carbon diagenesis within a coral reef framework

    NASA Astrophysics Data System (ADS)

    Tribble, Gordon W.; Sansone, Francis J.; Smith, Stephen V.

    1990-09-01

    Water sampled from the interior framework of Checker Reef, Oahu, Hawaii, indicates that the aerobic and anaerobic oxidation of organic matter dominates diagenesis within the reef framework. Reef interstitial water chemistry shows clear deviations from surface seawater: oxygen is depleted while dissolved inorganic carbon, H +, inorganic nutrients, sulfide and methane concentrations are elevated. Dissolved calcium is also elevated in most interstitial waters, indicating net dissolution of calcium carbonates. A mass-balance model used to determine the extent to which major biogeochemical reactions occur reveals that sulfate reduction is the predominant anaerobic process.

  9. The contentious nature of soil organic matter.

    PubMed

    Lehmann, Johannes; Kleber, Markus

    2015-12-03

    The exchange of nutrients, energy and carbon between soil organic matter, the soil environment, aquatic systems and the atmosphere is important for agricultural productivity, water quality and climate. Long-standing theory suggests that soil organic matter is composed of inherently stable and chemically unique compounds. Here we argue that the available evidence does not support the formation of large-molecular-size and persistent 'humic substances' in soils. Instead, soil organic matter is a continuum of progressively decomposing organic compounds. We discuss implications of this view of the nature of soil organic matter for aquatic health, soil carbon-climate interactions and land management.

  10. Control of organic matter on the magnetic properties of surficial marine sediments. A simple kinetic model

    NASA Astrophysics Data System (ADS)

    Mohamed Falcon, K. J.; Andrade, A.; Rey, D.; Rubio, B.

    2014-12-01

    Magnetic properties of marine sediments in the Galician Rias, in NW Spain, have shown that in these shallow marine settings the magnetic mineral assemblage, and its bulk magnetic properties, is controlled by grain size, wave climate, and organic matter content. The grain size effect is explained by concentration of diamagnetic biogenic carbonates in the coarse fraction, which dilutes the concentration-dependent magnetic properties. Furthermore, this effect is enhanced by the hydrodynamic sorting of the heavy minerals, like magnetite, that become concentrated in the finer fractions. Waves on the other hand concentrate the coarser bioclasts in the shallower areas along the coastal margins of the rias, and consequently these areas show the lowest magnetic mineral concentrations. Magnetic minerals are therefore more abundant in the deeper central axis and towards the external, more oceanic, areas of the rias. Another effect of waves is periodic resuspension of fine sediments, which allows them to be reoxigenated preventing the onset of reductive diagenesis. This effect is best seen in sediment cores, where organic matter remineralization promotes dissolution of magnetic iron oxides and oxyhydroxides. Areas where resuspension is frequent and/or deeper areas where sediments stay in the water column for longer have lower degrees of reductive early diagenesis. In addition to its downcore effect, organic matter also controls the magnetic properties of surficial sediments. Our results in the Ria de Muros, at the north of our study area, have shown that a simple kinetic model is enough to quantify the effect of organic matter content on the dissolution of magnetite. We have found that a Total Organic Carbon increase of 0.35% reduces magnetite concentration of surface samples by half. These effects observed in the Ria de Muros have also been confirmed for published results in the southern Rias Baixas previously studied by our research group.

  11. Direct evidence for organic carbon preservation as clay-organic nanocomposites in a Devonian black shale; from deposition to diagenesis

    NASA Astrophysics Data System (ADS)

    Kennedy, Martin John; Löhr, Stefan Carlos; Fraser, Samuel Alex; Baruch, Elizabeth Teresa

    2014-02-01

    The burial of marine sourced organic carbon (OC) in continental margin sediments is most commonly linked to oceanographic regulation of bottom-water oxygenation (anoxia) and/or biological productivity. Here we show an additional influence in the Devonian Woodford Shale, in which OC occurs as nanometer intercalations with specific phyllosilicate minerals (mixed-layer illite/smectite) that we term organo-mineral nanocomposites. High resolution transmission electron microscopic (HRTEM) images provide direct evidence of this nano-scale relationship. While discrete micron-scale organic particles, such as Tasmanites algal cysts, are present in some lamina, a strong relation between total organic carbon (TOC) and mineral surface area (MSA) over a range of 15% TOC indicate that the dominant association of organic carbon is with mineral surfaces and not as discrete pelagic grains, consistent with HRTEM images of nanocomposites. Where periods of oxygenation are indicated by bioturbation, this relationship is modified by a shift to lower OC loading on mineral surfaces and reduced MSA variability likely resulting from biological mixing and homogenization of the sediment, oxidative burn down of OC and/or stripping of OC from minerals in animal guts. The TOC-MSA relationship extends across a range of burial depths and thermal maturities into the oil window and persists through partial illitization. Where illitization occurs, the loss of mineral surface area associated with the collapse of smectite interlayer space results in a systematic increase in TOC:MSA and reorganization of organic carbon and clays into nano-scale aggregates. While the Woodford Shale is representative of black shale deposits commonly thought to record heightened marine productivity and/or anoxia, our results point to the importance of high surface area clay minerals for OC enrichment. Given that the vast majority of these clay minerals are formed in soils before being transported to continental margin

  12. Priming of native soil organic matter by pyrogenic organic matter

    NASA Astrophysics Data System (ADS)

    DeCiucies, Silene; Dharmakeerthi, Saman; Whitman, Thea; Woolf, Dominic; Lehmann, Johannes

    2015-04-01

    Priming, in relation to pyrogenic organic matter (PyOM), describes the change in mineralization rate of non-pyrogenic ("native") soil organic matter (nSOM) due to the addition of PyOM. Priming may be 'positive', in that the addition of pyC increases the mineralization rate of native SOM, or 'negative', in that the mineralization rate of nSOM is decreased. Reasons for increased mineralization may include: (i) co-metabolism: microbial decomposition of labile C-additions increases microbial activity, and facilitates additional decomposition of npSOC by active enzymes; (ii) stimulation: substrate additions result in lifted pH, nutrient, oxygen, or water constraints resulting in increased microbial activity. Decreased mineralization may be a result of: (i) inhibition: the opposite of stimulation whereby constraints are aggravated by substrate addition. Substrate addition may also cause inhibition by interfering with enzymes or signaling compounds; (ii) preferential substrate utilization: labile fraction of PyOM additions are preferentially used up by microbes thus causing a decrease in nSOC decomposition; (iii) sorption: organic compounds are adsorbed onto PyOM surfaces, decreasing their rate of mineralization; (iv) stabilization: formation of organo-mineral associations forms stable SOC pools. We have conducted a suite of experiments to investigate these potential interactions. In a seven year long incubation study, PyOM additions increased total OM mineralization for the first 2.5 years, was equal to control after 6.2 years, and was 3% lower after 7.1 years. Cumulative nSOM mineralization was 23% less with the PyOM additions than without, and over 60% of the added PyOM was present in the labile soil fraction after the 7.1 year incubation. Two additional incubation studies, one with and without plants, showed greater nSOM mineralization in the short term and lower nSOM mineralization over the long term. Increased nSOC mineralization due to the presence of plants was

  13. Rare earth elements and neodymium isotopes in sedimentary organic matter

    NASA Astrophysics Data System (ADS)

    Freslon, Nicolas; Bayon, Germain; Toucanne, Samuel; Bermell, Sylvain; Bollinger, Claire; Chéron, Sandrine; Etoubleau, Joel; Germain, Yoan; Khripounoff, Alexis; Ponzevera, Emmanuel; Rouget, Marie-Laure

    2014-09-01

    (inferred from the analysis of local surface seawater). A notable exception is the case of organic matter (OM) fractions leached from cold seep sediment samples, which sometimes exhibit εNd values markedly different from both terrigenous and surface seawater signatures. This suggests that a significant fraction of organic compounds in these sediments may be derived from chemosynthetic processes, recycling pore water REE characterized by a distinct isotopic composition. Overall, our results confirm that organic matter probably plays an important role in the oceanic REE budget, through direct scavenging and remineralization within the water column. Both the high REE abundances and the shape of shale-normalized patterns for leached SOM also suggest that OM degradation in sub-surface marine sediments during early diagenesis could control, to a large extent, the distribution of REE in pore waters. Benthic fluxes of organic-bound REE could hence substantially contribute to the exchange processes between particulates and seawater that take place at ocean margins. Neodymium isotopes could provide useful information for tracing the origin (terrestrial versus marine) and geographical provenance of organic matter, with potential applications in paleoceanography. In particular, future studies should further investigate the potential of Nd isotopes in organic compounds preserved in sedimentary records for reconstructing past variations of surface ocean circulation.

  14. Isotopic composition of pyrite: Relationship to organic matter type and iron availability in some North American cretaceous shales

    USGS Publications Warehouse

    Gautier, D.L.

    1987-01-01

    The S isotope composition of pyrite in Cretaceous shales from the Western Interior of North America is related to organic C abundance, kerogen type and Fe availability. Both calcareous and noncalcareous rocks show a correlation between S and C, but noncalcareous rocks are relatively enriched in S with a higher S C ratio. This higher ratio probably shows that pyrite formation was Fe limited in the calcareous rocks. Organic-carbon-rich noncalcareous shales accumulated slowly beneath anoxic bottom waters. The anoxic bottom waters allowed hydrogen-rich organic matter to be preserved. Such shales have a narrow range of 34S-depleted sulfide and have Fe S ratios like stoichiometric pyrite, suggesting that pyrite formation in organic-rich shales was also limited by Fe availability. Conversely, organic-poor shales commonly accumulated at comparatively high rates, contain hydrogen-poor and refractory organic matter, and have a wide range of pyrite-S isotopic compositions. These organic-poor shales contain post-sulfidic authigenic minerals such as siderite and have excess reactive Fe rather than pyrite stoichiometry. Evidently Fe played a large role in early diagenesis and determined the course of post-sulfidic diagenesis. Fe availability was, however, mainly controlled by provenance, by the rates of sediment accumulation, and by the oxygen content of the depositional environment. ?? 1987.

  15. The roles of organic matter in the formation of uranium deposits in sedimentary rocks

    USGS Publications Warehouse

    Spirakis, C.S.

    1996-01-01

    Because reduced uranium species have a much smaller solubility than oxidized uranium species and because of the strong association of organic matter (a powerful reductant) with many uranium ores, reduction has long been considered to be the precipitation mechanism for many types of uranium deposits. Organic matter may also be involved in the alterations in and around tabular uranium deposits, including dolomite precipitation, formation of silicified layers, iron-titanium oxide destruction, dissolution of quartz grains, and precipitation of clay minerals. The diagenetic processes that produced these alterations also consumed organic matter. Consequently, those tabular deposits that underwent the more advanced stages of diagenesis, including methanogenesis and organic acid generation, display the greatest range of alterations and contain the smallest amount of organic matter. Because of certain similarities between tabular uranium deposits and Precambrian unconformity-related deposits, some of the same processes might have been involved in the genesis of Precambrian unconformity-related deposits. Hydrologic studies place important constraints on genetic models of various types of uranium deposits. In roll-front deposits, oxidized waters carried uranium to reductants (organic matter and pyrite derived from sulfate reduction by organic matter). After these reductants were oxidized at any point in the host sandstone, uranium minerals were reoxidized and transported further down the flow path to react with additional reductants. In this manner, the uranium ore migrated through the sandstone at a rate slower than the mineralizing ground water. In the case of tabular uranium deposits, the recharge of surface water into the ground water during flooding of lakes carried soluble humic material to the water table or to an interface where humate precipitated in tabular layers. These humate layers then established the chemical conditions for mineralization and related

  16. Environmental factors regulating soil organic matter chlorination

    NASA Astrophysics Data System (ADS)

    Svensson, Teresia; Montelius, Malin; Reyier, Henrik; Rietz, Karolina; Karlsson, Susanne; Lindberg, Cecilia; Andersson, Malin; Danielsson, Åsa; Bastviken, David

    2016-04-01

    Natural chlorination of organic matter is common in soils. Despite the widespread abundance of soil chlorinated soil organic matter (SOM), frequently exceeding soil chloride abundance in surface soils, and a common ability of microorganisms to produce chlorinated SOM, we lack fundamental knowledge about dominating processes and organisms responsible for the chlorination. To take one step towards resolving the terrestrial chlorine (Cl) puzzle, this study aims to analyse how environmental factors influence chlorination of SOM. Four factors were chosen for this study: soil moisture (W), nitrogen (N), chloride (Cl) and organic matter quality (C). These factors are all known to be important for soil processes. Laboratory incubations with 36Cl as a Cl tracer were performed in a two soil incubation experiments. It was found that addition of chloride and nitrogen seem to hamper the chlorination. For the C treatment, on the other hand, the results show that chlorination is enhanced by increased availability of labile organic matter (glucose and maltose). Even higher chlorination was observed when nitrogen and water were added in combination with labile organic matter. The effect that more labile organic matter strongly stimulated the chlorination rates was confirmed by the second separate experiment. These results indicate that chlorination was not primarily a way to cut refractory organic matter into digestible molecules, representing one previous hypothesis, but is related with microbial metabolism in other ways that will be further discussed in our presentation.

  17. Chemodestructive fractionation of soil organic matter

    NASA Astrophysics Data System (ADS)

    Popov, A. I.; Rusakov, A. V.

    2016-06-01

    The method of chemodestructive fractionation is suggested to assess the composition of soil organic matter. This method is based on determination of the resilience of soil organic matter components and/or different parts of organic compounds to the impact of oxidizing agents. For this purpose, a series of solutions with similar concentration of the oxidant (K2Cr2O7), but with linearly increasing oxidative capacity was prepared. Chemodestructive fractionation showed that the portion of easily oxidizable (labile) organic matter in humus horizons of different soil types depends on the conditions of soil formation. It was maximal in hydromorphic soils of the taiga zone and minimal in automorphic soils of the dry steppe zone. The portion of easily oxidizable organic matter in arable soils increased with an increase in the rate of organic fertilizers application. The long-lasting agricultural use of soils and burying of the humus horizons within the upper one-meter layer resulted in the decreasing content of easily oxidizable organic matter. It was found that the portion of easily oxidizable organic matter decreases by the mid-summer or fall in comparison with the spring or early summer period.

  18. What is soil organic matter worth?

    PubMed

    Sparling, G P; Wheeler, D; Vesely, E-T; Schipper, L A

    2006-01-01

    The conservation and restoration of soil organic matter are often advocated because of the generally beneficial effects on soil attributes for plant growth and crop production. More recently, organic matter has become important as a terrestrial sink and store for C and N. We have attempted to derive a monetary value of soil organic matter for crop production and storage functions in three contrasting New Zealand soil orders (Gley, Melanic, and Granular Soils). Soil chemical and physical characteristics of real-life examples of three pairs of matched soils with low organic matter contents (after long-term continuous cropping for vegetables or maize) or high organic matter content (continuous pasture) were used as input data for a pasture (grass-clover) production model. The differences in pasture dry matter yields (non-irrigated) were calculated for three climate scenarios (wet, dry, and average years) and the yields converted to an equivalent weight and financial value of milk solids. We also estimated the hypothetical value of the C and N sequestered during the recovery phase of the low organic matter content soils assuming trading with C and N credits. For all three soil orders, and for the three climate scenarios, pasture dry matter yields were decreased in the soils with lower organic matter contents. The extra organic matter in the high C soils was estimated to be worth NZ$27 to NZ$150 ha(-1) yr(-1) in terms of increased milk solids production. The decreased yields from the previously cropped soils were predicted to persist for 36 to 125 yr, but with declining effect as organic matter gradually recovered, giving an accumulated loss in pastoral production worth around NZ$518 to NZ$1239 ha(-1). This was 42 to 73 times lower than the hypothetical value of the organic matter as a sequestering agent for C and N, which varied between NZ$22,963 to NZ$90,849 depending on the soil, region, discount rates, and values used for carbon and nitrogen credits.

  19. Sediment extracted organic matter fluorescence: an archive of organic matter flux and origins?

    NASA Astrophysics Data System (ADS)

    Stedmon, C. A.; Funkey, C. P.; Conley, D. J.

    2016-02-01

    Organic matter buried in sediments contain a record of the intensity and characteristics of organic matter supply from overlying waters through time. A fraction of the organic matter pool can be extracted and characterised using UV-visible spectroscopy (absorption and fluorescence). In this study we investigate the utility of using the optical characteristics of this organic matter pool as a quantitative and qualitative proxy. We use the optical properties of based extracted organic matter from a well characterised Baltic Sea core from the Northern Gotland Deep to infer changes in the intensity and character of organic matter supply over the past 8000 years. Over this period the modern Baltic Sea was formed from its original state as the Ancylus Lake. There are three clear periods of hypoxia which have influenced the supply and quality of organic matter in sediments. The first two periods, the Ancylus-Littorina transgression (7000-4000 B.P.) and Medieval Climate Anomaly (1400-700 years B.P.) are attributed to enhanced stratification. The third is recognised as driven by anthropogenic eutrophication over the past 100 years. The optical properties of sediment extracted organic matter from these periods not only follow the trends in sediment organic carbon content but also show clear differences organic matter characteristics not apparent in other measurements. The series of hypoxic events within the Ancylus-Littorina transgression differ from each other. While organic matter from 7000-6500 years BP is similar to that from MCA and modern times, subsequent Ancylus-Littorina transgression periods of hypoxia are different suggesting different origins of organic matter. Organic matter optical characteristics here are more similar to material from periods will less/no hypoxia.

  20. The origin of soil organic matter controls its composition and bioreactivity across a mesic boreal forest latitudinal gradient.

    PubMed

    Kohl, Lukas; Philben, Michael; Edwards, Kate A; Podrebarac, Frances A; Warren, Jamie; Ziegler, Susan E

    2017-09-04

    Warmer climates have been associated with reduced bioreactivity of soil organic matter (SOM) typically attributed to increased diagenesis; the combined biological and physiochemical transformation of SOM. In addition, cross-site studies have indicated that ecosystem regime shifts, associated with long-term climate warming, can affect SOM properties through changes in vegetation and plant litter production thereby altering the composition of soil inputs. The relative importance of these two controls, diagenesis and inputs, on SOM properties as ecosystems experience climate warming, however, remains poorly understood. To address this issue we characterized the elemental, chemical (nuclear magnetic resonance spectroscopy and total hydrolysable amino acids analysis), and isotopic composition of plant litter and SOM across a well-constrained mesic boreal forest latitudinal transect in Atlantic Canada. Results across forest sites within each of three climate regions indicated that (1) climate history and diagenesis affect distinct parameters of SOM chemistry, (2) increases in SOM bioreactivity with latitude were associated with elevated proportions of carbohydrates relative to plant waxes and lignin, and (3) despite the common forest type across regions, differences in SOM chemistry by climate region were associated with chemically distinct litter inputs and not different degrees of diagenesis. The observed climate effects on vascular plant litter chemistry, however, explained only part of the regional differences in SOM chemistry, most notably the higher protein content of SOM from warmer regions. Greater proportions of lignin and aliphatic compounds and smaller proportions of carbohydrates in warmer sites' soils were explained by the higher proportion of vascular plant relative to moss litter in the warmer relative to cooler forests. These results indicate that climate change induced decreases in the proportion of moss inputs not only impacts SOM chemistry but also

  1. Preservation of overmature, ancient, sedimentary organic matter in carbonate concretions during outcrop weathering.

    PubMed

    Loyd, S J

    2017-01-01

    Concretions are preferentially cemented zones within sediments and sedimentary rocks. Cementation can result from relatively early diagenetic processes that include degradation of sedimentary organic compounds or methane as indicated by significantly (13) C-depleted or enriched carbon isotope compositions. As minerals fill pore space, reduced permeability may promote preservation of sediment components from degradation during subsequent diagenesis, burial heating and outcrop weathering. Discrete and macroscopic organic remains, macro and microfossils, magnetic grains, and sedimentary structures can be preferentially preserved within concretions. Here, Cretaceous carbonate concretions of the Holz Shale are shown to contain relatively high carbonate-free total organic carbon (TOC) contents (up to ~18.5 wt%) compared to the surrounding host rock (with <2.1 wt%). TOC increases with total inorganic carbon (TIC) content, a metric of the degree of cementation. Pyrite contents within concretions generally correlate with organic carbon contents. Concretion carbonate carbon isotope compositions (δ(13) Ccarb ) range from -22.5 to -3.4‰ (VPDB) and do not correlate strongly with TOC. Organic carbon isotope compositions (δ(13) Corg ) of concretions and host rock are similar. Thermal maturity data indicate that both host and concretion organic matter are overmature and have evolved beyond the oil window maturity stage. Although the organic matter in general has experienced significant oxidative weathering, concretion interiors exhibit lower oxygen indices relative to the host. These results suggest that carbonate concretions can preferentially preserve overmature, ancient, sedimentary organic matter during outcrop weathering, despite evidence for organic matter degradation genetic mechanisms. As a result, concretions may provide an optimal proxy target for characterization of more primary organic carbon concentrations and chemical compositions. In addition, these findings

  2. Organic matter degradation in sediments of the York River estuary: Effects of biological vs. physical mixing

    NASA Astrophysics Data System (ADS)

    Arzayus, Krisa M.; Canuel, Elizabeth A.

    2005-01-01

    We investigated the influence of biological and physical seabed disturbance on the degradation of bulk organic matter and source specific lipid biomarker compounds by measuring downcore changes in bulk elemental composition, bulk stable isotopic (δ 13C and δ 15N) signatures, and lipid biomarker compounds in sediment cores collected from two sites in the York River, a subestuary of the Chesapeake Bay, USA. One site (LY) is influenced by biological mixing (bioturbation), restricted to the upper 15-20 cm, while the other site (POD) experiences intense, episodic physical mixing events that penetrate 50-100 cm into the sediment. We utilized a suite of auxiliary measurements to constrain the sources of organic matter, depositional environments, and general ages of the cores. Diagenetic modeling of total organic carbon and total nitrogen in sediments yielded higher apparent rate constants for POD than LY suggesting that the physical mixing regime promotes enhanced degradation of bulk organic matter. Apparent rate constants for select lipids representing distinct sources of organic matter were also higher at POD than LY for all but the most labile (i.e., diatom-derived fatty acids) biomarkers. Differences in stanol/stenol ratios also supported enhanced diagenesis of stenols at POD. The source-specific biomarkers, while useful in qualitatively identifying the sources of sedimentary organic matter, likely do not represent the full spectrum of its reactivity. However, based on our results, we hypothesize that the intense sediment disturbance at POD promotes degradation of more recalcitrant organic material, due to prolonged exposure to oxygen and other electron acceptors (e.g., NO 3-, Mn and Fe oxides). In contrast, the degradation of more labile constituents is equally facilitated by biological and physical disturbance.

  3. The effects of early diagenesis on the chemical and stable carbon isotopic composition of wood

    USGS Publications Warehouse

    Spiker, E. C.; Hatcher, P.G.

    1987-01-01

    Studies of modern and ancient buried wood show that there is a linear correlation between carbohydrate content and the stable carbon isotope composition as carbohydrates are preferentially degraded during early diagenesis. As the carbohydrate content decreases, the ??13C value of the degraded wood decreases 1 to 2 per mil, approaching the value of the residual lignin. These results indicate that carbohydrate degradation products are lost and not incorporated into the aromatic structure as lignin is selectively preserved during early diagenesis of wood. These results also indicate that attempts to quantify terrestrial inputs to modern sedimentary organic matter based on ??13C values should consider the possibility of a 1 to 2 per mil decrease in the ??13C value of degraded wood. ?? 1987.

  4. Factors Regulating Soil Organic Matter Chlorination

    NASA Astrophysics Data System (ADS)

    Svensson, T.; Gustavsson, M.; Reyier, H.; Rietz, K.; Karlsson, S.; Göransson, C.; Andersson, M.; Öberg, G.; Bastviken, D.

    2013-12-01

    Natural chlorination of organic matter is a common process in various soils. Despite the widespread abundance of soil organic chlorine, knowledge on the processes and regulation of soil organic matter chlorination are modest. The purpose of this study is to elucidate how environmental factors may influence chlorination of organic matter in soil. Four factors were chosen for this study; water content, and nitrogen, organic carbon, and chloride concentrations. The variables are all known in different ways as important for microbes and transformation of chlorine in soil. The soil was collected from 5-15 cm depth in a coniferous forest southeast of Sweden. To test how the selected factors influenced chlorination of organic matter, we used soil laboratory incubations using 36Cl-chloride as a radioisotopic marker. A multivariate factorial design with two levels of i) soil moisture, ii) chloride amendment, iii) nitrogen amendment, and iv) glucose and maltose addition was used to simultaneously test for possible combination effects for all factors. A known radioactivity of 36chloride was added to the soil samples and incubated with four different factor treatments during an incubation period of 15 and 60 days. This presentation will discuss the results of this study including what combination of factors enhanced or hampered chlorination and thereby discuss previous observed variability of organic chlorine and chloride in soil.

  5. Spectral mapping of soil organic matter

    NASA Technical Reports Server (NTRS)

    Kristof, S. J.; Baumgardner, M. F.; Johannsen, C. J.

    1974-01-01

    Multispectral remote sensing data were examined for use in the mapping of soil organic matter content. Computer-implemented pattern recognition techniques were used to analyze data collected in May 1969 and May 1970 by an airborne multispectral scanner over a 40-km flightline. Two fields within the flightline were selected for intensive study. Approximately 400 surface soil samples from these fields were obtained for organic matter analysis. The analytical data were used as training sets for computer-implemented analysis of the spectral data. It was found that within the geographical limitations included in this study, multispectral data and automatic data processing techniques could be used very effectively to delineate and map surface soils areas containing different levels of soil organic matter.

  6. Priming of Native Soil Organic Matter by Pyrogenic Organic Matter

    NASA Astrophysics Data System (ADS)

    DeCiucies, S.; Lehmann, J.; Woolf, D.; Whitman, T.

    2016-12-01

    Within the global carbon (C) cycle, soil C makes up a critical and active pool. Pyrogenic C, (PyC) or black C, contributes to this pool, and has been shown to change the turnover rate of the non-pyrogenic soil organic carbon (nSOC) associated with it. This change in rate of mineralization is referred to as priming, which can be negative or positive. There are many possible mechanisms that may be causing this priming effect, both biological and chemical. This study employs incubation experiments to identify and parse these potential mechanisms, focusing on negative priming mechanisms which may have importance in global carbon storage and carbon cycling models. Continuous respiration measurements of soil/char and soil/biomass incubations using isotopically labeled biomass (13C and 15N) indicate that priming interactions are more significant in soils with higher carbon contents, and that higher temperature chars induce more negative priming over time. Current incubations are exploring the effects of chars pyrolyzed at different temperatures, chars extracted of DOC versus non-extracted, soils with differing carbon contents, and the effects of pH and nutrient adjusting incubations. We will continue to examine the contribution of the different mechanisms by isolating variables such as nutrient addition, soil texture, char application rate, and mineral availability. We anticipate that sorption on PyOM surfaces are important in nSOM stabilization and will continue to study these effects using highly labeled substrates and nano secondary ion mass spectrometry (nano-SIMS).

  7. Organic Matter in the Contemporary Ocean

    NASA Astrophysics Data System (ADS)

    Eglinton, T. I.; Repeta, D. J.

    2003-12-01

    This chapter summarizes selected aspects of our current understanding of the organic carbon (OC) cycle as it pertains to the modern ocean, including underlying surficial sediments. We briefly review present estimates of the size of OC reservoirs and the fluxes between them. We then proceed to highlight advances in our understanding that have occurred since the late 1980s, especially those which have altered our perspective of the ways organic matter is cycled in the oceans. We have focused on specific areas where substantial progress has been made, although in most cases our understanding remains far from complete. These are the fate of terrigenous OC inputs in the ocean, the composition of oceanic dissolved organic matter (DOM), the mechanisms of OC preservation, and new insights into microbial inputs and processes. In each case, we discuss prevailing hypotheses concerning the composition and fate of organic matter derived from the different inputs, the reactivity and relationships between different organic matter pools, and highlight current gaps in our knowledge.The advances in our understanding of organic matter cycling and composition has stemmed largely from refinements in existing methodologies and the emergence of new analytical capabilities. Molecular-level stable carbon and nitrogen isotopic measurements have shed new light on a range of biogeochemical processes. Natural abundance of radiocarbon data has also been increasingly applied as both a tracer and source indicator in studies of organic matter cycling. As for 13C, bulk 14C measurements are now complemented by measurements at the molecular level, and the combination of these different isotopic approaches has proven highly informative. The application of multinuclear solid- and liquid-state nuclear magnetic resonance (NMR) spectroscopy has provided a more holistic means to examine the complex array of macromolecules that appears to comprise both dissolved and particulate forms of organic matter. New

  8. Correlation of soil and sediment organic matter polarity to aqueous sorption of nonionic compounds

    USGS Publications Warehouse

    Kile, D.E.; Wershaw, R. L.; Chiou, C.T.

    1999-01-01

    Polarities of the soiL/sediment organic matter (SOM) in 19 soil and 9 freshwater sediment sam pies were determined from solid-state 13C-CP/MAS NMR spectra and compared with published partition coefficients (K(oc)) of carbon tetrachloride (CT) from aqueous solution. Nondestructive analysis of whole samples by solid-state NMR permits a direct assessment of the polarity of SOM that is not possible by elemental analysis. The percent of organic carbon associated with polar functional groups was estimated from the combined fraction of carbohydrate and carboxylamide-ester carbons. A plot of the measured partition coefficients (K(oc)) of carbon tetrachloride (CT) vs. percent polar organic carbon (POC) shows distinctly different populations of soils and sediments as well as a roughly inverse trend among the soil/sediment populations. Plots of K(oc) values for CT against other structural group carbon fractions did not yield distinct populations. The results indicate that the polarity of SOM is a significant factor in accounting for differences in K(oc) between the organic matter in soils and sediments. The alternate direct correlation of the sum of aliphatic and aromatic structural carbons with K(oc) illustrates the influence of nonpolar hydrocarbon on solute partition interaction. Additional elemental analysis data of selected samples further substantiate the effect of the organic matter polarity on the partition efficiency of nonpolar solutes. The separation between soil and sediment samples based on percent POC reflects definite differences of the properties of soil and sediment organic matters that are attributable to diagenesis.Polarities of the soil/sediment organic matter (SOM) in 19 soil and 9 freshwater sediment samples were determined from solid-state 13C-CP/MAS NMR spectra and compared with published partition coefficients (Koc) of carbon tetrachloride (CT) from aqueous solution. Nondestructive analysis of whole samples by solid-state NMR permits a direct

  9. Organic Matter Loading Affects Lodgepole Pine Seedling Growth

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohua; Li, Qinglin; Waterhouse, M. J.; Armleder, H. M.

    2012-06-01

    Organic matter plays important roles in returning nutrients to the soil, maintaining forest productivity and creating habitats in forest ecosystems. Forest biomass is in increasing demand for energy production, and organic matter has been considered as a potential supply. Thus, an important management question is how much organic matter should be retained after forest harvesting to maintain forest productivity. To address this question, an experimental trial was established in 1996 to evaluate the responses of lodgepole pine seedling growth to organic matter loading treatments. Four organic matter loading treatments were randomly assigned to each of four homogeneous pine sites: removal of all organic matter on the forest floor, organic matter loading quantity similar to whole-tree-harvesting residuals left on site, organic matter loading quantity similar to stem-only-harvesting residuals, and organic matter loading quantity more similar to what would be found in disease- or insect-killed stands. Our 10-year data showed that height and diameter had 29 and 35 % increase, respectively, comparing the treatment with the most organic matter loading to the treatment with the least organic matter loading. The positive response of seedling growth to organic matter loading may be associated with nutrients and/or microclimate change caused by organic matter, and requires further study. The dynamic response of seedling growth to organic matter loading treatments highlights the importance of long-term studies. Implications of those results on organic matter management are discussed in the context of forest productivity sustainability.

  10. Organic matter loading affects lodgepole pine seedling growth.

    PubMed

    Wei, Xiaohua; Li, Qinglin; Waterhouse, M J; Armleder, H M

    2012-06-01

    Organic matter plays important roles in returning nutrients to the soil, maintaining forest productivity and creating habitats in forest ecosystems. Forest biomass is in increasing demand for energy production, and organic matter has been considered as a potential supply. Thus, an important management question is how much organic matter should be retained after forest harvesting to maintain forest productivity. To address this question, an experimental trial was established in 1996 to evaluate the responses of lodgepole pine seedling growth to organic matter loading treatments. Four organic matter loading treatments were randomly assigned to each of four homogeneous pine sites: removal of all organic matter on the forest floor, organic matter loading quantity similar to whole-tree-harvesting residuals left on site, organic matter loading quantity similar to stem-only-harvesting residuals, and organic matter loading quantity more similar to what would be found in disease- or insect-killed stands. Our 10-year data showed that height and diameter had 29 and 35 % increase, respectively, comparing the treatment with the most organic matter loading to the treatment with the least organic matter loading. The positive response of seedling growth to organic matter loading may be associated with nutrients and/or microclimate change caused by organic matter, and requires further study. The dynamic response of seedling growth to organic matter loading treatments highlights the importance of long-term studies. Implications of those results on organic matter management are discussed in the context of forest productivity sustainability.

  11. [Infrared spectroscopy application in soil organic matter].

    PubMed

    Wu, J; Xi, S; Jiang, Y

    1998-02-01

    As an important method to study the constitution and properties of macromolecular organic compounds, the infrared spectroscopy has been more and more widely taken in the researches of soil organic matters (SOM). Especially,the application of FTIR and the combined uses of FTIR with chromatogram etc. have made the researches of SOM get a great progress in many aspects. In this paper, the infrared spectroscopy applications were reviewed in SOM. It includes the following contents: the methods to study SOM by IR, studies on the constitution of soil humic substances (SHS), extraction of SOM and classification of SHS, decomposition, transformation and humification of organic matters, the differences of SOM in different situations, the interactions of SHS with metais, clay minerals and other organics in soil.

  12. Amino acid biogeochemistry and organic matter degradation state across the Pakistan margin oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Vandewiele, Sandra; Cowie, Greg; Soetaert, Karline; Middelburg, Jack J.

    2009-03-01

    To assess whether the oxygen minimum zone (OMZ) across the Pakistan Margin causes differences in the lability of sedimentary organic matter, sediments were collected in the core of the OMZ, in the upper and lower transition zones and below the OMZ. Sediment samples were analysed for total nitrogen (TN) and organic carbon (OC) contents, mineral surface area (SA), and total hydrolysable amino acids (THAA) and enzymatically hydrolysable amino acids (EHAA). OC contents and organic carbon per unit of mineral surface area (OC/SA) values were clearly elevated in the core and lower OMZ transition zone. These sediments also contained more labile sedimentary organic matter, as discerned by higher concentrations of THAA and the contribution of N in THAA to TN. A protein amino acid-based degradation index revealed that all sedimentary organic matter has undergone significant degradation, but sediments in the upper OMZ transition zone and below the OMZ are more degraded than inside the OMZ. Changes in amino acid composition during diagenesis are attributed to a combination of factors: (1) selective preservation in which amino acids in cell walls are better preserved than amino acids in cell plasma, (2) formation and accumulation of bacterially derived organic matter; there were relatively more living bacteria in the core of the OMZ and an accumulation of peptidoglycan-derived amino acids in degraded sediments in the upper OMZ transition zone and below the OMZ, and (3) bacterial transformation, as the molar percentages of bacterial transformation products β-alanine (Bala), γ-amino butyric acid (Gaba), and ornithine (Orn), increased with increasing degradation.

  13. Correlation of soil and sediment organic matter polarity to aqueous sorption of nonionic compounds

    SciTech Connect

    Kile, D.E. ); Wershaw, R.L.; Chiou, C.T. )

    1999-06-15

    Polarities of the soil/sediment organic matter (SOM) in 19 soil and 9 freshwater sediment samples were determined from solid-state [sup 13]C-CP/MAS NMR spectra and compared with published partition coefficients (K[sub oc]) of carbon tetrachloride (CT) from aqueous solution. Nondestructive analysis of whole samples by solid-state NMR permits a direct assessment of the polarity of SOM that is not possible by elemental analysis. The percent of organic carbon associated with polar functional groups was estimated from the combined fraction of carbohydrate and carboxyl-amide-ester carbons. A plot of the measured partition coefficients (K[sub oc]) of carbon tetrachloride (CT) vs. percent polar organic carbon (POC) shows distinctly different populations of soils and sediments as well as a roughly inverse trend among the soil/sediment populations. Plots of K[sub oc] values for CT against other structural group carbon fractions did not yield distinct populations. The results indicate that the polarity of SOM is a significant factor in accounting for differences in K[sub oc] between the organic matter in soils and sediments. The alternate direct correlation of the sum of aliphatic and aromatic structural carbons with K[sub oc] illustrates the influence of nonpolar hydrocarbon on solute partition interaction. Additional elemental analysis data of selected samples further substantiate the effect of the organic matter polarity on the partition efficiency of nonpolar solutes. The separation between soil and sediment samples based on percent POC reflects definite differences of the properties of soil and sediment organic matters that are attributable to diagenesis.

  14. Organic Matter Sulfurization in the Water Column and Its Effect on Sedimentary Processes

    NASA Astrophysics Data System (ADS)

    Raven, M. R.; Sessions, A. L.; Adkins, J. F.; Thunell, R.

    2016-02-01

    An essential characteristic of marine organic matter (OM) is its lability, which is typically taken to mean its susceptibility to remineralization by microorganisms. OM that is more highly condensed or polymerized is less available for heterotrophs and is therefore associated with lower rates of microbial metabolisms and inorganic carbon release than fresh, lower molecular weight material. Accordingly, understanding the mechanisms driving the transformation of OM into recalcitrant `proto-kerogen' will greatly improve our understanding of sedimentary metabolic rates and carbon burial. One important set of reactions driving proto-kerogen formation in O2-limited environments are abiotic reactions between sulfide and/or polysulfides and functionalized OM. We investigate this process in sinking particles from the modern Cariaco basin. We find evidence for rapid sulfurization in the water column based on the concentrations and sulfur-isotopic compositions of organic fractions and individual organosulfur compounds. More extensive sulfurization in Cariaco Basin is associated with high OM export from the surface ocean, low terrestrial inputs, and high concentrations of both elemental S and the dominant non-polar organosulfur compound, C20 thiophene. Depending on the frequency of high OM export events, we estimate that water column sulfurization delivers roughly half of the total organic S present at 5 cm depth in underlying sediments. We compare these data to results from Santa Barbara Basin and find that similar processes may be responsible for low rates of heterotrophy in this environment. OM sulfurization during sedimentation and very early diagenesis will have many implications for biogeochemical cycles in sediments during later diagenesis and burial.

  15. Ocean metabolism and dissolved organic matter: How do small dissolved molecules persist in the ocean?

    NASA Astrophysics Data System (ADS)

    Benner, Ronald

    2010-05-01

    The ocean reservoir of dissolved organic matter (DOM) is among the largest global reservoirs (~700 Pg C) of reactive organic carbon. Marine primary production (~50 Pg C/yr) by photosynthetic microalgae and cyanobacteria is the major source of organic matter to the ocean and the principal substrate supporting marine food webs. The direct release of DOM from phytoplankton and other organisms as well as a variety of other processes, such as predation and viral lysis, contribute to the ocean DOM reservoir. Continental runoff and atmospheric deposition are relatively minor sources of DOM to the ocean, but some components of this material appear to be resistant to decomposition and to have a long residence time in the ocean. Concentrations of DOM are highest in surface waters and decrease with depth, a pattern that reflects the sources and diagenesis of DOM in the upper ocean. Most (70-80%) marine DOM exists as small molecules of low molecular weight (<1 kDalton). Surprisingly, high-molecular-weight (>1 kDalton) DOM is relatively enriched in major biochemicals, such as combined neutral sugars and amino acids, and is more bioavailable than low-molecular-weight DOM. The observed relationships among the size, composition, and reactivity of DOM have led to the size-reactivity continuum model, which postulates that diagenetic processes lead to the production of smaller molecules that are structurally altered and resistant to microbial degradation. The radiocarbon content of these small dissolved molecules also indicates these are the most highly aged components of DOM. Chemical signatures of bacteria are abundant in DOM and increase during diagenesis, indicating bacteria are an important source of slowly cycling biochemicals. Recent analyses of DOM isolates by ultrahigh-resolution mass spectrometry have revealed an incredibly diverse mixture of molecules. Carboxyl-rich alicyclic molecules are abundant in DOM, and they appear to be derived from diagenetically

  16. Lability of Secondary Organic Particulate Matter

    SciTech Connect

    Liu, Pengfei; Li, Yong Jie; Wang, Yan; Giles, Mary K.; Zaveri, Rahul A.; Bertram, Allan K.; Martin, Scot T.

    2016-10-24

    Accurate simulations of the consenctrations of atmospheric organic particulate matter (PM) are needed for predicting energy flow in the Earth’s climate system. In the past, simulations of organic PM widely assume equilibrium partitioning of semivolatile organic compounds (SVOCs) between the PM and surrounding vapor. Herein, we test this assumption by measuring evaporation rates and associated vapor mass concentration of organic films representative of atmospheric PM. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH), indicating equilibrium partitioning above a transition RH but not below. In contrast for films representing biogenic PM, no threshold was observed, indicating equilibrium partitioning at all RHs. The results suggest that the mass lability of atmospheric organic PM can differ in consequential ways among Earth’s natural biomes, polluted regions, and regions of land-use change, and these differences need to be considered when simulating atmospheric organic PM.

  17. Investigation of water-soluble organic matter extracted from shales during leaching experiments

    NASA Astrophysics Data System (ADS)

    Zhu, Yaling; Vieth-Hillebrand, Andrea; Wilke, Franziska D. H.; Horsfield, Brian

    2017-04-01

    The huge volumes and unknown composition of flowback and produced waters cause major public concerns about the environmental and social compatibility of hydraulic fracturing and the exploitation of gas from unconventional reservoirs. Flowback and produced waters contain not only residues of fracking additives but also chemical species that are dissolved from the shales themselves during fluid-rock interaction. Knowledge of the composition, size and structure of dissolved organic carbon (DOC) as well as the main controls on the release of DOC are a prerequisite for a better understanding of these interactions and its effects on composition of flowback and produced water. Black shales from four different geological settings and covering a maturity range Ro = 0.3-2.6% were extracted with deionized water. The DOC yields were found to decrease rapidly with increasing diagenesis and remain low throughout catagenesis. Four DOC fractions have been qualitatively and quantitatively characterized using size-exclusion chromatography. The concentrations of individual low molecular weight organic acids (LMWOA) decrease with increasing maturity of the samples except for acetate extracted from the overmature Posidonia shale, which was influenced by hydrothermal brines. The oxygen content of the shale organic matter also shows a significant influence on the release of organic acids, which is indicated by the positive trend between oxygen index (OI) and the concentrations of formate and acetate. Based on our experiments, both the properties of the organic matter source and the thermal maturation progress of the shale organic matter significantly influence the amount and quality of extracted organic compounds during the leaching experiments.

  18. Reactive-transport modeling of iron diagenesis and associated organic carbon remineralization in a Florida (USA) subterranean estuary

    USGS Publications Warehouse

    Roy, Moutusi; Martin, Jonathan B.; Smith, Christopher G.; Cable, Jaye E.

    2011-01-01

    Iron oxides are important terminal electron acceptors for organic carbon (OC) remineralization in subterranean estuaries, particularly where oxygen and nitrate concentrations are low. In Indian River Lagoon, Florida, USA, terrestrial Fe-oxides dissolve at the seaward edge of the seepage face and flow upward into overlying marine sediments where they precipitate as Fe-sulfides. The dissolved Fe concentrations vary by over three orders of magnitude, but Fe-oxide dissolution rates are similar across the 25-m wide seepage face, averaging around 0.21 mg/cm2/yr. The constant dissolution rate, but differing concentrations, indicate Fe dissolution is controlled by a combination of increasing lability of dissolved organic carbon (DOC) and slower porewater flow velocities with distance offshore. In contrast, the average rate constants of Fe-sulfide precipitation decrease from 21.9 × 10-8 s-1 to 0.64 × 10-8 s-1 from the shoreline to the seaward edge of the seepage face as more oxygenated surface water circulates through the sediment. The amount of OC remineralized by Fe-oxides varies little across the seepage face, averaging 5.34 × 10-2 mg/cm2/yr. These rates suggest about 3.4 kg of marine DOC was remineralized in a 1-m wide, shore-perpendicular strip of the seepage face as the terrestrial sediments were transgressed over the past 280 years. During this time, about 10 times more marine solid organic carbon (SOC) accumulated in marine sediments than were removed from the underlying terrestrial sediments. Indian River Lagoon thus appears to be a net sink for marine OC.

  19. Reactive-transport modeling of iron diagenesis and associated organic carbon remineralization in a Florida (USA) subterranean estuary

    NASA Astrophysics Data System (ADS)

    Roy, Moutusi; Martin, Jonathan B.; Smith, Christopher G.; Cable, Jaye E.

    2011-04-01

    Iron oxides are important terminal electron acceptors for organic carbon (OC) remineralization in subterranean estuaries, particularly where oxygen and nitrate concentrations are low. In Indian River Lagoon, Florida, USA, terrestrial Fe-oxides dissolve at the seaward edge of the seepage face and flow upward into overlying marine sediments where they precipitate as Fe-sulfides. The dissolved Fe concentrations vary by over three orders of magnitude, but Fe-oxide dissolution rates are similar across the 25-m wide seepage face, averaging around 0.21 mg/cm 2/yr. The constant dissolution rate, but differing concentrations, indicate Fe dissolution is controlled by a combination of increasing lability of dissolved organic carbon (DOC) and slower porewater flow velocities with distance offshore. In contrast, the average rate constants of Fe-sulfide precipitation decrease from 21.9 × 10 - 8 s - 1 to 0.64 × 10 - 8 s - 1 from the shoreline to the seaward edge of the seepage face as more oxygenated surface water circulates through the sediment. The amount of OC remineralized by Fe-oxides varies little across the seepage face, averaging 5.34 × 10 - 2 mg/cm 2/yr. These rates suggest about 3.4 kg of marine DOC was remineralized in a 1-m wide, shore-perpendicular strip of the seepage face as the terrestrial sediments were transgressed over the past 280 years. During this time, about 10 times more marine solid organic carbon (SOC) accumulated in marine sediments than were removed from the underlying terrestrial sediments. Indian River Lagoon thus appears to be a net sink for marine OC.

  20. Organic matters: investigating the sources, transport, and fate of organic matter in Fanno Creek, Oregon

    USGS Publications Warehouse

    Sobieszczyk, Steven; Keith, Mackenzie K.; Goldman, Jami H.; Rounds, Stewart A.

    2015-01-01

    The U.S. Geological Survey (USGS), in cooperation with Clean Water Services, recently completed an investigation into the sources, transport, and fate of organic matter in the Fanno Creek watershed. The information provided by this investigation will help resource managers to implement strategies aimed at decreasing the excess supply of organic matter that contributes to low dissolved-oxygen levels in Fanno Creek and downstream in the Tualatin River during summer. This fact sheet summarizes the findings of the investigation.

  1. Early diagenesis of chalk

    NASA Astrophysics Data System (ADS)

    Zijlstra, Hans

    Smectitic clay, glauconite, pyrite, carbonate cement and silica occur concentrated in concentric zones around several m high and mm wide U-shaped burrows of Bathichnus paramoudrae, common in the Late Cretaceous Chalk of NW Europe. The minerals are authigenic and formed during bacterial metabolism and the decomposition of organic matter in 5 redox zones from aerobic near the burrow wall to anoxic in the surrounding deep sediment. The identification of the succession of redox zones and their specific mineral authigenesis contributes to a better definition of the early diagenetic conditions during deposition of bedded Chalk sequences characterised by a rhythmic vertical variation of the concentrations of the mentioned authigenic minerals.

  2. Subaerial weathering of sedimentary organic matter

    USGS Publications Warehouse

    Clayton, J.L.; Swetland, P.J.

    1978-01-01

    Small diameter core samples were taken from outcrops of the Permian Phosphoria Formation and the Cretaceous Pierre Shale of the Western United States to determine the effects of weathering on organic matter in shale outcrops. While the Pierre Shale core showed no evidence of weathering, the Phosphoria Formation showed significant reduction of overall organic content and pronounced changes in organic composition over the near-surface interval of the core. Total organic carbon is lower by as much as 60% over the upper 2 ft of the core. Chloroform-soluble organic matter and total hydrocarbon (C15+) concentrations are 50% lower over this same interval. The ratio of saturated to aromatic hydrocarbons decreases steadily with core depth over the upper 2.6 ft of the core. Aromatic hydrocarbons are enriched in the stable carbon-13 isotope by an average of 1.7%. over this same interval. Shallow core samples also show a loss of n-paraffins relative to branched/cyclic compounds in the saturated C15+ fraction. Although the extent of weathering is variable, certain characteristic effects are recognizable and can be applied to the interpretation of outcrop data in organic geochemical studies. ?? 1978.

  3. Isotopic analysis of cometary organic matter

    NASA Astrophysics Data System (ADS)

    Kerridge, J. F.

    1991-04-01

    Carbon isotope ratios have been measured for CN in the coma of Comet Halley and for several CHON particles emitted by Halley. Of these, only the CHON-particle data may be reasonably related to organic matter in the cometary nucleus, but the true range of (C-13)/(C-12) values in those particles is quite uncertain. The D/H ratio in H2O in the Halley coma resembles that in Titan/Uranus.

  4. Historical changes in organic matter input to the muddy sediments along the Zhejiang-Fujian Coast, China over the past 160 years

    USGS Publications Warehouse

    Chen, Li-lei; Liu, Jian; Xing, Lei; Krauss, Ken W.; Wang, Jia-sheng; Xu, Gang; Li, Li

    2017-01-01

    The burial of sedimentary organic matter (SOM) in the large river-influenced estuarine-coastal regions is affected by hydrodynamic sorting, diagenesis and human activities. Typically, the inner shelf region of the East China Sea is a major carbon sink of the Yangtze River-derived fine-grained sediments. Most of the previous work concentrated on the studies of surface sediments or used a single-proxy in this region. In this study, two cores from the Zhejiang-Fujian Coast were analyzed using bulk (TOC, TN and δ13CTOC) and molecular biomarker (n-alkane, brassicasterol, dinosterol and glycerol dialkyl glycerol tetraether lipids) techniques to clarify the sources, spatiotemporal distribution and fate of SOM in the Yangtze River Estuary and adjacent shelf. Results from this study indicated that the effects of diagenesis and diffusion on different sedimentary biomarkers resulted in overestimation of the relative contribution of terrestrial organic matter (%OMterr), compared with those based on δ13CTOC. The amounts of terrestrial plant organic matter (OMplant) and%OMterr in sediments decreased offshore. In contrast, the amounts of marine organic matter (OMmarine) increased offshore, but closer to the Yangtze River mouth, the amounts of soil organic matter (OMsoil) increased. Moreover, the amounts of TOC, OMplant and OMmarine biomarkers increased, but OMsoil and%OMterrdecreased over time in recent decades. Our study suggests that spatial organic matter distribution patterns in marine shelf sediments were controlled primarily by hydrodynamic sorting and nutrient concentrations, and temporally diverse patterns were controlled predominantly by anthropogenic influence (e.g., dam construction and soil conservation, reclamation and agricultural plantations, anthropogenic nutrient input, dust storms, eutrophication, etc) and climate events (e.g., interdecadal climatic jump and heavy rain events) in the geological period.

  5. Peer reviewed: Characterizing aquatic dissolved organic matter

    USGS Publications Warehouse

    Leenheer, Jerry A.; Croué, Jean-Philippe

    2003-01-01

    Whether it causes aesthetic concerns such as color, taste, and odor; leads to the binding and transport of organic and inorganic contaminants; produces undesirable disinfection byproducts; provides sources and sinks for carbon; or mediates photochemical processes, the nature and properties of dissolved organic matter (DOM) in water are topics of significant environmental interest. DOM is also a major reactant in and product of biogeochemical processes in which the material serves as a carbon and energy source for biota and controls levels of dissolved oxygen, nitrogen, phosphorus, sulfur, numerous trace metals, and acidity.

  6. Isolation and chemical characterization of dissolved and colloidal organic matter

    USGS Publications Warehouse

    Aiken, G.; Leenheer, J.

    1993-01-01

    Commonly used techniques for the concentration and isolation of organic matter from water, such as preparative chromatography, ultrafiltration and reverse osmosis, and the methods used to analyze the organic matter obtained by these methods are reviewed. The development of methods to obtain organic matter that is associated with fractions of the dissolved organic carbon other than humic substances, such as organic bases, hydrophilic organic acids and colloidal organic matter are discussed. Methods specifically used to study dissolved organic nitrogen and dissolved organic phosphorous are also discussed. -from Authors

  7. Soil organic matter composition affected by potato cropping managements

    USDA-ARS?s Scientific Manuscript database

    Organic matter is a small but important soil component. As a heterogeneous mixture of geomolecules and biomolecules, soil organic matter (SOM) can be fractionated into distinct pools with different solubility and lability. Water extractable organic matter (WEOM) fraction is the most labile and mobil...

  8. Abiotic Bromination of Soil Organic Matter.

    PubMed

    Leri, Alessandra C; Ravel, Bruce

    2015-11-17

    Biogeochemical transformations of plant-derived soil organic matter (SOM) involve complex abiotic and microbially mediated reactions. One such reaction is halogenation, which occurs naturally in the soil environment and has been associated with enzymatic activity of decomposer organisms. Building on a recent finding that naturally produced organobromine is ubiquitous in SOM, we hypothesized that inorganic bromide could be subject to abiotic oxidations resulting in bromination of SOM. Through lab-based degradation treatments of plant material and soil humus, we have shown that abiotic bromination of particulate organic matter occurs in the presence of a range of inorganic oxidants, including hydrogen peroxide and assorted forms of ferric iron, producing both aliphatic and aromatic forms of organobromine. Bromination of oak and pine litter is limited primarily by bromide concentration. Fresh plant material is more susceptible to bromination than decayed litter and soil humus, due to a labile pool of mainly aliphatic compounds that break down during early stages of SOM formation. As the first evidence of abiotic bromination of particulate SOM, this study identifies a mechanistic source of the natural organobromine in humic substances and the soil organic horizon. Formation of organobromine through oxidative treatments of plant material also provides insights into the relative stability of aromatic and aliphatic components of SOM.

  9. Abiotic Bromination of Soil Organic Matter

    SciTech Connect

    Leri, Alessandra C.; Ravel, Bruce

    2015-11-17

    Biogeochemical transformations of plant-derived soil organic matter (SOM) involve complex abiotic and microbially mediated reactions. One such reaction is halogenation, which occurs naturally in the soil environment and has been associated with enzymatic activity of decomposer organisms. Building on a recent finding that naturally produced organobromine is ubiquitous in SOM, we hypothesized that inorganic bromide could be subject to abiotic oxidations resulting in bromination of SOM. Through lab-based degradation treatments of plant material and soil humus, we have shown that abiotic bromination of particulate organic matter occurs in the presence of a range of inorganic oxidants, including hydrogen peroxide and assorted forms of ferric iron, producing both aliphatic and aromatic forms of organobromine. Bromination of oak and pine litter is limited primarily by bromide concentration. Fresh plant material is more susceptible to bromination than decayed litter and soil humus, due to a labile pool of mainly aliphatic compounds that break down during early stages of SOM formation. As the first evidence of abiotic bromination of particulate SOM, this study identifies a mechanistic source of the natural organobromine in humic substances and the soil organic horizon. Formation of organobromine through oxidative treatments of plant material also provides insights into the relative stability of aromatic and aliphatic components of SOM.

  10. Isotopic compositions of carbonates and organic carbon from upper Proterozoic successions in Namibia: stratigraphic variation and the effects of diagenesis and metamorphism.

    PubMed

    Kaufman, A J; Hayes, J M; Knoll, A H; Germs, G J

    1991-01-01

    The carbon isotope geochemistry of carbonates and organic carbon in the late Proterozoic Damara Supergroup of Namibia, including the Nama, Witvlei, and Gariep groups on the Kalahari Craton and the Mulden and Otavi groups on the Congo Craton, has been investigated as an extension of previous studies of secular variations in the isotopic composition of late Proterozoic seawater. Subsamples of microspar and dolomicrospar were determined, through petrographic and cathodoluminescence examination, to represent the "least-altered" portions of the rock. Carbon-isotopic abundances in these phases are nearly equal to those in total carbonate, suggesting that 13C abundances of late Proterozoic fine-grained carbonates have not been significantly altered by meteoric diagenesis, although 18O abundances often differ significantly. Reduced and variable carbon-isotopic differences between carbonates and organic carbon in these sediments indicate that isotopic compositions of organic carbon have been altered significantly by thermal and deformational processes, likely associated with the Pan-African Orogeny. Distinctive stratigraphic patterns of secular variation, similar to those noted in other, widely separated late Proterozoic basins, are found in carbon-isotopic compositions of carbonates from the Nama and Otavi groups. For example, in Nama Group carbonates delta 13C values rise dramatically from -4 to +5% within a short stratigraphic interval. This excursion suggests correlation with similar excursions noted in Ediacaran-aged successions of Siberia, India, and China. Enrichment of 13C (delta 13C> +5%) in Otavi Group carbonates reflects those in Upper Riphean successions of the Akademikerbreen Group, Svalbard, its correlatives in East Greenland, and the Shaler Group, northwest Canada. The widespread distribution of successions with comparable isotopic signatures supports hypotheses that variations in delta 13C reflect global changes in the isotopic composition of late

  11. Isotopic compositions of carbonates and organic carbon from upper Proterozoic successions in Namibia: stratigraphic variation and the effects of diagenesis and metamorphism

    NASA Technical Reports Server (NTRS)

    Kaufman, A. J.; Hayes, J. M.; Knoll, A. H.; Germs, G. J.

    1991-01-01

    The carbon isotope geochemistry of carbonates and organic carbon in the late Proterozoic Damara Supergroup of Namibia, including the Nama, Witvlei, and Gariep groups on the Kalahari Craton and the Mulden and Otavi groups on the Congo Craton, has been investigated as an extension of previous studies of secular variations in the isotopic composition of late Proterozoic seawater. Subsamples of microspar and dolomicrospar were determined, through petrographic and cathodoluminescence examination, to represent the "least-altered" portions of the rock. Carbon-isotopic abundances in these phases are nearly equal to those in total carbonate, suggesting that 13C abundances of late Proterozoic fine-grained carbonates have not been significantly altered by meteoric diagenesis, although 18O abundances often differ significantly. Reduced and variable carbon-isotopic differences between carbonates and organic carbon in these sediments indicate that isotopic compositions of organic carbon have been altered significantly by thermal and deformational processes, likely associated with the Pan-African Orogeny. Distinctive stratigraphic patterns of secular variation, similar to those noted in other, widely separated late Proterozoic basins, are found in carbon-isotopic compositions of carbonates from the Nama and Otavi groups. For example, in Nama Group carbonates delta 13C values rise dramatically from -4 to +5% within a short stratigraphic interval. This excursion suggests correlation with similar excursions noted in Ediacaran-aged successions of Siberia, India, and China. Enrichment of 13C (delta 13C> +5%) in Otavi Group carbonates reflects those in Upper Riphean successions of the Akademikerbreen Group, Svalbard, its correlatives in East Greenland, and the Shaler Group, northwest Canada. The widespread distribution of successions with comparable isotopic signatures supports hypotheses that variations in delta 13C reflect global changes in the isotopic composition of late

  12. Isotopic compositions of carbonates and organic carbon from upper Proterozoic successions in Namibia: stratigraphic variation and the effects of diagenesis and metamorphism

    NASA Technical Reports Server (NTRS)

    Kaufman, A. J.; Hayes, J. M.; Knoll, A. H.; Germs, G. J.

    1991-01-01

    The carbon isotope geochemistry of carbonates and organic carbon in the late Proterozoic Damara Supergroup of Namibia, including the Nama, Witvlei, and Gariep groups on the Kalahari Craton and the Mulden and Otavi groups on the Congo Craton, has been investigated as an extension of previous studies of secular variations in the isotopic composition of late Proterozoic seawater. Subsamples of microspar and dolomicrospar were determined, through petrographic and cathodoluminescence examination, to represent the "least-altered" portions of the rock. Carbon-isotopic abundances in these phases are nearly equal to those in total carbonate, suggesting that 13C abundances of late Proterozoic fine-grained carbonates have not been significantly altered by meteoric diagenesis, although 18O abundances often differ significantly. Reduced and variable carbon-isotopic differences between carbonates and organic carbon in these sediments indicate that isotopic compositions of organic carbon have been altered significantly by thermal and deformational processes, likely associated with the Pan-African Orogeny. Distinctive stratigraphic patterns of secular variation, similar to those noted in other, widely separated late Proterozoic basins, are found in carbon-isotopic compositions of carbonates from the Nama and Otavi groups. For example, in Nama Group carbonates delta 13C values rise dramatically from -4 to +5% within a short stratigraphic interval. This excursion suggests correlation with similar excursions noted in Ediacaran-aged successions of Siberia, India, and China. Enrichment of 13C (delta 13C> +5%) in Otavi Group carbonates reflects those in Upper Riphean successions of the Akademikerbreen Group, Svalbard, its correlatives in East Greenland, and the Shaler Group, northwest Canada. The widespread distribution of successions with comparable isotopic signatures supports hypotheses that variations in delta 13C reflect global changes in the isotopic composition of late

  13. A comprehensive survey of lignin geochemistry in the sedimentary organic matter along the Kapuas River (West Kalimantan, Indonesia)

    NASA Astrophysics Data System (ADS)

    Loh, Pei Sun; Chen, Chen-Tung Arthur; Anshari, Gusti Z.; Wang, Jough-Tai; Lou, Jiann-Yuh; Wang, Shu-Lun

    2012-01-01

    In this first study of lignin geochemistry in the world's longest river on an island, surface sediments were collected along the Kapuas River, three lakes in the upper river, a tributary in the lower river and a separate river during June-July 2007 and December 2007-January 2008. The samples were analyzed for lignin-derived phenols and bulk elemental and stable carbon isotope compositions. Λ values (the sum of eight lignin phenols, expressed as mg/100 mg organic carbon (OC)) ranged from 0.13 to 3.70. Ratios of syringyl/vanillyl (S/V) and cinnamyl/vanillyl (C/V) ranged from 0.34 to 1.18 and 0.28 to 1.40, respectively, indicating the presence of non-woody angiosperm tissues. The high vanillic acid to vanillin (Ad/Al)v (0.71-2.01) and syringic acid to syringaldehyde (Ad/Al)s (0.72-2.12) ratios indicate highly degraded lignin materials. In the upper Kapuas River, highly degraded soil materials discharged from lands that were barren as a result of deforestation activities were detected in the locations directly in those vicinities. The middle Kapuas River showed rapid organic matter degradation, probably due to the presence of fresh terrestrial and phytoplankton organic matter fueling the biogeochemical cycling. The Kapuas Kecil River, one of the two branches in the lower reach of the Kapuas River, showed higher levels and diagenesis of sedimentary organic matter due to input from anthropogenic sources and increased marine organic matter near the mouth. This study shows that different stretches along the river exhibit different levels and composition of sedimentary organic matter, as well as different carbon dynamics, which is directly attributable to the varying landscapes and quality of organic matter.

