Science.gov

Sample records for organic plasma polymer

  1. Measurement of desorbed products during organic polymer thin film etching by plasma beam irradiation

    SciTech Connect

    Kurihara, Kazuaki; Karahashi, Kazuhiro; Egami, Akihiro; Nakamura, Moritaka

    2006-11-15

    The authors investigated the etching characteristics of three kinds of methacrylate polymer films, which have the same main chain but with different side chains, using a plasma beam irradiation apparatus. The polymers are polytbutylmethacrylate, polybenzylmethacrylate, and polycyclohexylmethacrylate. The major desorbed products during nitrogen plasma beam etching were found to be HCN and C{sub 2}N{sub 2} for all methacrylate polymer films. The desorbed products originating from the polymer structure, namely, the main chain and the side chain, were hardly observed. The energy distributions of desorbed products were mainly composed of Maxwell-Boltzmann distribution with a small component of collision cascade distribution for all three polymers and were slightly dependent on the ion energy. It is concluded that chemical sputtering, which can be defined as the production of weakly bound species by ion bombardment, followed by thermal desorption, is the significant ion induced mechanism of organic polymer etching.

  2. Plasma deposition of antimicrobial coating on organic polymer

    NASA Astrophysics Data System (ADS)

    Rżanek-Boroch, Zenobia; Dziadczyk, Paulina; Czajkowska, Danuta; Krawczyk, Krzysztof; Fabianowski, Wojciech

    2013-02-01

    Organic materials used for packing food products prevent the access of microorganisms or gases, like oxygen or water vapor. To prolong the stability of products, preservatives such as sulfur dioxide, sulfites, benzoates, nitrites and many other chemical compounds are used. To eliminate or limit the amount of preservatives added to food, so-called active packaging is sought for, which would limit the development of microorganisms. Such packaging can be achieved, among others, by plasma modification of a material to deposit on its surface substances inhibiting the growth of bacteria. In this work plasma modification was carried out in barrier discharge under atmospheric pressure. Sulfur dioxide or/and sodium oxide were used as the coating precursors. As a result of bacteriological studies it was found that sulfur containing coatings show a 16% inhibition of Salmonella bacteria growth and 8% inhibition of Staphylococcus aureus bacteria growth. Sodium containing coatings show worse (by 10%) inhibiting properties. Moreover, films with plasma deposited coatings show good sealing properties against water vapor. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  3. Study of organic polymer thin-film etching by plasma beam irradiation

    NASA Astrophysics Data System (ADS)

    Kurihara, Kazuaki; Egami, Akihiro; Nakamura, Moritaka

    2005-10-01

    We investigated the etching characteristics of three kinds of methacrylate polymer films which have the same main chain with a different side chain using a plasma beam irradiation apparatus. The polymers are polytbutylmethacrylate (PtBuMA), polybenzylmethacrylate (PBMA), and polycyclohexylmethacrylate (PCHMA). The etch yield (EY) of PtBuMA was higher than those of the others in the case of N2 plasma beam. The EYs of PBMA and PCHMA increased with an increase in the ion energy of up to 330 eV and saturated at over 330 eV. On the other hand, that of PtBuMA was almost constant at the ion energy higher than 130 eV. It was supposed that nitridation of the polymer plays an important role in the enhancement of etching by N2 plasma. In the case of Ar plasma, EY increased linearly with an increase in the square root of ion energy for every polymer. In the case of H2 plasmas, EY scarcely depended on the ion energy regardless of the polymers. Etching behaviors with Ar and H2 plasma irradiation showed physical sputtering and chemical sputtering, respectively. The order of the magnitude of EY was PtBuMA, PCHMA, and PBMA for all of the Ar, H2, and N2 plasmas.

  4. Study of organic polymer thin-film etching by plasma beam irradiation

    SciTech Connect

    Kurihara, Kazuaki; Egami, Akihiro; Nakamura, Moritaka

    2005-10-15

    We investigated the etching characteristics of three kinds of methacrylate polymer films which have the same main chain with a different side chain using a plasma beam irradiation apparatus. The polymers are polytbutylmethacrylate (PtBuMA), polybenzylmethacrylate (PBMA), and polycyclohexylmethacrylate (PCHMA). The etch yield (EY) of PtBuMA was higher than those of the others in the case of N{sub 2} plasma beam. The EYs of PBMA and PCHMA increased with an increase in the ion energy of up to 330 eV and saturated at over 330 eV. On the other hand, that of PtBuMA was almost constant at the ion energy higher than 130 eV. It was supposed that nitridation of the polymer plays an important role in the enhancement of etching by N{sub 2} plasma. In the case of Ar plasma, EY increased linearly with an increase in the square root of ion energy for every polymer. In the case of H{sub 2} plasmas, EY scarcely depended on the ion energy regardless of the polymers. Etching behaviors with Ar and H{sub 2} plasma irradiation showed physical sputtering and chemical sputtering, respectively. The order of the magnitude of EY was PtBuMA, PCHMA, and PBMA for all of the Ar, H{sub 2}, and N{sub 2} plasmas.

  5. Influence of molecular structure on the laser-induced plasma emission of the explosive RDX and organic polymers.

    PubMed

    De Lucia, Frank C; Gottfried, Jennifer L

    2013-10-03

    A series of organic polymers and the military explosive cyclotrimethylenetrinitramine (RDX) were studied using the light emission from a femtosecond laser-induced plasma under an argon atmosphere. The relationship between the molecular structure and plasma emission was established by using the percentages of the atomic species (C, H, N, O) and bond types (C-C, C═C, C-N, and C≡N) in combination with the atomic/molecular emission intensities and decay rates. In contrast to previous studies of organic explosives in which C2 was primarily formed by recombination, for the organic materials in this study the percentage of C-C (and C═C) bonds was strongly correlated to the molecular C2 emission. Time-resolved emission spectra were collected to determine the lifetimes of the atomic and molecular species in the plasma. Observed differences in decay rates were attributed to the differences in both the molecular structure of the organic polymers or RDX and the chemical reactions that occur within the plasma. These differences could potentially be exploited to improve the discrimination of explosive residues on organic substrates with laser-induced breakdown spectroscopy.

  6. Plasma surface modification of polymers

    NASA Technical Reports Server (NTRS)

    Hirotsu, T.

    1980-01-01

    Thin plasma polymerization films are discussed from the viewpoint of simplicity in production stages. The application of selective, absorbent films and films used in selective permeability was tested. The types of surface modification of polymers discussed are: (1) plasma etching, (2) surface coating by plasma polymerized thin films, and (3) plasma activation surface graft polymerization.

  7. Layered plasma polymer composite membranes

    DOEpatents

    Babcock, W.C.

    1994-10-11

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is [>=]2 and is the number of selective layers. 2 figs.

  8. Chamber For Testing Polymers In Oxygen Plasma

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.

    1990-01-01

    Apparatus holds polymer specimen at constant temperature while exposing it to oxygen plasma. Copper tube (part of cooling coil) extends into plasma chamber, supporting copper block and thermoelectric module on which specimen mounted. Copper block made small - 4.4 by 3.8 by 1.6 cm - having little effect on plasma. Used to evaluate resistances of polymer materials to plasma environments, and for analysis of gases produced by attack of plasma on polymer specimen.

  9. Improvement of device performance of polymer organic light-emitting diodes on smooth transparent sheet with graphene films synthesized by plasma treatment

    NASA Astrophysics Data System (ADS)

    Okigawa, Yuki; Mizutani, Wataru; Suzuki, Kenkichi; Ishihara, Masatou; Yamada, Takatoshi; Hasegawa, Masataka

    2015-09-01

    Because graphene films have one-atom thickness, the morphology of the transparent sheets could have a greater effect on the performance of organic light-emitting diode (OLED) devices with graphene films than on that with indium tin oxide (ITO). In this study, we have evaluated the polymer OLED devices with graphene films synthesized by plasma treatment on poly(ethylene terephthalate) (PET) and poly(ethylene naphthalate) (PEN) sheets having high flatness. The results imply that the surface roughness of the transparent sheets predominantly affects the luminescence of polymer OLED devices with graphene films. The suppression of leakage current and a luminescence higher than 8000 cd/m2 at 15 V were attained for the devices on the transparent sheet with higher flatness in spite of the presence of large sharp spikes.

  10. Distributed Pore Chemistry in Porous Organic Polymers

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1998-01-01

    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The sub-strate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphorylcholine groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge, wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic region, and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  11. Distributed Pore Chemistry in Porous Organic Polymers

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1999-01-01

    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphorylcholine groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge. wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions. and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  12. Plasma etching for advanced polymer optical devices

    NASA Astrophysics Data System (ADS)

    Bitting, Donald S.

    Plasma etching is a common microfabrication technique which can be applied to polymers as well as glasses, metals, and semiconductors. The fabrication of low loss and reliable polymer optical devices commonly makes use of advanced microfabrication processing techniques similar in nature to those utilized in standard semiconductor fabrication technology. Among these techniques, plasma/reactive ion etching is commonly used in the formation of waveguiding core structures. Plasma etching is a powerful processing technique with many potential applications in the emerging field of polymer optical device fabrication. One such promising application explored in this study is in the area of thin film-substrate adhesion enhancement. Two approaches involving plasma processing were evaluated to improve substrate-thin film adhesion in the production of polymer waveguide optical devices. Plasma treatment of polymer substrates such as polycarbonate has been studied to promote the adhesion of fluoropolymer thin film coatings for waveguide device fabrication. The effects of blanket oxygen plasma etchback on substrate, microstructural substrate feature formation, and the long term performance and reliability of these methods were investigated. Use of a blanket oxygen plasma to alter the polycarbonate surface prior to fluoropolymer casting was found to have positive but limited capability to improve the adhesive strength between these polymers. Experiments show a strong correlation between surface roughness and adhesion strength. The formation of small scale surface features using microlithography and plasma etching on the polycarbonate surface proved to provide outstanding adhesion strength when compared to any other known treatment methods. Long term environmental performance testing of these surface treatment methods provided validating data. Test results showed these process approaches to be effective solutions to the problem of adhesion between hydrocarbon based polymer

  13. Self-organizing plasmas

    NASA Astrophysics Data System (ADS)

    Hayashi, T.; Sato, T.; Complexity Simulation Group

    1999-03-01

    The primary purpose of this paper is to extract a grand view of self-organization through an extensive computer simulation of plasmas. The assertion is made that self-organization is governed by three key processes, i.e. the existence of an open complex system, the existence of information (energy) sources and the existence of entropy generation and expulsion processes. We find that self-organization takes place in an intermittent fashion when energy is supplied continuously from outside. In contrast, when the system state is suddenly changed into a non-equilibrium state externally, the system evolves stepwise and reaches a minimum energy state. We also find that the entropy production rate is maximized whenever a new ordered structure is created and that if the entropy generated during the self-organizing process is expelled from the system, then the self-organized structure becomes more prominent and clear.

  14. Furfuryl methacrylate plasma polymers for biomedical applications.

    PubMed

    Shirazi, Hanieh Safizadeh; Rogers, Nicholas; Michelmore, Andrew; Whittle, Jason D

    2016-09-08

    Furfuryl methacrylate (FMA) is a promising precursor for producing polymers for biomedical and cell therapy applications. Herein, FMA plasma polymer coatings were prepared with different powers, deposition times, and flow rates. The plasma polymer coatings were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results from AFM and SEM show the early growth of the coatings and the existence of particle aggregates on the surfaces. XPS results indicated no measureable chemical differences between the deposited films produced under different power and flow rate conditions. ToF-SIMS analysis demonstrated differing amounts of C5H5O (81 m/z) and C10H9O2 (161 m/z) species in the coatings which are related to the furan ring structure. Through judicious choice of plasma polymerization parameters, the quantity of the particle aggregates was reduced, and the fabricated plasma polymer coatings were chemically uniform and smooth. Primary human fibroblasts were cultured on FMA plasma polymer surfaces to determine the effect of surface chemical composition and the presence of particle aggregates on cell culture. Particle aggregates were shown to inhibit fibroblast attachment and proliferation.

  15. Physical organic chemistry of supramolecular polymers.

    PubMed

    Serpe, Michael J; Craig, Stephen L

    2007-02-13

    Unlike the case of traditional covalent polymers, the entanglements that determine properties of supramolecular polymers are defined by very specific, intermolecular interactions. Recent work using modular molecular platforms to probe the mechanisms underlying mechanical response of supramolecular polymers is reviewed. The contributions of supramolecular kinetics, thermodynamics, and conformational flexibility to supramolecular polymer properties in solutions of discrete polymers, in networks, and at interfaces, are described. Molecule-to-material relationships are established through methods reminiscent of classic physical organic chemistry.

  16. Polymer Structure--Organic Aspects (Definitions).

    ERIC Educational Resources Information Center

    Carraher, Charles E., Jr.; Seymour, Raymond B.

    1988-01-01

    Lists alphabetically the definitions of key organic-based terms used in characterizing the structure of polymers. Includes several common polymers, some of their uses and their respective structures. (CW)

  17. Polymer-Based Organic Batteries.

    PubMed

    Muench, Simon; Wild, Andreas; Friebe, Christian; Häupler, Bernhard; Janoschka, Tobias; Schubert, Ulrich S

    2016-08-24

    The storage of electric energy is of ever growing importance for our modern, technology-based society, and novel battery systems are in the focus of research. The substitution of conventional metals as redox-active material by organic materials offers a promising alternative for the next generation of rechargeable batteries since these organic batteries are excelling in charging speed and cycling stability. This review provides a comprehensive overview of these systems and discusses the numerous classes of organic, polymer-based active materials as well as auxiliary components of the battery, like additives or electrolytes. Moreover, a definition of important cell characteristics and an introduction to selected characterization techniques is provided, completed by the discussion of potential socio-economic impacts.

  18. Polymer surface modification by plasmas and photons

    NASA Astrophysics Data System (ADS)

    Chan, C.-M.; Ko, T.-M.; Hiraoka, H.

    1996-05-01

    Polymers have been applied successfully in fields such as adhesion, biomaterials, protective coatings, friction and wear, composites, microelectronic devices, and thin-film technology. In general, special surface properties with regard to chemical composition, hydrophilicity, roughness, crystallinity, conductivity, lubricity, and cross-linking density are required for the success of these applications. Polymers very often do not possess the surface properties needed for these applications. However, they have excellent bulk physical and chemical properties, are inexpensive, and are easy to process. For these reasons, surface modification techniques which can transform these inexpensive materials into highly valuable finished products have become an important part of the plastics and many other industries. In recent years, many advances have been made in developing surface treatments to alter the chemical and physical properties of polymer surfaces without affecting bulk properties. Common surface modification techniques include treatments by flame, corona, plasmas, photons, electron beams, ion beams, X-rays, and γ-rays. Plasma treatment is probably the most versatile surface treatment technique. Different types of gases such as argon, oxygen, nitrogen, fluorine, carbon dioxide, and water can produce the unique surface properties required by various applications. For example, oxygen-plasma treatment can increase the surface energy of polymers, whereas fluorine-plasma treatment can decrease the surface energy and improve the chemical inertness. Cross-linking at a polymer surface can be introduced by an inert-gas plasma. Modification by plasma treatment is usually confined to the top several hundred ångströms and does not affect the bulk properties. The main disadvantage of this technique is that it requires a vacuum system, which increases the cost of operation. Thin polymer films with unique chemical and physical properties are produced by plasma polymerization

  19. Megahertz organic/polymer diodes

    DOEpatents

    Katz, Howard Edan; Sun, Jia; Pal, Nath Bhola

    2012-12-11

    Featured is an organic/polymer diode having a first layer composed essentially of one of an organic semiconductor material or a polymeric semiconductor material and a second layer formed on the first layer and being electrically coupled to the first layer such that current flows through the layers in one direction when a voltage is applied in one direction. The second layer is essentially composed of a material whose characteristics and properties are such that when formed on the first layer, the diode is capable of high frequency rectifications on the order of megahertz rectifications such as for example rectifications at one of above 100KHz, 500KhZ, IMHz, or 10 MHz. In further embodiments, the layers are arranged so as to be exposed to atmosphere.

  20. Recent developments in high temperature organic polymers

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.

    1991-01-01

    Developments in high temperature organic polymers during the last 5 years with major emphasis on polyimides and poly(arylene ether)s are discussed. Specific polymers or series of polymers have been selected to demonstrate unique properties or the effect chemical structure has upon certain properties. This article is not intended to be a comprehensive review of high temperature polymer advancements during the last 5 years.

  1. Functional porous organic polymers for heterogeneous catalysis.

    PubMed

    Zhang, Yugen; Riduan, Siti Nurhanna

    2012-03-21

    Porous organic polymers (POPs), a class of highly crosslinked amorphous polymers possessing nano-pores, have recently emerged as a versatile platform for the deployment of catalysts. The bottom-up approach for porous organic polymer synthesis provides the opportunity for the design of polymer frameworks with various functionalities, for their use as catalysts or ligands. This tutorial review focuses on the framework structures and functionalities of catalytic POPs. Their structural design, functional framework synthesis and catalytic reactions are discussed along with some of the challenges.

  2. Photocatalysis in organic and polymer synthesis.

    PubMed

    Corrigan, Nathaniel; Shanmugam, Sivaprakash; Xu, Jiangtao; Boyer, Cyrille

    2016-11-07

    This review, with over 600 references, summarizes the recent applications of photoredox catalysis for organic transformation and polymer synthesis. Photoredox catalysts are metallo- or organo-compounds capable of absorbing visible light, resulting in an excited state species. This excited state species can donate or accept an electron from other substrates to mediate redox reactions at ambient temperature with high atom efficiency. These catalysts have been successfully implemented for the discovery of novel organic reactions and synthesis of added-value chemicals with an excellent control of selectivity and stereo-regularity. More recently, such catalysts have been implemented by polymer chemists to post-modify polymers in high yields, as well as to effectively catalyze reversible deactivation radical polymerizations and living polymerizations. These catalysts create new approaches for advanced organic transformation and polymer synthesis. The objective of this review is to give an overview of this emerging field to organic and polymer chemists as well as materials scientists.

  3. Exploring Alkaline Stable Organic Cations for Polymer Hydroxide Exchange Membranes

    DTIC Science & Technology

    2015-04-29

    Organic Cations for Polymer Hydroxide Exchange Membranes Hydroxide exchange membranes (HEMs) are important polymer electrolytes for electrochemical...Exploring Alkaline Stable Organic Cations for Polymer Hydroxide Exchange Membranes Report Title Hydroxide exchange membranes (HEMs) are important polymer ...constructing HEMs. EXPLORING ALKALINE STABLE ORGANIC CATIONS FOR POLYMER HYDROXIDE EXCHANGE MEMBRANES by Bingzi Zhang

  4. Cell-Culture Reactor Having a Porous Organic Polymer Membrane

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    2000-01-01

    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphory1choline groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge, wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions, and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  5. Diketopyrrolopyrrole Polymers for Organic Solar Cells.

    PubMed

    Li, Weiwei; Hendriks, Koen H; Wienk, Martijn M; Janssen, René A J

    2016-01-19

    Conjugated polymers have been extensively studied for application in organic solar cells. In designing new polymers, particular attention has been given to tuning the absorption spectrum, molecular energy levels, crystallinity, and charge carrier mobility to enhance performance. As a result, the power conversion efficiencies (PCEs) of solar cells based on conjugated polymers as electron donor and fullerene derivatives as electron acceptor have exceeded 10% in single-junction and 11% in multijunction devices. Despite these efforts, it is notoriously difficult to establish thorough structure-property relationships that will be required to further optimize existing high-performance polymers to their intrinsic limits. In this Account, we highlight progress on the development and our understanding of diketopyrrolopyrrole (DPP) based conjugated polymers for polymer solar cells. The DPP moiety is strongly electron withdrawing and its polar nature enhances the tendency of DPP-based polymers to crystallize. As a result, DPP-based conjugated polymers often exhibit an advantageously broad and tunable optical absorption, up to 1000 nm, and high mobilities for holes and electrons, which can result in high photocurrents and good fill factors in solar cells. Here we focus on the structural modifications applied to DPP polymers and rationalize and explain the relationships between chemical structure and organic photovoltaic performance. The DPP polymers can be tuned via their aromatic substituents, their alkyl side chains, and the nature of the π-conjugated segment linking the units along the polymer chain. We show that these building blocks work together in determining the molecular conformation, the optical properties, the charge carrier mobility, and the solubility of the polymer. We identify the latter as a decisive parameter for DPP-based organic solar cells because it regulates the diameter of the semicrystalline DPP polymer fibers that form in the photovoltaic blends with

  6. Electron transporting semiconducting polymers in organic electronics.

    PubMed

    Zhao, Xingang; Zhan, Xiaowei

    2011-07-01

    Significant progress has been achieved in the preparation of semiconducting polymers over the past two decades, and successful commercial devices based on them are slowly beginning to enter the market. However, most of the conjugated polymers are hole transporting, or p-type, semiconductors that have seen a dramatic rise in performance over the last decade. Much less attention has been devoted to electron transporting, or n-type, materials that have lagged behind their p-type counterparts. Organic electron transporting materials are essential for the fabrication of organic p-n junctions, organic photovoltaic cells (OPVs), n-channel organic field-effect transistors (OFETs), organic light-emitting diodes (OLEDs) and complementary logic circuits. In this critical review we focus upon recent developments in several classes of electron transporting semiconducting polymers used in OLEDs, OFETs and OPVs, and survey and analyze what is currently known concerning electron transporting semiconductor architecture, electronic structure, and device performance relationships (87 references).

  7. Graft polymerization and plasma treatment of polymer membranes for fouling reduction: a review.

    PubMed

    Kochkodan, Victor M; Sharma, Virender K

    2012-01-01

    This article presents a review of recent developments in surface modification of polymer membranes via graft polymerization and plasma treatment for reduction of fouling with organic compounds and microorganisms in pressure driven membrane processes. The factors affecting membrane fouling, such as membrane hydrophilicity, charge and surface roughness are discussed. The recent studies in which the reduction of organic fouling and biofouling by the modification of the membrane surface via ultraviolet/redox initiated surface grafting of hydrophilic polymers and low temperature plasma treatment are reviewed.

  8. Organic polymer materials in the space environment

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Ding, Nengwen; Li, Zhifeng; Wang, Wei

    2016-05-01

    The space environment is a complex environment full of microgravity, high vacuum, high and low temperature, strong radiation and plasma. Polymers used in the space environment will inevitably experience aging and degradation which result in changes of the material mechanics, physics and chemical properties, until they lose usefulness. To make a material that can be used for a long time and whose performance is not changed in the space environment, its ability to resist environmental factors must be excellent. Therefore, this paper provides an introduction to the harmful conditions in the space environment and their effects on the polymers, also it reviews the aging mechanisms of the adhesives used in the space environment and the effect of thermal cycling, stress, electromagnetic radiation and ionizing particles on the properties of polymers and optical devices, to provide the reference basis for selection, modification and reliability analysis of materials used in the space environment.

  9. Thiazolothiazole-linked porous organic polymers

    SciTech Connect

    Zhu, Xiang; Tian, Chengcheng; Jin, Tian; Wang, Jitong; Mahurin, Shannon Mark; Mei, Wenwen; Xiong, Yan; Hu, Jun; Feng, Xinliang; Liu, Honglai; Dai, Sheng

    2014-10-07

    In this study, thiazolothiazole-linked porous organic polymers have been synthesized from a facile catalyst-free condensation reaction between aldehydes and dithiooxamide under solvothermal conditions. The resultant porous frameworks exhibit a highly selective uptake of CO2 over N2 under ambient conditions.

  10. Thiazolothiazole-linked porous organic polymers

    DOE PAGES

    Zhu, Xiang; Tian, Chengcheng; Jin, Tian; ...

    2014-10-07

    In this study, thiazolothiazole-linked porous organic polymers have been synthesized from a facile catalyst-free condensation reaction between aldehydes and dithiooxamide under solvothermal conditions. The resultant porous frameworks exhibit a highly selective uptake of CO2 over N2 under ambient conditions.

  11. Organic Polymers with Magneto-Dielectric Properties

    DTIC Science & Technology

    2007-03-28

    These diradicals were intended as ligands (monomers) in ferrimagnetic coordination polymers magneto-dielectricproperties. 15. SUBJECT TERMS20 7 5 68... ferrimagnetic coordination polymers, consisting of Lewis basic organic di- and polyradicals and Lewis acidic paramagnetic transition metal ions (Figure 1...have near-perfect parallel alignment. R N-0 FC liýN.. CF, ’ N"M 0 .0 0. 0 N-0---r0---O-N% + O " ." " R F3 cdKý)’ CF3 N R ’,-N ferrimagnetic chain Figure

  12. Plasma functionalized surface of commodity polymers for dopamine detection

    NASA Astrophysics Data System (ADS)

    Fabregat, Georgina; Osorio, Joaquin; Castedo, Alejandra; Armelin, Elaine; Buendía, Jorge J.; Llorca, Jordi; Alemán, Carlos

    2017-03-01

    We have fabricated potentially generalizable sensors based on polymeric-modified electrodes for the electrochemical detection of dopamine. Sensitive and selective sensors have been successfully obtained by applying a cold-plasma treatment during 1-2 min not only to conducting polymers but also to electrochemically inert polymers, such as polyethylene, polypropylene, polyvinylpyrrolidone, polycaprolactone and polystyrene. The effects of the plasma in the electrode surface activation, which is an essential requirement for the dopamine detection when inert polymers are used, have been investigated using X-ray photoelectron spectroscopy. Results indicate that exposure of polymer-modified electrodes to cold-plasma produces the formation of a large variety of reactive species adsorbed on the electrode surface, which catalyse the dopamine oxidation. With this technology, which is based on the application of a very simple physical functionalization, we have defined a paradox-based paradigm for the fabrication of electrochemical sensors by using inert and cheap plastics.

  13. Ion-Conducting Organic/Inorganic Polymers

    NASA Technical Reports Server (NTRS)

    Kinder, James D.; Meador, Mary Ann B.

    2007-01-01

    Ion-conducting polymers that are hybrids of organic and inorganic moieties and that are suitable for forming into solid-electrolyte membranes have been invented in an effort to improve upon the polymeric materials that have been used previously for such membranes. Examples of the prior materials include perfluorosulfonic acid-based formulations, polybenzimidazoles, sulfonated polyetherketone, sulfonated naphthalenic polyimides, and polyethylene oxide (PEO)-based formulations. Relative to the prior materials, the polymers of the present invention offer greater dimensional stability, greater ease of formation into mechanically resilient films, and acceptably high ionic conductivities over wider temperature ranges. Devices in which films made of these ion-conducting organic/inorganic polymers could be used include fuel cells, lithium batteries, chemical sensors, electrochemical capacitors, electrochromic windows and display devices, and analog memory devices. The synthesis of a polymer of this type (see Figure 1) starts with a reaction between an epoxide-functionalized alkoxysilane and a diamine. The product of this reaction is polymerized by hydrolysis and condensation of the alkoxysilane group, producing a molecular network that contains both organic and inorganic (silica) links. The silica in the network contributes to the ionic conductivity and to the desired thermal and mechanical properties. Examples of other diamines that have been used in the reaction sequence of Figure 1 are shown in Figure 2. One can use any of these diamines or any combination of them in proportions chosen to impart desired properties to the finished product. Alternatively or in addition, one could similarly vary the functionality of the alkoxysilane to obtain desired properties. The variety of available alkoxysilanes and diamines thus affords flexibility to optimize the organic/inorganic polymer for a given application.

  14. Ion conducting organic/inorganic hybrid polymers

    NASA Technical Reports Server (NTRS)

    Meador, Maryann B. (Inventor); Kinder, James D. (Inventor)

    2010-01-01

    This invention relates to a series of organic/inorganic hybrid polymers that are easy to fabricate into dimensionally stable films with good ion-conductivity over a wide range of temperatures for use in a variety of applications. The polymers are prepared by the reaction of amines, preferably diamines and mixtures thereof with monoamines with epoxy-functionalized alkoxysilanes. The products of the reaction are polymerized by hydrolysis of the alkoxysilane groups to produce an organic-containing silica network. Suitable functionality introduced into the amine and alkoxysilane groups produce solid polymeric membranes which conduct ions for use in fuel cells, high-performance solid state batteries, chemical sensors, electrochemical capacitors, electro-chromic windows or displays, analog memory devices and the like.

  15. Polymer Nanoparticle Superlattices for Organic Photovoltaic Applications

    SciTech Connect

    Sumpter, Bobby G; Barnes, Mike D.; Venkataraman, Dhandapani; Dinsmore, Anthony D; Labastide, Joelle; Baghgar, Mina; Yang, Yipeng

    2011-01-01

    In this Perspective, we discuss the possibility of constructing binary nanoparticle superlattices for organic photovoltaic applications and some of the interesting new photophysics emerging from preliminary studies. We summarize recent advances in nanoparticle preparation and photophysical characterization and some of the very interesting observed departures from thin-film photoluminescence dynamics. We conclude by discussing some of the challenges ahead and the possibility of new emergent physics in the assembly of polymer nanoparticles into functional devices.

  16. Polymer models of chromosome (re)organization

    NASA Astrophysics Data System (ADS)

    Mirny, Leonid

    Chromosome Conformation Capture technique (Hi-C) provides comprehensive information about frequencies of spatial interactions between genomic loci. Inferring 3D organization of chromosomes from these data is a challenging biophysical problem. We develop a top-down approach to biophysical modeling of chromosomes. Starting with a minimal set of biologically motivated interactions we build ensembles of polymer conformations that can reproduce major features observed in Hi-C experiments. I will present our work on modeling organization of human metaphase and interphase chromosomes. Our works suggests that active processes of loop extrusion can be a universal mechanism responsible for formation of domains in interphase and chromosome compaction in metaphase.

  17. Free radicals created by plasmas cause autohesive bonding in polymers

    SciTech Connect

    Awaja, Firas; McKenzie, David R.; Zhang Shengnan; James, Natalie

    2011-05-23

    We find that plasma immersion ion implantation of polymer surfaces enhances their autohesive bond strength when pressed together by more than a factor of five. Both polymerising (CH{sub 4}/O{sub 2}) and nonpolymerising (Ar) plasmas are effective. There is currently no satisfactory theory for predicting this remarkable phenomenon. We propose that free radicals created by the plasma treatment process diffuse to the interface and cause covalent bonds to form. This theory predicts the dependence of bond strength on plasma bias voltage, treatment time, and autohesive process conditions.

  18. Phase Behavior of Polymer Blends for Organic Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Emerson, Jillian; Furst, Eric; Epps, Thomas, III

    2014-03-01

    Polymer blends offer a promising and economically-viable route to creating organic photovoltaic (OPV) devices, as blends can form bicontinuous domains via spinodal decomposition. Understanding the phase behavior of conjugated polymer blends commonly used in OPVs is vital to producing more efficient devices. In this work, we determined the Flory-Huggins solvent-polymer and polymer-polymer interaction parameters for a model system of poly(3-hexylthiophene) (P3HT) and polystyrene (PS) through solvent vapor swelling of thin polymer films. From these interaction parameters, we constructed a polymer/polymer/solvent phase diagram. The phase diagram was validated experimentally with solution-based transmission measurements of PS/P3HT. This work highlights a method to determine the phase behavior in polymer/polymer/solvent blends that can be extended to other combinations of macromolecules relevant to organic photovoltaics, composites, and other materials systems.

  19. Porous inorganic—organic shape memory polymers

    PubMed Central

    Zhang, Dawei; Burkes, William L.; Schoener, Cody A.; Grunlan, Melissa A.

    2012-01-01

    Thermoresponsive shape memory polymers (SMPs) are a type of stimuli-sensitive materials that switch from a temporary shape back to their permanent shape upon exposure to heat. While the majority of SMPs have been fabricated in the solid form, porous SMP foams exhibit distinct properties and are better suited for certain applications, including some in the biomedical field. Like solid SMPs, SMP foams have been restricted to a limited group of organic polymer systems. In this study, we prepared inorganic–organic SMP foams based on the photochemical cure of a macromer comprised of inorganic polydimethylsiloxane (PDMS) segments and organic poly(ε-caprolactone) (PCL) segments, diacrylated PCL40-block-PDMS37-block-PCL40. To achieve tunable pore size with high interconnectivity, the SMP foams were prepared via a refined solvent-casting/particulate-leaching (SCPL) method. By varying design parameters such as degree of salt fusion, macromer concentration in the solvent and salt particle size, the SMP foams with excellent shape memory behavior and tunable pore size, pore morphology, and modulus were obtained. PMID:22956854

  20. Application of atmospheric pressure plasma in polymer and composite adhesion

    NASA Astrophysics Data System (ADS)

    Yu, Hang

    An atmospheric pressure helium and oxygen plasma was used to investigate surface activation and bonding in polymer composites. This device was operated by passing 1.0-3.0 vol% of oxygen in helium through a pair of parallel plate metal electrodes powered by 13.56 or 27.12 MHz radio frequency power. The gases were partially ionized between the capacitors where plasma was generated. The reactive species in the plasma were carried downstream by the gas flow to treat the substrate surface. The temperature of the plasm gas reaching the surface of the substrate did not exceed 150 °C, which makes it suitable for polymer processing. The reactive species in the plasma downstream includes ~ 1016-1017 cm-3 atomic oxygen, ~ 1015 cm-3 ozone molecule, and ~ 10 16 cm-3 metastable oxygen molecule (O2 1Deltag). The substrates were treated at 2-5 mm distance from the exit of the plasma. Surface properties of the substrates were characterized using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and X-ray photoelectron spectroscopy (XPS). Subsequently, the plasma treated samples were bonded adhesively or fabricated into composites. The increase in mechanical strength was correlated to changes in the material composition and structure after plasma treatment. The work presented hereafter establishes atmospheric pressure plasma as an effective method to activate and to clean the surfaces of polymers and composites for bonding. This application can be further expanded to the activation of carbon fibers for better fiber-resin interactions during the fabrication of composites. Treating electronic grade FR-4 and polyimide with the He/O2 plasma for a few seconds changed the substrate surface from hydrophobic to hydrophilic, which allowed complete wetting of the surface by epoxy in underfill applications. Characterization of the surface by X-ray photoelectron spectroscopy shows formation of oxygenated functional groups, including hydroxyl, carbonyl, and

  1. Territorial Polymers and Large Scale Genome Organization

    NASA Astrophysics Data System (ADS)

    Grosberg, Alexander

    2012-02-01

    Chromatin fiber in interphase nucleus represents effectively a very long polymer packed in a restricted volume. Although polymer models of chromatin organization were considered, most of them disregard the fact that DNA has to stay not too entangled in order to function properly. One polymer model with no entanglements is the melt of unknotted unconcatenated rings. Extensive simulations indicate that rings in the melt at large length (monomer numbers) N approach the compact state, with gyration radius scaling as N^1/3, suggesting every ring being compact and segregated from the surrounding rings. The segregation is consistent with the known phenomenon of chromosome territories. Surface exponent β (describing the number of contacts between neighboring rings scaling as N^β) appears only slightly below unity, β 0.95. This suggests that the loop factor (probability to meet for two monomers linear distance s apart) should decay as s^-γ, where γ= 2 - β is slightly above one. The later result is consistent with HiC data on real human interphase chromosomes, and does not contradict to the older FISH data. The dynamics of rings in the melt indicates that the motion of one ring remains subdiffusive on the time scale well above the stress relaxation time.

  2. Template-assisted generation of nanocavities within plasma polymer films.

    PubMed

    Vasilev, Krasimir; Casanal, Ana; Challougui, Hela; Griesser, Hans J

    2009-05-21

    The generation of nanosized cavities within thin film layers is of interest for a number of fundamental and applied reasons. One challenge is to make such systems sufficiently robust mechanically. Plasma polymer (pp) films possess excellent mechanical stability if deposition conditions are selected such as to achieve a sufficient density of cross-linking and resistance to extraction of polymeric material by solvents. In this study, gold nanoparticles of 15 and 70 nm diameter were used as sacrificial templates to generate nanocavities in pp films of various thickness values in the tens of nanometers range. A first pp layer was deposited onto substrates using n-heptylamine (HA) to a thickness of 20 nm. Carboxy-thiolated gold nanoparticles were electrostatically bound onto the surface amine groups of the n-heptylamine plasma polymer (HApp) layer. A second HApp layer was then coated to various thicknesses onto the nanoparticle/HApp surface. The template particles embedded thus in-between the two HApp layers were then dissolved using aqueous KCN solution; monitoring of the plasmon resonance band of the gold nanoparticles enabled verification of template stripping and measurement of the kinetics of stripping. AFM topography images showed little change on extraction of the template nanoparticles, indicating that the plasma polymer layer maintained structural integrity upon template extraction and subsequent drying, and thereby prevented collapse of the empty nanocavities. The concept of template stripping to generate controlled size free volume in thin plasma polymer layers is thus shown to produce robust structures.

  3. Behavior of organic polymers in drinking water purification.

    PubMed

    Lee, J F; Liao, P M; Tseng, D H; Wen, P T

    1998-09-01

    Synthetic organic polymers used to purify drinking water are severely limited in that their impurities and by-products harm human health. In this study, the undesired effects resulted from chlorination and the enhanced attenuation of toxic organic compounds in drinking water from using synthetic organic polymer coagulants were investigated. In the simulated drinking water purification processes, synthetic organic polymers were used as coagulant aids, reacted with a disinfectant(chlorine) and formed a large number of volatile organic compounds (VOCs). Chloroform and benzene which, are carcinogenic compounds, had the maximum formation potential. Experimental results indicated that the total formation potential of these disinfection by-products significantly increased in the presence of turbidity. On the other hand, adding organic polymers to the coagulation systems resulted in more extensive remove of toxic organic compounds and turbidity. In coagulation and flocculation processes, the formation of clay/polymer complexes can facilitate the removal of toxic organic compounds in contaminated water.

  4. Plasma chemistry and organic synthesis

    NASA Technical Reports Server (NTRS)

    Tezuka, M.

    1980-01-01

    The characteristic features of chemical reactions using low temperature plasmas are described and differentiated from those seen in other reaction systems. A number of examples of applications of plasma chemistry to synthetic reactions are mentioned. The production of amino acids by discharge reactions in hydrocarbon-ammonia-water systems is discussed, and its implications for the origins of life are mentioned.

  5. Fabrication of polymer nanowires via maskless O2 plasma etching.

    PubMed

    Du, Ke; Wathuthanthri, Ishan; Liu, Yuyang; Kang, Yong Tae; Choi, Chang-Hwan

    2014-04-25

    In this paper, we introduce a simple fabrication technique which can pattern high-aspect-ratio polymer nanowire structures of photoresist films by using a maskless one-step oxygen plasma etching process. When carbon-based photoresist materials on silicon substrates are etched by oxygen plasma in a metallic etching chamber, nanoparticles such as antimony, aluminum, fluorine, silicon or their compound materials are self-generated and densely occupy the photoresist polymer surface. Such self-masking effects result in the formation of high-aspect-ratio vertical nanowire arrays of the polymer in the reactive ion etching mode without the necessity of any artificial etch mask. Nanowires fabricated by this technique have a diameter of less than 50 nm and an aspect ratio greater than 20. When such nanowires are fabricated on lithographically pre-patterned photoresist films, hierarchical and hybrid nanostructures of polymer are also conveniently attained. This simple and high-throughput fabrication technique for polymer nanostructures should pave the way to a wide range of applications such as in sensors, energy storage, optical devices and microfluidics systems.

  6. Conducting Polymers and Their Hybrids as Organic Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Toshima, Naoki; Ichikawa, Shoko

    2015-01-01

    Conducting polymers have received much attention recently as organic thermoelectric materials, because of such advantages as plentiful resources, easy synthesis, easy processing, low cost, low thermal conductivity, and easy fabrication of flexible, light, and printable devices with large area. Many reports on organic thermoelectric materials have recently been published. We have studied conducting polymers as organic thermoelectric materials since 1999. During these investigations, we found that the thermal conductivity of conducting polymers did not increase even though electrical conductivity increased; this was a major advantage of conducting polymers as organic thermoelectric materials. We also observed that molecular alignment was one of the most important factors for improvement of the thermoelectric performance of conducting polymers. Stretching of conducting polymers or their precursors was one of the most common techniques used to achieve good molecular alignment. Recently, alignment of the clusters of conducting polymers by treatment with solvents has been proposed as a means of achieving high electrical conductivity. Hybridization of conducting polymers with inorganic nanoparticles has also been found to improve thermoelectric performance. Here we present a brief history and discuss recent progress of research on conducting polymers as organic thermoelectric materials, and describe the techniques used to improve thermoelectric performance by treatment of conducting polymers with solvents and hybridization of conducting polymers with Bi2Te3 and gold nanoparticles.

  7. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    DOEpatents

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  8. Inorganic-organic composite polymers and methods of making

    DOEpatents

    Josowicz, M.A.; Exarhos, G.J.

    1996-10-29

    The invention is a composition of an inorganic-organic polymer composite and a method of making it. The inorganic portion of the fundamental polymer composite polymer repeat is a speciated inorganic heterocyclic compound, and the organic portion of the polymer repeat is a cyclic organic radical anion compound having at least two charged sites. The composition of the present invention is made by combining a cyclic organic radical anion compound with a speciated inorganic heterocyclic compound by a nucleophilic substitution thereby forming a polymer of an inorganic-organic composite. The cyclic organic radical anion compound is preferably generated electrochemically. The nucleophilic substitution is alternately carried out chemically or electrochemically. A preferred embodiment of the present invention includes performing the nucleophilic substitution at the cathode of an electrochemical cell. 2 figs.

  9. Inorganic-organic composite polymers and methods of making

    DOEpatents

    Josowicz, Mira A.; Exarhos, Gregory J.

    1996-01-01

    The invention is a composition of an inorganic-organic polymer composite and a method of making it. The inorganic portion of the fundamental polymer composite polymer repeat is a speciated inorganic heterocyclic compound, and the organic portion of the polymer repeat is a cyclic organic radical anion compound having at least two charged sites. The composition of the present invention is made by combining a cyclic organic radical anion compound with a speciated inorganic heterocyclic compound by a nucleophilic substitution thereby forming a polymer of an inorganic-organic composite. The cyclic organic radical anion compound is preferably generated electrochemically. The nucleophilic substitution is alternately carried out chemically or electrochemically. A preferred embodiment of the present invention includes performing the nucleophilic substitution at the cathode of an electrochemical cell.

  10. Inorganic-organic composite solid polymer electrolytes

    SciTech Connect

    Abraham, K.M.; Koch, V.R.; Blakley, T.J.

    2000-04-01

    Inorganic-organic composite solid polymer electrolytes (CSPEs) have been prepared from the poly(ethylene oxide) (PEO)-like electrolytes of the general formula polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP)-PEO{sub n}-LiX and Li{sup +}-conducting ceramic powders. In the PEO-like electrolytes, PVdF-HFP is the copolymer of PVdF and HFP, PEO{sub n} is a nonvolatile oligomeric polyethylene oxide of {approximately}400 g/mol molecular weight, and LiX is lithium bis(trifluoroethylsulfonyl)imide. Two types of inorganic oxide ceramic powders were used: a highly Li{sup +}-conducting material of the composition 14 mol % Li{sub 2}O-9Al{sub 2}O{sub 3}-38TiO{sub 2}-39P{sub 2}O{sub 5}, and the poorly Li{sup +}-conducting Li-silicates Li{sub 4{minus}x}M{sub x}SiO{sub 4} where M is Ca or Mg and x is 0 or 0.05. The composite electrolytes can be prepared as thin membranes in which the Li{sup +} conductivity and good mechanical strength of the Li{sup +}-conducting inorganic ceramics are complemented by the structural flexibility and high conductivity of organic polymer electrolytes. Excellent electrochemical and thermal stabilities have been demonstrated for the electrolyte films. Li//composite electrolyte//LiCoO{sub 2} rechargeable cells have been fabricated and cycled at room temperature and 50 C.

  11. Mechanisms of polymer degradation using an oxygen plasma generator

    NASA Technical Reports Server (NTRS)

    Colony, Joe A.; Sanford, Edward L.

    1987-01-01

    An RF oxygen plasma generator was used to produce polymer degradation which appears to be similar to that which has been observed in low Earth orbit. Mechanisms of this type of degradation were studied by collecting the reaction products in a cryogenic trap and identifying the molecular species using infrared, mass spectral, and X-ray diffraction techniques. No structurally dependent species were found from Kapton, Teflon, or Saran polymers. However, very reactive free radical entities are produced during the polymer degradation, as well as carbon dioxide and water. Reactions of the free radicals with the glass reaction vessel, with copper metal in the cold trap, and with a triphenyl phosphate scavenger in the cold trap, demonstrated the reactivity of the primary products.

  12. Conjugated Polymer Design and Engineering for Organic Electronics

    NASA Astrophysics Data System (ADS)

    Woo, Claire Hoi Kar

    The molecular structure of a conjugated polymer critically impacts its physical and optoelectronic properties, thus determining its ultimate performance in organic electronic devices. In this work, new polymers and derivatives are designed, synthesized, characterized, and tested in photovoltaic devices. Through device engineering and nanoscale characterization, general structure-function relationships are established to aid the design of the next-generation of high performance polymer semiconductors for organic electronic applications. Using a prototypical conjugated polymer, the influence of backbone regioregularity is examined and found to highly impact polymer crystallinity, solid state morphology and device stability. The investigation of alternative aromatic units in the backbone also led to new understandings in polymer processability and the development of promising materials for organic photovoltaics. Besides the backbone structure, the side chain choice of the polymer can significantly affect material properties and device performance as well. In fact, the side chain substitution can influence both the optoelectronic properties and the physical properties of the polymer. A sterically bulky side chain can be used to tune the donor/acceptor separation distance, which in turn determines the charge separation efficiency. The addition of a polar side group increases the dielectric constant of a polymer and improves overall charge separation. Choosing the appropriate solubilizing group can also induce solid state packing of the polymer and considerably enhance device efficiency. Finally, the influence of post-fabrication processing techniques on the crystallinity and charge transport properties of a polymer is highlighted.

  13. Etching of polymers, proteins and bacterial spores by atmospheric pressure DBD plasma in air

    NASA Astrophysics Data System (ADS)

    Kuzminova, A.; Kretková, T.; Kylián, O.; Hanuš, J.; Khalakhan, I.; Prukner, V.; Doležalová, E.; Šimek, M.; Biederman, H.

    2017-04-01

    Many studies proved that non-equilibrium discharges generated at atmospheric pressure are highly effective for the bio-decontamination of surfaces of various materials. One of the key processes that leads to a desired result is plasma etching and thus the evaluation of etching rates of organic materials is of high importance. However, the comparison of reported results is rather difficult if impossible as different authors use diverse sources of atmospheric plasma that are operated at significantly different operational parameters. Therefore, we report here on the systematic study of the etching of nine different common polymers that mimic the different structures of more complicated biological systems, bovine serum albumin (BSA) selected as the model protein and spores of Bacillus subtilis taken as a representative of highly resistant micro-organisms. The treatment of these materials was performed by means of atmospheric pressure dielectric barrier discharge (DBD) sustained in open air at constant conditions. All tested polymers, BSA and spores, were readily etched by DBD plasma. However, the measured etching rates were found to be dependent on the chemical structure of treated materials, namely on the presence of oxygen in the structure of polymers.

  14. Improving polymer solar cell performances by manipulating the self-organization of polymer

    NASA Astrophysics Data System (ADS)

    Xie, Feng-xian; Choy, Wallace C. H.; Zhu, Xiaolong; Li, Xiaolong; Li, Zhong; Liang, Chunjun

    2011-06-01

    We have investigated driving force effects on the ordering of polymer, which is a key factor of self-assembly of soft materials. By turning the substrate up-side-down, the downward driving force can form in solution film-growth process and affect the self-organization of polymer chains and domains. We introduce Brown's capillarity theory [J. Polym. Sci., Polym. Phys. Ed. 22, 423 (1956)] to describe the film formation. Our results show that the better chain and lamellae packing of polymer make hole transport, carrier balance, and power conversion efficiency of annealed and unannealed devices improve even with thick active-layers as compared to conventional devices.

  15. Synthetic strategies for the generation of molecularly imprinted organic polymers.

    PubMed

    Mayes, A G; Whitcombe, M J

    2005-12-06

    Molecular imprinting is a method of inducing molecular recognition properties in synthetic polymers in response to the presence of a template species during formation of the three-dimensional structure of the polymer. The molecularly imprinted polymers (MIPs) prepared in this way have been termed "plastic antibodies" and combine the robustness of the polymer scaffold with binding properties more readily associated with biological receptors. Smart polymers of this type may find applications in drug delivery, controlled release and monitoring of drug and metabolite concentrations. In this review the main synthetic strategies used in the preparation of imprinted organic polymers are described in terms of the chemical principles used in the templating step. These are illustrated with examples taken from the literature and are classified as covalent, semi-covalent, non-covalent, metal-mediated and non-polar. Finally strategies for the selection of monomers, optimisation and modification of the properties of imprinted polymers are reviewed.

  16. Decohesion kinetics in polymer organic solar cells.

    PubMed

    Bruner, Christopher; Novoa, Fernando; Dupont, Stephanie; Dauskardt, Reinhold

    2014-12-10

    We investigate the role of molecular weight (MW) of the photoactive polymer poly(3-hexylthiophene) (P3HT) on the temperature-dependent decohesion kinetics of bulk heterojunction (BHJ) organic solar cells (OSCs). The MW of P3HT has been directly correlated to its carrier field effect mobilities and the ambient temperature also affects OSC in-service performance and P3HT arrangement within the BHJ layer. Under inert conditions, time-dependent decohesion readily occurs within the BHJ layer at loads well below its fracture resistance. We observe that by increasing the MW of P3HT, greater resistance to decohesion is achieved. However, failure consistently occurs within the BHJ layer representing the weakest layer within the device stack. Additionally, it was found that at temperatures below the glass transition temperature (∼41-45 °C), decohesion was characterized by brittle failure via molecular bond rupture. Above the glass transition temperature, decohesion growth occurred by a viscoelastic process in the BHJ layer, leading to a significant degree of viscoelastic deformation. We develop a viscoelastic model based on molecular relaxation to describe the resulting behavior. The study has implications for OSC long-term reliability and device performance, which are important for OSC production and implementation.

  17. Naphthobischalcogenadiazole Conjugated Polymers: Emerging Materials for Organic Electronics.

    PubMed

    Osaka, Itaru; Takimiya, Kazuo

    2017-02-27

    π-Conjugated polymers are an important class of materials for organic electronics. In the past decade, numerous polymers with donor-acceptor molecular structures have been developed and used as the active materials for organic devices, such as organic field-effect transistors (OFETs) and organic photovoltaics (OPVs). The choice of the building unit is the primary step for designing the polymers. Benzochalcogenadiazoles (BXzs) are one of the most familiar acceptor building units studied in this area. As their doubly fused system, naphthobischalcogenadiazoles (NXzs), i.e., naphthobisthiadiazole (NTz), naphthobisoxadiazole (NOz), and naphthobisselenadiazole (NSz) are emerging building units that provide interesting electronic properties and highly self-assembling nature for π-conjugated polymers. With these fruitful features, π-conjugated polymers based on these building units demonstrate great performances in OFETs and OPVs. In particular, in OPVs, NTz-based polymers have exhibited more than 10% efficiency, which is among the highest values reported so far. In this Progress Report, the synthesis, properties, and structures of NXzs and their polymers is summarized. The device performance is also highlighted and the structure-property relationships of the polymers are discussed.

  18. Surface Modification of Conventional Polymers by Depositing Plasma Polymers of Trimethylsilane and of Trimethylsilane + O2.

    PubMed

    Weikart; Miyama; Yasuda

    1999-03-01

    The static wetting properties of TMS (trimethylsilane) and TMS + O2 plasma deposited films on eleven low energy conventional polymers were investigated using the sessile droplet method. The static advancing contact angle is an excellent indication of the change in surface state properties from plasma surface modification. However, traditional contact angle measuring techniques possess a methodological limitation, which can leave a water droplet on the substrate surface for up to 3 min before a measurement is obtained. The static "advancing" contact angles of different size water droplets on teflon and nylon surfaces were observed to change significantly in 2 min while equilibrating with the surface and surroundings. A new quick image-capturing device enables static contact angle measurement 2 to 4 s after contact with the substrate. This technique virtually eliminates the time dependent effects of evaporation and surface state change, which are believed to be responsible for the change in static advancing contact angles. Furthermore, static contact angles independent of droplet volume and contact time may be taken as a surface characteristic property, which is denoted as the intrinsic static contact angle, θS. The static "advancing" contact angle, measured in this fashion, indicated that the wetting properties of TMS and TMS + O2 plasma polymer deposition on 10 conventional polymers were modified virtually independent of the underlying substrate. The average advancing contact angles on TMS and TMS + O2 modified polymers are θS = 94 +/- 2.2 (cos θS = -0.0645) and θS = 32 +/- 6.9 (cos θS = 0.8452), respectively. Copyright 1999 Academic Press.

  19. Distributed Pore Chemistry in Porous Organic Polymers in Tissue Culture Flasks

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1999-01-01

    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclose. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphorylcholine groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge, wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions, and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  20. Plasma-modified and polyethylene glycol-grafted polymers for potential tissue engineering applications.

    PubMed

    Svorcík, V; Makajová, Z; Kasálková-Slepicková, N; Kolská, Z; Bacáková, L

    2012-08-01

    Modified and grafted polymers may serve as building blocks for creating artificial bioinspired nanostructured surfaces for tissue engineering. Polyethylene (PE) and polystyrene (PS) were modified by Ar plasma and the surface of the plasma activated polymers was grafted with polyethylene glycol (PEG). The changes in the surface wettability (contact angle) of the modified polymers were examined by goniometry. Atomic Force Microscopy (AFM) was used to determine the surface roughness and morphology and electrokinetical analysis (Zeta potential) characterized surface chemistry of the modified polymers. Plasma treatment and subsequent PEG grafting lead to dramatic changes in the polymer surface morphology, roughness and wettability. The plasma treated and PEG grafted polymers were seeded with rat vascular smooth muscle cells (VSMCs) and their adhesion and proliferation were studied. Biological tests, performed in vitro, show increased adhesion and proliferation of cells on modified polymers. Grafting with PEG increases cell proliferation, especially on PS. The cell proliferation was shown to be an increasing function of PEG molecular weight.

  1. Organic/Inorganic Hybrid Polymer/Clay Nanocomposites

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Connell, John W.; Smith, Joseph G., Jr.

    2003-01-01

    A novel class of polymer/clay nanocomposites has been invented in an attempt to develop transparent, lightweight, durable materials for a variety of aerospace applications. As their name suggests, polymer/ clay nanocomposites comprise organic/ inorganic hybrid polymer matrices containing platelet-shaped clay particles that have sizes of the order of a few nanometers thick and several hundred nanometers long. Partly because of their high aspect ratios and high surface areas, the clay particles, if properly dispersed in the polymer matrix at a loading level of 1 to 5 weight percent, impart unique combinations of physical and chemical properties that make these nanocomposites attractive for making films and coatings for a variety of industrial applications. Relative to the unmodified polymer, the polymer/ clay nanocomposites may exhibit improvements in strength, modulus, and toughness; tear, radiation, and fire resistance; and lower thermal expansion and permeability to gases while retaining a high degree of optical transparency.

  2. Plasma deposition of polymer composite films incorporating nanocellulose whiskers

    NASA Astrophysics Data System (ADS)

    Samyn, P.; Airoudj, A.; Laborie, M.-P.; Mathew, A. P.; Roucoules, V.

    2011-11-01

    In a trend for sustainable engineering and functionalization of surfaces, we explore the possibilities of gas phase processes to deposit nanocomposite films. From an analysis of pulsed plasma polymerization of maleic anhydride in the presence of nanocellulose whiskers, it seems that thin nanocomposite films can be deposited with various patterns. By specifically modifying plasma parameters such as total power, duty cycle, and monomer gas pressure, the nanocellulose whiskers are either incorporated into a buckled polymer film or single nanocellulose whiskers are deposited on top of a polymeric film. The density of the latter can be controlled by modifying the exact positioning of the substrate in the reactor. The resulting morphologies are evaluated by optical microscopy, AFM, contact angle measurements and ellipsometry.

  3. Inorganic-Organic Polymers and Their Role in Materials Science

    DTIC Science & Technology

    1994-05-18

    for the synthesis of organic polymer as polyamides and polysme and of totally iorganc polymers such as polyuilicases and poloons of a different kind...This document has been approved for public release; distribution is unlimited. 13. ABSTRACT (Maximum 200 words) The design and synthesis of new...organic./ inorganic materials, synthesis , phosphazenes 30 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY

  4. Photo-oxidation of Polymers Synthesized by Plasma and Initiated CVD

    SciTech Connect

    Baxamusa, Salmaan H.; Suresh, Aravind; Ehrmann, Paul; Laurence, Ted; Hanania, Jiries; Hayes, Jeff; Harley, Stephen; Burkey, Daniel D.

    2015-11-09

    Plasma polymers are often limited by their susceptibility to spontaneous and photo-oxidation. We show that the unusual photoluminescence (PL) behavior of a plasma polymer of trans-2-butene is correlated with its photoluminescence strength. These photo-processes occur under blue light illumination (λ=405 nm), distinguishing them from traditional ultraviolet degradation of polymers. These photo-active defects are likely formed during the plasma deposition process and we show that a polymer synthesized using initiated (i)CVD, non-plasma method, has 1000× lower PL signal and enhanced photo-stability. In conclusion, non-plasma methods such as iCVD may therefore be a route to overcoming material aging issues that limit the adoption of plasma polymers.

  5. Photo-oxidation of Polymers Synthesized by Plasma and Initiated CVD

    DOE PAGES

    Baxamusa, Salmaan H.; Suresh, Aravind; Ehrmann, Paul; ...

    2015-11-09

    Plasma polymers are often limited by their susceptibility to spontaneous and photo-oxidation. We show that the unusual photoluminescence (PL) behavior of a plasma polymer of trans-2-butene is correlated with its photoluminescence strength. These photo-processes occur under blue light illumination (λ=405 nm), distinguishing them from traditional ultraviolet degradation of polymers. These photo-active defects are likely formed during the plasma deposition process and we show that a polymer synthesized using initiated (i)CVD, non-plasma method, has 1000× lower PL signal and enhanced photo-stability. In conclusion, non-plasma methods such as iCVD may therefore be a route to overcoming material aging issues that limit themore » adoption of plasma polymers.« less

  6. Carbazole-based polymers for organic photovoltaic devices.

    PubMed

    Li, Jiaoli; Grimsdale, Andrew C

    2010-07-01

    Polymers based upon 2,7-disubstituted carbazole have recently become of great interest as electron-donating materials in organic photovoltaic devices. In this tutorial review the synthesis of such polymers and their relative performances in such devices are surveyed. In particular structure-property relationships are investigated and the potential for the rational design of materials for high efficiency solar cells is discussed. In the case of the 2,7-carbazole homopolymer it has been found that electron acceptors other than fullerenes produce higher energy conversion efficiencies. To get around possible problems with the build-up of charge density at the 3- and 6-positions and to improve the solar light harvesting ability of the polymers by reducing the bandgap, ladder- and step-ladder type 2,7-carbazole polymers have been synthesised. The fully ladderised polymers gave very poor results in devices, but efficiencies of over 1% have been obtained from a step-ladder polymer with a diindenocarbazole monomer unit. Donor-acceptor copolymers containing 2,7-carbazole donors and various electron-accepting comonomer units have been prepared. An efficiency of 6% has been reported from a device using such a copolymer and by suitable choice of the acceptor comonomer, polymers can be designed with potential theoretical power conversion efficiencies of 10%. While such efficiencies remain to be obtained, the results to date certainly suggest that carbazole-based polymers and copolymers are among the most promising materials yet proposed for obtaining high efficiency organic solar cells.

  7. Liquid crystal-templated conducting organic polymers

    DOEpatents

    Stupp, Samuel I.; Hulvat, James F.

    2004-01-20

    A method of preparing a conductive polymeric film, includes providing a liquid crystal phase comprising a plurality of hydrophobic cores, the phase on a substrate, introducing a hydrophobic component to the phase, the component a conductive polymer precursor, and applying an electric potential across the liquid crystal phase, the potential sufficient to polymerize the said precursor.

  8. Lifetime of organic light emitting diodes on polymer anodes

    NASA Astrophysics Data System (ADS)

    Fehse, Karsten; Meerheim, Rico; Walzer, Karsten; Leo, Karl; Lövenich, Wilfried; Elschner, Andreas

    2008-08-01

    We report on the use of a thin layer of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) as anode for bottom emission organic light emitting diodes (OLEDs). The combination of polymer anodes with OLEDs having either electrically doped or undoped hole transport layers in direct contact with the polymer is shown. We discuss the impact of the annealing conditions of the polymer on the OLED lifetime in comparison to indium tin oxide anodes. Supported by a differential thermal analysis of PEDOT:PSS, a strong influence of residual water in the polymer on the device lifetime is found. Additional heating of the polymer anode in a dry ambient prior to OLED deposition is necessary to achieve high device lifetimes. At a luminance of 260 cd/m2, pin-OLEDs on a PEDOT:PSS anode show no measurable device degradation during 5200 h of operation.

  9. New organic nanoporous polymers and their inclusion complexes

    SciTech Connect

    Ma, M.; Li, D.

    1999-04-01

    The authors have recently fabricated cyclodextrin polymers that exhibit an interconnected nanoporosity with a dramatically increased inclusion formation constant, K {ge} 10{sup 8} M{sup {minus}1}. This is significant because a simple conversion from cyclodextrin monomers to nanoporous polymers could have such a dramatic effect on noncovalent interactions in aqueous solutions. Previous studies on cyclodextrin polymers focus mostly on cross-linking cyclodextrin with epichlorohydrin which is commercially available and has low binding constant to organics. Studies using cyclodextrins to coat solid particles as a stationary phase for enantiomer separation were also reported. Formation of inclusion complexes are rarely proven in these cyclodextrin polymers, including using cholesterol as a template to synthesize cyclodextrin polymers.

  10. Organic-inorganic hybrid polymer-encapsulated magnetic nanobead catalysts.

    PubMed

    Arai, Takayoshi; Sato, Toru; Kanoh, Hirofumi; Kaneko, Katsumi; Oguma, Koichi; Yanagisawa, Akira

    2008-01-01

    A new strategy for the encapsulation of magnetic nanobeads was developed by using the in situ self-assembly of an organic-inorganic hybrid polymer. The hybrid polymer of {[Cu(bpy)(BF(4))(2)(H(2)O)(2)](bpy)}(n) (bpy=4,4'-bipyridine) was constructed on the surface of amino-functionalized magnetic beads and the resulting hybrid-polymer-encapsulated beads were utilized as catalysts for the oxidation of silyl enolates to provide the corresponding alpha-hydroxy carbonyl compounds in high yield. After the completion of the reaction, the catalyst was readily recovered by magnetic separation and the recovered catalyst could be reused several times. Because the current method did not require complicated procedures for incorporating the catalyst onto the magnetic beads, the preparation and the application of various other types of organic-inorganic hybrid-polymer-coated magnetic beads could be possible.

  11. Nonthermal plasma technology for organic destruction

    SciTech Connect

    Heath, W.O.; Birmingham, J.G.

    1995-06-01

    Pacific Northwest Laboratory (PNL) is investigating the use of nonthermal, electrically driven plasmas for destroying organic contaminants near ambient temperatures and pressures. Three different plasma systems have been developed to treat organics in air, water, and soil. These systems are the Gas-Phase Corona Reactor (GPCR)III for treating air, the Liquid-Phase Corona Reactor for treating water, and In Situ Corona for treating soils. This presentation focuses on recent technical developments, commercial status, and project costs of OPCR as a cost-effective alternative to other air-purification technologies that are now in use to treat off-gases from site-remediation efforts as well as industrial emissions.

  12. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging.

    PubMed

    Li, Kai; Liu, Bin

    2014-09-21

    Polymer encapsulated organic nanoparticles have recently attracted increasing attention in the biomedical field because of their unique optical properties, easy fabrication and outstanding performance as imaging and therapeutic agents. Of particular importance is the polymer encapsulated nanoparticles containing conjugated polymers (CP) or fluorogens with aggregation induced emission (AIE) characteristics as the core, which have shown significant advantages in terms of tunable brightness, superb photo- and physical stability, good biocompatibility, potential biodegradability and facile surface functionalization. In this review, we summarize the latest advances in the development of polymer encapsulated CP and AIE fluorogen nanoparticles, including preparation methods, material design and matrix selection, nanoparticle fabrication and surface functionalization for fluorescence and photoacoustic imaging. We also discuss their specific applications in cell labeling, targeted in vitro and in vivo imaging, blood vessel imaging, cell tracing, inflammation monitoring and molecular imaging. We specially focus on strategies to fine-tune the nanoparticle property (e.g. size and fluorescence quantum yield) through precise engineering of the organic cores and careful selection of polymer matrices. The review also highlights the merits and limitations of these nanoparticles as well as strategies used to overcome the limitations. The challenges and perspectives for the future development of polymer encapsulated organic nanoparticles are also discussed.

  13. Experimental beam system studies of plasma-polymer interactions

    NASA Astrophysics Data System (ADS)

    Nest, Dustin George

    Since the invention of the integrated circuit, the semiconductor industry has relied on the shrinking of device dimensions to increase device performance and decrease manufacturing costs. However, the high degree of roughening observed during plasma etching of current generation photoresist (PR) polymers can result in poor pattern transfer and ultimately decreased device performance or failure. Plasma-surface interactions are inherently difficult to study due to the highly coupled nature of the plasma enviroment. To better understand these interactions, a beam system approach is employed where polymers are exposed to beams of ions and vacuum ultraviolet (VUV) photons. Through the use of the beam system approach, simultaneous VUV radiation, ion bombardment, and moderate substrate heating have been identified as key elements, acting synergistically, as being responsible for roughening of current generation 193 nm PR during plasma processing. Sequential exposure is not adequate for the development of surface roughness, as observed through AFM and SEM. Ion bombardment results in the formation of a graphitized near-surface region with a depth of a few nanometers, the expected ion penetration depth of 150 eV argon ions. In contrast, VUV radiation results in the loss of carbon-oxygen bonds in the bulk PR as observed through Transmission FTIR. Based on the differing penetration depth of either ions or photons, their resulting chemical modifications, and the temperature dependence of the observed roughening, a mechanism is proposed based on stress relaxation resulting in surface buckling. The surface roughness of poly(4-methyl styrene) (P4MS) and poly(alpha-methyl styrene) (PalphaMS) have also been investigated under exposure to ions and VUV photons. PaMS degrades during VUV radiation above its ceiling temperature of ˜60°C. Despite having the same chemical composition as PalphaMS, P4MS does not degrade during VUV exposure at 70°C due to its relatively high ceiling

  14. Properties of the acrylic acid polymers obtained by atmospheric pressure plasma polymerization

    NASA Astrophysics Data System (ADS)

    Topala, Ionut; Dumitrascu, Nicoleta; Popa, Gheorghe

    2009-01-01

    Plasma polymers of acrylic acid were obtained using an atmospheric pressure discharge system. The plasma polymerization reactor uses a dielectric barrier discharge, with the polyethylene terephthalate dielectric acting as substrate for deposition. The plasma was characterized by specific electrical measurements, monitoring the applied voltage and the discharge current. Based on the spatially resolved optical emission spectroscopy, we analyzed the distribution of the excited species in the discharge gap, specific plasma temperatures (vibrational and gas temperatures) being calculated with the Boltzmann plot method. The properties of the plasma polymer films were investigated by contact angle measurements, infrared and UV-Vis spectroscopy, scanning electron microscopy. The films produced by plasma polymerization at atmospheric pressure showed a hydrophilic character, in correlation with the strong absorbance of OH groups in the FTIR spectrum. Moreover, the surface of the plasma polymers at micrometric scale is smooth and free of defects without particular features.

  15. The material balance of process of plasma-chemical conversion of polymer wastes into synthesis gas

    NASA Astrophysics Data System (ADS)

    Tazmeev, A. Kh; Tazmeeva, R. N.

    2017-01-01

    The process of conversion of polymer wastes in the flow of water-steam plasma which are created by the liquid electrodes plasma generators was experimentally studied. The material balance was calculated. The regularities of the participating of hydrogen and oxygen which contained in the water-steam plasma, in formation of chemical compounds in the final products were revealed.

  16. Inorganic Metal Oxide/Organic Polymer Nanocomposites And Method Thereof

    DOEpatents

    Gash, Alexander E.; Satcher, Joe H.; Simpson, Randy

    2004-11-16

    A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal in organic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophilic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the material, providing superb mixing of the component phases in the energetic nanocomposite.

  17. Patterning of conjugated polymers for organic optoelectronic devices.

    PubMed

    Xu, Youyong; Zhang, Fan; Feng, Xinliang

    2011-05-23

    Conjugated polymers have been attracting more and more attention because they possess various novel electrical, magnetical, and optical properties, which render them useful in modern organic optoelectronic devices. Due to their organic nature, conjugated polymers are light-weight and can be fabricated into flexible appliances. Significant research efforts have been devoted to developing new organic materials to make them competitive with their conventional inorganic counterparts. It is foreseeable that when large-scale industrial manufacture of the devices made from organic conjugated polymers is feasible, they would be much cheaper and have more functions. On one hand, in order to improve the performance of organic optoelectronic devices, it is essential to tune their surface morphologies by techniques such as patterning. On the other hand, patterning is the routine requirement for device processing. In this review, the recent progress in the patterning of conjugated polymers for high-performance optoelectronic devices is summarized. Patterning based on the bottom-up and top-down methods are introduced. Emerging new patterning strategies and future trends for conventional patterning techniques are discussed.

  18. The Organic Chemistry of Conducting Polymers

    SciTech Connect

    Tolbert, Laren Malcolm

    2014-12-01

    For the last several years, we have examined the fundamental principles of conduction in one-dimensional systems, i.e., molecular “wires”. It is, of course, widely recognized that such systems, as components of electronically conductive materials, function in a two- and three-dimensional milieu. Thus interchain hopping and grain-boundary resistivity are limiting conductivity factors in highly conductive materials, and overall conductivity is a function of through-chain and boundary hopping. We have given considerable attention to the basic principles underlying charge transport (the “rules of the game”) in two-dimensional systems by using model systems which allow direct observation of such processes, including the examination of tunneling and hopping as components of charge transfer. In related work, we have spent considerable effort on the chemistry of conjugated heteropolymers, most especially polythiophens, with the aim of using these most efficient of readily available electroactive polymers in photovoltaic devices.

  19. Novel thiophene-containing semiconducting polymers for organic electronic applications

    NASA Astrophysics Data System (ADS)

    Hundt, Nadia Khanam

    The pi-conjugated polymers such as polythiophenes (PT's) represent a class of organic-based materials that possess unique optical and electronic properties. The electronic properties of such conjugated macromolecules are primarily governed by the chemical structure of the polymer backbone itself. Synthesizing new conjugated polymers by further functionalizing precursor monomers is an attractive route to enhance optical and electronic properties of these materials. The introduction of an unsaturated side chain will encourage solid-state pi-pi stacking and allow for facile post polymerization chemical modification. Additionally, a number of other tools can be employed in order to adjust the electronic properties of conjugated polymers. Tuning the band gap of conjugated polymers and introduction of liquid crystalline segments are two important strategies to tune the opto-electronic and physical properties of these materials. The research efforts of this thesis have been directed towards the design, synthesis, and electronic characterization of well-defined novel semiconducting thiophene-based polymers. Chapter 1 focuses on the synthesis and characterization of novel poly (3-alkenylthiophene) derivatives. The copolymers have been investigated as the active layer in organic field-effect transistors. The surface morphology of polymer films has been analyzed by AFM microscopy. Chapter 2 describes the synthesis of novel semiconducting polymers with extended electron delocalization. Semiconducting polymers containing a fused benzodithiophene core with phenylethynyl substituents were prepared and characterized. The electronic properties and morphologies of the synthesized homopolymers and copolymers containing benzodithiophene with phenylethynyl substituents were correlated with their molecular structures. The synthesized polymers have a lower band gap due to the extended electron delocalization. Chapter 3 describes the synthesis of a novel rod-rod di-block copolymer

  20. Photovoltaic effect in organic polymer-iodine complex

    NASA Technical Reports Server (NTRS)

    Hermann, A. M.; Rembaum, A.