  14. The surface area of soil organic matter

    USGS Publications Warehouse

    Chiou, C.T.; Lee, J.-F.; Boyd, S.A.

    1990-01-01

    The previously reported surface area for soil organic matter (SOM) of 560-800 m2/g as determined by the ethylene glycol (EG) retention method was reexamined by the standard BET method based on nitrogen adsorption at liquid nitrogen temperature. Test samples consisted of two high organic content soils, a freeze-dried soil humic acid, and an oven-dried soil humic acid. The measured BET areas for these samples were less than 1 m2/g, except for the freeze-dried humic acid. The results suggest that surface adsorption of nonionic organic compounds by SOM is practically insignificant in comparison to uptake by partition. The discrepancy between the surface areas of SOM obtained by BET and EG methods was explained in terms of the 'free surface area' and the 'apparent surface area' associated with these measurements.The previously reported surface area for soil organic matter (SOM) of 560-800 m2/g as determined by the ethylene glycol (EG) retention method was reexamined by the standard BET method based on nitrogen adsorption at liquid nitrogen temperature. Test samples consisted of two high organic content soils, a freeze-dried soil humic acid, and an oven-dried soil humic acid. The measured BET areas for these samples were less than 1 m2/g, except for the freeze-dried humic acid. The results suggest that surface adsorption of nonionic organic compounds by SOM is practically insignificant in comparison to uptake by partition. The discrepancy between the surface areas of SOM obtained by BET and EG methods was explained in terms of the 'free surface area' and the 'apparent surface area' associated with these measurements.

  15. Organic geochemical analysis of sedimentary organic matter associated with uranium

    USGS Publications Warehouse

    Leventhal, J.S.; Daws, T.A.; Frye, J.S.

    1986-01-01

    Samples of sedimentary organic matter from several geologic environments and ages which are enriched in uranium (56 ppm to 12%) have been characterized. The three analytical techniqyes used to study the samples were Rock-Eval pyrolysis, pyrolysis-gas chromatography-mass spectrometry, and solid-state C-13 nuclear magnetic resonance (NMR) spectroscopy. In samples with low uranium content, the pyrolysis-gas chromatography products contain oxygenated functional groups (as hydroxyl) and molecules with both aliphatic and aromatic carbon atoms. These samples with low uranium content give measurable Rock-Eval hydrocarbon and organic-CO2 yields, and C-13 NMR values of > 30% aliphatic carbon. In contrast, uranium-rich samples have few hydrocarbon pyrolysis products, increased Rock-Eval organic-CO2 contents and > 70% aromatic carbon contents from C-13 NMR. The increase in aromaticity and decrease in hydrocarbon pyrolysis yield are related to the amount of uranium and the age of the uranium minerals, which correspond to the degree of radiation damage. The three analytical techniques give complementary results. Increase in Rock-Eval organic-CO2 yield correlates with uranium content for samples from the Grants uranium region. Calculations show that the amount of organic-CO2 corresponds to the quantity of uranium chemically reduced by the organic matter for the Grants uranium region samples. ?? 1986.

  16. Lability of secondary organic particulate matter

    PubMed Central

    Liu, Pengfei; Li, Yong Jie; Wang, Yan; Gilles, Mary K.; Zaveri, Rahul A.; Bertram, Allan K.

    2016-01-01

    The energy flows in Earth’s natural and modified climate systems are strongly influenced by the concentrations of atmospheric particulate matter (PM). For predictions of concentration, equilibrium partitioning of semivolatile organic compounds (SVOCs) between organic PM and the surrounding vapor has widely been assumed, yet recent observations show that organic PM can be semisolid or solid for some atmospheric conditions, possibly suggesting that SVOC uptake and release can be slow enough that equilibrium does not prevail on timescales relevant to atmospheric processes. Herein, in a series of laboratory experiments, the mass labilities of films of secondary organic material representative of similar atmospheric organic PM were directly determined by quartz crystal microbalance measurements of evaporation rates and vapor mass concentrations. There were strong differences between films representative of anthropogenic compared with biogenic sources. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH) between 20% and 30%, indicating rapid partitioning above a transition RH but not below. Below the threshold, the characteristic time for equilibration is estimated as up to 1 wk for a typically sized particle. In contrast, for films representing biogenic PM, no RH threshold was observed, suggesting equilibrium partitioning is rapidly obtained for all RHs. The effective diffusion rate Dorg for the biogenic case is at least 103 times greater than that of the anthropogenic case. These differences should be accounted for in the interpretation of laboratory data as well as in modeling of organic PM in Earth’s atmosphere. PMID:27791063

  17. Mapping Soil Organic Matter with Hyperspectral Imaging

    NASA Astrophysics Data System (ADS)

    Moni, Christophe; Burud, Ingunn; Flø, Andreas; Rasse, Daniel

    2014-05-01

    Soil organic matter (SOM) plays a central role for both food security and the global environment. Soil organic matter is the 'glue' that binds soil particles together, leading to positive effects on soil water and nutrient availability for plant growth and helping to counteract the effects of erosion, runoff, compaction and crusting. Hyperspectral measurements of samples of soil profiles have been conducted with the aim of mapping soil organic matter on a macroscopic scale (millimeters and centimeters). Two soil profiles have been selected from the same experimental site, one from a plot amended with biochar and another one from a control plot, with the specific objective to quantify and map the distribution of biochar in the amended profile. The soil profiles were of size (30 x 10 x 10) cm3 and were scanned with two pushbroomtype hyperspectral cameras, one which is sensitive in the visible wavelength region (400 - 1000 nm) and one in the near infrared region (1000 - 2500 nm). The images from the two detectors were merged together into one full dataset covering the whole wavelength region. Layers of 15 mm were removed from the 10 cm high sample such that a total of 7 hyperspectral images were obtained from the samples. Each layer was analyzed with multivariate statistical techniques in order to map the different components in the soil profile. Moreover, a 3-dimensional visalization of the components through the depth of the sample was also obtained by combining the hyperspectral images from all the layers. Mid-infrared spectroscopy of selected samples of the measured soil profiles was conducted in order to correlate the chemical constituents with the hyperspectral results. The results show that hyperspectral imaging is a fast, non-destructive technique, well suited to characterize soil profiles on a macroscopic scale and hence to map elements and different organic matter quality present in a complete pedon. As such, we were able to map and quantify biochar in our

  18. The fate of airborne polycyclic organic matter.

    PubMed Central

    Nielsen, T; Ramdahl, T; Bjørseth, A

    1983-01-01

    Biological tests have shown that a significant part of the mutagenicity of organic extracts of collected airborne particulate matter is not due to polycyclic aromatic hydrocarbons (PAH). It is possible that part of these unknown compounds are transformation products of PAH. This survey focuses on the reaction of PAH in the atmosphere with other copollutants, such as nitrogen oxides, sulfur oxides, ozone and free radicals and their reaction products. Photochemically induced reactions of PAH are also included. The reactivity of particle-associated PAH is discussed in relation to the chemical composition and the physical properties of the carrier. Recommendations for future work are given. PMID:6825615

  19. Organic Matter in the Outer Solar System

    NASA Technical Reports Server (NTRS)

    Cruiskshank, Dale P.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Many solid bodies in the outer Solar System are covered with ices of various compositions, including water, carbon dioxide, methane, nitrogen, and other molecules that are solid at the low temperatures that prevail there. These ices have all been detected by remote sensing observations made with telescopes on Earth, or more recently, spacecraft in orbit (notably Galileo at Jupiter). The data also reveal other solid materials that could be minerals or complex carbon-bearing organic molecules. A study in progress using large ground-based telescopes to acquire infrared spectroscopic data, and laboratory results on the optical properties of complex organic matter, seeks to identify the non-icy materials on several satellites of Saturn, Uranus, and Neptune. The work on the satellites of Saturn is in part preparatory to the Cassini spacecraft investigation of the Saturn system, which will begin in 2004 and extend for four years.

  20. An original data treatment for infrared spectra of organic matter, application to extracted soil organic matter

    NASA Astrophysics Data System (ADS)

    Gomes Rossin, Bruna; Redon, Roland; Raynaud, Michel; Nascimento, Nadia Regina; Mounier, Stéphane

    2017-04-01

    Infrared spectra of extracted organic matter are easy and rapid to do, but generally hard to interpreted over the presence or not of certain organic functions. Indeed, the organic matter is a complex mixture of molecules often having absorption overlapping and it is also difficult to have a well calibrated or normalised spectra due to the difficulty to have a well known solid content or homogeneity for a sample (Monakhova et al. 2015, Tadini et al. 2015, Bardy et al. 2008). In this work, the IRTF (InfraRed Fourier Transform) spectra were treated by an original algorithm developed to obtain the principal components of the IRTF spectra and their contributions for each sample. This bilinear decomposition used a PCA initialisation and the principal components were estimated from vectors calculated by PCA and linearly combined to provide non-negative signals minimizing a criterion based on cross-correlation. Hence, using this decomposition, it is possible to define IRTF signal of organic matter fractions like humic acid or fulvic acid depending on their origin like surface of depth of soil profiles. The method was used on a set of sample from Upper Negro River Basin (Amazon, Brazil) (Bueno,2009), where three soils sequences from surface to two meter depth containing 10 slices each. The sequences were sampled on a podzol well drain, a hydromorphic podzol and a cryptopodzol. From the IRTF data five representative component spectra were defined for all the extracted organic matter , and using other chemical composition information, a mechanism of organic matter fate is proposed to explain the observed results. Bardy, M., E. Fritsch, S. Derenne, T. Allard, N. R. do Nascimento, and G. T. Bueno. 2008. "Micromorphology and Spectroscopic Characteristics of Organic Matter in Waterlogged Podzols of the Upper Amazon Basin." Geoderma 145 (3-4): 222-30. Bueno, G.T. Appauvrissement et podzolisation des latérites du baissin du Rio Negro et gênese dês Podzols dans le haut bassin

  1. Dispersed and accumulated organic matter in fractures: Primary migration evidences

    SciTech Connect

    Lopez, L.; Pasquali, J. )

    1993-02-01

    Concentrated organic matter accumulated in fractures (organic rich fraction) and dispersed organic matter (total rock) of the source rocks of the Querecual and San Antonio formations of the Eastern Venezuelan basin were studied. The distribution of organic matter was studied in polished sections. Sample were analyzed for total organic carbon (Ct), total bitumen and the n-alkane fraction within the bitumen. Dispersed and concentrated organic matter were analyzed separately, and the pertinent differences were established. Concentrated organic matter, probably accumulated to due migration of dispersed organic matter into fractures, or low pressure zones is deficient in n-alkanes of low molecular weight. This fact is interpreted as the result of the migration process that allows the preferential movement of light components of low polarity. It seems that the products of kerogen maturation start their transformation to materials more like crude oils from their primary migration, stage that is to say, within the source rock.

  2. Soil organic matter mineralization in frozen soils

    NASA Astrophysics Data System (ADS)

    Harrysson Drotz, S.; Sparrman, T.; Schleucher, J.; Nilsson, M.; Öquist, M. G.

    2009-12-01

    Boreal forest soils are frozen for a large part of the year and soil organic matter mineralization during this period has been shown to significantly influence the C balance of boreal forest ecosystems. Mineralization proceeds through heterotrophic microbial activity, but the understanding of the environmental controls regulating soil organic matter mineralization under frozen conditions is poor. Through a series of investigations we have addressed this issue in order to elucidate to what extent a range of environmental factors control mineralization processes in frozen soils and also the microbial communities potential to oxidize organic substrates and grow under such conditions. The unfrozen water content in the frozen soils was shown to be an integral control on the temperature response of biogenic CO2 production across the freezing point of bulk soil water. We found that osmotic potential was an important contributor to the total water potential and, hence, the unfrozen water content of frozen soil. From being low and negligible in an unfrozen soil, the osmotic potential was found to contribute up to 70% of the total water potential in frozen soil, greatly influencing the volume of liquid water. The specific factors of how soil organic matter composition affected the unfrozen water content and CO2 production of frozen soil were studied by CP-MAS NMR. We concluded that abundance of aromatics and recalcitrant compounds showed a significant positive correlation with unfrozen water content and these were also the major soil organic fractions that similarly correlated with the microbial CO2 production of the frozen soils. Thus, the hierarchy of environmental factors controlling SOM mineralization changes as soils freeze and environmental controls elucidated from studies of unfrozen systems can not be added on frozen conditions. We have also investigated the potential activity of soil microbial communities under frozen conditions in order to elucidate temperature

  3. Stability of Ferrihydrite and Organic Matter in Ferrihydrite-Organic Matter Associations

    NASA Astrophysics Data System (ADS)

    Eusterhues, K.; Totsche, K. U.

    2015-12-01

    Iron oxides can bind particularly large amounts of organic matter (OM) and seem to be an important control on OM storage in many soils. To better understand the interactions between Fe oxides and OM, we produced ferrihydrite-OM associations by adsorption and coprecipitation in laboratory experiments. Because ferrihydrites are often formed in OM-rich solutions, we assume that coprecipitation is a common process in nature. In contrast to adsorption on pre-existing ferrihydrite surfaces, coprecipitation involves adsorption, occlusion (physical entrapment of OM), formation of Fe-OM complexes, and poisoning of ferrihydrite growth. The reactivity of coprecipitates may therefore differ from ferriydrites with adsorbed OM. Incubation experiments with an inoculum extracted from a Podzol forest-floor were carried out to quantify the mineralization of the adsorbed and coprecipitated organic matter. These experiments showed that the association with ferrihydrite stabilized the associated organic matter, but that differences in the degradability of adsorbed and coprecipitated organic matter were small. We therefore conclude that coprecipitation does not lead to a significant formation of microbial inaccessible organic matter domains. Microbial reduction experiments were performed using Geobacter bremensis. We observed that increasing amounts of associated OM led to decreasing initial reaction rates and a decreasing degree of dissolution. Reduction of coprecipitated ferrihydrites was faster than reduction of ferrihydrites with adsorbed OM. Our data demonstrate that the association with ferrihydrite can effectively stabilize labile polysaccharides. Vice versa, these polysaccharides may protect ferrihydrite from reduction by Geobacter-like bacteria. However, a challenge for future studies will be to link formation and degradation of mineral-organic associations to natural porous systems, that is, to the complex interplay of mass transport and microbial distribution in the

  4. Nitrogen isotopes from terrestrial organic matter as a new paleoclimatic proxy for pre-quaternary time

    NASA Astrophysics Data System (ADS)

    Tramoy, romain; Schnyder, johann; thuy Nguyen Tu, thanh; Yans, johan; Storme, jean yves; Sebilo, mathieu; Derenne, sylvie; Jacob, jérémy; Baudin, françois

    2014-05-01

    Marine and lacustrine sedimentary organic matter is often dominated by algal-bacterial production. Its nitrogen isotopic composition (δ15Norg) is frequently used to reconstruct biogeochemical processes involved in the nitrogen cycle, such as N utilization by organisms (e.g. Altabet et al., 1995), denitrification and diagenesis processes (e.g. Altabet et al., 1995; Sebilo et al., 2003; Gälman et al., 2009) or to evidence N sources variability (e.g. Hodell and Schelske, 1998; Vreca and Muri, 2006) . However, all these parameters and processes make N isotopic signals in marine and lacustrine environments often very complex to interpret. After pioneer studies, Mariotti et al. (1981), Austin and Vitousek (1998), Amundson et al. (2003), Swap et al. (2004), and Liu and Wang (2008) have shown that the δ15Norg of modern or quaternary terrestrial plants seem to be positively correlated with temperature and negatively correlated with precipitations. Therefore, δ15Norg of terrestrial OM might be a better record for paleoclimatic studies than δ15Norg of sedimentary OM dominated by algal-bacterial production. Recently, promising organic nitrogen isotopic data (δ15Norg) have been published on lignites from the Dieppe-Hampshire Basin (Paleocene-Eocene transition, Normandy (Storme et al., 2012). Authors suggest that the δ15Norg recorded local paleoclimatic and paleoenvironmental conditions. Following these results, the aim of this work is to test the use of stable nitrogen isotopes in terrestrial OM as a new paleoclimatic marker for pre-quaternary geological series. Does δ15Norg constitute a valuable tool to reconstruct past climates? What are the limits in the use of this proxy and possible methodological bias related to organic sources or diagenetic processes? To address these questions, δ15Norg must be measured in samples from periods associated with large and well documented climate change. We therefore selected a Liassic continental sedimentary succession from

  5. Spectral fingerprinting of soil organic matter composition

    NASA Astrophysics Data System (ADS)

    Cecillon, L.; Certini, G.; Lange, H.; Forte, C.; Strand, L. T.

    2009-04-01

    The determination of soil organic matter (SOM) composition relies on a variety of chemical and physical methods, most of them time consuming and expensive. Hitherto, such methodological limitations have hampered the use of detailed SOM composition in process-based models of SOM dynamics, which usually include only three poorly defined carbon pools. Here we show a novel approach merging both near and mid infrared spectroscopy into a single fingerprint for an expeditious prediction of the molecular composition of organic materials in soil, as inferred from a molecular mixing model (MMM) based on 13C nuclear magnetic resonance (NMR), which describes SOM as a mixture of common biologically derived polymers. Infrared and solid-state 13C NMR spectroscopic measurements were performed on a set of mineral and organic soil samples presenting a wide range of organic carbon content (2 to 500 g kg-1), collected in a boreal heathland (Storgama, Norway). The implementation of the MMM using 13C NMR spectra allowed the calculation of five main biochemical components (carbohydrate, protein, lignin, lipids and black carbon) for each sample. Partial least squares regression models were developed for the five biopolymers using outer product analysis of near and mid infrared spectra (Infrared-OPA). All models reached ratios of performance to deviation (RPD) above 2 and specific infrared wavenumbers associated to each biochemical component were identified. Our results demonstrate that Infrared-OPA provides a robust and cost-effective fingerprint of SOM composition that could be useful for the routine assessment of soil carbon pools.

  6. Relating dissolved organic matter fluorescence to functional properties

    NASA Astrophysics Data System (ADS)

    Tipping, E.; Baker, A.; Thacker, S.; Gondar, D.

    2007-12-01

    The fluorescence excitation emission matrix properties of dissolved organic matter from three rivers and one lake in NW England are analysed. Sites are sampled in duplicate and for some sites seasonally to cover variations in dissolved organic matter composition, river flow, and carbon isotopic (13C, 14C) variability. Results are compared to the functional properties of the dissolved organic matter, the functional assays provide quantitative information on light absorption, fluorescence, photochemical fading, pH buffering, copper binding, benzo[a]pyrene binding, hydrophilicity and adsorption to alumina. Fluorescence characterization of the dissolved organic matter samples demonstrates that peak C fluorescence emission wavelength, the ratio of peak T to peak C fluorescence intensity, and the fluorescence : absorbance ratio best differentiate different dissolved organic matter samples. These parameters correspond to dissolved organic matter aromaticity, the ratio of labile to recalcitrant organic matter, and dissolved organic matter molecular weight. Peak C fluorescence emission wavelength, the ratio of peak T to peak C fluorescence intensity, and the fluorescence : absorbance ratio fluorescence parameters also have strong correlations with several of the functional assays, in particular the extinction coefficients, benzo(a)pyrene binding and alumina adsorption, and buffering capacity. In many cases, regression equations with a correlation coefficient >0.9 are obtained, suggesting that dissolved organic matter functional character can be predicted from DOM fluorescence properties. For one site, the relationship between dissolved organic matter source, fluorescence, function and carbon isotopic composition is discussed.

  7. Lability of secondary organic particulate matter

    SciTech Connect

    Liu, Pengfei; Li, Yong Jie; Wang, Yan; Gilles, Mary K.; Zaveri, Rahul A.; Bertram, Allan K.; Martin, Scot T.

    2016-10-24

    We report the energy flows in Earth’s natural and modified climate systems are strongly influenced by the concentrations of atmospheric particulate matter (PM). For predictions of concentration, equilibrium partitioning of semivolatile organic compounds (SVOCs) between organic PM and the surrounding vapor has widely been assumed, yet recent observations show that organic PM can be semisolid or solid for some atmospheric conditions, possibly suggesting that SVOC uptake and release can be slow enough that equilibrium does not prevail on timescales relevant to atmospheric processes. Herein, in a series of laboratory experiments, the mass labilities of films of secondary organic material representative of similar atmospheric organic PM were directly determined by quartz crystal microbalance measurements of evaporation rates and vapor mass concentrations. There were strong differences between films representative of anthropogenic compared with biogenic sources. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH) between 20% and 30%, indicating rapid partitioning above a transition RH but not below. Below the threshold, the characteristic time for equilibration is estimated as up to 1 wk for a typically sized particle. In contrast, for films representing biogenic PM, no RH threshold was observed, suggesting equilibrium partitioning is rapidly obtained for all RHs. The effective diffusion rate Dorg for the biogenic case is at least 103 times greater than that of the anthropogenic case. In conclusion, these differences should be accounted for in the interpretation of laboratory data as well as in modeling of organic PM in Earth’s atmosphere.

  8. Lability of secondary organic particulate matter

    DOE PAGES

    Liu, Pengfei; Li, Yong Jie; Wang, Yan; ...

    2016-10-24

    We report the energy flows in Earth’s natural and modified climate systems are strongly influenced by the concentrations of atmospheric particulate matter (PM). For predictions of concentration, equilibrium partitioning of semivolatile organic compounds (SVOCs) between organic PM and the surrounding vapor has widely been assumed, yet recent observations show that organic PM can be semisolid or solid for some atmospheric conditions, possibly suggesting that SVOC uptake and release can be slow enough that equilibrium does not prevail on timescales relevant to atmospheric processes. Herein, in a series of laboratory experiments, the mass labilities of films of secondary organic material representativemore » of similar atmospheric organic PM were directly determined by quartz crystal microbalance measurements of evaporation rates and vapor mass concentrations. There were strong differences between films representative of anthropogenic compared with biogenic sources. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH) between 20% and 30%, indicating rapid partitioning above a transition RH but not below. Below the threshold, the characteristic time for equilibration is estimated as up to 1 wk for a typically sized particle. In contrast, for films representing biogenic PM, no RH threshold was observed, suggesting equilibrium partitioning is rapidly obtained for all RHs. The effective diffusion rate Dorg for the biogenic case is at least 103 times greater than that of the anthropogenic case. In conclusion, these differences should be accounted for in the interpretation of laboratory data as well as in modeling of organic PM in Earth’s atmosphere.« less

  9. Starting life requires more than organic matter

    NASA Astrophysics Data System (ADS)

    Pascal, R.

    2015-10-01

    A physicochemical approach is proposed to study requirements for the origin of life in agreement with developments made in Systems Chemistry for several decades. Emphasis is made on the occurrence of environments generating abiotic chemical systems making more of themselves under far from equilibrium conditions. It follows that the presence of organic matter is only one of the components needed for the process of chemical evolution leading to life. The presence of an energy source with a potential equivalent to that of visible light is needed to render the activation step kinetically irreversible and the reproduction loop a unidirectional flux of reactants. This condition is required in order that reproduction follows an exponential law and dynamic kinetic stability governs the evolution toward the selection of improved variants. According to these views, no fundamental difference can be found between the chemical and biological stages of evolution.

  10. Organic biomarkers to describe the major carbon inputs and cycling of organic matter in the central Great Barrier Reef region

    NASA Astrophysics Data System (ADS)

    Burns, Kathryn; Brinkman, Diane

    2011-06-01

    Controversy surrounds the sources and transport of land derived pollutants in the Great Barrier Reef ecosystem because there is insufficient knowledge of the mechanism of movement of organic contaminants and the cycling of organic matter in this dynamic system. Thus a sediment and sediment trap study was used to describe the composition of resuspended and surface sediments in the south central Great Barrier Reef and its lagoon. This region is characterised by strong tides (6-8 m at Mackay) and trade winds regularly about 15-20 knots. A series of organic biomarkers detailed the cyclical processes of sediment resuspension, recolonising with marine algae and bacteria, packaging into zooplankton faecal pellets and resettlement to sediments where the organics undergo further diagenesis. With each cycle the inshore sediments are diluted with CaCO 3 reef sediments and moved further offshore with the strong ebb tide currents. This results in transport of land derived materials offshore and little storage of organic materials in the lagoon or reef sediments. These processes were detailed by inorganic measurements such as %CaCO 3 and Al/Ca ratios, and by the compositions of hydrocarbon, sterol, alcohol, and fatty acid lipid fractions. Persistent contaminants such as coal dust from a coastal loading facility can be detected in high concentration inshore and decreasing out to the shelf break at 180 m approximately 40 nautical miles offshore. The normal processes would likely be amplified during cyclonic and other storms. The lipids show the sources of carbon to include diatoms and other phytoplankton, creanaerchaeota, sulfate reducing and other bacteria, land plants including mangrove leaves, plus coal dust and other petroleum contaminants.

  11. Laboratory simulation of organic geochemical processes.

    NASA Technical Reports Server (NTRS)

    Eglinton, G.

    1972-01-01

    Discussion of laboratory simulations that are important to organic geochemistry in that they provide direct evidence relating to geochemical cycles involving carbon. Reviewed processes and experiments include reactions occurring in the geosphere, particularly, short-term diagenesis of biolipids and organochlorine pesticides in estuarine muds, as well as maturation of organic matter in ancient sediments.

  12. Laboratory simulation of organic geochemical processes.

    NASA Technical Reports Server (NTRS)

    Eglinton, G.

    1972-01-01

    Discussion of laboratory simulations that are important to organic geochemistry in that they provide direct evidence relating to geochemical cycles involving carbon. Reviewed processes and experiments include reactions occurring in the geosphere, particularly, short-term diagenesis of biolipids and organochlorine pesticides in estuarine muds, as well as maturation of organic matter in ancient sediments.

  13. Seasonal variations of coastal sedimentary trace metals cycling: insight on the effect of manganese and iron (oxy)hydroxides, sulphide and organic matter.

    PubMed

    Dang, Duc Huy; Lenoble, Véronique; Durrieu, Gaël; Omanović, Dario; Mullot, Jean-Ulrich; Mounier, Stéphane; Garnier, Cédric

    2015-03-15

    The combination of analysis, multivariate treatment (PCA) and chemical speciation calculation confirmed the control of Fe, Mn, sulphide and organic matter on metals dynamics in coastal sediments (0-5 cm surface sediments and sediments cores) of Toulon Bay (NW Mediterranean). The temporal monitoring of the physic-chemical parameters as well as the dissolved/particulate minor (Fe/Mn) and trace elements (i.e. Ag, Cd, Co, Cu, Ni, Pb, Zn, …) concentrations in porewaters and sediments were assessed. Multivariate treatment revealed different behaviours for marine elements, terrestrial ones and contaminants. Seasonal variations of metals mobilization in porewater were observed, related to diagenesis activity. Element mobility was studied by selective extractions (ascorbate, acid and alkaline) on sediments. Thermodynamic simulation (PHREEQC) was performed to calculate the elemental dissolved speciation, the mineral saturation index and then to simulate the solid/liquid interaction through precipitation processes, studying the contrasted influence of dissolved organic matter and sulphide.

  14. Effects of complexation between organic matter (OM) and clay mineral on OM pyrolysis

    NASA Astrophysics Data System (ADS)

    Bu, Hongling; Yuan, Peng; Liu, Hongmei; Liu, Dong; Liu, Jinzhong; He, Hongping; Zhou, Junming; Song, Hongzhe; Li, Zhaohui

    2017-09-01

    The stability and persistence of organic matter (OM) in source rocks are of great significance for hydrocarbon generation and the global carbon cycle. Clay-OM associations commonly occur in sedimentation and diagenesis processes and can influence the pyrolytic behaviors of OM. In this study, clay-OM complexes, i.e., interlayer clay-OM complexes and clay-OM mixture, were prepared and exposed to high-pressure pyrolysis conditions in confined gold capsule reactors to assess variations in OM pyrolysis products in the presence of clay minerals. Three model organic compounds, octadecanoic acid (OA), octadecy trimethyl ammonium bromide (OTAB), and octadecylamine (ODA), were employed and montmorillonite (Mt) was selected as the representative clay mineral. The solid acidity of Mt plays a key role in affecting the amount and composition of the pyrolysis gases generated by the clay-OM complexes. The Brønsted acid sites significantly promote the cracking of hydrocarbons through a carbocation mechanism and the isomerization of normal hydrocarbons. The Lewis acid sites are primarily involved in the decarboxylation reaction during pyrolysis and are responsible for CO2 generation. Mt exhibits either a catalysis effect or pyrolysis-inhibiting during pyrolysis of a given OM depending on the nature of the model organic compound and the nature of the clay-OM complexation. The amounts of C1-5 hydrocarbons and CO2 that are released from the Mt-OA and Mt-ODA complexes were higher than those of the parent OA and ODA, respectively, indicating a catalysis effect of Mt. In contrast, the amount of C1-5 hydrocarbons produced from the pyrolysis of Mt-OTAB complexes was lower than that of OTAB, which we attribute to an inhibiting effect of Mt. This pyrolysis-inhibiting effect works through the Hoffmann elimination that is promoted by the catalysis of the Brønsted acid sites of Mt, therefore releasing smaller amounts of gas hydrocarbons than the nucleophilic reaction that is induced by the

  15. Bioavailability and diagenetic state of dissolved organic matter in riparian groundwater

    NASA Astrophysics Data System (ADS)

    Peter, Simone; Shen, Yuan; Kaiser, Karl; Benner, Ronald; Durisch-Kaiser, Edith

    2012-12-01

    Riparian groundwater can exhibit considerable patchiness in the concentration and reactivity of dissolved organic matter (DOM), which ultimately shapes subsurface biogeochemical transformations. Free and combined amino acids are bioavailable constituents of DOM, and their concentration and composition can provide valuable information about the diagenetic state of DOM. Based on riparian groundwater samples and relevant DOM end-member samples, we adapted the amino-acid-based marine DOM degradation index (DI) to groundwater. The groundwater DI was applied to evaluate the spatial and temporal variability in the bioavailability and diagenetic state of riparian DOM in a restored and a channelized section of the River Thur, Switzerland. Among different indicators for DOM diagenetic state (total hydrolysable amino acid concentrations, C-normalized yields, and the contribution of nonprotein amino acids), the groundwater DI correlated best with the activity of the enzyme leucine-aminopeptidase and bacterial secondary production in riparian groundwater. The "freshest" DOM was consistently found in the channel and during high-flow conditions in the groundwater of the restored riparian section and was spatially constrained to a zone inhabited by a dense willow population. The use of amino acid data and the newly developed DI for DOM in groundwater is a promising approach for characterizing the spatial and temporal dynamics of DOM reactivity and diagenesis within riparian groundwater.

  16. Sources and distribution of sedimentary organic matter along the northern Bering and Chukchi Seas.

    PubMed

    Xu, Fanglu; Jin, Haiyan; Ji, Zhongqiang; Chen, Jianfang; Loh, Pei Sun

    2017-02-01

    In this study, lignin-derived phenols were used to determine the sources and distribution of sedimentary organic matter along the northern Bering Sea and Chukchi Sea of the Arctic Ocean. The lignin parameter syringyl/vanillyl (S/V) and cinnamyl/vanillyl (C/V) ratios are used to indicate vegetation sources; and the ratios of vanillic acid/vanillin, (Ad/Al)v and syringic acid/syringaldehyde, (Ad/Al)s are used as indicators of lignin diagenesis. Results showed the predominance of woody gymnosperm signal at the easternmost location in the northern Bering Sea, a mixture of refractory non-woody angiosperm and fresher gymnosperm tissues in the Chukchi Sea, and signal of fresher woody gymnosperm tissues in the northernmost locations in the Chukchi Sea. The lignin materials showed gradual increase in decomposition stage during transport along the northern Bering Sea. Hydrodynamic sorting process, which is the retention of coarser materials nearshore and transportation of finer particles farther offshore, most probably occurred along the east coast of the northern Bering Sea. In Chukchi Sea, the non-woody angiosperm tissues could have originated from the Canadian Arctic and gymnosperm tissues could be from the Russian Arctic side. The fresher materials in the northernmost Chukchi Sea could have been transported here via the ice-rafting process. Detection of fresh lignin materials and the occurrence of lignin decomposition mean that this region could be sensitive to the impact of climate change.

  17. Soil Organic Matter and Management of Plant-Parasitic Nematodes

    PubMed Central

    Widmer, T. L.; Mitkowski, N. A.; Abawi, G. S.

    2002-01-01

    Organic matter and its replenishment has become a major component of soil health management programs. Many of the soil's physical, chemical, and biological properties are a function of organic matter content and quality. Adding organic matter to soil influences diverse and important biological activities. The diversity and number of free-living and plant-parasitic nematodes are altered by rotational crops, cover crops, green manures, and other sources of organic matter. Soil management programs should include the use of the proper organic materials to improve soil chemical, physical, and biological parameters and to suppress plant-parasitic nematodes and soilborne pathogens. It is critical to monitor the effects of organic matter additions on activities of major and minor plant-parasitic nematodes in the production system. This paper presents a general review of information in the literature on the effects of crop rotation, cover crops, and green manures on nematodes and their damage to economic crops. PMID:19265946

  18. Sensitivity of soil organic matter in anthropogenically disturbed organic soils

    NASA Astrophysics Data System (ADS)

    Säurich, Annelie; Tiemeyer, Bärbel; Bechtold, Michel; Don, Axel; Freibauer, Annette

    2016-04-01

    Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agriculture. However, the variability of CO2 emissions increases with disturbance, and little is known on the soil properties causing differences between seemingly similar sites. Furthermore the driving factors for carbon cycling are well studied for both genuine peat and mineral soil, but there is a lack of information concerning soils at the boundary between organic and mineral soils. Examples for such soils are both soils naturally relatively high in soil organic matter (SOM) such as Humic Gleysols and former peat soils with a relative low SOM content due to intensive mineralization or mixing with underlying or applied mineral soil. The study aims to identify drivers for the sensitivity of soil organic matter and therefore for respiration rates of anthropogenically disturbed organic soils, especially those near the boundary to mineral soils. Furthermore, we would like to answer the question whether there are any critical thresholds of soil organic carbon (SOC) concentrations beyond which the carbon-specific respiration rates change. The German agricultural soil inventory samples all agricultural soils in Germany in an 8x8 km² grid following standardized protocols. From this data and sample base, we selected 120 different soil samples from more than 80 sites. As reference sites, three anthropogenically undisturbed peatlands were sampled as well. We chose samples from the soil inventory a) 72 g kg-1 SOC and b) representing the whole range of basic soil properties: SOC (72 to 568 g kg-1), total nitrogen (2 to 29 g kg-1), C-N-ratio (10 to 80) bulk density (0.06 to 1.41 g/cm³), pH (2.5 to 7.4), sand (0 to 95 %) and clay (2 to 70 %) content (only determined for samples with less than 190 g kg-1 SOC) as well as the botanical origin of the peat (if determinable). Additionally, iron oxides were determined for all samples. All samples were sieved (2 mm) and incubated at standardized water content and

  19. Aerobic methane production from organic matter

    NASA Astrophysics Data System (ADS)

    Vigano, I.

    2010-01-01

    Methane, together with H2O, CO2 and N2O, is an important greenhouse gas in th e Earth’s atmosphere playing a key role in the radiative budget. It has be en known for decades that the production of the reduced compound CH4 is possible almost exclusively in anoxic environments per opera of one of the most importan t class of microorganisms which form the Archaea reign. Methane can be produced also from incomplete combustion of organic material. The generation of CH4 in an oxygenated environment under near-ambient conditions is a new discovery made in 2006 by Keppler et. al where surprisingly they measured emissions of this green house gas from plants incubated in chambers with air containing 20% of oxygen. A lthough the estimates on a global scale are still object of an intensive debate, the results presented in this thesis clearly show the existence of methane prod uction under oxic conditions for non living plant material. Temperature and UV l ight are key factors that drive the generation of CH4 from plant matter in a wel l oxygenated environment.

  20. The evolution of organic matter in space.

    PubMed

    Ehrenfreund, Pascale; Spaans, Marco; Holm, Nils G

    2011-02-13

    Carbon, and molecules made from it, have already been observed in the early Universe. During cosmic time, many galaxies undergo intense periods of star formation, during which heavy elements like carbon, oxygen, nitrogen, silicon and iron are produced. Also, many complex molecules, from carbon monoxide to polycyclic aromatic hydrocarbons, are detected in these systems, like they are for our own Galaxy. Interstellar molecular clouds and circumstellar envelopes are factories of complex molecular synthesis. A surprisingly high number of molecules that are used in contemporary biochemistry on the Earth are found in the interstellar medium, planetary atmospheres and surfaces, comets, asteroids and meteorites and interplanetary dust particles. Large quantities of extra-terrestrial material were delivered via comets and asteroids to young planetary surfaces during the heavy bombardment phase. Monitoring the formation and evolution of organic matter in space is crucial in order to determine the prebiotic reservoirs available to the early Earth. It is equally important to reveal abiotic routes to prebiotic molecules in the Earth environments. Materials from both carbon sources (extra-terrestrial and endogenous) may have contributed to biochemical pathways on the Earth leading to life's origin. The research avenues discussed also guide us to extend our knowledge to other habitable worlds.

  1. Mapping forest soil organic matter on New Jersey's coastal plain

    Treesearch

    Brian J. Clough; Edwin J. Green; Richard B. Lathrop

    2012-01-01

    Managing forest soil organic matter (SOM) stocks is a vital strategy for reducing the impact of anthropogenic carbon dioxide emissions. However, the SOM pool is highly variable, and developing accurate estimates to guide management decisions has remained a difficult task. We present the results of a spatial model designed to map soil organic matter for all forested...

  2. Complexation of trace metals by adsorbed natural organic matter

    USGS Publications Warehouse

    Davis, J.A.

    1984-01-01

    The adsorption behavior and solution speciation of Cu(II) and Cd(II) were studied in model systems containing colloidal alumina particles and dissolved natural organic matter. At equilibrium a significant fraction of the alumina surface was covered by adsorbed organic matter. Cu(II) was partitioned primarily between the surface-bound organic matter and dissolved Cu-organic complexes in the aqueous phase. Complexation of Cu2+ with the functional groups of adsorbed organic matter was stronger than complexation with uncovered alumina surface hydroxyls. It is shown that the complexation of Cu(II) by adsorbed organic matter can be described by an apparent stability constant approximately equal to the value found for solution phase equilibria. In contrast, Cd(II) adsorption was not significantly affected by the presence of organic matter at the surface, due to weak complex formation with the organic ligands. The results demonstrate that general models of trace element partitioning in natural waters must consider the presence of adsorbed organic matter. ?? 1984.

  3. Organic Matter Polymerization by Disulfide Bonding Near the Chemocline in Cariaco Basin

    NASA Astrophysics Data System (ADS)

    Raven, M. R.; Adkins, J. F.; Sessions, A. L.

    2013-12-01

    The preservation of organic carbon in sediments as kerogen is an essential pathway in the global carbon cycle, but the chemical reactions involved in kerogen formation remain poorly understood. Previous researchers have found that many sediments deposited under euxinic conditions contain sulfur-bearing non-polar lipids as well as disulfide bonds among lipid and carbohydrate monomers. It remains unclear, however, when during organic matter decomposition and diagenesis these different sulfur-bearing structures form, and how different environmental conditions affect the extent of organic matter sulfurization. We investigate organic sulfurization processes armed with a technique for measuring the sulfur-isotopic compositions of individual organosulfur compounds by coupled gas chromatography - inductively coupled plasma mass spectrometry. Organic compounds were extracted from sediments and water column sediment traps from Cariaco Basin, a euxinic basin in the Caribbean Sea. We measured the sulfur-isotopic compositions of both non-polar lipids and of derivatized disulfide-bound compounds from eight sediment trap profiles and a six-meter-long sediment core. In Cariaco Basin, lipid sulfurization processes appear to begin near the chemocline and continue in sediments on timescales of thousands of years. Slow diagenetic sulfurization in sediments produces lipid monomers with sulfur atoms in ring structures that are 34S-depleted relative to coexisting dissolved sulfide. Lipid monomers become progressively enriched in 34S over time, indicating ongoing formation coinciding with an increase in the amount of total sulfur in bulk kerogen. One of the most abundant monomers observed in Cariaco sediments, a phytol-related thiophene, is also produced intermittently near the chemocline. Phytol thiophene δ34S values in sediment traps are similar to those observed in shallow Cariaco sediments except during occasional ';enrichment events,' when phytol thiophene δ34S values increase to

  4. Subcritical water extraction of organic matter from sedimentary rocks.

    PubMed

    Luong, Duy; Sephton, Mark A; Watson, Jonathan S

    2015-06-16

    Subcritical water extraction of organic matter containing sedimentary rocks at 300°C and 1500 psi produces extracts comparable to conventional solvent extraction. Subcritical water extraction of previously solvent extracted samples confirms that high molecular weight organic matter (kerogen) degradation is not occurring and that only low molecular weight organic matter (free compounds) are being accessed in analogy to solvent extraction procedures. The sedimentary rocks chosen for extraction span the classic geochemical organic matter types. A type I organic matter-containing sedimentary rock produces n-alkanes and isoprenoidal hydrocarbons at 300°C and 1500 psi that indicate an algal source for the organic matter. Extraction of a rock containing type II organic matter at the same temperature and pressure produces aliphatic hydrocarbons but also aromatic compounds reflecting the increased contributions from terrestrial organic matter in this sample. A type III organic matter-containing sample produces a range of non-polar and polar compounds including polycyclic aromatic hydrocarbons and oxygenated aromatic compounds at 300°C and 1500 psi reflecting a dominantly terrestrial origin for the organic materials. Although extraction at 300°C and 1500 psi produces extracts that are comparable to solvent extraction, lower temperature steps display differences related to organic solubility. The type I organic matter produces no products below 300°C and 1500 psi, reflecting its dominantly aliphatic character, while type II and type III organic matter contribute some polar components to the lower temperature steps, reflecting the chemical heterogeneity of their organic inventory. The separation of polar and non-polar organic compounds by using different temperatures provides the potential for selective extraction that may obviate the need for subsequent preparative chromatography steps. Our results indicate that subcritical water extraction can act as a suitable

  5. Dissolved Organic Matter and Emerging Contaminants in Urban Stream Ecosystems

    NASA Astrophysics Data System (ADS)

    Kaushal, S. S.; Findlay, S.; Groffman, P.; Belt, K.; Delaney, K.; Sides, A.; Walbridge, M.; Mayer, P.

    2009-05-01

    We investigated the effects of urbanization on the sources, bioavailability and forms of natural and anthropogenic organic matter found in streams located in Maryland, U.S.A. We found that the abundance, biaoavailability, and enzymatic breakdown of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and dissolved organic phosphorus (DOP) increased in streams with increasing watershed urbanization suggesting that organic nutrients may represent a growing form of nutrient loading to coastal waters associated with land use change. Organic carbon, nitrogen, and phosphorus in urban streams were elevated several-fold compared to forest and agricultural streams. Enzymatic activities of stream microbes in organic matter decomposition were also significantly altered across watershed land use. Chemical characterization suggested that organic matter in urban streams originated from a variety of sources including terrestrial, sewage, and in-stream transformation. In addition, a characterization of emerging organic contaminants (polyaromatic cyclic hydrocarbons, organochlorine pesticides, and polybrominated diphenyl ether flame retardents), showed that organic contaminants and dissolved organic matter increase with watershed urbanization and fluctuate substantially with changing climatic conditions. Elucidating the emerging influence of urbanization on sources, transport, and in-stream transformation of organic nutrients and contaminants will be critical in unraveling the changing role of organic matter in urban degraded and restored stream ecosystems.

  6. CHARACTERIZING THE ORGANIC MATTER IN SURFACE ...

    EPA Pesticide Factsheets

    The San Juan Bay Estuary (SJBE) is located on the north coast of Puerto Rico and includes the San Juan Bay, San José Lagoon, La Torrecilla Lagoon and Piñones Lagoon, as well as the Martín Peña and the Suárez Canals. The SJBE watershed has the highest density of inhabitants and major industrial activities in Puerto Rico. As a result, the SJBE is impacted by wastewater from combined-sewer overflows, faulty sewer lines, and storm water runoff; these factors combined with trash accumulation and infilling of the Martín Peña canal, contribute to decreased tidal exchange and reduced flushing in the estuary. To quantify the impact of the obstruction of the Martín Peña canal on anthropogenic nutrient distribution in the SJBE, over 200 sediment grab samples were collected throughout the estuary in 2015. The samples were analyzed for carbonate content, organic matter, grain size, bulk density, percent phosphorus, percent nitrogen (%N), and stable isotopes (δ15N and δ13C). The %N values were highest in the surface sediments from the western portion of the Martín Peña canal, where %N was >0.86%. In contrast, %N from the adjacent San José lagoon averaged <0.2%. Grain size distributions across the SJBE were consistent with low flushing in the inner portions of the SJBE. While the Martín Peña canal remains phosphorus limited, N:P ratios suggest the San Juna Bay and San José Lagoon have undergone major ecological shifts in the past two decades. Our

  7. CHARACTERIZING THE ORGANIC MATTER IN SURFACE ...

    EPA Pesticide Factsheets

    The San Juan Bay Estuary (SJBE) is located on the north coast of Puerto Rico and includes the San Juan Bay, San José Lagoon, La Torrecilla Lagoon and Piñones Lagoon, as well as the Martín Peña and the Suárez Canals. The SJBE watershed has the highest density of inhabitants and major industrial activities in Puerto Rico. As a result, the SJBE is impacted by wastewater from combined-sewer overflows, faulty sewer lines, and storm water runoff; these factors combined with trash accumulation and infilling of the Martín Peña canal, contribute to decreased tidal exchange and reduced flushing in the estuary. To quantify the impact of the obstruction of the Martín Peña canal on anthropogenic nutrient distribution in the SJBE, over 200 sediment grab samples were collected throughout the estuary in 2015. The samples were analyzed for carbonate content, organic matter, grain size, bulk density, percent phosphorus, percent nitrogen (%N), and stable isotopes (δ15N and δ13C). The %N values were highest in the surface sediments from the western portion of the Martín Peña canal, where %N was >0.86%. In contrast, %N from the adjacent San José lagoon averaged <0.2%. Grain size distributions across the SJBE were consistent with low flushing in the inner portions of the SJBE. While the Martín Peña canal remains phosphorus limited, N:P ratios suggest the San Juna Bay and San José Lagoon have undergone major ecological shifts in the past two decades. Our

  8. Changes in River Organic Matter Through Time.

    NASA Astrophysics Data System (ADS)

    Hudson, N.; Baker, A.; Ward, D.

    2006-12-01

    fluorescence, as an increase in pH was also observed in these samples. This work illustrates the dynamic character of river organic matter within a timescale and under conditions that are representative of the natural system.

  9. Geochemical effects of rapid sedimentation in aquatic systems: Minimal diagenesis and the preservation of historical metal signatures

    USGS Publications Warehouse

    Callender, E.

    2000-01-01

    Rapid sedimentation exerts a pronounced influence on early sedimentary diagenesis in that there is insufficient time for a sediment particle to equilibrate in any one sediment layer before that layer may be displaced vertically by another layer. These sedimentation patterns are common in surface-water reservoirs whose sedimentation rates (1-10 cm yr-1) are several orders of magnitude greater than those for natural lakes (0.01-0.5 cm yr-1). Two examples of the effects of rapid sedimentation on geochemical metal signatures are presented here. Interstitial-water data (Fe) from two sites in the Cheyenne River Embayment of Lake Oahe on the Missouri River illustrate the effects of changing sedimentation rates on dissolved species. Rapid burial during high-flow yrs appears to limit early sedimentary diagenesis to aerobic respiration. Solid-phase metal data (Pb) from a site in Pueblo Reservoir on the upper Arkansas River in Colorado appear to record historical releases by flooding of abandoned mine sites upstream in Leadville, Colorado. Interstitial-water ammonia and ferrous Fe data indicate that at least one interval at depth in the sediment where solid metal concentrations peak is a zone of minimal diagenesis. The principal diagenetic reactions that occur in these sediments are aerobic respiration and the reduction of Mn and Fe oxides. Under slower sedimentation conditions, there is sufficient time for particulate organic matter to decompose and create a diagenetic environment where metal oxides may not be stable. The quasi-steady-state interstitial Fe profiles from Tidal Potomac River sediments are an example of such a situation. This occurs primarily because the residence time of particles in the surficial sediment column is long enough to allow benthic organisms and bacteria to perform their metabolic functions. When faster sedimentation prevails, there is less time for these metabolic reactions to occur since the organisms do not occupy a sediment layer for any

  10. Early diagenesis of lead in Laurentian Trough sediments

    NASA Astrophysics Data System (ADS)

    Gobeil, Charles; Silverberg, Norman

    1989-08-01

    The depth distributions of various solid-phase and porewater fractions of Pb, Fe and Cd in boxcores from three stations in the Laurentian Trough demonstrate that Pb is subject to early diagenetic change. High total-Pb concentrations, compared to background levels, indicate that much of the Pb in these cores is of anthropogenic origin. Patterns of mobilization and fixation, and of changes in the chemical reactivity towards extradants, are consistent from core to core. Pb is mobilized both near the sediment surface and at intermediate depth. In these zones dissolved Pb concentrations attain levels of 8-13.5 nM, which are two orders of magnitude greater than in the overlying bottom waters of the Laurentian Trough (0.1 nM). A fraction of Pb, soluble in a pH 5 sodium acetate-acetic acid solution, is produced diagenetically within the sediment. It is most abundant at intermediate depth, where it accounts for as much as 31% of the total Pb. Another fraction, soluble in hydroxylamine hydrochloride-acetic acid solution, decreases in abundance with depth. Flux calculations indicate that significant amounts of Pb are subject to postdepositional transformation. Parallels in the vertical distribution of the various fractions suggest that some Pb, like Cd, is mobilized near the sediment surface during the aerobic degradation of organic matter and that other forms are implicated in the redox-controlled cycles of Fe diagenesis.

  11. Deformation behaviors of peat with influence of organic matter.

    PubMed

    Yang, Min; Liu, Kan

    2016-01-01

    Peat is a kind of special material rich in organic matter. Because of the high content of organic matter, it shows different deformation behaviors from conventional geotechnical materials. Peat grain has a non-negligible compressibility due to the presence of organic matter. Biogas can generate from peat and can be trapped in form of gas bubbles. Considering the natural properties of peat, a special three-phase composition of peat is described which indicates the existence of organic matter and gas bubbles in peat. A stress-strain-time model is proposed for the compression of organic matter, and the surface tension effect is considered in the compression model of gas bubbles. Finally, a mathematical model has been developed to simulate the deformation behavior of peat considering the compressibility of organic matter and entrapped gas bubbles. The deformation process is the coupling of volume variation of organic matter, gas bubbles and water drainage. The proposed model is used to simulate a series of peat laboratory oedometer tests, and the model can well capture the test results with reasonable model parameters. Effects of model parameters on deformation of peat are also analyzed.

  12. Spatial Complexity of Soil Organic Matter Forms at Nanometre Scales

    SciTech Connect

    Lehmann,J.; Solomon, D.; Kinyangi, J.; Dathe, L.; Wirick, S.; Jacobsen, C.

    2008-01-01

    Organic matter in soil has been suggested to be composed of a complex mixture of identifiable biopolymers1 rather than a chemically complex humic material2. Despite the importance of the spatial arrangement of organic matter forms in soil3, its characterization has been hampered by the lack of a method for analysis at fine scales. X-ray spectromicroscopy has enabled the identification of spatial variability of organic matter forms, but was limited to extracted soil particles4 and individual micropores within aggregates5, 6. Here, we use synchrotron-based near-edge X-ray spectromicroscopy7 of thin sections of entire and intact free microaggregates6 to demonstrate that on spatial scales below 50 nm resolution, highly variable yet identifiable organic matter forms, such as plant or microbial biopolymers, can be found in soils at distinct locations of the mineral assemblage. Organic carbon forms detected at this spatial scale had no similarity to organic carbon forms of total soil. In contrast, we find that organic carbon forms of total soil were remarkably similar between soils from several temperate and tropical forests with very distinct vegetation composition and soil mineralogy. Spatial information on soil organic matter forms at the scale provided here could help to identify processes of organic matter cycling in soil, such as carbon stability or sequestration and responses to a changing climate.

  13. Magnetic mineral diagenesis in the river-dominated inner shelf of the East China Sea, China

    NASA Astrophysics Data System (ADS)

    Ge, Can; Zhang, Weiguo; Dong, Chenyin; Dong, Yan; Bai, Xuexin; Liu, Jinyan; Hien, Nguyen Thi Thu; Feng, Huan; Yu, Lizhong

    2015-07-01

    The inner shelf of the East China Sea is a river-dominated margin characterized by fine-grained mud deposits and a rapid sedimentation rate. Three short sediment cores (~2.7 m in length) were examined to characterize spatial variations in magnetic mineral diagenesis. The sediment cores were analyzed for sedimentation rates, magnetic properties, particle size distribution, organic carbon, and total sulfur content. The two more proximal cores with higher sedimentation rates (~2.2 cm/yr and ~0.96 cm/yr) do not exhibit obvious effects of reductive dissolution of magnetite with increasing depth, which is consistent with their lower total sulfur content. The offshore core, A12-4, which has a lower sedimentation rate, contains clear evidence of magnetite dissolution and increasing total sulfur content with depth. The three cores have a similar sediment source and organic matter input; therefore, we suggest that a higher sedimentation rate will lead to less reductive diagenesis of magnetite, assuming that other factors are constant. The iron- to sulfate-reduction boundary, i.e., revealed by the onset of a rapid decline of magnetic susceptibility, is located 1.0 m below seafloor in core A12-4. This is much deeper than is reported in many other coastal marine environments and can be explained by the higher sedimentation rate, the presence of refractory terrestrial organic matter, and an abundant input of detrital iron oxides. This study demonstrates that analyses of the magnetic mineral zonation provide a straightforward approach to assess diagenetic organic carbon decomposition pathways in marine environments.

  14. Sedimentary dynamics of coastal organic matter: An assessment of the porewater size/reactivity model by spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Dang, Duc Huy; Lenoble, Véronique; Durrieu, Gaël; Mullot, Jean-Ulrich; Mounier, Stéphane; Garnier, Cédric

    2014-12-01

    Sedimentary organic matter (SOM) mineralization is the driving force in diagenesis activity. This biogeochemical process, which controls the mobility of a huge number of elements and especially SOM transformations in surface and deep (down to -50 cm) sediments, was assessed in this study via seasonal monitoring with sediment core sampling in Toulon Bay (SE France). The SOM diagenetic degradation resulted in an important production of nutrients (NO3-/NH4+, PO43-, Si(OH)4, etc.) in porewater associated with dissolved organic matter (DOM) characteristic modifications, which are seasonally dependent. Within this seasonal variation, different elemental ratios (C/P, C/Si) as well as absorbance and fluorescence characteristics were observed in surface and deep sediments, illustrating two pools of SOM, i.e., 'fresh' and 'buried'. Ultra-filtration results revealed the high proportion of low-molecular-weight DOM and the high-molecular-weight DOM (<3 kDa) was primarily characterized by protein-like fluorophores. The obtained results confirmed and extended the PoreWater Size/Reactivity model that describes diagenetic SOM transformations through the identification of two SOM pools and their reactivity.

  15. Paleomagnetic dating of burial diagenesis in Mississippian carbonates, Utah

    NASA Astrophysics Data System (ADS)

    Blumstein, Angela M.; Elmore, R. Douglas; Engel, Michael H.; Elliot, Crawford; Basu, Ankan

    2004-04-01

    The objective of this study is to test models for the origin of widespread secondary magnetizations in the Mississippian Deseret Limestone. The Delle Phosphatic Member of the Deseret Limestone is a source rock for hydrocarbons, and modeling studies indicate that it entered the oil window in the Early Cretaceous during the Sevier orogeny. Paleomagnetic and rock magnetic results from the Deseret Limestone and the stratigraphically equivalent Chainman Shale in central and western Utah indicate that the units contain two ancient magnetizations residing in magnetite. Burial temperatures are too low for the magnetizations to be thermoviscous in origin, and they are interpreted to be chemical remanent magnetizations (CRMs). Fold tests from western Utah indicate the presence of a prefolding Triassic to Jurassic CRM. Geochemical (87Sr/86Sr, δ13C, and δ18O) and petrographic analyses suggest that externally derived fluids did not alter these rocks. This CRM was acquired at the beginning of the oil window and is interpreted to be the result of burial diagenesis of organic matter. A second younger CRM in western central Utah is apparently postfolding and is probably Late Cretaceous to early Tertiary in age. On the basis of the thermal modeling, the timing overlaps with the oil window. These results are consistent with a connection between organic matter maturation and remagnetization. Modeling of the smectite-to-illite transformation in the Deseret Limestone suggests a mean age prior to acquisition of both CRMs, although the range for illitization overlaps with the Triassic to Jurassic CRM. The results of this study support the hypothesis that pervasive CRMs can be related to burial diagenetic processes. In addition, paleomagnetism can be used to determine the timing of such processes, which can benefit hydrocarbon exploration efforts.

  16. Organic matter in hydrothermal metal ores and hydrothermal fluids

    USGS Publications Warehouse

    Orem, W.H.; Spiker, E. C.; Kotra, R.K.

    1990-01-01

    Massive polymetallic sulfides are currently being deposited around active submarine hydrothermal vents associated with spreading centers. Chemoautolithotrophic bacteria are responsible for the high production of organic matter also associated with modern submarine hydrothermal activity. Thus, there is a significant potential for organic matter/metal interactions in these systems. We have studied modern and ancient hydrothermal metal ores and modern hydrothermal fluids in order to establish the amounts and origin of the organic matter associated with the metal ores. Twenty-six samples from modern and ancient hydrothermal systems were surveyed for their total organic C contents. Organic C values ranged from 0.01% to nearly 4.0% in these samples. Metal ores from modern and ancient sediment-covered hydrothermal systems had higher organic C values than those from modern and ancient hydrothermal systems lacking appreciable sedimentary cover. One massive pyrite sample from the Galapagos spreading center (3% organic C) had stable isotope values of -27.4% (??13C) and 2.1% (??15N), similar to those in benthic siphonophors from active vents and distinct from seep sea sedimentary organic matter. This result coupled with other analyses (e.g. 13C NMR, pyrolysis/GC, SEM) of this and other samples suggests that much of the organic matter may originate from chemoautolithotrophic bacteria at the vents. However, the organic matter in hydrothermal metal ores from sediment covered vents probably arises from complex sedimentary organic matter by hydrothermal pyrolysis. The dissolved organic C concentrations of hydrothermal fluids from one site (Juan de Fuca Ridge) were found to be the same as that of background seawater. This result may indicate that dissolved organic C is effectively scavenged from hydrothermal fluids by biological activity or by co-precipitation with metal ores. ?? 1990.

  17. Interstellar chemistry recorded in organic matter from primitive meteorites.

    PubMed

    Busemann, Henner; Young, Andrea F; Alexander, Conel M O'd; Hoppe, Peter; Mukhopadhyay, Sujoy; Nittler, Larry R

    2006-05-05

    Organic matter in extraterrestrial materials has isotopic anomalies in hydrogen and nitrogen that suggest an origin in the presolar molecular cloud or perhaps in the protoplanetary disk. Interplanetary dust particles are generally regarded as the most primitive solar system matter available, in part because until recently they exhibited the most extreme isotope anomalies. However, we show that hydrogen and nitrogen isotopic compositions in carbonaceous chondrite organic matter reach and even exceed those found in interplanetary dust particles. Hence, both meteorites (originating from the asteroid belt) and interplanetary dust particles (possibly from comets) preserve primitive organics that were a component of the original building blocks of the solar system.

  18. Mineralogy and diagenesis of miocene and pleistocene sediments, Northeastern Gulf of Mexico

    SciTech Connect

    Conner, S.P.; Denham, M.E.; Tieh, T.T.

    1988-01-01

    Cored Miocene and Pleistocene sediments from the northeastern Gulf of Mexico (ranging in depth from 1,400 to 2,000 m) consist of interbedded sands, silts, and muds with varying degrees of consolidation. Samples selected from these sediments were studied for their mineralogy and diagenesis. The Miocene sediments represent various subenvironments of the ancestral Mississippi River delta complex; Pleistocene sediments are marine shelf deposits. Sands from both Miocene and Pleistocene cores are fine to very fine-grained feldspathic litharenites with abundant (approx. = 25%) matrix fines and minor (<7%) carbonate clasts and shell fragments. Carbonate diagenesis is a continuing process in these sediments. Clayey sands contain disseminated siderite crystallites formed during organic matter fermentation. In clean sands, scattered thin (<15 cm) bands of poikilotopic carbonate-cemented sand are present in the middle of thicker unconsolidated intervals. Cemented bands are thicker in the Miocene section, having grown during burial through dissolution of shell fragments and reprecipitation at the margin of cemented zones. Diagenetic events evident in the Miocene core illustrate processes that could occur in the Pleistocene sediments with continued burial. These are: (1) dolomitization of some calcite cements, (2) precipitation of Fe-carbonate as crystallites, rims on dolomite cements, and overgrowths on siderite crystallites, and (3) zeolite formation on amorphous silica substrates. Amorphous silica is associated with limited dissolution of feldspars or lithic fragments.