    1967-01-01

    Certain charge transfer complexes formed from organic polymers and iodine generate appreciable voltages at relatively low impedances upon exposure to light. These films show promise in applications requiring chemically and electrically stable films as detectors of optical radiation and as energy converters in photovoltaic cells.

  1. Inorganic metal oxide/organic polymer nanocomposites and method thereof

    DOEpatents

    Gash, Alexander E.; Satcher, Joe H.; Simpson, Randy

    2004-03-30

    A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal inorganic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophillic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the composite material, providing superb mixing of the component phases in the energetic nanocomposite.

  2. U.S. BURNING PLASMA ORGANIZATION ACTIVITIES

    SciTech Connect

    Raymond J. Fonck

    2009-08-11

    The national U.S. Burning Plasma Organization (USBPO) was formed to provide an umbrella structure in the U.S. fusion science research community. Its main purpose is the coordination of research activities in the U.S. program relevant to burning plasma science and preparations for participation in the international ITER experiment. This grant provided support for the continuing development and operations of the USBPO in its first years of existence. A central feature of the USBPO is the requirement for broad community participation in and governance of this effort. We concentrated on five central areas of activity of the USBPO during this grant period. These included: 1) activities of the Director and support staff in continuing management and development of the USBPO activity; 2) activation of the advisory Council; 3) formation and initial research activities of the research community Topical Groups; 4) formation of Task Groups to perform specific burning plasma related research and development activities; 5) integration of the USBPO community with the ITER Project Office as needed to support ITER development in the U.S.

  3. Simple Organics and Biomonomers Identified in HCN Polymers: An Overview

    PubMed Central

    Ruiz-Bermejo, Marta; Zorzano, María-Paz; Osuna-Esteban, Susana

    2013-01-01

    Hydrogen cyanide (HCN) is a ubiquitous molecule in the Universe. It is a compound that is easily produced in significant yields in prebiotic simulation experiments using a reducing atmosphere. HCN can spontaneously polymerise under a wide set of experimental conditions. It has even been proposed that HCN polymers could be present in objects such as asteroids, moons, planets and, in particular, comets. Moreover, it has been suggested that these polymers could play an important role in the origin of life. In this review, the simple organics and biomonomers that have been detected in HCN polymers, the analytical techniques and procedures that have been used to detect and characterise these molecules and an exhaustive classification of the experimental/environmental conditions that favour the formation of HCN polymers are summarised. Nucleobases, amino acids, carboxylic acids, cofactor derivatives and other compounds have been identified in HCN polymers. The great molecular diversity found in HCN polymers encourages their placement at the central core of a plausible protobiological system. PMID:25369814

  4. Organic phototransistors with nanoscale phase-separated polymer/polymer bulk heterojunction layers.

    PubMed

    Hwang, Hyemin; Kim, Hwajeong; Nam, Sungho; Bradley, Donal D C; Ha, Chang-Sik; Kim, Youngkyoo

    2011-05-01

    Low-cost detectors for sensing photons at a low light intensity are of crucial importance in modern science. Phototransistors can deliver better signals of low-intensity light by electrical amplification, but conventional inorganic phototransistors have a limitation owing to their high temperature processes in vacuum. In this work, we demonstrate organic phototransistors with polymer/polymer bulk heterojunction blend films (mixtures of p-type and n-type semiconducting polymers), which can be fabricated by inexpensive solution processes at room temperature. The key idea here is to effectively exploit hole charges (from p-type polymer) as major signaling carriers by employing p-type transistor geometry, while the n-type polymer helps efficient charge separation from excitons generated by incoming photons. Results showed that the present organic transistors exhibited proper functions as p-type phototransistors with ∼4.3 A W(-1) responsivity at a low light intensity (1 µW cm(-2)), which supports their encouraging potential to replace conventional cooled charge coupled devices (CCD) for low-intensity light detection applications.

  5. The plasma footprint of an atmospheric pressure plasma jet on a flat polymer substrate and its relation to surface treatment

    NASA Astrophysics Data System (ADS)

    Onyshchenko, Iuliia; Nikiforov, Anton Yu.; De Geyter, Nathalie; Morent, Rino

    2016-08-01

    The aim of this work is to show the correlation between the plasma propagation in the footprint of an atmospheric pressure plasma jet on a flat polymer surface and the plasma treatment impact on the polymer properties. An argon plasma jet working in open air is used as plasma source, while PET thin films are used a substrates for plasma treatment. Light emission photographs are taken with an ICCD camera to have a close look at the generated structures in the plasma jet footprint on the surface. Water contact angle (WCA) measurement and X-ray photoelectron spectroscopy (XPS) analysis are also performed to obtain information about the impact of the plasma treatment on the PET surface characteristics. A variation in ICCD camera gate duration (1 µs, 100 µs, 50 ms) results in the photographs of the different plasma structures occurring during the plasma propagation on the flat PET surface. Contact angle measurements provide results on improvement of the PET hydrophilic character, while XPS analysis shows the distribution of atomic elements on the treated substrate surface. Light emission images help explaining the obtained WCA and XPS results. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  6. Active screen plasma nitriding enhances cell attachment to polymer surfaces

    NASA Astrophysics Data System (ADS)

    Kaklamani, Georgia; Bowen, James; Mehrban, Nazia; Dong, Hanshan; Grover, Liam M.; Stamboulis, Artemis

    2013-05-01

    Active screen plasma nitriding (ASPN) is a well-established technique used for the surface modification of materials, the result of which is often a product with enhanced functional performance. Here we report the modification of the chemical and mechanical properties of ultra-high molecular weight poly(ethylene) (UHMWPE) using 80:20 (v/v) N2/H2 ASPN, followed by growth of 3T3 fibroblasts on the treated and untreated polymer surfaces. ASPN-treated UHMWPE showed extensive fibroblast attachment within 3 h of seeding, whereas fibroblasts did not successfully attach to untreated UHMWPE. Fibroblast-coated surfaces were maintained for up to 28 days, monitoring their metabolic activity and morphology throughout. The chemical properties of the ASPN-treated UHMWPE surface were studied using X-ray photoelectron spectroscopy, revealing the presence of Csbnd N, Cdbnd N, and Ctbnd N chemical bonds. The elastic modulus, surface topography, and adhesion properties of the ASPN-treated UHMWPE surface were studied over 28 days during sample storage under ambient conditions and during immersion in two commonly used cell culture media.

  7. Thiophene polymer semiconductors for organic thin-film transistors.

    PubMed

    Ong, Beng S; Wu, Yiliang; Li, Yuning; Liu, Ping; Pan, Hualong

    2008-01-01

    Printed organic thin-film transistors (OTFTs) have received great interests as potentially low-cost alternative to silicon technology for application in large-area, flexible, and ultra-low-cost electronics. One of the critical materials for TFTs is semiconductor, which has a dominant impact on the transistor properties. We review here the structural studies and design of thiophene-based polymer semiconductors with respect to solution processability, ambient stability, molecular self-organization, and field-effect transistor properties for OTFT applications. We show that through judicial monomer design, delicately controlled pi-conjugation, and strategically positioned pendant side-chain distribution, novel solution-processable thiophene polymer semiconductors with excellent self-organization ability to form extended lamellar pi-stacking orders can be developed. OTFTs using semiconductors of this nature processed in ambient conditions have provided excellent field-effect transistor properties.

  8. Creation of hydrophilic nitric oxide releasing polymers via plasma surface modification.

    PubMed

    Pegalajar-Jurado, A; Joslin, J M; Hawker, M J; Reynolds, M M; Fisher, E R

    2014-08-13

    Herein, we describe the surface modification of an S-nitrosated polymer derivative via H2O plasma treatment, resulting in polymer coatings that maintained their nitric oxide (NO) releasing capabilities, but exhibited dramatic changes in surface wettability. The poly(lactic-co-glycolic acid)-based hydrophobic polymer was nitrosated to achieve a material capable of releasing the therapeutic agent NO. The NO-loaded films were subjected to low-temperature H2O plasma treatments, where the treatment power (20-50 W) and time (1-5 min) were varied. The plasma treated polymer films were superhydrophilic (water droplet spread completely in <100 ms), yet retained 90% of their initial S-nitrosothiol content. Under thermal conditions, NO release profiles were identical to controls. Under buffer soak conditions, the NO release profile was slightly lowered for the plasma-treated materials; however, they still result in physiologically relevant NO fluxes. XPS, SEM-EDS, and ATR-IR characterization suggests the plasma treatment resulted in polymer rearrangement and implantation of hydroxyl and carbonyl functional groups. Plasma treated samples maintained both hydrophilic surface properties and NO release profiles after storage at -18 °C for at least 10 days, demonstrating the surface modification and NO release capabilities are stable over time. The ability to tune polymer surface properties while maintaining bulk properties and NO release properties, and the stability of those properties under refrigerated conditions, represents a unique approach toward creating enhanced therapeutic biopolymers.

  9. Low bandgap conjugated polymers for organic solar cells

    NASA Astrophysics Data System (ADS)

    Xu, Tao

    Organic solar cells are emerging as a potential solution to address the energy issue in the future. Functional materials that can achieve high performance are the main topics in my thesis. I went briefly to introduce the background and history first, emphasizing on the synthetic principles towards high performance copolymers. My second chapters is about the perturbation effect by introducing terminal chloroaryl in the side chain. A new type of monomer is presented in Chapter III and corresponding polymers are studied. Then we investigated the impact of polymerization conditions on the physical properties using PTB7 as the standard polymer. In the last, we further utilized TID unit to construct acceptor polymers and random copolymer. A PCE value of 7.55% was achieved.

  10. Compatibilization of All-Conjugated Polymer Blends for Organic Photovoltaics.

    PubMed

    Lombeck, Florian; Sepe, Alessandro; Thomann, Ralf; Friend, Richard H; Sommer, Michael

    2016-08-23

    Compatibilization of an immiscible binary blend comprising a conjugated electron donor and a conjugated electron acceptor polymer with suitable electronic properties upon addition of a block copolymer (BCP) composed of the same building blocks is demonstrated. Efficient compatibilization during melt-annealing is feasible when the two polymers are immiscible in the melt, i.e. above the melting point of ∼250 °C of the semicrystalline donor polymer P3HT. To generate immiscibility at these high temperatures, the acceptor polymer PCDTBT is equipped with fluorinated side chains leading to an increased Flory-Huggins interaction parameter. Compatibilization in bulk and thin films is demonstrated, showing that the photovoltaic performance of pristine microphase separated and nanostructured BCPs can also be obtained for compatibilized blend films containing low contents of 10-20 wt % BCP. Thermodynamically stable domain sizes range between several tens of microns for pure blends and ∼10 nm for pure block copolymers. In addition to controlling domain size, the amount of block copolymer added dictates the ratio of edge-on and face-on P3HT crystals, with compatibilized films showing an increasing amount of face-on P3HT crystals with increasing amount of compatibilizer. This study demonstrates the prerequisites and benefits of compatibilizing all-conjugated semicrystalline polymer blends for organic photovoltaics.

  11. Enzymatic synthesis of organic-polymer-grafted DNA.

    PubMed

    Baccaro, Anna; Marx, Andreas

    2010-01-04

    To create bioorganic hybrid materials, interdisciplinary work in the fields of chemistry, biology and materials science is conducted. DNA block copolymers are promising hybrid materials due to the combination of properties intrinsic to both the polymer and the nucleic acid blocks. Until now, the coupling of DNA and organic polymers has been exercised post-synthetically in solution or on solid support. Herein, we report the first enzyme-catalysed synthesis of DNA-organic polymer chimeras. For this purpose, four novel 2'-deoxyuridine triphosphates carrying polymer-like moieties linked to the nucleobase were synthesised. Linear polyethylene glycol monomethyl ethers of different sizes (1) and branched polyamido dendrons with varying terminal groups (2) were chosen as building blocks. We investigated the ability of DNA polymerases to accept the copolymers in comparison to the natural substrate and showed, through primer extensions, polymerase chain reactions and rolling circle amplification, that these building blocks could serve as a surrogate for the natural thymidine. By this method, DNA hybrid materials with high molecular weight, modification density, and defined structure are accessible.

  12. Low-temperature oxidizing plasma surface modification and composite polymer thin-film fabrication techniques for tailoring the composition and behavior of polymer surfaces

    NASA Astrophysics Data System (ADS)

    Tompkins, Brendan D.

    This dissertation examines methods for modifying the composition and behavior of polymer material surfaces. This is accomplished using (1) low-temperature low-density oxidizing plasmas to etch and implant new functionality on polymers, and (2) plasma enhanced chemical vapor deposition (PECVD) techniques to fabricate composite polymer materials. Emphases are placed on the structure of modified polymer surfaces, the evolution of polymer surfaces after treatment, and the species responsible for modifying polymers during plasma processing. H2O vapor plasma modification of high-density polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), polycarbonate (PC), and 75A polyurethane (PU) was examined to further our understanding of polymer surface reorganization leading to hydrophobic recovery. Water contact angles (wCA) measurements showed that PP and PS were the most susceptible to hydrophobic recovery, while PC and HDPE were the most stable. X-ray photoelectron spectroscopy (XPS) revealed a significant quantity of polar functional groups on the surface of all treated polymer samples. Shifts in the C1s binding energies (BE) with sample age were measured on PP and PS, revealing that surface reorganization was responsible for hydrophobic recovery on these materials. Differential scanning calorimetry (DSC) was used to rule out the intrinsic thermal properties as the cause of reorganization and hydrophobic recovery on HDPE, LDPE, and PP. The different contributions that polymer cross-linking and chain scission mechanisms make to polymer aging effects are considered. The H2O plasma treatment technique was extended to the modification of 0.2 microm and 3.0 microm track-etched polycarbonate (PC-TE) and track-etched polyethylene terephthalate (PET-TE) membranes with the goal of permanently increasing the hydrophilicity of the membrane surfaces. Contact angle measurements on freshly treated and aged samples confirmed the wettability of the

  13. Investigation of the growth mechanisms of diglyme plasma polymers on amyloid fibril networks

    NASA Astrophysics Data System (ADS)

    Li, Yali; Reynolds, Nicholas P.; Styan, Katie E.; Muir, Benjamin W.; Forsythe, John S.; Easton, Christopher D.

    2016-01-01

    Within the area of biomaterials research, the ability to tailor a materials surface chemistry while presenting a biomimetic topography is a useful tool for studying cell-surface and cell-cell interactions. For the study reported here we investigated the deposition of diglyme plasma polymer films (DGpp) onto amyloid fibril networks (AFNs), which have morphologies that mimic the extracellular matrix. We extend our previous work to observe that the nanoscale contours of the AFNs are well preserved even under thick layers of DGpp. The width of the surface features is positively correlated to the DGpp thickness. DGpp film growth conformed to the underlying fibril features, with a gradual smoothing out of the resultant surface topography. Further, to understand how the films grow on top of AFNs, X-ray photoelectron spectroscopy depth profiling was employed to determine the elemental composition within the coating, perpendicular to the plane of the substrate. It was found that AFNs partially fragment during the initial stage of plasma polymerisation, and these fragments then mix with the growing DGpp to form an intermixed interface region above the AFN. The findings in this study are likely applicable to situations where plasma polymerisation is used to apply an overcoat to adsorbed organic and/or biological molecules.

  14. Simple methods for polymer nanostructuring by plasma modification, metal sputtering, and annealing

    NASA Astrophysics Data System (ADS)

    Jurik, Petr; Slepicka, Petr; Svorcik, Vaclav

    2016-09-01

    Self-organization offer cost-efficient and easily scalable way to nanopattern polymer surfaces for various applications ranging from medical use to sensing applications. For example poly-L-lactic acid can be modified either by metal sputtering and/or plasma discharge to form ripple-like structures after annealing with size and regularity highly dependent on processing variables. Such samples have enhanced biocompatibility and as such they are promising substrates for use as various implants. Another example is annealing of polyethersulfone film modified by metal sputtering that causes coalescence of metal layer into separated metal nanoclusters. This structure exhibit localized surface Plasmon resonance, which can be used for example in Surface enhanced Raman spectroscopy.

  15. Microporous organic polymers for gas storage and separation applications.

    PubMed

    Chang, Ze; Zhang, Da-Shuai; Chen, Qiang; Bu, Xian-He

    2013-04-21

    Microporous organic polymers (MOPs), an emerging class of functional porous materials featured with the pure organic component have been widely studied in recent years. These materials have potential uses in areas such as storage, separation, and catalysis. In this Perspective, we focused on the gas storage and separation of MOPs. The targeted design and synthesis of MOPs toward the enhancement of gas capacity and selectivity are discussed. Furthermore, special emphasis is given to the post-synthesis modification of MOPs which have been proved to be effective methods to accurately tune the desired properties.

  16. Quantitative Measurement of Cationic Polymer Vector and Polymer/pDNA Polyplex Intercalation into the Cell Plasma Membrane

    PubMed Central

    Vaidyanathan, Sriram; Anderson, Kevin B.; Merzel, Rachel L.; Jacobovitz, Binyamin; Kaushik, Milan P.; Kelly, Christina N.; van Dongen, Mallory A.; Dougherty, Casey A.; Orr, Bradford G.; Holl, Mark M. Banaszak

    2016-01-01

    Cationic gene delivery agents (vectors) are important for delivering nucleotides, but are also responsible for cytotoxicity. Cationic polymers (L-PEI, jetPEI, and G5 PAMAM) at 1x to 100x the concentrations required for translational activity (protein expression) induced the same increase in plasma membrane current of HEK 293A cells (30-50 nA) as measured by whole cell patch-clamp. This indicates saturation of the cell membrane by the cationic polymers. The increased currents induced by the polymers are not reversible for over 15 minutes. Irreversibility on this time scale is consistent with a polymer-supported pore or carpet model and indicates that the cell is unable to clear the polymer from the membrane. For polyplexes, although the charge concentration was the same (at N: P ration of 10:1), G5 PAMAM and jetPEI polyplexes induced a much larger current increase (40- 50 nA) than L-PEI polyplexes (< 20 nA). Both free cationic lipid and lipid polyplexes induced a lower increase in current than cationic polymers (< 20 nA). To quantify the membrane bound material, partition constants were measured for both free vectors and polyplexes into the HEK 293A cell membrane using a dye influx assay. The partition constants of free vectors increased with charge density of the vectors. Polyplex partition constants did not show such a trend. The long lasting cell plasma permeability induced by exposure to the polymer vectors or the polyplexes provides a plausible mechanism for the toxicity and inflammatory response induced by exposure to these materials. PMID:25952271

  17. Quantitative Measurement of Cationic Polymer Vector and Polymer-pDNA Polyplex Intercalation into the Cell Plasma Membrane.

    PubMed

    Vaidyanathan, Sriram; Anderson, Kevin B; Merzel, Rachel L; Jacobovitz, Binyamin; Kaushik, Milan P; Kelly, Christina N; van Dongen, Mallory A; Dougherty, Casey A; Orr, Bradford G; Banaszak Holl, Mark M

    2015-06-23

    Cationic gene delivery agents (vectors) are important for delivering nucleotides, but are also responsible for cytotoxicity. Cationic polymers (L-PEI, jetPEI, and G5 PAMAM) at 1× to 100× the concentrations required for translational activity (protein expression) induced the same increase in plasma membrane current of HEK 293A cells (30-50 nA) as measured by whole cell patch-clamp. This indicates saturation of the cell membrane by the cationic polymers. The increased currents induced by the polymers are not reversible for over 15 min. Irreversibility on this time scale is consistent with a polymer-supported pore or carpet model and indicates that the cell is unable to clear the polymer from the membrane. For polyplexes, although the charge concentration was the same (at N/P ratio of 10:1), G5 PAMAM and jetPEI polyplexes induced a much larger current increase (40-50 nA) than L-PEI polyplexes (<20 nA). Both free cationic lipid and lipid polyplexes induced a lower increase in current than cationic polymers (<20 nA). To quantify the membrane bound material, partition constants were measured for both free vectors and polyplexes into the HEK 293A cell membrane using a dye influx assay. The partition constants of free vectors increased with charge density of the vectors. Polyplex partition constants did not show such a trend. The long lasting cell plasma permeability induced by exposure to the polymer vectors or the polyplexes provides a plausible mechanism for the toxicity and inflammatory response induced by exposure to these materials.

  18. Efficient barrier for charge injection in polyethylene by silver nanoparticles/plasma polymer stack

    SciTech Connect

    Milliere, L.; Makasheva, K. Laurent, C.; Despax, B.; Teyssedre, G.

    2014-09-22

    Charge injection from a metal/insulator contact is a process promoting the formation of space charge in polymeric insulation largely used in thick layers in high voltage equipment. The internal charge perturbs the field distribution and can lead to catastrophic failure either through its electrostatic effects or through energetic processes initiated under charge recombination and/or hot electrons effects. Injection is still ill-described in polymeric insulation due to the complexity of the contact between the polymer chains and the electrodes. Barrier heights derived from the metal work function and the polymer electronic affinity do not provide a good description of the measurements [Taleb et al., IEEE Trans. Dielectr. Electr. Insul. 20, 311–320 (2013)]. Considering the difficulty to describe the contact properties and the need to prevent charge injection in polymers for high voltage applications, we developed an alternative approach by tailoring the interface properties by the silver nanoparticles (AgNPs)/plasma polymer stack, deposited on the polymer film. Due to their small size, the AgNPs, covered by a very thin film of plasma polymer, act as deep traps for the injected charges thereby stabilizing the interface from the point of view of charge injection. After a quick description of the method for elaborating the nanostructured layer near the contact, it is demonstrated how the AgNPs/plasma polymer stack effectively prevents, in a spectacular way, the formation of bulk space charge.

  19. Preparation and Performance of Plasma/Polymer Composite Coatings on Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Bakhsheshi-Rad, H. R.; Hamzah, E.; Bagheriyan, S.; Daroonparvar, M.; Kasiri-Asgarani, M.; Shah, A. M.; Medraj, M.

    2016-09-01

    A triplex plasma (NiCoCrAlHfYSi/Al2O3·13%TiO2)/polycaprolactone composite coating was successfully deposited on a Mg-1.2Ca alloy by a combination of atmospheric plasma spraying and dip-coating techniques. The NiCoCrAlHfYSi (MCrAlHYS) coating, as the first layer, contained a large number of voids, globular porosities, and micro-cracks with a thickness of 40-50 μm, while the Al2O3·13%TiO2 coating, as the second layer, presented a unique bimodal microstructure with a thickness of 70-80 μm. The top layer was a hydrophobic polymer, which effectively sealed the porosities of plasma layers. The results of micro-hardness and bonding strength tests showed that the plasma coating presented excellent hardness (870 HV) and good bonding strength (14.8 MPa). However, the plasma/polymer coatings interface exhibited low bonding strength (8.6 MPa). The polymer coating formed thick layer (100-110 μm) that homogeneously covered the surface of the plasma layers. Contact angle measurement showed that polymer coating over plasma layers significantly decreased surface wettability. The corrosion current density ( i corr) of an uncoated sample (262.7 µA/cm2) decreased to 76.9 µA/cm2 after plasma coatings were applied. However, it was found that the i corr decreased significantly to 0.002 µA/cm2 after polymer sealing of the porous plasma layers.

  20. Crosslinkable low bandgap polymers for organic solar cells

    NASA Astrophysics Data System (ADS)

    Strohriegl, Peter; Saller, Christina; Knauer, Philipp; Köhler, Anna; Hahn, Tobias; Fischer, Florian; Kahle, Frank-Julian

    2016-09-01

    We present a number of polyfluorene based conjugated polymers with crosslinkable acrylate and oxetane units. These polymers can be crosslinked by free radical polymerization in the case of acrylates and by cationic ring opening polymerization for oxetanes. Upon polymerization densely crosslinked networks are formed which are completely insoluble. We show that the diffusion coefficient of C60 in polyfluorene is reduced by a factor of 1000 by crosslinking. MIS-CELIV measurements are used to monitor changes in the charge carrier mobility upon crosslinking. It shows that using appropriate conditions, e.g. low initiator concentrations or thermal crosslinking, the charge carrier mobility is not reduced by crosslinking. Solution processed three layer organic solar cells were realized with a crosslinkable fluorene based copolymer containing acrylate groups. The efficiency is increased from 1.4% for the reference to 1.8% in the three layer cell with a crosslinked exciton blocking layer. A critical issue of BHJ cells is the instability of the morphology of the polymer:fullerene blend over long operation times at elevated temperature. We present a crosslinkable derivative of the low bandgap polymer PFDTBT which contains oxetane units. BHJ cells with the crosslinked PFDTBT derivative and PCBM were tested in accelerated aging experiments at 100 °C for times up to 100 h. Stabilization was clearly observed in crosslinked BHJ cells compared to the non-crosslinked reference. We show for the first time that oxetane containing polymers can be thermally crosslinked without any added initiator. Initiator free crosslinking is particularly attractive as it avoids the formation of decomposition products, and thus potential electron traps and quenching sites from the initiator.

  1. Site-Specific Zwitterionic Polymer Conjugates of a Protein Have Long Plasma Circulation.

    PubMed

    Bhattacharjee, Somnath; Liu, Wenge; Wang, Wei-Han; Weitzhandler, Isaac; Li, Xinghai; Qi, Yizhi; Liu, Jinyao; Pang, Yan; Hunt, Donald F; Chilkoti, Ashutosh

    2015-11-01

    Many proteins suffer from suboptimal pharmacokinetics (PK) that limit their utility as drugs. The efficient synthesis of polymer conjugates of protein drugs with tunable PK to optimize their in vivo efficacy is hence critical. We report here the first study of the in vivo behavior of a site-specific conjugate of a zwitterionic polymer and a protein. To synthesize the conjugate, we first installed an initiator for atom-transfer radical polymerization (ATRP) at the N terminus of myoglobin (Mb-N-Br). Subsequently, in situ ATRP was carried out in aqueous buffer to grow an amine-functionalized polymer from Mb-N-Br. The cationic polymer was further derivatized to two zwitterionic polymers by treating the amine groups of the cationic polymer with iodoacetic acid to obtain poly(carboxybetaine methacrylate) with a one-carbon spacer (PCBMA; C1 ), and sequentially with 3-iodopropionic acid and iodoacetic acid to obtain PCBMA(mix) with a mixture of C1 and C2 spacers. The Mb-N-PCBMA polymer conjugates had a longer in vivo plasma half-life than a PEG-like comb polymer conjugate of similar molecular weights (MW). The structure of the zwitterion plays a role in controlling the in vivo behavior of the conjugate, as the PCBMA conjugate with a C1 spacer had significantly longer plasma circulation than the conjugate with a mixture of C1 and C2 spacers.

  2. Intrinsically stretchable and healable semiconducting polymer for organic transistors

    NASA Astrophysics Data System (ADS)

    Oh, Jin Young; Rondeau-Gagné, Simon; Chiu, Yu-Cheng; Chortos, Alex; Lissel, Franziska; Wang, Ging-Ji Nathan; Schroeder, Bob C.; Kurosawa, Tadanori; Lopez, Jeffrey; Katsumata, Toru; Xu, Jie; Zhu, Chenxin; Gu, Xiaodan; Bae, Won-Gyu; Kim, Yeongin; Jin, Lihua; Chung, Jong Won; Tok, Jeffrey B.-H.; Bao, Zhenan

    2016-11-01

    Thin-film field-effect transistors are essential elements of stretchable electronic devices for wearable electronics. All of the materials and components of such transistors need to be stretchable and mechanically robust. Although there has been recent progress towards stretchable conductors, the realization of stretchable semiconductors has focused mainly on strain-accommodating engineering of materials, or blending of nanofibres or nanowires into elastomers. An alternative approach relies on using semiconductors that are intrinsically stretchable, so that they can be fabricated using standard processing methods. Molecular stretchability can be enhanced when conjugated polymers, containing modified side-chains and segmented backbones, are infused with more flexible molecular building blocks. Here we present a design concept for stretchable semiconducting polymers, which involves introducing chemical moieties to promote dynamic non-covalent crosslinking of the conjugated polymers. These non-covalent crosslinking moieties are able to undergo an energy dissipation mechanism through breakage of bonds when strain is applied, while retaining high charge transport abilities. As a result, our polymer is able to recover its high field-effect mobility performance (more than 1 square centimetre per volt per second) even after a hundred cycles at 100 per cent applied strain. Organic thin-film field-effect transistors fabricated from these materials exhibited mobility as high as 1.3 square centimetres per volt per second and a high on/off current ratio exceeding a million. The field-effect mobility remained as high as 1.12 square centimetres per volt per second at 100 per cent strain along the direction perpendicular to the strain. The field-effect mobility of damaged devices can be almost fully recovered after a solvent and thermal healing treatment. Finally, we successfully fabricated a skin-inspired stretchable organic transistor operating under deformations that might be

  3. Intrinsically stretchable and healable semiconducting polymer for organic transistors.

    PubMed

    Oh, Jin Young; Rondeau-Gagné, Simon; Chiu, Yu-Cheng; Chortos, Alex; Lissel, Franziska; Wang, Ging-Ji Nathan; Schroeder, Bob C; Kurosawa, Tadanori; Lopez, Jeffrey; Katsumata, Toru; Xu, Jie; Zhu, Chenxin; Gu, Xiaodan; Bae, Won-Gyu; Kim, Yeongin; Jin, Lihua; Chung, Jong Won; Tok, Jeffrey B-H; Bao, Zhenan

    2016-11-17

    Thin-film field-effect transistors are essential elements of stretchable electronic devices for wearable electronics. All of the materials and components of such transistors need to be stretchable and mechanically robust. Although there has been recent progress towards stretchable conductors, the realization of stretchable semiconductors has focused mainly on strain-accommodating engineering of materials, or blending of nanofibres or nanowires into elastomers. An alternative approach relies on using semiconductors that are intrinsically stretchable, so that they can be fabricated using standard processing methods. Molecular stretchability can be enhanced when conjugated polymers, containing modified side-chains and segmented backbones, are infused with more flexible molecular building blocks. Here we present a design concept for stretchable semiconducting polymers, which involves introducing chemical moieties to promote dynamic non-covalent crosslinking of the conjugated polymers. These non-covalent crosslinking moieties are able to undergo an energy dissipation mechanism through breakage of bonds when strain is applied, while retaining high charge transport abilities. As a result, our polymer is able to recover its high field-effect mobility performance (more than 1 square centimetre per volt per second) even after a hundred cycles at 100 per cent applied strain. Organic thin-film field-effect transistors fabricated from these materials exhibited mobility as high as 1.3 square centimetres per volt per second and a high on/off current ratio exceeding a million. The field-effect mobility remained as high as 1.12 square centimetres per volt per second at 100 per cent strain along the direction perpendicular to the strain. The field-effect mobility of damaged devices can be almost fully recovered after a solvent and thermal healing treatment. Finally, we successfully fabricated a skin-inspired stretchable organic transistor operating under deformations that might be

  4. Principles of chromatin organization in yeast: relevance of polymer models to describe nuclear organization and dynamics.

    PubMed

    Wang, Renjie; Mozziconacci, Julien; Bancaud, Aurélien; Gadal, Olivier

    2015-06-01

    Nuclear organization can impact on all aspects of the genome life cycle. This organization is thoroughly investigated by advanced imaging and chromosome conformation capture techniques, providing considerable amount of datasets describing the spatial organization of chromosomes. In this review, we will focus on polymer models to describe chromosome statics and dynamics in the yeast Saccharomyces cerevisiae. We suggest that the equilibrium configuration of a polymer chain tethered at both ends and placed in a confined volume is consistent with the current literature, implying that local chromatin interactions play a secondary role in yeast nuclear organization. Future challenges are to reach an integrated multi-scale description of yeast chromosome organization, which is crucially needed to improve our understanding of the regulation of genomic transaction.

  5. polyMOFs: A Class of Interconvertible Polymer-Metal-Organic-Framework Hybrid Materials.

    PubMed

    Zhang, Zhenjie; Nguyen, Ha Thi Hoang; Miller, Stephen A; Cohen, Seth M

    2015-05-18

    Preparation of porous materials from one-dimensional polymers is challenging because the packing of polymer chains results in a dense, non-porous arrangement. Herein, we demonstrate the remarkable adaptation of an amorphous, linear, non-porous, flexible organic polymer into a three-dimensional, highly porous, crystalline solid, as the organic component of a metal-organic framework (MOF). A polymer with aromatic dicarboxylic acids in the backbone functioned as a polymer ligand upon annealing with Zn(II), generating a polymer-metal-organic framework (polyMOF). These materials break the dogma that MOFs must be prepared from small, rigid ligands. Similarly, polyMOFs contradict conventional polymer chemistry by demonstrating that linear and amorphous polymers can be readily coaxed into a highly crystalline, porous, three-dimensional structure by coordination chemistry.

  6. Hydroxylation of organic polymer surface: method and application.

    PubMed

    Yang, Peng; Yang, Wantai

    2014-03-26

    It may be hardly believable that inert C-H bonds on a polymeric material surface could be quickly and efficiently transformed into C-OH by a simple and mild way. Thanks to the approaches developed recently, it is now possible to transform surface H atoms of a polymeric substrate into monolayer OH groups by a simple/mild photochemical reaction. Herein the method and application of this small-molecular interfacial chemistry is highlighted. The existence of hydroxyl groups on material surfaces not only determines the physical and chemical properties of materials but also provides effective reaction sites for postsynthetic sequential modification to fulfill the requirements of various applications. However, organic synthetic materials based on petroleum, especially polyolefins comprise mainly C and H atoms and thus present serious surface problems due to low surface energy and inertness in reactivity. These limitations make it challenging to perform postsynthetic surface sequential chemical derivatization toward enhanced functionalities and properties and also cause serious interfacial problems when bonding or integrating polymer substrates with natural or inorganic materials. Polymer surface hydroxylation based on direct conversion of C-H bonds on polymer surfaces is thus of significant importance for academic and practical industrial applications. Although highly active research results have reported on small-molecular C-H bond activation in solution (thus homogeneous), most of them, featuring the use of a variety of transition metals as catalysts, present a slow reaction rate, a low atom economy and an obvious environmental pollution. In sharp contrast to these conventional C-H activation strategies, the present Spotlight describes a universal confined photocatalytic oxidation (CPO) system that is able to directly convert polymer surface C-H bonds to C-OSO3(-) and, subsequently, to C-OH through a simple hydrolysis. Generally speaking, these newly implanted hydroxyl

  7. Surface chemistry for molecular layer deposition of organic and hybrid organic-inorganic polymers.

    PubMed

    George, Steven M; Yoon, Byunghoon; Dameron, Arrelaine A

    2009-04-21

    The fabrication of many devices in modern technology requires techniques for growing thin films. As devices miniaturize, manufacturers will need to control thin film growth at the atomic level. Because many devices have challenging morphologies, thin films must be able to coat conformally on structures with high aspect ratios. Techniques based on atomic layer deposition (ALD), a special type of chemical vapor deposition, allow for the growth of ultra-thin and conformal films of inorganic materials using sequential, self-limiting reactions. Molecular layer deposition (MLD) methods extend this strategy to include organic and hybrid organic-inorganic polymeric materials. In this Account, we provide an overview of the surface chemistry for the MLD of organic and hybrid organic-inorganic polymers and examine a variety of surface chemistry strategies for growing polymer thin films. Previously, surface chemistry for the MLD of organic polymers such as polyamides and polyimides has used two-step AB reaction cycles using homo-bifunctional reactants. However, these reagents can react twice and eliminate active sites on the growing polymer surface. To avoid this problem, we can employ alternative precursors for MLD based on hetero-bifunctional reactants and ring-opening reactions. We can also use surface activation or protected chemical functional groups. In addition, we can combine the reactants for ALD and MLD to grow hybrid organic-inorganic polymers that should display interesting properties. For example, using trimethylaluminum (TMA) and various diols as reactants, we can achieve the MLD of alucone organic-inorganic polymers. We can alter the chemical and physical properties of these organic-inorganic polymers by varying the organic constituent in the diol or blending the alucone MLD films with purely inorganic ALD films to build a nanocomposite or nanolaminate. The combination of ALD and MLD reactants enlarges the number of possible sequential self-limiting surface

  8. Course of organized structures in thermal plasma inside and outside argon plasma torch

    NASA Astrophysics Data System (ADS)

    Gruber, Jan; Sonsky, Jiri; Hlina, Jan

    2016-09-01

    Arc chamber of direct-current (dc) argon plasma torch and area just above the nozzle outside of this dc plasma torch were observed by hi-speed camera. System of reflecting mirrors and transparent silica arc chamber walls were used to obtain simultaneous records of both i) cathode area with electric arc inside the plasma torch and ii) nozzle exit with resulting plasma jet outside the plasma torch. Such experimental arrangement allowed us to track localized repeating patterns (organized structures) in the arc chamber and in the plasma flow. Identification of various organized structures - for different experimental conditions - according to their origin and typical development is presented in this paper. Impact of 300 Hz ripple in arc current was compared between different areas of the plasma. Additional simultaneous observation of plasma flow in the same system by series of photodiodes was used for verification of the results. The work was possible with institutional support RVO:61388998.

  9. Nanostructural self-organization and dynamic adaptation of metal-polymer tribosystems

    NASA Astrophysics Data System (ADS)

    Mashkov, Yu. K.

    2017-02-01

    The results of investigating the effect of nanosize modifiers of a polymer matrix on the nanostructural self-organization of polymer composites and dynamic adaptation of metal-polymer tribosystems, which considerably affect the wear resistance of polymer composite materials, have been analyzed. It has been shown that the physicochemical nanostructural self-organization processes are developed in metal-polymer tribosystems with the formation of thermotropic liquid-crystal structures of the polymer matrix, followed by the transition of the system to the stationary state with a negative feedback that ensures dynamic adaptation of the tribosystem to given operating conditions.

  10. Supramolecular organization of heteroxylan-dehydrogenation polymers (synthetic lignin) nanoparticles.

    PubMed

    Barakat, Abdellatif; Gaillard, Cédric; Lairez, Didier; Saulnier, Luc; Chabbert, Brigitte; Cathala, Bernard

    2008-02-01

    The supramolecular organization of particles composed of heteroxylans (HX) and synthetic lignin (dehydrogenation polymer, DHPs) was studied by light scattering (LS), atomic force microscopy (AFM), and fluorescent probes. Results from static and quasi-elastic light scattering indicate a dense core surrounded by a soft corona. Such organization is also supported by AFM images of the particles that display Gaussian height profiles when a low tapping force is applied, whereas the shape of the profile obtained at a higher mechanical solicitation is irregular and sharp due to deformation of the particles resulting from the tip indentation. This suggests a difference in mechanical behavior between the inner and outer parts of the particles. The formation of local chemical heterogeneities was demonstrated by use of two fluorescent polarity probes (pyrene and methyl-amino-pyrene) to be induced by the core-corona organization.

  11. Plasma polymer-functionalized silica particles for heavy metals removal.

    PubMed

    Akhavan, Behnam; Jarvis, Karyn; Majewski, Peter

    2015-02-25

    Highly negatively charged particles were fabricated via an innovative plasma-assisted approach for the removal of heavy metal ions. Thiophene plasma polymerization was used to deposit sulfur-rich films onto silica particles followed by the introduction of oxidized sulfur functionalities, such as sulfonate and sulfonic acid, via water-plasma treatments. Surface chemistry analyses were conducted by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. Electrokinetic measurements quantified the zeta potentials and isoelectric points (IEPs) of modified particles and indicated significant decreases of zeta potentials and IEPs upon plasma modification of particles. Plasma polymerized thiophene-coated particles treated with water plasma for 10 min exhibited an IEP of less than 3.5. The effectiveness of developed surfaces in the adsorption of heavy metal ions was demonstrated through copper (Cu) and zinc (Zn) removal experiments. The removal of metal ions was examined through changing initial pH of solution, removal time, and mass of particles. Increasing the water plasma treatment time to 20 min significantly increased the metal removal efficiency (MRE) of modified particles, whereas further increasing the plasma treatment time reduced the MRE due to the influence of an ablation mechanism. The developed particulate surfaces were capable of removing more than 96.7% of both Cu and Zn ions in 1 h. The combination of plasma polymerization and oxidative plasma treatment is an effective method for the fabrication of new adsorbents for the removal of heavy metals.

  12. Atomic Oxygen Durability Evaluation of Protected Polymers Using Thermal Energy Plasma Systems

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Degroh, Kim K.; Stidham, Curtis R.; Gebauer, Linda; Lamoreaux, Cynthia M.

    1995-01-01

    The durability evaluation of protected polymers intended for use in low Earth orbit (LEO) has necessitated the use of large-area, high-fluence, atomic oxygen exposure systems. Two thermal energy atomic oxygen exposure systems which are frequently used for such evaluations are radio frequency (RF) plasma ashers and electron cyclotron resonance plasma sources. Plasma source testing practices such as ample preparation, effective fluence prediction, atomic oxygen flux determination, erosion measurement, operational considerations, and erosion yield measurements are presented. Issues which influence the prediction of in-space durability based on ground laboratory thermal energy plasma system testing are also addressed.

  13. Molecular structure and exciton dynamics in organic conjugated polymers

    NASA Astrophysics Data System (ADS)

    Thomas, Alan K.

    Intermolecular electronic interactions, dipole coupling and orbital overlap, caused by pi-pi stacking in organic conjugated polymers lead to unique structures and properties that can be harnessed for optoelectronic applications. These interactions define structure-function relationships in amorphous and aggregated forms of polymers in the solid state and determine their efficiencies and functionality in electronic devices, from transistors to solar cells. Organic polymer electronic device performance depends critically upon electronic coupling between monomer units -mediated by conformation and packing characteristics - that dictates electronic properties like conductivity and capacitance as well as electronic processes, such as charge carrier generation and transport. This dissertation demonstrates how electronic processes in conjugated polymers are mediated by subtle inter- and intra-chain electronic interactions imparted by the conformational degrees of freedom within their solid state structure and how this effects device performance. To initiate this investigation into structure-function relationships, an examination of nanoparticles representing two limiting aggregation states of the conjugated polymer poly(3-hexylthiophene) (P3HT) was conducted. These aggregates are defined by their predominate form of electronic coupling, inter- or intrachain, called H- and J-aggregates respectively. H- or J-aggregates of P3HT were embedded in an insulating matrix and time-resolved fluorescence intensity modulation spectroscopy was utilized to uncover the existence of efficient singlet-triplet quenching in J aggregates not present in H-aggregates. These studies were extended by examining P3HT H-and J-aggregates under applied electric fields in capacitor type devices using multiple time-resolved and steady-state spectroscopic techniques. These experiments reveal electronic couplings in J aggregates that shift excited state population towards a majority composed of long lived

  14. Intercalation of alkylamines into an organic polymer crystal

    NASA Astrophysics Data System (ADS)

    Matsumoto, Akikazu; Odani, Toru; Sada, Kazuki; Miyata, Mikiji; Tashiro, Kohji

    2000-05-01

    Organic solid-state synthesis allows formation of products that are difficult or impossible to produce by conventional methods. This feature, and the high degree of reaction selectivity that can be achieved, is a direct result of the control over the relative orientation of the reactants afforded by the solid state. But as the successful development of `topochemical reactions' requires the careful design of suitable reactant crystals, the range of both reactions and products amenable to this approach has been limited. However, recent advances in organic crystal engineering, particularly the rational design of complex solid architectures through supramolecular preorganization, have renewed interest in topochemical reactions. Previously, we have orientated muconate monomers-diene moieties with a carboxylate group on each end-using long-chain n-alkylammonium ions, such that the topochemical photopolymerization of the solid-state reactants produces layered crystals of stereoregular and high-molecular-mass polymers. Here we show that these polymer crystals are capable of repeated, reversible intercalation by conversion to the analogous poly(carboxylic acid), followed by transformation into a number of poly(alkylammonium muconate)s upon addition of the appropriate amine. Introduction of functional groups into these crystals may allow the design of organic solids for applications such as molecular recognition, separation and catalysis, thereby extending the range and practical utility of current intercalation compounds.

  15. Intercalation of alkylamines into an organic polymer crystal

    PubMed

    Matsumoto; Odani; Sada; Miyata; Tashiro

    2000-05-18

    Organic solid-state synthesis allows formation of products that are difficult or impossible to produce by conventional methods. This feature, and the high degree of reaction selectivity that can be achieved, is a direct result of the control over the relative orientation of the reactants afforded by the solid state. But as the successful development of 'topochemical reactions' requires the careful design of suitable reactant crystals, the range of both reactions and products amenable to this approach has been limited. However, recent advances in organic crystal engineering, particularly the rational design of complex solid architectures through supramolecular preorganization, have renewed interest in topochemical reactions. Previously, we have orientated muconate monomers--diene moieties with a carboxylate group on each end--using long-chain n-alkylammonium ions, such that the topochemical photopolymerization of the solid-state reactants produces layered crystals of stereoregular and high-molecular-mass polymers. Here we show that these polymer crystals are capable of repeated, reversible intercalation by conversion to the analogous poly(carboxylic acid), followed by transformation into a number of poly(alkylammonium muconate)s upon addition of the appropriate amine. Introduction of functional groups into these crystals may allow the design of organic solids for applications such as molecular recognition, separation and catalysis, thereby extending the range and practical utility of current intercalation compounds.

  16. Improved adhesion of dense silica coatings on polymers by atmospheric plasma pretreatment.

    PubMed

    Cui, Linying; Ranade, Alpana N; Matos, Marvi A; Dubois, Geraud; Dauskardt, Reinhold H

    2013-09-11

    Oxygen atmospheric plasma was used to pretreat polycarbonate (PC) and stretched poly(methyl methacrylate) (PMMA) surfaces in order to enhance the adhesion of the dense silica coatings deposited by atmospheric plasma on the polymer substrates. The treatment time and chemical structure of the polymers were found to be important factors. For PC, a short treatment increased the adhesion energy, while longer treatment times decreased the adhesion. In contrast, plasma pretreatment monotonically decreased the adhesion of PMMA, and pristine PMMA exhibited much higher adhesion than the PC counterpart. We found that adhesion enhancement was achieved through improved chemical bonding, chain interdiffusion, and mechanical interlocking at the coating/substrate interface, after a short atmospheric plasma treatment. Decreased adhesion resulted from overoxidation and low-molecular-weight weak layer formation on the polymer surface by prolonged atmospheric plasma treatment. The dramatic differences in the behavior of PC and PMMA in relation to the plasma treatment time were due to their dissimilar resistance to atmospheric plasma exposure.

  17. Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application

    NASA Astrophysics Data System (ADS)

    Jeon, Sohee; Kang, Jae-Wook; Park, Hyung-Dol; Kim, Jang-Joo; Youn, Jae R.; Shim, Jongyoup; Jeong, Jun-ho; Choi, Dae-Geun; Kim, Ki-Don; Altun, Ali Ozhan; Kim, Se-Heon; Lee, Yong-Hee

    2008-06-01

    Light extraction efficiency of a conventional organic light emitting diode (OLED) remains limited to approximately 20% as most of the emission is trapped in the waveguide and glass modes. An etchless simple method was developed to fabricate two-dimensional nanostructures on glass substrate directly by using ultraviolet (UV) curable polymer resin and UV nanoimprint lithography in order to improve output coupling efficiency of OLEDs. The enhancement of the light extraction was predicted by the three-dimensional finite difference time domain method. OLEDs integrated on nanoimprinted substrates enhanced electroluminance intensity by up to 50% compared to the conventional device.

  18. Plasma deposition of organic thin films: Control of film chemistry

    SciTech Connect

    Ratner, B.D.

    1993-12-31

    Plasma deposition of thin, polymeric films represent a versatile surface modification technology. Although these thin films are exploited for many applications, complaints heard about plasma deposited films are that their structures are uncharacterizable, that organic functionality is lost in their production and that reproducibility is difficult. Recently, new methods for film production, reactor control and surface characterization have led to well characterized plasma deposited thin polymeric films (PDTPF) with defined structure and organic functionality. Such PDTPF often closely resemble conventionally prepared homopolymers. Methods that can be used to control the chemistry of PDTPF are the minimization of the plasma power, pulsing the RF field to reduce the {open_quotes}plasma on{close_quotes} time, use of a Faraday cage to reduce electron bombardment, positioning the sample downfield from the glow zone, the use of monomers containing polymerizable double bonds and the use of a cold substrate to condense vapor simultaneously with plasma deposition.

  19. The polymer-like organic material in the Orgueil meteorite

    NASA Technical Reports Server (NTRS)

    Bandurski, E. L.; Nagy, B.

    1976-01-01

    Results are reported for analysis of polymeric organic material contained in powder from the Orgueil chondrite, using a stepwise high-vacuum pyrolysis-gas chromatography-mass spectrometry technique. Pyrolysis products obtained include a series of alkanes and alkenes to C8, an extensive series of alkylbenzene isomers, thiophene, alkylthiophenes, benzothiophene, acetonitrile, acrylonitrile, benzonitrile, acetone, and phenol. Most of these products are shown to be similar both qualitatively and quantitatively to those previously obtained from solvent-extracted Allende powder, indicating a basically aromatic and heteroaromatic polymer matrix with short aliphatic bridges or side chains. The production of acrylonitrile, acetonitrile, and benzonitrile (common breakdown products of amino acids) from the insoluble organic material is taken to suggest that amino acids exist in an insoluble form, perhaps as peptides, in the meteorite's polymeric component. Similarities between the structure of the Orgueil polymeric material and terrestrial kerogen are discussed which raise the possibility that both might have been produced in part by similar reactions.

  20. Tuning hyperfine fields in conjugated polymers for coherent organic spintronics.

    PubMed

    Lee, Sang-Yun; Paik, Seo-Young; McCamey, Dane R; Yu, Justin; Burn, Paul L; Lupton, John M; Boehme, Christoph

    2011-02-23

    An appealing avenue for organic spintronics lies in direct coherent control of the spin population by means of pulsed electron spin resonance techniques. Whereas previous work has focused on the electrical detection of coherent spin dynamics, we demonstrate here the equivalence of an all-optical approach, allowing us to explore the influence of materials chemistry on the spin dynamics. We show that deuteration of the conjugated polymer side groups weakens the local hyperfine fields experienced by electron-hole pairs, thereby lowering the threshold for the resonant radiation intensity at which coherent coupling and spin beating occur. The technique is exquisitively sensitive to previously obscured material properties and offers a route to quantifying and tuning hyperfine fields in organic semiconductors.

  1. Intrinsic electrical conductivity of nanostructured metal-organic polymer chains

    PubMed Central

    Hermosa, Cristina; Vicente Álvarez, Jose; Azani, Mohammad-Reza; Gómez-García, Carlos J.; Fritz, Michelle; Soler, Jose M.; Gómez-Herrero, Julio; Gómez-Navarro, Cristina; Zamora, Félix

    2013-01-01

    One-dimensional conductive polymers are attractive materials because of their potential in flexible and transparent electronics. Despite years of research, on the macro- and nano-scale, structural disorder represents the major hurdle in achieving high conductivities. Here we report measurements of highly ordered metal-organic nanoribbons, whose intrinsic (defect-free) conductivity is found to be 104 S m−1, three orders of magnitude higher than that of our macroscopic crystals. This magnitude is preserved for distances as large as 300 nm. Above this length, the presence of structural defects (~ 0.5%) gives rise to an inter-fibre-mediated charge transport similar to that of macroscopic crystals. We provide the first direct experimental evidence of the gapless electronic structure predicted for these compounds. Our results postulate metal-organic molecular wires as good metallic interconnectors in nanodevices. PMID:23591876

  2. Molecular Design and Device Application of Radical Polymers for Improved Charge Extraction in Organic Photovoltaic Cells

    DTIC Science & Technology

    2015-07-29

    AFRL-OSR-VA-TR-2015-0218 Molecular Design and Device Application of Radical Polymers for Improved Charge Extraction in Organic Photovoltaic Cells... APPLICATION OF RADICAL POLYMERS FOR IMPROVED CHARGE EXTRACTION IN ORGANIC PHOTOVOLTAIC CELLS" 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA-9550-12-1...radical polymers and offered a perspective of their potential organic electronic applications moving forward. This work cemented our group as a world

  3. High Temperature Resistant Organic/Inorganic Hybrid Polymers: An Architectural Study

    DTIC Science & Technology

    2007-04-18

    DATES COVERED July 10 2003 – January 09 2007 4. TITLE AND SUBTITLE High Temperature Resistant Organic/ Inorganic Hybrid Polymers: An...Supramolecular Chemistry, High Temperature Materials, Organic Inorganic Hybrid Materials, Sensors 15. NUMBER OF PAGES 16...298-102 Enclosure 1 2 High Temperature Resistant Organic/ Inorganic Hybrid Polymers: An Architectural Study DAAD19-03-1-0208 PIs Stuart

  4. PLASMA COAGULATION BY ORGANISMS OTHER THAN STAPHYLOCOCCUS AUREUS.

    PubMed

    BAYLISS, B G; HALL, E R

    1965-01-01

    Bayliss, Berenice G. (Washington State University, Pullman), and Elizabeth R. Hall. Plasma coagulation by organisms other than Staphylococcus aureus. J. Bacteriol. 89:101-105. 1965.-Approximately 200 organisms were investigated for their ability to clot human and rabbit plasma. Various anticoagulants were used in preparing the plasma: acid-citrate-dextrose, ethylenediaminetetraacetate, balanced oxalate, potassium and sodium oxalates, and heparin. Twelve organisms were found which coagulated citrated plasma in less than 8 hr: four strains of Streptococcus faecalis; two strains of S. faecalis var. zymogenes; three strains of S. faecalis var. liquefaciens; and one strain each of S. pyogenes, Escherichia coli, and Serratia marcescens. Six strains of coagulase-positive Staphylococcus were selected for use as controls. Experiments were performed to determine the mechanism by which these microorganisms coagulated citrated plasma. As this was the only plasma clotted, it was presumed that the citrate was utilized by the microorganisms, thereby releasing the calcium which was then made available so that normal physiological clotting could occur. To test this hypothesis, a chromatographic method was employed to determine the presence or absence of citrate. Coagulation tests, by use of increasing amounts of citrate, showed a linear relationship between the amount of citrate in the plasma and the coagulation time. It was demonstrated that the organisms must be actively metabolizing to clot citrated plasma. Proof for this was obtained by using a cell-free filtrate, to which thimerosal had been added to inhibit growth, instead of whole cultures for the coagulation test. Only the coagulase-positive staphylococci coagulated the citrated plasma under these conditions. From the results obtained, it was concluded that plasma coagulation by these organisms was by citrate utilization.

  5. Effects of Alkylthio and Alkoxy Side Chains in Polymer Donor Materials for Organic Solar Cells.

    PubMed

    Cui, Chaohua; Wong, Wai-Yeung

    2016-02-01

    Side chains play a considerable role not only in improving the solubility of polymers for solution-processed device fabrication, but also in affecting the molecular packing, electron affinity and thus the device performance. In particular, electron-donating side chains show unique properties when employed to tune the electronic character of conjugated polymers in many cases. Therefore, rational electron-donating side chain engineering can improve the photovoltaic properties of the resulting polymer donors to some extent. Here, a survey of some representative examples which use electron-donating alkylthio and alkoxy side chains in conjugated organic polymers for polymer solar cell applications will be presented. It is envisioned that an analysis of the effect of such electron-donating side chains in polymer donors would contribute to a better understanding of this kind of side chain behavior in solution-processed conjugated organic polymers for polymer solar cells.

  6. Free radical generation and concentration in a plasma polymer: the effect of aromaticity.

    PubMed

    Ershov, Sergey; Khelifa, Farid; Lemaur, Vincent; Cornil, Jérôme; Cossement, Damien; Habibi, Youssef; Dubois, Philippe; Snyders, Rony

    2014-08-13

    Plasma polymer films (PPF) have increasing applications in many fields due to the unique combination of properties of this class of materials. Among notable features arising from the specifics of plasma polymerization synthesis, a high surface reactivity can be advantageously used when exploited carefully. It is related to the presence of free radicals generated during the deposition process through manifold molecular bond scissions in the energetic plasma environment. In ambient atmosphere, these radicals undergo autoxidation reactions resulting in undesired polymer aging. However, when the reactivity of surface radicals is preserved and they are put in direct contact with a chemical group of interest, a specific surface functionalization or grafting of polymeric chains can be achieved. Therefore, the control of the surface free radical density of a plasma polymer is crucially important for a successful grafting. The present investigation focuses on the influence of the hydrocarbon precursor type, aromatic vs aliphatic, on the generation and concentration of free radicals on the surface of the PPF. Benzene and cyclohexane were chosen as model precursors. First, in situ FTIR analysis of the plasma phase supplemented by density functional theory calculations allowed the main fragmentation routes of precursor molecules in the discharge to be identified as a function of energy input. Using nitric oxide (NO) chemical labeling in combination with X-ray photoelectron spectroscopy analysis, a quantitative evaluation of concentration of surface free radicals as a function of input power has been assessed for both precursors. Different evolutions of the surface free radical density for the benzene- and cyclohexane-based PPF, namely, a continuous increase versus stabilization to a plateau, are attributed to different plasma polymerization mechanisms and resulting structures as illustrated by PPF characterization findings. The control of surface free radical density can be

  7. Continuous cellularization of calcium phosphate hybrid scaffolds induced by plasma polymer activation.

    PubMed

    Bergemann, Claudia; Cornelsen, Matthias; Quade, Antje; Laube, Thorsten; Schnabelrauch, Matthias; Rebl, Henrike; Weißmann, Volker; Seitz, Hermann; Nebe, Barbara

    2016-02-01

    The generation of hybrid materials based on β-tricalcium phosphate (TCP) and various biodegradable polymers like poly(l-lactide-co-d,l-lactide) (PLA) represents a common approach to overcoming the disadvantages of pure TCP devices. These disadvantages lie in TCP's mechanical properties, such as brittleness. The positive characteristic of PLA - improvement of compressive strength of calcium phosphate scaffolds - is diametrically opposed to its cell attractiveness. Therefore, the objective of this work was to optimize osteoblast migration and cellularization inside a three-dimensionally (3D) printed, PLA polymer stabilized TCP hybrid scaffold by a plasma polymer process depositing amino groups via allylamine. MG-63 osteoblastic cells inside the 10mm hybrid scaffold were dynamically cultivated for 14days in a 3D model system integrated in a perfusion reactor. The whole TCP/PLA hybrid scaffold was continuously colonized due to plasma polymerized allylamine activation inducing the migration potential of osteoblasts.

  8. Communication Support for the U. S. Burning Plasma Organization

    SciTech Connect

    Hegna, Chris

    2014-02-05

    The role of this DOE grant was to provide administrative and software support for the U. S. Burning Plasma Organization (USBPO). The USBPO is a grassroots organization of fusion plasma scientists that concentrates broadly on issues of interest in burning plasma physics in general with a particular emphasis on the needs of the ITER program. The particular role of this grant was to provide support of the communication needs of the USBPO primarily through the administration and maintenance of the USBPO server, the public USBPO website, e-mail lists and numerous members-only discussion forums and mail lists.

  9. Conjugated Polymer Zwitterions: Efficient Interlayer Materials in Organic Electronics.

    PubMed

    Liu, Yao; Duzhko, Volodimyr V; Page, Zachariah A; Emrick, Todd; Russell, Thomas P

    2016-11-15

    Conjugated polymer zwitterions (CPZs) are neutral, hydrophilic, polymer semiconductors. The pendent zwitterions, viewed as side chain dipoles, impart solubility in polar solvents for solution processing, and open opportunities as interfacial components of optoelectronic devices, for example, between metal electrodes and organic semiconductor active layers. Such interlayers are crucial for defining the performance of organic electronic devices, e.g., field-effect transistors (OFETs), light-emitting diodes (OLEDs), and photovoltaics (OPVs), all of which consist of multilayer structures. The interlayers reduce the Schottky barrier height and thus improve charge injection in OFETs and OLEDs. In OPVs, the interlayers serve to increase the built-in electric potential difference (Vbi) across the active layer, ensuring efficient extraction of photogenerated charge carriers. In general, polar and even charged electronically active polymers have gained recognition for their ability to modify metal/semiconductor interfaces to the benefit of organic electronics. While conjugated polyelectrolytes (CPEs) as interlayer materials are well-documented, open questions remain about the role of mobile counterions in CPE-containing devices. CPZs possess the processing advantages of CPEs, but as neutral molecules lack any potential complications associated with counterions. The electronic implications of CPZs on metal electrodes stem from the orientation of the zwitterion dipole moment in close proximity to the metal surface, and the resultant surface-induced polarization. This generates an interfacial dipole (Δ) at the CPZ/metal interface, altering the work function of the electrode, as confirmed by ultraviolet photoelectron spectroscopy (UPS), and improving device performance. An ideal cathode interlayer would reduce electrode work function, have orthogonal processability to the active layer, exhibit good film forming properties (i.e., wettability/uniformity), prevent exciton

  10. Protein immobilization capacity and covalent binding coverage of pulsed plasma polymer surfaces

    NASA Astrophysics Data System (ADS)

    Yin, Yongbai; Bax, Daniel; McKenzie, David R.; Bilek, Marcela M. M.

    2010-06-01

    Three carbon surfaces were deposited using pulsed plasma enhanced chemical vapour deposition method: a low and a high nitrogen-containing plasma polymer surfaces and a diamond-like carbon surface. The surfaces were analysed using both X-ray photoelectron spectroscopy (XPS) technique and the enzyme-linked immunosorbent assay (ELISA) method combining with sodium dodecyl sulphate (SDS) cleaning to investigate the capacity and covalent binding of the immobilized proteins. A good correlation was found on quantification of remaining protein after SDS cleaning using the ELISA method and the XPS technique. All surfaces had similar initial capacity of protein attachment but with large different resistance to SDS cleaning. The analysis showed that the high nitrogen-containing plasma polymer was the best biocompatible material due to its highest resistance to SDS cleaning, i.e. with the highest quantity (˜80%) of proteins bound covalently.

  11. "Thunderstruck": Plasma-Polymer-Coated Porous Silicon Microparticles As a Controlled Drug Delivery System.

    PubMed

    McInnes, Steven J P; Michl, Thomas D; Delalat, Bahman; Al-Bataineh, Sameer A; Coad, Bryan R; Vasilev, Krasimir; Griesser, Hans J; Voelcker, Nicolas H

    2016-02-01

    Controlling the release kinetics from a drug carrier is crucial to maintain a drug's therapeutic window. We report the use of biodegradable porous silicon microparticles (pSi MPs) loaded with the anticancer drug camphothecin, followed by a plasma polymer overcoating using a loudspeaker plasma reactor. Homogenous "Teflon-like" coatings were achieved by tumbling the particles by playing AC/DC's song "Thunderstruck". The overcoating resulted in a markedly slower release of the cytotoxic drug, and this effect correlated positively with the plasma polymer coating times, ranging from 2-fold up to more than 100-fold. Ultimately, upon characterizing and verifying pSi MP production, loading, and coating with analytical methods such as time-of-flight secondary ion mass spectrometry, scanning electron microscopy, thermal gravimetry, water contact angle measurements, and fluorescence microscopy, human neuroblastoma cells were challenged with pSi MPs in an in vitro assay, revealing a significant time delay in cell death onset.

  12. Polymer mat prepared via Forcespinning™ as a SERS platform for immobilization and detection of bacteria from blood plasma.

    PubMed

    Witkowska, Evelin; Szymborski, Tomasz; Kamińska, Agnieszka; Waluk, Jacek

    2017-02-01

    One of potential applications of nano- and microscale polymer fibers is SERS-active platforms for the detection of biological compounds and microorganisms. This paper demonstrates the polymer mat obtained with Forcespinning™ technique used to detect the bacteria from blood plasma. Forcespinning™ is a new method of manufacturing of polymer fibers which can be applied to variety of polymer materials, e.g. polyethylene, nylon, PA6 and others. The method is based on the centrifugal force to draw fiber from molten polymer, which allows tuning the diameter of the fiber from tens of nanometers up to micrometers. Wide range of diameters makes the forcespun polymer mat an excellent material to filter bacteria from fluids (e.g. blood plasma, water). Covering the mat with Au:Ag alloy turns it into a SERS platform able to immobilize, detect, and identify bacteria. We provide proof-of-concept, showing detection of S. aureus, P. aeruginosa, and S. Typhimurium from blood plasma.

  13. Removal of total cyanide in coking wastewater during a coagulation process: significance of organic polymers.

    PubMed

    Shen, Jian; Zhao, He; Cao, Hongbin; Zhang, Yi; Chen, Yongsheng

    2014-02-01

    Whether a cationic organic polymer can remove more total cyanide (TCN) than a non-ionic organic polymer during the same flocculation system has not been reported previously. In this study, the effects of organic polymers with different charge density on the removal mechanisms of TCN in coking wastewater are investigated by polyferric sulfate (PFS) with a cationic organic polymer (PFS-C) or a non-ionic polymer (PFS-N). The coagulation experiments results show that residual concentrations of TCN (Fe(CN)6(3-)) after PFS-C flocculation (TCN < 0.2 mg/L) are much lower than that after PFS-N precipitation. This can be attributed to the different TCN removal mechanisms of the individual organic polymers. To investigate the roles of organic polymers, physical and structural characteristics of the flocs are analyzed by FT-IR, XPS, TEM and XRD. Owing to the presence of N+ in PFS-C, Fe(CN)6(3-) and negative flocs (Fe(CN)6(3-) adsorbed on ferric hydroxides) can be removed via charge neutralization and electrostatic patch flocculation by the cationic organic polymer. However, non-ionic N in PFS-N barely reacts with cyanides through sweeping or bridging, which indicates that the non-ionic polymer has little influence on TCN removal.

  14. Polymer-ultrathin graphite sheet-polymer composite structured flexible nonvolatile bistable organic memory devices

    NASA Astrophysics Data System (ADS)

    Ick Son, Dong; Shim, Jae Ho; Park, Dong Hee; Jung, Jae Hun; Lee, Jung Min; Park, Won Il; Kim, Tae Whan; Choi, Won Kook

    2011-07-01

    We present data, which were obtained before bending and after bending, for the electrical bistabilities, memory stabilities, and memory mechanisms of three-layer structured flexible bistable organic memory (BOM) devices, which were fabricated utilizing the ultrathin graphite sheets (UGS) sandwiched between insulating poly(methylmethacrylate) (PMMA) polymer layers. The UGS were formed by transferring UGS (about 30 layers) and using a simple spin-coating technique. Transmission electron microscopy (TEM) measurements were performed to investigate the microstructural properties of the PMMA/UGS/PMMA films. Current-voltage (I-V) measurements were carried out to investigate the electrical properties of the BOM devices containing the UGS embedded in the PMMA polymer. Current-time (I-t) and current-cycle measurements under flat and bent conditions were performed to investigate the memory stabilities of the BOM devices. The memory characteristics of the BOM maintained similar device efficiencies after bending and were stable during repeated bendings of the BOM devices. The mechanisms for these characteristics of the fabricated BOM are described on the basis of the I-V results.

  15. Functionalization of polymer powders for SLS-processes using an atmospheric plasma jet in a fluidized bed reactor

    SciTech Connect

    Sachs, Marius; Schmitt, Adeliene; Schmidt, Jochen; Peukert, Wolfgang; Wirth, Karl-Ernst

    2015-05-22

    Recently additive manufacturing processes such as selective laser sintering (SLS) of polymers have gained more importance for industrial applications [1]. Tailor-made modification of polymers is essential in order to make these processes more efficient and to cover the industrial demands. The so far used polymer materials show weak performance regarding the mechanical stability of processed parts. To overcome this limitation, a new route to functionalize the surface of commercially available polymer particles (PA12; PE-HD; PP) using an atmospheric plasma jet in combination with a fluidized bed reactor has been investigated. Consequently, an improvement of adhesion and wettability [2] of the polymer surface without restraining the bulk properties of the powder is achieved. The atmospheric plasma jet process can provide reactive species at moderate temperatures which are suitable for polymer material. The functionalization of the polymer powders improves the quality of the devices build in a SLS-process.

  16. Degradation of organic fibers in radio frequency plasma

    SciTech Connect

    Finch, J.F.; Poulsen, G.G.; Pitt, W.G. )

    1992-01-01

    Plasma processing can be used to increase adhesion of organic fibers in composite materials, but prolonged exposure can also degrade the fibers, counteracting any adhesive gains. This study investigated the safe upper bounds of plasma processing on four common organic reinforcing fibers: Kevlar 49, Spectra 900, Dacron and Nylon 6. The possible causes of fiber degradation during plasma processing were also examined. Two tests were designed to evaluate fiber tensile strength during and after prolonged exposure to an argon plasma. The first of these tests was a dynamic processing tensile test in which filaments were loaded and exposed to plasma until they failed. The other was a post processing tensile test in which exposed filaments were tensile tested at ambient conditions. These studies determined that all the fibers were adversely affected by the plasma treatment. The degree of degradation was dependent upon the type of fiber, fiber loading, plasma power, and exposure time. The failure of Dacron and Kevlar during plasma processing was dependent upon the applied load. These fibers also showed significant reduction in diameter at failure. In the same type of test the Spectra and Nylon showed no dependency upon load and appeared to fail by melting.

  17. Laser initiation and decay processes in an organic vapor plasma

    NASA Astrophysics Data System (ADS)

    Ding, Guowen

    A large volume organic molecular plasma (hundreds of cm3) is created by a 193 nm laser ionizing an organic molecule, Tetrakis-(dimethylamino)-ethylene (TMAE). The plasma is found to be characterized by high electron density (10 13-1011cm-3), low electron temperature (~0.1 eV), fast creation (~10 ns) and rapid decaying (electron-ion recombination coefficient ~10-6 cm3/s). Fast Langmuir probe (LP) techniques are developed for diagnosing this plasma, including a novel probe design and fabrication, a fast detection system, sampling, indirect probe heating, electro-magnetic shielding and dummy probe techniques. Plasma physical processes regarding fast LP diagnostics for different time scales (t> and <100 ns) are studied. A theory for the correction due to a rapidly decaying plasma to LP measurements is developed. The mechanisms responsible for the plasma decay are studied, and a delayed ionization process is found to be important in interpreting the decay processes. It is also found that nitrogen can enhance the delayed emission of a TMAE Rydberg state from the TMAE plasma. This result strongly suggests that a long-lifetime highly-excited state is important in the TMAE plasma decay process. This result supports the delayed ionization mechanism. A model combining electron-ion recombination and delayed ionization processes is developed to calculate the delayed ionization lifetime.

  18. Synthesis of highly functionalised plasma polymer films from protonated precursor ions via the plasma α-γ transition.

    PubMed

    Saboohi, Solmaz; Coad, Bryan R; Griesser, Hans J; Michelmore, Andrew; Short, Robert D

    2017-02-15

    Chemically functionalized surfaces may be produced via plasma polymerization, however a high degree of functional group retention is often difficult to achieve. Here, the plasma polymerization of three structurally related ester precursors, ethyl isobutyrate (EIB), methyl isobutyrate (MIB) and ethyl trimethylacetate (ETMA) is compared at low and high pressure. In moving from a low pressure to higher pressure regime, significant changes in the plasma chemistry and resulting plasma polymer deposit were observed with much higher retention of chemical functionality at the higher pressure observed. Until now these changes would have been attributed to a decrease in the energy/molecule, however we show by direct measurement of the chemistry and physics of the plasma that there is fundamental shift in the properties of the plasma and surface interactions which explain the results. At low pressure (α regime) precursor fragmentation and neutral deposition dominate resulting in poor functional group retention. Increasing the pressure such that the sheath region close to surfaces becomes collisional (γ regime) favours production of protonated precursor ions which retain functionality and dominate the deposition process rather than radical species.

  19. Temperature-responsive enzyme-polymer nanoconjugates with enhanced catalytic activities in organic media.

    PubMed

    Zhu, Jingying; Zhang, Yifei; Lu, Diannan; Zare, Richard N; Ge, Jun; Liu, Zheng

    2013-07-11

    A general approach for preparing enzyme-polymer nanoconjugates that respond to temperature in organic media is presented. These nanoconjugates readily dissolve in organic solvents for homogenous catalysis at 40 °C and showed greatly enhanced apparent catalytic activities. The recovery of the soluble enzyme-polymer nanoconjugates is accomplished by temperature-induced precipitation.

  20. Laser induced micro plasma processing of polymer substrates for biomedical implant applications

    NASA Astrophysics Data System (ADS)

    French, P. W.; Rosowski, A.; Murphy, M.; Irving, M.; Sharp, M. C.

    2015-07-01

    This paper reports the experimental results of a new hybrid laser processing technique; Laser Induced Micro Plasma Processing (LIMP2). A transparent substrate is placed on top of a medium that will interact with the laser beam and create a plasma. The plasma and laser beam act in unison to ablate material and create micro-structuring on the "backside" of the substrate. We report the results of a series of experiments on a new laser processing technique that will use the same laser-plasma interaction to micromachining structures into glass and polymer substrates on the "topside" of the substrate and hence machine non-transparent material. This new laser processing technique is called Laser Induced Micro Plasma Processing (LIMP2). Micromachining of biomedical implants is proving an important enabling technology in controlling cell growth on a macro-scale. This paper discusses LIMP2 structuring of transparent substrate such as glasses and polymers for this application. Direct machining of these materials by lasers in the near infrared is at present impossible. Laser Induced Micro Plasma Processing (LIMP2) is a technique that allows laser operating at 1064 nm to machine microstructures directly these transparent substrates.

  1. Plasma Polymer Coatings to Prevent Pipeline Corrosion and Reduce Friction.

    DTIC Science & Technology

    1986-05-21

    34 praced on a coating surface. Using an Olympus zoom binocular * -5- - p ’. . . .,, v .t-. -\\ .’,’-’’’ "’ % , ’ --. microscope at lOx magnification, the... P ). The visual appearance further described the films as even or rainbow colored, peeled, or flaked. A particular sample (- could exhibit more than...and reasonable operating cost is an entirely feasible prospect. ( p :... -. -,.’ ! -10- RECOMMENI)ATIONS The investigation of plasma polymerized coatings

  2. Quartz crystal microbalance sensor for organic vapor detection based on molecularly imprinted polymers.

    PubMed

    Fu, Yi; Finklea, Harry O

    2003-10-15

    Molecularly imprinted polymers on quartz crystal microbalances (QCM) are examined for their ability to detect vapors of small organic molecules with greater sensitivity and selectivity than the traditional amorphous polymer coatings. Hydroquinone and phenol serve as noncovalently bound templates that generate shape-selective cavities in a poly(acrylic) or poly(methacrylic) polymer matrix. The imprinted polymers are immobilized on the piezoelectric crystal surface via a precoated poly(isobutylene) layer. The behavior of the imprinted polymer films is characterized by the dynamic and steady-state response of the QCM frequency to pulses of organic vapors in dry air. The apparent partition coefficients are determined for imprinted and nonimprinted polymers prepared by two synthetic methods and for varying mole ratios of template to monomer. The hydroquinone-imprinted polymers and, to a lesser extent, the phenol-imprinted polymers exhibit greater sensitivity and higher selectivity than the nonimprinted polymers toward organic vapors that are structurally related to the templates. These results indicate that molecularly imprinted polymers are promising for the development of selective piezoelectric sensors for organic vapor detection.

  3. Electric Transport Phenomena of Nanocomposite Organic Polymer Thin Films

    NASA Astrophysics Data System (ADS)

    Jira, Nicholas C.; Sabirianov, Ildar; Ilie, Carolina C.

    We discuss herein the nanocomposite organic thin film diodes for the use of plasmonic solar cells. This experimental work follows the theoretical calculations done for plasmonic solar cells using the MNPBEM toolbox for MatLab. These calculations include dispersion curves and amount of light scattering cross sections for different metallic nanoparticles. This study gives us clear ideas on what to expect from different metals, allowing us to make the best choice on what to use to obtain the best results. One specific technique for light trapping in thin films solar cells utilizes metal nanoparticles on the surface of the semiconductor. The characteristics of the metal, semiconductor interface allows for light to be guided in between them causing it to be scattered, allowing for more chances of absorption. The samples were fabricated using organic thin films made from polymers and metallic nanoparticles, more specifically Poly(1-vinylpyrrolidone-co-2-dimethylaminoethyl methacrylate) copolymer and silver or gold nanoparticles. The two fabrication methods applied include spin coating and Langmuir-Blodgett technique. The transport properties are obtained by analyzing the I-V curves. We will also discuss the resistance, resistivity, conductance, density of charge carriers. SUNY Oswego SCAC Grant.

  4. Optical Properties of Polymers Relevant to Secondary Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Marrero-Ortiz, W.; Gomez-Hernandez, M. E.; Xu, W.; Guo, S.; Zhang, R.

    2014-12-01

    Atmospheric aerosols play a critical role in climate directly by scattering and absorbing solar radiation and indirectly by modifying the cloud formation. Currently, the direct and indirect effects of aerosols represent the largest uncertainty in climate predictions models. Some aerosols are directly emitted, but the majority are formed in the atmosphere by the oxidation of gaseous precursors. However, the formation of aerosols at the molecular level is not fully characterized. Certain category of secondary organic aerosols (SOA), which represent a significant fraction of the total aerosol burden, can be light-absorbing, also known as brown carbon. However, the overall contribution of SOA to the brown carbon and the related climate forcing is poorly understood. Such incomplete understanding is due in part to the chemical complexity of SOA and the lack of knowledge regarding SOA formation, transformation, and optical properties. Based on previous laboratory experiments, field measurements, and modeling studies, it has been suggested that the polymers and oligomers play an important role in the SOA formation. Atmospheric polymers could be produced by the hydration or heterogeneous reactions of epoxides and small α-dicarbonyls. Their aqueous chemistry products have been shown to give light-absorbing and high molecular weight oligomeric species, which increase the SOA mass production and alter the direct and indirect effect of aerosols. In this paper, the aerosol chemistry of small α-dicarbonyl compounds with amines is investigated and the associated optical properties are measured using spectroscopic techniques. The differences between primary, secondary and tertiary amines with glyoxal and methylglyoxal are evaluated in terms of SOA browning efficiency. Atmospheric implications of our present work for understanding the formation of light-absorbing SOA will be presented, particularly in terms of the product distribution of light-absorbing SOA formed by aqueous phase

  5. Nanoscale Fluorescent Metal-Organic Framework@Microporous Organic Polymer Composites for Enhanced Intracellular Uptake and Bioimaging.

    PubMed

    Wang, Lei; Wang, Weiqi; Zheng, Xiaohua; Li, Zhensheng; Xie, Zhigang

    2017-01-26

    Polymer-modified metal-organic frameworks combine the advantages of both soft polymers and crystalline metal-organic frameworks (MOFs). It is a big challenge to develop simple methods for surface modification of MOFs. In this work, MOF@microporous organic polymer (MOP) hybrid nanoparticles (UNP) have been synthesized by epitaxial growth of luminescent boron-dipyrromethene (BODIPYs)-imine MOPs on the surface of UiO-MOF seeds, which exhibit low cytotoxicity, smaller size distribution, well-retained pore integrity, and available functional sites. After folic acid grafting, the enhanced intracellular uptake and bioimaging was validated.

  6. Oxygen plasma-treated thermoresponsive polymer surfaces for cell sheet engineering.

    PubMed

    Shimizu, Kazunori; Fujita, Hideaki; Nagamori, Eiji

    2010-06-01

    Although cell sheet tissue engineering is a potent and promising method for tissue engineering, an increase of mechanical strength of a cell sheet is needed for easy manipulation of it during transplantation or 3D tissue fabrication. Previously, we developed a cell sheet-polymer film complex that had enough mechanical strength that can be manipulated even by tweezers (Fujita et al., 2009. Biotechnol Bioeng 103(2): 370-377). We confirmed the polymer film involving a temperature sensitive polymer and extracellular matrix (ECM) proteins could be removed by lowering temperature after transplantation, and its potential use in regenerative medicine was demonstrated. However, the use of ECM proteins conflicted with high stability in long-term storage and low cost. In the present study, to overcome these drawbacks, we employed the oxygen plasma treatment instead of using the ECM proteins. A cast and dried film of thermoresponsive poly-N-isopropylacrylamide (PNIPAAm) was fabricated and treated with high-intensity oxygen plasma. The cells became possible to adhere to the oxygen plasma-treated PNIPAAm surface, whereas could not to the inherent surface of bulk PNIPAAm without treatment. Characterizations of the treated surface revealed the surface had high stability. The surface roughness, wettability, and composition were changed, depending on the plasma intensity. Interestingly, although bulk PNIPAAm layer had thermoresponsiveness and dissolved below lower critical solution temperature (LCST), it was found that the oxygen plasma-treated PNIPAAm surface lost its thermoresponsiveness and remained insoluble in water below LCST as a thin layer. Skeletal muscle C2C12 cells could be cultured on the oxygen plasma-treated PNIPAAm surface, a skeletal muscle cell sheet with the insoluble thin layer could be released in the medium, and thus the possibility of use of the cell sheet for transplantation was demonstrated.

  7. Investigation of Carrier Collection Capability in Organic Heterostructure with Conductive Polymer Nanofiber

    NASA Astrophysics Data System (ADS)

    Yamashita, Kenichi; Maeda, Tatsuya; Kusakabe, Youhei; Kotaki, Masaya

    2011-08-01

    The capability of carrier collection was investigated for an organic heterointerface with conductive polymer nanofibers and a fullerene derivative. The electrospinning method was employed for fabricating conductive polymer nanofibers. In a photovoltaic device with this heterointerface, a rather large photocurrent was obtained in spite of the fact that the polymer nanofibers were large at submicrometer diameter. It was considered that conductive polymer nanofibers can serve as a conduction path for photoinduced carriers and might be helpful for the marked improvement in power conversion efficiency of organic thin film solar cell.

  8. Plasma Diagnostics for Plasma Polymer Coatings Used in Fabrication of Thin Wall CH Shells for Direct Drive OMEGA Cryogenic Experiments

    NASA Astrophysics Data System (ADS)

    Ross, P.; Nikroo, A.; Czechowicz, D.; Dicken, M.

    2002-11-01

    High aspect ratio CH shells, 1 μm thick, 9001 μm diameter, are crucial for the success of the cryogenic direct drive inertial confinement fusion (ICF) experiments at the OMEGA laser facility at the University of Rochester's Laboratory for Laser Energetics (LLE). Plasma polymer coatings are currently used in fabrication of such shells, which can be made substantially stronger by altering parameters. High strength is important for inherently fragile high aspect ratio shells. The plasma characteristics used in the deposition process were studied in order to determine a correlation between the plasma parameters and the strength of shells. Several plasma processing parameters such as deposition pressure, power and relative and absolute gas flow rates were varied. The plasma was studied using several techniques such as optical emission spectroscopy, Langmuir probe diagnostics, and mass spectrometry. These diagnostic results were then correlated with direct measurements of the target strength (burst testing and buckle testing) and permeability to determine the ideal parameters for creating the strongest and most permeable ICF targets.

  9. Plasma Interaction with Organic Molecules in Liquid as Fundamental Processes in Plasma Medicine.

    PubMed

    Takenaka, Kosuke; Miyazaki, Atsushi; Abe, Hiroya; Uchida, Giichiro; Setsuhara, Yuichi

    2015-03-01

    Investigation of plasma-organic materials interaction in aqueous solution with atmospheric pressure plasmas have been carried out. Degradation of methylene blue (MB) in aqueous solution via atmospheric pressure He plasma exposure through gas/liquid interface have been investigated. The optical emission spectrum shows considerable emissions of He lines and the emission of O, OH and N radicals attributed to dissociation of water (H2O) and air has been confirmed. Structure variation of MB in solution treated with the atmospheric-pressure He plasma has been measured by Fourier transform infrared spectroscopy (FT-IR). The results obtained from FT-IR analysis show degradation of MB in solution treated with the atmospheric-pressure He plasma. The pH effect of MB degradation was investigated using controlled pH solutions by an ultraviolet-visible (UV-Vis) spectroscopy and FT-IR. The results show no effect of MB degradation on pH. The results exhibit that the atmospheric pressure plasmas exposure has made it possible to degrade organic materials in solution due to irradiated radicals from plasma through plasma/liquid interface.

  10. Nitrogen plasma-implanted titanium as bipolar plates in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Feng, Kai; Kwok, Dixon T. K.; Liu, Dongan; Li, Zhuguo; Cai, Xun; Chu, Paul K.

    Nitrogen plasma immersion ion implantation (PIII), a non-line-of-sight surface treatment technique suitable for bipolar plates in polymer electrolyte membrane fuel cells, is conducted at low and high temperature to improve the corrosion resistance and conductivity of titanium sheets. X-ray photoelectron spectroscopy (XPS) shows that high-temperature (HT) nitrogen PIII produces a thick oxy-nitride layer on the titanium surface. This layer which provides good corrosion resistance and high electrical conductivity as verified by electrochemical tests, inductively coupled plasma optical emission spectroscopy, and interfacial contact resistance (ICR) measurements renders the materials suitable for polymer electrolyte membrane fuel cells. In comparison, the low-temperature (LT) PIII titanium sample exhibits poorer corrosion resistance and electrical conductivity than the untreated titanium control.

  11. Model polymer etching and surface modification by a time modulated RF plasma jet: role of atomic oxygen and water vapor

    NASA Astrophysics Data System (ADS)

    Luan, P.; Knoll, A. J.; Wang, H.; Kondeti, V. S. S. K.; Bruggeman, P. J.; Oehrlein, G. S.

    2017-01-01

    The surface interaction of a well-characterized time modulated radio frequency (RF) plasma jet with polystyrene, poly(methyl methacrylate) and poly(vinyl alcohol) as model polymers is investigated. The RF plasma jet shows fast polymer etching but mild chemical modification with a characteristic carbonate ester and NO formation on the etched surface. By varying the plasma treatment conditions including feed gas composition, environment gaseous composition, and treatment distance, we find that short lived species, especially atomic O for Ar/1% O2 and 1% air plasma and OH for Ar/1% H2O plasma, play an essential role for polymer etching. For O2 containing plasma, we find that atomic O initiates polymer etching and the etching depth mirrors the measured decay of O atoms in the gas phase as the nozzle-surface distance increases. The etching reaction probability of an O atom ranging from 10-4 to 10-3 is consistent with low pressure plasma research. We also find that adding O2 and H2O simultaneously into Ar feed gas quenches polymer etching compared to adding them separately which suggests the reduction of O and OH density in Ar/O2/H2O plasma.

  12. Study of Organosilicon Plasma Polymer Used in Composite Layers with Biomedical Application

    SciTech Connect

    Radeva, E.; Pramatarova, L.; Pecheva, E.; Hikov, T.; Fingarova, D.; Iacob, E.; Vanzetti, L.; Dimitrova, R.; Krasteva, N.; Spassov, T.

    2010-01-21

    In this work we study the ability of plasma polymer (PP) films obtained from hexamethyldisiloxane (HMDS) on silica glass (SG) to induce hydroxyapatite (HA)-based composite layers from a mixture of simulated body fluid (SBF) and clear solution of detonation nanodiamond (DND) by a biomimetic process. The grown composites (PPHMDS/HADND) were studied by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and Rutherford backscattering (RBS) techniques. FTIR spectra of the PPHMDS indicated diminishing of the polymer characteristic bands when the polymer is immersed in DND clear solution. Furthermore, after sample immersion in the SBF-DND mixture, the FTIR spectra showed the presence of carbonate-containing HA through the characteristic vibration modes of P-O in the phosphate group and C-O in the carbonate group. The formation of HA layers, rich in silica and/or carbon was confirmed by RBS and SEM. The cell viability measured after 7 days on the polymer surface is more then 95% for all samples. The results show that the PPHMDS is promising as a substrate for growing HA/DND layers and that the materials obtained are biocompatible. The variations of plasma polymerization conditions and modification of the composite layers will aid in using such materials for biomedical applications.

  13. Chemical anchoring of organic conducting polymers to semiconducting surfaces

    DOEpatents

    Frank, Arthur J.; Honda, Kenji

    1984-01-01

    According to the present invention, an improved method of coating electrodes with conductive polymer films and/or preselected catalysts is provided. The charge-conductive polymer is covalently or coordinatively attached to the electrode surface to strengthen the adhesion characteristics of the polymer to the electrode surface or to improve charge-conductive properties between the conductive polymer and the electrode surface. Covalent or coordinative attachment is achieved by a number of alternative methods including covalently or coordinatively attaching the desired monomer to the electrode by means of a suitable coupling reagent and, thereafter, electrochemically polymerizing the monomer in situ.

  14. Chemical anchoring of organic conducting polymers to semiconducting surfaces

    DOEpatents

    Frank, A.J.; Honda, K.

    1984-01-01

    According to the present invention, an improved method of coating electrodes with conductive polymer films and/or preselected catalysts is provided. The charge conductive polymer is covalently or coordinatively attached to the electrode surface to strengthen the adhesion characteristics of the polymer to the electrode surface or to improve charge conductive properties between the conductive polymer and the electrode surface. Covalent or coordinative attachment is achieved by a number of alternative methods including covalently or coordinatively attaching the desired monomer to the electrode by means of a suitable coupling reagent and, thereafter, electrochemically polymerizing the monomer in situ.

  15. Electrochemical route to fabricate film-like conjugated microporous polymers and application for organic electronics.

    PubMed

    Gu, Cheng; Chen, Youchun; Zhang, Zhongbo; Xue, Shanfeng; Sun, Shuheng; Zhang, Kai; Zhong, Chengmei; Zhang, Huanhuan; Pan, Yuyu; Lv, Ying; Yang, Yanqin; Li, Fenghong; Zhang, Suobo; Huang, Fei; Ma, Yuguang

    2013-07-05

    Film-like conjugated microporous polymers (CMPs) are fabricated by the novel strategy of carbazole-based electropolymerization. The CMP film storing a mass of counterions acting as an anode interlayer provides a significant power-conversion efficiency of 7.56% in polymer solar cells and 20.7 cd A(-1) in polymer light-emitting diodes, demonstrating its universality and potential as an electrode interlayer in organic electronics.

  16. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage.

    PubMed

    McKeown, Neil B; Budd, Peter M

    2006-08-01

    This tutorial review describes recent research directed towards the synthesis of polymer-based organic microporous materials termed Polymers of Intrinsic Microporosity (PIMs). PIMs can be prepared either as insoluble networks or soluble polymers with both types giving solids that exhibit analogous behaviour to that of conventional microporous materials such as activated carbons. Soluble PIMs may be processed into thin films for use as highly selective gas separation membranes. Preliminary results also demonstrate the potential of PIMs for heterogeneous catalysis and hydrogen storage.

  17. Micro-pixel array of organic light-emitting diodes applying imprinting technique with a polymer replica

    NASA Astrophysics Data System (ADS)

    Park, Tae Hyun; Kim, Young Min; Park, Young Wook; Choi, Jin Hwan; Jeong, Jin-Wook; Dong, Ki Young; Choi, Kyung Cheol; Ju, Byeong-Kwon

    2009-08-01

    Efficient micro-pixel array of small molecule organic light-emitting diodes (OLEDs) has been fabricated by an imprinting technique which uses a polymer replica. To confirm the effect of the oxygen plasma for removing the residual layer, the performance of two kinds of OLEDs with varying thicknesses of resin as the micro-pixel array, have been compared. The measured results of the OLEDs have shown comparable device performances that are significantly characterized depending on the residues on the substrate. The performance of enhanced device has achieved efficiencies of 3.6 cd/A and 1.9 lm/W at 20 mA/cm2.

  18. There Is No Simple Model of the Plasma Membrane Organization

    PubMed Central

    Bernardino de la Serna, Jorge; Schütz, Gerhard J.; Eggeling, Christian; Cebecauer, Marek

    2016-01-01

    Ever since technologies enabled the characterization of eukaryotic plasma membranes, heterogeneities in the distributions of its constituents were observed. Over the years this led to the proposal of various models describing the plasma membrane organization such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in numerous publications and reviews. Instead of emphasizing on one model we in this review give a brief overview over current models and highlight how current experimental work in one or the other way do not support the existence of a single overarching model. Instead, we highlight the vast variety of membrane properties and components, their influences and impacts. We believe that highlighting such controversial discoveries will stimulate unbiased research on plasma membrane organization and functionality, leading to a better understanding of this essential cellular structure. PMID:27747212

  19. Surface modification of polymers by atomic oxygen using ECR plasma

    NASA Astrophysics Data System (ADS)

    Abdul majeed, Riyadh M. A.; Datar, A.; Bhoraskar, S. V.; Bhoraskar, V. N.

    2007-05-01

    Polyimide (PI) and fluorinated ethylene propylene (FEP) samples were exposed to atomic oxygen ions of average energy ˜12 eV and flux ˜5 × 10 13 ions cm -2 s -1, produced in an ECR plasma. The fluence of the oxygen ions was varied from sample to sample over a range from ˜5 × 10 16 to 2 × 10 17 ions cm -2. The pre- and the post-irradiated samples were characterized by the contact angle, AFM and XPS techniques. The results indicate that the surface roughness of the polyimide increased from ˜7 to ˜65 nm, that of the FEP from ˜5 to ˜28 nm and the surface regions of both polyimide and FEP changed from hydrophobic to hydrophilic after exposure to atomic oxygen ions. The XPS results reveal that the concentrations of carbon, fluorine and oxygen changed even at a fluence of ˜10 17 ions cm -2 of the atomic oxygen ions. The results of the present study reveal that significant changes have been induced in the surface morphology and adhesion properties of polyimide and FEP after exposure to atomic oxygen ions.

  20. Donor polymer design enables efficient non-fullerene organic solar cells.

    PubMed

    Li, Zhengke; Jiang, Kui; Yang, Guofang; Lai, Joshua Yuk Lin; Ma, Tingxuan; Zhao, Jingbo; Ma, Wei; Yan, He

    2016-10-26

    To achieve efficient organic solar cells, the design of suitable donor-acceptor couples is crucially important. State-of-the-art donor polymers used in fullerene cells may not perform well when they are combined with non-fullerene acceptors, thus new donor polymers need to be developed. Here we report non-fullerene organic solar cells with efficiencies up to 10.9%, enabled by a novel donor polymer that exhibits strong temperature-dependent aggregation but with intentionally reduced polymer crystallinity due to the introduction of a less symmetric monomer unit. Our comparative study shows that an analogue polymer with a C2 symmetric monomer unit yields highly crystalline polymer films but less efficient non-fullerene cells. Based on a monomer with a mirror symmetry, our best donor polymer exhibits reduced crystallinity, yet such a polymer matches better with small molecular acceptors. This study provides important insights to the design of donor polymers for non-fullerene organic solar cells.

  1. Donor polymer design enables efficient non-fullerene organic solar cells

    PubMed Central

    Li, Zhengke; Jiang, Kui; Yang, Guofang; Lai, Joshua Yuk Lin; Ma, Tingxuan; Zhao, Jingbo; Ma, Wei; Yan, He

    2016-01-01

    To achieve efficient organic solar cells, the design of suitable donor–acceptor couples is crucially important. State-of-the-art donor polymers used in fullerene cells may not perform well when they are combined with non-fullerene acceptors, thus new donor polymers need to be developed. Here we report non-fullerene organic solar cells with efficiencies up to 10.9%, enabled by a novel donor polymer that exhibits strong temperature-dependent aggregation but with intentionally reduced polymer crystallinity due to the introduction of a less symmetric monomer unit. Our comparative study shows that an analogue polymer with a C2 symmetric monomer unit yields highly crystalline polymer films but less efficient non-fullerene cells. Based on a monomer with a mirror symmetry, our best donor polymer exhibits reduced crystallinity, yet such a polymer matches better with small molecular acceptors. This study provides important insights to the design of donor polymers for non-fullerene organic solar cells. PMID:27782112

  2. A two-dimensional polymer prepared by organic synthesis.

    PubMed

    Kissel, Patrick; Erni, Rolf; Schweizer, W Bernd; Rossell, Marta D; King, Benjamin T; Bauer, Thomas; Götzinger, Stephan; Schlüter, A Dieter; Sakamoto, Junji

    2012-02-05

    Synthetic polymers are widely used materials, as attested by a production of more than 200 millions of tons per year, and are typically composed of linear repeat units. They may also be branched or irregularly crosslinked. Here, we introduce a two-dimensional polymer with internal periodicity composed of areal repeat units. This is an extension of Staudinger's polymerization concept (to form macromolecules by covalently linking repeat units together), but in two dimensions. A well-known example of such a two-dimensional polymer is graphene, but its thermolytic synthesis precludes molecular design on demand. Here, we have rationally synthesized an ordered, non-equilibrium two-dimensional polymer far beyond molecular dimensions. The procedure includes the crystallization of a specifically designed photoreactive monomer into a layered structure, a photo-polymerization step within the crystal and a solvent-induced delamination step that isolates individual two-dimensional polymers as free-standing, monolayered molecular sheets.

  3. Fouling of microfiltration membranes by organic polymer coagulants and flocculants: controlling factors and mechanisms.

    PubMed

    Wang, Sen; Liu, Charles; Li, Qilin

    2011-01-01

    Organic polymers are commonly used as coagulants or flocculants in pretreatment for microfiltration (MF). These high molecular weight compounds are potential membrane foulants when carried over to the MF filters. This study examined fouling of three MF membranes of different materials by three commonly used water treatment polymers: poly(diallyldimethylammonium) chloride (pDADMAC), polyacrylamide (PAM), and poly(acrylic acid-co-acrylamide (PACA) with a wide range of molecular weights. The effects of polymer molecular characteristics, membrane surface properties, solution condition and polymer concentration on membrane fouling were investigated. Results showed severe fouling of microfiltration membranes at very low polymer concentrations, suggesting that residual polymers carried over from the coagulation/flocculation basin can contribute significantly to membrane fouling. The interactions between polymers and membranes depended strongly on the molecular size and charge of the polymer. High molecular weight, positively charged polymers caused the greatest fouling. Blockage of membrane pore openings was identified as the main fouling mechanism with no detectable internal fouling in spite of the small molecular size of the polymers relative to the membrane pore size. Solution conditions (e.g., pH and calcium concentration) that led to larger polymer molecular or aggregate sizes resulted in greater fouling.

  4. Surface temperature: A key parameter to control the propanethiol plasma polymer chemistry

    SciTech Connect

    Thiry, Damien Aparicio, Francisco J.; Laha, Priya; Terryn, Herman; Snyders, Rony

    2014-09-01

    In this work, the influence of the substrate temperature (T{sub s}) on the chemical composition of propanethiol plasma polymers was investigated for a given set of plasma conditions. In a first study, a decrease in the atomic sulfur content (at. %S) with the deposition time (t{sub d}) was observed. This behavior is explained by the heating of the growing film during deposition process, limiting the incorporation of stable sulfur-based molecules produced in the plasma. Experiments carried out by controlling the substrate temperature support this hypothesis. On the other hand, an empirical law relating the T{sub s} and the at. %S was established. This allows for the formation of gradient layer presenting a heterogeneous chemical composition along the thickness, as determined by depth profile analysis combining X-ray photoelectron spectroscopy and C{sub 60} ion gun sputtering. The experimental data fit with the one predicted from our empiric description. The whole set of our results provide new insights in the relationship between the substrate temperature and the sulfur content in sulfur-based plasma polymers, essential for future developments.

  5. Investigation of plasma-organic materials interaction in aqueous solution with atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Takenaka, K.; Miyazaki, A.; Setsuhara, Y.

    2014-06-01

    An investigation was carried out into the interaction of an atmospheric pressure plasma with an organic material in an aqueous solution. The degradation of methylene blue (MB) by plasma exposure through the gas/liquid interface was studied. In the optical emission spectrum of the plasma, in addition to strong He emission lines, emissions due to O and OH radicals formed by dissociation of water were present. The change in the absorbance of a MB aqueous solution during plasma exposure was measured using UV-Vis spectroscopy. The absorption peak intensity decreased with plasma exposure time and complete decolorization occurred after 10 min. Since plasma exposure was found to decrease the pH of water, the effect of changes in pH on MB degradation in the absence of a plasma was investigated using solutions with different pH values. However, varying the pH was found to have no influence on MB degradation. The results indicated that MB degradation occurred due to interactions between MB and radicals across the plasma/liquid interface.

  6. Functionalization of polymers using an atmospheric plasma jet in a fluidized bed reactor and the impact on SLM-processes

    SciTech Connect

    Sachs, M. Schmitt, A. Schmidt, J. Peukert, W. Wirth, K-E

    2014-05-15

    In order to improve thermoplastics (e.g. Polyamide, Polypropylene and Polyethylene) for Selective Laser Beam Melting (SLM) processes a new approach to functionalize temperature sensitive polymer powders in a large scale is investigated. This is achieved by combining an atmospheric pressure plasma jet and a fluidized bed reactor. Using pressurized air as the plasma gas, radicals like OH* are created. The functionalization leads to an increase of the hydrophilicity of the treated polymer powder without changing the bulk properties. Using the polymers in a SLM process to build single layers of melted material leads to an improvement of the melted layers.

  7. Ultrasonic spray coating polymer and small molecular organic film for organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Liu, Shihao; Zhang, Xiang; Zhang, Letian; Xie, Wenfa

    2016-11-01

    Ultrasonic spray coating process (USCP) with high material -utilization, low manufacture costs and compatibility to streamline production has been attractive in researches on photoelectric devices. However, surface tension exists in the solvent is still a huge obstacle to realize smooth organic film for organic light emitting devices (OLEDs) by USCP. Here, high quality polymer anode buffer layer and small molecular emitting layer are successfully realized through USCP by introducing extra-low surface tension diluent and surface tension control method. The introduction of low surface tension methyl alcohol is beneficial to the formation of poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) films and brings obvious phase separation and improved conductivity to PEDOT:PSS film. Besides, a surface tension control method, in which new stable tension equilibrium is built at the border of wetting layer, is proposed to eliminate the effect of surface tension during the solvent evaporation stage of ultrasonic spray coating the film consists of 9,9-Spirobifluoren-2-yl-diphenyl-phosphine oxide doped with 10 wt% tris [2-(p -tolyl) pyridine] iridium (III). A smooth and homogenous small molecular emitting layer without wrinkles is successfully realized. The effectiveness of the ultrasonic spray coating polymer anode buffer layer and small molecular emitting layer are also proved by introducing them in OLEDs.

  8. Ultrasonic spray coating polymer and small molecular organic film for organic light-emitting devices

    PubMed Central

    Liu, Shihao; Zhang, Xiang; Zhang, Letian; Xie, Wenfa

    2016-01-01

    Ultrasonic spray coating process (USCP) with high material -utilization, low manufacture costs and compatibility to streamline production has been attractive in researches on photoelectric devices. However, surface tension exists in the solvent is still a huge obstacle to realize smooth organic film for organic light emitting devices (OLEDs) by USCP. Here, high quality polymer anode buffer layer and small molecular emitting layer are successfully realized through USCP by introducing extra-low surface tension diluent and surface tension control method. The introduction of low surface tension methyl alcohol is beneficial to the formation of poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) films and brings obvious phase separation and improved conductivity to PEDOT:PSS film. Besides, a surface tension control method, in which new stable tension equilibrium is built at the border of wetting layer, is proposed to eliminate the effect of surface tension during the solvent evaporation stage of ultrasonic spray coating the film consists of 9,9-Spirobifluoren-2-yl-diphenyl-phosphine oxide doped with 10 wt% tris [2-(p -tolyl) pyridine] iridium (III). A smooth and homogenous small molecular emitting layer without wrinkles is successfully realized. The effectiveness of the ultrasonic spray coating polymer anode buffer layer and small molecular emitting layer are also proved by introducing them in OLEDs. PMID:27874030

  9. Moisture resistant and anti-reflection optical coatings produced by plasma polymerization of organic compounds

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T.

    1975-01-01

    The need for protective coatings on critical optical surfaces, such as halide crystal windows or lenses used in spectroscopy, has long been recognized. It has been demonstrated that thin, one micron, organic coatings produced by polymerization of flourinated monomers in low temperature gas discharge (plasma) exhibit very high degrees of moisture resistence, e.g., hundreds of hours protection for cesium iodide vs. minutes before degradation sets in for untreated surfaces. The index of refraction of these coatings is intermediate between that of the halide substrate and air, a condition for anti-reflection, another desirable property of optical coatings. Thus, the organic coatings not only offer protection, but improved transmittance as well. The polymer coating is non-absorbing over the range 0.4 to 40 microns with an exception at 8.0 microns, the expected absorption for C-F bonds.

  10. Metallated porphyrin based porous organic polymers as efficient electrocatalysts

    NASA Astrophysics Data System (ADS)

    Lu, Guolong; Zhu, Youlong; Xu, Kongliang; Jin, Yinghua; Ren, Zhiyong Jason; Liu, Zhenning; Zhang, Wei

    2015-10-01

    Developing efficient, stable and low-cost catalysts for Oxygen Reduction Reaction (ORR) is of great significance to many emerging technologies including fuel cells and metal-air batteries. Herein, we report the development of a cobalt(ii) porphyrin based porous organic polymer (CoPOP) and its pyrolyzed derivatives as highly active ORR catalysts. The as-synthesized CoPOP exhibits high porosity and excellent catalytic performance stability, retaining ~100% constant ORR current over 50 000 s in both alkaline and acidic media. Pyrolysis of CoPOP at various temperatures (600 °C, 800 °C, and 1000 °C) yields the materials consisting of graphitic carbon layers and cobalt nanoparticles, which show greatly enhanced catalytic activity compared to the as-synthesized CoPOP. Among them, CoPOP-800/C pyrolyzed at 800 °C shows the highest specific surface area and ORR activity, displaying the most positive half-wave potential (0.825 V vs. RHE) and the largest limited diffusion current density (5.35 mA cm-2) in an alkaline medium, which are comparable to those of commercial Pt/C (20 wt%) (half-wave potential 0.829 V vs. RHE, limited diffusion current density 5.10 mA cm-2). RDE and RRDE experiments indicate that CoPOP-800/C directly reduces molecular oxygen to water through a 4-e- pathway in both alkaline and acidic media. More importantly, CoPOP-800/C exhibits excellent durability and methanol-tolerance under acidic and alkaline conditions, which surpass the Pt/C (20 wt%) system.Developing efficient, stable and low-cost catalysts for Oxygen Reduction Reaction (ORR) is of great significance to many emerging technologies including fuel cells and metal-air batteries. Herein, we report the development of a cobalt(ii) porphyrin based porous organic polymer (CoPOP) and its pyrolyzed derivatives as highly active ORR catalysts. The as-synthesized CoPOP exhibits high porosity and excellent catalytic performance stability, retaining ~100% constant ORR current over 50 000 s in both

  11. A NOVEL HYDROPHILIC POLYMER MEMBRANE FOR THE DEHYDRATION OF ORGANIC SOLVENTS

    EPA Science Inventory

    Novel hydrophilic polymer membranes based on polyallylamine ydrochloride- polyvinylalcohol are developed. The high selectivity and flux characteristics of these membranes for the dehydration of organic solvents are evaluated using pervaporation technology and are found to be ver...

  12. Mapping Polymer Donors toward High-Efficiency Fullerene Free Organic Solar Cells.

    PubMed

    Lin, Yuze; Zhao, Fuwen; Wu, Yang; Chen, Kai; Xia, Yuxin; Li, Guangwu; Prasad, Shyamal K K; Zhu, Jingshuai; Huo, Lijun; Bin, Haijun; Zhang, Zhi-Guo; Guo, Xia; Zhang, Maojie; Sun, Yanming; Gao, Feng; Wei, Zhixiang; Ma, Wei; Wang, Chunru; Hodgkiss, Justin; Bo, Zhishan; Inganäs, Olle; Li, Yongfang; Zhan, Xiaowei

    2017-01-01

    Five polymer donors with distinct chemical structures and different electronic properties are surveyed in a planar and narrow-bandgap fused-ring electron acceptor (IDIC)-based organic solar cells, which exhibit power conversion efficiencies of up to 11%.

  13. Materials chemistry: Organic polymers form fuel from water

    NASA Astrophysics Data System (ADS)

    Vyas, Vijay S.; Lotsch, Bettina V.

    2015-05-01

    Porous polymers have joined the ranks of light-activated catalysts that split water into hydrogen, a carbon-free alternative to fossil fuels. Their properties are easily tuned -- a big plus for the development of practically useful catalysts.

  14. A study of the initial film growth of PEG-like plasma polymer films via XPS and NEXAFS

    NASA Astrophysics Data System (ADS)

    Li, Yali; Muir, Benjamin W.; Easton, Christopher D.; Thomsen, Lars; Nisbet, David R.; Forsythe, John S.

    2014-01-01

    The chemistry of substrate-film interface (underside) of di(ethylene glycol) dimethyl ether plasma polymer (DGpp) films has been studied directly and compared to the top layer of the film (topside). By depositing the plasma polymer films onto indium tin oxide (ITO) glass, the films were easily delaminated from the substrate. The top- and underside of the films were examined by X-ray photoelectron spectroscopy (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. It was found that a rapid increase in pressure during plasma polymerization results in steep chemical gradients in the films, while small pressure changes do not lead to chemical gradient formation. These observations validate the findings of previous neutron reflectometry modeling studies of this class of plasma polymer thin film. In addition, subtle variations in plasma polymer film chemistry were observed between different substrates they were deposited onto. This approach will allow additional studies on the mechanisms of early plasma polymer thin film formation with various monomers.

  15. Effects of substrate bias power on the surface of ITO electrodes during O2/CF4 plasma treatment and the resulting performance of organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Han, D. M.; Lee, J. H.; Jeong, K. H.; Lee, J. G.

    2010-08-01

    During surface treatment using O2/CF4 plasma chemistry, the bias power applied to the indium-tin-oxide(ITO) substrate significantly degrades the electrical and optical performance of the organic light emitting diode (OLED) formed on the ITO electrode as a result of the formation of CFx polymer, In-Sn-F compounds, and structural defects. Application of bias power to the substrate effectively increases the sheath potential over the substrate and thus the flux of CFx + ion created in the O2/CF4 plasma, which leads to the production of CFx polymers as well as structural defects.

  16. Dissecting Ubiquitin Folding Using the Self-Organized Polymer Model.

    PubMed

    Reddy, Govardhan; Thirumalai, D

    2015-08-27

    Folding of Ubiquitin (Ub), a functionally important protein found in eukaryotic organisms, is investigated at low and neutral pH at different temperatures using simulations of the coarse-grained self-organized-polymer model with side chains (SOP-SC). The melting temperatures (Tm's), identified with the peaks in the heat capacity curves, decrease as pH decreases, in qualitative agreement with experiments. The calculated radius of gyration, showing dramatic variations with pH, is in excellent agreement with scattering experiments. At Tm, Ub folds in a two-state manner at low and neutral pH. Clustering analysis of the conformations sampled in equilibrium folding trajectories at Tm, with multiple transitions between the folded and unfolded states, shows a network of metastable states connecting the native and unfolded states. At low and neutral pH, Ub folds with high probability through a preferred set of conformations resulting in a pH-dependent dominant folding pathway. Folding kinetics reveal that Ub assembly at low pH occurs by multiple pathways involving a combination of nucleation-collapse and diffusion collision mechanism. The mechanism by which Ub folds is dictated by the stability of the key secondary structural elements responsible for establishing long-range contacts and collapse of Ub. Nucleation collapse mechanism holds if the stability of these elements are marginal, as would be the case at elevated temperatures. If the lifetimes associated with these structured microdomains are on the order of hundreds of microseconds, then Ub folding follows the diffusion-collision mechanism with intermediates, many of which coincide with those found in equilibrium. Folding at neutral pH is a sequential process with a populated intermediate resembling that sampled at equilibrium. The transition state structures, obtained using a Pfold analysis, are homogeneous and globular with most of the secondary and tertiary structures being native-like. Many of our findings for

  17. Organic-Inorganic Shish-Kebabs: Nanocrystal Kebabs Periodically Assembled on Stretched Flexible Polymer Shish

    NASA Astrophysics Data System (ADS)

    Lin, Zhiqun; Xu, Hui; Xu, Yuci; Pang, Xinchang; He, Yanjie; Jung, Jaehan; Xia, Haiping

    2015-03-01

    We report an unconventional yet general strategy to craft an exciting variety of 1D necklace-like nanostructures comprising uniform functional nanodisks periodically assembled along a stretched flexible polymer chain by capitalizing on judiciously designed amphiphilic worm-like diblock copolymer as nanoreactors. These nanostructures can be regarded as organic-inorganic shish-kebabs, in which nanodisk kebabs periodically situated on a stretched polymer shish. Simulations based on self-consistent field theory reveal that the formation of organic-inorganic shish-kebabs is guided by the self-assembled elongated star-like diblock copolymer constituents constrained on the highly stretched polymer chain.

  18. Unusual Transformation from a Solvent-Stabilized 1D Coordination Polymer to a Metal-Organic Framework (MOF)-Like Cross-Linked 3D Coordination Polymer.

    PubMed

    Lee, Seung-Chul; Choi, Eun-Young; Lee, Sang-Beom; Kim, Sang-Wook; Kwon, O-Pil

    2015-10-26

    An unusual 1D-to-3D transformation of a coordination polymer based on organic linkers containing highly polar push-pull π-conjugated side chains is reported. The coordination polymers are synthesized from zinc nitrate and an organic linker, namely, 2,5-bis{4-[1-(4-nitrophenyl)pyrrolidin-2-yl]butoxy}terephthalic acid, which possesses highly polar (4-nitrophenyl)pyrrolidine groups, with high dipole moments of about 7 D. The coordination polymers exhibit an unusual transformation from a soluble, solvent-stabilized 1D coordination polymer into an insoluble, metal-organic framework (MOF)-like 3D coordination polymer. The coordination polymer exhibits good film-forming ability, and the MOF-like films are insoluble in conventional organic solvents.

  19. Composite materials obtained by the ion-plasma sputtering of metal compound coatings on polymer films

    NASA Astrophysics Data System (ADS)

    Khlebnikov, Nikolai; Polyakov, Evgenii; Borisov, Sergei; Barashev, Nikolai; Biramov, Emir; Maltceva, Anastasia; Vereshchagin, Artem; Khartov, Stas; Voronin, Anton

    2016-01-01

    In this article, the principle and examples composite materials obtained by deposition of metal compound coatings on polymer film substrates by the ion-plasma sputtering method are presented. A synergistic effect is to obtain the materials with structural properties of the polymer substrate and the surface properties of the metal deposited coatings. The technology of sputtering of TiN coatings of various thicknesses on polyethylene terephthalate films is discussed. The obtained composites are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and scanning tunneling microscopy (STM) is shown. The examples of application of this method, such as receiving nanocomposite track membranes and flexible transparent electrodes, are considered.

  20. Cell immobilization on polymer by air atmospheric pressure plasma jet treatment

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Hwan; Kwon, Jae-Sung; Om, Ji-yeon; Kim, Yong-Hee; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2014-08-01

    The study of cell immobilization on delicate polymer by an air atmospheric pressure plasma jet (AAPPJ) is required for its medical application. The aim of this study was to evaluate whether AAPPJ treatment induce cell immobilization effect on delicate polymers without significant change of surface roughness by AAPPJ treatment. After surface roughness, dynamic contact angle, and chemical characteristics were investigated, the immobilization effect was evaluated with the mouse fibroblast L929 cell line. Surface roughness change was not observed (P > 0.05) in either delicate dental wax or polystyrene plate (PSP) as advancing and receding contact angles significantly decreased (P < 0.05), thanks to decreased hydrocarbon and formation of oxygen-related functional groups in treated PSP. Adherent L929 cells with elongated morphology were found in treated PSP along with the formation of immobilization markers vinculin and actin cytoskeleton. Increased PTK2 gene expression upregulated these markers on treated PSP.

  1. Design of pervaporation membrane for organic-liquid separation based on solubility control by plasma-graft filling polymerization technique

    SciTech Connect

    Yamaguchi, Takeo; Nakao, Shinichi; Kimura, Shoji )

    1993-05-01

    Pervaporation performance through the membranes showed the same tendency as solubility results. The authors have prepared the filling-polymerized membrane for pervaporation of organic-liquid mixtures by the plasma-graft polymerization technique. The membrane is composed of two different polymers: a porous substrate which can suppress membrane swelling and a grafted polymer which forms in the pores of the substrate and exhibits selectivity due to its solubility. The objectives of the present study are to design a suitable membrane for an organic-mixture system by the control of the filling-polymer solubility. Specifically, a porous high-density polyethylene membrane and poly(methylacrylate/acrylamide) copolymer were employed as the porous substrate and grafted polymer, respectively, and grafted copolymer solubility was predicted by Hansen solubility parameters (HSP). The grafted polymer composition and its solubility behavior could be controlled by varying the monomer composition, and the solubility change was in accordance with the prediction by HSP. Pervaporation performance through the membranes showed the same tendency as solubility results. The authors concluded that an optimum pervaporation membrane can be designed on the basis of solubility control through use of these techniques for polymerization and prediction.

  2. Directly patternable, highly conducting polymers for broad applications in organic electronics.

    PubMed

    Yoo, Joung Eun; Lee, Kwang Seok; Garcia, Andres; Tarver, Jacob; Gomez, Enrique D; Baldwin, Kimberly; Sun, Yangming; Meng, Hong; Nguyen, Thuc-Quyen; Loo, Yueh-Lin

    2010-03-30

    Postdeposition solvent annealing of water-dispersible conducting polymers induces dramatic structural rearrangement and improves electrical conductivities by more than two orders of magnitude. We attain electrical conductivities in excess of 50 S/cm when polyaniline films are exposed to dichloroacetic acid. Subjecting commercially available poly(ethylene dioxythiophene) to the same treatment yields a conductivity as high as 250 S/cm. This process has enabled the wide incorporation of conducting polymers in organic electronics; conducting polymers that are not typically processable can now be deposited from solution and their conductivities subsequently enhanced to practical levels via a simple and straightforward solvent annealing process. The treated conducting polymers are thus promising alternatives for metals as source and drain electrodes in organic thin-film transistors as well as for transparent metal oxide conductors as anodes in organic solar cells and light-emitting diodes.

  3. Novel semiconducting polymers: Synthesis, characterization, and their application in organic electronics

    NASA Astrophysics Data System (ADS)

    Hubijar, Emir

    Conjugated polymers have attracted considerable attention as semiconducting materials in recent years due to their versatile electronic and optoelectronic applications. The main promise of conjugated polymers is not just attaining or exceeding the level of performance of silicon technologies but also producing electronic devices at a lower cost and enabling completely new device functionalities such as light weight, large surface area, mechanical flexibility, and optical transparency. Due to their broad potential, conjugated polymers have been incorporated in the wide range of applications, including polymer light-emitting diodes (LEDs), organic field-effect transistors (OFETs), and polymer solar cells (PSCs). Chapter 1 provides general information on conjugated polymers utilized in polymer light-emitting diodes (LEDs), polymer solar cells (PSCs) and organic field effect transistors (OFETs). It also includes brief description and schematic diagrams for each device configuration. Chapter 2 describes the synthesis, characterization and electronic properties of a novel symmetrical sulfone-substituted polyphenylene vinylene (SO 2EH-PPV) for applications in light-emitting devices. The sulfonyl functional group was directly attached to the polymer's backbone to increase the electron affinities of the polymer. The polymer was incorporated into a single layer PLED devices with the configuration of (ITO/ PEDOT:PSS/SO2EH-PPV polymer/Al). Chapter 3 focuses on the synthesis and color tuning of novel poly (fluorenevinylene-co-sulfonylphenylenevinylene) based copolymers for application in light-emitting diodes. New electroluminescent Poly(fluorenevinylene)-co-(sulfonylphenylenevinylene) random copolymers with different monomer feed ratios (PFV-SO2EH 10 and PFV-SO2EH 50) were synthesized via palladium-catalyzed Stille coupling reaction. Single layer stable PLED devices with the configuration of (ITO/PEDOT:PSS/PFV-SO 2EH 10 & PFV-SO2EH 50 polymer/Al) were fabricated exhibiting a

  4. Water-Resistant and Transparent Plastic Films from Functionalizable Organic Polymers: Coordination Polymers as Templates for Solid-State [2+2]-Photopolymerization.

    PubMed

    Garai, Mousumi; Biradha, Kumar

    2017-01-05

    An organic polymer containing cyclobutanes and amides as backbones and pyridyl groups as sidearms was synthesized by single-crystal-to-single-crystal (SCSC) [2+2]-photopolymerization in the coordination polymers (CPs) of diene. The diene molecule was photo-inactive in its crystals and formed a triply intertwined 1D-helical CP with Cd(NO3 )2 and Cu(NO3 )2 salts. The 1D-CP was transformed into a coordination polymer of organic polymers containing threefold interpenetrated 3D-networks of CdSO4 topology through a [2+2]-reaction in SCSC manner upon irradiation. The organic polymer was separated from its CPs and found to have an unusually high degree of polymerization for this type of reaction. Furthermore, the organic polymer was amenable for N-alkylation reactions such as methylation, propylation, and decylation. The formate salts of the organic polymer and the methylated polymer were shown to form plastic films with a combination of properties such as high transparency, tensile strengths, gas permeability, thermal stability, water-resistance, and resistance to other organic solvents. The methylated polymer was also able to capture chromate ions and anionic dyes from aqueous solutions.

  5. Novel spin-on organic hardmask with high plasma etch resistance

    NASA Astrophysics Data System (ADS)

    Oh, Chang-Il; Lee, Jin-Kuk; Kim, Min-Soo; Yoon, Kyong-Ho; Cheon, Hwan-Sung; Tokareva, Nataliya; Song, Jee-Yun; Kim, Jong-Seob; Chang, Tu-Won

    2008-03-01

    In recent years for memory devices under 70nm using ArF lithography, spin-on organic hardmask has become an attractive alternative process to amorphous carbon layer hardmark (ACL) in mass production due to ACL hardmask's limited capacity, high cost-of-ownership, and low process efficiency in spite of its excellent etch performance. However, insufficient plasma etch resistance of spin-on hardmask makes the etch process an issue resulting in inadequate vertical profiles, large CD bias, and narrow etch process window compared to ACL hardmask. In order to be able to apply these spin on hardmasks to varies layers including critical layers, the aforementioned problems need to be resolved and verified using several evaluation methods including etch pattern evaluation. In this paper, we report the synthesis of novel organic spin-on hardmasks (C-SOH) that incorporate various fused aromatic moieties into polymer chain and the evaluation of etch performance using dry etch tools. Organic spin-on hardmasks with 79-90 wt% carbon contents were synthesized in-house. Oxygen and fluorine based plasma etch processes were used to evaluate the etch resistance of the C-SOH. The results show our 3rd generation C-SOH has etch profiles comparable to that of ACL in a 1:1 dense pattern.

  6. Properties of Plasma Enhanced Chemical Vapor Deposition Barrier Coatings and Encapsulated Polymer Solar Cells

    NASA Astrophysics Data System (ADS)

    Qi, Lei; Zhang, Chunmei; Chen, Qiang

    2014-01-01

    In this paper, we report silicon oxide coatings deposited by plasma enhanced chemical vapor deposition technology (PECVD) on 125 μm polyethyleneterephthalate (PET) surfaces for the purpose of the shelf lifetime extension of sealed polymer solar cells. After optimization of the processing parameters, we achieved a water vapor transmission rate (WVTR) of ca. 10-3 g/m2/day with the oxygen transmission rate (OTR) less than 0.05 cc/m2/day, and succeeded in extending the shelf lifetime to about 400 h in encapsulated solar cells. And then the chemical structure of coatings related to the properties of encapsulated cell was investigated in detail.

  7. Polymerization and processing of organic polymers in a magnetic field

    SciTech Connect

    Douglas, E.P.

    1995-05-01

    The use of magnetic fields to affect the structure and properties of polymeric materials remains an area of great promise. Liquid crystalline polymers have been actively studied over the past 20 years for use in high performance structural applications. In particular, highly oriented fibers can exhibit remarkable increases in strength to weight performance compared to conventional materials. For example, the fibers marketed by DuPont under the tradename Kevlar are 20 times stronger than steel on an equivalent weight basis. However, larger bulk parts do not exhibit the same increases in strength due to a lack of orientation of the polymer molecules. Magnetic field processing of polymers remains an attractive solution to this problem.

  8. New methodologies for construction of hyperbranched organic and organometallic polymers

    NASA Astrophysics Data System (ADS)

    Xu, Kaitian

    2000-10-01

    A series of completely soluble hyperbranched polymers were synthesized by polycyclotrimerization of diynes for the first time. TaCl5-Ph 4Sn was found to be the effective catalyst and toluene to be the efficient solvent. A possible polycyclotrimerization mechanism via tantalacyclopentadiene intermediates is proposed. The polymerization processes including initiation, propagation and termination are analyzed. The unique backbiting reaction was found to be a plausible way to terminate the propagation chain. Conformations of the diynes greatly affect the occurrence of backbiting reaction and affect the solubility of resultant polymers to certain extent. Diynes with short spacers such as 1,5-hexadiyne (21 ); 1,6-heptadiyne (22); 1,7-octadiyne (23); and 1,8-nonadiyne (17); possess a conformation in which the two triple bonds locate closely. Such a conformation makes the backbiting termination to occur easily. Thus, soluble polymers are readily formed from these diynes. For the diynes of long spacers, a conformation with two far-separating triple bonds dramatically reduces the chance of backbiting reaction. Consequently, only partially soluble or insoluble polymers could be prepared. In the polycyclotrimerization of internal diynes, hexasubstituted benzene rings were formed. The steric effect of the terminal substituents plays an important role in the polymerization reaction. Internal diynes with bulky substituents such as 1,9-bis(trimethylsilyl)-1,8-nonadiyne (74), 1,6-bis(dimethylphenylsilyl)-1,5-hexadiyne (75), 1,8-bis(dimethylphenylsilyl)-1,7-octadiyne (76) gave little amount of polymers. Internal diynes with less bulky substituents and short spacers [e.g. 3,9-dodecadiyne (78) and 2,9-undecadiyne (79)] offered soluble polymers. In the study on hyperbranched organometallic polymers, a new methodology for the preparation of hyperbranched polysilynes was developed. Ceramization of the hyperbranched polymers produced mesoporous magnetoceramic materials. The compositions

  9. Physical vs. photolithographic patterning of plasma polymers: an investigation by ToF-SSIMS and multivariate analysis

    PubMed Central

    Mishra, Gautam; Easton, Christopher D.; McArthur, Sally L.

    2009-01-01

    Physical and photolithographic techniques are commonly used to create chemical patterns for a range of technologies including cell culture studies, bioarrays and other biomedical applications. In this paper, we describe the fabrication of chemical micropatterns from commonly used plasma polymers. Atomic force microcopy (AFM) imaging, Time-of-Flight Static Secondary Ion Mass Spectrometry (ToF-SSIMS) imaging and multivariate analysis have been employed to visualize the chemical boundaries created by these patterning techniques and assess the spatial and chemical resolution of the patterns. ToF-SSIMS analysis demonstrated that well defined chemical and spatial boundaries were obtained from photolithographic patterning, while the resolution of physical patterning via a transmission electron microscopy (TEM) grid varied depending on the properties of the plasma system including the substrate material. In general, physical masking allowed diffusion of the plasma species below the mask and bleeding of the surface chemistries. Multivariate analysis techniques including Principal Component Analysis (PCA) and Region of Interest (ROI) assessment were used to investigate the ToF-SSIMS images of a range of different plasma polymer patterns. In the most challenging case, where two strongly reacting polymers, allylamine and acrylic acid were deposited, PCA confirmed the fabrication of micropatterns with defined spatial resolution. ROI analysis allowed for the identification of an interface between the two plasma polymers for patterns fabricated using the photolithographic technique which has been previously overlooked. This study clearly demonstrated the versatility of photolithographic patterning for the production of multichemistry plasma polymer arrays and highlighted the need for complimentary characterization and analytical techniques during the fabrication plasma polymer micropatterns. PMID:19950941

  10. Plasma Surface Modification of Polymer Backsheets: Origins of Future Interfacial Barrier/Backsheet Failure

    SciTech Connect

    Pankow, J. W.; Glick, S. H.

    2005-11-01

    Flexible polymer substrates coated with inorganic oxide moisture barriers are a potential replacement for glass backsheets in thin film PV modules. Silicon oxynitride (SiOxNy) deposited by PECVD on polyethylene terephthalate (PET) represents one potential new backsheet candidate. Barrier deposition runs at NREL have typically included a nitrogen-rich plasma pretreatment prior to actual barrier deposition with the intention of cleaning the PET surface as well as enhancing adhesion of the SiOxNy barrier film to PET; however, test coupons of PET/barrier/EVA/TPE failed after damp heat exposure. PET substrates exposed to plasma conditions similar to those used in pre-treatment were examined by X-ray photoelectron spectroscopy (XPS) to reveal new low molecular weight PET fragments are created which are volatile upon heating and water soluble. Failure analysis of the coupons determined that the moisture barrier is, in fact, transferred to the encapsulant side.

  11. Role of Cellulose Nanocrystals on the Microstructure of Maleic Anhydride Plasma Polymer Thin Films.

    PubMed

    Brioude, Michel M; Roucoules, Vincent; Haidara, Hamidou; Vonna, Laurent; Laborie, Marie-Pierre

    2015-07-01

    Recently, it was shown that the microstructure of a maleic anhydride plasma polymer (MAPP) could be tailored ab initio by adjusting the plasma process parameters. In this work, we aim to investigate the ability of cellulose nanocrystals (CNCs) to induce topographical structuration. Thus, a new approach was designed based on the deposition of MAPP on CNCs model surfaces. The nanocellulosic surfaces were produced by spin-coating the CNC suspension on a silicon wafer substrate and on a hydrophobic silicon wafer substrate patterned with circular hydrophilic microsized domains (diameter of 86.9 ± 4.9 μm), resulting in different degrees of CNC aggregation. By depositing the MAPP over these surfaces, it was possible to observe that the surface fraction of nanostructures increased from 20% to 35%. This observation suggests that CNCs can act as nucleation points resulting in more structures, although a critical density of the CNCs is required.

  12. New Metal-organic Polymers Through Subcomponent Self-Assembly

    DTIC Science & Technology

    2012-07-27

    material using subcomponent self-assembly. We developed the synthesis of double helical polymeric species according to the general procedure...to use - diketones as subcomponents for polymers. She then shifted her efforts to other projects, funded by the European Research Council. Because

  13. Recent applications of polymer supported organometallic catalysts in organic synthesis.

    PubMed

    Kann, Nina

    2010-09-07

    Recent developments concerning the application of polymer supported organometallic reagents in solid phase synthesis are reviewed, with a special focus on methodology for carbon-carbon formation. Examples of reactions that are covered include the classical Suzuki, Sonogashira and Heck coupings, but also aryl amination, epoxide opening, rearrangements, metathesis and cyclopropanation. Applications in the field of asymmetric synthesis are also discussed.

  14. Optimization of molecular organization and nanoscale morphology for high performance low bandgap polymer solar cells

    NASA Astrophysics Data System (ADS)

    He, Ming; Wang, Mengye; Lin, Changjian; Lin, Zhiqun

    2014-03-01

    Rational design and synthesis of low bandgap (LBG) polymers with judiciously tailored HOMO and LUMO levels have emerged as a viable route to high performance polymer solar cells with power conversion efficiencies (PCEs) exceeding 10%. In addition to engineering the energy-level of LBG polymers, the photovoltaic performance of LBG polymer-based solar cells also relies on the device architecture, in particular the fine morphology of the photoactive layer. The nanoscale interpenetrating networks composed of nanostructured donor and acceptor phases are the key to providing a large donor-acceptor interfacial area for maximizing the exciton dissociation and offering a continuous pathway for charge transport. In this Review Article, we summarize recent strategies for tuning the molecular organization and nanoscale morphology toward an enhanced photovoltaic performance of LBG polymer-based solar cells.

  15. Optimization of molecular organization and nanoscale morphology for high performance low bandgap polymer solar cells.

    PubMed

    He, Ming; Wang, Mengye; Lin, Changjian; Lin, Zhiqun

    2014-04-21

    Rational design and synthesis of low bandgap (LBG) polymers with judiciously tailored HOMO and LUMO levels have emerged as a viable route to high performance polymer solar cells with power conversion efficiencies (PCEs) exceeding 10%. In addition to engineering the energy-level of LBG polymers, the photovoltaic performance of LBG polymer-based solar cells also relies on the device architecture, in particular the fine morphology of the photoactive layer. The nanoscale interpenetrating networks composed of nanostructured donor and acceptor phases are the key to providing a large donor-acceptor interfacial area for maximizing the exciton dissociation and offering a continuous pathway for charge transport. In this Review Article, we summarize recent strategies for tuning the molecular organization and nanoscale morphology toward an enhanced photovoltaic performance of LBG polymer-based solar cells.

  16. Printed organic conductive polymers thermocouples in textile and smart clothing applications.

    PubMed

    Seeberg, Trine M; Røyset, Arne; Jahren, Susannah; Strisland, Frode

    2011-01-01

    This work reports on an experimental investigation of the potential of using selected commercially available organic conductive polymers as active ingredients in thermocouples printed on textiles. Poly(3, 4-ethylenedioxythiophene): poly(4 styrenesulfonate) (PEDOT:PSS) and polyaniline (PANI) were screen printed onto woven cotton textile. The influence of multiple thermocycles between 235 K (-38 °C) and 350 K (+77 °C) on resistivity and thermoelectric properties was examined. The Seebeck coefficients of PEDOT:PSS and PANI were found to be about +18 μV/K and +15 uV/K, respectively, when "metal-polymer" thermocouples were realized by combining the polymer with copper. When "polymer-polymer" thermocouples were formed by combining PEDOT:PSS and PANI, a thermoelectric voltage of about +10 μV/K was observed. A challenge recognized in the experiments is that the generated voltage exhibited drift and fluctuations.

  17. Charge carrier mobility in conjugated organic polymers: simulation of an electron mobility in a carbazole-benzothiadiazole-based polymer

    NASA Astrophysics Data System (ADS)

    Li, Yaping; Lagowski, Jolanta B.

    2011-08-01

    Inorganic (mostly silicon based) solar cells are important devices that are used to solve the world energy and environmental needs. Now days, organic solar cells are attracting considerable attention in the field of photovoltaic cells because of their low cost and processing flexibility. Often conjugated polymers are used in the construction of the organic solar cells. We study the conjugated polymers' charge transport using computational approach that involves the use of the density functional theory (DFT), semiempirical (ZINDO), and Monte Carlo (MC) theoretical methods in order to determine their transfer integrals, reorganization energies, transfer rates (with the use of Marcus-Hush equation) and mobilities. We employ the experimentally determined three dimensional (3D) structure of poly(9,9'-di-n-octylfluorene-alt-benzothiadiazole) (F8BT) to estimate the electron mobility in a similar co-alternating polymer consisting of carbazole and benzothiadiazole units (C8BT). In agreement with our previous work, we found that including an orientational disorder in the crystal reduces the electron mobility in C8BT. We hope that the proposed computational approach can be used to predict charge mobility in organic materials that are used in solar cells.

  18. Atmospheric pressure plasma polymers for tuned QCM detection of protein adhesion.

    PubMed

    Rusu, G B; Asandulesa, M; Topala, I; Pohoata, V; Dumitrascu, N; Barboiu, M

    2014-03-15

    Our efforts have been concentrated in preparing plasma polymeric thin layers at atmospheric pressure grown on Quartz Crystal Microbalance-QCM electrodes for which the non-specific absorption of proteins can be efficiently modulated, tuned and used for QCM biosensing and quantification. Plasma polymerization reaction at atmospheric pressure has been used as a simple and viable method for the preparation of QCM bioactive surfaces, featuring variable protein binding properties. Polyethyleneglycol (ppEG), polystyrene (ppST) and poly(ethyleneglycol-styrene) (ppST-EG) thin-layers have been grown on QCM electrodes. These layers were characterized by Atomic Force Microscopy (AFM), Contact angle measurements, Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). The plasma ppST QCM electrodes present a higher adsorption of Concanavalin A (ConA) and Bovine Serum Albumin (BSA) proteins when compared with the commercial coated polystyrene (ppST) ones. The minimum adsorption was found for ppEG, surface, known by their protein anti-fouling properties. The amount of adsorbed proteins can be tuned by the introduction of PEG precursors in the plasma discharge during the preparation of ppST polymers.

  19. Aqueous polymer two-phase systems: effective tools for plasma membrane proteomics.

    PubMed

    Schindler, Jens; Nothwang, Hans Gerd

    2006-10-01

    Plasma membranes (PMs) are of particular importance for all living cells. They form a selectively permeable barrier to the environment. Many essential tasks of PMs are carried out by their proteinaceous components, including molecular transport, cell-cell interactions, and signal transduction. Due to the key role of these proteins for cellular function, they take center-stage in basic and applied research. A major problem towards in-depth identification and characterization of PM proteins by modern proteomic approaches is their low abundance and immense heterogeneity in different cells. Highly selective and efficient purification protocols are hence essential to any PM proteome analysis. An effective tool for preparative isolation of PMs is partitioning in aqueous polymer two-phase systems. In two-phase systems, membranes are separated according to differences in surface properties rather than size and density. Despite their rare application to the fractionation of animal tissues and cells, they represent an attractive alternative to conventional fractionation protocols. Here, we review the principles of partitioning using aqueous polymer two-phase systems and compare aqueous polymer two-phase systems with other methods currently used for the isolation of PMs.

  20. Development of silver nanoparticle loaded antibacterial polymer mesh using plasma polymerization process.

    PubMed

    Kumar, Virendra; Jolivalt, Claude; Pulpytel, Jerome; Jafari, Reza; Arefi-Khonsari, Farzaneh

    2013-04-01

    Plasma polymerized polyacrylic acid (PPAA) was deposited on a polymer substrate, namely polyethylene terephthalate (PET) mesh, for entrapment of silver nanoparticle (Ag-NP) in order to achieve antibacterial property to the material. Carboxylic groups of PPAA act as anchor as well as capping and stabilizing agents for Ag-NPs synthesized by chemical reduction method using NaBH(4) as a reducing agent. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy (XPS), and water contact angle analysis were used to characterize the PPAA coatings. The Ag-NPs loaded polymer samples were characterized by UV-visible spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray, and XPS techniques. XPS analysis showed ~1.0 at.% loading of Ag-NPs on to the PPAA-PET-mesh, which was composed of 79% zero-valent (Ag°) and 21% oxidized nano-Ag (Ag(+) ). The plasma processed PET meshes samples were tested for antibacterial activity against two bacterial strains, namely Staphylococcus aureus (Gram positive) and Escherichia coli (Gram negative). Qualitative and quantitative tests showed that silver containing PPAA-PET meshes exhibit excellent antibacterial property against the tested bacteria with percent reduction of bacterial concentration >99%, compared to the untreated PET mesh.

  1. Antibacterial burst-release from minimal Ag-containing plasma polymer coatings

    PubMed Central

    Lischer, Stefanie; Körner, Enrico; Balazs, Dawn J.; Shen, Dakang; Wick, Peter; Grieder, Kathrin; Haas, Dieter; Heuberger, Manfred; Hegemann, Dirk

    2011-01-01

    Biomaterials releasing silver (Ag) are of interest because of their ability to inhibit pathogenic bacteria including antibiotic-resistant strains. In order to investigate the potential of nanometre-thick Ag polymer (Ag/amino-hydrocarbon) nanocomposite plasma coatings, we studied a comprehensive range of factors such as the plasma deposition process and Ag cation release as well as the antibacterial and cytocompatible properties. The nanocomposite coatings released most bound Ag within the first day of immersion in water yielding an antibacterial burst. The release kinetics correlated with the inhibitory effects on the pathogens Pseudomonas aeruginosa or Staphylococcus aureus and on animal cells that were in contact with these coatings. We identified a unique range of Ag content that provided an effective antibacterial peak release, followed by cytocompatible conditions soon thereafter. The control of the in situ growth conditions for Ag nanoparticles in the polymer matrix offers the possibility to produce customized coatings that initially release sufficient quantities of Ag ions to produce a strong adjacent antibacterial effect, and at the same time exhibit a rapidly decaying Ag content to provide surface cytocompatibility within hours/days. This approach seems to be favourable with respect to implant surfaces and possible Ag-resistance/tolerance built-up. PMID:21247951

  2. Novel non-conjugated main-chain hole-transporting polymers for organic electronics application.

    PubMed

    Schelter, Jürgen; Mielke, Georg Felix; Köhnen, Anne; Wies, Jenna; Köber, Sebastian; Nuyken, Oskar; Meerholz, Klaus

    2010-09-01

    A new class of hole-transporting polymers for use in organic electronic devices such as organic light-emitting diodes (OLEDs) or photorefractive holographic storage devices has been synthesized. The polymers contain tetraarylbenzidines or tetraarylphenylenediamines as charge-transporting units in the polymer backbone and are connected by non-conjugating fluorene bridges. For use in OLEDs the novel polymers were functionalized with oxetane groups that can be cross-linked via a cationic ring opening polymerization to yield insoluble networks. Such insoluble films are necessary for the fabrication of multilayer devices by wet deposition techniques. The novel materials feature improved film-formation properties as demonstrated in green-emitting double-layer OLEDs.

  3. Electroless plating of honeycomb and pincushion polymer films prepared by self-organization.

    PubMed

    Yabu, Hiroshi; Hirai, Yuji; Shimomura, Masatsugu

    2006-11-07

    This report describes the fabrication and electroless plating of regular porous and pincushion-like polymer structures prepared by self-organization. Honeycomb-patterned films were prepared by simple casting of polymer solution under applied humid air and pincushion structures by peeling off the top layer of the former films. Silver-deposited honeycomb-patterned films and pincushion films were obtained by simple electroless plating of the respective original structures. XPS revealed Ag deposition on the honeycomb-patterned film. After thermal decomposition or solvent elution of the template polymer, unique metal mesoscopic structures were obtained.

  4. Polymers based on stable phenoxyl radicals for the use in organic radical batteries.

    PubMed

    Jähnert, Thomas; Häupler, Bernhard; Janoschka, Tobias; Hager, Martin D; Schubert, Ulrich S

    2014-05-01

    Polymers with pendant phenoxyl radicals are synthesized and the electrochemical properties are investigated in detail. The monomers are polymerized using ring-opening metathesis polymerization (ROMP) or free-radical polymerization methods. The monomers and polymers, respectively, are oxidized to the radical either before or after the polymerization. These phenoxyl radicals containing polymers reveal a reversible redox behavior at a potential of -0.6 V (vs Ag/AgCl). Such materials can be used as anode-active material in organic radical batteries (ORBs).

  5. Dynamic nuclear polarization NMR spectroscopy allows high-throughput characterization of microporous organic polymers.

    PubMed

    Blanc, Frédéric; Chong, Samantha Y; McDonald, Tom O; Adams, Dave J; Pawsey, Shane; Caporini, Marc A; Cooper, Andrew I

    2013-10-16

    Dynamic nuclear polarization (DNP) solid-state NMR was used to obtain natural abundance (13)C and (15)N CP MAS NMR spectra of microporous organic polymers with excellent signal-to-noise ratio, allowing for unprecedented details in the molecular structure to be determined for these complex polymer networks. Sensitivity enhancements larger than 10 were obtained with bis-nitroxide radical at 14.1 T and low temperature (∼105 K). This DNP MAS NMR approach allows efficient, high-throughput characterization of libraries of porous polymers prepared by combinatorial chemistry methods.

  6. Transformation of polymer composite nanofibers to diamond fibers and films by microwave plasma-enhanced CVD process

    NASA Astrophysics Data System (ADS)

    Potocký, Š.; Ižák, T.; Rezek, B.; Tesárek, P.; Kromka, A.

    2014-09-01

    In this work, polyvinyl alcohol (PVA) fibers were used as a polymer matrix containing ultra-dispersed diamond (UDD) nanoparticles. Growth of diamond fiber-like structures and films by microwave plasma-enhanced chemical vapor deposition was studied as a function of UDD concentration in the PVA matrix. The influence of surface tension (fibers radii) for nucleation/seeding is discussed. Using a high UDD concentration in the polymer matrix lead to the formation of fiber-like structures. The composite PVA polymer nanofibers with the highest concentration of UDD nanoparticles resulted in the growth of nearly continuous diamond film at low thickness of 250 nm.