  19. Pyrogenic organic matter can alter microbial communication

    NASA Astrophysics Data System (ADS)

    Masiello, Caroline; Gao, Xiaodong; Cheng, Hsiao-Ying; Silberg, Jonathan

    2016-04-01

    Soil microbes communicate with each other to manage a large range of processes that occur more efficiently when microbes are able to act simultaneously. This coordination occurs through the continuous production of signaling compounds that are easily diffused into and out of cells. As the number of microbes in a localized environment increases, the internal cellular concentration of these signaling compounds increases, and when a threshold concentration is reached, gene expression shifts, leading to altered (and coordinated) microbial behaviors. Many of these coordinated behaviors have biogeochemically important outcomes. For example, methanogenesis, denitrification, biofilm formation, and the development of plant-rhizobial symbioses are all regulated by a simple class of cell-cell signaling molecules known as acyl homoserine lactones (AHLs). Pyrogenic organic matter in soils can act to disrupt microbial communication through multiple pathways. In the case of AHLs, charcoal's very high surface area can sorb these signaling compounds, preventing microbes from detecting each others' presence (Masiello et al., 2014). In addition, the lactone ring in AHLs is vulnerable to pH increases accompanying PyOM inputs, with soil pH values higher than 7-8 leading to ring opening and compound destabilization. Different microbes use different classes of signaling compounds, and not all microbial signaling compounds are pH-vulnerable. This implies that PyOM-driven pH increases may trigger differential outcomes for Gram negative bacteria vs fungi, for example. A charcoal-driven reduction in microbes' ability to detect cell-cell communication compounds may lead to a shift in the ability of microbes to participate in key steps of C and N cycling. For example, an increase in an archaeon-specific AHL has been shown to lead to a cascade of metabolic processes that eventually results in the upregulation of CH4 production (Zhang et al., 2012). Alterations in similar AHL compounds leads to

  20. Assessment of soil organic matter fluxes at the EU level

    NASA Astrophysics Data System (ADS)

    Gobin, Anne; Campling, Paul

    2010-05-01

    Soil has a complex relationship with climate change. Soil helps take carbon dioxide out of the air and as such it absorbs millions of tons each year, but with the Earth still warming micro-organisms grow faster, consume more soil organic matter and release carbon dioxide. The net result is a relative decline in soil organic carbon. With a growing population and higher bio-energy demands, more land is likely to be required for settlement, for commercial activity and for bio-energy production. Conversions from terrestrial ecosystems to urban and commercial activity will alter both the production and losses of organic matter, and have an indirect impact on potential SOM levels. Conversions between different terrestrial ecosystems have a direct impact on SOM levels. Net SOM losses are reported for several land conversions, e.g. from grassland to arable land, from wetlands to drained agricultural land, from crop rotations to monoculture, reforestation of agricultural land. In the context of looking for measures to support best practices to manage soil organic matter in Europe we propose a method to assess soil organic matter fluxes at the EU level. We adopt a parsimonious approach that is comparable to the nutrient balance approaches developed by the OECD and Eurostat. We describe the methodology and present the initial results of a European carbon balance indicator that uses existing European statistical and land use change databases. The carbon balance consists of the following components: organic matter production (I), organic matter losses (O), land use changes that effect both production and losses (E). These components are set against the (mostly legislative) boundary conditions that determine the maximum input potential (MIP) for soil organic matter. In order to budget SOM losses due to mineralisation, runs will be made with a multi-compartment SOM model that takes into account management practices, climate and different sources of organic matter.

  1. Organic matter chlorination rates in different boreal soils: the role of soil organic matter content.

    PubMed

    Gustavsson, Malin; Karlsson, Susanne; Oberg, Gunilla; Sandén, Per; Svensson, Teresia; Valinia, Salar; Thiry, Yves; Bastviken, David

    2012-02-07

    Transformation of chloride (Cl(-)) to organic chlorine (Cl(org)) occurs naturally in soil but it is poorly understood how and why transformation rates vary among environments. There are still few measurements of chlorination rates in soils, even though formation of Cl(org) has been known for two decades. In the present study, we compare organic matter (OM) chlorination rates, measured by (36)Cl tracer experiments, in soils from eleven different locations (coniferous forest soils, pasture soils and agricultural soils) and discuss how various environmental factors effect chlorination. Chlorination rates were highest in the forest soils and strong correlations were seen with environmental variables such as soil OM content and Cl(-) concentration. Data presented support the hypothesis that OM levels give the framework for the soil chlorine cycling and that chlorination in more organic soils over time leads to a larger Cl(org) pool and in turn to a high internal supply of Cl(-) upon dechlorination. This provides unexpected indications that pore water Cl(-) levels may be controlled by supply from dechlorination processes and can explain why soil Cl(-) locally can be more closely related to soil OM content and the amount organically bound chlorine than to Cl(-) deposition.

  2. Artificial maturation of an immature sulfur- and organic matter-rich limestone from the Ghareb Formation, Jordan

    USGS Publications Warehouse

    Koopmans, M.P.; Rijpstra, W.I.C.; De Leeuw, J. W.; Lewan, M.D.; Damste, J.S.S.

    1998-01-01

    An immature (Ro=0.39%), S-rich (S(org)/C = 0.07), organic matter-rich (19.6 wt. % TOC) limestone from the Ghareb Formation (Upper Cretaceous) in Jordan was artificially matured by hydrous pyrolysis (200, 220 ..., 300??C; 72 h) to study the effect of progressive diagenesis and early catagenesis on the amounts and distributions of hydrocarbons, organic sulfur compounds and S-rich geomacromolecules. The use of internal standards allowed the determination of absolute amounts. With increasing thermal maturation, large amounts of alkanes and alkylthiophenes with predominantly linear carbon skeletons are generated from the kerogen. The alkylthiophene isomer distributions do not change significantly with increasing thermal maturation, indicating the applicability of alkylthiophenes as biomarkers at relatively high levels of thermal maturity. For a given carbon skeleton, the saturated hydrocarbon, alkylthiophenes and alkylbenzo[b]thiophenes are stable forms at relatively high temperatures, whereas the alkylsulfides are not stable. The large amount of alkylthiophenes produced relative to the alkanes may be explained by the large number of monosulfide links per carbon skeleton. These results are in good agreement with those obtained previously for an artificial maturation series of an immature S-rich sample from the Gessoso-solfifera Formation.An immature (Ro = 0.39%), S-rich (Sorg/C = 0.07), organic matter-rich (19.6 wt.% TOC) limestone from the Ghareb Formation (Upper Cretaceous) in Jordan was artificially matured by hydrous pyrolysis (200, 220, ..., 300??C; 72 h) to study the effect of progressive diagenesis and early catagenesis on the amounts and distributions of hydrocarbons, organic sulfur compounds and S-rich geomacromolecules. The use of internal standards allowed the determination of absolute amounts. With increasing thermal maturation, large amounts of alkanes and alkylthiophenes with predominantly linear carbon skeletons are generated from the kerogen. The

  3. Investigation of the organic matter in inactive nuclear tank liquids

    SciTech Connect

    Schenley, R.L.; Griest, W.H.

    1990-08-01

    Environmental Protection Agency (EPA) methodology for regulatory organics fails to account for the organic matter that is suggested by total organic carbon (TOC) analysis in the Oak Ridge National Laboratory (ORNL) inactive nuclear waste-tank liquids and sludges. Identification and measurement of the total organics are needed to select appropriate waste treatment technologies. An initial investigation was made of the nature of the organics in several waste-tank liquids. This report details the analysis of ORNL wastes.

  4. Particulate Organic Matter in Permeable Marine Sands—Dynamics in Time and Depth

    NASA Astrophysics Data System (ADS)

    Rusch, A.; Huettel, M.; Forster, S.

    2000-10-01

    In a North Sea intertidal sandflat sediment, depth profiles of dissolved and particulate compounds were measured and evaluated with respect to transport and degradation of particulate organic matter (POM). Bimonthly from July 1997 to July 1998, the amount was measured of fine-grained (<70 μm) material in the permeable sand matrix, its N, C organd chlorophyll content as well as porewater DIC, NO-x and NH+4 concentrations. Depth profiles of fine particle concentrations indicated hydrodynamic influence down to 4-8 cm below the sediment surface. Worst-case calculations on the macrofaunal contribution to particle transport resulted in a biodiffusion coefficient of D B≤1·85×10 -6cm 2 s -1, corresponding to less than 50% of total transport. Chl and POC contents and DIN concentrations exhibited summer/autumn and winter/spring characteristics in their profiles, revealing the seasonal importance of early diagenesis and advective transport, respectively. Areal inventories of POC, PN and Chl indicated the dominance of degradation and hydrodynamic removal of organic material during autumn/winter and fresh POM input throughout spring and summer. In the upper 5 cm, seasonal variation in the particle, POC, PN and Chl concentrations of the sediment was 1·4-5·3 times as large as below. Calculations based on POC loss or short-term DIC accumulation yielded estimates of annual carbon turnover rates ranging between 55 and 123 g C m -2 yr -1. Possible implications of POM dynamics on the role of permeable sands in the marine carbon cycle are discussed.

  5. Characterizing Variability In Ohio River Natural Organic Matter

    EPA Science Inventory

    Surface water contains natural organic matter (NOM) which reacts with disinfectants creating disinfection byproducts (DBPs), some of which are USEPA regulated contaminants. Characterizing NOM can provide important insight on DBP formation and water treatment process adaptation t...

  6. Characterizing Variability In Ohio River Natural Organic Matter

    EPA Science Inventory

    Surface water contains natural organic matter (NOM) which reacts with disinfectants creating disinfection byproducts (DBPs), some of which are USEPA regulated contaminants. Characterizing NOM can provide important insight on DBP formation and water treatment process adaptation t...

  7. The Biogeochemistry of Chromophoric Dissolved Organic Matter in Coastal Waters

    DTIC Science & Technology

    2016-06-07

    processes controlling the fate and distribution of DOM in coastal waters will allow detailed modeling of the fate of contaminants such as hydrophobic...The Biogeochemistry of Chromophoric Dissolved Organic Matter in Coastal Waters Robert F. Chen Environmental, Coastal and Ocean Sciences University of...coastal waters . Of particular interest is the fate of terrigenous and anthropogenic dissolved organic matter in marine systems. OBJECTIVES 1

  8. Copper binding by dissolved organic matter. II. Variation in type and source of organic matter

    SciTech Connect

    Cabaniss, S.E.; Shuman, M.S.

    1988-01-01

    Copper binding properties of several fulvic acid (FA) and whole water samples are compared by means of an empirical model that was calibrated using Suwannee River FA. Within the calibration limits of the model (pH 5.0-8.5, total Cu concentration 0.1-100 ..mu..M, ionic strength 0.1, and dissolved organic carbon, DOC, 1-10 mg C/1), pCu in solutions of a variety of FA samples are predicted with < 0.2 pCu units root mean square error (RMSE). Within the calibration limits, many whole water sample pCu's are predicted with < 0.3 pCu units RMSE if only one-half of the dissolved organic carbon is assumed to bind Cu. Agreement between prediction and experiment at lower ionic strength is not as good. Variations in Cu binding among different sources of dissolved organic matter appear to be much smaller than those due to chemical factors such as pH and ionic strength.

  9. Carbon cycle: Ocean dissolved organics matter

    NASA Astrophysics Data System (ADS)

    Amon, Rainer M. W.

    2016-12-01

    Large quantities of organic carbon are stored in the ocean, but its biogeochemical behaviour is elusive. Size-age-composition relations now quantify the production of tiny organic molecules as a major pathway for carbon sequestration.

  10. Bacterial reworking of terrigenous and marine organic matter in estuarine water columns and sediments

    NASA Astrophysics Data System (ADS)

    Bourgoin, Luc-Henri; Tremblay, Luc

    2010-10-01

    Amino acids and the bacterial biomarkers muramic acid and D-amino acids were quantified in the ultrafiltered dissolved, particulate and sedimentary organic matter (UDOM, POM and SOM) of the St. Lawrence system (Canada). The main objectives were to better describe the fate of terrigenous and marine organic matter (OM) in coastal zones and to quantify the bacterial contributions to OM composition and diagenesis. Regardless of their origin, the carbon (C) content of the particles substantially decreased with depth, especially near the water-sediment interface. Major diagenetic transformations of organic nitrogen (N) were revealed and important differences were observed between terrigenous and marine OM. Amino acid contents of particles decreased by 66-93% with depth and accounted for 12-30% of the particulate C losses in marine locations. These percentages were respectively 18-56% and 7-11% in the Saguenay Fjord where terrigenous input is important. A preferential removal of particulate N and amino acids with depth or during transport was measured, but only in marine locations and for N-rich particles. This leads to very low amino acid yields in deep marine POM. However, these yields then increased to a level up to three times higher after deposition on sediments, where SOM showed lower C:N ratios than deep POM. The associated increase of bacterial biomarker yields suggests an active in situ resynthesis of amino acids by benthic bacteria. The N content of the substrate most likely determines whether a preferential degradation or an enrichment of N and amino acid are observed. For N-poor OM, such as terrigenous or deep marine POM, the incorporation of exogenous N by attached bacteria can be measured, while the organic N is preferentially used or degraded in N-rich OM. Compared to the POM from the same water samples, the extracted UDOM was poor in N and amino acids and appeared to be mostly made of altered plant and bacterial fragments. Signs of in situ marine

  11. Dissolved Organic Matter, Organic Matter Optical Properties and Mercury in Rivers and Streams

    NASA Astrophysics Data System (ADS)

    Aiken, G. R.; Brigham, M. E.; Shanley, J. B.; Krabbenhoft, D. P.

    2008-12-01

    Interactions of mercury (Hg) with dissolved organic matter (DOM) play important roles in controlling concentrations, reactivity, bioavailability and transport of Hg in aquatic systems. Recent studies have shown that DOM influences Hg solubility through strong binding interactions and the stabilization of nanocolloidal mercuric sulfide. In this paper we present the results of watershed based studies associated with US Geological Survey NAWQA and WEBB Programs designed to better define the factors controlling the export of Hg in stream systems. We investigated the seasonal and spatial variability of dissolved organic matter quantity and quality, and the concentrations of dissolved Hg and methylmercury (MeHg) in 12 rivers and streams representing a range of watershed types that varied in climate, landscape, Hg deposition and water chemistry. DOM concentrations and composition, based on DOM fractionation and ultraviolet/visible absorption spectroscopic analyses, varied greatly both between sites, and seasonally within sites. Strong relationships were found between DOM and total dissolved Hg concentrations in almost all of the systems. The relationships between total dissolved Hg concentration and hydrophobic organic acid (HPOA) content (aquatic humic substances) were stronger than those observed between Hg and DOM, supporting the hypothesis that interactions between Hg and the HPOA fraction are important drivers for the transport of dissolved Hg in aquatic systems. The relationships between MeHg and DOM and HPOA content were not as strong as those observed with Hg. In all systems, UV absorbance measured at 254 nm correlated strongly with DOM, HPOA content and Hg concentrations. The relationships between DOM concentration and absorbance for the range of systems were quite variable because not all of the dissolved organic carbon in a given sample absorbs UV light to the same degree and each system exhibited a different relationship. However, the relationship between HPOA

  12. Composition and reactivity of ferrihydrite-organic matter associations

    NASA Astrophysics Data System (ADS)

    Eusterhues, Karin; Hädrich, Anke; Neidhardt, Julia; Küsel, Kirsten; Totsche, Kai

    2014-05-01

    The formation of organo-mineral associations affects many soil forming processes. On the one hand, it will influence soil organic matter composition and development, because the complex organic matter mixtures usually fractionate during their association with mineral surfaces. Whereas the associated fraction is supposed to be stabilized, the non-associated fraction remains mobile and available to degradation by microorganisms. On the other hand, the organic coating will completely change the interface properties of Fe oxides such as solubility, charge and hydrophobicity. This in turn will strongly influence their reactivity towards nutrients and pollutants, the adsorption of new organic matter, and the availability of ferric Fe towards microorganisms. To better understand such processes we produced ferrihydrite-organic matter associations by adsorption and coprecipitation in laboratory experiments. As a surrogate for dissolved soil organic matter we used the water-extractable fraction of a Podzol forest-floor layer under spruce. Sorptive fractionation of the organic matter was investigated by 13C NMR and FTIR. Relative to the original forest-floor extract, the ferrihydrite-associated OM was enriched in polysaccharides but depleted in aliphatic C and carbonyl C, especially when adsorption took place. Liquid phase incubation experiments were carried out with an inoculum extracted from the podzol forest-floor under oxic conditions at pH 4.8 to quantify the mineralization of the adsorbed and coprecipitated organic matter. These experiments showed that the association with ferrihydrite stabilized the associated organic matter, but that differences in the degradability of adsorbed and coprecipitated organic matter were small. We therefore conclude that coprecipitation does not lead to a significant formation of microbial inaccessible organic matter domains. Microbial reduction experiments were performed using Geobacter bremensis. We observed that increasing amounts of

  13. High dimensional reflectance analysis of soil organic matter

    NASA Technical Reports Server (NTRS)

    Henderson, T. L.; Baumgardner, M. F.; Franzmeier, D. P.; Stott, D. E.; Coster, D. C.

    1992-01-01

    Recent breakthroughs in remote-sensing technology have led to the development of high spectral resolution imaging sensors for observation of earth surface features. This research was conducted to evaluate the effects of organic matter content and composition on narrowband soil reflectance across the visible and reflective infrared spectral ranges. Organic matter from four Indiana agricultural soils, ranging in organic C content from 0.99 to 1.72 percent, was extracted, fractionated, and purified. Six components of each soil were isolated and prepared for spectral analysis. Reflectance was measured in 210 narrow bands in the 400- to 2500-nm wavelength range. Statistical analysis of reflectance values indicated the potential of high dimensional reflectance data in specific visible, near-infrared, and middle-infrared bands to provide information about soil organic C content, but not organic matter composition. These bands also responded significantly to Fe- and Mn-oxide content.

  14. High dimensional reflectance analysis of soil organic matter

    NASA Technical Reports Server (NTRS)

    Henderson, T. L.; Baumgardner, M. F.; Franzmeier, D. P.; Stott, D. E.; Coster, D. C.

    1992-01-01

    Recent breakthroughs in remote-sensing technology have led to the development of high spectral resolution imaging sensors for observation of earth surface features. This research was conducted to evaluate the effects of organic matter content and composition on narrowband soil reflectance across the visible and reflective infrared spectral ranges. Organic matter from four Indiana agricultural soils, ranging in organic C content from 0.99 to 1.72 percent, was extracted, fractionated, and purified. Six components of each soil were isolated and prepared for spectral analysis. Reflectance was measured in 210 narrow bands in the 400- to 2500-nm wavelength range. Statistical analysis of reflectance values indicated the potential of high dimensional reflectance data in specific visible, near-infrared, and middle-infrared bands to provide information about soil organic C content, but not organic matter composition. These bands also responded significantly to Fe- and Mn-oxide content.

  15. Natural organic matter properties in Swedish agricultural streams

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Kyllmar, Katarina; Bergström, Lars; Köhler, Stephan

    2016-04-01

    We have analysed natural organic matter (NOM) properties in 18 agricultural streams in Sweden covering a broad range of environmental (climate, soil type), land use and water quality (nutrient and concentrations, pH, alkalinity) characteristics. Stream water samples collected every two weeks within an ongoing Swedish Monitoring Programme for Agriculture have been analysed for total/dissolved organic carbon, absorbance and fluorescence spectroscopy. A number of quantitative and qualitative spectroscopic parameters was calculated to help to distinguish between terrestrially-derived, refractory organic material and autochthonous, labile material indicative of biogeochemical transformations of terrestrial NOM and recent biological production. The study provides insights into organic matter properties and carbon budgets in agricultural streams and improves understanding of how agricultural catchments transform natural and anthropogenic fluxes of organic matter and nutrients to signals observed in receiving waters.

  16. Palynofacies as useful tool to study origins and transfers of particulate organic matter in recent terrestrial environments: Synopsis and prospects

    NASA Astrophysics Data System (ADS)

    Sebag, D.; Copard, Y.; Di-Giovanni, Ch.; Durand, A.; Laignel, B.; Ogier, S.; Lallier-Verges, E.

    2006-12-01

    Palynofacies analysis is based on transmitted light microscope study of organic constituents isolated and concentrated by acid and basic digestions. Published results of studies of present-day terrestrial environments show that two complementary approaches successfully characterize particulate organic matter (OM) from palynofacies analyses. The first method is based on the identification and the quantification of some typical particles ( optical markers) according to their origin (i.e. aquatic or terrestrial), their nature (i.e. biogenic, anthropogenic, fossil), and/or their formation (i.e. biodegradation, combustion, oxidation). The second approach is based on the use of binary or ternary diagrams in order to define petrographical signatures from the relative proportions of significant organic constituents. This approach can be used for tracking i) changes in OM composition during humification in soil profiles, ii) transport of reworked terrestrial particles, iii) diagenesis of peaty deposits, or iv) weathering of geological substratum. The more advanced approach is based on the use of some predefined optical markers and their optical signatures to establish the relation between the OM compositions ( palynofacies) and their depositional environments. In addition, this kind of study aims to define a modern frame of reference that can be applied in paleoenvironmental reconstructions. This paper combines a bibliographic review with previously unpublished data from palynofacies analyses. The aim is to present some applied examples illustrating (1) the main approaches developed for characterization of the particulate OM in surficial deposits, and (2) the study of OM transfers in terrestrial geosystems.

  17. Modeling organic matter stabilization during windrow composting of livestock effluents.

    PubMed

    Oudart, D; Paul, E; Robin, P; Paillat, J M

    2012-01-01

    Composting is a complex bioprocess, requiring a lot of empirical experiments to optimize the process. A dynamical mathematical model for the biodegradation of the organic matter during the composting process has been developed. The initial organic matter expressed by chemical oxygen demand (COD) is decomposed into rapidly and slowly degraded compartments and an inert one. The biodegradable COD is hydrolysed and consumed by microorganisms and produces metabolic water and carbon dioxide. This model links a biochemical characterization of the organic matter by Van Soest fractionating with COD. The comparison of experimental and simulation results for carbon dioxide emission, dry matter and carbon content balance showed good correlation. The initial sizes of the biodegradable COD compartments are explained by the soluble, hemicellulose-like and lignin fraction. Their sizes influence the amplitude of the carbon dioxide emission peak. The initial biomass is a sensitive variable too, influencing the time at which the emission peak occurs.

  18. Preferential sequestration of terrestrial organic matter in boreal lake sediments

    NASA Astrophysics Data System (ADS)

    Guillemette, François; von Wachenfeldt, Eddie; Kothawala, Dolly N.; Bastviken, David; Tranvik, Lars J.

    2017-04-01

    The molecular composition and origin has recently been demonstrated to play a critical role in the persistence of organic matter in lake water, but it is unclear to what degree chemical attributes and sources may also control settling and burial of organic matter in lake sediments. Here we compared the annual contribution of allochthonous and autochthonous sources to the organic matter settling in the water column and present in the sediments of 12 boreal lakes. We used the fluorescence properties and elemental composition of the organic matter to trace its origin and found a consistent pattern of increasing contribution of terrestrial compounds in the sediments as compared to the settling matter, with an annual average allochthony of 87% and 57%, respectively. Seasonal data revealed a predominance of in-lake-produced compounds sinking in the water column in summer. Yet only a slight concurrent decrease in the contribution of terrestrial C to lake sediments was observed during the same period, and sediment allochthony increased again to high levels in autumn. Our results reveal a preferential preservation of allochthonous matter in the sediments and highlight the role of lakes as sequesters of organic carbon primarily originating from the surrounding landscape.

  19. Advanced solid-state NMR spectroscopy of natural organic matter.

    PubMed

    Mao, Jingdong; Cao, Xiaoyan; Olk, Dan C; Chu, Wenying; Schmidt-Rohr, Klaus

    2017-05-01

    Solid-state NMR is essential for the characterization of natural organic matter (NOM) and is gaining importance in geosciences and environmental sciences. This review is intended to highlight advanced solid-state NMR techniques, especially a systematic approach to NOM characterization, and their applications to the study of NOM. We discuss some basics of how to acquire high-quality and quantitative solid-state (13)C NMR spectra, and address some common technical mistakes that lead to unreliable spectra of NOM. The identification of specific functional groups in NOM, primarily based on (13)C spectral-editing techniques, is described and the theoretical background of some recently-developed spectral-editing techniques is provided. Applications of solid-state NMR to investigating nitrogen (N) in NOM are described, focusing on limitations of the widely used (15)N CP/MAS experiment and the potential of improved advanced NMR techniques for characterizing N forms in NOM. Then techniques used for identifying proximities, heterogeneities and domains are reviewed, and some examples provided. In addition, NMR techniques for studying segmental dynamics in NOM are reviewed. We also briefly discuss applications of solid-state NMR to NOM from various sources, including soil organic matter, aquatic organic matter, organic matter in atmospheric particulate matter, carbonaceous meteoritic organic matter, and fossil fuels. Finally, examples of NMR-based structural models and an outlook are provided. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The search for indigenous lunar organic matter.

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1972-01-01

    It is argued that the absence of organic compounds from returned lunar samples is to be expected even for a lunar history rich in primordial organics. The sites most likely to yield lunar organic compounds have not been investigated, and there may be an area of investigation conceivably critical to problems in prebiological chemistry and the early history of the solar system awaiting continued lunar exploration, manned or unmanned.

  1. The search for indigenous lunar organic matter.

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1972-01-01

    It is argued that the absence of organic compounds from returned lunar samples is to be expected even for a lunar history rich in primordial organics. The sites most likely to yield lunar organic compounds have not been investigated, and there may be an area of investigation conceivably critical to problems in prebiological chemistry and the early history of the solar system awaiting continued lunar exploration, manned or unmanned.

  2. Organic Matter in Space (IAU S251)

    NASA Astrophysics Data System (ADS)

    Kwok, Sun; Sanford, Scott

    2008-10-01

    Preface; From the local organising committee; Organising committee; Conference participants; Opening address of Symposium 251 C. Cesarsky; Session I. Observations of organic compounds beyond the Solar System William Irvine, Ewine van Dishoeck, Yvonne Pendleton and Hans Olofsson; Session II. Organic compounds within the Solar System Scott Sandford, Ernst Zinner and Dale Cruikshank; Session III. Laboratory analogues of organic compounds in space Max Bernstein and Thomas Henning; Banquet speech; Author index; Object index.

  3. Organic Matter in Space (IAU S251)

    NASA Astrophysics Data System (ADS)

    Kwok, Sun; Sanford, Scott

    2009-01-01

    Preface; From the local organising committee; Organising committee; Conference participants; Opening address of Symposium 251 C. Cesarsky; Session I. Observations of organic compounds beyond the Solar System William Irvine, Ewine van Dishoeck, Yvonne Pendleton and Hans Olofsson; Session II. Organic compounds within the Solar System Scott Sandford, Ernst Zinner and Dale Cruikshank; Session III. Laboratory analogues of organic compounds in space Max Bernstein and Thomas Henning; Banquet speech; Author index; Object index.

  4. Defining the quality of soil organic matter

    EPA Science Inventory

    Soils represent the largest terrestrial pool of carbon (C) and hold approximately two-thirds of all C held in these ecosystems. However, not all C in soils is of equal quality. Some fractions of the organic forms, i.e., soil organic carbon (SOC) have long residence times while ...

  5. Defining the quality of soil organic matter

    EPA Science Inventory

    Soils represent the largest terrestrial pool of carbon (C) and hold approximately two-thirds of all C held in these ecosystems. However, not all C in soils is of equal quality. Some fractions of the organic forms, i.e., soil organic carbon (SOC) have long residence times while ...

  6. Impact of Diagenesis on Biosignature Preservation Potential in Playa Lake Evaporites in Verde Formation, Arizona: Implications for Mars Exploration

    NASA Astrophysics Data System (ADS)

    Shkolyar, S.; Farmer, J. D.

    2015-12-01

    Major priorities for Mars science include assessing the preservation potential and impact of diagenesis on biosignature preservation in aqueous sedimentary environments. We address these priorities with field and lab studies of playa evaporites of the Verde Formation (upper Pliocene) in Arizona. Evaporites studied include bottom-nucleated halite and displacive growth gypsum in magnesite-rich mudstone. These lithotypes are potential analogs for ancient lacustrine habitable environments on Mars. This study aimed to understand organic matter preservation potential under different diagenetic histories. Methods combined outcrop-scale field observations and lab analyses, including: (1) thin-section petrography to understand diagenetic processes and paragenesis; (2) X-ray powder diffraction to obtain bulk mineralogy; (3) Raman spectroscopy to identify and place phases (and kerogenous fossil remains) within a microtextural context; (4) Total Organic Carbon (TOC) analyses to estimate weight percentages of preserved organic carbon for each subfacies endmember; and (5) electron microprobe to create 2D kerogen maps semi-quantifying kerogen preservation in each subfacies. Results revealed complex diagenetic histories for each evaporite subfacies and pathways for organic matter preservation. Secondary gypsum grew displacively within primary playa lake mudstones during early diagenesis. Mudstones then experienced cementation by Mg-carbonates. Displacive-growth gypsum was sometimes dissolved, forming crystal molds. These molds were later either infilled by secondary sulfates or recrystallized to gypsum pseudomorphs with minor phases present (i.e., glauberite). These observations helped define taphonomic models for organic matter preservation in each subfacies. This work has the potential to inform in situ target identification, sampling strategies, and data interpretations for future Mars Sample Return missions (e.g., sample caching strategies for NASA's Mars 2020 mission).

  7. Soil organic matter contribution to the NW Mediterranean (Invited)

    NASA Astrophysics Data System (ADS)

    Kim, J.; Buscail, R.; Blokker, J.; Kerhervé, P.; Schouten, S.; Ludwig, W.; Sinninghe Damsté, J. S.

    2009-12-01

    The BIT (Branched and Isoprenoid Tetraether) index has recently been introduced as a proxy for soil organic matter input and is based on the relative abundance of non-isoprenoidal glycerol dialkyl glycerol tetraethers (GDGTs) derived from organisms living in terrestrial environments versus a structurally related isoprenoid GDGT “crenarchaeol” produced by marine Crenarchaeota (Hopmans et al., 2004). In this study, detailed spatial distribution patterns of BIT index were investigated in combination with other organic parameters in the continental margin of the north western Mediterranean. Based on a transect sampling strategy from source (land) to sink (sea) via river, we analysed a variety of soils from the Têt and Rhône basins, suspended particulate matter in waters of the Têt and Rhône rivers flowing into the Gulf of Lions, and marine surface sediments from the Gulf of Lions collected before and after a flood occurred in June 2008. Our study allows us to track BIT values along the transport pathway of soil organic matter and thus to estimate soil organic matter contribution in marine sediments in the Gulf of Lions (NW Mediterranean), a river-dominated continental margin. Hopmans, E.C., Weijers, J.W.H., Schefuss, E., Herfort, L., Sinninghe Damsté, J.S., Schouten, S., 2004. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoidtetraether lipids. Earth and Planetary Science Letters 224, 107-116.

  8. Effects of Crayfish on Quality of Fine Particulate Organic Matter

    NASA Astrophysics Data System (ADS)

    Montemarano, J. J.; Kershner, M. W.; Leff, L. G.

    2005-05-01

    The origin and ontogeny of detritus often determines its bioavailability. Crayfish shred and consume detrital organic matter, influencing fine particulate organic matter (FPOM) availability, composition and quality. Given consumption of FPOM by many invertebrates, crayfish can indirectly affect these organisms by altering FPOM bioavailability through organic matter fragmentation, biofilm disturbance, and defecation. These effects may or may not vary among coarse particulate organic matter (CPOM) from different leaf species. To assess crayfish effects on FPOM quality, crayfish were fed stream-conditioned maple or oak leaves in hanging 1-mm mesh-bottom baskets in aquaria. After 12 h, crayfish and remaining leaves were removed. FPOM fragments that fell through the mesh were vacuum filtered and analyzed for percent organic matter, C:N ratio, and bacterial abundance. The same analyses were conducted on crayfish feces collected using finger cots encasing crayfish abdomens. C:N ratios did not differ between feces and maple leaf CPOM, but were lower in FPOM produced through fragmentation and disturbance (P = 0.023). Overall, crayfish alter the ontogeny of detritus, which may, in turn, affect stream FPOM dynamics.

  9. Pedogenesis evolution of mine technosols: focus onto organic matter implication

    NASA Astrophysics Data System (ADS)

    Grégoire, Pascaud; Marilyne, Soubrand; Laurent, Lemee; Husseini Amelène, El-Mufleh Al; Marion, Rabiet; Emmanuel, Joussein

    2014-05-01

    Keywords: Mine technosols, pedogenesis, organic matter, environmental impact, pyr-GC-MS Technosols include soils subject to strong anthropogenic pressure and particularly to soil influenced by human transformed materials. In this context, abandoned mine sites contain a large amount of transformed waste materials often enriched with metals and/or metalloids. The natural evolution of technosols (pedogenesis) may induces the change in contaminants behaviour in term of stability of bearing phases, modification of pH oxydo-reduction conditions, organic matter turnover, change in permeability, or influence of vegetation cover. The fate of these elements in the soil can induce major environmental problems (contamination of biosphere and water resource). This will contribute to a limited potential use of these soils, which represent yet a large area around the world. The initial contamination of the parental material suggests that the pedological cover would stabilize the soil; however, the chemical reactivity must be taken in consideration particularly with respect to potential metal leachings. In this case, it is quite important to understand the development of soil in this specific context. Consequently, the global aims of this study are to understand the functioning of mine Technosols focusing onto the organic matter implication in their pedogenesis. Indeed, soil organic matter constitutes an heterogeneous fraction of organic compounds that plays an important role in the fate and the transport of metals and metalloids in soils. Three different soil profiles were collected representative to various mining context (contamination, time, climat), respectively to Pb-Ag, Sn and Au exploitations. Several pedological parameters were determined like CEC, pH, %Corg, %Ntot, C/N ratio, grain size distribution and chemical composition. The evolution of the nature of organic matter in Technosol was studied by elemental analyses and thermochemolysis was realized on the total and

  10. Organic Matter Application Can Reduce Copper Toxicity in Tomato Plants

    ERIC Educational Resources Information Center

    Campbell, Brian

    2010-01-01

    Copper fungicides and bactericides are often used in tomato cultivation and can cause toxic Cu levels in soils. In order to combat this, organic matter can be applied to induce chelation reactions and form a soluble complex by which much of the Cu can leach out of the soil profile or be taken up safely by plants. Organic acids such as citric,…

  11. Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Analysis of high-molecular-weight dissolved organic matter (DOM) from two estuaries in the northwest Atlantic Ocean reveals that black carbon (BC) is a significant component of previously uncharacterized DOM, suggesting that river-estuary systems are important exporters of recalcitrant dissolved organic carbon to the ocean.

  12. PHOTOCHEMICAL TRANSFORMATIONS OF DISSOLVED ORGANIC MATTER IN A BLACKWATER RIVER

    EPA Science Inventory

    We examined photochemical alterations of dissolved organic matter (DOM) from the Satilla River, a high DOC (10-40 mg/liter) blackwater river of southeast Georgia. Water samples were filtered to remove most organisms, placed in quartz tubes, and incubated under natural sunlight a...

  13. Organic Matter Application Can Reduce Copper Toxicity in Tomato Plants

    ERIC Educational Resources Information Center

    Campbell, Brian

    2010-01-01

    Copper fungicides and bactericides are often used in tomato cultivation and can cause toxic Cu levels in soils. In order to combat this, organic matter can be applied to induce chelation reactions and form a soluble complex by which much of the Cu can leach out of the soil profile or be taken up safely by plants. Organic acids such as citric,…

  14. PHOTOCHEMICAL TRANSFORMATIONS OF DISSOLVED ORGANIC MATTER IN A BLACKWATER RIVER

    EPA Science Inventory

    We examined photochemical alterations of dissolved organic matter (DOM) from the Satilla River, a high DOC (10-40 mg/liter) blackwater river of southeast Georgia. Water samples were filtered to remove most organisms, placed in quartz tubes, and incubated under natural sunlight a...

  15. Organic Matter Characteristics and Nutrient Content in Eroded Soils

    NASA Astrophysics Data System (ADS)

    Garcia, Carlos; Hernandez, Teresa; Barahona, Ascension; Costa, Francisco

    1996-01-01

    Twenty-one severely eroded soils of SE Spain (Torriorthent xeric soils) were studied. These soils form a fragile system characterized by soils with a low density of plant cover (<5%), are loamy and occur in a semiarid climate. The soils formerly were used for agricultural purposes but were abandoned at least 15 years ago. These eroded soils had a low total organic carbon content, and their humic substances, humic acid carbon, and carbohydrates were lower compared with soils that had never been cultivated (natural soils). The variables in which the effects of erosion were particularly noted were those related with the active organic matter (respiration and water-soluble organic matter). Those eroded soils with higher salt content showed lower organic matter and carbohydrate contents. Only total nitrogen was correlated with the carbon fractions in the eroded soils.

  16. Carbon Mineralization Pathways and Early Diagenesis in Lake Erie Sediments

    NASA Astrophysics Data System (ADS)

    O Neill, A. H.; Crowe, S. A.; Song, Z.; Mucci, A.; Sundby, B.; Fryer, B. J.; Fowle, D. A.

    2004-12-01

    In spite of the long-standing paradigm whereby organic matter degradation proceeds by redox reactions that consume oxidants in the order of free energy yield, diagenesis in marine and fresh water sediments often yield different results. The reasons for this are the highly variable absolute and relative abundances of electron acceptors and the different microbial populations found in freshwater environments. As contaminant availability and subsequent impact on aquatic ecosystems are directly linked to these transformations, it is important to understand the most important degradation pathways and their rates. To this end we have conducted chemical analyses of Lake Erie sediment pore-waters and a preliminary characterization of the vertical distribution of microbiological populations. Sediments were collected at four locations in the Central and Eastern basins of Lake Erie during cruises of the R/V LIMNOS in May and June of 2004 respectively. High-resolution vertical profiles of several redox-active species (O2, Fe2+, Mn2+, Fe3+ and S2-) have been obtained by voltammetry using Au/Hg amalgam micro-electrodes. These are the first high-resolution pore-water profiles obtained for multiple redox species using Au/Hg amalgam microelectrodes in the Great Lakes. These profiles show oxygen depletion to levels below detection (5 uM) at depths that range from <1 to 6 mm below the sediment-water interface. Frequently, there is up to 1 cm separation between the depth at which O2 became undetectable and the depth of the first measurable Mn2+. The vertical concentration profiles of Mn2+ and Fe2+ are highly variable between stations and seem to be related to the local bathymetry. Alternatively this variability may be related to the abundance of solid phase Mn and Fe at these sites. The presence of voltammetric peaks measured between -0.5 and -0.6 V, that are often attributed to dissolved organic Fe (III) species, could be produced as part of a strategy by Fe reducing microorganisms

  17. Interstellar and Solar System organic matter preserved in interplanetary dust

    NASA Astrophysics Data System (ADS)

    Messenger, Scott; Nakamura-Messenger, K.

    Interplanetary dust particles (IDPs) collected in the Earths stratosphere derive from collisions among asteroids and by the disruption and outgassing of short-period comets. Chondritic porous (CP) IDPs are among the most primitive Solar System materials. CP-IDPs have been linked to cometary parent bodies by their mineralogy, textures, C-content, and dynamical histories. CP-IDPs are fragile, fine-grained (< um) assemblages of anhydrous amorphous and crystalline silicates, oxides and sulfides bound together by abundant carbonaceous material. Ancient silicate, oxide, and SiC stardust grains exhibiting highly anomalous isotopic compositions are abundant in CP-IDPs, constituting 0.01-1% of the mass of the particles. The organic matter in CP-IDPs is isotopically anomalous, with enrichments in D/H reaching 50x the terrestrial SMOW value and 15N/14N ratios up to 3x terrestrial standard compositions. These anomalies are indicative of low T (10-100 K) mass fractionation in cold molecular cloud or the outermost reaches of the protosolar disk. The organic matter shows distinct morphologies, including sub-um globules, bubbly textures, featureless, and with mineral inclusions. Infrared spectroscopy and mass spectrometry studies of organic matter in IDPs reveals diverse species including aliphatic and aromatic compounds. The organic matter with the highest isotopic anomalies appears to be richer in aliphatic compounds. These materials also bear similarities and differences with primitive, isotopically anomalous organic matter in carbonaceous chondrite meteorites. The diversity of the organic chemistry, morphology, and isotopic properties in IDPs and meteorites reflects variable preservation of interstellar/primordial components and Solar System processing. One unifying feature is the presence of sub-um isotopically anomalous organic globules among all primitive materials, including IDPs, meteorites, and comet Wild-2 samples returned by the Stardust mission. We will present an

  18. Interstellar and Solar System Organic Matter Preserved in Interplanetary Dust

    NASA Astrophysics Data System (ADS)

    Messenger, Scott R.; Nakamura-Messenger, Keiko

    2015-08-01

    Interplanetary dust particles (IDPs) collected in the Earth’s stratosphere derive from collisions among asteroids and by the disruption and outgassing of short-period comets. Chondritic porous (CP) IDPs are among the most primitive Solar System materials. CP-IDPs have been linked to cometary parent bodies by their mineralogy, textures, C-content, and dynamical histories. CP-IDPs are fragile, fine-grained (< um) assemblages of anhydrous amorphous and crystalline silicates, oxides and sulfides bound together by abundant carbonaceous material. Ancient silicate, oxide, and SiC stardust grains exhibiting highly anomalous isotopic compositions are abundant in CP-IDPs, constituting 0.01 - 1 % of the mass of the particles. The organic matter in CP-IDPs is isotopically anomalous, with enrichments in D/H reaching 50x the terrestrial SMOW value and 15N/14N ratios up to 3x terrestrial standard compositions. These anomalies are indicative of low T (10-100 K) mass fractionation in cold molecular cloud or the outermost reaches of the protosolar disk. The organic matter shows distinct morphologies, including sub-um globules, bubbly textures, featureless, and with mineral inclusions. Infrared spectroscopy and mass spectrometry studies of organic matter in IDPs reveals diverse species including aliphatic and aromatic compounds. The organic matter with the highest isotopic anomalies appears to be richer in aliphatic compounds. These materials also bear similarities and differences with primitive, isotopically anomalous organic matter in carbonaceous chondrite meteorites. The diversity of the organic chemistry, morphology, and isotopic properties in IDPs and meteorites reflects variable preservation of interstellar/primordial components and Solar System processing. One unifying feature is the presence of sub-um isotopically anomalous organic globules among all primitive materials, including IDPs, meteorites, and comet Wild-2 samples returned by the Stardust mission. We will present

  19. GROUNDWATER TRANSPORT OF HYDROPHOBIC ORGANIC COMPOUNDS IN THE PRESENCE OF DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    The effects of dissolved organic matter (DOM) on the transport of hydrophobic organic compounds in soil columns were investigated. Three compounds (naphthalene, phenanthrene and DDT) that spanned three orders of magnitude in water solubility were used. Instead of humic matter, mo...

  20. GROUNDWATER TRANSPORT OF HYDROPHOBIC ORGANIC COMPOUNDS IN THE PRESENCE OF DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    The effects of dissolved organic matter (DOM) on the transport of hydrophobic organic compounds in soil columns were investigated. Three compounds (naphthalene, phenanthrene and DDT) that spanned three orders of magnitude in water solubility were used. Instead of humic matter, mo...

  1. Response of organic matter quality in permafrost soils to warming

    NASA Astrophysics Data System (ADS)

    Plaza, C.; Pegoraro, E.; Schuur, E.

    2016-12-01

    Global warming is predicted to thaw large quantities of the perennially frozen organic matter stored in northern permafrost soils. Upon thaw, this organic matter will be exposed to lateral export to water bodies and to microbial decomposition, which may exacerbate climate change by releasing significant amounts of greenhouse gases. To gain an insight into these processes, we investigated how the quality of permafrost soil organic matter responded to five years of warming. In particular, we sampled control and experimentally warmed soils in 2009 and 2013 from an experiment established in 2008 in a moist acidic tundra ecosystem in Healy, Alaska. We examined surface organic (0 to 15 cm), deep organic (15 to 35 cm), and mineral soil layers (35 to 55 cm) separately by means of stable isotope analysis (δ13C and δ15N) and solid-state 13C nuclear magnetic resonance. Compared to the control, the experimental warming did not affect the isotopic and molecular composition of soil organic matter across the depth profile. However, we did find significant changes with time. In particular, in the surface organic layer, δ13C decreased and alkyl/O-alkyl ratio increased from 2009 to 2013, which indicated variations in soil organic sources (e.g., changes in vegetation) and accelerated decomposition. In the deep organic layer, we found a slight increase in δ15N with time. In the mineral layer, δ13C values decreased slightly, whereas alkyl C/O-alkyl ratio increased, suggesting a preferential loss of relatively more degraded organic matter fractions probably by lateral transport by water flowing through the soil. Acknowledgements: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 654132. Web site: http://vulcan.comule.com

  2. Effects of Organic Matter on the Growth of Thiobacillus intermedius

    PubMed Central

    London, Jack; Rittenberg, Sydney C.

    1966-01-01

    London, Jack (University of California, Los Angeles), and Sydney C. Rittenberg. Effects of organic matter on the growth of Thiobacillus intermedius. J. Bacteriol. 91:1062–1069. 1966.—Yeast extract, glucose, glutamate, and other organic materials stimulate the rate and extent of growth of Thiobacillus intermedius in thiosulfate broth. Growth did not occur in glucose or glutamate mineral salts medium in the absence of thiosulfate, although a stable variant was obtained which grows on yeast extract alone. Cells harvested from media supplemented with organic matter have a reduced rate of thiosulfate oxidation (20 to 30% of autotrophic), oxidize the organic supplement, and have an additive rate of oxidation in the presence of both the organic substrate and thiosulfate. Carboxydismutase synthesis is repressed, and the incorporation of bicarbonate carbon into cell material is almost completely eliminated by the presence of organic matter in the growth medium. It is concluded that the availability of organic matter eliminates the autotrophic assimilatory mechanisms of T. intermedius but not its autotrophic energy-generating system. The data are discussed in relation to the existence of “obligate” chemoautotrophic bacteria. PMID:5929743

  3. Removal of dissolved organic matter by anion exchange: Effect of dissolved organic matter properties

    USGS Publications Warehouse

    Boyer, T.H.; Singer, P.C.; Aiken, G.R.

    2008-01-01

    Ten isolates of aquatic dissolved organic matter (DOM) were evaluated to determine the effect that chemical properties of the DOM, such as charge density, aromaticity, and molecular weight, have on DOM removal by anion exchange. The DOM isolates were characterized asterrestrial, microbial, or intermediate humic substances or transphilic acids. All anion exchange experiments were conducted using a magnetic ion exchange (MIEX) resin. The charge density of the DOM isolates, determined by direct potentiometric titration, was fundamental to quantifying the stoichiometry of the anion exchange mechanism. The results clearly show that all DOM isolates were removed by anion exchange; however, differences among the DOM isolates did influence their removal by MIEX resin. In particular, MIEX resin had the greatest affinity for DOM with high charge density and the least affinity for DOM with low charge density and low aromaticity. This work illustrates that the chemical characteristics of DOM and solution conditions must be considered when evaluating anion exchange treatment for the removal of DOM. ?? 2008 American Chemical Society.

  4. Organic content of particulate matter in turbine engine exhaust

    SciTech Connect

    Robertson, D.J.; Groth, R.H.; Blasko, T.J.

    1980-03-01

    Research report:Solid particulate matter, mainly carbon, emitted during fossil fuels combustion contains a variety of organic species adsorbed onto it. Studies were conducted to identify the organic compounds generated by a gas turbine engine. Total organics were determined by gas chromatography and flame ionization. Polynuclear aromatic hydrocarbons, phenols, and nitrosamines were present in samples collected from exhaust gases. (1 diagram, 4 references, 11 tables)

  5. Application of Organic Carbon and Nitrogen Stable Isotope and C/N Ratios as Source Indicators of Organic Matter Provenance in Estuarine Systems: Evidence from the Tay Estuary, Scotland

    NASA Astrophysics Data System (ADS)

    Thornton, S. F.; McManus, J.

    1994-03-01

    The source of particulate organic matter (POM) in lacustrine and estuarine sediments from the Tay River catchment has been evaluated using stable carbon and nitrogen isotope and elemental C/N ratios. The δ 13C, δ 15N and C/N compositions of POM from the two environments (respectively -25·4 to -28·0%, 0·2 to 4·0%, 12·17 to 19·5 and -23·2 to -26·6%, 2·6 to 10·6%, 9·03 to 15·71) were statistically distinct, enabling, by use of a simple two component mixing equation, assessment of the ability of each tracer to estimate the terrigenous flux to the estuarine organic matter pool. Estuarial mixing of terrigenous, indigenous estuarine and marine derived organics, recorded by δ 13C data, was only partly confirmed by equivalent δ 15N and C/N compositions which reflected greater control by organic matter diagenesis and biological processing. Limited data indicate sewage derived contributions are insignificant. Of the three tracers employed, only δ 13C ratios are reliable as provenance indicators. Both δ 15N and C/N ratios are limited because the original POM source signature may be lost or overprinted by biochemical alteration prior to and/or soon after deposition. The simultaneous application of these tracers provides substantially more information regarding the source, quality and turnover of sedimentary POM in these contrasting systems than could be achieved using one technique alone.

  6. Structural and Isotopic Analysis of Organic Matter in Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Gilmour, I.

    2003-12-01

    The most ancient organic molecules available for study in the laboratory are those carried to Earth by infalling carbonaceous chondrite meteorites. All the classes of compounds normally considered to be of biological origin are represented in carbonaceous meteorites and, aside from some terrestrial contamination; it is safe to assume that these organic species were produced by nonbiological methods of synthesis. In effect, carbonaceous chondrites are a natural laboratory containing organic molecules that are the product of ancient chemical evolution. Understanding the sources of organic molecules in meteorites and the chemical processes that led to their formation has been the primary research goal. Circumstellar space, the solar nebulae, and asteroidal meteorite parent bodies have all been suggested as environments where organic matter may have been formed. Determination of the provenance of meteoritic organic matter requires detailed structural and isotopic information, and the fall of the Murchison CM2 chondrite in 1969 enabled the first systematic organic analyses to be performed on comparatively pristine samples of extraterrestrial organic material. Prior to that, extensive work had been undertaken on the organic matter in a range of meteorite samples galvanized, in part, by the controversial debate in the early 1960s on possible evidence for former life in the Orgueil carbonaceous chondrite (Fitch et al., 1962; Meinschein et al., 1963). It was eventually demonstrated that the suggested biogenic material was terrestrial contamination ( Fitch and Anders, 1963; Anders et al., 1964); however, the difficulties created by contamination have posed a continuing problem in the analysis and interpretation of organic material in meteorites (e.g., Watson et al., 2003); this has significant implications for the return of extraterrestrial samples by space missions. Hayes (1967) extensively reviewed data acquired prior to the availability of Murchison samples

  7. The temperature sensitivity of organic matter decay in tidal marshes

    NASA Astrophysics Data System (ADS)

    Kirwan, M. L.; Guntenspergen, G. R.; Langley, J. A.

    2014-04-01

    Approximately half of marine carbon sequestration takes place in coastal wetlands, including tidal marshes, where ecosystems accumulate organic matter to build soil elevation and survive sea level rise. The long-term viability of marshes, and their carbon pools, depends in part on how the balance between productivity and decay responds to climate change. Here, we report the sensitivity of soil organic matter decay in tidal marshes to seasonal and latitudinal variations in temperature measured over a 3 year period. We find a moderate increase in decay rate at warmer temperatures (3-6% °C-1, Q10 = 1.3-1.5). Despite the profound differences between microbial metabolism in wetlands and uplands, our results indicate a strong conservation of temperature sensitivity. Moreover, simple comparisons with organic matter production suggest that elevated atmospheric CO2 and warmer temperatures will accelerate carbon accumulation in marsh soils, and enhance their ability to survive sea level rise.

  8. Organic matter in the Saturn system

    NASA Astrophysics Data System (ADS)

    Sagan, C.; Khare, B. N.; Lewis, J. S.

    Theoretical and experimental predictions of the formation (and outgassing) of organic molecules in the outer solar system are compared with Voyager IRIS spectral data for the Titan atmosphere. The organic molecules of Titan are of interest because the species and processes within the atmosphere of that moon may have had analogs in the early earth atmosphere 4 Gyr ago. The spacecraft data confirmed the presence of alkanes, ethane, propane, ethylene, alkynes, acetylene, butadiene, methylacetylene, nitriles, hydrogen cyanide, cyanoacetylene, and cyanogen, all heavier than the dominant CH4. Experimental simulation of the effects of UV photolysis, alpha and gamma ray irradiation, electrical discharges and proton and electron bombardment of similar gas mixtures has shown the best promise for modeling the reactions producing the Titan atmosphere chemicals.

  9. Organic matter in the Saturn system

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Khare, B. N.; Lewis, J. S.

    1984-01-01

    Theoretical and experimental predictions of the formation (and outgassing) of organic molecules in the outer solar system are compared with Voyager IRIS spectral data for the Titan atmosphere. The organic molecules of Titan are of interest because the species and processes within the atmosphere of that moon may have had analogs in the early earth atmosphere 4 Gyr ago. The spacecraft data confirmed the presence of alkanes, ethane, propane, ethylene, alkynes, acetylene, butadiene, methylacetylene, nitriles, hydrogen cyanide, cyanoacetylene, and cyanogen, all heavier than the dominant CH4. Experimental simulation of the effects of UV photolysis, alpha and gamma ray irradiation, electrical discharges and proton and electron bombardment of similar gas mixtures has shown the best promise for modeling the reactions producing the Titan atmosphere chemicals.

  10. Loss of nitrogenous dissolved organic matter from small lakes

    USGS Publications Warehouse

    Manny, Bruce A.; Otsuki, Akira

    1981-01-01

    To determine how much organic nitrogen is lost from lakes during winter by natural processes, we collected water in fall and winter from six small lakes (area, 5-822 hectares) and separated organic matter dissolved in the water with n-butanol into three fractions--yellow organic acids, a white precipitate, and aqueous (nonextractable) organic matter. The nitrogen content of each fraction was measured by ultraviolet photolysis. About 25-30% of the yellow acid and white precipitate fractions were lost from the water column in each of the lakes during winter. More than 80% of the organic nitrogen dissolved in the lake water samples was found in the aqueous fraction. We believe the white precipitate is part of the humin material in lake waters because it was relatively insoluble in acidic and alkaline solutions.

  11. Do soils loose phosphorus with dissolved organic matter?

    NASA Astrophysics Data System (ADS)

    Kaiser, K.; Brödlin, D.; Hagedorn, F.

    2014-12-01

    During ecosystem development and soil formation, primary mineral sources of phosphorus are becoming increasingly depleted. Inorganic phosphorus forms tend to be bound strongly to or within secondary minerals, thus, are hardly available to plants and are not leached from soil. What about organic forms of phosphorus? Since rarely studied, little is known on the composition, mobility, and bioavailability of dissolved organic phosphorus. There is some evidence that plant-derived compounds, such as phytate, bind strongly to minerals as well, while microbial compounds, such as nucleotides and nucleic acids, may represent more mobile fractions of soil phosphorus. In some weakly developed, shallow soils, leaching losses of phosphorus seem to be governed by mobile organic forms. Consequently, much of the phosphorus losses observed during initial stages of ecosystem development may be due to the leaching of dissolved organic matter. However, the potentially mobile microbial compounds are enzymatically hydrolysable. Forest ecosystems on developed soils already depleted in easily available inorganic phosphorus are characterized by rapid recycling of organic phosphors. That can reduce the production of soluble forms of organic phosphorus as well as increase the enzymatic hydrolysis and subsequent plant uptake of phosphorus bound within dissolved organic matter. This work aims at giving an outlook to the potential role of dissolved organic matter in the cycling of phosphorus within developing forest ecosystems, based on literature evidence and first results of ongoing research.

  12. Rapid determination of organic matter in spent sulfuric acid

    SciTech Connect

    Petrenko, V.G.; Takhtaeva, A.Ya.; Frolova, R.P.

    1981-01-01

    Ammonium sulfate is produced with the aid of spent sulfuric acid which averages 0.3 to 0.7% (and sometimes up to 2.5%) of carbon in the form of organic impurities. In the saturator, the latter upset the processing conditions and lower the quality (size analysis, etc.) of the ammonium sulfate. A rapid quality control procedure is essential to obtain timely warning of increased organic matter contents in the acid. On the other hand, the standard procedure in current use (TU38-2-3-1-68), based on the oxidation of organic substances with potassium bichromate in an acid medium, takes 3 hr to complete. Observations have revealed a correlation between the color of the acid and its organic impurity contents. On this basis, we have developed a rapid photocolorimetric procedure for determining the organic impurity contents of sulfuric acid, based on the known proportionality between optical density (light absorption) and solute (dye) content. A calibration curve is used to convert optical density readings to organic impurity contents. It should be pointed out that in contrast to the standard procedure, our procedure only determines the concentration of organic matter in solution in the acid. However, the amounts of insoluble organic matter are negligible compared with the amounts in solution and therefore do not affect the final results.

  13. Detection of organic matter in interstellar grains.

    PubMed

    Pendleton, Y J

    1997-06-01

    Star formation and the subsequent evolution of planetary systems occurs in dense molecular clouds, which are comprised, in part, of interstellar dust grains gathered from the diffuse interstellar medium (DISM). Radio observations of the interstellar medium reveal the presence of organic molecules in the gas phase and infrared observational studies provide details concerning the solid-state features in dust grains. In particular, a series of absorption bands have been observed near 3.4 microns (approximately 2940 cm-1) towards bright infrared objects which are seen through large column densities of interstellar dust. Comparisons of organic residues, produced under a variety of laboratory conditions, to the diffuse interstellar medium observations have shown that aliphatic hydrocarbon grains are responsible for the spectral absorption features observed near 3.4 microns (approximately 2940 cm-1). These hydrocarbons appear to carry the -CH2- and -CH3 functional groups in the abundance ratio CH2/CH3 approximately 2.5, and the amount of carbon tied up in this component is greater than 4% of the cosmic carbon available. On a galactic scale, the strength of the 3.4 microns band does not scale linearly with visual extinction, but instead increases more rapidly for objects near the Galactic Center. A similar trend is noted in the strength of the Si-O absorption band near 9.7 microns. The similar behavior of the C-H and Si-O stretching bands suggests that these two components may be coupled, perhaps in the form of grains with silicate cores and refractory organic mantles. The ubiquity of the hydrocarbon features seen in the near infrared near 3.4 microns throughout out Galaxy and in other galaxies demonstrates the widespread availability of such material for incorporation into the many newly forming planetary systems. The similarity of the 3.4 microns features in any organic material with aliphatic hydrocarbons underscores the need for complete astronomical observational

  14. Andic soils : mineralogical effect onto organic matter dynamics, organic matter effect onto mineral dynamics, or both?

    NASA Astrophysics Data System (ADS)

    Basile-Doelsch, Isabelle; Amundson, Ronald; Balesdent, Jérome; Borschneck, Daniel; Bottero, Jean-Yves; Colin, Fabrice; de Junet, Alexis; Doelsch, Emmanuel; Legros, Samuel; Levard, Clément; Masion, Armand; Meunier, Jean-Dominique; Rose, Jérôme

    2014-05-01

    From a strictly mineralogical point of view, weathering of volcanic glass produces secondary phases that are short range ordered alumino-silicates (SRO-AlSi). These are imogolite tubes (2 to 3 nm of diameter) and allophane supposedly spheres (3.5 to 5 nm). Their local structure is composed of a curved gibbsite Al layer and Si tetrahedra in the vacancies (Q0). Proto-imogolites have the same local structure but are roof-shape nanoparticles likely representing the precursors of imogolite and allophanes (Levard et al. 2010). These structures and sizes give to the SRO-AlSi large specific surfaces and high reactivities. In some natural sites, imogolites and allophanes are formed in large quantities. Aging of these phases may lead to the formation of more stable minerals (halloysite, kaolinite and gibbsite) (Torn et al 1997). In natural environments, when the weathering of volcanic glass is associated with the establishment of vegetation, the soils formed are generally andosols. These soils are particularly rich in organic matter (OM), which is explained by the high ability of SRO-AlSi mineral phases to form bonds with organic compounds. In a first order "bulk" approach, it is considered that these bonds strongly stabilize the organic compounds as their mean age can reach more than 10 kyrs in some studied sites (Basile-Doelsch et al. 2005; Torn et al. 1997). However, the structure of the mineral phases present in andosols deserves more attention. Traditionally, the presence in the SRO-AlSi andosols was shown by selective dissolution approaches by oxalate and pyrophosphate. Using spectroscopic methods, mineralogical analysis of SRO-AlSi in andosols samples showed that these mineral phases were neither imogolites nor allophanes as originally supposed, but only less organized structures remained in a state of proto-imogolites (Basile-Doelsch al. 2005 ; Levard et al., 2012). The presence of OM would have an inhibitory effect on the formation of secondary mineral phases, by

  15. Impact of stylolitization on diagenesis of a Lower Cretaceous carbonate reservoir from a giant oilfield, Abu Dhabi, United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Paganoni, Matteo; Al Harthi, Amena; Morad, Daniel; Morad, Sadoon; Ceriani, Andrea; Mansurbeg, Howri; Al Suwaidi, Aisha; Al-Aasm, Ihsan S.; Ehrenberg, Stephen N.; Sirat, Manhal

    2016-04-01

    Bed-parallel stylolites are a widespread diagenetic feature in Lower Cretaceous limestone reservoirs, Abu Dhabi, United Arab Emirates (UAE). Diagenetic calcite, dolomite, kaolin and small amounts of pyrite, fluorite, anhydrite and sphalerite occur along and in the vicinity of the stylolites. Petrographic observations, negative δ18OVPDB, fluid inclusion microthermometry, and enrichment in 87Sr suggest that these cements have precipitated from hot basinal brines, which migrated along the stylolites and genetically related microfractures (tension gashes). Fluid migration was presumably related to lateral tectonic compression events related to the foreland basin formation. The low solubility of Al3 + in formation waters suggests that kaolin precipitation was linked to derivation of organic acids during organic matter maturation, probably in siliciclastic source rocks. The mass released from stylolitization was presumably re-precipitated as macro- and microcrystalline calcite cement in the host limestones. The flanks of the oilfield (water zone) display more frequent presence and higher amplitude of stylolites, lower porosity and permeability, higher homogenization temperatures and more radiogenic composition of carbonates compared to the crest (oil zone). This indicates that oil emplacement retards diagenesis. This study demonstrates that stylolitization plays a crucial role in fluid flow and diagenesis of carbonate reservoirs during basin evolution.