  7. Organic Polymer Chemistry in the Context of Novel Processes

    PubMed Central

    2016-01-01

    This article was written to shed light on a series of what some have stated are not so obvious connections that link polymer synthesis in supercritical CO2 to cancer treatment and vaccines, nonflammable polymer electrolytes for lithium ion batteries, and 3D printing. In telling this story, we also attempt to show the value of versatility in applying one’s primary area of expertise to address pertinent questions in science and in society. In this Outlook, we attempted to identify key factors to enable a versatile and nimble research effort to take shape in an effort to influence diverse fields and have a tangible impact in the private sector through the translation of discoveries into the marketplace. PMID:27725955

  8. Depolymerization of the waste polymers in municipal solid waste streams using induction-coupled plasma technology

    NASA Astrophysics Data System (ADS)

    Guddeti, Ravikishan Reddy

    2000-10-01

    A significant, valuable percentage of today's municipal solid waste stream consists of polymeric materials, for which almost no economic recycling technology currently exists. This polymeric waste is incinerated, landfilled or recycled via downgraded usage. Thermal plasma treatment is a potentially viable means of recycling these materials by converting them back into monomers or into other useful compounds. The technical, laboratory scale, feasibility of using an induction-coupled RF plasma [ICP] heated reactor for this purpose has been demonstrated in the present study. Polyethylene [PE], polypropylene [PP] and polyethylene terephthalate [PET], the model polymers chosen for the study, were injected axially through the center of an ICP torch. 68% of PE, 78% of PP and 75% of PET were converted into gaseous products. Ethylene and propylene were the primary gaseous products of decomposition of the former two polymers and acetylene was the primary product of the depolymerization of PET. The amount of propylene obtained in PE depolymerization was significantly higher than anticipated and was believed to be due to beta-scission reactions occurring at the high plasma temperatures. Statistical design of experiments was used to determine the influence of individual variables. Analysis of results showed that plasma plate power, central gas flow rate, probe gas flow rate, powder feed rate and the interaction between the quench gas flow rate and power input were the key process parameters affecting the yield of monomer in the product gas stream. Depolymerization of a PE + PP mixture yielded concentrations of propylene and ethylene close to those predicted from weighting the concentrations of products from the individual polymers. 75.5 wt.% of the mixture was converted into monomers. TEM analysis of the carbon residues collected from different locations of the reactor indicated the formation of some novel carbon structures, including carbon nanotubes. The presence of these

  9. Ionic Liquid-Based Polymer Electrolytes via Surfactant-Assisted Polymerization at the Plasma-Liquid Interface.

    PubMed

    Tran, Quoc Chinh; Bui, Van-Tien; Dao, Van-Duong; Lee, Joong-Kee; Choi, Ho-Suk

    2016-06-29

    We first report an innovative method, which we refer to as interfacial liquid plasma polymerization, to chemically cross-link ionic liquids (ILs). By this method, a series of all-solid state, free-standing polymer electrolytes is successfully fabricated where ILs are used as building blocks and ethylene oxide-based surfactants are employed as an assisted-cross-linking agent. The thickness of the films is controlled by the plasma exposure time or the ratio of surfactant to ILs. The chemical structure and properties of the polymer electrolyte are characterized by scanning electron microscopy (SEM), Fourier transformation infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), and electrochemical impedance spectroscopy (EIS). Importantly, the underlying polymerization mechanism of the cross-linked IL-based polymer electrolyte is studied to show that fluoroborate or halide anions of ILs together with the aid of a small amount of surfactants having ethylene oxide groups are necessary to form cross-linked network structures of the polymer electrolyte. The ionic conductivity of the obtained polymer electrolyte is 2.28 × 10(-3) S·cm(-1), which is a relatively high value for solid polymer electrolytes synthesized at room temperature. This study can serve as a cornerstone for developing all-solid state polymer electrolytes with promising properties for next-generation electrochemical devices.

  10. Organic electronics with polymer dielectrics on plastic substrates fabricated via transfer printing

    NASA Astrophysics Data System (ADS)

    Hines, Daniel R.

    Printing methods are fast becoming important processing techniques for the fabrication of flexible electronics. Some goals for flexible electronics are to produce cheap, lightweight, disposable radio frequency identification (RFID) tags, very large flexible displays that can be produced in a roll-to-roll process and wearable electronics for both the clothing and medical industries. Such applications will require fabrication processes for the assembly of dissimilar materials onto a common substrate in ways that are compatible with organic and polymeric materials as well as traditional solid-state electronic materials. A transfer printing method has been developed with these goals and application in mind. This printing method relies primarily on differential adhesion where no chemical processing is performed on the device substrate. It is compatible with a wide variety of materials with each component printed in exactly the same way, thus avoiding any mixed processing steps on the device substrate. The adhesion requirements of one material printed onto a second are studied by measuring the surface energy of both materials and by surface treatments such as plasma exposure or the application of self-assembled monolayers (SAM). Transfer printing has been developed within the context of fabricating organic electronics onto plastic substrates because these materials introduce unique opportunities associated with processing conditions not typically required for traditional semiconducting materials. Compared to silicon, organic semiconductors are soft materials that require low temperature processing and are extremely sensitive to chemical processing and environmental contamination. The transfer printing process has been developed for the important and commonly used organic semiconducting materials, pentacene (Pn) and poly(3-hexylthiophene) (P3HT). A three-step printing process has been developed by which these materials are printed onto an electrode subassembly consisting

  11. Synthesis and gas adsorption properties of tetra-armed microporous organic polymer networks based on triphenylamine.

    PubMed

    Yang, Xiao; Yao, Shuwen; Yu, Miao; Jiang, Jia-Xing

    2014-04-01

    Two novel tetra-armed microporous organic polymers have been designed and synthesized via a nickel-catalyzed Yamamoto-type Ullmann cross-coupling reaction or Suzuki cross-coupling polycondensation. These polymers are stable in various solvents, including concentrated hydrochloric acid, and are thermally stable. The homocoupled polymer YPTPA shows much higher Brunauer-Emmet-Teller-specific surface area up to 1557 m(2) g(-1) than the copolymer SPTPA (544 m(2) g(-1)), and a high CO2 uptake ability of 3.03 mmol g(-1) (1.13 bar/273 K) with a CO2 /N2 sorption selectivity of 17.3:1. Both polymers show high isosteric heats of CO2 adsorption (22.7-26.5 kJ mol(-1)) because the incorporation of nitrogen atoms into the skeleton of microporous organic polymers enhances the interaction between the pore wall and the CO2 molecules. The values are higher than those of the porous aromatic frameworks, which contain neither additional polar functional groups nor nitrogen atoms, and are rather close to those of previously reported microporous organic polymers containing the nitrogen atoms on the pore wall. These data show that these materials would be potential candidates for applications in post-combustion CO2 capture and sequestration technology.

  12. Novel Imprinted Polymer for the Preconcentration of Cadmium with Determination by Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Yilmaz, Vedat; Yilmaz, Hayriye; Arslan, Zikri; Leszczynski, Jerzy

    2017-01-01

    A novel Cd(II)-imprinted polymer was prepared with chemical immobilization approach by using N-methacryloyl-L-histidine as a vinylated chelating agent for on-line solid phase extraction of Cd(II) for determination by inductively coupled plasma mass spectrometry. Cd(II)-monomer complex was synthesized and copolymerized via bulk polymerization method in the presence of ethyleneglycoldimethacrylate cross-linker. The resulting polymer was leached with 1.0 mol L(-1) HNO3 to generate the cavities in the polymer for Cd(II) ions. The experimental conditions, including load pH, solution flow rate, and eluent concentration for effective sorption of Cd(II) were optimized using a minicolumn of the imprinted polymer. A volume of 5.0 mL sample 5 μg L(-1) Cd(II) solution at pH 6.5 was loaded onto the column at 2.0 mL min(-1) by using a sequential injection system (FIALab 3200) followed by elution with 1.0 mL of 0.75 mol L(-1) HNO3. The relative selectivity coefficients of the imprinted polymer for Cd(II) were 38.5, 3.5, 3.0, 2.5 and 6.0 in the presence of Cu(II), Ni(II), Zn(II), Co(II) and Pb(II), respectively. Computational calculations revealed that the selectivity of the imprinted polymer was mediated by the stability of Cd(II)-N-methacryloyl-L-histidine complex which was far more stable than those of commonly used monomers, such as 4-vinyl pyridine, methacrylic acid and vinylimidazole. The detection limit (3s) and relative standard deviation (%) were found to be 0.004 μg L(-1) and 3.2%, respectively. The method was validated by analysis of seawater certified reference material (CASS-4) and successfully applied to the determination of Cd(II) in coastal seawater and estuarine water samples.

  13. Unraveling the effect of polymer dots doping in inverted low bandgap organic solar cells.

    PubMed

    Zhang, Xinyuan; Liu, Chunyu; Li, Jinfeng; He, Yeyuan; Li, Zhiqi; Li, Hao; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2015-06-28

    In this study, molecular doping with polymer dots was designed to unravel its effect on the photoconductivity in organic solar cells. The photocurrent in organic solar cells exhibited a considerable increase under optimal doping concentration, leading to an ultimate enhancement of power conversion efficiency from 2.30% to 3.64%. This can be attributed primarily to the improvement of the initial boost in charge carriers due to the background carriers induced by the polymer dots and increased tail absorption by the active layer. Based on single carrier device and impedance measurements, polymer dopant can efficiently decrease charge recombination and improve charge carriers mobilities. The obtained achievements pave an approach of molecular doping in affecting the operation of organic solar cells.

  14. Optical properties of self-organized gold nanorod-polymer hybrid films.

    PubMed

    Tritschler, Ulrich; Zlotnikov, Igor; Keckeis, Philipp; Schlaad, Helmut; Cölfen, Helmut

    2014-11-25

    High fractions of gold nanorods were locally aligned by means of a polymeric liquid crystalline phase. The gold nanorods constituting >80 wt % of the thin organic-inorganic composite films form a network with side-by-side and end-to-end combinations. Organization into these network structures was induced by shearing gold nanorod-LC polymer dispersions via spin-coating. The LC polymer is a polyoxazoline functionalized with pendent cholesteryl and carboxyl side groups enabling the polymer to bind to the CTAB stabilizer layer of the gold nanorods via electrostatic interactions, thus forming the glue between organic and inorganic components, and to form a chiral nematic lyotropic phase. The self-assembled locally oriented gold nanorod structuring enables control over collective optical properties due to plasmon resonance coupling, reminiscent of enhanced optical properties of natural biomaterials.

  15. Plasma Surface Modification of Polymer Backsheets: Origins of Future Interfacial Barrier/Backsheet Failure (Poster)

    SciTech Connect

    Pankow, J. W.; Glick, S. H.

    2006-05-01

    Flexible polymer substrates coated with inorganic oxide moisture barriers are a potential replacement for glass backsheets in thin-film PV (photovoltaic) modules. Silicon oxynitride (SiO{sub x}N{sub y}) deposited by plasma enhanced chemical vapor deposition (PECVD) on polyethylene terephthalate (PET) represents one potential new backsheet candidate. Barrier deposition runs at NREL have included a nitrogen-rich plasma pretreatment prior to barrier deposition with the intention of cleaning the PET surface and enhancing adhesion of the SiO{sub x}N{sub y} barrier film to PET; however, test coupons of PET/barrier/EVA/TPE failed after damp-heat exposure. (EVA is ethylene vinyl acetate and TPE is Tedlar{reg_sign}-PET-EVA). PET substrates exposed to plasma conditions similar to those used in pretreatment were examined by X-ray photoelectron spectroscopy (XPS) to reveal that new low molecular weight PET fragments were created at the PET surface. These fragments are responsible for barrier/PET interfacial failure and barrier transfer to the EVA encapsulant side following damp heat exposure.

  16. Novel Organic Polymer Films for Real-time Holographic Processing

    DTIC Science & Technology

    2007-11-02

    Because of the modelo In behavior of the arctangent function, the range is wrapped (ambiguous) beyond the so-called synthetic wavelength TB01JMF.DOC...photorefractive polymer with high optical gain and diffraction efficiency near 100%", Nature ’ill, pp . 497-500 (1994). 2 S. Ducharme, J.C. Scott, R.J. Tweig...W.E. Moerner, Phys. Rev. Lett., 66, pp . 1846-1849 (1991). 3 W.E. Moerner and S.M. Silence, "Polymeric Photorefractive Materials", Chem. Rev. 94, pp

  17. Floating-Gate Type Organic Memory with Organic Insulator Thin Film of Plasma Polymerized Methyl Methacrylate

    NASA Astrophysics Data System (ADS)

    Kim, Hee-sung; Lee, Boong-Joo; Kim, Gun-Su; Shin, Paik-Kyun

    2013-02-01

    To fabricate organic memory device by entirely dry process, plasma polymerized methyl methacrylate (ppMMA) thin films were prepared and they were used as both tunneling layer and gate insulator layer in a floating-gate type organic memory device. The ppMMA thin films were prepared with inductively coupled plasma (ICP) source combined with stabilized monomer vapor control. The ppMMA gate insulator thin film revealed dielectric constant of 3.75 and low leakage current of smaller than 10-9 A/cm. The floating-gate type organic memory device showed promising memory characteristics such as memory window value of 12 V and retention time of over 2 h, where 60 V of writing voltage and -30 V of erasing voltage were applied, respectively.

  18. Systematic Analysis of Polymer Molecular Weight Influence on the Organic Photovoltaic Performance.

    PubMed

    Katsouras, Athanasios; Gasparini, Nicola; Koulogiannis, Chrysanthos; Spanos, Michael; Ameri, Tayebeh; Brabec, Christoph J; Chochos, Christos L; Avgeropoulos, Apostolos

    2015-10-01

    The molecular weight of an electron donor-conjugated polymer is as essential as other well-known parameters in the chemical structure of the polymer, such as length and the nature of any side groups (alkyl chains) positioned on the polymeric backbone, as well as their placement, relative strength, the ratio of the donor and acceptor moieties in the backbone of donor-acceptor (D-A)-conjugated polymers, and the arrangement of their energy levels for organic photovoltaic performance. Finding the "optimal" molecular weight for a specific conjugated polymer is an important aspect for the development of novel photovoltaic polymers. Therefore, it is evident that the chemistry of functional conjugated polymers faces major challenges and materials have to adopt a broad range of specifications in order to be established for high photovoltaic performance. In this review, the approaches followed for enhancing the molecular weight of electron-donor polymers are presented in detail, as well as how this influences the optoelectronic properties, charge transport properties, structural conformation, morphology, and the photovoltaic performance of the active layer.

  19. Conformational Evolution of Elongated Polymer Solutions Tailors the Polarization of Light-Emission from Organic Nanofibers

    PubMed Central

    2014-01-01

    Polymer fibers are currently exploited in tremendously important technologies. Their innovative properties are mainly determined by the behavior of the polymer macromolecules under the elongation induced by external mechanical or electrostatic forces, characterizing the fiber drawing process. Although enhanced physical properties were observed in polymer fibers produced under strong stretching conditions, studies of the process-induced nanoscale organization of the polymer molecules are not available, and most of fiber properties are still obtained on an empirical basis. Here we reveal the orientational properties of semiflexible polymers in electrospun nanofibers, which allow the polarization properties of active fibers to be finely controlled. Modeling and simulations of the conformational evolution of the polymer chains during electrostatic elongation of semidilute solutions demonstrate that the molecules stretch almost fully within less than 1 mm from jet start, increasing polymer axial orientation at the jet center. The nanoscale mapping of the local dichroism of individual fibers by polarized near-field optical microscopy unveils for the first time the presence of an internal spatial variation of the molecular order, namely the presence of a core with axially aligned molecules and a sheath with almost radially oriented molecules. These results allow important and specific fiber properties to be manipulated and tailored, as here demonstrated for the polarization of emitted light. PMID:25067856

  20. The Miscibility of PCBM in Low Band-Gap Conjugated Polymers in Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Chen, Huipeng; You, Wei; Peet, Jeff; Azoulay, Jason; Bazan, Guillermo; Dadmun, Mark

    2012-02-01

    Understanding the morphology of the photoactive layer in organic photovoltaics (OPVs) is essential to optimizing conjugated polymer-based solar cells to meet the targeted efficiency of 10%. The miscibility and interdiffusion of components are among the key elements that impact the development of morphology and structure in OPV active layers. This study uses neutron reflectivity to correlate the structure of low band gap polymers to their miscibility with PCBM. Several low band gap polymers that exhibit power conversion efficiencies exceeding 7%, including PBnDT-DTffBT were examined. The intermixing of low band-gap polymer and PCBM bilayers was monitored by neutron reflectivity before and after thermal annealing, providing quantification of the miscibility and interdiffusion of PCBM within the low band gap polymer layer. These results indicate that the miscibility of PCBM ranges from 3% to 26% with the low band-gap polymers studied. The correlation between low band gap polymer structure and miscibility of PCBM will also be discussed.

  1. Multilayer Coextrusion of Polymer Composites to Develop Organic Capacitors

    SciTech Connect

    Mondy, L.; Mrozek, R.; Rao, R.; Lenhart, J.; Bieg, L.; Spangler, S.; Stavig, M.; Schroeder, J.; Winter, M.; Diantonio, C.; Collins, R.

    2015-05-29

    Multilayer coextrusion is applied to produce a tape containing layers of alternating electrical properties to demonstrate the potential for using coextrusion to manufacture capacitors. To obtain the desired properties, we develop two filled polymer systems, one for conductive layers and one for dielectric layers. We describe numerical models used to help determine the material and processing parameters that impact processing and layer stability. These models help quantify the critical ratios of densities and viscosities of the two layers to maintain stable layers, as well as the effect of increasing the flow rate of one of the two materials. The conducting polymer is based on polystyrene filled with a blend of low-melting-point eutectic metal and nickel particulate filler, as described by Mrozek et al. (2010). The appropriate concentrations of fillers are determined by balancing measured conductivity with processability in a twin screw extruder. Based on results of the numerical models and estimates of the viscosity of emulsions and suspensions, a dielectric layer composed of polystyrene filled with barium titanate is formulated. Despite the fact that the density of the dielectric filler is less than the metallic filler of the conductive phase, as well as rheological measurements that later showed that the dielectric formulation is not an ideal match to the viscosity of the conductive material, the two materials can be successfully coextruded if the flow rates of the two materials are not identical. A measurable capacitance of the layered structure is obtained.

  2. Multilayer Coextrusion of Polymer Composites to Develop Organic Capacitors

    DOE PAGES

    Mondy, L.; Mrozek, R.; Rao, R.; ...

    2015-05-29

    Multilayer coextrusion is applied to produce a tape containing layers of alternating electrical properties to demonstrate the potential for using coextrusion to manufacture capacitors. To obtain the desired properties, we develop two filled polymer systems, one for conductive layers and one for dielectric layers. We describe numerical models used to help determine the material and processing parameters that impact processing and layer stability. These models help quantify the critical ratios of densities and viscosities of the two layers to maintain stable layers, as well as the effect of increasing the flow rate of one of the two materials. The conductingmore » polymer is based on polystyrene filled with a blend of low-melting-point eutectic metal and nickel particulate filler, as described by Mrozek et al. (2010). The appropriate concentrations of fillers are determined by balancing measured conductivity with processability in a twin screw extruder. Based on results of the numerical models and estimates of the viscosity of emulsions and suspensions, a dielectric layer composed of polystyrene filled with barium titanate is formulated. Despite the fact that the density of the dielectric filler is less than the metallic filler of the conductive phase, as well as rheological measurements that later showed that the dielectric formulation is not an ideal match to the viscosity of the conductive material, the two materials can be successfully coextruded if the flow rates of the two materials are not identical. A measurable capacitance of the layered structure is obtained.« less

  3. Response delay caused by dielectric relaxation of polymer insulators for organic transistors and resolution method

    NASA Astrophysics Data System (ADS)

    Suemori, Kouji; Kamata, Toshihide

    2012-08-01

    We investigated the effect of dielectric relaxation in polymer gate insulators on the device characteristics of organic field effect transistors. Dielectric relaxation of polymer gate insulators caused an increase in drain current (ID) in a period starting immediately after the application of the gate voltage (VG) and lasting several milliseconds. This induced an apparent delay in the response of ID. Based on the observed results, we suggested an ideal gate insulator to achieve organic field effect transistors that have a fast response and high performance.

  4. In vitro apatite formation on organic polymers modified with a silane coupling reagent.

    PubMed

    Shirosaki, Yuki; Kubo, Masaaki; Takashima, Seisuke; Tsuru, Kanji; Hayakawa, Satoshi; Osaka, Akiyoshi

    2005-09-22

    Gamma-methacryloxypropyltrimethoxysilane (gamma-MPS) was grafted to high-density polyethylene, polyamide and silicone rubber substrates by the emulsion polymerization procedure in order to provide these organic polymers with in vitro apatite-forming ability. The contact angles towards distilled water of the gamma-MPS-grafted specimens were lower than those of the original organic polymer specimens, indicating that the grafted substrates were more hydrophilic. The in vitro apatite formation in a simulated body fluid (Kokubo solution) was confirmed for several of the gamma-MPS-grafted specimens.

  5. In vitro apatite formation on organic polymers modified with a silane coupling reagent

    PubMed Central

    Shirosaki, Yuki; Kubo, Masaaki; Takashima, Seisuke; Tsuru, Kanji; Hayakawa, Satoshi; Osaka, Akiyoshi

    2005-01-01

    γ-Methacryloxypropyltrimethoxysilane (γ-MPS) was grafted to high-density polyethylene, polyamide and silicone rubber substrates by the emulsion polymerization procedure in order to provide these organic polymers with in vitro apatite-forming ability. The contact angles towards distilled water of the γ-MPS-grafted specimens were lower than those of the original organic polymer specimens, indicating that the grafted substrates were more hydrophilic. The in vitro apatite formation in a simulated body fluid (Kokubo solution) was confirmed for several of the γ-MPS-grafted specimens. PMID:16849191

  6. Surface Activation of Plane and Curved Automotive Polymer Surfaces by Using a Fittable Multi-Pin DBD Plasma Source

    NASA Astrophysics Data System (ADS)

    Jörn, Heine; Roland, Damm; Christoph, Gerhard; Stephan, Wieneke; Wolfgang, Viöl

    2014-06-01

    In this work, surface activation of automotive polymers using atmospheric pressure plasmas was investigated. The aim was to increase the polar fraction of the surface energy of both plane and convex polymer devices with a radius in the range of 30 mm. For this purpose, a fittable low temperature atmospheric pressure plasma source based on capacitively coupled multi-pin electrodes was set up and applied. Each single electrode generates a treatment spot of approximately 2 cm2 with a tunable power density of up to 1.4 W/cm2. The surface energy was evaluated by contact angle measurements. After treatment at a low energy density of 1.01 J/cm2, the polar fraction of the surface energy of the investigated polymers was increased by a factor of 3.3 to 132, depending on the polymer materials. It was shown that by applying the presented fittable plasma source, this effect is independent of the surface radius of the polymer sample.

  7. Non-thermal plasma techniques for abatement of volatile organic compounds and nitrogen oxides

    SciTech Connect

    Penetrante, B.M.; Hsiao, M.C.; Bardsley, J.N.; Merritt, B.T.; Vogtlin, G.E.; Wallman, P.H.; Kuthi, A.; Burkhart, C.P.; Bayless, J.R.

    1995-12-04

    Non-thermal plasma processing is an emerging technology for the abatement of volatile organic compounds (VOCs) and nitrogen oxides (NO{sub x}) in atmospheric-pressure air streams. Either electrical discharge or electron beam methods can produce these plasmas. Each of these methods can be implemented in many ways. There are many types of electrical discharge reactors, the variants depending on the electrode configuration and electrical power supply (pulsed, AC or DC). Two of the more extensively investigated types of discharge reactors are based on the pulsed corona and dielectric-barrier discharge. Recently, compact low-energy (<200 keV) electron accelerators have been developed to meet the requirements of industrial applications such as crosslinking of polymer materials, curing of solvent-free coatings, and drying of printing inks. Special materials have also been developed to make the window thin and rugged. Some of these compact electron beam sources are already commercially available and could be utilized for many pollution control applications. In this paper we will present a comparative assessment of various nonthermal plasma reactors. The thrust of our work has been two-fold: (1) to understand the scalability of various non-thermal plasma reactors by focusing on the energy efficiency of the electron and chemical kinetics, and (2) to identify the byproducts to ensure that the effluent gases from the processor are either benign or much easier and less expensive to dispose of compared to the original pollutants. We will present experimental results using a compact electron beam reactor and various types of electrical discharge reactors. We have used these reactors to study the removal of NO{sub x} and a wide variety of VOCS. We have studied the effects of background gas composition and gas temperature on the decomposition chemistry.

  8. Polymers.

    ERIC Educational Resources Information Center

    Tucker, David C.

    1986-01-01

    Presents an open-ended experiment which has students exploring polymer chemistry and reverse osmosis. This activity involves construction of a polymer membrane, use of it in a simple osmosis experiment, and application of its principles in solving a science-technology-society problem. (ML)

  9. Assorted Phenoxyl-Radical Polymers and Their Application in Lithium-Organic Batteries.

    PubMed

    Jähnert, Thomas; Hager, Martin D; Schubert, Ulrich S

    2016-04-01

    The synthesis and electrochemical characterization of novel polymers bearing phenoxyl-radicals as redox-active side chains is described. The monomers are synthesized from the corresponding phenols and quinones, respectively. These compounds are subsequently poly-merized via ring-opening metathesis polymerization. The electrochemical properties of the phenoxyl-radical polymers are characterized using cyclic voltammetry and the most promising polymer is investigated as active material in a lithium coin-cell, creating the first phenoxyl-lithium battery. These phenoxyl-containing polymers represent interesting anode materials for organic radical and lithium batteries due to their suitable redox-potentials and possibility to create batteries with higher potentials as well as straightforward synthesis procedures.

  10. RMS roughness-independent tuning of surface wettability by tailoring silver nanoparticles with a fluorocarbon plasma polymer.

    PubMed

    Choukourov, A; Kylián, O; Petr, M; Vaidulych, M; Nikitin, D; Hanuš, J; Artemenko, A; Shelemin, A; Gordeev, I; Kolská, Z; Solař, P; Khalakhan, I; Ryabov, A; Májek, J; Slavínská, D; Biederman, H

    2017-02-16

    A layer of 14 nm-sized Ag nanoparticles undergoes complex transformation when overcoated by thin films of a fluorocarbon plasma polymer. Two regimes of surface evolution are identified, both with invariable RMS roughness. In the early regime, the plasma polymer penetrates between and beneath the nanoparticles, raising them above the substrate and maintaining the multivalued character of the surface roughness. The growth (β) and the dynamic (1/z) exponents are close to zero and the interface bears the features of self-affinity. The presence of inter-particle voids leads to heterogeneous wetting with an apparent water contact angle θa = 135°. The multivalued nanotopography results in two possible positions for the water droplet meniscus, yet strong water adhesion indicates that the meniscus is located at the lower part of the spherical nanofeatures. In the late regime, the inter-particle voids become filled and the interface acquires a single valued character. The plasma polymer proceeds to grow on the thus-roughened surface whereas the nanoparticles keep emerging away from the substrate. The RMS roughness remains invariable and lateral correlations propagate with 1/z = 0.27. The surface features multiaffinity which is given by different evolution of length scales associated with the nanoparticles and with the plasma polymer. The wettability turns to the homogeneous wetting state.

  11. Enhancement in biological response of Ag-nano composite polymer membranes using plasma treatment for fabrication of efficient bio materials

    NASA Astrophysics Data System (ADS)

    Agrawal, Narendra Kumar; Sharma, Tamanna Kumari; Chauhan, Manish; Agarwal, Ravi; Vijay, Y. K.; Swami, K. C.

    2016-05-01

    Biomaterials are nonviable material used in medical devices, intended to interact with biological systems, which are becoming necessary for the development of artificial material for biological systems such as artificial skin diaphragm, valves for heart and kidney, lenses for eye etc. Polymers having novel properties like antibacterial, antimicrobial, high adhesion, blood compatibility and wettability are most suitable for synthesis of biomaterial, but all of these properties does not exist in any natural or artificial polymeric material. Nano particles and plasma treatment can offer these properties to the polymers. Hence a new nano-biomaterial has been developed by modifying the surface and chemical properties of Ag nanocomposite polymer membranes (NCPM) by Argon ion plasma treatment. These membranes were characterized using different techniques for surface and chemical modifications occurred. Bacterial adhesion and wettability were also tested for these membranes, to show direct use of this new class of nano-biomaterial for biomedical applications.

  12. Recent progress of high performance polymer OLED and OPV materials for organic printed electronics

    NASA Astrophysics Data System (ADS)

    Sekine, Chizu; Tsubata, Yoshiaki; Yamada, Takeshi; Kitano, Makoto; Doi, Shuji

    2014-06-01

    The development of organic printed electronics has been expanding to a variety of applications and is expected to bring innovations to our future life. Along with this trend, high performance organic materials with cost-efficient fabrication processes and specific features such as thin, light weight, bendable, and low power consumption are required. A variety of organic materials have been investigated in the development of this field. The basic guidelines for material design and the recent progress of polymer-based organic light-emitting diodes (OLEDs) and organic photovoltaic cells (OPVs) are reported.

  13. Recent progress of high performance polymer OLED and OPV materials for organic printed electronics

    PubMed Central

    Sekine, Chizu; Tsubata, Yoshiaki; Yamada, Takeshi; Kitano, Makoto; Doi, Shuji

    2014-01-01

    The development of organic printed electronics has been expanding to a variety of applications and is expected to bring innovations to our future life. Along with this trend, high performance organic materials with cost-efficient fabrication processes and specific features such as thin, light weight, bendable, and low power consumption are required. A variety of organic materials have been investigated in the development of this field. The basic guidelines for material design and the recent progress of polymer-based organic light-emitting diodes (OLEDs) and organic photovoltaic cells (OPVs) are reported. PMID:27877671

  14. [An investigation of HAP/organic polymer composite coatings prepared by electrochemical co-deposition technique].

    PubMed

    Hu, Haobing; Lin, Changjian; Leng, Yang

    2003-03-01

    An electrochemical co-deposition technique has been developed to prepare a hydroxyapatite (HAP)/organic polymer composite coatings on Ti surface as new biomaterial of hard tissue. The composite coating of organic polymer and calcium phosphate is formed by adding a water soluble polymer of the ethylene series to NH4H2PO4-Ca (NO3)2 solution when conducting an appropriate electrochemical co-deposition experiment. The XRD, SEM, XPS, SIMS and nano indent measurements were performed to characterize the morphology, composition, structure and surface stiffness of the composite coating. It was found that the morphology and surface hardness of the coatings showed a remarkable modification when introducing a minor polymer to HAP coating, and the bonding force between the coating and metal substrate was distinctly increased. The incorporation of minor organic polymer into the HAP compound at molecular level will improve the mechanical properties and morphology of the composite coatings, and this may be helpful to raising its bio-activity.

  15. Surface activation of cyclo olefin polymer by oxygen plasma discharge: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Soberon, Felipe

    2014-07-01

    Thermoplastic substrates made of cyclo olefin polymer (COP) are treated with oxygen plasma discharges to introduce polar groups at the surface. This is the first step in the process of surface functionalization of COP substrates used in biosensor devices. A molecular dynamics model of basic COP structure is implemented using the second-generation reactive empirical bond order (REBO) potentials for hydrocarbon-oxygen interactions. The model includes covalent bond and Van der Waals interactions. The bombardment of a COP surface with mono-energetic atomic oxygen ions, energy in the range 1-35 eV, is simulated and reported here. The dynamics of the substrate modification reveals that the substrate top layer is de-hydrogenated and subsequently builds up an oxygen-carbon matrix layer, ˜10 Å thick. Analysis of the modified substrates indicates that surface yield is predominantly peroxide groups.

  16. Chromosome-like organization of an asymmetrical ring polymer confined in a cylindrical space.

    PubMed

    Jeon, Chanil; Kim, Juin; Jeong, Hawoong; Jung, Youngkyun; Ha, Bae-Yeun

    2015-11-07

    To what extent does a confined polymer show chromosome-like organization? Using molecular dynamics simulations, we study a model Escherichia coli (E. coli) chromosome: an asymmetrical ring polymer, formed by small monomers on one side and big monomers on the other confined in a concentric-shell or simple cylinder with closed ends. The ring polymer is organized in the way observed for the E. coli chromosome: if the big monomers are assumed to be localized in the inner cylinder, the two "subchains" forming the ring are spontaneously partitioned in a parallel orientation with the "body" (big-monomer) chain linearly organized with a desired precision and the crossing (small-monomer) chain residing preferentially in the peripheral region. Furthermore, we show that the introduction of a "fluctuating boundary" between the two subchains leads to a double-peak distribution of ter-proximate loci, as seen in experiments, which would otherwise remain single-peaked. In a simple cylinder, however, a chromosome-like organization of the ring polymer typically requires an external mechanism such as cell-wall attachment. Finally, our results clarify to what degree the spatial organization of the chromosomes can be accomplished solely by ring asymmetry and anisotropic confinement.

  17. Branched terthiophenes in organic electronics: from small molecules to polymers.

    PubMed

    Scheuble, Martin; Goll, Miriam; Ludwigs, Sabine

    2015-01-01

    A zoo of chemical structures is accessible when the branched unit 2,2':3',2″-terthiophene (3T) is included both in structurally well-defined small molecules and polymer-like architectures. The first part of this review article highlights literature on all-thiophene based branched oligomers including dendrimers as well as combinations of 3T-units with functional moieties for light-harvesting systems. Motivated by the perfectly branched macromolecular dendrimers both electropolymerization as well as chemical approaches are presented as methods for the preparation of branched polythiophenes with different branching densities. Structure-function relationships between the molecular architecture and optical and electronic properties are discussed throughout the article.

  18. Silk Fibroin as an Organic Polymer for Controlled Drug Delivery

    SciTech Connect

    Hofmann,S.; Wong Po Foo, C.; Rossetti, F.; Textor, M.; Vunjak-Novakovic, G.; Kaplan, D.; Merkle, H.; Meinel, L.

    2006-01-01

    The pharmaceutical utility of silk fibroin (SF) materials for drug delivery was investigated. SF films were prepared from aqueous solutions of the fibroin protein polymer and crystallinity was induced and controlled by methanol treatment. Dextrans of different molecular weights, as well as proteins, were physically entrapped into the drug delivery device during processing into films. Drug release kinetics were evaluated as a function of dextran molecular weight, and film crystallinity. Treatment with methanol resulted in an increase in {beta}-sheet structure, an increase in crystallinity and an increase in film surface hydrophobicity determined by FTIR, X-ray and contact angle techniques, respectively. The increase in crystallinity resulted in the sustained release of dextrans of molecular weights ranging from 4 to 40 kDa, whereas for less crystalline films sustained release was confined to the 40 kDa dextran. Protein release from the films was studied with horseradish peroxidase (HRP) and lysozyme (Lys) as model compounds. Enzyme release from the less crystalline films resulted in a biphasic release pattern, characterized by an initial release within the first 36 h, followed by a lag phase and continuous release between days 3 and 11. No initial burst was observed for films with higher crystallinity and subsequent release patterns followed linear kinetics for HRP, or no substantial release for Lys. In conclusion, SF is an interesting polymer for drug delivery of polysaccharides and bioactive proteins due to the controllable level of crystallinity and the ability to process the biomaterial in biocompatible fashion under ambient conditions to avoid damage to labile compounds to be delivered.

  19. Formation of a Syndiotactic Organic Polymer Inside a MOF by a [2+2] Photo-Polymerization Reaction.

    PubMed

    Park, In-Hyeok; Medishetty, Raghavender; Lee, Hyeong-Hwan; Mulijanto, Caroline Evania; Quah, Hong Sheng; Lee, Shim Sung; Vittal, Jagadese J

    2015-06-15

    Getting suitable crystals for single-crystal X-ray crystallographic analysis still remains an art. Obtaining single crystals of metal-organic frameworks (MOFs) containing organic polymers poses even greater challenges. Here we demonstrate the formation of a syndiotactic organic polymer ligand inside a MOF by quantitative [2+2] photopolymerization reaction in a single-crystal-to-single-crystal manner. The spacer ligands with trans,trans,trans-conformation in the pillared-layer MOF with guest water molecules in the channels, undergo pedal motion to trans,cis,trans-conformation prior to [2+2] photo-cycloaddition reaction and yield single crystals of MOF containing two-dimensional coordination polymers fused with the organic polymer ligands. We also show that the organic polymer in the single crystals can be depolymerized reversibly by cleaving the cyclobutane rings upon heating. These MOFs also show interesting photoluminescent properties and sensing of small organic molecules.

  20. Molecular systems under shock compression into the dense plasma regime: carbon dioxide and hydrocarbon polymers

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.; Cochrane, Kyle R.; Root, Seth; Carpenter, John H.

    2013-10-01

    Density Functional Theory (DFT) has proven remarkably accurate in predicting properties of matter under shock compression into the dense plasma regime. Materials where chemistry plays a role are of interest for many applications, including planetary science and inertial confinement fusion (ICF). As examples of systems where chemical reactions are important, and demonstration of the high fidelity possible for these both structurally and chemically complex systems, we will discuss shock- and re-shock of liquid carbon dioxide (CO2) in the range 100 to 800 GPa and shock compression of hydrocarbon polymers, including GDP (glow discharge polymer) which is used as an ablator in laser ICF experiments. Experimental results from Sandia's Z machine validate the DFT simulations at extreme conditions and the combination of experiment and DFT provide reliable data for evaluating existing and constructing future wide-range equations of state models for molecular compounds. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Surfactant-free, low band gap conjugated polymer nanoparticles and polymer:fullerene nanohybrids with potential for organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Wang, Suxiao; Singh, Amita; Walsh, Nichola; Redmond, Gareth

    2016-06-01

    Stable, aqueous dispersions of nanoparticles based on the low band gap polymers poly [2,7-(9,9-dioctyl-fluorene)-alt-5,5-(4‧,7‧-di-2-thienyl-2‧,1‧,3‧-benzothiadiazole)] (APFO-3) and poly [N-9‧-heptadecanyl-2,7-carbazole-alt-5,5-(4‧,7‧-di-2-thienyl-2‧,1‧,3‧-benzothiadiazole)] (PCDTBT) were prepared, using a flexible, surfactant-free reprecipitation method, and characterized by a variety of optical techniques. Light scattering measurements indicated average nanoparticle hydrodynamic diameters of approximately 40 nm. The particles presented wide-bandwidth absorption and photoluminescence excitation spectra with high absorption cross-sections on the order of 10-12 cm2. Nanoparticle emission spectra were significantly red-shifted, with decreased emission quantum yields and lifetimes, consistent with increased inter-polymer chain interactions in the condensed phase. Single particle photoluminescence studies highlighted the multi-chromophoric nature of the polymer nanoparticles and confirmed their favorable photostabilities. When the nanoparticles were doped with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), the correspondence of photoluminescence emission quenching, quantum yield decreases, emission lifetime shortening, and increased non-radiative rates with increasing PCBM concentration suggested efficient photo-induced donor-to-acceptor charge transfer between the conjugated polymers and the fullerene dopants co-localized in the nanoparticle cores. Taken together, the data suggest that these surfactant-free hybrid nanomaterials may be useful for integration with future nanostructured organic photovoltaics technologies.

  2. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  3. Activation energies of diffusion of organic migrants in cyclo olefin polymer.

    PubMed

    Welle, Frank

    2014-10-01

    Cyclo olefin polymer (COP) is an amorphous polymer with good optical transparency and barrier properties, which is increasingly used for pharmaceutical packaging applications like pre-filled syringes, plastic vials, nutrition bags and blisters as well as for micro-well plates. For regulatory purposes, it is important to know the amount and quantity of compounds which migrate from the polymer into the pharmaceutical product. Within the study, diffusion coefficients of organic (model) compounds in COP at various temperatures were determined and the activation energies of diffusion were calculated according to the Arrhenius approach. Correlations were established between the molecular volume V of the migrating compound and the activation energy of diffusion EA as well as between the pre-exponential factor in the Arrhenius equation D0 and EA. From these correlations a prediction model was established for the migration of organic compounds in COP. This might be a useful tool supporting the evaluation process of COP packed pharmaceutical products.

  4. Oxygen plasma treatment and deposition of CN{sub x} on a fluorinated polymer matrix composite for improved erosion resistance

    SciTech Connect

    Muratore, C.; Korenyi-Both, A.; Bultman, J. E.; Waite, A. R.; Jones, J. G.; Storage, T. M.; Voevodin, A. A.

    2007-07-15

    The use of polymer matrix composites in aerospace propulsion applications is currently limited by insufficient resistance to erosion by abrasive media. Erosion resistant coatings may provide necessary protection; however, adhesion to many high temperature polymer matrix composite (PMC) materials is poor. A low pressure oxygen plasma treatment process was developed to improve adhesion of CN{sub x} coatings to a carbon reinforced, fluorinated polymer matrix composite. Fullerene-like CN{sub x} was selected as an erosion resistant coating for its high hardness-to-elastic modulus ratio and elastic resilience which were expected to reduce erosion from media incident at different angles (normal or glancing) relative to the surface. In situ x-ray photoelectron spectroscopy was used to evaluate the effect of the plasma treatment on surface chemistry, and electron microscopy was used to identify changes in the surface morphology of the PMC substrate after plasma exposure. The fluorine concentration at the surface was significantly reduced and the carbon fibers were exposed after plasma treatment. CN{sub x} coatings were then deposited on oxygen treated PMC substrates. Qualitative tests demonstrated that plasma treatment improved coating adhesion resulting in an erosion resistance improvement of a factor of 2 compared to untreated coated composite substrates. The combination of PMC pretreatment and coating with CN{sub x} reduced the erosion rate by an order of magnitude for normally incident particles.

  5. Prompt response and durability of polymer ablation from synthetic fibers irradiated by thermal plasmas for arc resistant clothes

    NASA Astrophysics Data System (ADS)

    Ishida, Masahiro; Shinsei, Naoki; Tanaka, Yasunori; Uesugi, Yoshihiko; Ishijima, Tatsuo; Mio, Wataru; Hagi, Hiroyasu; Uchibori, Keita

    2013-06-01

    Interactions between thermal plasmas and synthetic fibers such as polyamide, polyester, phenol and aramid were investigated by thermal plasma irradiation technique. Understanding the above interactions is crucial to design effective flame retardant synthetic fiber clothes with arc resistance to protect a human from arc flash accidents. To investigate the interactions, an Ar inductively coupled thermal plasma (ICTP) was used instead of the arc discharge because the ICTP has high controllability and no contamination. The ICTP irradiation raises polymer ablation in case of polyamide and polyester. Two features of the polymer ablation such as prompt response and durability were fundamentally investigated from viewpoint of shielding the heat flux. It was found that polyamide fiber has both a high prompt response and a long durability.

  6. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer

    NASA Astrophysics Data System (ADS)

    Alsbaiee, Alaaeddin; Smith, Brian J.; Xiao, Leilei; Ling, Yuhan; Helbling, Damian E.; Dichtel, William R.

    2016-01-01

    The global occurrence in water resources of organic micropollutants, such as pesticides and pharmaceuticals, has raised concerns about potential negative effects on aquatic ecosystems and human health. Activated carbons are the most widespread adsorbent materials used to remove organic pollutants from water but they have several deficiencies, including slow pollutant uptake (of the order of hours) and poor removal of many relatively hydrophilic micropollutants. Furthermore, regenerating spent activated carbon is energy intensive (requiring heating to 500-900 degrees Celsius) and does not fully restore performance. Insoluble polymers of β-cyclodextrin, an inexpensive, sustainably produced macrocycle of glucose, are likewise of interest for removing micropollutants from water by means of adsorption. β-cyclodextrin is known to encapsulate pollutants to form well-defined host-guest complexes, but until now cross-linked β-cyclodextrin polymers have had low surface areas and poor removal performance compared to conventional activated carbons. Here we crosslink β-cyclodextrin with rigid aromatic groups, providing a high-surface-area, mesoporous polymer of β-cyclodextrin. It rapidly sequesters a variety of organic micropollutants with adsorption rate constants 15 to 200 times greater than those of activated carbons and non-porous β-cyclodextrin adsorbent materials. In addition, the polymer can be regenerated several times using a mild washing procedure with no loss in performance. Finally, the polymer outperformed a leading activated carbon for the rapid removal of a complex mixture of organic micropollutants at environmentally relevant concentrations. These findings demonstrate the promise of porous cyclodextrin-based polymers for rapid, flow-through water treatment.

  7. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer.

    PubMed

    Alsbaiee, Alaaeddin; Smith, Brian J; Xiao, Leilei; Ling, Yuhan; Helbling, Damian E; Dichtel, William R

    2016-01-14

    The global occurrence in water resources of organic micropollutants, such as pesticides and pharmaceuticals, has raised concerns about potential negative effects on aquatic ecosystems and human health. Activated carbons are the most widespread adsorbent materials used to remove organic pollutants from water but they have several deficiencies, including slow pollutant uptake (of the order of hours) and poor removal of many relatively hydrophilic micropollutants. Furthermore, regenerating spent activated carbon is energy intensive (requiring heating to 500-900 degrees Celsius) and does not fully restore performance. Insoluble polymers of β-cyclodextrin, an inexpensive, sustainably produced macrocycle of glucose, are likewise of interest for removing micropollutants from water by means of adsorption. β-cyclodextrin is known to encapsulate pollutants to form well-defined host-guest complexes, but until now cross-linked β-cyclodextrin polymers have had low surface areas and poor removal performance compared to conventional activated carbons. Here we crosslink β-cyclodextrin with rigid aromatic groups, providing a high-surface-area, mesoporous polymer of β-cyclodextrin. It rapidly sequesters a variety of organic micropollutants with adsorption rate constants 15 to 200 times greater than those of activated carbons and non-porous β-cyclodextrin adsorbent materials. In addition, the polymer can be regenerated several times using a mild washing procedure with no loss in performance. Finally, the polymer outperformed a leading activated carbon for the rapid removal of a complex mixture of organic micropollutants at environmentally relevant concentrations. These findings demonstrate the promise of porous cyclodextrin-based polymers for rapid, flow-through water treatment.

  8. Systematic Tuning and Multifunctionalization of Covalent Organic Polymers for Enhanced Carbon Capture.

    PubMed

    Xiang, Zhonghua; Mercado, Rocio; Huck, Johanna M; Wang, Hui; Guo, Zhanhu; Wang, Wenchuan; Cao, Dapeng; Haranczyk, Maciej; Smit, Berend

    2015-10-21

    Porous covalent polymers are attracting increasing interest in the fields of gas adsorption, gas separation, and catalysis due to their fertile synthetic polymer chemistry, large internal surface areas, and ultrahigh hydrothermal stabilities. While precisely manipulating the porosities of porous organic materials for targeted applications remains challenging, we show how a large degree of diversity can be achieved in covalent organic polymers by incorporating multiple functionalities into a single framework, as is done for crystalline porous materials. Here, we synthesized 17 novel porous covalent organic polymers (COPs) with finely tuned porosities, a wide range of Brunauer-Emmett-Teller (BET) specific surface areas of 430-3624 m(2) g(-1), and a broad range of pore volumes of 0.24-3.50 cm(3) g(-1), all achieved by tailoring the length and geometry of building blocks. Furthermore, we are the first to successfully incorporate more than three distinct functional groups into one phase for porous organic materials, which has been previously demonstrated in crystalline metal-organic frameworks (MOFs). COPs decorated with multiple functional groups in one phase can lead to enhanced properties that are not simply linear combinations of the pure component properties. For instance, in the dibromobenzene-lined frameworks, the bi- and multifunctionalized COPs exhibit selectivities for carbon dioxide over nitrogen twice as large as any of the singly functionalized COPs. These multifunctionalized frameworks also exhibit a lower parasitic energy cost for carbon capture at typical flue gas conditions than any of the singly functionalized frameworks. Despite the significant improvement, these frameworks do not yet outperform the current state-of-art technology for carbon capture. Nonetheless, the tuning strategy presented here opens up avenues for the design of novel catalysts, the synthesis of functional sensors from these materials, and the improvement in the performance of

  9. Designed synthesis of nanoporous organic polymers for selective gas uptake and catalytic applications

    NASA Astrophysics Data System (ADS)

    Arab, Pezhman

    Design and synthesis of porous organic polymers have attracted considerable attentions during the past decade due to their wide range of applications in gas storage, gas separation, energy conversion, and catalysis. Porous organic polymers can be pre-synthetically and post-synthetically functionalized with a wide variety of functionalities for desirable applications. Along these pursuits, we introduced new synthetic strategies for preparation of porous organic polymers for selective CO2 capture and catalytic applications. Porous azo-linked polymers (ALPs) were synthesized by an oxidative reaction of amine-based monomers using copper(I) as a catalyst which leads to azo-linkage formation. ALPs exhibit high surface areas of up to 1200 m2 g-1 and have high chemical and thermal stabilities. The nitrogen atoms of the azo group can act as Lewis bases and the carbon atom of CO2 can act as a Lewis acid. Therefore, ALPs show high CO2 uptake capacities due to this Lewis acid-based interaction. The potential applications of ALPs for selective CO2 capture from flue gas, natural gas, and landfill gas under pressure-swing and vacuum swing separation settings were studied. Due to their high CO2 uptake capacity, selectivity, and regenerability, ALPs are among the best porous organic frameworks for selective CO2 capture. In our second project, a new bis(imino)pyridine-linked porous polymer (BIPLP-1) was synthesized and post-synthetically functionalized with Cu(BF4)2 for highly selective CO2 capture. BIPLP-1 was synthesized via a condensation reaction between 2,6-pyridinedicarboxaldehyde and 1,3,5-tris(4-aminophenyl)benzene, wherein the bis(imino)pyridine linkages are formed in-situ during polymerization. The functionalization of the polymer with Cu(BF4)2 was achieved by treatment of the polymer with a solution of Cu(BF4)2 via complexation of copper cations with bis(imino)pyridine moieties of the polymer. BF4- ions can act Lewis base and CO2 can act as a Lewis acid; and therefore

  10. Diels-Alder Trapping of Photochemically Generated o-Xylenols: Application in the Synthesis of Novel Organic Molecules and Polymers

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2003-01-01

    Bis(o-xylenol) equivalents are useful synthetic intermediates in the construction of polymers and hydroxyl substituted organic molecules which can organize by hydrogen bonded self-assembly into unique supramolecular structures. These polymers and supramolecular materials have potential use as coatings and thin films in aerospace, electronic and biomedical applications.

  11. Massive preparation of pitch-based organic microporous polymers for gas storage.

    PubMed

    Li, Wenqing; Zhang, Aijuan; Gao, Hui; Chen, Mingjie; Liu, Anhua; Bai, Hua; Li, Lei

    2016-02-14

    A general challenge for preparing organic microporous polymers (MOPs) is to use cheap and sustainable building blocks while retaining the advanced functions. We demonstrate a strategy to massively prepare pitch-based MOPs, which are thermally and chemically stable. A maximum BET surface area of 758 m(2) g(-1) and high gas storage capacity were achieved.

  12. New Type of Metallo-Organic Polymer: Bimetalloporphyrins. Investigating a New Chemistry of Metallophthalocyanines.

    DTIC Science & Technology

    1981-01-01

    this complex is known to play an important role in the electrochromic 7 properties. Although an obvious distortion from macrocyclic planarity (13...Ii necosoary and identify by block number) Metallo-organic polymer, Bimetalloporphyrins, Metallophthalocyanines Sitting atop complex ,- [meso...tetraphenylporphinatolbis [tricarbonylrhenium(l) ], monoca- S tion octaethyl(porphiyrin tri-u- halogeno-hexacronyl-dirhenate(I), Skewered complex , radical

  13. Gate-Bias Stability Behavior Tailored by Dielectric Polymer Stereostructure in Organic Transistors.

    PubMed

    Lee, Junghwi; Min, Honggi; Park, Namwoo; Jeong, Heejeong; Han, Singu; Kim, Se Hyun; Lee, Hwa Sung

    2015-11-18

    Understanding charge trapping in a polymer dielectric is critical to the design of high-performance organic field-effect transistors (OFETs). We investigated the OFET stability as a function of the dielectric polymer stereostructure under a gate bias stress and during long-term operation. To this end, iso-, syn-, and atactic poly(methyl methacrylate) (PMMA) polymers with identical molecular weights and polydispersity indices were selected. The PMMA stereostructure was found to significantly influence the charge trapping behavior and trap formation in the polymer dielectrics. This influence was especially strong in the bulk region rather than in the surface region. The regular configurational arrangements (isotactic > syntactic > atactic) of the pendant groups on the PMMA backbone chain facilitated closer packing between the polymer interchains and led to a higher crystallinity of the polymer dielectric, which caused a reduction in the free volumes that act as sites for charge trapping and air molecule absorption. The PMMA dielectrics with regular stereostructures (iso- and syn-stereoisomers) exhibited more stable OFET operation under bias stress compared to devices prepared using irregular a-PMMA in both vacuum and air.

  14. Antifungal coatings by caspofungin immobilization onto biomaterials surfaces via a plasma polymer interlayer.

    PubMed

    Griesser, Stefani S; Jasieniak, Marek; Coad, Bryan R; Griesser, Hans J

    2015-12-14

    Not only bacteria but also fungal pathogens, particularly Candida species, can lead to biofilm infections on biomedical devices. By covalent grafting of the antifungal drug caspofungin, which targets the fungal cell wall, onto solid biomaterials, a surface layer can be created that might be able to provide long-term protection against fungal biofilm formation. Plasma polymerization of propionaldehyde (propanal) was used to deposit a thin (∼20 nm) interfacial bonding layer bearing aldehyde surface groups that can react with amine groups of caspofungin to form covalent interfacial bonds for immobilization. Surface analyses by x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry confirmed the intended grafting and uniformity of the coatings, and durability upon extended washing. Testing for fungal cell attachment and ensuing biofilm formation showed that caspofungin retained activity when covalently bound onto surfaces, disrupting colonizing Candida cells. Mammalian cytotoxicity studies using human primary fibroblasts indicated that the caspofungin-grafted surfaces were selective in eliminating fungal cells while allowing attachment and spreading of mammalian cells. These in vitro data suggest promise for use as antifungal coatings, for example, on catheters, and the use of a plasma polymer interlayer enables facile transfer of the coating method onto a wide variety of biomaterials and biomedical devices.

  15. Polymer dielectric materials for organic thin-film transistors: Interfacial control and development for printable electronics

    NASA Astrophysics Data System (ADS)

    Kim, Choongik

    Organic thin-film transistors (OTFTs) have been extensively studied for organic electronics. In these devices, organic semiconductor-dielectric interface characteristics play a critical role in influencing OTFT operation and performance. This study begins with exploring how the physicochemical characteristics of the polymer gate dielectric affects the thin-film growth mode, microstructure, and OTFT performance parameters of pentacene films deposited on bilayer polymer (top)-SiO2 (bottom) dielectrics. Pentacene growth mode varies considerably with dielectric substrate, and correlations are established between pentacene film deposition temperature, the thin-film to bulk microstructural phase transition, and OTFT device performance. Furthermore, the primary influence of the polymer dielectric layer glass transition temperature on pentacene film microstructure and OTFT response is shown for the first time. Following the first study, the influence of the polymer gate dielectric viscoelastic properties on overlying organic semiconductor film growth, film microstructure, and TFT response are investigated in detail. From the knowledge that nanoscopically-confined thin polymer films exhibit glass transition temperatures that deviate substantially from those of the corresponding bulk materials, pentacene (p-channel) and cyanoperylene (n-channel) films grown on polymer gate dielectrics at temperatures well-below their bulk glass transition temperatures (Tg(b)) have been shown to exhibit morphological/microstructural transitions and dramatic OTFT performance discontinuities at well-defined temperatures (defined as the polymer "surface glass transition temperature," or Tg(s)). These transitions are characteristic of the particular polymer architecture and independent of film thickness or overall film cooperative chain dynamics. Furthermore, by analyzing the pentacene films grown on UV-curable polymer dielectrics with different curing times (hence, different degrees of

  16. Supramolecular organization in organic-inorganic heterogeneous hybrid catalysts formed from polyoxometalate and poly(ampholyte) polymer.

    PubMed

    Raj, Gijo; Swalus, Colas; Guillet, Alain; Devillers, Michel; Nysten, Bernard; Gaigneaux, Eric M

    2013-04-02

    Hybridization of polyoxometalates (POMs) via the formation of an organic-inorganic association constitutes a new route to develop a heterogeneous POM catalyst with tunable functionality imparted through supramolecular assembly. Herein, we report on strategies to obtain tunable well-defined supramolecular architectures of an organic-inorganic heterogeneous hybrid catalyst formed by the association of a hydrophobically substituted polyampholyte copolymer (poly N, N-diallyl-N-hexylamine-alt-maleic acid) and phosphotungstic acid (H3PW12O40) POMs. The self-assembling property of the initial polyampholyte copolymer matrix is modulated by controlling the pH of the hybridization solution. When deposited on a mica surface, isolated, long and extended polymer chains are formed under basic conditions (pH 7.9), while globular or coiled structures are formed under acidic conditions (pH 2). The supramolecular assembly of the POM-polymer hybrid is found to be directed by the type and quantities of charges present on the polyampholyte copolymer, which themselves depend on the pH conditions. The hypothesis is that the Keggin type [PW12O40](3-) anions, which have a size of ~1 nm, electrostatically bind to the positive charge sites of the polymer backbone. The hybrid material stabilized at pH 5.3 consists of POM-decorated polymer chains. Statistical analysis of distances between pairs of POM entities show narrow density distributions, suggesting that POM entities are attached to the polymer chains with a high level of order. Conversely, under acidic conditions (pH 2), the hybrid shows the formation of a core-shell type of structure. The strategies reported here, to tune the supramolecular assembly of organic-inorganic hybrid materials, are highly valuable for the design and a more rational utilization of POM heterogeneous catalysts in several chemical transformations.

  17. Gate-induced superconductivity in a solution-processed organic polymer film

    NASA Astrophysics Data System (ADS)

    Schön, J. H.; Dodabalapur, A.; Bao, Z.; Kloc, Ch.; Schenker, O.; Batlogg, B.

    2001-03-01

    The electrical and optical properties of conjugated polymers have received considerable attention in the context of potentially low-cost replacements for conventional metals and inorganic semiconductors. Charge transport in these organic materials has been characterized in both the doped-metallic and the semiconducting state, but superconductivity has not hitherto been observed in these polymers. Here we report a distinct metal-insulator transition and metallic levels of conductivity in a polymer field-effect transistor. The active material is solution-cast regioregular poly(3-hexylthiophene), which forms relatively well ordered films owing to self-organization, and which yields a high charge carrier mobility (0.05-0.1cm2V-1s-1) at room temperature. At temperatures below ~2.35K with sheet carrier densities exceeding 2.5 × 1014cm-2, the polythiophene film becomes superconducting. The appearance of superconductivity seems to be closely related to the self-assembly properties of the polymer, as the introduction of additional disorder is found to suppress superconductivity. Our findings therefore demonstrate the feasibility of tuning the electrical properties of conjugated polymers over the largest range possible-from insulating to superconducting.

  18. Colloidal crystal based plasma polymer patterning to control Pseudomonas aeruginosa attachment to surfaces.

    PubMed

    Pingle, Hitesh; Wang, Peng-Yuan; Thissen, Helmut; McArthur, Sally; Kingshott, Peter

    2015-12-02

    Biofilm formation on medical implants and subsequent infections are a global problem. A great deal of effort has focused on developing chemical contrasts based on micro- and nanopatterning for studying and controlling cells and bacteria at surfaces. It has been known that micro- and nanopatterns on surfaces can influence biomolecule adsorption, and subsequent cell and bacterial adhesion. However, less focus has been on precisely controlling patterns to study the initial bacterial attachment mechanisms and subsequently how the patterning influences the role played by biomolecular adsorption on biofilm formation. In this work, the authors have used colloidal self-assembly in a confined area to pattern surfaces with colloidal crystals and used them as masks during allylamine plasma polymer (AAMpp) deposition to generate highly ordered patterns from the micro- to the nanoscale. Polyethylene glycol (PEG)-aldehyde was grafted to the plasma regions via "cloud point" grafting to prevent the attachment of bacteria on the plasma patterned surface regions, thereby controlling the adhesive sites by choice of the colloidal crystal morphology. Pseudomonas aeruginosa was chosen to study the bacterial interactions with these chemically patterned surfaces. Scanning electron microscope, x-ray photoelectron spectroscopy (XPS), atomic force microscopy, and epifluorescence microscopy were used for pattern characterization, surface chemical analysis, and imaging of attached bacteria. The AAMpp influenced bacterial attachment because of the amine groups displaying a positive charge. XPS results confirm the successful grafting of PEG on the AAMpp surfaces. The results showed that PEG patterns can be used as a surface for bacterial patterning including investigating the role of biomolecular patterning on bacterial attachment. These types of patterns are easy to fabricate and could be useful in further applications in biomedical research.

  19. Room temperature phosphorescence of metal-free organic materials in amorphous polymer matrices.

    PubMed

    Lee, Dongwook; Bolton, Onas; Kim, Byoung Choul; Youk, Ji Ho; Takayama, Shuichi; Kim, Jinsang

    2013-04-24

    Developing metal-free organic phosphorescent materials is promising but challenging because achieving emissive triplet relaxation that outcompetes the vibrational loss of triplets, a key process to achieving phosphorescence, is difficult without heavy metal atoms. While recent studies reveal that bright room temperature phosphorescence can be realized in purely organic crystalline materials through directed halogen bonding, these organic phosphors still have limitations to practical applications due to the stringent requirement of high quality crystal formation. Here we report bright room temperature phosphorescence by embedding a purely organic phosphor into an amorphous glassy polymer matrix. Our study implies that the reduced beta (β)-relaxation of isotactic PMMA most efficiently suppresses vibrational triplet decay and allows the embedded organic phosphors to achieve a bright 7.5% phosphorescence quantum yield. We also demonstrate a microfluidic device integrated with a novel temperature sensor based on the metal-free purely organic phosphors in the temperature-sensitive polymer matrix. This unique system has many advantages: (i) simple device structures without feeding additional temperature sensing agents, (ii) bright phosphorescence emission, (iii) a reversible thermal response, and (iv) tunable temperature sensing ranges by using different polymers.

  20. Organic chemistry meets polymers, nanoscience, therapeutics and diagnostics.

    PubMed

    Rotello, Vincent M

    2016-01-01

    The atom-by-atom control provided by synthetic organic chemistry presents a means of generating new functional nanomaterials with great precision. Bringing together these two very disparate skill sets is, however, quite uncommon. This autobiographical review provides some insight into how my program evolved, as well as giving some idea of where we are going.

  1. Organic chemistry meets polymers, nanoscience, therapeutics and diagnostics

    PubMed Central

    2016-01-01

    Summary The atom-by-atom control provided by synthetic organic chemistry presents a means of generating new functional nanomaterials with great precision. Bringing together these two very disparate skill sets is, however, quite uncommon. This autobiographical review provides some insight into how my program evolved, as well as giving some idea of where we are going. PMID:27559417

  2. Tailored SERS substrates obtained with cathodic arc plasma ion implantation of gold nanoparticles into a polymer matrix.

    PubMed

    Ferreira, Jacqueline; Teixeira, Fernanda S; Zanatta, Antonio R; Salvadori, Maria C; Gordon, Reuven; Oliveira, Osvaldo N

    2012-02-14

    This manuscript reports on the fabrication of plasmonic substrates using cathodic arc plasma ion implantation, in addition to their performance as SERS substrates. The technique allows for the incorporation of a wide layer of metallic nanoparticles into a polymer matrix, such as PMMA. The ability to pattern different structures using the PMMA matrix is one of the main advantages of the fabrication method. This opens up new possibilities for obtaining tailored substrates with enhanced performance for SERS and other surface-enhanced spectroscopies, as well as for exploring the basic physics of patterned metal nanostructures. The architecture of the SERS-active substrate was varied using three adsorption strategies for incorporating a laser dye (rhodamine): alongside the nanoparticles into the polymer matrix, during the polymer cure and within nanoholes lithographed on the polymer. As a proof-of-concept, we obtained the SERS spectra of rhodamine for the three types of substrates. The hypothesis of incorporation of rhodamine molecules into the polymer matrix during the cathodic arc plasma ion implantation was supported by FDTD (Finite-Difference Time-Domain) simulations. In the case of arrays of nanoholes, rhodamine molecules could be adsorbed directly on the gold surface, then yielding a well-resolved SERS spectrum for a small amount of analyte owing to the short-range interactions and the large longitudinal field component inside the nanoholes. The results shown here demonstrate that the approach based on ion implantation can be adapted to produce reproducible tailored substrates for SERS and other surface-enhanced spectroscopies.

  3. Moisture barrier properties of thin organic-inorganic multilayers prepared by plasma-enhanced ALD and CVD in one reactor

    NASA Astrophysics Data System (ADS)

    Bülow, Tim; Gargouri, Hassan; Siebert, Mirko; Rudolph, Rolf; Johannes, Hans-Hermann; Kowalsky, Wolfgang

    2014-05-01

    A widely used application of the atomic layer deposition (ALD) and chemical vapour deposition (CVD) methods is the preparation of permeation barrier layers against water vapour. Especially in the field of organic electronics, these films are highly demanded as such devices are very sensitive to moisture and oxygen. In this work, multilayers of aluminium oxide (AlO x ) and plasma polymer (PP) were coated on polyethylene naphthalate substrates by plasma-enhanced ALD and plasma-enhanced CVD at 80℃ in the same reactor, respectively. As precursor, trimethylaluminium was used together with oxygen radicals in order to prepare AlO x , and benzene served as precursor to deposit the PP. This hybrid structure allows the decoupling of defects between the single AlO x layers and extends the permeation path for water molecules towards the entire barrier film. Furthermore, the combination of two plasma techniques in a single reactor system enables short process times without vacuum breaks. Single aluminium oxide films by plasma-enhanced ALD were compared to thermally grown layers and showed a significantly better barrier performance. The water vapour transmission rate (WVTR) was determined by means of electrical calcium tests. For a multilayer with 3.5 dyads of 25-nm AlO x and 125-nm PP, a WVTR of 1.2 × 10 -3 g m -2 d -1 at 60℃ and 90% relative humidity could be observed.

  4. Effects Of Ion Energy On Nitrogen Plasma Immersion Ion Implantation In UHMWPE Polymer Through A Metal Grid

    SciTech Connect

    Ueda, M.; Oliveira, R. M.; Rossi, J. O.; Lepienski, C. M.; Vilela, W. A.

    2006-11-13

    Herein, we consider the potential application of plasma immersion ion implantation (PIII) for treatment of polymer surfaces. This paper presents some experimental data for ultra-high molecular weight polyethylene (UHMWPE) implanted with nitrogen using PIII process. This polymer is widely used in medical prosthesis and PIII treatment has revealed to be an ease and cheap way to improve the lifetime of prosthesis made with UHMWPE. Here we show the latest results for UHMWPE surface treatment obtained with the use of a high voltage pulser of 100kV/200A based on coaxial Blumlein technology.

  5. Effects Of Ion Energy On Nitrogen Plasma Immersion Ion Implantation In UHMWPE Polymer Through A Metal Grid

    NASA Astrophysics Data System (ADS)

    Ueda, M.; Oliveira, R. M.; Rossi, J. O.; Lepienski, C. M.; Vilela, W. A.

    2006-11-01

    Herein, we consider the potential application of plasma immersion ion implantation (PIII) for treatment of polymer surfaces. This paper presents some experimental data for ultra-high molecular weight polyethylene (UHMWPE) implanted with nitrogen using PIII process. This polymer is widely used in medical prosthesis and PIII treatment has revealed to be an ease and cheap way to improve the lifetime of prosthesis made with UHMWPE. Here we show the latest results for UHMWPE surface treatment obtained with the use of a high voltage pulser of 100kV/200A based on coaxial Blumlein technology.

  6. Lipophilic polyelectrolyte gels as super-absorbent polymers for nonpolar organic solvents

    NASA Astrophysics Data System (ADS)

    Ono, Toshikazu; Sugimoto, Takahiro; Shinkai, Seiji; Sada, Kazuki

    2007-06-01

    Polyelectrolyte gels that are known as super-absorbent polymers swell and absorb water up to several hundred times their dried weights and have become ubiquitous and indispensable materials in many applications. Their superior swelling abilities originate from the electrostatic repulsion between the charges on the polymer chains and the osmotic imbalance between the interior and exterior of the gels. However, no super-absorbent polymers for volatile organic compounds (VOCs), and especially for nonpolar organic solvents (ɛ<10) have been reported, because common polyelectrolyte gels collapse in such solvents owing to the formation of a higher number of aggregates of ions and ion pairs. Here, we report that a novel class of polyelectrolyte gels bearing tetra-alkylammonium tetraphenylborate as a lipophilic and bulky ionic group swell in some nonpolar organic solvents up to 500 times their dry size. Dissociation of the ionic groups even in low-dielectric media (3<ɛ<10) enhances the swelling ability by expansion of the polymer networks. This expands the potential of polyelectrolytes that have been used only in aqueous solutions or highly polar solvents, and provides soft materials that swell in a variety of media. These materials could find applications as protective barriers for VOCs spilled in the environment and as absorbents for waste oil.

  7. Biotin-functionalized semiconducting polymer in an organic field effect transistor and application as a biosensor.

    PubMed

    Kim, Zin-Sig; Lim, Sang Chul; Kim, Seong Hyun; Yang, Yong Suk; Hwang, Do-Hoon

    2012-01-01

    This report presents biotin-functionalized semiconducting polymers that are based on fluorene and bithiophene co-polymers (F8T2). Also presented is the application of these polymers to an organic thin film transistor used as a biosensor. The side chains of fluorene were partially biotinylated after the esterification of the biotin with corresponding alcohol-groups at the side chain in F8T2. Their properties as an organic semiconductor were tested using an organic thin film transistor (OTFT) and were found to show typical p-type semiconductor curves. The functionality of this biosensor in the sensing of biologically active molecules such as avidin in comparison with bovine serum albumin (BSA) was established through a selective decrease in the conductivity of the transistor, as measured with a device that was developed by the authors. Changes to the optical properties of this polymer were also measured through the change in the color of the UV-fluorescence before and after a reaction with avidin or BSA.

  8. Lipophilic polyelectrolyte gels as super-absorbent polymers for nonpolar organic solvents.

    PubMed

    Ono, Toshikazu; Sugimoto, Takahiro; Shinkai, Seiji; Sada, Kazuki

    2007-06-01

    Polyelectrolyte gels that are known as super-absorbent polymers swell and absorb water up to several hundred times their dried weights and have become ubiquitous and indispensable materials in many applications. Their superior swelling abilities originate from the electrostatic repulsion between the charges on the polymer chains and the osmotic imbalance between the interior and exterior of the gels. However, no super-absorbent polymers for volatile organic compounds (VOCs), and especially for nonpolar organic solvents (epsilon<10) have been reported, because common polyelectrolyte gels collapse in such solvents owing to the formation of a higher number of aggregates of ions and ion pairs. Here, we report that a novel class of polyelectrolyte gels bearing tetra-alkylammonium tetraphenylborate as a lipophilic and bulky ionic group swell in some nonpolar organic solvents up to 500 times their dry size. Dissociation of the ionic groups even in low-dielectric media (3polymer networks. This expands the potential of polyelectrolytes that have been used only in aqueous solutions or highly polar solvents, and provides soft materials that swell in a variety of media. These materials could find applications as protective barriers for VOCs spilled in the environment and as absorbents for waste oil.