  16. Composition of dissolved organic matter in groundwater

    NASA Astrophysics Data System (ADS)

    Longnecker, Krista; Kujawinski, Elizabeth B.

    2011-05-01

    Groundwater constitutes a globally important source of freshwater for drinking water and other agricultural and industrial purposes, and is a prominent source of freshwater flowing into the coastal ocean. Therefore, understanding the chemical components of groundwater is relevant to both coastal and inland communities. We used electrospray ionization coupled with Fourier-transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) to examine dissolved organic compounds in groundwater prior to and after passage through a sediment-filled column containing microorganisms. The data revealed that an unexpectedly high proportion of organic compounds contained nitrogen and sulfur, possibly due to transport of surface waters from septic systems and rain events. We matched 292 chemical features, based on measured mass:charge ( m/z) values, to compounds stored in the Kyoto Encyclopedia of Genes and Genomes (KEGG). A subset of these compounds (88) had only one structural isomer in KEGG, thus supporting tentative identification. Most identified elemental formulas were linked with metabolic pathways that produce polyketides or with secondary metabolites produced by plants. The presence of polyketides in groundwater is notable because of their anti-bacterial and anti-cancer properties. However, their relative abundance must be quantified with appropriate analyses to assess any implications for public health.

  17. A marine sink for chlorine in natural organic matter

    NASA Astrophysics Data System (ADS)

    Leri, Alessandra C.; Mayer, Lawrence M.; Thornton, Kathleen R.; Northrup, Paul A.; Dunigan, Marisa R.; Ness, Katherine J.; Gellis, Austin B.

    2015-08-01

    Chloride--the most abundant ion in sea water--affects ocean salinity, and thereby seawater density and ocean circulation. Its lack of reactivity gives it an extremely long residence time. Other halogens are known to be incorporated into marine organic matter. However, evidence of similar transformations of seawater chloride is lacking, aside from emissions of volatile organochlorine by marine algae. Here we report high organochlorine concentrations from 180 to 700 mg kg-1 in natural particulate organic matter that settled into sediment traps at depths between 800 and 3,200 m in the Arabian Sea, taken between 1994 and 1995. X-ray spectromicroscopic imaging of chlorine bonding reveals that this organochlorine exists primarily in concentrated aliphatic forms consistent with lipid chlorination, along with a more diffuse aromatic fraction. High aliphatic organochlorine in particulate material from cultured phytoplankton suggests that primary production is a source of chlorinated organic matter. We also found that particulate algal detritus can act as an organic substrate for abiotic reactions involving Fe2+, H2O2 or light that incorporate chlorine into organic matter at levels up to several grams per kilogram. We conclude that transformations of marine chloride to non-volatile organochlorine through biological and abiotic pathways represent an oceanic sink for this relatively unreactive element.

  18. Pre-biotic organic matter from comets and asteroids.

    PubMed

    Anders, E

    1989-11-16

    Several authors have suggested that comets or carbonaceous asteroids contributed large amounts of organic matter to the primitive Earth, and thus possibly played a vital role in the origin of life. But organic matter cannot survive the extremely high temperatures (>10(4) K) reached on impact, which atomize the projectile and break all chemical bonds. Only fragments small enough to be gently decelerated by the atmosphere--principally meteors of 10(-12)-10(-6) g--can deliver their organic matter intact. The amount of such 'soft-landed' organic carbon can be estimated from data for the infall rate of meteoritic matter. At present rates, only approximately 0.006 g cm-2 intact organic carbon would accumulate in 10(8) yr, but at the higher rates of approximately 4 x 10(9) yr ago, about 20 g cm-2 may have accumulated in the few hundred million years between the last cataclysmic impact and the beginning of life. It may have included some biologically important compounds that did not form by abiotic synthesis on Earth.

  19. Interstellar and Solar System Organic Matter Preserved in Interplanetary Dust

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Nakamura-Messenger, Keiko

    2015-01-01

    Interplanetary dust particles (IDPs) collected in the Earth's stratosphere derive from collisions among asteroids and by the disruption and outgassing of short-period comets. Chondritic porous (CP) IDPs are among the most primitive Solar System materials. CP-IDPs have been linked to cometary parent bodies by their mineralogy, textures, C-content, and dynamical histories. CP-IDPs are fragile, fine-grained (less than um) assemblages of anhydrous amorphous and crystalline silicates, oxides and sulfides bound together by abundant carbonaceous material. Ancient silicate, oxide, and SiC stardust grains exhibiting highly anomalous isotopic compositions are abundant in CP-IDPs, constituting 0.01 - 1 % of the mass of the particles. The organic matter in CP-IDPs is isotopically anomalous, with enrichments in D/H reaching 50x the terrestrial SMOW value and 15N/14N ratios up to 3x terrestrial standard compositions. These anomalies are indicative of low T (10-100 K) mass fractionation in cold molecular cloud or the outermost reaches of the protosolar disk. The organic matter shows distinct morphologies, including sub-um globules, bubbly textures, featureless, and with mineral inclusions. Infrared spectroscopy and mass spectrometry studies of organic matter in IDPs reveals diverse species including aliphatic and aromatic compounds. The organic matter with the highest isotopic anomalies appears to be richer in aliphatic compounds. These materials also bear similarities and differences with primitive, isotopically anomalous organic matter in carbonaceous chondrite meteorites. The diversity of the organic chemistry, morphology, and isotopic properties in IDPs and meteorites reflects variable preservation of interstellar/primordial components and Solar System processing. One unifying feature is the presence of sub-um isotopically anomalous organic globules among all primitive materials, including IDPs, meteorites, and comet Wild-2 samples returned by the Stardust mission.

  20. Caracterisation of anthropogenic contribution to the coastal fluorescent organic matter

    NASA Astrophysics Data System (ADS)

    El Nahhal, Ibrahim; Nouhi, Ayoub; Mounier, Stéphane

    2015-04-01

    It is known that most of the coastal fluorescent organic matter is of a terrestrial origin (Parlanti, 2000; Tedetti, Guigue, & Goutx, 2010). However, the contribution of the anthropogenic organic matter to this pool is not well defined and evaluated. In this work the monitoring of little bay (Toulon Bay, France) was done in the way to determine the organic fluorescent response during a winter period. The sampling campaign consisted of different days during the month of December, 2014 ( 12th, 15th, 17th, 19th) on 21 different sampling sites for the fluorescence measurements (without any filtering of the samples) and the whole month of December for the bacterial and the turbidity measurements. Excitation Emission Matrices (EEMs) of fluorescence (from 200 to 400 nm and 220 to 420 nm excitation and emission range) were treated by parallel factor analysis (PARAFAC).The parafac analysis of the EEM datasets was conducted using PROGMEEF software in Matlab langage. On the same time that the turbidity and bacterial measurement (particularly the E.Coli concentration) were determined. The results gives in a short time range, information on the the contribution of the anthropogenic inputs to the coastal fluorescent organic matter. In addition, the effect of salinity on the photochemical degradation of the anthropogenic organic matter (especially those from wastewater treatment plants) will be studied to investigate their fate in the water end member by the way of laboratory experiments. Parlanti, E. (2000). Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Organic Geochemistry, 31(12), 1765-1781. doi:10.1016/S0146-6380(00)00124-8 Tedetti, M., Guigue, C., & Goutx, M. (2010). Utilization of a submersible UV fluorometer for monitoring anthropogenic inputs in the Mediterranean coastal waters. Marine Pollution Bulletin, 60(3), 350-62. doi:10.1016/j.marpolbul.2009.10.018

  1. Nickel as indicator of fresh organic matter in upwelling sediments

    NASA Astrophysics Data System (ADS)

    Böning, Philipp; Shaw, Tim; Pahnke, Katharina; Brumsack, Hans-Jürgen

    2015-08-01

    Trace metals involved in biological cycling (e.g. Cd, Cu, Ni, Zn) typically accumulate in upwelling sediments due to a high productivity-related particle flux and an enhanced preservation at depth. However, poor constraint on the contribution of lithogenic metal fraction, early diagenetic transformation processes and anthropogenic metal inputs may complicate sediment metal signatures. The identification of source and accumulation mechanisms is essential to the validation of these metals as productivity proxies. Here we combine data from various short cores (upper 50 cm) and two longer cores of organic-rich upwelling sediments (Peru, Namibia, Chile and Gulf of California), which suggest a highly significant, linear and uniform relationship between Ni and total organic carbon (TOC). The overall high Ni enrichment may be explained by the occurrence of diatoms, which dominate productivity in these systems. The Peru surface sediments (upper 2 cm) show a less pronounced Ni-TOC relationship and support a transition between lower Ni/TOC ratio of East Pacific water column particles and the higher Ni/TOC ratio observed in deeper sediments. In Peru surface sediments, the process is confirmed as a stoichiometric relation between Ni and total chlorins (the immediate degradation products of chlorophyll pigments), which is not observed for Cu or Zn. Our data strongly support previous findings that Ni is a clear (if not the best) indicator of the organic sinking flux. This is also due to the fact that Ni signatures undergo less alteration associated with sulfur and manganese cycling and low contribution from anthropogenic sources. The apparently exclusive Ni-chlorin stoichiometry suggests that Ni may be associated with enzymes that are involved in photoautotrophic production, which underlines the previous finding from laboratory experiments and field work that diatoms have a dominant role in marine Ni cycling. The Ni/chlorin ratio increases with increasing sediment depth

  2. Processing of Atmospheric Organic Matter by California Radiation Fogs

    NASA Astrophysics Data System (ADS)

    Collett, J. L.; Youngster, S. B.; Lee, T.; Chang, H.; Herckes, P.

    2005-12-01

    In many environments, organic compounds account for a significant fraction of fine particle mass. Because the lifetimes of accumulation mode aerosol particles are governed largely by interactions with clouds, it is important to understand how organic aerosol particles are processed by clouds and fogs. Recently we have examined the organic composition of radiation fogs in central California as well as how these fogs process organic aerosol particles and soluble organic trace gases. Observations indicate that organic matter is a significant component of the fog droplets, comprising approximately one-third of the total solute mass concentration. Concentrations of total organic carbon (TOC) range from approximately 2 to 41 ppmC. Approximately three-fourths of organic matter is typically found in solution as dissolved organic carbon (DOC). A variety of efforts have been made to characterize the composition of the fog organic matter, including analyses by GC/MS, HPLC, IC, NMR and IR. The most abundant species are typically low molecular weight carboxylic acids, small carbonyls and dicarbonyls, and sugar anhydrides. These species have been observed collectively to account for roughly 20-30 percent of the fog DOC. Dicarboxylic acids, frequently used as model compounds for organic CCN, typically account for only a few percent of the organic carbon, with oxalic acid the most important contributor. A significant portion of the fog DOC appears to be comprised of high molecular weight compounds (> 500 Da). Analyses also reveal the presence of organic molecular markers associated with particles produced by various combustion processes. Comparisons of pre-fog and interstitial aerosol samples reveal differences in the relative particle scavenging efficiencies of the fog drops between organic and elemental carbon and between different types of organic carbon. Measurements using a two-stage fog water collector reveal that organic matter tends to be enriched in smaller fog droplets

  3. Aggregation of organic matter by pelagic tunicates

    SciTech Connect

    Pomeroy, L.R.; Deibel, D.

    1980-07-01

    Three genera of pelagic tunicates were fed concentrates of natural seston and an axenic diatom culture. Fresh and up to 4-day-old feces resemble flocculent organic aggregates containing populations of microorganisms, as described from highly productive parts of the ocean, and older feces resemble the nearly sterile flocculent aggregates which are ubiquitous in surface waters. Fresh feces consist of partially digested phytoplankton and other inclusions in an amorphous gelatinous matrix. After 18 to 36 h, a population of large bacteria develops in the matrix and in some of the remains of phytoplankton contained in the feces. From 48 to 96 h, protozoan populations arise which consume the bacteria and sometimes the remains of the phytoplankton in the feces. Thereafter only a sparse population of microorganisms remains, and the particles begin to fragment. Water samples taken in or below dense populations of salps and doliolids contained greater numbers of flocculent aggregates than did samples from adjacent stations.

  4. Search for Organic Matter in Leonid Meteoroids

    NASA Astrophysics Data System (ADS)

    Rairden, Richard L.; Jenniskens, Peter; Laux, Christophe O.

    Near-ultraviolet 300-410 nm spectra of Leonid meteoroids were obtained in an effort to measure the strong B --> X emission band of the radical CN in Leonid meteor spectra at 387 nm. CN is an expected product of ablation of nitrogen containing organic carbon in the meteoroids as well as a possible product of the aerothermochemistry induced by the kinetic energy of the meteor. A slit-less spectrograph with objective grating was deployed on FISTA during the 1999 Leonid Multi-Instrument Aircraft Campaign. Fifteen first-order UV spectra were captured near the 02:00 UT meteor storm peak on November 18. It is found that neutral iron lines dominate the spectrum, with no clear sign of the CN band. The meteor plasma contains less than one CN molecule per 3 Fe atoms at the observed altitude of about 100 km.

  5. Search for Organic Matter in Leonid Meteoroids

    NASA Technical Reports Server (NTRS)

    Rairden, Richard L.; Jenniskens, Peter; Laux, Christophe O.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Near-ultraviolet 300-410 nm spectra of Leonid meteors were obtained in an effort to measure the strong B to X emission band of the radical CN in Leonid meteor spectra at 387 nm. CN is an expected product of ablation of nitrogen containing organic carbon in the meteoroids as well as a possible product of the aerothermochemistry induced by the kinetic energy of the meteor. A slitless spectrograph with objective grating was deployed on FISTA during the 1999 Leonid Multi-Instrument Aircraft Campaign. Fifteen first-order UV spectra were captured near the 02:00 UT meteor storm peak on November 18. It is found that neutral iron lines dominate the spectrum, with no clear sign of the CN band. The meteor plasma contains less than one CN molecule per three Fe atoms at the observed altitude of about 100 km.

  6. dSED: A database tool for modeling sediment early diagenesis

    NASA Astrophysics Data System (ADS)

    Katsev, S.; Rancourt, D. G.; L'Heureux, I.

    2003-04-01

    Sediment early diagenesis reaction transport models (RTMs) are becoming powerful tools in providing kinetic descriptions of the metal and nutrient diagenetic cycling in marine, lacustrine, estuarine, and other aquatic sediments, as well as of exchanges with the water column. Whereas there exist several good database/program combinations for thermodynamic equilibrium calculations in aqueous systems, at present there exist no database tools for classification and analysis of the kinetic data essential to RTM development. We present a database tool that is intended to serve as an online resource for information about chemical reactions, solid phase and solute reactants, sorption reactions, transport mechanisms, and kinetic and equilibrium parameters that are relevant to sediment diagenesis processes. The list of reactive substances includes but is not limited to organic matter, Fe and Mn oxides and oxyhydroxides, sulfides and sulfates, calcium, iron, and manganese carbonates, phosphorus-bearing minerals, and silicates. Aqueous phases include dissolved carbon dioxide, oxygen, methane, hydrogen sulfide, sulfate, nitrate, phosphate, some organic compounds, and dissolved metal species. A number of filters allow extracting information according to user-specified criteria, e.g., about a class of substances contributing to the cycling of iron. The database also includes bibliographic information about published diagenetic models and the reactions and processes that they consider. At the time of preparing this abstract, dSED contained 128 reactions and 12 pre-defined filters. dSED is maintained by the Lake Sediment Structure and Evolution (LSSE) group at the University of Ottawa (www.science.uottawa.ca/LSSE/dSED) and we invite input from the geochemical community.

  7. The mathematics of early diagenesis: From worms to waves

    NASA Astrophysics Data System (ADS)

    Boudreau, Bernard P.

    2000-08-01

    The changes that sediments undergo after deposition are collectively known as diagenesis. Diagenesis is not widely recognized as a source for mathematical ideas; however, the myriad processes responsible for these changes lead to a wide variety of mathematical models. In fact, most of the classical models and methods of applied mathematics emerge naturally from quantification of diagenesis. For example, small-scale sediment mixing by bottom-dwelling animals can be described by the diffusion equation; the dissolution of biogenic opal in sediments leads to sets of coupled, nonlinear, ordinary differential equations; and modeling organisms that eat at depth in the sediment and defecate at the surface suggests the one-dimensional wave equation, while the effect of waves on pore waters is governed by the two- or three-dimensional wave equation. Diagenetic modeling, however, is not restricted to classical methods. Diagenetic problems of concern to modern mathematics exist in abundance; these include free-boundary problems that predict the depth of biological mixing or the penetration of O2 into sediments, algebraic-differential equations that result from the fast-reversible reactions that regulate pH in pore waters, inverse calculations of input functions (histories), and the determination of the optimum choice in a hierarchy of possible diagenetic models. This review highlights and explores these topics with the hope of encouraging further modeling and analysis of diagenetic phenomena.

  8. Lyophilization and Reconstitution of Reverse Osmosis Concentrated Natural Organic Matter

    EPA Science Inventory

    Disinfection by-product (DBP) research can be complicated by difficulties in shipping large water quantities and changing natural organic matter (NOM) characteristics over time. To overcome these issues, it is advantageous to have a reliable method for concentrating and preservin...

  9. Quenching and Sensitizing Fullerene Photoreactions by Natural Organic Matter

    EPA Science Inventory

    Effects of natural organic matter (NOM) on the photoreaction kinetics of fullerenes (i.e., C60 and fullerenol) were investigated using simulated sunlight and monochromatic radiation (365 nm). NOM from several sources quenched (slowed) the photoreaction of C60 aggregates in water ...

  10. Lyophilization and Reconstitution of Reverse Osmosis Concentrated Natural Organic Matter

    EPA Science Inventory

    Disinfection by-product (DBP) research can be complicated by difficulties in shipping large water quantities and changing natural organic matter (NOM) characteristics over time. To overcome these issues, it is advantageous to have a reliable method for concentrating and preservin...

  11. Photoproduction of Carbon Monoxide from Natural Organic Matter

    EPA Science Inventory

    Pioneering studies by Valentine provided early kinetic results that used carbon monoxide (CO) production to evaluate the photodecomposition of aquatic natural organic matter (NOM) . (ES&T 1993 27 409-412). Comparatively few kinetic studies have been conducted of the photodegradat...

  12. Soil organic matter as sole indicator of soil degradation

    Treesearch

    S.E. Obalum; G.U. Chibuike; S. Peth; Ying Ouyang

    2017-01-01

    Soil organic matter (SOM) is known to play vital roles in the maintenance and improvement of many soil properties and processes. These roles, which largely influence soil functions, are a pool of specific contributions of different components of SOM. The soil functions, in turn, normally define the level of soil degradation, viewed as quantifiable temporal changes in a...

  13. Photoproduction of Carbon Monoxide from Natural Organic Matter

    EPA Science Inventory

    Pioneering studies by Valentine provided early kinetic results that used carbon monoxide (CO) production to evaluate the photodecomposition of aquatic natural organic matter (NOM) . (ES&T 1993 27 409-412). Comparatively few kinetic studies have been conducted of the photodegradat...

  14. Quenching and Sensitizing Fullerene Photoreactions by Natural Organic Matter

    EPA Science Inventory

    Effects of natural organic matter (NOM) on the photoreaction kinetics of fullerenes (i.e., C60 and fullerenol) were investigated using simulated sunlight and monochromatic radiation (365 nm). NOM from several sources quenched (slowed) the photoreaction of C60 aggregates in water ...

  15. Calculation of the enthalpy of formation of coal organic matter

    SciTech Connect

    A.M. Gyul'maliev; M.Ya. Shpirt

    2008-10-15

    The enthalpy of formation for the organic matter of coals in the coal rank series was calculated from the heat of the complete combustion reaction. Three variants were considered in which the experimental heating values and the values found from the correlation equation or calculated using the Mendeleev formula were taken as the heat of the complete combustion of coals.

  16. Organic matter in a coal ball: Peat or coal?

    USGS Publications Warehouse

    Hatcher, P.G.; Lyons, P.C.; Thompson, C.L.; Brown, F.W.; Maciel, G.E.

    1982-01-01

    Chemical analyses of morphologically preserved organic matter in a Carboniferous coal ball reveal that the material is coalified to a rank approximately equal to that of the surrounding coal. Hence, the plant tissues in the coal ball were chemically altered by coalification processes and were not preserved as peat. Copyright ?? 1982 AAAS.

  17. Advanced solid-state NMR spectroscopy of natural organic matter

    USDA-ARS?s Scientific Manuscript database

    Solid-state NMR is essential for the characterization of natural organic matter (NOM) and is gaining importance in geosciences and environmental sciences. This review is intended to highlight advanced solid-state NMR techniques, especially the systematic approach to NOM characterization, and their ...

  18. The Relationship Between Dissolved Organic Matter Composition and Organic Matter Optical Properties in Freshwaters

    NASA Astrophysics Data System (ADS)

    Aiken, G.; Spencer, R. G.; Butler, K.

    2010-12-01

    Dissolved organic matter (DOM) chemistry and flux are potentially useful, albeit, underutilized, indicators of watershed characteristics, climate influences on watershed hydrology and soils, and changes associated with resource management. Source materials, watershed geochemistry, oxidative processes and hydrology exert strong influences on the nature and reactivity of DOM in aquatic systems. The molecules that comprise DOM, in turn, control a number of environmental processes important for ecosystem function including light penetration and photochemistry, microbial activity, mineral dissolution/precipitation, and the transport and reactivity of hydrophobic compounds and metals (e.g. Hg). In particular, aromatic molecules derived from higher plants exert strong controls on aquatic photochemistry, and on the transport and biogeochemistry of metals. Assessment of DOM composition and transport, therefore, can provide a basis for understanding watershed processes and biogeochemistry of rivers and streams. Here we present results of multi-year studies designed to assess the seasonal and spatial variability of DOM quantity and quality for 57 North American Rivers. DOM concentrations and composition, based on DOM fractionation on XAD resins, ultraviolet (UV)/visible absorption and fluorescence spectroscopic analyses, and specific compound analyses, varied greatly both between sites and seasonally within a given site. DOM in these rivers exhibited a wide range of concentration (<80 to >4000 µM C* L-1) and specific ultra-violet absorbance at 254 nm (SUVA254) (0.6 to 5 L *mg C-1 *m-1), an optical measurement that is an indicator of aromatic carbon content. In almost all systems, UV absorbance measured at specific wavelengths (e.g. 254 nm) correlated strongly with DOM and hydrophobic organic acid (HPOA) content (aquatic humic substances). The relationships between dissolved organic carbon (DOC) concentration and absorbance for the range of systems were quite variable due to

  19. CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) DERIVED FROM DECOMPOSITION OF VARIOUS VASCULAR PLANT AND ALGAL SOURCES

    EPA Science Inventory

    Chromophoric dissolved organic (CDOM) in aquatic environments is derived from the microbial decomposition of terrestrial and microbial organic matter. Here we present results of studies of the spectral properties and photoreactivity of the CDOM derived from several organic matter...

  20. Organic and Inorganic Matter in Louisiana Coastal Waters: Vermilion, Atchafalaya, Terrebonne, Barataria, and Mississippi Regions.

    EPA Science Inventory

    Chromophoric dissolved organic matter (CDOM) spectral absorption, dissolved organic carbon (DOC) concentration, and the particulate fraction of inorganic (PIM) and organic matter (POM) were measured in Louisiana coastal waters at Vermilion, Atchafalaya, Terrebonne, Barataria, and...

  1. CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) DERIVED FROM DECOMPOSITION OF VARIOUS VASCULAR PLANT AND ALGAL SOURCES

    EPA Science Inventory

    Chromophoric dissolved organic (CDOM) in aquatic environments is derived from the microbial decomposition of terrestrial and microbial organic matter. Here we present results of studies of the spectral properties and photoreactivity of the CDOM derived from several organic matter...

  2. Molecular characterization of soil organic matter: a historic overview

    NASA Astrophysics Data System (ADS)

    Kögel-Knabner, Ingrid; Rumpel, Cornelia

    2014-05-01

    The characterization of individual molecular components of soil organic matter started in the early 19th century, but proceeded slowly. The major focus at this time was on the isolation and differentiation of different humic and fulvic acid fractions, which were considered to have a defined chemical composition and structure. The isolation and structural anlysis of specific individual soil organic matter components became more popular in the early 20th century. In 1936 40 different individual compounds had been isolated and a specific chemical strucutre had been attributed. These structural attributions were confirmed later for some, but not all of these individual compounds. In the 1950 much more individual compounds could be isolated and characterized, using complicated and time consuming chromatography. It became obvious that soil also contains a number of compounds of microbial origin, such as e.g., amino sugars and lipids. With the improvement of chrmoatographic separation techniques and the use of gas chromatography in combination with thin layerchromatography in the 1960 hundreds of individual compounds have been isolated and identified, most of them after chemical degradation of humic or fulvic acids. The chemical degradative techniques were amended with analytical pyrolysis in the 1970s. More and more, bulk soil organic matter was analyzed with these techniques and the advent of solid-stae 13C NMR spectroscopy around the 1980s allowed for the characterization of the composition of bulk soil organic matter. The gas chromatographic separation of organic matter can nowadays be combined with specific detectors, such that specific attributes ofindividual molecules can be analyzed, e.g. the radiocarbon content or the stable isotope composition.

  3. Organic compounds in the particulate matter from burning organic soils

    Treesearch

    Charles K. McMahon; Jerry D. White; Skevos N. Tsoukalas

    1985-01-01

    This paper is directed to people interested in the environmental impact of natural emissions. Natural emissions are common and contribute significantly to tropospheric background levels. Several million hectares of the United States are covered by organic soils. During droughts, these soils can ignite and support slow combustion which often persists for weeks causing...

  4. Organic matter variations in transgressive and regressive shales

    USGS Publications Warehouse

    Pasley, M.A.; Gregory, W.A.; Hart, G.F.

    1991-01-01

    Organic matter in the Upper Cretaceous Mancos Shale adjacent to the Tocito Sandstone in the San Juan Basin of New Mexico was characterized using organic petrology and organic geochemistry. Differences in the organic matter found in these regressive and transgressive offshore marine sediments have been documented and assessed within a sequence stratigraphic framework. The regressive Lower Mancos Shale below the Tocito Sandstone contains abundant well preserved phytoclasts and correspondingly low hydrogen indices. Total organic carbon values for the regressive shale are low. Sediments from the transgressive systems tract (Tocito Sandstone and overlying Upper Mancos Shale) contain less terrestrially derived organic matter, more amorphous non-structured protistoclasts, higher hydrogen indices and more total organic carbon. Advanced stages of degradation are characteristic of the phytoclasts found in the transgressive shale. Amorphous material in the transgressive shale fluoresces strongly while that found in the regressive shale is typically non-fluorescent. Data from pyrolysis-gas chromatography confirm these observations. These differences are apparently related to the contrasting depositional styles that were active on the shelf during regression and subsequent transgression. It is suggested that data from organic petrology and organic geochemistry provide greater resolution in sedimentologic and stratigraphic interpretations, particularly when working with basinward, fine-grained sediments. Petroleum source potential for the regressive Lower Mancos Shale below the Tocito Sandstone is poor. Based on abundant fluorescent amorphous material, high hydrogen indices, and high total organic carbon, the transgressive Upper Mancos Shale above the Tocito Sandstone possesses excellent source potential. This suggests that appreciable source potential can be found in offshore, fine-grained sediments of the transgressive systems tract below the condensed section and associated

  5. An Investigation Into the Molecular and Isotopic Composition of Diatom Frustule-Bound Organic Matter: Method Development for New Proxies

    NASA Astrophysics Data System (ADS)

    Bridoux, M. C.; Ingalls, A. E.

    2009-12-01

    Diatoms are single cell phytoplankton that are ubiquitous in marine ecosystems and are responsible for up to 40% of the carbon fixed annually in the ocean. Their intricately nanopatterned siliceous frustules are formed under the control of template organic molecules, some of which are incorporated into the frustule during growth. Several diatom frustule-based paleoproxies have been developed to exploit these microfossils because they are from a known phytoplankton source that is relatively unaltered from diagenesis. Among these proxies, diatom frustule-bound organic matter (OM) is recognized as a potentially important material for use in paleoreconstructions of past productivity (13C/12C), nutrient utilization (15N/14N) as well as to determine the radiocarbon age of sedimentary frustules (Δ14C). Despite numerous advances, diatom frustule-bound OM remains poorly characterized. Here we focus on the chemical characterization of diatom frustule-bound OM with the goal of developing molecular and compound-specific isotope methods to better reconstruct the past environments of diatom rich regions such as the Southern Ocean and the North Pacific. To do this, we 1) chemically cleaned diatom frustules, 2) dissolve them in HF to release organic compounds embedded in the frustules and 3) unambiguously characterized this organic matter by ion pairing reversed phase liquid chromatography coupled to diode array, electrospray ionization - ion trap mass spectrometry (ESI/IT-MSn) and accurate mass quadrupole time of flight mass spectrometry (Q-TOF). These analyses reveal the presence of low molecular weight, UV light absorbing compounds called mycosporine-like amino acids (MAAs) and a series of long chain polyamines (LCPAs) consisting of N-methylated derivatives of polypropyleneimine units attached to putrescine. LCPAs are known to direct silicification, while MAAs are thought to provide sunscreen to many marine organisms. The presence of these specific biomarkers in sediment

  6. Production of fluorescent dissolved organic matter in Arctic Ocean sediments

    PubMed Central

    Chen, Meilian; Kim, Ji-Hoon; Nam, Seung-Il; Niessen, Frank; Hong, Wei-Li; Kang, Moo-Hee; Hur, Jin

    2016-01-01

    Little is known about the production of fluorescent dissolved organic matter (FDOM) in the anoxic oceanic sediments. In this study, sediment pore waters were sampled from four different sites in the Chukchi-East Siberian Seas area to examine the bulk dissolved organic carbon (DOC) and their optical properties. The production of FDOM, coupled with the increase of nutrients, was observed above the sulfate-methane-transition-zone (SMTZ). The presence of FDOM was concurrent with sulfate reduction and increased alkalinity (R2 > 0.96, p < 0.0001), suggesting a link to organic matter degradation. This inference was supported by the positive correlation (R2 > 0.95, p < 0.0001) between the net production of FDOM and the modeled degradation rates of particulate organic carbon sulfate reduction. The production of FDOM was more pronounced in a shallow shelf site S1 with a total net production ranging from 17.9 to 62.3 RU for different FDOM components above the SMTZ depth of ca. 4.1 mbsf, which presumably underwent more accumulation of particulate organic matter than the other three deeper sites. The sediments were generally found to be the sources of CDOM and FDOM to the overlying water column, unearthing a channel of generally bio-refractory and pre-aged DOM to the oceans. PMID:27982085

  7. Production of fluorescent dissolved organic matter in Arctic Ocean sediments.

    PubMed

    Chen, Meilian; Kim, Ji-Hoon; Nam, Seung-Il; Niessen, Frank; Hong, Wei-Li; Kang, Moo-Hee; Hur, Jin

    2016-12-16

    Little is known about the production of fluorescent dissolved organic matter (FDOM) in the anoxic oceanic sediments. In this study, sediment pore waters were sampled from four different sites in the Chukchi-East Siberian Seas area to examine the bulk dissolved organic carbon (DOC) and their optical properties. The production of FDOM, coupled with the increase of nutrients, was observed above the sulfate-methane-transition-zone (SMTZ). The presence of FDOM was concurrent with sulfate reduction and increased alkalinity (R(2) > 0.96, p < 0.0001), suggesting a link to organic matter degradation. This inference was supported by the positive correlation (R(2) > 0.95, p < 0.0001) between the net production of FDOM and the modeled degradation rates of particulate organic carbon sulfate reduction. The production of FDOM was more pronounced in a shallow shelf site S1 with a total net production ranging from 17.9 to 62.3 RU for different FDOM components above the SMTZ depth of ca. 4.1 mbsf, which presumably underwent more accumulation of particulate organic matter than the other three deeper sites. The sediments were generally found to be the sources of CDOM and FDOM to the overlying water column, unearthing a channel of generally bio-refractory and pre-aged DOM to the oceans.

  8. Production of fluorescent dissolved organic matter in Arctic Ocean sediments

    NASA Astrophysics Data System (ADS)

    Chen, Meilian; Kim, Ji-Hoon; Nam, Seung-Il; Niessen, Frank; Hong, Wei-Li; Kang, Moo-Hee; Hur, Jin

    2016-12-01

    Little is known about the production of fluorescent dissolved organic matter (FDOM) in the anoxic oceanic sediments. In this study, sediment pore waters were sampled from four different sites in the Chukchi-East Siberian Seas area to examine the bulk dissolved organic carbon (DOC) and their optical properties. The production of FDOM, coupled with the increase of nutrients, was observed above the sulfate-methane-transition-zone (SMTZ). The presence of FDOM was concurrent with sulfate reduction and increased alkalinity (R2 > 0.96, p < 0.0001), suggesting a link to organic matter degradation. This inference was supported by the positive correlation (R2 > 0.95, p < 0.0001) between the net production of FDOM and the modeled degradation rates of particulate organic carbon sulfate reduction. The production of FDOM was more pronounced in a shallow shelf site S1 with a total net production ranging from 17.9 to 62.3 RU for different FDOM components above the SMTZ depth of ca. 4.1 mbsf, which presumably underwent more accumulation of particulate organic matter than the other three deeper sites. The sediments were generally found to be the sources of CDOM and FDOM to the overlying water column, unearthing a channel of generally bio-refractory and pre-aged DOM to the oceans.

  9. Natural organic matter properties in Swedish agricultural streams

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Kyllmar, Katarina; Bergström, Lars; Köhler, Stephan

    2017-04-01

    The following paper shows natural organic matter (NOM) properties of stream water samples collected from 8 agricultural streams and 12 agricultural observational fields in Sweden. The catchments and observational fields cover a broad range of environmental (climate, soil type), land use and water quality (nutrient and concentrations, pH, alkalinity) characteristics. Stream water samples collected every two weeks within an ongoing Swedish Monitoring Programme for Agriculture have been analysed for total/dissolved organic carbon, absorbance and fluorescence spectroscopy. A number of quantitative and qualitative spectroscopic parameters was calculated to help to distinguish between terrestrially-derived, refractory organic material and autochthonous, labile material indicative of biogeochemical transformations of terrestrial NOM and recent biological production. The study provides insights into organic matter properties and carbon budgets in agricultural streams and improves understanding of how agricultural catchments transform natural and anthropogenic fluxes of organic matter and nutrients. The insights from the grab sampling are supported by high-frequency turbidity, fulvic-like and tryptophan-like fluorescence measurements with in situ optical sensor.

  10. Cumulative effects of biochar, mineral and organic fertilizers on soil organic matter

    NASA Astrophysics Data System (ADS)

    Plaza, César; López-de-Sá, Esther G.; Gascó, Gabriel; Méndez, Ana; Zaccone, Claudio

    2016-04-01

    We investigated the effect of three consecutive annual applications of biochar at rates of 0 and 20 t ha-1, in a factorial combination with a mineral fertilizer (NPK and nitrosulfate) and two types of organic amendment (municipal solid waste compost and sewage sludge), on soil organic matter in a field experiment under Mediterranean conditions. Biochar increased significantly soil organic C content and C/N ratio. In biochar-amended soils, soil organic C increased significantly with the addition of municipal solid waste compost and sewage sludge. To capture organic matter protection mechanisms related to aggregation and mineral interaction, the soil samples will be fractionated into free (unprotected), intra-macroaggregate, intra-microaggregate, and mineral-associated organic matter pools, and the isolated fractions will be subjected to further chemical and spectroscopic analysis.

  11. Pre-biotic organic matter from comets and asteroids

    NASA Technical Reports Server (NTRS)

    Anders, Edward

    1989-01-01

    Only meteoritic fragments small enough to be gently decelerated by the atmosphere (10 to the -12th g to 10 to the -6th g) can deliver organic matter intact. The amount of such 'soft-landed' organic carbon can be estimated from data for the infall rate of meteoritic matter. At present rates, only about 0.0006 g/sq cm intact organic carbon would accumulate in 100 million years, but at the higher rates of about four billion yr ago, about 20 g/sq cm may have accumulated in the few hundred million years between the last cataclysmic impact and the beginning of life. It may have included some biologically important compounds that did not form by abiotic synthesis on earth.

  12. Bacterial biomarkers thermally released from dissolved organic matter

    USGS Publications Warehouse

    Greenwood, P.F.; Leenheer, J.A.; McIntyre, C.; Berwick, L.; Franzmann, P.D.

    2006-01-01

    Hopane biomarker products were detected using microscale sealed vessel (MSSV) pyrolysis gas chromatography-mass spectrometry (GC-MS) analysis of dissolved organic matter from natural aquatic systems colonised by bacterial populations. MSSV pyrolysis can reduce the polyhydroxylated alkyl side chain of bacteriohopanepolyols, yielding saturated hopane products which are more amenable to GC-MS detection than their functionalised precursors. This example demonstrates how the thermal conditions of MSSV pyrolysis can reduce the biologically-inherited structural functionality of naturally occurring organic matter such that additional structural fragments can be detected using GC methods. This approach complements traditional analytical pyrolysis methods by providing additional speciation information useful for establishing the structures and source inputs of recent or extant organic material. ?? 2006.

  13. Pre-biotic organic matter from comets and asteroids

    NASA Technical Reports Server (NTRS)

    Anders, Edward

    1989-01-01

    Only meteoritic fragments small enough to be gently decelerated by the atmosphere (10 to the -12th g to 10 to the -6th g) can deliver organic matter intact. The amount of such 'soft-landed' organic carbon can be estimated from data for the infall rate of meteoritic matter. At present rates, only about 0.0006 g/sq cm intact organic carbon would accumulate in 100 million years, but at the higher rates of about four billion yr ago, about 20 g/sq cm may have accumulated in the few hundred million years between the last cataclysmic impact and the beginning of life. It may have included some biologically important compounds that did not form by abiotic synthesis on earth.

  14. Nature of particulate organic matter in the River Indus, Pakistan

    NASA Astrophysics Data System (ADS)

    Ittekkot, Venugopalan; Arain, Rafee

    1986-08-01

    Suspended sediments from the Indus River collected during 1981 through 1983 were analyzed for POC and its constituent fractions including amino acids, amino sugars and sugars. Percentage of POC decreased with increasing suspended matter concentrations, which suggested dilution of organic matter by mineral matter. The concentrations of amino acids, amino sugars and sugars varied, respectively, between 180 and 2000 μg/l, 5 and 125 μg/l, and 60 and 1100 μg/l. Their contributions to POC varied between 2 and 60% for amino acids and amino sugars, and between 2 and 15% for sugars. They were high during low sediment discharge (February to June), and low during high sediment discharge (August and September). Suspended sediments associated with high sediment discharge periods were characterized by low ratios of: (i) aspartic acid:β-alanine (ii) glutamic acid:γ-aminobutyric acid (iii) amino acids:amino sugars (iv) hexoses:pentoses. These and the relative distribution pattern of the monosaccharides such as galactose, arabinose, mannose and xylose indicated that, not only dilution, but also differences in the sources and processes affect the POC transport in the Indus River. These result in transport of biodegraded organic matter during high sediment discharge periods: this appears to be common to other major rivers of the region, with depositional centers in deep sea areas. These rivers, with their high sediment loads, could contribute up to 8 to 11% of the global annual organic carbon burial in marine sediments.

  15. Soil Organic Matter Content Effects on Dermal Pesticide ...

    EPA Pesticide Factsheets

    Agricultural landscapes serve as active amphibian breeding grounds despite their seemingly poor habitat value. Activity of adults and dispersal of metamorphs to and from agricultural ponds occurs in most species from spring through late summer or early fall, a time that coincides with pesticide applications on farm fields and crops. In terrestrial landscapes, dermal contact with contaminated soil and plant matter may lead to bioconcentration as well as lethal and sublethal effects in amphibians.Although the physiological structure of the amphibian dermis may facilitate pesticide uptake, soil properties may ultimately dictate bioavailability of pesticides in terrestrial habitats. The organic matter fraction of soil readily binds to pesticides, potentially decreasing the availability of pesticides adhering to biological matter. Soil partition coefficient organic carbon content and soil-specific Koc values may be important to indicating pesticide bioavailability and potential bioconcentration in amphibians. Our study was designed to evaluate dermal uptake of five pesticide active ingredients on either high or low organic matter soils. We predicted that amphibian body burdens would be a function of soil carbon content or Koc. with greater bioconcentration in individuals exposed to pesticides on sa

  16. A comparison of soil organic matter physical fractionation methods

    NASA Astrophysics Data System (ADS)

    Duddigan, Sarah; Alexander, Paul; Shaw, Liz; Collins, Chris

    2017-04-01

    Selecting a suitable physical fractionation to investigate soil organic matter dynamics from the plethora that are available is a difficult task. An initial investigation of four different physical fractionation methods was conducted (i) Six et al. (2002); (ii) Zimmermann et al. (2007); (iii) Sohi et al. (2001); and (iv) Plaza et al. (2013). Soils used for this were from a long-term organic matter field plot study where a sandy loam soil was subjected to the following treatments: Peat (Pt), Horse Manure (H), Garden Compost (GCf), Garden Compost at half rate (GCh), and a bare plot control (BP). Although each of these methods involved the isolation of unique fractions, in the interest of comparison, each fraction was categorised as either being (i) physically protected (i.e. in aggregates); (ii) chemically protected (such as in organo-mineral complexes); or (iii) unprotected by either of these mechanisms (so-called 'free' organic matter). Regardless of the fractionation method used, a large amount of the variation in total C contents of the different treated soils is accounted for by the differences in unprotected particulate organic matter. When comparing the methods to one another there were no consistent differences in carbon content in the physically protected, chemically protected, or unprotected fractions as operationally defined across all the five organic matter treatments. Therefore fractionation method selection, for this research, was primarily driven by the practicalities of conducting each method in the lab. All of the methods tested had their limitations, for use in this research. This is not a criticism of the methods themselves but largely a result of the lack of suitability for these particular samples. For example, samples that contain a lot of gravel can lead to problems for methods that use size distribution for fractionation. Problems can also be encountered when free particulate organic matter contributes a large proportion of the sample

  17. Loss of organic matter from riverine particles in deltas

    SciTech Connect

    Keil, R.G.; Quay, P.D.; Richey, J.E.

    1997-04-01

    In order to examine the transport and burial of terrigenous organic matter along the coastal zones of large river systems, we assessed organic matter dynamics in coupled river/delta systems using mineral surface area as a conservative tracer for discharged riverine particulate organic matter (POM). Most POM in the rivers studied (n = 6) is tightly associated with suspended mineral materiaL e.g., it is sorbed to mineral surfaces. Average organic loadings in the Amazon River (0.67 - 0.14 Mg C m{sup -2}), the river for which we have the largest dataset, are approximately twice that of sedimentary minerals from the Amazon Delta (-0.35 mg C m{sup -2}). Stable carbon isotope analysis indicate that approximately two-thirds of the total carbon on the deltaic particles is terrestrial. The combined surface-normalized, isotope-distinguished estimate is that >70% of the Amazon fluvial POM is not buried in the delta consistent with other independent evidence. Losses of terrestrial POM have also been quantified for the river/delta systems of Columbia in the USA, Fly in New Guinea. and Huange-He in China. If the losses of riverine POM observed in these river/delta systems are representative of rivers worldwide, then the surface-constrained analyses point toward a global loss of fluvial POM in delta regions of {approximately}0.1 x 10{sup 15} g C y{sup -1}. 28 refs., 2 figs., 1 tab.

  18. Preservation of organic matter in sediments promoted by iron.

    PubMed

    Lalonde, Karine; Mucci, Alfonso; Ouellet, Alexandre; Gélinas, Yves

    2012-03-07

    The biogeochemical cycles of iron and organic carbon are strongly interlinked. In oceanic waters, organic ligands have been shown to control the concentration of dissolved iron. In soils, solid iron phases shelter and preserve organic carbon, but the role of iron in the preservation of organic matter in sediments has not been clearly established. Here we use an iron reduction method previously applied to soils to determine the amount of organic carbon associated with reactive iron phases in sediments of various mineralogies collected from a wide range of depositional environments. Our findings suggest that 21.5 ± 8.6 per cent of the organic carbon in sediments is directly bound to reactive iron phases. We further estimate that a global mass of (19-45) × 10(15) grams of organic carbon is preserved in surface marine sediments as a result of its association with iron. We propose that these associations between organic carbon and iron, which are formed primarily through co-precipitation and/or direct chelation, promote the preservation of organic carbon in sediments. Because reactive iron phases are metastable over geological timescales, we suggest that they serve as an efficient 'rusty sink' for organic carbon, acting as a key factor in the long-term storage of organic carbon and thus contributing to the global cycles of carbon, oxygen and sulphur.

  19. Organic matter determination for street dust in Delhi.

    PubMed

    Shandilya, Kaushik K; Khare, Mukesh; Gupta, A B

    2013-06-01

    The organic matter of street dust is considered as one of the causes for high human mortality rate. To understand the association, the street dust samples were collected from four different localities (industrial, residential, residential-commercial, and commercial) situated in the greater Delhi area of India. The loss-on-ignition method was used to determine the organic matter (OM) content in street dust. The OM content, potassium, calcium, sulfate, and nitrate concentrations of street dust in Delhi, India is measured to understand the spatial variation. Correlation analysis, analysis of variance, and factor analysis were performed to define the sources. The dust OM level ranges from 2.63 to 10.22 %. It is found through correlation and factor analysis that OM is primarily contributed from secondary aerosol and vehicular exhaust. The OM levels suggest that the use of a residential-commercial site for commercial purposes is polluting the street dust and creating the environmental and human health problems.

  20. Photochemical Degradation of Persistent Organic Pollutants: A Study of Ice Photochemistry Mediated by Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Bobby, R.; Pagano, L.; Grannas, A. M.

    2012-12-01

    It is well established that ice is a reactive medium in the environment and that active photochemistry occurs in frozen systems. Snow and ice contain a number of absorbing species including nitrate, peroxide and organic matter. Upon irradiation, they can generate a variety of reactive intermediates such as hydroxyl radical and singlet oxygen. It has been shown that dissolved organic matter is a ubiquitous component of snow and ice and plays an important role in overall light absorption properties of the sample. Additionally, the reactive intermediates produced can further react with contaminants present and alter their fate in the environment. Unfortunately, the role of dissolved organic matter in ice photochemistry has received little attention. Here we present results from laboratory-based studies aimed at elucidating the role of dissolved organic matter photochemistry on contaminant degradation in ice. Aqueous samples of our target pollutant, aldrin (20 μg/L), in liquid and frozen phases, were irradiated under Q-Panel 340 lamps to simulate the UV radiation profile of natural sunlight. Results indicated that frozen samples degraded more quickly than liquid samples and that the addition of dissolved organic matter increases the aldrin degradation rate significantly. Both terrestrial (Suwannee River, U.S.) and microbial sources (Pony Lake, Antarctica) of DOM were able to sensitize aldrin loss in ice. Scavengers of singlet oxygen, such as furfuryl alcohol and β-carotene, were also added to DOM solutions. Based on the type of organic matter present, the scavengers had different effects on the photochemical degradation of aldrin. Our results indicate that natural organic matter present in ice is an important component of ice photochemical processes.

  1. Production of Dissolved Organic Matter During Doliolid Feeding

    NASA Astrophysics Data System (ADS)

    Castellane, N. J.; Paffenhofer, G. A.; Stubbins, A.

    2016-02-01

    The biological carbon pump (BCP) draws carbon dioxide out of the atmosphere and buries it at the seafloor. The efficiency of the BCP is determined in part by the sinking rates of particulate organic carbon (POC) from ocean surface waters. Zooplankton can package POC into fecal pellets with higher sinking rates than their food source (e.g. phytoplankton), increasing the efficiency of the BCP. However, dissolved organic carbon (DOC) is also produced as zooplankton ingest and egest food, reducing the efficiency of BCP. The pelagic tunicate Dolioletta gegenbauri (doliolid) is a gelatinous zooplankton found at high concentrations in shelf waters, including our study site: the South Atlantic Bight. Doliolids are efficient grazers capable of stripping large quantities of phytoplankton from the water column. To determine the balance between pellet formation and DOC production during feeding, doliolids (6-7 mm gonozooids) were placed in natural seawater amended with a live phytoplankton food source and incubated on a plankton wheel. Dissolved organic matter (DOM) released directly to the water as well as the water soluble fraction of pellet organic matter were quantified and optically characterized. Colored dissolved organic matter (CDOM) absorbance and fluorescence spectra revealed that doliolid feeding produces DOM with optical properties that are commonly indicative of newly produced, highly biolabile DOM of microbial origin. Based upon these optical characteristics, doliolid-produced DOM is expected to be highly bio-labile in the environment and therefore rapidly degraded by surface ocean microbes shunting phytoplankton-derived organic carbon out of the BCP and back to dissolved inorganic carbon.

  2. Temperature sensitivity of organic-matter decay in tidal marshes

    USGS Publications Warehouse

    Kirwan, Matthew L.; Guntenspergen, Glenn R.; Langley, J.A.

    2014-01-01

    Approximately half of marine carbon sequestration takes place in coastal wetlands, including tidal marshes, where organic matter contributes to soil elevation and ecosystem persistence in the face of sea-level rise. The long-term viability of marshes and their carbon pools depends, in part, on how the balance between productivity and decay responds to climate change. Here, we report the sensitivity of labile soil organic-matter decay in tidal marshes to seasonal and latitudinal variations in temperature measured over a 3-year period. We find a moderate increase in decay rate at warmer temperatures (3-6% per °C, Q10 = 1.3-1.5). Despite the profound differences between microbial metabolism in wetlands and uplands, our results indicate a strong conservation of temperature sensitivity. Moreover, simple comparisons with organic-matter production suggest that elevated atmospheric CO2 and warmer temperatures will accelerate carbon accumulation in marsh soils, and potentially enhance their ability to survive sea-level rise.

  3. Temperature sensitivity of organic-matter decay in tidal marshes

    NASA Astrophysics Data System (ADS)

    Kirwan, M. L.; Guntenspergen, G. R.; Langley, J. A.

    2014-09-01

    Approximately half of marine carbon sequestration takes place in coastal wetlands, including tidal marshes, where organic matter contributes to soil elevation and ecosystem persistence in the face of sea-level rise. The long-term viability of marshes and their carbon pools depends, in part, on how the balance between productivity and decay responds to climate change. Here, we report the sensitivity of labile soil organic-matter decay in tidal marshes to seasonal and latitudinal variations in temperature measured over a 3-year period. We find a moderate increase in decay rate at warmer temperatures (3-6% per °C, Q10 = 1.3-1.5). Despite the profound differences between microbial metabolism in wetlands and uplands, our results indicate a strong conservation of temperature sensitivity. Moreover, simple comparisons with organic-matter production suggest that elevated atmospheric CO2 and warmer temperatures will accelerate carbon accumulation in marsh soils, and potentially enhance their ability to survive sea-level rise.

  4. Methylmercury production in estuarine sediments: role of organic matter

    PubMed Central

    Schartup, Amina T.; Mason, Robert P.; Balcom, Prentiss H.; Hollweg, Terill A.; Chen, Celia Y.

    2013-01-01

    Methylmercury (MeHg) affects wildlife and human health mainly through marine fish consumption. In marine systems, MeHg is formed from inorganic mercury (HgII) species primarily in sediments then accumulates and biomagnifies in the food web. Most of the fish consumed in the US are from estuarine and marine systems highlighting the importance of understanding MeHg formation in these productive regions. Sediment organic matter has been shown to limit mercury methylation in estuarine ecosystems, as a result it is often described as the primary control over MeHg production. In this paper, we explore the role of organic matter by looking at the effects of its changing sediment concentrations on the methylation rates across multiple estuaries. We measured sedimentary MeHg production at eleven estuarine sites that were selected for their contrasting biogeochemical characteristics, mercury (Hg) content, and location in the Northeastern US (ME, NH, CT, NY, and NJ). Sedimentary total Hg concentrations ranged across five orders of magnitude, increasing in concentration from the pristine, sandy sediments of Wells (ME), to industrially contaminated areas like Portsmouth (NH) and Hackensack (NJ). We find that methylation rates are the highest at locations with high Hg content (relative to carbon), and that organic matter does not hinder mercury methylation in estuaries. PMID:23194318

  5. Terrestrial dominance of organic matter in north temperate lakes

    NASA Astrophysics Data System (ADS)

    Wilkinson, G.; Pace, M. L.; Cole, J. J.

    2012-12-01

    Aquatic ecosystems are hotspots of decomposition and a source of carbon dioxide to the atmosphere that is globally significant. Carbon exported from land (allochthonous) also supplements the carbon fixed by photosynthesis in aquatic ecosystems (autochthonous), contributing to the organic matter (OM) that supports aquatic consumers. Although the presence of terrestrial compounds in aquatic OM is well known, the contribution of terrestrial versus aquatic sources to the composition of OM has been quantified for only a handful of systems. Here we use stable isotopes of hydrogen and carbon to demonstrate that the terrestrial contribution to particulate organic matter (POM) is as large or larger (mean=54.6% terrestrial) than the algal contribution in 39 lakes of the northern highlands region of Wisconsin and Michigan. Further, the largest carbon pool, dissolved organic matter (DOM), is strongly dominated by allochthonous material (mean for the same set of lakes approximately 100% terrestrial). Among lakes, increases in terrestrial contribution to POM are significantly correlated with more acidic pH. Extrapolating this relationship using a survey of pH in 1692 lakes in the region reveals that, with the exception of eutrophic lakes, most of the OM in lakes is of terrestrial origin. These results are consistent with the growing evidence that terrestrial OM may support many lake food webs, and that lakes are significant conduits for returning degraded terrestrial carbon to the atmosphere.

  6. Terrestrial dominance of organic matter in north temperate lakes

    NASA Astrophysics Data System (ADS)

    Wilkinson, Grace M.; Pace, Michael L.; Cole, Jonathan J.

    2013-01-01

    Aquatic ecosystems are hotspots of decomposition and sources of carbon dioxide to the atmosphere that are globally significant. Carbon exported from land (allochthonous) also supplements the carbon fixed by photosynthesis in aquatic ecosystems (autochthonous), contributing to the organic matter (OM) that supports aquatic consumers. Although the presence of terrestrial compounds in aquatic OM is well known, the contribution of terrestrial versus aquatic sources to the composition of OM has been quantified for only a handful of systems. Here we use stable isotopes of hydrogen and carbon to demonstrate that the terrestrial contribution (ΦTerr) to particulate organic matter (POM) is as large or larger (mean = 54.6% terrestrial) than the algal contribution in 39 lakes of the northern highlands region of Wisconsin and Michigan. Further, the largest carbon pool, dissolved organic matter (DOM), is strongly dominated by allochthonous material (mean for the same set of lakes approximately 100% terrestrial). Among lakes, increases in terrestrial contribution to POM are significantly correlated with more acidic pH. Extrapolating this relationship using a survey of pH in 1692 lakes in the region reveals that, with the exception of eutrophic lakes, most of the OM in lakes is of terrestrial origin. These results are consistent with the growing evidence that lakes are significant conduits for returning degraded terrestrial carbon to the atmosphere.

  7. Matrix protected organic matter in a river dominated margin: A possible mechanism to sequester terrestrial organic matter?

    NASA Astrophysics Data System (ADS)

    Mead, Ralph N.; Goñi, Miguel A.

    2008-06-01

    The provenance of organic matter in surface sediments from the northern Gulf of Mexico was investigated by analyzing the compositions of lipid biomarkers ( n-alkanes, fatty acids, sterols) liberated after a series of chemical treatments designed to remove different organo-mineral matrix associations (i.e. freely extractable, base-hydrolyzable, unhydrolyzable). Bulk analyses of the organic matter (carbon content, carbon:nitrogen ratios, stable and radiocarbon isotopic analyses) were also performed on the intact sediments and their non-hydrolyzable, demineralized residue. We found recognizable lipids from distinct sources, including terrestrial vascular plants, bacteria and marine algae and zooplankton, within each of the isolated fractions. Based on the lipid signatures and bulk compositions, the organic matter within the unhydrolyzable fractions appeared to be the most diagenetically altered, was the oldest in age, and had the highest abundance of terrigenous lipids. In contrast, the base-hydrolyzable fraction was the most diagentically unaltered, had the youngest ages and was most enriched in N and marine lipids. Our results indicate that fresh, autochthonous organic matter is the most important contributor to base-hydrolyzable lipids, whereas highly altered allochthonous sources appear to be predominant source of unhydrolyzable lipids in the surface sediments from the Atchafalaya River shelf. Overall, the lipid biomarker signatures of intact sediments were biased towards the autochthonous source because many of the organic compounds indicative of degraded, terrigenous sources were protected from extraction and saponification by organo-mineral matrices. It is only after these protective matrices were removed by treatment with HCl and HF that these compounds became evident.

  8. Nitrogen isotopic relationship between diatom-bound and bulk organic matter of cultured polar diatoms

    NASA Astrophysics Data System (ADS)

    Horn, Matthew G.; Robinson, Rebecca S.; Rynearson, Tatiana A.; Sigman, Daniel M.

    2011-09-01

    Using batch cultures, the 15N/14N (hereafter δ15N) of diatom-bound organic matter was measured and compared to the δ15N of total diatom biomass during the progressive consumption of a nitrate pool in four polar diatom species (Fragilariopsis cylindrus, Fragilariopsis kerguelensis, Pseudo-nitzschia seriata, and Thalassiosira nordenskioeldii) and one temperate species (Thalassiosira aestivalis). In general, the δ15N of the dissolved nitrate in seawater was greater than that of the biomass, which was greater than that of the diatom-bound N. Rayleigh-type relationships were observed, allowing for estimation of the isotope effect (ɛ) for each species, with a range from 1.0‰ to 14.0‰ across all species. For all cultured strains, the δ15N values of the diatom-bound (δ15NDB) fraction was lower than those of the total diatom biomass (δ15Nbiomass). The isotopic offset between the biomass and diatom-bound N (δ15NDBoffset = δ15Nbiomass - δ15NDB) was relatively constant along the growth curve for each individual species but varied among species, with a range of 1.9‰-11.2‰. Weak relationships were determined when ɛ and the δ15NDBoffset were compared to cellular size and surface area:volume ratio. More significantly, with the exception of Pseudo-nitzschia seriata, a strong positive relationship was found between ɛ and δ15NDBoffset. While the culture data indicate a positive δ15NDBoffset across all studied diatom species, surface sediment data suggest a negative δ15NDBoffset for sedimentary assemblages. This indicates that either (1) the growth conditions of our cultures had some effect on δ15NDBoffset or (2) a low-δ15N component of the N that we measure as diatom frustule-bound is lost during early diagenesis. Given documented assemblage changes, our culture data for relevant species do not suggest that the higher δ15NDB observed in the Antarctic during ice ages can be explained by species related changes in the sedimentary bulk-to-diatom-bound isotopic

  9. The Impact of Microbial Metabolism on Marine Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Kujawinski, Elizabeth B.

    2011-01-01

    Microbes mediate global biogeochemical cycles through their metabolism, and all metabolic processes begin with the interaction between the microbial cell wall or membrane and the external environment. For all heterotrophs and many autotrophs, critical growth substrates and factors are present within the dilute and heterogeneous mixture of compounds that constitutes dissolved organic matter (DOM). In short, the microbe-molecule interaction is one of the fundamental reactions within the global carbon cycle. Here, I summarize recent findings from studies that examine DOM-microbe interactions from either the DOM perspective (organic geochemistry) or the microbe perspective (microbial ecology). Gaps in our knowledge are highlighted and future integrative research directions are proposed.

  10. Comments on D/H ratios in chondritic organic matter

    NASA Astrophysics Data System (ADS)

    Smith, J. W.; Rigby, D.

    1981-06-01

    D/H ratios in chondritic organic matter are investigated. Demineralized organic residues obtained from previous experiments were dried in a quartz reaction vessel under vacuum for 60 minutes at 250-300 C and then combusted in oxygen for 20 minutes at 850 C. The apparatus is described and the results of the experiments such as D/H ratios in water and measurements on total carbon dioxide are given. Atomic H/C ratios calculated directly from the quantities of carbon dioxide and water recovered, are reported according to Standard Mean Ocean Water and Pee Dee Belemnite, using the customary notation.

  11. Microorganisms and typical organic matter responsible for lacustrine "black bloom".

    PubMed

    Feng, Ziyan; Fan, Chengxin; Huang, Weiyi; Ding, Shiming

    2014-02-01

    Identifying the causation of the black substance in lacustrine "black bloom" is of great significance for forecasting and preventing black bloom in many waters of the world. In this research, an array of black bloom was simulated in a laboratory to investigate how microorganisms and organic matter affect black bloom. Sulphate-reducing bacteria (SRB) are the main biological factor, and protein is the key organic factor contributing to lacustrine black bloom. The black colour of black bloom is strongly associated with a relatively high SRB population density. Hydrogen sulphide concentration can serve as a predictor of black bloom. © 2013.