  9. Effect of fractal silver electrodes on charge collection and light distribution in semiconducting organic polymer films

    SciTech Connect

    Chamousis, RL; Chang, LL; Watterson, WJ; Montgomery, RD; Taylor, RP; Moule, AJ; Shaheen, SE; Ilan, B; van de Lagemaat, J; Osterloh, FE

    2014-08-21

    Living organisms use fractal structures to optimize material and energy transport across regions of differing size scales. Here we test the effect of fractal silver electrodes on light distribution and charge collection in organic semiconducting polymer films made of P3HT and PCBM. The semiconducting polymers were deposited onto electrochemically grown fractal silver structures (5000 nm x 500 nm; fractal dimension of 1.71) with PEDOT:PSS as hole-selective interlayer. The fractal silver electrodes appear black due to increased horizontal light scattering, which is shown to improve light absorption in the polymer. According to surface photovoltage spectroscopy, fractal silver electrodes outperform the flat electrodes when the BHJ film thickness is large (>400 nm, 0.4 V photovoltage). Photocurrents of up to 200 microamperes cm(-2) are generated from the bulk heterojunction (BHJ) photoelectrodes under 435 nm LED (10-20 mW cm(-2)) illumination in acetonitrile solution containing 0.005 M ferrocenium hexafluorophosphate as the electron acceptor. The low IPCE values (0.3-0.7%) are due to slow electron transfer to ferrocenium ion and due to shunting along the large metal-polymer interface. Overall, this work provides an initial assessment of the potential of fractal electrodes for organic photovoltaic cells.

  10. Research on the electronic and optical properties of polymer and other organic molecular thin films

    SciTech Connect

    1997-02-01

    The main goal of the work is to find materials and methods of optimization of organic layered electroluminescent cells and to study such properties of polymers and other organic materials that can be used in various opto-electronic devices. The summary of results obtained during the first year of work is presented. They are: (1) the possibility to produce electroluminescent cells using a vacuum deposition photoresist technology for commercial photoresists has been demonstrated; (2) the idea to replace the polyaryl polymers by other polymers with weaker hole conductivity for optimization of electroluminescent cells with ITO-Al electrodes has been suggested. The goal is to obtain amorphous processable thin films of radiative recombination layers in electroluminescent devices; (3) procedures of preparation of high-quality vacuum-deposited poly (p-phenylene) (PPP) films on various substrates have been developed; (4) it was found for the first time that the fluorescence intensity of PPP films depends on the degree of polymerization; (5) the role of interfaces between organic compounds, on one side, and metals or semiconductors, on the other side, has been studied and quenching of the fluorescence caused by semiconductor layer in thin sandwiches has been observed; (6) studies of the dynamics of photoexcitations revealed the exciton self-trapping in quasi-one-dimensional aggregates; and (7) conditions for preparation of highly crystalline fullerene C{sub 60} films by vacuum deposition have been found. Composites of C{sub 60} with conjugated polymers have been prepared.

  11. Plasma polymer coatings to aid retinal pigment epithelial growth for transplantation in the treatment of age related macular degeneration.

    PubMed

    Kearns, Victoria; Mistry, Anita; Mason, Sharon; Krishna, Yamini; Sheridan, Carl; Short, Robert; Williams, Rachel L

    2012-08-01

    Subretinal transplantation of functioning retinal pigment epithelial (RPE) cells grown on a synthetic substrate is a potential treatment for age-related macular degeneration (AMD), a common cause of irreversible vision loss in developed countries. Plasma polymers give the opportunity to tailor the surface chemistry of the artificial substrate whilst maintaining the bulk properties. In this study, plasma polymers with different functionalities were investigated in terms of their effect on RPE attachment and growth. Plasma polymers of acrylic acid (AC), allyl amine (AM) and allyl alcohol (AL) were fabricated and characterised using X-ray photoelectron spectroscopy (XPS) and water contact angle measurements. Octadiene (OD) hydrocarbon films and tissue culture polystyrene were used as controls. Wettability varied from hydrophobic OD to relatively hydrophilic AC. XPS demonstrated four very different surfaces with the expected functionalities. Attachment, proliferation and morphological examination of an RPE cell line and primary RPE cells were investigated. Both cell types grew on all surfaces, with the exception of OD, although the proliferation rate of primary cells was low. Good epithelial morphology was also demonstrated. Plasma polymerised films show potential as cell carrier surfaces for RPE cells in the treatment of AMD.

  12. Quantitative measurement of VUV radiation related to polymer pre-treatment in a microwave driven low pressure plasma

    NASA Astrophysics Data System (ADS)

    Mitschker, Felix; Iglesias, Enrique; Fiebrandt, Marcel; Bibinov, Nikita; Awakowicz, Peter; InstituteElectrical Engineering; Plasma Technology Team

    2016-09-01

    Plasma pre-treatment of polymers is used for a wide range of applications, e.g. prior to deposition of thin SiOx barrier films. At this, plasma generated particles and vacuum ultraviolet (VUV) radiation can reach the polymer surface. Both have a severe impact on the polymer interface, resulting in the production of e.g. dangling bonds. These modifications govern subsequent thin film growth. For understanding of pre-treatment processes, VUV radiation has to be quantified. Absolute VUV photon fluences are determined in situ, at the substrate holder, applying sodium salicylate (NaSal) as a scintillator. Therefore, VUV photons are quantified from 50 nm to 325 nm, due to constant quantum efficiency of NaSal, as integrals over defined wavelength ranges (50-110, 110-170, 170-200 and 200-325 nm). The set up allows for measurement with three scintillators. Each is equipped with optical filters. Observation of the fluorescence band is performed by means of optical fibers and a photomultiplier. Quantification is achieved by simultaneous measurement with an absolutely calibrated echelle spectrometer in the spectral range from 200 nm to 325 nm, taking into account observed plasma volumes. VUV photons are quantified for argon and oxygen plasmas as well as mixtures of both. Support by the German Research Foundation (DFG) within the framework of the SFB TRR 87/1 is acknowledged.

  13. Dynamics of intracellular polymers in enhanced biological phosphorus removal processes under different organic carbon concentrations.

    PubMed

    Xing, Lizhen; Ren, Li; Tang, Bo; Wu, Guangxue; Guan, Yuntao

    2013-01-01

    Enhanced biological phosphorus removal (EBPR) may deteriorate or fail during low organic carbon loading periods. Polyphosphate accumulating organisms (PAOs) in EBPR were acclimated under both high and low organic carbon conditions, and then dynamics of polymers in typical cycles, anaerobic conditions with excess organic carbons, and endogenous respiration conditions were examined. After long-term acclimation, it was found that organic loading rates did not affect the yield of PAOs and the applied low organic carbon concentrations were advantageous for the enrichment of PAOs. A low influent organic carbon concentration induced a high production of extracellular carbohydrate. During both anaerobic and aerobic endogenous respirations, when glycogen decreased to around 80 ± 10 mg C per gram of volatile suspended solids, PAOs began to utilize polyphosphate significantly. Regressed by the first-order reaction model, glycogen possessed the highest degradation rate and then was followed by polyphosphate, while biomass decay had the lowest degradation rate.

  14. Production of organic compounds in plasmas - A comparison among electric sparks, laser-induced plasmas, and UV light

    NASA Technical Reports Server (NTRS)

    Scattergood, Thomas W.; Mckay, Christopher P.; Borucki, William J.; Giver, Lawrence P.; Van Ghyseghem, Hilde

    1989-01-01

    In order to ascertain the features of organic compound-production in planetary atmospheres under the effects of plasmas and shocks, various mixtures of N2, CH4, and H2 modeling the atmosphere of Titan were subjected to discrete sparks, laser-induced plasmas, and UV radiation. The experimental results obtained suggest that UV photolysis from the plasma is an important organic compound synthesis process, as confirmed by the photolysis of gas samples that were exposed to the light but not to the shock waves emitted by the sparks. The thermodynamic equilibrium theory is therefore incomplete in the absence of photolysis.

  15. Production of organic compounds in plasmas - A comparison among electric sparks, laser-induced plasmas, and UV light

    NASA Astrophysics Data System (ADS)

    Scattergood, T. W.; McKay, C. P.; Borucki, W. J.; Giver, L. P.; van Ghyseghem, H.; Parris, J. E.; Miller, S. L.

    1989-10-01

    In order to ascertain the features of organic compound-production in planetary atmospheres under the effects of plasmas and shocks, various mixtures of N2, CH4, and H2 modeling the atmosphere of Titan were subjected to discrete sparks, laser-induced plasmas, and UV radiation. The experimental results obtained suggest that UV photolysis from the plasma is an important organic compound synthesis process, as confirmed by the photolysis of gas samples that were exposed to the light but not to the shock waves emitted by the sparks. The thermodynamic equilibrium theory is therefore incomplete in the absence of photolysis.

  16. Origin of organic matter in the early solar system. VII - The organic polymer in carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Hayatsu, R.; Matsuoka, S.; Anders, E.; Scott, R. G.; Studier, M. H.

    1977-01-01

    Degradation techniques, including pyrolysis, depolymerization, and oxidation, were used to study the insoluble polymer from the Murchison C2 chondrite. Oxidation with Cr2O7(2-) or O2/UV led to the identification of 15 aromatic ring systems. Of 11 aliphatic acids identified, three dicarboxylic acids presumably came from hydroaromatic portions of the polymer, whereas eight monocarboxylic acids probably derive from bridging groups or ring substituents. Depolymerization with CF3COO4 yielded some of the same ring systems, as well as alkanes (C1 through C8) and alkenes (C2 through C8), alkyl (C1 through C5) benzenes and naphthalenes, and methyl- or dimethyl -indene, -indane, -phenol, -pyrrole, and -pyridine. All these compounds were detected below 200 C, and are therefore probably indigenous constituents. The properties of the meteoritic polymer were compared with the properties of a synthetic polymer produced by the Fischer-Tropsch reaction. It is suggested that the meteoritic polymer was also produced by surface catalysis.

  17. Incineration of radioactive organic liquid wastes by underwater thermal plasma

    NASA Astrophysics Data System (ADS)

    Mabrouk, M.; Lemont, F.; Baronnet, J. M.

    2012-12-01

    This work deals with incineration of radioactive organic liquid wastes using an oxygen thermal plasma jet, submerged under water. The results presented here are focused on incineration of three different wastes: a mixture of tributylphosphate (TBP) and dodecane, a perfluoropolyether oil (PFPE) and trichloroethylene (TCE). To evaluate the plutonium behavior in used TBP/dodecane incineration, zirconium is used as a surrogate of plutonium; the method to enrich TBP/dodecane mixture in zirconium is detailed. Experimental set-up is described. During a trial run, CO2 and CO contents in the exhaust gas are continuously measured; samples, periodically taken from the solution, are analyzed by appropriate chemical methods: contents in total organic carbon (COT), phosphorus, fluoride and nitrates are measured. Condensed residues are characterized by RX diffraction and SEM with EDS. Process efficiency, during tests with a few L/h of separated or mixed wastes, is given by mineralization rate which is better than 99.9 % for feed rate up to 4 L/h. Trapping rate is also better than 99 % for phosphorous as for fluorine and chlorine. Those trials, with long duration, have shown that there is no corrosion problems, also the hydrogen chloride and fluoride have been neutralized by an aqueous solution of potassium carbonate.

  18. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals

    NASA Astrophysics Data System (ADS)

    Bachman, Jonathan E.; Smith, Zachary P.; Li, Tao; Xu, Ting; Long, Jeffrey R.

    2016-08-01

    The implementation of membrane-based separations in the petrochemical industry has the potential to reduce energy consumption significantly relative to conventional separation processes. Achieving this goal, however, requires the development of new membrane materials with greater selectivity, permeability and stability than available at present. Here, we report composite materials consisting of nanocrystals of metal-organic frameworks dispersed within a high-performance polyimide, which can exhibit enhanced selectivity for ethylene over ethane, greater ethylene permeability and improved membrane stability. Our results suggest that framework-polymer interactions reduce chain mobility of the polymer while simultaneously boosting membrane separation performance. The increased stability, or plasticization resistance, is expected to improve membrane utility under real process conditions for petrochemical separations and natural gas purification. Furthermore, this approach can be broadly applied to numerous polymers that encounter aggressive environments, potentially making gas separations possible that were previously inaccessible to membranes.

  19. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals.

    PubMed

    Bachman, Jonathan E; Smith, Zachary P; Li, Tao; Xu, Ting; Long, Jeffrey R

    2016-08-01

    The implementation of membrane-based separations in the petrochemical industry has the potential to reduce energy consumption significantly relative to conventional separation processes. Achieving this goal, however, requires the development of new membrane materials with greater selectivity, permeability and stability than available at present. Here, we report composite materials consisting of nanocrystals of metal-organic frameworks dispersed within a high-performance polyimide, which can exhibit enhanced selectivity for ethylene over ethane, greater ethylene permeability and improved membrane stability. Our results suggest that framework-polymer interactions reduce chain mobility of the polymer while simultaneously boosting membrane separation performance. The increased stability, or plasticization resistance, is expected to improve membrane utility under real process conditions for petrochemical separations and natural gas purification. Furthermore, this approach can be broadly applied to numerous polymers that encounter aggressive environments, potentially making gas separations possible that were previously inaccessible to membranes.

  20. Interactive Thermal Effects on Metal-Organic Framework Polymer Composite Membranes.

    PubMed

    Cacho-Bailo, Fernando; Téllez, Carlos; Coronas, Joaquín

    2016-07-04

    Polymeric membranes are important tools for intensifying separation processes in chemical industries, concerning strategic tasks such as CO2 sequestration, H2 production, and water supply and disposal. Mixed-matrix and supported membranes have been widely developed; recently many of them have been based on metal-organic frameworks (MOFs). However, most of the impacts MOFs have within the polymer matrix have yet to be determined. The effects related to thermal behavior arising from the combination of MOF ZIF-8 and polysulfone have now been quantified. The catalyzed oxidation of the polymer is strongly affected by the MOF crystal size and distribution inside the membrane. A 16 wt % 140 nm-sized ZIF-8 loading causes a 40 % decrease in the observed activation energy of the polysulfone oxidation that takes place at a temperature (545 °C) 80 °C lower than in the raw polymer (625 °C).

  1. Solvent Molding of Organic Morphologies Made of Supramolecular Chiral Polymers.

    PubMed

    Đorđević, Luka; Marangoni, Tomas; Miletić, Tanja; Rubio-Magnieto, Jenifer; Mohanraj, John; Amenitsch, Heinz; Pasini, Dario; Liaros, Nikos; Couris, Stelios; Armaroli, Nicola; Surin, Mathieu; Bonifazi, Davide

    2015-07-01

    The self-assembly and self-organization behavior of uracil-conjugated enantiopure (R)- or (S)-1,1'-binaphthyl-2,2'-diol (BINOL) and a hydrophobic oligo(p-phenylene ethynylene) (OPE) chromophore exposing 2,6-di(acetylamino)pyridine termini are reported. Systematic spectroscopic (UV-vis, CD, fluorescence, NMR, and SAXS) and microscopic studies (TEM and AFM) showed that BINOL and OPE compounds undergo triple H-bonding recognition, generating different organic nanostructures in solution. Depending on the solvophobic properties of the liquid media (toluene, CHCl3, CHCl3/CHX, and CHX/THF), spherical, rod-like, fibrous, and helical morphologies were obtained, with the latter being the only nanostructures expressing chirality at the microscopic level. SAXS analysis combined with molecular modeling simulations showed that the helical superstructures are composed of dimeric double-cable tape-like structures that, in turn, are supercoiled at the microscale. This behavior is interpreted as a consequence of an interplay among the degree of association of the H-bonded recognition, the vapor pressure of the solvent, and the solvophobic/solvophilic character of the supramolecular adducts in the different solutions under static and dynamic conditions, namely solvent evaporation conditions at room temperature.

  2. Biodegradable inorganic-organic hybrids of methacrylate star polymers for bone regeneration.

    PubMed

    Chung, Justin J; Fujita, Yuki; Li, Siwei; Stevens, Molly M; Kasuga, Toshihiro; Georgiou, Theoni K; Jones, Julian R

    2017-03-08

    Hybrids that are molecular scale co-networks of organic and inorganic components are promising biomaterials, improving the brittleness of bioactive glass and the strength of polymers. Methacrylate polymers have high potential as the organic source for hybrids since they can be produced, through controlled polymerization, with sophisticated polymer architectures that can bond to silicate networks. Previous studies showed the mechanical properties of hybrids can be modified by polymer architecture and molar mass (MM). However, biodegradability is critical if hybrids are to be used as tissue engineering scaffolds, since the templates must be remodelled by host tissue. Degradation by-products have to either completely biodegrade or be excreted by the kidneys. Enzyme, or bio-degradation is preferred to hydrolysis by water uptake as it is expected to give a more controlled degradation rate. Here, branched and star shaped poly(methyl methacrylate-co-3-(trimethoxysilyl)propyl methacrylate) (poly(MMA-co-TMSPMA)) were synthesized with disulphide based dimethacrylate (DSDMA) as a biodegradable branching agent. Biodegradability was confirmed by exposing the copolymers to glutathione, a tripeptide which is known to cleave disulphide bonds. Cleaved parts of the star polymer from the hybrid system were detected after 2weeks of immersion in glutathione solution, and MM was under threshold of kidney filtration. The presence of the branching agent did not reduce the mechanical properties of the hybrids and bone progenitor cells attached on the hybrids in vitro. Incorporation of the DSDMA branching agent has opened more possibilities to design biodegradable methacrylate polymer based hybrids for regenerative medicine.

  3. Progress Report for Activities of the U. S. Burning Plasma Organization

    SciTech Connect

    Van Dam, James W

    2009-04-07

    This report describes the activities of the past year of the U. S. Burning Plasma Organization (USBPO), a national organization of scientists involved in researching the properties of magnetically confined burning fusion plasmas. Its main activities are the coordination, facilitation, and promotion of research activities in the U. S. fusion energy sciences program relevant to burning plasma science and, specifically, of preparations for U. S. participation in the international ITER experiment. Specifically, the USBPO mission is to advance the scientific understanding of burning plasmas and to ensure the greatest benefit from a burning plasma experiment by coordinating relevant U. S. fusion research with broad community participation.

  4. Tin-based inorganic-organic hybrid polymers for high energy-density applications

    NASA Astrophysics Data System (ADS)

    Tran, Huan; Kuma, Arun; Pilania, Ghanshyam; Ramprasad, Rampi

    2014-03-01

    In one of our recent works[1], an organotin polymer was synthesized and suggested to be promising polymeric dielectric, simultaneously exhibiting a high dielectric constant ɛ and a high band gap Eg. Motivated by this result, we study a family of inorganic-organic hybrid polymers based on -(SnF2) x-(CH2) y - as the repeating structural unit (x = 2 , y = 4 , 8 , and 12). The stable structures of these hybrid polymers, predicted by the minima-hopping method, are studied by first-principles calculations at the level of density functional theory. Our calculations show that these polymers are wide band gap materials (up to 6.07 eV). In addition, their dielectric constants are between 4.6 and 7.8, well above that of polypropylene (ɛ ~= 2 . 2), the standard dielectric material for high energy-density capacitors. Therefore, we suggest that the hybrid polymers based on -(SnF2) x-(CH2) y - are promising candidates for high energy-density applications. Our work is supported by the Office of Naval Research through the Multidisciplinary University Research Initiative (MURI).

  5. Conformation study of helical main-group polymers: Organic and inorganic, trans and gauche

    SciTech Connect

    Cui, C.X.; Kertesz, M. )

    1989-06-07

    In this paper electronic structures of some helical polymers, which range from typical organic polymers such as polyethylene and poly(oxymethylene) to standard inorganic polymers such as polymeric sulfur to main-group (P, B, etc.) atomic chains in crystals (such as NaP, CrB, etc.), have been investigated by means of our helical modifications of solid-state band theory programs based on modified neglect of diatomic overlap (MNDO) and extended Hueckel theory (EHT). The analysis of orbital interactions shows that the all-trans conformation for the polymer with either less or more than six valence electrons in the repeat unit is energetically favorable as compared with the gauche conformation while the polymers having valence electrons close to six in the repeat unit are more likely to be found in a gauche conformation, except for polyethylene and polysilane, for which both conformations are stable. The stability of all-trans-polyethylene and -polysilane is attributed to the weak repulsions between C-H and Si-H bonding electron pairs. A quadratic relationship between band width and the corresponding closed-shell repulsion for an energy band is established.

  6. Polymer models of the organization of chromosomes in the nucleus of cells

    NASA Astrophysics Data System (ADS)

    Chiariello, Andrea Maria; Bianco, Simona; Piccolo, Andrea; Annunziatella, Carlo; Barbieri, Mariano; Pombo, Ana; Nicodemi, Mario

    2015-04-01

    Understanding the mechanisms that control the organization of chromosomes in the space of the nucleus of cells, and its contribution to gene regulation, is a key open issue in molecular biology. New technologies have shown that chromosomes have a complex 3D organization, which dynamically changes across organisms and cell types. To understand such complex behaviors, quantitative models from polymer physics have been developed, to find the principles of chromosome folding, their origin and function. Here, we provide a short review of recent progress in such an important research field where Physical and Life Sciences meet.

  7. Structure Analyses of Organic Thin Films Prepared by a Plasma Enhanced Vacuum Evaporation

    NASA Astrophysics Data System (ADS)

    Sugimoto, Ryousuke; Osada, Kousuke; Kurata, Masahiko; Matsumoto, Hiroyuki; Iwamori, Satoru; Noda, Kazutoshi

    Organic thin films were prepared with pyromellitic dianhydride (PMDA) and oxydianiline (ODA) by vacuum evaporation with or without argon plasma, and molecular structures and surface morphologies of the PMDA, ODA, polyamic acid (PAA) and polyimide (PI) thin films were analyzed. The surface roughness decreased due to the plasma during the deposition. Oxygen content of the PMDA thin film prepared with the plasma decreased compared to that without the plasma. However, the PMDA thin film prepared with the plasma had a hydrophilic surface compared to that without the plasma. All of these organic thin films prepared with the plasma had hydrophilic surfaces compared to those without the plasma. Surface roughness of these thin films has a smaller effect on the wettability than hydrophilic moieties.

  8. Poling and characterization of a novel organic/polymer electro-optic material

    NASA Astrophysics Data System (ADS)

    Liao, Jinkun; Tang, Xianzhong; Lu, Rongguo; Tang, Xionggui; Li, Heping; Zhang, Xiaoxia; Liu, Yongzhi

    2010-10-01

    Electro-optic organic/polymer material is important for the fabrication of polymer integrated optic-electronic devices and organic sensors. Recently, a novel organic high μβ value chromophore FFC have been synthesized by molecular design. The absorption spectrum in 400-4000 cm-1 is measured for the material, and the measurement result shows that the absorption loss is negligibly small. An organic/polymer high electro-optic activity material FFC/PSU is obtained by dissolving guest FFC (wt. 20%) and a host polysulfone (PSU) in a solvent. The resolvability of cyclohexanone for the material is satisfactory by comparison with other solvents experimentally, and the preparation of FFC/PSU thin film is ease relatively. The materiel is poled by electric field-assisted contact poling, and the near optimum poling condition is determined by adjusting poling parameters as pre-curing duration, poling temperature and poling voltage etc. The electro-optic coefficient of the material is measured as high as 130pm/V by using the widely accepted simple reflection technique. The investigation indicates that the FFC/PSU has excellent characteristics, such as high electro-optic coefficient, low absorption loss, good thermal stability and capability for withstanding the subsequent process techniques, suitable for the fabrication of high-performance integrated optic-electronic devices and sensors.

  9. A Multi-Objective Optimization Technique to Model the Pareto Front of Organic Dielectric Polymers

    NASA Astrophysics Data System (ADS)

    Gubernatis, J. E.; Mannodi-Kanakkithodi, A.; Ramprasad, R.; Pilania, G.; Lookman, T.

    Multi-objective optimization is an area of decision making that is concerned with mathematical optimization problems involving more than one objective simultaneously. Here we describe two new Monte Carlo methods for this type of optimization in the context of their application to the problem of designing polymers with more desirable dielectric and optical properties. We present results of applying these Monte Carlo methods to a two-objective problem (maximizing the total static band dielectric constant and energy gap) and a three objective problem (maximizing the ionic and electronic contributions to the static band dielectric constant and energy gap) of a 6-block organic polymer. Our objective functions were constructed from high throughput DFT calculations of 4-block polymers, following the method of Sharma et al., Nature Communications 5, 4845 (2014) and Mannodi-Kanakkithodi et al., Scientific Reports, submitted. Our high throughput and Monte Carlo methods of analysis extend to general N-block organic polymers. This work was supported in part by the LDRD DR program of the Los Alamos National Laboratory and in part by a Multidisciplinary University Research Initiative (MURI) Grant from the Office of Naval Research.

  10. Improved performance of polymer solar cells by using inorganic, organic, and doped cathode buffer layers

    NASA Astrophysics Data System (ADS)

    Taohong, Wang; Changbo, Chen; Kunping, Guo; Guo, Chen; Tao, Xu; Bin, Wei

    2016-03-01

    The interface between the active layer and the electrode is one of the most critical factors that could affect the device performance of polymer solar cells. In this work, based on the typical poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) polymer solar cell, we studied the effect of the cathode buffer layer (CBL) between the top metal electrode and the active layer on the device performance. Several inorganic and organic materials commonly used as the electron injection layer in an organic light-emitting diode (OLED) were employed as the CBL in the P3HT:PCBM polymer solar cells. Our results demonstrate that the inorganic and organic materials like Cs2CO3, bathophenanthroline (Bphen), and 8-hydroxyquinolatolithium (Liq) can be used as CBL to efficiently improve the device performance of the P3HT:PCBM polymer solar cells. The P3HT:PCBM devices employed various CBLs possess power conversion efficiencies (PCEs) of 3.0%-3.3%, which are ca. 50% improved compared to that of the device without CBL. Furthermore, by using the doped organic materials Bphen:Cs2CO3 and Bphen:Liq as the CBL, the PCE of the P3HT:PCBM device will be further improved to 3.5%, which is ca. 70% higher than that of the device without a CBL and ca. 10% increased compared with that of the devices with a neat inorganic or organic CBL. Project supported by the National Natural Science Foundation of China (Grant No. 61204014), the “Chenguang” Project (13CG42) supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation, China, and the Shanghai University Young Teacher Training Program of Shanghai Municipality, China.

  11. Grafting of bovine serum albumin proteins on plasma-modified polymers for potential application in tissue engineering

    NASA Astrophysics Data System (ADS)

    Kasálková, Nikola Slepičková; Slepička, Petr; Kolská, Zdeňka; Hodačová, Petra; Kučková, Štěpánka; Švorčík, Václav

    2014-04-01

    In this work, an influence of bovine serum albumin proteins grafting on the surface properties of plasma-treated polyethylene and poly- l-lactic acid was studied. The interaction of the vascular smooth muscle cells with the modified polymer surface was determined. The surface properties were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, nano-LC-ESI-Q-TOF mass spectrometry, electrokinetic analysis, and goniometry. One of the motivations for this work is the idea that by the interaction of the cell with substrate surface, the proteins will form an interlayer between the cell and the substrate. It was proven that when interacting with the plasma-treated high-density polyethylene and poly- l-lactic acid, the bovine serum albumin protein is grafted on the polymer surface. Since the proteins are bonded to the substrate surface, they can stimulate cell adhesion and proliferation.

  12. Grafting of bovine serum albumin proteins on plasma-modified polymers for potential application in tissue engineering.

    PubMed

    Kasálková, Nikola Slepičková; Slepička, Petr; Kolská, Zdeňka; Hodačová, Petra; Kučková, Stěpánka; Svorčík, Václav

    2014-04-04

    In this work, an influence of bovine serum albumin proteins grafting on the surface properties of plasma-treated polyethylene and poly-l-lactic acid was studied. The interaction of the vascular smooth muscle cells with the modified polymer surface was determined. The surface properties were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, nano-LC-ESI-Q-TOF mass spectrometry, electrokinetic analysis, and goniometry. One of the motivations for this work is the idea that by the interaction of the cell with substrate surface, the proteins will form an interlayer between the cell and the substrate. It was proven that when interacting with the plasma-treated high-density polyethylene and poly-l-lactic acid, the bovine serum albumin protein is grafted on the polymer surface. Since the proteins are bonded to the substrate surface, they can stimulate cell adhesion and proliferation.

  13. Dispersion of carbon nanotubes in organic solvent by commercial polymers with ethylene chains: Experimental and theoretical studies

    NASA Astrophysics Data System (ADS)

    Shigeta, Masahiro; Kamiya, Katsumasa; Uejima, Mitsugu; Okada, Susumu

    2015-03-01

    We demonstrate the possible candidate dispersion agents that can uniformly disperse carbon nanotubes (CNTs) into organic solvent, from among commercially available polymers. We find that CNTs were well dispersed into dimethylacetamide with the use of polystyrene, poly(vinyl chloride), and poly(vinyl pyrrolidone) as dispersion agents. Theoretical calculations revealed that the dispersibility of these polymers arises from the moderate strength and preferential directionality of the interactions between the CNTs and the polymers.

  14. One-hundred-nm-scale electronic structure and transport calculations of organic polymers on the K computer

    NASA Astrophysics Data System (ADS)

    Imachi, Hiroto; Yokoyama, Seiya; Kaji, Takami; Abe, Yukiya; Tada, Tomofumi; Hoshi, Takeo

    2016-12-01

    One-hundred-nm-scale electronic structure calculations were carried out on the K supercomputer by our original simulation code ELSES (http://www.elses.jp/) The present paper reports preliminary results of transport calculations for condensed organic polymers. Large-scale calculations are realized by novel massively parallel order-N algorithms. The transport calculations were carried out as a theoretical extension for the quantum wavepacket dynamics simulation. The method was applied to a single polymer chain and condensed polymers.

  15. Nanoparticle-Directed Metal-Organic Framework/Porous Organic Polymer Monolithic Supports for Flow-Based Applications.

    PubMed

    Darder, María Del Mar; Salehinia, Shima; Parra, José B; Herrero-Martinez, José M; Svec, Frantisek; Cerdà, Víctor; Turnes Palomino, Gemma; Maya, Fernando

    2017-01-18

    A two-step nanoparticle-directed route for the preparation of macroporous polymer monoliths for which the pore surface is covered with a metal-organic framework (MOF) coating has been developed to facilitate the use of MOFs in flow-based applications. The flow-through monolithic matrix was prepared in a column format from a polymerization mixture containing ZnO-nanoparticles. These nanoparticles embedded in the precursor monolith were converted to MOF coatings via the dissolution-precipitation equilibrium after filling the pores of the monolith with a solution of the organic linker. Pore surface coverage with the microporous zeolitic imidazolate framework ZIF-8 resulted in an increase in surface area from 72 to 273 m(2) g(-1). Monolithic polymer containing ZIF-8 coating was implemented as a microreactor catalyzing the Knoevenagel condensation reaction and also in extraction column format enabling the preconcentration of trace levels of toxic chlorophenols in environmental waters. Our approach can be readily adapted to other polymers and MOFs thus enabling development of systems for flow-based MOF applications.

  16. Electrophoretic and aggregation behavior of bovine, horse and human red blood cells in plasma and in polymer solutions.

    PubMed

    Bäumler, H; Neu, B; Mitlöhner, R; Georgieva, R; Meiselman, H J; Kiesewetter, H

    2001-01-01

    The electrophoretic mobility of native and glutaraldehyde-fixed bovine, human, and horse red blood cells (RBC) was investigated as a function of ionic strength (5-150 mM) and concentration of 464 kDa dextran (2 and 3 g/dl); RBC aggregation in autologous plasma and in dextran solutions was also measured. In agreement with previous observations, human and horse RBC form stable rouleaux whereas bovine RBC do not aggregate in either plasma or in dextran 464 kDa solutions. Electrophoretic measurements showed a species-dependent adsorption and depletion of dextran that can be theoretically evaluated. Adsorption of polymer is not a prerequisite for RBC aggregation (bovine RBC show the highest amount of adsorbed dextran yet do not aggregate). Aggregate formation thus occurs as long as the Gibbs free energy difference, given by the osmotic pressure difference between the bulk phase and the polymer-depleted region between two RBC, is larger than the steric and electrostatic repulsive energy contributed by the macromolecules present on the RBC surface. With increasing bulk-phase polymer concentration the depletion layer thickness decreases and the amount of adsorbed macromolecules increases, thereby resulting in an increase of the repulsive component of the interaction energy and decreased aggregation. We thus view electrophoretic measurements of RBC in various media as an important tool for understanding polymer behavior near the red cell surface and hence the mechanisms involved in RBC aggregation.

  17. Low-concentration polymers inhibit and accelerate crystal growth in organic glasses in correlation with segmental mobility.

    PubMed

    Powell, C Travis; Cai, Ting; Hasebe, Mariko; Gunn, Erica M; Gao, Ping; Zhang, Geoff; Gong, Yuchuan; Yu, Lian

    2013-09-05

    Crystal growth in organic glasses has been studied in the presence of low-concentration polymers. Doping the organic glass nifedipine (NIF) with 1 wt % polymer has no measurable effect on the glass transition temperature Tg of host molecules, but substantially alters the rate of crystal growth, from a 10-fold reduction to a 30% increase at 12 °C below the host Tg. Among the polymers tested, all but polyethylene oxide (PEO) inhibit growth. The inhibitory effects greatly diminish in the liquid state (at Tg + 38 °C), but PEO persists to speed crystal growth. The crystal growth rate varies exponentially with polymer concentration, in analogy with the polymer effect on solvent mobility, though the effect on crystal growth can be much stronger. The ability to inhibit crystal growth is not well ordered by the strength of host-polymer hydrogen bonds, but correlates remarkably well with the neat polymer's Tg, suggesting that the mobility of polymer chains is an important factor in inhibiting crystal growth in organic glasses. The polymer dopants also affect crystal growth at the free surface of NIF glasses, but the effect is attenuated according to the power law us ∝ ub(0.35), where us and ub are the surface and bulk growth rates.

  18. Chromium functionalized diglyme plasma polymer coating enhances enzyme-linked immunosorbent assay performance.

    PubMed

    Welch, Nicholas G; Madiona, Robert M T; Easton, Christopher D; Scoble, Judith A; Jones, Robert T; Muir, Benjamin W; Pigram, Paul J

    2016-11-10

    Ensuring the optimum orientation, conformation, and density of substrate-bound antibodies is critical for the success of sandwich enzyme-linked immunosorbent assays (ELISAs). In this work, the authors utilize a diethylene glycol dimethyl ether plasma polymer (DGpp) coating, functionalized with chromium within a 96 well plate for the enhanced immobilization of a capture antibody. For an equivalent amount of bound antibody, a tenfold improvement in the ELISA signal intensity is obtained on the DGpp after incubation with chromium, indicative of improved orientation on this surface. Time-of-flight secondary-ion-mass-spectrometry (ToF-SIMS) and principal component analysis were used to probe the molecular species at the surface and showed ion fragments related to lysine, methionine, histidine, and arginine coupled to chromium indicating candidate antibody binding sites. A combined x-ray photoelectron spectroscopy and ToF-SIMS analysis provided a surface molecular characterization that demonstrates antibody binding via the chromium complex. The DGpp+Cr surface treatment holds great promise for improving the efficacy of ELISAs.

  19. Hyperbranched polymers and dendrimers as templates for organic/inorganic hybrid nanomaterials.

    PubMed

    Huang, Xinhua; Zheng, Sudan; Kim, Il

    2014-02-01

    This paper reviews the recent research and development of hyperbranched polymers (HPs) and dendrimers, and their use as templates for organic-inorganic hybrid nanomaterials. Hyperbranched polymers (HPs) are highly branched macromolecules with three-dimensional globular structures featuring unique properties such as low viscosity, high solubility, and a large number of terminal functional groups compared to their linear analogs. They are easily prepared by (1) condensation polymerization, (2) self-condensing vinyl copolymerization (SCVCP), and (3) ring-opening multibranch polymerization methods. Organic-inorganic hybrid nanomaterials are synthesized by a template approach using HPs/dendrimers. Monometallic, bimetallic (alloy and core/shell), semiconductor, and metal oxide nanoparticles have been prepared by this route. The dendrimer component of these composites serves not only as a template for preparing the nanoparticles but also as a stabilizer for the nanoparticles.

  20. Bio-Organic Nanotechnology: Using Proteins and Synthetic Polymers for Nanoscale Devices

    NASA Technical Reports Server (NTRS)

    Molnar, Linda K.; Xu, Ting; Trent, Jonathan D.; Russell, Thomas P.

    2003-01-01

    While the ability of proteins to self-assemble makes them powerful tools in nanotechnology, in biological systems protein-based structures ultimately depend on the context in which they form. We combine the self-assembling properties of synthetic diblock copolymers and proteins to construct intricately ordered, three-dimensional polymer protein structures with the ultimate goal of forming nano-scale devices. This hybrid approach takes advantage of the capabilities of organic polymer chemistry to build ordered structures and the capabilities of genetic engineering to create proteins that are selective for inorganic or organic substrates. Here, microphase-separated block copolymers coupled with genetically engineered heat shock proteins are used to produce nano-scale patterning that maximizes the potential for both increased structural complexity and integrity.

  1. Theoretical study of the dark-oxidation reaction mechanisms for organic polymers

    NASA Astrophysics Data System (ADS)

    Wang, Guixiu; Zhu, Rongxiu; Zhang, Dongju; Liu, Chengbu

    2006-08-01

    To model the dark-oxidation mechanism of organic polymers, the reactions of the corresponding model compounds, including cumene, methyl 2-methylbutyrate, methyl methacrylate and methylacrylic acid, with triplet O 2 molecule, have been studied by performing density functional theory calculations at the UB3LYP/6-31G(d) level. The calculated results show that these model compounds can be oxygenated by O 2 via an H-abstract mechanism. The structures of initial contact charge transfer complexes, transition states, intermediates of cage-like pairs of radicals, and final hydro-peroxides involved in the reactions have been shown in details. The present results are expected to provide a general guidance for understanding the dark-oxidation mechanism of organic polymers.

  2. Self-organization in a driven dissipative plasma system

    NASA Astrophysics Data System (ADS)

    Shaikh, Dastgeer; Dasgupta, B.; Hu, Q.; Zank, G. P.

    2010-02-01

    We perform a fully self-consistent three-dimensional numerical simulation for a compressible, dissipative magnetoplasma driven by large-scale perturbations, that contain a fairly broad spectrum of characteristic modes, ranging from largest scales to intermediate scales and down to the smallest scales, where the energy of the system is dissipated by collisional (ohmic) and viscous dissipations. Additionally, our simulation includes nonlinear interactions amongst a wide range of fluctuations that are initialized with random spectral amplitudes, leading to the cascade of spectral energy in the inertial range spectrum, and takes into account large-scale as well as small-scale perturbations that may have been induced by the background plasma fluctuations, as well as the non-adiabatic exchange of energy leading to the migration of energy from the energy-containing modes or randomly injected energy driven by perturbations and further dissipated by the smaller scales. Besides demonstrating the comparative decays of the total energy and the dissipation rate of the energy, our results show the existence of a perpendicular component of the current, thus clearly confirming that the self-organized state is non-force free.

  3. Understanding the Device Physics in Polymer-Based Ionic-Organic Ratchets.

    PubMed

    Hu, Yuanyuan; Brus, Viktor; Cao, Wei; Liao, Kenneth; Phan, Hung; Wang, Ming; Banerjee, Kaustav; Bazan, Guillermo C; Nguyen, Thuc-Quyen

    2017-02-07

    High-performance solution-processed ionic-organic ratchets are fabricated using polymer semiconductors. The devices can provide both high short-circuit current and open-circuit voltage at room temperature, and be driven by AC signals with frequencies up to 13.56 MHz. The effects of trap density, mobility, and rectification ratio in the device on short-circuit current are investigated and clarified.

  4. A novel core-shell molecularly imprinted polymer based on metal-organic frameworks as a matrix.

    PubMed

    Qian, Kun; Fang, Guozhen; Wang, Shuo

    2011-09-28

    A novel core-shell molecularly imprinted polymer is firstly prepared by coating the MIP shell onto the surface of the metal-organic framework, which shows a homogeneous polymer film, cubic shape, thermal stability, and exhibits a higher specific surface area and a faster transfer-mass speed compared with that of the bulk MIP.

  5. Toward intrinsically stretchable organic semiconductors: mechanical properties of high-performance conjugated polymers

    NASA Astrophysics Data System (ADS)

    Sawyer, Eric J.; Savagatrup, Suchol; O'Connor, Timothy F.; Makaram, Aditya S.; Burke, Daniel J.; Zaretski, Aliaksandr V.; Printz, Adam D.; Lipomi, Darren J.

    2014-10-01

    This paper describes several approaches to understanding and improving the response of π-conjugated (semiconducting) polymers to tensile strain. Our principal goal was to establish the design criteria for introducing elasticity and ductility in conjugated (semiconducting) polymers through a rigorous analysis of the structural determinants of the mechanical properties of this type of material. We elucidated the details of the effect of the alkyl side chain length on the mechanical properties of regioregular polythiophene and used this analysis to select materials for stretching and transfer printing of organic solar cells to hemispherical substrates. This demonstration represents the first time that a conjugated polymer device has ever been stretched and conformally bonded to a complex 3D surface (i.e., other than a cone or cylinder, for which flexibility—as opposed to stretchability—is sufficient). We then further explored the details of the dependence of the mechanical properties on the side chain of a semiconducting polymer by synthesizing a series of hybrid materials (block and random copolymers) containing both short and long side chains. This analysis revealed the unusual semiconducting polymer, poly(3-heptylthiophene), as having an excellent combination of mechanical and electronic properties. In parallel, we explored a new method of producing "blocky" copolymers using a new procedure based on random segmentation of conjugated monomers. We found that introduction of structural randomness increased the elasticity without having detrimental effects on the photovoltaic performance. We also describe methods of synthesizing large volumes of conjugated polymers in environmentally benign ways that were amenable to manufacturing.

  6. Platinum-acetylide polymers with higher dimensionality for organic solar cells.

    PubMed

    Wang, Qiwei; He, Zhicai; Wild, Andreas; Wu, Hongbin; Cao, Yong; S Schubert, Ulrich; Chui, Chung-Hin; Wong, Wai-Yeung

    2011-07-04

    A new series of platinum(II)-acetylide polymers P1-P3 containing thiophene-triarylamine chromophores of different dimensions were synthesized and their electronic band structures, field-effect charge transport, and application in bulk heterojunction solar cells were evaluated. These materials are soluble in polar organic solvents and show strong absorptions in the solar spectra (with the highest absorption coefficient of 1.59×10(5)  cm(-1) from thin films), thus rendering them excellent candidates for bulk heterojunction polymer solar cells. The spin-coated polymer thin films showed p-channel field-effect charge transport with hole mobilities of 1.90×10(-5) to 7.86×10(-5)  cm(2)  V(-1)  s(-1) for P1-P3 and an improved charge carrier transport was found for P2 with higher molecular dimensionality than P1. The dependence of their photovoltaic properties and dimensionality was also investigated. Even if the polymers possess relatively high bandgaps and narrow absorption bandwidths, the highest power conversion efficiency of 2.24 % can be obtained based on blends of P3 with [6,6]phenyl-C(61)-butyric acid methyl ester (PCBM) (1:5, w/w) under AM1.5 simulated solar illumination. The present work indicates that multidimensional polymers exhibit a better photovoltaic performance over the linear polymers under the same measurement conditions and can provide an attractive approach to developing highly efficient conjugated metallopolymers for efficient power generation.

  7. Colloidal crystallization of colloidal silica grafted with iron(0) complex-tethered polymers in organic solvents

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Kohji; Mouri, Emiko

    2007-09-01

    Incorporation of iron(0) complex into polymer-grafted silica and colloidal crystallization in organic solvent were studied. In this study, zero-valence iron complex, vinylferrocene (Vfc) and iron(0)tricarbonyl(4,4-dimethyl-1,-4-cyclohexadienyl) acrylate (Fe(0)Ac) or methacrylate (Fe(0)Me), were introduced into grafted polymer to prevent from increasing ionic strength in colloidal crystallization system. Poly(methyl methacrylate (MMA)-co-Vfc)-grafted silica never formed colloidal crystals in polar solvent, such as acetone or acetonitrile. However, increasing ferrocenyl group fraction in the polymer resulted in disturbing the crystallization. Poly(N-isopropylacrylamide (NIPAAm)-co-Vfc)-grafted silica, which was composed of mole fraction of Vfc, 1/3, afforded crystallization in ethanol over the particle fraction of 0.053. In the case of diene-Fe(0)(CO) 3/polymer-grafted silica, poly(MMA-co-Fe(0)Ac)-, poly(NIPAAm-co-Fe(0)Ac)- and poly(N.N-dimethylacrylamide (DMAAm)-co-Fe(0)Ac)-grafted silica gave colloidal crystallization in relatively low polar solvents, DMF, acetone, acetonirile and ethanol, critical volume fraction for which were in the range from 0.054 to 0.117. In the case of copolymer-grafted silica containing Fe(0)Me, poly(MMA-co-FeMe)-grafted silica crystallized in DMF, Interestingly, especially in cases of polymer-grafted silica containing Fe(0)Ac or Fe(0)Me composed of the highest mole fraction Fe(0)Me, 1/2, afforded crystallization in DMF. The iridescence color of the colloidal crystals was changed with the combination of grafted polymer and solvent. The characteristic coloration of the solution from reddish to greenish color is possibly due to absorption of blue light region by diene-Fe(0)(CO) 3 complex and Bragg deflection on colloidal crystals.

  8. Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment.

    PubMed

    Knopfmacher, Oren; Hammock, Mallory L; Appleton, Anthony L; Schwartz, Gregor; Mei, Jianguo; Lei, Ting; Pei, Jian; Bao, Zhenan

    2014-01-01

    In recent decades, the susceptibility to degradation in both ambient and aqueous environments has prevented organic electronics from gaining rapid traction for sensing applications. Here we report an organic field-effect transistor sensor that overcomes this barrier using a solution-processable isoindigo-based polymer semiconductor. More importantly, these organic field-effect transistor sensors are stable in both freshwater and seawater environments over extended periods of time. The organic field-effect transistor sensors are further capable of selectively sensing heavy-metal ions in seawater. This discovery has potential for inexpensive, ink-jet printed, and large-scale environmental monitoring devices that can be deployed in areas once thought of as beyond the scope of organic materials.

  9. Mixing plasmonic Au nanoparticles into all polymer layers for improving the efficiency of organic solar cells

    NASA Astrophysics Data System (ADS)

    Choy, Wallace C. H.; Wang, Charlie C. D.; Fung, Dixon D. S.; Sha, Wei E. I.; Xie, Feng-Xian

    2012-09-01

    To enhance the light trapping of organic solar cells (OSCs), metallic (e.g. Au, Ag) nanoparticles (NPs) have been incorporated into the polymer layers conveniently in solution process. Although power conversion efficiency (PCE) of OSCs has been shown to improve by incorporating metallic NPs in either the buffer layer such as poly-(3,4-ethylenedioxythiophene) :poly(styrenesulfonate) (PEDOT:PSS)[1] or the active layer[2], the understanding on the changes is still not quite clear. Moreover, there are very limited studies on incorporating metallic NPs in more than one organic layer and investigating their effects on the optical and electrical properties as well as the performances of OSCs. In this work, monofunctional poly(ethylene glycol) (PEG)-capped Au NPs of sizes 18 nm and 35 nm are doped in the PEDOT:PSS and poly(3-hexylthiophene) (P3HT): phenyl-C61-butyric acid methyl ester (PCBM) layers respectively, leading to an improvement of PCE by ~22% compared to the optimized control device. We will firstly identify the impact of NPs in each polymer layer on OSC characteristics by doping Au NPs in either the PEDOT:PSS or P3HT:PCBM layer. Then, we will investigate Au NPs incorporated in all polymer layers. We demonstrate that the accumulated benefits of incorporating Au NPs in all organic layers of OSCs can achieve larger improvements in OSC performances.

  10. Bacterial behaviors on polymer surfaces with organic and inorganic antimicrobial compounds.

    PubMed

    Ji, Junhui; Zhang, Wei

    2009-02-01

    Infection of medical polymers is often caused by bacterial adherence and bio-film formation, and it is one of the major clinical complications causing a high rate of mortality and morbidity. In this study, it was investigated that differences of organic and inorganic antimicrobial reagents incorporated into polymers for bacterial adherence and bio-film formation. Our experimental results show adhesion of bacteria and bio-film (gram positive Staphylococcus aureus and gram negative Escherichia coli) are evidently reduced by adding organic antimicrobial reagents into PVC. However, inorganic antimicrobial reagents can not make much difference in bacterial bio-film formation on their polymers' surface. Although the surface containing inorganic antimicrobial reagents has excellent ability in killing bacteria, the amount of Escherichia coli on samples surface is no less than that on the control sample during bacterial adhesion due to both various hydrophilicity and different antibacterial mechanisms on the surface. Furthermore, bacterial bio-film formation on various hydrophilic samples is investigated, and it is observed that organic and inorganic antimicrobial compounds have much different effect on surface hydrophilicity. As a result, hydrophilicity becomes a major factor for bacterial adhesion and bio-film.

  11. Self-healing antimicrobial polymer coating with efficacy in the presence of organic matter

    NASA Astrophysics Data System (ADS)

    Bastarrachea, Luis J.; Goddard, Julie M.

    2016-08-01

    A method to prepare a self-healing, antimicrobial polymer coating that retains efficacy against Escherichia coli O157:H7 in the presence of organic matter is reported. A coating composed of branched polyethyleneimine (PEI) and styrene maleic anhydride copolymer (SMA) was applied to a maleic anhydride functionalized polypropylene support. The chemistry of the polymer coating was designed to impart hydrophobicity due to the styrene subunits, intrinsic antimicrobial character (>99.9% reduction) from the cationic primary amine groups, and enhanced antimicrobial character (> 99.99% reduction) after chlorination of N-halamine forming groups. Antimicrobial effectiveness was demonstrated under conditions of increasing organic load. Up to 500 ppm horse serum, chlorinated coatings retained full antimicrobial character (>99.99% reduction). Even at 50,000 ppm of horse serum, the coating provided ∼90% reduction as prepared, and between ∼75% and ∼80% reduction in the form of N-halamines. Microscopy confirmed no evidence of bacterial adhesion on the coating surface. Finally, the coating exhibited self-healing properties after exposure to acid and alkaline solutions and restoration by heat, as confirmed through spectroscopy from the rebuilding of characteristic chemical bonds. Such robust antimicrobial polymer coatings with efficacy under conditions of increasing organic load may support reducing microbial cross-contamination in food and biomedical industries.

  12. Shrink wrapping redox-active crystals of polyoxometalate open frameworks with organic polymers via crystal induced polymerisation.

    PubMed

    Takashima, Yohei; Miras, Haralampos N; Glatzel, Stefan; Cronin, Leroy

    2016-06-14

    We report examples of crystal surface modification of polyoxometalate open frameworks whereby the use of pyrrole or aniline as monomers leads to the formation of the corresponding polymers via an oxidative polymerization process initiated by the redox active POM scaffolds. Guest-exchange experiments demonstrate that the polymers can finely tune the guest exchange rate and their structural integrity is retained after the surface modifications. In addition, the formation of polyoxometalate-based self-fabricating tubes by the dissolution of Keggin-based network crystals were also modulated by the polymers, allowing a new type of hybrid inorganic polymer with an organic coating to be fabricated.

  13. Air-mediated self-organization of polymer semiconductors for high-performance solution-processable organic transistors

    NASA Astrophysics Data System (ADS)

    Kushida, Takashi; Nagase, Takashi; Naito, Hiroyoshi

    2011-02-01

    Air-mediated molecular ordering in the self-organized polymer semiconductor of regioregular poly(3-hexylthiophene) (P3HT) is investigated using organic field-effect transistors (OFETs) fabricated by microcontact printing using poly(dimethylsiloxane) stamps having varying surface energy. OFET measurements reveal a large difference between the P3HT thin film microstructure at the interface with air and that at the interface with the substrate and efficient charge transport through the former. These results indicate that the formation of a highly ordered microstructure at the P3HT/air interface through air-mediated self-organization is little affected by substrate-mediated molecular ordering at the other interface of the P3HT film.

  14. Minimum free-energy paths for the self-organization of polymer brushes.

    PubMed

    Gleria, Ignacio; Mocskos, Esteban; Tagliazucchi, Mario

    2017-03-22

    A methodology to calculate minimum free-energy paths based on the combination of a molecular theory and the improved string method is introduced and applied to study the self-organization of polymer brushes under poor solvent conditions. Polymer brushes in a poor solvent cannot undergo macroscopic phase separation due to the physical constraint imposed by the grafting points; therefore, they microphase separate forming aggregates. Under some conditions, the theory predicts that the homogeneous brush and the aggregates can exist as two different minima of the free energy. The theoretical methodology introduced in this work allows us to predict the minimum free-energy path connecting these two minima as well as the morphology of the system along the path. It is shown that the transition between the homogeneous brush and the aggregates may involve a free-energy barrier or be barrierless depending on the relative stability of the two morphologies and the chain length and grafting density of the polymer. In the case where a free-energy barrier exists, one of the morphologies is a metastable structure and, therefore, the properties of the brush as the quality of the solvent is cycled are expected to display hysteresis. The theory is also applied to study the adhesion/deadhesion transition between two opposing surfaces modified by identical polymer brushes and it is shown that this process may also require surpassing a free-energy barrier.

  15. Surface binding of polymer coated nanoparticles: Coupling of physical interactions, molecular organization, and chemical state

    NASA Astrophysics Data System (ADS)

    Nap, Rikkert; Szleifer, Igal

    2014-03-01

    A key challenge in nanomedicine is to design carrier system for drug delivery that selectively binds to target cells without binding to healthy cells. A common strategy is to end-functionalize the polymers coating of the delivery device with specific ligands that bind strongly to overexpressed receptors. Such devices are usually unable to discriminate between receptors found on benign and malignant cells. We demonstrate, theoretically, how one can achieve selective binding to target cells by using multiple physical and chemical interactions. We study the effective interactions between a polymer decorated nanosized micelle or solid nanoparticle with model lipid layers. The polymer coating contains a mixture of two polymers, one neutral for protection and the other a polybase with a functional end-group to optimize specific binding and electrostatic interactions with the charged lipid head-groups found on the lipid surface. The strength of the binding for the combined system is much larger than the sum of the independent electrostatic or specific ligand-receptor binding. The search for optimal binding conditions lead to the finding of a non-additive coupling that exists in systems where chemical equilibrium, molecular organization, and physical interactions are coupled together.

  16. Efficient Organic Photovoltaics Utilizing Nanoscale Heterojunctions in Sequentially Deposited Polymer/fullerene Bilayer

    PubMed Central

    Seok, Jeesoo; Shin, Tae Joo; Park, Sungmin; Cho, Changsoon; Lee, Jung-Yong; Yeol Ryu, Du; Kim, Myung Hwa; Kim, Kyungkon

    2015-01-01

    A highly efficient sequentially deposited bilayer (SD-bilayer) of polymer/fullerene organic photovoltaic (OPV) device is developed via the solution process. Herein, we resolve two essential problems regarding the construction of an efficient SD-bilayer OPV. First, the solution process fabrication of the SD-bilayer is resolved by incorporating an ordering agent (OA) to the polymer solution, which improves the ordering of the polymer chain and prevents the bottom-layer from dissolving into the top-layer solution. Second, a non-planar heterojunction with a large surface area is formed by the incorporation of a heterojunction agent (HA) to the top-layer solution. Poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT) is used for the bottom-layer and phenyl-C71-butyric-acid-methyl ester (PC70BM) is used for the top-layer. The SD-bilayer OPV produced utilizing both an OA and HA exhibits a power conversion efficiency (PCE) of 7.12% with a high internal quantum efficiency (IQE). We believe our bilayer system affords a new way of forming OPVs distinct from bulk heterojunction (BHJ) systems and offers a chance to reconsider the polymers that have thus far shown unsatisfactory performance in BHJ systems. PMID:25670623

  17. ZnO nanorod arrays for various low-bandgap polymers in inverted organic solar cells.

    PubMed

    Ho, Ping-Yi; Thiyagu, Subramani; Kao, Shao-Hsuan; Kao, Chia-Yu; Lin, Ching-Fuh

    2014-01-07

    Due to the limited diffusion length of carriers in polymer solar cells (PSCs), the path of carriers is a crucial factor that determines the device performance. Zinc oxide nanorods (NRs) as the electron transport channel can reduce electron-hole recombination and transport the electron to the electrode efficiently for poly(3-hexylthiophene) (P3HT), but have been seldom demonstrated for low-bandgap polymers. Here we successfully applied ZnO NRs, which were grown via the hydrothermal method, as a platform to enhance PSC efficiency for various low-bandgap polymers. In order to assure that the nanorod morphology functioned properly for PSCs, the growth time, the concentration, and the resulting morphology were systematically investigated in depths. Such ZnO NRs were applied to different organic systems, resulting in the increase of the PCE for PBDTTT-C/PC71BM from 4.76% to 6.07% and PBDTTT-C-T/PC71BM from 5.40% to 7.34%. Through those experiments, we established a potentially universal and efficient ZnO NRs platform for various low-bandgap polymers to achieve high efficiency of inverted PSCs.

  18. Pave Thermal Highway with Self-Organized Nanocrystals in Transparent Polymer Composites.

    PubMed

    Mu, Liwen; Ji, Tuo; Chen, Long; Mehra, Nitin; Shi, Yijun; Zhu, Jiahua

    2016-10-03

    Phonon transfer is greatly scattered in traditional polymer composites due to the unpaired phonon frequency at polymer/filler interface. A key innovation of this work is to build continuous crystal network by self-organization and utilize it as "thermal highway" that circumvents the long-existing interfacial thermal barrier issue in traditional composites. By tuning the molecular diffusion rate of dicarboxylic acids (oxalic acid, malonic acid and succinic acid), different crystal structures including skeletal, dendrite, diffusion limited aggregates and spherulite were synthesized in PVA film. These continuous crystal structures benefit the efficient phonon transfer in the composites with minimized interfacial scattering and lead to a significant thermal conductivity enhancement by up to 180% compared to pure polymer. Moreover, the transparent feature of these composite films provides additional benefits in display applications. Post heat treatment effect on the thermal conductivity of the composite films shows a time dependent behavior. These uniquely structured polymer/crystal composites are expected to generate significant impacts in thermal management applications.

  19. The Influence of Polymer Sequence on the Formation of Bulk-Heterojunctions in Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Gao, Dong

    This thesis summarizes my work on organic solar cells during my graduate studies. Chapter 1 serves as an introduction to organic solar cells. I will briefly discuss the working mechanism, and describe the device fabrication processes and testing set up that I designed at the beginning of my graduate studies. Chapter 2 describes the size-dependent behavior of polymer solar cells measured under partial illumination. We found that ITO resistance is a significant source of power loss because sheet resistance (Rs) increases with area. The non-illuminated part of a partially illuminated device introduces some interesting effects related to the physics of device operation. Specifically, this contributes additional "dark diodes" that connect in parallel with an illuminated cell, giving rise to an apparent decrease in VOC and increase in FF as the illuminated portion of the cell is decreased. Chapter 3 is a study of a P3HS-b-P3HT block copolymer as a donor material in organic solar cells. Fiber-like nanostructures are formed spontaneously in P3HS-b-P3HT:PCBM devices, and their thermal stability exceeds homopolymer:PCBM devices or ternary mixtures. Although P3HS-b-P3HT contains two distinct electron donor materials, the EQE spectra, hole mobility, Jsc, and PCE exceed that of a physical mixture of the two homopolymers and PCBM. Chapter 4 compares the photovoltaic properties of two conjugated copolymers with the same composition, P3HS-b-P3HT and P3HS- s-P3HT. The block polymer spontaneously undergoes intrinsic phase separation and the statistical polymer does not. P3HS-b-P3HT devices perform best when the native self-assembled structure is most perturbed, which is accomplished using PC71BM. P3HS-s-P3HT is a polymer that does not form a native phase separated structure. Here vapor annealing can be used to more predictably optimize the polymer:fullerene morphology. Chapter 5 studies the evolution of the electron mobility of two different acceptors with different crystallinity

  20. Computational design of an enantioselective molecular imprinted polymer for the solid phase extraction of S-warfarin from plasma.

    PubMed

    Ahmadi, F; Yawari, E; Nikbakht, M

    2014-04-18

    An enantioselective molecular imprinted polymer for S-warfarin was designed computationally by using the density functional theory (DFT) at B3LYP/631G+ (d, p) level and Gaussian 2003 package. The effect of polymerization solvent was also evaluated by the polarizable continuum model (PCM) and it was based on the measurement of interaction energies (ΔE) between S-warfarin and monomers in different polymerization solvents. The computational method showed that the methacrylic acid (MAA) and acetonitrile (AN) had the highest stabilization energy for the pre-polymerization adducts. Additionally, the mole ratio of 1:3 give the highest ΔE, therefore, the polymer was synthesized by the thermal bulk polymerization method with the mole ratio of S-warfarin-(MAA)3. The enantioselective extraction of MIP for R and S-warfarin was evaluated by chiral separation chromatography and polarimetry methods. The results revealed that the proposed S-warfarin molecular imprinted polymer has a moderate recognition for extraction of R-warfarin in a racemic mixture and had no recognition for other foreign drugs. In a racemic mixture of R and S-warfarin, the polymer is able to remove about 20% of R-warfarin. The linearity between responses (peak areas) and concentrations of S-warfarin in plasma sample was found in the range of 15.4-3080ngmL(-1) (R(2)=0.999).The linear range for a racemic mixture of R, S-warfarin in plasma which has been obtained by RP-C18-HPLC-UV method, was 12.0-2500ngmL(-1) (R(2)=0.998). The polymer was used for analysis of a real sample and as expected the accurate results were obtained.

  1. Dehydrocoupling and Silazane Cleavage Routes to Organic-Inorganic Hybrid Polymers with NBN Units in the Main Chain.

    PubMed

    Lorenz, Thomas; Lik, Artur; Plamper, Felix A; Helten, Holger

    2016-06-13

    Despite the great potential of both π-conjugated organoboron polymers and BN-doped polycyclic aromatic hydrocarbons in organic optoelectronics, our knowledge of conjugated polymers with B-N bonds in their main chain is currently scarce. Herein, the first examples of a new class of organic-inorganic hybrid polymers are presented, which consist of alternating NBN and para-phenylene units. Polycondensation with B-N bond formation provides facile access to soluble materials under mild conditions. The photophysical data for the polymer and molecular model systems of different chain lengths reveal a low extent of π-conjugation across the NBN units, which is supported by DFT calculations. The applicability of the new polymers as macromolecular polyligands is demonstrated by a cross-linking reaction with Zr(IV) .

  2. The destruction of halogenated organic chemicals by plasma pyrolysis.

    PubMed

    Barton, T G; Mordy, J A

    1984-08-01

    Very high destruction efficiencies for halogenated chemicals have been achieved by plasma pyrolysis. Destruction efficiencies exceeded 99.9999999% for tests with polychlorinated biphenyls (PCBs). Preliminary tests with tetrachloromethane have obtained destruction efficiencies exceeding 99.99%. The plasma pyrolysis process involved the creation of a 250-kW plasma with a temperature in excess of 25 000 degrees C. The toxic material was injected into the plasma zone at a rate between 1 and 2 L/min. Thermochemical and photochemical dissociation of the toxic materials produced atoms and ions which recombined to form primarily H2, CO, HCl, and particulate carbon. The HCl was neutralized by NaOH. The flaring of the H2 and CO should destroy to a high degree any trace residuals. The application of plasma pyrolysis for the ultimate disposal of toxicological waste was also investigated. Rat carcasses containing mean lethal dosage of PCB were pyrolyzed.

  3. Studies of the influence of nonequilibrium plasma thermal exposure on the characteristics of the capillary-porous polymer material

    NASA Astrophysics Data System (ADS)

    Makhotkina, L. Yu; Khristoliubova, V. I.

    2017-01-01

    Capillary-porous materials, which include natural macromolecular tanning material, are exposed to a number of factors during the treatment by a nonequilibrium plasma. Plasma particles exchange the charge and energy with the atoms of the material during the interaction of the plasma with the surface. The results of treatment are desorption of atoms and molecules from the body surface, sputtering and evaporation of material’s particles, changes of the structure and phase state. In real terms during the modification of solids by nonequilibrium low-temperature plasma thermal effect influences the process. The energy supplied from the discharge during the process with low pressure, which is converted into heat, is significantly less than during the atmospheric pressure, but the thermal stability of high-molecular compounds used in the manufacture of materials and products of the tanning industry, is very limited and depends on the duration of the effect of temperature. Even short heating of hydrophilic polymers (proteins) (100-180 °C) causes a change in their properties. It decreases the collagen ability to absorb water vapor, to swell in water, acids, alkalis, and thus decreases their durability. Prolonged heating leads to a deterioration of the physical and mechanical properties. Higher heating temperatures it leads to the polymer degradation. The natural leather temperature during plasma exposure does not rise to a temperature of collagen degradation and does not result in changes of physical phase of the dermis. However, the thermal plasma exposure must be considered, since the high temperatures influence on physical and mechanical properties.

  4. Highly Sensitive Flexible NH3 Sensors Based on Printed Organic Transistors with Fluorinated Conjugated Polymers.

    PubMed

    Nketia-Yawson, Benjamin; Jung, A-Ra; Noh, Yohan; Ryu, Gi-Seong; Tabi, Grace Dansoa; Lee, Kyung-Koo; Kim, BongSoo; Noh, Yong-Young

    2017-03-01

    Understanding the sensing mechanism in organic chemical sensors is essential for improving the sensing performance such as detection limit, sensitivity, and other response/recovery time, selectivity, and reversibility for real applications. Here, we report a highly sensitive printed ammonia (NH3) gas sensor based on organic thin film transistors (OTFTs) with fluorinated difluorobenzothiadiazole-dithienosilole polymer (PDFDT). These sensors detected NH3 down to 1 ppm with high sensitivity (up to 56%) using bar-coated ultrathin (<4 nm) PDFDT layers without using any receptor additives. The sensing mechanism was confirmed by cyclic voltammetry, hydrogen/fluorine nuclear magnetic resonance, and UV/visible absorption spectroscopy. PDFDT-NH3 interactions comprise hydrogen bonds and electrostatic interactions between the PDFDT polymer backbone and NH3 gas molecules, thus lowering the highest occupied molecular orbital levels, leading to hole trapping in the OTFT sensors. Additionally, density functional theory calculations show that gaseous NH3 molecules are captured via cooperation of fluorine atoms and dithienosilole units in PDFDT. We verified that incorporation of functional groups that interact with a specific gas molecule in a conjugated polymer is a promising strategy for producing high-performance printed OTFT gas sensors.

  5. Temperature and composition-dependent density of states in organic small-molecule/polymer blend transistors

    NASA Astrophysics Data System (ADS)

    Hunter, Simon; Mottram, Alexander D.; Anthopoulos, Thomas D.

    2016-07-01

    The density of trap states (DOS) in organic p-type transistors based on the small-molecule 2,8-difluoro-5,11-bis(triethylsilylethynyl) anthradithiophene (diF-TES ADT), the polymer poly(triarylamine) and blends thereof are investigated. The DOS in these devices are measured as a function of semiconductor composition and operating temperature. We show that increasing operating temperature causes a broadening of the DOS below 250 K. Characteristic trap depths of ˜15 meV are measured at 100 K, increasing to between 20 and 50 meV at room-temperature, dependent on the semiconductor composition. Semiconductor films with high concentrations of diF-TES ADT exhibit both a greater density of trap states as well as broader DOS distributions when measured at room-temperature. These results shed light on the underlying charge transport mechanisms in organic blend semiconductors and the apparent freezing-out of hole conduction through the polymer and mixed polymer/small molecule phases at temperatures below 225 K.

  6. Feasibility of atomic layer etching of polymer material based on sequential O{sub 2} exposure and Ar low-pressure plasma-etching

    SciTech Connect

    Vogli, Evelina; Metzler, Dominik; Oehrlein, Gottlieb S.

    2013-06-24

    We describe controlled, self-limited etching of a polystyrene polymer using a composite etching cycle consisting of sequential deposition of a thin reactive layer from precursors produced from a polymer-coated electrode within the etching chamber, modification using O{sub 2} exposure, and subsequent low-pressure Ar plasma etching, which removes the oxygen-modified deposited reactive layer along with Almost-Equal-To 0.1 nm unmodified polymer. Deposition prevents net etching of the unmodified polymer during the etching step and enables self-limited etch rates of 0.1 nm/cycle.

  7. Multi-Organ Contribution to the Metabolic Plasma Profile Using Hierarchical Modelling

    PubMed Central

    Torell, Frida; Bennett, Kate; Cereghini, Silvia; Rännar, Stefan; Lundstedt-Enkel, Katrin; Moritz, Thomas; Haumaitre, Cecile; Trygg, Johan; Lundstedt, Torbjörn

    2015-01-01

    Hierarchical modelling was applied in order to identify the organs that contribute to the levels of metabolites in plasma. Plasma and organ samples from gut, kidney, liver, muscle and pancreas were obtained from mice. The samples were analysed using gas chromatography time-of-flight mass spectrometry (GC TOF-MS) at the Swedish Metabolomics centre, Umeå University, Sweden. The multivariate analysis was performed by means of principal component analysis (PCA) and orthogonal projections to latent structures (OPLS). The main goal of this study was to investigate how each organ contributes to the metabolic plasma profile. This was performed using hierarchical modelling. Each organ was found to have a unique metabolic profile. The hierarchical modelling showed that the gut, kidney and liver demonstrated the greatest contribution to the metabolic pattern of plasma. For example, we found that metabolites were absorbed in the gut and transported to the plasma. The kidneys excrete branched chain amino acids (BCAAs) and fatty acids are transported in the plasma to the muscles and liver. Lactic acid was also found to be transported from the pancreas to plasma. The results indicated that hierarchical modelling can be utilized to identify the organ contribution of unknown metabolites to the metabolic profile of plasma. PMID:26086868

  8. Impact of scaling to the resistive switching effect in organic polymer - based structures

    NASA Astrophysics Data System (ADS)

    Kotova, M. S.; Dronov, M. A.; Rzhevskiy, A. V.; Amitonov, S. V.; Dubinina, T. V.; Pushkarev, V. E.; Ryabova, L. I.; Khokhlov, D. R.

    2016-12-01

    The resistive switching effect has been studied in a set of organic polymer - based structures of a different composition and size scale from macro to micro. It is shown that scaling down reduces both the threshold switching voltage Vth and the respective effective electric field Eth. Furthermore, introduction of metal micro particles into a macro scale polymer matrix provides the same effect. Therefore the metal particle incorporation may be regarded as an alternative method of effective scaling, depending on an application. Switching speed of less than 15 ns, threshold voltage Vth (2 - 25) V, 105 cycle endurance, no significant moisture dependence and high retention time 3.5 months for scaled down samples aswell as for metal doped macro samples have been demonstrated. These characteristics are suitable for constructing memory devices. The switching effect mechanisms are discussed.

  9. Polymer-based stimuli-responsive recyclable catalytic systems for organic synthesis.

    PubMed

    Zhang, Jingli; Zhang, Mingxi; Tang, Kangjian; Verpoort, Francis; Sun, Taolei

    2014-01-15

    The introduction of stimuli-responsive polymers into the study of organic catalysis leads to the generation of a new kind of polymer-based stimuli-responsive recyclable catalytic system. Owing to their reversible switching properties in response to external stimuli, these systems are capable of improving the mass transports of reactants/products in aqueous solution, modulating the chemical reaction rates, and switching the catalytic process on and off. Furthermore, their stimuli-responsive properties facilitate the separation and recovery of the active catalysts from the reaction mixtures. As a fascinating approach of the controllable catalysis, these stimuli-responsive catalytic systems including thermoresponsive, pH-responsive, chemo-mechano-chemical, ionic strength-responsive, and dual-responsive, are reviewed in terms of their nanoreactors and mechanisms.

  10. Analysis of physical mechanical and structural characteristics of microwave cured organic polymer parts

    NASA Astrophysics Data System (ADS)

    Guzeva, Tatiana; Zavitaeva, Yuliya; Chutskova, Evgeniya

    2015-02-01

    This paper presents experimental research which has confirmed the benefits of the new technology of curing polymer matrix for both laboratory and full-scale components, and compares with polymerization in an electrical-heated oven. Strength tests of small size specimens made of organic polymer determined that after microwave heating samples are capable of withstanding 1.3 greater loads than after heating in an electric furnace. Flexural modulus of full-scale specimens of organo-plastic, which were cured in a microwave radiation field showed greater modulus than samples which were polymerized in an electrical-heated oven at 40% and 20% respectively. The microstructure of the samples treated in the electric furnace were found to be porous, inhomogeneous, binding in large portions mixed up with pores spotted, accumulates on the edges and a separate central zones. Polymerization in microwave oven however, gave a microstructure which is more uniform and the binder distributed throughout the volume.

  11. New N-Type Polymers for Organic Photovoltaics: Cooperative Research and Development Final Report, CRADA Number CRD-06-177

    SciTech Connect

    Olson, D.

    2014-08-01

    This CRADA will develop improved thin film organic solar cells using a new n-type semiconducting polymer. High efficiency photovoltaics (PVs) based on inorganic semiconductors have good efficiencies (up to 30%) but are extremely expensive to manufacture. Organic PV technology has the potential to overcome this problem through the use of high-throughput production methods like reel-to-reel printing on flexible substrates. Unfortunately, today's best organic PVs have only a few percent efficiency, a number that is insufficient for virtually all commercial applications. The limited choice of stable n-type (acceptor) organic semiconductor materials is one of the key factors that prevent the further improvement of organic PVs. TDA Research, Inc. (TDA) previously developed a new class of electron-deficient (n-type) conjugated polymers for use in organic light emitting diodes (OLEDs). During this project TDA in collaboration with the National Renewable Energy Laboratory (NREL) will incorporate these electron-deficient polymers into organic photovoltaics and investigate their performance. TDA Research, Inc. (TDA) is developing new materials and polymers to improve the performance of organic solar cells. Materials being developed at TDA include spin coated transparent conductors, charge injection layers, fullerene derivatives, electron-deficient polymers, and three-phase (fullerene/polythiophene/dye) active layer inks.

  12. Methodologies for Controlled Conjugated Polymer Synthesis and Characterization of Small Molecule Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Bakus, Ronald C., II

    Conjugated polymers can broadly be described as materials which have a structure composed of repeating monomeric units that show extended electronic communication along the backbone. The extended pi-conjugated nature of these materials gives them a set of unique electronic and optical properties, and has lead to their application in a multitude of various technologies. Of specific interest is the application of these materials in various organic electronics applications, such as solution processed plastic solar cells, light emitting diodes, and field effect transistors. Herein is described the synthesis of a class of well-defined, highly active organometallic initiators for use in controlled polymer synthesis. The polymers prepared using the nickel based initiators in Grignard metathesis polymerization posses the following characteristics: rapid generation of high molecular weight polymers, low polydispersity, linear relation between monomer conversion and molecular weight growth, and the selective transfer of an initiating moiety from the organometallic initiator to one polymer chain end. This initiator was then used to prepare a new class of biosensor materials wherein the polymer had a well defined biosensing end group. Additionally, a series of small molecule donors have been developed that have shown promise in a wide variety of organic electronic applications. These materials can broadly be described as having a D'ADAD' type structure where D, D', and A correspond to electron rich and electron deficient aromatic heterocycles, respectively. By tuning the identity of these groups and the side-chains attached to them, one can subtly influence the optical, electronic, and physical properties of the materials. These materials were investigated via single crystal x-ray diffraction studies to gain insight into how changes to the molecule structure such as heteroatom regioisomerism and isoelectronic substitutions effected the molecular structure. These changes in

  13. Production of organic compounds in plasmas: A comparison among electric sparks, laser-induced plasmas and UV light

    NASA Technical Reports Server (NTRS)

    Scattergood, T. W.; Mckay, C. P.; Borucki, W. J.; Giver, L. P.; Vanghyseghem, H.; Parris, J. E.; Miller, S. L.

    1991-01-01

    In order to study the production of organic compounds in plasmas (and shocks), various mixtures of N2, CH4, and H2, modeling the atmosphere of Titan, were exposed to discrete sparks, laser-induced plasmas (LIP) and ultraviolet light. The yields of HCN and simple hydrocarbons were measured and compared to those calculated from a simple quenched thermodynamic equilibrium model. The agreement between experiment and theory was fair for HCN and C2H2. However, the yields of C2H6 and other hydrocarbons were much higher than those predicted by the model. Our experiments suggest that photolysis by ultraviolet light from the plasma is an important process in the synthesis. This was confirmed by the photolysis of gas samples exposed to the light, but not to the plasma or shock waves. The results of these experiments demonstrate that, in addition to the well-known efficient synthesis of organic compounds in plasmas, the yields of saturated species, e.g., ethane, may be higher than predicted by theory and that LIP provide a convenient and clean way of simulating planetary lightning and impact plasmas in the laboratory.

  14. Organic matter induced mobilization of polymer-coated silver nanoparticles from water-saturated sand.

    PubMed

    Yang, Xinyao; Yin, Ziyi; Chen, Fangmin; Hu, Jingjing; Yang, Yuesuo

    2015-10-01

    Mobilization of polymer-coated silver nanoparticles (AgNPs) by anionic surfactant (sodium dodecylbenzenesulphonate: SDBS), amino acid derivative (N-acetylcysteine: NAC), and chelate (ethylenediaminetetraacetic acid: EDTA) in water-saturated sand medium was explored based on carefully designed column tests. Exposure experiments monitoring the size evolution of polyvinylpyrrolidone (PVP) coated AgNPs in organic solutions confirm the capacity of SDBS, NAC and EDTA to partly displace PVP. Single Pulse Column Experiment (SPCE) results show both the PVP polymer and the silver core controlled AgNP deposition while the effect of the PVP was dominant. Results of Co-injected Pulse Column Experiments (CPCEs) where AgNP and SDBS or NAC were co-injected into the column following a very short mixing (<1 s) disprove our hypothesis that coating-alternation by particle associated organic would mobilize irreversibly deposited particles from the uncoated sand, while surface charge modification by adsorbed NAC was identified as a potential mobilizing mechanism for AgNP from the iron-oxide-coated sand. Triple Pulse Column Experiment (TPCE) results confirm that such a charging effect of the adsorbed organic molecules may enable SDBS and NAC to mobilize AgNPs from the iron-oxide-coated sands. TPCE results with five distinct levels of SDBS indicate that concentration-stimulated change in the SDBS format from an individual to a micelle significantly increased the mobilizing efficiency and site blockage of SDBS. Although being an electrolyte, EDTA did not mobilize AgNPs, as the case with SDBS or NAC, as it dissolved the iron oxides which in turn prevented EDTA adsorption on sand. The findings have implications for better understanding the behavior of polymer-coated nanoparticles in organic-presented groundwater systems, i.e., detachment-associated uncertainty in exposure prediction of the nanomaterials.

  15. Nano-organized collagen layers obtained by adsorption on phase-separated polymer thin films.

    PubMed

    Zuyderhoff, Emilienne M; Dupont-Gillain, Christine C

    2012-01-31

    The organization of adsorbed type I collagen layers was examined on a series of polystyrene (PS)/poly(methyl methacrylate) (PMMA) heterogeneous surfaces obtained by phase separation in thin films. These thin films were prepared by spin coating from solutions in either dioxane or toluene of PS and PMMA in different proportions. Their morphology was unraveled combining the information coming from X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and water contact angle measurements. Substrates with PMMA inclusions in a PS matrix and, conversely, substrates with PS inclusions in a PMMA matrix were prepared, the inclusions being either under the form of pits or islands, with diameters in the submicrometer range. The organization of collagen layers obtained by adsorption on these surfaces was then investigated. On pure PMMA, the layer was quite smooth with assemblies of a few collagen molecules, while bigger assemblies were found on pure PS. On the heterogeneous surfaces, it appeared clearly that the diameter and length of collagen assemblies was modulated by the size and surface coverage of the PS domains. If the PS domains, either surrounding or surrounded by the PMMA phase, were above 600 nm wide, a heterogeneous distribution of collagen was found, in agreement with observations made on pure polymers. Otherwise, fibrils could be formed, that were longer compared to those observed on pure polymers. Additionally, the surface nitrogen content determined by XPS, which is linked to the protein adsorbed amount, increased roughly linearly with the PS surface fraction, whatever the size of PS domains, suggesting that adsorbed collagen amount on heterogeneous PS/PMMA surfaces is a combination of that observed on the pure polymers. This work thus shows that PS/PMMA surface heterogeneities can govern collagen organization. This opens the way to a better control of collagen supramolecular organization at interfaces, which could in turn allow cell

  16. Polymer triplet energy levels need not limit photocurrent collection in organic solar cells.

    PubMed

    Schlenker, Cody W; Chen, Kung-Shih; Yip, Hin-Lap; Li, Chang-Zhi; Bradshaw, Liam R; Ochsenbein, Stefan T; Ding, Feizhi; Li, Xiaosong S; Gamelin, Daniel R; Jen, Alex K-Y; Ginger, David S

    2012-12-05

    We study charge recombination via triplet excited states in donor/acceptor organic solar cells and find that, contrary to intuition, high internal quantum efficiency (IQE) can be obtained in polymer/fullerene blend devices even when the polymer triplet state is significantly lower in energy than the intermolecular charge transfer (CT) state. Our model donor system comprises the copolymer PIDT-PhanQ: poly(indacenodithiophene-co-phenanthro[9,10-b]quinoxaline), which when blended with phenyl-C(71)-butyric acid methyl ester (PC(71)BM) is capable of achieving power conversion efficiencies of 6.0% and IQE ≈ 90%, despite the fact that the polymer triplet state lies 300 meV below the interfacial CT state. However, as we push the open circuit voltage (V(OC)) higher by tailoring the fullerene reduction potential, we observe signatures of a new recombination loss process near V(OC) = 1.0 V that we do not observe for PCBM-based devices. Using photoinduced absorption and photoluminescence spectroscopy, we show that a new recombination path opens via the fullerene triplet manifold as the energy of the lowest CT state approaches the energy of the fullerene triplet. This pathway appears active even in cases where direct recombination via the polymer triplet remains thermodynamically accessible. These results suggest that kinetics, as opposed to thermodynamics, can dominate recombination via triplet excitons in these blends and that optimization of charge separation and kinetic suppression of charge recombination may be fruitful paths for the next generation of panchromatic organic solar cell materials with high V(OC) and J(SC).

  17. From polymer to small organic molecules: a tight relationship between radical chemistry and solid-phase organic synthesis.

    PubMed

    Mirizzi, Danilo; Pulici, Maurizio

    2011-04-18

    Since Gomberg's discovery of radicals as chemical entities, the interest around them has increased through the years. Nowadays, radical chemistry is used in the synthesis of 75% of all polymers, inevitably establishing a close relationship with Solid-Phase Organic Synthesis. More recently, the interest of organic chemists has shifted towards the application of usual "in-solution" radical chemistry to the solid-phase, ranging from the use of supported reagents for radical reactions, to the development of methodologies for the synthesis of small molecules or potential libraries. The aim of this review is to put in perspective radical chemistry, moving it away from its origin as a synthetic means for solid supports, to becoming a useful tool for the synthesis of small molecules.

  18. Molecularly imprinted polymers based on SBA-15 for selective solid-phase extraction of baicalein from plasma samples.

    PubMed

    He, Hongliang; Gu, Xiaoli; Shi, Liying; Hong, Junli; Zhang, Hongjuan; Gao, Yankun; Du, Shuhu; Chen, Lina

    2015-01-01

    Highly selective molecularly imprinted mesoporous silica polymer (SBA-15@MIP) for baicalein (BAI) extraction was synthesized using a surface molecular imprinting technique on the SBA-15 supporter. Computational simulation was used to predict the optimal functional monomer for the rational design of SBA-15@MIP. Meanwhile, high adsorption capacity was obtained when a suitable yield of molecularly imprinted polymers (MIPs) layer was grafted onto the surface of SBA-15. Characterization and performance tests of the obtained polymer revealed that SBA-15@MIP possessed a highly ordered mesoporous structure, reached saturated adsorption within 60 min, and exhibited higher sorption capacity to the target molecule BAI compared with non-imprinted mesoporous silica polymer (SBA-15@NIP) and SBA-15. Finally, SBA-15@MIP was successfully applied to solid-phase extraction (SPE) coupled with high-performance liquid chromatography and ultraviolet detection (HPLC-UV) for the determination of trace BAI in plasma samples. Mean recoveries of BAI through the molecularly imprinted solid-phase extraction (MISPE) sorbent, non-imprinted solid-phase extraction (NISPE) sorbent, and SBA-15 solid-phase extraction (SBA-15-SPE) sorbent were 94.4, 22.7, and 10.7 %, respectively, and the relative standard deviations were 2.9, 2.6, and 3.6 %, respectively. These results reveal that SBA-15@MIP as a SPE sorbent has good applicability to selectively separate and enrich trace BAI from complex samples.

  19. Photocatalytic Anatase TiO2 Thin Films on Polymer Optical Fiber Using Atmospheric-Pressure Plasma.

    PubMed

    Baba, Kamal; Bulou, Simon; Choquet, Patrick; Boscher, Nicolas D

    2017-04-06

    Due to the undeniable industrial advantages of low-temperature atmospheric-pressure plasma processes, such as low cost, low temperature, easy implementation, and in-line process capabilities, they have become the most promising next-generation candidate system for replacing thermal chemical vapor deposition or wet chemical processes for the deposition of functional coatings. In the work detailed in this article, photocatalytic anatase TiO2 thin films were deposited at a low temperature on polymer optical fibers using an atmospheric-pressure plasma process. This method overcomes the challenge of forming crystalline transition metal oxide coatings on polymer substrates by using a dry and up-scalable method. The careful selection of the plasma source and the titanium precursor, i.e., titanium ethoxide with a short alkoxy group, allowed the deposition of well-adherent, dense, and crystalline TiO2 coatings at low substrate temperature. Raman and XRD investigations showed that the addition of oxygen to the precursor's carrier gas resulted in a further increase of the film's crystallinity. Furthermore, the films deposited in the presence of oxygen exhibited a better photocatalytic activity toward methylene blue degradation assumedly due to their higher amount of photoactive {101} facets.

  20. Centro-Apical Self-Organization of Organic Semiconductors in a Line-Printed Organic Semiconductor: Polymer Blend for One-Step Printing Fabrication of Organic Field-Effect Transistors.

    PubMed

    Lee, Su Jin; Kim, Yong-Jae; Yeo, So Young; Lee, Eunji; Lim, Ho Sun; Kim, Min; Song, Yong-Won; Cho, Jinhan; Lim, Jung Ah

    2015-09-11

    Here we report the first demonstration for centro-apical self-organization of organic semiconductors in a line-printed organic semiconductor: polymer blend. Key feature of this work is that organic semiconductor molecules were vertically segregated on top of the polymer phase and simultaneously crystallized at the center of the printed line pattern after solvent evaporation without an additive process. The thickness and width of the centro-apically segregated organic semiconductor crystalline stripe in the printed blend pattern were controlled by varying the relative content of the organic semiconductors, printing speed, and solution concentrations. The centro-apical self-organization of organic semiconductor molecules in a printed polymer blend may be attributed to the combination of an energetically favorable vertical phase-separation and hydrodynamic fluids inside the droplet during solvent evaporation. Finally, a centro-apically phase-separated bilayer structure of organic semiconductor: polymer blend was successfully demonstrated as a facile method to form the semiconductor and dielectric layer for OFETs in one- step.

  1. Centro-Apical Self-Organization of Organic Semiconductors in a Line-Printed Organic Semiconductor: Polymer Blend for One-Step Printing Fabrication of Organic Field-Effect Transistors

    PubMed Central

    Jin Lee, Su; Kim, Yong-Jae; Young Yeo, So; Lee, Eunji; Sun Lim, Ho; Kim, Min; Song, Yong-Won; Cho, Jinhan; Ah Lim, Jung

    2015-01-01

    Here we report the first demonstration for centro-apical self-organization of organic semiconductors in a line-printed organic semiconductor: polymer blend. Key feature of this work is that organic semiconductor molecules were vertically segregated on top of the polymer phase and simultaneously crystallized at the center of the printed line pattern after solvent evaporation without an additive process. The thickness and width of the centro-apically segregated organic semiconductor crystalline stripe in the printed blend pattern were controlled by varying the relative content of the organic semiconductors, printing speed, and solution concentrations. The centro-apical self-organization of organic semiconductor molecules in a printed polymer blend may be attributed to the combination of an energetically favorable vertical phase-separation and hydrodynamic fluids inside the droplet during solvent evaporation. Finally, a centro-apically phase-separated bilayer structure of organic semiconductor: polymer blend was successfully demonstrated as a facile method to form the semiconductor and dielectric layer for OFETs in one- step. PMID:26359068

  2. A study of interfaces between organic and metal materials and their application in polymer light-emitting diodes and polymer photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Li, Juo-Hao

    2009-12-01

    In the past few decades, it attracts a lot of attention for the researches of organic semiconductor due to its new and interesting properties, compared with conventional soft material and inorganic semiconductor. Several kinds of electronic devices such as light emitting diodes, thin film transistors and photovoltaic solar cell based on these organic semiconductors are also proposed and studied. This dissertation will focus on interface between organic and metal, which is one of the mysteries and critical issues remaining in the material properties and limiting the device performance. In the first chapter, a brief review and introduction of the organic semiconductor and organic electronics will be described. The purpose is to introduce the research background, motivation and methodology. Chapter two demonstrates the concept of top-emitting light-emitting diodes and the research focus on the interfaces between the light-emitting polymer and electrodes. An interfacial layer is introduced to improve the hole-injection from the anode. Except for alternating the electrode architecture, surface treatment or modification also have significant influences on interfacial electronic structure. Chapter three describes the discovery of solvent treatment on top of the light-emitting polymer and its application on organic electrophosphorescent devices. To further study the interfaces in organic electronics, an interface layer of sol-gel processed titanium oxide is introduced into organic electronic devices. Chapter four describes the amorphous titanium oxide and its application on polymer light-emitting diodes, while Chapter five demonstrates nanocrystalline titanium dioxide and its application in both light-emitting devices and polymer photovoltaic solar cells.

  3. Periodic Phenomena In Laser-Ablation Plasma Plumes: A Self-Organization Scenario

    SciTech Connect

    Gurlui, S.; Sanduloviciu, M.; Mihesan, C.; Ziskind, M.; Focsa, C.

    2006-01-15

    Experimental evidence of the appearance of a proper periodic dynamics in a plasma plume created by pulsed laser ablation is considered as a hint for the presence of a self-organization scenario that explains similar phenomena observed in plasma diodes.

  4. A Compact Plasma Flow-Bubbler for Decomposition of Organic compounds and Sterilization

    NASA Astrophysics Data System (ADS)

    Yoshiki, Hiroyuki; Ishikawa, Fukuto; Igarashi, Yu; Sugawara, Tetuya

    2015-09-01

    Recently, Plasma production in and in contact with liquid has attracted much attention because of their applications to degradation of organic compounds, sterilization, water purification. UV, electron, ion and radical flows originated from a plasma and also shock wave induce physical and chemical reaction in a liquid, for example oxidation-reduction, electrolysis and reactive species production in a water. In particular, various reactive oxygen/nitrogen species generated at the plasma-liquid interface play an important role in oxidation and degradation of organic pollutants and bacteria. We have proposed the mild water treatment by ejecting the atmospheric-pressure μ plasma (AP μP) flow into a water using a microbubble aerator or a porous ceramics bubbler. In this study, a compact plasma flow-bubbler made up of a μplasma source and a porous ceramics has been developed for the applications of water purification and sterilization. AP μP is generated between a thin metal pipe electrode and a GND plate by a pulsed high voltage, so that the O2 μ plasma can be obtained without adding He and Ar gases. Plasma flow is ejected into the water through a porous ceramics. Decolorization of an indigo carmine solution strongly depended on O2 flow rate. Chemical probe method using terephthalic acid revealed that OH radicals are produced by the O2 plasma gas bubbling. The inactivation for E. coli, Bacillus subtilis was attained by the O2 plasma gas bubbling.

  5. Organic Polymer Dots as Photocatalysts for Visible Light-Driven Hydrogen Generation.

    PubMed

    Wang, Lei; Fernández-Terán, Ricardo; Zhang, Lei; Fernandes, Daniel L A; Tian, Lei; Chen, Hong; Tian, Haining

    2016-09-26

    For the first time, organic semiconducting polymer dots (Pdots) based on poly[(9,9'-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1',3} thiadiazole)] (PFBT) and polystyrene grafting with carboxyl-group-functionalized ethylene oxide (PS-PEG-COOH) are introduced as a photocatalyst towards visible-light-driven hydrogen generation in a completely organic solvent-free system. With these organic Pdots as the photocatalyst, an impressive initial rate constant of 8.3 mmol h(-1)  g(-1) was obtained for visible-light-driven hydrogen production, which is 5-orders of magnitude higher than that of pristine PFBT polymer under the same catalytic conditions. Detailed kinetics studies suggest that the productive electron transfer quench of the excited state of Pdots by an electron donor is about 40 %. More importantly, we also found that the Pdots can tolerate oxygen during catalysis, which is crucial for further application of this material for light-driven water splitting.

  6. Radon 222 permeation through different polymers (PVC, EVA, PE and PP) after exposure to gamma radiation or surface treatment by cold plasma

    NASA Astrophysics Data System (ADS)

    Klein, D.; Tomasella, E.; Labed, V.; Meunier, C.; Cetier, Ph.; Robé, M. C.; Chambaudet, A.

    1997-08-01

    In order to limit radon emission during the storage of radioactive wastes and to comply with the different regulations in the storage facility, the packaging used for these types of wastes should include intermediate enclosures, such as polymer membranes used as radon barriers. However, the membrane would be subjected to different types of radiation during long periods of storage, it would have to be regularly monitored for damage. The first aim of this study is to check the efficiency and the continuity of such polymer membranes subjected to different accelerated ageing processes by exposure to gamma radiation. PolyVinyl Chloride (PVC) and Ethylene Vinyl Acetate (EVA) membranes were studied after gamma exposures. Thus, we evaluated the effects of the gamma radiations on the radon permeation coefficient, and the degradation of these polymers due to this exposure. The second objective of this study is to evaluate the modifications of the polymer surface by cold plasma. PolyEthylene (PE) and PolyPropylene (PP) membranes were studied. Exposure of a polymer to a plasma creates reactive sites on the polymer's surface. Different modifications in the surface composition (chemical composition, molecular weight, etc.) can be obtained. The advantage of the plasma process is that it acts within seconds and does not produce any noticeable effects on the bulk properties. The obtained results show that this treatment increases the polymer's efficiency as a radon barrier.

  7. Versatile dual organic interface layer for performance enhancement of polymer solar cells

    NASA Astrophysics Data System (ADS)

    Li, Zhiqi; Liu, Chunyu; Zhang, Zhihui; Li, Jinfeng; Zhang, Liu; Zhang, Xinyuan; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2016-11-01

    The electron transport layer plays a crucial role on determining electron injection and extraction, resulting from the effect of balancing charge transport and reducing the interfacial energy barrier. Decreasing the inherent incompatibility and enhancing electrical contact via employing appropriate buffer layer at the surface of hydrophobic organic active layer and hydrophilic inorganic electrode are also essential for charge collection. Herein, we demonstrate that an efficient dual polyelectrolytes interfacial layer composed of polyethylenimine (PEI) and conducting poly(9,9-dihexylfluorenyl-2,7-diyl) (PDHFD) is incorporated to investigate the interface energetics and electron transport in polymer solar cells (PSCs). The composited PEI/PDHFD interface layer (PPIL) overcomed the low conductivity of bare PEI polymer, which decreased series resistance and facilitated electron extraction at the ITO/PPIL-active layer interface. The introduction of the interface energy state of the PPIL reduced the work function of ITO so that it can mate the top of the valence band of the photoactive materials and promoted the formation of ohmic contact at ITO electrode interface. As a result, the composited PPIL tuned energy alignment and accelerated the electron transfer, leading to significantly increased photocurrent and power conversion efficiency (PCE) of the devices based on various representative polymer:fullerene systems.

  8. Microtexturing of the Conductive PEDOT:PSS Polymer for Superhydrophobic Organic Electrochemical Transistors

    PubMed Central

    Gentile, Francesco; Coppedè, Nicola; Tarabella, Giuseppe; Villani, Marco; Calestani, Davide; Candeloro, Patrizio; Iannotta, Salvatore; Di Fabrizio, Enzo

    2014-01-01

    Superhydrophobic surfaces are bioinspired, nanotechnology artifacts, which feature a reduced friction coefficient, whereby they can be used for a number of very practical applications including, on the medical side, the manipulation of biological solutions. In this work, we integrated superhydrophobic patterns with the conducting polymer PEDOT:PSS, one of the most used polymers in organic electronics because highly sensitive to ionized species in solution. In doing so, we combined geometry and materials science to obtain an advanced device where, on account of the superhydrophobicity of the system, the solutions of interest can be manipulated and, on account of the conductive PEDOT:PSS polymer, the charged molecules dispersed inside can be quantitatively measured. This original substrate preparation allowed to perform electrochemical measurements on ionized species in solution with decreasing concentration down to 10−7 molar. Moreover, it was demonstrated the ability of the device of realizing specific, combined time and space resolved analysis of the sample. Collectively, these results demonstrate how a tight, interweaving integration of different disciplines can provide realistic tools for the detection of pathologies. The scheme here introduced offers breakthrough capabilities that are expected to radically improve both the pace and the productivity of biomedical research, creating an access revolution. PMID:24579079

  9. Organization of Nucleotides in Different Environments and the Formation of Pre-Polymers

    PubMed Central

    Himbert, Sebastian; Chapman, Mindy; Deamer, David W.; Rheinstädter, Maikel C.

    2016-01-01

    RNA is a linear polymer of nucleotides linked by a ribose-phosphate backbone. Polymerization of nucleotides occurs in a condensation reaction in which phosphodiester bonds are formed. However, in the absence of enzymes and metabolism there has been no obvious way for RNA-like molecules to be produced and then encapsulated in cellular compartments. We investigated 5′-adenosine monophosphate (AMP) and 5′-uridine monophosphate (UMP) molecules confined in multi-lamellar phospholipid bilayers, nanoscopic films, ammonium chloride salt crystals and Montmorillonite clay, previously proposed to promote polymerization. X-ray diffraction was used to determine whether such conditions imposed a degree of order on the nucleotides. Two nucleotide signals were observed in all matrices, one corresponding to a nearest neighbour distance of 4.6 Å attributed to nucleotides that form a disordered, glassy structure. A second, smaller distance of 3.4 Å agrees well with the distance between stacked base pairs in the RNA backbone, and was assigned to the formation of pre-polymers, i.e., the organization of nucleotides into stacks of about 10 monomers. Such ordering can provide conditions that promote the nonenzymatic polymerization of RNA strands under prebiotic conditions. Experiments were modeled by Monte-Carlo simulations, which provide details of the molecular structure of these pre-polymers. PMID:27545761

  10. Thermally cross-linkable hole transport polymers for solution-based organic light-emitting diodes.

    PubMed

    Cha, Seung Ji; Cho, Se-Na; Lee, Woo-Hyung; Chung, Ha-Seul; Kang, In-Nam; Suh, Min Chul

    2014-04-01

    Two thermally cross-linkable hole transport polymers that contain phenoxazine and triphenylamine moieties, X-P1 and X-P2, are developed for use in solution-processed multi-stack organic light-emitting diodes (OLEDs). Both X-P1 and X-P2 exhibit satisfactory cross-linking and optoelectronic properties. The highest occupied molecular orbital (HOMO) levels of X-P1 and X-P2 are -5.24 and -5.16 eV, respectively. Solution-processed super yellow polymer devices (ITO/X-P1 or X-P2/PDY-132/LiF/Al) with X-P1 or X-P2 hole transport layers of various thicknesses are fabricated with the aim of optimizing the device characteristics. The fabricated multi-stack yellow devices containing the newly synthesized hole transport polymers exhibit satisfactory currents and power efficiencies. The optimized X-P2 device exhibits a device efficiency that is dramatically improved by more than 66% over that of a reference device without an HTL.

  11. A Brief Survey of β-Detected NMR of Implanted 8Li+ in Organic Polymers

    NASA Astrophysics Data System (ADS)

    McGee, F. H.; McKenzie, I.; Buck, T.; Daley, C. R.; Forrest, J. A.; Harada, M.; Kiefl, R. F.; Levy, C. D. P.; Morris, G. D.; Pearson, M. R.; Sugiyama, J.; Wang, D.; MacFarlane, W. A.

    2014-12-01

    Unlike the positive muon, we expect the chemistry of the implanted 8Li+β-NMR probe in organic polymers to be simply that of the monovalent ion, but almost nothing is known about the NMR of isolated Li+ in this context. Here, we present a brief survey of 8Li+β-NMR in a variety of insulating polymers at high magnetic field, including polyimide, PET, polycarbonate, polystyrene and polyethylene oxide. In all cases, we find a large-amplitude, broad Lorentzian resonance near the Larmor frequency, consistent with the expected diamagnetic charge state. We also find remarkably fast spin-lattice relaxation rates 1/T1. There is very little dependence of either linewidth or 1/T1 on the proton density, the main source of nuclear dipolar magnetic fields, leading us to conclude the main contribution to both broadening and spin relaxation at room temperature is quadrupolar in origin. This behaviour is very different from crystalline insulators such as MgO and Al2O3, and suggests that 8Li+β-NMR will be an important probe of polymer dynamics. Additionally, we note dramatically different behaviour of one sample above its glass transition, motivating the construction of a high temperature spectrometer to enable further exploration at elevated temperature.

  12. Microtexturing of the conductive PEDOT:PSS polymer for superhydrophobic organic electrochemical transistors.

    PubMed

    Gentile, Francesco; Coppedè, Nicola; Tarabella, Giuseppe; Villani, Marco; Calestani, Davide; Candeloro, Patrizio; Iannotta, Salvatore; Di Fabrizio, Enzo

    2014-01-01

    Superhydrophobic surfaces are bioinspired, nanotechnology artifacts, which feature a reduced friction coefficient, whereby they can be used for a number of very practical applications including, on the medical side, the manipulation of biological solutions. In this work, we integrated superhydrophobic patterns with the conducting polymer PEDOT:PSS, one of the most used polymers in organic electronics because highly sensitive to ionized species in solution. In doing so, we combined geometry and materials science to obtain an advanced device where, on account of the superhydrophobicity of the system, the solutions of interest can be manipulated and, on account of the conductive PEDOT:PSS polymer, the charged molecules dispersed inside can be quantitatively measured. This original substrate preparation allowed to perform electrochemical measurements on ionized species in solution with decreasing concentration down to 10(-7) molar. Moreover, it was demonstrated the ability of the device of realizing specific, combined time and space resolved analysis of the sample. Collectively, these results demonstrate how a tight, interweaving integration of different disciplines can provide realistic tools for the detection of pathologies. The scheme here introduced offers breakthrough capabilities that are expected to radically improve both the pace and the productivity of biomedical research, creating an access revolution.

  13. Organization of Nucleotides in Different Environments and the Formation of Pre-Polymers

    NASA Astrophysics Data System (ADS)

    Himbert, Sebastian; Chapman, Mindy; Deamer, David W.; Rheinstädter, Maikel C.

    2016-08-01

    RNA is a linear polymer of nucleotides linked by a ribose-phosphate backbone. Polymerization of nucleotides occurs in a condensation reaction in which phosphodiester bonds are formed. However, in the absence of enzymes and metabolism there has been no obvious way for RNA-like molecules to be produced and then encapsulated in cellular compartments. We investigated 5‧-adenosine monophosphate (AMP) and 5‧-uridine monophosphate (UMP) molecules confined in multi-lamellar phospholipid bilayers, nanoscopic films, ammonium chloride salt crystals and Montmorillonite clay, previously proposed to promote polymerization. X-ray diffraction was used to determine whether such conditions imposed a degree of order on the nucleotides. Two nucleotide signals were observed in all matrices, one corresponding to a nearest neighbour distance of 4.6 Å attributed to nucleotides that form a disordered, glassy structure. A second, smaller distance of 3.4 Å agrees well with the distance between stacked base pairs in the RNA backbone, and was assigned to the formation of pre-polymers, i.e., the organization of nucleotides into stacks of about 10 monomers. Such ordering can provide conditions that promote the nonenzymatic polymerization of RNA strands under prebiotic conditions. Experiments were modeled by Monte-Carlo simulations, which provide details of the molecular structure of these pre-polymers.

  14. Low-Temperature Seebeck Coefficients for Polaron-Driven Thermoelectric Effect in Organic Polymers.

    PubMed

    de Oliveira Neto, Pedro Henrique; da Silva Filho, Demétrio A; Roncaratti, Luiz F; Acioli, Paulo H; E Silva, Geraldo Magela

    2016-07-14

    We report the results of electronic structure coupled to molecular dynamics simulations on organic polymers subject to a temperature gradient at low-temperature regimes. The temperature gradient is introduced using a Langevin-type dynamics corrected for quantum effects, which are very important in these systems. Under this condition we were able to determine that in these no-impurity systems the Seebeck coefficient is in the range of 1-3 μV/K. These results are in good agreement with reported experimental results under the same low-temperature conditions.

  15. Evaluation of Metal-Organic Frameworks and Porous Polymer Networks for CO2 -Capture Applications.

    PubMed

    Verdegaal, Wolfgang M; Wang, Kecheng; Sculley, Julian P; Wriedt, Mario; Zhou, Hong-Cai

    2016-03-21

    This manuscript presents experimental data for 20 adsorption materials (metal-organic frameworks, porous polymer networks, and Zeolite-5A), including CO2 and N2 isotherms and heat capacities. With input from only experimental data, working capacities per energy for each material were calculated. Furthermore, by running seven different carbon-capture scenarios in which the initial flue-gas composition and process temperature was systematically changed, we present a range of performances for each material and quantify how sensitive each is to these varying parameters. The presented calculations provide researchers with a tool to investigate promising carbon-capture materials more easily and completely.

  16. Principles and Applications of Solid Polymer Electrolyte Reactors for Electrochemical Hydrodehalogenation of Organic Pollutants

    NASA Astrophysics Data System (ADS)

    Cheng, Hua; Scott, Keith

    The ability to re-cycle halogenated liquid wastes, based on electrochemical hydrodehalogenation (EHDH), will provide a significant economic advantage and will reduce the environmental burden in a number of processes. The use of a solid polymer electrolyte (SPE) reactor is very attractive for this purpose. Principles and features of electrochemical HDH technology and SPE EHDH reactors are described. The SPE reactor enables selective dehalogenation of halogenated organic compounds in both aqueous and non-aqueous media with high current efficiency and low energy consumption. The influence of operating conditions, including cathode material, current density, reactant concentration and temperature on the HDH process and its stability are examined.

  17. Selective scattering polymer dispersed liquid crystal film for light enhancement of organic light emitting diode.

    PubMed

    Jiang, Jinghua; McGraw, Greg; Ma, Ruiqing; Brown, Julie; Yang, Deng-Ke

    2017-02-20

    We developed a novel light enhancing film for an organic light emitting diode (OLED) based on polymer dispersed liquid crystal (PDLC). In the film, the liquid crystal droplets are unidirectionally aligned along the film normal direction and exhibit selective scattering. The film scatters light emitted only in directions with large incident angles but not light emitted in directions with small incident angles. When the light is scattered, it changes propagation direction and exits the OLED. The PDLC film reduces the total internal reflection and thus can significantly increase the light efficiency of the OLED.

  18. Structure-Property Relations in Polymer:Fullerene Blends for Organic Solar Cells.

    PubMed

    Banerji, Natalie

    Organic solar cells consist of thin films combining an electron donor (often a conjugated polymer) with an electron acceptor (often a fullerene derivative), in a blend commonly referred to as bulk heterojunction material. Charge separation between the donor and the acceptor leads to the generation of carriers, which can be extracted from photovoltaic devices in the form of photocurrent. The generation mechanism of free, extractable charges has caused a lot of controversial discussion in literature. Our research has shown that all the steps involved in charge generation are strongly dependent on the arrangement of the donor and the acceptor (i.e. the structure) of the bulk heterojunction.

  19. Organized living: formation mechanisms and functions of plasma membrane domains in yeast.

    PubMed

    Ziółkowska, Natasza E; Christiano, Romain; Walther, Tobias C

    2012-03-01

    Plasma membrane proteins and lipids organize into lateral domains of specific composition. Domain formation is achieved by a combination of lipid-lipid and lipid-protein interactions, membrane-binding protein scaffolds and protein fences. The resulting domains function in membrane protein turnover and homeostasis, as well as in cell signaling. We review the mechanisms generating plasma membrane domains and the functional consequences of this organization, focusing on recent findings from research on the yeast model system.

  20. Growth and assembly of functionalized nanomaterials: Using organic-inorganic polymer hybrid systems

    NASA Astrophysics Data System (ADS)

    Goel, Divya

    Precise positioning of metallic nanostructures on semiconductor surfaces is important for applications such as photovoltaics, metal interconnects, sensing platforms, and many others. The rising cost and complexity with lithographically defined structures demands a parallel fabrication process that enables easy scale up. Surface patterns formed by block copolymers are considered as a promising means to create functional nanoscopic structures needed for the fabrication of miniaturized devices. The integration of polymers with inorganic nano-materials could find widespread applications in scientific research because it provides a strategy to combine the use of polymers as hosts, and the optical, electronic, and catalytic properties of nanoparticles. This thesis explores a technique that employs patterns in block copolymers as a template for the directed self-assembly of the nanocrystals. One area investigated was the preparation of thermally stable nanoparticles that could be intercalated into block copolymers. Nanoparticles of various materials were synthesized in spherical and rod shapes with different aspect ratios. These particles were characterized by optical absorption measurements, scanning electron microscopy, high-resolution transmission electorn microscopy, and fluorescence spectroscopy. Methods were developed to functionalize these nanoparticles with thermally stable surface coatings using emulsion polymerization. A new method to control the size and spatial distribution of vertically aligned carbon nanofibers was developed, by intercalating nickel into a polymer film. Nanofibers were subsequently grown using plasma-enhanced chemical vapor deposition, and the properties of the nanofibers were characterized using TEM and electrochemical methods. The alignment of block copolymers normal to a dielectric thin film was demonstrated using AC electric fields. These studies demonstrated the underlying mechanism by which nanoscopic structure in thin films can be

  1. Cell patterning via linker-free protein functionalization of an organic conducting polymer (polypyrrole) electrode.

    PubMed

    Bax, Daniel V; Tipa, Roxana S; Kondyurin, Alexey; Higgins, Michael J; Tsoutas, Kostadinos; Gelmi, Amy; Wallace, Gordon G; McKenzie, David R; Weiss, Anthony S; Bilek, Marcela M M

    2012-07-01

    The interaction of proteins and cells with polymers is critical to their use in scientific and medical applications. In this study, plasma immersion ion implantation (PIII) was used to modify the surface of the conducting polymer, polypyrrole, which possesses electrical properties. PIII treatment enabled persistent, covalent binding of the cell adhesive protein, tropoelastin, without employing chemical linking molecules. In contrast tropoelastin was readily eluted from the untreated surface. Through this differential persistence of binding, surface bound tropoelastin supported cell adhesion and spreading on the PIII treated but not the untreated polypyrrole surface. The application of a steel shadow mask during PIII treatment allowed for spatial definition of tropoelastin exclusively to PIII treated regions. The general applicability of this approach to other extracellular matrix proteins was illustrated using collagen I, which displayed similar results to tropoelastin but required extended washing conditions. This approach allowed fine patterning of cell adhesion and spreading to tropoelastin and collagen, specifically on PIII treated polypyrrole regions. We therefore present a methodology to alter the functionality of polypyrrole surfaces, generating surfaces that can spatially control cellular interactions through protein functionalization with the potential for electrical stimulation.

  2. Photo-triggered molecular release based on auto-degradable polymer-containing organic-inorganic hybrids.

    PubMed

    Okada, Hiroshi; Tanaka, Kazuo; Ohashi, Wataru; Chujo, Yoshiki

    2014-07-01

    The photo-triggered molecular release from the organic-inorganic polymer hybrids is presented in this manuscript. Initially, the preparation of the auto-degradable polymer is explained with the photo-cleavable group at the end of the polymer main-chain. The silica-based dye-loaded hybrids containing these polymers were fabricated. It was found that by UV irradiation, the end capping was removed, and then the auto-degradation occurs through the polymer main-chain. Finally, the molecular release of the loaded dyes was accomplished in various media by the UV irradiation. In particular, it was shown that both of hydrophobic and hydrophilic dyes can be applied in this system.

  3. Real-time x-ray scattering study of the initial growth of organic crystals on polymer brushes

    SciTech Connect

    An, Sung Yup; Ahn, Kwangseok; Kim, Doris Yangsoo; Lee, Dong Ryeol; Lee, Hyun-Hwi; Cho, Jeong Ho

    2014-04-21

    We studied the early-stage growth structures of pentacene organic crystals grown on polymer brushes using real-time x-ray scattering techniques. In situ x-ray reflectivity and atomic force microscopy analyses revealed that at temperatures close to the glass transition temperature of polymer brush, the pentacene overlayer on a polymer brush film showed incomplete condensation and 3D island structures from the first monolayer. A growth model based on these observations was used to quantitatively analyze the real-time anti-Bragg x-ray scattering intensities measured during pentacene growth to obtain the time-dependent layer coverage of the individual pentacene monolayers. The extracted total coverage confirmed significant desorption and incomplete condensation in the pentacene films deposited on the polymer brushes. These effects are ascribed to the change in the surface viscoelasticity of the polymer brushes around the glass transition temperature.

  4. Self-Organizing Knotted Magnetic Structures in Plasma

    NASA Astrophysics Data System (ADS)

    Smiet, C. B.; Candelaresi, S.; Thompson, A.; Swearngin, J.; Dalhuisen, J. W.; Bouwmeester, D.

    2015-08-01

    We perform full-magnetohydrodynamics simulations on various initially helical configurations and show that they reconfigure into a state where the magnetic field lines span nested toroidal surfaces. This relaxed configuration is not a Taylor state, as is often assumed for relaxing plasma, but a state where the Lorentz force is balanced by the hydrostatic pressure, which is lowest on the central ring of the nested tori. Furthermore, the structure is characterized by a spatially slowly varying rotational transform, which leads to the formation of a few magnetic islands at rational surfaces. We then obtain analytic expressions that approximate the global structure of the quasistable linked and knotted plasma configurations that emerge, using maps from S3 to S2 of which the Hopf fibration is a special case. The knotted plasma configurations have a highly localized magnetic energy density and retain their structure on time scales much longer than the Alfvénic time scale.

  5. Mechanistic studies of the structure-photostability relationship of organic conjugated polymers

    NASA Astrophysics Data System (ADS)

    Sanow, Logan Paul

    Organic Conjugated polymers (CPs) are a subject of intense research for their application in organic photovoltaics (OPVs), organic light emitting diodes (OLEDs), solid-state dye lasing, biological imaging and sensing, chemical sensing and remote sensing. CPs are key materials in the quest for more sustainable forms of renewable energy, making electronics more versatile and light weight, and increasing the functionality of everyday materials. For these applications and others that use CPs as the photoactive material, one of their main drawbacks is their susceptibility to photodegradation. Photodegradation occurs when the material is exposed to light leading to irreversible changes in the materials, most often resulting from photoxidation. These irreversible changes cause loss of mechanical, electronic and photophysical characteristics. For practical applications of CP devices, lifetime is as important as device efficiency. The following research is focused on studying the photodegradation mechanisms in various CPs to better understand the relationship between structure and stability, which may lead to the design of CPs which are more intrinsically photostable. To study how dependent photostability is on a polymer's chemical structure and frontier orbital energies, two series of CPs were studied. The first series contained two dicyano-substituted polyphenylenevinylene polymers with different side chains: poly(2,5-dioctyl-1,4-phenylene-1,2-dicyanovinylene) (C8-diCN-PPV) and poly(2,5-bis(decyloxy)-1,4-phenylene-1,2-dicyanovinylene) (RO-diCN-PPV). The second series included a well-known polymer, poly(3-hexylthiophene) (P3HT), and a newly synthesized CP, Poly(3,5-didodecyl-cyclopenta[2,1-b;3,4-b']dithiophen-4-one) (C6-CPDTO). The photodegradation mechanisms were studied through a combination of UV-Vis, PL, FTIR and NMR spectroscopy as well as gel permeation chromatography. There are two main degradation mechanisms that lead to photodegradation of CPs, the radical

  6. Interface modification and material synthesis of organic light-emitting diodes using plasma technology

    NASA Astrophysics Data System (ADS)

    Liang, Rongqing; Ou, Qiongrong; Yang, Cheng; He, Kongduo; Yang, Xilu; Zhong, Shaofeng; plasma application Team

    2015-09-01

    Organic light-emitting diodes (OLEDs), due to their unique properties of solution processability, compatibility with flexible substrates and with large-scale printing technology, attract huge interest in the field of lighting. The integration of plasma technology into OLEDs provides a new route to improve their performance. Here we demonstrate the modification of indium-tin-oxide (ITO) work function by plasma treatment, synthesis of thermally activated delayed fluorescence (TADF) materials using plasma grafting (polymerisation), and multi-layer solution processing achieved by plasma cross-linking.

  7. Pharmacokinetic study of arctigenin in rat plasma and organ tissue by RP-HPLC method.

    PubMed

    He, Fan; Dou, De-Qiang; Hou, Qiang; Sun, Yu; Kang, Ting-Guo

    2013-01-01

    A high-performance liquid chromatography (HPLC) technique was developed for the determination of arctigenin in plasma and various organs of rats after the oral administration of 30, 50 and 70 mgkg(-1) of arctigenin to the Sprague-Dawley rats. Results showed that the validated HPLC method was simple, fast, reproducible and suitable to the determination of arctigenin in rat plasma and organ tissue and one-compartmental model with zero-order absorption process can well describe the changes of arctigenin concentration in the plasma. The concentration of compound was highest in the spleen, less in the liver and the least in the lung.

  8. Organic Thin-Film Transistors with Phase Separation of Polymer-Blend Small-Molecule Semiconductors: Dependence on Molecular Weight and Types of Polymer

    NASA Astrophysics Data System (ADS)

    Ohe, Takahiro; Kuribayashi, Miki; Tsuboi, Ami; Satori, Kotaro; Itabashi, Masao; Nomoto, Kazumasa

    2009-12-01

    We have investigated effect of polymer on solution-processed organic thin-film transistors (TFTs) with polymer-blend semiconductors. Organic TFTs made from a solution of 6,13-bis(triisopropylsilylethynyl)-pentacene with a poly(α-methylstyrene) (PaMS) molecular weight of 20 k or above, exhibited mobility around 0.1 cm2/(V.s). On the other hand, the organic TFTs with a PaMS molecular weight of 2 k or with a poly(isobutyl methacrylate), exhibited much lower mobility. This can be explained in terms of the structure and crystallinity of the films. The results of film structure can be explained by applying the Flory-Huggins theory.

  9. Hydrophobization of polymer particles by tetrafluoromethane (CF4) plasma irradiation using a barrel-plasma-treatment system

    NASA Astrophysics Data System (ADS)

    Matsubara, Keisuke; Danno, Masato; Inoue, Mitsuhiro; Nishizawa, Hideki; Honda, Yuji; Abe, Takayuki

    2013-11-01

    In this study, tetrafluoromethane (CF4) plasma-treatments of polymethylmethacrylate (PMMA) powder were performed using a polygonal barrel-plasma-treatment system to improve the PMMA's hydrophobicity. Characterization of the treated samples showed that the PMMA particle surfaces were fluorinated by the CF4 treatment. The smooth surfaces of the particles changed into nano-sized worm-like structures after the plasma-treatment. The hydrophobicity of the treated PMMA samples was superior to that of the untreated samples. It was noted that the hydrophobicity of the treated samples and the surface fluorination level depended on the plasma-treatment time and radiofrequency (RF) power; high RF power increased the sample temperature, which in turn decreased the hydrophobicity of the treated samples and the surface fluorination because of the thermal decomposition of PMMA. The water-repellent effects were evaluated by using paper towels to show the application of the plasma-treated PMMA particles, with the result that the paper towel coated with the treated sample was highly water-repellent.

  10. XPS depth profiling of derivatized amine and anhydride plasma polymers: Evidence of limitations of the derivatization approach

    NASA Astrophysics Data System (ADS)

    Manakhov, Anton; Michlíček, Miroslav; Felten, Alexandre; Pireaux, Jean-Jacques; Nečas, David; Zajíčková, Lenka

    2017-02-01

    The quantitative analysis of the chemistry at the surface of functional plasma polymers is highly important for the optimization of their deposition conditions and, therefore, for their subsequent applications. The chemical derivatization of amine and carboxyl-anhydride layers is a well-known technique already applied by many researchers, notwithstanding the known drawback of the derivatization procedures like side or uncomplete reactions that could lead to "unreliable" results. In this work, X-ray photoelectron spectroscopy (XPS) combined with depth profiling with argon clusters is applied for the first time to study derivatized amine and carboxyl-anhydride plasma polymer layers. It revealed an additional important parameter affecting the derivatization reliability, namely the permeation of the derivatizing molecule through the target analysed layer, i.e. the composite effect of the probe molecule size and the layer porosity. Amine-rich films prepared by RF low pressure plasma polymerization of cyclopropylamine were derivatized with trifluoromethyl benzaldehide (TFBA) and it was observed by that the XPS-determined NH2 concentration depth profile is rapidly decreasing over top ten nanometers of the layer. The anhydride-rich films prepared by atmospheric plasma co-polymerization of maleic anhydride and C2H2 have been reacted with, parafluoroaniline and trifluoroethyl amine. The decrease of the F signal in top surface layer of the anhydride films derivatized by the "large" parafluoroaniline was observed similarly as for the amine films but the derivatization with the smaller trifluoroethylamine (TFEA) led to a more homogenous depth profile. The data analysis suggests that the size of the derivatizing molecule is the main factor, showing that the very limited permeation of the TFBA molecule can lead to underestimated densities of primary amines if the XPS analysis is solely carried out at a low take-off angle. In contrast, TFEA is found to be an efficient

  11. Experimental Studies of Self Organization with Electron Plasmas

    SciTech Connect

    Matthaeus, William H.

    2011-04-11

    During the period of this grant we had a very active research effort in our group on the topic of 2D electron plasmas, relaxation, 2D Navier Stokes turbulence, and related issues. The project also motivated other studies we carried out such as a study of 2D turbulence with two-species vorticity.

  12. Poly(exTTF): a novel redox-active polymer as active material for li-organic batteries.

    PubMed

    Häupler, Bernhard; Burges, René; Friebe, Christian; Janoschka, Tobias; Schmidt, Daniel; Wild, Andreas; Schubert, Ulrich S

    2014-08-01

    The first polymer bearing exTTF units intended for the use in electrical charge storage is presented. The polymer undergoes a redox reaction involving two electrons at -0.20 V vs Fc/Fc(+) and is applied as active cathode material in a Li-organic battery. The received coin cells feature a theoretical capacity of 132 mAh g(-1) , a cell potential of 3.5 V, and a lifetime exceeding more than 250 cycles.

  13. A Challenge Beyond Bottom Cells: Top-Illuminated Flexible Organic Solar Cells with Nanostructured Dielectric/Metal/Polymer (DMP) Films.

    PubMed

    Ham, Juyoung; Dong, Wan Jae; Park, Jae Yong; Yoo, Chul Jong; Lee, Illhwan; Lee, Jong-Lam

    2015-07-15

    Top-illuminated flexible organic solar cells with a high power conversion efficiency (≈6.75%) are fabricated using a dielectric/metal/polymer (DMP) electrode. Employing a polymer layer (n = 1.49) makes it possible to show the high transmittance, which is insensitive to film thickness, and the excellent haze induced by well-ordered nanopatterns on the DMP electrode, leading to a 28% of enhancement in efficiency compared to bottom cells.

  14. Controlling Internal Organization of Multilayer Poly(methacrylic acid) Hydrogels with Polymer Molecular Weight

    DOE PAGES

    Kozlovskaya, Veronika; Zavgorodnya, Oleksandra; Ankner, John F.; ...

    2015-11-16

    Here, we report on tailoring the internal architecture of multilayer-derived poly(methacrylic acid) (PMAA) hydrogels by controlling the molecular weight of poly(N-vinylpyrrolidone) (PVPON) in hydrogen-bonded (PMAA/PVPON) layer-by-layer precursor films. The hydrogels are produced by cross-linking PMAA in the spin-assisted multilayers followed by PVPON release. We found that the thickness, morphology, and architecture of hydrogen-bonded films and the corresponding hydrogels are significantly affected by PVPON chain length. For all systems, an increase in PVPON molecular weight from Mw = 2.5 to 1300 kDa resulted in increased total film thickness. We also show that increasing polymer Mw smooths the hydrogen-bonded film surfaces butmore » roughens those of the hydrogels. Using deuterated dPMAA marker layers in neutron reflectometry measurements, we found that hydrogen-bonded films reveal a high degree of stratification which is preserved in the cross-linked films. We observed dPMAA to be distributed more widely in the hydrogen-bonded films prepared with small Mw PVPON due to the greater mobility of short-chain PVPON. Furthermore, these variations in the distribution of PMAA are erased after cross-linking, resulting in a distribution of dPMAA over about two bilayers for all Mw but being somewhat more widely distributed in the films templated with higher Mw PVPON. Finally, our results yield new insights into controlling the organization of nanostructured polymer networks using polymer molecular weight and open opportunities for fabrication of thin films with well-organized architecture and controllable function.« less

  15. Controlling Internal Organization of Multilayer Poly(methacrylic acid) Hydrogels with Polymer Molecular Weight

    SciTech Connect

    Kozlovskaya, Veronika; Zavgorodnya, Oleksandra; Ankner, John F.; Kharlampieva, Eugenia

    2015-11-16

    Here, we report on tailoring the internal architecture of multilayer-derived poly(methacrylic acid) (PMAA) hydrogels by controlling the molecular weight of poly(N-vinylpyrrolidone) (PVPON) in hydrogen-bonded (PMAA/PVPON) layer-by-layer precursor films. The hydrogels are produced by cross-linking PMAA in the spin-assisted multilayers followed by PVPON release. We found that the thickness, morphology, and architecture of hydrogen-bonded films and the corresponding hydrogels are significantly affected by PVPON chain length. For all systems, an increase in PVPON molecular weight from Mw = 2.5 to 1300 kDa resulted in increased total film thickness. We also show that increasing polymer Mw smooths the hydrogen-bonded film surfaces but roughens those of the hydrogels. Using deuterated dPMAA marker layers in neutron reflectometry measurements, we found that hydrogen-bonded films reveal a high degree of stratification which is preserved in the cross-linked films. We observed dPMAA to be distributed more widely in the hydrogen-bonded films prepared with small Mw PVPON due to the greater mobility of short-chain PVPON. Furthermore, these variations in the distribution of PMAA are erased after cross-linking, resulting in a distribution of dPMAA over about two bilayers for all Mw but being somewhat more widely distributed in the films templated with higher Mw PVPON. Finally, our results yield new insights into controlling the organization of nanostructured polymer networks using polymer molecular weight and open opportunities for fabrication of thin films with well-organized architecture and controllable function.

  16. Investigations of the surface activation of thermoplastic polymers by atmospheric pressure plasma treatment with a stationary plasma jet

    NASA Astrophysics Data System (ADS)

    Moritzer, Elmar; Nordmeyer, Timo; Leister, Christian; Schmidt, Martin Andreas; Grishin, Artur; Knospe, Alexander

    2016-03-01

    The production of high-quality thermoplastic parts often requires an additional process step after the injection molding stage. This may be a coating, bonding process or a 2K-injection moulding process. A commonly used process to improve the bond strength is atmospheric pressure plasma treatment. A variety of applications are realized with the aid of CNC systems. Although they ensure excellent reproducibility, they make it difficult to implement inline applications. This paper therefore examines the possibility of surface treatment using a stationary plasma jet. However, before it is possible to integrate this technology into a production process, preliminary trials need to be carried out to establish which factors influence the process. Experimental tests were performed using a special test set-up, enabling geometric, plasma-specific parameters to be identified. These results can help with the practical integration of this technology into existing production processes.

  17. Sphingolipid Organization in the Plasma Membrane and the Mechanisms That Influence It

    PubMed Central

    Kraft, Mary L.

    2017-01-01

    Sphingolipids are structural components in the plasma membranes of eukaryotic cells. Their metabolism produces bioactive signaling molecules that modulate fundamental cellular processes. The segregation of sphingolipids into distinct membrane domains is likely essential for cellular function. This review presents the early studies of sphingolipid distribution in the plasma membranes of mammalian cells that shaped the most popular current model of plasma membrane organization. The results of traditional imaging studies of sphingolipid distribution in stimulated and resting cells are described. These data are compared with recent results obtained with advanced imaging techniques, including super-resolution fluorescence detection and high-resolution secondary ion mass spectrometry (SIMS). Emphasis is placed on the new insight into the sphingolipid organization within the plasma membrane that has resulted from the direct imaging of stable isotope-labeled lipids in actual cell membranes with high-resolution SIMS. Super-resolution fluorescence techniques have recently revealed the biophysical behaviors of sphingolipids and the unhindered diffusion of cholesterol analogs in the membranes of living cells are ultimately in contrast to the prevailing hypothetical model of plasma membrane organization. High-resolution SIMS studies also conflicted with the prevailing hypothesis, showing sphingolipids are concentrated in micrometer-scale membrane domains, but cholesterol is evenly distributed within the plasma membrane. Reductions in cellular cholesterol decreased the number of sphingolipid domains in the plasma membrane, whereas disruption of the cytoskeleton eliminated them. In addition, hemagglutinin, a transmembrane protein that is thought to be a putative raft marker, did not cluster within sphingolipid-enriched regions in the plasma membrane. Thus, sphingolipid distribution in the plasma membrane is dependent on the cytoskeleton, but not on favorable interactions with

  18. Thermal compression chip interconnection using organic solderability preservative etched substrate by plasma processing.

    PubMed

    Cho, Sung-Won; Choi, JoonYoung; Chung, Chin-Wook

    2014-12-01

    The solderability of copper organic solderbility preservative (CuOSP) finished substrate was enhanced by the plasma etching. To improve the solderability of TC interconnection with the CuOSP finished substrate, the plasma etching process is used. An Oxygen-Hydrogen plasma treatment process is performed to remove OSP material. To prevent the oxidation by oxygen plasma treatment, hydrogen reducing process is also performed before TC interconnection process. The thickness of OSP material after plasma etching is measured by optical reflection method and the component analysis by Auger Electron Spectroscopy is performed. From the lowered thickness, the bonding force of TC interconnection after OSP etching process is lowered. Also the electrical open/short test was performed after assembling the completed semiconductor packaging. The improved yield due to the plasma etching process is achieved.

  19. Microporous Organic Polymers Based on Hyper-Crosslinked Coal Tar: Preparation and Application for Gas Adsorption.

    PubMed

    Gao, Hui; Ding, Lei; Bai, Hua; Li, Lei

    2017-02-08

    Hyper-crosslinked polymers (HCPs) are promising materials for gas capture and storage, but high cost and complicated preparation limit their practical application. In this paper, a new type of HCPs (CTHPs) was synthesized through a one-step mild Friedel-Crafts reaction with low-cost coal tar as the starting material. Chloroform was utilized as both solvent and crosslinker to generate a three-dimensional crosslinked network with abundant micropores. The maximum BET surface area of the prepared CTHPs could reach up to 929 m(2)  g(-1) . Owing to the high affinity between the heteroatoms on the coal-tar building blocks and the CO2 molecules, the adsorption capacity of CTHPs towards CO2 reached up to 14.2 wt % (1.0 bar, 273 K) with a high selectivity (CO2 /N2 =32.3). Furthermore, the obtained CTHPs could adsorb 1.27 wt % H2 at 1.0 bar and 77.3 K, and also showed capacity for the capture of high organic vapors at room temperature. In comparison with other reported porous organic polymers, CTHPs have the advantages of low-cost, easy preparation, and high gas-adsorption performance, making them suitable for mass production and practical use in the future.

  20. Ambipolar Small-Molecule:Polymer Blend Semiconductors for Solution-Processable Organic Field-Effect Transistors.

    PubMed

    Kang, Minji; Hwang, Hansu; Park, Won-Tae; Khim, Dongyoon; Yeo, Jun-Seok; Kim, Yunseul; Kim, Yeon-Ju; Noh, Yong-Young; Kim, Dong-Yu

    2017-01-25

    We report on the fabrication of an organic thin-film semiconductor formed using a blend solution of soluble ambipolar small molecules and an insulating polymer binder that exhibits vertical phase separation and uniform film formation. The semiconductor thin films are produced in a single step from a mixture containing a small molecular semiconductor, namely, quinoidal biselenophene (QBS), and a binder polymer, namely, poly(2-vinylnaphthalene) (PVN). Organic field-effect transistors (OFETs) based on QBS/PVN blend semiconductor are then assembled using top-gate/bottom-contact device configuration, which achieve almost four times higher mobility than the neat QBS semiconductor. Depth profile via secondary ion mass spectrometry and atomic force microscopy images indicate that the QBS domains in the films made from the blend are evenly distributed with a smooth morphology at the bottom of the PVN layer. Bias stress test and variable-temperature measurements on QBS-based OFETs reveal that the QBS/PVN blend semiconductor remarkably reduces the number of trap sites at the gate dielectric/semiconductor interface and the activation energy in the transistor channel. This work provides a one-step solution processing technique, which makes use of soluble ambipolar small molecules to form a thin-film semiconductor for application in high-performance OFETs.

  1. Fabrication of nanobeads from nanocups by controlling scission/crosslinking in organic polymer materials.

    PubMed

    Oyama, Tomoko Gowa; Oshima, Akihiro; Washio, Masakazu; Tagawa, Seiichi

    2012-12-14

    The development of several kinds of micro/nanofabrication techniques has resulted in many innovations in the micro/nanodevices that support today's science and technology. With feature miniaturization, the fabrication tools have shifted from light to ionizing radiation. Here, we propose a simple micro/nanofabrication technique for organic materials using a scanning beam (SB) of ionizing radiation. By controlling the scission/crosslinking of the material via three-dimensional energy-deposition distribution of the SB, appropriate solvents can easily peel off only the crosslinked region from the bulk material. The technique was demonstrated using a focused ion beam and a chlorinated organic polymer. The polymer underwent main-chain scission upon irradiation, but it crosslinked after high-dose irradiation. Appropriate solvents could easily peel off only the crosslinked region from the bulk material. The technique, 'nanobead from nanocup', enabled the production of desired structures such as nanowires and nanomembranes. It can be also applied to the micro/nanofabrication of functional materials.

  2. On-line UV spectrophotometric analysis for organic chemistry of novel inorganic polymer derived microreactor.

    PubMed

    Cheon, Jin-Ho; Yoon, Tae-Ho; Hong, Lan-Young; Park, Sang-Hee; Kim, Dong-Pyo

    2009-12-01

    The use of microfluidic or lab-on-a-chip system has shown great promise for many applications. We have previously reported fabrication and application of preceramic polymer derived chemically and mechanically stable microfluidic devices in organic synthesis. Even though organic reactions are successfully performed, it is hard to analyze product to evaluate yields without any time delay except for integration of detecting module in the devices. Moreover small sample volume makes it even difficult to analyze sample by conventional analytical tools. Removal of catalyst and by product before analysis is another hurdle in evaluating performance of microrector. In this paper we describe preliminary results for simple on-line (real-time) quantitative analysis of microchemical reaction in preceramic polymer derived microreactor without reconstruction of microreactor or expensive components. A commercial UVNIS spectrophotometer is used to monitor well established Knoevenagel reaction. To evaluate the performance of presented on-line UV/IS monitoring system, UV/IS data are compared with off-line gas chromatography based analysis system.

  3. Two unusual 12-connected metal–organic coordination polymers with fcu net

    SciTech Connect

    Guo, Sheng-Qi; Tian, Dan; Luo, Yu-Hui; Chen, Xin; Zhang, Hong

    2013-09-15

    Two new three-dimensional 12-connected metal–organic coordination polymers, [Zn{sub 2}(bptc)(H{sub 2}O)]·C{sub 2}H{sub 5}OH·H{sub 2}O (1) and [Cd{sub 4}(bptc){sub 2}(bbi)(H{sub 2}O)]·H{sub 2}O (2) (H4bptc=biphenyl-2,5,2′,5′-tetracarboxylic acid, bbi=1,1′-(1,4-butanediyl)bis(imidazole)), have been solvothermally synthesized and structurally characterized by single crystal X-ray diffraction analyses. All compounds are also characterized by elemental analyses, IR spectra, thermogravimetric (TG) analyses and X-ray powder diffraction (XRD). Topological analysis indicates that both 1 and 2 are 12-connected frameworks with fcu topology, which are based on cuboid cage and rob-like (Cd3) subunit as 12-connected nodes, respectively. Furthermore, the luminescence properties of the two compounds were discussed in detail. - Graphical abstract: Two new compounds with unusual 12-connected fcu topology display intriguing structural feature, as well as luminescence property. Display Omitted - Highlights: • Two new 3D metal–organic coordination polymers based on biphenyl-2,5,2′,5′-tetracarboxylic acid ligand have been synthesized. • Two compounds exhibit rare 12-connected fcu topology. • Photoluminescent property at room temperature has been investigated.

  4. Development of high-performing semiconducting polymers for organic electrochemical transistors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nielsen, Christian

    2016-11-01

    The organic electrochemical transistor (OECT), capable of amplifying small electrical signals in an aqueous environment, is an ideal device to utilize in organic bioelectronic applications involving for example neural interfacing and diagnostics. Currently, most OECTs are fabricated with commercially available conducting poly(3,4-ethylenedioxythiophene)-based suspensions such as PEDOT:PSS and are therefore operated in depletion mode giving rise to devices that are permanently on with non-optimal operational voltage. With the aim to develop and utilize efficient accumulation mode OECT devices, we discuss here our recent results regarding the design, synthesis and performance of novel intrinsic semiconducting polymers. Covering key aspects such as ion and charge transport in the bulk semiconductor and operational voltage and stability of the materials and devices, we have elucidated important structure-property relationships. We illustrate the improvements this approach has afforded in the development of high performance accumulation mode OECT materials.

  5. Thiophene fused azacoronenes: regioselective synthesis, self organization, charge transport, and its incorporation in conjugated polymers

    DOEpatents

    Liu, Yi; He, Bo

    2015-09-15

    A regioselective synthesis of an azacoronene fused with two peripheral thiophene groups has been realized through a concise synthetic route. The resulting thienoazacoronene (TAC) derivatives show high degree of self-organization in solution, in single crystals, in the bulk, and in spuncast thin films. Spuncast thin film field-effect transistors of the TACs exhibited mobilities up to 0.028 cm.sup.2V.sup.-1 S.sup.-1, which is among the top field effect mobilities for solution processed discotic materials. Organic photovoltaic devices using TAC-containing conjugated polymers as the donor material exhibited a high open-circuit voltage of 0.89 V, which was ascribable to TAC's low-lying highest occupied molecular orbital energy level.

  6. Plasma-deposited fluorocarbon polymer films on titanium for preventing cell adhesion: a surface finishing for temporarily used orthopaedic implants

    NASA Astrophysics Data System (ADS)

    Finke, B.; Testrich, H.; Rebl, H.; Walschus, U.; Schlosser, M.; Zietz, C.; Staehlke, S.; Nebe, J. B.; Weltmann, K. D.; Meichsner, J.; Polak, M.

    2016-06-01

    The design of a titanium implant surface should ideally support its later application in clinical use. Temporarily used implants have to fulfil requirements different from permanent implants: they should ensure the mechanical stabilization of the bone stock but in trauma surgery they should not be integrated into the bone because they will be removed after fracture healing. Finishing of the implant surface by a plasma-fluorocarbon-polymer (PFP) coating is a possible approach for preventing cell adhesion of osteoblasts. Two different low pressure gas-discharge plasma processes, microwave (MW 2.45 GHz) and capacitively coupled radio frequency (RF 13.56 MHz) plasma, were applied for the deposition of the PFP film using a mixture of the precursor octafluoropropane (C3F8) and hydrogen (H2). The thin films were characterized by x-ray photoelectron spectroscopy, Fourier transform infrared reflection absorption spectroscopy, and water contact angle measurements. Cell culture experiments show that cell adhesion and spreading of MG-63 osteoblasts were clearly reduced or nonexistent on these surfaces, also after 24 h of storage in the cell culture medium. In vivo data demonstrated that the local inflammatory tissue response for the PFP films deposited in MW and RF plasma were comparable to uncoated controls.

  7. Insulin polymers in the plasma of obese subjects are associated with elevated levels of carbonyl groups and are decreased by (-)-epicatechin.

    PubMed

    Rincón Víquez, M J; García-Sánchez, J R; Tapia González, M A; Gutiérrez López, L; Ceballos-Reyes, G M; Olivares-Corichi, I M

    2014-06-01

    We investigated whether oxidative damage and insulin polymerization at a systemic level are associated with the insulin resistance (IR) observed in obese subjects. We evaluated 3 groups (n=16/each) divided according to body mass index (BMI): Normal weight (NW) with a BMI of 18.5-24.9, obese 1 (O1) 30-34.9, and obese 3 (O3)>40 kg/m(2). IR and oxidative damage status of the groups were established by HOMA value and the analysis of biomarkers of oxidative stress in plasma. Insulin polymers in systemic circulation were detected using an antibody specific coupled to magnetic beads, which were incubated in plasma from the study groups. Analysis of magnetic beads by electrophoresis on polyacrylamide gel and silver stain assessed the presence of insulin polymers. The inhibition of polymers formation was studied by the presence of (-)-epicatechin. We demonstrated that O1 and O3 subjects with IR showed higher oxidative damage to their plasma lipids and proteins than NW subjects. This oxidative damage was associated with the presence of insulin polymers in the plasma of the O1 and O3 subjects. This polymer showed a high concentration of carbonyl groups by Western blot, suggesting the participation of oxidative damage in the generation of the polymer. The antioxidant (-)-epicatechin decreased the formation of the insulin polymer, indicating that the prevention of oxidative damage can inhibit insulin polymerization. Our study revealed an association between the presence of carbonyl stress, IR, and insulin polymer formation in obese subjects. This study also demonstrates that the antioxidant (-)-epicatechin inhibits insulin polymerization.

  8. Bioactivity of freeze-dried platelet-rich plasma in an adsorbed form on a biodegradable polymer material.

    PubMed

    Nakajima, Yu; Kawase, Tomoyuki; Kobayashi, Mito; Okuda, Kazuhiro; Wolff, Larry F; Yoshie, Hiromasa

    2012-01-01

    Owing to the necessity for the immediate preparation from patients' blood, autologous platelet-rich plasma (PRP) limits its clinical applicability. To address this concern and respond to emergency care and other unpredictable uses, we have developed a freeze-dried PRP in an adsorbed form on a biodegradable polymer material (Polyglactin 910). On the polymer filaments of PRP mesh, which was prepared by coating the polymer mesh with human fresh PRP and subsequent freeze-drying, platelets were incorporated, and related growth factors were preserved at high levels. This new PRP mesh preparation significantly and reproducibly stimulated the proliferation of human periodontal ligament cells in vitro and neovascularization in a chorioallantoic membrane assay. A full-thickness skin defect model in a diabetic mouse demonstrated the PRP mesh, although prepared from human blood, substantially facilitated angiogenesis, granulation tissue formation, and re-epithelialization without inducing severe inflammation in vivo. These data demonstrate that our new PRP mesh preparation functions as a bioactive material to facilitate tissue repair/regeneration. Therefore, we suggest that this bioactive material, composed of allogeneic PRP, could be clinically used as a promising alternative in emergency care or at times when autologous PRP is not prepared immediately before application.

  9. Chlorine-rich plasma polymer coating for the prevention of attachment of pathogenic fungal cells onto materials surfaces

    NASA Astrophysics Data System (ADS)

    Lamont-Friedrich, Stephanie J.; Michl, Thomas D.; Giles, Carla; Griesser, Hans J.; Coad, Bryan R.