  12. Carbon isotopic studies of organic matter in Precambrian rocks.

    NASA Technical Reports Server (NTRS)

    Oehler, D. Z.; Schopf, J. W.; Kvenvolden, K. A.

    1972-01-01

    A survey has been undertaken of the carbon composition of the total organic fraction of a suite of Precambrian sediments to detect isotopic trends possibly correlative with early evolutionary events. Early Precambrian cherts of the Fig Tree and upper and middle Onverwacht groups of South Africa were examined for this purpose. Reduced carbon in these cherts was found to be isotopically similar to photosynthetically produced organic matter of younger geological age. Reduced carbon in lower Onverwacht cherts was found to be anomalously heavy; it is suggested that this discontinuity may reflect a major event in biological evolution.

  13. Organic matter in meteorites and comets - Possible origins

    NASA Astrophysics Data System (ADS)

    Anders, E.

    1991-04-01

    At least six extraterrestrial environments may have contributed organic compounds to meteorites and comets: solar nebula, giant-planet subnebulae, asteroid interiors containing liquid water, carbon star atmospheres, and diffuse or dark interstellar clouds. The record in meteorites is partly obscured by pervasive reheating that transformed much of the organic matter to kerogen; nonetheless, it seems that all six formation sites contributed. For comets, the large abundance of HCHO, HCN, and unsaturated hydrocarbons suggests an interstellar component of 50 percent or more, but the contributions of various interstellar processes, and of a solar-nebula component, are hard to quantify. A research program is outlined that may help reduce these uncertainties.

  14. Plutonium Immobilization and Mobilization by Soil Organic Matter

    SciTech Connect

    Santschi, Peter H.; Schwehr, Kathleen A.; Xu, Chen; Athon, Matthew; Ho, Yi-Fang; Hatcher, Patrick G.; Didonato, Nicole; Kaplan, Daniel I.

    2016-03-08

    The human and environmental risks associated with Pu disposal, remediation, and nuclear accidents scenarios stems mainly from the very long half-lives of several of its isotopes. The SRS, holding one-third of the nation’s Pu inventory, has a long-term stewardship commitment to investigation of Pu behavior in the groundwater and downgradient vast wetlands. Pu is believed to be essentially immobile due to its low solubility and high particle reactivity to mineral phase or natural organic matter (NOM). For example, in sediments collected from a region of SRS, close to a wetland and a groundwater plume, 239,240Pu concentrations suggest immobilization by NOM compounds, as Pu correlate with NOM contents. Micro-SXRF data indicate, however, that Pu does not correlate with Fe. However, previous studies reported Pu can be transported several kilometers in surface water systems, in the form of a colloidal organic matter carrier, through wind/water interactions. The role of NOM in both immobilizing or re-mobilizing Pu thus has been demonstrated. Our results indicate that more Pu (IV) than (V) was bound to soil colloidal organic matter (COM), amended at far-field concentrations. Contrary to expectations, the presence of NOM in the F-Area soil did not enhance Pu fixation to the organic-rich soil, when compared to the organic-poor soil or the mineral phase from the same soil source, due to the formation of COM-bound Pu. Most importantly, Pu uptake by organic-rich soil decreased with increasing pH because more NOM in the colloidal size desorbed from the particulate fraction at elevated pH, resulting in greater amounts of Pu associated with the COM fraction. This is in contrast to previous observations with low-NOM sediments or minerals, which showed increased Pu uptake with increasing pH levels. This demonstrates that despite Pu immobilization by NOM, COM can convert Pu into a more mobile form. Sediment Pu concentrations in the SRS F-Area wetland were correlated to total organic

  15. Organic matter in meteorites and comets - Possible origins

    NASA Technical Reports Server (NTRS)

    Anders, Edward

    1991-01-01

    At least six extraterrestrial environments may have contributed organic compounds to meteorites and comets: solar nebula, giant-planet subnebulae, asteroid interiors containing liquid water, carbon star atmospheres, and diffuse or dark interstellar clouds. The record in meteorites is partly obscured by pervasive reheating that transformed much of the organic matter to kerogen; nonetheless, it seems that all six formation sites contributed. For comets, the large abundance of HCHO, HCN, and unsaturated hydrocarbons suggests an interstellar component of 50 percent or more, but the contributions of various interstellar processes, and of a solar-nebula component, are hard to quantify. A research program is outlined that may help reduce these uncertainties.

  16. SOIL NITROGEN TRANSFORMATIONS AND ROLE OF LIGHT FRACTION ORGANIC MATTER IN FOREST SOILS

    EPA Science Inventory

    Depletion of soil organic matter through cultivation may alter substrate availability for microbes, altering the dynamic balance between nitrogen (N) immobilization and mineralization. Soil light fraction (LF) organic matter is an active pool that decreases upon cultivation, and...

  17. SOIL NITROGEN TRANSFORMATIONS AND ROLE OF LIGHT FRACTION ORGANIC MATTER IN FOREST SOILS

    EPA Science Inventory

    Depletion of soil organic matter through cultivation may alter substrate availability for microbes, altering the dynamic balance between nitrogen (N) immobilization and mineralization. Soil light fraction (LF) organic matter is an active pool that decreases upon cultivation, and...

  18. Iron traps terrestrially derived dissolved organic matter at redox interfaces.

    PubMed

    Riedel, Thomas; Zak, Dominik; Biester, Harald; Dittmar, Thorsten

    2013-06-18

    Reactive iron and organic carbon are intimately associated in soils and sediments. However, to date, the organic compounds involved are uncharacterized on the molecular level. At redox interfaces in peatlands, where the biogeochemical cycles of iron and dissolved organic matter (DOM) are coupled, this issue can readily be studied. We found that precipitation of iron hydroxides at the oxic surface layer of two rewetted fens removed a large fraction of DOM via coagulation. On aeration of anoxic fen pore waters, >90% of dissolved iron and 27 ± 7% (mean ± SD) of dissolved organic carbon were rapidly (within 24 h) removed. Using ultra-high-resolution MS, we show that vascular plant-derived aromatic and pyrogenic compounds were preferentially retained, whereas the majority of carboxyl-rich aliphatic acids remained in solution. We propose that redox interfaces, which are ubiquitous in marine and terrestrial settings, are selective yet intermediate barriers that limit the flux of land-derived DOM to oceanic waters.

  19. Soil Quality of Restinga Forest: Organic Matter and Aluminum Saturation

    NASA Astrophysics Data System (ADS)

    Rodrigues Almeida Filho, Jasse; Casagrande, José Carlos; Martins Bonilha, Rodolfo; Soares, Marcio Roberto; Silva, Luiz Gabriel; Colato, Alexandre

    2013-04-01

    The restinga vegetation (sand coastal plain vegetation) consists of a mosaic of plant communities, which are defined by the characteristics of the substrates, resulting from the type and age of the depositional processes. This mosaic complex of vegetation types comprises restinga forest in advanced (high restinga) and medium regeneration stages (low restinga), each with particular differentiating vegetation characteristics. Of all ecosystems of the Atlantic Forest, restinga is the most fragile and susceptible to anthropic disturbances. The purpose of this study was evaluating the organic matter and aluminum saturation effects on soil quality index (SQI). Two locations were studied: State Park of the Serra do Mar, Picinguaba, in the city of Ubatuba (23°20' e 23°22' S / 44°48' e 44°52' W), and State Park of Cardoso Island in the city of Cananéia (25°03'05" e 25°18'18" S / 47°53'48" e 48° 05'42" W). The soil samples were collect at a depth of 0-10 cm, where concentrate 70% of vegetation root system. Was studied an additive model to evaluate soil quality index. The shallow root system development occurs due to low calcium levels, whose disability limits their development, but also can reflect on delay, restriction or even in the failure of the development vegetation. The organic matter is kept in the soil restinga ecosystem by high acidity, which reduces the decomposition of soil organic matter, which is very poor in nutrients. The base saturation, less than 10, was low due to low amounts of Na, K, Ca and Mg, indicating low nutritional reserve into the soil, due to very high rainfall and sandy texture, resulting in high saturation values for aluminum. Considering the critical threshold to 3% organic matter and for aluminum saturation to 40%, the IQS ranged from 0.95 to 0.1 as increased aluminum saturation and decreased the soil organic matter, indicating the main limitation to the growth of plants in this type of soil, when deforested.

  20. Using Riverine Natural Organic Matter to Test the Hypothesis that Soil Organic Matter is Modified by Contact with Sodium Hydroxide

    NASA Astrophysics Data System (ADS)

    Perdue, E. Michael; Driver, Shamus; Hertkorn, Norbert; Harir, Mourad; Schmitt-Kopplin, Philippe

    2016-04-01

    It has been postulated by some scientists that soil humic acids and fulvic acids are an artifact of alkaline extractions of soil. Riverine natural organic matter (NOM) is obtained in part by dissolution and transport of organic matter from soils by meteoric waters at acidic to circumneutral pH. The NOM may be fractionated into humic acid (HA), fulvic acid (FA), and hydrophilic NOM by adsorption of HA and FA onto XAD-8 resin at pH < 2, followed by their desorption with NaOH at pH 13. Alternatively, riverine NOM may be concentrated using reverse osmosis (RO) and desalted by cation exchange. Several properties of Suwannee River NOM prior to its isolation, after concentration by RO, and after the XAD-8 process are compared to detect modifications that might have resulted from exposure of the sample to low and high pH.

  1. Soil organic matter regulates molybdenum storage and mobility in forests

    USGS Publications Warehouse

    Marks, Jade A; Perakis, Steven; King, Elizabeth K; Pett-Ridge, Julie

    2015-01-01

    The trace element molybdenum (Mo) is essential to a suite of nitrogen (N) cycling processes in ecosystems, but there is limited information on its distribution within soils and relationship to plant and bedrock pools. We examined soil, bedrock, and plant Mo variation across 24 forests spanning wide soil pH gradients on both basaltic and sedimentary lithologies in the Oregon Coast Range. We found that the oxidizable organic fraction of surface mineral soil accounted for an average of 33 %of bulk soil Mo across all sites, followed by 1.4 % associated with reducible Fe, Al, and Mn-oxides, and 1.4 % in exchangeable ion form. Exchangeable Mo was greatest at low pH, and its positive correlation with soil carbon (C) suggests organic matter as the source of readily exchangeable Mo. Molybdenum accumulation integrated over soil profiles to 1 m depth (τMoNb) increased with soil C, indicating that soil organic matter regulates long-term Mo retention and loss from soil. Foliar Mo concentrations displayed no relationship with bulk soil Mo, and were not correlated with organic horizon Mo or soil extractable Mo, suggesting active plant regulation of Mo uptake and/or poor fidelity of extractable pools to bioavailability. We estimate from precipitation sampling that atmospheric deposition supplies, on average, over 10 times more Mo annually than does litterfall to soil. In contrast, bedrock lithology had negligible effects on foliar and soil Mo concentrations and on Mo distribution among soil fractions. We conclude that atmospheric inputs may be a significant source of Mo to forest ecosystems, and that strong Mo retention by soil organic matter limits ecosystem Mo loss via dissolution and leaching pathways.

  2. The composition and degradability of upland dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Moody, Catherine; Worrall, Fred; Clay, Gareth

    2016-04-01

    In order to assess controls on the degradability of DOM in stream water, samples of dissolved organic matter (DOM) and particulate organic matter (POM) were collected every month for a period of 24 months from an upland, peat-covered catchment in northern England. Each month the degradability of the DOM was assessed by exposing river water to light for up to 24 hours, and the change in the dissolved organic carbon (DOC) concentration in the water was measured. To provide context for the analysis of DOM and its degradability, samples of peat, vegetation, and litter were also taken from the same catchment and analysed. The organic matter samples were analysed by several methods including: elemental analysis (CHN and O), bomb calorimetry, thermogravimetric analysis, pyrolysis GC/MS, ICP-OES, stable isotope analysis (13C and 15N) and 13C solid state nuclear magnetic resonance (NMR). The water samples were analysed for pH, conductivity, absorbance at 400nm, anions, cations, particulate organic carbon (POC) and DOC concentrations. River flow conditions and meteorology were also recorded at the site and included in the analysis of the composition and degradability of DOM. The results of multiple regression models showed that the rates of DOC degradation were affected by the N-alkyl, O-alkyl, aldehyde and aromatic relative intensities, gross heat, OR and C:N. Of these, the N-alkyl relative intensity had the greatest influence, and this in turn was found to be dependent on the rainfall and soil temperature in the week before sampling.

  3. Isotopic constraints on the origin of meteoritic organic matter

    NASA Technical Reports Server (NTRS)

    Kerridge, J. F.

    1991-01-01

    Salient features of the isotopic distribution of H, C and N in the organic material found in carbonaceous meteorites are noted. Most organic fractions are strongly enriched in D with respect to the D/H ratio characteristic of H2 in the protosolar system; substantial variations in C-13/C-12 ratio are found among different molecular species, with oxidised species tending to be C-13 enriched relative to reduced species; some homologous series reveal systematic decrease in C-13/C-12 with increasing C number; considerable variation in N-15/N-14 ratio is observed within organic matter, though no systematic pattern to its distribution has yet emerged; no interelement correlations have been observed between isotope enrichments for the different biogenic elements. The isotopic complexity echoes the molecular diversity observed in meteoritic organic matter and suggests that the organic matter was formed by multiple processes and/or from multiple sources. However, existence of a few systematic patterns points towards survival of isotopic signatures characteristic of one or more specific processes. The widespread D enrichment implies either survival of many species of interstellar molecule or synthesis from a reservoir containing a significant interstellar component. Several of the questions raised above can be addressed by more detailed determination of the distribution of the H, C and N isotopes among different well-characterized molecular fractions. Thus, the present study is aimed at discovering whether the different amino acids have comparable D enrichments, which would imply local synthesis from a D-enriched reservoir, or very viable D enrichments, which would imply survival of some interstellar amino acids. The same approach is also being applied to polycyclic aromatic hydrocarbons. Because the analytical technique employed (secondary ion mass spectrometry) can acquire data for all three isotopic systems from each molecular fraction, any presently obscured interelement

  4. Organic matter and soil structure in the Everglades Agricultural Area

    SciTech Connect

    Wright, Alan L.; Hanlon, Edward A.

    2013-01-01

    This publication pertains to management of organic soils (Histosols) in the Everglades Agricultural Area (EAA). These former wetland soils are a major resource for efficient agricultural production and are important globally for their high organic matter content. Recognition of global warming has led to considerable interest in soils as a repository for carbon. Soils rich in organic matter essentially sequester or retain carbon in the profile and can contribute directly to keeping that sequestered carbon from entering the atmosphere. Identification and utilization of management practices that minimize the loss of carbon from organic soils to the atmosphere can minimize effects on global warming and increase the longevity of subsiding Histosols for agricultural use. Understanding and predicting how these muck soils will respond to current and changing land uses will help to manage soil carbon. The objectives of this document are to: a. Discuss organic soil oxidation relative to storing or releasing carbon and nitrogen b. Evaluate effects of cultivation (compare structure for sugarcane vs. uncultivated soil) Based upon the findings from the land-use comparison (sugarcane or uncultivated), organic carbon was higher with cultivation in the lower depths. There is considerable potential for minimum tillage and residue management to further enhance carbon sequestration in the sugarcane system. Carbon sequestration is improved and soil subsidence is slowed with sugarcane production, and both of these are positive outcomes. Taking action to increase or maintain carbon sequestration appears to be appropriate but may introduce some risk to farming operations. Additional management methods are needed to reduce this risk. For both the longevity of these organic soils and from a global perspective, slowing subsidence through BMP implementation makes sense. Since these BMPs also have considerable societal benefit, it remains to be seen if society will help to offset a part or all

  5. Formation of soil organic matter via biochemical and physical pathways of litter mass loss

    NASA Astrophysics Data System (ADS)

    Cotrufo, M. Francesca; Soong, Jennifer L.; Horton, Andrew J.; Campbell, Eleanor E.; Haddix, Michelle L.; Wall, Diana H.; Parton, William J.

    2015-10-01

    Soil organic matter is the largest terrestrial carbon pool. The pool size depends on the balance between formation of soil organic matter from decomposition of plant litter and its mineralization to inorganic carbon. Knowledge of soil organic matter formation remains limited and current C numerical models assume that stable soil organic matter is formed primarily from recalcitrant plant litter. However, labile components of plant litter could also form mineral-stabilized soil organic matter. Here we followed the decomposition of isotopically labelled above-ground litter and its incorporation into soil organic matter over three years in a grassland in Kansas, USA, and used laboratory incubations to determine the decay rates and pool structure of litter-derived organic matter. Early in decomposition, soil organic matter formed when non-structural compounds were lost from litter. Soil organic matter also formed at the end of decomposition, when both non-structural and structural compounds were lost at similar rates. We conclude that two pathways yield soil organic matter efficiently. A dissolved organic matter-microbial path occurs early in decomposition when litter loses mostly non-structural compounds, which are incorporated into microbial biomass at high rates, resulting in efficient soil organic matter formation. An equally efficient physical-transfer path occurs when litter fragments move into soil.

  6. Organic matter content of soil after logging of fir and redwood forests

    Treesearch

    Philip B. Durgin

    1980-01-01

    Organic matter in soil controls a variety of soil properties. A study in Humboldt County, California, evaluated changes in percentages of organic matter in soil as a function of time after timber harvest and soil depth in fir and redwood forests. To assess organic matter content, samples were taken from cutblocks of various ages in soil to depths of 1.33 m. Results...

  7. Research Highlight: Water-extractable organic matter from sandy loam soils

    USDA-ARS?s Scientific Manuscript database

    Labile organic matter plays important roles in soil health and nutrient cycling because of its dynamic nature. Water-extractable organic matter is part of the soil labile organic matter. In an article recently published in Agricultural & Environmental Letters, researchers report on the level and na...

  8. Organic matter and nutrient inputs to the Humber Estuary, England.

    PubMed

    Boyes, Suzanne; Elliott, Michael

    2006-01-01

    Estuaries are sinks for organic matter and nutrients entering both from their catchments and also from the adjacent lands and urban areas and in turn they are sources of such materials to the adjacent coast. The present paper quantifies the relative amounts of natural and anthropogenic organic matter and nutrients entering the Humber Estuary, Eastern England, including the allochthonous and autochthonous materials, those from urban and industrial sewage and from the catchment drainage of arable land. These data thus give a budget for the estuary which in turn answers questions fundamental to the management of the estuary. The estimations within the study have been carried out against a background of designating estuaries under the European Union Urban Waste-water Treatment Directive and the EU Nitrates Directive. The assessment has particularly addressed the question, related to the former Directive, of whether the Humber Estuary is eutrophic or likely to become eutrophic unless management measures are taken. Thus the paper indicates the nature and value of control measures such as treatment plant upgrading and the designation of Nitrate Vulnerable Zones. The paper includes the recent national and European discussions on the designation of areas under these Directives. Finally, the study has allowed a quantification of the present organic inputs to the estuary in comparison to those entering prior to large scale land-claim which had removed natural organic-producing wetlands.

  9. Organic speciation of size-segregated atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Tremblay, Raphael

    Particle size and composition are key factors controlling the impacts of particulate matter (PM) on human health and the environment. A comprehensive method to characterize size-segregated PM organic content was developed, and evaluated during two field campaigns. Size-segregated particles were collected using a cascade impactor (Micro-Orifice Uniform Deposit Impactor) and a PM2.5 large volume sampler. A series of alkanes and polycyclic aromatic hydrocarbons (PAHs) were solvent extracted and quantified using a gas chromatograph coupled with a mass spectrometer (GC/MS). Large volume injections were performed using a programmable temperature vaporization (PTV) inlet to lower detection limits. The developed analysis method was evaluated during the 2001 and 2002 Intercomparison Exercise Program on Organic Contaminants in PM2.5 Air Particulate Matter led by the US National Institute of Standards and Technology (NIST). Ambient samples were collected in May 2002 as part of the Tampa Bay Regional Atmospheric Chemistry Experiment (BRACE) in Florida, USA and in July and August 2004 as part of the New England Air Quality Study - Intercontinental Transport and Chemical Transformation (NEAQS - ITCT) in New Hampshire, USA. Morphology of the collected particles was studied using scanning electron microscopy (SEM). Smaller particles (one micrometer or less) appeared to consist of solid cores surrounded by a liquid layer which is consistent with combustion particles and also possibly with particles formed and/or coated by secondary material like sulfate, nitrate and secondary organic aerosols. Source apportionment studies demonstrated the importance of stationary sources on the organic particulate matter observed at these two rural sites. Coal burning and biomass burning were found to be responsible for a large part of the observed PAHs during the field campaigns. Most of the measured PAHs were concentrated in particles smaller than one micrometer and linked to combustion sources

  10. Biotoxicity of nanoparticles: effect of natural organic matter

    NASA Astrophysics Data System (ADS)

    Lee, Sungyun; Kim, Kitae; Shon, H. K.; Kim, Sang Don; Cho, Jaeweon

    2011-07-01

    Various natural organic matters (NOM) with different characteristics in aquatic environment may affect toxicity of leased nanoparticles, owing to interactions between NOM and nanoparticles. This study investigated the effect of NOM and physical characteristics of the effluent organic matter (EfOM) on the ecotoxicity of quantum dots (QD) using Daphnia magna. Organic matter samples were obtained from: Yeongsan River (YR-NOM), Dongbuk Lake (DL-NOM), Damyang wastewater treatment plant (EfOM), and Suwannee River NOM (SR-NOM). The QD was composed of a CdSe core, ZnS shell, and polyethylene glycol coating. The average size of the investigated QD was 4.8, 56.5, and 25.0 nm determined by transmission electron microscopy, dynamic light scattering, and asymmetric flow field-flow fractionation, respectively. The relative hydrophobicity of NOM was investigated using both specific UV absorbance at 254 nm and XAD-8/4 resins. The sorption of NOM on the QD was measured using a fluorescence quenching method. The highest hydrophobicity was exhibited by the SR-NOM, while the lowest was recorded for the DL-NOM. All tested NOMs significantly reduced the acute toxicity of D. magna when adsorbed to QD, and the order of effectiveness for each NOM was as follows: SR-NOM > EfOM > YS-NOM > DL-NOM. The sorption of NOM on the QD surface caused a decrease in the fluorescence intensity of QD at increasing NOM concentration. This suggests that the NOM coating influenced the physicochemical characteristics of QD in the internal organs of D. magna by inducing a reduced bioavailability . Results from this study revealed that NOM with relatively high hydrophobicity had a greater capability of inducing toxicity mitigation.

  11. Magnetic Mineral diagenesis in changing water environments in the Black Sea since ˜41.6 ka

    NASA Astrophysics Data System (ADS)

    Liu, Jiabo; Nowaczyk, Norbert; Frank, Ute; Arz, Helge

    2017-04-01

    Magnetic mineral diagenesis plays a key role in the global iron cycle. To understand the authigenic magnetic mineral formation by diagenesis is also fundamentally important for the interpretation of environmental magnetic as well as paleomagnetic signals. Core MSM33-55-1, recovered from the SW Black Sea, was subjected to rock-magnetic and SEM studies. The results demonstrate that four different magnetic mineral assemblages associated to specific water conditions can be observed. Between ˜41.6 ka and ˜19 ka, magnetite and greigite are alternatively in dominance in the sediment. Due to low organic matter input during the late MIS 3 and the last glacial maximum (LGM), oxygenated bottom water in the Black Sea was favourable for preserving detrital magnetite. Greigite in this interval have irregular shapes and assemble in spots, which were formed in a micro environment with limited sulfate availability. Between ˜19 ka and ˜16.5 ka, black layers were deposited as a result of organic matter accumulation induced by productivity blooming and riverine discharge soaring after the LGM. Hence less oxygenated bottom water conditions developed, and more fine grained greigite was formed. After melt-water pulse (MWP) events (˜16.5 ka), both primary productivity and the sea level were continuously rising until ˜8.3 ka, leading to the depletion of oxygen in bottom water. In addition to greigite, pyrite was also formed and gradually in dominance as approaching the Holocene. The influx of salt water masses from the Mediterranean Sea after ˜8.3 ka contributed to the establishment of the anoxic Black Sea, which resulted in the formation of ubiquitous frambiods of pyrite. Additionally, bacterial magnetic minerals are likely present in the sediment younger than ˜8.3 ka as indicated by rock magnetic results. In this paper, four different magnetic mineral assemblages, reflecting gradual changes from an oxic to an anoix Black Sea, were identified, yielding insights into the relation

  12. Competitive Sorption and Desorption of Chlorinated Organic Solvents (DNAPLs) in Engineered Natural Organic Matter

    SciTech Connect

    Tang, Jixin; Weber, Walter J., Jr.

    2004-03-31

    The effects of artificially accelerated geochemical condensation and maturation of natural organic matter on the sorption and desorption of trichloroethylene (TCE) and tetrachloroethylene (PCE) were studied. The sorption and desorption of TCE in the presence and absence of the competing PCE and 1,2-dichlorobenzene (DCB) were also examined. A sphagnum peat comprising geologically young organic matter was artificially ''aged'' using superheated water, thus increasing the aromaticity and the degree of condensation of its associated organic matter. The sorption of all solutes tested were increased remarkably and their respective desorptions reduced, by the aged peat. The sorption capacities and isotherm nonlinearities of the peat for both TCE and PCE were found to increase as treatment temperature increased. In the competitive sorption studies, both PCE and DCB were found to depress TCE sorption, with PCE having greater effects than DCB, presumably because the molecular structure o f the former is more similar to that of TCE.

  13. Revealing Sources and Distribution Changes of Dissolved Organic Matter (DOM) in Pore Water of Sediment from the Yangtze Estuary

    PubMed Central

    Wang, Ying; Zhang, Di; Shen, Zhenyao; Feng, Chenghong; Chen, Jing

    2013-01-01

    Dissolved organic matter (DOM) in sediment pore waters from Yangtze estuary of China based on abundance, UV absorbance, molecular weight distribution and fluorescence were investigated using a combination of various parameters of DOM as well as 3D fluorescence excitation emission matrix spectra (F-EEMS) with the parallel factor and principal component analysis (PARAFAC-PCA). The results indicated that DOM in pore water of Yangtze estuary was very variable which mainly composed of low aromaticity and molecular weight materials. Three humic-like substances (C1, C2, C4) and one protein-like substance (C3) were identified by PARAFAC model. C1, C2 and C4 exhibited same trends and were very similar. The separation of samples on both axes of the PCA showed the difference in DOM properties. C1, C2 and C4 concurrently showed higher positive factor 1 loadings, while C3 showed highly positive factor 2 loadings. The PCA analysis showed a combination contribution of microbial DOM signal and terrestrial DOM signal in the Yangtze estuary. Higher and more variable DOM abundance, aromaticity and molecular weight of surface sediment pore water DOM can be found in the southern nearshore than the other regions primarily due to the influence of frequent and intensive human activities and tributaries inflow in this area. The DOM abundance, aromaticity, molecular weight and fluorescence intensity in core of different depth were relative constant and increased gradually with depth. DOM in core was mainly composed of humic-like material, which was due to higher release of the sedimentary organic material into the porewater during early diagenesis. PMID:24155904

  14. Effluent organic matter (EfOM) characterization by simultaneous measurement of proteins and humic matter.

    PubMed

    Vakondios, Nikos; Koukouraki, Elisavet E; Diamadopoulos, Evan

    2014-10-15

    This work developed a method, based on the Lowry method and Frølund modification, for the simultaneous determination of proteins and humic matter in wastewater effluent samples at low concentrations. The method was based on simultaneous spectrophotometric measurements of proteins and humic matter at 750 nm in the absence and presence of CuSO4, which is responsible for increasing the absorbance only in the presence of to proteins. Statistical analysis through ANOVA showed that the response surface of the method fit the experimental measurements at significance level lower than 0.05, indicating satisfactory fit. The quantification limits of the proposed method were 0.5-30 mg/l for proteins and 2-30 mg/l for humic matter. The presence of carbohydrates did not interfere with the analysis of proteins and humic matter at carbohydrate concentrations below 35-40 mg/l. The Lowry method overestimated the concentration of the proteins because of the presence of humic substances. A carbon balance indicated that the analytical method developed could provide a satisfactory distribution of the main organic constituents in wastewater and effluents.

  15. Modelling of organic matter dynamics during the composting process.

    PubMed

    Zhang, Y; Lashermes, G; Houot, S; Doublet, J; Steyer, J P; Zhu, Y G; Barriuso, E; Garnier, P

    2012-01-01

    Composting urban organic wastes enables the recycling of their organic fraction in agriculture. The objective of this new composting model was to gain a clearer understanding of the dynamics of organic fractions during composting and to predict the final quality of composts. Organic matter was split into different compartments according to its degradability. The nature and size of these compartments were studied using a biochemical fractionation method. The evolution of each compartment and the microbial biomass were simulated, as was the total organic carbon loss corresponding to organic carbon mineralisation into CO(2). Twelve composting experiments from different feedstocks were used to calibrate and validate our model. We obtained a unique set of estimated parameters. Good agreement was achieved between the simulated and experimental results that described the evolution of different organic fractions, with the exception of some compost because of a poor simulation of the cellulosic and soluble pools. The degradation rate of the cellulosic fraction appeared to be highly variable and dependent on the origin of the feedstocks. The initial soluble fraction could contain some degradable and recalcitrant elements that are not easily accessible experimentally.

  16. Pyrolysis and mass spectrometry studies of meteoritic organic matter.

    PubMed

    Sephton, M A

    2012-01-01

    Meteorites are fragments of extraterrestrial materials that fall to the Earth's surface. The carbon-rich meteorites are derived from ancient asteroids that have remained relatively unprocessed since the formation of the Solar System 4.56 billion years ago. They contain a variety of extraterrestrial organic molecules that are a record of chemical evolution in the early Solar System and subsequent aqueous and thermal processes on their parent bodies. The major organic component (>70%) is a macromolecular material that resists straightforward solvent extraction. In response to its intractable nature, the most common means of investigating this exotic material involves a combination of thermal decomposition (pyrolysis) and mass spectrometry. Recently the approach has also been used to explore controversial claims of organic matter in meteorites from Mars. This review summarizes the pyrolysis data obtained from meteorites and outlines key interpretations.

  17. Characterizing Groundwater Sources of Organic Matter to Arctic Coastal Waters

    NASA Astrophysics Data System (ADS)

    Connolly, C. T.; Spencer, R. G.; Cardenas, M. B.; Bennett, P. C.; McNichol, A. P.; McClelland, J. W.

    2016-12-01

    The Arctic is projected to transition from a runoff-dominated system to a groundwater-dominated system as permafrost thaws due to climate change. This fundamental shift in hydrology is expected to increase groundwater flow to Arctic coastal waters, which may be a significant source of dissolved organic matter (DOM) to these waters—even under present conditions—that has been largely overlooked. Here we quantify and elucidate sources of groundwater DOM inputs to lagoons along the eastern Alaskan Beaufort Sea coast using an approach that combines concentration measurements and radiocarbon dating of groundwater, soil profiles, and soil leachable dissolved organic carbon (DOC). Samples were collected in late summer, when soil thaw depths (active layer) were near their maximum extent. As anticipated, the radiocarbon age of bulk soil organic matter increased with depth (modern - 6,100 yBP), while the amount of extractable DOC decreased with depth within the active layer. However, amounts of extractable DOC increased dramatically in thawed permafrost samples collected directly below the actively layer. Concentrations of DOM in groundwater (ranging from 902 to 5,118 μmolL-1 DOC) are one to two orders of magnitude higher than those measured in lagoons and nearby river water. In contrast, the 14C-DOC ages of groundwater (1,400 ± 718 s.d. yBP), lagoon water (1,750 yBP), and river water (1,610 yBP) are comparable. Together these results suggest that: (1) groundwater provides a highly concentrated input of old DOC to Arctic coastal waters; (2) groundwater DOM is likely sourced from organic matter spanning the entire soil profile; and (3) the DOM in rivers along the eastern Alaskan Beaufort Sea coast during late summer is strongly influenced by groundwater sources, but is much lower in concentration due to photo-mineralization and/or biological consumption. These results are key for assessing how changes in land-ocean export of organic matter as permafrost thaws will change

  18. Soft X-Ray Photoionizing Organic Matter from Comet Wild 2: Evidence for the Production of Organic Matter by Impact Processes

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Wirick, S.; Flynn, G. J.; Jacobsen, C.; Na

    2011-01-01

    The Stardust mission collected both mineral and organic matter from Comet Wild 2 [1,2,3,4]. The organic matter discovered in Comet Wild 2 ranges from aromatic hydrocarbons to simple aliphatic chains and is as diverse and complex as organic matter found in carbonaceous chondrites and interplanetary dust particles.[3,5,6,7,8,9]. Compared to insoluble organic matter from carbonaceous chondrites the organic matter in Comet Wild 2 more closely resembles organic matter found in the IDPS both hydrous and anhydrous. Common processes for the formation of organic matter in space include: Fischer-Tropsch, included with this aqueous large body and moderate heating alterations; UV irradiation of ices; and; plasma formation and collisions. The Fischer-Tropsch could only occur on large bodies processes, and the production of organic matter by UV radiation is limited by the penetration depth of UV photons, on the order of a few microns or less for most organic matter, so once organic matter coats the ices it is formed from, the organic production process would stop. Also, the organic matter formed by UV irradiation would, by the nature of the process, be in-sensitive to photodissocation from UV light. The energy of soft X-rays, 280-300 eV occur within the range of extreme ultraviolet photons. During the preliminary examination period we found a particle that nearly completely photoionized when exposed to photons in the energy range 280-310eV. This particle experienced a long exposure time to the soft x-ray beam which caused almost complete mass loss so little chemical information was obtain. During the analysis of our second allocation we have discovered another particle that photoionized at these energies but the exposure time was limited and more chemical information was obtained.

  19. Mercury dilution by autochthonous organic matter in a fertilized mangrove wetland.

    PubMed

    Machado, Wilson; Sanders, Christian J; Santos, Isaac R; Sanders, Luciana M; Silva-Filho, Emmanoel V; Luiz-Silva, Wanilson

    2016-06-01

    A dated sediment core from a highly-fertilized mangrove wetland located in Cubatão (SE Brazil) presented a negative correlation between mercury (Hg) and organic carbon contents. This is an unusual result for a metal with well-known affinity to organic matter. A dilution of Hg concentrations by autochthonous organic matter explained this observation, as revealed by carbon stable isotopes signatures (δ(13)C). Mercury dilution by the predominant mangrove-derived organic matter counterbalanced the positive influences of algal-derived organic matter and clay contents on Hg levels, suggesting that deleterious effects of Hg may be attenuated. Considering the current paradigm on the positive effect of organic matter on Hg concentrations in coastal sediments and the expected increase in mangrove organic matter burial due to natural and anthropogenic stimulations of primary production, predictions on the influences of organic matter on Hg accumulation in mangrove wetlands deserve caution.

  20. ENVIRONMENTAL RESEARCH BRIEF: CHARACTERIZATION OF ORGANIC MATTER IN SOIL AND AQUIFER SOLIDS

    EPA Science Inventory

    The focus of this work was the evaluation of analytical methods to determine and characterize fractions of subsurface organic matter. Major fractions of total organic carbon (TOC) include: particulate organic carbon (POC) in aquifer material, dissolved organic carbon (DOC) and ...

  1. Organic Matter as an Indicator of Soil Degradation

    NASA Astrophysics Data System (ADS)

    Romero Diaz, Asuncion; Damian Ruiz Sinoga, Jose

    2010-05-01

    Numerous and expensive physical-chemical tests are often carried out to determine the level of soil degration. This study was to find one property, as Organic Matter, which is usually analyzed for determine the soil degradation status. To do this 19 areas in the south and southeast of the Iberian Peninsula (provinces of Málaga, Granada, Almería y Murcia) were selected and a wide sampling process was carried out. Sampling points were spread over a wide pluviometric gradient (from 1100 mm/yr to 232 mm/yr) covering the range from Mediterranean wet to dry. 554 soil surface samples were taken from soil (0-10 cm) and the following properties were analyzed: Texture, Organic Matter (OM), Electric Conductivity (EC), Aggregate Stability (AE) y Cation Exchange Capacity (CEC). These properties were intercorrelated and also with rainfall and the K factor of soil erosion, calculated for each sampling point. Los results obtained by applying the Pearson correlation coefficient to the database shows how as rainfall increases so does OM content (0,97) and la CEC (0,89), but K factor (-0,80) reacts inversely. The content of OM in the soil is related to its biological activity and this in turn is the result of available wáter within the system and, consequently, rainfall. This is specially important in fragile and complex ecogeomorphological systems as is the case of the Mediterranean, where greater or lesser rainfall is similarly reflected in the levels of increase or decrease of soil organic matter. This affirmation is reinforced by linking the organic matter of the soil with other indicative properties such as CEC and erosion, as has been shown by various authors (Imeson y Vis, 1984; De Ploey & Poesen, 1985; Le Bissonnais, 1996; Boix-Fayos et al., 2001; Cammeraat y Imeson, 1998; Cerdá, 1998). As has been stated, there is a direct relationship between rainfall, organic matter content, cation exchange capacity, structural stability, and the resistence to soil erosion factor

  2. Organic matter interactions with natural manganese oxide and synthetic birnessite.

    PubMed

    Allard, Sébastien; Gutierrez, Leonardo; Fontaine, Claude; Croué, Jean-Philippe; Gallard, Hervé

    2017-04-01

    Redox reactions of inorganic and organic contaminants on manganese oxides have been widely studied. However, these reactions are strongly affected by the presence of natural organic matter (NOM) at the surface of the manganese oxide. Interestingly, the mechanism behind NOM adsorption onto manganese oxides remains unclear. Therefore, in this study, the adsorption kinetics and equilibrium of different NOM isolates to synthetic manganese oxide (birnessite) and natural manganese oxide (Mn sand) were investigated. Natural manganese oxide is composed of both amorphous and well-crystallised Mn phases (i.e., lithiophorite, birnessite, and cryptomelane). NOM adsorption on both manganese oxides increased with decreasing pH (from pH7 to 5), in agreement with surface complexation and ligand exchange mechanisms. The presence of calcium enhanced the rate of NOM adsorption by decreasing the electrostatic repulsion between NOM and Mn sand. Also, the adsorption was limited by the diffusion of NOM macromolecules through the Mn sand pores. At equilibrium, a preferential adsorption of high molecular weight molecules enriched in aromatic moieties was observed for both the synthetic and natural manganese oxide. Hydrophobic interactions may explain the adsorption of organic matter on manganese oxides. The formation of low molecular weight UV absorbing molecules was detected with the synthetic birnessite, suggesting oxidation and reduction processes occurring during NOM adsorption. This study provides a deep insight for both environmental and engineered systems to better understand the impact of NOM adsorption on the biogeochemical cycle of manganese.

  3. Production of Dissolved Organic Matter During Fungal Wood Rot Decay

    NASA Astrophysics Data System (ADS)

    Filley, T. R.; Jellison, J.; Goodell, B.; Kelley, S.; Davis, M.

    2002-12-01

    Dissolved organic matter mediates numerous biogeochemical processes in soil systems impacting subsurface microbial activity, redox chemistry, soil structure, and carbon and nitrogen sequestration. The structure and chemistry of DOM is a function of the inherited chemistry of the source material, the type of microbial action that has occurred, and selective interaction with mineral substrates. The type of fungal decomposition imparted to woody tissue is a major factor in determining the nature of DOM in forest soils. In order to investigate the relationship between fungal decomposition and the nature of DOM in coniferous forest soils we conducted 32-week inoculation studies on spruce sapwood with basidiomycete brown-rot wood decay fungi where leachable dissolved and colloidal organic matter was separated from decayed residue. A detailed examination of the organic fractions was conducted using 13C-labeled tetramethylammonium hydroxide thermochemolysis, solid-state 13C-NMR, and electrospray mass spectrometry. The progressive stages of microbial decay (cellulolytic and ligninolytic) were manifested in the chemical composition of the DOM which showed an evolution from a composition initially polysaccharide rich to one dominated by mildly oxidized and demethylated lignin. Upon removal of all polysaccharides at 16 weeks the DOM (up to 10% by weight of the original tissue) looked chemically distinct from the degraded residue

  4. Effects of Dissolved Organic Matter Source on Wetland Bacterial Metabolism

    NASA Astrophysics Data System (ADS)

    Ward, A. K.

    2005-05-01

    Wetlands are rich environments for organic matter production from a variety of wetland plant types. Investigations of the Talladega Wetland Ecosystem (TWE) in the southeastern U.S. show that bacterioplankton productivity is driven by dissolved organic carbon derived from wetland plants. The TWE is formed from a small coastal plain stream that has been dammed by beaver activity and resides in a forested catchment. In this study, bacterioplankton communities sampled from the wetland were amended with leachate from two different plants common in the TWE, the soft rush, Juncus effusus, and hazel alder, Alnus serrulata, and compared to unamended controls. The bacterioplankton response was examined by measuring bacterial carbon productivity and by an array of fluorescent microscope techniques used to distinguish metabolically active and non-active cells. Both plant leachates elicited rapid and significant increases in productivity and numbers of metabolically active bacterial cells. However, the timeframe of response, the magnitude of response, and the bacterial morphotypes varied depending on the leachate source. This study suggests that wetland bacterial communities contain different sub-component populations that may generally occur in low numbers, but that can adapt and respond rapidly to different sources of organic matter native to the wetland.

  5. Lead sequestration and species redistribution during soil organic matter decomposition

    USGS Publications Warehouse

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases (???20-35%) and SOM (???65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility. ?? 2008 American Chemical Society.

  6. Complexation of lead by organic matter in Luanda Bay, Angola.

    PubMed

    Leitão, Anabela; Santos, Ana Maria; Boaventura, Rui A R

    2015-10-01

    Speciation is defined as the distribution of an element among different chemical species. Although the relation between speciation and bioavailability is complex, the metal present as free hydrated ion, or as weak complexes able to dissociate, is usually more bioavailable than the metal incorporated in strong complexes or adsorbed on colloidal or particulate matter. Among the analytical techniques currently available, anodic stripping voltammetry (ASV) has been one of the most used in the identification and quantification of several heavy metal species in aquatic systems. This work concerns the speciation study of lead, in original (natural, non-filtered) and filtered water samples and in suspensions of particulate matter and sediments from Luanda Bay (Angola). Complexes of lead with organics were identified and quantified by differential pulse anodic stripping voltammetry technique. Each sample was progressively titrated with a Pb(II) standard solution until complete saturation of the organic ligands. After each addition of Pb(II), the intensity, potential and peak width of the voltammetric signal were measured. The results obtained in this work show that more than 95 % of the lead in the aquatic environment is bound in inert organic complexes, considering all samples from different sampling sites. In sediment samples, the lead is totally (100 %) complexed with ligands adsorbed on the particles surface. Two kinds of dominant lead complexes, very strong (logK >11) and strong to moderately strong (8< logK <11), were found, revealing the lead affinity for the stronger ligands.

  7. Lead Sequestration And Species Redistribution During Soil Organic Matter Decomposition

    SciTech Connect

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2009-05-27

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-rayfluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest O{sub i} samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases ({approx}20--35%) and SOM ({approx}65--80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility.

  8. Lead Sequestration and Species Redistribution During Soil Organic Matter Decomposition

    SciTech Connect

    Schroth,A.; Bostick, B.; Kaste, J.; Friedland, A.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases ({approx}20-35%) and SOM ({approx}65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility.

  9. Unraveling the chemical space of terrestrial and meteoritic organic matter

    NASA Astrophysics Data System (ADS)

    Schmitt-Kopplin, Philippe; Harir, Mourad; Hertkorn, Norbert; Kanawati, Basem; Ruf, Alexander; Quirico, Eric; Bonal, Lydie; Beck, Pierre; Gabelica, Zelimir

    2015-04-01

    In terrestrial environments natural organic matter (NOM) occurs in soils, freshwater and marine environments, in the atmosphere and represents an exceedingly complex mixture of organic compounds that collectively exhibits a nearly continuous range of properties (size-reactivity continuum). In these materials, the "classical" biogeosignatures of the (biogenic and geogenic) precursor molecules, like lipids, lignins, proteins and natural products have been attenuated, often beyond recognition, during a succession of biotic and abiotic (e.g. photo- and redox chemistry) reactions. Because of this loss of biochemical signature, these materials can be designated non-repetitive complex systems. The access to extra-terrestrial organic matter is given i.e. in the analysis of meteoritic materials. Numerous descriptions of organic molecules present in organic chondrites have improved our understanding of the early interstellar chemistry that operated at or just before the birth of our solar system. However, many molecular analyses are so far targeted toward selected classes of compounds with a particular emphasis on biologically active components in the context of prebiotic chemistry. Here we demonstrate that a non-targeted ultrahigh-resolution molecular analysis of the solvent-accessible organic fraction of meteorite extracted under mild conditions allows one to extend its indigenous chemical diversity to tens of thousands of different molecular compositions and likely millions of diverse structures. The description of the molecular complexity provides hints on heteroatoms chronological assembly, shock and thermal events and revealed recently new classes of thousands of novel organic, organometallic compounds uniquely found in extra-terrestrial materials and never described in terrestrial systems. This high polymolecularity suggests that the extraterrestrial chemodiversity is high compared to terrestrial relevant biological and biogeochemical-driven chemical space. (ultra

  10. Missing links in the root-soil organic matter continuum

    SciTech Connect

    O'Brien, Sarah L.; Iversen, Colleen M

    2009-01-01

    The soil environment remains one of the most complex and poorly understood research frontiers in ecology. Soil organic matter (SOM), which spans a continuum from fresh detritus to highly processed, mineral-associated organic matter, is the foundation of sustainable terrestrial ecosystems. Heterogeneous SOM pools are fueled by inputs from living and dead plants, driven by the activity of micro- and mesofauna, and are shaped by a multitude of abiotic factors. The specialization required to measure unseen processes that occur on a wide range of spatial and temporal scales has led to the partitioning of soil ecology research across several disciplines. In the organized oral session 'Missing links in the root-soil organic matter continuum' at the annual Ecological Society of America meeting in Albuquerque, NM, USA, we joined the call for greater communication and collaboration among ecologists who work at the root-soil interface (e.g. Coleman, 2008). Our goal was to bridge the gap between scientific disciplines and to synthesize disconnected pieces of knowledge from root-centric and soil-centric studies into an integrated understanding of belowground ecosystem processes. We focused this report around three compelling themes that arose from the session: (1) the influence of the rhizosphere on SOM cycling, (2) the role of soil heterotrophs in driving the transformation of root detritus to SOM, and (3) the controlling influence of the soil environment on SOM dynamics. We conclude with a discussion of new approaches for gathering data to bridge gaps in the root-SOM continuum and to inform the next generation of ecosystem models. Although leaf litter has often been considered to be the main source of organic inputs to soil, Ann Russell synthesized a convincing body of work demonstrating that roots, rather than surface residues, control the accumulation of SOM in a variety of ecosystems. Living roots, which are chemically diverse and highly dynamic, also influence a wide

  11. Method and apparatus for retorting a substance containing organic matter

    SciTech Connect

    Schulman, B.

    1980-07-01

    A description is given of an apparatus for converting a substance containing organic matter into hydrocarbon vapors and solids residue comprising: (A) a fluidized bed housing having an upstream end and a downstream end; (B) a substantially cylindrical retort, extending through and stationary relative to said fluidized bed housing and having an upstream end and a downstream end, each end being outside of said housing, the longitudinal axis of said retort being substantially parallel to a horizontal plane; (C) feeding means for feeding the substance containing organic matter into said retort, said feeding means communicating with the upstream portion of said retort; (D) means located within said retort for moving the substance containing organic matter from the upstream portion of said retort to the downstream portion thereof; (E) solids residue removing means for removing solids residue from said retort, said solids residue removing means communicating with the downstream portion of said retort; (F) solids residue introducing means for introducing said solids residue removed from said retort into said fluidized bed housing to employ said solids residue as particles of a fluidized bed, one end of said introducing means communicating with said solids residue removing means and the other end therof communicating with the upper upstream portion of said fluidized bed housing; (G) solids residue extracting means for extracting solids residue from said fluidized bed housing and communicating with the lower downstream portion fluidized bed housing; (H) fluidizing menas for maintaining within said fluidized bed housing a fluidized bed of heated particles of solids residue with which to heat said retort; (I) heating means for heating the particles; (J) hydrocarbon vapors removing means.

  12. Priming of soil organic matter decomposition in cryoturbated Arctic soils

    NASA Astrophysics Data System (ADS)

    Richter, A.; Wild, B.; Schnecker, J.; Rusalimova, O.

    2012-12-01

    The Arctic is subjected to particularly high rates of warming, with profound consequences for the carbon cycle: on the one hand plant productivity and C storage in plant biomass have been shown to increase strongly in many parts of the Arctic, on the other hand, increasing rates of soil organic matter (SOM) decomposition have been reported. One of the possibilities that could reconcile these observations is, that increased plant growth may lead to increased root exudation rates, which are known to stimulate microbial turnover of organic matter under certain circumstances, in a process termed "priming" of SOM. Two mechanisms have been brought forward that may be responsible for priming: first, easily assimilable material exuded by plant roots may help microbes to overcome their energy limitation and second, this input of labile carbon could lead to a nitrogen limitation of the microbial community and lead to nitrogen mining, i.e. decomposition of N-rich SOM. We here report on an incubation study with arctic soil investigating potential priming of SOM decomposition in organic topsoil horizons, cryoturbated organic matter and subsoil mineral horizons of tundra soil from the Taymyr peninsula in Siberia. We used arctic soils, that are characterized by cryoturbation (mixing of soil layers due to freezing and thawing), for this study. Turbated cryosols store more than 580 Gt C globally, a significant proportion of which is stored in the cryoturbated organic matter. We hypothesized that an increased availability of labile compounds would increase SOM decomposition rates, and that this effect would be strongest in horizons with a low natural availability of labile C, i.e. in the mineral subsoil. We amended soils with 13C labelled glucose, cellulose, amino acids or proteins, and measured the mineralization of SOM C as well as microbial community composition and potential activities of extracellular enzymes. Our results demonstrate that topsoil organic, cryoturbated and

  13. Persistence of soil organic matter as an ecosystem property

    SciTech Connect

    Schmidt, M.W.; Torn, M. S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; Nannipieri, P.; Rasse, D.P.; Weiner, S.; Trumbore, S.E.

    2011-08-15

    Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily—and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming.

  14. Characterization of Biologically Produced Colored Dissolved Organic Matter in Seawater

    DTIC Science & Technology

    2005-11-29

    Seritti, A. Environ. Tech. 1993, 14, 94.1-948. (19) Lombardi, A.T.; Jardim, W.F. Water Research. 1999, 33, 512-520. (20) Parlanti, E .; Morin , B.; Vacher...REPORT DOCUMENTATION PAGE Form Approved Public reporting burden for this collection of I•mo,,ation , e dlat ed to average hour per response. ind•uding... e -mail: drepeta(atwhoi.edu Grant# N00014-98-1-0579 & N00014-03-1-0387 Chromophoric, or colored dissolved organic matter (CDOM), influences the

  15. Aquatic Organic Matter Fluorescence - from phenomenon to application

    NASA Astrophysics Data System (ADS)

    Reynolds, Darren

    2014-05-01

    The use of fluorescence to quantify and characterise aquatic organic matter in river, ocean, ground water and drinking and waste waters has come along way since its discovery as a phenomenon in the early 20th century. For example, there are over 100 papers published each year in international peer reviewed journals, an order of magnitude increase since a decade ago (see Figure taken from ISI database from 1989 to 2007 for publications in the fields of river water and waste water). Since then it has been extensively used as a research tool since the 1990's by scientists and is currently used for a wide variety of applications within a number of sectors. Universities, organisations and companies that research into aquatic organic matter have either recently readily use appropriate fluorescence based techniques and instrumentation. In industry and government, the technology is being taken up by environmental regulators and water and wastewater companies. This keynote presentation will give an overview of aquatic organic matter fluorescence from its conception as a phenomenon through to its current use in a variety of emerging applications within the sectors concerned with understanding, managing and monitoring the aquatic environment. About the Speaker Darren Reynolds pioneered the use of fluorescence spectroscopy for the analysis of wastewaters in the 1990's. He currently leads a research group within the Centre for Research in Biosciences and sits on the Scientific Advisory Board for the Institute of Bio-Sensing Technology at the University of the West of England, Bristol. He is a multidisciplinary scientist concerned with the development of technology platforms for applications in the fields of environment/agri-food and health. His current research interests include the development of optical technologies and techniques for environmental and biological sensing and bio-prospecting applications. He is currently involved in the development and use of synthetic biology

  16. Persistence of soil organic matter as an ecosystem property.

    PubMed

    Schmidt, Michael W I; Torn, Margaret S; Abiven, Samuel; Dittmar, Thorsten; Guggenberger, Georg; Janssens, Ivan A; Kleber, Markus; Kögel-Knabner, Ingrid; Lehmann, Johannes; Manning, David A C; Nannipieri, Paolo; Rasse, Daniel P; Weiner, Steve; Trumbore, Susan E

    2011-10-05

    Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily--and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming.

  17. Association of organic matter and ferrihydrite: adsorption versus coprecipitation

    NASA Astrophysics Data System (ADS)

    Eusterhues, K.; Rennert, T.; Knicker, H.; Totsche, K. U.

    2009-04-01

    Ferrihydrite (Fh) - even if present at low concentrations - may control the available surface area and therefore, the behaviour of nutrients and pollutants in soils. Its precipitation often takes place in the presence of dissolved organic matter (OM). This involves processes such as adsorption, but also coprecipitation, flocculation/coagulation and poisoning of crystal growth. In this study, we compare coprecipitation of organic matter and ferrihydrite with pure adsorption of OM on ferrihydrite. We therefore prepared an adsorption series and a coprecipitation series using (i) water extractable organic matter from a forest topsoil and (ii) sulfite extractable lignin from paper. Products were investigated by N2-adsorption, XRD and FTIR. In coprecipitation experiments with both types of OM we observed a strong interference of the organic molecules with crystal growth leading to smaller Fh crystals, increased lattice spacings and a lower crystallinity. The highest achieved C loadings were found at approximately 200 mg C per g Fh for the adsorption and coprecipitation of the soil extract as well as for the adsorption of lignin. Coprecipitation of lignin, in contrast, resulted in a much higher maximum loading of 360 mg C per g Fh. The FTIR spectrum of the unreacted soil extract is mainly characterized by carboxyl C and polysaccharide C, with a smaller contribution of phenolic C. Spectra of the adsorbed or coprecipitated soil extract reveal weaker bands and lowered wave numbers indicating removal from solution followed by the formation of chemical bonds between the organic species and Fh by inner-sphere surface complexes. The FTIR spectrum of the lignin material shows a strong contribution of carboxyl C, polysaccharide C, and several aromatic C species. Again, all of these C species seem to form surface complexes after reaction with Fh in adsorption and coprecipitation experiments. Interestingly, at low initial C concentrations in all experiments the sorption of carboxyl

  18. Conservative or reactive? Mechanistic chemical perspectives on organic matter stability

    NASA Astrophysics Data System (ADS)

    Koch, Boris

    2016-04-01

    Carbon fixation by terrestrial and marine primary production has a fundamental seasonal effect on the atmospheric carbon content and it profoundly contributes to long-term carbon storage in form of organic matter (OM) in soils, water, and sediments. The efficacy of this sequestration process strongly depends on the degree of OM persistence. Therefore, one of the key issues in dissolved and particulate OM research is to assess the stability of reservoirs and to quantify their contribution to global carbon fluxes. Incubation experiments are helpful to assess OM stability during the first, early diagenetic turnover induced by sunlight or microbes. However, net carbon fluxes within the global carbon cycle also act on much longer time scales, which are not amenable in experiments. It is therefore critical to improve our mechanistic understanding to be able to assess potential future changes in the organic matter cycle. This session contribution highlights some achievements and open questions in the field. An improved mechanistic understanding of OM turnover particularly depends on the molecular characterization of biogeochemical processes and their kinetics: (i) in soils and sediments, aggregation/disaggregation of OM is primarily controlled by its molecular composition. Hence, the chemical composition determines the transfer of organic carbon from the large particulate to the small dissolved organic matter reservoir - an important substrate for microbial metabolism. (ii) In estuaries, dissolved organic carbon gradients usually suggest conservative behavior, whereas molecular-level studies reveal a substantial chemical modification of terrestrial DOM along the land-ocean interface. (iii) In the ocean, previous studies have shown that the recalcitrance of OM depends on bulk concentration and energy yield. However, ultrahigh resolution mass spectrometry in combination with radiocarbon analyses also emphasized that stability is tightly connected to molecular composition

  19. Effect of organic fertilizers derived dissolved organic matter on pesticide sorption and leaching.

    PubMed

    Li, Kun; Xing, Baoshan; Torello, William A

    2005-03-01

    Incorporation of organic fertilizers/amendments has been, and continues to be, a popular strategy for golf course turfgrass management. Dissolved organic matter (DOM) derived from these organic materials may, however, facilitate organic chemical movement through soils. A batch equilibrium technique was used to evaluate the effects of organic fertilizer-derived DOM on sorption of three organic chemicals (2,4-D, naphthalene and chlorpyrifos) in USGA (United States Golf Association) sand, a mixed soil (70% USGA sand and 30% native soil) and a silt loam soil (Typic Fragiochrept). DOM was extracted from two commercial organic fertilizers. Column leaching experiments were also performed using USGA sand. Sorption experiments showed that sorption capacity was significantly reduced with increasing DOM concentration in solution for all three chemicals. Column experimental results were consistent with batch equilibrium data. These results suggest that organic fertilizer-derived DOM might lead to enhanced transport of applied chemicals in turf soils.

  20. Do organic matter matter? Contribution of organic matter on scavenging and fractionation of natural radionuclides in the Oceanic Flux Program (OFP) site of Bermuda

    NASA Astrophysics Data System (ADS)

    Chuang, C.; Santschi, P. H.; Conte, M. H.; Schumann, D.; Ayranov, M.

    2012-12-01

    Natural particle-reactive radionuclides, 234Th, 233Pa, 210Po, 210Pb and 7Be, have been used for estimating particulate organic carbon (POC) export flux in the ocean for decades. However, by simply relying on empirically determined isotope ratios to POC and other parameters, sometimes results from field studies are puzzling and become controversial (e.g., one is summarized in Li, 2005). The picture becomes clearer when it was noticed that a missing fraction, e.g., natural organic matter, could be the cause. For example, a series of field and lab studies demonstrated that biopolymers excreted by marine micro-organisms are likely carrier molecules for a number of these isotopes (e.g., Guo et al., 2002; Quigley et al., 2002; Santschi et al., 2003; Roberts et al., 2009; Hung et al., 2010; Xu et al., 2011; Hung et al., 2012; Yang et al., 2012). To examine the effect of organic composition of the particle on the scavenging and fractionation of selected natural radionuclides (e.g., Th, Pa, Pb, Po, Be), organic composition (e.g., protein, polysaccharides, uronic acid, siderophore and amino acid contents, and etc.) and particle-water partition coefficients (Kd) were determined for sediment trap material collected in the Oceanic Flux Program (OFP) site of Bermuda (500, 1500 and 3200 m). Results showed that different organic components contribute differently to the fractionation of different radionuclides from the three depths. We conclude that natural organic matter control on the particle-water partition coefficients cannot be ignored.

  1. Diagenesis of niagaran (middle silurian) pinnacle reefs, northwest Michigan

    NASA Astrophysics Data System (ADS)

    Cercone, K. R.

    The presence of geothermal gradients 10 to 20 C higher than the current average gradient (25 C/km), and of one kilometer of now eroded overburden in the Michigan Basin during the Paleozoic can be inferred from the high organic maturity of basin strata using the Lopatin method. These data are used to reconstruct the burial history of a single pinnacle reef from northwest Michigan, allowing absolute time constraints to be placed on reef diagenesis. Partial dolomitization occurred during subaerial exposure just after reef growth; regional dolomitization occurred between the late Silurian and the Devonian; and late mineralization by calcite, dolomite and pyrite occurred after Mississippian hydrocarbon emplacement and before the end of the Jurassic. There is no evidence that a well-developed fresh-water lens was ever present in this reef. Regional controls on carbonate diagenesis in this northwest reef trend include: size and hydraulic conductivity of reefs, thickness and lithology of adjacent and overlying evaporites, migration paths of late gypsum-derived and basinal brines, and the timing of anaerobic fermentation in organic-rich carbonates.

  2. Influence of dissolved organic carbon content on modelling natural organic matter acid-base properties.

    PubMed

    Garnier, Cédric; Mounier, Stéphane; Benaïm, Jean Yves

    2004-10-01

    Natural organic matter (NOM) behaviour towards proton is an important parameter to understand NOM fate in the environment. Moreover, it is necessary to determine NOM acid-base properties before investigating trace metals complexation by natural organic matter. This work focuses on the possibility to determine these acid-base properties by accurate and simple titrations, even at low organic matter concentrations. So, the experiments were conducted on concentrated and diluted solutions of extracted humic and fulvic acid from Laurentian River, on concentrated and diluted model solutions of well-known simple molecules (acetic and phenolic acids), and on natural samples from the Seine river (France) which are not pre-concentrated. Titration experiments were modelled by a 6 acidic-sites discrete model, except for the model solutions. The modelling software used, called PROSECE (Programme d'Optimisation et de SpEciation Chimique dans l'Environnement), has been developed in our laboratory, is based on the mass balance equilibrium resolution. The results obtained on extracted organic matter and model solutions point out a threshold value for a confident determination of the studied organic matter acid-base properties. They also show an aberrant decreasing carboxylic/phenolic ratio with increasing sample dilution. This shift is neither due to any conformational effect, since it is also observed on model solutions, nor to ionic strength variations which is controlled during all experiments. On the other hand, it could be the result of an electrode troubleshooting occurring at basic pH values, which effect is amplified at low total concentration of acidic sites. So, in our conditions, the limit for a correct modelling of NOM acid-base properties is defined as 0.04 meq of total analysed acidic sites concentration. As for the analysed natural samples, due to their high acidic sites content, it is possible to model their behaviour despite the low organic carbon concentration.

  3. The abiotic degradation of soil organic matter to oxalic acid

    NASA Astrophysics Data System (ADS)

    Studenroth, Sabine; Huber, Stefan; Schöler, H. F.

    2010-05-01

    The abiotic degradation of soil organic matter to volatile organic compounds was studied intensely over the last years (Keppler et al., 2000; Huber et al., 2009). It was shown that soil organic matter is oxidised due to the presence of iron (III), hydrogen peroxide and chloride and thereby produces diverse alkyl halides, which are emitted into the atmosphere. The formation of polar halogenated compounds like chlorinated acetic acids which are relevant toxic environmental substances was also found in soils and sediments (Kilian et al., 2002). The investigation of the formation of other polar halogenated and non-halogenated compounds like diverse mono- and dicarboxylic acids is going to attain more and more importance. Due to its high acidity oxalic acid might have impacts on the environment e.g., nutrient leaching, plant diseases and negative influence on microbial growth. In this study, the abiotic formation of oxalic acid in soil is examined. For a better understanding of natural degradation processes mechanistic studies were conducted using the model compound catechol as representative for structural elements of the humic substances and its reaction with iron (III) and hydrogen peroxide. Iron is one of the most abundant elements on earth and hydrogen peroxide is produced by bacteria or through incomplete reduction of oxygen. To find suitable parameters for an optimal reaction and a qualitative and quantitative analysis method the following reaction parameters are varied: concentration of iron (III) and hydrogen peroxide, time dependence, pH-value and influence of chloride. Analysis of oxalic acid was performed employing an ion chromatograph equipped with a conductivity detector. The time dependent reaction shows a relatively fast formation of oxalic acid, the optimum yield is achieved after 60 minutes. Compared to the concentration of catechol an excess of hydrogen peroxide as well as a low concentration of iron (III) are required. In absence of chloride the

  4. Evaluating Carbon Isotope Signature of Bulk Organic Matter and Plant Wax Derived n-alkanes from Lacustrine Sediments as Climate Proxies along the Western Side of the Andes

    NASA Astrophysics Data System (ADS)

    Contreras, S.; Werne, J. P.; Araneda, A.; Conejero, C. A.

    2015-12-01

    Sedimentary carbon isotope values (δ13C) of bulk organic matter and long chain (C25 to C35) n-alkanes are among the most long-lived and widely utilized proxies of organic matter and vegetation source. The carbon distribution (e.g. average carbon chain length, ACL) and isotope signature from long chain n-alkanes had been intensively used on paleoclimate studies because they are less influenced by diagenesis, differential preservation of compound classes, and changes in the sources of organic matter than bulk δ13C values. Recently, studies of modern plant n-alkanes have challenged the use of carbon distribution and carbon isotope signature from sedimentary n-alkanes as reliable indicators of vegetation and climate change. The climate in central-south western South America (SA) is projected to become significantly warmer and drier over the next several decades to centuries in response to anthropogenically driven warming. Paleolimnological studies along western SA are critical to obtain more realistic and reliable regional reconstructions of past climate and environments, including vegetation and water budget variability. Here we discuss bulk δ13C, distribution and δ13C in long chain n-alkanes from a suite of ~40 lake surface sediment (core-top) samples spanning the transition from a Mediterranean climate with a patchwork of cultivated vegetation, pastureland, conifers in central Chile to a rainy temperate climate dominated by broadleaf deciduous and evergreen forest. Data are compared to the latitudinal and orographic climatic trends of the Andes based on the climatology (e.g. precipitation and temperature) of the locations of all lakes involved in this study, using monthly gridded reanalysis products of the Climate Forecast System Reanalysis (CFSR), based on the NCEP global forecast model and meteorological stations available in the region, from January 1979 to December 2010 with a 0.5° horizontal resolution.

  5. Nature and transformation of dissolved organic matter in treatment wetlands.

    PubMed

    Barber, L B; Leenheer, J A; Noyes, T I; Stiles, E A

    2001-12-15

    This investigation into the occurrence, character, and transformation of dissolved organic matter (DOM) in treatment wetlands in the western United States shows that (i) the nature of DOM in the source water has a major influence on transformations that occur during treatment, (ii) the climate factors have a secondary effect on transformations, (iii) the wetlands receiving treated wastewater can produce a net increase in DOM, and (iv) the hierarchical analytical approach used in this study can measure the subtle DOM transformations that occur. As wastewater treatment plant effluent passes through treatment wetlands, the DOM undergoes transformation to become more aromatic and oxygenated. Autochthonous sources are contributed to the DOM, the nature of which is governed by the developmental stage of the wetland system as well as vegetation patterns. Concentrations of specific wastewater-derived organic contaminants such as linear alkylbenzene sulfonate, caffeine, and ethylenediaminetetraacetic acid were significantly attenuated by wetland treatment and were not contributed by internal loading.

  6. Morphological Study of Insoluble Organic Matter Residues from Primitive

    NASA Technical Reports Server (NTRS)

    Changela, H. G.; Stroud, R. M.; Peeters, Z.; Nittler, L. R.; Alexander, C. M. O'D.; DeGregorio, B. T.; Cody, G. D.

    2012-01-01

    Insoluble organic matter (IOM) constitutes a major proportion, 70-99%, of the total organic carbon found in primitive chondrites [1, 2]. One characteristic morphological component of IOM is nanoglobules [3, 4]. Some nanoglobules exhibit large N-15 and D enrichments relative to solar values, indicating that they likely originated in the ISM or the outskirts of the protoplanetary disk [3]. A recent study of samples from the Tagish Lake meteorite with varying levels of hydrothermal alteration suggest that nanoglobule abundance decreases with increasing hydrothermal alteration [5]. The aim of this study is to further document the morphologies of IOM from a range of primitive chondrites in order to determine any correlation of morphology with petrographic grade and chondrite class that could constrain the formation and/or alteration mechanisms.

  7. Nature and transformation of dissolved organic matter in treatment wetlands

    USGS Publications Warehouse

    Barber, L.B.; Leenheer, J.A.; Noyes, T.I.; Stiles, E.A.

    2001-01-01

    This investigation into the occurrence, character, and transformation of dissolved organic matter (DOM) in treatment wetlands in the western United States shows that (i) the nature of DOM in the source water has a major influence on transformations that occur during treatment, (ii) the climate factors have a secondary effect on transformations, (iii) the wetlands receiving treated wastewater can produce a net increase in DOM, and (iv) the hierarchical analytical approach used in this study can measure the subtle DOM transformations that occur. As wastewater treatment plant effluent passes through treatment wetlands, the DOM undergoes transformation to become more aromatic and oxygenated. Autochthonous sources are contributed to the DOM, the nature of which is governed by the developmental stage of the wetland system as well as vegetation patterns. Concentrations of specific wastewaterderived organic contaminants such as linear alkylbenzene sulfonate, caffeine, and ethylenediaminetetraacetic acid were significantly attenuated by wetland treatment and were not contributed by internal loading.

  8. Literature review of organic matter transport from marshes

    NASA Technical Reports Server (NTRS)

    Dow, D. D.

    1982-01-01

    A conceptual model for estimating a transport coefficient for the movement of nonliving organic matter from wetlands to the adjacent embayments was developed in a manner that makes it compatible with the Earth Resources Laboratory's Productive Capacity Model. The model, which envisages detritus movement from wetland pixels to the nearest land-water boundary followed by movement within the water column from tidal creeks to the adjacent embayment, can be transposed to deal with only the interaction between tidal water and the marsh or to estimate the transport from embayments to the adjacent coastal waters. The outwelling hypothesis postulated wetlands as supporting coastal fisheries either by exporting nutrients, such as inorganic nitrogen, which stimulated the plankton-based grazing food chain in the water column, or through the export of dissolved and particulate organic carbon which provided a benthic, detritus-based food web which provides the food source for the grazing food chain in a more indirect fashion.

  9. Dissolved Organic Matter in the Yukon River Basin

    NASA Astrophysics Data System (ADS)

    Aiken, G.; Striegl, R.; Schuster, P.

    2004-12-01

    Source materials, watershed geochemistry, oxidative processes and hydrology exert strong influences on the nature and reactivity of dissolved organic matter (DOM) in aquatic systems. At present, a critical question in carbon cycling is how climate change could alter the fate and chemical nature of dissolved organic carbon (DOC) released from watersheds, particularly those underlain by permafrost, and transported to rivers, lakes, estuaries and coastal waters. The spatial and temporal variability of DOM in surface waters associated with the Yukon River are being studied to better define processes controlling DOM in this system. Like many northern ecosystems, the Yukon River Basin is experiencing melting permafrost, drying of upland soils and changing wetland environments. Study results indicate that the transport of DOM in the river and its major tributaries is strongly seasonally dependent. Specific ultraviolet absorbance (SUVA) data, an excellent indicator of aromatic carbon content of DOM, also indicate a large variation in the chemical nature of the organic matter transported by the river. Lowest DOC concentrations and SUVA values were observed for samples collected in the winter under low flow conditions and for tributaries dominated by ground water inputs. Greatest DOC concentrations and SUVA values were measured on samples collected during the spring on the leading part of the hydrograph. High SUVA values are indicative of greater amounts of organic material originating from higher plants that are present in upper soil horizons and wetlands of the watershed. Aquatic humic substances collected from the Yukon River during the snowmelt period were found to have low nitrogen contents and greater amounts of aromatic C relative to samples from other aquatic environments. Low N content and high aromaticity are indicative of humic substances evolved from higher plant sources with little alteration resulting from microbial degradation or soil interactions. In addition

  10. Dissolved organic matter photolysis in Canadian arctic thaw ponds

    NASA Astrophysics Data System (ADS)

    Laurion, Isabelle; Mladenov, Natalie

    2013-09-01

    The abundant thaw lakes and ponds in the circumarctic receive a new pool of organic carbon as permafrost peat soils degrade, which can be exposed to significant irradiance that potentially increases as climate warms and ice cover shortens. Exposure to sunlight is known to accelerate the transformation of dissolved organic matter (DOM) into molecules that can be more readily used by microbes. We sampled the water from two common classes of ponds found in the ice-wedge system of continuous permafrost regions of Canada, polygonal and runnel ponds, and followed the transformation of DOM over 12 days by looking at dissolved organic carbon (DOC) concentration and DOM absorption and fluorescence properties. The results indicate a relatively fast decay of color (3.4 and 1.6% loss d-1 of absorption at 320 nm for the polygonal and runnel pond, respectively) and fluorescence (6.1 and 8.3% loss d-1 of total fluorescent components, respectively) at the pond surface, faster in the case of humic-like components, but insignificant losses of DOC over the observed period. This result indicates that direct DOM mineralization (photochemical production of CO2) is apparently minor in thaw ponds compared to the photochemical transformation of DOM into less chromophoric and likely more labile molecules with a greater potential for microbial mineralization. Therefore, DOM photolysis in arctic thaw ponds can be considered as a catalytic mechanism, accelerating the microbial turnover of mobilized organic matter from thawing permafrost and the production of greenhouse gases, especially in the most shallow ponds. Under a warming climate, this mechanism will intensify as summers lengthen.

  11. Temperature and organic matter controls on hyporheic greenhouse gas production

    NASA Astrophysics Data System (ADS)

    Comer-Warner, S.; Romeijn, P.; Krause, S.; Hannah, D. M.; Gooddy, D.

    2016-12-01

    The region of groundwater and surface water mixing, known as the hyporheic zone, has recently attracted interest as an area of greenhouse gas (GHG) production. Although high concentrations of GHG have been found in these environments, the drivers of hyporheic GHG production remain poorly understood. Here we present the results of a microcosm incubation experiment, designed to determine the effect of multiple environmental parameters on GHG production. Three sediment types, representing a gradient of organic matter contents, from two contrasting UK lowland rivers (sandstone and chalk), were incubated for 29 hours. Experiments were performed at five temperature treatments between 5 and 25°C, and the microbial metabolism of each microcosm was determined using the smart tracer Resazurin. Headspace concentrations of carbon dioxide, methane and nitrous oxide were measured to determine the effect of these environmental parameters on GHG production, and establish their roles as drivers of GHG production in the hyporheic zone. Our results indicate strong temperature controls of GHG production, overlapping with the observed impacts of varying organic matter content of different sediments. Experimental findings indicate that increased hyporheic temperatures during increasing baseflow and drought conditions may significantly enhance sediment respiration, and thus, GHG emissions from the streambed interface. This research advances understanding of drivers of whole stream carbon and nitrogen budgets, as well as the role of groundwater-surface water interfaces in GHG emissions, and allows the interaction of these controls to be assessed.

  12. Speciation of The Particulate Organic Matter In Three Remote Areas

    NASA Astrophysics Data System (ADS)

    Masclet, Pierre; Marchand, Nicolas; Jaffrezo, Jean Luc; Besombes, Jean Luc

    Total particulate matter was collected as part of three programs between 1999 and 2001 (EAAS in Finland, ESOMPTE in Marseille/Fos and POVA in french alpine valleys). The speciation of the particulate organic matter (POM) was performed by Gas Chromatography or HPLC coupled with a mass spectrometer. 13 organic families were identified in the 245 samples collected. The presence of some functional groups (- COOH; - OH and - CHO) and the carbon chain length are used in order to identify the sources of the particulate pollutants and the physicochemical behaviour during the long range atmospheric transport of the aerosol. The composition of the POM differs depending on the season (the secondary fraction reaches 27 % in summer and only 6% in winter) and on the remoteness of the sources. Alkanes are always the most abundant compounds. Polycyclic aromatic hydrocarbons, alcohols, esters, carboxylic acids and monoaromatic hydrocarbons are present in significant abundance. Some alkenes, aldehydes, ether oxydes, ketones and halocompounds are also found. Alcohols are more abundant in aerosols collected close to marine sites. Long carbon chain esters are mostly found in aerosols collected in high density vegetation areas and relatively high concentrations of PAH are measured in aerosols collected close to highly populated areas. These three families are good geochemical tracers, respectively of marine, biogenic and anthropic sources.

  13. Seasonal changes in photochemical properties of dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Porcal, P.; Dillon, P. J.; Molot, L. A.

    2013-03-01

    The fate of dissolved organic matter (DOM) in lakes and streams is significantly affected by photochemical transformation of DOM. A series of laboratory photochemical experiments was conducted to describe long-term changes in photochemical properties of DOM. The stream samples used in this study originated from three different catchments on the southern-most part of the Boreal ecozone near Dorset, Ontario, Canada. A first-order kinetics equation was used to model photochemical degradation of DOM and the kinetic rate constant, K, was used as an indicator of photochemical properties of DOM. Highest Kwas observed in samples from the catchment dominated by coniferous forest while the lowest K was measured in the deciduous catchment. Kinetic rate constants from all three catchments showed a sinusoidal pattern during the hydrological year. K increased steadily during autumn and winter and decreased during spring and summer. The highest values were observed during spring melt events when DOM was flushed from terrestrial sources by high flows. The minimum rate constants were found in summer when discharge was lowest. DOM molecular weight and specific absorbance at 254 nm also exhibited annual cycles corresponding to the seasonal cycles of terrestrial organic matter but the relationships between these properties and K was probably affected by previous exposure to solar radiation during transit from the catchment as well as pH and iron.

  14. Wastewater disinfection and organic matter removal using ferrate (VI) oxidation.

    PubMed

    Bandala, Erick R; Miranda, Jocelyn; Beltran, Margarita; Vaca, Mabel; López, Raymundo; Torres, Luis G

    2009-09-01

    The use of iron in a +6 valence state, (Fe (VI), as FeO4(-2)) was tested as a novel alternative for wastewater disinfection and decontamination. The removal of organic matter (OM) and index microorganisms present in an effluent of a wastewater plant was determined using FeO4(-2) without any pH adjustment. It was observed that concentrations of FeO4(-2) ranging between 5 and 14 mg l(-1) inactivated up to 4-log of the index microorganisms (initial concentration c.a. 10(6) CFU/100 ml) and achieved OM removal up to almost 50%. The performance of FeO4(-2) was compared with OM oxidation and disinfection using hypochlorite. It was observed that hypochlorite was less effective in OM oxidation and coliform inactivation than ferrate. Results of this work suggest that FeO4(-2) could be an interesting oxidant able to deactivate pathogenic microorganisms in water with high OM content and readily oxidize organic matter without jeopardizing its efficiency on microorganism inactivation.

  15. Black Carbon - Soil Organic Matter abiotic and biotic interactions

    NASA Astrophysics Data System (ADS)

    Cotrufo, Francesca; Boot, Claudia; Denef, Karolien; Foster, Erika; Haddix, Michelle; Jiang, Xinyu; Soong, Jennifer; Stewart, Catherine

    2014-05-01

    Wildfires, prescribed burns and the use of char as a soil amendment all add large quantities of black carbon to soils, with profound, yet poorly understood, effects on soil biology and chemical-physical structure. We will present results emerging from our black carbon program, which addresses questions concerning: 1) black carbon-soil organic matter interactions, 2) char decomposition and 3) impacts on microbial community structure and activities. Our understanding derives from a complementary set of post-fire black carbon field surveys and laboratory and field experiments with grass and wood char amendments, in which we used molecular (i.e., BPCA, PLFA) and isotopic (i.e., 13C and 15N labelled char) tracers. Overall, emerging results demonstrate that char additions to soil are prone to fast erosion, but a fraction remains that increases water retention and creates a better environment for the microbial community, particularly favoring gram negative bacteria. However, microbial decomposition of black carbon only slowly consumes a small fraction of it, thus char still significantly contributes to soil carbon sequestration. This is especially true in soils with little organic matter, where black carbon additions may even induce negative priming.

  16. Terrestrial and marine perspectives on modeling organic matter degradation pathways.

    PubMed

    Burd, Adrian B; Frey, Serita; Cabre, Anna; Ito, Takamitsu; Levine, Naomi M; Lønborg, Christian; Long, Matthew; Mauritz, Marguerite; Thomas, R Quinn; Stephens, Brandon M; Vanwalleghem, Tom; Zeng, Ning

    2016-01-01

    Organic matter (OM) plays a major role in both terrestrial and oceanic biogeochemical cycles. The amount of carbon stored in these systems is far greater than that of carbon dioxide (CO2 ) in the atmosphere, and annual fluxes of CO2 from these pools to the atmosphere exceed those from fossil fuel combustion. Understanding the processes that determine the fate of detrital material is important for predicting the effects that climate change will have on feedbacks to the global carbon cycle. However, Earth System Models (ESMs) typically utilize very simple formulations of processes affecting the mineralization and storage of detrital OM. Recent changes in our view of the nature of this material and the factors controlling its transformation have yet to find their way into models. In this review, we highlight the current understanding of the role and cycling of detrital OM in terrestrial and marine systems and examine how this pool of material is represented in ESMs. We include a discussion of the different mineralization pathways available as organic matter moves from soils, through inland waters to coastal systems and ultimately into open ocean environments. We argue that there is strong commonality between aspects of OM transformation in both terrestrial and marine systems and that our respective scientific communities would benefit from closer collaboration.

  17. Photochemical and Nonphotochemical Transformations of Cysteine with Dissolved Organic Matter.

    PubMed

    Chu, Chiheng; Erickson, Paul R; Lundeen, Rachel A; Stamatelatos, Dimitrios; Alaimo, Peter J; Latch, Douglas E; McNeill, Kristopher

    2016-06-21

    Cysteine (Cys) plays numerous key roles in the biogeochemistry of natural waters. Despite its importance, a full assessment of Cys abiotic transformation kinetics, products and pathways under environmental conditions has not been conducted. This study is a mechanistic evaluation of the photochemical and nonphotochemical (dark) transformations of Cys in solutions containing chromophoric dissolved organic matter (CDOM). The results show that Cys underwent abiotic transformations under both dark and irradiated conditions. Under dark conditions, the transformation rates of Cys were moderate and were highly pH- and temperature-dependent. Under UVA or natural sunlight irradiations, Cys transformation rates were enhanced by up to two orders of magnitude compared to rates under dark conditions. Product analysis indicated cystine and cysteine sulfinic acid were the major photooxidation products. In addition, this study provides an assessment of the contributions of singlet oxygen, hydroxyl radical, hydrogen peroxide, and triplet dissolved organic matter to the CDOM-sensitized photochemical oxidation of Cys. The results suggest that another unknown pathway was dominant in the CDOM-sensitized photodegradation of Cys, which will require further study to identify.

  18. Land Application of Wastes: An Educational Program. Organic Matter - Module 17, Objectives, and Script.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    This module sketches out the impact of sewage organic matter on soils. For convenience, that organic matter is separated into the readily decomposable compounds and the more resistant material (volatile suspended solids, refractory organics, and sludges). The fates of those organics are reviewed along with loading rates and recommended soil…

  19. Land Application of Wastes: An Educational Program. Organic Matter - Module 17, Objectives, and Script.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    This module sketches out the impact of sewage organic matter on soils. For convenience, that organic matter is separated into the readily decomposable compounds and the more resistant material (volatile suspended solids, refractory organics, and sludges). The fates of those organics are reviewed along with loading rates and recommended soil…

  20. Sulfur species behavior in soil organic matter during decomposition

    USGS Publications Warehouse

    Schroth, A.W.; Bostick, B.C.; Graham, M.; Kaste, J.M.; Mitchell, M.J.; Friedland, A.J.

    2007-01-01

    Soil organic matter (SOM) is a primary re??servoir of terrestrial sulfur (S), but its role in the global S cycle remains poorly understood. We examine S speciation by X-ray absorption near-edge structure (XANES) spectroscopy to describe S species behavior during SOM decomposition. Sulfur species in SOM were best represented by organic sulfide, sulfoxide, sulfonate, and sulfate. The highest fraction of S in litter was organic sulfide, but as decomposition progressed, relative fractions of sulfonate and sulfate generally increased. Over 6-month laboratory incubations, organic sulfide was most reactive, suggesting that a fraction of this species was associated with a highly labile pool of SOM. During humification, relative concentrations of sulfoxide consistently decreased, demonstrating the importance of sulfoxide as a reactive S phase in soil. Sulfonate fractional abundance increased during humification irrespective of litter type, illustrating its relative stability in soils. The proportion of S species did not differ systematically by litter type, but organic sulfide became less abundant in conifer SOM during decomposition, while sulfate fractional abundance increased. Conversely, deciduous SOM exhibited lesser or nonexistent shifts in organic sulfide and sulfate fractions during decomposition, possibly suggesting that S reactivity in deciduous litter is coupled to rapid C mineralization and independent of S speciation. All trends were consistent in soils across study sites. We conclude that S reactivity is related to spqciation in SOM, particularly in conifer forests, and S species fractions in SOM change, during decomposition. Our data highlight the importance of intermediate valence species (sulfoxide and sulfonate) in the pedochemical cycling of organic bound S. Copyright 2007 by the American Geophysical Union.

  1. Origin of sedimentary organic matter at the Northern Cascadia Margin

    NASA Astrophysics Data System (ADS)

    Kaneko, M.; Naraoka, H.

    2007-12-01

    Gas hydrate in marine sediments may have important roles on global carbon cycle and climatic change. We examined origins of sedimentary organic matter and bacterial activity in deep and hydrate-bearing sediment cored in Site U1327 and U1328 at northern Cascadia Margin by IODP Exp311, using σ13C of total organic carbon (TOC), σ15N of total nitrogen (TN), σ34S of total sulfur (TS), and σ13C of biomarkers in hydrocarbon fraction. In both sites, TOC/TN ratios and σ13C of TOC values ranged from 5.5 to 18.0 and -25.7 to -21.5 ‰, respectively, suggesting that sedimentary organic matter is a mixture of terrestrial and marine sources. Long chain (n)-alkanes (C27, C29, and C30), known as biomarkers of terrestrial higher plant were most abundant components (up to ~50 μg/gCorg) through down to 300 mbsf, and their σ13C values (-34.3 to -28.7 ‰) reveal their C3 plant origin. In addition, very long-chain alkene (C37) occurred in some sediments, which suggests the blooming by coccolithophore in the past. σ34S of TS values at both sites show large variation between -30 to +20 ‰. Most of σ34S of TS values were less than present σ34S value of seawater sulfate (+20.3 ‰). This is attributable to isotope fractionation during microbial sulfate reduction. Crocetenes including one double bond occurred in deep sediments with higher σ13C values (-23 ‰) than the reported σ13C values (< ~ -100 ‰, Elvert et al, 2000), providing possibility of heterotrophic archaea using marine organic matter as a carbon source. Pentamethylicosane (PMI) was detected in relatively high concentrations at 249 mbsf at Site U1328 and its σ13C value was -46.4 ‰. This PMI could be chemoautotrophic archaea in origin such as methanogen. Diploptene was also detected in most sediments with the σ13C value of -37 to -35 ‰, probably being characteristic of chemoautotrophic bacteria.

  2. Potential enzyme activities in cryoturbated organic matter of arctic soils

    NASA Astrophysics Data System (ADS)

    Schnecker, J.; Wild, B.; Rusalimova, O.; Mikutta, R.; Guggenberger, G.; Richter, A.

    2012-12-01

    An estimated 581 Gt organic carbon is stored in arctic soils that are affected by cryoturbtion, more than in today's atmosphere (450 Gt). The high amount of organic carbon is, amongst other factors, due to topsoil organic matter (OM) that has been subducted by freeze-thaw processes. This cryoturbated OM is usually hundreds to thousands of years old, while the chemical composition remains largely unaltered. It has therefore been suggested, that the retarded decomposition rates cannot be explained by unfavourable abiotic conditions in deeper soil layers alone. Since decomposition of soil organic material is dependent on extracellular enzymes, we measured potential and actual extracellular enzyme activities in organic topsoil, mineral subsoil and cryoturbated material from three different tundra sites, in Zackenberg (Greenland) and Cherskii (North-East Siberia). In addition we analysed the microbial community structure by PLFAs. Hydrolytic enzyme activities, calculated on a per gram dry mass basis, were higher in organic topsoil horizons than in cryoturbated horizons, which in turn were higher than in mineral horizons. When calculated on per gram carbon basis, the activity of the carbon acquiring enzyme exoglucanase was not significantly different between cryoturbated and topsoil organic horizons in any of the three sites. Oxidative enzymes, i.e. phenoloxidase and peroxidase, responsible for degradation of complex organic substances, showed higher activities in topsoil organic and cryoturbated horizons than in mineral horizons, when calculated per gram dry mass. Specific activities (per g C) however were highest in mineral horizons. We also measured actual cellulase activities (by inhibiting microbial uptake of products and without substrate addition): calculated per g C, the activities were up to ten times as high in organic topsoil compared to cryoturbated and mineral horizons, the latter not being significantly different. The total amount of PLFAs, as a proxy for

  3. Spectroscopic characterization of dissolved organic matter isolated from rainwater.

    PubMed

    Santos, Patrícia S M; Otero, Marta; Duarte, Regina M B O; Duarte, Armando C

    2009-02-01

    Rainwater is a matrix containing extremely low concentrations (in the range of muM C) of dissolved organic carbon (DOC) and for its characterization, an efficient extraction procedure is essential. A recently developed procedure based on adsorption onto XAD-8 and XAD-4 resins in series was used in this work for the extraction and isolation of rainwater dissolved organic matter (DOM). Prior to the isolation and fractionation of DOM, and to obtain sufficient mass for the spectroscopic analyses, individual rainwater samples were batched together according to similar meteorological conditions on a total of three composed samples. The results of the isolation procedure indicated that the resin tandem procedure is not applicable for rainwater DOM since the XAD-4 resin caused samples contamination. On the other hand, the XAD-8 resin allowed DOM recoveries of 39.9-50.5% of the DOC of the original combined samples. This recovered organic fraction was characterized by UV-visible, molecular fluorescence, FTIR-ATR and 1H NMR spectroscopies. The chemical characterization of the rainwater DOM showed that the three samples consist mostly of hydroxylated and carboxylic acids with a predominantly aliphatic character, containing a minor component of aromatic structures. The obtained results suggest that the DOM in rainwater, and consequently in the precursor atmospheric particles, may have a secondary origin via the oxidation of volatile organic compounds from different origins.

  4. DETOXIFICATION OF OUTFALL WATER USING NATURAL ORGANIC MATTER

    SciTech Connect

    Halverson, N.; Looney, B.; Millings, M.; Nichols, R.; Noonkester, J.; Payne, B.

    2010-07-13

    To protect stream organisms in an ephemeral stream at the Savannah River Site, a proposed National Pollutant Discharge Elimination System (NPDES) permit reduced the copper limit from 25 {micro}g/l to 6 {micro}g/l at Outfall H-12. Efforts to reduce copper in the wastewater and stormwater draining to this outfall did not succeed in bringing copper levels below this limit. Numerous treatment methods were considered, including traditional methods such as ion exchange and natural treatment alternatives such as constructed wetlands and peat beds, all of which act to remove copper. However, the very low target metal concentration and highly variable outfall conditions presented a significant challenge for these treatment technologies. In addition, costs and energy use for most of these alternatives were high and secondary wastes would be generated. The Savannah River National Laboratory developed an entirely new 'detoxification' approach to treat the outfall water. This simple, lower-cost detoxification system amends outfall water with natural organic matter to bind up to 25 {micro}g/l copper rather than remove it, thereby mitigating its toxicity and protecting the sensitive species in the ecosystem. The amendments are OMRI (Organic Materials Review Institute) certified commercial products that are naturally rich in humic acids and are commonly used in organic farming.

  5. Iron traps terrestrially derived dissolved organic matter at redox interfaces

    PubMed Central

    Riedel, Thomas; Zak, Dominik; Biester, Harald; Dittmar, Thorsten

    2013-01-01

    Reactive iron and organic carbon are intimately associated in soils and sediments. However, to date, the organic compounds involved are uncharacterized on the molecular level. At redox interfaces in peatlands, where the biogeochemical cycles of iron and dissolved organic matter (DOM) are coupled, this issue can readily be studied. We found that precipitation of iron hydroxides at the oxic surface layer of two rewetted fens removed a large fraction of DOM via coagulation. On aeration of anoxic fen pore waters, >90% of dissolved iron and 27 ± 7% (mean ± SD) of dissolved organic carbon were rapidly (within 24 h) removed. Using ultra-high-resolution MS, we show that vascular plant-derived aromatic and pyrogenic compounds were preferentially retained, whereas the majority of carboxyl-rich aliphatic acids remained in solution. We propose that redox interfaces, which are ubiquitous in marine and terrestrial settings, are selective yet intermediate barriers that limit the flux of land-derived DOM to oceanic waters. PMID:23733946

  6. Asian monsoon modulation of nonsteady state diagenesis in hemipelagic marine sediments offshore of Japan

    NASA Astrophysics Data System (ADS)

    Chang, Liao; Bolton, Clara T.; Dekkers, Mark J.; Hayashida, Akira; Heslop, David; Krijgsman, Wout; Kodama, Kazuto; Paterson, Greig A.; Roberts, Andrew P.; Rohling, Eelco J.; Yamamoto, Yuhji; Zhao, Xiang

    2016-11-01

    We have identified millennial-scale variations in magnetic mineral diagenesis from Pacific Ocean sediments offshore of Japan that we correlate with changes in organic carbon burial that were likely driven by Asian monsoon fluctuations. The correlation was determined by identifying offsets between the positions of fossil diagenetic fronts and climatically induced variations in organic carbon burial inferred from magnetic and geochemical analyses. Episodes of intense monsoon activity and attendant sediment magnetic mineral diagenesis also appear to correlate with Heinrich events, which supports the existence of climatic telecommunications between Asia and the North Atlantic region. Several lines of evidence support our conclusions: (1) fluctuations in down-core magnetic properties and diagenetic pyrite precipitation are approximately coeval; (2) localized stratigraphic intervals with relatively stronger magnetic mineral dissolution are linked to enhanced sedimentary organic carbon contents that gave rise to nonsteady state diagenesis; (3) down-core variations in elemental S content provide a proxy for nonsteady state diagenesis that correlate with key records of Asian monsoon variations; and (4) relict titanomagnetite that is preserved as inclusions within silicate particles, rather than secondary authigenic phases (e.g., greigite), dominates the strongly diagenetically altered sediment intervals and are protected against sulfidic dissolution. We suggest that such millennial-scale environmental modulation of nonsteady state diagenesis (that creates a temporal diagenetic filter and relict magnetic mineral signatures) is likely to be common in organic-rich hemipelagic sedimentary settings with rapidly varying depositional conditions. Our work also demonstrates the usefulness of magnetic mineral inclusions for recording important environmental magnetic signals.

  7. Nanoscale Structure Of Organic Matter Explain Its Recalcitrance To Degradation

    NASA Astrophysics Data System (ADS)

    Spagnol, M.; Salati, S.; Papa, G.; Tambone, F.; Adani, F.

    2009-04-01

    Recalcitrance can be defined as the natural resistance of organic matter (OM) to microbial and enzymatic deconstruction (Himmel et al., 2007). The nature of OM recalcitrance remained not completely understood and more studies need above all to elucidate the role of the chemical topography of the OM at nanometer scale. Hydrolytic enzymes responsible of OM degradation have a molecular weight of 20-25 kD, corresponding to a size of about 4 nm, hardly penetrate into micropores (i.e. the pore having a diameter < 2 nm) and small mesopores (i.e. pores having a diameter 2 < 50 nm) of OM structures, so that their activities are confined only to a portion of the total surface (Zimmerman et al., 2004; Chesson, 1997; Adani et al., 2006). As consequence of that the characterization of the organic matter at nano-scale became interesting in view to explain OM recalcitrance. The aim of this work was to asses the effect of the nano-scale structure of OM versus its recalcitrance. The evolution of organic matter of organic matrices was studied in two systems: plant residue-soil system and simulated landfill system. Plant residues were incubated in soil for one year and recalcitrant fraction, i.e. humic acid, was isolated and studied. Laboratory simulated landfill considered organic fraction of municipal solid waste sampled at different stages of evolution from a full scale plant and incubated under anaerobic condition for one year. In addition the nano-scale structure of fossilized OM (leonardite, chair coal and graphite) was detected as used as model of recalcitrant OM. Nano-scale structures were detected by using meso and microporosity detection. In particular microporosity was determined by adsorption method using CO2 at 273 K and Non Local Density Functional Theory (NLDFT) method was applied to measure the CO2 adsorption isotherms. On the other hand mesoporosity was detected by using N2 adsorption method at 77 K. The BET (Brunauer-Emmett-Teller) equation and the BJH (Barret

  8. Diagenesis of organic matter, isotopic composition of calcite veins in basement basalt and pore water in sediment-Barbados Ridge complex, Deep Sea Drilling Project Leg 78A.

    USGS Publications Warehouse

    Claypool, G.E.

    1984-01-01

    Low concentrations of acid insoluble carbon (0.05-0.25%), nitrogen (C/N 1.5-5) and dispersed hydrocarbons (100-800) occur. Basement basalts have calcite veins with delta 13C values in the range of 0.2 to -3.5% and delta 18OSMOW of 28.5-30.6per mille. The O isotopic compensation of the calcite gives equilibrium fractionation T of 11o-24oC.-K.A.R.

  9. Chromophoric Dissolved Organic Matter in Southwestern Greenland Lakes

    NASA Astrophysics Data System (ADS)

    Osburn, C. L.; Giles, M. E.; Underwood, G. J. C.

    2014-12-01

    Dissolved organic matter (DOM) is an important property of Arctic lake ecosystems, originating from allochthonous inputs from catchments and autochthonous production by plankton in the water column. Little is known about the quality of DOM in Arctic lakes that lack substantial inputs from catchments and such lakes are abundant in southwestern Greenland. Colored dissolved organic matter (CDOM), the fraction that absorbs ultraviolet (UV) and visible light, is the controlling factor for the optical properties of many surface waters and as well informs on the quality of DOM. We examined the quality of CDOM in 21 lakes in southwestern Greenland, from the ice sheet to the coast, as part of a larger study examining the role of DOM in regulating microbial communities in these lakes. DOM was size fractioned and absorbance and fluorescence was measured on each size fraction, as well as on bulk DOM. The specific ultraviolet absorbance (SUVA) at 254 nm (SUVA254), computed by normalizing absorption (a254) to dissolved organic carbon (DOC) concentration, provided an estimate of the aromatic carbon content of DOM. SUVA values were generally <2, indicating low aromatic content. Parallel factor analysis (PARAFAC) of CDOM fluorescence was used to determine the relative abundance of allochthonous and autochthonous DOM in all size fractions. Younger lakes near the ice sheet and lakes near the coast had lower amounts of CDOM and appeared more microbial in quality. However, lakes centrally located between the ice sheet and the coast had the highest CDOM concentrations and exhibited strong humic fluorescence. Overall distinct differences in CDOM quality were observed between lake locations and among DOM size fractions.

  10. Temperature and oxygen dependence of the remineralization of organic matter

    NASA Astrophysics Data System (ADS)

    Laufkötter, C.; John, Jasmin G.; Stock, Charles A.; Dunne, John P.

    2017-07-01

    Accurate representation of the remineralization of sinking organic matter is crucial for reliable projections of the marine carbon cycle. Both water temperature and oxygen concentration are thought to influence remineralization rates, but limited data constraints have caused disagreement concerning the degree of these influences. We analyze a compilation of particulate organic carbon (POC) flux measurements from 19 globally distributed sites. Our results indicate that the attenuation of the flux of particulate organic matter depends on temperature with a Q10 between 1.5 and 2.01, and on oxygen described by a half-saturation constant between 4 and 12 μmol/L. We assess the impact of the temperature and oxygen dependence in the biogeochemistry model Carbon, Ocean Biogeochemistry, and Lower Trophics, coupled to Geophysical Fluid Dynamics Laboratory's Earth System Model ESM2M. The new remineralization parameterization results in shallower remineralization in the low latitudes but deeper remineralization in the high latitudes, redistributing POC flux toward the poles. It also decreases the volume of the oxygen minimum zones, partly addressing a long-standing bias in global climate models. Extrapolating temperature-dependent remineralization rates to the surface (i.e., beyond the depth range of POC flux data) resulted in rapid recycling and excessive surface nutrients. Surface nutrients could be ameliorated by reducing near-surface rates in a manner consistent with bacterial colonization, suggesting the need for improved remineralization constraints within the euphotic zone. The temperature and oxygen dependence cause an additional 10% decrease in global POC flux at 500 m depth, but no significant change in global POC flux at 2000 m under the RCP8.5 future projection.

  11. Photochemical Reactivity of Dissolved Organic Matter in Boreal Lakes

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Vuorio, K.; Tiirola, M.; Perämäki, S.; Vahatalo, A.

    2016-12-01

    Boreal lakes are rich in dissolved organic matter (DOM) that terrestrially derived from forest soil and wetland, yet little is known about potential for photochemical transformation of aquatic DOM in boreal lakes. Transformation of chromophoric dissolved organic matter (CDOM) can decrease water color and enhance microbial mineralization, affecting primary production and respiration, which both affect the CO2 balance of the lakes. We used laboratory solar radiation exposure experiments with lake water samples collected from 54 lakes located in Finland and Sweden, representing different catchment composition and watershed location to assess photochemical reactivity of DOM. The pH of water samples ranged from 5.4 to 8.3, and the concentrations of dissolved iron (Fe) were between < 0.06 and 22 μmol L-1. The filtered water samples received simulated solar radiation corresponding to a daily dose of sunlight, and photomineralization of dissolved organic carbon (DOC) to dissolved inorganic carbon (DIC) was measured for determination of spectral apparent quantum yields (AQY). During irradiation, photobleaching decreased the absorption coefficients of CDOM at 330 nm between 4.9 and 79 m-1 by 0.5 to 11 m-1. Irradiation generated DIC from 2.8 to 79 μmol C L-1. The AQY at 330 nm ranged between 31 and 273 ×10-6 mol C mol photons-1 h-1, which was correlated positively with concentration of dissolved Fe, and negatively with pH. Further statistical analyze indicated that the interaction between pH and Fe may explain much of the photochemical reactivity of DOM in the examined lakes, and land cover concerns main catchment areas also can have impact on the photoreaction process. This study may suggest how environmental conditions regulate DOM photomineralization in boreal lakes.

  12. Organic matter loss from cultivated peat soils in Sweden

    NASA Astrophysics Data System (ADS)

    Berglund, Örjan; Berglund, Kerstin

    2015-04-01

    The degradation of drained peat soils in agricultural use is an underestimated source of loss of organic matter. Oxidation (biological degradation) of agricultural peat soils causes a loss of organic matter (OM) of 11 - 22 t ha-1 y-1 causing a CO2 emission of 20 - 40 t ha-1 y-1. Together with the associated N2O emissions from mineralized N this totals in the EU to about 98.5 Mton CO2 eq per year. Peat soils are very prone to climate change and it is expected that at the end of this century these values are doubled. The degradation products pollute surface waters. Wind erosion of peat soils in arable agriculture can cause losses of 3 - 30 t ha-1 y-1 peat also causing air pollution (fine organic particles). Subsidence rates are 1 - 2 cm per year which leads to deteriorating drainage effect and make peat soils below sea or inland water levels prone to flooding. Flooding agricultural peat soils is in many cases not possible without high costs, high GHG emissions and severe water pollution. Moreover sometimes cultural and historic landscapes are lost and meadow birds areas are lost. In areas where the possibility to regulate the water table is limited the mitigation options are either to increase biomass production that can be used as bioenergy to substitute some fossil fuel, try to slow down the break-down of the peat by different amendments that inhibit microbial activity, or permanent flooding. The negative effects of wind erosion can be mitigated by reducing wind speed or different ways to protect the soil by crops or fiber sheets. In a newly started project in Sweden a typical peat soil with and without amendment of foundry sand is cropped with reed canary grass, tall fescue and timothy to investigate the yield and greenhouse gas emissions from the different crops and how the sand effect the trafficability and GHG emissions.

  13. Measuring Organic Matter with COSIMA on Board Rosetta

    NASA Astrophysics Data System (ADS)

    Briois, C.; Baklouti, D.; Bardyn, A.; Cottin, H.; Engrand, C.; Fischer, H.; Fray, N.; Godard, M.; Hilchenbach, M.; von Hoerner, H.; Höfner, H.; Hornung, K.; Kissel, J.; Langevin, Y.; Le Roy, L.; Lehto, H.; Lehto, K.; Orthous-Daunay, F. R.; Revillet, C.; Rynö, J.; Schulz, R.; Silen, J. V.; Siljeström, S.; Thirkell, L.

    2014-12-01

    Comets are believed to contain the most pristine material of our Solar System materials and therefore to be a key to understand the origin of the Solar System, and the origin of life. Remote sensing observations have led to the detection of more than twenty simple organic molecules (Bockelée-Morvan et al., 2004; Mumma and Charnley, 2011). Experiments on-board in-situ exploration missions Giotto and Vega and the recent Stardust sample return missions have shown that a significant fraction of the cometary grains consists of organic matter. Spectra showed that both the gaseous (Mitchell et al., 1992) and the solid phase (grains) (Kissel and Krueger, 1987) contained organic molecules with higher masses than those of the molecules detected by remote sensing techniques in the gaseous phase. Some of the grains analyzed in the atmosphere of comet 1P/Halley seem to be essentially made of a mixture of carbon, hydrogen, oxygen and nitrogen (CHON grains, Fomenkova, 1999). Rosetta is an unparalleled opportunity to make a real breakthrough into the nature of cometary matter, both in the gas and in the solid phase. The dust mass spectrometer COSIMA on Rosetta will analyze organic and inorganic phases in the dust. The organic phases may be refractory, but some organics may evaporate with time from the dust and lead to an extended source in the coma. Over the last years, we have prepared the cometary rendezvous by the analysis of various samples with the reference model of COSIMA. We will report on this calibration data set and on the first results of the in-situ analysis of cometary grains as captured, imaged and analyzed by COSIMA. References : Bockelée-Morvan, D., et al. 2004. (Eds.), Comets II. the University of Arizona Press, Tucson, USA, pp. 391-423 ; Fomenkova, M.N., 1999. Space Science Reviews 90, 109-114 ; Kissel, J., Krueger, F.R., 1987. Nature 326, 755-760 ; Mitchell, et al. 1992. Icarus 98, 125-133 ; Mumma, M.J., Charnley, S.B., 2011. Annual Review of Astronomy and

  14. SNC Meteorites, Organic Matter and a New Look at Viking

    NASA Technical Reports Server (NTRS)

    Warmflash, David M.; Clemett, Simon J.; McKay, David S.

    2001-01-01

    Recently, evidence has begun to grow supporting the possibility that the Viking GC-MS would not have detected certain carboxylate salts that could have been present as metastable oxidation products of high molecular weight organic species. Additionally, despite the instrument's high sensitivity, the possibility had remained that very low levels of organic matter, below the instrument's detection limit, could have been present. In fact, a recent study indicates that the degradation products of several million microorganisms per gram of soil on Mars would not have been detected by the Viking GC-MS. Since the strength of the GC-MS findings was considered enough to dismiss the biology packet, particularly the LR results, any subsequent evidence suggesting that organic molecules may in fact be present on the Martian surface necessitates a re-evaluation of the Viking LR data. In addition to an advanced mass spectrometer to look for isotopic signatures of biogenic processes, future lander missions will include the ability to detect methane produced by methanogenic bacteria, as well as techniques based on biotechnology. Meanwhile, the identification of Mars samples already present on Earth in the form of the SNC meteorites has provided us with the ability to study samples of the Martian upper crust a decade or more in advance of any planned sample return missions. While contamination issues are of serious concern, the presence of indigenous organic matter in the form of polycyclic aromatic hydrocarbons has been detected in the Martian meteorites ALH84001 and Nakhla, while there is circumstantial evidence for carbonaceous material in Chassigny. The radiochronological ages of these meteorites are 4.5 Ga, 1.3 Ga, and 165 Ma respectively representing a span of time in Earth history from the earliest single-celled organisms to the present day. Given this perspective on organic material, a biological interpretation to the Viking LR results can no longer be ruled out. In the LR

  15. SNC Meteorites, Organic Matter and a New Look at Viking

    NASA Technical Reports Server (NTRS)

    Warmflash, David M.; Clemett, Simon J.; McKay, David S.

    2001-01-01

    Recently, evidence has begun to grow supporting the possibility that the Viking GC-MS would not have detected certain carboxylate salts that could have been present as metastable oxidation products of high molecular weight organic species. Additionally, despite the instrument's high sensitivity, the possibility had remained that very low levels of organic matter, below the instrument's detection limit, could have been present. In fact, a recent study indicates that the degradation products of several million microorganisms per gram of soil on Mars would not have been detected by the Viking GC-MS. Since the strength of the GC-MS findings was considered enough to dismiss the biology packet, particularly the LR results, any subsequent evidence suggesting that organic molecules may in fact be present on the Martian surface necessitates a re-evaluation of the Viking LR data. In addition to an advanced mass spectrometer to look for isotopic signatures of biogenic processes, future lander missions will include the ability to detect methane produced by methanogenic bacteria, as well as techniques based on biotechnology. Meanwhile, the identification of Mars samples already present on Earth in the form of the SNC meteorites has provided us with the ability to study samples of the Martian upper crust a decade or more in advance of any planned sample return missions. While contamination issues are of serious concern, the presence of indigenous organic matter in the form of polycyclic aromatic hydrocarbons has been detected in the Martian meteorites ALH84001 and Nakhla, while there is circumstantial evidence for carbonaceous material in Chassigny. The radiochronological ages of these meteorites are 4.5 Ga, 1.3 Ga, and 165 Ma respectively representing a span of time in Earth history from the earliest single-celled organisms to the present day. Given this perspective on organic material, a biological interpretation to the Viking LR results can no longer be ruled out. In the LR

  16. Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis

    USGS Publications Warehouse

    Breit, G.N.; Wanty, R.B.

    1991-01-01

    Published data relevant to the geochemistry of vanadium were used to evaluate processes and conditions that control vanadium accumulation in carbonaceous rocks. Reduction, adsorption, and complexation of dissolved vanadium favor addition of vanadium to sediments rich in organic carbon. Dissolved vanadate (V(V)) species predominate in oxic seawater and are reduced to vanadyl ion (V(IV)) by organic compounds or H2S. Vanadyl ion readily adsorbs to particle surfaces and is added to the sediment as the particles settle. The large vanadium concentrations of rocks deposited in marine as compared to lacustrine environments are the result of the relatively large amount of vanadium provided by circulating ocean water compared to terrestrial runoff. Vanadium-rich carbonaceous rocks typically have high contents of organically bound sulfur and are stratigraphically associated with phosphate-rich units. A correspondence between vanadium content and organically bound sulfur is consistent with high activities of H2S during sediment deposition. Excess H2S exited the sediment into bottom waters and favored reduction of dissolved V(V) to V(IV) or possibly V(III). The stratigraphic association of vanadiferous and phosphatic rocks reflects temporal and spatial shifts in bottom water chemistry from suboxic (phosphate concentrated) to more reducing (euxinic?) conditions that favor vanadium accumulation. During diagenesis some vanadium-organic complexes migrate with petroleum out of carbonaceous rocks, but significant amounts of vanadium are retained in refractory organic matter or clay minerals. As carbon in the rock evolves toward graphite during metamorphism, vanadium is incorporated into silicate minerals. ?? 1991.

  17. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Boutton, Thomas W.; Xu, Wenhua; Hu, Guoqing; Jiang, Ping; Bai, Edith

    2015-05-01

    Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two 13C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change.

  18. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes.

    PubMed

    Wang, Hui; Boutton, Thomas W; Xu, Wenhua; Hu, Guoqing; Jiang, Ping; Bai, Edith

    2015-05-11

    Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two (13)C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change.

  19. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes

    PubMed Central

    Wang, Hui; Boutton, Thomas W.; Xu, Wenhua; Hu, Guoqing; Jiang, Ping; Bai, Edith

    2015-01-01

    Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two 13C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change. PMID:25960162

  20. Significance of Isotopically Labile Organic Hydrogen in Thermal Maturation of Organic Matter

    SciTech Connect

    Arndt Schimmelmann; Maria Mastalerz

    2010-03-30

    Isotopically labile organic hydrogen in fossil fuels occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation from kerogen to bitumen, oil and gas. Carbon-bound organic hydrogen is isotopically far less exchangeable than hydrogen bound to nitrogen, oxygen, or sulfur. We explore why organic hydrogen isotope ratios express a relationship with organic nitrogen isotope ratios in kerogen at low to moderate maturity. We develop and apply new techniques to utilize organic D/H ratios in organic matter fractions and on a molecular level as tools for exploration for fossil fuels and for paleoenvironmental research. The scope of our samples includes naturally and artificially matured substrates, such as coal, shale, oil and gas.

  1. Tracking the Evolution of FE-,TI-OXIDE Phase Changes in Microbial Fossilization Experiments: Understanding the Role of Microbes in Diagenesis

    NASA Astrophysics Data System (ADS)

    Bower, D. M.; Steele, A.

    2010-12-01

    The complex relationships between microbes and minerals under different chemical and geologic conditions over time is still not well constrained. In many ancient sedimentary rocks on Earth, “fossil” microstructures often contain interesting mineral assemblages that are dominated by clays and metal oxides. In some cases, microfossils are preserved along with Fe and Ti-oxides that contain trace amounts of graphitic carbon. Complicated histories and atmospheric inputs have influenced much of the mineralic makeup of the subaerially exposed rocks we see today, and these assemblages may not the same as what was originally formed with the rocks billions of years ago. To elucidate changes in Fe- and Ti-oxides during diagenesis, precipitates of iron and titanium oxides produced by microbes were compared to those formed abiotically. The samples were tracked over time to monitor the phase changes in minerals along with changes in the state of organic matter. This was carried out under laboratory controlled conditions of increasing temperatures and pressures to mimic the effects of diagenesis and low-grade metamorphism. A suite of analytical techniques were used to identify the mineral phases and carbonaceous compounds in these samples, including micro Raman spectroscopy, SEM, and XRD. To compliment this technique, NanoSims measurements of C, O, Fe, and Ti isotopes will also be made on samples analyzed by TEM. Collectively, the results show a correlation between the phase changes of Fe- and Ti-oxide and the presence of microbes under diagenetic conditions. The preliminary results presented here are part of an ongoing study and can be applied to understanding the role of microbes in diagenesis. It is hoped that we may also establish mineralic biosignatures, and in the process continue to perfect instrumental techniques that can be used on future planetary exploration missions.

  2. Storage and turnover of organic matter in soil

    SciTech Connect

    Torn, M.S.; Swanston, C.W.; Castanha, C.; Trumbore, S.E.

    2008-07-15

    Historically, attention on soil organic matter (SOM) has focused on the central role that it plays in ecosystem fertility and soil properties, but in the past two decades the role of soil organic carbon in moderating atmospheric CO{sub 2} concentrations has emerged as a critical research area. This chapter will focus on the storage and turnover of natural organic matter in soil (SOM), in the context of the global carbon cycle. Organic matter in soils is the largest carbon reservoir in rapid exchange with atmospheric CO{sub 2}, and is thus important as a potential source and sink of greenhouse gases over time scales of human concern (Fischlin and Gyalistras 1997). SOM is also an important human resource under active management in agricultural and range lands worldwide. Questions driving present research on the soil C cycle include: Are soils now acting as a net source or sink of carbon to the atmosphere? What role will soils play as a natural modulator or amplifier of climatic warming? How is C stabilized and sequestered, and what are effective management techniques to foster these processes? Answering these questions will require a mechanistic understanding of how and where C is stored in soils. The quantity and composition of organic matter in soil reflect the long-term balance between plant carbon inputs and microbial decomposition, as well as other loss processes such as fire, erosion, and leaching. The processes driving soil carbon storage and turnover are complex and involve influences at molecular to global scales. Moreover, the relative importance of these processes varies according to the temporal and spatial scales being considered; a process that is important at the regional scale may not be critical at the pedon scale. At the regional scale, SOM cycling is influenced by factors such as climate and parent material, which affect plant productivity and soil development. More locally, factors such as plant tissue quality and soil mineralogy affect

  3. Influence of land use on soil organic matter

    NASA Astrophysics Data System (ADS)

    Rogeon, H.; Lemée, L.; Chabbi, A.; Ambles, A.

    2009-04-01

    Soil organic matter (SOM) is actually of great environmental interest as the amount of organic matter stored in soils represents one of the largest reservoirs of organic carbon on the global scale [1]. Indeed, soil carbon storage capacity represents 1500 to 2000 Gt for the first meter depth, which is twice the concentration of atmospheric CO2 [2]. Furthermore, human activities, such as deforestation (which represents a flux of 1.3 Gt C/year), contribute to the increase in atmospheric CO2 concentration for about one percent a year [3]. Therefore, carbon dioxide sequestration in plant and carbon storage in soil and biomass could be considered as a complementary solution against climate change. The stock of carbon in soils is greatly influenced by land use (ca 70 Gt for a forest soil or a grassland against 40 Gt for an arable land). Furthermore the molecular composition of SOM should be also influenced by vegetation. In this context, four horizons taken between 0-120 cm from the same profile of a soil under grassland and forest located in the vicinity of Poitiers (INRA Lusignan, ORE Prairie) were compared. For the surface horizon, the study is improved with the results from the cultivated soil from INRA Versailles. Soil organic matter was characterized using IR spectroscopy, elemental analysis and thermal analysis. Granulometric fractionation into sand (50-2000 μm), silt (2-50 μm) and clay (<2 μm) was conducted. The organic matter associated with the mineral fractions was thus characterized using thermochemolysis coupled with gas chromatography and mass spectrometry (Py-GC/MS). The total lipidic fractions were extracted with CH2Cl2/MeOH using an accelerated solvent extraction (ASE). In the three soils, lipids are concentrated into the superficial horizon (0-30 cm) which indicates a low mobilisation. Lipids from the superficial horizon are more abundant for the arable soil (1010 ppm) than for the two other (400 ppm). Lipids from the forest and the grassland were

  4. Root Mediation of Soil Organic Matter Feedbacks to Climate Change

    NASA Astrophysics Data System (ADS)

    Pendall, E.; Carrillo, Y.; Nie, M.; Osanai, Y.; Nelson, L. C.; Sanderman, J.; Baldock, J.; Hovenden, M.

    2014-12-01

    The importance of plant roots in carbon cycling and especially soil organic matter (SOM) formation and decomposition has been recently recognized. Up to eighty percent of net primary production may be allocated to roots in ecosystems such as grasslands, where they contribute substantially to SOM formation. On the other hand, root induced priming of SOM decomposition has been implicated in the loss of soil C stocks. Thus, the accurate prediction of climate change impacts on C sequestration in soils largely depends upon improved understanding of root-mediated SOM formation and loss in the rhizosphere. This presentation represents an initial attempt to synthesize belowground observations from free-air CO2 enrichment and warming experiments in two grassland ecosystems. We found that the chemical composition of root carbon is similar to particulate organic matter (POM), but not to mineral associated organic matter (MOM), suggesting less microbial modification during formation of POM than MOM. While root biomass and production rates increased under elevated CO2, POM and MOM fractions did not increase proportionally. We also observed increased root decomposition with elevated CO2, which was likely due to increased soil water and substrate availability, since root C quality (determined by NMR) and decomposition (in laboratory incubations) were unaltered. Further, C quality and decomposition rates of roots differed between C3 and C4 functional types. Changes in root morphology with elevated CO2 have altered root functioning. Increased root surface area and length per unit mass allow increased exploration for nutrients, and potentially enhanced root exudation, rhizodeposition, and priming of SOM decomposition. Controlled chamber experiments demonstrated that uptake of N from SOM was linearly correlated with specific root length. Taken together, these results indicate that root morphology, chemistry and function all play roles in affecting soil C storage and loss, and that

  5. Size fractionated characterization of freshwater organic matter fluorescence

    NASA Astrophysics Data System (ADS)

    Baker, A.; Lead, J.; Elliott, S.; Demomi, A.; Liu, R.; Seredynska-Sobecka, B.; Hudson, N. J.

    2006-12-01

    We employ a range of optical (fluorescence, absorbance) techniques to freshwater organic matter, focusing on samples from urban catchments and using both traditional (filtration, cross flow ultrafiltration) and novel (split cell thin flow (SPLITT)) fractionation techniques to investigate the fluorescence characteristics of both dissolved and colloidal organic matter and to probe different fractions of the size range. We find: (1) As with previous studies, urban freshwaters have high tryptophan-like fluorescence in comparison to humic-like fluorescence. (2) After conventional filtration, our samples demonstrate that humic-like fluorescence is predominantly within the <25 nm fraction and pH dependent, suggesting that it is predominantly `dissolved'. Tryptophan-like fluorescence is associated with either dissolved, colloidal and particulate fractions, and is less pH dependent, depending on the sample, suggesting a variety of sources that are known to include microbial and biological cells and their exudates and the products of decomposition and feeding. (3) When the thermal quenching of fluorescence is investigated at different filter fractions, humic-like fluorescence quenching does not vary with filter fraction, whereas tryptophan-like fluorescence quenching exhibits a size dependency. This confirms at least two sources of tryptophan-like fluorescence that have different sizes and different thermal quenching properties. (4) SPLITT also shows that tryptophan-like fluorescence intensity is found mainly in the particulate material and is not pH dependent, while humic-like fluorescence intensities are dependent on pH but not on size. However, humic-like fluorescence intensity normalised to absorbance, related to fluorescence efficiency and molar mass, varies with size in the SPLITT samples. (5) Cross flow ultrafiltration confirms that, compared with tryptophan standards, freshwater tryptophan-like fluorescence is not dissolved and `free'. However, it is related to the

  6. cyclostratigraphy, sequence stratigraphy and organic matter accumulation mechanism

    NASA Astrophysics Data System (ADS)

    Cong, F.; Li, J.

    2016-12-01

    The first member of Maokou Formation of Sichuan basin is composed of well preserved carbonate ramp couplets of limestone and marlstone/shale. It acts as one of the potential shale gas source rock, and is suitable for time-series analysis. We conducted time-series analysis to identify high-frequency sequences, reconstruct high-resolution sedimentation rate, estimate detailed primary productivity for the first time in the study intervals and discuss organic matter accumulation mechanism of source rock under sequence stratigraphic framework.Using the theory of cyclostratigraphy and sequence stratigraphy, the high-frequency sequences of one outcrop profile and one drilling well are identified. Two third-order sequences and eight fourth-order sequences are distinguished on outcrop profile based on the cycle stacking patterns. For drilling well, sequence boundary and four system tracts is distinguished by "integrated prediction error filter analysis" (INPEFA) of Gamma-ray logging data, and eight fourth-order sequences is identified by 405ka long eccentricity curve in depth domain which is quantified and filtered by integrated analysis of MTM spectral analysis, evolutive harmonic analysis (EHA), evolutive average spectral misfit (eASM) and band-pass filtering. It suggests that high-frequency sequences correlate well with Milankovitch orbital signals recorded in sediments, and it is applicable to use cyclostratigraphy theory in dividing high-frequency(4-6 orders) sequence stratigraphy.High-resolution sedimentation rate is reconstructed through the study interval by tracking the highly statistically significant short eccentricity component (123ka) revealed by EHA. Based on sedimentation rate, measured TOC and density data, the burial flux, delivery flux and primary productivity of organic carbon was estimated. By integrating redox proxies, we can discuss the controls on organic matter accumulation by primary production and preservation under the high-resolution sequence

  7. Pacific carbon cycling constrained by organic matter size, age and composition relationships

    NASA Astrophysics Data System (ADS)

    Walker, Brett D.; Beaupré, Steven R.; Guilderson, Thomas P.; McCarthy, Matthew D.; Druffel, Ellen R. M.