    2016-07-01

    The attachment of pathogenic fungal cells onto materials surfaces, which is often followed by biofilm formation, causes adverse consequences in a wide range of areas. Here we have investigated the ability of thin film coatings from chlorinated molecules to deter fungal colonization of solid materials by contact killing of fungal cells reaching the surface of the coating. Coatings were deposited onto various substrate materials via plasma polymerization, which is a substrate-independent process widely used for industrial coating applications, using 1,1,2-trichloroethane as the process vapour. XPS surface analysis showed that the coatings were characterized by a highly chlorinated hydrocarbon polymer nature, with only a very small amount of oxygen incorporated. The activity of these coatings against human fungal pathogens was quantified using a recently developed, modified yeast assay and excellent antifungal activity was observed against Candida albicans and Candida glabrata. Plasma polymer surface coatings derived from chlorinated hydrocarbon molecules may therefore offer a promising solution to preventing yeast and mould biofilm formation on materials surfaces, for applications such as air conditioners, biomedical devices, food processing equipment, and others.

  10. Water-Stable Metal-Organic Framework/Polymer Composites Compatible with Human Hepatocytes.

    PubMed

    Neufeld, Megan J; Ware, Brenton R; Lutzke, Alec; Khetani, Salman R; Reynolds, Melissa M

    2016-08-03

    Metal-organic frameworks (MOFs) have demonstrated promise in biomedical applications as vehicles for drug delivery, as well as for the ability of copper-based MOFs to generate nitric oxide (NO) from endogenous S-nitrosothiols (RSNOs). Because NO is a participant in biological processes where it exhibits anti-inflammatory, antibacterial, and antiplatelet activation properties, it has received significant attention for therapeutic purposes. Previous work has shown that the water-stable MOF H3[(Cu4Cl)3-(BTTri)8] (H3BTTri = 1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene), or CuBTTri, produces NO from RSNOs and can be included within a polymeric matrix to form NO-generating materials. While such materials demonstrate potential, the possibility of MOF degradation leading to copper-related toxicity is a concern that must be addressed prior to adapting these materials for biomedical applications. Herein, we present the first cytotoxicity evaluation of an NO-generating CuBTTri/polymer composite material using 3T3-J2 murine embryonic fibroblasts and primary human hepatocytes (PHHs). CuBTTri/polymer films were prepared from plasticized poly(vinyl chloride) (PVC) and characterized via PXRD, ATR-FTIR, and SEM-EDX. Additionally, the ability of the CuBTTri/polymer films to enhance NO generation from S-nitroso-N-acetylpenicillamine (SNAP) was evaluated. Enhanced NO generation in the presence of the CuBTTri/polymer films was observed, with an average NO flux (0.90 ± 0.13 nmol cm(-2) min(-1)) within the range associated with antithrombogenic surfaces. The CuBTTri/polymer films were analyzed for stability in phosphate buffered saline (PBS) and cell culture media under physiological conditions for a 4 week duration. Cumulative copper release in both cell media (0.84 ± 0.21%) and PBS (0.18 ± 0.01%) accounted for less than 1% of theoretical copper present in the films. In vitro cell studies performed with 3T3-J2 fibroblasts and PHHs did not indicate significant toxicity, providing further

  11. The effect of branching in a semiconducting polymer on the efficiency of organic photovoltaic cells.

    PubMed

    Heintges, Gaël H L; van Franeker, Jacobus J; Wienk, Martijn M; Janssen, René A J

    2016-01-04

    The impact of branching in a diketopyrrolopyrrole polymer on the performance of polymer-fullerene photovoltaic cells is investigated. Compared to the linear polymer, the branched polymer affords a more finely dispersed fibrillar network in the photoactive layer and as a result a large enhancement of the photocurrent and power conversion efficiency.

  12. Characterization of an atmospheric pressure air plasma source for polymer surface modification

    NASA Astrophysics Data System (ADS)

    Yang, Shujun; Tang, Jiansheng

    2013-10-01

    An atmospheric pressure air plasma source was generated through dielectric barrier discharge (DBD). It was used to modify polyethyleneterephthalate (PET) surfaces with very high throughput. An equivalent circuit model was used to calculate the peak average electron density. The emission spectrum from the plasma was taken and the main peaks in the spectrum were identified. The ozone density in the down plasma region was estimated by Absorption Spectroscopy. NSF and ARC-ODU

  13. A robust microfluidic device for the synthesis and crystal growth of organometallic polymers with highly organized structures.

    PubMed

    Liu, Xiao; Yi, Qiaolian; Han, Yongzhen; Liang, Zhenning; Shen, Chaohua; Zhou, Zhengyang; Sun, Jun-Liang; Li, Yizhi; Du, Wenbin; Cao, Rui

    2015-02-02

    A simple and robust microfluidic device was developed to synthesize organometallic polymers with highly organized structures. The device is compatible with organic solvents. Reactants are loaded into pairs of reservoirs connected by a 15 cm long microchannel prefilled with solvents, thus allowing long-term counter diffusion for self-assembly of organometallic polymers. The process can be monitored, and the resulting crystalline polymers are harvested without damage. The device was used to synthesize three insoluble silver acetylides as single crystals of X-ray diffraction quality. Importantly, for the first time, the single-crystal structure of silver phenylacetylide was determined. The reported approach may have wide applications, such as crystallization of membrane proteins, synthesis and crystal growth of organic, inorganic, and polymeric coordination compounds, whose single crystals cannot be obtained using traditional methods.

  14. Shock compression of organic polymers and proteins: Ultrafast structural relaxation dynamics and energy landscapes

    SciTech Connect

    Kim, H.; Hambir, S.A.; Dlott, D.D.

    2000-05-04

    The response of organic polymers and proteins including poly(methyl methacrylate) and the protein bovine serum albumin (BSA) to a short duration 4.5 GPa shock pulse, termed a nanoshock, is studied using ultrafast coherent Raman spectroscopy (CARS) to monitor density-dependent vibrational frequency shifts of a dye molecule probe. In conventional shock compression experiments, a two-part response of PMMA to fast compression is usually explained with a phenomenological viscoelastic model. The molecular basis for this two-part response is discussed here using an energy landscape model to describe large-amplitude structural relaxation of shocked supercooled liquids. The polymers and the protein show an instantaneous response to the steeply rising shock front, viewed as a vertical transition to a new region of the energy landscape with radically different topography. A slower {approximately}300 ps response is also observed, attributed to large-amplitude structural relaxation along the rugged shocked energy landscape. A viscoelastic model is used to determine an effective shock viscosity {eta} {approx} 3 Pa{center_dot}s for the solid samples. This extremely small value (compared to {eta} > 10{sup 12} Pa{center_dot}s expected for supercooled liquids) is explained as a result of the very large strain rate and the extensive plastic deformation, which causes even seemingly rigid solids to flow. After the short duration ({approximately}2 ns) nanoshock unloads and the samples become frozen, for at least tens of nanoseconds, in a state where the dye vibrational shift indicates a negative pressure of about {minus}1 GPa. The negative pressure means the local density near the dye has decreased, the sample has become more permeable, and the sample is unstable to spontaneous expansion of the polymer chains. The energy landscape model provides a framework for understanding the fast cycle of compression and expansion and how to optimize the generation and detection of large

  15. Fabrication of Ruthenium Nanoparticles in Porous Organic Polymers: Towards Advanced Heterogeneous Catalytic Nanoreactors.

    PubMed

    Mondal, John; Kundu, Sudipta K; Hung Ng, Wilson Kwok; Singuru, Ramana; Borah, Parijat; Hirao, Hajime; Zhao, Yanli; Bhaumik, Asim

    2015-12-21

    A novel strategy has been adopted for the construction of a copolymer of benzene-benzylamine-1 (BBA-1), which is a porous organic polymer (POP) with a high BET surface area, through Friedel-Crafts alkylation of benzylamine and benzene by using formaldehyde dimethyl acetal as a cross-linker and anhydrous FeCl3 as a promoter. Ruthenium nanoparticles (Ru NPs) were successfully distributed in the interior cavities of polymers through NaBH4, ethylene glycol, and hydrothermal reduction routes, which delivered Ru-A, Ru-B, and Ru-C materials, respectively, and avoided aggregation of metal NPs. Homogeneous dispersion, the nanoconfinement effect of the polymer, and the oxidation state of Ru NPs were verified by employing TEM, energy-dispersive X-ray spectroscopy mapping, cross polarization magic-angle spinning (13)C NMR spectroscopy, and X-ray photoelectron spectroscopy analytical tools. These three new Ru-based POP materials exhibited excellent catalytic performance in the hydrogenation of nitroarenes at RT (with a reaction time of only ≈ 30 min), with high conversion, selectivity, stability, and recyclability for several catalytic cycles, compared with other traditional materials, such as Ru@C, Ru@SiO2, and Ru@TiO2, but no clear agglomeration or loss of catalytic activity was observed. The high catalytic performance of the ruthenium-based POP materials is due to the synergetic effect of nanoconfinement and electron donation offered by the 3D POP network. DFT calculations showed that hydrogenation of nitrobenzene over the Ru (0001) catalyst surface through a direct reaction pathway is more favorable than that through an indirect reaction pathway.

  16. Effects of H{sub 2} plasma treatment on the electrical properties of titanium-doped indium oxide films prepared by polymer-assisted deposition

    SciTech Connect

    Hwang, Joo-Sang; Lee, Ji-Myon; Vishwanath, Sujaya Kumar; Kim, Jihoon

    2015-07-15

    The effects of hydrogen (H{sub 2}) plasma on the optical and electrical properties of titanium-doped InO (TIO) grown on glass substrates using polymer-assisted deposition are reported. Samples were exposed to H{sub 2} plasma formed by inductively coupled plasma (ICP). After plasma treatment at a power of 100 W, the sheet resistance of the TIO films decreased from 11 000 to 285 Ω/sq. Additionally, the Hall mobility and sheet carrier concentration of the films increased as the ICP source power was increased to 100 W, without affecting the optical transmittance of the films, due to the removal of the polymer residues and the formation of oxygen vacancies.

  17. Electroanalytical measurements without electrolytes: conducting polymers as probes for redox titration in non-conductive organic media.

    PubMed

    Lange, Ulrich; Mirsky, Vladimir M

    2012-09-26

    Electroanalytical methods have been applied only in conducting media. An application of conducting polymers allows to overcome this limitation. If such material is in electrochemical equilibrium with dissolved redox active species, its electrical conductivity depends on the redox potential of these species. Therefore, conductometric measurements with conducting polymers can provide about the same information as classical redox electrodes. The approach was applied for redox titration. Equivalent points obtained by this titration in aqueous and organic electrolytes were identical. Then the approach was applied for determination of bromine number by redox titration in non-conducting organic phase.

  18. Fluorene-based co-polymer with high hole mobility and device performance in bulk heterojunction organic solar cells.

    PubMed

    Watters, Darren C; Yi, Hunan; Pearson, Andrew J; Kingsley, James; Iraqi, Ahmed; Lidzey, David

    2013-07-25

    A new donor-acceptor polymer based on 9,9-dioctylfluorene is synthesized and tested in organic photovoltaic devices. Results show that the polymer exhibits good solubility in a range of organic solvents and has a high hole mobility. When blended with a PC70 BM acceptor and fabricated into a bulk heterojunction, photovoltaic devices having a maximum power conversion efficiency (PCE) of 6.2% and a peak external quantum efficiency of 74% are created. Such efficiencies are realized without any necessity for solvent additives or thermal annealing protocols.

  19. Nontemplate-driven polymers: clues to a minimal form of organization closure at the early stages of living systems.

    PubMed

    Freire, Miguel Ángel

    2015-06-01

    The emergence of the first polymers played an essential role in the transition from the physicochemical to the biological domain, a perception that embodied many different world paradigms relying on only one primal polymer. However, biological complexity would have appeared with an increasing set of associated chemistries and molecular interactions of many different macromolecules. In agreement with this notion, here, the purpose is to focus specific attention on current knowledge of modern biochemistry of a set of widespread polymers likely present in the Last Universal Common Ancestor synthesized by nontemplate-driven reactions with references to their abiotic synthesis. The proposed overview describes the manner in which these polymers could have organized around two polymerization reaction cycles and integrated into a minimal organizational closure at the early stages of living systems, independently of template replication processes. This hypothesis could provide an alternative conceptual framework to evaluate a plausible scenario addressing the transition from nonliving to protocellular systems.

  20. Knitting aromatic polymers for efficient solid-phase microextraction of trace organic pollutants.

    PubMed

    Liu, Shuqin; Hu, Qingkun; Zheng, Juan; Xie, Lijun; Wei, Songbo; Jiang, Ruifen; Zhu, Fang; Liu, Yuan; Ouyang, Gangfeng

    2016-06-10

    A series of knitting aromatic polymers (KAPs) were successfully synthesized using a simple one-step Friedel-Crafts alkylation of aromatic monomers and were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Then, as-synthesized KAPs with large surface areas, unique pore structures and high thermal stability were prepared as solid-phase microextraction (SPME) coatings that exhibited good extraction abilities for a series of benzene compounds (i.e., benzene, toluene, ethylbenzene and m-xylene, which are referred to as BTEX) and polycyclic aromatic hydrocarbons (PAHs). Under the optimized conditions, the methodologies established for the determination of BTEX and PAHs using the KAPs-triPB and KAPs-B coatings, respectively, possessed wide linear ranges, low limits of detection (LODs, 0.10-1.13ngL(-1) for BTEX and 0.05-0.49ngL(-1) for PAHs) and good reproducibility. Finally, the proposed methods were successfully applied to the determination of BTEX and PAHs in environmental water samples, and satisfactory recoveries (93.6-124.2% for BTEX and 77.2-113.3% for PAHs) were achieved. This study provides a benchmark for exploiting novel microporous organic polymers (MOPs) for SPME applications.

  1. Inelastic scattering of electron and light ion beams in organic polymers

    SciTech Connect

    Vera, Pablo de; Abril, Isabel; Garcia-Molina, Rafael

    2011-05-01

    We have calculated the inelastic mean free path, stopping power, and energy-loss straggling of swift electron, proton, and {alpha}-particle beams in a broad incident energy range in four organic polymers: poly(methyl methacrylate) (PMMA), Kapton, polyacetylene (PA), and poly(2-vinylpyridine) (P2VP). These calculations have been done through a suitable description of their optical properties and its extension into the whole momentum and energy transfer excitation spectrum. For electrons, we take into account the exchange effect between the projectile and the target electrons, while the charge-state fractions have been considered for ions. Our results are compared with other models and with the available experimental data. An excellent agreement with experimental data is obtained in the case of proton and {alpha}-particle beams in Kapton and a reasonably good agreement has been achieved for electron beams in PMMA, Kapton, and PA. We have parameterized by means of simple analytical expressions our results for electron beams interacting with these four polymers, which can be easily implemented in Monte Carlo calculations.

  2. Spectroscopic Evidence of Anthropogenic Compounds Extraction from Polymers by Fluorescent Dissolved Organic Matter in Natural Water

    NASA Astrophysics Data System (ADS)

    Miranda, M.; Trojzuck, A.; Voss, D.; Gassmann, S.; Zielinski, O.

    2016-04-01

    FDOM is one of the most important carriers of anthropogenic compounds in natural waters. It can combine with environmental contaminants and polymers to form diverse chemical structures. To this end, here a microfluidic chip was designed for the analysis of these changes in fluorescent dissolved organic matter (FDOM) fingerprints due to thermal treatment and varying time intervals of exposure. Excitation Emission Matrix Spectroscopy (EEMS) approach was utilized to detect and identify the inherent compounds in sampled FDOM. Strong direct correlations were founded, Spearman rank correlation values (ρ = 0.85 at α = 0.1, n = 4) and linear correlation R2 = 0.8359 were noted between thermal treatment pattern 2 and fluorescence intensity of samples. Materials, acrylic based glue and cyclic olefin copolymer (COC) polymer, used to design the microfluidic sensor were determined to possess unique spectral features in the ultraviolet to green spectrum using EEMS. The study therefore provides an insight on methods to identify contaminants in natural waters. This underlines the potential of optical sensors providing measurements at fast intervals, enabling environmental monitoring.

  3. Flexibility Matters: Cooperative Active Sites in Covalent Organic Framework and Threaded Ionic Polymer.

    PubMed

    Sun, Qi; Aguila, Briana; Perman, Jason; Nguyen, Nicholas; Ma, Shengqian

    2016-12-07

    The combination of two or more reactive centers working in concert on a substrate to facilitate the reaction is now considered state of the art in catalysis, yet there still remains a tremendous challenge. Few heterogeneous systems of this sort have been exploited, as the active sites spatially separated within the rigid framework are usually difficult to cooperate. It is now shown that this roadblock can be surpassed. The underlying principle of the strategy presented here is the integration of catalytic components with excellent flexibility and porous heterogeneous catalysts, as demonstrated by the placement of linear ionic polymers in close proximity to surface Lewis acid active sites anchored on the walls of a covalent organic framework (COF). Using the cycloaddition of the epoxides and CO2 as a model reaction, dramatic activity improvements have been achieved for the composite catalysts in relation to the individual catalytic component. Furthermore, they also clearly outperform the benchmark catalytic systems formed by the combination of the molecular organocatalysts and heterogeneous Lewis acid catalysts, while affording additional recyclability. The extraordinary flexibility and enriched concentration of the catalytically active moieties on linear polymers facilitate the concerted catalysis, thus leading to superior catalytic performance. This work therefore uncovers an entirely new strategy for designing bifunctional catalysts with double-activation behavior and opens a new avenue in the design of multicapable systems that mimic biocatalysis.

  4. Structural and Dielectric Properties of Ionic Liquid Doped Metal Organic Framework based Polymer Electrolyte Nanocomposites

    NASA Astrophysics Data System (ADS)

    Dutta, Rituraj; Kumar, Ashok

    2016-10-01

    Metal Organic Frameworks (MOFs) are mesoporous materials that can be treated as potential hosts for trapping guest molecules in their pores. Ion conduction and phase behavior dynamics of Ionic Liquids (ILs) can be controlled by tunable interactions of MOFs with the ILs. MOFs incorporated with ionic liquid can be dispersed in the polymers to synthesize polymer electrolyte nanocomposites with high ionic conductivity, electrochemical and thermal stability for applications in energy storage and conversion devices such as rechargeable Li-ion batteries. In the present work we have synthesized Cu-based MOF [Cu3(l,3,5-benzene tricarboxylate)2(H2O)] incorporated with the ionic liquid 1-Butyl-3-methylimidazolium bromide at different weight ratios of MOF and IL. The synthesized MOF-IL composites are dispersed in Poly (ethylene oxide) (PEO). Frequency dependent behavior of permittivity and dielectric loss of the nanocomposites depict the non-Debye dielectric relaxation mechanism. The room temperature Nyquist plots reveal decreasing bulk resistance upto 189 Ω with optimum ionic conductivity of 1.3×10-3S cm-1at maximum doping concentration of IL in the nanocomposite system.

  5. Metal-organic framework nanosheets in polymer composite materials for gas separation

    PubMed Central

    Seoane, Beatriz; Miro, Hozanna; Corma, Avelino; Kapteijn, Freek; Llabrés i Xamena, Francesc X.; Gascon, Jorge

    2014-01-01

    Composites incorporating two-dimensional nanostructures within polymeric matrices hold potential as functional components for several technologies, including gas separation. Prospectively, employing metal-organic-frameworks (MOFs) as versatile nanofillers would notably broaden the scope of functionalities. However, synthesizing MOFs in the form of free standing nanosheets has proven challenging. We present a bottom-up synthesis strategy for dispersible copper 1,4-benzenedicarboxylate MOF lamellae of micrometer lateral dimensions and nanometer thickness. Incorporating MOF nanosheets into polymer matrices endows the resultant composites with outstanding CO2 separation performance from CO2/CH4 gas mixtures, together with an unusual and highly desired increment in the separation selectivity with pressure. As revealed by tomographic focused-ion-beam scanning-electron-microscopy, the unique separation behaviour stems from a superior occupation of the membrane cross-section by the MOF nanosheets as compared to isotropic crystals, which improves the efficiency of molecular discrimination and eliminates unselective permeation pathways. This approach opens the door to ultrathin MOF-polymer composites for various applications. PMID:25362353

  6. Near room-temperature direct encapsulation of organic photovoltaics by plasma-based deposition techniques

    NASA Astrophysics Data System (ADS)

    Perrotta, Alberto; Fuentes-Hernandez, Canek; Khan, Talha M.; Kippelen, Bernard; Creatore, Mariadriana; Graham, Samuel

    2017-01-01

    Plasma-assisted atomic layer deposition (ALD) is used for the deposition of environmental barriers directly onto organic photovoltaic devices (OPVs) at near room temperature (30 °C). To study the effect of the ALD process on the organic materials forming the device, the precursor diffusion and intermixing at the interface during the growth of different plasma-assisted ALD inorganic barriers (i.e. Al2O3 and TiO2) onto the organic photoactive layer (P3HT:ICBA) was investigated. Depth profile x-ray photoelectron spectroscopy was used to analyze the composition of the organic/inorganic interface to investigate the infiltration of the plasma-assisted ALD precursors into the photoactive layer as a function of the precursor dimension, the process temperature, and organic layer morphology. The free volume in the photoactive layer accessible to the ALD precursor was characterized by means of ellipsometric porosimetry (EP) and spectroscopic ellipsometry as a function of temperature. The organic layer is shown to exhibit free volume broadening at high temperatures, increasing the infiltration depth of the ALD precursor into the photoactive layer. Furthermore, based on previous investigations, the intrinsic permeation properties of the inorganic layers deposited by plasma-assisted ALD were predicted from the nano-porosity content as measured by EP and found to be in the 10-6 gm-2 d-1 range. Insight from our studies was used to design and fabricate multilayer barriers synthesized at near-room temperature by plasma-assisted ALD in combination with plasma-enhanced CVD onto organic photovoltaic (OPVs) devices. Encapsulated OPVs displayed shelf-lifetimes up to 1400 h at ambient conditions.

  7. Polymer films with surfaces unmodified and modified by non-thermal plasma as new substrates for cell adhesion.

    PubMed

    Borges, A M G; Benetoli, L O; Licínio, M A; Zoldan, V C; Santos-Silva, M C; Assreuy, J; Pasa, A A; Debacher, N A; Soldi, V

    2013-04-01

    The surface properties of biomaterials, such as wettability, polar group distribution, and topography, play important roles in the behavior of cell adhesion and proliferation. Gaseous plasma discharges are among the most common means to modify the surface of a polymer without affecting its properties. Herein, we describe the surface modification of poly(styrene) (PS) and poly(methyl methacrylate) (PMMA) films using atmospheric pressure plasma processing through exposure to a dielectric barrier discharge (DBD). After treatment the film surface showed significant changes from hydrophobic to hydrophilic as the water contact angle decreasing from 95° to 37°. All plasma-treated films developed more hydrophilic surfaces compared to untreated films, although the reasons for the change in the surface properties of PS and PMMA differed, that is, the PS showed chemical changes and in the case of PMMA they were topographical. Excellent adhesion and cell proliferation were observed in all films. In vitro studies employing flow cytometry showed that the proliferation of L929 cells was higher in the film formed by a 1:1 mixture of PS/PMMA, which is consistent with the results of a previous study. These findings suggest better adhesion of L929 onto the 1:1 PS/PMMA modified film, indicating that this system is a new candidate biomaterial for tissue engineering.

  8. Transformation of metal-organic framework to polymer gel by cross-linking the organic ligands preorganized in metal-organic framework.

    PubMed

    Ishiwata, Takumi; Furukawa, Yuki; Sugikawa, Kouta; Kokado, Kenta; Sada, Kazuki

    2013-04-10

    Until now, seamless fusion of metal-organic frameworks (MOFs) and covalently cross-linked polymer gels (PG) at molecular level has been extremely rare, since these two matters have been regarded as opposite, that is, hard versus soft. In this report, we demonstrate transformation of cubic MOF crystals to PG via inner cross-linking of the organic linkers in the void space of MOF, followed by decomposition of the metal coordination. The obtained PG behaved as a polyelectrolyte gel, indicating the high content of ionic groups inside. Metal ions were well adsorbed in the PG due to its densely packed carboxylate groups. A chimera-type hybrid material consisting of MOF and PG was obtained by partial hydrolysis of resulting cross-linked MOF. The shape of resulting PG network well reflected the crystal structure of MOF employed as a template. Our results will connect the two different network materials that have been ever studied in the two different fields to provide new soft and hard hybrid materials, and the unique copolymerization in the large void space of the MOF will open a new horizon toward "ideal network polymers" never prepared before now.

  9. Polymers Used as Fuel for Laser Plasma Thrusters in Small Satellites

    DTIC Science & Technology

    2006-09-12

    cyclohexanone was obtained by stirring over night. A 1 wt-% carbon- cyclohexanone solution was added to reach a final carbon concentration in the polymer of 1... cyclohexanone [30], that was used as solvent for PVC. The most intense +ion signal at mass 12 can be assigned to C+ from the dopant (carbon), the solvent, and

  10. Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors

    PubMed Central

    2016-01-01

    The organic electrochemical transistor (OECT), capable of transducing small ionic fluxes into electronic signals in an aqueous environment, is an ideal device to utilize in bioelectronic applications. Currently, most OECTs are fabricated with commercially available conducting poly(3,4-ethylenedioxythiophene) (PEDOT)-based suspensions and are therefore operated in depletion mode. Here, we present a series of semiconducting polymers designed to elucidate important structure–property guidelines required for accumulation mode OECT operation. We discuss key aspects relating to OECT performance such as ion and hole transport, electrochromic properties, operational voltage, and stability. The demonstration of our molecular design strategy is the fabrication of accumulation mode OECTs that clearly outperform state-of-the-art PEDOT-based devices, and show stability under aqueous operation without the need for formulation additives and cross-linkers. PMID:27444189

  11. Polymer coated quartz crystal microbalance sensors for detection of volatile organic compounds in gas mixtures.

    PubMed

    Si, Pengchao; Mortensen, John; Komolov, Alexei; Denborg, Jens; Møller, Preben Juul

    2007-08-06

    By coating different conducting polymers of thiophene and its derivatives on quartz crystal microbalance (QCM) sensor surfaces, new novel QCM gas sensors have been produced in two simple ways, which could classify testing gas samples of volatile organic compounds (VOCs) gases. Principle components analysis (PCA) has been performed based on the QCM measurement results, which shows that our QCM sensors array has very good utilizing potential on sensing both polar and low-polar/nonpolar VOC gases. The sensitivity, selectivity, reproducibility and detection limit of QCM sensors have also been discussed. Quantitative variation of sensitivity response with the increasing concentration has been studied. (PLS) analysis and prediction of concentrations of single gas in mixtures have been carried out.

  12. Predicting the ageing and the long-term durability of organic polymer solar cells

    NASA Astrophysics Data System (ADS)

    Gardette, Jean-Luc; Rivaton, Agnès; Thérias, Sandrine; Chambon, Sylvain; Manceau, Matthieu; Gaume, Julien

    2010-06-01

    Organic solar cells based on conductive polymers exhibit a unique combination of properties which include low cost, flexibility and large surface processability. Organic photovoltaic could then prevail for some applications alongside silicon, such as nomad or indoor. To achieve this objective, the sustainability of the initial properties in conditions of use of the cell is required, since it could be a lock to the emergence of these devices in the market. The polymers used in solar cells are indeed known to exhibit low resistance to environmental constraints, in particular to the combined action of sunlight, oxygen and water. We present recent results on both the accelerated artificial and the natural outdoors ageing of MDMO-PPV (Poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-Phenylenevinylene) and P3HT/PCBM blends poly(3-hexylthiophene) (P3HT) (methano-fullerene[6,6]-phenyl C61-butyric acid methyl ester) ([60] PCBM). The influence of various parameters such as the temperature and the presence of oxygen were studied. The modifications of the chemical structure of both the components of the blend were monitored by spectroscopic analysis (infrared, UV-visible), the morphology of the blends was analysed by AFM and XRD and the photovoltaic performances all along the exposure were recorded. Two important results have been pointed out: on one hand, the Achilles heel of the chemical structure of MDMO-PPV and P3HT under the impact of light has been evidenced. On the other hand, it has been shown that P3HT:PCBM blends are much more stable than MDMO:PCBM blends whatever the conditions of ageing are. Results show that a convenient encapsulation can ensure a promising lifetime of P3HT/PCBM blends in real conditions of use. This work also focuses on this last point and proposes to study and try to understand the behavior of the materials used in the active layer when submitted to photoaging and thermal aging in the absence of oxygen. To fulfil very good encapsulation, glass

  13. Physics of interplanetary dust capture via impact into organic polymer foams

    NASA Technical Reports Server (NTRS)

    Anderson, William W.; Ahrens, Thomas J.

    1994-01-01

    The physics of hypervelocity impacts into foams is of interest because of the possible application to interplanetary dust particle (IDP) capture by spacecraft. We present a model for the phenomena occurring in such impacts into low-density organic polymer foams. Particles smaller than foam cells behave as if the foam is a series of solid slabs and are fragmented and, at higher velocities, thermally altered. Particles much larger than the foam cells behave as if the foam were a continuum, allowing the use of a continuum mechanics model to describe the effects of drag and ablation. Fragmentation is expected to be a major process, especially for aggregates of small grains. Calculations based on these arguments accurately predict experimental data and, for hypothetical IDPs, indicate that recovery of organic materials will be low for encounter velocities greater than 5 km/s. For an organic particle 100 micrometers in diameter, approx. 35% of the original mass would be collected in an impact at 5 km/s, dropping to approx. 10% at 10 km/s and approx. 0% at 15 km/s. For the same velocities the recovery ratios for troilite (FeS) are approx. 95%, 65%, and 50%, and for olivine (Mg2SiO4) they are approx. 98%, 80%, and 65%, demonstrating that inorganic materials are much more easily collected. The density of the collector material has only a second-order effect, changing the recovered mass by less than 10% of the original mass.

  14. Quantifying TEMPO Redox Polymer Charge Transport toward the Organic Radical Battery.

    PubMed

    Karlsson, Christoffer; Suga, Takeo; Nishide, Hiroyuki

    2017-03-29

    To design new and better organic active battery materials in a rational fashion, fundamental parameters of the charge transport must be studied. Herein we report on the electronic conductivity by electron diffusion in a TEMPO-containing redox polymer, and the reorganization energy of the TEMPO self-exchange in an organic solvent is determined for the first time. The electronic conductivity was 8.5 μS/cm at E(0) and corresponded to a redox hopping mechanism. The apparent electron diffusion coefficient was 1.9 × 10(-9) cm(2)/s at room temperature, and at short times the ion diffusion was limiting with a diffusion coefficient of 6.5 × 10(-10) cm(2)/s. The reorganization energy was determined to be 1.01 eV, indicating a rather polar chemical environment for the TEMPO groups. The implications for the usage of this type of materials in organic energy storage are discussed. As conductivity through 10 μm was demonstrated, we show that, if sufficient swellability can be ensured, charge can be transported through several micrometer thick layers in a battery electrode without any conducting additive.

  15. Synergistic effect of EUV from the laser-sustained detonation plasma in a ground-based atomic oxygen simulation on fluorinated polymers

    SciTech Connect

    Tagawa, Masahito; Abe, Shingo; Kishida, Kazuhiro; Yokota, Kumiko; Okamoto, Akio

    2009-01-05

    The contribution of extreme ultraviolet (EUV) from a laser-sustained plasma on the mass loss phenomenon of fluorinated polymer in a ground-based laser-detonation atomic oxygen beam source was evaluated. The atomic oxygen beam and EUV from the oxygen plasma were separated by the high-speed chopper wheel installed in the beam source. The mass changes of the fluorinated polymer and polyimide were measured from the frequency shift of the quartz crystal microbalance during the beam exposures. It has been made clear that the fluorinated polymer erodes by EUV exposure alone. In contrast, no erosion was detected for polyimide by EUV alone. The atomic oxygen-induced erosion was measured for both materials even without EUV exposure. However, no strong synergistic effect was observed for a fluorinated polymer even under the simultaneous exposure condition of atomic oxygen and EUV. Similar results were observed even in simultaneous exposure of atomic oxygen (without EUV) and 172 nm vacuum ultraviolet (VUV) from an excimer lamp. These experiments suggest that the primary origin of the accelerated erosion of fluorinated polymer observed in a laser detonation atomic oxygen source is not the EUV from the laser-sustained plasma.

  16. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks.

    PubMed

    Horike, Satoshi; Umeyama, Daiki; Kitagawa, Susumu

    2013-11-19

    Ion conduction and transport in solids are both interesting and useful and are found in widely distinct materials, from those in battery-related technologies to those in biological systems. Scientists have approached the synthesis of ion-conductive compounds in a variety of ways, in the areas of organic and inorganic chemistry. Recently, based on their ion-conducting behavior, porous coordination polymers (PCPs) and metal-organic frameworks (MOFs) have been recognized for their easy design and the dynamic behavior of the ionic components in the structures. These PCP/MOFs consist of metal ions (or clusters) and organic ligands structured via coordination bonds. They could have highly concentrated mobile ions with dynamic behavior, and their characteristics have inspired the design of a new class of ion conductors and transporters. In this Account, we describe the state-of-the-art of studies of ion conductivity by PCP/MOFs and nonporous coordination polymers (CPs) and offer future perspectives. PCP/MOF structures tend to have high hydrophilicity and guest-accessible voids, and scientists have reported many water-mediated proton (H(+)) conductivities. Chemical modification of organic ligands can change the hydrated H(+) conductivity over a wide range. On the other hand, the designable structures also permit water-free (anhydrous) H(+) conductivity. The incorporation of protic guests such as imidazole and 1,2,4-triazole into the microchannels of PCP/MOFs promotes the dynamic motion of guest molecules, resulting in high H(+) conduction without water. Not only the host-guest systems, but the embedding of protic organic groups on CPs also results in inherent H(+) conductivity. We have observed high H(+) conductivities under anhydrous conditions and in the intermediate temperature region of organic and inorganic conductors. The keys to successful construction are highly mobile ionic species and appropriate intervals of ion-hopping sites in the structures. Lithium (Li

  17. Optimization of Non-Thermal Plasma Treatment in an In Vivo Model Organism

    PubMed Central

    Lee, Amanda; Lin, Abraham; Shah, Kajol; Singh, Harpreet; Miller, Vandana; Gururaja Rao, Shubha

    2016-01-01

    Non-thermal plasma is increasingly being recognized for a wide range of medical and biological applications. However, the effect of non-thermal plasma on physiological functions is not well characterized in in vivo model systems. Here we use a genetically amenable, widely used model system, Drosophila melanogaster, to develop an in vivo system, and investigate the role of non-thermal plasma in blood cell differentiation. Although the blood system in Drosophila is primitive, it is an efficient system with three types of hemocytes, functioning during different developmental stages and environmental stimuli. Blood cell differentiation in Drosophila plays an essential role in tissue modeling during embryogenesis, morphogenesis and also in innate immunity. In this study, we optimized distance and frequency for a direct non-thermal plasma application, and standardized doses to treat larvae and adult flies so that there is no effect on the viability, fertility or locomotion of the organism. We discovered that at optimal distance, time and frequency, application of plasma induced blood cell differentiation in the Drosophila larval lymph gland. We articulate that the augmented differentiation could be due to an increase in the levels of reactive oxygen species (ROS) upon non-thermal plasma application. Our studies open avenues to use Drosophila as a model system in plasma medicine to study various genetic disorders and biological processes where non-thermal plasma has a possible therapeutic application. PMID:27505063

  18. Optimization of Non-Thermal Plasma Treatment in an In Vivo Model Organism.

    PubMed

    Lee, Amanda; Lin, Abraham; Shah, Kajol; Singh, Harpreet; Miller, Vandana; Gururaja Rao, Shubha

    2016-01-01

    Non-thermal plasma is increasingly being recognized for a wide range of medical and biological applications. However, the effect of non-thermal plasma on physiological functions is not well characterized in in vivo model systems. Here we use a genetically amenable, widely used model system, Drosophila melanogaster, to develop an in vivo system, and investigate the role of non-thermal plasma in blood cell differentiation. Although the blood system in Drosophila is primitive, it is an efficient system with three types of hemocytes, functioning during different developmental stages and environmental stimuli. Blood cell differentiation in Drosophila plays an essential role in tissue modeling during embryogenesis, morphogenesis and also in innate immunity. In this study, we optimized distance and frequency for a direct non-thermal plasma application, and standardized doses to treat larvae and adult flies so that there is no effect on the viability, fertility or locomotion of the organism. We discovered that at optimal distance, time and frequency, application of plasma induced blood cell differentiation in the Drosophila larval lymph gland. We articulate that the augmented differentiation could be due to an increase in the levels of reactive oxygen species (ROS) upon non-thermal plasma application. Our studies open avenues to use Drosophila as a model system in plasma medicine to study various genetic disorders and biological processes where non-thermal plasma has a possible therapeutic application.

  19. Preparation of new microgel polymers and their application as supports in organic synthesis.

    PubMed

    Spanka, Carsten; Clapham, Bruce; Janda, Kim D

    2002-05-03

    A series of soluble microgel polymers have been synthesized using solution-phase polymerization reactions. In a systematic manner, several variables such as monomer concentration, cross-linker content, reaction solvent and reaction time were examined, and this provided an optimal polymer with both solubility and precipitation characteristics suitable for synthetic applications. Thus, a chemically functionalized microgel polymer was synthesized, and the utility of this polymer in the synthesis of a small array of oxazole compounds has been demonstrated. The advantage of the microgel polymers produced was that they exhibited solution viscosities lower than those of conventional linear polymers even at higher concentrations, and this was found to be beneficial for their precipitation properties. Compounds prepared using the described microgel polymer supports were obtained in similar yields and purity when compared with insoluble resins, and more importantly, the soluble polymer bound intermediates could be analyzed at each step using standard NMR techniques.

  20. Plasma treatment for improving cell biocompatibility of a biodegradable polymer scaffold for vascular graft applications.

    PubMed

    Valence, Sarra de; Tille, Jean-Christophe; Chaabane, Chiraz; Gurny, Robert; Bochaton-Piallat, Marie-Luce; Walpoth, Beat H; Möller, Michael

    2013-09-01

    Biodegradable synthetic scaffolds are being evaluated by many groups for the application of vascular tissue engineering. In addition to the choice of the material and the structure of the scaffold, tailoring the surface properties can have an important effect on promoting adequate tissue regeneration. The objective of this study was to evaluate the effect of an increased hydrophilicity of a polycaprolactone vascular graft by treatment with a cold air plasma. To this end, treated and untreated scaffolds were characterized, evaluated in vitro with smooth muscle cells, and implanted in vivo in the rat model for 3 weeks, both in the subcutaneous location and as an aortic replacement. The plasma treatment significantly increased the hydrophilicity of the scaffold, with complete wetting after a treatment of 60 sec, but did not change fiber morphology or mechanical properties. Smooth muscle cells cultured on plasma treated patches adopt a spread out morphology compared to a small, rounded morphology on untreated patches. Subcutaneous implantation revealed a low foreign body reaction for both types of scaffolds and a more extended and dense cellular infiltrate in the plasma treated scaffolds. In the vascular position, the plasma treatment induced a better cellularization of the graft wall, while it did not affect endothelialization rate or intimal hyperplasia. Plasma treatment is therefore an accessible tool to easily increase the biocompatibility of a scaffold and accelerate tissue regeneration without compromising mechanical strength, which are valuable advantages for vascular tissue engineering.

  1. Synthesis of a photoresponsive polymer and its incorporation into an organic superlattice.

    SciTech Connect

    Morales, Alfredo Martin; Rondeau, Chris J.; McElhanon, James Ross; Cole, Phillip James

    2005-01-01

    The synthesis of a photoswitchable polymer by grafting an azobenzene dye to methacrylate followed by polymerization is presented. The azobenzene dye undergoes a trans-cis photoisomerization that causes a persistent change in the refractive index of cast polymer films. This novel polymer was incorporated into superlattices prepared by spin casting and the optical activity of the polymer was maintained. A modified coextruder that allows the rapid production of soft matter superlattices was designed and fabricated.

  2. Attachment of Poly(l-lactide) Nanoparticles to Plasma-Treated Non-Woven Polymer Fabrics Using Inkjet Printing.

    PubMed

    Ivanova, Tatiana V; Baier, Grit; Landfester, Katharina; Musin, Eduard; Al-Bataineh, Sameer A; Cameron, David C; Homola, Tomáš; Whittle, Jason D; Sillanpää, Mika

    2015-09-01

    Active dressings that based on fabric materials are an area of interest for the treatment of wounds. Poly(l-lactide) nanoparticles containing the antimicrobial agent octenidine can be controllably lysed by toxins released by pathogenic bacteria thus releasing antimicrobial material in response to the presence of the bacterial toxins and so counteracting the infection. We developed an integrated engineering solution that allows for the stable immobilisation of nanoparticles on non-woven fabrics. The process involves coating nanoparticles on non-woven polymer surfaces by using an inkjet printing process. In order to improve the adhesion and retention of the nanoparticles on the fabric, surface pretreatment of the non-woven fabric using plasma jet treatment can be applied to increase its surface energy.

  3. A cracked polymer templated metal network as a transparent conducting electrode for ITO-free organic solar cells.

    PubMed

    Rao, K D M; Hunger, Christoph; Gupta, Ritu; Kulkarni, Giridhar U; Thelakkat, Mukundan

    2014-08-07

    We report a highly transparent, low resistance Ag metal network templated by a cracked polymer thin film and its incorporation in an organic solar cell. The performance of this scalable metallic network is comparable to that of conventional ITO electrodes. This is a general approach to replace ITO in diverse thin film devices.

  4. Polymer-coated nanoparticles: Carrier platforms for hydrophobic water- and air-sensitive metallo-organic compounds.

    PubMed

    Valdeperez, Daniel; Wang, Tianqiang; Eußner, Jens P; Weinert, Bastian; Hao, Jianyuan; Parak, Wolfgang J; Dehnen, Stefanie; Pelaz, Beatriz

    2017-03-01

    Many of the relevant compounds for anticancer therapy are metal-based compounds (metallodrugs), being platinum-based drugs such as cisplatin, carboplatin (Paraplatin(®)), and oxaliplatin (Eloxatin(®)) the most widely used. Despite this, their application is limited by issues such as cell-acquired platinum resistance and manifold side effects following systemic delivery. Thus, the development of new metal-based compounds is highly needed. The catalytic properties of a variety of metal-based compounds are nowadays very well known, which opens new opportunities to take advantage of them inside living cells or organisms. However, many of these compounds are hydrophobic and thus not soluble in aqueous solution, as they lack stability against water or oxygen presence. Thus, versatile platforms capable of enhancing the features of these compounds in aqueous solutions are of importance in the development of new drugs. Surface engineered nanoparticles may render metallodrugs with good colloidal stability in water and in complex media containing high salt concentration and/or proteins. Herein, polymer coated nanoparticles are proposed as a platform to link insoluble and water/oxygen sensitive drugs. The linkage of insoluble and oxygen sensitive tin clusters to nanoparticles is presented, aiming to enhance both, the solubility and the stability of these compounds in water, which may be an alternative approach in the development of metal-based drugs. The formation of the cluster-nanoparticle system was confirmed via inductively coupled plasma mass spectrometry experiments. The catalytic activity and the stability of the cluster in water were studied through the reduction of methylene blue. Results demonstrate that in fact the tin clusters could be transferred into aqueous solution and retained their catalytic activity.

  5. Facile fabrication of ultrafine palladium nanoparticles with size- and location-control in click-based porous organic polymers.

    PubMed

    Li, Liuyi; Zhao, Huaixia; Wang, Jinyun; Wang, Ruihu

    2014-05-27

    Two click-based porous organic polymers (CPP-1 and CPP-2) are readily synthesized through a click reaction. Using CPP-1 and CPP-2 as supports, palladium nanoparticles (NPs) with uniform and dual distributions were prepared through H2 and NaBH4 reduction routes, respectively. Ultrafine palladium NPs are effectively immobilized in the interior cavities of polymers. The coordination of 1,2,3-triazolyl to palladium and the confinement effect of polymers on palladium NPs are verified by solid-state (13)C NMR and IR spectra, XPS analyses, EDX mapping, and computational calculation. The steric and electronic properties of polymers have a considerable influence on the interaction between polymers and palladium NPs, as well as the catalytic performances of NPs. The ultrafine palladium NPs with uniform distribution exhibit superior stability and recyclability over palladium NPs with dual distributions and palladium on charcoal in the hydrogenation of nitroarenes, and no obvious agglomeration and loss of catalytic activity were observed after recycling several times. The excellent performances mainly result from synergetic effects between palladium NPs and polymers.

  6. Facile synthesis of magnetic molecularly imprinted polymer: Perphenazine template and its application in urine and plasma analysis.

    PubMed

    Safdarian, Mehdi; Ramezani, Zahra; Ghadiri, Ata A

    2016-07-15

    Synthesis of magnetic iron oxide nanoparticles and its surface modification with methacrylic acid (MAA) was performed simultaneously by adding Fe(2+)/Fe(3+) to an alkaline MAA solution under nitrogen atmosphere. MAA coated magnetite (Fe3O4@MAA) has abundant reactive double bonds on the surface that can initiate polymerization. Magnetic molecularly imprinted polymers (MMIPs) were synthesized through distillation-precipitation polymerization of MAA as monomer, perphenazine (PPZ) as template, and ethylene glycol di-methacrylate (EGDMA) as cross linker on Fe3O4@MAA, with concise control of experimental conditions in about 90min. The produced super paramagnetic MMIPs can be separated from the solution in the presence of external magnetic field in less than 1min. Characterizations of the synthesized particles were performed by electron microscopes, thermo-gravimetric analysis (TGA), vibrating sample magnetometer (VSM), Fourier transform infrared (FT-IR) spectroscopy, and BET. The data showed that Fe3O4@MAA was well encapsulated in the polymer shell. The MMIPs showed high porosity. Moreover, MMIPs were used for rapid pre-concentration and separation of PPZ in human plasma and urine without any dilution and pretreatments using high performance liquid chromatography equipped with a photo diode array detector (HPLC-PDA). The calibration curve in urine and plasma has shown the same slope as the external calibration curve. Linear range of 20-5000ngmL(-1), and a detection limit of 5.3ngmL(-1) was obtained. The results showed 97.92% recovery along with the relative standard deviation of 6.07% (n=6) for 1μgmL(-1) PPZ. Pre-concentration factor was 13. The MMIPs adsorbed PPZ in 1min and then desorbed it by MeOH:HOAc in 2min.

  7. Polymers Used as Fuel for Laser Plasma Thrusters in Small Satellites

    DTIC Science & Technology

    2007-11-02

    chemical reactions (crosslinking), and the stability of the IR dye during these reactions is doubtful. We have also prepared large coated films for Claude...best” performer in the thruster tests (by Claude Phipps). The chemical structures are shown in Scheme 2. The polymers were studied with two different...2 J. Luque and D.R. Crosley, “LIFBASE: Databse and Spectral Simulation Program (Version 1.5)“, SRI International Report MO 99-009 (1999) 3 I. Kovacs

  8. Organization of polymer chains onto long, single-wall carbon nano-tubes: effect of tube diameter and cooling method.

    PubMed

    Kumar, Sunil; Pattanayek, Sudip K; Pereira, Gerald G

    2014-01-14

    We use molecular dynamics simulations to investigate the arrangement of polymer chains when absorbed onto a long, single-wall carbon nano-tube (SWCNT). We study the conformation and organization of the polymer chains on the SWCNT and their dependence on the tube's diameter and the rate of cooling. We use two types of cooling processes: direct quenching and gradual cooling. The radial density distribution function and bond orientational order parameter are used to characterize the polymer chain structure near the surface. In the direct cooling process, the beads of the polymer chain organize in lamella-like patterns on the surface of the SWCNT with the long axis of the lamella parallel to the axis of the SWCNT. In a stepwise, gradual cooling process, the polymer beads form a helical pattern on the surface of a relatively thick SWCNT, but form a lamella-like pattern on the surface of a very thin SWCNT. We develop a theoretical (free energy) model to explain this difference in pattern structures for the gradual cooling process and also provide a qualitative explanation for the pattern that forms from the direct cooling process.

  9. Chiral resolution of derivatized amino acids using uniformly sized molecularly imprinted polymers in hydro-organic mobile phases.

    PubMed

    Haginaka, Jun; Kagawa, Chino

    2004-04-01

    Uniformly sized molecularly imprinted polymers (MIPs) for Boc-L-Trp were prepared using ethylene glycol dimethacrylate (EDMA) as the cross-linker, and methacylic acid (MAA) and/or 4-vinylpyridine (4-VPY) as the functional monomers or without use of a functional monomer. The MIPs prepared were evaluated using acetonitrile or a mixture of phosphate buffer and acetonitrile as the mobile phase. The Boc-L-Trp-imprinted EDMA polymers can recognize Boc-L-Trp by its molecular shape, and can thus afford the enantioseparation of Boc-Trp. Besides the molecular shape recognition, the hydrophobic interactions with the polymer backbones as well as the hydrogen-bonding interactions of Boc-L-Trp with carboxyl and pyridyl groups in the polymers should work for the retention and recognition of Boc-L-Trp on the imprinted MAA- co-EDMA and 4-VPY- co-EDMA polymers, respectively, in the hydro-organic mobile phase. The hydrogen-bonding interactions seem to become dominant when only acetonitrile is used as the mobile phase. The Boc-L-Trp-imprinted 4-VPY- co-EDMA polymers gave the highest retentivity and enantioselectivity for Boc-Trp among the MIPs prepared. However, the simultaneous use of MAA and 4-VPY was not effective for the enantioseparation of Boc-Trp in a hydro-organic mobile phase. Furthermore, the baseline separation of Boc-Trp enantiomers was attained within 10 min on the Boc-L-Trp-imprinted 4-VPY- co-EDMA polymers under the optimized HPLC conditions.

  10. Investigations on diffusion limitations of biocatalyzed reactions in amphiphilic polymer conetworks in organic solvents.

    PubMed

    Schoenfeld, Ina; Dech, Stephan; Ryabenky, Benjamin; Daniel, Bastian; Glowacki, Britta; Ladisch, Reinhild; Tiller, Joerg C

    2013-09-01

    The use of enzymes as biocatalysts in organic media is an important issue in modern white biotechnology. However, their low activity and stability in those media often limits their full-scale application. Amphiphilic polymer conetworks (APCNs) have been shown to greatly activate entrapped enzymes in organic solvents. Since these nanostructured materials are not porous, the bioactivity of the conetworks is strongly limited by diffusion of substrate and product. The present manuscript describes two different APCNs as nanostructured microparticles, which showed greatly increased activities of entrapped enzymes compared to those of the already activating membranes and larger particles. We demonstrated this on the example of APCN particles based on PHEA-l-PDMS loaded with α-Chymotrypsin, which resulted in an up to 28,000-fold higher activity of the enzyme compared to the enzyme powder. Furthermore, lipase from Rhizomucor miehei entrapped in particles based on PHEA-l-PEtOx was tested in n-heptane, chloroform, and substrate. Specific activities in smaller particles were 10- to 100-fold higher in comparison to the native enzyme. The carrier activity of PHEA-l-PEtOx microparticles was tenfold higher with some 25-50-fold lower enzyme content compared to a commercial product.

  11. Expedited Phonon Transfer in Interfacially Constrained Polymer Chain along Self-Organized Amino Acid Crystals.

    PubMed

    Mu, Liwen; Li, Yifan; Mehra, Nitin; Ji, Tuo; Zhu, Jiahua

    2017-04-05

    In this work, poly(vinyl alcohol) (PVA)/amino acid (AA) composites were prepared by a self-organized crystallization process. Five different AAs (cysteine, aspartic acid, glutamic acid, ornithine, and lysine) were selected based on their similar functional groups but different molecular structures. The different PVA-AA interactions in the five PVA/AA composites lead to two crystal patterns, i.e., continuous network (cysteine and lysine) and discrete particles (glutamic acid, ornithine, and aspartic acid). Scanning thermal microscopy is then applied to map the distribution of thermal conduction in these composites. It is found that the interface surrounding the crystals plays a dominating role in phonon transport where the polymer chains are greatly restrained by the interfacial confinement effect. Continuous crystal network builds up a continuous interface that facilitates phonon transfer while phonon scattering occurs in discrete crystalline structures. Significantly improved thermal conductivity of ∼0.7 W/m·K is observed in PVA/cysteine composite with AA loading of 8.4 wt %, which corresponds to a 170% enhancement as compared to pure PVA. The strong PVA-AA molecular interaction and self-organized crystal structure are considered the major reasons for the unique interface property and superior thermal conductivity.

  12. Colloidal crystallization of colloidal silica modified with ferrocenyl group-contained polymers in organic solvents.

    PubMed

    Yoshinaga, Kohji; Shigeta, Maki; Komune, Seishu; Mouri, Emiko; Nakai, Akemi

    2007-01-15

    Surface modification of colloidal silica with ferrocenyl-grafted polymer and colloidal crystallization of the particles in organic solvent were studied. Poly(methyl methacrylate-co-vinylferrocene)-grafted silica never formed colloidal crystals in polar solvent, such as acetone, acetonitrile, ethanol and N,N-dimethylformamide (DMF), while poly(methyl methacrylate-co-ferrocenyl acrylate)-grafted silica gave colloidal crystallization in DMF. The particles prepared by grafting of poly(N,N-dimethylacrylamide-co-vinylferrocene), with vinylferrocene (Vfc) mole fraction of 1/13 and 1/23, were observed to give the crystallization in ethanol and DMF over particle volume fraction of 0.058. Further, silica modified with copolymer of Vfc and N-vinyl-2-pyrrolidone, N-vinylcarbazole or N-isopropylacrylamide formed colloidal crystals in ethanol and DMF. Especially, poly(N-isopropylacrylamide-co-Vfc)-grafted silica, which was composed of the highest mole fraction of vinylferrocene, 1/3, afforded colloidal crystallization in ethanol over particle volume fraction of 0.053. Relatively high polar vinylferrocene copolymer grafting of silica resulted in colloidal polymerization in organic solvents.

  13. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode.

    PubMed

    Zhu, Zhiqiang; Hong, Meiling; Guo, Dongsheng; Shi, Jifu; Tao, Zhanliang; Chen, Jun

    2014-11-26

    The cathode capacity of common lithium ion batteries (LIBs) using inorganic electrodes and liquid electrolytes must be further improved. Alternatively, all-solid-state lithium batteries comprising the electrode of organic compounds can offer much higher capacity. Herein, we successfully fabricated an all-solid-state lithium battery based on organic pillar[5]quinone (C35H20O10) cathode and composite polymer electrolyte (CPE). The poly(methacrylate) (PMA)/poly(ethylene glycol) (PEG)-LiClO4-3 wt % SiO2 CPE has an optimum ionic conductivity of 0.26 mS cm(-1) at room temperature. Furthermore, pillar[5]quinine cathode in all-solid-state battery rendered an average operation voltage of ∼2.6 V and a high initial capacity of 418 mAh g(-1) with a stable cyclability (94.7% capacity retention after 50 cycles at 0.2C rate) through the reversible redox reactions of enolate/quinonid carbonyl groups, showing favorable prospect for the device application with high capacity.

  14. Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells

    PubMed Central

    Hedley, Gordon J.; Ward, Alexander J.; Alekseev, Alexander; Howells, Calvyn T.; Martins, Emiliano R.; Serrano, Luis A.; Cooke, Graeme; Ruseckas, Arvydas; Samuel, Ifor D. W.

    2013-01-01

    The morphology of bulk heterojunction organic photovoltaic cells controls many of the performance characteristics of devices. However, measuring this morphology is challenging because of the small length-scales and low contrast between organic materials. Here we use nanoscale photocurrent mapping, ultrafast fluorescence and exciton diffusion to observe the detailed morphology of a high-performance blend of PTB7:PC71BM. We show that optimized blends consist of elongated fullerene-rich and polymer-rich fibre-like domains, which are 10–50 nm wide and 200–400 nm long. These elongated domains provide a concentration gradient for directional charge diffusion that helps in the extraction of charge pairs with 80% efficiency. In contrast, blends with agglomerated fullerene domains show a much lower efficiency of charge extraction of ~45%, which is attributed to poor electron and hole transport. Our results show that the formation of narrow and elongated domains is desirable for efficient bulk heterojunction solar cells. PMID:24343223

  15. Solution processable organic polymers and small molecules for bulk-heterojunction solar cells: A review

    SciTech Connect

    Sharma, G. D.

    2011-10-20

    Solution processed bulk heterojunction (BHJ) organic solar cells (OSCs) have gained wide interest in past few years and are established as one of the leading next generation photovoltaic technologies for low cost power production. Power conversion efficiencies up to 6% and 6.5% have been reported in the literature for single layer and tandem solar cells, respectively using conjugated polymers. A recent record efficiency about 8.13% with active area of 1.13 cm{sup 2} has been reported. However Solution processable small molecules have been widely applied for photovoltaic (PV) devices in recent years because they show strong absorption properties, and they can be easily purified and deposited onto flexible substrates at low cost. Introducing different donor and acceptor groups to construct donor--acceptor (D--A) structure small molecules has proved to be an efficient way to improve the properties of organic solar cells (OSCs). The power conversion efficiency about 4.4 % has been reported for OSCs based on the small molecules. This review deals with the recent progress of solution processable D--A structure small molecules and discusses the key factors affecting the properties of OSCs based on D--A structure small molecules: sunlight absorption, charge transport and the energy level of the molecules.

  16. The effects of plasma from patients with Graves' disease on foetal mouse hearts in organ culture.

    PubMed Central

    Nathan, A. W.; Longmore, D. B.; Havard, C. W.; Dandona, P.

    1983-01-01

    Plasma, obtained during plasma exchange therapy, from 3 euthyroid patients with Graves' disease and severe progressive exophthalmos induced an increase in heart rate and then early death when applied to foetal mouse hearts maintained in isolated organ culture. All plasma samples which induced an increase in foetal heart rate had high titres of thyroid stimulating immunoglobulins. Plasma samples obtained after exchange had a much diminished effect. These studies may indicate a previously unrecognized non-thyroidal action of the abnormal immunoglobulins associated with Graves' disease and suggest that chronic thyroid heart disease may be due, at least in part, to the effect of these immunoglobulins especially when not associated with elevated thyroid hormones concentrations. PMID:6139124

  17. Synthesis and Characterization of Conjugated Polymers and Small Molecules for Organic Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Kwon, Obum

    Solar energy harvested directly from sunlight using photovoltaic (PV) technology has become one of the most promising ways to meet growing global energy needs with a sustainable resource while minimizing environmental concerns. Especially, organic bulk heterojunction (BHJ) solar cells have been attracting a great deal of interest as a source of renewable energy because of their potential as low-cost, flexible, light-weight and large-scale devices. The choice of materials in a BHJ solar cell is very important for device performance because the power conversion efficiencies (PCEs) are determined by their some crucial characteristics such as energy levels, charge transfer mobilities and structural orders. In this dissertation, two carbazole-diketopyrrolopyrrole based conjugated polymers (P1 and P2) and three thieno-[3,4-c]pyrrole-4,6-dione (TPD) based small molecules (M1, SM1 and SM2) were synthesized and characterized to investigate their optical, electrical and photovoltaic properties. First, the substitution of alkyl and aryl side chains on the carbazole moiety of two push-pull conjugated polymers (P1 and P2) shows the significant differences in the optical, electrical and photovoltaic properties. Second, TPD-based conjugated small molecule with a donor-acceptor-donor-acceptor-donor (D-A-D-A-D) framework, M1 shows the relatively deep HOMO level resulting the relatively high Voc.(0.85 eV) Small molecule BHJ solar cells were fabricated and characterized using different M1:PC71BM blend ratios, solvents, and additives and the highest PCE achieved in this study was 1.86%. Lastly, different bridgehead atoms of SM1 and SM2 can affect their energy band levels and device performances. The PCE (2.5%) of the SM2-based SM-BHJ solar cell was higher than that of the SM1-based SM-BHJ solar cell (1.5%).

  18. Plasma synthesis of lithium based intercalation powders for solid polymer electrolyte batteries

    DOEpatents

    Kong, Peter C.; Pink, Robert J.; Nelson, Lee O.

    2005-01-04

    The invention relates to a process for preparing lithium intercalation compounds by plasma reaction comprising the steps of: forming a feed solution by mixing lithium nitrate or lithium hydroxide or lithium oxide and the required metal nitrate or metal hydroxide or metal oxide and between 10-50% alcohol by weight; mixing the feed solution with O.sub.2 gas wherein the O.sub.2 gas atomizes the feed solution into fine reactant droplets, inserting the atomized feed solution into a plasma reactor to form an intercalation powder; and if desired, heating the resulting powder to from a very pure single phase product.

  19. Plasma Synthesis of Lithium Based Intercalation Powders for Solid Polymer Electrolyte Batteries

    SciTech Connect

    Kong, Peter C.; Pink, Robert J.; Nelson, Lee O.

    2005-01-04

    The invention relates to a process for preparing lithium intercalation compounds by plasma reaction comprising the steps of: forming a feed solution by mixing lithium nitrate or lithium hydroxide or lithium oxide and the required metal nitrate or metal hydroxide or metal oxide and between 10-50% alcohol by weight; mixing the feed solution with O2 gas wherein the O2 gas atomizes the feed solution into fine reactant droplets, inserting the atomized feed solution into a plasma reactor to form an intercalation powder; and if desired, heating the resulting powder to form a very pure single phase product.

  20. Chemical and microstructural characterizations of plasma polymer films by time-of-flight secondary ion mass spectrometry and principal component analysis

    NASA Astrophysics Data System (ADS)

    Cossement, Damien; Renaux, Fabian; Thiry, Damien; Ligot, Sylvie; Francq, Rémy; Snyders, Rony

    2015-11-01

    It is accepted that the macroscopic properties of functional plasma polymer films (PPF) are defined by their functional density and their crosslinking degree (χ) which are quantities that most of the time behave in opposite trends. If the PPF chemistry is relatively easy to evaluate, it is much more challenging for χ. This paper reviews the recent work developed in our group on the application of principal component analysis (PCA) to time-of-flight secondary ion mass spectrometric (ToF-SIMS) positive spectra data in order to extract the relative cross-linking degree (χ) of PPF. NH2-, COOR- and SH-containing PPF synthesized in our group by plasma enhanced chemical vapor deposition (PECVD) varying the applied radiofrequency power (PRF), have been used as model surfaces. For the three plasma polymer families, the scores of the first computed principal component (PC1) highlighted significant differences in the chemical composition supported by X-Ray photoelectron spectroscopy (XPS) data. The most important fragments contributing to PC1 (loadings > 90%) were used to compute an average C/H ratio index for samples synthesized at low and high PRF. This ratio being an evaluation of χ, these data, accordingly to the literature, indicates an increase of χ with PRF excepted for the SH-PPF. These results have been cross-checked by the evaluation of functional properties of the plasma polymers namely a linear correlation with the stability of NH2-PPF in ethanol and a correlation with the mechanical properties of the COOR-PPF. For the SH-PPF family, the peculiar evolution of χ is supported by the understanding of the growth mechanism of the PPF from plasma diagnostic. The whole set of data clearly demonstrates the potential of the PCA method for extracting information on the microstructure of plasma polymers from ToF-SIMS measurements.

  1. A "roller-wheel" Pt-containing small molecule that outperforms its polymer analogs in organic solar cells

    DOE PAGES

    He, Wenhan; Wu, Qin; Livshits, Maksim Y.; ...

    2016-05-23

    A novel Pt-bisacetylide small molecule (Pt-SM) featuring “roller-wheel” geometry was synthesized and characterized. When compared with conventional Pt-containing polymers and small molecules having “dumbbell” shaped structures, Pt-SM displays enhanced crystallinity and intermolecular π–π interactions, as well as favorable panchromatic absorption behaviors. Furthermore, organic solar cells (OSCs) employing Pt-SM achieve power conversion efficiencies (PCEs) up to 5.9%, the highest reported so far for Pt-containing polymers and small molecules.

  2. Chemical grafting of poly(ethylene glycol) methyl ether methacrylate onto polymer surfaces by atmospheric pressure plasma processing.

    PubMed

    D'Sa, Raechelle A; Meenan, Brian J

    2010-02-02

    This article reports the use of atmospheric pressure plasma processing to induce chemical grafting of poly(ethylene glycol) methyl ether methacrylate (PEGMA) onto polystyrene (PS) and poly(methyl methacrylate) (PMMA) surfaces with the aim of attaining an adlayer conformation which is resistant to protein adsorption. The plasma treatment was carried out using a dielectric barrier discharge (DBD) reactor with PEGMA of molecular weights (MW) 1000 and 2000, PEGMA(1000) and PEGMA(2000), being grafted in a two step procedure: (1) reactive groups are generated on the polymer surface followed by (2) radical addition reactions with the PEGMA. The surface chemistry, coherency, and topography of the resulting PEGMA grafted surfaces were characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and atomic force microscopy (AFM), respectively. The most coherently grafted PEGMA layers were observed for the 2000 MW PEGMA macromolecule, DBD processed at an energy dose of 105.0 J/cm(2) as indicated by ToF-SIMS images. The effect of the chemisorbed PEGMA layer on protein adsorption was assessed by evaluating the surface response to bovine serum albumin (BSA) using XPS. BSA was used as a model protein to determine the grafted macromolecular conformation of the PEGMA layer. Whereas the PEGMA(1000) surfaces showed some protein adsorption, the PEGMA(2000) surfaces appeared to absorb no measurable amount of protein, confirming the optimum surface conformation for a nonfouling surface.

  3. pH-sensitive, polymer modified, plasma stable niosomes: promising carriers for anti-cancer drugs

    PubMed Central

    Tila, Dena; Yazdani-Arazi, Seyede Narjes; Ghanbarzadeh, Saeed; Arami, Sanam; Pourmoazzen, Zhaleh

    2015-01-01

    The aim of this study was the design and evaluation of a novel plasma stable, pH-sensitive niosomal formulation of Mitoxantrone by a modified ethanol injection method. Cholesterol hemisuccinate was added instead of cholesterol in order to produce pH-sensitivity property and using PEG-Poly (monomethyl itaconate)-CholC6 (PEG-PMMI-CholC6) copolymer introduced simultaneously pH-sensitivity and plasma stability properties in prepared niosomes. The pH-sensitivity and cytotoxicity of Mitoxantrone niosomes were evaluated in vitro in phosphate buffer with different pHs as well as using human ovarian cancer cell line (OVCAR-3), human breast cancer cell line (MCF-7) and human umbilical vein endothelial cells (HUVEC). Results showed that both cholesterol derivatives bearing formulations had pH-sensitive property and were found to release their contents under mild acidic conditions rapidly. In addition, the PEG-PMMI-CholC6-based niosomes could reserve the pH-sensitivity after incubation in plasma. Both Mitoxantrone-loaded pH-sensitive niosomes showed higher cytotoxicity than the conventional niosomes on OVCAR-3 and MCF-7 cell lines. However, both pH-sensitive niosomes exhibited lower cytotoxic effect on HUVEC cell line. Plasma stable, pH-sensitive niosomes could improve the cytotoxic effect and reduce the side effects of anti-tumor drugs. PMID:26417350

  4. Modified by air plasma polymer tack membranes as drainage material for antiglaucomatous operations

    NASA Astrophysics Data System (ADS)

    Ryazantseva, T. V.; Kravets, L. I.; Elinson, V. M.

    2014-06-01

    The morphological and clinical studies of poly(ethylene terephthalate) track membranes modified by air plasma as drainage materials for antiglaucomatous operations were performed. It was demonstrated their compatibility with eye tissues. Moreover, it was shown that a new drainage has a good lasting hypotensive effect and can be used as operation for refractory glaucoma surgery.

  5. Polymer-silica hybrids for separation of CO2 and catalysis of organic reactions

    NASA Astrophysics Data System (ADS)

    Silva Mojica, Ernesto

    spectroscopic investigation of the interactions of CO 2 with amine molecules under simulated CO2 capture conditions. Industrial CO2 capture processes involve fluidization and require degradation-resistant sorbents in the form of pellets. Agglomeration of silica-based CO2 capture sorbents involved the formulation of a polymer binder solution and the design of a scalable pelletization process. The characterization of these pellets revealed the formation of a CO 2-permeable polymer-silica network, which is resistant to attrition, and exhibits similar CO2 capture and degradation performance as the non-pelletized sorbents. The performance of these sorbents and pellets was tested in lab-scale and bench-scale adsorption units, using in-house fabricated fixed-bed and fluidized-bed reactors. A compartmental modeling technique was used to simulate the CO2 adsorption process and to elucidate the kinetic and thermodynamic parameters that impact the commercial viability of emerging CO2 capture technologies. The fundamental concepts and experimental techniques developed for the preparation of CO2 capture sorbents served as a basis for fabricating amine-functionalized polymer-silica hybrids for applications in catalysis of organic reactions. (i) Basic catalysts for carbon-carbon addition reactions were prepared by immobilization of amine molecules on silica supports. The activity of these catalysts and the mechanisms of base-catalyzed organic condensation reactions were investigated by an in-situ FTIR micro-scale reactor. (ii) Particle-loaded PVA composite membranes were selected for immobilization of glucose oxidase (GOx). GOx was immobilized by adsorption at pH values between 3.5 and 7.1. The results showed that adsorption was primarily achieved via hydrophobic interactions, and that PVA membranes loaded with amine-functionalized particles could help retain the activity of immobilized GOx by providing a proper hydrophilic/hydrophobic balance to the immobilized enzymes micro-environment.

  6. Semiconducting organic-inorganic nanocomposites by intimately tethering conjugated polymers to inorganic tetrapods

    NASA Astrophysics Data System (ADS)

    Jung, Jaehan; Yoon, Young Jun; Lin, Zhiqun

    2016-04-01

    Semiconducting organic-inorganic nanocomposites were judiciously crafted by placing conjugated polymers in intimate contact with inorganic tetrapods via click reaction. CdSe tetrapods were first synthesized by inducing elongated arms from CdSe zincblende seeds through seed-mediated growth. The subsequent effective inorganic ligand treatment, followed by reacting with short bifunctional ligands, yielded azide-functionalized CdSe tetrapods (i.e., CdSe-N3). Finally, the ethynyl-terminated conjugated polymer poly(3-hexylthiophene) (i.e., P3HT-&z.tbd;) was tethered to CdSe-N3 tetrapods via a catalyst-free alkyne-azide cycloaddition, forming intimate semiconducting P3HT-CdSe tetrapod nanocomposites. Intriguingly, the intimate contact between P3HT and CdSe tetrapod was found to not only render the effective dispersion of CdSe tetrapods in the P3HT matrix, but also facilitate the efficient electronic interaction between these two semiconducting constituents. The successful anchoring of P3HT chains onto CdSe tetrapods was substantiated through Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy measurements. Moreover, the absorption and photoluminescence studies further corroborated the intimate tethering between P3HT and CdSe tetrapods. The effect of the type of bifunctional ligands (i.e., aryl vs. aliphatic ligands) and the size of tetrapods on the device performance of hybrid organic-inorganic solar cells was also scrutinized. Interestingly, P3HT-CdSe tetrapod nanocomposites produced via the use of an aryl bifunctional ligand (i.e., 4-azidobenzoic acid) exhibited an improved photovoltaic performance compared to that synthesized with their aliphatic ligand counterpart (i.e., 5-bromovaleric acid). Clearly, the optimal size of CdSe tetrapods ensuring the effective charge transport in conjunction with the good dispersion of CdSe tetrapods rendered an improved device performance. We envision that the click-reaction strategy enabled by

  7. Molecularly imprinted polymers for the pre-concentration of polar organic micropollutants for compound-specific isotope analysis

    NASA Astrophysics Data System (ADS)

    Bakkour, Rani; Hofstetter, Thomas B.