    2016-12-01

    Marine organic matter is one of Earth’s largest actively cycling reservoirs of organic carbon and nitrogen. The processes controlling organic matter production and removal are important for carbon and nitrogen biogeochemical cycles, which regulate climate. However, the many possible cycling mechanisms have hindered our ability to quantify marine organic matter transformation, degradation and turnover rates. Here we analyse existing and new measurements of the carbon:nitrogen ratio and radiocarbon age of organic matter spanning sizes from large particulate organic matter to small dissolved organic molecules. We find that organic matter size is negatively correlated with radiocarbon age and carbon:nitrogen ratios in coastal, surface and deep waters of the Pacific Ocean. Our measurements suggest that organic matter is increasingly chemically degraded as it decreases in size, and that small particles and molecules persist in the ocean longer than their larger counterparts. Based on these correlations, we estimate the production rates of small, biologically recalcitrant dissolved organic matter molecules at 0.11-0.14 Gt of carbon and about 0.005 Gt of nitrogen per year in the deep ocean. Our results suggest that the preferential remineralization of large over small particles and molecules is a key process governing organic matter cycling and deep ocean carbon storage.

  8. Organic Matter in Extraterrestrial Water-Bearing Salt Crystals

    NASA Technical Reports Server (NTRS)

    Chan, Q. H. S.; Zolensky, M. E.; Kebukwa, Y.; Fries, M.; Steele, A.

    2017-01-01

    Introduction: Direct samples of early Solar System fluids are present in two thermally-metamorphosed ordinary chondrite regolith breccias (Monahans (1998) [H5] and Zag [H3-6]), which were found to contain brine-bearing halite (NaCl) crystals that have been added to the regolith of an S-type asteroid following asteroidal metamorphism [1, 2]. The brine-bearing halite grains were proposed to be formed on an icy C-type asteroids (possibly Ceres), and transferred to an S-type asteroid via cryovolcanic event(s) [3]. A unique aspect of these halites is that they contain abundant organic rich solid inclusions hosted within the halites alongside the water inclusions. Methods: We analyzed in detail the compositions of the organic solids and the amino acid content of the halite crystals with two-step laser desorption/laser ionization mass spectrometry (L(sup 2) MS), Raman spectroscopy, X-ray absorption near edge structure (XANES), nanoscale secondary ion mass spectrometry (NanoSIMS), and ultra-performance liquid chromatography fluorescence detection and quadrupole time of flight hybrid mass spectrometry (UPLC-FD/QToF-MS). Results and Discussion: The L(sup 2) MS results show signatures of low-mass polyaromatic hydro-carbons (PAHs) indicated by sequences of peaks separated by 14 atomic mass units (amu) due to successive addition of methylene (CH2) groups to the PAH skeletons [4]. Raman spectra of the micron-sized solid inclusions of the halites indicate the presence of abundant and highly variable organic matter that include a mixture of short-chain aliphatic compounds and macromolecular carbon. C-XANES analysis identified C-rich areas with peaks at 285.0 eV (aromatic C=C) and 286.6 eV (vinyl-keto C=O). However, there is no 1s-sigma* exciton peak (291.7 eV) that is indicative of the development of graphene structure [5], which suggests the organics were synthesized cold. Na-noSIMS analyses show C-rich and N-rich areas that exhibit similar isotopic values with that of the IOM in

  9. Understanding soil organic matter dynamics to ecologically increase crop yields

    NASA Astrophysics Data System (ADS)

    Koorneef, Guusje; Zandbergen, Jelmer; Pulleman, Mirjam; Comans, Rob

    2017-04-01

    There is an increasing societal interest to develop farming systems that produce high yields while maintaining or even improving ecosystem functioning. Organic farming is such an ecological-intensive system with generally lower yields but better ecosystem functioning than conventional farming systems. In this project we therefore study how we can accelerate the development of soils in organically managed farming systems to improve yield. We specifically aim to unravel how the quality and quantity of Soil Organic Matter (SOM) drives crop yields. We hypothesize that a higher quality and quantity of different SOM pools leads to enhanced ecosystem functioning (e.g. nutrient availability, water provisioning) through mutual links between soil biota with their physico-chemical environment. To test our hypothesis we will link spatio-temporal variation in crop quality (e.g. leaf-N content) and quantity to variation in biotic and abiotic soil properties in an on-going long-term experiment at the Vredepeel, the Netherlands. We will specifically focus on the possible mechanisms via which SOM dynamics can improve soil functions to achieve high crop yields. We will identify the different SOM pools (e.g. SOM in macro- and microaggregates) and SOM dynamics and link that to soil functioning (e.g. nutrient cycling) and crop yield. Understanding the underlying mechanisms via which SOM influences soil functioning and crop yield will provide tools to accelerate the transition towards a sustainable intensification of farming systems.

  10. Sources, Ages, and Alteration of Organic Matter in Estuaries

    NASA Astrophysics Data System (ADS)

    Canuel, Elizabeth A.; Hardison, Amber K.

    2016-01-01

    Understanding the processes influencing the sources and fate of organic matter (OM) in estuaries is important for quantifying the contributions of carbon from land and rivers to the global carbon budget of the coastal ocean. Estuaries are sites of high OM production and processing, and understanding biogeochemical processes within these regions is key to quantifying organic carbon (Corg) budgets at the land-ocean margin. These regions provide vital ecological services, including nutrient filtration and protection from floods and storm surge, and provide habitat and nursery areas for numerous commercially important species. Human activities have modified estuarine systems over time, resulting in changes in the production, respiration, burial, and export of Corg. Corg in estuaries is derived from aquatic, terrigenous, and anthropogenic sources, with each source exhibiting a spectrum of ages and lability. The complex source and age characteristics of Corg in estuaries complicate our ability to trace OM along the river-estuary-coastal ocean continuum. This review focuses on the application of organic biomarkers and compound-specific isotope analyses to estuarine environments and on how these tools have enhanced our ability to discern natural sources of OM, trace their incorporation into food webs, and enhance understanding of the fate of Corg within estuaries and their adjacent waters.

  11. Sources, Ages, and Alteration of Organic Matter in Estuaries.

    PubMed

    Canuel, Elizabeth A; Hardison, Amber K

    2016-01-01

    Understanding the processes influencing the sources and fate of organic matter (OM) in estuaries is important for quantifying the contributions of carbon from land and rivers to the global carbon budget of the coastal ocean. Estuaries are sites of high OM production and processing, and understanding biogeochemical processes within these regions is key to quantifying organic carbon (Corg) budgets at the land-ocean margin. These regions provide vital ecological services, including nutrient filtration and protection from floods and storm surge, and provide habitat and nursery areas for numerous commercially important species. Human activities have modified estuarine systems over time, resulting in changes in the production, respiration, burial, and export of Corg. Corg in estuaries is derived from aquatic, terrigenous, and anthropogenic sources, with each source exhibiting a spectrum of ages and lability. The complex source and age characteristics of Corg in estuaries complicate our ability to trace OM along the river-estuary-coastal ocean continuum. This review focuses on the application of organic biomarkers and compound-specific isotope analyses to estuarine environments and on how these tools have enhanced our ability to discern natural sources of OM, trace their incorporation into food webs, and enhance understanding of the fate of Corg within estuaries and their adjacent waters.

  12. Acid-base properties of Baltic Sea dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Hammer, Karoline; Schneider, Bernd; Kuliński, Karol; Schulz-Bull, Detlef E.

    2017-09-01

    Calculations related to the marine CO2 system that are based on alkalinity data may be strongly biased if the contributions of organic compounds are ignored. In coastal seas, concentrations of dissolved organic matter (DOM) are frequently high and alkalinity from inorganic compounds is low. In this study, based on measurements of total alkalinity, total CO2, and pH, we determined the organic alkalinity, Aorg, in water from the central Baltic Sea. The maximum Aorg measured in the surface mixed layer during the spring bloom was > 50 μmol/kg-SW but the Aorg decreased with depth and approached zero below the permanent halocline. This behavior could be attributed to the decreased pH of deeper water layers. The data were used to calculate the bulk dissociation constant, KDOM, for marine DOM and the fraction f of dissolved organic carbon (DOC) that acts as a carrier for acid-base functional groups. The p KDOM (7.27) agreed well with the value (7.34) previously estimated in a preliminary study of organic alkalinity in the Baltic Sea. The fraction of carbon atoms carrying acid-base groups was 17% and was somewhat higher than previously reported (12%). Spike experiments performed using artificial seawater and three different humic/fulvic substances tested whether the acid-base properties of these substances explain the results of our field study. Specifically, Aorg was determined at different concentrations (DOC) of the added humic/fulvic substances. The relationship between Aorg and the DOC concentrations indicated that humic/fulvic substances are more acidic (p KDOM < 6.5) than the bulk DOC natural occurring in the Baltic Sea.

  13. Abiotic Addition of Sulfide to Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Poulin, B. A.; Ryan, J. N.; Nagy, K.; Stubbins, A.; Dittmar, T.; Aiken, G.

    2016-02-01

    Sulfur-containing functional groups in dissolved organic matter (DOM) play important roles in controlling the chemical speciation and geochemistry of trace metals in surface waters, wetland soils, and pore waters. The abiotic addition of sulfide to DOM is recognized as an important mechanism responsible for the elevated concentration of sulfur and high relative abundance of reduced sulfur groups in DOM. Despite these observations, there is little experimental information on the organic molecules that sulfur incorporates into and the speciation of the incorporated sulfur. We present results from laboratory and field efforts that characterize changes in organic sulfur chemistry under sulfidic conditions. In the laboratory, Suwannee River hydrophobic organic acid (HPOA) was reacted with sulfide at an environmentally relevant sulfide-to-DOM concentration ratio (0.06 mol S2-(mol C)-1). Elemental composition and sulfur K-edge X-ray absorption near-edge structure (XANES) spectra of Suwannee River samples show a 55% molar increase in reduced sulfur accompanied by a shift in reduced sulfur speciation from primarily heterocyclic (75% of reduced S) to predominantly exocyclic (90% of reduced S) following sulfide exposure. An analysis of samples by Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) reveals an increase in molecular formula assignments with sulfur heteroatoms (e.g., CHOS, CHONS) likely due to reactions with sulfide. For the field component, the HPOA fraction of DOM was isolated from surface and pore water samples collected from four locations across a sulfate gradient in the Florida Everglades. Elemental composition and FTICR-MS spectra of DOM samples show that the (1) organic sulfur content and (2) percentage of molecular formula assignments containing sulfur heteroatoms correspond with the aqueous sulfide concentration. The results provide insight into the alteration of DOM in sulfidic environments and its implications for sulfur cycling.

  14. A kinetic model to explain the grain size and organic matter content dependence of magnetic susceptibility in transitional marine environments: A case study in Ria de Muros (NW Iberia)

    NASA Astrophysics Data System (ADS)

    Mohamed, Kais J.; Andrade, Alba; Rey, Daniel; Rubio, Belén.; Bernabeu, Ana María.

    2017-06-01

    Magnetic minerals in marine sediments are sensitive indicators of processes such as provenance changes, climatic controls, pollution, and postdepositional geochemical changes. Magnetic susceptibility is the bulk property of the sediments most commonly used to understand the magnetic characteristics of sediments. Before conclusions can be drawn from changes in this parameter, it is important to understand what factors and to what extent control changes in magnetic susceptibility. The magnetic susceptibility of surficial sediments in the Galician Rias Baixas, in NW Spain, has been shown to covary with sediment texture and organic matter content. Downcore, the magnetic properties of these sediments experience drastic changes as a result of strong dissolution caused by early diagenesis. In this paper, we further explore the relationship between these factors and formalize the observed covariations as the result of a simple second-order kinetic model dependent on the content of organic matter in surficial sediments in the Ria de Muros. The reanalysis of previously reported data from the Rias de Vigo and Pontevedra confirmed the validity of this model and suggested further controls such as wave climate and water depth in the rates at which magnetic susceptibility changes are controlled by organic matter content.

  15. Grown organic matter as a fuel raw material resource

    NASA Technical Reports Server (NTRS)

    Roller, W. L.; Keener, H. M.; Kline, R. D.; Mederski, H. J.; Curry, R. B.

    1975-01-01

    An extensive search was made on biomass production from the standpoint of climatic zones, water, nutrients, costs and energy requirements for many species. No exotic species were uncovered that gave hope for a bonanza of biomass production under culture, location, and management markedly different from those of existing agricultural concepts. A simulation analysis of biomass production was carried out for six species using conventional production methods, including their production costs and energy requirements. These estimates were compared with data on food, fiber, and feed production. The alternative possibility of using residues from food, feed, or lumber was evaluated. It was concluded that great doubt must be cast on the feasibility of producing grown organic matter for fuel, in competition with food, feed, or fiber. The feasibility of collecting residues may be nearer, but the competition for the residues for return to the soil or cellulosic production is formidable.

  16. [Dissolved organic matter (DOM) dynamics in karst aquifer systems].

    PubMed

    Yao, Xin; Zou, Sheng-Zhang; Xia, Ri-Yuan; Xu, Dan-Dan; Yao, Min

    2014-05-01

    Dissolved organic matter (DOM) and nutrients have a unique way of producing, decomposing and storing in southwest karst water systems. To understand the biogeochemical cycle of DOM in karst aquifer systems, we investigated the behavioral changes of DOM fluorescence components in Zhaidi karst river system. Two humic-like components (C1 and C2), and one autochthonous tyrosine-like component (C4) were identified using the parallel factor analysis (PARAFAC) model. Compared with the traditional physical and chemical indicators, spatial heterogeneity of DOM was more obvious, which can reflect the subtle changes in groundwater system. Traditional indicators mainly reflect the regional characteristics of karst river system, while DOM fluorescence components reflect the attribute gaps of sampling types.

  17. Modeling of natural organic matter transport processes in groundwater.

    PubMed Central

    Yeh, T C; Mas-Pla, J; McCarthy, J F; Williams, T M

    1995-01-01

    A forced-gradient tracer test was conducted at the Georgetown site to study the transport of natural organic matter (NOM) in groundwater. In particular, the goal of this experiment was to investigate the interactions between NOM and the aquifer matrix. A detailed three-dimensional characterization of the hydrologic conductivity heterogeneity of the site was obtained using slug tests. The transport of a conservative tracer (chloride) was successfully reproduced using these conductivity data. Despite the good simulation of the flow field, NOM breakthrough curves could not be reproduced using a two-site sorption model with spatially constant parameters. Preliminary results suggest that different mechanisms for the adsorption/desorption processes, as well as their spatial variability, may significantly affect the transport and fate of NOM. PMID:7621798

  18. Rapid export of organic matter to the Mississippi Canyon

    NASA Astrophysics Data System (ADS)

    Bianchi, Thomas S.; Allison, Mead A.; Canuel, Elizabeth A.; Reide Corbett, D.; McKee, Brent A.; Sampere, Troy P.; Wakeham, Stuart G.; Waterson, Elizabeth

    2006-12-01

    Coastal margins, where rivers serve as the dominant control on productivity and delivery of dissolved and particulate materials, have been understudied.The potential importance of certain river-dominated margins (RiOMars), such as those of the Mississippi River plume, to the global carbon budget is garnering increased attention because of their disproportionate role in transporting terrigenous materials to the ocean [Dagg et al., 2004; McKee et al., 2004].This study concludes that labile (readily open to chemical, physical, or biological change) sedimentary organic matter, produced by in situ diatom production in the Mississippi River plume, is rapidly transported to the Mississippi Canyon. Despite the notion that canyon sediments are typically unstable and lack adequate food resources to support significant macrobenthic communities, this study suggests that productive RiOMars are important conduits for transporting fixed carbon from highly productive plume waters on the shelf to deeper benthic communities.

  19. New monoaromatic steroids in organic matter of the apocatagenesis zone

    NASA Astrophysics Data System (ADS)

    Kashirtsev, V. A.; Fomin, A. N.; Shevchenko, N. P.; Dolzhenko, K. V.

    2016-08-01

    According to the materials of geochemical study in the core of the ultradeep hole SV-27 of aromatic fractions of bitumoids of the Vilyui syneclise (East Siberia) by the method of chromatography-mass spectrometry, starting from the depth of >5000 m, four diastereomers of previously unknown hydrocarbons, which become predominant in the fraction at a depth of ˜6500 m, were distinguished. Similar hydrocarbons were found in organic matter of Upper Paleozoic rocks of the Kharaulakh anticlinorium in the Verkhoyansk folded area. According to the intense molecular ion m/z 366 and the character of the basic fragmental ions (m/z 238, 309, and 323), the major structure of the compounds studied was determined as 17-desmethyl-23-methylmonoaromatic steroid C27. The absence of such steroids in oil of the Vilyui syneclise shows that deep micro-oils did not participate in the formation of oil fringes of gas condensate deposits of the region.

  20. Dissolved organic matter uptake by Trichodesmium in the Southwest Pacific

    PubMed Central

    Benavides, Mar; Berthelot, Hugo; Duhamel, Solange; Raimbault, Patrick; Bonnet, Sophie

    2017-01-01

    The globally distributed diazotroph Trichodesmium contributes importantly to nitrogen inputs in the oligotrophic oceans. Sites of dissolved organic matter (DOM) accumulation could promote the mixotrophic nutrition of Trichodesmium when inorganic nutrients are scarce. Nano-scale secondary ion mass spectrometry (nanoSIMS) analyses of individual trichomes sampled in the South Pacific Ocean, showed significant 13C-enrichments after incubation with either 13C-labeled carbohydrates or amino acids. These results suggest that DOM could be directly taken up by Trichodesmium or primarily consumed by heterotrophic epibiont bacteria that ultimately transfer reduced DOM compounds to their host trichomes. Although the addition of carbohydrates or amino acids did not significantly affect bulk N2 fixation rates, N2 fixation was enhanced by amino acids in individual colonies of Trichodesmium. We discuss the ecological advantages of DOM use by Trichodesmium as an alternative to autotrophic nutrition in oligotrophic open ocean waters. PMID:28117432

  1. Dissolved organic matter uptake by Trichodesmium in the Southwest Pacific

    NASA Astrophysics Data System (ADS)

    Benavides, Mar; Berthelot, Hugo; Duhamel, Solange; Raimbault, Patrick; Bonnet, Sophie

    2017-01-01

    The globally distributed diazotroph Trichodesmium contributes importantly to nitrogen inputs in the oligotrophic oceans. Sites of dissolved organic matter (DOM) accumulation could promote the mixotrophic nutrition of Trichodesmium when inorganic nutrients are scarce. Nano-scale secondary ion mass spectrometry (nanoSIMS) analyses of individual trichomes sampled in the South Pacific Ocean, showed significant 13C-enrichments after incubation with either 13C-labeled carbohydrates or amino acids. These results suggest that DOM could be directly taken up by Trichodesmium or primarily consumed by heterotrophic epibiont bacteria that ultimately transfer reduced DOM compounds to their host trichomes. Although the addition of carbohydrates or amino acids did not significantly affect bulk N2 fixation rates, N2 fixation was enhanced by amino acids in individual colonies of Trichodesmium. We discuss the ecological advantages of DOM use by Trichodesmium as an alternative to autotrophic nutrition in oligotrophic open ocean waters.

  2. Systematic approaches to comprehensive analyses of natural organic matter

    USGS Publications Warehouse

    Leenheer, Jerry A.

    2009-01-01

    The more that is learned of the chemistry of aquatic natural organic matter (NOM) the greater is the scientific appreciation of the vast complexity of this subject. This complexity is due not only to a multiplicity of precursor molecules in any environment but to their associations with each other and with other components of local environments such as clays, mineral acids and dissolved metals. In addition, this complex system is subject to constant change owing to environmental variables and microbial action. Thus, there is a good argument that no two NOM samples are exactly the same even from the same source at nearly the same time. When ubiquity of occurrence, reaction with water treatment chemicals, and subsequent human exposure are added to the list of NOM issues, one can understand the appeal that this subject holds for a wide variety of environmental scientists.

  3. Ocean Warming–Acidification Synergism Undermines Dissolved Organic Matter Assembly

    PubMed Central

    Chen, Chi-Shuo; Anaya, Jesse M.; Chen, Eric Y-T; Farr, Erik; Chin, Wei-Chun

    2015-01-01

    Understanding the influence of synergisms on natural processes is a critical step toward determining the full-extent of anthropogenic stressors. As carbon emissions continue unabated, two major stressors—warming and acidification—threaten marine systems on several scales. Here, we report that a moderate temperature increase (from 30°C to 32°C) is sufficient to slow— even hinder—the ability of dissolved organic matter, a major carbon pool, to self-assemble to form marine microgels, which contribute to the particulate organic matter pool. Moreover, acidification lowers the temperature threshold at which we observe our results. These findings carry implications for the marine carbon cycle, as self-assembled marine microgels generate an estimated global seawater budget of ~1016 g C. We used laser scattering spectroscopy to test the influence of temperature and pH on spontaneous marine gel assembly. The results of independent experiments revealed that at a particular point, both pH and temperature block microgel formation (32°C, pH 8.2), and disperse existing gels (35°C). We then tested the hypothesis that temperature and pH have a synergistic influence on marine gel dispersion. We found that the dispersion temperature decreases concurrently with pH: from 32°C at pH 8.2, to 28°C at pH 7.5. If our laboratory observations can be extrapolated to complex marine environments, our results suggest that a warming–acidification synergism can decrease carbon and nutrient fluxes, disturbing marine trophic and trace element cycles, at rates faster than projected. PMID:25714090

  4. Priming-induced Changes in Permafrost Soil Organic Matter Decomposition

    NASA Astrophysics Data System (ADS)

    Pegoraro, E.; Schuur, E.; Bracho, R. G.

    2015-12-01

    Warming of tundra ecosystems due to climate change is predicted to thaw permafrost and increase plant biomass and litter input to soil. Additional input of easily decomposable carbon can alter microbial activity by providing a much needed energy source, thereby accelerating soil organic matter decomposition. This phenomenon, known as the priming effect, can increase CO2 flux from soil to the atmosphere. However, the extent to which this mechanism can decrease soil carbon stocks in the Arctic is unknown. This project assessed priming effects on permafrost soil collected from a moist acidic tundra site in Healy, Alaska. We hypothesized that priming would increase microbial activity by providing microbes with a fresh source of carbon, thereby increasing decomposition of old and slowly decomposing carbon. Soil from surface and deep layers were amended with multiple pulses of uniformly 13C labeled glucose and cellulose, and samples were incubated at 15° C to quantify whether labile substrate addition increased carbon mineralization. We quantified the proportion of old carbon mineralization by measuring 14CO2. Data shows that substrate addition resulted in higher respiration rates in amended soils; however, priming was only observed in deep layers, where 30% more soil-derived carbon was respired compared to control samples. This suggests that microbes in deep layers are limited in energy, and the addition of labile carbon increases native soil organic matter decomposition, especially in soil with greater fractions of slowly decomposing carbon. Priming in permafrost could exacerbate the effects of climate change by increasing mineralization rates of carbon accumulated over the long-term in deep layers. Therefore, quantifying priming effect in permafrost soils is imperative to understanding the dynamics of carbon turnover in a warmer world.

  5. Ocean warming-acidification synergism undermines dissolved organic matter assembly.

    PubMed

    Chen, Chi-Shuo; Anaya, Jesse M; Chen, Eric Y-T; Farr, Erik; Chin, Wei-Chun

    2015-01-01

    Understanding the influence of synergisms on natural processes is a critical step toward determining the full-extent of anthropogenic stressors. As carbon emissions continue unabated, two major stressors--warming and acidification--threaten marine systems on several scales. Here, we report that a moderate temperature increase (from 30°C to 32°C) is sufficient to slow--even hinder--the ability of dissolved organic matter, a major carbon pool, to self-assemble to form marine microgels, which contribute to the particulate organic matter pool. Moreover, acidification lowers the temperature threshold at which we observe our results. These findings carry implications for the marine carbon cycle, as self-assembled marine microgels generate an estimated global seawater budget of ~1016 g C. We used laser scattering spectroscopy to test the influence of temperature and pH on spontaneous marine gel assembly. The results of independent experiments revealed that at a particular point, both pH and temperature block microgel formation (32°C, pH 8.2), and disperse existing gels (35°C). We then tested the hypothesis that temperature and pH have a synergistic influence on marine gel dispersion. We found that the dispersion temperature decreases concurrently with pH: from 32°C at pH 8.2, to 28°C at pH 7.5. If our laboratory observations can be extrapolated to complex marine environments, our results suggest that a warming-acidification synergism can decrease carbon and nutrient fluxes, disturbing marine trophic and trace element cycles, at rates faster than projected.

  6. Effects of warming on stream biofilm organic matter use capabilities.

    PubMed

    Ylla, Irene; Canhoto, Cristina; Romaní, Anna M

    2014-07-01

    The understanding of ecosystem responses to changing environmental conditions is becoming increasingly relevant in the context of global warming. Microbial biofilm communities in streams play a key role in organic matter cycling which might be modulated by shifts in flowing water temperature. In this study, we performed an experiment at the Candal stream (Portugal) longitudinally divided into two reaches: a control half and an experimental half where water temperature was 3 °C above that of the basal stream water. Biofilm colonization was monitored during 42 days in the two stream halves. Changes in biofilm function (extracellular enzyme activities and carbon substrate utilization profiles) as well as chlorophyll a and prokaryote densities were analyzed. The biofilm in the experimental half showed a higher capacity to decompose cellulose, hemicellulose, lignin, and peptidic compounds. Total leucine-aminopeptidase, cellobiohydrolase and β-xylosidase showed a respective 93, 66, and 61% increase in activity over the control; much higher than would be predicted by only the direct temperature physical effect. In contrast, phosphatase and lipase activity showed the lowest sensitivity to temperature. The biofilms from the experimental half also showed a distinct functional fingerprint and higher carbon usage diversity and richness, especially due to a wider use of polymers and carbohydrates. The changes in the biofilm functional capabilities might be indirectly affected by the higher prokaryote and chlorophyll density measured in the biofilm of the experimental half. The present study provides evidence that a realistic stream temperature increase by 3 °C changes the biofilm metabolism to a greater decomposition of polymeric complex compounds and peptides but lower decomposition of lipids. This might affect stream organic matter cycling and the transfer of carbon to higher trophic levels.

  7. Photochemical formation of hydroxyl radical from effluent organic matter.

    PubMed

    Dong, Mei Mei; Rosario-Ortiz, Fernando L

    2012-04-03

    The photochemical formation of hydroxyl radical (HO•) from effluent organic matter (EfOM) was evaluated using three bulk wastewater samples collected at different treatment facilities under simulated sunlight. For the samples studied, the formation rates of HO•(R(HO•)) were obtained from the formation rate of phenol following the hydroxylation of benzene. The values of R(HO•) ranged from 2.3 to 3.8 × 10(-10) M s(-1) for the samples studied. The formation rate of HO• from nitrate photolysis (R(NO3)(HO•)) was determined to be 3.0 × 10(-7) M(HO)• M(NO3)(-1) s(-1). The HO• production rate from EfOM (R(EfOM)(HO•)) ranged from 0.76 to 1.3 × 10(-10) M s(-1). For the wastewater samples studied, R(EfOM)(HO•) varied from 1.5 to 2.4 × 10(-7) M(HO)• M(C)(-1) (s-1) on molarcarbon basis, which was close to HO• production from nitrate photolysis. The apparent quantum yield for the formation of HO• from nitrate (Φ(NO3-HO•)(a)) was determined as 0.010 ± 0.001 for the wavelength range 290-400 nm in ultrapure water. The apparent quantum yield for HO• formation in EfOM (Φ(EfOM-HO•)(a)) ranged from 6.1 to 9.8 × 10(-5), compared to 2.99 to 4.56 × 10(-5) for organic matter (OM) isolates. The results indicate that wastewater effluents could produce significant concentrations of HO•, as shown by potential higher nitrate levels and relatively higher quantum yields of HO• formation from EfOM.

  8. A new organic matter fractionation methodology for organic wastes: Bioaccessibility and complexity characterization for treatment optimization.

    PubMed

    Jimenez, Julie; Aemig, Quentin; Doussiet, Nicolas; Steyer, Jean-Philippe; Houot, Sabine; Patureau, Dominique

    2015-10-01

    Organic matter characterization is the starting point to describe organic waste treatments mechanisms and to propose their modeling. Two relevant characterization methodologies were frequently used in the literature based on chemical extractions and fluorescence spectroscopy. However, they could not be generalized to all the type of wastes because of the different molecules targeted. Consequently, a new fractionation methodology was proposed to unify the characterization of a wide range of organic wastes. This new method was built by merging the two previously mentioned protocols to simulate bioaccessibility combined with 3D fluorescence spectroscopy to highlight the complexity of the extracted organic fractions. Sixty samples including representative samples used to validate the method were characterized according to their bioaccessibility and their complexity. Thanks to a principal component analysis, organic wastes were classified according to their nature, their complexity and accessibility. The applicability of this method in statistical or dynamic models is very promising. Copyright © 2015. Published by Elsevier Ltd.

  9. Turnover of intra- and extra-aggregate organic matter at the silt-size scale

    Treesearch

    I. Virto; C. Moni; C. Swanston; C. Chenu

    2010-01-01

    Temperate silty soils are especially sensitive to organic matter losses associated to some agricultural management systems. Long-term preservation of organic C in these soils has been demonstrated to occur mainly in the silt- and clay-size fractions, although our knowledge about the mechanisms through which it happens remains unclear. Although organic matter in such...

  10. Impacts of heterogeneous organic matter on phenanthrene sorption--Equilibrium and kinetic studies with aquifer material

    USGS Publications Warehouse

    Karapanagioti, Hrissi K.; Kleineidam, Sybille; Sabatini, David A.; Grathwohl, Peter; Ligouis, Bertrand

    2000-01-01

    Sediment organic matter heterogeneity in sediments is shown to impact the sorption behavior of contaminants. We investigated the sorptive properties as well as the composition of organic matter in different subsamples (mainly grain size fractions) of the Canadian River Alluvium (CRA). Organic petrography was used as a new tool to describe and characterize the organic matter in the subsamples. The samples studied contained many different types of organic matter including bituminous coal particles. Differences in sorption behavior were explained based on these various types of organic matter. Subsamples containing predominately coaly, particulate organic matter showed the highest Koc, the highest nonlinearity of sorption isotherms and the slowest sorption kinetics. Soil subsamples with organic matter present as organic coatings around the quartz grains evidenced the lowest Koc, the most linear sorption isotherms and the fastest sorption kinetics, which was not limited by slow intraparticle diffusion. Due to the high sorption capacity of the coaly particles even when it is present as only a small fraction of the composite organic content (<3%) causes Koc values which are much higher than expected for soil organic matter (e.g. Koc − Kow relationships). The results show that the identification and quantification of the coaly particles within a sediment or soil sample is a prerequisite in order to understand or predict sorption behavior of organic pollutants.

  11. Riverine organic matter composition and fluxes to Hudson Bay

    NASA Astrophysics Data System (ADS)

    Kuzyk, Z. Z. A.; Macdonald, R. W.; Goni, M. A.; Godin, P.; Stern, G. A.

    2016-12-01

    With warming in northern regions, many changes including permafrost degradation, vegetation alteration, and wildfire incidence will impact the carbon cycle. Organic carbon (OC) carried by river runoff to northern oceans has the potential to provide integrated evidence of these impacts. Here, concentrations of dissolved (DOC) and particulate (POC) OC are used to estimate terrestrial OC transport in 17 major rivers draining varied vegetative and permafrost conditions into Hudson Bay and compositional data (lignin and 14C) to infer OC sources. Hudson Bay lies just south of the Arctic Circle in Canada and is surrounded by a large drainage basin (3.9 × 106 km2) dominated by permafrost. Analysis of POC and DOC in the 17 rivers indicates that DOC dominates the total OC load. The southern rivers dominate. The Nelson and Churchill Rivers to the southwest are particularly important suppliers of OC partly because of large drainage basins but also perhaps because of impacts by hydroelectric development, as suggested by a 14C age of DOC in the Churchill River of 2800 years. Higher DOC and POC concentrations in the southern rivers, which have substantive areas only partially covered by permafrost, compared to northern rivers draining areas with complete permafrost cover, implies that warming - and hence permafrost thawing - will lead to progressively higher DOC and POC loads for these rivers. Lignin composition in the organic matter (S/V and C/V ratios) reveals mixed sources of OC consistent with the dominant vegetation in the river basins. This vegetation is organized by latitude with southern regions below the tree line enriched by woody gymnosperm sources (boreal forest) and northern regions enriched with organic matter from non-woody angiosperms (flowering shrubs, tundra). Acid/Aldehyde composition together with Δ14C data for selected DOC samples suggest that most of the lignin has undergone oxidative degradation, particularly the DOC component. However, high Δ14C ages

  12. Response of Dissolved Organic Matter to Warming and Nitrogen Addition

    NASA Astrophysics Data System (ADS)

    Choi, J. H.; Nguyen, H.

    2014-12-01

    Dissolved Organic Matter (DOM) is a ubiquitous mixture of soluble organic components. Since DOM is produced from the terrestrial leachate of various soil types, soil may influence the chemistry and biology of freshwater through the input of leachate and run-off. The increased temperature by climate change could dramatically change the DOM characteristics of soils through enhanced decomposition rate and losses of carbon from soil organic matter. In addition, the increase in the N-deposition affects DOM leaching from soils by changing the carbon cycling and decomposition rate of soil decay. In this study, we conducted growth chamber experiments using two types of soil (wetland and forest) under the conditions of temperature increase and N-deposition in order to investigate how warming and nitrogen addition influence the characteristics of the DOM leaching from different soil types. This leachate controls the quantity and quality of DOM in surface water systems. After 10 months of incubation, the dissolved organic carbon (DOC) concentrations decreased for almost samples in the range of 7.6 to 87.3% (ANOVA, p<0.05). The specific UV absorption (SUVA) values also decreased for almost samples after the first 3 months and then increased gradually afterward in range of 3.3 to 108.4%. Both time and the interaction between time and the temperature had the statistically significant effects on the SUVA values (MANOVA, p<0.05). Humification index (HIX) showed the significant increase trends during the duration of incubation and temperature for almost the samples (ANOVA, p<0.05). Higher decreases in the DOC values and increases in HIX were observed at higher temperatures, whereas the opposite trend was observed for samples with N-addition. The PARAFAC results showed that three fluorescence components: terrestrial humic (C1), microbial humic-like (C2), and protein-like (C3), constituted the fluorescence matrices of soil samples. During the experiment, labile DOM from the soils was

  13. Mechanistic simulation of the vertical soil organic matter profile

    NASA Astrophysics Data System (ADS)

    Braakhekke, M.; Beer, C.; Reichstein, M.; Hoosbeek, M.; Kruijt, B.; Kabat, P.

    2013-12-01

    Soil organic matter (SOM) constitutes a large global pool of carbon that may play a considerable role for future climate. The vertical distribution of SOM in the profile may be important due to depth-dependence of physical, chemical, and biological conditions, and links to physical processes such as heat and moisture transport. The aim of this thesis is to develop a dynamic and mechanistic representation of the vertical SOM profile that can be applied for large scale simulations as a part of global ecosystem and earth system models. A model structure called SOMPROF was developed that dynamically simulates the SOM profile based on above and below ground litter input, decomposition, bioturbation, and liquid phase transport. Furthermore, three organic surface horizons are explicitly represented. Since the organic matter transport processes have been poorly quantified in the past and are difficult to observe directly, the model was calibrated with a Bayesian approach for two contrasting temperate forest sites in Europe. Different types of data were included in the parameter estimation, including: organic carbon stocks and concentrations, respiration rates, and excess lead-210 activity. The calibrations yielded good fits to the observations, and showed that the two sites differ considerably with respect to the relevance of the different processes. These differences agree well with expectations based on local conditions. However, the results also demonstrate the difficulties arising from convolution of the processes. Several parameters are poorly constrained and for one of the sites, several distinct regions in parameter space exist that yield acceptable fit. In a subsequent study it was found that radiocarbon observations can offer much additional constraint on several parameters, most importantly on the turnover rate of the slowest SOM fraction. Additionally, for one site, a prognostic simulation until 2100 was performed using the resulting a posteriori parameter

  14. Primary production contributes to non-labile organic matter generation in the estuarine and coastal zone

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Zhang, J.; Wu, Y.

    2013-12-01

    Oceanic generation of refractory organic matter is an important pathway for safe and long time scale safe carbon sequestration. Since refractory/non-labile organic matter generation is highly related with microorganism, estuaries and coastal zones with high primary production should be important regions for such generation process. We investigated the particulate organic matter in the estuarine and adjacent coastal zone of the Changjiang (Yangtze River). Peptidoglycan estimated on the basis of D-form of amino acids enantiomers showed a large variation in the estuary but generally lower than the lower reaches (XLJ). Peptidoglycan quickly decreased from the river to the sea, when DI increased from negative to < 0.5. The decrease can be due to dilution by fresh organic matter and seawater. But when DI > 0.5, the peptidoglycan concentration began to positively relate with organic matter freshness and normalized peptidoglycan was comparable to or even higher than that in terrestrial organic matter. This indicates that estuarine and coastal zones make a significant contribution to non-labile organic matter production. Further analysis suggests that heterotrophic bacteria and Synechococcus are notable contributors. For large river's estuary and adjacent coastal zone, terrestrial inputs promote high in situ production. The generated fresh organic matter in the estuary further promotes heterotrophic bacteria. Since the generation of non-labile organic matter process is both contributed by autotrophic and heterotrophic microorganisms, primary production is indirectly generating refractory/non-labile organic matter. And the refractory/non labile organic matter production occurs routinely during every productive season. On another aspect, considering the shallow water depth (usually < 100 m) and high sedimentation rate (e.g., 0-5 cm/year for the Changjiang Estuary), the organic matter can be buried in sediment much more easily than it is in the open ocean.

  15. Geochemical drivers of organic matter decomposition in Arctic tundra soils

    DOE PAGES

    Herndon, Elizabeth M.; Yang, Ziming; Graham, David E.; ...

    2015-12-07

    Climate change is warming tundra ecosystems in the Arctic, resulting in the decomposition of previously-frozen soil organic matter (SOM) and release of carbon (C) to the atmosphere; however, the processes that control SOM decomposition and C emissions remain highly uncertain. In this study, we evaluate geochemical factors that influence anaerobic production of carbon dioxide (CO2) and methane (CH4) in the active layers of four ice-wedge polygons. Surface and soil pore waters were collected during the annual thaw season over a two-year period in an area containing waterlogged, low-centered polygons and well-drained, high-centered polygons. We report spatial and seasonal patterns ofmore » dissolved gases in relation to the geochemical properties of Fe and organic C as determined using spectroscopic and chromatographic techniques. Iron was present as Fe(II) in soil solution near the permafrost boundary but enriched as Fe(III) in the middle of the active layer, similar to dissolved aromatic-C and organic acids. Dissolved CH4 increased relative to dissolved CO2 with depth and varied with soil moisture in the middle of the active layer in patterns that were positively correlated with the proportion of dissolved Fe(III) in transitional and low-centered polygon soils but negatively correlated in the drier flat- and high-centered polygons. These results suggest that microbial-mediated Fe oxidation and reduction influence respiration/fermentation of SOM and production of substrates (e.g., low-molecular-weight organic acids) for methanogenesis. As a result, we infer that geochemical differences induced by water saturation dictate microbial products of SOM decomposition, and Fe geochemistry is an important factor regulating methanogenesis in anoxic tundra soils.« less

  16. Geochemical drivers of organic matter decomposition in Arctic tundra soils

    SciTech Connect

    Herndon, Elizabeth M.; Yang, Ziming; Graham, David E.; Wullschleger, Stan D.; Gu, Baohua; Liang, Liyuan; Bargar, John; Janot, Noemie; Regier, Tom Z.

    2015-12-07

    Climate change is warming tundra ecosystems in the Arctic, resulting in the decomposition of previously-frozen soil organic matter (SOM) and release of carbon (C) to the atmosphere; however, the processes that control SOM decomposition and C emissions remain highly uncertain. In this study, we evaluate geochemical factors that influence anaerobic production of carbon dioxide (CO2) and methane (CH4) in the active layers of four ice-wedge polygons. Surface and soil pore waters were collected during the annual thaw season over a two-year period in an area containing waterlogged, low-centered polygons and well-drained, high-centered polygons. We report spatial and seasonal patterns of dissolved gases in relation to the geochemical properties of Fe and organic C as determined using spectroscopic and chromatographic techniques. Iron was present as Fe(II) in soil solution near the permafrost boundary but enriched as Fe(III) in the middle of the active layer, similar to dissolved aromatic-C and organic acids. Dissolved CH4 increased relative to dissolved CO2 with depth and varied with soil moisture in the middle of the active layer in patterns that were positively correlated with the proportion of dissolved Fe(III) in transitional and low-centered polygon soils but negatively correlated in the drier flat- and high-centered polygons. These results suggest that microbial-mediated Fe oxidation and reduction influence respiration/fermentation of SOM and production of substrates (e.g., low-molecular-weight organic acids) for methanogenesis. As a result, we infer that geochemical differences induced by water saturation dictate microbial products of SOM decomposition, and Fe geochemistry is an important factor regulating methanogenesis in anoxic tundra soils.

  17. Contributions of organic and inorganic matter to sediment ...

    EPA Pesticide Factsheets

    A mixing model derived from first principles describes the bulk density (BD) of intertidal wetland sediments as a function of loss on ignition (LOI). The model assumes the bulk volume of sediment equates to the sum of self-packing volumes of organic and mineral components or BD = 1/[LOI/k1 + (1-LOI)/k2], where k1 and k2 are the self-packing densities of the pure organic and inorganic components, respectively. The model explained 78% of the variability in total BD when fitted to 5075 measurements drawn from 33 wetlands distributed around the conterminous United States. The values of k1 and k2 were estimated to be 0.085 ± 0.0007 g cm-3 and 1.99 ± 0.028 g cm-3, respectively. Based on the fitted organic density (k1) and constrained by primary production, the model suggests that the maximum steady state accretion arising from the sequestration of refractory organic matter is ≤ 0.3 cm yr-1. Thus, tidal peatlands are unlikely to survive indefinitely a higher rate of sea-level rise in the absence of a significant source of mineral sediment. Application of k2 to a mineral sediment load typical of East and eastern Gulf Coast estuaries gives a vertical accretion rate from inorganic sediment of 0.2 cm yr-1. Total steady state accretion is the sum of the parts and therefore should not be greater than 0.5 cm yr-1 under the assumptions of the model. Accretion rates could deviate from this value depending on variation in plant productivity, root:shoot ratio, suspended sedim

  18. Opposing effects of different soil organic matter fractions on crop yields.

    PubMed

    Wood, Stephen A; Sokol, Noah; Bell, Colin W; Bradford, Mark A; Naeem, Shahid; Wallenstein, Matthew D; Palm, Cheryl A

    2016-10-01

    Soil organic matter is critical to sustainable agriculture because it provides nutrients to crops as it decomposes and increases nutrient- and water-holding capacity when built up. Fast- and slow-cycling fractions of soil organic matter can have different impacts on crop production because fast-cycling fractions rapidly release nutrients for short-term plant growth and slow-cycling fractions bind nutrients that mineralize slowly and build up water-holding capacity. We explored the controls on these fractions in a tropical agroecosystem and their relationship to crop yields. We performed physical fractionation of soil organic matter from 48 farms and plots in western Kenya. We found that fast-cycling, particulate organic matter was positively related to crop yields, but did not have a strong effect, while slower-cycling, mineral-associated organic matter was negatively related to yields. Our finding that slower-cycling organic matter was negatively related to yield points to a need to revise the view that stabilization of organic matter positively impacts food security. Our results support a new paradigm that different soil organic matter fractions are controlled by different mechanisms, potentially leading to different relationships with management outcomes, like crop yield. Effectively managing soils for sustainable agriculture requires quantifying the effects of specific organic matter fractions on these outcomes.

  19. Partition of nonpolar organic pollutants from water to soil and sediment organic matters

    USGS Publications Warehouse

    Chiou, C.T.

    1995-01-01

    The partition coefficients (Koc) of carbon tetrachloride and 1,2-dichlorobenzene between normal soil/sediment organic matter and water have been determined for a large set of soils, bed sediments, and suspended solids from the United States and the People's Republic of China. The Koc values for both solutes are quite invariant either for the soils or for the bed sediments; the values on bed sediments are about twice those on soils. The similarity of Koc values between normal soils and between normal bed sediments suggests that natural organic matters in soils (or sediments) of different geographic origins exhibit comparable polarities and possibly comparable compositions. The results also suggest that the process that converts eroded soils into bed sediments brings about a change in the organic matter property. The difference between soil and sediment Koc values provides a basis for identifying the source of suspended solids in river waters. The very high Koc values observed for some special soils and sediments are diagnostic of severe anthropogenic contamination.

  20. [Effects of dissolved organic matter on phenanthrene adsorption by soil].

    PubMed

    Xiong, Wei; Ling, Wan-ting; Gao, Yan-zheng; Li, Qiu-ling; Dai, Jing-yu

    2007-02-01

    This paper studied the effects of exotic and native dissolved organic matter (DOM) on the phenanthrene adsorption by three soils differed in soil organic carbon content (foc). The exotic DOM came from decayed rice straw, while the native DOM was extracted from the test soils. In all cases, the adsorption of phenanthrene by treated soils could be well described with linear-type model, and there was a positive correlation between adsorption coefficient (Kd) and foc Compared with the control, the Kd value of test soils after native DOM removed was increased by 7. 08% -21. 4% , and the increment (deltaKd) was positively correlated with fo,, indicating that the presence of soil native DOM impeded the phenanthrene adsorption by soil. The effects of exotic DOM on phenanthrene adsorption had a close relation with its added concentration in soil-water system. Within the range of 0-106 mg DOC x L(-1) , the K, value increased first, and then decreased with the increase of added exotic DOM concentration. Lower concentrations of added exotic DOM promoted the phenanthrene adsorption by soil, while higher concentrations ( I> or =52 mg DOC x L(-1)) of it obviously impeded this adsorption. These effects of exotic and native DOM on soil phenanthrene adsorption were considered to be related to the association of phenanthrene with DOM in solution, and the ' cumulative adsorption effect' between soil solid and aqueous phases.

  1. Effects of agricultural practices on organic matter degradation in ditches

    PubMed Central

    Hunting, Ellard R.; Vonk, J. Arie; Musters, C.J.M.; Kraak, Michiel H.S.; Vijver, Martina G.

    2016-01-01

    Agricultural practices can result in differences in organic matter (OM) and agricultural chemical inputs in adjacent ditches, but its indirect effects on OM composition and its inherent consequences for ecosystem functioning remain uncertain. This study determined the effect of agricultural practices (dairy farm grasslands and hyacinth bulb fields) on OM degradation by microorganisms and invertebrates with a consumption and food preference experiment in the field and in the laboratory using natural OM collected from the field. Freshly cut grass and hyacinths were also offered to control for OM composition and large- and small mesh-sizes were used to distinguish microbial decomposition and invertebrate consumption. Results show that OM decomposition by microorganisms and consumption by invertebrates was similar throughout the study area, but that OM collected from ditches adjacent grasslands and freshly cut grass and hyacinths were preferred over OM collected from ditches adjacent to a hyacinth bulb field. In the case of OM collected from ditches adjacent hyacinth bulb fields, both microbial decomposition and invertebrate consumption were strongly retarded, likely resulting from sorption and accumulation of pesticides. This outcome illustrates that differences in agricultural practices can, in addition to direct detrimental effects on aquatic organisms, indirectly alter the functioning of adjacent aquatic ecosystems. PMID:26892243

  2. Effects of agricultural practices on organic matter degradation in ditches

    NASA Astrophysics Data System (ADS)

    Hunting, Ellard R.; Vonk, J. Arie; Musters, C. J. M.; Kraak, Michiel H. S.; Vijver, Martina G.

    2016-02-01

    Agricultural practices can result in differences in organic matter (OM) and agricultural chemical inputs in adjacent ditches, but its indirect effects on OM composition and its inherent consequences for ecosystem functioning remain uncertain. This study determined the effect of agricultural practices (dairy farm grasslands and hyacinth bulb fields) on OM degradation by microorganisms and invertebrates with a consumption and food preference experiment in the field and in the laboratory using natural OM collected from the field. Freshly cut grass and hyacinths were also offered to control for OM composition and large- and small mesh-sizes were used to distinguish microbial decomposition and invertebrate consumption. Results show that OM decomposition by microorganisms and consumption by invertebrates was similar throughout the study area, but that OM collected from ditches adjacent grasslands and freshly cut grass and hyacinths were preferred over OM collected from ditches adjacent to a hyacinth bulb field. In the case of OM collected from ditches adjacent hyacinth bulb fields, both microbial decomposition and invertebrate consumption were strongly retarded, likely resulting from sorption and accumulation of pesticides. This outcome illustrates that differences in agricultural practices can, in addition to direct detrimental effects on aquatic organisms, indirectly alter the functioning of adjacent aquatic ecosystems.

  3. Mineral surface-organic matter interactions: basics and applications

    NASA Astrophysics Data System (ADS)

    Valdrè, G.; Moro, D.; Ulian, G.

    2012-03-01

    The ability to control the binding of biological and organic molecules to a crystal surface is central in several fields; for example, in biotechnology, catalysis, molecular microarrays, biosensors preparation and environmental sciences. The nano-morphology and nanostructure at the surface may have physico-chemical properties that are very different from those of the underlying mineral substrate. Recent developments in scanning probe microscopy (SPM) have widened the spectrum of possible investigations that can be performed at the nanometric level on the surface of minerals. They range from the study of physical properties such as surface potential, electric field topological determination, Brønsted-Lowry site distributions, to chemical and spectroscopic analysis in air, in liquid or in gaseous environments. After an introduction to SPM modes of operation and new SPM-based technological developments, we will present recent examples of applications in the study of interactions between organic matter and mineral surface and report on the advances in knowledge that have been made by the use of scanning probe microscopy.

  4. Role of dissolved organic matter in ice photochemistry.

    PubMed

    Grannas, Amanda M; Pagano, Lisa P; Pierce, Brittany C; Bobby, Rachel; Fede, Alexis

    2014-09-16

    In this study, we provide evidence that dissolved organic matter (DOM) plays an important role in indirect photolysis processes in ice, producing reactive oxygen species (ROS) and leading to the efficient photodegradation of a probe hydrophobic organic pollutant, aldrin. Rates of DOM-mediated aldrin loss are between 2 and 56 times faster in ice than in liquid water (depending on DOM source and concentration), likely due to a freeze-concentration effect that occurs when the water freezes, providing a mechanism to concentrate reactive components into smaller, liquid-like regions within or on the ice. Rates of DOM-mediated aldrin loss are also temperature dependent, with higher rates of loss as temperature decreases. This also illustrates the importance of the freeze-concentration effect in altering reaction kinetics for processes occurring in environmental ices. All DOM source types studied were able to mediate aldrin loss, including commercially available fulvic and humic acids and an authentic Arctic snow DOM sample isolated by solid phase extraction, indicating the ubiquity of DOM in indirect photochemistry in environmental ices.

  5. Examining the association of DDX compounds to sedimentary organic matter

    NASA Astrophysics Data System (ADS)

    Weathers, N.; Rowlett, K.; Geng, Z.; Morrison, A.; White, H. K.

    2016-02-01

    The association of hydrophobic organic contaminants (HOCs) with sedimentary organic matter (OM) influences their mobility and bioavailability in the environment. Determining whether these associations result from mechanisms such as sorption, chemical binding or encapsulation is critical for predicting their long-term fate. The pesticide DDT (dichlorodiphenyltrichloroethane) has been previously observed to form bound residues with sedimentary OM although the mechanisms of this association are yet to be fully explored. DDT, which was sprayed ubiquitously in the 1950s and early 1960s, can still be found in the environment today along with its three major metabolites, DDE, DDD and DDMU (collectively known as DDX compounds), and therefore presents a unique opportunity to further explore its long-term associations with OM. To this end, a sediment core from a salt marsh in Dover, Delaware known to contain DDX compounds was collected. A maximum concentration of DDX compounds was found at sediment depths corresponding to the time of the widespread usage of DDT. An initial solvent extraction with toluene provided data on the loosely associated DDX fraction followed by subsequent treatments with sulfuric acid and saponification to release DDX that was encapsulated or bound to the sedimentary matrix. Determining the physical disposition of DDX compounds that persist in sediments for several decades is integral to determining the extent to which they are mobile, bioavailable or sequestered in the marsh.

  6. Quenching of excited triplet states by dissolved natural organic matter.

    PubMed

    Wenk, Jannis; Eustis, Soren N; McNeill, Kristopher; Canonica, Silvio

    2013-11-19

    Excited triplet states of aromatic ketones and quinones are used as proxies to assess the reactivity of excited triplet states of the dissolved organic matter ((3)DOM*) in natural waters. (3)DOM* are crucial transients in environmental photochemistry responsible for contaminant transformation, production of reactive oxygen species, and potentially photobleaching of DOM. In recent photochemical studies aimed at clarifying the role of DOM as an inhibitor of triplet-induced oxidations of organic contaminants, aromatic ketones have been used in the presence of DOM, and the question of a possible interaction between their excited triplet states and DOM has emerged. To clarify this issue, time-resolved laser spectroscopy was applied to measure the excited triplet state quenching of four different model triplet photosensitizers induced by a suite of DOM from various aquatic and terrestrial sources. While no quenching for the anionic triplet sensitizers 4-carboxybenzophenone (CBBP) and 9,10-anthraquinone-2,6-disulfonic acid (2,6-AQDS) was detected, second-order quenching rate constants with DOM for the triplets of 2-acetonaphthone (2AN) and 3-methoxyacetophenone (3MAP) in the range of 1.30-3.85 × 10(7) L mol(C)(-1) s(-1) were determined. On the basis of the average molecular weight of DOM molecules, the quenching for these uncharged excited triplet molecules is nearly diffusion-controlled, but significant quenching (>10%) in aerated water is not expected to occur below DOM concentrations of 22-72 mg(C) L(-1).

  7. Global effects of agriculture on fluvial dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Graeber, Daniel; Boëchat, Iola G.; Encina-Montoya, Francisco; Esse, Carlos; Gelbrecht, Jörg; Goyenola, Guillermo; Gücker, Björn; Heinz, Marlen; Kronvang, Brian; Meerhoff, Mariana; Nimptsch, Jorge; Pusch, Martin T.; Silva, Ricky C. S.; von Schiller, Daniel; Zwirnmann, Elke

    2015-11-01

    Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing.

  8. Contaminant-mediated photobleaching of wetland chromophoric dissolved organic matter.

    PubMed

    Langlois, Maureen C; Weavers, Linda K; Chin, Yu-Ping

    2014-09-20

    Photolytic transformation of organic contaminants in wetlands can be mediated by chromophoric dissolved organic matter (CDOM), which in turn can lose its reactivity from photobleaching. We collected water from a small agricultural wetland (Ohio), Kawai Nui Marsh (Hawaii), the Everglades (Florida), and Okefenokee Swamp (Georgia) to assess the effect of photobleaching on the photofate of two herbicides, acetochlor and isoproturon. Analyte-spiked water samples were irradiated using a solar simulator and monitored for changes in CDOM light absorbance and dissolved oxygen. Photobleaching did not significantly impact the indirect photolysis rates of either herbicide over 24 hours of irradiation. Surprisingly, the opposite effect was observed with isoproturon, which accelerated DOM photobleaching. This phenomenon was more pronounced in higher-CDOM waters, and we believe that the redox pathway between triplet-state CDOM and isoproturon may be responsible for our observations. By contrast, acetochlor indirect photolysis was dependent on reaction with the hydroxyl radical and did not accelerate photobleaching of wetland water as much as isoproturon. Finally, herbicide indirect photolysis rate constants did not correlate strongly to any one chemical or optical property of the sampled waters.

  9. Global effects of agriculture on fluvial dissolved organic matter.

    PubMed

    Graeber, Daniel; Boëchat, Iola G; Encina-Montoya, Francisco; Esse, Carlos; Gelbrecht, Jörg; Goyenola, Guillermo; Gücker, Björn; Heinz, Marlen; Kronvang, Brian; Meerhoff, Mariana; Nimptsch, Jorge; Pusch, Martin T; Silva, Ricky C S; von Schiller, Daniel; Zwirnmann, Elke

    2015-11-06

    Agricultural land covers approximately 40% of Earth's land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing.

  10. Global effects of agriculture on fluvial dissolved organic matter

    PubMed Central

    Graeber, Daniel; Boëchat, Iola G.; Encina-Montoya, Francisco; Esse, Carlos; Gelbrecht, Jörg; Goyenola, Guillermo; Gücker, Björn; Heinz, Marlen; Kronvang, Brian; Meerhoff, Mariana; Nimptsch, Jorge; Pusch, Martin T.; Silva, Ricky C. S.; von Schiller, Daniel; Zwirnmann, Elke

    2015-01-01

    Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing. PMID:26541809

  11. Chromophoric dissolved organic matter export from U.S. rivers

    USGS Publications Warehouse

    Spencer, Robert G. M.; Aiken, George R.; Dornblaser, Mark M.; Butler, Kenna D.; Holmes, R. Max; Fiske, Greg; Mann, Paul J.; Stubbins, Aron

    2013-01-01

    Chromophoric dissolved organic matter (CDOM) fluxes and yields from 15 major U.S. rivers draining an assortment of terrestrial biomes are presented. A robust relationship between CDOM and dissolved organic carbon (DOC) loads is established (e.g., a350 versus DOC; r2 = 0.96, p < 0.001). Calculated CDOM yields are also correlated to watershed percent wetland (e.g. a350; r2 = 0.81, p < 0.001) providing a method for the estimation of CDOM export from ungauged watersheds. A large variation in CDOM yields was found across the rivers. The two rivers in the north-eastern U.S. (Androscoggin and Penobscot), the Edisto draining into the South Atlantic Bight, and some rivers draining into the Gulf of Mexico (Atchafalaya and Mobile) exhibit the highest CDOM yields, linked to extensive wetlands in these watersheds. If the Edisto CDOM yield is representative of other rivers draining into the South Atlantic Bight, this would result in a CDOM load equivalent to that of the Mississippi from a region of approximately 10% of the Mississippi watershed, indicating the importance of certain regions with respect to the role of terrigenous CDOM in ocean color budgets.

  12. Hydrology controls dissolved organic matter (DOM) quality and dynamics

    NASA Astrophysics Data System (ADS)

    Fasching, Christina; Schelker, Jakob; Ulseth, Amber; Singer, Gabriel; Steniczka, Gertraud; Battin, Tom

    2014-05-01

    Headwater streams are major contributors to carbon cycling. It is therefore of utmost importance to understand the dynamics of dissolved organic matter (DOM) and its drivers in these ecosystems. Here we present data from more than 4,000 individual DOM measurements from Oberer Seebach, a 3rd-order stream draining a largely pristine alpine catchment (Lunz am See, Austria). We determined the concentration of streamwater and hyporheic dissolved organic carbon and a suite of optical properties of DOM based on a diurnal sampling design over almost three years; we also monitored various hydrological and climate parameters over that same time. Optical properties were determined from absorbance measurements and parallel factor analysis (PARAFAC) modelling of Excitation emission matrices. We also estimated DOM export fluxes from Oberer Seebach and the contributions of the various chromophoric and fluorescent components to these exports. Preliminary results suggest that DOM in Oberer Seebach was largely of terrigenous origin throughout the year. However during periods of low discharge autochthonous DOM export increased, indicating freshly produced DOM possibly from benthic algae. Hyphoreic and streamwater DOM composition and its dynamics were tightly coupled in time at baseflow, yet displaying higher variability as discharge increased. Our timeseries studies highlight the relevance of the flow regime on the dynamics, origin and composition of DOM in a headwater stream. We discuss these findings in the context of extreme hydrological events on carbon fluxes.

  13. Do Long-Term Changes in Organic Matter Inputs to Forest Soils Affect Dissolved Organic Matter Chemistry and Export?

    NASA Astrophysics Data System (ADS)

    Lajtha, K.; Strid, A.; Lee, B. S.

    2014-12-01

    Dissolved organic matter (DOM) production and transport play an important role in regulating organic matter (OM) distribution through a soil profile and ultimately, OM stabilization or export to aquatic systems. The contributions of varying OM inputs to the quality and amount of DOM as it passes through a soil profile remain relatively unknown. The Detrital Input and Removal Treatment (DIRT) site at the H. J. Andrews Experimental Forest in Oregon has undergone 17 years of litter, wood and root input manipulations and allows us to guage shifts in DOM chemistry induced by long-term changes to aboveground and belowground OM additions and exclusions. Using fluorescence and UV spectroscopy to characterize fluorescent properties, extent of decomposition, and sources of DOM in streams and soil solutions collected with lysimeters and soil extractions, we have assessed the importance of fresh OM inputs to DOM chemistry. Soil extracts from DIRT plots had a higher fluorescence index (FI) than lysimeter solutions or stream water. A high FI in surface water is generally interpreted as indicative of a high proportion of microbially-derived DOM. However, we suspect that the high FI in soil extracts is due to a higher proportion of non-aromatic DOM from fresh soil that microorganisms consume in transit through the soil profile to lysimeters or to streams. High redox index (RI) values were observed in lysimeters from the April 2014 sampling compared with the November 2013 sampling. These RI values show evidence of more reducing conditions at the end of the rainy season in the spring compared to the onset of the rainy season in the fall. Lysimeter water collected in No Input, No Litter, and No Root treatments contained high proportions of protein, suggesting the absence of carbon inputs changes activities of the microbial community. Observed variations reflect the viability of using fluorescent properties to explore the terrestrial-aquatic interface.