    2014-05-01

    Compound-specific isotope analysis (CSIA) is a promising tool for assessing transformations of polar organic micropollutants such as pesticides, pharmaceuticals and consumer chemicals in aquatic systems. There are, however, two major challenges: (1) Polar organic micropollutants occur at very low levels and, as a consequence, large amounts of water are required to achieve analyte enrichment with factors of 50'000 and more, inevitably leading to large interferences from the aqueous matrix. (2) The polarity of these micropollutants impedes the use of typical non-polar sorbates for solid-phase enrichment. In view of these challenges, the use of molecularly imprinted polymers (MIP) is a promising approach to produce tailor-made materials for highly selective enrichment of polar organic micropollutants with reduced matrix interferences. In this work, we explore the use of MIP to selectively enrich benzotriazoles, an important class of polar aquatic micropollutants. Polymers were synthesized in the presence of 5,6-dimethyl-1H-benzotriazole as a template, which leaves cavities in the polymer matrix with a very high affinity to the template and closely related structures including our main target analyte, 1H-benzotrizole. After extraction of the template, specific recognition of substituted benzotriazoles is expected by the synthesized MIPs. As the MIP has no specific affinity to the matrix, there is also expected to be negligible enrichment of the matrix. Retention factors of the MIP are compared for different synthetic procedures and to non-imprinted polymers where no specific intermolecular interactions with benzotriazoles are expected. Optimum performance of the MIP is demonstrated in this study in terms of the selectivity of enrichment, recoveries of analytes and the goodness of carbon and nitrogen isotope ratios measured by gas chromatography isotopic ratio mass spectrometry (GC/IRMS). This approach will enable us to enrich large amounts of aqueous samples while

  8. Design considerations to minimize the impact of drug absorption in polymer-based organ-on-a-chip platforms.

    PubMed

    Shirure, V S; George, S C

    2017-02-14

    Biocompatible polymers, such as polydimethylsiloxane (PDMS), are the materials of choice for creating organ-on-a-chip microfluidic platforms. Desirable qualities include ease of fabrication, optical clarity, and hydrophobicity, the latter of which facilitates oxygen transport to encased cells. An emerging and important application of organ-on-a-chip technology is drug discovery; however, a potential issue for polymer-based microfluidic devices has been highlighted by recent studies with PDMS, which have demonstrated absorption (and thus loss) of hydrophobic drugs into PDMS under certain experimental conditions. Absorption of drug in the polymer can also lead to undesirable transfer of drug between adjacent microfluidic lines. Given the benefits of polymers, it is essential to develop a comprehensive understanding of drug absorption. In this study, we considered convection, dissolution, and diffusion of a drug within a polymer-based microfluidic device to characterize the dynamics of drug loss in a quantitative manner. We solved Fick's 2nd law of diffusion (unsteady diffusion-convection) by finite element analysis in COMSOL®, and experimentally validated the numerical model for loss of three hydrophobic molecules (rhodamine B, cyanine NHS ester, and paclitaxel) in PDMS. Drug loss, as well as the unintended mixing of drugs by adjacent microfluidic channels, depends strongly on platform design parameters, experimental conditions, and the physico-chemical properties of the drug, and can be captured in a simple quantitate relationship that employs four scalable dimensionless numbers. This simple quantitative framework can be used in the design of a wide range of polymer-based microfluidic devices to minimize the impact of drug absorption.

  9. High-efficiency silole-based molecular organic light-emitting devices using highly conducting polymer anode contacts

    NASA Astrophysics Data System (ADS)

    Kim, Woohong; Palilis, Leonidas C.; Uchida, Manabu; Kafafi, Zakya H.

    2004-02-01

    We present high efficiency and high luminance molecular organic light-emitting diodes (MOLEDs) using a conducting polymer as a hole-injecting electrode (anode), a CsF/Al bilayer as a cathode, and silole derivatives as an emitter and/or an electron transporter. The conducting polymer films, poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), were either spin-cast from aqueous dispersions or pre-coated on plastic substrates (courtesy Agfa Gevaert N.V. Belgium). The surface sheet resistance of the conducting polymer films is in the range of 150Ohms/sq ~ 1500 Ohms/sq. MOLEDs fabricated with a low sheet resistance (150 Ohms/sq) conducting polymer as an anode without using an ITO underlayer and CsF/Al as a cathode exhibit very low operating voltages (4.5V @ 100 cd/m2 and 6.5V @ 1,000 cd/m2). This good device performance is attributable to the low sheet resistance of the conducting polymer anode and the high electron mobility of the silole derivative, namely 2,5-bis-(2',2"-bipyridin-6-yl)-1,1-dimethyl-3,4-diphenylsilacyclopentadiene (PyPySPyPy), used as an electron transporter. Efficient electron injection from the CSF/Al cathode to the PyPySPyPy electron injection/transport layer also contributes to better charge balance and improved device efficiency.

  10. Joint toxic actions of organic flocculating polymers: Impact on Whole Effluent Toxicity testing. Part 3

    SciTech Connect

    Fort, D.J.; Stover, E.L.

    1996-11-01

    Most states and/or US Environmental Protection Agency (EPA) regions have adopted narrative water quality criteria requiring various forms of Whole Effluent Toxicity (WET) testing as a component of the National Pollutant Discharge Elimination System (NPDES) discharge criteria. Because polymers and inorganic coagulant aids are commonly used in conjunction with one another for wastewater treatment, an assessment of potential interactions between the two types of additives was warranted. Thus, joint-compound interaction studies with both the polymer and FeCl{sub 3} or Al{sub 2}(SO{sub 4}){sub 3} were conducted to determine the effect of co-treatment on WET. Results from these studies clearly demonstrated that the toxicity of these additives during combined treatment was much more dramatic than for each compound individually and that individual toxic assessment would not account for the total magnitude of toxicity induced during combined treatment. Combinations of flocculating polymers with different physical/chemical characteristics (i.e., chemical structure, molecular weight, hydrophobicity, molar refractivity, and charge density) are also commonly used in wastewater treatment. Thus, joint-polymer action studies with several polymer mixtures were performed. Polymers used in these studies included cationic polyquaternary amine (PQA), cationic epichlorohydrin/dimethylamine (EPI/DMA), anionic polyacrylamide (A-PAM), and non-ionic polyacrylamide (N-PAM) polymers. Results from these studies are presented in this manuscript. Overall, results from these studies indicated that the type of polymer mixture was important in determining the joint toxic actions of the flocculating polymers.

  11. Plasma treatment of polymer dielectric films to improve capacitive energy storage

    NASA Technical Reports Server (NTRS)

    Yializis, A.; Binder, M.; Mammone, R. J.

    1994-01-01

    Demand for compact instrumentation, portable field equipment, and new electromagnetic weapons is creating a need for new dielectric materials with higher energy storage capabilities. Recognizing the need for higher energy storage capacitors, the Army Research Lab at Fort Monmouth, NJ, initiated a program a year ago to investigate potential methods for increasing the dielectric strength of polyvinylidene difluoride (PVDF) film, which is the highest energy density material commercially available today. Treatment of small area PVDF films in a CF4/O2 plasma showed that the dielectric strength of PVDF films can be increased by as much as 20 percent when treated in a 96 percent CF4/4 percent O2 plasma. This 44 percent increase in energy storage of a PVDF capacitor is significant considering that the treatment can be implemented in a conventional metallizing chamber, with minimum capital investment. The data shows that improved breakdown strength may be unique to PVDF film and the particular CF4/O2 gas mixture, because PVDF film treated with 100 percent CF4, 100 percent O2, Ar gas plasma, and electron irradiation shows no improvement in breakdown strength. Other data presented includes dissipation factor, dielectric constant, and surface tension measurements.

  12. Zwitterionic polymer-modified silicon microring resonators for label-free biosensing in undiluted human plasma.

    PubMed

    Kirk, James T; Brault, Norman D; Baehr-Jones, Tom; Hochberg, Michael; Jiang, Shaoyi; Ratner, Daniel M

    2013-04-15

    A widely acknowledged goal in personalized medicine is to radically reduce the costs of highly parallelized, small fluid volume, point-of-care and home-based diagnostics. Recently, there has been a surge of interest in using complementary metal-oxide-semiconductor (CMOS)-compatible silicon photonic circuits for biosensing, with the promise of producing chip-scale integrated devices containing thousands of orthogonal sensors, at minimal cost on a per-chip basis. A central challenge in biosensor translation is to engineer devices that are both sensitive and specific to a target analyte within unprocessed biological fluids. Despite advances in the sensitivity of silicon photonic biosensors, poor biological specificity at the sensor surface remains a significant factor limiting assay performance in complex media (i.e. whole blood, plasma, serum) due to the non-specific adsorption of proteins and other biomolecules. Here, we chemically modify the surface of silicon microring resonator biosensors for the label-free detection of an analyte in undiluted human plasma. This work highlights the first application of a non-fouling zwitterionic surface coating to enable silicon photonic-based label-free detection of a protein analyte at clinically relevant sensitivities in undiluted human plasma.

  13. Integration of organic fluorophores in the surface of polymer-coated colloidal nanoparticles for sensing the local polarity of the environment.

    PubMed

    Amin, Faheem; Yushchenko, Dmytro A; Montenegro, Jose M; Parak, Wolfgang J

    2012-03-01

    Inorganic hydrophobically capped NPs such as quantum dots, superparamagnetic iron oxide, or gold nanoparticles can be modified to make them water-soluble by their embedding in an amphiphilic polymer shell. This polymer shell can be prefunctionalized by the integration of organic fluorophores, which allows the observation of the nanoparticles with fluorescence based techniques. The fluorophore could be either located more in the hydrophobic part of the inner polymer shell, or on the hydrophilic surface pointing towards solution. Herein we prepared gold nanoparticles decorated with the organic fluorophore FE, 4'-N,N-diethylamino-3-hydroxyflavone (FE), which possesses fluorescence sensitive to the polarity and hydrogen-bonding properties of the surrounding local environment. Based on the response of FE in the polymer shell to isopropanol, and CTAB compared to the response of free FE we conclude that the FE fluorophore is situated within the inner polymer shell. Nevertheless the fluorophore in the polymer shell can still sense polarity changes in solution.

  14. How disorder controls the kinetics of triplet charge recombination in semiconducting organic polymer photovoltaics.

    PubMed

    Bittner, Eric R; Lankevich, Vladimir; Gélinas, Simon; Rao, Akshay; Ginger, David A; Friend, Richard H

    2014-10-14

    Recent experiments by Rao et al. (Nature, 2013, 500, 435-439) indicate that recombination of triplet charge-separated states is suppressed in organic polymer-fullerene based bulk-heterojunction (BHJ) photovoltaic cells exhibiting a high degree of crystallinity in the fullerene phase relative to systems with more disorder. In this paper, we use a series of Frenkel-exciton lattice models to rationalize these results in terms of wave-function localization, interface geometry, and density of states. In one-dimensional co-linear and co-facial models of the interface, increasing local energetic disorder in one phase localizes the interfacial triplet charge-transfer ((3)CT) states and increases the rate at which these states relax to form lower-energy triplet excitons. In two dimensional BHJ models, energetic disorder within the fullerene phase plays little role in further localizing states pinned to the interface. However, inhomogeneous broadening introduces strong coupling between the interfacial (3)CT and nearby fullerene triplet excitons and can enhance the decay of these states in systems with higher degrees of energetic disorder.

  15. Upconversion fluorescence metal-organic frameworks thermo-sensitive imprinted polymer for enrichment and sensing protein.

    PubMed

    Guo, Ting; Deng, Qiliang; Fang, Guozhen; Gu, Dahai; Yang, Yukun; Wang, Shuo

    2016-05-15

    A novel fluorescence material with thermo-sensitive for the enrichment and sensing of protein was successfully prepared by combining molecular imprinting technology with upconversion nanoparticles (UCNPs) and metal-organic frameworks (MOFs). Herein, the UCNPs acted as signal reporter for composite materials because of its excellent fluorescence property and chemical stability. MOFs were introduced to molecularly imprinted polymer (MIP) due to its high specific surface area which increases the rate of mass transfer relative to that of traditional bulk MIP. The thermo-sensitive imprinted material which allows for swelling and shrinking with response to temperature changes was prepared by choosing Bovine hemoglobin (BHB) as the template, N-isopropyl acrylamide (NIPAAM) as the temperature-sensitive functional monomer and N,N-methylenebisacrylamide (MBA) as the cross-linker. The recognition characterizations of imprinted material-coated UCNPs/MOFs (UCNPs/MOFs/MIP) were evaluated, and the results showed that the fluorescence intensity of UCNPs/MOFs/MIP reduced gradually with the increase of BHB concentration. The fluorescence material was response to the temperature. The adsorption capacity was as much as 167.6 mg/g at 28°C and 101.2mg/g at 44°C, which was higher than that of traditional MIP. Therefore, this new fluorescence material for enrichment and sensing protein is very promising for future applications.

  16. Reduced graphene oxide/molecular imprinted polymer-organic thin film transistor for amino acid detection

    NASA Astrophysics Data System (ADS)

    Halim, Nurul Farhanah AB.; Musa, Nur Hazwani; Zakaria, Zulkhairi; Von Schleusingen, Mubaraq; Ahmad, Mohd Noor; Derman, Nazree; Shakaff, Ali Yeon Md.

    2017-03-01

    This works reports the electrical performance of reduced graphene oxide (RGO)/Molecular imprinted polymer (MIP)- organic thin film transistor (OTFT) for amino-acid detection, serine. These biomimetic sensors consider MIP as man-tailored biomimetic recognition sites that play an important role in signal transduction. MIP provides recognition sites compatible with serine molecules was developed by dispersing serine with methylacrylate acid (MAA) as functional monomer and Ethylene glycol dimethylacrylate (EGDMA) as cross-linker. The imprinted polymeric were mixed with reduced graphene oxide to produced sensing layer for the sensor. RGO-MIP layer was introduced between source and drain of OTFT via spin coating as a detecting layer for serine molecules. RGO was introduced into MIP, to allow a highly conductive sensing material thus enhanced selectivity and sensitivity of the sensor. By analyzing the electrical performance of the sensors, the performances of OTFT sensor enhanced with RGO/MIP interlayer and OTFT sensor with MIP interlayer when exposed to serine analyte were obtained. The results showed that there were remarkable shifts of drain current (ID) obtained from OTFT sensor with RGO/MIP interlayer after exposed to serine analyte. Moreover, the sensitivity of OTFT sensor with RGO/MIP interlayer was nearly higher than the OTFT sensor with MIP interlayer. Hence, it proved that RGO successfully enhanced the sensing performance of OTFT sensor.

  17. Biocompatible electrically conductive nanofibers from inorganic-organic shape memory polymers.

    PubMed

    Kai, Dan; Tan, Mein Jin; Prabhakaran, Molamma P; Chan, Benjamin Qi Yu; Liow, Sing Shy; Ramakrishna, Seeram; Loh, Xian Jun

    2016-12-01

    A porous shape memory scaffold with both biomimetic structures and electrical conductivity properties is highly promising for nerve tissue engineering applications. In this study, a new shape memory polyurethane polymer which consists of inorganic polydimethylsiloxane (PDMS) segments with organic poly(ε-caprolactone) (PCL) segments was synthesized. Based on this poly(PCL/PDMS urethane), a series of electrically conductive nanofibers were electrospun by incorporating different amounts of carbon-black. Our results showed that after adding carbon black into nanofibers, the fiber diameters increased from 399±76 to 619±138nm, the crystallinity decreased from 33 to 25% and the resistivity reduced from 3.6 GΩ/mm to 1.8 kΩ/mm. Carbon black did not significantly influence the shape memory properties of the resulting nanofibers, and all the composite nanofibers exhibited decent shape recovery ratios of >90% and shape fixity ratios of >82% even after 5 thermo-mechanical cycles. PC12 cells were cultured on the shape memory nanofibers and the composite scaffolds showed good biocompatibility by promoting cell-cell interactions. Our study demonstrated that the poly(PCL/PDMS urethane)/carbon-black nanofibers with shape memory properties could be potentially used as smart 4-dimensional (4D) scaffolds for nerve tissue regeneration.

  18. Ionic liquid-based zwitterionic organic polymer monolithic column for capillary hydrophilic interaction chromatography.

    PubMed

    Wang, Tingting; Chen, Yihui; Ma, Junfeng; Zhang, Xiaodan; Zhang, Lihua; Zhang, Yukui

    2015-08-21

    In the current study, a novel ionic liquid-based zwitterionic organic polymer monolithic column was developed by copolymerizing 1-vinyl-3-(butyl-4-sulfonate) imidazolium, acrylamide and N,N'-methylenebisacrylamide in a quaternary porogenic solvent consisting of formamide, dimethyl sulphoxide, polyethylene glycol 8000 and polyethylene glycol 10,000 for capillary hydrophilic interaction chromatography. The monolithic stationary phase was optimized by adjusting the amount of monomer in the polymerization solution along with the composition of porogenic solvent. The optimized monolith exhibited excellent selectivity and favorable retention for nucleosides and benzoic acid derivatives. The primary factors affecting the separation efficiency of the monolithic column (including acetonitrile content, pH, and buffer salt concentration in the mobile phase) have been thoroughly evaluated. Excellent reproducibility of the retention times for five nucleosides was achieved, with relative standard deviations of run-to-run (n = 3), column-to-column (n = 3) and batch-to-batch (n = 3) in the range of 0.18-0.48%, 2.33-4.20% and 3.07-6.50%, respectively.

  19. Water-Based Assembly of Polymer-Metal Organic Framework (MOF) Functional Coatings

    SciTech Connect

    De, Souvik; Nandasiri, Manjula I.; Schaef, Herbert T.; McGrail, Benard Peter; Nune, Satish K.; Lutkenhaus, Jodie L.

    2016-12-27

    Metal organic frameworks (MOFs) have gained tremendous attention for their porosity, size selectivity, and structural diversity. There is a need for MOF-based coatings, particularly in applications such as separations, electronics and energy; yet forming thin, functional, conformal coatings is prohibitive because MOFs exist as a powder. Layer-by- layer assembly, a versatile thin film coating approach, offers a unique solution to this problem, but this approach requires MOFs that are water-dispersible and bear a surface charge. Here, we address these issues by examining water-based dispersions of MIL-101(Cr) that facilitate the formation of robust polymer-MOF hybrid coatings. Specifically, the substrate to be coated is alternately exposed to an aqueous solution of poly(styrene sulfonate) and dispersion MIL-101(Cr), yielding linear film growth and coatings with a MOF content as high as 77 wt%.This approach is surface-agnostic, in which the coating is successfully applied to silicon, glass, flexible plastic, and even cotton fabric, conformally coating individual fibers. In contrast, prior attempts at forming MOF-coatings were severely limited to a handful of surfaces, required harsh chemical treatment, and were not conformal. The approach presented here unambiguously confirms that MOFs can be conformally coated onto complex and unusual surfaces, opening the door for a wide variety of applications.

  20. Crosslinkable high k polymer dielectrics for low voltage organic field-effect transistor memories (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wu, Hung-Chin; Hung, Chih-Chien; Chiu, Yu-Cheng; Tung, Shih-Huang; Chen, Wen-Chang

    2016-09-01

    High Performance organic field-effect transistor (OFET) memory devices were successfully prepared using new dielectric materials, poly(N-(hydroxymethyl)acrylamide-co-5 -(9-(5-(diethylamino)pentyl)-2-(4-vinylphenyl)-9H-fluorene (P(NMA-co-F6NSt)), which contained chemical cross-linkable segment (NMA) and hole trapping building block (F6NSt). The high k characteristics of P(NMA-co-F6NSt)) led to a low voltage operation, a small power consumption, and a good digital information storage capacity. Such P(NMA-co-F6NSt) dielectrics in OFET memories with variant NMA/F6NSt molar ratios (100/0 (P1), 95/5 (P2), 80/20 (P3), and 67/33 (P4)) showed excellent insulating properties and good charge storage performance under a low operating voltage below ±5V, due to the tightly network structures after crosslinking and well-dispersed trapping cites (i.e. fluorene moieties). P3-based memory device, in particular, exhibited largest memory window of 4.13 V among the studied polymers, and possessed stable data retention stability over 104 s with a high on/off current ratio (i.e. 104) and good endurance characteristics of more than 200 write-read-write-erase (WRER) cycles. The above results suggested that a high-performance OFET memory device could be facilely achieved using the novel synthesized high-k copolymers.

  1. Superior Charge Storage and Power Density of a Conducting Polymer-Modified Covalent Organic Framework

    PubMed Central

    2016-01-01

    The low conductivity of two-dimensional covalent organic frameworks (2D COFs), and most related coordination polymers, limits their applicability in optoelectronic and electrical energy storage (EES) devices. Although some networks exhibit promising conductivity, these examples generally lack structural versatility, one of the most attractive features of framework materials design. Here we enhance the electrical conductivity of a redox-active 2D COF film by electropolymerizing 3,4-ethylenedioxythiophene (EDOT) within its pores. The resulting poly(3,4-ethylenedioxythiophene) (PEDOT)-infiltrated COF films exhibit dramatically improved electrochemical responses, including quantitative access to their redox-active groups, even for 1 μm-thick COF films that otherwise provide poor electrochemical performance. PEDOT-modified COF films can accommodate high charging rates (10–1600 C) without compromising performance and exhibit both a 10-fold higher current response relative to unmodified films and stable capacitances for at least 10 000 cycles. This work represents the first time that electroactive COFs or crystalline framework materials have shown volumetric energy and power densities comparable with other porous carbon-based electrodes, thereby demonstrating the promise of redox-active COFs for EES devices. PMID:27725966

  2. Superior Charge Storage and Power Density of a Conducting Polymer-Modified Covalent Organic Framework.

    PubMed

    Mulzer, Catherine R; Shen, Luxi; Bisbey, Ryan P; McKone, James R; Zhang, Na; Abruña, Héctor D; Dichtel, William R

    2016-09-28

    The low conductivity of two-dimensional covalent organic frameworks (2D COFs), and most related coordination polymers, limits their applicability in optoelectronic and electrical energy storage (EES) devices. Although some networks exhibit promising conductivity, these examples generally lack structural versatility, one of the most attractive features of framework materials design. Here we enhance the electrical conductivity of a redox-active 2D COF film by electropolymerizing 3,4-ethylenedioxythiophene (EDOT) within its pores. The resulting poly(3,4-ethylenedioxythiophene) (PEDOT)-infiltrated COF films exhibit dramatically improved electrochemical responses, including quantitative access to their redox-active groups, even for 1 μm-thick COF films that otherwise provide poor electrochemical performance. PEDOT-modified COF films can accommodate high charging rates (10-1600 C) without compromising performance and exhibit both a 10-fold higher current response relative to unmodified films and stable capacitances for at least 10 000 cycles. This work represents the first time that electroactive COFs or crystalline framework materials have shown volumetric energy and power densities comparable with other porous carbon-based electrodes, thereby demonstrating the promise of redox-active COFs for EES devices.

  3. Highly optimized CO2 capture by inexpensive nanoporous covalent organic polymers and their amine composites.

    PubMed

    Patel, Hasmukh A; Yavuz, Cafer T

    2015-01-01

    Carbon dioxide (CO2) storage and utilization requires effective capture strategies that limit energy penalties. Polyethylenimine (PEI)-impregnated covalent organic polymers (COPs) with a high CO2 adsorption capacity are successfully prepared in this study. A low cost COP with a high specific surface area is suitable for PEI loading to achieve high CO2 adsorption, and the optimal PEI loading is 36 wt%. Though the adsorbed amount of CO2 on amine impregnated COPs slightly decreased with increasing adsorption temperature, CO2/N2 selectivity is significantly improved at higher temperatures. The adsorption of CO2 on the sorbent is very fast, and a sorption equilibrium (10% wt) was achieved within 5 min at 313 K under the flow of simulated flue gas streams. The CO2 capture efficiency of this sorbent is not affected under repetitive adsorption-desorption cycles. The highest CO2 capture capacity of 75 mg g(-1) at 0.15 bar is achieved under dry CO2 capture however it is enhanced to 100 mg g(-1) in the mixed gas flow containing humid 15% CO2. Sorbents were found to be thermally stable up to at least 200 °C. TGA and FTIR studies confirmed the loading of PEIs on COPs. This sorbent with high and fast CO2 sorption exhibits a very promising application in direct CO2 capture from flue gas.

  4. Fabrication of an organic field effect transistor using nano imprinting of Ag inks and semiconducting polymers

    NASA Astrophysics Data System (ADS)

    Hu, PingAn; Li, Kun; Chen, Weilin; Peng, Li; Chu, Daping; O'Neill, William

    2010-07-01

    A simple and cheap procedure for flexible electronics fabrication was demonstrated by imprinting metallic nanoparticles (NPs) on flexible substrates. Silver NPs with an average diameter of 10 nm were prepared via an improved chemical approach and Ag Np ink was produced in α-terpineol with a concentration up to 15%. Silver micro/nanostructures with a dimension varying from nanometres to microns were produced on a flexible substrate (polyimide) by imprinting the as-prepared silver ink. The fine fluidic properties of an Ag NP/α-terpineol solution and low melting temperatures of silver nanoparticles render a low pressure and low temperature procedure, which is well suited for flexible electronics fabrication. The effects of sintering and mechanical bending on the conductivity of imprinted silver contacts were also investigated. Large area organic field effect transistors (OFET) on flexible substrates were fabricated using an imprinted silver electrode and semiconducting polymer. The OFET with silver electrodes imprinted from our prepared oleic acid stabilized Ag nanoparticle ink show an ideal ohmic contact; therefore, the OFET exhibit high performance (Ion/Ioff ratio: 1 × 103; mobility: 0.071 cm2 V-1 s-1).

  5. A 'Plug and Play' Method to Create Water-dispersible Nanoassemblies Containing an Amphiphilic Polymer, Organic Dyes and Upconverting Nanoparticles.

    PubMed

    Arafeh, Khaled M; Asadirad, Amir M; Li, Jason Woodson; Wilson, Danielle; Wu, Tuoqi; Branda, Neil R

    2015-11-14

    In this protocol, we first describe a procedure to synthesize lanthanide doped upconverting nanoparticles (UCNPs). We then demonstrate how to generate amphiphilic polymers in situ, and describe a protocol to encapsulate the prepared UCNPs and different organic dye molecules (porphyrins and diarylethenes) using polymer shells to form stable water-dispersible nanoassemblies. The nanoassembly samples containing both the UCNPs and the diarylethene organic dyes have interesting photochemical and photophysical properties. Upon 365 nm UV irradiation, the diarylethene group undergoes a visual color change. When the samples are irradiated with visible light of another specific wavelength, the color fades and the samples return to the initial colorless state. The samples also emit visible light from the UCNPs upon irradiation with 980 nm near-infrared light. The emission intensity of the samples can be tuned through alternate irradiation with UV and visible light. Modulation of fluorescence can be performed for many cycles without observable degradation of the samples. This versatile encapsulation procedure allows for the transfer of hydrophobic molecules and nanoparticles from an organic solvent to an aqueous medium. The polymer helps to maintain a lipid-like microenvironment for the organic molecules to aid in preservation of their photochemical behavior in water. Thus this method is ideal to prepare water-dispersible photoresponsive systems. The use of near-infrared light to activate upconverting nanoparticles allows for lower energy light to be used to activate photoreactions instead of more harmful ultraviolet light.

  6. Lithography-free high-resolution inkjet-printed OFET (organic field effect transistor) fabrication on polymer by laser processing

    NASA Astrophysics Data System (ADS)

    Ko, Seung Hwan; Pan, Heng; Grigoropoulos, Costas P.; Poulikakos, Dimos

    2007-02-01

    The low temperature fabrication of OFET (organic field effect transistor) on the flexible polymer substrate is presented in this paper. A drop-on-demand (DOD) ink-jetting system was used to print gold nano-particles suspended in Alpha-Terpineol solvent, PVP (poly-4-vinylphenol) in PGMEA (propylene glycol monomethyl ether acetate) solvent, semiconductor polymer (modified polythiophene) in dichlorobenzene (o-DCB) solution to fabricate OFET on flexible polymer substrates. Short pulsed laser ablation enabled finer electrical components to overcome the resolution limitation of inkjet deposition. Continuous Argon ion laser was irradiated locally to evaporate carrier solvent as well as to sinter gold nano-particles. In addition, a new selective ablation of multilayered gold nanoparticle film was demonstrated using the SPLA-DAT (selective pulsed laser ablation by differential ablation threshold) scheme for sintered and non-sintered gold nanoparticles. Finally, selective ablation of multilayered film was used to define narrow channel of a FET (field effect transistor) and semiconductor polymer solution was deposited on top of channel to complete OFET (organic field effect transistor) fabrication.

  7. Hyperthermal Intact Molecular Ions Play Key Role in Retention of ATRP Surface Initiation Capability of Plasma Polymer Films from Ethyl α-Bromoisobutyrate.

    PubMed

    Saboohi, Solmaz; Coad, Bryan R; Michelmore, Andrew; Short, Robert D; Griesser, Hans J

    2016-06-29

    We report a systematic study of the plasma polymerization of ethyl α-bromoisobutyrate (EBIB) to produce thin film coatings capable of serving as ATRP initiation surfaces, for which they must contain α-bromoisobutyryl functional groups. In the deposition of polymeric coatings by plasma polymerization there generally occurs considerable fragmentation of precursor ("monomer") molecules in the plasma; and the retention of larger structural elements is challenging, particularly when they are inherently chemically labile. Empirical principles such as low plasma power and low pressure are usually utilized. However, we show that the α-bromoisobutyryl structural moiety is labile in a plasma gas phase and in low pressure plasma conditions, below the collisional threshold, there is little retention. At higher pressure, in contrast, fragmentation of this structural motif appears to be reduced substantially, and coatings useful for ATRP initiation were obtained. Mass spectrometry analysis of the composition of the plasma phase revealed that the desired structural moiety can be retained through the plasma, if the plasma conditions are steered toward ions of the precursor molecule. Whereas at low pressure the plasma polymer assembles mainly from various neutral (radical) fragments, at higher pressure the deposition occurs from hyperthermal ions, among which the protonated intact molecular ion is the most abundant. At higher pressure, a substantial population of ions has low kinetic energy, leading to "soft landing" and thus less fragmentation. This study demonstrates that relatively complex structural motifs in precursor molecules can be retained in plasma polymerization if the chemical and physical processes occurring in the plasma phase are elucidated and controlled such that desirable larger structural elements play a key role in the film deposition.

  8. Design of hybrid conjugated polymer materials: 1) Novel inorganic/organic hybrid semiconductors and 2) Surface modification via grafting approaches

    NASA Astrophysics Data System (ADS)

    Peterson, Joseph J.

    The research presented in this dissertation focuses on the design and synthesis of novel hybrid conjugated polymer materials using two different approaches: (1) inorganic/organic hybrid semiconductors through the incorporation of carboranes into the polymer structure and (2) the modification of surfaces with conjugated polymers via grafting approaches. Hybrid conjugated polymeric materials, which are materials or systems in which conjugated polymers are chemically integrated with non-traditional structures or surfaces, have the potential to harness useful properties from both components of the material to help overcome hurdles in their practical realization in polymer-based devices. This work is centered around the synthetic challenges of creating new hybrid conjugated systems and their potential for advancing the field of polymer-based electronics through both greater understanding of the behavior of hybrid systems, and access to improved performance and new applications. Chapter 1 highlights the potential applications and advantages for these hybrid systems, and provides some historical perspective, along with relevant background materials, to illustrate the rationale behind this work. Chapter 2 explores the synthesis of poly(fluorene)s with pendant carborane cages. The Ni(0) dehalogenative polymerization of a dibromofluorene with pendant carborane cages tethered to the bridging 9-position produced hybrid polymers produced polymers which combined the useful emissive characteristics of poly(fluorene) with the thermal and chemical stability of carborane cages. The materials were found to display increased glass transition temperatures and showed improved emission color stability after annealing at high temperatures relative to the non-hybrid polymer. The design and synthesis of a poly(fluorene)-based hybrid material with carborane cages in the backbone, rather than as pendant groups, begins in chapter 3. Poly(fluorene) with p-carborane in the backbone is

  9. Etching method for photoresists or polymers

    NASA Technical Reports Server (NTRS)

    Lerner, Narcinda R. (Inventor); Wydeven, Theodore J., Jr. (Inventor)

    1991-01-01

    A method for etching or removing polymers, photoresists, and organic contaminants from a substrate is disclosed. The method includes creating a more reactive gas species by producing a plasma discharge in a reactive gas such as oxygen and contacting the resulting gas species with a sacrificial solid organic material such as polyethylene or polyvinyl fluoride, reproducing a highly reactive gas species, which in turn etches the starting polymer, organic contaminant, or photoresist. The sample to be etched is located away from the plasma glow discharge region so as to avoid damaging the substrate by exposure to high energy particles and electric fields encountered in that region. Greatly increased etching rates are obtained. This method is highly effective for etching polymers such as polyimides and photoresists that are otherwise difficult or slow to etch downstream from an electric discharge in a reactive gas.

  10. Polymer enzyme conjugates as chiral ligands for sharpless dihydroxylation of alkenes in organic solvents.

    PubMed

    Konieczny, Stefan; Leurs, Melanie; Tiller, Joerg C

    2015-01-02

    Conjugates of enzymes and poly(2-methyloxazoline) were used as organosoluble amphiphilic polymer nanocontainers for dissolving osmate, thereby converting the enzymes into organosoluble artificial metalloenzymes. These were shown to catalyze the dihydroxylation of different alkenes with high enantioselectivity. The highest selectivities, found for osmate complexed with laccase polymer-enzyme conjugates (PECs), even exceed those of classical Sharpless catalysts.

  11. Organic acids enhanced decoloration of azo dye in gas phase surface discharge plasma system.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Ren, Jingyu; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2016-01-25

    A gas phase surface discharge plasma combined with organic acids system was developed to enhance active species mass transfer and dye-containing wastewater treatment efficacy, with Acid Orange II (AO7) as the model pollutant. The effects of discharge voltage and various organic acid additives (acetic acid, lactic acid and nonoic acid) on AO7 decoloration efficiency were evaluated. The experimental results showed that an AO7 decoloration efficiency of approximately 69.0% was obtained within 4 min of discharge plasma treatment without organic acid addition, which was improved to 82.8%, 83.5% and 88.6% within the same treatment time with the addition of acetic acid, lactic acid and nonoic acid, respectively. The enhancement effects on AO7 decoloration efficiency could be attributed to the decrease in aqueous surface tension, improvement in bubble distribution and shape, and increase in ozone equivalent concentration. The AO7 wastewater was biodegradable after discharge plasma treatment with the addition of organic acid. AO7 decomposition intermediates were analyzed by UV-vis spectrometry and GC-MS; 2-naphthol, 1,4-benzoquinone, phthalic anhydride, coumarin, 1,2-naphthoquinone, and 2-formyl-benzoic acid were detected. A possible pathway for AO7 decomposition in this system was proposed.

  12. Photoluminescent zinc oxide polymer nanocomposites fabricated using picosecond laser ablation in an organic solvent

    NASA Astrophysics Data System (ADS)

    Wagener, Philipp; Faramarzi, Shamsolzaman; Schwenke, Andreas; Rosenfeld, Rupert; Barcikowski, Stephan

    2011-06-01

    Nanocomposites made of ZnO nanoparticles dispersed in thermoplastic polyurethane were synthesized using picosecond laser ablation of zinc in a polymer-doped solution of tetrahydrofuran. The pre-added polymer stabilizes the ZnO nanoparticles in situ during laser ablation by forming a polymer shell around the nanoparticles. This close-contact polymer shell has a layer thickness up to 30 nm. Analysis of ZnO polyurethane nanocomposites using optical spectroscopy, high resolution transmission electron microscopy and X-ray diffraction revealed that oxidized and crystalline ZnO nanoparticles were produced. Those nanocomposites showed a green photoluminescence emission centred at 538 nm after excitation at 350 nm, which should be attributed to oxygen defects generated during the laser formation mechanism of the monocrystalline nanoparticles. Further, the influence of pulse energy and polymer concentration on the production rate, laser fluence and energy-specific mass productivity was investigated.

  13. Observation of Multiple Reconnections during Self-organization Process of High Temperature Fusion Plasma

    NASA Astrophysics Data System (ADS)

    Park, H. K.; Tobias, B.; Choi, M. J.; Yun, G. S.; Domier, C. W.; Luhmann, N. C., Jr.; Munsat, T.; Donné, A. J. H.; Spakman, G. W.; Textor Team

    2011-10-01

    Images of a high resolution 2-D Electron Cyclotron Emission Imaging (ECEI) diagnostic shows evidence of multiple magnetic reconnection processes during the internal disruption of a high temperature tokamak plasmas. The disruption induces magnetic self-organization of the toroidal plasma being accompanied by successive or simultaneous multiple layer reconnection. The degree of asymmetric deformation of the internal magnetic structure (m/n=1/1 mode) prior to temperature crash influences the outcome of the disruptive behavior. The observation is critical for the building block of first principle theoretical modeling of the sawtooth oscillation in current driven toroidal plasmas and the understandings can be applied to the impulsive disruptive behavior in flares of the solar, accretion disk and stellar coronae, Earth magnetospheric storms, and controlled fusion. Work supported by the NRF of Korea, the US DOE, the NWO of the Netherlands, and the EURATOM-FOM association.

  14. Comparison of the Behavior of Polymers in Supercritical Fluids and Organic Solvents Via Small Angle Neutron Scattering

    SciTech Connect

    Melnichenko, Y.B.; Kiran, E.; Heath, K.D.; Salaniwal, S.; Cochran, H.D.; Stamm, M.; Van Hook, W.A.; Wignall, G.D.

    1999-05-17

    Small-angle neutron scattering has been used to study the effect of temperature and pressure on the phase behavior of semidilute solutions of polymers dissolved in organic and supercritical solvents. Above the theta temperature (To), these systems exhibit a ''good solvent'' domain, where the molecules expand beyond the unperturbed dimensions in both organic solvents and in COZ. However, this transition can be made to occur at a critical ''theta pressure'' (PO) in CO2 and this represents a new concept in the physics of polymer-solvent systems. For T < To, and P < Po, the system enters the ''poor solvent'' domain where diverging concentration fluctuations prevent the chains from collapsing and allow them to maintain their unperturbed dimensions.

  15. ``Living polymers'' in organic solvents : stress relaxation in bicopper tetracarboxylate/tert-butyl cyclohexane solutions

    NASA Astrophysics Data System (ADS)

    Terech, P.; Maldivi, P.; Dammer, C.

    1994-10-01

    Viscoelastic solutions of a bicopper tetracarboxylate complex in tert-butylcyclohexane have been studied by dynamic rheology in a wide range of concentrations (0.5-1.5 % volume fraction). The zero shear viscosity, the elastic modulus, the terminal stress relaxation time and the height of the high-frequency dip, in a Cole-Cole representation of the complex elastic modulus, follow scaling laws. The related exponents are discussed in the context of the physics of “living polymers” : a term used to describe worm-like species undergoing scission/recombination reactions competing mainly with the reptation motions of the chains. The current system, made up of molecular threads (17.5 Å diameter) of Cu2(O2C-CH(C2H5)C4H9)4 in the apolar solvent, is representative of a “living polymer” where, instead of mechanisms involving transient star polymeric crosslinks, a reversible scission mechanism prevails. The dynamics in the high-frequency range evolves from a regime where reptation is the dominant relaxation mechanism to a cross-over regime where “breathing” fluctuations and Rouse motions become important. Large modifications of the stress relaxation function occur for more concentrated systems. The binary system is the first example of a “living polymer” in an organic solvent and exhibits elastic moduli (G ≈ ca. 120 Pa à φ = 1 %) which are at least 20 times larger than those found for the aqueous “living polymer” systems. Les solutions viscoélastiques d'un tétracarboxylate binucléaire de cuivre dans le tert-butylcyclohexane sont étudiées par rhéologie en mode dynamique dans une gamme étendue de concentrations (0,5 %-15,5 %). La viscosité à gradient nul, le module élastique, le temps terminal de relaxation et la hauteur du puits à haute fréquence, dans une représentation Cole-Cole du module élastique complexe, suivent des lois d'échelles. Les exposants correspondants sont discutés dans le contexte de la physique des “polymères vivants

  16. Eisosomes promote the ability of Sur7 to regulate plasma membrane organization in Candida albicans

    PubMed Central

    Wang, Hong X.; Douglas, Lois M.; Veselá, Petra; Rachel, Reinhard; Malinsky, Jan; Konopka, James B.

    2016-01-01

    The plasma membrane of the fungal pathogen Candida albicans forms a protective barrier that also mediates many processes needed for virulence, including cell wall synthesis, invasive hyphal morphogenesis, and nutrient uptake. Because compartmentalization of the plasma membrane is believed to coordinate these diverse activities, we examined plasma membrane microdomains termed eisosomes or membrane compartment of Can1 (MCC), which correspond to ∼200-nm-long furrows in the plasma membrane. A pil1∆ lsp1∆ mutant failed to form eisosomes and displayed strong defects in plasma membrane organization and morphogenesis, including extensive cell wall invaginations. Mutation of eisosome proteins Slm2, Pkh2, and Pkh3 did not cause similar cell wall defects, although pkh2∆ cells formed chains of furrows and pkh3∆ cells formed wider furrows, identifying novel roles for the Pkh protein kinases in regulating furrows. In contrast, the sur7∆ mutant formed cell wall invaginations similar to those for the pil1∆ lsp1∆ mutant even though it could form eisosomes and furrows. A PH-domain probe revealed that the regulatory lipid phosphatidylinositol 4,5-bisphosphate was enriched at sites of cell wall invaginations in both the sur7∆ and pil1∆ lsp1∆ cells, indicating that this contributes to the defects. The sur7∆ and pil1∆ lsp1∆ mutants displayed differential susceptibility to various types of stress, indicating that they affect overlapping but distinct functions. In support of this, many mutant phenotypes of the pil1∆ lsp1∆ cells were rescued by overexpressing SUR7. These results demonstrate that C. albicans eisosomes promote the ability of Sur7 to regulate plasma membrane organization. PMID:27009204

  17. Characterizing metal coordination environments in porous organic polymers: a joint density functional theory and experimental infrared spectroscopy study.

    PubMed

    López-Encarnación, Juan M; Tanabe, Kristine K; Johnson, Marc J A; Jellinek, Julius

    2013-10-04

    Very POP right now! DFT computational analysis on the structural, energetic, and IR spectroscopic characteristics of a porous organic polymer support, [Ta(NMe2 )5 ] as a molecular precursor, and the catalytic material synthesized from these two components are presented and analyzed against recorded IR spectra of these systems. The analysis leads to unambiguous identification of the atomic structure of the POP-supported Ta-amide reaction center synthesized in the experiment.

  18. Robust platforms for creating organic-inorganic nanocomposite microspheres: decorating polymer microspheres containing mussel-inspired adhesion layers with inorganic nanoparticles.

    PubMed

    Satoh, H; Saito, Y; Yabu, H

    2014-12-07

    We describe a method for creating robust and stable core-shell polymer microspheres decorated with inorganic (IO) nanoparticles (NPs) by a self-organization process and heterocoagulation using a mussel-inspired polymer adhesive layer between the IO NPs and the microspheres.

  19. Unsubstituted Benzodithiophene-Based Conjugated Polymers for High-Performance Organic Field-Effect Transistors and Organic Solar Cells.

    PubMed

    Chen, Weichao; Xiao, Manjun; Han, Liangliang; Zhang, Jidong; Jiang, Huanxiang; Gu, Chuantao; Shen, Wenfei; Yang, Renqiang

    2016-08-03

    Unsubstituted benzo[1,2-b:4,5-b']dithiophene (BDT) was used to construct a high-performance conjugated polymer with 5,6-difluoro-4,7-bis[4-(2-octyldodecyl)thiophene-2-yl]benzo[c][1,2,5] thiadiazole (DTFFBT), named PBDT-DTFFBT. The polymer shows the low-lying highest occupied molecular orbital (HOMO) energy level (-5.40 eV) and a broad absorption spectra with strong vibronic absorption peak. Pure polymer films exhibit good crystallinity and edge-on orientation, partially attributed to the BDT units without any side chains, and as a result, the corresponding thin-film transistor showed excellent hole mobility over 1 cm(2) V(-1) s(-1). Interestingly, a well-distributed nanofibrillar polymer aggregation with face-on orientation was obviously formed when blending with PC71BM, which was in favor of the charge transportation. Consequently, the bulk heterojunction polymer solar cells based on the blends showed high power conversion efficiency of 9.29% with large short-current density (14.56 mA cm(-2)) and high fill factor (0.751) without any process additives or thermal annealing.

  20. Dynamics of bounded self-organized dust flow in a complex plasma

    NASA Astrophysics Data System (ADS)

    Laishram, Modhuchandra; Sharma, Devendra; Kaw, P. K.

    2016-10-01

    Micron sized, highly charged, dust particles constitute a complex medium that exhibits fluid-like behavior when suspended in a quasineutral plasma either using electrostatic levitation or under the micro-gravity conditions. Although the dust particles interact strongly via a partially screened Coulomb force, when subjected to drivers like plasma drag, thermophoratic force or gradients of plasma parameters, the dust fluid is driven to non equilibrium states and develops self organized flows representable by the standard hydrodynamic model. The present analysis of self organized dust flow formations uses 2D fluid dynamics to recover the analytic dependence of the observables like flow shear at a curvilinear boundary and corresponding Reynolds number on the conventional dust transport coefficients for a bounded dust medium subjected to a volumetric drive. In the linear limit of the 2-dimensional Navier-Stokes flow regime of the medium, the effective boundary layer width is recovered to scale with the dust kinematic viscosity μ as δr μ 1/3, while the effective Reynolds number follows Re μ - 2 / 3. At relatively higher Reynolds number the dust flow structures show signatures of nonlinear effects requiring extension of the 2D fluid analysis to the nonlinear regime. Institute for Plasma Research, Bhat, Gandhinagar, India, 382428.

  1. The Mochi project: a field theory approach to plasma dynamics and self-organization

    NASA Astrophysics Data System (ADS)

    You, Setthivoine; von der Linden, Jens; Lavine, Eric Sander; Card, Alexander; Carroll, Evan

    2016-10-01

    The Mochi project is designed to study the interaction between plasma flows and magnetic fields from the point-of-view of canonical flux tubes. The Mochi Labjet experiment is being commissioned after achieving first plasma. Analytical and numerical tools are being developed to visualize canonical flux tubes. One analytical tool described here is a field theory approach to plasma dynamics and self-organization. A redefinition of the Lagrangian of a multi-particle system in fields reformulates the single-particle, kinetic, and fluid equations governing fluid and plasma dynamics as a single set of generalized Maxwell's equations and Ohm's law for canonical force-fields. The Lagrangian includes new terms representing the coupling between the motion of particle distributions, between distributions and electromagnetic fields, with relativistic contributions. The formulation shows that the concepts of self-organization and canonical helicity transport are applicable across single-particle, kinetic, and fluid regimes, at classical and relativistic scales. The theory gives the basis for comparing canonical helicity change to energy change in general systems. This work is supported by by US DOE Grant DE-SC0010340.

  2. Novel organic polymer-inorganic hybrid material zinc poly(styrene-phenylvinylphosphonate)-phosphate prepared with a simple method

    SciTech Connect

    Huang Jing; Fu Xiangkai; Wang Gang; Miao Qiang

    2011-09-15

    A novel type of organic polymer-inorganic hybrid material layered crystalline zinc poly(styrene-phenylvinylphosphonate)-phosphate (ZnPS-PVPP) was synthesized under mild conditions in the absence of any template. And the ZnPS-PVPP were characterized by FT-IR, diffusion reflection UV-vis, AAS, N{sub 2} volumetric adsorption, SEM, TEM and TG. Notably, this method was entirely different from the traditional means used for preparing other zinc phosphonate. Moreover, it could be deduced that ZnPS-PVPP possessed the potential applications for catalyst supports. In the initial catalytic tests, the catalysts immobilized onto ZnPS-PVPP showed comparable or higher activity and enantioselectivity with that of catalysts reported by our group in the asymmetric epoxidation of unfunctional olefins. - Graphical Abstract: Zinc poly(styrene-phenylvinylphosphonate)-phosphate was a novel type of layered crystalline organic polymer-inorganic hybrid material prepared under mild conditions without addition of any template and could be used as heterogeneous catalyst supports. Highlights: > New types of layered crystalline inorganic-organic polymer hybrid materials zinc poly(styrene-phenylvinylphosphonate-phosphate(ZnPS-PVPP)). > ZnPS-PVPP prepared under mild condition without adding of any template. > Immobilized chiral salen Mn (III) catalysts on ZnPS-PVPP supports show comparative activity and enantioselectivity with that of on ZSPP or ZPS-PVPA.

  3. Temperature and exposure dependence of hybrid organic-inorganic layer formation by sequential vapor infiltration into polymer fibers.

    PubMed

    Akyildiz, Halil I; Padbury, Richard P; Parsons, Gregory N; Jur, Jesse S

    2012-11-06

    The characteristic processing behavior for growth of a conformal nanoscale hybrid organic-inorganic modification to polyamide 6 (PA6) by sequential vapor infiltration (SVI) is demonstrated. The SVI process is a materials growth technique by which exposure of organometallic vapors to a polymeric material promotes the formation of a hybrid organic-inorganic modification at the near surface region of the polymer. This work investigates the SVI exposure temperature and cycling times of sequential exposures of trimethylaluminum (TMA) on PA6 fiber mats. The result of TMA exposure is the preferential subsurface organic-inorganic growth by diffusion into the polymer and reaction with the carbonyl in PA6. Mass gain, infrared spectroscopy, and transmission electron microscopy analysis indicate enhanced materials growth and uniformity at lower processing temperatures. The inverse relationship between mass gain and exposure temperature is explained by the formation of a hybrid layer that prevents the diffusion of TMA into the polymer to react with the PA6 upon subsequent exposure cycles. As few as 10 SVI exposure cycles are observed to saturate the growth, yielding a modified thickness of ∼75 nm and mass increase of ∼14 wt %. Removal of the inherent PA6 moisture content reduces the mass gain by ∼4 wt % at low temperature exposures. The ability to understand the characteristic growth process is critical for the development of the hybrid materials fabrication and modification techniques.

  4. Effect of ultraviolet and x-ray radiation on optical properties of epoxy polymers dyed with organic phosphors

    NASA Astrophysics Data System (ADS)

    Laurinas, V. CH; Kasymov, S. S.; Yurov, V. M.; Eremin, E. N.; Vedyashkin, M. V.

    2017-01-01

    Highly purified industrial bisphenol and cycloaliphatic epoxy oligomers of ED-24 and UP-612 brands were used to produce optically transparent products. UV radiation of a low-pressure mercury lamp with 80% of the light energy at 254 nm was used to study photodegradation. X-ray apparatus with 0.7BSV- Ag tube was used as an ionizing radiation source to investigate the effect of X-rays on the spectra of organic dyes in epoxy polymer. The threshold value of the energy generated by ruby laser which indicated the degradation in the test samples recorded by light scattering method was determined to study radiation resistance of epoxy polymers. Basically, all the dyes exhibited high resistance to UV light. The observation of the absorption spectra showed that on average, a third of the dye molecules in the matrix experienced photobleaching within 200 hour exposure. The exception was coumarin 1, which was completely decolourized after 40 hours of exposure. X-ray irradiation of the samples for two hours results in the change in the optical density equivalent to that caused by 40 hour exposure to UV irradiation. However, in the first case, the matrix optical density is proportional to the irradiation time, and in the second case, it remains stable upon further UV irradiation. The comparison of photoaging processes in dyed and undyed epoxy polymers showed that the investigated organic dyes do not have a sensitizing effect on the matrix. The stability of the optical properties of the epoxy matrices exposed to the effects of different factors was found to depend on the nature of epoxy polymer and the technique of its production. The results of these effects are significantly different in the character of the change in the optical density and mechanisms of chemical transformations in polymer.

  5. Analysis of a gas-liquid film plasma reactor for organic compound oxidation.

    PubMed

    Hsieh, Kevin; Wang, Huijuan; Locke, Bruce R

    2016-11-05

    A pulsed electrical discharge plasma formed in a tubular reactor with flowing argon carrier gas and a liquid water film was analyzed using methylene blue as a liquid phase hydroxyl radical scavenger and simultaneous measurements of hydrogen peroxide formation. The effects of liquid flow rate, liquid conductivity, concentration of dye, and the addition of ferrous ion on dye decoloration and degradation were determined. Higher liquid flow rates and concentrations of dye resulted in less decoloration percentages and hydrogen peroxide formation due to initial liquid conductivity effects and lower residence times in the reactor. The highest decoloration energy yield of dye found in these studies was 5.2g/kWh when using the higher liquid flow rate and adding the catalyst. The non-homogeneous nature of the plasma discharge favors the production of hydrogen peroxide in the plasma-liquid interface over the chemical oxidation of the organic in the bulk liquid phase and post-plasma reactions with the Fenton catalyst lead to complete utilization of the plasma-formed hydrogen peroxide.

  6. Atomic and molecular physics of plasma-based environmental technologies for abatement of volatile organic compounds

    SciTech Connect

    Penetrante, B.M.; Hsiao, M.C.; Bardsley, J.N.; Merritt, B.T.; Vogtlin, G.E.; Kuthi, A.; Burkhart, C.P.; Bayless, J.R.

    1996-08-01

    Non-thermal plasma techniques represent a new generation of air emission control technology that potentially could treat large-volume emissions containing dilute concentrations of volatile organic compounds (VOCs). In order to apply non-thermal plasmas in an industrial scale, it is important to establish the electrical power requirements and byproducts of the process. There is a need for reliable data concerning the primary decomposition mechanisms and subsequent chemical kinetics associated with non-thermal processing of VOCs. There are many basic atomic and molecular physics issues that are essential in evaluating the economic performance of non- thermal plasma reactors. These studies are important in understanding how the input electrical power is dissipated in the plasma and how efficiently it is converted to the production of the plasma species (radicals, ions, or electrons) responsible for the decomposition of the VOCs. This paper will present results from the basic experimental and theoretical studies aimed at identifying the reaction mechanisms responsible for the primary decomposition of various types of VOCs.

  7. Molecular dynamics simulations of linear and cyclic amphiphilic polymers in aqueous and organic environments.

    PubMed

    Liu, Lixin; Parameswaran, Sreeja; Sharma, Arjun; Grayson, Scott M; Ashbaugh, Henry S; Rick, Steven W

    2014-06-19

    We have studied the conformational changes of two novel amphiphilic homopolymers in water and toluene relevant to delivery applications using molecular dynamics simulations supplemented with enhanced sampling techniques. The individual homopolymer repeating units are amphiphilic with a hydrophobic dodecyl chain and a hydrophilic tetra(ethylene glycol) chain attached via ether linkages to each repeating unit of the polymer backbone. Two polymer topologies were examined: one cyclic and one an exact linear analog. Here we show that these polymers exhibit highly dynamic conformations with the side arm orientations driven by the solvent polarity. In water these polymers exhibit a compact conformation with the hydrophobic arms retracted toward the backbone core, whereas in toluene the hydrophobic arms extended into the solvent. Different from the hydrophobic arms, the hydrophilic ethylene glycol chain orientations and backbone conformations are largely unperturbed by the solvent polarity. Probing the polymer microenvironment in different solvents to examine solute uptake supports the hypothesis that these polymers can selectively encapsulate/release guest molecules depending on the solvent polarity, highlighting the potential of these polymers as drug delivery vehicles.

  8. Polymer-assisted deposition of co-doped zinc oxide thin films for the detection of aromatic organic compounds.

    PubMed

    Li, Wei; Kim, Dojin

    2011-12-01

    Co-doped Zinc oxide thin films are deposited onto SiO2/Si substrate by polymer-assisted deposition method. The surface morphology, structures and chemical states of the thin films are examined by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The gas-sensing properties of the thin films upon exposure to aromatic organic compound vapors are also investigated. Co-doping is shown to be very effective in enhancing the response of ZnO thin film to aromatic organic compound.

  9. [Preparation and evaluation of pepsin affinity organic polymer capillary monolithic column].

    PubMed

    Chi, Cuijie; Wang, Wei; Ji, Yibing

    2014-08-01

    The protein modified monolithic column in affinity capillary electrochromatography (CEC) has attracted considerable attention over the past decades because of its great enantioseparation ability. A porous polymethacrylate ester-based capillary monolithic column poly (glycidyl methacrylate-co-ethyleneglycol dimethacrylate) (poly (GMA-co-EDMA)) was prepared by in situ co-polymerization. The process was initiated thermally by azobisisobutyronitrile (AIBN). The polymerization mixture contained GMA as the function monomer and EDMA as the crosslinking agent with 1,4-butanediol and 1-propanol as the binary porogen solvent. Under the optimized reaction conditions, including the proportion of monomer and porogens, reaction temperature etc, the column exhibited a uniform structure, sufficient permeability and excel- lent pressure resistance. The separation of alkyl benzenes on the column was mainly based on typical reversed-phase chromatographic retention mechanism. The reproducibility and stability were good with RSDs less than 9. 0%. A pepsin functionalized organic polymer monolith was prepared by covalently bonded pepsin to poly(GMA-co-EDMA) monolith with glutaraldehyde as a spacer based on the activity of epoxide group. The enantioseparation performance of the pepsin affinity monolith for basic enantiomers has been investigated by CEC. Nefopam, amlodipine, citalopram and chlorpheniramine were resolved, and baseline separations of nefopam, amlodipine, citalopram were achieved. The influences of pH, operating voltage, temperature and sample quantity used on the chiral separation were studied. The chiral recognition mechanism of enantiomers on the monolithic column in CEC is discussed. This work developed a new method for the prepataion and application of protein affinity monolith in CEC.

  10. Two novel metal–organic coordination polymers based on diphosphonate and oxalate: Synthesis, structures and properties

    SciTech Connect

    Niu, Qing-Jun; Zheng, Yue-Qing Zhou, Lin-Xia; Zhu, Hong-Lin

    2015-07-15

    Two 2-(1-imidazole)-1-hydroxyl-1,1'-ethylidenediphosphonato and oxalic acid bridged coordination polymers (H{sub 2}en)[Co{sub 3}(H{sub 2}zdn){sub 2}(ox)(H{sub 2}O){sub 2}] (1) and Cd{sub 2}(H{sub 2}zdn)(ox){sub 0.5}(H{sub 2}O) (2) (2-(1-imidazole)-1-hydroxyl-1,1'-ethylidenediphosphonic acid=H{sub 5}zdn; oxalic acid=H{sub 2}ox) were synthesized under hydrothermal conditions and characterized by the infrared (IR), thermogravimetric analyses (TGA), elemental analyses (EA) and X-ray diffraction (XRD). Compound 1 is bridged by phosphonate anions to 1D chain, and further linked by oxalate anions to 2D layer. Compound 2 is bridged by O–P–O units of H{sub 5}zdn to the layer, and then pillared by oxalate anions to generate 3D frameworks. Compound 1 shows anti-ferromagnetic behaviors analyzed with the temperature-dependent zero-field ac magnetic susceptibilities, while compound 2 exhibits an influence on the luminescent property. - Graphical abstract: Linked by oxalate, two zoledronate-based metal–organic frameworks are synthesized, which exhibits the different frameworks. Magnetism and luminescent properties have been studied. The weak antiferromagnetic coupling is conducted in 1. - Highlights: • Compound 1 and 2 are first linked by oxalate anion based on zoledronic acid. • Compound 1 generates a classic “dia Diamond” (6{sup 6}) topology. • Compound 2 exhibits a (4{sup 4}·6{sup 2})(4{sup 4}·6{sup 6}) topology. • Magnetism and luminescent properties of 1 and 2 have been studied, respectively.

  11. Multivariate statistical characterization of the tolerance of argon inductively coupled plasmas to organic solvents

    NASA Astrophysics Data System (ADS)

    Lopez Molinero, A.; Castillo, J. R.; Chamorro, P.; Muniozguren, J. M.

    1997-01-01

    The tolerance of Argon-inductively coupled plasmas to the introduction of organic solvents, defined by Matsunaga's parameter and by "limiting aspiration rate", has been correlated with their nature by statistical methods. The main physical variables of solvents obtained from the technical literature were used as independent variables to perform principal component analysis (PCA) and factorial discriminant analysis (FDA). Thus the variables which had the greatest influence on heat exchange nebulization and transport processes were determined. Organic solvents were classified into different groups characterized by their tolerance in plasma operation. In the PCA study, the second principal component was the most significative to differentiate between the tolerance of solvents and it showed a high correlation with surface tension, viscosity and heat of vaporization. Scores of the organic solvents belonging to the same class can be adjusted to straight lines and their positions in the plane (expressed as ordinates in the origin) as well as the slope values are characteristics of organic solvent groups. The results of FDA confirms those obtained with PCA. Multivariable regression was applied to obtain predictive equations of the limiting aspiration rate for organic solvents, in terms of their main physical variables.

  12. The Plasma Membrane Potential and the Organization of the Actin Cytoskeleton of Epithelial Cells

    PubMed Central

    Chifflet, Silvia; Hernández, Julio A.

    2012-01-01

    The establishment and maintenance of the polarized epithelial phenotype require a characteristic organization of the cytoskeletal components. There are many cellular effectors involved in the regulation of the cytoskeleton of epithelial cells. Recently, modifications in the plasma membrane potential (PMP) have been suggested to participate in the modulation of the cytoskeletal organization of epithelia. Here, we review evidence showing that changes in the PMP of diverse epithelial cells promote characteristic modifications in the cytoskeletal organization, with a focus on the actin cytoskeleton. The molecular paths mediating these effects may include voltage-sensitive integral membrane proteins and/or peripheral proteins sensitive to surface potentials. The voltage dependence of the cytoskeletal organization seems to have implications in several physiological processes, including epithelial wound healing and apoptosis. PMID:22315611

  13. A successful experience of the Iranian blood transfusion organization in improving accessibility and affordability of plasma derived medicine.

    PubMed

    Chegini, Azita; Torab, Seyed Ardeshir; Pourfatollah, Ali Akbar

    2017-02-01

    Plasma is the liquid part of blood. It is estimated 21.6 million liters of plasma collect from Whole blood annually. From these plasma, 4.2 million liters transfuse, 8.1 million liters fractionate, 9.3 million liters waste. Nowadays, blood products and PDM (plasma derived medicine) consider as essential medicine in modern health care and transfusion medicine. Iranian blood transfusion organization as a non-profit organization was established in 1974 in order to centralize all blood transfusion activities from donor recruitment to distribution of blood components to hospitals. Iran is the only country in EMR region with the rate of 20-29.9 blood donations per 1000 population and reached 100% voluntary non-remunerated blood donation in 2007. RBCs and platelets demand are much more than FFPs so the IBTO was faced the surplus plasma that could cause surplus plasma wastage. Simultaneously, hospitals need more plasma derived medicine especially albumin, IVIG, factor VIII, factor IX. IBTO was faced the challenges such as Fractionators selection, Plasma volume shipment, Contract duration, Product profile, Multiple External audits, Cold chain maintenance, Transporting plasma across international borders, NAT test. To overcome plasma wastage and storage of PDM. IBTO involved toll manufacturing in 2005 and not only prevents plasma wastage but also save MOH (ministry of health) budget.

  14. [Plasma endotoxin, procalcitonin, C-reactive protein, and organ functions in patients with major burns].

    PubMed

    Ulrich, D; Noah, E M; Pallua, N

    2001-07-01

    Sepsis is one of the most frequent causes of death after major burn injury. Usually, sepsis appears as a consequence of a gram-negative bacteriaemia with release of endotoxins. In this study, the plasma endotoxin levels of seven patients (three female, four male; average age 51.3 +/- 23.8 years) with burns between 43.5 and 78 % Total Body Surface Area (Abbreviated Burn Severity Index 8 - 12) were determined for five days after thermal trauma every three hours by ELISA and compared with the concentration of procalcitonin (PCT) and C-reactive protein (CRP). A calculation of the Horrowitz-Index (PaO(2)/FiO(2)) and the Pressure-Adjusted Heart Rate (HR x CVP/MAP) took place to show a possible correlation between the endotoxin concentration and the cardiopulmonary organ function. Additionally, we analysed whether operative treatment can influence the level of plasma endotoxin in the early phase after burn injury. At any time after burn trauma, endotoxins could be detected in the plasma of all patients. Between the second and third day, there was a considerable increase in the endotoxin concentration with a maximum after 57 hours of 0.48 +/- 0.32 EU/ml. Two patients with sepsis and death in the further course had a rather distinctive increase. From the fourth day on, occasional episodes of increases in endotoxin concentration were noted. Postoperatively, there was a short increase in plasma endotoxin on the second and fourth day. The plasma endotoxin level showed no correlation with the PCT and CRP or with the oxygenation in the patients' blood. However, a positive correlation could be observed with the Pressure-Adjusted Heart Rate (p = 0.0061; r(2) = 0.212). An explanation for the endotoxin increase after 57 hours could be the translocation of intestinal bacteria, the beginning of bacterial colonisation or decomposition products of the burn wound with protein-protein complexes. Later on, infectious diseases such as pneumonia with gram-negative bacteria are of importance

  15. Pattern formation and self-organization in plasmas interacting with surfaces

    NASA Astrophysics Data System (ADS)

    Trelles, Juan Pablo

    2016-10-01

    Pattern formation and self-organization are fascinating phenomena commonly observed in diverse types of biological, chemical and physical systems, including plasmas. These phenomena are often responsible for the occurrence of coherent structures found in nature, such as recirculation cells and spot arrangements; and their understanding and control can have important implications in technology, e.g. from determining the uniformity of plasma surface treatments to electrode erosion rates. This review comprises theoretical, computational and experimental investigations of the formation of spatiotemporal patterns that result from self-organization events due to the interaction of low-temperature plasmas in contact with confining or intervening surfaces, particularly electrodes. The basic definitions associated to pattern formation and self-organization are provided, as well as some of the characteristics of these phenomena within natural and technological contexts, especially those specific to plasmas. Phenomenological aspects of pattern formation include the competition between production/forcing and dissipation/transport processes, as well as nonequilibrium, stability, bifurcation and nonlinear interactions. The mathematical modeling of pattern formation in plasmas has encompassed from theoretical approaches and canonical models, such as reaction-diffusion systems, to drift-diffusion and nonequilibrium fluid flow models. The computational simulation of pattern formation phenomena imposes distinct challenges to numerical methods, such as high sensitivity to numerical approximations and the occurrence of multiple solutions. Representative experimental and numerical investigations of pattern formation and self-organization in diverse types of low-temperature electrical discharges (low and high pressure glow, dielectric barrier and arc discharges, etc) in contact with solid and liquid electrodes are reviewed. Notably, plasmas in contact with liquids, found in diverse

  16. `Inorganics-in-Organics': recent developments and outlook for 4G polymer solar cells

    NASA Astrophysics Data System (ADS)

    Jayawardena, K. D. G. Imalka; Rozanski, Lynn J.; Mills, Chris A.; Beliatis, Michail J.; Nismy, N. Aamina; Silva, S. Ravi P.

    2013-08-01

    Recent developments in solution processable single junction polymer solar cells have led to a significant improvement in power conversion efficiencies from ~5% to beyond 9%. While much of the initial efficiency improvements were driven through judicious design of donor polymers, it is the engineering of device architectures through the incorporation of inorganic nanostructures and better processing that has continued the efficiency gains. Inorganic nano-components such as carbon nanotubes, graphene and its derivatives, metal nanoparticles and metal oxides have played a central role in improving device performance and longevity beyond those achieved by conventional 3G polymer solar cells. The present work aims to summarise the diverse roles played by the nanosystems and features in state of the art next generation (4G) polymer solar cells. The challenges associated with the engineering of such devices for future deployment are also discussed.

  17. The surface properties of carbon fibers and their adhesion to organic polymers

    NASA Technical Reports Server (NTRS)

    Bascom, W. D.; Drzal, L. T.

    1987-01-01

    The state of knowledge of the surface properties of carbon fibers is reviewed, with emphasis on fiber/matrix adhesion in carbon fiber reinforced plastics. Subjects treated include carbon fiber structure and chemistry, techniques for the study of the fiber surface, polymer/fiber bond strength and its measurement, variations in polymer properties in the interphase, and the influence of fiber matrix adhesion on composite mechanical properties. Critical issues are summarized and search recommendations are made.

  18. Series of mixed uranyl-lanthanide (Ce, Nd) organic coordination polymers with aromatic polycarboxylates linkers.

    PubMed

    Mihalcea, Ionut; Volkringer, Christophe; Henry, Natacha; Loiseau, Thierry

    2012-09-17

    Three series of mixed uranyl-lanthanide (Ce or Nd) carboxylate coordination polymers have been successfully synthesized by means of a hydrothermal route using either conventional or microwave heating methods. These compounds have been prepared from mixtures of uranyl nitrate, lanthanide nitrate together with phthalic acid (1,2), pyromellitic acid (3,4), or mellitic acid (5,6) in aqueous solution. The X-ray diffraction (XRD) single-crystal revealed that the phthalate complex (UO(2))(4)O(2)Ln(H(2)O)(7)(1,2-bdc)(4)·NH(4)·xH(2)O (Ln = Ce(1), Nd(2); x = 1 for 1, x = 0 for 2), is based on the connection of tetranuclear uranyl-centered building blocks linked to discrete monomeric units LnO(2)(H(2)O)(7) via the organic species to generate infinite chains, intercalated by free ammonium cations. The pyromellitate phase (UO(2))(3)Ln(2)(H(2)O)(12)(btec)(3)·5H(2)O (Ce(3), Nd(4)) contains layers of monomeric uranyl-centered hexagonal and pentagonal bipyramids linked via the carboxylate arms of the organic molecules. The three-dimensionality of the structure is ensured by the connection of remaining free carboxylate groups with isolated monomeric units LnO(2)(H(2)O)(7). The network of the third series (UO(2))(2)(OH)Ln(H(2)O)(7)(mel)·5H(2)O (Ce(5), Nd(6)) is built up from dinuclear uranyl units forming layers through connection with the mellitate ligands, which are further linked to each other through discrete monomers LnO(3)(H(2)O)(6). The thermal decomposition of the various coordination complexes led to the formation of mixed uranium-lanthanide oxide, with the fluorite-type structure at 1500 °C (for 1, 2) or 1400 °C for 3-6. Expected U/Ln ratio from the crystal structures were observed for compounds 1-6.

  19. Effect of polymer aggregation on the open circuit voltage in organic photovoltaic cells: aggregation-induced conjugated polymer gel and its application for preventing open circuit voltage drop.

    PubMed

    Kim, Bong-Gi; Jeong, Eun Jeong; Park, Hui Joon; Bilby, David; Guo, L Jay; Kim, Jinsang

    2011-03-01

    To investigate the structure-dependent aggregation behavior of conjugated polymers and the effect of aggregation on the device performance of conjugated polymer photovoltaic cells, new conjugated polymers (PVTT and CN-PVTT) having the same regioregularity but different intermolecular packing were prepared and characterized by means of UV-vis spectroscopy and atomic force microscopy (AFM). Photovoltaic devices were prepared with these polymers under different polymer-aggregate conditions. Polymer aggregation induced by thermal annealing increases the short circuit current but provides no advantage in the overall power conversion efficiency because of a decrease in the open circuit voltage. The device fabricated from a pre-aggregated polymer suspension, acquired from ultrasonic agitation of a conjugated polymer gel, showed enhanced performance because of better phase separation and reduced recombination between polymer/PCBM.

  20. Synthesis and morphogenesis of organic and inorganic polymers by means of biominerals and biomimetic materials.

    PubMed

    Kijima, Misako; Oaki, Yuya; Munekawa, Yurika; Imai, Hiroaki

    2013-02-11

    We have studied the simultaneous synthesis and morphogenesis of polymer materials with hierarchical structures from nanoscopic to macroscopic scales. The morphologies of the original materials can be replicated to the polymer materials. In general, it is not easy to achieve the simultaneous synthesis and morphogenesis of polymer material even using host materials. In the present work, four biominerals and three biomimetic mesocrystal structures are used as the host materials or templates and polypyrrole, poly(3-hexylthiopehene), and silica were used as the precursors for the simultaneous syntheses and morphogenesis of polymer materials. The host materials with the hierarchical structure possess the nanospace for the incorporation of the monomers. After the incorporation of the monomers, the polymerization reaction proceeds in the nanospace with addition of the initiator agents. Then, the dissolution of the host materials leads to the formation and morphogenesis of the polymer materials. The scheme of the replication can be classified into the three types based on the structures of the host materials (types I-III). The type I template facilitates the hierarchical replication of the whole host material, type II mediates the hierarchical surface replication, and type III induces the formation of the two-dimensional nanosheets. Based on these results, the approach for the coupled synthesis and morphogenesis can be applied to a variety of combinations of the templates and polymer materials.