  14. Organic matter in the ancient Alpine Tethyan Ocean Continental Transition

    NASA Astrophysics Data System (ADS)

    Mateeva, Tsvetomila; Wolff, George; Kusznir, Nick; Wheeler, John; Manataschal, Gianreto

    2016-04-01

    Studies of hydrothermal vents in modern ocean settings suggest that methane produced by serpentinization can support methanotrophic bio-systems. Are such bio-systems locally restricted to hydrothermal vents or are more pervasive, being linked with the geology of serpentinized mantle in the subsurface? Answering this question has implications for our understanding of the global importance of hidden sub-surface bio-systems, the fate of methane and the carbon cycle. The ocean-continent transition (OCT) of magma-poor rifted continental margins, exhumed within mountain belts by continent collision, provides an opportunity to investigate this question. Initial data from the Totalp unit in the Eastern Swiss Alps, representing exhumed OCT of the Alpine Tethyan rifted continental margin, shows the presence of various hydrocarbons (Mateeva et al., in prep.). Samples from other Tethyan OCT locations, consisting of the Tasna nappe and Platta unit of the Eastern Swiss Alps and Chenaillet in the Western Alps, have also been analysed to investigate the presence or absence of methanotrophic biosystems within serpentinized exhumed mantle and associated ophicalcite and syn-rift sediments. Samples from these remnant Tethyan OCT locations are characterized by low and varied organic carbon concentrations that reflect the large lithological diversity of this area. The samples contain hydrocarbons in the form of n-alkanes mostly in the range C20 - C32, polynuclear aromatic hydrocarbons (PAHs) and various biomarkers (e.g. steranes, hopanes). A typical sample from the hydrothermal system in Platta shows the lithological characteristics of a black smoker, but with no indication of a more developed biosystem. Preliminary results from the examined Tethyan OCT locations (Tasna, Platta, Chenaillet) show evidence for the preservation of marine organic matter in the serpentinized mantle and overlying sediments, although there is no unequivocal indication that the organic matter is generated from

  15. Natural Organic Matter and the Event Horizon of Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hertkorn, N.; Frommberger, M.; Witt, M.; Koch, B. P.; Schmitt-Kopplin, P.; Perdue, E. M.

    2009-05-01

    Soils, sediments, freshwaters and marine waters contain natural organic matter (NOM) - an exceedingly complex mixture of organic compounds that collectively exhibit a nearly continuous range of properties (size- reactivity continuum). NOM is composed mainly of carbon, hydrogen and oxygen, with minor contributions from heteroatoms such as sulphur and phosphorus. Suwannee River fulvic acid (SuwFA) is a fraction of NOM that is relatively depleted in heteroatoms. Ultrahigh resolution Fourier transform ion cyclotron (FTICR) mass spectra of SuwFA reveal several thousand molecular formulae, corresponding in turn to several hundred thousand distinct chemical environments of carbon even without accountancy of isomers. The mass difference m among adjoining C,H,O-molecules between and within clusters of nominal mass is inversely related to molecular dissimilarity: any decrease of m imposes an ever growing mandatory difference in molecular composition. Molecular formulae that are expected for likely biochemical precursor molecules are notably absent from these spectra, indicating that SuwFA is the product of diagenetic reactions that have altered the major components of biomass beyond the point of recognition. The degree of complexity of SuwFA can be brought into sharp focus through comparison with the theoretical limits of chemical complexity, as constrained and quantized by the fundamentals of chemical binding. The theoretical C,H,O-compositional space denotes the isomer-filtered complement of the entire, very vast space of molecular structures composed solely of carbon, hydrogen and oxygen. The molecular formulae within SuwFA occupy a sizable proportion of the theoretical C,H,O-compositional space. A one-hundred percent coverage of the theoretically feasible C,H,O-compositional space by SuwFA molecules is attained throughout a sizable range of mass, H/C and O/C elemental ratios. The substantial differences between (and complementarity of) the SuwFA molecular formulae that

  16. Key soil functional properties affected by soil organic matter - evidence from published literature

    NASA Astrophysics Data System (ADS)

    Murphy, Brian

    2015-07-01

    The effect of varying the amount of soil organic matter on a range of individual soil properties was investigated using a literature search of published information largely from Australia, but also included relevant information from overseas. Based on published pedotransfer functions, soil organic matter was shown to increase plant available water by 2 to 3 mm per 10 cm for each 1% increase in soil organic carbon, with the largest increases being associated with sandy soils. Aggregate stability increased with increasing soil organic carbon, with aggregate stability decreasing rapidly when soil organic carbon fell below 1.2 to 1.5 5%. Soil compactibility, friability and soil erodibility were favourably improved by increasing the levels of soil organic carbon. Nutrient cycling was a major function of soil organic matter. Substantial amounts of N, P and S become available to plants when the soil organic matter is mineralised. Soil organic matter also provides a food source for the microorganisms involved in the nutrient cycling of N, P, S and K. In soils with lower clay contents, and less active clays such as kaolinites, soil organic matter can supply a significant amount of the cation exchange capacity and buffering capacity against acidification. Soil organic matter can have a cation exchange capacity of 172 to 297 cmol(+)/kg. As the cation exchange capacity of soil organic matter varies with pH, the effectiveness of soil organic matter to contribute to cation exchange capacity below pH 5.5 is often minimal. Overall soil organic matter has the potential to affect a range of functional soil properties.

  17. The flux of organic matter through a peatland ecosystem - evidence from thermogravimetric analysis

    NASA Astrophysics Data System (ADS)

    Worrall, Fred; Moody, Catherine; Clay, Gareth

    2016-04-01

    Carbon budgets of peatlands are now common and studies have considered nitrogen, oxygen and energy budgets, but no study has considered the whole composition of the organic matter as it transfers through and into a peatland. Organic matter samples were taken from each organic matter reservoir found in and each fluvial flux from a peatland and analysed the samples by thermogravimetric analysis. The samples analysed were: aboveground, belowground, heather, mosses and sedges, litter layer, a peat core, and monthly samples of particulate and dissolved organic matter. All organic matter samples were taken from a 100% peat catchment within Moor House National Nature Reserve in the North Pennines, UK, and collected samples were compared to standards of lignin, cellulose, humic acid and plant protein. Results showed that the thermogravimetric trace of the sampled organic matter were distinctive with the DOM traces being marked out by very low thermal stability relative other organic matter types. The peat profile shows a significant trend with depth from vegetation- to lignin-like composition. When all traces are weighted according to the observed dry matter and carbon budgets for the catchment then it is possible to judge what has been lost in the transition through and into the ecosystem. By plotting this "lost" trace it possible to assess its composition which is either 97% cellulose and 3% humic acid or 92% and 8% lignin. This has important implications for what controls the organic matter balance of peatlands and it suggests that the oxidation state (OR) of peatland is less than 1.

  18. Dynamics of soil organic matter pools after agricultural abandonment

    NASA Astrophysics Data System (ADS)

    Novara, Agata; Gristina, Luciano; Rühl Rühl, Juliane; La Mantia, Tommaso; Badalucco, Luigi; Kuzyakov, Yakov; Laudicina, Vito Armando

    2014-05-01

    Changes of land use from croplands to natural vegetation usually increase Carbon (C) stocks in soil. However, the contribution of old and new C to various pools still is not clearly analyzed. We measured the δ13C signature of soil organic carbon (SOC) pools after vegetation change from vineyard (C3) to grassland (C4) under Mediterranean climate to assess the changes of old and new C in total SOC, microbial biomass (MB), dissolved organic C (DOC), and CO2 efflux from soil. Development of the perennial grass Hyparrhenia hirta (C4) on vineyard abandoned for 15 or 35 years ago increased C stocks for 13% and 16%, respectively (in the upper 15 cm). This increase was linked to the incorporation of new C in SOC and with exchange of 25% of old C by new C after 35 years. The maximal incorporation of new C was observed in MB, thus reflecting the maximal turnover and availability of this pool. The DOC was produced mainly from old C of soil organic matter (SOM), showing that under Mediterranean climate DOC will be mainly produced not from fresh litter but from old SOM sources. Decomposition of SOM during a 51 days laboratory incubation was higher in cultivated vineyard than H. hirta soils. Based on changes in δ13C values of SOM, MB, DOC and CO2 in C3 soil and in soils after 15 and 35 years of C4 plant colonization, we separated 13C fractionation in soil from changes of isotopic composition by preferential utilization of substrates with different availability. The utilization pattern in this soil under Mediterranean climate was different from that in temperate ecosystems.

  19. Vehicular emissions of organic particulate matter in Sao Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Oyama, B. S.; Andrade, M. F.; Herckes, P.; Dusek, U.; Röckmann, T.; Holzinger, R.

    2015-12-01

    Vehicular emissions have a strong impact on air pollution in big cities. Many factors affect these emissions: type of vehicle, type of fuel, cruising velocity, and brake use. This study focused on emissions of organic compounds by Light (LDV) and Heavy (HDV) duty vehicle exhaust. The study was performed in the city of Sao Paulo, Brazil, where vehicles run on different fuels: gasoline with 25 % ethanol (called gasohol), hydrated ethanol, and diesel (with 5 % of biodiesel). The vehicular emissions are an important source of pollutants and the principal contribution to fine particulate matter (smaller than 2.5 μm, PM2.5) in Sao Paulo. The experiments were performed in two tunnels: Janio Quadros (TJQ) where 99 % of the vehicles are LDV, and Rodoanel Mario Covas (TRA) where up to 30 % of the fleet was HDV. The PM2.5 samples were collected on quartz filters in May and July 2011 at TJQ and TRA, respectively, using two samplers operating in parallel. The samples were analyzed by Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometry (TD-PTR-MS), and by Thermal-Optical Transmittance (TOT). The organic aerosol (OA) desorbed at TD-PTR-MS represented around 30 % of the OA estimated by the TOT method, mainly due to the different desorption temperatures, with a maximum of 870 and 350 °C for TOT and TD-PTR-MS, respectively. Average emission factors (EF) organic aerosol (OA) and organic carbon (OC) were calculated for HDV and LDV fleet. We found that HDV emitted more OA and OC than LDV, and that OC emissions represented 36 and 43 % of total PM2.5 emissions from LDV and HDV, respectively. More than 700 ions were identified by TD-PTR-MS and the EF profiles obtained from HDV and LDV exhibited distinct features. Nitrogen-containing compounds measured in the desorbed material up to 350 °C contributed around 20 % to the EF values for both types of vehicles, possibly associated with incomplete fuel burning. Additionally, 70 % of the organic compounds measured from the aerosol

  20. Chemical composition of dissolved organic matter draining permafrost soils

    NASA Astrophysics Data System (ADS)

    Ward, Collin P.; Cory, Rose M.

    2015-10-01

    Northern circumpolar permafrost soils contain roughly twice the amount of carbon stored in the atmosphere today, but the majority of this soil organic carbon is perennially frozen. Climate warming in the arctic is thawing permafrost soils and mobilizing previously frozen dissolved organic matter (DOM) from deeper soil layers to nearby surface waters. Previous studies have reported that ancient DOM draining deeper layers of permafrost soils was more susceptible to degradation by aquatic bacteria compared to modern DOM draining the shallow active layer of permafrost soils, and have suggested that DOM chemical composition may be an important control for the lability of DOM to bacterial degradation. However, the compositional features that distinguish DOM drained from different depths in permafrost soils are poorly characterized. Thus, the objective of this study was to characterize the chemical composition of DOM drained from different depths in permafrost soils, and relate these compositional differences to its susceptibility to biological degradation. DOM was leached from the shallow organic mat and the deeper permafrost layer of soils within the Imnavait Creek watershed on the North Slope of Alaska. DOM draining both soil layers was characterized in triplicate by coupling ultra-high resolution mass spectrometry, 13C solid-state NMR, and optical spectroscopy methods with multi-variate statistical analyses. Reproducibility of replicate mass spectra was high, and compositional differences resulting from interfering species or isolation effects were significantly smaller than differences between DOM drained from each soil layer. All analyses indicated that DOM leached from the shallower organic mat contained higher molecular weight, more oxidized, and more unsaturated aromatic species compared to DOM leached from the deeper permafrost layer. Bacterial production rates and bacterial efficiencies were significantly higher for permafrost compared to organic mat DOM

  1. Recording of climate and diagenesis through sedimentary DNA and fossil pigments at Laguna Potrok Aike, Argentina

    NASA Astrophysics Data System (ADS)

    Vuillemin, Aurèle; Ariztegui, Daniel; Leavitt, Peter R.; Bunting, Lynda; The Pasado Science Team

    2016-04-01

    Aquatic sediments record past climatic conditions while providing a wide range of ecological niches for microorganisms. In theory, benthic microbial community composition should depend on environmental features and geochemical conditions of surrounding sediments, as well as ontogeny of the subsurface environment as sediment degraded. In principle, DNA in sediments should be composed of ancient and extant microbial elements persisting at different degrees of preservation, although to date few studies have quantified the relative influence of each factor in regulating final composition of total sedimentary DNA assemblage. Here geomicrobiological and phylogenetic analyses of a Patagonian maar lake were used to indicate that the different sedimentary microbial assemblages derive from specific lacustrine regimes during defined climatic periods. Two climatic intervals (Mid-Holocene, 5 ka BP; Last Glacial Maximum, 25 ka BP) whose sediments harbored active microbial populations were sampled for a comparative environmental study based on fossil pigments and 16S rRNA gene sequences. The genetic assemblage recovered from the Holocene record revealed a microbial community displaying metabolic complementarities that allowed prolonged degradation of organic matter to methane. The series of Archaea identified throughout the Holocene record indicated an age-related stratification of these populations brought on by environmental selection during early diagenesis. These characteristics were associated with sediments resulting from endorheic lake conditions and stable pelagic regime, high evaporative stress and concomitant high algal productivity. In contrast, sulphate-reducing bacteria and lithotrophic Archaea were predominant in sediments dated from the Last Glacial Maximum, in which pelagic clays alternated with fine volcanic material characteristic of a lake level highstand and freshwater conditions, but reduced water column productivity. Comparison of sedimentary DNA composition

  2. Electron Shuttling Capacity of Solid-Phase Organic Matter in Forest Soils

    NASA Astrophysics Data System (ADS)

    Patel, A.; Zhao, Q.; Yang, Y.

    2015-12-01

    Soil organic matter, as an electron shuttle, plays an important role in regulating the biogeochemical cycles of metals, especially the redox reactions for iron. Microorganisms can reduce soil organic matter under anaerobic conditions, and biotically-reduced soil organic matter can abiotically donate electrons to ferric oxides. Such soil organic matter-mediated electron transport can facilitate the interactions between microorganisms and insoluble terminal electron acceptors, i.e. iron minerals. Most previous studies have been focused on the electron shuttling processes through dissolved soil organic matter, and scant information is available for solid-phase soil organic matter. In this study, we aim to quantify the electron accepting capacity for solid-phase organic matter in soils collected from four different forests in the United States, including Truckee (CA), Little Valley (NV), Howland (ME) and Hart (MI). We used Shewanella oneidensisMR-1 to biotically reduce soil slurries, and then quantified the electrons transferred to solid-phase and solution-phase organic matter by reacting them with Fe(III)-nitrilotriacetic acid (Fe(III)-NTA). The generation of Fe(II) was measured by a ferrozine assay to calculate the electron accepting capacity of soil organic matter. Our preliminary results showed that the Truckee soil organic matter can accept 0.51±0.07 mM e-/mol carbon. We will measure the electron accepting capacity for four different soils and correlate them to the physicochemical properties of soils. Potential results will provide information about the electron accepting capacity of solid-phase soil organic matter and its governing factors, with broad implication on the coupled biogeochemical cycles of carbon and iron.

  3. [Retrieval of forest topsoil organic matter's spatial pattern based on LiDAR data].

    PubMed

    Li, Chao; Liu, Zhao-Gang; Yue, Shu-Feng; Li, Feng-Ri; Dong, Ling-Bo; Bi, Meng

    2012-09-01

    Forest soil is one of the main carbon pools in terrestrial ecosystem. Its organic matter content can provide basic information for estimating soil carbon storage, and also, is an important index for evaluating the function of soil carbon sink. Based on the LiDAR data and the topsoil organic matter contents in 55 permanent plots at Liangshui National Nature Reserve, Heilongjiang Province of Northeast China in August 2009, and by using partial least squares (PLS) method, this paper retrieved the forest topsoil organic matter's spatial pattern in the Reserve, extracted and screened the variables related to the distribution of the topsoil organic matter (e. g. , intensity, counts, elevation, slope, and aspect), and analyzed and defined the correlations between the screened variables and topsoil organic matter content, with the prediction model of forest soil organic matter content established and validated. In the Reserve, the forest topsoil organic matter content was significantly and positively correlated with three variables (intensity, r = 0.765; counts, r = 0.423; and elevation r = 0.475; all P<0.001). The model prediction on the topsoil organic matter content was reliable (precision = 83.3%, R2 = 0.725, RMSE = 1.955 ). In the areas of forest edge and of low canopy stands, the topsoil organic matter content was less than 100 g x kg(-1). The majority of the study area had a topsoil organic matter content of 100-150 g x kg(-1), while a few areas had the topsoil organic matter content as high as 150-318.4 g x kg(-1).

  4. Stabilization of ancient organic matter in deep buried paleosols

    NASA Astrophysics Data System (ADS)

    Marin-Spiotta, E.; Chaopricha, N. T.; Mueller, C.; Diefendorf, A. F.; Plante, A. F.; Grandy, S.; Mason, J. A.

    2012-12-01

    Buried soils representing ancient surface horizons can contain large organic carbon reservoirs that may interact with the atmosphere if exposed by erosion, road construction, or strip mining. Paleosols in long-term depositional sites provide a unique opportunity for studying the importance of different mechanisms on the persistence of organic matter (OM) over millennial time-scales. We report on the chemistry and bioavailability of OM stored in the Brady soil, a deeply buried (7 m) paleosol in loess deposits of southwestern Nebraska, USA. The Brady Soil developed 9,000-13,500 years ago during a time of warming and drying. The Brady soil represents a dark brown horizon enriched in C relative to loess immediately above and below. Spanning much of the central Great Plains, this buried soil contains large C stocks due to the thickness of its A horizon (0.5 to 1 m) and wide geographic extent. Our research provides a unique perspective on long-term OM stabilization in deep soils using multiple analytical approaches. Soils were collected from the Brady soil A horizon (at 7 m depth) and modern surface A horizons (0-15 cm) at two sites for comparison. Soils were separated by density fractionation using 1.85 g ml-1 sodium polytungstate into: free particulate organic matter (fPOM) and aggregate-occluded (oPOM) of two size classes (large: >20 μm, and small: < 20 μm). The remaining dense fraction was separated into sand, silt, and clay size fractions. The distribution and age of C among density and particle-size fractions differed between surface and Brady soils. We isolated the source of the characteristic dark coloring of the Brady soil to the oPOM-small fraction, which also contained 20% of the total organic C pool in the Brady soil. The oPOM-small fraction and the bulk soil in the middle of the Brady A horizon had 14C ages of 10,500-12,400 cal yr BP, within the time that the soil was actively forming at the land surface. Surface soils showed modern ages. Lipid analyses of

  5. Do aggregate stability and soil organic matter content increase following organic inputs?

    NASA Astrophysics Data System (ADS)

    Lehtinen, Taru; Gísladóttir, Guðrún; van Leeuwen, Jeroen P.; Bloem, Jaap; Steffens, Markus; Vala Ragnarsdóttir, Kristin

    2014-05-01

    Agriculture is facing several challenges such as loss of soil organic matter (SOM); thus, sustainable farming management practices are needed. Organic farming is growing as an alternative to conventional farming; in Iceland approximately 1% and in Austria 16% of utilized agricultural area is under organic farming practice. We analyzed the effect of different farming practices (organic, and conventional) on soil physicochemical and microbiological properties in grassland soils in Iceland and cropland soils in Austria. Organic farms differed from conventional farms by absence of chemical fertilizers and pesticide use. At these farms, we investigated soil physicochemical (e.g. soil texture, pH, CAL-extractable P and K) and microbiological properties (fungal and bacterial biomass and activity). The effects of farming practices on soil macroaggregate stability and SOM quantity, quality and distribution between different fractions were studied following a density fractionation. In Iceland, we sampled six grassland sites on Brown (BA) and Histic (HA) Andosols; two sites on extensively managed grasslands, two sites under organic and two sites under conventional farming practice. In Austria, we sampled four cropland sites on Haplic Chernozems; two sites under organic and two sites under conventional farming practice. We found significantly higher macroaggregate stability in the organic compared to the conventional grasslands in Iceland. In contrast, slightly higher macroaggregation in conventional compared to the organic farming practice was found in croplands in Austria, although the difference was not significant. Macroaggregates were positively correlated with fungal biomass in Iceland, and with Feo and fungal activity in Austria. In Austria, SOM content and nutrient status (except for lower CAL-extractable P at one site) were similar between organic and conventional farms. Our results show that the organic inputs may have enhanced macroaggregation in organic farming

  6. Ammonium silicate diagenesis and its influence on the interpretation of fixed-ammonium anomalies as an exploration tool

    SciTech Connect

    Williams, L.B.; Ferrell, R.E. Jr.

    1990-11-30

    The study of nitrogen (NH{sub 4}{sup +}) diagenesis associated with hydrocarbon occurrences is intended to aid in predicting favorable areas of petroleum exploration and recovery by establishing a better understanding of the interaction of organic maturation products with clastic sedimentary sequences. This research has indicated that fixed-NH{sub 4} in clays preserves anomalous NH{sub 4}{sup +} abundances, thus recording a significant reaction in the maturation of hydrocarbons which correlates with the oil window. Fixed-NH{sub 4} concentrations are independent of total organic carbon content, but increase with organic maturity in source rocks (up to T{approx}140 C). The authors have found anomalously high fixed-NH{sub 4} concentrations in oil and gas reservoirs, and in sandstones that may have acted as migration conduits for a nearby oilfield. The remainder of the project period will be spent completing publications, and finalizing the interpretation of results on fixed-NH{sub 4} in the Salton Sea (SSDP) and Monterey Fm. The data that authors have collected from these areas will allow them to examine the effect of high temperatures and high-N organic matter (prevalent on the west coast) on levels of NH{sub 4}-fixation. The authors will also develop some preliminary ideas on the mechanism of NH{sub 4}{sup +} oxidation responsible for high-N{sub 2} (gas) reservoirs such as Sorrento Field, Colorado.

  7. Effects of Natural Organic Matter on Stability, Transport and Deposition of Engineered Nano-particles in Porous Media

    EPA Science Inventory

    The interaction of nano-particles and organic substances, like natural organic matter, could have significant influence on the fate, transport and bioavailability of toxic substances. Natural organic matter (NOM) is a mixture of chemically complex polyelectrolytes with varying m...

  8. Effects of Natural Organic Matter on Stability, Transport and Deposition of Engineered Nano-particles in Porous Media

    EPA Science Inventory

    The interaction of nano-particles and organic substances, like natural organic matter, could have significant influence on the fate, transport and bioavailability of toxic substances. Natural organic matter (NOM) is a mixture of chemically complex polyelectrolytes with varying m...

  9. Photosensitized degradation of amoxicillin in natural organic matter isolate solutions.

    PubMed

    Xu, Haomin; Cooper, William J; Jung, Jinyoung; Song, Weihua

    2011-01-01

    Amoxicillin is a widely used antibiotic and has been detected in natural waters. Its environmental fate is in part determined by hydrolysis, and, direct and indirect photolysis. The hydrolysis rate in distilled water and water to which five different isolated of dissolved organic matter (DOM) was added, were evaluated. In the five different DOM solutions hydrolysis accounted for 5-18% loss of amoxicillin. Direct and indirect photolysis rates were determined using a solar simulator and it appeared that indirect photolysis was the dominant loss mechanism. Direct photolysis, in a solar simulator, accounted for 6-21% loss of amoxicillin in the simulated natural waters. The steady-state concentrations of singlet oxygen, (1)ΔO(2) (∼10(-13) M) and hydroxyl radical, •OH (∼10(-17) M) were obtained in aqueous solutions of five different dissolved organic matter samples using a solar simulator. The bimolecular reaction rate constant of (1)ΔO(2) with amoxicillin was measured in the different solutions, k(ΔO(2)) = 1.44 × 10(4) M(-1) s(-1). The sunlight mediated amoxicillin loss rate with (1)ΔO(2) (∼10(-9) s(-1)), and with •OH (∼10(-7) s(-1)), were also determined for the different samples of DOM. While (1)ΔO(2) only accounted for 0.03-0.08% of the total loss rate, the hydroxyl radical contributed 10-22%. It appears that the direct reaction of singlet and triplet excited state DOM ((3)DOM(∗)) with amoxicillin accounts for 48-74% of the loss of amoxicillin. Furthermore, the pseudo first-order photodegradation rate showed a positive correlation with the sorption of amoxicillin to DOM, which further supported the assumption that excited state DOM∗ plays a key role in the photochemical transformation of amoxicillin in natural waters. This is the first study to report the relative contribution of all five processes to the fate of amoxicillin in aqueous solution.

  10. Adsorption of natural dissolved organic matter at the oxide/water interface

    USGS Publications Warehouse

    Davis, James A.

    1982-01-01

    Natural organic matter is readily adsorbed by alumina and kaolinite in the pH range of natural waters. Adsorption occurs by complex formation between surface hydroxyls and the acidic functional groups of the organic matter. Oxides with relatively acidic surface hydroxyls, e.g. silica, do not react strongly with the organic matter. Under conditions typical for natural waters, almost complete surface coverage by adsorbed organic matter may be expected for alumina, hydrous iron oxides and the edge sites of aluminosilicates. Potentiometric titration and electrophoresis indicate that most of the acidic functional groups of the adsorbed organic matter are neutralized by protons from solution. The organic coating is expected to have a great influence on subsequent adsorption of inorganic cations and anions.

  11. Coupled Ocean-Atmosphere Loss of Refractory Marine Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Kieber, D. J.; Keene, W. C.; Frossard, A. A.; Long, M. S.; Russell, L. M.; Maben, J. R.; Kinsey, J. D.; Tyssebotn, I. M.; Quinn, P.; Bates, T. S.

    2013-12-01

    Marine aerosol produced in the oceans from bursting bubbles and breaking waves is number dominated by submicron aerosol that are highly enriched in marine organic matter relative to seawater. Recent studies suggest that these organic-rich, submicron aerosol have a major impact on tropospheric chemistry and climate. It has been assumed this marine-derived aerosol organic matter is of recent origin stemming from biological activity in the photic zone. However, we deployed a marine aerosol generator on a recent cruise in the Sargasso Sea with seawater collected from 2500 m and showed that the aerosol generated from this seawater was enriched with organic matter to the same level as observed in surface Sargasso seawater, implying that the marine organic matter flux from the oceans into atmospheric aerosol is partly due to marine organic matter not of recent origin. We propose that marine aerosol production and subsequent physical and photochemical atmospheric evolution is the main process whereby old, refractory organic matter is removed from the oceans, thereby closing the carbon budget in the oceans and solving a long-standing conundrum regarding the removal mechanism for this organic matter in the sea. The implications of this study for couplings in the ocean-atmosphere cycling of organic matter will be discussed.

  12. Enhancement of the natural organic matter removal from drinking water by nanofiltration.

    PubMed

    Matilainen, A; Liikanen, R; Nyström, M; Lindqvist, N; Tuhkanen, T

    2004-03-01

    Finnish surface waters are abundant in natural organic matter. Natural organic matter can be removed from drinking water in a water treatment process by coagulation and filtration. The standard treatment operations are not able to remove the smallest molar mass fraction of organic matter and the intermediate molar mass matter is only partly removed. The removal of residual natural organic matter from drinking water by nanofiltration was evalueted in this study. Three different nanofiltration membranes were compared in filtering six pre-treated surface waters. The total organic carbon content of the feed waters varied from 2.0 to 4.2 mg l(-1). Other water quality parameters measured were conductivity, alkalinity, hardness, UV-absorbance, SUVA, E2/E3 value and molecular size distribution by high-performance size-exclusion chromatography. The natural organic matter removal efficiencies of the membranes were good and varied between 100% and 49%, and between 85% and 47% according to molecular size distribution and total organic carbon measurements, respectively. Removal of different molecular size fractions varied from 100% to 56%, 100% to 54% and 88% to 19%, regarding high molar mass, intermediate molar mass and low molar mass organic matter, respectively. The Desal-5 DL membrane produced the highest natural organic matter removals.

  13. Bismuth solubility through binding by various organic compounds and naturally occurring soil organic matter.

    PubMed

    Murata, Tomoyoshi

    2010-01-01

    The present study was performed to examine the effects of soluble organic matter and pH on the solubility of Bi in relation to inference with the behavior of metallic Bi dispersed in soil and water environments using EDTA, citric acid, tartaric acid, L-cysteine, soil humic acids (HA), and dissolved organic matter (DOM) derived from the soil organic horizon. The solubility of Bi by citric acid, tartaric acid, L-cysteine, HA, and DOM showed pH dependence, while that by EDTA did not. Bi solubility by HA seemed to be related to the distribution of pKa (acid dissociation constant) values of acidic functional groups in their molecules. That is, HA extracted at pH 3.2 solubilized Bi preferentially in the acidic range, while HA extracted at pH 8.4 showed preferential solubilization at neutral and alkaline pH. This was related to the dissociation characteristics of functional groups, their binding capacity with Bi, and precipitation of Bi carbonate or hydroxides. In addition to the dissociation characteristics of functional groups, the unique structural configuration of the HA could also contribute to Bi-HA complex formation. The solubility of Bi by naturally occurring DOM derived from the soil organic horizon (Oi) and its pH dependence were different from those associated with HA and varied among tree species.

  14. The effects of organic matter-mineral interactions and organic matter chemistry on diuron sorption across a diverse range of soils.

    PubMed

    Smernik, Ronald J; Kookana, Rai S

    2015-01-01

    Sorption of non-ionic organic compounds to soil is usually expressed as the carbon-normalized partition coefficient (KOC), because it is assumed that the main factor that influences the amount sorbed is the organic carbon content of the soil. However, KOC can vary by a factor of at least ten across a range of soils. We investigated two potential causes of variation in diuron KOC - organic matter-mineral interactions and organic matter chemistry - for a diverse set of 34 soils from Sri Lanka, representing a wide range of soil types. Treatment with hydrofluoric acid (HF-treatment) was used to concentrate soil organic matter. HF-treatment increased KOC for the majority of soils (average factor 2.4). We attribute this increase to the blocking of organic matter sorption sites in the whole soils by minerals. There was no significant correlation between KOC for the whole soils and KOC for the HF-treated soils, indicating that the importance of organic matter-mineral interactions varied greatly amongst these soils. There was as much variation in KOC across the HF-treated soils as there was across the whole soils, indicating that the nature of soil organic matter is also an important contributor to KOC variability. Organic matter chemistry, determined by solid-state (13)C nuclear magnetic resonance (NMR) spectroscopy, was correlated with KOC for the HF-treated soils. In particular, KOC increased with the aromatic C content (R=0.64, p=1×10(-6)), and decreased with O-alkyl C (R=-0.32, p=0.03) and alkyl C (R=-0.41, p=0.004) content.

  15. Sources and Distribution of Organic Matter in Sediments of the Louisiana Continental Shelf

    EPA Science Inventory

    Both riverine and marine sources of organic matter (OM) contribute to sediment organic pools, and either source can contribute significantly to sediment accumulation, burial, and remineralization rates on river dominated continental shelf systems. For the Louisiana continental sh...

  16. Sources and Distribution of Organic Matter in Sediments of the Louisiana Continental Shelf

    EPA Science Inventory

    Both riverine and marine sources of organic matter (OM) contribute to sediment organic pools, and either source can contribute significantly to sediment accumulation, burial, and remineralization rates on river dominated continental shelf systems. For the Louisiana continental sh...

  17. Macroinvertebrate and organic matter export from headwater tributaries of a Central Appalachian stream

    EPA Science Inventory

    Headwater streams export organisms and other materials to their receiving streams and macroinvertebrate drift can shape colonization dynamics in downstream reaches while providing food for downstream consumers. Spring-time macroinvertebrate drift and organic matter export was me...

  18. Macroinvertebrate and organic matter export from headwater tributaries of a Central Appalachian stream

    EPA Science Inventory

    Headwater streams export organisms and other materials to their receiving streams and macroinvertebrate drift can shape colonization dynamics in downstream reaches while providing food for downstream consumers. Spring-time macroinvertebrate drift and organic matter export was me...

  19. Influence of soil organic matter composition on the partition of organic compounds

    USGS Publications Warehouse

    Rutherford, D.W.; Chiou, C.T.; Klle, D.E.

    1992-01-01

    The sorption at room temperature of benzene and carbon tetrachloride from water on three high-organic-content soils (muck, peat, and extracted peat) and on cellulose was determined in order to evaluate the effect of sorbent polarity on the solute partition coefficients. The isotherms are highly linear for both solutes on all the organic matter samples, which is consistent with a partition model. For both solutes, the extracted peat shows the greatest sorption capacity while the cellulose shows the lowest capacity; the difference correlates with the polar-to-nonpolar group ratio [(O + N)/C] of the sorbent samples. The relative increase of solute partition coefficient (Kom) with a decrease of sample polar content is similar for both solutes, and the limiting sorption capacity on a given organic matter sample is comparable between the solutes. This observation suggests that one can estimate the polarity effect of a sample of soil organic matter (SOM) on Kom of various nonpolar solutes by determining the partition coefficient of single nonpolar solute when compositional analysis of the SOM is not available. The observed dependence of Kom on sample polarity is used to account for the variation of Kom values of individual compounds on different soils that results from change in the polar group content of SOM. On the assumption that the carbon content of SOM in "ordinary soils" is 53-63%, the calculated variation of Kom is a factor of ???3. This value is in agreement with the limit of variation of most Kom data with soils of relatively high SOM contents.

  20. Sustaining effect of soil warming on organic matter decomposition

    NASA Astrophysics Data System (ADS)

    Hou, Ruixing; Ouyang, Zhu; Dorodnikov, Maxim; Wilson, Glenn; Kuzyakov, Yakov

    2015-04-01

    Global warming affects various parts of carbon (C) cycle including acceleration of soil organic matter (SOM) decomposition with strong feedback to atmospheric CO2 concentration. Despite many soil warming studies showed changes of microbial community structure, only very few were focused on sustainability of soil warming on microbial activity associated with SOM decomposition. Two alternative hypotheses: 1) acclimation because of substrate exhaustion and 2) sustaining increase of microbial activity with accelerated decomposition of recalcitrant SOM pools were never proven under long term field conditions. This is especially important in the nowadays introduced no-till crop systems leading to redistribution of organic C at the soil surface, which is much susceptible to warming effects than the rest of the profile. We incubated soil samples from a four-year warming experiment with tillage (T) and no-tillage (NT) practices under three temperatures: 15, 21, and 27 °C, and related the evolved total CO2 efflux to changes of organic C pools. Warmed soils released significantly more CO2 than the control treatment (no warming) at each incubation temperature, and the largest differences were observed under 15 °C (26% increase). The difference in CO2 efflux from NT to T increase with temperature showing high vulnerability of C stored in NT to soil warming. The Q10 value reflecting the sensitivity of SOM decomposition to warming was lower for warmed than non-warmed soil indicating better acclimation of microbes or lower C availability during long term warming. The activity of three extracellular enzymes: β-glucosidase, chitinase, sulphatase, reflecting the response of C, N and S cycles to warming, were significantly higher under warming and especially under NT compared to two other respective treatments. The CO2 released during 2 months of incubation consisted of 85% from recalcitrant SOM and the remaining 15% from microbial biomass and extractable organic C based on the

  1. Differing styles of stromatolite diagenesis: Implication for stromatolite origin and diagenesis of Upper Cambrian peritidal carbonates

    SciTech Connect

    Glumac, B.; Walker, K.R. . Dept. of Geological Sciences)

    1994-03-01

    Stromatolite morphology and the characteristics of associated sediments are commonly used to discern environments of stromatolite formation. In this study, the authors suggest that study of stromatolite diagenesis allows a better understanding of the origin of stromatolites and the diagenesis of carbonate sediments. The Upper Cambrian Maynardville Formation of the Conasauga Group in Tennessee consists of subtidal and peritidal carbonate lithologies. These contain several types of cryptalgal structures: (1) cryptalgal (microbial) laminites; (2) laterally linked hemispheroidal stromatolites; (3) stacked hemispheroidal stromatolites; (4) columnar stromatolites; (5) digitate stromatolites; and (6) thrombolites. The succession from 1 to 6 above represents increasing water turbulence from supratidal to upper subtidal depositional environments. Stromatolites form by two major mechanisms: (1) the trapping of sediment grains by microbial mats; and (2) the calcification of cyanobacterial sheaths under favorable environmental conditions. These two mechanisms of formation can be discerned in the fossil record based on stromatolite response to diagenesis. Early calcification by cyanobacteria reduces the susceptibility of stromatolites to dolomitization. Biogenic calcification was not pervasive during formation of dolomitized stromatolites due to conditions of periodic emergence and increased salinity. Under these conditions, dolomitization was an important diagenetic process that preceded early calcification. The authors interpret dolomitization to be penecontemporaneous with deposition. The results of this study confirm that differing styles of stromatolite diagenesis can be used as indicators of stromatolite origin and to aid in reconstructing the diagenetic processes in peritidal carbonates.

  2. Chemodiversity of dissolved organic matter in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Gonsior, Michael; Valle, Juliana; Schmitt-Kopplin, Philippe; Hertkorn, Norbert; Bastviken, David; Luek, Jenna; Harir, Mourad; Bastos, Wanderley; Enrich-Prast, Alex

    2016-07-01

    Regions in the Amazon Basin have been associated with specific biogeochemical processes, but a detailed chemical classification of the abundant and ubiquitous dissolved organic matter (DOM), beyond specific indicator compounds and bulk measurements, has not yet been established. We sampled water from different locations in the Negro, Madeira/Jamari and Tapajós River areas to characterize the molecular DOM composition and distribution. Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) combined with excitation emission matrix (EEM) fluorescence spectroscopy and parallel factor analysis (PARAFAC) revealed a large proportion of ubiquitous DOM but also unique area-specific molecular signatures. Unique to the DOM of the Rio Negro area was the large abundance of high molecular weight, diverse hydrogen-deficient and highly oxidized molecular ions deviating from known lignin or tannin compositions, indicating substantial oxidative processing of these ultimately plant-derived polyphenols indicative of these black waters. In contrast, unique signatures in the Madeira/Jamari area were defined by presumably labile sulfur- and nitrogen-containing molecules in this white water river system. Waters from the Tapajós main stem did not show any substantial unique molecular signatures relative to those present in the Rio Madeira and Rio Negro, which implied a lower organic molecular complexity in this clear water tributary, even after mixing with the main stem of the Amazon River. Beside ubiquitous DOM at average H / C and O / C elemental ratios, a distinct and significant unique DOM pool prevailed in the black, white and clear water areas that were also highly correlated with EEM-PARAFAC components and define the frameworks for primary production and other aspects of aquatic life.

  3. Organic matter and salinity modify cadmium soil (phyto)availability.

    PubMed

    Filipović, Lana; Romić, Marija; Romić, Davor; Filipović, Vilim; Ondrašek, Gabrijel

    2017-09-26

    Although Cd availability depends on its total concentration in soil, it is ultimately defined by the processes which control its mobility, transformations and soil solution speciation. Cd mobility between different soil fractions can be significantly affected by certain pedovariables such as soil organic matter (SOM; over formation of metal-organic complexes) and/or soil salinity (over formation of metal-inorganic complexes). Phytoavailable Cd fraction may be described as the proportion of the available Cd in soil which is actually accessible by roots and available for plant uptake. Therefore, in a greenhouse pot experiment Cd availability was observed in the rhizosphere of faba bean exposed to different levels of SOM, NaCl salinity (50 and 100mM) and Cd contamination (5 and 10mgkg(-1)). Cd availability in soil does not linearly follow its total concentration. Still, increasing soil Cd concentration may lead to increased Cd phytoavailability if the proportion of Cd(2+) pool in soil solution is enhanced. Reduced Cd (phyto)availability by raised SOM was found, along with increased proportion of Cd-DOC complexes in soil solution. Data suggest decreased Cd soil (phyto)availability with the application of salts. NaCl salinity affected Cd speciation in soil solution by promoting the formation of CdCln(2-n) complexes. Results possibly suggest that increased Cd mobility in soil does not result in its increased availability if soil adsorption capacity for Cd has not been exceeded. Accordingly, chloro-complex possibly operated just as a Cd carrier between different soil fractions and resulted only in transfer between solid phases and not in increased (phyto)availability. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Isotopic and structural signature of experimentally irradiated organic matter

    NASA Astrophysics Data System (ADS)

    Laurent, Boris; Roskosz, Mathieu; Remusat, Laurent; Leroux, Hugues; Vezin, Hervé; Depecker, Christophe

    2014-10-01

    The effects of electron irradiation on the structure and the D/H signature of a synthetic analogue of extraterrestrial insoluble organic matter (IOM) were studied. Polyethylene terephthalate (PET) was chosen because it contains both aliphatic and aromatic functional groups. A 900 nm-thick film was irradiated with electrons within the energy range 4-300 keV, for different run durations. Temperature influence was also tested. Irradiated residues were structurally and isotopically characterized by infrared spectroscopy (IR), electronic paramagnetic resonance (EPR), and Secondary Ion Mass Spectrometry (SIMS). With increasing energy deposition, spectroscopic results indicate (i) a gradual amorphization with chain scissions, (ii) an increase of CH2/CH3 and (iii) the formation of quinones. The EPR study shows that mono- and biradicals (organic species with one or several unpaired valence electrons) are also formed during irradiation. As these structural modifications occur, the δD (initially at -33‰ relative to SMOW) decreases first during a transient step and then stabilizes at ∼+300‰. There is a strong correlation between the changes recorded by the different methods and the electron dose. Deposited energy appears to be the key parameter to induce these modifications. In this respect a low-energy electron irradiation causes more damages than high energy ones. Based on our data and considering the current solar electron flux, the irradiation at moderate energy (1-10 keV) can produce significant D-enrichments of the IOM in a timescale compatible with the evolution of a typical protoplanetary disk.

  5. Photodegradation of dissolved organic matter in ice under solar irradiation.

    PubMed

    Xue, Shuang; Wang, Chao; Zhang, Zhaohong; Song, Youtao; Liu, Qiang

    2016-02-01

    The photodegradation behavior of dissolved organic matter (DOM) with different origins in ice under solar irradiation was investigated. Exposure to sunlight at 2.7 × 10(5) J m(-2) resulted in dissolved organic carbon (DOC) reductions of 22.1-36.5% in ice. The naturally occurring DOM had higher photodegradation potentials than the wastewater-derived DOM in ice. Ultraviolet (UV)-absorbing compounds in DOM, regardless of DOM origin, had much higher photodegradation potentials than gross DOC in ice. The susceptibility of UV-absorbing compounds with natural origin to sunlight exposure in ice was higher than those derived from wastewater. Trihalomethane (THM) precursors were more susceptible to photochemical reactions than gross DOC and haloacetic acid (HAA) precursors in ice. THM precursors in naturally occurring DOM were more photoreactive than those in wastewater-derived DOM in ice, while the photoreactivity of HAA precursors in ice was independent of DOM origin. In ice, the photoreactivity of humic-like fluorescent materials, regardless of DOM origin, was higher than that of gross DOC and protein-like fluorescent materials. DOC reductions caused by sunlight irradiation were found to be negatively correlated to DOC levels, and positively correlated to the aromaticity of DOM. The photodegradation of both wastewater-derived and naturally occurring DOM in ice was significantly facilitated at both acid and alkaline pH, as compared to neutral pH. The photodegradation of DOM in ice, regardless of the origin, was facilitated by nitrate ion [Formula: see text] , nitrite ion [Formula: see text] , ferric ion (Fe(3+)) and ferrous ion (Fe(2+)), and on the other hand, was inhibited by chloridion ion (Cl(-)) and copper ion (Cu(2+)). Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Effect of Natural Organic Matter on Plutonium Sorption to Goethite.

    PubMed

    Conroy, Nathan A; Zavarin, Mavrik; Kersting, Annie B; Powell, Brian A

    2017-01-03

    The effect of citric acid (CA), desferrioxamine B (DFOB), fulvic acid (FA), and humic acid (HA) on plutonium (Pu) sorption to goethite was studied as a function of organic carbon concentration and pH using batch sorption experiments at 5 mgC·L(-1) and 50 mgC·L(-1) natural organic matter (NOM), 10(-9)-10(-10) M (238)Pu, and 0.1 g·L(-1) goethite concentrations, at pH 3, 5, 7, and 9. Low sorption of ligands coupled with strong Pu complexation decreased Pu sorption at pH 5 and 7, relative to a ligand-free system. Conversely, CA, FA, and HA increased Pu sorption to goethite at pH 3, suggesting ternary complex formation or, in the case of humic acid, incorporation into HA aggregates. Mechanisms for ternary complex formation were characterized by Fourier transform infrared spectroscopy in the absence of Pu. CA and FA demonstrated clear surface interactions at pH 3, HA appeared unchanged suggesting HA aggregates had formed, and no DFOB interactions were observed. Plutonium sorption decreased in the presence of DFOB (relative to a ligand free system) at all pH values examined. Thus, DFOB does not appear to facilitate formation of ternary Pu-DFOB-goethite complexes. At pH 9, Pu sorption in the presence of all NOM increased relative to pH 5 and 7; speciation models attributed this to Pu(IV) hydrolysis competing with ligand complexation, increasing sorption. The results indicate that in simple Pu-NOM-goethite ternary batch systems, NOM will decrease Pu sorption to goethite at all but particularly low pH conditions.

  7. Natural organic matter fouling behaviors on superwetting nanofiltration membranes.

    PubMed

    Shan, Linglong; Fan, Hongwei; Guo, Hongxia; Ji, Shulan; Zhang, Guojun

    2016-04-15

    Nanofiltration has been widely recognized as a promising technology for the removal of micro-molecular organic components from natural water. Natural organic matter (NOM), a very important precursor of disinfection by-products, is currently considered as the major cause of membrane fouling. It is necessary to develop a membrane with both high NOM rejection and anti-NOM fouling properties. In this study, both superhydrophilic and superhydrophobic nanofiltration membranes for NOM removal have been fabricated. The fouling behavior of NOM on superwetting nanofiltration membranes has been extensively investigated by using humic acid (HA) as the model foulant. The extended Derjaguin-Landau-Verwey-Overbeek approach and nanoindentor scratch tests suggested that the superhydrophilic membrane had the strongest repulsion force to HA due to the highest positive total interaction energy (ΔG(TOT)) value and the lowest critical load. Excitation emission matrix analyses of natural water also indicated that the superhydrophilic membrane showed resistance to fouling by hydrophobic substances and therefore high removal thereof. Conversely, the superhydrophobic membrane showed resistance to fouling by hydrophilic substances and therefore high removal capacity. Long-term operation suggested that the superhydrophilic membrane had high stability due to its anti-NOM fouling capacity. Based on the different anti-fouling properties of the studied superwetting membranes, a combination of superhydrophilic and superhydrophobic membranes was examined to further improve the removal of both hydrophobic and hydrophilic pollutants. With a combination of superhydrophilic and superhydrophobic membranes, the NOM rejection (RUV254) and DOC removal rates (RDOC) could be increased to 83.6% and 73.3%, respectively.

  8. Characterization of transformations of maize residues into soil organic matter.

    PubMed

    Song, Guixue; Novotny, Etelvino H; Mao, Jing-Dong; Hayes, Michael H B

    2017-02-01

    An awareness of the transformation of plant residues returned to cultivated soils is vital for a better understanding of carbon cycles, the maintenance of soil fertility and the practice of a sustainable agriculture. The transformation of maize (Zea mays L) straw residues into soil organic matter (SOM) in a one year incubation experiment was studied in a soil that had been under long term cultivation with wheat (Triticum aestivum L) for >30years. A novel sequential exhaustive extraction and fractionation procedure isolated a series of fractions of SOM. The samples were characterized by elemental and δ(13)C analyses, by amino acids and neutral sugars analyses, by Fourier transformed infrared (FTIR) spectrometry, and by solid state (13)C nuclear magnetic resonance (NMR) spectroscopy and with chemical shift anisotropy (CSA) -filter and dipolar dephasing (DD) spectral editing NMR techniques. The δ(13)C data indicated that 59% and 38% of the newly transformed organic carbon was in the humic and fulvic acid fractions, respectively, and in general a greater proportion of the transformed carbon was in the fractions isolated at the higher pH values. Results for SOM fractions from the amended soil indicate dominant contributions from carbohydrate and lignin-like material, and that can be clearly identified by FTIR, CP/TOSS, and spectral editing of CSA-filter and DD. The compositions of the fractions from the amended and non-amended soils fractions can be clearly differentiated using principal component analysis (PCA) for the data collected. The sequential extraction procedure showed that the hydrophilicity of humic fractions increased as the result of the maize amendment, and the aromaticity of the fraction decreased. The data may give some indications of transformations that take place during humification processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Variation in assimilable organic carbon formation during chlorination of Microcystis aeruginosa extracellular organic matter solutions.

    PubMed

    Sun, Xingbin; Yuan, Ting; Ni, Huishan; Li, Yanpeng; Hu, Yang

    2016-07-01

    This study investigated the chlorination of Microcystis aeruginosa extracellular organic matter (EOM) solutions under different conditions, to determine how the metabolites produced by these organisms affect water safety and the formation of assimilable organic carbon (AOC). The effects of chlorine dosages, coagulant dosage, reaction time and temperature on the formation of AOC were investigated during the disinfection of M.aeruginosa metabolite solutions. The concentration of AOC followed a decreasing and then increasing pattern with increasing temperature and reaction time. The concentration of AOC decreased and then increased with increasing chlorination dosage, followed by a slight decrease at the highest level of chlorination. However, the concentration of AOC decreased continuously with increasing coagulant dosage. The formation of AOC can be suppressed under appropriate conditions. In this study, chlorination at 4mg/L, combined with a coagulant dose of 40mg/L at 20°C over a reaction time of 12hr, produced the minimum AOC.

  10. The chemical ecology of soil organic matter molecular constituents.

    PubMed

    Simpson, Myrna J; Simpson, André J

    2012-06-01

    Soil organic matter (OM) contains vast stores of carbon, and directly supports microbial, plant, and animal life by retaining essential nutrients and water in the soil. Soil OM plays important roles in biological, chemical, and physical processes within the soil, and arguably plays a major role in maintaining long-term ecological stability in a changing world. Despite its importance, there is a great deal still unknown about soil OM chemical ecology. The development of sophisticated analytical methods have reshaped our understanding of soil OM composition, which is now believed to be comprised of plant and microbial products at various stages of decomposition. The methods also have recently been applied to study environmental change in various settings and have provided unique insight with respect to soil OM chemical ecology. The goal of this review is to highlight the methods used to characterize soil OM structure, source, and degradation that have enabled precise observations of OM and associated ecological shifts. Although the chemistry of soil OM is important in its overall fate in ecosystems, the studies conducted to date suggest that ecological function is not defined by soil OM chemistry alone. The long-standing questions regarding soil OM stability and recalcitrance will likely be answered when several molecular methods are used in tandem to closely examine structure, source, age, degradation stage, and interactions of specific OM components in soil.

  11. Dissolved organic matter reduces algal accumulation of methylmercury

    USGS Publications Warehouse

    Luengen, Allison C.; Fisher, Nicholas S.; Bergamaschi, Brian A.

    2012-01-01

    Dissolved organic matter (DOM) significantly decreased accumulation of methylmercury (MeHg) by the diatom Cyclotella meneghiniana in laboratory experiments. Live diatom cells accumulated two to four times more MeHg than dead cells, indicating that accumulation may be partially an energy-requiring process. Methylmercury enrichment in diatoms relative to ambient water was measured by a volume concentration factor (VCF). Without added DOM, the maximum VCF was 32 x 104, and the average VCF (from 10 to 72 h) over all experiments was 12.6 x 104. At very low (1.5 mg/L) added DOM, VCFs dropped by approximately half. At very high (20 mg/L) added DOM, VCFs dropped 10-fold. Presumably, MeHg was bound to a variety of reduced sulfur sites on the DOM, making it unavailable for uptake. Diatoms accumulated significantly more MeHg when exposed to transphilic DOM extracts than hydrophobic ones. However, algal lysate, a labile type of DOM created by resuspending a marine diatom in freshwater, behaved similarly to a refractory DOM isolate from San Francisco Bay. Addition of 67 μM L-cysteine resulted in the largest drop in VCFs, to 0.28 x 104. Although the DOM composition influenced the availability of MeHg to some extent, total DOM concentration was the most important factor in determining algal bioaccumulation of MeHg.

  12. Pyrolysis-combustion 14C dating of soil organic matter

    USGS Publications Warehouse

    Wang, Hongfang; Hackley, Keith C.; Panno, S.V.; Coleman, D.D.; Liu, J.C.-L.; Brown, J.

    2003-01-01

    Radiocarbon (14C) dating of total soil organic matter (SOM) often yields results inconsistent with the stratigraphic sequence. The onerous chemical extractions for SOM fractions do not always produce satisfactory 14C dates. In an effort to develop an alternative method, the pyrolysis-combustion technique was investigated to partition SOM into pyrolysis volatile (Py-V) and pyrolysis residue (Py-R) fractions. The Py-V fractions obtained from a thick glacigenic loess succession in Illinois yielded 14C dates much younger but more reasonable than the counterpart Py-R fractions for the soil residence time. Carbon isotopic composition (??13C) was heavier in the Py-V fractions, suggesting a greater abundance of carbohydrate- and protein-related constituents, and ??13C was lighter in the Py-R fractions, suggesting more lignin- and lipid-related constituents. The combination of 14C dates and ??13C values indicates that the Py-V fractions are less biodegradation resistant and the Py-R fractions are more biodegradation resistant. The pyrolysis-combustion method provides a less cumbersome approach for 14C dating of SOM fractions. With further study, this method may become a useful tool for analyzing unlithified terrestrial sediments when macrofossils are absent. ?? 2003 University of Washington. Published by Elsevier Inc. All rights reserved.

  13. Spectral Induced Polarization Signature of Soil Organic Matter

    NASA Astrophysics Data System (ADS)

    Schwartz, Nimrod; Furman, Alex

    2015-04-01

    Although often composing a non-negligible fraction of soil cation exchange capacity (CEC), the impact of soil organic matter (OM) on the electrical properties of soil has not been thoroughly investigated. In this research the impact of soil OM on the spectral induced polarization (SIP) signature of soil was investigated. Electrical and chemical measurements for two experiments using the same soil, one with calcium as the dominant cation and the other with sodium, with different concentration of OM were performed. Our results show that despite the high CEC of OM, a decrease in polarization and an increase in relaxation time with increasing concentration of OM is observed. For the soil with calcium as the dominant cation, the decreases in polarization and the increase in relaxation time were stronger. We explain these non-trivial results by accounting for the interactions between the OM and the soil minerals. We suggest that the formation of organo-mineral complexes reduce ionic mobility, explaining both the decrease in polarization and the increase in relaxation time. These results demonstrate the important role of OM on SIP response of soil, and call for a further research in order to establish a new polarization model that will include the impact of OM on soil polarization.

  14. On the spectral induced polarization signature of soil organic matter

    NASA Astrophysics Data System (ADS)

    Schwartz, N.; Furman, A.

    2015-01-01

    Although often composing a non-negligible fraction of soil cation exchange capacity (CEC), the impact of soil organic matter (OM) on the electrical properties of soil has not been thoroughly investigated. In this research the impact of soil OM on the spectral induced polarization (SIP) signature of soil was investigated. Electrical and chemical measurements for two experiments using the same soil, one with calcium as the dominant cation and the other with sodium, with different concentration of OM were performed. Our results show that despite the high CEC of OM, a decrease in polarization and an increase in relaxation time with increasing concentration of OM is observed. For the soil with calcium as the dominant cation, the decreases in polarization and the increase in relaxation time were stronger. We explain these non-trivial results by accounting for the interactions between the OM and the soil minerals. We suggest that the formation of organo-mineral complexes reduce ionic mobility, explaining both the decrease in polarization and the increase in relaxation time. These results demonstrate the important role of OM on SIP response of soil, and call for a further research in order to establish a new polarization model that will include the impact of OM on soil polarization.

  15. The Organic Matter Biogeochemistry of the Congo River

    NASA Astrophysics Data System (ADS)

    Spencer, R. G.; Hernes, P.; Wabakanghanzi, J.; Bienvenu, D. J.; Six, J.

    2015-12-01

    Organic matter (OM) represents a fundamental link between terrestrial and aquatic carbon cycles and plays an essential role in aquatic ecosystem biogeochemistry. The Congo River, which drains pristine tropical forest and savannah is the second largest exporter of terrestrial carbon to the ocean, and represents a historically understudied basin. Our ongoing projects in the Congo Basin aim to provide pertinent information on transport and emissions of carbon by rivers that need to be incorporated into carbon budgets of terrestrial ecosystems. To date the Congo Basin has seen only limited perturbation but the carbon locked away in the Congo, as in other tropical rainforests is increasingly vulnerable to release into the aquatic system and the atmosphere. However, riverine carbon transport (both of OM to the oceans and release of CO2 to the atmosphere) as a driver of global carbon cycling is still largely overlooked. Here we present data from a multi-season field campaign to quantify the transport fluxes, mineralization fluxes, and chemical character of Congo River OM, and to elucidate how these properties relate to each other and vary seasonally driven by hydrology within the Congo Basin. Existing data demonstrates that although tropical rivers do not experience the seasonal climatic extremes of temperate or northern high-latitude rivers, they all demonstrate similar effects due to changing hydrologic inputs with respect to OM dynamics. Specifically flushing periods appear to warrant further study as maximal export of reactive freshly leached plant material occurs during this time period.

  16. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria.

    PubMed

    Smriga, Steven; Fernandez, Vicente I; Mitchell, James G; Stocker, Roman

    2016-02-09

    The microenvironment surrounding individual phytoplankton cells is often rich in dissolved organic matter (DOM), which can attract bacteria by chemotaxis. These "phycospheres" may be prominent sources of resource heterogeneity in the ocean, affecting the growth of bacterial populations and the fate of DOM. However, these effects remain poorly quantified due to a lack of quantitative ecological frameworks. Here, we used video microscopy to dissect with unprecedented resolution the chemotactic accumulation of marine bacteria around individual Chaetoceros affinis diatoms undergoing lysis. The observed spatiotemporal distribution of bacteria was used in a resource utilization model to map the conditions under which competition between different bacterial groups favors chemotaxis. The model predicts that chemotactic, copiotrophic populations outcompete nonmotile, oligotrophic populations during diatom blooms and bloom collapse conditions, resulting in an increase in the ratio of motile to nonmotile cells and in the succession of populations. Partitioning of DOM between the two populations is strongly dependent on the overall concentration of bacteria and the diffusivity of different DOM substances, and within each population, the growth benefit from phycospheres is experienced by only a small fraction of cells. By informing a DOM utilization model with highly resolved behavioral data, the hybrid approach used here represents a new path toward the elusive goal of predicting the consequences of microscale interactions in the ocean.

  17. Modeling monochloramine loss in the presence of natural organic matter.

    PubMed

    Duirk, Stephen E; Gombert, Bertrand; Croué, Jean-Philippe; Valentine, Richard L

    2005-09-01

    A comprehensive model describing monochloramine loss in the presence of natural organic matter (NOM) is presented. The model incorporates simultaneous monochloramine autodecomposition and reaction pathways resulting in NOM oxidation. These competing pathways were resolved numerically using an iterative process evaluating hypothesized reactions describing NOM oxidation by monochloramine under various experimental conditions. The reaction of monochloramine with NOM was described as biphasic using four NOM specific reaction parameters. NOM pathway 1 involves a direct reaction of monochloramine with NOM (k(doc1) = 1.05 x 10(4)-3.45 x 10(4) M(-1) h(-1)). NOM pathway 2 is slower in terms of monochloramine loss and attributable to free chlorine (HOCl) derived from monochloramine hydrolysis (k(doc2) = 5.72 x 10(5)-6.98 x 10(5) M(-1) h(-1)), which accounted for the majority of monochloramine loss. Also, the free chlorine reactive site fraction in the NOM structure was found to correlate to specific ultraviolet absorbance at 280 nm (SUVA280). Modeling monochloramine loss allowed for insight into disinfectant reaction pathways involving NOM oxidation. This knowledge is of value in assessing monochloramine stability in distribution systems and reaction pathways leading to disinfection by-product (DBP) formation.

  18. Effects of iron on optical properties of dissolved organic matter

    USGS Publications Warehouse

    Poulin, Brett; Ryan, Joseph N.; Aiken, George R.

    2014-01-01

    Iron is a source of interference in the spectroscopic analysis of dissolved organic matter (DOM); however, its effects on commonly employed ultraviolet and visible (UV–vis) light adsorption and fluorescence measurements are poorly defined. Here, we describe the effects of iron(II) and iron(III) on the UV–vis absorption and fluorescence of solutions containing two DOM fractions and two surface water samples. In each case, regardless of DOM composition, UV–vis absorption increased linearly with increasing iron(III). Correction factors were derived using iron(III) absorption coefficients determined at wavelengths commonly used to characterize DOM. Iron(III) addition increased specific UV absorbances (SUVA) and decreased the absorption ratios (E2:E3) and spectral slope ratios (SR) of DOM samples. Both iron(II) and iron(III) quenched DOM fluorescence at pH 6.7. The degree and region of fluorescence quenching varied with the iron:DOC concentration ratio, DOM composition, and pH. Regions of the fluorescence spectra associated with greater DOM conjugation were more susceptible to iron quenching, and DOM fluorescence indices were sensitive to the presence of both forms of iron. Analyses of the excitation–emission matrices using a 7- and 13-component parallel factor analysis (PARAFAC) model showed low PARAFAC sensitivity to iron addition.

  19. Nutrient Effects on Belowground Organic Matter in a ...

    EPA Pesticide Factsheets

    Belowground structure and carbon dioxide emission rates were examined in minerogenic marshes of the North Inlet estuary, a system dominated by depositional processes and typical of the southeastern USA. Three areas were sampled: a long-term nutrient enrichment experiment (Goat Island); a fringing marsh that only receives drainage from an entirely forested watershed (upper Crab Haul Creek); and three locations along a creek basin that receives drainage from a residential and golf course development situated at its headwaters (Debidue Creek). Responses to fertilization at Goat Island were an increase in soil organic matter, an increase in number of rhizomes, enlarged rhizome diameters, decreased fine root mass, and increased carbon dioxide emission rates. At the Crab Haul Creek, the greatest abundances of coarse roots and rhizomes were observed in the high marsh compared to the low marsh and creekbank. The upper and mid Debidue Creek, which may be influenced by nutrient inputs associated with land development, had significantly fewer rhizomes compared to the mouth, which was dominated by exchange with bay waters.